Package oracle.pgx.config.mllib
Class DeepWalkModelConfig
- java.lang.Object
-
- oracle.pgx.config.mllib.DeepWalkModelConfig
-
- All Implemented Interfaces:
BaseModelConfig
public class DeepWalkModelConfig extends java.lang.Object implements BaseModelConfig
-
-
Constructor Summary
Constructors Constructor Description DeepWalkModelConfig()DeepWalkModelConfig(int minWordFrequency, int batchSize, int numEpochs, int layerSize, double learningRate, double minLearningRate, int windowSize, int walkLength, int walksPerVertex, double sampleRate, int negativeSample, java.lang.Double trainingLoss, PropertyType vertexIdPropertyType, java.lang.Long seed, boolean shuffle, boolean enableAccelerator)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description intgetBatchSize()Gets the batch sizeintgetLayerSize()doublegetLearningRate()java.lang.DoublegetLoss()doublegetMinLearningRate()intgetMinWordFrequency()intgetNegativeSample()intgetNumEpochs()Gets the number of epochs to train the modeldoublegetSampleRate()java.lang.LonggetSeed()Gets the random seedPropertyTypegetVertexIdPropertyType()intgetWalkLength()intgetWalksPerVertex()intgetWindowSize()booleanisEnableAccelerator()booleanisIgnoreIsolated()booleanisShuffle()Gets whether the model will shuffle or notvoidsetBatchSize(int batchSize)voidsetEnableAccelerator(boolean enableAccelerator)voidsetIgnoreIsolated(boolean ignoreIsolated)voidsetLayerSize(int layerSize)voidsetLearningRate(double learningRate)voidsetLoss(java.lang.Double trainingLoss)Sets the loss after trainingvoidsetMinLearningRate(double minLearningRate)voidsetMinWordFrequency(int minWordFrequency)voidsetNegativeSample(int negativeSample)voidsetNumEpochs(int numEpochs)voidsetSampleRate(double sampleRate)voidsetSeed(java.lang.Long seed)voidsetShuffle(boolean shuffle)voidsetVertexIdPropertyType(PropertyType vertexIdPropertyType)voidsetWalkLength(int walkLength)voidsetWalksPerVertex(int walksPerVertex)voidsetWindowSize(int windowSize)
-
-
-
Constructor Detail
-
DeepWalkModelConfig
public DeepWalkModelConfig()
-
DeepWalkModelConfig
public DeepWalkModelConfig(int minWordFrequency, int batchSize, int numEpochs, int layerSize, double learningRate, double minLearningRate, int windowSize, int walkLength, int walksPerVertex, double sampleRate, int negativeSample, java.lang.Double trainingLoss, PropertyType vertexIdPropertyType, java.lang.Long seed, boolean shuffle, boolean enableAccelerator)
-
-
Method Detail
-
getLoss
public java.lang.Double getLoss()
-
setLoss
public void setLoss(java.lang.Double trainingLoss)
Description copied from interface:BaseModelConfigSets the loss after training- Specified by:
setLossin interfaceBaseModelConfig- Parameters:
trainingLoss- the value of the training loss
-
getWalkLength
public int getWalkLength()
-
setWalkLength
public void setWalkLength(int walkLength)
-
getWalksPerVertex
public int getWalksPerVertex()
-
setWalksPerVertex
public void setWalksPerVertex(int walksPerVertex)
-
getMinWordFrequency
public int getMinWordFrequency()
-
setMinWordFrequency
public void setMinWordFrequency(int minWordFrequency)
-
getBatchSize
public int getBatchSize()
Description copied from interface:BaseModelConfigGets the batch size- Specified by:
getBatchSizein interfaceBaseModelConfig- Returns:
- batch size
-
setBatchSize
public void setBatchSize(int batchSize)
-
getNumEpochs
public int getNumEpochs()
Description copied from interface:BaseModelConfigGets the number of epochs to train the model- Specified by:
getNumEpochsin interfaceBaseModelConfig- Returns:
- number of epochs to train the model
-
setNumEpochs
public void setNumEpochs(int numEpochs)
-
getLayerSize
public int getLayerSize()
-
setLayerSize
public void setLayerSize(int layerSize)
-
getLearningRate
public double getLearningRate()
-
setLearningRate
public void setLearningRate(double learningRate)
-
getMinLearningRate
public double getMinLearningRate()
-
setMinLearningRate
public void setMinLearningRate(double minLearningRate)
-
getWindowSize
public int getWindowSize()
-
setWindowSize
public void setWindowSize(int windowSize)
-
getSampleRate
public double getSampleRate()
-
setSampleRate
public void setSampleRate(double sampleRate)
-
getNegativeSample
public int getNegativeSample()
-
setNegativeSample
public void setNegativeSample(int negativeSample)
-
isShuffle
public boolean isShuffle()
Description copied from interface:BaseModelConfigGets whether the model will shuffle or not- Specified by:
isShufflein interfaceBaseModelConfig- Returns:
- whether the model will shuffle or not
-
setShuffle
public void setShuffle(boolean shuffle)
-
getVertexIdPropertyType
public PropertyType getVertexIdPropertyType()
-
setVertexIdPropertyType
public void setVertexIdPropertyType(PropertyType vertexIdPropertyType)
-
getSeed
public java.lang.Long getSeed()
Description copied from interface:BaseModelConfigGets the random seed- Specified by:
getSeedin interfaceBaseModelConfig- Returns:
- random seed
-
setSeed
public void setSeed(java.lang.Long seed)
-
isIgnoreIsolated
public boolean isIgnoreIsolated()
-
setIgnoreIsolated
public void setIgnoreIsolated(boolean ignoreIsolated)
-
setEnableAccelerator
public void setEnableAccelerator(boolean enableAccelerator)
-
isEnableAccelerator
public boolean isEnableAccelerator()
-
-