
Oracle® Service Architecture
Leveraging Tuxedo (SALT)
Programming Guide

Release 22c
G11478-03
December 2024

Oracle Service Architecture Leveraging Tuxedo (SALT) Programming Guide, Release 22c

G11478-03

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Author: Priya Pathak

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Introduction to SALT Programming

1.1 SALT Web Services Programming 1-1

1.1.1 SALT Proxy Service 1-1

1.1.2 SALT Message Conversion 1-1

1.1.3 SALT Programming Tasks Quick Index 1-2

1.1.4 REpresentational State Transfer (REST) Message Conversion 1-2

2 Data Type Mapping and Message Conversion

2.1 Overview of Data Type Mapping and Message Conversion 2-1

2.2 Understanding SALT Message Conversion 2-1

2.2.1 Inbound Message Conversion 2-1

2.2.2 Outbound Message Conversion 2-2

2.3 Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services 2-2

2.3.1 Oracle Tuxedo STRING Typed Buffers 2-11

2.3.2 Oracle Tuxedo CARRAY Typed Buffers 2-11

2.3.2.1 Mapping Example Using base64Binary 2-12

2.3.2.2 Mapping Example Using MIME Attachment 2-12

2.3.3 Oracle Tuxedo MBSTRING Typed Buffers 2-13

2.3.4 Oracle Tuxedo XML Typed Buffers 2-14

2.3.5 Oracle Tuxedo VIEW/VIEW32 Typed Buffers 2-16

2.3.5.1 VIEW/VIEW32 Considerations 2-17

2.3.6 Oracle Tuxedo FML/FML32 Typed Buffers 2-18

2.3.6.1 FML Data Mapping Example 2-18

2.3.6.2 FML32 Data Mapping Example 2-18

2.3.6.3 FML/FML32 Considerations 2-20

2.3.7 Oracle Tuxedo RECORD Typed Buffers 2-21

2.3.7.1 REDEFINES Handling 2-22

2.3.8 Oracle Tuxedo X_C_TYPE Typed Buffers 2-22

2.3.9 Oracle Tuxedo X_COMMON Typed Buffers 2-23

2.3.10 Oracle Tuxedo X_OCTET Typed Buffers 2-23

2.3.11 Custom Typed Buffers 2-23

2.4 XML-to-Tuxedo Data Type Mapping for External Web Services 2-23

2.4.1 XML Schema Built-In Simple Data Type Mapping 2-23

iii

2.4.2 XML Schema User Defined Data Type Mapping 2-26

2.4.3 WSDL Message Mapping 2-31

2.5 REST Data Mapping 2-33

2.5.1 Inbound Message Conversion 2-33

2.5.1.1 Query String Mapping 2-33

2.5.1.2 JSON Data Mapping 2-35

2.5.1.3 XML Data Mapping 2-39

2.5.2 Outbound Message Conversion 2-43

2.5.2.1 Query String Mapping 2-43

2.5.2.2 JSON Data Mapping 2-45

2.5.2.3 XML Data Mapping 2-51

3 Web Service Client Programming

3.1 Overview 3-1

3.1.1 Representational State Transfer (REST) Support 3-1

3.1.1.1 Oneway (in and out) 3-2

3.1.1.2 ATMI and SCA Support 3-2

3.1.1.3 Examples 3-2

3.2 SALT Web Service Client Programming Tips 3-3

3.2.1 Oracle WebLogic Web Service Client Programming Toolkit 3-4

3.2.2 Apache Axis for Java Web Service Client Programming Toolkit 3-4

3.2.3 Microsoft .NET Web Service Client Programming Toolkit 3-6

3.2.4 Web Service Client Programming References 3-8

4 Oracle Tuxedo ATMI Programming for Web Services

4.1 Overview 4-1

4.2 Converting WSDL Model Into Oracle Tuxedo Model 4-1

4.2.1 WSDL-to-Tuxedo Object Mapping 4-1

4.3 Invoking SALT Proxy Services 4-2

4.3.1 SALT Supported Communication Patterns 4-2

4.3.2 Oracle Tuxedo Outbound Call Programming: Main Steps 4-3

4.3.3 Managing Error Code Returned from GWWS 4-4

4.3.4 Handling Fault Messages in an Oracle Tuxedo Outbound Application 4-4

5 Using SALT Plug-Ins

5.1 Understanding SALT Plug-Ins 5-1

5.1.1 Plug-In Elements 5-1

5.1.1.1 Plug-In ID 5-1

5.1.1.2 Plug-In Name 5-2

iv

5.1.1.3 Plug-In Implementation Functions 5-2

5.1.1.4 Plug-In Register Functions 5-2

5.1.1.5 Developing a Plug-In Interface 5-4

5.2 Programming Message Conversion Plug-ins 5-5

5.2.1 How Message Conversion Plug-ins Work 5-6

5.2.1.1 How Message Conversion Plug-in Works in an Inbound Call Scenario 5-6

5.2.1.2 How Message Conversion Plug-in Works in an Outbound Call Scenario 5-7

5.2.2 When Do We Need Message Conversion Plug-in 5-8

5.2.3 Developing a Message Conversion Plug-in Instance 5-9

5.2.3.1 Converting a SOAP Message Payload to an Oracle Tuxedo Buffer 5-10

5.2.3.2 Converting an Oracle Tuxedo Buffer to a SOAP Message Payload 5-11

5.2.4 SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility 5-13

5.3 Programming Outbound Authentication Plug-Ins 5-14

5.3.1 How Outbound Authentication Plug-Ins Work 5-14

5.3.2 Implementing a Credential Mapping Interface Plug-In 5-15

5.3.3 Mapping the Oracle Tuxedo UID and HTTP Username 5-16

5.3.3.1 Synopsis 5-16

5.3.3.2 Description 5-16

5.3.3.3 Diagnostics 5-17

v

List of Examples

2-1 Soap Message for a String Typed Buffer in TOUPPER Service 2-11

2-2 Mapping Example Using base64Binary 2-12

2-3 Soap Message for a CARRAY Typed Buffer Using MIME Attachment 2-12

2-4 SOAP Message for an MBSIRING Buffer 2-13

2-5 Stock Quote XML Document 2-14

2-6 SOAP Message for an XML Buffer 2-14

2-7 Default Namespace Before Sending to GWWS Server 2-15

2-8 GWWS Server Converts Default Namespace to Regular Name 2-15

2-9 VIEW Definition File for MYVIEW Service 2-16

2-10 SOAP Message for a VIEW Typed Buffer 2-16

2-11 XML Schema for a VIEW Typed Buffer 2-16

2-12 SOAP Message for an FML Typed Buffer 2-18

2-13 XML Schema for an FML Typed Buffer 2-18

2-14 SOAP Message for Service with FML32 Buffer 2-19

2-15 XML Schema for an FML32 Buffer 2-20

2-16 COBOL copybook myRecord 2-21

2-17 SOAP Message for a RECORD Typed Buffer 2-21

2-18 Schema for a RECORD Typed Buffer 2-21

2-19 VIEW Description File 2-48

2-20 Compilation 2-49

2-21 JSON Content 2-49

2-22 VIEW Description 2-50

2-23 Compilation 2-50

2-24 JSON Content Example 2-50

2-25 Field Table 2-50

2-26 JSON Content 2-50

2-27 COBOL copybook 2-51

2-28 Result 2-51

3-1 h interface 3-2

3-2 SCDL Descriptor 3-3

3-3 SALTDEPLOY REST Service Definition 3-3

3-4 Sample Apache Sandensha Asynchronous Mode and “send offer” Code Example 3-5

5-1 VTable Structure 5-4

5-2 Setting the vtable Structure with Actual Functions in the vtable Setting Function 5-4

5-3 Defined Plug-In in the SALT Deployment File 5-5

5-4 vtable Structure for SALT Plug-in “P_CUSTOM_TYPE” (C Language) 5-6

vi

5-5 Converting XML Effective Payload to Oracle Tuxedo Custom Typed Buffer Pseudo Code 5-11

5-6 Converting Oracle Tuxedo Custom Typed Buffer to SOAP XML Pseudo Code 5-12

5-7 Custom Typed Buffer Plug-In Interface 5-15

5-8 Credential Mapping for HTTP Basic Authentication Pseudo Code 5-17

vii

List of Figures

5-1 Message Conversion Plug-in Works in an Inbound Call Scenario 5-7

5-2 Message Conversion Plug-in Works in an Outbound Call Scenario 5-8

viii

List of Tables

1-1 Table 1‑1 SALT Programming Tasks Quick Index 1-2

2-1 Inbound Message Conversion vs. Outbound Message Conversion 2-2

2-2 Oracle Tuxedo Buffer Mapping to XML Schema 2-3

2-3 Supported XML Schema Built-In Simple Data Type 2-24

2-4 XML Schema Built-In Type Sample - xsd:string 2-25

2-5 XML Schema Built-In Type Sample - xsd:hexBinary 2-25

2-6 XML Schema Built-In Type Sample - xsd:date 2-26

2-7 Supported XML Schema User Defined Data Type 2-26

2-8 XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple Type 2-28

2-9 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list 2-28

2-10 External Service Schema Attribute Use Example 2-29

2-11 WSDL Message Mapping Rules 2-31

2-12 Query String Mapping 2-34

2-13 JSON Data Mapping 2-35

2-14 XML Data Mapping 2-39

2-15 Query String Mapping 2-44

2-16 JSON Data Mapping 2-45

2-17 XML Data Mapping 2-52

4-1 WSDL Model / Oracle Tuxedo Model Mapping Rules 4-2

4-2 Error Code Returned From GWWS/Tuxedo Framework 4-4

4-3 Outbound SOAP Fault Errbuf Definition 4-5

5-1 Message Conversion Plug-in Use Cases 5-8

5-2 SALT 12cR2 Message Conversion Plug-in / SALT 1.1 Custom Buffer Type Conversion Plug-in

Comparison 5-13

ix

1
Introduction to SALT Programming

This chapter includes the following topics:

• SALT Web Services Programming

1.1 SALT Web Services Programming
SALT provides bi-directional connectivity between Oracle Tuxedo applications and Web service
applications. Existing Oracle Tuxedo services can be easily exposed as Web Services without
requiring additional programming tasks. SALT generates a WSDL file that describes the Oracle
Tuxedo Web service contract so that any standard Web service client toolkit can be used to
access Oracle Tuxedo services.

Web service applications (described using a WSDL document), can be imported as if they are
standard Oracle Tuxedo services and invoked using Oracle Tuxedo ATMIs from various Oracle
Tuxedo applications (for example, Oracle Tuxedo ATMI clients, ATMI servers, Jolt clients,
COBOL clients, and .NET wrapper clients).

• SALT Proxy Service

• SALT Message Conversion

• SALT Programming Tasks Quick Index

• REpresentational State Transfer (REST) Message Conversion

1.1.1 SALT Proxy Service
SALT proxy services are Oracle Tuxedo service entries advertised by the GWWS SALT
Gateway. The proxy services are converted from the Web service application WSDL file. Each
WSDL file wsdl:operation object is mapped as one SALT proxy service.

The SALT proxy service is defined using the Service Metadata Repository service definition
syntax. These service definitions must be loaded into the Service Metadata Repository. To
invoke proxy services from an Oracle Tuxedo application, you must refer to the Oracle Tuxedo
Service Metadata Repository to get the service contract description.

For more information, see Oracle Tuxedo ATMI Programming for Web Services

1.1.2 SALT Message Conversion
To support Oracle Tuxedo application and Web service application integration, the SALT
gateway converts SOAP messages into Oracle Tuxedo typed buffers, and Oracle Tuxedo
typed buffers into SOAP messages. The message conversion between SOAP messages and
Oracle Tuxedo typed buffers is subject to a set of SALT pre-defined basic data type mapping
rules.

When exposing Oracle Tuxedo services as Web services, a set of Tuxedo-to-XML data type
mapping rules are defined. The message conversion process that conforms to Tuxedo-to-XML
data type mapping rules is called “Inbound Message Conversion”.

1-1

When importing external Web services as SALT proxy services, a set of XML-to-Tuxedo data
type mapping rules are defined. The message conversion process that conforms to XML-to-
Tuxedo data type mapping rules is called “Outbound Message Conversion”.

For more information, see Understanding SALT Message Conversion

1.1.3 SALT Programming Tasks Quick Index
Table 1‑1 lists a quick index of SALT programming tasks. You can locate programming tasks
first, and then click on the corresponding link for detailed description.

Table 1-1 Table 1‑1 SALT Programming Tasks Quick Index

Service Type Tasks Reference

Invoking Oracle Tuxedo services
(inbound) through SALT

Develop Web service client
programs for Oracle Tuxedo
services invocation.

SALT Web Service Client
Programming Tips.

Understand inbound message
conversion and data type
mapping rules.

Understanding SALT Message
Conversion. Tuxedo-to-XML
Data Type Mapping for Oracle
Tuxedo Services.

Develop inbound message
conversion plug-in.

Programming Message
Conversion Plug-ins.

Invoking external Web services
(outbound) through SALT

Understand the general outbound
service programming concepts.

Oracle Tuxedo ATMI
Programming for Web Services.

Understand outbound message
conversion and data type
mapping rules.

Understanding SALT Message
Conversion.
XML-to-Tuxedo Data Type
Mapping for External Web
Services.

Develop outbound message
conversion plug-in.

Programming Message
Conversion Plug-ins.

Develop your own plug-in to map
Oracle Tuxedo user name with
user name for outbound HTTP
basic authentication.

Programming Outbound
Authentication Plug-Ins.

1.1.4 REpresentational State Transfer (REST) Message Conversion
The basic REST design principle establishes a one-to-one mapping between create, read,
update, and delete (CRUD) operations and HTTP methods.

The REST principles around are as follows:

• Use HTTP methods explicitly.

• Expose directory structure-like URIs.

• Transfer XML, JavaScript Object Notation (JSON), or both.

For more information, see Data Type Mapping and Message conversion, and SALT
configuration tool in the SALT Configuration Guide.

Chapter 1
SALT Web Services Programming

1-2

https://docs.oracle.com/cd/E72452_01/salt/docs1222/config/config.html
https://docs.oracle.com/cd/E72452_01/salt/docs1222/config/config.html

2
Data Type Mapping and Message Conversion

This chapter contains the following sections:

• Overview of Data Type Mapping and Message Conversion

• Understanding SALT Message Conversion

• Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

• XML-to-Tuxedo Data Type Mapping for External Web Services

• REST Data Mapping

2.1 Overview of Data Type Mapping and Message Conversion
SALT supports bi-directional data type mapping between WSDL messages and Oracle Tuxedo
typed buffers. For each service invocation, the GWWS server converts each message between
Oracle Tuxedo typed buffers and SOAP message payloads. A SOAP message payload is the
XML effective data encapsulated within the <soap:body> element. For more information, see
Understanding SALT Message Conversion

For native Oracle Tuxedo services, each Oracle Tuxedo buffer type is described using an XML
Schema in the SALT generated WSDL document. Oracle Tuxedo service request/response
buffers are represented in regular XML format. For more information, see Tuxedo-to-XML Data
Type Mapping for Oracle Tuxedo Services

For external Web services, each WSDL message is mapped as an Oracle Tuxedo FML32 buffer
structure. An Oracle Tuxedo application invokes SALT proxy service using FML32 buffers as
input/output. For more information see, XML Schema Built-In Simple Data Type Mapping

SALT also supports non-SOAP data type mapping (i.e., REST over HTTP in both XML and
JSON format. This is initiated when services are exposed as HTTP/REST services. For more
information, see REST Data Mapping

2.2 Understanding SALT Message Conversion
SALT message conversion is the message transformation process between SOAP XML data
and Oracle Tuxedo typed buffers. SALT introduces two message conversion rules: Inbound
Message Conversion, and Outbound Message Conversion.

• Inbound Message Conversion

• Outbound Message Conversion

2.2.1 Inbound Message Conversion
Inbound message conversion is the SOAP XML Payload and Oracle Tuxedo typed buffer
conversion process that conforms to “Tuxedo-to-XML data type mapping rules”. Inbound
message conversion happens in two phases:

• When GWWS accepts SOAP requests for legacy Oracle Tuxedo services;

2-1

• When GWWS accepts response typed buffers from legacy Oracle Tuxedo services.

SALT encloses Oracle Tuxedo buffer content using elements <inbuf>, <outbuf>and/or
<errbuf> in the SOAP message, the content included within elements <inbuf>, <outbuf>
and/or <errbuf> is called “Inbound XML Payload”.

2.2.2 Outbound Message Conversion
Outbound message conversion process is the SOAP XML Payload and Oracle Tuxedo typed
buffer conversion process that conforms to the “Tuxedo-to-XML data type mapping rules”.
Outbound message conversion happens in two phases:

• When GWWS accepts request typed buffers sent from an Oracle Tuxedo application;

• When GWWS accepts SOAP response messages from external Web services.

The following table compares inbound message conversion and outbound message
conversion:

Table 2-1 Inbound Message Conversion vs. Outbound Message Conversion

Inbound Message Conversion Outbound Message Conversion

SOAP message payload is encapsulated with
<inbuf>, <outbuf> or <errbuf>.

SOAP message payload is the entire
<soap:body>

Transformation according to “Tuxedo-to-XML data
type mapping rules”.

Transformation according to “XML-to-Tuxedo data
type mapping rules”.

All Oracle Tuxedo buffer types are involved. Only Oracle Tuxedo FML32 buffer type is involved.

2.3 Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo
Services

SALT provides a set of rules for describing Oracle Tuxedo typed buffers in an XML document
as shown in the table below: These rules are exported as XML Schema definitions in SALT
WSDL documents. This simplifies buffer conversion and does not require previous Oracle
Tuxedo buffer type knowledge.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-2

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

STRING Oracle Tuxedo STRING typed
buffers are used to store character
strings that terminate with a NULL
character. Oracle Tuxedo STRING
typed buffers are self-describing.

xsd:string
In the SOAP message, the XML element that
encapsulates the actual string data, must be
defined using xsd:string directly.

Note:

The STRING data
type can be specified
with a max data
length in the Oracle
Tuxedo Service
Metadata Repository.
If defined in Oracle
Tuxedo, the
corresponding SOAP
message also
enforces this
maximum. The
GWWS server
validates the actual
message byte length
against the definition
in Oracle Tuxedo
Service Metadata
Repository. A SOAP
fault message is
returned if the
message byte length
exceeds supported
maximums.
If GWWS server
receives a SOAP
message other than
“UTF-8”, the
corresponding string
value is in the same
encoding.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-3

Table 2-2 (Cont.) Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

CARRAY
(Mapping
with SOAP
Message
plus
Attachments
)

Oracle Tuxedo CARRAY typed
buffers store character arrays, any
of which can be NULL. CARRAY
buffers are used to handle data
opaquely and are not self-
describing.

The CARRAY buffer raw data is carried within a
MIME multipart/related message, which is defined
in the “SOAP Messages with Attachments’
specification.
The two data formats supported for MIME Content-
Type attachments are:

• application/octet-stream
- For Apache Axis

• text/xml
For Oracle WebLogic Server

The format depends on which Web service client-
side toolkit is used.

Note:

The SOAP with
Attachment rule is
only interoperable
with Oracle
WebLogic Server and
Apache Axis
CARRAY data types
can be specified with
a max byte length. If
defined in Oracle
Tuxedo, the
corresponding SOAP
message is enforced
with this limitation.
The GWWS server
validates the actual
message byte length
against the definition
in the Oracle Tuxedo
Service Metadata
Repository.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-4

Table 2-2 (Cont.) Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

CARRAY
(Mapping
with
base64Binar
y)

Oracle Tuxedo CARRAY typed
buffers store character arrays, any
of which can be NULL. CARRAY
buffers are used to handle data
opaquely and are not self-
describing.

xsd:base64Binary
The CARRAY data bytes must be encoded with
base64Binary before it can be embedded in a
SOAP message. Using base64Binary encoding
with this opaque data stream saves the original
data and makes the embedded data well-formed
and readable.

In the SOAP message, the XML element that
encapsulates the actual CARRAY data, must be
defined with xsd:base64Binary directly.

Note:

CARRAY data types
can be specified with
a max byte length. If
defined in Oracle
Tuxedo, the
corresponding SOAP
message is enforced
with this limitation.
The GWWS server
validates the actual
message byte length
against the definition
in the Oracle Tuxedo
Service Metadata
Repository.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-5

Table 2-2 (Cont.) Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

MBSTRING Oracle Tuxedo MBSTRING typed
buffers are used for multibyte
character arrays. Oracle Tuxedo
MBSTRING buffers consist of the
following three elements:
• Code-set character encoding
• Data length
• Character array of the

encoding.

xsd:string
The XML Schema built-in type, xsd:string,
represents the corresponding type for buffer data
stored in a SOAP message.

The GWWS server only accepts “UTF-8” encoded
XML documents. If the Web service client wants to
access Oracle Tuxedo services with MBSTRING
buffer, the mbstring payload must be represented
as “UTF-8” encoding in the SOAP request
message.

Note:

The GWWS server
transparently passes
the “UTF-8”
character set string to
the Oracle Tuxedo
service using
MBSTRING Typed
buffer format.The
actual Oracle Tuxedo
services handles the
UTF-8 string.
For any Oracle
Tuxedo response
MBSTRING typed
buffer (with any
encoding character
set), the GWWS
server automatically
transforms the string
into “UTF-8”
encoding and sends
it back to the Web
service client.

MBSTRING
(cont.)

- Limitation:
Oracle Tuxedo MBSTRING data type can be
specified with a max byte length in the Oracle
Tuxedo Service Metadata Repository. The GWWS
server checks the byte length of the converted
MBSTRING buffer value.

Max byte length value is not used to enforce the
character number contained in the SOAP
message.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-6

Table 2-2 (Cont.) Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

XML Oracle Tuxedo XML typed buffers
store XML documents.

xsd:anyType
The XML Schema built-in type, xsd:anyType, is
the corresponding type for XML documents stored
in a SOAP message. It allows you to encapsulate
any well-formed XML data within the SOAP
message.

Limitation:
The GWWS server validates that the actual XML
data is well-formed. It will not do any other
enforcement validation, such as Schema
validation.

Only a single root XML buffer is allowed to be
stored in the SOAP body; the GWWS server
checks for this.

The actual XML data must be encoded using the
“UTF-8” character set. Any original XML document
prolog information cannot be carried within the
SOAP message.

XML data type can specify a max byte data length.
If defined in Oracle Tuxedo, the corresponding
SOAP message must also enforce this limitation.

Note:

The SALT WSDL
generator will not
have
xsd:maxLength
restrictions in the
generated WSDL
document, but the
GWWS server will
validate the byte
length according to
the Oracle Tuxedo
Service Metadata
Repository definition.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-7

Table 2-2 (Cont.) Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32
typed buffers store C structures
defined by Oracle Tuxedo
applications.
VIEW structures are defined by
using VIEW definition files. A VIEW
buffer type can define multiple
fields.

VIEW supports the following field
types:

• short
• int
• long
• float
• double
• char
• string
• carray
• bool
• unsigned char
• signed char
• wchar_t* or wchar_t
• unsigned int
• unsigned long
• long long
• unsigned long long
• long doubl
VIEW32 supports all the VIEW field
types, mbstring, and embedded
VIEW32 type.

Each VIEW or VIEW32 data type is defined as an
XML Schema complex type. Each VIEW field
should be one or more sub-elements of the XML
Schema complex type. The name of the sub-
element is the VIEW field name. The occurrence of
the sub-element depends on the count attribute of
the VIEW field definition. The value of the sub-
element should be in the VIEW field data type
corresponding XML Schema type.

The the field types and the corresponding XML
Schema type are listed as follows:

• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Oracle Tuxedo

Service Metadata Repository definition),maps
to xsd:byte

• char (defined as char in Oracle Tuxedo
Service Metadata Repository definition) maps
to xsd:string (with restrictions
maxlength=1

• string maps to xsd:string
• carray maps to xsd:base64Binary
• mbstring maps to xsd:string

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-8

Table 2-2 (Cont.) Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

VIEW/VIEW32
(cont.)

- • bool maps to xsd:Boolean
• unsigned char maps to

xsd:unsignedByte
• signed char maps to xsd:byte
• wchar_t* or wchar_t array maps to

xsd:string
• unsigned int maps to xsd:unsignedInt
• unsigned long maps to

xsd:unsignedLong
• long long maps to xsd:long
• unsigned long long maps to

xsd:unsignedLong
• long double maps to xsd:double. Do

not set the value of C importer
option size of long double to 128
bit. This option does not import
successfully; use the default 64 bit

• VIEW32 maps to tuxtype:view
<viewname>

For more information, see VIEW/VIEW32
Considerations.

FML/FML32 Oracle Tuxedo FML and FML32 type
buffers are proprietary Oracle
Oracle Tuxedo system self-
describing buffers. Each data field
carries its own identifier, an
occurrence number, and possibly a
length indicator.
FML supports the following field
types:

• FLD_CHAR
• FLD_SHORT
• FLD_LONG
• FLD_FLOAT
• FLD_DOUBLE
• FLD_STRING
• FLD_CARRAY
FML32 supports all the FML field
types and FLD_PTR,
FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

FML/FML32 buffers can only have basic data-
dictionary-like definitions for each basic field data.
A particular FML/FML32 buffer definition should be
applied for each FML/FML32 buffer with a different
type name.
Each FML/FML32 field should be one or more sub-
elements within the FML/FML32 buffer XML
Schema type. The name of the sub-element is the
FML field name. The occurrence of the sub-element
depends on the count and required count
attribute of the FML/FML32 field definition.

The e field types and the corresponding XML
Schema type are listed below:

• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Oracle Tuxedo

Service Metadata Repository definition) maps
to xsd:byte

• char (defined as char in Oracle Tuxedo
Service Metadata Repository definition) maps
to xsd:string

• string maps to xsd:string
• carray maps to xsd:base64Binary
• mbstring maps to xsd:string

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-9

Table 2-2 (Cont.) Oracle Tuxedo Buffer Mapping to XML Schema

Oracle
Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

FML/FML32
(cont.)

- • view32 maps to tuxtype:view
<viewname>

• fml32 maps to tuxtype:fml32
<svcname>_p<SeqNum>

To avoid multiple embedded FML32 buffers in an
FML32 buffer, a unique sequence number
(<SeqNum>) is used to distinguish the embedded
FML32 buffers.

Note:

ptr is not supported.

For limitations and considerations regarding
mapping FML/FML32 buffers, refer to FML/FML32
Considerations.

RECORD RECORD buffer type represents
copybook record. RECORD types
must have subtypes that designate
individual record structures.
Generated COBOL types:

• RECORD
• COMP-1
• COMP-2
• S9(18)
• 9(18)
• S9(9)
• 9(9)
• S9(4)
• S9(10)V9(10)
• X(1024)
• @binary=true

Each RECORD data type is defined as an XML
Schema complex type. Each RECORD field should
be one or more sub-elements of the XML Schema
complex type.
The COBOL types and the corresponding XML
Schema type are listed as follows:

• RECORD maps to xsd:complexType
• COMP-1 maps to xsd:float
• COMP-2 maps to xsd:double
• S9(18) maps to xsd:long
• 9(18) maps to xsd:unsignedLong
• S9(9) maps to xsd:int
• 9(9) maps to xsd:unsignedInt
• S9(4) maps to xsd:short
• S9(10)V9(10) COMP-3 maps to

xsd:decimal
• X(1024) maps to xsd:string
• @binary=true xsd:base64Binary

X_C_TYPE X_C_TYPE buffer types are
equivalent to VIEW buffer types.

See VIEW/VIEW32

X_COMMON X_COMMON buffer types are
equivalent to VIEW buffer types, but
are used for compatibility between
COBOL and C programs. Field
types should be limited to short,
long, and string

See VIEW/VIEW32

X_OCTET X_OCTET buffer types are
equivalent to CARRAY buffer types

See CARRAY

• Oracle Tuxedo STRING Typed Buffers

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-10

• Oracle Tuxedo CARRAY Typed Buffers

• Oracle Tuxedo MBSTRING Typed Buffers

• Oracle Tuxedo XML Typed Buffers

• Oracle Tuxedo VIEW/VIEW32 Typed Buffers

• Oracle Tuxedo FML/FML32 Typed Buffers

• Oracle Tuxedo RECORD Typed Buffers

• Oracle Tuxedo X_C_TYPE Typed Buffers

• Oracle Tuxedo X_COMMON Typed Buffers

• Oracle Tuxedo X_OCTET Typed Buffers

• Custom Typed Buffers

2.3.1 Oracle Tuxedo STRING Typed Buffers
Oracle Tuxedo STRING typed buffers are used to store character strings that end with a NULL
character. Oracle Tuxedo STRING typed buffers are self-describing.

The following SOAP message is an example for the Oracle Tuxedo service TOUPPER that
accepts a STRING typed buffer.

Example 2-1 Soap Message for a String Typed Buffer in TOUPPER Service

<?xml … encoding=”UTF-8” ?>
 ……
 <SOAP:body>
 <m:TOUPPER xmlns:m=”urn:......”>
 <inbuf>abcdefg</inbuf>
 </m:TOUPPER>
 </SOAP:body>

The XML Schema for <inbuf> is:
<xsd:element name=”inbuf” type=”xsd:string” />

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

2.3.2 Oracle Tuxedo CARRAY Typed Buffers
Oracle Tuxedo CARRAY typed buffers are used to store character arrays, any of which can be
NULL. They are used to handle data opaquely and are not self-describing. Oracle Tuxedo
CARRAY typed buffers can map to xsd:base64Binary or MIME attachments. The default is
xsd:base64Binary.

• Mapping Example Using base64Binary

• Mapping Example Using MIME Attachment

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-11

2.3.2.1 Mapping Example Using base64Binary
The following SOAP message is example of the TOUPPER Oracle Tuxedo service that accepts a
CARRAY typed buffer using base64Binary mapping.

Example 2-2 Mapping Example Using base64Binary

<SOAP:body>
 <m:TOUPPER xmlns:m=”urn:......”>
 <inbuf>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</inbuf>
 </m:TOUPPER>
</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:base64Binary” />

2.3.2.2 Mapping Example Using MIME Attachment
The following SOAP message is example of the TOUPPER Oracle Tuxedo service that accepts a
CARRAY typed buffer as a MIME attachment.

Example 2-3 Soap Message for a CARRAY Typed Buffer Using MIME Attachment

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<claim061400a.xml@example.com>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@ example.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<m:TOUPPER xmlns:m=”urn:…”>
<inbuf href="cid:claim061400a.carray@example.com"/>
</m:TOUPPER>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: text/xml
Content-Transfer-Encoding: binary
Content-ID: <claim061400a. carray @example.com>

...binary carray data…
--MIME_boundary--

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-12

The WSDL for carray typed buffer will look like the following:
<wsdl:definitions …>
<wsdl:types …>
<xsd:schema …>
<xsd:element name=”inbuf” type=”xsd:base64Binary” />
</xsd:schema>
</wsdl:types>

……

<wsdl:binding …>
 <wsdl:operation name=”TOUPPER”>
 <soap:operation …>
 <input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts=”…” use=”…”/>
 </mime:part>
 <mime:part>
 <mime:content part=”…” type=”text/xml”/>
 </mime:part>
 </mime:multipartRelated>
 </input
 ……
 </wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

2.3.3 Oracle Tuxedo MBSTRING Typed Buffers
Oracle Tuxedo MBSTRING typed buffers are used for multibyte character arrays. Oracle Tuxedo
MBSTRING typed buffers consist of the following three elements:

• code-set character encoding

• data length

• character array encoding.

Note:

You cannot embed multibyte characters with non “UTF-8” code sets in the SOAP
message directly.

The following is an example of the SOAP message for the MBSERVICE Oracle Tuxedo service
that accepts an MBSTRING typed buffer.

Example 2-4 SOAP Message for an MBSIRING Buffer

<?xml encoding=”UFT-8”?>
 <SOAP:body>
 <m:MBSERVICE xmlns:m=”http://......”>

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-13

 <inbuf>こんにちは</infuf>
 </m:MBSERVICE>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

WARNING:

• SALT converts the Japanese character "—" (EUC-JP 0xa1bd, Shift-JIS 0x815c)
into UTF-16 0x2015.

• If you use another character set conversion engine, the EUC-JP or Shift-JIS
multibyte output for this character may be different. For example, the Java il8n
character conversion engine, converts this symbol to UTF-16 0x2014. The result
is the also same when converting to UTF-8, which is the SALT default.

• If you use another character conversion engine and Japanese "—" is included in
MBSTRING, Oracle Tuxedo server-side MBSTRING auto-conversion cannot convert it
back into Shift-JIS or EUC-JP.

2.3.4 Oracle Tuxedo XML Typed Buffers
Following is an example of the Stock Quote XML document:

Example 2-5 Stock Quote XML Document

<?xml version="1.0" encoding="UTF-8"?>
<!-- "Stock Quotes". -->
<stockquotes>
 <stock_quote>
 <symbol>BEAS</symbol>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
</stockquotes>

The following is an example of a SOAP message for the STOCKINQ Oracle Tuxedo service
that accepts an XML typed buffer.

Example 2-6 SOAP Message for an XML Buffer

<SOAP:body>
 <m: STOCKINQ xmlns:m=”urn:......”>
 <inbuf>
 <stockquotes>
 <stock_quote>

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-14

 <symbol>BEAS</symbol>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
 </stockquotes>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:anyType” />

Note:

If a default namespace is contained in an Oracle Tuxedo XML typed buffer and
returned to the GWWS server, the GWWS server converts the default namespace to
a regular name. Each element is then prefixed with this name.

The following is an example of an Oracle Tuxedo service that returns a buffer, which has a
default namespace to the GWWS server:

Example 2-7 Default Namespace Before Sending to GWWS Server

<Configuration xmlns="http://www.bea.com/Tuxedo/Salt/200606">
 <Servicelist id="simpapp">
 <Service name="toupper"/>
 </Servicelist>
 <Policy/>
 <System/>
 <WSGateway>
 <GWInstance id="GWWS1">
 <HTTP address="//myhost:8080"/>
 </GWInstance>
 </WSGateway>
</Configuration>

The following is an example of the GWWS server converts the default namespace to a regular
name:

Example 2-8 GWWS Server Converts Default Namespace to Regular Name

<dom0:Configuration
 xmlns:dom0="http://www.bea.com/Tuxedo/Salt/200606">
 <dom0:Servicelist dom0:id="simpapp">
 <dom0:Service dom0:name="toupper"/>
 </dom0:Servicelist>
 <dom0:Policy></<dom0:Policy>

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-15

 <dom0:System></<dom0:System>
 <dom0:WSGateway>
 <dom0:GWInstance dom0:id="GWWS1">
 <dom0:HTTP dom0:address="//myhost:8080"/>
 </dom0:GWInstance>
 </dom0:WSGateway>
 </dom0:Configuration>

2.3.5 Oracle Tuxedo VIEW/VIEW32 Typed Buffers
Oracle Tuxedo VIEW and VIEW32 typed buffers are used to store C structures defined by Oracle
Tuxedo applications. You must define the VIEW structure with the VIEW definition files. A VIEW
buffer type can define multiple fields.

The following example shows the MYVIEW VIEW definition file.

Example 2-9 VIEW Definition File for MYVIEW Service

VIEW MYVIEW
#type cname fbname count flag size null
float float1 - 1 - - 0.0
double double1 - 1 - - 0.0
long long1 - 3 - - 0
string string1 - 2 - 20 '\0'
END

The following example shows message for the MYVIEW Oracle Tuxedo service that accepts a
VIEW typed buffer.

Example 2-10 SOAP Message for a VIEW Typed Buffer

<SOAP:body>
 <m: STOCKINQ xmlns:m=”http://......”>
 <inbuf>
 <float1>12.5633</float1>
 <double1>1.3522E+5</double1>
 <long1>1000</long1>
 <long1>2000</long1>
 <long1>3000</long1>
 <string1>abcd</string1>
 <string1>ubook</string1>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is shown in the example below:

Example 2-11 XML Schema for a VIEW Typed Buffer

<xsd:complexType name=” view_MYVIEW”>
 <xsd:sequence>
 <xsd:element name=”float1” type=”xsd:float” />
 <xsd:xsd:element name=”double1” type=”xsd:double” />
 <xsd:element name=”long1” type=”xsd:long” minOccurs=”3” />
 <xsd:element name=”string1” type=”xsd:string minOccurs=”3” />

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-16

 </xsd:sequence>
</xsd: complexType >
<xsd:element name=”inbuf” type=”tuxtype:view_MYVIEW” />

• VIEW/VIEW32 Considerations

2.3.5.1 VIEW/VIEW32 Considerations
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to and
from XML.

• You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

• You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

• The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32
definition file at start up.
If an inconsistency is found, the GWWS server cannot start. Inconsistency messages are
printed in the ULOG file.

• tmwsdlgen also provides strong consistency checking between the Oracle Tuxedo Service
Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32 definition file
at start up. If an inconsistency is found, the GWWS server will not start. Inconsistency
messages are printed in the ULOG file.
If the VIEW definition file cannot be loaded, tmwsdlgen attempts to use the Oracle Tuxedo
Service Metadata Repository definitions to compose the WSDL document.

• Because dec_t is not supported, if you define VIEW fields with type dec_t, the service
cannot be exported as a Web service and an error message is generated when the SALT
configuration file is loading.

• Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/ mbstring” typed parameters (which represents the maximum byte length that is
allowed in the Oracle Tuxedo typed buffer), SALT does not expose such restriction in the
generated WSDL document.

• When a VIEW32 embedded MBString buffer is requested and returned to the GWWS
server, the GWWS miscalculates the required MBString length and reports that the input
string exceeds the VIEW32 maxlength. This is because the header is included in the
transfer encoding information. You must include the header size when defining the VIEW32
field length.

• The Oracle Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope,
depending on the platform. However, the corresponding xsd:long schema type is used to
describe 64-bit numeric values.

If the GWWS server runs in 32-bit mode, and the Web service client sends xsd:long typed
data that exceeds the 32-bit value range, you may get a SOAP fault.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-17

2.3.6 Oracle Tuxedo FML/FML32 Typed Buffers
Oracle Tuxedo FML and FML32 typed buffer are proprietary Oracle Tuxedo system self-
describing buffers. Each data field carries its own identifier, an occurrence number, and
possibly a length indicator.

• FML Data Mapping Example

• FML32 Data Mapping Example

• FML/FML32 Considerations

2.3.6.1 FML Data Mapping Example
Following is an example of a SOAP message for the TRANSFER Oracle Tuxedo service that
accepts an FML typed buffer.

The request fields for service LOGIN are:

ACCOUNT_ID 1 long /* 2 occurrences, The withdrawal account is 1st, and the
deposit account is 2nd */
AMOUNT 2 float /* The amount to transfer */

Part of the SOAP message is shown in the following example:

Example 2-12 SOAP Message for an FML Typed Buffer

<SOAP:body>
 <m:TRANSFER xmlns:m=”urn:......”>
 <inbuf>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <AMOUNT>200.15</AMOUNT>
 </inbuf>
 </m:TRANSFER >
</SOAP:body>

The XML Schema for <inbuf> is shown in in the following example:

Example 2-13 XML Schema for an FML Typed Buffer

<xsd:complexType name=” fml_TRANSFER_In”>
 <xsd:sequence>
 <xsd:element name=”ACCOUNT_ID” type=”xsd:long” minOccurs=”2”/>
 <xsd:element name=” AMOUNT” type=”xsd:float” />
 </xsd:sequence>
</xsd: complexType >
<xsd:element name=”inbuf” type=”tuxtype: fml_TRANSFER_In” />

2.3.6.2 FML32 Data Mapping Example
The code example below shows the SOAP message for the TRANSFER Oracle Tuxedo service,
which accepts an FML32 typed buffer.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-18

The request fields for service LOGIN are:

CUST_INFO 1 fml32 /* 2 occurrences, The withdrawal customer is 1st, and the
deposit customer is 2nd */
ACCOUNT_INFO 2 fml32 /* 2 occurrences, The withdrawal account is 1st, and the
deposit account is 2nd */
AMOUNT 3 float /* The amount to transfer */

Each embedded CUST_INFO includes the following fields:

CUST_NAME 10 string
CUST_ADDRESS 11 carray
CUST_PHONE 12 long

Each embedded ACCOUNT_INFO includes the following fields:

ACCOUNT_ID 20 long
ACCOUNT_PW 21 carray

Part of the SOAP message is shown in the following example:

Example 2-14 SOAP Message for Service with FML32 Buffer

<SOAP:body>
 <m:STOCKINQ xmlns:m=”urn:......”>
 <inbuf>
 <CUST_INFO>
 <CUST_NAME>John</CUST_NAME>
 <CUST_ADDRESS>Building 15</CUST_ADDRESS>
 <CUST_PHONE>1321</CUST_PHONE>
 </CUST_INFO>
 <CUST_INFO>
 <CUST_NAME>Tom</CUST_NAME>
 <CUST_ADDRESS>Building 11</CUST_ADDRESS>
 <CUST_PHONE>1521</CUST_PHONE>
 </CUST_INFO>
 <ACCOUNT_INFO>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_PW>abc</ACCOUNT_PW>
 </ACCOUNT_INFO>
 <ACCOUNT_INFO>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_PW>zyx</ACCOUNT_PW>
 </ACCOUNT_INFO>

 <AMOUNT>200.15</AMOUNT>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is shown in the following example:

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-19

Example 2-15 XML Schema for an FML32 Buffer

<xsd:complexType name=”fml32_TRANSFER_In”>
 <xsd:sequence>
 <xsd:element name=”CUST_INFO” type=”tuxtype:fml32_TRANSFER_p1”
minOccurs=”2”/>
 <xsd:element name=”ACCOUNT_INFO” type=”tuxtype:fml32_TRANSFER_p2”
minOccurs=”2”/>
 <xsd:element name=”AMOUNT” type=”xsd:float” />
 /xsd:sequence>
</xsd:complexType >

<xsd:complexType name=”fml32_TRANSFER_p1”>
 <xsd:element name=”CUST_NAME” type=”xsd:string” />
 <xsd:element name=”CUST_ADDRESS” type=”xsd:base64Binary” />
 <xsd:element name=”CUST_PHONE” type=”xsd:long” />
</xsd:complexType>

<xsd:complexType name=”fml32_TRANSFER_p2”>
 <xsd:element name=”ACCOUNT_ID” type=”xsd:long” />
 <xsd:element name=”ACCOUNT_PW” type=”xsd:base64Binary” />
</xsd:complexType>

<xsd:element name=”inbuf” type=”tuxtype: fml32_TRANSFER_In” />

2.3.6.3 FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML.

• You must create an environment for converting XML to and from FML/FML32. This includes
an FML field table file directory and system FML field definition files. These definitions are
automatically loaded by the GWWS. FML typed buffers can be handled only if the
environment is set up correctly.

• FML32 field type FLD_PTR is not supported.

• The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository FML/FML32 parameter definition and FML/FML32 definition file
during start up.
If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in the
Oracle Tuxedo Service Metadata Repository, the GWWS cannot start. Inconsistency
messages are printed in the ULOG file.

• The tmwsdlgen command checks for consistency between the Oracle Tuxedo Service
Metadata Repository FML/FML32 parameter definition and FML/FML32 definition file. If
inconsistencies are found, it issues a warning and allows inconsistencies.

• If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in the
Oracle Tuxedo Service Metadata Repository, tmwsdlgen attempts to use Oracle Tuxedo
Service Metadata Repository definitions to compose the WSDL document.

• Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/mbstring” typed parameters, which represents the maximum byte length that is

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-20

allowed in the Oracle Tuxedo typed buffer, SALT does not expose such restriction in the
generated WSDL document.

• Oracle Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope
according to different platforms. But the corresponding xsd:long schema type is used to
describe 64-bit numeric value. The following scenario generates a SOAP fault:

The GWWS runs in 32-bit mode, and a Web service client sends a xsd:long typed data which
exceeds the 32-bit value range.

2.3.7 Oracle Tuxedo RECORD Typed Buffers
Oracle Tuxedo RECORD typed buffers can describe COBOL copybook information.

The following example shows the myRecord COBOL copybook file:

Example 2-16 COBOL copybook myRecord

01 myRecord.
05 name occurs 1 times PIC X(10).
05 num occurs 1 times PIC S9(9) COMP-5.
05 subgroup occurs 1 times.
10 long1 PIC S9(9) COMP-5.
10 string1 PIC X(19).

Following is an example of a SOAP Message for a RECORD Typed Buffer:

Example 2-17 SOAP Message for a RECORD Typed Buffer

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv=http://
schemas.xmlsoap.org/soap/envelope/ xmlns:urn="urn:pack.TuxAll_typedef.salt11">
<soapenv:Header/>
<soapenv:Body>
<urn:QUERY soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inbuf xsi:type="urn:record_QUERY_In_myRecord">
<name>John</name>
<num xsi:type="xsd:int">999</num>
<subgroup xsi:type="urn:record_QUERY_In__p3">
<long1 xsi:type="xsd:int">1000</long1>
<string1>abcd</string1>
</subgroup>
</inbuf>
</urn:QUERY>
</soapenv:Body>
</soapenv:Envelope>

The XML Schema for <inbuf> is shown in the example below:

Example 2-18 Schema for a RECORD Typed Buffer

<xsd:complexType name="record_QUERY_In_myRecord">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-21

<xsd:maxLength value="10"></xsd:maxLength>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element maxOccurs="1" minOccurs="1" name="num" type="xsd:int"></
xsd:element>
<xsd:element maxOccurs="1" minOccurs="1" name="subgroup"
type="tuxtype:record_QUERY_In__p3"></xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="record_QUERY_In__p3">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" name="long1" type="xsd:int"></
xsd:element>
<xsd:element maxOccurs="1" minOccurs="1" name="string1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="19"></xsd:maxLength>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType

• REDEFINES Handling

2.3.7.1 REDEFINES Handling
Redefines are handled using the core RECORD implementation, which takes a cpy2record
binary output with boolean expressions to perform choice decisions. GWWS leverages these
capabilities when processing records and used them to determine the redefine member to
select in the outgoing message (inbound reply and outbound request).

For incoming messages (inbound request and outbound reply) the choice should have been
performed by the other side.

In order to make use of cpy2record binaries, GWWS loads the RECORD description files (for
example,VIEW/VIEW32 compiled definitions), and rely on the RECORDFILES/RECORDDIR
environment variables. By specifying keyword "union" in the MIF file, the items keep the
REDEFINE relationship.

2.3.8 Oracle Tuxedo X_C_TYPE Typed Buffers
Oracle Tuxedo X_C_TYPE typed buffers are equivalent (and have a similar WSDL format to),
Oracle Tuxedo VIEW typed buffers.They are transparent for SOAP clients. However, even
though usage is similar to the Oracle Tuxedo VIEW buffer type, SALT administrators must
configure the Oracle Tuxedo Service Metadata Repository for any particular Oracle Tuxedo
service that uses this buffer type.

Note:

All View related considerations also take effect for X_C_TYPE typed buffer.

Chapter 2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

2-22

2.3.9 Oracle Tuxedo X_COMMON Typed Buffers
Oracle Tuxedo X_COMMON typed buffers are equivalent to Oracle Tuxedo VIEW typed buffers.
However, they are used for compatibility between COBOL and C programs. Field types should
be limited to short, long, and string.

2.3.10 Oracle Tuxedo X_OCTET Typed Buffers
Oracle Tuxedo X_OCTET typed buffers are equivalent to CARRAY.

Note:

Oracle Tuxedo X_OCTET typed buffers can only map to xsd:base64Binary type. SALT
1.1 does not support MIME attachment binding for Oracle Tuxedo X_OCTET typed
buffers.

2.3.11 Custom Typed Buffers
SALT provides a plug-in mechanism that supports custom typed buffers. You can validate the
SOAP message against your own XML Schema definition, allocate custom typed buffers, and
parse data into the buffers and other operations.

XML Schema built-in type xsd:anyType is the corresponding type for XML documents stored in
a SOAP message. While using custom typed buffers, you should define and represent the
actual data into an XML format and transfer between the Web service client and Oracle
Tuxedo Web service stack. As with XML typed buffers, only a single root XML buffer can be
stored in the SOAP body. The GWWS checks this for consistency.

For more plug-in information, see Using SALT Plug-Ins

2.4 XML-to-Tuxedo Data Type Mapping for External Web
Services

SALT maps each wsdl:message as an Oracle Tuxedo FML32 buffer structure. SALT defines a
set of rules for representing the XML Schema definition using FML32. To invoke external Web
Services, you need to understand the exact FML32 structure that converted from the external
Web Service XML Schema definition of the corresponding message.

The following sections describe detailed WSDL message to Oracle Tuxedo FML32 buffer
mapping rules:

• XML Schema Built-In Simple Data Type Mapping

• XML Schema User Defined Data Type Mapping

• WSDL Message Mapping

2.4.1 XML Schema Built-In Simple Data Type Mapping
The following table shows the supported XML Schema Built-In Simple Data Type and the
corresponding Oracle Tuxedo FML32 Field Data Type.

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-23

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema
Built-In Simple
Type

Oracle
Tuxedo
FML32 Field
Data Type

C/C++
Primitive
Type In
Oracle
Tuxedo
Program

Note

xsd:byte FLD_CHAR char -

xsd:unsignedByt
e

FLD_UCHAR unsigned
char

-

xsd:boolean FLD_BOOL char/bool Value Pattern

[‘T’ | ‘F’]
xsd:short FLD_SHORT short -

xsd:unsignedSho
rt

FLD_USHORT unsigned
short

-

xsd:int FLD_LONG long -

xsd:unsignedInt FLD_UINT unsigned
int

-

xsd:long FLD_LONG long In a 32-bit Oracle Tuxedo program, the C primitive
type long cannot represent all xsd:long valid
value.

xsd:long FLD_LLONG long long In a 32-bit Oracle Tuxedo program, the C primitive
type long long can represent all xsd:long valid
values.

xsd:unsignedLon
g

FLD_LONG unsigned
long

In a 32-bit Oracle Tuxedo program, the C primitive
type unsigned long cannot represent all
xsd:long valid value.

xsd:unsignedLon
g

FLD_ULONG unsigned
long long

In a 32-bit Oracle Tuxedo program, the C primitive
type unsigned long can represent all
xsd:unsignedLong valid values.

xsd:float FLD_FLOAT float -

xsd:double FLD_DOUBLE double -

xsd:string
(and all
xsd:string
derived built-in
type, such as
xsd:token,
xsd:Name, etc.)

FLD_STRING
FLD_MBSTRIN
G

char []
wchar_t []
(Null-
terminated
string)

xsd:string can be optionally mapped as
FLD_STRING
or
FLD_MBSTRING
using wsdlcvt

xsd:base64Binar
y

FLD_CARRAY char[] -

xsd:hexBinary FLD_CARRAY char [] -

All other built-in
data types (Data /
Time related,
decimal / Integer
related, any URL,
QName,
NOTATION)

FLD_STRING char [] You should comply with the value pattern of the
corresponding XML built-in data type. Otherwise,
server-side Web service will reject the request.

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-24

https://docs.oracle.com/cd/E72452_01/salt/docs1222/ref/comref.html#wp1112274

The following samples demonstrate how to prepare data in a Oracle Tuxedo program for XML
Schema Built-In Simple Types.

• XML Schema Built-In Type Sample - xsd:string

• XML Schema Built-In Type Sample - xsd:hexBinary

• XML Schema Built-In Type Sample - xsd:date

Table 2-4 XML Schema Built-In Type Sample - xsd:string

XML Schema Definition

- <xsd:element name=”message” type=”xsd:string” />
Corresponding FML32 Field Definition (FLD_MBSTRING)

- # Field_name Field_type Field_flag Field_comments
message mbstring -

C Pseudo Code

-
FBFR32 * request;
FLDLEN32 len, mbsize = 1024;
char * msg, * mbmsg;
msg = calloc(...); mbmsg = malloc(mbsize);
...
strncpy(msg, “...”, len); /* The string is UTF-8
encoding */
Fmbpack32(“utf-8”, msg, len, mbmsg, &mbsize, 0); /*
prepare mbstring*/
Fadd32(request, message, mbmsg, mbsize);

Table 2-5 XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Definition

-
<xsd:element name=”mem_snapshot”
type=”xsd:hexBinary” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

-
Field_name Field_type Field_flag Field_comments
mem_snapshot carray -

C Pseudo Code

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-25

Table 2-5 (Cont.) XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Definition

-
FBFR32 * request;
FLDLEN32 len;
char * buf;
buf = calloc(...);
...
memcpy(buf, “...”, len); /* copy the original memory
*/
Fadd32(request, mem_snapshot, buf, len);

Table 2-6 XML Schema Built-In Type Sample - xsd:date

XML Schema Definition

-
<xsd:element name=”IssueDate” type=”xsd:date” />

Corresponding FML32 Field Definition (FLD_STRING)

- # Field_name Field_type Field_flag Field_comments
IssueDate string -

C Pseudo Code

-
FBFR32 * request;
char date[32];
...
strcpy(date, “2007-06-04+8:00”); /* Set the date
value correctly */
Fadd32(request, IssueDate, date, 0);

2.4.2 XML Schema User Defined Data Type Mapping
The following lists the supported XML Schema User Defined Simple Data Type and the
corresponding Oracle Tuxedo FML32 Field Data Type.

Table 2-7 Supported XML Schema User Defined Data Type

XML Schema User
Defined
Data Type

Oracle Tuxedo FML32
Field Data Type

C/C++
Primitive Type
In Oracle
Tuxedo
Program

Note

<xsd:anyType> FLD_MBSTRING char [] You should prepare entire XML
document enclosing with the
element tag.

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-26

Table 2-7 (Cont.) Supported XML Schema User Defined Data Type

XML Schema User
Defined
Data Type

Oracle Tuxedo FML32
Field Data Type

C/C++
Primitive Type
In Oracle
Tuxedo
Program

Note

<xsd:simpleType>
derived from built-
in primitive simple
data types

Equivalent FML32
Field Type of the
primitive simple
type see Table 3-2)

Equivalent C
Primitive Data
Type of the
primitive simple
type Table 3-2

Facets defined with
<xsd:restriction> are not
enforced in Oracle Tuxedo.

<xsd:simpleType>def
ined with
<xsd:list>

FLD_MBSTRING char [] Same as <xsd:anyType>. The
Schema compliance is not
enforced in Oracle Tuxedo.

<xsd:simpleType>
defined with
<xsd:union>

FLD_MBSTRING char [] Same as <xsd:anyType>. The
Schema compliance is not
enforced in Oracle Tuxedo.

<xsd:complexType>
defined with
<xsd:simpleContent>

FLD_MBSTRING char [] Same as <xsd:anyType>. The
Schema compliance is not
enforced in Oracle Tuxedo.

<xsd:complexType>
defined with
<xsd:complexContent
>

FLD_MBSTRING char [] Same as <xsd:anyType>. The
Schema compliancy is not
enforcedin Oracle Tuxedo.

<xsd:complexType>de
fined with
shorthand
<xsd:complexContent
>, sub-elements
composited with
sequence or all

FLD_FML32 FBFR32 *
embedded
fml32 buffer

Each sub-element of the complex
type is defined as an embedded
FML32 field.

<xsd:complexType>
defined with
shorthand
<xsd:complexContent
>, sub-elements
composited with
choice

FML_FML32 FBFR32 *
embedded
fml32 buffer

Each sub-element of the complex
type is defined as an embedded
FML32 field.
You should only add one sub field
into the fml32 buffer.

<xsd:complexType>
with sub-elements
composited with
sequence. The
complexType can
contain attribute and
elements.

FLD_FML32 FBFR32 *
embedded
fml32 buffer

Each sub-element of the complex
type is defined as an embedded
FML32 field.

The following samples demonstrate how to prepare data in an Oracle Tuxedo program for XML
Schema User Defined Data Types:

• XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple
Type

• XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

• External Service Schema Attribute Use Example

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-27

Table 2-8 XML Schema User Defined Type Sample - xsd:simpleType Derived from
Primitive Simple Type

XML Schema Definition

-
<xsd:element name=”Grade” type=”Alphabet” />
<xsd:simpleType name=”Alphabet”>
<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”1” />
<xsd:pattern value=”[A-Z]” />
</xsd:restriction>
</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_STRING)

- # Field_name Field_type Field_flag Field_comments Grade
string -

C Pseudo Code

-
char grade[2];
FBFR32 * request;
...
grade[0] = ‘A’; grade[1] = ‘\0’;
Fadd32(request, Grade, (char *)grade, 0);

Table 2-9 XML Schema User Defined Type Sample - xsd:simpleType Defined with
xsd:list

XML Schema Definition (Target Namespace “urn:sample.org”)

-
<xsd:element name=”Users” type=”namelist” />
<xsd:simpleType name=”namelist”>
<xsd:list itemType=”xsd:NMTOKEN”>
</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_MBSTRING)

-
Field_name Field_type Field_flag Field_comments
Users mbstring -

C Pseudo Code

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-28

Table 2-9 (Cont.) XML Schema User Defined Type Sample - xsd:simpleType Defined
with xsd:list

XML Schema Definition (Target Namespace “urn:sample.org”)

-
char * user[5];
char users[...];
char * mbpacked;
FLDLEN32 mbsize = 1024;
FBFR32 * request;
...
sprintf(users, “<n1:Users
xmlns:n1=\”urn:sample.org\”>”);
for (i = 0 ; i < 5 ; i++) {
strcat(users, user[i]);
strcat(users, “ “);
}
strcat(users, “</n1:Users>“);
...
mbpacked = malloc(mbsize);
/* prepare mbstring*/
Fmbpack32(“utf-8”, users, strlen(users), mbpacked,
&mbsize, 0);
Fadd32(request, Users, mbpacked, mbsize);

Note:

In the following table, attributes are supported in External Web Services calls using
the form "<xs:attribute name="[name]" type="[type]"/>" only. Qualifiers such as
"fixed=" are currently not supported."

Table 2-10 External Service Schema Attribute Use Example

XML Schema Definition

-
<xs:element name="add">
<xs:complexType>
<xs:sequence>
<xs:element name="param0" nillable="true"
type="xs:int"/>
<xs:element name="param1" nillable="true"
type="xs:int"/>
</xs:sequence>
<xs:attribute name="aType" type="xs:string"/>
</xs:complexType>
</xs:element>

Corresponding FML32 Field Definition

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-29

Table 2-10 (Cont.) External Service Schema Attribute Use Example

XML Schema Definition

-
…
#name rel-number type flags comment
#---- ---------- ---- ------ -------
add 1 fml32 - fullname=add, schema=axis2:add
aType 3 string - fullname=aType, schema=xs:string
param0 4 long - fullname=param0, schema=xs:int
param1 5 long - fullname=param1, schema=xs:int

Corresponding SALT Metadata Repository Definition

-
…
servicemode=webservice
inbuf=FML32
outbuf=FML32
errbuf=FML32
param=add
access=in
paramschema=XSD_E:add@http://calc.sample
type=fml32
(
param=param0
access=in
paramschema=XSD_E:param0@http://calc.sample
type=long
primetype=int

param=param1
access=in
paramschema=XSD_E:param1@http://calc.sample
type=long
primetype=int

param=aType
access=in
paramschema=XSD_E:attribute:aType@http://calc.sample
type=string
primetype=string

)
…

Corresponding Sample Pseudo code

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-30

Table 2-10 (Cont.) External Service Schema Attribute Use Example

XML Schema Definition

-
FBFR32 *f, *fin;
long len;
FLDLEN32 len2;
long inputnum1, inputnum2;
char ret_val[25];
char ret_attr[25];
char *programName;
int counter;
...
char addType[25];
strcpy(addType,argv[1]);
Fadd32(fin, aType, addType, 0);
inputnum1 = atoi(argv[2]);
Fadd32(fin, param0, (char *)&inputnum1, 0);
inputnum1 = atoi(argv[2]);
Fadd32(fin, param0, (char *)&inputnum1, 0);
Fadd32(f, add, (char *)fin, 0)
tpcall("add", (char *)f, 0, (char **)&f, &len,
TPSIGRSTRT)

2.4.3 WSDL Message Mapping
Oracle Tuxedo FML32 buffer type is always used in mapping WSDL messages.

The following table lists the WSDL message mapping rules defined by SALT.

Table 2-11 WSDL Message Mapping Rules

WSDL Message
Definition

Oracle Tuxedo Buffer/Field Definition Note

<wsdl:input>
message

Oracle Tuxedo Request Buffer (Input
buffer)

-

<wsdl:output>
message

Oracle Tuxedo Response Buffer with
TPSUCCESS (Output buffer)

-

<wsdl:fault
message

Oracle Tuxedo Response Buffer with
TPFAIL(error buffer)

-

Each message part
defined in
<wsdl:input> or
<wsdl:output>

Mapped as top level field in the Oracle
Tuxedo FML32 buffer. Field type is the
equivalent FML32 field type of the message
part XML data type. (See Table 3-3 and Table
3‑7)

-

<faultcode> in
SOAP 1.1 fault
message

Mapped as a fixed top level FLD_STRING field
(faultcode) in the Oracle Tuxedo error buffer:
faultcode string -

This mapping rule applies for
SOAP 1.1 only.

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-31

Table 2-11 (Cont.) WSDL Message Mapping Rules

WSDL Message
Definition

Oracle Tuxedo Buffer/Field Definition Note

<faultstring> in
SOAP 1.1 fault
message

Mapped as a fixed top level FLD_STRING field
(faultstring) in the Oracle Tuxedo error
buffer:
faultstring string - -

This mapping rule applies for
SOAP 1.1 only.

<faultactor> in
SOAP 1.1 fault
message

Mapped as a fixed top level FLD_STRING field
(faultactor) in the Oracle Tuxedo error buffer:
faultactor string - -

This mapping rule applies for
SOAP 1.1 only.

<Code> in SOAP
1.2 fault message

Mapped as a fixed top level FLD_FML32 field
(Code) in the Oracle Tuxedo error buffer,
which containing two fixed sub FLD_STRING
fields (Value and Subcode)
Code fml32 - -
Value string - -
Subcode string - -

This mapping rule applies for
SOAP 1.2 only.

<Reason> in SOAP
1.2 fault message

Mapped as a fixed top level FLD_FML32 field
(Reason) in the Oracle Tuxedo error buffer,
which containing zero or more fixed sub
FLD_STRING field (Text):
Reason fml32 - -
Text string - -

This mapping rule applies for
SOAP 1.2 only.

<Node> in SOAP
1.2 fault message

Mapped as a fixed top level FLD_STRING field
(Node) in the Oracle Tuxedo error buffer:
Node string - -

This mapping rule applies for
SOAP 1.2 only.

<Role> in SOAP
1.2 fault message

Mapped as a fixed top level FLD_STRING field
(Role) in the Oracle Tuxedo error buffer:
Role string - -

This mapping rule applies for
SOAP 1.2 only.

<detail> in SOAP
fault message

Mapped as a fixed top level FLD_FML32 field
in the Oracle Tuxedo error buffer:
detail fml32 - -

This mapping rule applies for both
SOAP 1.1 and SOAP 1.2.

Each message part
defined in
<wsdl:fault>

Mapped as a sub field of “detail ”
field in the Oracle Tuxedo FML32
buffer. Field type is the equivalent FML32
field type of the message part XML data type.
(See Table 3-2 and Table 3‑7)

This mapping rule applies for both
SOAP 1.1 and SOAP 1.2.

Chapter 2
XML-to-Tuxedo Data Type Mapping for External Web Services

2-32

2.5 REST Data Mapping

Note:

If a VIEW32 buffer is used as input of an Oracle Tuxedo service exposed as a RESTful
service using GET or DELETE, and that VIEW32 contains an MBSTRING type, some
content must be specified in the calling query string as MBSTRING type fields cannot
be defaulted.If not , the call results in an HTTP 500 error, with TPEINVAL being
returned with the following ULOG message:

...
181356.hostname!server.5535.451673280.0: GP_CAT:1582: ERROR: Input codeset
encoding argument not defined
...

This section contains the following topics:

• Inbound Message Conversion

• Outbound Message Conversion

2.5.1 Inbound Message Conversion
This section contains the following topics:

• Query String Mapping

• JSON Data Mapping

• XML Data Mapping

2.5.1.1 Query String Mapping
For GET and DELETE methods, input data is passed as an HTTP query string.

Data passed as query string can be mapped within the limitations of query string
representation:

• keyword=value model, when applicable. For simple buffer types the actual data may be
passed directly, e.g.: http://host:1234/myTOUPPER?inputstring

• No nesting possibly of keyword/value pairs.

• No nesting possibly of keyword/value pairs.

• Encoding must be performed for some characters (space for instance).

• Limited amount of data. While GWWS does not impose any limit, the browser or client
toolkit may.

The mapping is described below for the different types of buffers supported by Oracle Tuxedo

Chapter 2
REST Data Mapping

2-33

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

STRING http://host:port/service?data Data as is, possibly URL encoded, GWWS
performs the decoding.

CARRAY http://host:port/service?data Data represented as base64 encoded string.

MBSTRING http://host:port/service?data Data represented as URL encoded of UTF-8
representation of the Oracle Tuxedo
MBSTRING.

XML http://host:port/service?data XML fragment as is, URL encoded.

X_C_TYPE Same as VIEW/VIEW32 -

X_COMMON Same as VIEW/VIEW32 -

X_OCTET Same as CARRAY -

VIEW/VIEW32 http://host:port/service?
value1&value2 or http://
host:port/service?
fieldname1=value1&fieldnam
e2=value2

Actual values are converted from URL
encoded string representations to their native
types.
GWWS attempts to convert values to the
corresponding VIEW/VIEW32 member
depending on the target type: number types
from their string representation to their Oracle
Tuxedo ones:

• float notation for float and double
VIEW/VIEW32 types

• integer notation for int, long and other
integer based types

FLD_CHAR fields are translated from URL-
encoded content(i.e., representable
characters or their '%xx' representation string
for all other types)

The fieldname=value notation is used with:

• FBNAME field name when configured in
the view description.

• CNAME value when no FBNAME is present
in the view description.

If neither FBNAME nor CNAME matches for this
subtype, a mapping error is returned.

FML/FML32 http://host:port/service?
fieldname1=value1&fieldnam
e2=value2or, for multiple
ocurrences:http://host:port/
service?
fieldname1=value1&fieldnam
e1=value2

Actual values are converted from URL
encoded string representations to their native
types.
GWWS attempts to convert values to the
corresponding VIEWFML/VIEWFML32 member
depending on the target type: number types
from their string representation to their Oracle
Tuxedo ones:

• float notation for float and double
VIEWFML/VIEWFML32 types

• integer notation for int, long and other
integer-based types

• FLD_CHAR fields are translated from
URL-encoded content (i.e., representable
characters or their '%xx' representation

• string for all other types

Chapter 2
REST Data Mapping

2-34

Table 2-12 (Cont.) Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

RECORD http://host:port/service?
value1&value2 or http://
host:port/service?
fieldname1=value1&fieldnam
e2=value2

Actual values are converted from URL
encoded string representations to their native
types. GWWS attempts to convert values to
the corresponding RECORD buffer member
depending on the target type.

2.5.1.2 JSON Data Mapping
The different Oracle Tuxedo buffer types are converted into/from JSON as shown in the table
below:

Table 2-13 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

STRING <buffer content> -

CARRAY <binary buffer content> -

MBSTRING <Multi-byte string> In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in
the SALTDEPLOY configuration.

XML <XML fragment as-is> In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding" property
must be set to "true" in the
SALTDEPLOY configuration.

X_C_TYPE Same as VIEW/VIEW32 -

X_COMMON Same as VIEW/VIEW32 -

X_OCTET Same as CARRAY -

VIEW/VIEW32 {'<fieldname>':'<fieldconte
nt>',
'<fieldname>':'<fieldconte
nt>'}
possibly nested

{'<fieldname>':
{'<fieldname>':'<fieldcont
ent>'}}
JSON has the following primitive
types:
• boolean (true/false)
• Number (int or double float)
• String
VIEW/VIEW32 field types are
mapped as follows (Oracle
Tuxedo type: JSON type):

See VIEW/VIEW32
considerations and examples for
fieldname mapping details.
Some types may be truncated if
represented in their primitive
types (long long, long
double), in that case they are
rendered as JSON strings.

Chapter 2
REST Data Mapping

2-35

Table 2-13 (Cont.) JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

- • short: Number

• int: Number

• long: Number

• float: Number

• double: Number

• char: String

• string: String

• carray: String (base64
encoded)

• bool: boolean

• unsigned char: String

• signed char: String

• wchar_t* or wchar_t:
String

• unsigned int: Number

• unsigned long: Number

• long long: String (See
notes below table)

• unsigned long long:
String (See notes)

• long double: String (See
notes below table)

• mbstring: String

• view32: nested JSON
record

-

Chapter 2
REST Data Mapping

2-36

Table 2-13 (Cont.) JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

FML/FML32 {'<fieldname>':'<fieldcont
ent>',
'<fieldname>':'<fieldconte
nt>'}
possibly nested, FML32 only:

{'<fieldname>':
{'<fieldname>':'<fieldcont
ent>'}}

FML/FML32 field types are
mapped as follows (Oracle
Tuxedo type: JSON type):

• FLD_SHORT: Number

• FLD_LONG: Number

• FLD_FLOAT: Number

• FLD_DOUBLE: Number

• FLD_CHAR: String or
character 'T' for JSON true
or 'F' for JSON false

• FLD_STRING: String

• FLD_CARRRAY: String
(base64 encoded)

• FLD_MBSTRING: String

• FLD_VIEW32: JSON nested
record, see VIEW/VIEW32
mapping for individual types

• FLD_FML32: JSON object

Nested FLD_VIEW32: the name
of the view subtype must be the
name of the embedded VIEW32.

For Example:

VIEW32 example.v definition file:

VIEW v32example
char flag1 - 1 - - -
string str - 1 100 - -
…
JSON content (EVIEW32 is a
FLD_VIEW32 fml32 type):

{"EVIEW32" :
{"v32example":
{"flag1":"x",
"str":"somestring"}
}
}

Chapter 2
REST Data Mapping

2-37

Table 2-13 (Cont.) JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

RECORD {'<fieldname>':'<fieldcont
ent>',
'<fieldname>':'<fieldconte
nt>'}
possibly nested

{'<fieldname>':
{'<fieldname>':'<fieldcont
ent>'}}
Generated COBOL field types
will be mapped as follows
(Tuxedo type: JSON type):

Generated COBOL types:

• RECORD: nested JSON
record

• COMP-1: Number
• COMP-2: Number
• S9(18): Number
• 9(18): Number
• S9(9): Number
• 9(9): Number
• S9(4): Number
• S9(10)V9(10)COMP-3L:

Number
• X(1024): String
• @binary=true: String

-

Note:

Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) will not wrap
data as JSON objects, the data is transmitted as is.
JSON internally handles all floating point types differently than XML. XML conversion
floating point conversion may incur some precision loss over similar JSON
conversions. This is currently a limitation.

• VIEW/VIEW32 Considerations

• FML/FML32 Considerations

2.5.1.2.1 VIEW/VIEW32 Considerations
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to and
from XML:

• You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

Chapter 2
REST Data Mapping

2-38

2.5.1.2.2 FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

• You must create an environment for converting XML to and from FML/FML32. This includes
an FML field table file directory and system FML field definition files. These definitions are
automatically loaded by the GWWS. FML typed buffers can be handled only if the
environment is set up correctly.

Note:

FML32 Field type FLD_PTR is not supported.

2.5.1.3 XML Data Mapping
XML data mapping is performed using similar rules as the mapping used in SOAP mode.

The following differences are to be noted:

• Floating point numbers without decimal value get represented as integers, for example:
10.0 is printed as 10. This is currently a limitation.

• No namespaces are generated or processed, since REST mode does not use interfaces.

• Simple buffers (STRING, CARRAY, MBSTRING and XML) are sent and received as is, without
any XML processing. The behavior is identical to JSON processing (i.e.,no mapping is
necessary)_.

• FML and FML32 requests are wrapped by a root element (which name is ignored, as long as
the XML is formed properly), and replies are wrapped in an element with the same name
as the subtype as specified in the REST/Service/Method/@inputbuffer attribute of the
SALTDEPLOY configuration file, or <root> element, since there is not necessarily one if
subtype is not configured. VIEW, VIEW32, X_COMMON and X_C_TYPE buffers are the subtype
name as root element name.

The different Oracle Tuxedo buffer types are converted into/from XML as shown in the
following table:

Table 2-14 XML Data Mapping

Tuxedo Buffer Type Description REST XML Mapping Example

STRING Oracle Tuxedo STRING typed
buffers are used to store
character strings that terminate
with a NULL character. Oracle
Tuxedo STRING typed buffers are
self-describing.

HELLO WORLD!

CARRAY Oracle Tuxedo CARRAY typed
buffers store character arrays,
any of which can be NULL.
CARRAY buffers are used to
handle data opaquely and are not
self-describing.

Binary content

Chapter 2
REST Data Mapping

2-39

Table 2-14 (Cont.) XML Data Mapping

Tuxedo Buffer Type Description REST XML Mapping Example

MBSTRING Oracle Tuxedo MBSTRING typed
buffers are used for multibyte
character arrays. Oracle Tuxedo
MBSTRING buffers consist of the
following three elements:
• Code-set character encoding
• Data length
• Character array of the

encoding.
In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in
the SALTDEPLOY configuration.

Multi-byte string encoded
according to Content-Type
setting.

XML Oracle Tuxedo XML typed buffers
store XML documents.
The GWWS server validates that
the actual XML data is well-
formed. It will not do any other
enforcement validation, such as
Schema validation.

Only a single root XML buffer is
allowed to be stored in the
payload; the GWWS server
checks for this.

Any original XML document
prologue information cannot be
carried within the payload.

In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in
the SALTDEPLOY configuration.

XML fragment as is

X_C_TYPE Same as VIEW/VIEW32 -

X_COMMON Same as VIEW/VIEW32 -

X_OCTET Same as CARRAY -

Chapter 2
REST Data Mapping

2-40

Table 2-14 (Cont.) XML Data Mapping

Tuxedo Buffer Type Description REST XML Mapping Example

VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32
typed buffers store C structures
defined by Oracle Tuxedo
applications.
VIEW structures are defined by
using VIEW definition files. A
VIEW buffer type can define
multiple fields.

VIEW supports the following field
types:

• short
• int
• long
• float
• double
• char
• string
• carray (represented as

base64 encoded content)
• bool
• unsigned char
• signed char
• wchar_t* or wchar_t
• unsigned int
• unsigned long
• long long
• unsigned long long
• long double
VIEW32 supports all the VIEW
field types, mbstring, and
embedded VIEW32 type.

The name of the sub-element is
the VIEW field name. The
occurrence of the sub-element
depends on the count attribute of
the VIEW field definition. The
value of the sub-element should
be in the VIEW field data type
corresponding XML Schema
type.

<VIEW>
<viewfieldname>
fieldcontent
</viewfieldname>
</VIEW>

<VIEW>
<viewfieldname>
fieldcontent
</viewfieldname>
</VIEW>

Chapter 2
REST Data Mapping

2-41

Table 2-14 (Cont.) XML Data Mapping

Tuxedo Buffer Type Description REST XML Mapping Example

FML/FML32 Oracle Tuxedo FML and FML32
type buffers are proprietary
Oracle Oracle Tuxedo system
self-describing buffers. Each data
field carries its own identifier, an
occurrence number, and possibly
a length indicator.
FML supports the following field
types:

• FLD_CHAR
• FLD_SHORT
• FLD_LONG
• FLD_FLOAT
• FLD_DOUBLE
• FLD_STRING
• FLD_CARRAY (as base64

encoded content)
• FML32 supports all the FML

field types and FLD_PTR,
FLD_MBSTRING, FLD_FML32,
and FLD_VIEW32.

Nested FLD_VIEW32: the name
of the view subtype must be the
name of the embedded VIEW32.
For Example:

VIEW32 example.v
definition file:
VIEW v32example
char flag1 - 1 ---
string str - 1 - 100
XML content (EVIEW32 is
a FLD_VIEW32 fml32
type):
<EVIEW32>
<v32example>
<flag1>x</flag1>
<str>somestring</str>
</v32example>
</EVIEW32>

RECORD RECORD buffer type represents
copybook record. RECORD types
must have subtypes that
designate individual record
structures.
Generated COBOL types:

• RECORD
• COMP-1
• COMP-2
• S9(18)
• 9(18)
• S9(9)
• 9(9)
• S9(4)
• S9(10)V9(10)
• X(1024)
• @binary=true

<myRecord>
 <name>aaa</name>
 <num>1000</num>
 <subgroup>
 <long1> 3000 </
long1>
 <string1> www </
string1>
 </subgroup>
</myRecord>

Note:

Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) do not wrap
data as XML objects, the data is transmitted as is.

• VIEW/VIEW32 Considerations:

• FML/FML32 Considerations

Chapter 2
REST Data Mapping

2-42

2.5.1.3.1 VIEW/VIEW32 Considerations:
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to and
from XML:

• You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

2.5.1.3.2 FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

• You must create an environment for converting XML to and from FML/FML32. This includes
an FML field table file directory and system FML field definition files. These definitions are
automatically loaded by the GWWS. FML typed buffers can be handled only if the
environment is set up correctly.

Note:

FML32 Field type FLD_PTR is not supported.

2.5.2 Outbound Message Conversion
This section contains the following topics:

• Query String Mapping

• JSON Data Mapping

• XML Data Mapping

2.5.2.1 Query String Mapping

Note:

Attempting to use embedded FML32 and VIEW32 fields will result in a TPEPROTO error in
this mode.

For GET and DELETE methods, requested data is passed as an HTTP query string. For
example:http://host:1234/banking?account=1234

Data passed as query string can be mapped within the limitations of query string
representation:

• keyword=value model, when applicable. For simple buffer types the actual data may be
passed directly(for example, http://host:1234/svc?inputstring).

• No nesting of keyword/value pairs.

• Encoding must be performed for some characters (“space” for instance)

Chapter 2
REST Data Mapping

2-43

• Limited amount of data. While GWWS does not impose any limit, the browser or client
toolkit may.

The mapping is as described in Table below for different types of buffers supported by
OracleTuxedo.

Table 2-15 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

STRING http://host:port/path?data Data as is possibly URL
encoded, GWWS will perform the
encoding.

CARRAY http://host:port/path?data Data represented as base64
encoded string.

MBSTRING http://host:port/path?data Data represented as URL
encoded of UTF-8 representation
of the Tuxedo MBSTRING.

XML \\http://host:port/path?data XML fragment as is, URL
encoded.

X_C_TYPE Same as VIEW/VIEW32 -

X_COMMON Same as VIEW/VIEW32 -

X_OCTET Same as CARRAY -

VIEW/VIEW32 http://host:port/path?
value1&value2 or http://host:port/
service?
fieldname1=value1&fieldname2=
value2

GWWS attempts to convert
values to the corresponding
VIEW/VIEW32 member
depending on the target type:
number types from their string
representation to their Oracle
Tuxedo ones:
• float notation for float and

double VIEW/VIEW32 types

• integer notation for int,
long and other integer
based types

• FLD_CHAR fields are
translated from URL-
encoded content, i.e.
representable characters or
their '%xx' representation

• string for all other types

The fieldname=value notation
is used with:

• FBNAME field name when
one is configured in the view
description.

• If neither FBNAME nor CNAME
matches for this subtype a
mapping error is returned.

Chapter 2
REST Data Mapping

2-44

Table 2-15 (Cont.) Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

FML/FML32 http://host:port/path?
fieldname1=value1&fieldname2=
value2 or, for multiple
occurrences: http://host:port/
service?
fieldname1=value1&fieldname1=
value2

Actual values are converted from
URL encoded string
representations to their native
types.
GWWS attempts to convert
values to the corresponding FML/
FML32 member depending on the
target type: number types from
their string representation to their
Tuxedo ones:

• float notation for float and
double FML/FML32 types

• integer notation for int,
long and other integer-
based types

• FLD_CHAR fields are
translated from URL-
encoded content (i.e.,
representable characters or
their '%xx' representation

• string for all other types

RECORD http://host:port/path?
value1&value2 orhttp://host:port/
service?
fieldname1=value1&fieldname2=
value2

GWWS attempts to convert
values to the corresponding
RECORD member depending on
the target type.

2.5.2.2 JSON Data Mapping
The different Tuxedo buffer types are converted into/from JSON as shown in the table below:

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

STRING <buffer content> -

CARRAY <binary buffer content> -

MBSTRING <Multi-byte string> In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in
the SALTDEPLOY configuration.

XML <XML fragment as-is> In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in
the SALTDEPLOY configuration.

X_C_TYPE Same as VIEW/VIEW32 -

X_COMMON Same as VIEW/VIEW32 -

X_OCTET Same as CARRAY -

Chapter 2
REST Data Mapping

2-45

Table 2-16 (Cont.) JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

VIEW/VIEW32
{'<fieldname>':'<fieldco
ntent>',
'<fieldname>':'<fieldcon
tent>}

possibly nested:

{<fieldname>':
{'<fieldname>':'<fieldcont
ent>'}}
JSON has the following primitive
types:

boolean (true/false)

Number (int or double float)

String

VIEW/VIEW32 field types will be
mapped as follows (Tuxedo type:
JSON type):

• short: Number

• int: Number

• long: Number

• float: Number

• double: Number

• char: String

• string: String

• carray
• bool: boolean

• unsigned char: String

• signed char: String

• wchar_t* or wchar_t:
String

• unsigned int: Number

• unsigned long: Number

-

- • long double: String (See
notes)

• mbstring: String
• view32: nested JSON

record

See VIEW/VIEW32
considerations and examples for
fieldname mapping details.
Some types may be truncated if
represented in their primitive
types (long long, long
double), in that case they will be
rendered as JSON strings.

Chapter 2
REST Data Mapping

2-46

Table 2-16 (Cont.) JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

FML/FML32 {'<fieldname>':'<fieldcont
ent>','<fieldname>':'<fiel
dcontent>'}
possibly nested, FML32 only:

{'<fieldname>':
{'<fieldname>':'<fieldcont
ent>'}}
FML/FML32 field types are
mapped as follows (Tuxedo type:
JSON type):

• FLD_SHORT: Number

• FLD_LONG: Number

• FLD_FLOAT: Number

• FLD_DOUBLE: Number

• FLD_CHAR: String or
character 'T' for JSON true
or 'F' for JSON false

• FLD_CARRRAY: String
(base64 encoded)

• FLD_MBSTRING: String

• FLD_VIEW32: JSON nested
record, see VIEW/VIEW32
mapping for individual types

Nested FLD_VIEW32: the name
of the view subtype must be the
name of the embedded VIEW32.
For Example:

VIEW32example .v definition file:

VIEW v32 example
charflag1 - 1 ---
string str - 1 100
- -
JSON content (EVIEW32
is a FLD_VIEW32 fml32
type):
{"EVIEW32" :
 {"v32example":
{"flag1":"x",
"str":"somestring"}
}
}

RECORD {'<fieldname>':'<fieldcont
ent>','<fieldname>':'<fiel
dcontent>'}
possibly nested:

{'<fieldname>':
{'<fieldname>':'<fieldcont
ent>'}}
RECORD buffer field types are
mapped as follows (Tuxedo type:
JSON type):

RECORD: Number
COMP-1: Number
COMP-2: Number
S9(18): Number
9(18): Number
S9(9): Number
9(9): Number
S9(4): Number
S9(10)V9(10)COMP-3L:
Number
X(1024): String
@binary=true: String

-

Chapter 2
REST Data Mapping

2-47

Note:

• Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) will not
wrap data as JSON objects, the data is transmitted as is. The content-type
setting is ignored for those buffer types with respect to data mapping.

• JSON internally handles all floating point types differently than XML. XML
conversion floating point conversion may incur some precision loss over similar
JSON conversions. This is currently a limitation.

• VIEW/VIEW32 Considerations:

• FML/FML32 Considerations

• Conversion Examples:

2.5.2.2.1 VIEW/VIEW32 Considerations:
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to and
from XML:

• You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

2.5.2.2.2 FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

• You must create an environment for converting XML to and from FML/FML32. This includes
an FML field table file directory and system FML field definition files. These definitions are
automatically loaded by the GWWS. FML typed buffers can be handled only if the
environment is set up correctly.

Note:

FML32 Field type FLD_PTR is not supported.

2.5.2.2.3 Conversion Examples:
Example 2-19 VIEW Description File

VIEW empname
#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
char fname EMP_FNAME 1 - 25 -
char minit EMP_MINIT 1 - 1 -
char lname EMP LNAME 1 - 25 -
END

VIEW emp
struct empname ename 1 - - -
unsignedlong id EMP_ID 1 - - -

Chapter 2
REST Data Mapping

2-48

long ssn EMP_SSN 1 - - -
double salaryhist EMP_SAL 10 - - -
END

Corresponding header file after compilation

Example 2-20 Compilation

struct empname {
char fname[25];
char minit;
char lname[25];
};

struct emp {
struct empname ename;
unsigned long id;
long ssn;
double salaryhist[10];
}

Example 2-21 JSON Content

{
"ename":
{
"EMP_FNAME":"John",
"EMP_MINIT":"R",
"EMP_LNAME":"Smith"
},
"EMP_ID":1234,
"EMP_SSN":123456789,
"EMP_SAL":
[10000.0,
11000.0,
12000.0,
13000.0,
14000.0,
15000.0,
16000.0,
17000.0,
18000.0,
19000.0]
}
}

Without FBNAME(names specified in the view file), the content is represented using the CNAME
values. Since nesting cannot be expressed without field names because the field name is also
the subtype name for the nested view, only structures with 1 level are represented.

For example:

Chapter 2
REST Data Mapping

2-49

Example 2-22 VIEW Description

VIEW empname
#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
char fname - 1 - 25 -
char minit - 1 - 1 -
char lname - 1 - 25 -
END

Corresponding header file after compilation

Example 2-23 Compilation

struct empname {
char fname[25];
char minit;
char lname[25];
};

Example 2-24 JSON Content Example

{
"fname":"John",
"minit":"R",
"lname":"Smith"
}

Example 2-25 Field Table

#name rel-number type flags comment

BIKES 1 fml32 -
COLOR 2 string -
CURSERIALNO 3 string -
INSTOCK 4 string -
NAME 5 string -
ORDERDATE 6 string -
PRICE 7 float -
SERIALNO 8 string -
SIZE 9 long -
SKU 10 string -
TYPE 11 string -

Example 2-26 JSON Content

"BIKES":
[
{"COLOR":"BLUE",
"CURSERIALNO":"AZ123",
"INSTOCK":"Y",
"NAME":"CUTTER",
"ORDERDATE":"11/03/2012",
"PRICE":1234.55,
"SERIALNO":"123456",

Chapter 2
REST Data Mapping

2-50

"SIZE":52,
"SKU":"CU521234",
"TYPE":"ROAD"},
{"COLOR":"RED",
"CURSERIALNO":"BZ123",
"INSTOCK":"Y",
"NAME":"ROCKGLIDER",
"ORDERDATE":"11/06/2012",
"PRICE":1455.55,
"SERIALNO":"123457",
"SIZE":16,
"SKU":"RG161234",
"TYPE":"MTB"},
]
}
}

Record example.

Example 2-27 COBOL copybook

01 myRecord.
05 name occurs 1 times PIC X(10).
05 num occurs 1 times PIC S9(9) COMP-5.
05 subgroup occurs 1 times.
10 long1 PIC S9(9) COMP-5.
10 string1 PIC X(19).

Example 2-28 Result

{
"name": "aaa",
"num": 1000,
"subgroup": {
"long1": 3000,
"string1": "wwww"
}
}

2.5.2.3 XML Data Mapping
XML data mapping is performed using similar rules as the mapping used in SOAP mode.

Chapter 2
REST Data Mapping

2-51

Note:

• Floating point numbers without decimal value get represented as integers, for
example: 10.0 is printed as 10. This is currently a limitation.

• No namespaces is generated or processed, since HTTP mode does not use
interfaces.

• Simple buffers (STRING, CARRAY, MBSTRING, and XML) are sent and received as is,
without any XML processing. The behavior is identical to JSON processing
(i.e.,no mapping is necessary.

• FML and FML32 requests must be wrapped by a root element (which name is
ignored, as long as the XML is formed properly), and replies are wrapped in an
element with the same name as the subtype as specified in the HTTP/Service/
@outputbuffer attribute of the SALTDEPLOY configuration file, or <root> element if
subtype is not configured. VIEW, VIEW32, X_COMMON, and X_C_TYPE buffers use
the subtype name as the root element name.

The different Oracle Tuxedo buffer types are converted into/from XML in the following manner
as shown in table below:

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example

STRING Oracle Tuxedo STRING typed
buffers are used to store
character strings that terminate
with a NULL character. Oracle
Tuxedo STRING typed buffers are
self-describing.

HELLO WORLD!

CARRAY Oracle Tuxedo CARRAY typed
buffers store character arrays,
any of which can be NULL.
CARRAY buffers are used to
handle data opaquely and are not
self-describing.

Binary content

MBSTRING Oracle Tuxedo MBSTRING typed
buffers are used for multibyte
character arrays. Oracle Tuxedo
MBSTRING buffers consist of the
following three elements:
- Code-set character encoding

- Data length

- Character array of the encoding.

In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in
the SALTDEPLOY configuration.

Multi-byte string encoded
according to Content-Type
setting.

Chapter 2
REST Data Mapping

2-52

Table 2-17 (Cont.) XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example

XML Oracle Tuxedo XML typed buffers
store XML documents.
The GWWS server validates that
the actual XML data is well-
formed. It will not do any other
enforcement validation, such as
Schema validation.

Only a single root XML buffer is
allowed to be stored in the
payload; the GWWS server
checks for this.

Any original XML document
prologue information cannot be
carried within the payload.

In order to transmit encodings
other than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in
the SALTDEPLOY configuration.

XML fragment as-is

X_C_TYPE Same as VIEW/VIEW32 -

X_COMMON Same as VIEW/VIEW32 -

X_OCTET Same as CARRAY -

Chapter 2
REST Data Mapping

2-53

Table 2-17 (Cont.) XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example

VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32
typed buffers store C structures
defined by Oracle Tuxedo
applications.
VIEW structures are defined by
using VIEW definition files. A
VIEW buffer type can define
multiple fields.

VIEW supports the following field
types:

• short
• int
• long
• float
• double
• char
• string
• carray (represented as

base64 encoded content)
• bool
• unsigned char
• signed char
• wchar_t* wchar_t
• unsigned int
• unsigned long
• long long
• unsigned long long
• long double

<VIEW>
<viewfieldname>
fieldcontent
</viewfieldname>
</VIEW>

- VIEW32 supports all the VIEW
field types, mbstring, and
embedded VIEW32 type.
The name of the sub-element is
the VIEW field name. The
occurrence of the sub-element
depends on the count attribute of
the VIEW field definition. The
value of the sub-element should
be in the VIEW field data type
corresponding XML Schema
type.

-

Chapter 2
REST Data Mapping

2-54

Table 2-17 (Cont.) XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example

FML/FML32 Oracle Tuxedo FML and FML32
type buffers are proprietary
Oracle Oracle Tuxedo system
self-describing buffers. Each data
field carries its own identifier, an
occurrence number, and possibly
a length indicator.
FML supports the following field
types:

• FLD_CHAR
• FLD_SHORT
• FLD_LONG
• FLD_FLOAT
• FLD_DOUBLE
• FLD_STRING
• FLD_CARRAY (as base64

encoded content)
FML32 supports all the FML field
types and FLD_PTR,
FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

Nested FLD_VIEW32: the name
of the view subtype must be the
name of the embedded VIEW32.
For Example:

VIEW32 example.v
definition file:
VIEW v32example
char flag1 - 1 ---
string str - 1 - 100
XML content (EVIEW32 is
a FLD_VIEW32 fml32
type):
<EVIEW32>
<v32example>
<flag1>x</flag1>
<str>somestring</str>
</v32example>
</EVIEW32>

RECORD RECORD buffer type represents
copybook record. RECORD types
must have subtypes that
designate individual record
structures.
Generated COBOL types:

• RECORD
• COMP-1
• COMP-2
• S9(18)
• 9(18)
• S9(9)
• 9(9)
• S9(4)
• S9(10)V9(10)
• X(1024)
• @binary=true

<myRecord>
 <name>aaa</name>
 <num>1000</num>
 <subgroup>
 <long1> 3000 </
long1>
 <string1> www </
string1>
 </subgroup>
</myRecord>

Note:

Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) will not wrap
data as XML objects, the data is transmitted as is.

• VIEW/VIEW32 Considerations:

• FML/FML32 Considerations

Chapter 2
REST Data Mapping

2-55

2.5.2.3.1 VIEW/VIEW32 Considerations:
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to and
from XML:

• You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

2.5.2.3.2 FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

• You must create an environment for converting XML to and from FML/FML32. This includes
an FML field table file directory and system FML field definition files. These definitions are
automatically loaded by the GWWS. FML typed buffers can be handled only if the
environment is set up correctly.

Note:

FML32 Field type FLD_PTR is not supported.

Chapter 2
REST Data Mapping

2-56

3
Web Service Client Programming

This chapter contains the following topics:

• Overview

• SALT Web Service Client Programming Tips

3.1 Overview
SALT is a configuration-driven product that publishes existing Oracle Tuxedo application
services as industry-standard Web services. From a Web services client-side programming
perspective, SALT (used in conjunction with the Oracle Tuxedo framework), is a standard Web
service provider. You only need to use the SALT WSDL file to develop a Web service client
program.

To develop a Web service client program, do the following steps:

1. Generate or download the SALT WSDL file. For more information, see Configuring SALT

2. Use a Web service client-side toolkit to parse the SALT WSDL document, and generate
client stub code. For more information, see SALT Web Service Client Programming Tips.

3. Write client-side application code to invoke a SALT Web service using the functions
defined in the client-generated stub code.

4. Compile and run your client application.

• Representational State Transfer (REST) Support

3.1.1 Representational State Transfer (REST) Support
With REST enabled, requests received on a REST port are processed as follows by GWWS.

URIs must comply with the following pattern:

<REST service name>
Where the Oracle Tuxedo service name is the name of the REST service invoked (for
example, TOUPPER).

Data format and input Oracle Tuxedo buffer types are specified using the following HTTP
header:

• content-type:
Set to application/json:indicates that JSON is used to transfer data to/from HTTP client.

Set to application/xml: indicates that XML is used to transfer data to/from HTTP client.

3-1

Note:

application/json and application/xml will only apply to structured buffer types
(VIEW, VIEW32, FML, FML32, X_C_TYPE and X_COMMON. To use simple buffers and POST or
PUT, you must set Content-type to appropriate values ("text/plain" for STRING,
"application/octet-stream" for CARRAY, etc.).

• Oneway (in and out)

• ATMI and SCA Support

• Examples

3.1.1.1 Oneway (in and out)
If no data is input, the Oracle Tuxedo service is invoked with a NULL Oracle Tuxedo buffer.
Similarly, if the Oracle Tuxedo service does not return any data, the response also contains no
data (which is a valid use-case).

3.1.1.2 ATMI and SCA Support
There is no restriction in the type of Oracle Tuxedo service being exposed as REST (whether
ATMI or SCA). To use SCA components, you must conform to SCA data mapping conventions
as found in SCA Data Type Mapping. Name mapping may apply, as outlined in SCA and
Oracle Tuxedo Interoperability.

3.1.1.3 Examples
Following is a list of examples:

• Example: .h interface

• Example: SCDL Descriptor

• Example: SALTDEPLOY REST Service Definition

• Example: URL used to invoke service

• Example: Response

3.1.1.3.1 Example: .h interface
Example 3-1 h interface

#include <string>
/**
* Tuxedo service business interface
*/
class TuxService
{
public:
virtual std::string TOUPPER(const std::string inputString) = 0;
};

Chapter 3
Overview

3-2

https://docs.oracle.com/cd/E72452_01/salt/docs1222/prog/client.html#1033386
https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1085820
https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1085820

3.1.1.3.2 Example: SCDL Descriptor
Example 3-2 SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="myComponent">
<service name="TuxService">
<interface.cpp header="TuxService.h"/>
<binding.atmi/>
<inputBufferType>STRING</inputBufferType>
<outputBufferType>STRING</outputBufferType>
<reference>MYComponent</reference>
</service>

<component name="MYComponent">
<implementation.cpp library="TuxService" header="TuxServiceImpl.h"/>
</component>
</composite>

3.1.1.3.3 Example: SALTDEPLOY REST Service Definition
Example 3-3 SALTDEPLOY REST Service Definition

<REST>
<Network http="myhost:1234"/>
<Service name="testSCA">
<Method name="GET"
reposservice=""
service="TuxService/TOUPPER"
inputbuffer="STRING"/>
</Service>
...
</REST>

3.1.1.3.4 Example: URL used to invoke service
http://myhost:1234/testSCA?teststring

3.1.1.3.5 Example: Response
HTTP/1.1 200 OK
Content-Type: text/xmlTESTSTRING

3.2 SALT Web Service Client Programming Tips
This section provides some useful client-side programming tips for developing Web service
client programs using the following SALT-tested programming toolkits:

For more information, see Interoperability Considerations in the SALT Administration Guide.

Chapter 3
SALT Web Service Client Programming Tips

3-3

https://docs.oracle.com/cd/E72452_01/salt/docs1222/interop/interop.html

Note:

You can use any SOAP toolkit to develop client software.
The sample directories for the listed toolkits can be found after SALT is installed.

• Oracle WebLogic Web Service Client Programming Toolkit

• Apache Axis for Java Web Service Client Programming Toolkit

• Microsoft .NET Web Service Client Programming Toolkit

• Web Service Client Programming References

3.2.1 Oracle WebLogic Web Service Client Programming Toolkit
WebLogic Server provides the clientgen utility which is a built-in application server
component used to develop Web service client-side java programs. The invocation can be
issued from standalone java programs and server instances. For more information, see
Developing JAX-WS Web Services for Oracle WebLogic Server.

Besides traditional synchronous message exchange mode, SALT also supports asynchronous
and reliable Web service invocation using WebLogic Server. Asynchronous communication is
defined by the WS-Addressing specification. Reliable message exchange conforms to the WS-
ReliableMessaging specification.

Tip:

Use the WebLogic specific WSDL document for HTTP MIME attachment support.
SALT can map Oracle Tuxedo CARRAY data to SOAP request MIME attachments. This
is beneficial when the binary data stream is large since MIME binding does not need
additional encoding wrapping. This can help save CPU cycles and network
bandwidth.

Another consideration, in an enterprise service oriented environment is that binary
data might be used to guide high-level data routing and transformation work.
Encoded data can be problematic. To enable the MIME data binding for Oracle Tuxedo
CARRAY data, a special flag must be specified in the WSDL document generation
options (both for online downloading and using the tmwsdlgen command utility).

Online Download:

http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=wls
tmwsdlgen Utility

tmwsdlgen -c WSDF_FILE -m raw -t wls

3.2.2 Apache Axis for Java Web Service Client Programming Toolkit
SALT supports the AXIS wsdl2java utility which generates java stub code from the WSDL
document. The AXIS Web service programming model is similar to WebLogic.

Chapter 3
SALT Web Service Client Programming Tips

3-4

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/

Tip:

• Use the AXIS specific WSDL document for HTTP MIME attachment support
SALT supports HTTP MIME transportation for Oracle Tuxedo CARRAY data. A
special option must be specified for WSDL online downloading and the
tmwsdlgen utility.

Online Download:

http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=axis
tmwsdlgen Utility

tmwsdlgen -c WSDF_FILE -m raw -t axis
• Disable multiple-reference format in AXIS when RPC/encoded style is used

TuxedoWebServiceLocator service = new TuxedoWebServiceLocator();
service.getEngine().setOption("sendMultiRefs", false);¦

• Use Apache Sandensha project with SALT for WS-ReliableMessaging
communication.
Interoperability has been tested for WS-ReliableMessaging between SALT and
the Apache Sandensha project. The Sandensha asynchronous mode and send
offer must be set in the code.

A sample Apache Sandensha asynchronous mode and send offer code
example is shown in the example below:

Example 3-4 Sample Apache Sandensha Asynchronous Mode and “send offer” Code
Example

/* Call the service */
 TuxedoWebService service = new TuxedoWebServiceLocator();

 Call call = (Call) service.createCall();
 SandeshaContext ctx = new SandeshaContext();

 ctx.setAcksToURL("http://127.0.0.1:" + defaultClientPort + "/axis/
services/RMService");
 ctx.setReplyToURL("http://127.0.0.1:" + defaultClientPort + "/axis/
services/RMService");
 ctx.setSendOffer(true);
 ctx.initCall(call, targetURL, "urn:wsrm:simpapp",
Constants.ClientProperties.IN_OUT);

 call.setUseSOAPAction(true);
 call.setSOAPActionURI("ToUpperWS");
 call.setOperationName(new
javax.xml.namespace.QName("urn:pack.simpappsimpapp_typedef.salt11",
"ToUpperWS"));
 call.addParameter("inbuf", XMLType.XSD_STRING, ParameterMode.IN);
 call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING);

 String input = new String();

Chapter 3
SALT Web Service Client Programming Tips

3-5

 String output = new String();
 int i;
 for (i = 0; i < 3; i++) {
 input = "request" + "_" + String.valueOf(i);

 System.out.println("Request:"+input);
 output = (String) call.invoke(new Object[]{input});
 System.out.println("Reply:" + output);
 }

ctx.setLastMessage(call);
 input = "request" + "_" + String.valueOf(i);
 System.out.println("Request:"+input);
 output = (String) call.invoke(new Object[]{input});

3.2.3 Microsoft .NET Web Service Client Programming Toolkit
Microsoft .Net 1.1/2.0 provides wsdl.exe in the .Net SDK package. It is a free development
Microsoft toolkit. In the SALT simpapp sample, a .Net program is provided in the simpapp/
dnetclient directory.

.Net Web service programming is easy and straightforward. Use the wsdl.exe utility and the
SALT WSDL document to generate the stub code, and then reference the .Net object
contained in the stub code/binary in business logic implementations.

Chapter 3
SALT Web Service Client Programming Tips

3-6

Tip:

• Do not use .Net program MIME attachment binding for CARRAY.
Microsoft does not support SOAP communication MIME binding. Avoid using the
WSDL document with MIME binding for CARRAY in .Net development.

SALT supports base64Binary encoding for CARRAY data (the default WSDL
document generation.)

• Some RPC/encoded style SOAP messages are not understood by the
GWWS server.
When the SALT WSDL document is generated using RPC/encoded style, .Net
sends out SOAP messages containing soapenc:arrayType. SALT does not
support soapenc:arrayType using RPC/encoded style. A sample RPC/encoded
style-generated WSDL document is shown in example below:

Example: Sample RPC/encoded Style-Generated WSDL Document

<wsdl:types>
 <xsd:schema
attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="urn:pack.TuxAll_typedef.salt11">
 <xsd:complexType name="fml_TFML_In">
 <xsd:sequence>
 <xsd:element
maxOccurs="60" minOccurs="60" name="tflong" type="xsd:long"></
xsd:element>
 <xsd:element
maxOccurs="80" minOccurs="80" name="tffloat" type="xsd:float"></
xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="fml_TFML_Out">
 …
</xsd:complexType>
 </xsd:schema>
 </wsdl:types>

Workaround: Use Document/literal encoded style for .Net client as
recommended by Microsoft.

• Error message regarding xsd:base64Binary in RPC/encoded style.
If xsd:base64Binary is used in the SALT WSDL document using RPC/encoded
style, wsdl.exe can generate stub code; however, the client program might report
a runtime error as follows:
System.InvalidOperationException:'base64Binary' is an invalid value for the
SoapElementAttribute.DataType property. The property may only be specified
for primitive types.

Workaround: This is a .Net framework issue.

Use Document/literal encoded style for .Net client as recommended by Microsoft.

Chapter 3
SALT Web Service Client Programming Tips

3-7

3.2.4 Web Service Client Programming References
Following is a list of online references to help you in programming a SALT application:

• Oracle WebLogic 12.2.1.4 Web Service Client Programming References
Oracle WebLogic 12.2.1.4 Documentation

• Apache Axis 1.3 Web Service Client Programming References
Consuming Web Services with Axis

Using WSDL with Axis

• Microsoft .NET Web Service Programming References
Building Web Services

Chapter 3
SALT Web Service Client Programming Tips

3-8

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/index.html
https://axis.apache.org/axis/java/user-guide.html#ConsumingWebServicesWithAxis
https://axis.apache.org/axis/java/user-guide.html#UsingWSDLWithAxis
https://dotnet.microsoft.com/en-us/

4
Oracle Tuxedo ATMI Programming for Web
Services

This chapter contains the following topics:

• Overview

• Converting WSDL Model Into Oracle Tuxedo Model

• Invoking SALT Proxy Services

4.1 Overview
SALT allows you to import external Web Services into Oracle Tuxedo Domains. To import
external Web services into Oracle Tuxedo applications, a WSDL file must first be loaded and
converted. The SALT WSDL conversion utility, wsdlcvt, translates each wsdl:operation into a
SALT proxy service. The translated SALT proxy service can be invoked directly through
standard Oracle Tuxedo ATMI functions.

SALT proxy service calls are sent to the GWWS server. The request is translated from Oracle
Tuxedo typed buffers into the SOAP message, and then sent to the corresponding external
Web Service. The response from an external Web Service is translated into Oracle Tuxedo
typed buffers, and returned to the Oracle Tuxedo application. The GWWS acts as the proxy
intermediary.

If an error occurs during the service call, the GWWS server sets the error status using tperrno
(which can be retrieved by Oracle Tuxedo applications). This enables you to detect and handle
the SALT proxy service call error status.

4.2 Converting WSDL Model Into Oracle Tuxedo Model
SALT provides a WSDL conversion utility, wsdlcvt, that converts external WSDL files into
Oracle Tuxedo specific definition files so that you can develop Oracle Tuxedo ATMI programs
to access services defined in the WSDL file.

• WSDL-to-Tuxedo Object Mapping

4.2.1 WSDL-to-Tuxedo Object Mapping
SALT converts WSDL object models into Oracle Tuxedo models using the following rules:

• Only SOAP over HTTP binding are supported. Each binding is defined and saved as a
WSBinding object in the WSDF file.

• Each operation in the SOAP binding is mapped as one Oracle Tuxedo-style service (which
is also called a SALT proxy service). The operation name is used as the Oracle Tuxedo
service name and indexed in the Oracle Tuxedo Service Metadata Repository.

4-1

Note:

If the operation name exceeds the Oracle Tuxedo service name length limitation
(255 characters), you must manually set a unique short Oracle Tuxedo service
name in the metadata respository and set the <Service> tuxedoRef attribute in
the WSDF.

For more information, see SALT Web Service Definition File Reference in the SALT
Reference Guide

• Other Web service external application protocol information is saved in the generated WSDF
file (including SOAP protocol version, SOAP message encoding style, accessing
endpoints, etc.).

• XML Schema definitions embedded in the WSDL file are copied and saved in separate .xsd
files.

• Each wsdl:operation object and its input/output message details are converted as
theOracle Tuxedo service definition conforms to the Oracle Tuxedo Service Metadata
Repository input syntax.

The following table lists detailed mapping relationships between the WSDL file and Oracle
Tuxedo definition files.

Table 4-1 WSDL Model / Oracle Tuxedo Model Mapping Rules

WSDL Object Oracle Tuxedo/SALT Definition
File

Oracle Tuxedo/SALT Definition
Object

/wsdl:binding SALT Web Service Definition File
(WSDF)

/WSBinding
/wsdl:portType /WSBinding/Servicegroup
/wsdl:binding/soap:binding /WSBinding/SOAP
/wsdl:portType/operation Metadata Input File (MIF) /WSBinding/service
/wsdl:types/xsd:schema FML32 Field Defintion Table Field name type

4.3 Invoking SALT Proxy Services
The following sections include information on how to invoke the converted SALT proxy service
from an Oracle Tuxedo application:

• SALT Supported Communication Patterns

• Oracle Tuxedo Outbound Call Programming: Main Steps

• Managing Error Code Returned from GWWS

• Handling Fault Messages in an Oracle Tuxedo Outbound Application

4.3.1 SALT Supported Communication Patterns
SALT only supports the Oracle Tuxedo Request/Response communication patterns for
outbound service calls. An Oracle Tuxedo application can request the SALT proxy service
using the following communication Oracle Tuxedo ATMIs:

• tpcall(3c) / tpacall(3c) / tpgetreply(3c)

Chapter 4
Invoking SALT Proxy Services

4-2

These basic ATMI functions can be called with an Oracle Tuxedo typed buffer as the input
parameter. The return of the call also carries an Oracle Tuxedo typed buffer. All these
buffers conform to the converted outside Web service interface. tpacall/tpgetreply are
not related to SOAP async communication.

• tpgetcallinfo(3c)/tpsecallinfo(3c)
tpgetcallinfo() retrieves HTTP headers associated with an application buffer using the
GWWS gateway in FML32 format; tpsetcallinfo() performs the reverse (i.e., attach FML32
formatted HTTP headers to an application buffer to be sent to a remote HTTP (possibly
SOAP) server).

• tpforward(3c)
Oracle Tuxedo server applications can use this function to forward an Oracle Tuxedo
request to a specified SALT proxy service. The response buffer is sent directly to the client
application response queue as if it is a traditional native Oracle Tuxedo service.

• TMQFORWARD enabled queue-based communication.
Oracle Tuxedo system server TMQFORWARD can accept queued requests, and sends them to
SALT proxy services that have the same name as the queue.

For more information, see Oracle Tuxedo ATMI C Functions and File Formats, Data
Descriptions, MIBs, and System Processes Reference

SALT does not support the following Oracle Tuxedo communication patterns:

• Conversational communication

• Event-based communication

4.3.2 Oracle Tuxedo Outbound Call Programming: Main Steps
When the GWWS is booted and SALT proxy services are advertised, you can create an Oracle
Tuxedo application to call them. To develop a program to access SALT proxy services, do the
following:

1. Check the Oracle Tuxedo Service Metadata Repository definition to see what the SALT
proxy service interface is.

2. Locate the generated FML32 field table files. Modify the FML32 field table to eliminate
conflicting field names and assign a valid base number for the index.

Note:

The wsdlcvt generated FML32 field table files are always used by GWWS. You
must make sure the field name is unique at the system level. If two or more fields
are associated with the same field name, change the field name. Do not forget to
change Oracle Tuxedo Service Metadata Repository definition accordingly. The
base number field index in the generated FML32 field table must be changed
from the invalid default value to a correct number to ensure all field indexes in the
table are unique at the entire system level.

3. Generate FML32 header files with mkfldhdr32(1)

4. Boot the GWWS with correct FML32 environment variable settings.

5. Write a skeleton C source file for the client to call the outbound service (refer to Oracle
Tuxedo documentation and the Oracle Tuxedo Service Metadata Repository generated
pseudo-code if necessary). You can use tpcall(1) or tpacall(1) for synchronous or
asynchronous communication, depending on the requirement.

Chapter 4
Invoking SALT Proxy Services

4-3

https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html
https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html

6. For FML32 buffers, you must add each FML32 field (conforming to the corresponding SALT
proxy service input buffer details), defined in the Oracle Tuxedo Service Metadata
Repository (including FML32 field sequence and occurrence). The client source may
include the generated header file to facilitate referencing the field name.

7. Get input buffer ready. You can handle the returned buffer, which should be of the type
defined in Metadata.

• Compile the source to generate executable.

• Test the executable.

4.3.3 Managing Error Code Returned from GWWS
If the GWWS server encounters an error accessing external Web services, tperrno is set
accordingly so the Oracle Tuxedo application can diagnose the failure. The following table lists
possible SALT proxy service tperrno values.

Table 4-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason

TPENOENT Requested SALT proxy service is not advertised by
GWWS.

TPESVCERR The HTTP response message returned from
external Web service application is not valid. The
SOAP response message returned from external
Web service application is not well-formed.

TPEPERM Authentication failure.

TPEITYPE Message conversion failure when converting
Oracle Tuxedo request typed buffer into XML
payload of the SOAP request message.

TPEOTYPE Message conversion failure when converting XML
payload of the SOAP response message into
Oracle Tuxedo response typed buffer.

TPEOS Request is rejected because of system resource
limitation.

TPETIME Timeout occurred. This timeout can either be a
BBL blocktime, or a SALT outbound call timeout.

TPSVCFAIL External Web service returns SOAP fault message

TPESYSTEM GWWS internal errors. Check ULOG for more
information.

4.3.4 Handling Fault Messages in an Oracle Tuxedo Outbound Application
All rules listed inthe WSDL file are used to map WSDL input/output message into Oracle Tuxedo
Metadata inbuf/outbuf definition. WSDL file default message can also be mapped into Oracle
Tuxedo Metadata errbuf with some amendments to the rules:

Rules for fault mapping:

There are two modes for mapping Metadata errbuf into SOAP Fault messages: Tux Mode and
XSD Mode.

• Tux Mode is used to convert Oracle Tuxedo original error buffers returned with TPFAIL. The
error buffers are converted intothe XML payload in the SOAP fault <detail> element.

Chapter 4
Invoking SALT Proxy Services

4-4

• XSD Mode is used to represent SOAP fault and WSDL file fault messages defined with
Oracle Tuxedo buffers. The mapping rule includes:

– Each service in XSD mode (servicemode=webservice), always has an errbuf in
Metadata with type=FML32

– errbuf is a FML32 buffer. It is a complete description of the SOAP:Fault message that
may appear in correspondence (which is different for SOAP 1.1 and 1.2). The errbuf
definition content is determined by both the SOAP version and WSDL fault message.

– Parameter detail/Detail (1.1/1.2) is an FML32 field that represents the wsdl:part
defined in a wsdl:fault message (when wsdl:fault is present). Each part is defined
as a param(field) in the FML32 field. The mapping rules are the same as for input/
output buffer. The difference is that each param requiredcount is 0 (which means it
may not appear in the SOAP fault message).

– Other elements that appear in soap:fault message are always defined as a file in
errbuf, with requiredcount equal to 1 or 0 (depending on whether the element is
required or optional).

– Each part definition in the metadata controls converting a <detail> element in the
soap fault message into a field in the error buffer.

Table 4-3 Outbound SOAP Fault Errbuf Definition

Meta Parameter SOAP Version Type Required Memo

faultcode 1.1 string Yes -

faultstring 1.1 string Yes -

faultactor 1.1 string No -

detail 1.1 fml32 No If no wsdl:fault
is defined, this field
contains an XML
field.

Code 1.2 fml32 Yes Contains value and
optional Subcode

Reason 1.2 fml32 Yes Contains multiple
text

Node 1.2 string No -

Role 1.2 string No -

Detail 1.2 fml32 No same as detail field

See Also:

Oracle Tuxedo ATMI C Functions

Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes

Chapter 4
Invoking SALT Proxy Services

4-5

https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf3c/rf3c.html
https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html

5
Using SALT Plug-Ins

This chapter contains the following topics:

• Understanding SALT Plug-Ins

• Programming Message Conversion Plug-ins

• Programming Outbound Authentication Plug-Ins

5.1 Understanding SALT Plug-Ins
The SALT GWWS(5) server is a configuration-driven process which, for most basic Web
service applications, does not require any programming tasks. However, SALT functionality can
be enhanced by developing plug-in interfaces which utilize custom typed buffer data and
customized shared libraries to extend the GWWS server.

A plug-in interface is a set of functions exported by a shared library that can be loaded and
invoked by GWWS processes to achieve special functionality. SALT provides a plug-in
framework as a common interface for defining and implementing a plug-in interface. Plug-in
implementation is carried out by a shared library which contains the actual functions. The plug-
in implementation library is configured in the SALT Deployment File and is loaded dynamically
during GWWS server startup.

• Plug-In Elements

5.1.1 Plug-In Elements
Four plug-in elements are required to define a plug-in interface:

• Plug-In ID

• Plug-In Name

• Plug-In Implementation Functions

• Plug-In Register Functions

• Developing a Plug-In Interface

5.1.1.1 Plug-In ID
The plug-in ID element is a string used to identify a particular plug-in interface function.
Multiple plug-in interfaces can be grouped with the same Plug-in ID for a similar function. Plug-
in ID values are predefined by SALT. Arbitrary string values are not permitted.

SALT supports the P_CUSTOM_TYPE and P_CREDENMAP plug-in ID, which is used to define
plug-in interfaces for custom typed buffer data handling, and map Oracle Tuxedo user ID and
group ID into username/password that HTTP Basic Authentication needs.

5-1

5.1.1.2 Plug-In Name
The plug-in Name differentiates one plug-in implementation from another within the same Plug-
in ID category.

For the P_CUSTOM_TYPE Plug-in ID, the plug-in name is used to indicate the actual custom buffer
type name. When the GWWS server attempts to convert data between Oracle Tuxedo custom
typed buffers and an XML document, the plug-in name is the key element that searches for the
proper plug-in interface.

5.1.1.3 Plug-In Implementation Functions
Actual business logic should reflect the necessary functions defined in a plug-in vtable
structure. Necessary functions may be different for different plug-in ID categories.

For the P_CREDENMAP ID category, one function needs to be implemented:

int (* gwws_pi_map_http_basic) (char * domain, char * realm, char * t_userid,
char * t_grpid, Cred_UserPass * credential);

For more information, see How Outbound Authentication Plug-Ins Work

5.1.1.4 Plug-In Register Functions
Plug-in Register functions are a set of common functions (or rules), that a plug-in interface
must implement so that the GWWS server can invoke the plug-in implementation. Each plug-in
interface must implement three register functions. These functions are listed below:

• Information Providing Function

• Initiating Function

• Exiting Function

• vtable Setting Function

5.1.1.4.1 Information Providing Function
This function is optional. If it is used, it is first invoked after the plug-in shared library is loaded
during GWWS server startup. If you want to implement more than one interface in one plug-in
library, you must implement this function and return the counts, IDs, and names of the
interfaces in the library.

Returning a 0 value indicates the function has executed successfully. Returning a value other
than 0 indicates failure. If this functions fails, the plug-in is not loaded, and the GWWS server
will not start.

The function uses the following syntax:

int _ws_pi_get_Id_and_Names(int * count, char **ids, char **names);

You must return the total count of implementation in the library in arguments count. The
arguments ids andnamesshould contain all implemented interface ids and names, separated by
a semicolon “;”.

Chapter 5
Understanding SALT Plug-Ins

5-2

5.1.1.4.2 Initiating Function
The initiating function is invoked after all the implemented interfaces in the plug-in shared
library are determined. You can initialize data structures and set up global environments that
can be used by the plug-ins.

Returning a 0 value indicates the initiating function has executed successfully. Returning a
value other than 0 indicates initiation has failed. If plug-in interface initiation fails, the GWWS
server will not start.

The initiating function uses the following syntax:

int _ws_pi_init_@ID@_@Name@(char * params, void **priv_ptr);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and MyType as a
plug-in name is:

_ws_pi_init_P_CUSTOM_TYPE_MyType (char * params, void **priv_ptr)

.

5.1.1.4.3 Exiting Function
The exiting function is called before closing theplug-in shared library when the GWWS server
shuts down. You should release all reserved plug-in resources.

The exiting function uses the following syntax:

int _ws_pi_exit_@ID@_@Name@(void * priv);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating exiting function name of a plug-in with P_CUSTOM_TYPE as a plug-in ID
and MyType as a plug-in name is:

__ws_pi_exit_P_CUSTOM_TYPE_MyType(void * priv).

.

5.1.1.4.4 vtable Setting Function
vtable is a particular C structure that stores the necessary function pointers for the actual
businesss logic of a plug-in interface. In other words, a valid plug-in interface must implement
all the functions defined by the corresponding vtable.

The vtable setting function uses the following syntax:

int _ws_pi_set_vtbl_@ID@_@Name@(void * priv);
@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the vtable setting function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and
MyType as a plug-in name is:

_ws_pi_set_vtbl_P_CUSTOM_TYPE_MyType(void * priv)

Chapter 5
Understanding SALT Plug-Ins

5-3

The vtable structures may be different for different plug-in ID categories. For this SALT
release, P_CUSTOM_TYPE and P_CREDENMAP are the only valid plug-in IDs.

The vtable structures for available plug-in interfaces are shown in in the example below:

Example 5-1 VTable Structure

struct credmap_vtable {
 int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *
t_userid, char * t_grpid, Cred_UserPass * credential); /* used for HTTP Basic
Authentication */
 /* for future use */
 void * unused_1;
 void * unused_2;
 void * unused_3;
};

struct credmap_vtable indicates that one function must be implemented for a P_CREDENMAP
plug-in interface. For more information, see How Outbound Authentication Plug-Ins Work

The function input parameter void * priv points to a concrete vtable instance. You should
set the vtable structure with the actual functions in the vtable setting function.

An example of setting the vtable structure with actual functions in the vtable setting function
is shown in the example below:

Example 5-2 Setting the vtable Structure with Actual Functions in the vtable Setting
Function

int _DLLEXPORT_ _ws_pi_set_vtbl_P_CREDENMAP_TEST (void * vtbl)
{
 struct credmap_vtable * vtable;
 if (! vtbl)
 return -1;

 vtable = (struct credmap_vtable *) vtbl;

 vtable->gwws_pi_map_http_basic = Credmap_HTTP_Basic;
 return 0;
}

5.1.1.5 Developing a Plug-In Interface
To develop a comprehensive plug-in interface, perform the following steps:

• Developing a Plug-In Shared Library

• Defining a Plug-In Interface in the SALT Configuration File

5.1.1.5.1 Developing a Plug-In Shared Library
To develop a plug-in shared library, do the following steps:

1. Write C language plug-in implementation functions for the actual business logic. These
functions are not required to be exposed from the shared library. For more information, see
Plug-In Register Functions

Chapter 5
Understanding SALT Plug-Ins

5-4

2. Write C language plug-in register functions that include: the initiating function, the exiting
function, the vtable setting function, and the information providing function if necessary.
These register functions need to be exported so that they can be invoked from the GWWS
server. For more information, see Plug-In Register Functions

3. Compile all the above functions into one shared library.

5.1.1.5.2 Defining a Plug-In Interface in the SALT Configuration File
To define a plug-in shared library that is loaded by the GWWS server, the corresponding plug-
in library path must be configured in the SALT deployment file. For more information, see
Creating the SALT Deployment File in the SALT Configuration Guide.

An example of how to define plug-in information in the SALT deployment file is shown below:

Example 5-3 Defined Plug-In in the SALT Deployment File

<?xml version="1.0" encoding="UTF-8"?>
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <System>
 <Plugin>
 <Interface
 id=”P_CREDENMAP”
 name=”TEST”
 library=”credmap_plugin.dll” />
 </Plugin>
 </System>
</Deployment>

Note:

To define multiple plug-in interfaces, multiple <Interface> elements must be
specified. Each <Interface> element indicates one plug-in interface.

Multiple plug-in interfaces can be built into one shared library file.

5.2 Programming Message Conversion Plug-ins
SALT defines a complete set of default data type conversion rules to convert between Oracle
Tuxedo buffers and SOAP message payloads. However, the default data type conversion rules
may not meet all your needs in transforming SOAP messages into Oracle Tuxedo typed
buffers or vice versa. To accommodate special application requirements, SALT supports
customized message-level conversion plug-in development to extend the default message
conversion.

Note:

The SALT 12cR2 Message Conversion Plug-in is an enhanced successor to the
SALT 1.1 Custom Buffer Type Conversion Plug-in.

Chapter 5
Programming Message Conversion Plug-ins

5-5

The following topics are included in this section:

• How Message Conversion Plug-ins Work

• When Do We Need Message Conversion Plug-in

• Developing a Message Conversion Plug-in Instance

• SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility

5.2.1 How Message Conversion Plug-ins Work
Message Conversion Plug-in is a SALT supported Plug-in defined within the SALT plug-in
framework. All Message Conversion Plug-in instances have the same Plug-In ID
(“P_CUSTOM_TYPE“). Each particular Message Conversion Plug-in instance may implement
two functions, one is used to convert SOAP message payloads to Oracle Tuxedo buffers, and
the other is used to convert Oracle Tuxedo buffers to SOAP message payloads.

These two function prototypes are defined in the example below:

Example 5-4 vtable Structure for SALT Plug-in “P_CUSTOM_TYPE” (C Language)

/* custtype_pi_ex.h */

 struct custtype_vtable {

 CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void *
 xercesDOMTree, CustomerBuffer * tuxbuf, CustType_Ext *
 extinfo)

 int (* soap_out_tuxedo__CUSTBUF) (void ** xercesDOMTree,
 CustomerBuffer * tuxbuf, CustType_Ext * extinfo)

 }

The function pointer (* soap_in_tuxedo__CUSTBUF), points to the customized function that
converts the SOAP message payload to Oracle Tuxedo typed buffer.

The function pointer (* soap_out_tuxedo__CUSTBUF), points to the customized function that
converts the Oracle Tuxedo typed buffer to SOAP message payload.

You may implement both functions defined in the message conversion plug-in vtable structure
if needed. You may also implement one function and set the other function with a NULL pointer.

• How Message Conversion Plug-in Works in an Inbound Call Scenario

• How Message Conversion Plug-in Works in an Outbound Call Scenario

5.2.1.1 How Message Conversion Plug-in Works in an Inbound Call Scenario
An inbound call scenario is an external Web service program that invokes an Oracle Tuxedo
service through the SALT gateway. The following figure depicts message streaming between a
Web service client and an Oracle Tuxedo domain.

The following figure Message Conversion Plug-in Works in an Inbound Call Scenario

Chapter 5
Programming Message Conversion Plug-ins

5-6

Figure 5-1 Message Conversion Plug-in Works in an Inbound Call Scenario

When a SOAP request message is delivered to the GWWS server, GWWS tries to find if there
is a message conversion plug-in instance associated with the input message conversion of the
target service. If there is an associated instance, the GWWS invokes the customized
(*soap_in_tuxedo__CUSTBUF) function implemented in the plug-in instance.

When an Oracle Tuxedo response buffer is returned from the Oracle Tuxedo service, GWWS
tries to find if there is a message conversion plug-in instance associated with the output
message conversion of the target service. If there is an associated instance, GWWS invokes
the customized function (*soap_out_tuxedo__CUSTBUF), implemented in the plug-in instance.

5.2.1.2 How Message Conversion Plug-in Works in an Outbound Call Scenario
An outbound call scenario is an Oracle Tuxedo program that invokes an external Web service
through the SALT gateway. Figure 5‑2 depicts message streaming between an Oracle Tuxedo
domain and a Web service application.

The following figure Message Conversion Plug-in Works in an Outbound Call Scenario

Chapter 5
Programming Message Conversion Plug-ins

5-7

Figure 5-2 Message Conversion Plug-in Works in an Outbound Call Scenario

When an Oracle Tuxedo request buffer is delivered to the GWWS server, GWWS tries to find if
there is a message conversion plug-in instance associated with the input message conversion
of the target service. If there is an associated instance, GWWS invokes the customized
function(*soap_out_tuxedo__CUSTBUF), implemented in the plug-in instance.

When a SOAP response message is returned from the external Web service application,
GWWS tries to find if there is a message conversion plug-in instance associated with the
output message conversion of the target service. If there is an associated instance, GWWS
invokes the customized function (*soap_in_tuxedo__CUSTBUF), implemented in the plug-in
instance.

5.2.2 When Do We Need Message Conversion Plug-in
The following table lists several message conversion plug-in use cases:

Table 5-1 Message Conversion Plug-in Use Cases

- Scenario Description soap_in_tuxedo_
CUSTBUF

soap_out_tuxedo
_CUSTBUF

Oracle Tuxedo
Originated Service

A SOAP message payload is
transformed into a custom typed buffer

Required N/A

A custom typed buffer is transformed
into a SOAP message payload.

N/A Required

An Oracle Tuxedo service input and/or
output buffer is associated with a
customized XML schema definition
when a SOAP message payload is
being transformed into this buffer.

Non XML typed
buffer: Required
XML typed buffer:
Optional

N/A

An Oracle Tuxedo service input and/or
output buffer is associated with a
customized XML schema definition
when this buffer is being transformed
into a SOAP message payload.

N/A Non XML typed
buffer: Required

XML typed
buffer:Optional

Chapter 5
Programming Message Conversion Plug-ins

5-8

Table 5-1 (Cont.) Message Conversion Plug-in Use Cases

- Scenario Description soap_in_tuxedo_
CUSTBUF

soap_out_tuxedo
_CUSTBUF

All other general cases when a SOAP
message payload is being transformed
to an Oracle Tuxedo buffer.

Optional N/A

All other general cases when an Oracle
Tuxedo buffer is being transformed into a
SOAP message payload.

N/A Optional

Web Service
Originated Service

All cases when an Oracle Tuxedo buffer
is transformed into a SOAP message
payload.

N/A Optional

All cases when a SOAP message
payload is being transformed into an
Oracle Tuxedo buffer.

Optional N/A

From the table above, the following message conversion plug-ins general rules are applied.

• If an Oracle Tuxedo originated service consumes custom typed buffers, the message
conversion plug-in is required. The Oracle Tuxedo framework does not understand custom
typed buffer detailed data structure. Therefore SALT default data type conversion rules
cannot be applied.

• If the input and/or output (no matter if returned with TPSUCCESS or TPFAIL) buffer of an
Oracle Tuxedo originated service is associated with an external XML Schema, you should
develop message conversion plug-ins to handle the transformation manually (unless you
are sure that the SALT default buffer type-based conversion rules can handle it correctly).

– For example, if you associate your own XML Schema with an Oracle Tuxedo service
FML32 typed buffer, you must provide a message conversion plug-in since SALT default
data mapping routines may not understand the SOAP message payload structure
when trying to convert into the FML typed buffer. Contrarily, the SOAP message
payload structure converted from the FML typed buffer may be tremendously different
from the XML shape defined via your own XML Schema.

– If you associate your own XML Schema with an Oracle Tuxedo service XML typed
buffer, most of time you do not have to provide a message conversion plug-in. This is
because SALT passes the XML data as is in both message conversion directions.

For more information, see Configuring a SALT Application

5.2.3 Developing a Message Conversion Plug-in Instance
This chapter contains the following topics:

• Converting a SOAP Message Payload to an Oracle Tuxedo Buffer

• Converting an Oracle Tuxedo Buffer to a SOAP Message Payload

Chapter 5
Programming Message Conversion Plug-ins

5-9

5.2.3.1 Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
The following function should be implemented in order to convert a SOAP XML payload to an
Oracle Tuxedo buffer:

CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void * xercesDOM,
CustomerBuffer *a, CustType_Ext * extinfo);

• Synopsis

• Description

• Diagnostics

5.2.3.1.1 Synopsis

#include <custtype_pi_ex.h>
CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,
CustType_Ext * extinfo);

myxml2buffer is an arbitrary customized function name.

5.2.3.1.2 Description
The implemented function should have the capability to parse the given XML buffer and
convert concrete data items to an Oracle Tuxedo custom typed buffer instance.

The input parameter, char * xmlbuf, indicates a NULL terminated string with the XML format
data stream.

Note:

The XML data is the actual XML payload for the custom typed buffer, not the whole
SOAP envelop document or the whole SOAP body document.

The input parameter, char * type, indicates the custom type buffer type name, this parameter
is used to verify that the GWWS server expected custom typed buffer handler matches the
current plug-in function.

The output parameter, CustomerBuffer *a, is used to store the allocated custom typed buffer
instance. An Oracle Tuxedo custom typed buffer must be allocated by this plug-in function via
the tpalloc(). Plug-in code is not responsible to free the allocated custom typed buffer, it is
automatically destroyed by the GWWS server if it is not used.

5.2.3.1.3 Diagnostics
If successful, this function must return the pointer value of input parameter CustomerBuffer *
a.

If it fails, this function returns NULL as shown in the example below:

Chapter 5
Programming Message Conversion Plug-ins

5-10

Example 5-5 Converting XML Effective Payload to Oracle Tuxedo Custom Typed Buffer
Pseudo Code

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,
CustType_Ext * extinfo)
{
 // casting the input void * xercesDOM to class DOMDocument object
 DOMDocument * DOMTree =

 // allocate custom typed buffer via tpalloc
 a->buf = tpalloc("MYTYPE", "MYSUBTYPE", 1024);
 a->len = 1024;

 // fetch data from DOMTree and set it into custom typed buffer
 DOMTree ==> a->buf;
 if (error) {
 release (DOMTree);
 tpfree(a->buf);
 a->buf = NULL;
 a->len = 0;
 return NULL;
 }

 release (DOMTree);

 return a;
}

Tip:

Oracle Tuxedo 22c bundles Xerces 3.2.3.

5.2.3.2 Converting an Oracle Tuxedo Buffer to a SOAP Message Payload
The following function should be implemented in order to convert a custom typed buffer to
SOAP XML payload:

int (*soap_out_tuxedo__CUSTBUF)(char ** xmlbuf, CustomerBuffer * a, char *
type);

• Synopsis

• Description

• Diagnostics

5.2.3.2.1 Synopsis

#include <custtype_pi_ex.h>
CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,
CustType_Ext * extinfo);

"mybuffer2xml" is the function name can be specified with any valid string upon your need.

Chapter 5
Programming Message Conversion Plug-ins

5-11

5.2.3.2.2 Description
The implemented function has the capability to convert the given custom typed buffer instance
to the single root XML document used by the SOAP message.

The input parameter (CustomerBuffer *a), is used to store the custom typed buffer response
instance. Plug-in code is not responsible to free the allocated custom typed buffer, it is
automatically destroyed by the GWWS server if it is not used.

The input parameter (char * type), indicates the custom typed buffer type name. This
parameter can be used to verify if the SALT GWWS server expected custom typed buffer
handler matches the current plug-in function.

The output parameter (char ** xmlbuf), is a pointer that indicates the newly converted XML
payload. The XML payload buffer must be allocated by this function and uses malloc(). Plug-
in code is not responsible to free the allocated XML payload buffer, it is automatically destroyed
by the GWWS server if it is not used.

5.2.3.2.3 Diagnostics
If successful, this function must return 0.

If it fails, this function must return -1 as shown in the example:

Example 5-6 Converting Oracle Tuxedo Custom Typed Buffer to SOAP XML Pseudo
Code

int mybuffer2xml (void ** xercesDom, CustomerBuffer *a, CustType_Ext *
extinfo)
{
 // Use DOM implementation to create the xml payload
 DOMTree = CreateDOMTree();

 if (error)
 return -1;

 // fetch data from custom typed buffer instance,
 // and add data to DOMTree according to the client side needed
 // XML format

 a->buf ==> DOMTree;

 // allocate xmlbuf buffer via malloc
* xmlbuf = malloc(expected_len(DOMTree));
 if (error) {
 release (DOMTree);
 return -1;
 }

 // casting the DOMDocument to void * pointer and returned
 DOMTree >> (* xmlbuf);
 if (error) {
 release (DOMTree);
 free ((* xmlbuf));
 return -1;
 }

Chapter 5
Programming Message Conversion Plug-ins

5-12

 return 0;
}

WARNING:

The GWWS framework is responsible for releasing the DOMDocument created inside
the plug-in function. To avoid double release, you must pay attention to the following
Xerces API usage:
If the DOMDocument is constructed from an XML string through
XercesDOMParser::parse() API. You must use
XercesDOMParser::adoptDocument() to get the pointer of the DOMDocument object.
You must not use XercesDOMParser::getDocument() to get the pointer of the
DOMDocument object because the DOMDocument object is maintained by the
XercesDOMParser object and is released when deleting the XercesDOMParser object if
you do not de-couple the DOMDocument from the XercesDOMParser via the
XercesDOMParser::getDocument() function.

5.2.4 SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility
SALT 1.1 Custom Buffer Type Conversion Plug-in provides a customized message conversion
mechanism only for Oracle Tuxedo custom buffer types.

Table 5-2 SALT 12cR2 Message Conversion Plug-in / SALT 1.1 Custom Buffer Type
Conversion Plug-in Comparison

SALT 1.1 Custom Buffer Type Plug-in SALT 12cR2 Message Conversion Plug-in

Plug-in ID is “P_CUSTOM_TYPE” Plug-in ID is “P_CUSTOM_TYPE”

Plug-in Name must be the same as the supported
custom buffer type name.

Plug-in Name can be any meaningful value, which
is only used to distinguish from other plug-in
instances.

Only supports message conversion between SOAP
message payloads and Oracle Tuxedo custom
buffer types.

Supports message conversion between SOAP
message payloads and any kind of Oracle Tuxedo
buffer type.

Buffer type-level association.

Each plug-in instance must be named the same as
the supported custom buffer type name. Each
custom buffer type can only have one plug-in
implementation.

One custom buffer type can associate with a plug-
in instance, and used by all the services.

Message-level association. Each Oracle Tuxedo
service can associate plug-in instances with its
input and/or output buffers respectively through the
plug-in instance name.

SOAP message payload is saved as a NULL
terminated string for plug-in programming.

SOAP message payload is saved as a Xerces
DOM Document for plug-in programming.

Chapter 5
Programming Message Conversion Plug-ins

5-13

Note:

SALT 1.1 Custom Buffer Type Plug-in shared library cannot be used directly in SALT
12cR2. You must perform the following tasks to upgrade it to a SALT 12cR2 message
conversion plug-in:

1. Re-implement function (*soap_in_tuxedo__CUSTBUF) and
(*soap_out_tuxedo__CUSTBUF) according to the SALT message conversion
plug-in vtable function prototype API. The major change is that the SOAP
message payload is saved as an Xerces class DOMDocument object instead of
the old string value.

2. Re-compile your functions as a shared library and configure this shared library in
the SALT Deployment file so that it can be loaded by GWWS servers.

Tip:

You do not have to manually associate the upgraded message conversion plug-ins
with service buffers. If a custom typed buffer is involved in the message conversion at
runtime, GWWS can automatically search a message conversion plug-in that has the
same name as the buffer type name if no explicit message conversion plug-in
interface is configured.

5.3 Programming Outbound Authentication Plug-Ins
When an Oracle Tuxedo client accesses Web services via SOAP/HTTP, the client may be
required to send a username and password to the server to perform HTTP Basic
Authentication. The Oracle Tuxedo clients uses tpinit()to send a username and password
when registering to the Oracle Tuxedo domain. However, this username is used by Oracle
Tuxedo and is not the same as the one used by the Web service (the password may be
different as well).

To map the usernames, SALT provides a plug-in interface (Credential-Mapping Interface), that
allows you to choose which username and password is sent to the Web service.

• How Outbound Authentication Plug-Ins Work

• Implementing a Credential Mapping Interface Plug-In

• Mapping the Oracle Tuxedo UID and HTTP Username

5.3.1 How Outbound Authentication Plug-Ins Work
When an Oracle Tuxedo client calls a Web service, it actually calls the GWWS server that
declares the Web service as an Oracle Tuxedo service. The user id and group id (defined in
tpusr and tpgrp files) are sent to the GWWS. The GWWS then checks whether the Web
service has a configuration item <Realm>. If it does, the GWWS:

• Tries to invoke the vtable gwws_pi_map_http_basic function to map the Oracle Tuxedo
userid into the username and password for the HTTP Realm of the server.

• For successful calls, encodes the returned username and password with Base64 and
sends it to the HTTP header field “Authorization: Basic”.

Chapter 5
Programming Outbound Authentication Plug-Ins

5-14

• For failed calls, returns a failure to the Oracle Tuxedo Client without invoking the Web
service.

5.3.2 Implementing a Credential Mapping Interface Plug-In
Using the following scenario:

• An existing Web service, myservice, sited on http://www.abc.com/webservice, requires
HTTP Basic Authentication. The username is “test”, the password is “1234,” and the realm
is “myrealm”.

• After converting the Web service WSDL into the SALT configuration file (using wsdlcvt),
add the <Realm>myrealm</Ream> element to the endpoint definition in the WSDF file.

Perform the following steps to implement a SALT plug-in interface:

1. Write the functions to map the “myrealm” Oracle Tuxedo UID/GID to username/password on
www.abc.com.

• Use Credmap_HTTP_Basic();
This function is used to return the HTTP username/password. The function prototype
defined in credmap_pi_ex.h

2. Write the following three plug-in register functions. For more information, see Plug-In
Register Functions

• _ws_pi_init_P_CREDENMAP_TEST(char * params, void ** priv_ptr);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup.

• _ws_pi_exit_P_CREDENMAP_TEST(void * priv);
This function is invoked when the GWWS server unloads the plug-in shared library
during the shutdown phase.

• ws_pi_set_vtbl_P_CREDENMAP_TEST(void * vtbl);
Set the gwws_pi_map_http_basic entry in vtable structure credmap_vtable with the
Credmap_HTTP_Basic() function implemented in step 1.

3. You can also write the optional function:

• _ws_pi_get_Id_and_Names(int * params, char ** ids, char ** names);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup to determine what library interfaces are implemented. For more
information, see Plug-In Register Functions.

4. Compile the previous four or five functions into one shared library, credmap_plugin.so
5. Configure the plug-in interface in the SALT deployment file.

Configure the plug-in interface as shown in the example below:

Example 5-7 Custom Typed Buffer Plug-In Interface

<?xml version="1.0" encoding="UTF-8"?>
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <System>

Chapter 5
Programming Outbound Authentication Plug-Ins

5-15

 <Plugin>
 <Interface
 id=”P_CREDENMAP”
 name=”TEST”
 library=”credmap_plugin.dll” />
 </Plugin>
 </System>
</Deployment>

5.3.3 Mapping the Oracle Tuxedo UID and HTTP Username
The following function should be implemented in order to return username/password for HTTP
Basic Authentication:

typedef int (* GWWS_PI_CREDMAP_PASSTEXT) (char * domain, char * realm, char *
t_userid, char * t_grpid, Cred_UserPass * credential);

• Synopsis

• Description

• Diagnostics

5.3.3.1 Synopsis

#include <credmap_pi_ex.h>
typedef struct Cred_UserPass_s {
char username[UP_USERNAME_LEN];
char password[UP_PASSWORD_LEN];
} Cred_UserPass;
int gwws_pi_map_http_basic (char * domain, char * realm, char * t_uid, char *
t_gid, Cred_UserPass * credential);

The "gwws_pi_map_http_basic" function name can be specified with any valid string as
needed.

5.3.3.2 Description
The implemented function has the capability to determine authorization credentials (usernames
and passwords) used for authorizing users with a given Oracle Tuxedo uid and gid for a given
domain and realm.

The input parameters, char * domain and char * realm, represent the domain name and
HTTP Realm that the Web service belongs to. The plug-in code must use them to determine
the scope to find appropriate credentials.

The input parameters, char * t_uid and char * t_gid, are strings that contain Oracle
Tuxedo user ID and group ID number values respectively. These two parameters may be used
to find the username.

The output parameter, Cred_UserPass * credential, is a pointer that indicates a pre-allocated
buffer storing the returned username/password. The plug-in code is not responsible for
allocating the buffer.

Chapter 5
Programming Outbound Authentication Plug-Ins

5-16

Note:

Oracle Tuxedo user ID is available only when *SECURITY is set as USER_AUTH or
higher in the UBBCONFIG file. Group ID is available when *SECURITY is set as ACL or
higher. The default is “0”.

5.3.3.3 Diagnostics
If successful, this function returns 0. If it fails, it returns -1 as shown in the example below:

Example 5-8 Credential Mapping for HTTP Basic Authentication Pseudo Code

int Credmap_HTTP_Basic(char * domain, char * realm, char * t_uid, char *
t_gid, Cred_UserPass * credential)
{
 // Use domain and realm to determine scope
 credentialList = FindAllCredentialForDomainAndRealm(domain, realm);

 if (error happens)
 return -1;

 // find appropriate credential in the scope

 foreach cred in credentialList {
 if (t_uid and t_gid match) {
 *credential = cred;
 return 0;
 }
 }
 if (not found and no default credential) {
 return -1;
 }

 *credential = default_credential;
 return 0;
}

Tip:

The credentials can be stored in the database with domain and realm as the key or
index.

Chapter 5
Programming Outbound Authentication Plug-Ins

5-17

	Contents
	List of Examples
	List of Figures
	List of Tables
	1 Introduction to SALT Programming
	1.1 SALT Web Services Programming
	1.1.1 SALT Proxy Service
	1.1.2 SALT Message Conversion
	1.1.3 SALT Programming Tasks Quick Index
	1.1.4 REpresentational State Transfer (REST) Message Conversion

	2 Data Type Mapping and Message Conversion
	2.1 Overview of Data Type Mapping and Message Conversion
	2.2 Understanding SALT Message Conversion
	2.2.1 Inbound Message Conversion
	2.2.2 Outbound Message Conversion

	2.3 Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services
	2.3.1 Oracle Tuxedo STRING Typed Buffers
	2.3.2 Oracle Tuxedo CARRAY Typed Buffers
	2.3.2.1 Mapping Example Using base64Binary
	2.3.2.2 Mapping Example Using MIME Attachment

	2.3.3 Oracle Tuxedo MBSTRING Typed Buffers
	2.3.4 Oracle Tuxedo XML Typed Buffers
	2.3.5 Oracle Tuxedo VIEW/VIEW32 Typed Buffers
	2.3.5.1 VIEW/VIEW32 Considerations

	2.3.6 Oracle Tuxedo FML/FML32 Typed Buffers
	2.3.6.1 FML Data Mapping Example
	2.3.6.2 FML32 Data Mapping Example
	2.3.6.3 FML/FML32 Considerations

	2.3.7 Oracle Tuxedo RECORD Typed Buffers
	2.3.7.1 REDEFINES Handling

	2.3.8 Oracle Tuxedo X_C_TYPE Typed Buffers
	2.3.9 Oracle Tuxedo X_COMMON Typed Buffers
	2.3.10 Oracle Tuxedo X_OCTET Typed Buffers
	2.3.11 Custom Typed Buffers

	2.4 XML-to-Tuxedo Data Type Mapping for External Web Services
	2.4.1 XML Schema Built-In Simple Data Type Mapping
	2.4.2 XML Schema User Defined Data Type Mapping
	2.4.3 WSDL Message Mapping

	2.5 REST Data Mapping
	2.5.1 Inbound Message Conversion
	2.5.1.1 Query String Mapping
	2.5.1.2 JSON Data Mapping
	2.5.1.2.1 VIEW/VIEW32 Considerations
	2.5.1.2.2 FML/FML32 Considerations

	2.5.1.3 XML Data Mapping
	2.5.1.3.1 VIEW/VIEW32 Considerations:
	2.5.1.3.2 FML/FML32 Considerations

	2.5.2 Outbound Message Conversion
	2.5.2.1 Query String Mapping
	2.5.2.2 JSON Data Mapping
	2.5.2.2.1 VIEW/VIEW32 Considerations:
	2.5.2.2.2 FML/FML32 Considerations
	2.5.2.2.3 Conversion Examples:

	2.5.2.3 XML Data Mapping
	2.5.2.3.1 VIEW/VIEW32 Considerations:
	2.5.2.3.2 FML/FML32 Considerations

	3 Web Service Client Programming
	3.1 Overview
	3.1.1 Representational State Transfer (REST) Support
	3.1.1.1 Oneway (in and out)
	3.1.1.2 ATMI and SCA Support
	3.1.1.3 Examples
	3.1.1.3.1 Example: .h interface
	3.1.1.3.2 Example: SCDL Descriptor
	3.1.1.3.3 Example: SALTDEPLOY REST Service Definition
	3.1.1.3.4 Example: URL used to invoke service
	3.1.1.3.5 Example: Response

	3.2 SALT Web Service Client Programming Tips
	3.2.1 Oracle WebLogic Web Service Client Programming Toolkit
	3.2.2 Apache Axis for Java Web Service Client Programming Toolkit
	3.2.3 Microsoft .NET Web Service Client Programming Toolkit
	3.2.4 Web Service Client Programming References

	4 Oracle Tuxedo ATMI Programming for Web Services
	4.1 Overview
	4.2 Converting WSDL Model Into Oracle Tuxedo Model
	4.2.1 WSDL-to-Tuxedo Object Mapping

	4.3 Invoking SALT Proxy Services
	4.3.1 SALT Supported Communication Patterns
	4.3.2 Oracle Tuxedo Outbound Call Programming: Main Steps
	4.3.3 Managing Error Code Returned from GWWS
	4.3.4 Handling Fault Messages in an Oracle Tuxedo Outbound Application

	5 Using SALT Plug-Ins
	5.1 Understanding SALT Plug-Ins
	5.1.1 Plug-In Elements
	5.1.1.1 Plug-In ID
	5.1.1.2 Plug-In Name
	5.1.1.3 Plug-In Implementation Functions
	5.1.1.4 Plug-In Register Functions
	5.1.1.4.1 Information Providing Function
	5.1.1.4.2 Initiating Function
	5.1.1.4.3 Exiting Function
	5.1.1.4.4 vtable Setting Function

	5.1.1.5 Developing a Plug-In Interface
	5.1.1.5.1 Developing a Plug-In Shared Library
	5.1.1.5.2 Defining a Plug-In Interface in the SALT Configuration File

	5.2 Programming Message Conversion Plug-ins
	5.2.1 How Message Conversion Plug-ins Work
	5.2.1.1 How Message Conversion Plug-in Works in an Inbound Call Scenario
	5.2.1.2 How Message Conversion Plug-in Works in an Outbound Call Scenario

	5.2.2 When Do We Need Message Conversion Plug-in
	5.2.3 Developing a Message Conversion Plug-in Instance
	5.2.3.1 Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
	5.2.3.1.1 Synopsis
	5.2.3.1.2 Description
	5.2.3.1.3 Diagnostics

	5.2.3.2 Converting an Oracle Tuxedo Buffer to a SOAP Message Payload
	5.2.3.2.1 Synopsis
	5.2.3.2.2 Description
	5.2.3.2.3 Diagnostics

	5.2.4 SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility

	5.3 Programming Outbound Authentication Plug-Ins
	5.3.1 How Outbound Authentication Plug-Ins Work
	5.3.2 Implementing a Credential Mapping Interface Plug-In
	5.3.3 Mapping the Oracle Tuxedo UID and HTTP Username
	5.3.3.1 Synopsis
	5.3.3.2 Description
	5.3.3.3 Diagnostics

