Oracle® Database
Graph Developer's Guide for Property Graph

ORACLE"

Oracle Database Graph Developer's Guide for Property Graph, 24.1
F90622-04

Copyright © 2016, 2024, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Prashant Kannan, Chuck Murray, Melliyal Annamalai, Korbinian Schmid, Albert Godfrind, Oskar
van Rest, Jorge Barba, Ana Estrada, Steve Serra, Ryota Yamanaka, Bill Beauregard, Hector Briseno,
Hassan Chafi, Eugene Chong, Souripriya Das, Juan Garcia, Florian Gratzer, Zazhil Herena, Sungpack Hong,
Roberto Infante, Hugo Labra, Gabriela Montiel-Moreno, Eduardo Pacheco, Joao Paiva, Matthew Perry, Diego
Ramirez, Siva Ravada, Carlos Reyes, Jane Tao, Edgar Vazquez, Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XXV
Documentation Accessibility XXiv
Related Documents XXV
Conventions XXV
Changes in This Release for This Guide
Deprecated Features XXVii
Desupported Features XXIX
Part | Getting Started with Oracle Property Graphs
1 Introduction to Property Graphs
1.1 What Are Property Graphs? 1-1
1.2 About the Property Graph Feature of Oracle Database 1-2
1.3 Overview of Property Graph Architecture 1-3
1.3.1 Architecture Model for Running Graph Queries in the Database 1-3
1.3.2 Architecture Model for Running Graph Analytics 1-4
1.3.3 Developing Applications Using Graph Server Functionality as a Library 1-6
1.4 Learn About the Graph Server (PGX) 1-6
1.4.1 Overview of the Graph Server (PGX) 1-7
1.4.1.1 Design of the Graph Server (PGX) 1-7
1.4.1.2 Usage Modes of the Graph Server (PGX) 1-8
1.5 Security Best Practices with Graph Data 1-9
1.6 About Oracle Graph Server and Client Accessibility 1-11
2 Using Oracle Graph with the Autonomous Database
2.1 Two-Tier Deployments of Oracle Graph with Autonomous Database 2-2

ORACLE

2.2 Three-Tier Deployments of Oracle Graph with Autonomous Database 2-3

Part |l SQL Property Graphs

3 Introduction to SQL Property Graphs

3.1 Quick Start for Working with SQL Property Graphs 3-2

4 SQL DDL Statements for Property Graphs

4.1 Creating a SQL Property Graph 4-1
4.1.1 About Vertex and Edge Graph Element Tables 4-4
4.1.2 About Vertex and Edge Table Keys 4-4
4.1.3 About Labels and Properties 4-6
4.1.4 Using Graph Options to Create SQL Property Graphs 4-8
4.1.5 Granting System and Obiject Privileges for SQL Property Graphs 4-11
4.1.6 Retrieving Metadata for SQL Property Graphs 4-12
4.1.7 Retrieving SQL Creation DDL Using the DBMS_METADATA Package 4-14
4.1.8 Limitations of Creating a SQL Property Graph 4-14

4.2 Revalidating a SQL Property Graph 4-15

4.3 Dropping a SQL Property Graph 4-15

4.4 JSON Support in SQL Property Graphs 4-16

5 SQL Graph Queries

5.1 About Graph Pattern 5-2
5.1.1 Graph Element Variables 5-3
5.1.2 Label Expressions 5-4
5.1.3 Accessing Label Properties 5-6

5.2 Variable Length Path Patterns 5-8

5.3 Complex Path Patterns 5-9

5.4 Vertex and Edge Identifiers 5-10

5.5 Using Aggregate Functions in SQL Graph Queries 5-11

5.6 Running SQL Graph Queries at a Specific SCN 5-12

5.7 Privileges to Query a SQL Property Graph 5-12

5.8 Examples for SQL Graph Queries 5-13
5.8.1 Setting Up Sample Data in the Database 5-22

5.9 Supported Features and Limitations for Querying a SQL Property Graph 5-24

5.10 Tuning SQL Property Graph Queries 5-25

5.11 Type Compatibility Rules for Determining Property Types 5-27

ORACLE iv

5.12 Viewing and Querying SQL Property Graphs Using SQL Developer 5-28

6 Loading a SQL Property Graph into the Graph Server (PGX)

6.1 Loading a SQL Property Graph Using the readGraphByName API 6-2
6.1.1 Loading a SQL Property Graph from a Different Schema 6-3
6.1.2 Loading a SQL Property Graph Using Graph Optimization Options 6-4
6.1.3 Loading a SQL Property Graph Using OnMissingVertex Options 6-6

6.2 Loading a Subgraph Using PGQL Queries 6-7

6.3 Expanding a Subgraph 6-9

6.4 Handling Vertex and Edge Identifiers in the Graph Server (PGX) 6-10

6.5 Mapping Oracle Database Types to PGX Types 6-11

6.6 Privileges to Load a SQL Property Graph 6-11

6.7 Restriction on Key Types 6-12

6.8 Loading SQL Property Graphs with Unsupported Key Types 6-12

7 Executing PGQL Queries Against SQL Property Graphs

7.1 Creating a SQL Property Graph Using PGQL 7-2
7.2 Executing PGQL SELECT Queries on a SQL Property Graph 7-4
7.3 Supported PGQL Features and Limitations for SQL Property Graphs 7-6

8 Visualizing SQL Graph Queries Using the APEX Graph Visualization

Plug-in

8.1 About the APEX Graph Visualization Plug-in 8-1

8.2 Getting Started with the APEX Graph Visualization Plug-in 8-2
8.2.1 Importing the Sample Graph Visualizations Application in APEX 8-4

8.3 Configure Attributes for the APEX Graph Visualization Plug-in 8-5
8.3.1 Settings 8-8
8.3.2 Styles 8-8
8.3.3 Expand 8-9

Part Il PGQL Property Graphs

O About PGQL Property Graphs

9.1 Creating PGQL Property Graphs on Oracle Database Tables 9-1
9.1.1 Retrieving Metadata for PGQL Property Graphs 9-5
9.1.2 Privileges for Working with PGQL Property Graphs 9-8

9.2 Creating a PGQL Property Graph By Importing a GraphSON file 9-9

ORACLE Y

9.2.1 Additional Information on the Graphlmporter Parameters 9-12
9.2.2 Mapping GraphSON Types to Oracle Database Data Types 9-14
9.3 Using JSON to Store Vertex and Edge Properties 9-15

10 Loading a PGQL property graph into the Graph Server (PGX)

10.1 Loading a PGQL Property Graph Using the readGraphByName API 10-1
10.1.1 Specifying Options for the readGraphByName API 10-3
10.1.2 Specifying the Schema Name for the readGraphByName API 10-5

10.2 Loading a Graph Using a JSON Configuration File 10-6
10.2.1 Configuring PARALLEL Hint when Loading a Graph 10-8

10.3 Loading a Graph by Defining a Graph Configuration Object 10-9

10.4 Loading a Subgraph from a PGQL Property Graph 10-11
10.4.1 PGQL Based Subgraph Loading 10-11
10.4.2 Prepared PGQL Queries 10-15
10.4.3 Providing Database Connection Credentials 10-16
10.4.4 Dynamically Expanding a Subgraph 10-17

11 Quick Starts for Using PGQL Property Graphs

11.1 Using Sample Data for Graph Analysis 11-1

11.1.1 Importing Data from CSV Files 11-1
11.2 Quick Start: Working with PGQL Property Graphs 11-3
11.3 Quick Start: Using Graph Machine Learning on PGQL Property Graphs 11-11
11.4 Quick Start: Using the Python Client as a Module 11-17
11.5 Oracle LiveLabs Workshops for Graphs 11-19

12 Getting Started with the Client Tools

12.3 Using the Graph Visualization Web Client 12-1
12.4 Using the Jupyter Notebook Interface 12-2
12.1 Interactive Graph Shell CLIs 12-3
12.1.1 Starting the OPG4J Shell 12-4
12.1.2 Starting the OPG4Py Shell 12-6
12.2 Using Autonomous Database Graph Client 12-7
12.2.1 Prerequisites for Using Autonomous Database Graph Client 12-16
12.2.2 Using the PGX JDBC Driver with the AdbGraphClient API 12-17
12.5 Additional Client Tools for Querying PGQL Property Graphs 12-19
12.5.1 Using Oracle SQLcl 12-19
12.5.2 Using SQL Developer with PGQL Property Graphs 12-22

ORACLE vi

13 Property Graph Query Language (PGQL)
13.1 Creating a Property Graph Using PGQL 13-1
13.1.1 Creating a PGQL Property Graph with the BASE_GRAPHS Clause 13-4
13.2 Pattern Matching with PGQL 13-8
13.3 Edge Patterns Have a Direction with PGQL 13-8
13.4 \Vertex and Edge Labels with PGQL 13-9
13.5 Variable-Length Paths with PGQL 13-9
13.6 Aggregation and Sorting with PGQL 13-10
13.7 Executing PGQL Queries Against PGQL Property Graphs 13-10
13.7.1 Supported PGQL Features and Limitations for PGQL Property Graphs 13-11
13.7.1.1 Additional Information on Supported PGQL Features with Examples 13-14
13.7.2 SQL Translation for a PGQL Query 13-21
13.7.3 Performance Considerations for PGQL Queries 13-22
13.7.3.1 Recursive Queries 13-23
13.7.3.2 Using Query Optimizer Hints 13-25
13.7.3.3 Speed Up Query Translation Using Graph Metadata Cache and
Translation Cache 13-26
13.7.4 Using the Java and Python APIs to Run PGQL Queries 13-27
13.7.4.1 Creating a PGQL Property Graph 13-27
13.7.4.2 Executing PGQL SELECT Queries 13-29
13.7.4.3 Executing PGQL Queries to Modify PGQL Property Graphs 13-39
13.7.4.4 Dropping A PGQL Property Graph 13-42
Part IV Installing Oracle Graph Server (PGX) and Client
14 Oracle Graph Server and Client Installation
14.1 Before You Begin 14-1
14.1.1 Verifying Database Compatibility 14-2
14.1.2 Downloading Oracle Graph Server and Client 14-2
14.2 Oracle Graph Server Installation 14-3
14.2.1 System Requirements for Installing Oracle Graph Server 14-3
14.2.2 Using the RPM Installation 14-4
14.2.2.1 Installing Oracle Graph Server 14-4
14.2.2.2 Uninstalling Oracle Graph Server 14-6
14.2.2.3 Upgrading Oracle Graph Server 14-6
14.2.3 Deploying Oracle Graph Server to a Web Server 14-7
14.2.3.1 Deploying to Apache Tomcat 14-8
14.2.3.2 Deploying to Oracle WebLogic Server 14-9
14.2.4 User Authentication and Authorization 14-10

ORACLE

Vii

14.2.4.1 Basic Steps for Using an Oracle Database for Authentication 14-10
14.2.4.2 Prepare the Graph Server for Database Authentication 14-14
14.2.4.3 Store the Database Password in a Keystore 14-16
14.2.4.4 Adding Permissions to Publish the Graph 14-21
14.2.4.5 Token Expiration 14-22
14.2.4.6 Customizing Roles and Permissions 14-22
14.2.4.7 Revoking Access to the Graph Server 14-26
14.2.4.8 Examples of Custom Authorization Rules 14-26
14.2.4.9 Kerberos Enabled Authentication for the Graph Server (PGX) 14-29

14.3 Oracle Graph Client Installation 14-32

14.3.1 Graph Clients 14-32
14.3.1.1 Oracle Graph Java Client 14-32
14.3.1.2 Oracle Graph Python Client 14-37

14.3.2 Running the Graph Visualization Web Client 14-41

14.4 Setting Up Transport Layer Security 14-42
14.4.1 Using a Self-Signed Server Keystore 14-43

14.4.1.1 Generating a Self-Signed Server Keystore 14-43
14.4.1.2 Configuring the Graph Server (PGX) When Using a Server Keystore 14-44
14.4.1.3 Configuring a Client to Trust the Self-Signed Keystore 14-45

14.4.2 Using a Self-Signed Server Certificate 14-46
14.4.2.1 Generating a Self-Signed Server Certificate 14-46
14.4.2.2 Configuring the Graph Server (PGX) 14-47
14.4.2.3 Configuring a Client to Trust the Self-Signed Certificate 14-48

15 Getting Started with the Graph Server (PGX)

15.1 Starting the Graph Server (PGX) 15-1
15.1.1 Starting and Stopping the Graph Server (PGX) Using the Command Line 15-1
15.1.2 Configuring the Graph Server (PGX) 15-2

15.2 Connecting to the Graph Server (PGX) 15-7
15.2.1 Connecting with the Graph Client CLIs 15-7
15.2.2 Connecting with Java 15-12

15.2.2.1 Starting and Stopping the PGX Engine 15-13

15.2.3 Connecting with Python 15-14

Part V. Using the Graph Server (PGX)
16 Developing Applications with Graph Analytics

16.1 Using the Graph Server Administrator Dashboard 16-2

16.1.1 Memory Usage 16-3

ORACLE

viii

16.1.2 Sessions
16.1.3 Graphs
16.2 About Vertex and Edge IDs
16.3 Graph Management in the Graph Server (PGX)
16.3.1 Reading Graphs from Oracle Database into the Graph Server (PGX)
16.3.1.1 Reading Entity Providers at the Same SCN
16.3.1.2 Progress Reporting and Estimation for Graph Loading
16.3.1.3 Graph Configuration Options
16.3.1.4 Data Loading Security Best Practices
16.3.1.5 Data Format Support Matrix
16.3.1.6 Immutability of Loaded Graphs
16.3.2 Storing a Graph Snapshot on Disk
16.3.3 Publishing a Graph
16.3.4 Deleting a Graph
16.3.5 Graph Sharing Options and Validating Graph Permissions
16.4 Keeping the Graph in Oracle Database Synchronized with the Graph Server
16.4.1 Synchronizing a SQL Property Graph
16.4.2 Synchronizing a PGQL Property Graph
16.4.3 Synchronizing a Published Graph
16.5 Optimizing Graphs for Read Versus Updates in the Graph Server (PGX)
16.6 Executing Built-in Algorithms
16.6.1 About Built-In Algorithms in the Graph Server (PGX)
16.6.2 Running the Triangle Counting Algorithm
16.6.3 Running the PageRank Algorithm
16.7 Using Custom PGX Graph Algorithms
16.7.1 Writing a Custom PGX Algorithm
16.7.1.1 Collections
16.7.1.2 lteration
16.7.1.3 Reductions
16.7.2 Compiling and Running a Custom PGX Algorithm
16.7.3 Example Custom PGX Algorithm: PageRank
16.8 Creating Subgraphs
16.8.1 About Filter Expressions
16.8.2 Using a Simple Filter to Create a Subgraph
16.8.3 Using a Complex Filter to Create a Subgraph
16.8.4 Using a Vertex Set to Create a Bipartite Subgraph
16.9 User-Defined Functions (UDFs) in PGX
16.10 Using Graph Server (PGX) as a Library

16.10.1 Using the PGX JDBC Driver when Graph Server (PGX) is Utilized as a
Library

ORACLE

16-4

16-5

16-5

16-7

16-8

16-9
16-12
16-13
16-21
16-21
16-22
16-22
16-23
16-32
16-34
16-37
16-38
16-42
16-46
16-53
16-53
16-54
16-55
16-55
16-56
16-57
16-58
16-58
16-59
16-60
16-62
16-63
16-63
16-64
16-65
16-66
16-68
16-72

16-73

17 Using the Machine Learning Library (PgxML) for Graphs

17.1 Using the DeepWalk Algorithm 17-2
17.1.1 Loading a Graph 17-2
17.1.2 Building a Minimal DeepWalk Model 17-4
17.1.3 Building a Customized DeepWalk Model 17-5
17.1.4 Training a DeepWalk Model 17-6
17.1.5 Getting the Loss Value For a DeepWalk Model 17-6
17.1.6 Computing Similar Vertices for a Given Vertex 17-7
17.1.7 Computing Similar Vertices for a Vertex Batch 17-8
17.1.8 Getting All Trained Vertex Vectors 17-9
17.1.9 Storing a Trained DeepWalk Model 17-10

17.1.9.1 Storing a Trained Model in Another Database 17-11
17.1.10 Loading a Pre-Trained DeepWalk Model 17-12
17.1.10.1 Loading a Pre-Trained Model From Another Database 17-13
17.1.11 Destroying a DeepWalk Model 17-15

17.2 Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification) 17-16
17.2.1 Loading a Graph 17-17
17.2.2 Building a Minimal GraphWise Model 17-19
17.2.3 Advanced Hyperparameter Customization 17-20
17.2.4 Building a GraphWise Model Using Partitioned Graphs 17-24
17.2.5 Supported Property Types for Supervised GraphWise Model 17-27
17.2.6 Classification Versus Regression Models on Supervised GraphWise Models 17-29
17.2.7 Setting a Custom Loss Function and Batch Generator (for Anomaly Detection) 17-30
17.2.8 Training a Supervised GraphWise Model 17-32
17.2.9 Getting the Loss Value For a Supervised GraphWise Model 17-33
17.2.10 Inferring the Vertex Labels for a Supervised GraphWise Model 17-33
17.2.11 Evaluating the Supervised GraphWise Model Performance 17-35
17.2.12 Inferring Embeddings for a Supervised GraphWise Model 17-35

17.2.12.1 Inferring Embeddings for a Model in Another Database 17-37
17.2.13 Storing a Trained Supervised GraphWise Model 17-38
17.2.14 Loading a Pre-Trained Supervised GraphWise Model 17-39
17.2.15 Destroying a Supervised GraphWise Model 17-40
17.2.16 Explaining a Prediction of a Supervised GraphWise Model 17-40

17.3 Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification) 17-44
17.3.1 Loading a Graph 17-45
17.3.2 Building a Minimal Supervised EdgeWise Model 17-47
17.3.3 Advanced Hyperparameter Customization 17-48
17.3.4 Applying EdgeWise for Partitioned Graphs 17-52
17.3.5 Supported Property Types for Supervised EdgeWise Model 17-55
17.3.6 Classification Versus Regression on Supervised EdgeWise Models 17-57

ORACLE X

17.3.7

17.3.8

17.3.9

17.3.10
17.3.11
17.3.12
17.3.13
17.3.14
17.3.15
17.3.16
17.3.17

Setting a Custom Loss Function and Batch Generator (for Anomaly Detection)
Setting the Edge Embedding Production Method
Training the Supervised EdgeWise Model
Getting the Loss Value for a Supervised EdgeWise Model
Inferring Edge Labels for a Supervised EdgeWise Model
Evaluating Model Performance
Inferring Embeddings for a Supervised EdgeWise Model
Storing a Supervised EdgeWise Model
Loading a Pre-Trained Supervised EdgeWise Model
Destroying a Supervised EdgeWise Model
Example: Predicting Ratings on the Movielens Dataset

17.4 Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17.4.1
17.4.2
17.4.3
17.4.4
17.45
17.4.6
17.4.7
17.4.8
17.4.9
17.4.10
17.4.11
17.4.12
17.4.13

Loading a Graph
Building a Minimal Unsupervised GraphWise Model
Advanced Hyperparameter Customization
Supported Property Types for Unsupervised GraphWise Model
Building an Unsupervised GraphWise Model Using Partitioned Graphs
Training an Unsupervised GraphWise Model
Getting the Loss Value for an Unsupervised GraphWise Model
Inferring Embeddings for an Unsupervised GraphWise Model
Classifying the Vertices Using the Obtained Embeddings
Storing an Unsupervised GraphWise Model
Loading a Pre-Trained Unsupervised GraphWise Model
Destroying an Unsupervised GraphWise Model
Explaining a Prediction for an Unsupervised GraphWise Model

17.5 Using the Unsupervised EdgeWise Algorithm

1751
17.5.2
17.5.3
17.5.4
1755
17.5.6
17.5.7
17.5.8
17.5.9
17.5.10
17511
17.5.12
17.5.13
17.5.14

ORACLE

Loading a Graph
Building a Minimal Unsupervised EdgeWise Model
Advanced Hyperparameter Customization
Supported Property Types for Unsupervised EdgeWise Model
Applying Unsupervised EdgeWise for Partitioned Graphs
Setting the Edge Combination Production Method
Training the Unsupervised EdgeWise Model
Getting the Loss Value for an Unsupervised EdgeWise Model
Inferring Embeddings for an Unsupervised EdgeWise Model
Classifying the Edges Using the Obtained Embeddings
Storing an Unsupervised EdgeWise Model
Loading a Pre-Trained Unsupervised EdgeWise Model
Destroying an Unsupervised Anomaly Detection GraphWise Model
Example: Computing Edge Embeddings on the Movielens Dataset

17-58
17-60
17-61
17-62
17-62
17-64
17-66
17-67
17-68
17-69
17-70
17-73
17-74
17-76
17-77
17-81
17-83
17-86
17-87
17-87
17-88
17-89
17-90
17-91
17-92
17-96
17-97
17-99

17-100
17-104
17-106
17-109
17-110
17-111
17-112
17-113
17-114
17-115
17-116
17-116

Xi

17.6 Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex

Embeddings and Anomaly Scores) 17-119
17.6.1 Loading a Graph 17-120
17.6.2 Building a Minimal Unsupervised Anomaly Detection GraphWise Model 17-122
17.6.3 Advanced Hyperparameter Customization 17-122
17.6.4 Building an Unsupervised Anomaly Detection GraphWise Model Using
Partitioned Graphs 17-125
17.6.5 Training an Unsupervised Anomaly Detection GraphWise Model 17-128
17.6.6 Getting the Loss Value for an Unsupervised Anomaly Detection GraphWise
Model 17-129
17.6.7 Inferring Embeddings for an Unsupervised Anomaly Detection GraphWise
Model 17-129
17.6.8 Inferring Anomalies 17-131
17.6.9 Storing an Unsupervised Anomaly Detection GraphWise Model 17-133
17.6.10 Loading a Pre-Trained Unsupervised Anomaly Detection GraphWise Model 17-134
17.6.11 Destroying an Unsupervised Anomaly Detection GraphWise Model 17-135
17.7 Using the Pg2vec Algorithm 17-136
17.7.1 Loading a Graph 17-137
17.7.2 Building a Minimal Pg2vec Model 17-138
17.7.3 Building a Customized Pg2vec Model 17-139
17.7.4 Training a Pg2vec Model 17-141
17.7.5 Getting the Loss Value For a Pg2vec Model 17-141
17.7.6 Computing Similar Graphlets for a Given Graphlet 17-142
17.7.7 Computing Similars for a Graphlet Batch 17-143
17.7.8 Inferring a Graphlet Vector 17-144
17.7.9 Inferring Vectors for a Graphlet Batch 17-145
17.7.10 Storing a Trained Pg2vec Model 17-146
17.7.11 Loading a Pre-Trained Pg2vec Model 17-147
17.7.12 Destroying a Pg2vec Model 17-148
17.8 Model Repository and Model Stores 17-149
17.8.1 Database-Backed Model Repository 17-149
18 Executing PGQL Queries Against the Graph Server (PGX)
18.1 Getting Started with PGQL 18-2
18.2 Creating Property Graphs Using Options 18-3
18.3 Supported PGQL Features and Limitations on the Graph Server (PGX) 18-5
18.3.1 Support for Selecting All Properties 18-9
18.3.2 Unnesting of Variable-Length Path Queries 18-10
18.3.3 Using INTERVAL Literals in PGQL Queries 18-13
18.3.4 Using Path Modes with PGQL 18-14
18.3.5 Support for PGQL Lateral Subqueries 18-15
ORACLE Xil

18.3.6 Support for PGQL GRAPH_TABLE Operator 18-16
18.3.7 Limitations on Quantifiers 18-18
18.3.8 Limitations on WHERE and COST Clauses in Quantified Patterns 18-18
18.4 Java APIs for Executing CREATE PROPERTY GRAPH Statements 18-18
18.5 Python APIs for Executing CREATE PROPERTY GRAPH Statements 18-19
18.6 Executing PGQL Queries Using the PGX JDBC Driver 18-20
18.6.1 Limitations of the PGX JDBC Driver 18-21
18.6.2 PGX Data Type Compatibility and Casting 18-22
18.7 Java APIs for Executing SELECT Queries 18-23
18.7.1 Executing SELECT Queries Against a Graph in the Graph Server (PGX) 18-24
18.7.2 Executing SELECT Queries Against a PGX Session 18-24
18.7.3 lIterating Through a Result Set 18-24
18.7.4 Printing a Result Set 18-27
18.8 Java APIs for Executing UPDATE Queries 18-27
18.8.1 Updatability of Graphs Through PGQL 18-28
18.8.2 Executing UPDATE Queries Against a Graph in the Graph Server (PGX) 18-29
18.8.3 Executing UPDATE Queries Against a PGX Session 18-29
18.8.4 Altering the Underlying Schema of a Graph 18-30
18.9 Python APIs for Executing UPDATE Queries 18-30
18.10 PGQL Queries with Partitioned IDs 18-33
18.11 Security Tools for Executing PGQL Queries 18-35
18.11.1 Using Bind Variables 18-35
18.11.2 Using Identifiers in a Safe Manner 18-37
18.12 Best Practices for Tuning PGQL Queries 18-37
18.12.1 Memory Allocation 18-37
18.12.2 Parallelism 18-38
18.12.3 Query Plan Explaining 18-38
19 REST Endpoints for the Graph Server
19.1 Graph Server REST API Version 2 19-1
19.1.1 Get an Authentication Token 19-1
19.1.2 Refresh an Authentication Token 19-2
19.1.3 Get Graphs 19-3
19.1.4 Run a PGQL Query 19-4
19.1.5 Get the Database Version 19-8
19.1.6 Get User 19-9
19.1.7 Asynchronous REST Endpoints 19-9
19.1.7.1 Run an Asynchronous PGQL Query 19-9
19.1.7.2 Check Asynchronous Query Completion 19-11
19.1.7.3 Retrieve Asynchronous Query Result 19-12
ORACLE Xiii

19.1.7.4 Cancel an Asynchronous Query Execution 19-14
19.2 Graph Server REST API Version 1 19-14
19.2.1 Login 19-15
19.2.2 Get Graphs 19-16
19.2.3 Run a PGQL Query 19-16
19.2.4 Get User 19-19
19.2.5 Logout 19-19
19.2.6 Asynchronous REST Endpoints 19-19
19.2.6.1 Run an Asynchronous PGQL Query 19-20
19.2.6.2 Check Asynchronous Query Completion 19-20
19.2.6.3 Retrieve Asynchronous Query Result 19-21
19.2.6.4 Cancel an Asynchronous Query Execution 19-23
Part VI Graph Visualization Application
20 About the Graph Visualization Application
20.1 Embedding the Graph Visualization Library in a Web Application 20-1
21 Using the Graph Visualization Application
21.1 Visualizing PGQL Queries on Graphs Loaded Into the Graph Server (PGX) 21-2
21.2 Visualizing PGQL Queries on PGQL Property Graphs 21-2
21.3 Visualizing Graph Queries on SQL Property Graphs 21-5
21.4 Graph Visualization Modes 21-6
21.5 Graph Visualization Settings 21-6
21.6 Using the Geographical Layout 21-9
21.7 Using Live Search 21-11
Part VIl Graph Server (PGX) Advanced User Guide
22 Graph Server (PGX) Configuration Options
22.1 Configuration Parameters for the Graph Server (PGX) Engine 22-1
22.2 Configuration Parameters for Connecting to the Graph Server (PGX) 22-14
23 Memory Consumption by the Graph Server (PGX)
23.1 Memory Management 23-1
23.1.1 Configuring On-Heap Limits 23-2

ORACLE

23.1.2 Configuring Off-Heap Limits 23-4

24 Deploying Oracle Graph Server Behind a Load Balancer

24.1 Using HAProxy for PGX Load Balancing and High Availability 24-1
24.2 Deploying Graph Server (PGX) Using OCI Load Balancer 24-3
24.3 Health Check in the Load Balancer 24-6

25 Namespaces and Sharing

25.1 Defining Graph Names 25-1
25.2 Retrieving Graphs by Name 25-1
25.3 Checking Used Names 25-2
25.4 Property Name Resolution and Graph Mutations 25-2

26 PGX Programming Guides

26.1 Design of the Graph Server (PGX) API 26-3
26.2 Data Types and Collections in the Graph Server (PGX) 26-4
26.2.1 Using Collections and Maps 26-7
26.2.1.1 Collection Data Types 26-7
26.2.1.2 Map Data Types 26-12

26.2.2 Using Datetime Data Types 26-17
26.2.2.1 Loading Datetime Data 26-18
26.2.2.2 Specifying Custom Datetime Formats 26-20
26.2.2.3 APIs for Accessing Datetime Data 26-21
26.2.2.4 Querying Datetime Data Using PGQL 26-22
26.2.2.5 Accessing Datetimes from PGQL Result Sets 26-24

26.3 Handling Asynchronous Requests in Graph Server (PGX) 26-26
26.3.1 Blocking Operation 26-26
26.3.2 Chaining Operation 26-27
26.3.3 Cancelling Operation 26-28
26.3.4 Handling Concurrent Asynchronus Operations 26-28
26.4 Graph Client Sessions 26-29
26.5 Graph Mutation and Subgraphs 26-31
26.5.1 Altering Graphs 26-31
26.5.1.1 Loading Or Removing Additional Vertex or Edge Providers 26-32

26.5.2 Simplifying and Copying Graphs 26-40
26.5.3 Transposing Graphs 26-42
26.5.4 Undirecting Graphs 26-43
26.5.5 Advanced Multi-Edge Handling 26-44
26.5.5.1 Picking 26-44

ORACLE XV

26.5.5.2 Merging
26.5.5.3 StrategyBuilder in General

26.5.6
26.5.7
26.5.8

Creating a Subgraph
Creating a Bipartite Subgraph
Creating a Sparsified Subgraph

26.6 Graph Builder and Graph Change Set

26.6.1

Building Graphs Using GraphBuilder Interface

26.6.1.1 Creating a Simple Graph
26.6.1.2 Adding a Vertex Property
26.6.1.3 Using Strings as Vertex ldentifiers

26.6.1.4 Referencing a Vertex for Creating Edges
26.6.1.5 Adding an Edge Property and a Label
26.6.1.6 Using Graph Builder with Implicit IDs

26.6.2

Modifying Loaded Graphs Using ChangeSet

26.6.2.1 Modifying Vertices

26.6.2.2 Adding Edges

26.6.2.3 GraphChangeSet with Partitioned IDs
26.6.2.4 Error Handling when Using a ChangeSet

26.7 Managing Transient Data

26.7.1
26.7.2

Managing Transient Properties
Managing Collections and Scalars

26.8 Graph Versioning

26.8.1
26.8.2
26.8.3
26.8.4
26.8.5
26.8.6

Configuring the Snapshots Source

Creating a Snapshot via Refreshing

Creating a Snapshot via ChangeSet

Checking Out the Latest Snapshots of a Graph
Checking Out Different Snapshots of a Graph
Directly Loading a Specific Snapshot of a Graph

26.9 Labels and Properties

26.9.1
26.9.2

Setting and Getting Property Values
Getting Label Values

26.10 Filter Expressions

26.10.1
26.10.2
26.10.3
26.10.4
26.10.5

Syntax

Type System

Path Finding Filters

Subgraph Filters

Operations on Filter Expressions

26.10.5.1 Defining Filter Expressions

26.10.5.2 Defining Result Set Filters

26.10.5.3 Creating a Subgraph from PGQL Result Set
26.10.5.4 Defining Collection Filters

ORACLE

XVi

26-45
26-46
26-47
26-47
26-48
26-49
26-49
26-49
26-51
26-53
26-54
26-56
26-57
26-59
26-59
26-60
26-61
26-62
26-64
26-64
26-66
26-68
26-68
26-69
26-71
26-73
26-74
26-75
26-77
26-77
26-79
26-79
26-80
26-85
26-85
26-85
26-86
26-86
26-87
26-89
26-90

26.10.5.5 Creating a Subgraph from Collection Filters 26-91
26.10.5.6 Combining Filter Expressions 26-92
26.10.5.7 Creating a Subgraph Using Filter Expressions with Partitioned IDs 26-94
26.11 Advanced Task Scheduling Using Execution Environments 26-95
26.11.1 Prerequisites for Using the Enterprise Scheduler 26-95
26.11.2 Enabling Enterprise Scheduler Features 26-96
26.11.3 Retrieving and Inspecting the Execution Environment 26-96
26.11.4 Modifying and Submitting Tasks Under an Updated Environment 26-98
26.11.5 Using Lambda Syntax 26-99
26.11.6 Enterprise Scheduler Configuration Guide 26-100
26.12 Admin API 26-102
26.12.1 Get a Server Instance 26-103
26.12.2 Get Inspection Data 26-103
26.12.3 Get Active Sessions 26-104
26.12.4 Get Cached Graphs 26-106
26.12.5 Get Published Graphs 26-107
26.12.6 Get Currently Loading Graphs 26-107
26.12.7 Get Tasks 26-108
26.12.8 Get Available Memories 26-108
26.13 PgxFrames Tabular Data-Structure 26-109
26.13.1 Converting PgglResultSet to a PgxFrame 26-110
26.13.2 Storing a PgxFrame to a Database 26-111
26.13.3 Storing a PgxFrame to a CSV File 26-113
26.13.4 Union of PGX Frames 26-114
26.13.5 Joining PGX Frames 26-115
26.13.6 Printing the Content of a PgxFrame 26-116
26.13.7 Destroying a PgxFrame 26-117
26.13.8 Loading and Storing Vector Properties 26-117
26.13.9 Flattening Vector Properties 26-119
26.13.10 PgxFrame Helpers 26-120
26.13.11 Converting a PgxFrame to PgqlResultSet 26-123
26.13.12 PgxFrame to Pandas DataFrame Conversions 26-124
26.13.13 Loading a PgxFrame from a Database 26-124
26.13.14 Loading a PgxFrame from a CSV File 26-128
26.13.15 Loading a PgxFrame from Client-Side Data 26-129
26.13.16 Creating a Graph from Multiple PgxFrame Objects 26-133
27 Working with Files Using the Graph Server (PGX)
27.1 Loading Graph Data from Files 27-1
27.1.1 Graph Configuration for Loading from File 27-3
ORACLE XVii

27.1.2 Specifying the File Path 27-7
27.1.3 Supported File Access Protocols 27-7
27.1.4 Plain Text Formats 27-8
27.1.4.1 Comma-Separated Values (CSV) 27-10
27.1.4.2 Adjacency List (ADJ_LIST) 27-13
27.1.4.3 Edge List (EDGE_LIST) 27-14
27.1.4.4 Two Tables (TWO_TABLES) 27-15
27.1.5 XML File Formats 27-16
27.1.6 Binary File Formats 27-17
27.2 Loading Graph Data in Parallel from Multiple Files 27-23
27.3 Exporting Graphs Into a File 27-25
27.3.1 Exporting a Graph to Disk 27-26
27.4 Exporting a Graph into Multiple Files 27-28
28 Log Management in the Graph Server (PGX)
28.1 Configuring Logback Logging 28-1
Part VIII Supplementary Information for Property Graph Support
A Mapping Graph Server Roles to Default Privileges
B Disabling Transport Layer Security (TLS) in Graph Server
C Migrating Property Graph Applications from Before Release 21c
D Upgrading From Graph Server and Client 20.4.x to 21.x
E Third-Party License Information for Oracle Graph Server and Client
E.1 Third-Party License Information for Graph Visualization Toolkit E-117
Index
ORACLE’ Xviii

List of Figures

1-1 Simple Property Graph Example 1-2
1-2 Property Graph Architecture for Running Graph Queries 1-4
1-3 Property Graph Architecture for Running Graph Analytics 1-5
1-4 Graph Server (PGX) Design 1-7
1-5 Remote Server Mode 1-8
1-6 PGX as a Library 1-9
1-7 Enabling Accessibility in the Graph Visualization Application 1-11
3-1 Using SQL Developer to Create a SQL Property Graph 3-1
3-2 Visualizing a SQL Graph Query 3-3
4-1 STUDENTS_GRAPH 4-2
5-1 SQL Property Graphs in SQL Developer 5-28
5-2 Running SQL Graph queries in SQL Developer 5-29
7-1 PGQL on SQL Property Graphs in Oracle Database 7-1
8-1 Visualizing a SQL Graph Query in an APEX Application 8-3
8-2 Sample Graph Visualization Home Page 8-4
8-3 Expanding on a Specific Graph Vertex 8-11
9-1 PROPERTY_GRAPH_METADATA Graph Design 9-5
9-2 Financial Transactions Graph 9-15
10-1 Subgraph Visualization 10-13
10-2 Expanding a Subgraph 10-19
12-1 Creating a PGQL property graph in Jupyter Notebook 12-2
12-2 Running Graph Algorithms in Jupyter Notebook 12-3
12-3 PGQL Property Graphs in SQL Developer 12-22
12-4 Create a PGQL property graph 12-22
12-5 Running Multiple PGQL Queries 12-23
12-6 Dropping a PGQL Property Graph 12-24
13-1 Example Schema 13-6
13-2 Graphs Created from the Example Schema 13-6
13-3 Financial_Transactions Graph 13-7
13-4 PGQL on PGQL Property Graphs in Oracle Database 13-11
14-1 Graph Visualization Login 14-42
16-1 Administrator Dashboard Menu 16-3
16-2 Memory Usage Dashboard 16-3
16-3 Sessions 16-4
16-4 Graphs 16-5

ORACLE Xix

16-5
16-6
16-7
16-8
17-1
18-1
21-1
21-2
21-3
21-4
21-5
21-6
21-7
21-8
21-9
21-10
21-11
21-12
24-1
24-2
24-3
24-4
26-1
26-2

Edges Matching src.prop == 10

Graph Created by the Simple Filter

Edges Matching the outDegree Filter

Graph Created by the outDegree Filter

Pg2vec - Visualization of Two Similar Graphlets
Visualizing Unnesting of Variable-Length Path Queries
Query Visualization

Creating a PGQL property graph

Updating an Edge in a PGQL property graph
Deleting an Edge in a PGQL property graph
Querying a PGQL property graph

Dropping a PGQL property graph

Graph Query on a SQL Property Graph

Graph Visualization Settings Window
Highlights Options for Vertices

Geographical Layout

Setting Geographical Layout

Selecting the Coordinates for the Geographical layout
Configuring Load Balancer Details

Adding Backends to Load Balancer
Configuring a Listener for the Load Balancer
Enabling Session Persistence

Picking Strategy

Merging Strategy

ORACLE

16-64
16-64
16-65
16-66

17-143
18-11

21-2
21-3
21-3
21-4
21-4
21-4
21-5
21-7
21-8
21-9
21-10
21-11
24-4
24-4
24-5
24-6
26-45
26-46

XX

List of Tables

1-1 Graph Size Estimator

4-1 System Privileges for SQL Property Graph Objects

4-2 Object Privileges for SQL Property Graphs

4-3 List of Data Dictionary Views to Retrieve Metadata for SQL Property Graphs
5-1 Arrow Tokens for Edge Patterns

5-2 Supported Vertex and Edge Label Expressions

5-3 Quantifier Support for Variable Length Graph Patterns

6-1 Mapping Oracle Database Types to PGX Types

7-1 Supported PGQL Functionalities and Limitations for SQL Property Graphs
9-1 Metadata Tables for PGQL Property Graphs

9-2 Additional Metadata Tables

9-3 Database Connection Parameters

9-4 Graphimporter Configuration Parameters

9-5 SQL Storage Parameters

9-6 PGQL Supported Parameters

9-7 Mapping GraphSON Types to Oracle Database Types

10-1 Parameters for the readGraphByName method

10-2 PARALLEL_HINT_DEGREE values

13-1 CREATE PROPERTY GRAPH Statement Support

13-2 Supported PGQL Functionalities and Limitations for PGQL Property Graphs
13-3 Supported Quantifiers in PGQL SELECT Queries

13-4 PGQL Translation and Execution Options

14-1 Workflow for Installing Oracle Graph Server and Client

14-2 Components in the Oracle Graph Server and Client Deployment

14-3 System Requirements

14-4 Oracle Database Privileges and Roles Required for Using the Graph Server (PGX)
14-5 API for Checking Graph Permissions

14-6 Allowed Permissions

15-1 Configuration Parameters for the Graph Server (PGX)

16-1 Valid values for "as_of" Key in Graph Configuration

16-2 Example Scenario Using "as_of"

16-3 Asynchronous Graph Loading APls

16-4 Graph Config JSON Fields

16-5 Provider Configuration JSON file Options

16-6 Property Configuration

ORACLE

1-5
4-11
4-12
4-13

5-3

5-4

5-9
6-11

7-6

9-1

9-6
9-12
9-13
9-13
9-14
9-14
10-1
10-8
13-4

13-12
13-16
13-22
14-1
14-2
14-3
14-13
14-23
14-27
15-2
16-9
16-11
16-12
16-14
16-17
16-18

XXi

16-7 Loading Configuration

16-8 Error Handling Configuration

16-9 Data Format Support Matrix

16-10 Graph Sharing Options

16-11 Overview of Built-In Algorithms

16-12 Fields for Each UDF

18-1 Graph Optimization Options

18-2 Supported PGQL Functionalities and Limitations on the Graph Server (PGX)
18-3 Valid values for fields in INTERVAL values

18-4 Data Type Compatibility

18-5 Additional Supported Types through Casting

18-6 Data Type Conversions for setObject Method

19-1 Request Body Parameters

19-2 Request Body Parameters

19-3 Request Body Parameters

19-4 Parameters

19-5 Request Query Parameters

22-1 Runtime Parameters for the Graph Server (PGX) Engine
22-2 Advanced Access Configuration Options

22-3 Enterprise Scheduler Parameters

22-4 Basic Scheduler Parameters

26-1 PGX API Interface

26-2 Overview of Data types

26-3 Overview of Datetime Data Types in PGX

26-4 Default Property Values

26-5 Default Temporal Formats

26-6 Session Information Options

26-7 Graph Information

26-8 Mapping between In-Place and Out-Place Operations
27-1 Loading a Partitioned Graph From File - Additional Graph Configuration Options
27-2 CSV Specific Options for Partitioned Graphs

27-3 Type Encoding

27-4 File Layout

27-5 Integer Vertex Keys

27-6 Long Vertex Keys

27-7 String Vertex Keys

27-8 String Key Element Layout

ORACLE

16-19
16-20
16-22
16-34
16-53
16-71
18-4
18-5
18-13
18-22
18-23
18-23
19-1
19-3
19-5
19-15
19-16
22-1
22-10
22-12
22-12
26-1
26-5
26-18
26-52
26-81
26-106
26-107
26-109
27-3
27-4
27-17
27-18
27-19
27-19
27-19
27-19

XXii

27-9
27-10
27-11
27-12
27-13
27-14
27-15
27-16
27-17
27-18
27-19
27-20
27-21
A-1

Primitive Type Layout

Vector Property Layout

String Type Layout

String Dictionary Layout

String Dictionary Element Layout

Vertex Labels Layout

Shared Pools Layout

Type == Enum

Type == Prefix

String Table for Shared Pools

Property Names Layout

Files CompressionScheme

Graph Configuration when Exporting Graph into Multiple Files
Mapping Graph Server Roles to Default Privileges

ORACLE

27-20
27-20
27-20
27-21
27-21
27-21
27-22
27-22
27-22
27-22
27-23
27-25
27-26

A-1

XXiii

Preface

Preface

This document provides conceptual and usage information about Oracle Database
support for working with property graph data.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This document is intended for database and application developers in an Oracle
Database environment.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the following documents:

* Oracle Spatial Developer's Guide

e Oracle Database Graph Developer's Guide for RDF Graph

* Oracle Spatial GeoRaster Developer's Guide

» Oracle Spatial Topology and Network Data Model Developer's Guide
* Oracle Big Data Spatial and Graph User's Guide and Reference

Conventions

The following text conventions are used in this document:

ORACLE XXiV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE v

Changes in This Release for This Guide

Changes in This Release for This Guide

The following changes apply to property graph support that is shipped with Oracle
Graph Server and Client.

Oracle Graph Server and Client is required for using the property graph feature of
Oracle Database (see Oracle Graph Server and Client Installation), and is released
four times a year.

New Features in Oracle Graph Server and Client 24.1

Features That Work With Oracle Database Release 23ai and Prior Oracle
Database Releases

ORACLE

Added support for the new Graph Server Administrator Dashboard to monitor and
manage the graph server (PGX) memory usage.
See Using the Graph Server Administrator Dashboard for more information.

Added support for querying graphs in the graph server (PGX) using the PGX
JDBC driver.
See the following topics for more information:

— Executing PGQL Queries Using the PGX JDBC Driver
— Using the PGX JDBC Driver when Graph Server (PGX) is Utilized as a Library

Added GPU support to the Pgx.ML library to run the trainings magnitudes faster
than on CPU.
See the following topics for more information:

— Building a Customized Supervised GraphWise Model

— Building a Customized Supervised EdgeWise Model

— Building a Customized Unsupervised GraphWise Model
— Building a Customized Unsupervised EdgeWise Model
— Advanced Hyperparameter Customization

Added support to check the real-time on-heap memory usage using the
max_on_heap memory usage ratio field in the graph server (PGX) configuration
file.

See Configuring On-Heap Limits for more information.

Added support for setting label of providers, selecting key column for edge
providers, and specifying ID strategy when creating a graph from frames.
See Creating a Graph from Multiple PgxFrame Objects for an example.

When using the enterprise scheduler, if the graph server (PGX) fails to start with
the following error message in the log file - The enterprise scheduler backend
is not supported on this system, then note that the server no longer falls back
to the basic scheduler.

XXVI

Changes in This Release for This Guide

See Prerequisites for Using the Enterprise Scheduler to ensure that you meet all the
requirements for using the enterprise scheduler.

Added support for configuring the degree of parallel hints in Flashback Synchronizer
gueries.
See Synchronizing a PGQL Property Graph for an example.

Added support for the unnesting of paths using the ONE ROW PER STEP clause in the
GRAPH TABLE operator when running PGQL queries on PGQL property graphs in the
database.

See Supported PGQL Features for an example.

Key Property Graph Features in Oracle Database Release 23ai

Support for creating SQL property graph objects in Oracle Database.
See Introduction to SQL Property Graphs for more information.

Support for running graph queries on SQL property graphs.
See SQL Graph Queries for more information.

Support for using aggregate functions in SQL graph queries.
See Using Aggregate Functions in SQL Graph Queries for more information.

Support for loading SQL property graphs into the graph server (PGX).
See Loading a SQL Property Graph Using the readGraphByName API for more
information.

Support for loading a subgraph from a SQL property graph into the graph server (PGX).
See Loading a Subgraph Using PGQL Queries for more information.

Support for dynamically expanding a subgraph in the graph server (PGX).
See Expanding a Subgraph for more information.

Support for running PGQL SELECT queries against SQL property graphs.
See Executing PGQL Queries Against SQL Property Graphs for more information.

Support for visualizing SQL graph queries on graphs in the database using the Graph
Visualization application.
See Visualizing Graph Queries on SQL Property Graphs for more information.

Support for visualizing SQL graph queries using the APEX Graph Visualization plug-in in
APEX applications.

See Visualizing SQL Graph Queries Using the APEX Graph Visualization Plug-in for
more information.

Deprecated Features
Review the deprecated features in Oracle Graph Server and Client.

Desupported Features
Review the desupported features in Oracle Graph Server and Client.

Deprecated Features

Review the deprecated features in Oracle Graph Server and Client.

ORACLE

PG_VIEW Field
The PG_VIEW constant is deprecated from GraphSource and SourceType. Instead, use
PG_PGQL.

PgxSession.readSubgraph() methods

XXVii

ORACLE

Changes in This Release for This Guide

session.readSubgraph () .fromPgView () iS deprecated. Instead, use
session.readSubgraph () .fromPgPgql ().

graph.expandGraph () .withPgql () . fromPgView () is deprecated. Instead, use
graph.expandGraph () .withPgql () . fromPgPgql ().

PgxSession.getGraphs() function
The PgxSession.getGraphs () method is deprecated. Instead, use
getGraphs (Namespace namespace).

PyPGX

PgxSession.read subgraph from pg view() is deprecated. Instead, use
PgxSession.read subgraph from pg pgql ().

The following function signatures are deprecated for PgxGraph:

* get or create edge property(name, data type=None, dim=0)

Instead, use get_or create edge property(type, /, name).

get or create edge vector property(data type, dim, name=None)
Instead, use get or create edge vector property(type,
dimension, /, name).

get or create vertex property(name, data type=None, dim=0)
Instead, use get or create vertex property(type, /, name).

get or create vertex vector property(data type, dim, name=None)
Instead, use get or create vertex vector property(type,
dimension, /, name).

Note the following changes that apply for the new signatures:
* name is no longer optional

* type is the first argument followed by dimension, and name is the final
argument

* data_type and dim are deprecated

DeepWalkModel.validation fraction, Pg2vecModel.validation fraction,
and the validation fraction argument of Analyst.pg2vec builder () are
deprecated.

The loss is computed on all samples.

The following attributes on Operation are now deprecated: graph id,
operation type, cost estimate, total cost estimate,

cardinality estimate, pattern info, and children. Instead, use the
corresponding getter methods, such as get graph id(),

get operation type (), and so on.

The pgx_version attribute in ServerInstance class is deprecated. Instead,
use get version().

The attribute pg_view name in PartitionedGraphConfig is deprecated.
Instead, use source name and source type.

set standarize in GraphWiseModelConfig is deprecated. Instead, use
set standardize.

The return value of PgglResultSet.get vertex labels may or may not be a
list.

XXVl

Changes in This Release for This Guide

PgxML

— The methods setValidationFraction and getValidationFraction are deprecated
for DeepWalk and Pg2vec, the loss is now computed on all samples.

— GraphWiseModel.inferAndGetExplanation () is deprecated. Instead, use
GraphWiseModel.gnnExplainer () to obtain a GnnExplainer object for the model and
use GnnExplainer.inferAndExplain().

— Pg2vecModelBuilder.setUseGraphletSize (java.lang.Boolean useGraphletSize)
method in oracle.pgx.api.mllib API is deprecated. Instead, use the
Pg2vecModelBuilder.setUseGraphletSize (boolean useGraphletSize) method.

— SupervisedGraphWiseModelBuilder.setLossFunction (SupervisedGraphiliseModelC
onfig.LossFunction ...) is deprecated. Instead, use
SupervisedGraphWiseModelBuilder.setLossFunction (LossFunction ...) function.

GraphServer#getinstance API
The following GraphServer#getInstance APIs are deprecated:

— GraphServer.getInstance(ClientConfig clientConfig, String username,
char[] password, int refreshTimeBeforeTokenExpiry)

— GraphServer.getInstance(String baseUrl, String username, char[] password,
int refreshTimeBeforeTokenExpiry)

— GraphServer.getInstance (String baseUrl, String kerberosTicketPath, int
refreshTimeBeforeTokenExpiry)

Instead, configure the refresh time before token expiry seconds parameter in the
pgx.conf file.

Methods deprecated for PgqlViewGraphExpander
PgglViewGraphExpander.schema (String) and PgglViewGraphExpander.owner (String)
are deprecated. Instead, use PgqlViewGraphExpander.fromPgView (String, String).

Graph Server (PGX) Configuration Fields
The graph server configuration fields, server cert and server private key are
deprecated. Instead, use server keystore.

Subgraph Loading
Creating Subgraphs using filter expressions is deprecated. Instead, use Loading a
Subgraph from a PGQL Property Graph.

Desupported Features

Review the desupported features in Oracle Graph Server and Client.

ORACLE

Oracle JDK 8 is desupported.
Oracle Graph HDFS connector is desupported.

Creating a property graph in the Oracle database using the property graph schema
objects is desupported. The related OPG_APIS and 0OPG_GRAPHOP PL/SQL packages for
working with property graph schema objects are also desupported.

Instead, you can create SQL Property Graphs or PGQL Property Graphs.

Desupported the edge pattern syntax --, -->, and <-- from PGQL 0.9 and PGQL 1.0.
Instead, use -, -> and <- respectively.

The WHERE clause syntax WHERE n -> min PGQL 0.9 is desupported.

XXiX

ORACLE

Changes in This Release for This Guide

Instead, use WHERE (n) -> (m).

pypgx.api.FlashbackSynchronizer is desupported. Instead, use
pypgx.api.Synchronizer.

The connection parameter in PgxGraph.create synchronizer () is desupported.
Instead, use jdbc_url, username, and password.

Also, note that the synchronizer class and invalid change policy parameters
are now keyword-only parameters.

The following classes are desupported in pypgx package. Instead, use
pypgx.api.filters subpackage to access these classes:

— EdgeFilter

— GraphFilter

— VertexFilter

— PathFindingFilter

Analyst.deepwalk builder ():the parameter validation fraction has been
removed. The loss is computed on all samples.

set standarize in GraphWiseModelConfig is desupported. Instead, use
set standardize.

The parameters redirect stdout and redirect stderr in pypgx.get session()
are desupported.

Apache HDFS on Cloudera CDH6 is desupported.

Groovy support for using the Java API in Apache Zeppelin client is desupported.
Oracle Linux 6 is desupported.

Apache HBase is desupported.

Support for mixed case string arguments in PyPGX for cases where there are a
fixed, enumerated list of possible values (such as, ['linear', 'tanh', 'relu'])
are desupported. Only lower case arguments are now supported.

The two-table format is desupported.

The following Java API classes are desupported:

— oracle.pg.rdbms.OraclePgglColumnDescriptor.java
— oracle.pg.rdbms.OraclePgglColumnDescriptorImpl.java
— oracle.pg.rdbms.OraclePgqglExecution.java

— oracle.pg.rdbms.OraclePgglExecutionFactory.java
— oracle.pg.rdbms.OraclePgqlPreparedStatement.java
— oracle.pg.rdbms.OraclePgglResult. java

— oracle.pg.rdbms.OraclePgglResultElement.java

— oracle.pg.rdbms.OraclePgglResultElementImpl.java
— oracle.pg.rdbms.OraclePgglResultImpl.java

— oracle.pg.rdbms.OraclePgglResultIterable.java

— oracle.pg.rdbms.OraclePgglResultIteratorImpl.java

XXX

Changes in This Release for This Guide

— oracle.pg.rdbms.OraclePgglResultSet.java

— oracle.pg.rdbms.OraclePgglResultSetImpl.java

— oracle.pg.rdbms.OraclePgglResultSetMetaData.java

— oracle.pg.rdbms.OraclePgqglResultSetMetaDatalmpl.java
— oracle.pg.rdbms.OraclePgqlSqlTrans. java

— oracle.pg.rdbms.OraclePgglSglTransImpl.java

— oracle.pg.rdbms.OraclePgglStatement.java

» The following Java API methods, objects and fields in oracle.pgx.api are no longer
supported:
Desupported Methods:

— PgxCollection methods:
* addAllAsync(Collection<E> source)
* removeAllAsync (Collection<E> source)
* addAll (ID...ids)
* removeAll (ID...ids)

— PgglResultSet methods:
* getResults():instead, use PggqlResultSet to directly iterate the result set
* destroy()

— User-defined pattern matching semantic methods:

*

PgxGraph#queryPgql (String, PatternMatchingSemantic): instead, use
PgxGraph#queryPgqgl (String)

* PgxSession.setPatternMatchingSemantic(..)
— GraphMetaData constructors and related methods:
* GraphMetaData ()
* GraphMetaData (GraphMetaData other, java.net.URI baseUri)

*

GraphMetaData (IdType vertexIdType)
* GraphMetaData.setVertexIdType ()
* GraphMetaData.setEdgeIdType ()

— PgxSessionfgetAvailableSnapshots (GraphConfig): instead, use
PgxSession#getAvailableSnapshots (PgxGraph)

— All Ainalyst#filteredBfs and Analyst#filteredDfs methods that accepts filter
parameter: instead, use the navigator parameter

Desupported Objects

— PgglResult(a result of resultSet.getResults () .iterator () .next(): instead, use
PgxResult as returned from resultSet.iterator () .next()

Desupported Fields

— pattern matching semantic configuration field

ORACLE XXXI

Changes in This Release for This Guide

e The Java APl method AbstractGraphConfigBuilder#setNodeIdType in
oracle.pgx.config is desupported. Instead, use
AbstractGraphConfigBuilder#setVertexIdType ().

» The following PyPGX classes are desupported in pypgx.api package. Instead,
use pypgx.api.frames subpackage to access these classes:

— PgxCsvFrameReader
— PgxCsvFrameStorer
— PgxDbFrameReader
— PgxDbFrameStorer
— PgxFrame
— PgxFrameBuilder
— PgxFrameColumn
— PgxGenericFrameReader
— PgxGenericFrameStorer
— PgxPgbFrameReader
— PgxPgbFrameStorer
e The following Python API packages are no longer supported:

— common: This internal package is desupported. Few of the classes from this
package are moved to the public package pypgx.api.

— utils: This internal package is renamed to utils.

* Graph property text search based on Apache Solr/Lucene is desupported. Instead,
use PGQL query expressions.

* The PGX property type DATE is desupported. Instead, use LOCAL_DATE or
TIMESTAMP.

* Property Graph support for data stored in Oracle NoSQL Database is
desupported.

* Support for Gremlin Groovy shell is desupported.
* Apache Tinkerpop API support for Oracle Database is desupported.

e Support for the Apache Groovy-based shell was deprecated in 19¢ and is now
desupported.

e Support for Apache HBase and Apache HDFS on Cloudera CDH5 is desupported.

ORACLE XXXIi

Getting Started with Oracle Property Graphs

ORACLE

Part | provides the fundamental information to get you started on the property graph feature
of Oracle Database.

This part covers the following:

e Introduction to Property Graphs
Property graphs give you a different way of looking at your data.

e Using Oracle Graph with the Autonomous Database
Oracle Graph with the Autonomous Database allows you to create property graphs from
data in your Autonomous Database.

Introduction to Property Graphs

Property graphs give you a different way of looking at your data.

You can model your data as a graph by making data entities vertices in the graph, and
relationships between them as edges in the graph. For example, in a bank, customer
accounts can be vertices, and cash transfer relationships between them can be edges.

When you view your data as a graph, you can analyze your data based on the connections
and relationships between them. You can run graph analytics algorithms like PageRank to
measure the relative importance of data entities based on the relationships between them (for
instance, links between web pages).

* What Are Property Graphs?
A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects.

e About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics capabilities in
Oracle Database.

e Overview of Property Graph Architecture
The property graph feature of Oracle Database supports the following architecture
models.

e Learn About the Graph Server (PGX)
The in-memory graph server layer enables you to analyze property graphs using parallel
in-memory execution.

e Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

* About Oracle Graph Server and Client Accessibility
This section provides information on the accessibility features for Oracle Graph Server
and Client.

1.1 What Are Property Graphs?

ORACLE

A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects.

Vertices and edges can have multiple properties, which are represented as key-value pairs.
Each vertex has a unique identifier and can have:

* A set of outgoing edges

* A set of incoming edges

* A collection of properties

Each edge has a unique identifier and can have:

* An outgoing vertex

* Anincoming vertex

1-1

Chapter 1
About the Property Graph Feature of Oracle Database

* Atext label that describes the relationship between the two vertices
* A collection of properties

For vertices and edges, each property is identified with a unique name.

The following figure illustrates a very simple property graph with two vertices and one
edge. The two vertices have identifiers 1 and 2. Both vertices have properties name
and age. The edge is from the outgoing vertex 1 to the incoming vertex 2. The edge
has a text label knows and a property type identifying the type of relationship between
vertices 1 and 2.

Figure 1-1 Simple Property Graph Example

name:Alice name:Bob
age:31 age:27

1

knows
type:friends

A property graph can have self-edges (that is, an edge whose source and destination
vertex are the same), as well as multiple edges between the same source and
destination vertices.

A property graph can also have different types of vertices and edges in the same
graph. For example a graph can have a set of vertices with label Person and a set of
vertices with label Place, with different properties relevant to these two sets of
vertices.

The property graph data model is similar to the W3C standards-based Resource
Description Framework (RDF) graph data model; however, the property graph data
model is simpler and less precise than RDF.

The property graph data model features and analytic APIs make property graphs a
good candidate for use cases such as these:

» ldentifying influencers in a social network
» Predicting trends and customer behavior
» Discovering relationships based on pattern matching

» Identifying clusters to customize campaigns

1.2 About the Property Graph Feature of Oracle Database

ORACLE

The Property Graph feature delivers advanced graph query and analytics capabilities
in Oracle Database.

This feature supports graph operations, indexing, queries, search, and in-memory
analytics.

Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges. Graphs are commonly used to model, store, and analyze

1-2

Chapter 1
Overview of Property Graph Architecture

relationships found in social networks, cybersecurity, utilities and telecommunications, life
sciences and clinical data, and knowledge networks.

Typical graph analyses encompass graph traversal, recommendations, finding communities
and influencers, and pattern matching. Industries including telecommunications, life sciences
and healthcare, security, media, and publishing can benefit from graphs.

The property graph features of Oracle Database support those use cases with the following
capabilities:

A scalable graph database
Developer-based APIs based upon PGQL and Java graph APIs
A parallel, in-memory graph server (PGX) for running graph queries and graph analytics

A fast, scalable suite of social network analysis functions that include ranking, centrality,
recommender, community detection, and path finding

Parallel bulk load and export of property graph data in Oracle-defined flat files format
A powerful Graph Visualization application

Notebook support through integration with Jupyter

1.3 Overview of Property Graph Architecture

The property graph feature of Oracle Database supports the following architecture models.

Architecture Model for Running Graph Queries in the Database
Using any of the supported client tools, you can directly interact with the graph data
stored in the relational tables in the database.

Architecture Model for Running Graph Analytics
You can load your property graph into the graph server (PGX) in order to perform
specialized graph computations.

Developing Applications Using Graph Server Functionality as a Library
The graph functions available with the graph server (PGX) can be used as a library in
your application.

1.3.1 Architecture Model for Running Graph Queries in the Database

Using any of the supported client tools, you can directly interact with the graph data stored in
the relational tables in the database.

This approach runs graph queries, as shown in the following figure.

ORACLE

1-3

Chapter 1
Overview of Property Graph Architecture

Figure 1-2 Property Graph Architecture for Running Graph Queries

Graph Server and Client

Package
p
(CPIEQntLt(;)L?Ei?; ‘ SQL client tools
‘ e ‘ N
Graph queries in Graph queries in
PGOL .

-—
—

This model allows you to create a property graph using any one of the following
supported options:

e Create a SQL property graph directly over existing database schema objects using
SQL DDL statement. See SQL Property Graphs for more information.

e Create a PGQL property graph directly over the graph data in the tables. See
PGQL Property Graphs for more information.

You can directly query the graphs, without loading the graphs into the graph server
(PGX), using PGQL. Additionally, you can also run graph pattern matching queries on
SQL property graphs using the GRAPH TABLE operator. See SQL Graph Queries for
more information.

However, if you want to run graph analytics algorithms, then you must load this graph
into the graph server (PGX). You can configure the graph server to periodically fetch
data updates from the database to keep the graph synchronized.

1.3.2 Architecture Model for Running Graph Analytics

You can load your property graph into the graph server (PGX) in order to perform
specialized graph computations.

ORACLE 1-4

ORACLE

Chapter 1
Overview of Property Graph Architecture

Figure 1-3 Property Graph Architecture for Running Graph Analytics

Client
(Shell Ul, Zeppelin, Viz)

e

{

N
Graph Server (PGX): L ::‘IGX g
Run PGQL queries st:r'? d‘;‘f:ne
and graph ,in WLS, or
analytics J Tomcat

As seen in the preceding architecture design, the graph server (PGX) is a mid-tier server that
can run as a standalone, or in a container like Oracle WebLogic Server or Apache Tomcat.
Using this approach, you can load your property graph into the graph server (PGX). This
allows you to run graph queries and analytical operations in memory in the graph server.

You can create a graph directly from the relational tables in the graph server (PGX). In
addition, you can load a PGQL property graph or a SQL property graph from the database.
You can modify the graph in memory (insert, update, and delete vertices and edges, and
create new properties for results of executing an algorithm). The graph server does not write
the modifications back to the relational tables.

Property Graph Sizing Recommendations

You can compute the memory required by the graph server (PGX) by using this calculator,
Graph Size Estimator.

For example, the following table shows the memory estimated by the calculator for the given
input:

Table 1-1 Graph Size Estimator
]

Number Number Properties per Vertex Properties per Edge Estimated graph
of of size
vertices Edges
10M 100M e 4 - Integer Type e 4 - Integer Type 15 GB
e 1 - String Type(l5 <« 1 - String Type(l5
characters) characters)
100M 1B * 4 - Integer Type * 4 - Integer Type 140 GB
e 1 - String Type(l5 <« 1 - String Type(l5
characters) characters)

1-5

https://www.oracle.com/webfolder/assets/graph-size-estimator/index.html

Chapter 1
Learn About the Graph Server (PGX)

< Note:

* Reading a graph into memory can take upto twice the amount of memory
needed to represent it in memory. So when you calculate the memory
required for running PGX it is recommended that you double the amount
of memory of the estimated graph size.

¢ CPU Processors: The recommended number of CPU processors for a
graph with 10M vertices and 100M edges is 2-4 processors, and up to 16
processors for more compute-intensive workloads. Increasing CPU
processors will improve performance.

1.3.3 Developing Applications Using Graph Server Functionality as a

Library

The graph functions available with the graph server (PGX) can be used as a library in
your application.

After the rpm install of the graph server, all the jar files can be found in /opt/oracle/
graph/1ib. In this case, the server installation and the client user application are in the
same machine.

For such use cases, development and testing can be done using the interactive Java
shell or the Python shell in embedded (local) mode. This means a local PGX instance
is created and runs in the same JVM as the client. If you start the shell without any
parameters it will start a local PGX instance and run in embedded mode.

See Using Graph Server (PGX) as a Library for more information to obtain reference
to a local PGX instance.

1.4 Learn About the Graph Server (PGX)

ORACLE

The in-memory graph server layer enables you to analyze property graphs using
parallel in-memory execution.

It provides over 60 analytic functions. Examples of the categories and specific
functions include:

e Centrality - Degree Centrality, Eigenvector Centrality, PageRank, Betweenness
Centrality, Closedness Centrality

e Component and Community - Strongly Connected Components (Tarjan's and
Kosaraju's). Weakly Connected Components

e Twitter's Who-To-Follow, Label Propagation.

e Path Finding - Single source all destination (Bellman-Ford), Dijsktra's shortest
path, Hop Distance (Breadth-first search)

e Community Evaluation - Coefficient (Triangle Counting), Conductance, Modularity,
Adamic-Adar counter.

1-6

Chapter 1
Learn About the Graph Server (PGX)

* Overview of the Graph Server (PGX)
The Graph Server (PGX) is an in-memory accelerator for fast, parallel graph query and
analytics. The server uses light-weight in-memory data structures to enable fast
execution of graph algorithms.

Related Topics
* Installing Oracle Graph Server

* Getting Started with the Graph Server (PGX)
Once you have installed the graph server (PGX), you can start and connect to a graph
server instance.

1.4.1 Overview of the Graph Server (PGX)

The Graph Server (PGX) is an in-memory accelerator for fast, parallel graph query and
analytics. The server uses light-weight in-memory data structures to enable fast execution of
graph algorithms.

There are multiple options to load a graph into the graph server either from Oracle Database
or from files.

The graph server can be deployed standalone (it includes an embedded Apache Tomcat
instance), or deployed in Oracle WebLogic Server or Apache Tomcat.

* Design of the Graph Server (PGX)
* Usage Modes of the Graph Server (PGX)

1.4.1.1 Design of the Graph Server (PGX)

ORACLE

The design of the graph server (PGX) is based on a Server-Client usage model. See Usage
Modes of the Graph Server (PGX) for more details on the different graph server (PGX)
execution modes.

The following figure shows the graph server (PGX) design:

Figure 1-4 Graph Server (PGX) Design

Client#2

Client#1

[session) [session)

request
response

Engine &

PGX
(Server)

(Thread-pools)

1-7

Chapter 1
Learn About the Graph Server (PGX)

The core concepts of the graph server (PGX) design are as follows:

* Multiple graph clients can connect to the graph server at the same time.

» Each client request is processed by the graph server asynchronously. The client
requests are queued up first and processed later, when resources are available.
The client can poll the server to check if a request has been finished.

* Internally, the server maintains its own engine (thread pools) for running parallel
graph algorithms and queries. The engine tries to process each analytics request
concurrently with as many threads as possible.

Isolation Between Concurrent Clients

The graph server (PGX) supports data isolation between concurrent clients. Each
client has its own private workspace, called session. Sessions are isolated from each
other. Each client can load a graph instance into its own session, independently from
other clients. Therefore, each client can load a graph instance (as well as its
properties) into its own session, independently from other clients.

1.4.1.2 Usage Modes of the Graph Server (PGX)

This section presents an overview of the different usage modes of the graph server
(PGX). The graph server can be executed in one of the following usage modes.

Remote Server Mode

In the remote server mode, the main PGX execution engine is deployed as a RESTful
application on a powerful server machine, and you can connect to it remotely from
your machine using graph shell. Also, multiple clients can connect to the same graph
server (PGX) at the same time and therefore the graph server is time-shared among
these clients.

See Interactive Graph Shell CLIs for more information on the graph shell.

The following figure shows the graph server (PGX) in a remote execution mode:

Figure 1-5 Remote Server Mode

User Interaction

PGX-Shell p— PGX-Server
(Client)

The remote server mode is useful for the following situations where you want to:

ORACLE 1-8

Chapter 1
Security Best Practices with Graph Data

» Perform graph analysis on a large data set with a powerful server-class machine that has
many cores and a large memory.

* The server-class machine is shared by multiple clients.

See Starting the Graph Server (PGX) for instructions on how to start the graph server (PGX)
in remote server mode.

Using Graph Server (PGX) as a Library
You can also include the graph server (PGX) as a normal Java library in your application.

The following figure shows the graph server (PGX) used as a library in an application:

Figure 1-6 PGX as a Library

User Application

PGX

The embedded mode is useful when you want to build an application having graph analysis
as a part of its functionality.

See Using Graph Server (PGX) as a Library for more information.

Deploying Graph Server (PGX) as Servilet Web Application

You can deploy the graph server (PGX) as a web application using Apache Tomcat or Oracle
WebLogic Server.

See Deploying Oracle Graph Server to a Web Server for instructions to deploy the graph
server (PGX) in Apache Tomcat or Oracle WebLogic Server.

1.5 Security Best Practices with Graph Data

Several security-related best practices apply when working with graph data.

Sensitive Information

Graph data can contain sensitive information and should therefore be treated with the same
care as any other type of data. Oracle recommends the following considerations when using
a graph product:

e Avoid storing sensitive information in your graph if that information is not required for
analysis. If you have existing data, only model the relevant subset you need for analysis

ORACLE' 1-9

ORACLE

Chapter 1
Security Best Practices with Graph Data

as a graph, either by applying a preprocessing step or by using subgraph and
filtering techniques that are part of graph product.

* Model your graph in a way that vertex and edge identifiers are not considered
sensitive information.

* Do not deploy the product into untrusted environments or in a way that gives
access to untrusted client connections.

* Make sure all communication channels are encrypted and that authentication is
always enabled, even if running within a trusted network.

Least Privilege Accounts

The database user account that is being used by the graph server (PGX) to read data
should be a low-privilege, read-only account. PGX is an in-memory accelerator that
acts as a read-only cache on top of the database, and it does not write any data back
to the database.

If your application requires writing graph data and later analyzing it using PGX, make
sure you use two different database user accounts for each component.

Public Health Endpoint Security

Unless you run multiple graph servers behind a load balancer (Deploying Oracle
Graph Server Behind a Load Balancer), it is a good security practice to disable the
public endpoint of the graph server, which load balancers need to determine the health
of the graph servers.

To disable the endpoint:

1. Locate the wAR file of the graph server. If you installed the graph server via RPM,
then the file is located at /opt/oracle/graph/pgx/server/pgx-webapp-
<version>.war.

2. Unzip the .war file into a location of your choice and then edit the WEB-INF/
web. xml file inside the unzipped directory with a text editor of your choice.

3. Locate the pgx.auth.exceptions parameter in the file. The list of public endpoints
can be seen as shown:

<init-param>
<param-name>pgx.auth.exceptions</param-name>
<param-value>isReady;isRunning;auth/token</param-value>
</init-param>

4. Remove the isReady endpoint from the list of public endpoints as shown:

<init-param>
<param-name>pgx.auth.exceptions</param-name>
<param-value>isRunning;auth/token</param-value>
</init-param>

5. Save your changes, repackage the waRr file and redeploy the file to its original
location.

6. Restart the graph server.

1-10

Chapter 1
About Oracle Graph Server and Client Accessibility

1.6 About Oracle Graph Server and Client Accessibility

This section provides information on the accessibility features for Oracle Graph Server and
Client.

ORACLE

For information on addressing accessibility for the Java and Python command line
interfaces, which are installed on Oracle Linux, see Working With Accessibility Features
in Oracle Linux 7.

For information on keyboard shortcuts for the Java command line interface, which is built
on top of the Java Shell (JShell), see Keyboard Shortcuts for JShell.

For information on addressing accessibility for the Graph Visualization Application, which
is based on Oracle JET, see About Oracle JET and Accessibility.

You can enable accessibility in the Graph Visualization application by selecting the
Accessibility Mode check box option from the user account drop-down menu on the top-
right of the user interface. Once enabled, the query output is always displayed in a
tabular layout as shown:

Figure 1-7 Enabling Accessibility in the Graph Visualization Application

ORACLE Graph Visualization Connected to Database: jdbc:oracle:thin:@127.0.0.1 1521/crc|pdb

PGQL Graph Query Accessibility Mode
3 PROM_MATCH ()-e]->() Hep
3 LIMIT 100
2 Sign out
a

Graph parallelism @ Settings

BANK_GRAPH vlc|o ~ u

E

5069556962608044138

1423216395243255121

2515255492905402210

3792354362487551769

2327548467676842476

6627827616645377609

7023612949944517618

4704180815881134684

8595287605506469109

3709921599462786894

Page 1 of 10 (1-10 of 100 items) E 23 & 3 10

1-11

https://docs.oracle.com/en/operating-systems/oracle-linux/7/accessibility/accessibility-WorkingWithAccessibilityFeaturesinOracleLinux7.html#access-intro-1
https://docs.oracle.com/en/operating-systems/oracle-linux/7/accessibility/accessibility-WorkingWithAccessibilityFeaturesinOracleLinux7.html#access-intro-1
https://docs.oracle.com/en/java/javase/14/docs/specs/man/jshell.html#input-shortcuts
https://docs.oracle.com/en/middleware/developer-tools/jet/10/develop/oracle-jet-and-accessibility.html#GUID-9E3452C1-2A85-4700-83B1-B266F348C7E5

Using Oracle Graph with the Autonomous
Database

ORACLE

Oracle Graph with the Autonomous Database allows you to create property graphs from data
in your Autonomous Database.

When using Autonomous Database Serverless deployment, you can use Graph Studio, a
fully managed service with a powerful user interface for developing applications that use
graph analysis. Using Graph Studio, you can automate the modeling of graphs from tables in
Autonomous Database. You can interactively analyze and visualize the graph queries using
advanced notebooks with multiple visualization options. You can execute over 60 built-in
graph algorithms in Graph Studio to gain useful insights on your graph data. See Using
Graph Studio in Oracle Autonomous Database for more information.

You can also access few Graph Studio features using the Autonomous Database Graph
Client API using the client shell CLIs or through your Java or Python application. See Using
Autonomous Database Graph Client for more information.

Alternatively, you can use any version of Oracle Graph Server and Client with the family of
Oracle Autonomous Database to create and work with property graphs. This includes any
version of Oracle Autonomous Database Serverless or Oracle Autonomous Database
Dedicated. You can always upgrade to the latest version of Graph Server and Client
regardless of the version of your Autonomous Database. Note that the graph server is
managed by the application in this case.

You can connect in two-tier mode (connect directly to Autonomous Database) or three-tier
mode (connect to PGX on the middle tier, which then connects to Autonomous Database).

The database schema storing the graph must have the CREATE SESSION and CREATE TABLE
privileges.

* Two-Tier Deployments of Oracle Graph with Autonomous Database
In two-tier deployments, the client graph application connects directly to the Autonomous
Database.

e Three-Tier Deployments of Oracle Graph with Autonomous Database
In three-tier deployments, the client graph application connects to PGX in a middle tier,
and PGX connects to the Autonomous Database.

Related Topics

e Using Autonomous Database Graph Client
Using the AdbGraphClient API, you can access Graph Studio features in Autonomous
Database programmatically using the Oracle Graph Client or through your Java or
Python application.

2-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8

Chapter 2
Two-Tier Deployments of Oracle Graph with Autonomous Database

2.1 Two-Tier Deployments of Oracle Graph with
Autonomous Database

ORACLE

In two-tier deployments, the client graph application connects directly to the
Autonomous Database.

1. Install Oracle Graph Client, as explained in Installing the Java Client From the
Graph Server and Client Downloads.

2. Establish a JDBC connection, as described in the Oracle Autonomous Warehouse
documentation.
You must download the wallet and unzip it to a secure location. You can then
reference it when establishing the connection as shown in Example 2-1.

3. Start the Java Shell as shown in the code:
/bin/opgdj --no connect

4. Connect to your database as shown in Example 2-1.

Note:

If you need to use the Graph Visualization Application, you must additionally
install the Oracle Graph Server.

e See Installing Oracle Graph Server for more details.

e See Running the Graph Visualization Web Client for more details.

Example 2-1 Creating a Database Connection in a Two-Tier Graph Deployment
with Autonomous Database

opg4j> var jdbcUrl = "jdbc:oracle:thin:@<tns alias>?

TNS ADMIN=<wallet location>" // jdbc url to the DB

opg4j> var user = "<user>"

opg4j> var pass = "<password>"

opg4j> var conn = DriverManager.getConnection (jdbcUrl, user, pass) //
connecting to the DB

conn ==> oracle.jdbc.driver.T4CConnection@57e6cb0l

In the preceding example:

* <tns_alias>: TNS alias used in tnsnames.ora file

» <wallet_location>: Path to the directory where the wallet is stored
* <user>: Name of the database user

e <password>: Password for the user

2-2

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgdg/installing-oracle-graph-server.html#GUID-AEED18CC-1363-470E-9422-1151204B63A5

Chapter 2
Three-Tier Deployments of Oracle Graph with Autonomous Database

2.2 Three-Tier Deployments of Oracle Graph with Autonomous
Database

In three-tier deployments, the client graph application connects to PGX in a middle tier, and
PGX connects to the Autonomous Database.

The wallets downloaded from the Oracle Cloud Console are mainly routing wallets, meaning
they are used to route the connection to the right database and to encrypt the connection. In
most cases, they are not auto-login wallets, so they do not contain the password for the
actual connection. The password usually needs to be provided separately to the wallet
location.

The graph server does not support a wallet stored on the client file system or provided
directly by remote users. The high level implications of this are:

* The server administrator provides the wallet and stores the wallet securely on the
server's file system.

* Similar to Java EE connection pools, remote users will use that wallet when connecting.
This means the server administrator trusts all remote users to use the wallet. As with any
production deployments, the PGX server must be configured to enforce authentication
and authorization to establish that trust.

* Remote users still need to provide a user name and password when sending a graph
read request, just as with non-autonomous databases.

* You can only configure one wallet for each PGX server.
Having the same PGX server connecting to multiple Autonomous Databases is not
supported. If you have that use case, start one PGX server for each Autonomous Database.

Pre-loaded graphs

To read a graph from Autonomous Database into PGX at server startup, follow the steps
described in Store the Database Password in a Keystore to:

1. Create a Java Keystore containing the database password

2. Create a PGX graph configuration file describing the location and properties of the graph
to be loaded

3. Update the /opt/oracle/graph/pgx.conf file to reference the graph configuration file
As root user, edit the service file at /etc/systemd/system/pgx.service and specify the
environment variable under the [Service] directive:

Environment="JAVA OPTS=-Doracle.net.tns admin=/etc/oracle/graph/wallets"

Make sure that the directory (/etc/oracle/graph/wallets in the preceding code) is readable
by the Oracle Graph user, which is the user that starts up the PGX server when using
systemd

ORACLE 2-3

ORACLE

Chapter 2
Three-Tier Deployments of Oracle Graph with Autonomous Database

In addition, edit the ExecStart command to specify the location of the keystore
containing the password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.pl2

Note:

Please note that /etc/keystore.pl2 must not be password protected for this
to work. Instead protect the file via file system permission that is only
readable by oraclegraph user.

After the file is edited, reload the changes using:

systemctl daemon-reload

Finally start the server:

sudo systemctl start pgx

On-demand graph loading

To allow remote users of PGX to read from the Autonomous Database on demand,
you can choose from two approaches:

Provide the path to the wallet at server startup time via the oracle.net.tns_admin
system property. Remote users have to provide the TNS address name, username
and keystore alias (password) in their graph configuration files. The wallet is
stored securely on the graph server's file system, and the server administrator
trusts all remote users to use the wallet to connect to an Autonomous Database.

For example, the server administrator edits the service file at /etc/systemd/
system/pgx.service and specifies the environment variable the under the
[Service] directive:

Environment="JAVA OPTS=-Doracle.net.tns admin=/etc/oracle/graph/
wallets"

and then start the server using

systemctl start pgx

The /etc/oracle/graph/wallets/tnsnames.ora file contains an address as
follows:

sombrero medium = (description= (retry count=20) (retry delay=3)
(address=(protocol=tcps) (port=1522) (host=adb.us-
ashburn-1.oraclecloud.com))

(connect data=(service name=18lgholgalujxsa sombrero medium.adwc.ora
clecloud.com)) (security=(ssl server cert dn="CN=adwc.uscom-

2-4

ORACLE

Chapter 2
Three-Tier Deployments of Oracle Graph with Autonomous Database

east-1l.oraclecloud.com,0U=0racle BMCS US,0=Oracle Corporation,L=Redwood
City,ST=California,C=US")))

Now remote users can read data into the server by sending a graph configuration file with
the following connection properties:

"jdbc_url": "jdbc:oracle:thin:@sombrero medium",

"username": "hr",
"keystore alias": "databasel",

Note that the keystore still lives on the client side and should contain the password for the
hr user referenced in the config object, as explained in Store the Database Password in
a Keystore. A similar approach works for Tomcat or WebLogic Server deployments.

Use Java EE connection pools in your web application server. Remote users only have to
provide the name of the datasource in their graph configuration files. The wallet and the
connection credentials are stored securely in the web application server's file system, and
the server administrator trusts all remote users to use a connection from the pool to
connect to an Autonomous Database.

You can find instructions how to set up such a data source at the following locations:
— WebLogic Server: Configuring a WebLogic Data Source to use ATP

— Tomcat: https://www.oracle.com/technetwork/database/application-development/jdbc/
documentation/atp-5073445.html#Tomcat

If you gave the data source the name adb_ds, you can the reference them by sending a
graph configuration file with the following connection properties:

"datasource id": "adb ds",

2-5

https://blogs.oracle.com/weblogicserver/atp-database-use-with-weblogic-server-v2
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat

SQL Property Graphs

ORACLE

Learn and work with SQL property graphs.

Effective with Oracle Database 23ai, you can create and query SQL property graphs.

The following chapters provide in-depth information on SQL property graphs:

Introduction to SQL Property Graphs
You can work with SQL property graphs in any SQL based interface (such as SQL
Developer, SQLPLUS, or SQLcl) or from a Java program using JDBC.

SQL DDL Statements for Property Graphs
You can create, revalidate, and drop SQL property graphs using SQL data definition
language (DDL) statements.

SQL Graph Queries
You can query a SQL property graph using the GRAPH_TABLE operator to express graph
pattern matching queries.

Loading a SQL Property Graph into the Graph Server (PGX)

You can load a full SQL property graph or a subgraph into memory in the graph server
(PGX).

Executing PGQL Queries Against SQL Property Graphs

You can directly run PGQL queries against a SQL property graph in the database.

Visualizing SQL Graph Queries Using the APEX Graph Visualization Plug-in
You can use the Oracle Application Express (APEX) Graph Visualization plug-in to
visualize and interact with SQL property graphs in an APEX application.

Introduction to SQL Property Graphs

You can work with SQL property graphs in any SQL based interface (such as SQL Developer,
SQLPLUS, or SQLcl) or from a Java program using JDBC.

Using SQL statements, you can perform the following:

* Create a SQL property graph from existing database objects in your schema, such as:

— Tables (with some exceptions as listed in Limitations of Creating a SQL Property
Graph)

— Materialized views
— External tables
— Synonyms for any of the preceding database objects
* Create a synonym for a SQL property graph.
* Revalidate a SQL property graph.
* Run graph pattern matching queries on a SQL property graph.
e Drop a SQL property graph.

For example, the following figure shows the creation of a SQL property graph using the SQL
Developer tool.

Figure 3-1 Using SQL Developer to Create a SQL Property Graph

d-BTHED PEO-BE @3 & ¢ G A 033399999 seconds
r_j %BC‘: Connections Worksheet Query Builder
=g ade
+-i73 Tables (Filtered) = (Rgé;ﬁEiR?iEg ?MFH students_graph
i ;B ki persons
® :ﬂ Indexes KEY (persen_id)
-l Packages LABEL person
#-[3) Procedures PROPERTIES (person_id, name, birthdate AS dob)
+-3 Functions LABEL person_ht
3 Operators PROPERTIES (height),
= P friendships
-
L LABEL friend_of
®-|f Queues Tables N0 PROPERTIES
+ ‘? Triggers LABEL all_friends
& -@TW“ PROPERTIES ARE ALL COLUMNS EXCEPT (person_a, person_b),
#-[14 Sequences university
+ [Materialized Views KEY (id),
3|3 Materialized View Logs students AS student)
| PROPERTIES ARE ALL COLUHMNS EXCEPT (height)
Reports)
|3 All Reports EDGE TABLES (
@#-{Z Analytic View Reports friendships AS friends
#([Z Data Dictionary Reports — KEY (friendshin id)
+-(z Data Modeler Reports [&l script output x
#-(E OLAP Reports B 5 i
& TimesTen Reports ’ é B =" E Task completed in 0.334 seconds
#-[& User Defined Reports
Property GRAPH created.

e Quick Start for Working with SQL Property Graphs
This tutorial helps you get started on creating, querying, and running graph algorithms on
a SQL property graph.

ORACLE 3-1

Chapter 3
Quick Start for Working with SQL Property Graphs

3.1 Quick Start for Working with SQL Property Graphs

This tutorial helps you get started on creating, querying, and running graph algorithms
on a SQL property graph.

ORACLE

In order to try this tutorial, ensure that you meet the following requirements:

Load the sample bank graph data provided with the graph server installation in the
database tables. See Using Sample Data for Graph Analysis for more information.

You have the required privileges to create and drop a SQL property graph. See
Granting System and Obiject Privileges for SQL Property Graphs for more
information.

In the following tutorial, the examples in Step 1, Step 2, and Step 7 are performed
using the SQLcl tool. However, you can run these examples using any SQL based
interface.

1

Create a SQL property graph using the CREATE PROPERTY GRAPH DDL statement.

SQL> CREATE PROPERTY GRAPH bank sql pg
2 VERTEX TABLES (

3 bank accounts
4 KEY (id)
5 LABEL account
6 PROPERTIES ALL COLUMNS
7)
8 EDGE TABLES (
9 bank txns
10 KEY (txn_ id)
11 SOURCE KEY (from acct id) REFERENCES bank accounts (id)
12 DESTINATION KEY (to acct id) REFERENCES bank accounts
(id)
13 LABEL transfer
14 PROPERTIES ALL COLUMNS
15);

Property created.

On execution, the bank sql pg graph is created in the database. The graph is
made up of one vertex graph element table (bank accounts) and one edge graph
element table (bank txns).

See Creating a SQL Property Graph to learn the concepts of graph element
tables, keys, labels and properties.

Run a SQL graph query, on the newly created graph, to list all the transactions
from the account with id value 816.

SQL> SELECT * FROM GRAPH TABLE (bank sgl pg

2 MATCH
3 (a IS account WHERE a.id = 816) -[e IS transfer]-> (b IS
account)

4 COLUMNS (a.id AS acc_a, e.amount AS amount, b.id AS acc_b)
S*)i

3-2

Chapter 3
Quick Start for Working with SQL Property Graphs

ACC A AMOUNT ACC B

816 4713 287
816 8001 590
816 4186 934
816 3718 289
816 4039 812

See SQL Graph Queries for more information.

3. Optionally, if you have installed the graph server (PGX), then you can also visualize the
preceding SQL graph query, using the graph visualization tool.

The only difference is that you must return the vertex and edge IDs in order to visualize
the vertices and edges of the SQL graph query together with their IDs and all their labels
and properties. Note that the COLUMNS clause in the following example uses the
VERTEX_ID and EDGE_ID operators:

Figure 3-2 Visualizing a SQL Graph Query

ORACLE’ Graph Visualization GRAPHUSER +

Graph Server Database (PGQL Property Graphs) Database (SQL Property Graphs)

SQL Graph Query
1 SELECT id a, id e
2[FROM GRAPH_ TABLE” (bank sql_pg

3| MATCH (a TS accounts WHERE a.id=816) -[e IS transfers]-> (b IS accounts)
COLUMNS (vertex_id(a) AS id_a, edge_id(e) AS id_e, vertex_id(b) AS id_b)

4)
5
6
7

Settings
Parallelism B

]
289,
Exploration
) .
287
Modes
816 7
[J
590 Legend
A Vert
P [J oA
812 934
;..

* See Vertex and Edge Identifiers to learn more about the VERTEX ID and EDGE_ID
operators.

» See Visualizing Graph Queries on SQL Property Graphs for more details.

4. Load the graph into the graph server (PGX) if you want to run graph algorithms.

e« JShell
e Java
* Python

ORACLE' 33

Chapter 3
Quick Start for Working with SQL Property Graphs

JShell

opg4]j> var graph = session.readGraphByName ("BANK SQL PG",
GraphSource.PG_SQL)

graph ==>

PgxGraph [name=BANK SQL PG,N=1000,E=5001,created=1681020302077]

Java

PgxGraph graph = session.readGraphByName ("BANK SQL PG",
GraphSource.PG SQL) ;

Python

>>> graph = session.read graph by name ("BANK SQL PG", "pg sql")
>>> graph

PgxGraph (name: BANK SQL PG, v: 1000, e: 5001, directed: True,
memory (Mb) : 0)

See Loading a SQL Property Graph into the Graph Server (PGX) for more
information.

5. Execute the PageRank algorithm as shown:

e JShell
e Java
* Python
JShell

opg4j> var analyst = session.createRAnalyst ()

analyst ==> NamedArgumentAnalyst[session=0fb6bea’-
d467-458d-90c3-803d2932d£12]

opg4j> analyst.pagerank (graph)

$3 ==> VertexProperty[name=pagerank, type=double, graph=BANK SQL PG]

Java

Analyst analyst = session.createRnalyst();
analyst.pagerank (graph) ;

ORACLE" 3-4

ORACLE"

Chapter 3
Quick Start for Working with SQL Property Graphs

Python

>>> analyst = session.create analyst()
>>> analyst.pagerank (graph)
VertexProperty (name: pagerank, type: double, graph: BANK SQL PG)

Query the graph to list the top 10 accounts by pagerank:

e JShell
e Java

* Python
JShell

opg4j> session.queryPgql ("SELECT a.id, a.pagerank FROM MATCH (a) ON
BANK SQL PG ORDER BY a.pagerank DESC LIMIT 5").print()

T +
| id | pagerank

e +
387	0.007302836252205924
406	0.006734430614559079
135	0.006725965475577353
934	0.006641340764834484
397	0.0057016075312134595
e +

$5 ==> PgqglResultSetImpl[graph=BANK SQL PG,numResults=5]

Java

session.queryPgql ("SELECT a.id, a.pagerank FROM MATCH (a) ON BANK SQL PG
ORDER BY a.pagerank DESC LIMIT 5").print();

Python

>>> session.query pgql ("SELECT a.id, a.pagerank FROM MATCH (a) ON
BANK SQL PG ORDER BY a.pagerank DESC LIMIT 5").print()

o +
| id | pagerank

o +
387	0.007302836252205924
406	0.006734430614559079
135	0.006725965475577353
934	0.006641340764834484
397	0.0057016075312134595
o +

3-5

Chapter 3
Quick Start for Working with SQL Property Graphs

7. Drop the SQL property graph after running the graph queries.
SQL> DROP PROPERTY GRAPH bank sql pg;

Property dropped.

ORACLE" 3-6

SQL DDL Statements for Property Graphs

You can create, revalidate, and drop SQL property graphs using SQL data definition
language (DDL) statements.

Creating a SQL Property Graph
Using the CREATE PROPERTY GRAPH DDL statement, you can create a property graph
object directly in an Oracle Database.

Revalidating a SQL Property Graph
Using the ALTER PROPERTY GRAPH COMPILE DDL statement, you can revalidate an
existing property graph object in the database.

Dropping a SQL Property Graph
Using the DROP PROPERTY GRAPH DDL statement, you can remove a property graph object
in Oracle Database.

JSON Support in SQL Property Graphs

When creating a SQL property graph, you can define a label property over a JSON data
type column using simplified dot notation. You can later access this property inside the
SQL graph query.

4.1 Creating a SQL Property Graph

Using the CREATE PROPERTY GRAPH DDL statement, you can create a property graph object
directly in an Oracle Database.

Example 4-1 Creating a SQL Property Graph Using the CREATE PROPERTY GRAPH DDL
Statement

This example creates a SQL property graph, students_graph, using persons, university,
friends, and student_of as the underlying database tables for the graph.

In order to run this example, ensure the following:

1.

Set up the sample tables in the database as explained in Setting Up Sample Data in the
Database.

See Granting System and Object Privileges for SQL Property Graphs to ensure you have
the required privileges to create a SQL property graph.

The following diagram illustrates the students graph:

ORACLE

4-1

ORACLE

Chapter 4
Creating a SQL Property Graph

Figure 4-1 STUDENTS_GRAPH

STUDENTS_GRAPH

ERIENDS
FRIENDSHIP_ID: 3

PERSON

PERSON

PERSON_ID: 1 MEETING_DATE: 2000-09-19 PERSON_ID: 2

NAME: John NAME: Mary

DOB: 1963-06-13 DOB: 1982-09-25
PERSON HT PERSON HT

HEIGHT: 180

HEIGHT: 165

STUDENT OF
SUBJECT: Math

UNIVERSITY
ID: 2
NAME: XYZ

STUDENT OF
SUBJECT: Science

FRIENDS
FRIENDSHIP_ID: 4
MEETING_DATE: 2001-07-10

STUDENT OF
SUBJECT: Arts

UNIVERSITY
ID: 1
NAME: ABC

STUDENT OF
SUBJECT: Music

FRIENDS
FRIENDSHIP_ID: 1
MEETING_DATE: 2000-09-01

FRIENDS
FRIENDSHIP_ID: 2
MEETING_DATE: 2000-09-19

PERSON
PERSON_ID: 3

PERSON

PERSON_ID: 4
NAME: Bob NAME: Alice
DOB: 1966-03-11 DOB: 1987-02-01
PERSON HT

PERSON HT

HEIGHT: HEIGHT:

175

1.70

The corresponding SQL propery graph DDL statement is as shown:

CREATE PROPERTY GRAPH students graph
VERTEX TABLES (
persons KEY (person id)
LABEL person
PROPERTIES (person id, name, birthdate AS dob)
LABEL person_ht
PROPERTIES (height),
university KEY (id)
)
EDGE TABLES (
friends
KEY (friendship id)
SOURCE KEY (person_a) REFERENCES persons (person id)
DESTINATION KEY (person b) REFERENCES persons(person id)
PROPERTIES (friendship id, meeting date),
student of
SOURCE KEY (s_person id) REFERENCES persons (person id)
DESTINATION KEY (s univ_id) REFERENCES university(id)
PROPERTIES (subject)
)

On execution, the preceding example creates a SQL property graph object that uses
the tables in your schema to define its graph element tables. Note that the creation of
the new SQL property graph object, results only in the storage of the property graph
metadata, and there is no copying of data from the underlying database objects into
the graph element tables. This implies that when querying a SQL property graph, all
the graph queries are performed on the current graph data in the database. You may
also specify another schema to contain the SQL property graph provided that you
have sufficient privileges.

The graph definition in the example creates a graph that comprises:

e Two vertex graph element tables:

4-2

ORACLE

Chapter 4
Creating a SQL Property Graph

— persons: The table has an explicitly defined unique key, person id, and it is
associated with two labels:

* person: This label exposes person_id, name and birthdate as properties.
* person_ht: This label exposes only the height property.

— university: The label for the table is implicitly inferred and by default all visible
columns of the underlying database table are exposed as properties.

Two edge graph element tables:

— friends: The edge table references persons as the underlying database table for
both the source and destination vertex tables. The source and destination keys
(person_a and person_b) for the edge table correspond to the unique key of the
source and destination vertex tables respectively. The label for the edge table is
automatically inferred from the name of the graph element table (friends, in this
case) and exposes friendship id and meeting date as properties.

— student_of: The edge table references persons and university as the underlying
database tables for the source and destination vertex tables respectively. The source
and destination keys (s _person_idand s univ_id) for the edge table correspond to
the unique key of the source and destination vertex tables respectively. The label for
the edge table is automatically inferred from the name of the graph element table
(student of, in this case) and exposes subject as the property.

It is important to note that once a SQL property graph is created, you cannot alter the graph
definition. However, you can redefine a SQL property graph using the OR REPLACE clause in
the CREATE PROPERTY GRAPH DDL statement. You can use this clause to change the definition
of an existing SQL property graph without dropping, re-creating, and regranting object
privileges that were earlier granted on it.

¢ See Also:

CREATE PROPERTY GRAPH in Oracle Database SQL Language Reference

The following sections explain more on the concepts of the graph element tables, keys, labels
and properties:

About Vertex and Edge Graph Element Tables
The vertices and edges of a SQL property graph defined from the underlying database
objects are stored in the graph element tables.

About Vertex and Edge Table Keys
Each vertex and edge table used in a SQL property graph definition must have a key in
order to identify a unique vertex or an edge in a SQL property graph.

About Labels and Properties
Labels can be associated to one or more graph element tables and they enrich the graph
definition. A label can be defined with or without properties.

Using Graph Options to Create SQL Property Graphs
You can use graph options to control the behavior of a SQL property graph at the time of
its creation.

Granting System and Obiject Privileges for SQL Property Graphs
Learn about the new system and object privileges for performing operations on SQL
property graphs.

4-3

Chapter 4
Creating a SQL Property Graph

Retrieving Metadata for SQL Property Graphs
The metadata of SQL property graphs can be accessed through a series of data
dictionary views.

Retrieving SQL Creation DDL Using the DBMS_METADATA Package

Limitations of Creating a SQL Property Graph
This section lists a few restrictions that apply when creating a SQL property graph.

4.1.1 About Vertex and Edge Graph Element Tables

The vertices and edges of a SQL property graph defined from the underlying database
objects are stored in the graph element tables.

A graph element table can either be a vertex table or an edge table.

Refer to the graph definition in Example 4-1 to easily understand the following
sections:

Vertex graph element table

A vertex table is defined using the VERTEX TABLES clause.
Each row in a vertex table corresponds to a vertex of the graph.

A vertex graph element table has a name that is independent from the name of the
underlying database object.

By default, the name of the vertex graph element table is the same as the name of
the underlying database object.

A vertex table name must be unique for a graph. In case you want to define a SQL
property graph with multiple graph element tables from the same database object,
then you must specify an alternate graph element table name using the as clause.

Edge graph element table

An edge table is defined using the EDGE TABLES clause.

It specifies a direct relationship between the source vertex table and the
destination vertex table using the SOURCE and DESTINATION keywords that
REFERENCES the respective vertex tables.

Each row in an edge table corresponds to an edge of the graph.

An edge graph element table has a name that is independent from the name of the
underlying database object.

By default, the name of the edge graph element table is the same as the name of
the underlying database object.

The edge table name must be unique for a graph. An edge table name cannot be
shared with a vertex table or another edge table.

4.1.2 About Vertex and Edge Table Keys

Each vertex and edge table used in a SQL property graph definition must have a key
in order to identify a unique vertex or an edge in a SQL property graph.

ORACLE

4-4

ORACLE

Chapter 4
Creating a SQL Property Graph

The key is defined from one or more columns of the underlying table. The key may be
implicitly inferred based on an existing primary key or a unique constraint defined on the
underlying table, or explicitly defined. The key should be unique.

However, note that the uniqueness constraint for the key column is required if you create the
graph in ENFORCED MODE. Otherwise, you can create the graph in TRUSTED MODE using key
columns that do not have a uniqueness constraint. See Using Graph Options to Create SQL
Property Graphs for more information on the different modes that can be applied during graph
creation.

Vertex or edge table keys can be defined for any of the following built-in data type columns:
e VARCHAR2

e NVARCHAR?

e NUMBER

* BINARY FLOAT

° BINARY DOUBLE

e CHAR
°* NCHAR
e DATE

e INTERVAL (both YEAR TO MONTH and DAY TO SECOND)
e TIMESTAMP

Note that the TIMESTAMP WITH TIME ZONE data type is not supported.

Refer to the SQL property graph definition in Example 4-1 to easily understand the following
sections:

Vertex Table Key

* By default, the key for a vertex table is automatically identified from a single PRIMARY KEY
or UNIQUE key constraint on the underlying database object. If both exist, then the
PRIMARY KEY constraint takes precedence over the UNIQUE key constraint.

e If the vertex table key is automatically inferred based on a single UNIQUE key, then the set
of columns in that UNIQUE key must also be NOT NULL.

» If the underlying database object does not contain a unique constraint to enforce
uniqueness, then you must explicitly define the KEY subclause in the VERTEX TABLES
clause, to identify the columns that define a unique key for the vertex table. Note that the
column names must match the column names of the underlying database object.

» Composite vertex table keys are also supported.

Edge Table Key

» By default, the key for an edge table is automatically identified from a single PRIMARY KEY
or UNIQUE key constraint on the underlying database object. If both exist, then the
PRIMARY KEY constraint takes precedence over the UNIQUE key constraint.

e If the edge table key is automatically inferred based on a single UNIQUE key, then the set
of columns in that UNIQUE key must also be NOT NULL.

4-5

Chapter 4
Creating a SQL Property Graph

» If the underlying database object does not contain a unique constraint to enforce
uniqueness, then you must explicitly define the KEY subclause in the EDGE TABLES
clause, to identify the columns that define a unique key for the edge table. Note
that the column names must match the column names of the underlying database
object.

* By default, the SOURCE and DESTINATION table keys are automatically obtained
from a single FOREIGN KEY constraint between the edge table and the underlying
source and destination tables respectively.

» However, you must explicitly specify the KEY subclause for the SOURCE and
DESTINATION vertex tables, if any of the following applies:

— There is no FOREIGN KEY constraint between the edge and the referenced
vertex tables.

— There are multiple FOREIGN KEY constraints between the edge and the
referenced vertex tables.

— The underlying database objects for the edge table and its source and
destination vertex tables are materialized views or external tables.

" Note:

All restrictions that apply for primary key constraints on a database object
also apply on vertex and edge table keys.

4.1.3 About Labels and Properties

ORACLE

Labels can be associated to one or more graph element tables and they enrich the
graph definition. A label can be defined with or without properties.

You can optionally define LABELS and PROPERTIES for the vertex and edge tables in
your graph. When not specified, the graph element tables are automatically assigned a
label with the name of the graph element table, and all visible columns are exposed as
properties, using the column name as property name.

Refer to the SQL property graph definition in Example 4-1 to easily understand the
following sections:

Labels

* By default, the vertex and edge tables are automatically assigned a label with the
name of the respective graph element tables.

* The DEFAULT LABEL subclause can also be used to explicitly apply the preceding
rule.

* You can explicitly assign a new label name to a vertex or an edge graph element
table using the LABEL subclause.

» Multiple labels can be associated with the same graph element table.

* The same label can be shared with multiple graph element tables.
A label can be associated with more than one graph element table (shared label)
provided the following conditions apply:

4-6

Chapter 4
Creating a SQL Property Graph

— All graph element tables that share this label declare the same set of property
names. Note that the property order does not matter in the label definition.

— Different columns or value expression exposed by the same property name have
union compatible types.

* Also, refer to Type Compatibility Rules for Determining Property Types for more
information.

Properties

* By default, all the visible columns of a vertex or an edge table are automatically exposed
as properties if there is no label declaration or if the DEFAULT LABEL subclause is used in
the property graph definition. The property names are the same as the column names of
the underlying database object.

e Columns of any Oracle built-in data types can be exposed as properties of labels in a
SQL property graph. This includes virtual columns, JSON data type columns, CLOB and
BLOB data types.

However, the following are not supported:

— XMLType and SDO_GEOMETRY type columns are not supported.

— SQL/XML value expressions over XMLType column stored as binary XML, and
SDO_GEOMETRY built-in functions over SDO_GEOMETRY object datatype column are
allowed as long as they return a value of a type supported for properties. Any general
object data type and user defined data type and their corresponding SQL operator
value expression over them are not supported.

— Columns of type ANYTYPE cannot be exposed as property.

» Atthe time of the SQL property graph creation, the data type of a vertex or edge property
is determined as follows:

— Distinct properties associated with distinct labels have the same data type as the
underlying database columns.

— Properties with the same name coming from different labels have the same data type
as the underlying database columns. However, you must use the ALLOW MIXED
PROPERTY TYPES option when creating the SQL property graph.

See Using Graph Options to Create SQL Property Graphs for an example using a
shared property name.

— Properties with the same name coming from the same label will have the UNION ALL
compatible type of the underlying database columns. In addition, you must use the
ALLOW MIXED PROPERTY TYPES option when creating the SQL property graph:

* See Using Graph Options to Create SQL Property Graphs for an example using
a shared property name in a shared label.

* See Type Compatibility Rules for Determining Property Types for more
information on the type rules that determine the property type.

e If you want to explicitly define the vertex or edge properties for a label, then the following
property declarations are supported:

— PROPERTIES [ARE] ALL COLUMNS: To expose all the visible columns of the graph
element table as label properties. However, if any columns are added or deleted in
the source database object, after the creation of the SQL property graph, then these
will not be reflected on the graph.

ORACLE 47

Chapter 4
Creating a SQL Property Graph

PROPERTIES [ARE] ALL COLUMNS EXCEPT (<column names list>): To expose
all the visible columns of the graph element table as label properties except
those that are explicitly listed.

PROPERTIES (<list of column names>): To expose only those columns of the
graph element table that are explicitly listed as label properties. The property
name defaults to the column name.

PROPERTIES (<column name AS property name,...>): Same as the preceding
option. However, if AS property name is appended to the column name, then
property name is used as the property name.

PROPERTIES (<column_expressions AS property name,...>): To declare a
property which is an expression over columns. The As clause is mandatory in
this case. A value expression can either be a SQL operator expression defined
over scalar data type columns or JSON expression. See JSON Support in
SQL Property Graphs for an example using JSON expressions.

NO PROPERTIES: No columns are exposed for a label.

* Peudo-columns cannot be exposed as a label property.

4.1.4 Using Graph Options to Create SQL Property Graphs

You can use graph options to control the behavior of a SQL property graph at the time
of its creation.

ORACLE

Graph options can be specified at the end of the CREATE PROPERTY GRAPH DDL
statement using the OPTIONS clause. You can use either the MODE or MIXED PROPERTY
TYPES option, or both as required.

Using an Option to Specify the Mode of the Graph

You can specify the MODE of the graph by using one of the following option values at
the time of creating the SQL property graph:

e ENFORCED MODE: This ensures that there is a dependency to the unique key
constraint on the underlying database tables. If used when creating a SQL
property graph, the CREATE PROPERTY GRAPH statement will throw an error if any of
the following conditions apply:

The specified vertex or edge table Ky for the graph element table is neither a
PRIMARY KEY nor a UNIQUE key defined on NOT NULL columns.

There is no explicit vertex or edge table XY defined for the graph element
table and also the system is unable to automatically identify the default vertex
or edge key, as there is no single PRIMARY KEY or a single UNIQUE key
constraint on NOT NULL columns on the underlying database table.

For a specified edge source key and corresponding source vertex key or for a
specified edge destination key and corresponding destination vertex key, there
does not exist a corresponding FOREIGN KEY between the underlying tables.

An edge table has no explicit keys for the source or for the destination and the
system is unable to implicitly infer the keys, as there is no single FOREIGN KEY
constraint between the edge table and the referenced source (or destination)
vertex table.

4-8

ORACLE

Chapter 4
Creating a SQL Property Graph

For example, consider the following t1 table in the database that does not have any
primary key, unique key or a NOT NULL constraint.

SQL> CREATE TABLE tl (id NUMBER, name VARCHAR2(10));

INSERT INTO tl1 (id, name) VALUES (1, 'John');
INSERT INTO tl (id, name) VALUES (2, 'Mary');

Create a SQL property graph using OPTIONS (ENFORCED MODE) as shown:

CREATE PROPERTY GRAPH g
VERTEX TABLES (
tl KEY (id)
LABEL t PROPERTIES ARE ALL COLUMNS
) OPTIONS (ENFORCED MODE) ;

The graph creation fails with the following error as there are no key constraints to enforce
unigueness:

ORA-42434: Columns used to define a graph element table key must be NOT NULL
in ENFORCED MODE

If you omit the XKEY clause in the preceding graph definition, then the following error is
thrown:

ORA-42402: cannot infer key for graph element table T1

e TRUSTED MODE (default): There is no dependency to the unique key constraint on the
underlying database tables when using the TRUSTED mode. Therefore, the preceding
example when run in TRUSTED mode will not throw any error. This implies that if you
choose to use this option, then you must guarantee the uniqueness of primary keys on
each of the graph element tables, as well as valid foreign key references between an
edge table and its source and destination tables. Otherwise, your graph query results
may be incorrect as the expected guarantees are not met.

Using an Option to Allow or Disallow Different Property Types for Shared Property
Names

You can specify the MIXED PROPERTY TYPES options using one of the following values:
° ALLOW MIXED PROPERTY TYPES: This ensures that:

— If two properties with the same name belong to different labels, then they can have
completely different types.
For example, in addition to the sample tables persons and students (see Setting Up
Sample Data in the Database), create the following additional table:

CREATE TABLE t2 (id NUMBER, height VARCHARZ (4),
CONSTRAINT t2 pk PRIMARY KEY (id));

INSERT INTO t2 (id, height) VALUES (1, '1.80'");
INSERT INTO t2 (id, height) VALUES (2, '1.65'");

CREATE TABLE t3 (id NUMBER, height BINARY DOUBLE,
CONSTRAINT t3 pk PRIMARY KEY (id));

4-9

Chapter 4
Creating a SQL Property Graph

INSERT INTO t3 (id, height) VALUES (1, 1.80);
INSERT INTO t3 (id, height) VALUES (2, 1.65);

Run the following CREATE PROPERTY GRAPH DDL statement which uses three
distinct labels for the same property name, height.

CREATE PROPERTY GRAPH gl
VERTEX TABLES (

persons
LABEL person PROPERTIES (name, height),
t2
LABEL t2 PROPERTIES (height),
t3

LABEL t3 PROPERTIES (height)
) OPTIONS (ALLOW MIXED PROPERTY TYPES);

When the graph is created, the property type for height in the vertex tables
associated with:

* LABEL person IS FLOAT
* LABEL t2 iS VARCHAR
* LABEL t3is BINARY DOUBLE

However, when querying this graph, the property type for height is dependent
on the label constraint used in the SQL graph query. See Accessing Label
Properties for more information.

— If you are sharing property names inside shared labels, then they should be all
union compatible types.
For example, run the following CREATE PROPERTY GRAPH DDL statement where
the property name height is used inside the shared label t:

CREATE PROPERTY GRAPH g2
VERTEX TABLES (
persons
LABEL t PROPERTIES (height),
t2
LABEL t PROPERTIES (height)
) OPTIONS (ALLOW MIXED PROPERTY TYPES);

The graph creation fails as the column height in the tables persons and t2 has
the data type FLOAT and VARCHAR respectively which are union incompatible.
Therefore, the following error is thrown;

ORA-42414: cannot use mixed type for property HEIGHT of label T

However, the following graph will get created successfully as FLOAT and
BINARY DOUBLE belong to the numeric group and are union compatible.

CREATE PROPERTY GRAPH g3
VERTEX TABLES (
persons
LABEL t PROPERTIES (height),
t3

ORACLE 4-10

Chapter 4
Creating a SQL Property Graph

LABEL t PROPERTIES (height)
) OPTIONS (ALLOW MIXED PROPERTY TYPES);

See Type Compatibility Rules for Determining Property Types for more information.

° DISALLOW MIXED PROPERTY TYPES (default): This ensures that a property with the same
name should strictly be the same data type. This applies to all labels irrespective of
whether they are associated with a single or multiple graph element tables.

For example, run the following DDL statement using persons and t2 as the underlying
database tables:

CREATE PROPERTY GRAPH g4
VERTEX TABLES (
persons
LABEL person PROPERTIES (name, height),
t2
LABEL t2 PROPERTIES (height)
)

The preceding code uses the default DISALLOW MIXED PROPERTY TYPES graph option and
therefore throws an error as mixed property types are used in the graph definition:

ORA-42414: cannot use mixed type for property HEIGHT of label T2

The following table summarizes compatibility rules with respect to the MIXED PROPERTY TYPES
options

Description ALLOW DISALLOW
Properties with the same name Union-compatible Types must match
exposed by shared labels!

Shared properties? Any Types must match

1 A label with the same name can be associated with more than one graph element table.
2 A property with the same name can be exposed by different labels.

4.1.5 Granting System and Object Privileges for SQL Property Graphs

ORACLE

Learn about the new system and object privileges for performing operations on SQL property
graphs.

Table 4-1 System Privileges for SQL Property Graph Objects

|
System Privileges Description

CREATE PROPERTY GRAPH To create a SQL property graph in the grantee’s schema

CREATE ANY PROPERTY To create a SQL property graph in any schema except SYS and AUDSYS
GRAPH

ALTER PROPERTY GRAPH To alter a SQL property graph in the grantee’s schema

ALTER ANY PROPERTY To alter a SQL property graph in any schema except SYS and AUDSYS
GRAPH

READ PROPERTY GRAPH To query a SQL property graph in the grantee’s schema

READ ANY PROPERTY GRAPH To query a SQL property graph in any schema except SYS and AUDSY

4-11

Chapter 4
Creating a SQL Property Graph

Table 4-1 (Cont.) System Privileges for SQL Property Graph Objects

___|
System Privileges Description

SELECT PROPERTY GRAPH To query a SQL property graph in the grantee’s schema
DROP ANY PROPERTY GRAPH To drop a SQL property graph in any schema except SYS and AUDSYS

Table 4-2 Object Privileges for SQL Property Graphs

Object Privileges Description

ALTER To alter a SQL property graph

READ To query a SQL property graph with a SQL graph query
ISELECT To query a SQL property graph with a SQL graph query

1 Note that the SELECT privilege behaves exactly as the READ privilege for the SQL property graph object.
It is mainly present for compatibility with the SQL standards for a property graph object.

The following shows the examples for granting and revoking the SQL property graph
related privileges. Ensure you have SYSDBA access to grant and revoke these
privileges:

GRANT CREATE PROPERTY GRAPH, CREATE ANY PROPERTY GRAPH,
ALTER ANY PROPERTY GRAPH, DROP ANY PROPERTY GRAPH,
READ ANY PROPERTY GRAPH TO <graphuser>;

REVOKE CREATE PROPERTY GRAPH, CREATE ANY PROPERTY GRAPH,
ALTER ANY PROPERTY GRAPH, DROP ANY PROPERTY GRAPH,
READ ANY PROPERTY GRAPH FROM <graphuser>;

You can share your SQL property graph in the database with another user as shown.

GRANT SELECT ON PROPERTY GRAPH <graph name> TO <schema user>;

4.1.6 Retrieving Metadata for SQL Property Graphs

The metadata of SQL property graphs can be accessed through a series of data
dictionary views.

The following table provides a complete list of the data dictionary views that you can
access to retrieve the metadata for SQL property graphs. Note that the metadata for
each category in the table exists across ALL_, USER , and DBA view set. Depending
upon your level of privilege, you can access the corresponding view.

ORACLE 4-12

ORACLE

Chapter 4
Creating a SQL Property Graph

Table 4-3 List of Data Dictionary Views to Retrieve Metadata for SQL Property Graphs

]
View Namel

Description

ALL_PROPERTY_GRAPHS

USER_PROPERTY_GRAPH
S

DBA_PROPERTY_GRAPHS

To describe all the property graphs in the database.

ALL_PG_ELEMENTS
USER_PG_ELEMENTS
DBA_PG_ELEMENTS

To describe all the graph element tables of the property graphs in
the database.

ALL_PG_EDGE_RELATIONS
HIPS
USER_PG_EDGE_RELATIO
NSHIPS
DBA_PG_EDGE_RELATION
SHIPS

To describe all the columns used to define the edge relationships.

ALL_PG_KEYS
USER_PG_KEYS
DBA_PG_KEYS

To describe all the columns used as the key for the graph element
tables.

ALL_PG_LABELS
USER_PG_LABELS
DBA_PG_LABELS

To describe labels of property graphs in the database.

ALL_PG_LABEL_PROPERTI
ES
USER_PG_LABEL_PROPER
TIES

DBA_PG_LABEL_PROPERTI
ES

To describe the properties of all the labels of the property graphs
in the database.

ALL_PG_PROP_DEFINITION
S
USER_PG_PROP_DEFINITI
ONS
DBA_PG_PROP_DEFINITIO
NS

To describe all the column expressions used to define the
properties of labels.

ALL_PG_ELEMENT_LABELS
USER_PG_ELEMENT _LABE
LS
DBA_PG_ELEMENT_LABEL
S

To describe all the labels of all the graph element tables of the
property graphs in the database.

1 See Oracle Database Reference for more information on the views.

The following example retrieves the graph element tables that were defined for the SQL
property graph (students_graph) created in Creating a SQL Property Graph.

SQL> SELECT * FROM USER PG ELEMENTS;

GRAPH NAME

OBJECT NAME

STUDENTS GRAPH
STUDENTS GRAPH

PERSONS
UNIVERSITY VERTEX GRAPHUSER

ELEMENT NAME ELEMENT KIND OBJECT OWNER

VERTEX GRAPHUSER PERSONS

4-13

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-AB42A475-72A4-4828-8F6C-5B1007744B57
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-F6D92569-4A08-4B37-B99E-FEEB329F0697
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-F6D92569-4A08-4B37-B99E-FEEB329F0697
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-D85D49E0-15D7-4ADD-9EEE-5CE353C596CF
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-3B97415E-1F8D-4F4E-95AC-DA4769D23D68
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-5B18B8F8-335D-4CBA-9BB6-1803D3348956
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-F08C44C0-3379-4B17-880A-D407FDC74644
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-546E2CDD-62B3-4604-B93E-7333A5F2B372
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-546E2CDD-62B3-4604-B93E-7333A5F2B372
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-893FC3E1-75BC-4671-B70B-FC62F25CBAC9
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-893FC3E1-75BC-4671-B70B-FC62F25CBAC9
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BCA5D17F-A906-4019-A655-F6258D61DA0E
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BCA5D17F-A906-4019-A655-F6258D61DA0E
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-20E1CADE-95F0-4850-8DD7-1C73937858B0
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BC1889D0-7866-4D38-BFD2-9F36F3123B98
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-EEA708E8-D149-4655-875E-D11F3A9B9C68
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-3D03F7C5-B515-4CE9-9DF7-1F4B3A8C42C8
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-26AFE9AC-CE32-43D5-B539-4A1D6BAE91E3
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-2C1DB5E4-FC5D-443B-9A1E-00BC7DC5A664
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-8B85728E-7186-4127-9E12-3E3144979B82
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-8B85728E-7186-4127-9E12-3E3144979B82
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BD6D5315-906A-4366-8F9A-5E5B98ECDEB3
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BD6D5315-906A-4366-8F9A-5E5B98ECDEB3
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BB1CD4EA-1075-4784-9EA8-4889F9B123DC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BB1CD4EA-1075-4784-9EA8-4889F9B123DC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-CA9F8F4E-1E1B-45F2-8B59-C4B0E2479FA2
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-CA9F8F4E-1E1B-45F2-8B59-C4B0E2479FA2
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-D43A9AA1-8C5E-40C7-BC2A-5DD6A01C7B6C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-D43A9AA1-8C5E-40C7-BC2A-5DD6A01C7B6C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-EB90373D-8421-4E56-9F48-B09A70B3DBCC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-EB90373D-8421-4E56-9F48-B09A70B3DBCC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-7BF6506C-C325-4483-B411-96CF6E354D1A
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-6D621608-9C3B-45EA-9856-27090FF3AF8C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-6D621608-9C3B-45EA-9856-27090FF3AF8C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-8C752D4C-E4DC-4EAA-BD71-064F8CBD85A9
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-8C752D4C-E4DC-4EAA-BD71-064F8CBD85A9

Chapter 4
Creating a SQL Property Graph

UNIVERSITY

STUDENTS GRAPH FRIENDS EDGE GRAPHUSER
FRIENDS

STUDENTS GRAPH STUDENT OF EDGE GRAPHUSER
STUDENT OF

4.1.7 Retrieving SQL Creation DDL Using the DBMS_METADATA

Package

You can retrieve the creation DDL for a SQL property graph using the DBMS METADATA
package.

The following example displays the DDL for the graph created in Creating a SQL
Property Graph using the DBMS METADATA package.

SQL> SELECT DBMS METADATA.GET DDL ('PROPERTY GRAPH', 'STUDENTS GRAPH')
FROM DUAL;

CREATE PROPERTY GRAPH "GRAPHUSER"."STUDENTS GRAPH"
VERTEX TABLES (
"GRAPHUSER" . "PERSONS" AS "PERSONS" KEY ("PERSON_ID")
LABEL PERSON PROPERTIES ("PERSON ID", "NAME", "BIRTHDATE" AS
"DOB")
LABEL PERSON_HT PROPERTIES ("HEIGHT"),
"GRAPHUSER" . "UNIVERSITY" AS "UNIVERSITY" KEY ("ID")
PROPERTIES ("ID", "NAME"))
EDGE TABLES (
"GRAPHUSER"."FRIENDS" AS "FRIENDS" KEY ("FRIENDSHIP_ ID")
SOURCE KEY ("PERSON_A") REFERENCES PERSONS ("PERSON_ID")
DESTINATION KEY ("PERSON B") REFERENCES PERSONS ("PERSON_ID")
PROPERTIES ("FRIENDSHIP ID", "MEETING DATE"),
"GRAPHUSER" . "STUDENT OF" AS "STUDENT OF" KEY ("S_ID")
SOURCE KEY ("S_PERSON_ID") REFERENCES PERSONS ("PERSON_ID")
DESTINATION KEY ("S_UNIV_ID") REFERENCES PERSONS ("ID")
PROPERTIES ("SUBJECT"))
OPTIONS (TRUSTED MODE, DISALLOW MIXED PROPERTY TYPES)

4.1.8 Limitations of Creating a SQL Property Graph

ORACLE

This section lists a few restrictions that apply when creating a SQL property graph.

* Views cannot be used as graph element tables in a SQL property graph.

» Hybrid partitioned tables, as well as views derived from these tables, cannot be
used as graph element tables in a SQL property graph.

» Database links, as well as views defined using these links, cannot be used as
graph element tables in a SQL property graph.

* Object tables (that is, table created with CREATE TABLE x OF myObjectType) and
object views cannot be used as graph element tables in a SQL property graph.

* XMLType table (that is, table created with CREATE TABLE x OF XMLTYPE ...)
cannot be used as graph element tables in a SQL property graph. However

4-14

Chapter 4
Revalidating a SQL Property Graph

SQL/XML operators, XMLExists (), XMLCast (XMLQuery ()) over XMLType column stored as
binary XML to define property as SQL value expression is supported.

* Columns of type ANYTYPE cannot be exposed as properties or as keys for graph element
tables.

» Pseudo-columns cannot be exposed as properties or as keys for graph element tables.

e Column expressions that comprise invocations to PL/SQL functions cannot be exposed
as properties. Similarly, virtual columns defined over column expressions that comprise
invocations to PL/SQL functions cannot be exposed as properties.

* SQL property graph are not editionable.

* A SQL property graph definition cannot be modified once the graph is created. However,
you can redefine a SQL property graph using the OR REPLACE clause in the CREATE
PROPERTY GRAPH DDL statement.

e SQL property graph creation is not supported in a shard catalog. However, you can
create a property graph over sharded tables in the local shards.

4.2 Revalidating a SQL Property Graph

Using the ALTER PROPERTY GRAPH COMPILE DDL statement, you can revalidate an existing
property graph object in the database.

A SQL property graph schema may become invalid due to the alteration of the underlying
database objects. For instance, adding or dropping a column from the underlying database
tables, used in the graph definition, can cause the graph to become invalid. Any invalidation
of the graph will also invalidate cursors depending on the graph object. In such a case, you
can recover your property graph from an invalid state as shown in the following example.
Also, refer to Granting System and Object Privileges for SQL Property Graphs to ensure you
have the required privilege to perform the ALTER PROPERTY GRAPH operation.

Example 4-2 Revalidating a SQL Property Graph

ALTER PROPERTY GRAPH students graph COMPILE;

¢ See Also:
ALTER PROPERTY GRAPH in Oracle Database SQL Language Reference

4.3 Dropping a SQL Property Graph

ORACLE

Using the DROP PROPERTY GRAPH DDL statement, you can remove a property graph object in
Oracle Database.

See Granting System and Object Privileges for SQL Property Graphs to ensure you have the
required privilege to drop a SQL property graph.

4-15

Chapter 4
JSON Support in SQL Property Graphs

Example 4-3 Dropping a SQL Property Graph

The following example removes the SQL property graph, students_graph, in the
database.

DROP PROPERTY GRAPH students graph;
Similar to database views, dropping a property graph object does not remove the

underlying database tables.

¢ See Also:
DROP PROPERTY GRAPH in Oracle Database SQL Language Reference

4.4 JSON Support in SQL Property Graphs

ORACLE

When creating a SQL property graph, you can define a label property over a JSON
data type column using simplified dot notation. You can later access this property
inside the SQL graph query.

The label property defined over a JSON data type column can be of common SQL
scalar data types, such as:

e VARCHAR

°* NUMBER

e BINARY FLOAT
° BINARY DOUBLE
e DATE

e TIMESTAMP

e raw JSON data converted to a SQL data type
via .string(), .number(), .float (), .double(), .date(), .timestamp(), .binar
y () or their equivalent using the JSON_VALUE operator

Therefore, you can use either a JSON dot notation or the JSON_VALUE operator to
select a scalar value in the JSON data to define a SQL property graph label property.
This also applies when accessing a label property defined over the JSON data type
column inside a SQL graph query.

Example 4-4 Defining a SQL Property Graph Using JSON Dot Notation and
JSON Expressions for Label Properties

The following example creates a SQL property graph that contains label properties
defined over a JSON data type column. The graph is created using the sample
database tables (persons and friendships) defined in Setting Up Sample Data in the
Database. The example uses both the JSON dot notation and the JSON_VALUE
expression to define the label property.

CREATE PROPERTY GRAPH friends graph
VERTEX TABLES (

4-16

Chapter 4
JSON Support in SQL Property Graphs

persons AS p KEY (person id)
LABEL person
PROPERTIES (name, birthdate AS dob,
p.hr data.department.string() AS "works in",
JSON_VALUE (person_data, '$.role') AS "works as")
)
EDGE TABLES (
friends
KEY (friendship id)
SOURCE KEY (person_a) REFERENCES p(person_id)
DESTINATION KEY (person b) REFERENCES p(person id)
PROPERTIES (meeting date)
)

The graph gets created successfully and you can query the graph as shown in the following
example:

Example 4-5 Querying a SQL Property Graph and Accessing Label Properties
Defined As SQL/JSON Expressions

The following example queries the SQL property graph created in the preceding example to
access the label properties created over a JSON data type column.

SELECT * FROM GRAPH TABLE (friends graph
MATCH
(a IS person) -[e IS friends]-> (b IS person)
COLUMNS (a.name AS a,
a."works in" AS "a works in",
e.meeting date,
b.name AS Db)
)

The query produces the following output:

A a_works in MEETING D B
John IT 01-SEP-00 Bob
Mary HR 19-SEP-00 Alice
Mary HR 19-SEP-00 John
Bob IT 10-JUL-01 Mary

Example 4-6 Creating and Querying a SQL Property Graph with JSON Data Type
Label Property

The following example creates a SQL property graph with JSON data type label property:

CREATE PROPERTY GRAPH friends graph new

VERTEX TABLES (

persons AS p KEY (person id)

LABEL person
PROPERTIES (name, birthdate AS dob, p.hr data AS "p data")

)
EDGE TABLES (

friends

ORACLE 4-17

Chapter 4
JSON Support in SQL Property Graphs

KEY (friendship id)
SOURCE KEY (person_a) REFERENCES p(person_id)
DESTINATION KEY (person b) REFERENCES p(person id)
PROPERTIES (meeting date)

)

You can then query the graph using a JSON_VALUE expression as shown:

SELECT * FROM GRAPH TABLE (friends graph new

MATCH
(a IS person WHERE JSON _VALUE(a."p_data", '$.department') = 'IT') -
[e]-> (b)
COLUMNS (a.name AS a,
a."p_data".department.string() AS "a_works_ in",
a."p_data".role.string() AS "a_works_as",
e.meeting date,
b.name AS Db)
)i
A a_works in a works as MEETING D B
John IT Software Developer 01-SEP-00 Bob
Bob IT Technical Consultant 10-JUL-01 Mary

ORACLE 4-18

SQL Graph Queries

ORACLE

You can query a SQL property graph using the GRAPH_TABLE operator to express graph
pattern matching queries.

Graph pattern matching allows you to define a set of path patterns and match it against a
graph to obtain a set of solutions. You must provide the graph to be queried as an input to the
GRAPH TABLE operator along with the MATCH clause containing the graph patterns to be
searched as shown:

SELECT * FROM GRAPH TABLE (students graph
MATCH
(a IS person) -[e IS friends]-> (b IS person WHERE b.name = 'Mary')
WHERE a.name='John'
COLUMNS (a.name AS person_a, b.name AS person b)
)i

A basic SQL graph query is made up of the following components:

* FROM clause: It includes the GRAPH TABLE operator which takes the input graph name as
the first parameter.

e MATCH clause: It expresses the graph element patterns (vertex or edge pattern) to be
searched on the SQL property graph. It can optionally include an element pattern WHERE
clause as seen in the preceding example ((b IS person WHERE b.name = 'Mary'))
query. This in-line WHERE clause can access any matched variable.

° WHERE clause: This is an optional out-of-line WHERE clause. Similar to the element pattern
WHERE clause, it has access to all the graph pattern variables and expresses a predicate
that applies to the entire pattern in the MATCH clause.

e COLUMNS clause: This contains the query output columns.

See Also:

GRAPH_TABLE Operator in Oracle Database SQL Language Reference

The following sections explain SQL graph queries in detail:

* About Graph Pattern
The GRAPH TABLE operator in a SQL graph query contains a graph pattern.

e Variable Length Path Patterns
Variable length graph patterns provide advanced querying support for SQL property
graphs.

e Complex Path Patterns
You can query a SQL property graph using complex path patterns.

5-1

Chapter 5
About Graph Pattern

* Vertex and Edge Identifiers
You can uniquely identify each vertex and edge in a SQL property graph with the
VERTEX ID and EDGE ID operators, respectively, in a SQL graph query.

* Using Aggregate Functions in SQL Graph Queries
You can use aggregate functions in a SQL graph query to obtain an aggregated
output.

* Running SQL Graph Queries at a Specific SCN
You can run a SQL graph query at a given System Change Number (SCN) or
timestamp value.

» Privileges to Query a SQL Property Graph
You must have the READ or SELECT object privilege to query a SQL property graph.

» Examples for SQL Graph Queries
This section contains a few examples for querying a SQL property graph with
fixed-length and variable-length graph pattern matching queries.

e Supported Features and Limitations for Querying a SQL Property Graph
This section provides the list of supported and unsupported features for querying a
SQL Property Graph.

e Tuning SQL Property Graph Queries
You can tune a SQL graph query using the EXPLAIN PLAN statement.

e Type Compatibility Rules for Determining Property Types
When using shared property names that are union compatible, the property type is
determined by certain type compatibility rules.

* Viewing and Querying SQL Property Graphs Using SQL Developer
Using SQL Developer 23.1, you can view all the SQL property graphs existing in
your database schema by expanding SQL Property Graphs under the Property
Graph node in the Connections navigator.

5.1 About Graph Pattern

The GRAPH TABLE operator in a SQL graph query contains a graph pattern.

A graph pattern is expressed between the input graph name and the COLUMNS clause
inside the GRAPH_TABLE operator.

A graph pattern contains one or more comma-separated path patterns, which are
composed of vertex and edge patterns. For example, the following path pattern has
two vertex patterns and one edge pattern:

(vl) -[el-> (v2)

A vertex pattern is enclosed in parentheses and specifies how to match a single
vertex. An edge pattern is enclosed by a square bracket with delimiters on the left and
right side of the edge pattern and specifies how to match a single edge.

Also, the available arrow tokens for edge patterns are summarized in the following
table:

ORACLE 5-2

Chapter 5
About Graph Pattern

Table 5-1 Arrow Tokens for Edge Patterns

Directionality Bracketed Syntax Abbreviated Syntax!
Directed to the right -1 1-> ->
Directed to the left <-[1- ->

Any directed edge (right or left) <-[]->or-[]- -

1. There are no brackets for the arrows in the “abbreviated syntax” column.

All edge labels will be considered as no edge label is specified. Hence, filtering on a specific edge is not
supported.

A graph element pattern (which can either be a vertex or an edge pattern) may in turn
optionally include:
* An element variable.

* A label expression which is that part in an element pattern that starts with the keyword I3
and is followed by a list of one or more label names. If there is more than one label name,
then these are separated by vertical bars.

* An element pattern WHERE clause which expresses a search condition on the element
variable declared by the element pattern.

¢ See Also:

Graph Pattern in Oracle Database SQL Language Reference

The following sections explain the graph pattern concepts more in detail:

e Graph Element Variables
Vertex and edge pattern variables ranges over vertices and edges respectively.

e Label Expressions
A label expression in a vertex or an edge element pattern is introduced by the keyword
I8.

* Accessing Label Properties
You can access a property inside a graph element pattern, in the out-of-line WHERE clause
or in the COLUMNS clause.

5.1.1 Graph Element Variables

ORACLE

Vertex and edge pattern variables ranges over vertices and edges respectively.

For example, consider the following graph pattern which contains three graph element
variables.

(vl)-[e]l->(v2)

In the preceding graph pattern, v1 and v2 are two vertex pattern variables and e is an edge
pattern variable.

Ensure that you apply the following rules for the graph pattern variables:

e You cannot use the same variable name for both a vertex and an edge.

5-3

Chapter 5
About Graph Pattern

* You can use the same variable name in two different vertex patterns as shown:
MATCH (a IS person) -> (a IS person)

In the preceding example, the vertex variable a is used in two vertex patterns - (a
IS person) and (a IS person). Thisimplies that the two vertex patterns that
declare the same vertex variable must bind to the same vertex. Thus the vertex
variable binds to a unique vertex but the vertex pattern can appear multiple times
in the same graph pattern.

* You can use the same variable name in two different edge patterns.

* Anonymous (that is, omitted) vertex and edge variables are supported. See
Example 5-8.

5.1.2 Label Expressions

A label expression in a vertex or an edge element pattern is introduced by the keyword
IS.

For example, in the following graph pattern, the vertex pattern associated with the
graph element variable v1 has the label person. Also, the edge pattern associated with
the graph element variable e contains the label friendof:

(vl IS person)-[e IS friendOf]->(v2)

If the label is omitted in a graph element pattern, then the default is to query all
vertices or edges.

A label expression can also include an optional in-line SQL search condition that can
access any matched variable. When accessing a property, you must specify a graph
pattern variable.

The supported vertex and edge label expressions are described in the following table:

Table 5-2 Supported Vertex and Edge Label Expressions
|

Vertex Label Edge Label Expression Description
Expression
(a) [e] e The vertex graph pattern variable a

may match a vertex with any label.
e The edge graph pattern variable e
may match an edge with any label.

() [e The vertex pattern has no label and

can match any vertex.

e The edge pattern has no label and
can match any edge.

When a graph pattern variable is not

specified, a unique vertex or edge

variable name is internally generated by

the system. Therefore, you cannot

reference the vertex or edge elsewhere in

the query, as it is unknown.

ORACLE 5-4

ORACLE

Chapter 5
About Graph Pattern

Table 5-2 (Cont.) Supported Vertex and Edge Label Expressions

Vertex Label Edge Label Expression Description
Expression
(IS person) [IS friend of] e The vertex pattern has only the

person label.

e The edge pattern has only the
friend of label.

When a graph pattern variable is not
specified, a unique vertex or edge
variable name is internally generated by
the system. Therefore, you cannot
reference the vertex or edge elsewhere in
the query, as it is unknown.

(IS person|place]
thing)

[IS friend of]
student of]

e The vertex pattern has an alternation
of three labels, person, place and
thing. This implies that the vertex
pattern can match any vertex having
those labels.

* The edge pattern has an alternation
of two labels, friend of and
student of. This implies that the
edge pattern can match any edge
having those labels.

As there is no explicit graph pattern

variable in the vertex or edge pattern, you

cannot reference this vertex or edge
elsewhere in the query.

(a IS person|
place]|thing)

[e IS friend of]
student of]

Same as the preceding table entry.
However, the vertex and edge patterns
contain a and e as vertex and edge graph
pattern variables respectively. Therefore,
you can reference the vertex or edge
using the respective graph pattern
variables elsewhere in the query.

See Example 5-12.

5-5

Chapter 5
About Graph Pattern

Table 5-2 (Cont.) Supported Vertex and Edge Label Expressions

Vertex Label Edge Label Expression Description

Expression

(a IS person), (a)-[e IS L1]->(b), o The vertex pattern a IS person
(a IS car) (a)-[e 1s L2]->(b) implies that a must match vertices

having the label person, and the
vertex pattern a IS car implies that
a must match vertices having the
label car. Therefore, this represents
that a must match vertices having
both person and car as labels,
effectively an AND of these two
conditions. Also, you can reference a
vertex as a elsewhere in the query.

e« The edge patterne IS L1 implies
that e must match edges having the
label L1, and the edge patterne IS
L2 implies that e must match edges
having the label L2. Therefore, this
represents that e must match edges
having both L1 and L2 as labels,
effectively an AND of these two
conditions. Also, you can reference
an edge as e elsewhere in the query.

See Example 5-13.

(a IS person [e IS student of e The vertex pattern has a label
WHERE a.name = WHERE e.subject = person and a vertex graph pattern
'Fred') 'Arts'] variable a, which is qualified in the

element pattern WHERE clause.

e The edge pattern has a label
student of and an edge graph
pattern variable e, which is qualified
in the element pattern WHERE clause.

The only graph pattern variable that is
visible within an element pattern is the
graph pattern variable defined locally by
the element pattern. Graph pattern
variables from another element patterns
cannot be accessed. See Example 5-5.

5.1.3 Accessing Label Properties

ORACLE

You can access a property inside a graph element pattern, in the out-of-line WHERE
clause or in the COLUMNS clause.

Consider the following graph element pattern where a is a graph element variable and
name iS a property name:

(a IS person WHERE a.name='John')

You can then reference the property in the WHERE clause inside the graph element
pattern as a.name. This means a.name references the property name of the graph
element bound to the graph pattern variable a.

5-6

ORACLE

Chapter 5
About Graph Pattern

Also, the following conditions apply when accessing a property:
* The property name is part of at least one table that satisfies the label expression.

e A graph variable name must always be used to access a property.

e Atthe time of query compilation, certain type checking rules apply for the vertex or edge
table properties. See Type Compatibility Rules for Determining Property Types for more
information.

The following examples describe a few scenarios for determining property types when
qguerying SQL property graphs. Note that Example 5-1 to Example 5-3 refer to the SQL
property graph definition for g1 which contains height as a shared property across different
labels.

Example 5-1 Determining the Property Type for a Single Label

The data type for a.height in the following query is FLOAT:

SELECT * FROM GRAPH TABLE (gl
MATCH

(a IS person)

COLUMNS (a.height)

)i

The query output is as shown:

HEIGHT

1.7

Example 5-2 Determining Union Compatible Property Type for Two Different Labels

The data type for a.height in the following query is the union compatible type between FLOAT
and BINARY DOUBLE:

SELECT * FROM GRAPH TABLE (gl
MATCH

(a IS person|t3)

COLUMNS (a.height)

):

The query output is as shown:

HEIGHT
1.8E+000
1.65E+000
1.75E+000
1.7E+000
1.8E+000
1.65E+000

5-7

Chapter 5
Variable Length Path Patterns

In the SQL property graph g1, the property type for height associated with the labels
person and t3 is FLOAT and BINARY DOUBLE respectively. BINARY DOUBLE takes
precedence over FLOAT and hence the resulting output property type for a.height is
BINARY DOUBLE.

Example 5-3 No Union Compatible Property Type for Two Different Labels

Error is thrown for the following query as the data type for a.height is not union
compatible across the tables, person (FLOAT) and t2 (VARCHAR):

SELECT * FROM GRAPH TABLE (gl
MATCH
(a IS person|t2)
COLUMNS (a.height)
)i

On execution. the preceding query throws the error - ORA-01790: expression must
have same datatype as corresponding expression

Example 5-4 Determining Union Compatible Property Type for Shared Labels

Consider the SQL property graph definition for g3 which uses a shared label (t) that is
associated with a shared property name (height).

When querying g3, the data type for a.height in the following SQL graph query is
BINARY DOUBLE:

SELECT * FROM GRAPH TABLE (g3
MATCH

(a IS t)

COLUMNS (a.height)

)

The query output is a union of the property columns across all the graph element
tables sharing the label. Also, the property type is BINARY DOUBLE as per the Type
Compatibility Rules for Determining Property Types:

HEIGHT
1.8E+000
1.65E+000
1.75E+000
1.7E+000
1.8E+000
1.65E+000

5.2 Variable Length Path Patterns

ORACLE

Variable length graph patterns provide advanced querying support for SQL property
graphs.

Variable length graph patterns require recursion such that there is a variable number of
joins when translated into a relational query.

5-8

Chapter 5
Complex Path Patterns

Bounded recursive path patterns that include one or more of the following quantifiers are
supported:

Table 5-3 Quantifier Support for Variable Length Graph Patterns

Quantifier Description

{n} Exactly n

{n, m} Between n and m (inclusive)
{, m} Between 0 and m (inclusive)
? Oor1l

Note that the maximum upper bound limit for the quantifiers in the preceding table is 10.

See Example 5-14 for example queries using recursive path patterns with bounded
quantifiers.

5.3 Complex Path Patterns

ORACLE

You can query a SQL property graph using complex path patterns.

Cyclic Path Patterns

Vertex and edge path patterns can form cycles. For instance, consider the following graph
pattern:

MATCH (a IS person) -[IS friends]-> (a IS person)

The preceding graph pattern describes a single path pattern, and it contains the vertex
variable a twice. Thus, this finds cycles in the graph such that a binds to a person that has a
friends edge to itself.

Also, note the following:

* The label person for the vertex variable a need not be repeated twice. The result is the
same with or without repeating the label expression.

* You can use multiple in-line WHERE clauses to add conditions on the same pattern
variable.

e Using the same edge variable twice in a path pattern also has the semantics that the
edges must be the same.

Cycles can be longer than a single edge. See Example 5-11.
Multiple Path Patterns

A MATCH clause may have more than one path pattern, in a comma-separated list. For
instance, the following example shows two path patterns:

MATCH (a IS person WHERE a.name='John') -[IS student of]-> (b IS university),
(a IS person WHERE a.name='John') -[IS friends]-> (c IS person)

Any graph pattern variables in common between two path patterns denotes an overlap
between the path patterns. In the preceding example, the vertex variable a is shared. Note
that the variable a must bind to the same graph element table in each element pattern of the

5-9

Chapter 5
Vertex and Edge Identifiers

graph pattern, and thus there is an implicit natural inner join on such repeated graph
pattern variables.

If there are no shared variables between the two path patterns, then the resulting
output set is a cross product of the outputs of the individual path patterns. See
Example 5-9 and Example 5-10.

5.4 Vertex and Edge Identifiers

ORACLE

You can uniquely identify each vertex and edge in a SQL property graph with the
VERTEX ID and EDGE_ID operators, respectively, in a SQL graph query.

Graph element identifiers are based on the key value defined for the graph element
tables. Therefore, it is important to note the following:

* Graphs in TRUSTED mode may produce duplicate identifiers for different vertices if
some key columns do not have a UNIQUE constraint.

e Graphs in ENFORCED mode are guaranteed to always produce unique identifiers.

The VERTEX ID and EDGE_ID operators can be used in any expression appearing in the
COLUMNS or WHERE clause in a SQL graph query.

Note:

In order to use the VERTEX ID and EDGE ID operators, you must ensure that
you have the READ or SELECT privilege on both the property graph object and
its underlying database tables.

The input to the VERTEX ID operator is a single vertex graph pattern variable coming
from a matched vertex pattern as shown:

MATCH (v) COLUMNS (VERTEX ID(v) AS v_id)

Similarly, the EDGE_ID operator takes as input a single edge graph pattern variable
coming from a matched edge pattern as shown:

MATCH (vl)-[e]->(v2) COLUMNS (EDGE ID(e) AS e id)

The output of these operators is a vertex or an edge identifier of JSON data type. The
following shows an example of a JSON output describing the vertex identifier:

"GRAPH_OWNER": "GRAPHUSER",
"GRAPH_NAME": "STUDENTS_ GRAPH",
"ELEM TABLE": "PERSONS",
"KEY VALUE": {

"PERSON_ID": 1
}

In the preceding JSON output:

* GRAPH_OWNER: Owner of the property graph object

5-10

5.5 Using

ORACLE

Chapter 5
Using Aggregate Functions in SQL Graph Queries

* GRAPH NAME: Name of the property graph object
* ELEM TABLE: Name of the vertex table
* KEY VALUE: Name and value of the key column

The same list of JSON output fields apply to an edge identifier also. However, the ELEM TABLE
field represents the name of an edge table. Also, all operations that can be performed on a
JSON data type can be performed on the vertex and edge identifiers.

See Example 5-20 for more information.

VERTEX_EQUAL and EDGE_EQUAL Predicates

The VERTEX EQUAL and EDGE_EQUAL predicates can be used to, respectively, compare two
vertex and edge identifiers and return TRUE if they are equal.

The inputs to the VERTEX EQUAL predicate are two vertex graph pattern variables. Similarly for
EDGE EQUAL, both inputs must be edge graph pattern variables. These predicates can be
used in the WHERE clause in a SQL graph query.

See Example 5-21 for more information.

Aggregate Functions in SQL Graph Queries

You can use aggregate functions in a SQL graph query to obtain an aggregated output.

Both SQL built-in Aggregate Functions and user-defined aggregates are supported. These
functions can be included in both fixed length and variable length path patterns in a SQL

graph query.

The aggregate functions can be applied in the COLUMNS clause or in the graph pattern WHERE
clause of the SQL graph query. For instance, consider the following sample query:

SELECT *
FROM GRAPH TABLE (g
MATCH (v1) (-[e]l->(v2))({1,2}

COLUMNS (LISTAGG(v2.id, ',') AS id list)

The preceding graph query describes a variable length path pattern having {1, 2} as the
quantifier. The LISTAGG aggregate function is used in the COLUMNS clause to list all the ids
along a path.

Similarly, you can also apply aggregations in a fixed length path pattern as shown:

SELECT *
FROM GRAPH TABLE (g
MATCH (v1) (-[e]l->(v2)){2}

WHERE AVG (v2.age) >= 30
COLUMNS (LISTAGG(v2.id, ',') AS id list)

The preceding graph query describes a fixed length path pattern. The AvG aggregate used in
the WHERE clause determines only those paths where the average age >= 30 condition is met.
The resulting query output is a list of 1ds along a path.

See Example 5-15 for example queries using aggregations.

5-11

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-62BE676B-AF18-4E63-BD14-25206FEA0848

Chapter 5
Running SQL Graph Queries at a Specific SCN

See Also:

Graph Pattern in Oracle Database SQL Language Reference for more
examples on aggregations

5.6 Running SQL Graph Queries at a Specific SCN

You can run a SQL graph query at a given System Change Number (SCN) or
timestamp value.

The graph name, which is the first operand of the GRAPH TABLE operator, can be
associated with either of the following clauses:

* AS OF SCN: See Example 5-18

° AS OF TIMESTAMP: See Example 5-19

5.7 Privileges to Query a SQL Property Graph

ORACLE

You must have the READ or SELECT object privilege to query a SQL property graph.

If you are the graph creator, then you can allow other graph users to query your graph
by granting any one of the following privileges:

GRANT READ ON PROPERTY GRAPH <graph name> TO <schema user>;
GRANT SELECT ON PROPERTY GRAPH <graph name> TO <schema user>;

It is important to note that granting the preceding privileges allows access only to the
property graph object and not to its underlying database tables.

This allows the graph user to successfully run SQL graph queries on your graph
without having access to the underlying tables. For example:

GRANT READ ON PROPERTY GRAPH students graph TO hr;

SQL> conn hr/<password for hr>;

Connected.

SQL> SELECT * FROM GRAPH TABLE (graphuser.students graph MATCH (a IS
person) COLUMNS (a.name AS person a));

PERSON_A

However, to perform SQL graph queries with VERTEX ID and EDGE_ID operators, the
graph user must additionally have READ or SELECT privilege on the underlying database
tables.

5-12

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-1F1E8BC1-CEBB-43A2-B66A-C7D9BB24D88C

Chapter 5
Examples for SQL Graph Queries

5.8 Examples for SQL Graph Queries

ORACLE

This section contains a few examples for querying a SQL property graph with fixed-length
and variable-length graph pattern matching queries.

All the queries shown in the examples are run on the SQL property graph, students graph,
created in Example 4-1:

Example 5-5 Query Using An Edge Pattern Directed Left-To-Right

The following example shows a GRAPH TABLE query containing an edge pattern (- [e IS
friends]->) which is directed from left-to-right:

SELECT * FROM GRAPH TABLE (students graph
MATCH
(a IS person) -[e IS friends]-> (b IS person WHERE b.name='Alice')
WHERE a.name='Mary'
COLUMNS (a.name AS person_a, b.name AS person b)
):

The code produces the following output:

PERSON A PERSON B

Example 5-6 Query Using An Edge Pattern Directed Right-To-Left

The following example shows a query containing an edge pattern (<-[e IS friends]-) which
is directed from right-to-left:

SELECT * FROM GRAPH TABLE (students graph
MATCH
(a IS person) <-[e IS friends]- (b IS person WHERE b.name='Mary')
WHERE a.name='Alice'
COLUMNS (a.name AS person_a, b.name AS person b)
);

The code produces the following output:

PERSON A PERSON B

Example 5-7 Query Using Any-Directed Edge Pattern
The following example shows a query which contains any-directed edge pattern (-[e IS

friends]-):

SELECT * FROM GRAPH TABLE (students graph
MATCH
(a IS person) -[e IS friends] - (b IS person WHERE b.name='Alice' OR

5-13

ORACLE

Chapter 5
Examples for SQL Graph Queries

b.name="Mary"')

WHERE (a.name='Alice' OR a.name='Mary')

COLUMNS (a.name AS person_a, b.name AS person b)
)i

The code produces the following output:

PERSON A PERSON B

Example 5-8 Query Using an Anonymous Edge Variable

The following example shows a query where the edge element variable is omitted:

SELECT * FROM GRAPH TABLE (students graph
MATCH
(a IS person) -[]-> (b IS person)
COLUMNS (a.name AS person_a, b.name AS person b)
)i

Alternatively, you can replace the bracketed syntax for the edge pattern (-[]->) in the
preceding query with an abbreviated syntax ->.

The code produces the following output:

PERSON A PERSON B

Mary John
Bob Mary
John Bob

Mary Alice

Example 5-9 Query Using Multiple Path Patterns

The following example shows a query containing two path patterns (a) -> (b), (a)-
> (c)) which have a common vertex as shown:

SELECT * FROM GRAPH TABLE (students graph

MATCH
(a IS person WHERE a.name = 'John') -> (b IS person), (a IS person
WHERE a.name = 'John') -> (c IS university)

COLUMNS (a.name AS person_a, b.name AS person b,c.name as university)

)

The preceding code produces the following output:

PERSON A PERSON B UNIVERSITY

5-14

ORACLE

Chapter 5
Examples for SQL Graph Queries

Example 5-10 Query Using Disjoint Path Patterns

The following example shows a query containing two disjoint path patterns:

SELECT * FROM GRAPH TABLE (students graph

MATCH (a IS person WHERE a.name='John') -[IS student of]-> (b IS university),
(x IS person) -[IS friends]-> (y IS person)

COLUMNS (a.name AS a, b.name as university, x.name AS X, y.name as V)

)i

The resulting output is as shown:

A UNIVERSITY X Y
John ABC Mary John
John ABC Bob Mary
John ABC John Bob
John ABC Mary Alice

Example 5-11 Query Using Cyclic Path Patterns

The following example uses a cyclic path pattern (MATCH (a)-[]->(b)-[]->(c)-[]1->(a)) as
shown. Note that the example uses the same vertex pattern variable name a (which is bound
to person) twice. Thus, this finds cycles in the graph containing three edges that finally bind
to a itself.

SELECT * FROM GRAPH TABLE (students graph

MATCH
(a IS person) -[IS friends]-> (b IS person) -[IS friends]->
(c IS person) -[IS friends]-> (a)

COLUMNS (a.name AS person a, b.name AS person b, c.name AS person c)
)

The preceding code produces the following output:

PERSON A PERSON B PERSON C

Bob Mary John
John Bob Mary
Mary John Bob

Example 5-12 Query Using Label Disjunction

The following example uses label disjunction in the vertex label expression:

SELECT * FROM GRAPH TABLE (students_graph
MATCH

(a 1s person|university)

COLUMNS (a.name, a.dob)

)

5-15

ORACLE

Chapter 5

Examples for SQL Graph Queries

The code produces the following output:

NAME DOB
John 13-JUN-63
Mary 25-SEP-82
Bob 11-MAR-66
Alice 01-FEB-87
ABC NULL
XYZ NULL

6 rows selected.

Example 5-13 Query Using Label Conjunction

The following example uses label conjunction in the vertex label expression:

SELECT * FROM GRAPH TABLE (students graph

MATCH

(a IS person), (a IS person ht)

COLUMNS (a.name as name, a.dob as dob, a.height as height)
):

The code produces the following output:

NAME DOB HEIGHT
John 13-JUN-63 1.8
Mary 25-SEP-82 1.65
Bob 11-MAR-66 1.75
Alice 01-FEB-87 1.7

Example 5-14 Queries Using Recursive Path Patterns with Bounded
Quantifiers

The following example uses a recursive path pattern to retrieve all friends within two

hops:

SELECT * FROM GRAPH_TABLE (students_graph

MATCH (a is person WHERE a.name='Mary') -[is friends]->{2} (b is
person)

COLUMNS (a.name AS a , b.name AS Db)
):

The preceding code produces the following output:

5-16

ORACLE

Chapter 5
Examples for SQL Graph Queries

The following example uses a recursive path pattern to retrieve all friends between one and
two hops (inclusive):

SELECT * FROM GRAPH TABLE (students_graph

MATCH (a is person WHERE a.name='Mary') -[is friends]->{1, 2} (b is person)
COLUMNS (a.name AS a , b.name AS Db)

)i

The preceding code produces the following output:

A B
Mary Alice
Mary John
Mary Bob

The following example uses a recursive path pattern to retrieve all friends by performing from
zero to two iterations:

SELECT * FROM GRAPH TABLE (students_graph

MATCH (a is person WHERE a.name='Mary') -[is friends]->{,2} (b is person)
COLUMNS (a.name AS a , b.name AS b)

)i

The preceding code produces the following output:

A B
Mary Mary
Mary Alice
Mary John
Mary Bob

Note that in the first line of the preceding output, Mary is bound to both the element pattern
variables, a and b. This is because the query includes a zero hop iteration and therefore, the
vertex pattern to the left and the vertex pattern to the right must bind to the same graph
element.

Example 5-15 Queries Using Aggregations

The following example finds all paths that have a length between two and three edges
({2, 3}), starting from a person named John and following only outgoing edges labeled
friends and vertices labeled person. Vertices along paths should not have the same
person_id as John (WHERE p.person id <> friend.person id). The example uses the
following four aggregates in the COLUMNS clause:

* LISTAGG: The first one creates a comma-separated list of the person nhames along the
path and the second one creates a comma-separated list of the person ages along the
path.

* AVG: This computes the average age of the person group in a path.

5-17

Chapter 5
Examples for SQL Graph Queries

* COUNT: This computes the length of each path.

SQL> SELECT * FROM GRAPH TABLE (students graph
MATCH (p IS person) (-[e IS friends]-> (friend IS person)
WHERE p.person id <> friend.person id) {2, 3}

WHERE p.name = 'John'
COLUMNS (LISTAGG(friend.name, ',') as fnames,

LISTAGG (EXTRACT (YEAR from SYSDATE) - EXTRACT (YEAR from
friend.dob), ',') AS age list,

AVG (EXTRACT (YEAR from SYSDATE) - EXTRACT (YEAR from
friend.dob)) AS avg age group,

COUNT (e.friendship id) AS path));

The preceding code produces the following output:

FNAMES AGE LIST AVG_AGE GROUP PATH
Bob,Mary 57,41 49.00 2
Bob,Mary,Alice 57,41, 36 44 .67 3

The following example finds all paths between university ABC and university XYz such
that paths have a length of up to three edges ({, 3}). For each path, a JSON array is
returned such that the array contains the friendship id value for edges labeled
friends, and the subject value for edges labeled student of. Note that the
friendship id property is casted to VARCHAR (100) to make it type-compatible with the
subject property.

SELECT * FROM GRAPH TABLE (students graph
MATCH (ul IS university) -[e]-{,3} (u2 IS university)
WHERE ul.name = 'ABC' AND uZ2.name = 'XYZ'
COLUMNS (JSON ARRAYAGG (CASE WHEN e.subject IS NOT NULL THEN
e.subject
ELSE CAST(e.friendship id AS VARCHAR(100)) END)
AS path));

The preceding code produces the following output:

["ArtS", ll3ll, "Math"]
["Musicll’ "4", "Math"}

Example 5-16 Query Using Bind Variables

The example declares a bind variable, name and assigns a value as shown:

SQL> variable name VARCHAR2 (10);

SQL> BEGIN
2 :name := 'Bob';
3 END;
4 /

ORACLE 5-18

Chapter 5
Examples for SQL Graph Queries

PL/SQL procedure successfully completed.

Using this bind variable, the following query is performed:

SELECT * FROM GRAPH TABLE (students graph
MATCH
(a IS person) -[e IS friends]-> (b IS person WHERE b.name=:name)
WHERE a.name='John'
COLUMNS (a.name AS person_a,
b.name AS person b,
e.meeting date AS met on)
)i

The code produces the following output:

John Bob 01-SEP-00

Example 5-17 Query Invoking a PLISQL function Inside an Expression and in the
COLUMNS Clause

The example declares a user defined function(UDF) as shown:

CREATE OR REPLACE FUNCTION get age(
id NUMBER

)
RETURN NUMBER

AS
age NUMBER := 0;
BEGIN
-- get age
SELECT (EXTRACT (YEAR from SYSDATE) - EXTRACT (YEAR from birthdate))
INTO age
FROM persons
WHERE person id=id;
-- return age
RETURN age;
END;
/

Function created.

The following query invokes the UDF inside an expression in the WHERE clause and again in
the COLUMNS clause:

SELECT * FROM GRAPH TABLE (students graph
MATCH
(a IS person) -[e IS friends]-> (b IS person)
WHERE (get_age(a.person_id) > 50)
COLUMNS (a.name AS a,

ORACLE 5-19

Chapter 5
Examples for SQL Graph Queries

get_age(a.person_id) AS age,
b.name AS b,
e.meeting date AS met on)

)

The code produces the following output:

A AGE B MET ON
John 60 Bob 01-SEP-00
Bob 57 Mary 10-JUL-01

Example 5-18 Query Using SCN

Determine the current SCN value of the database as shown:

SQL> SELECT TIMESTAMP TO SCN (SYSDATE) FROM DUAL;

TIMESTAMP TO SCN (SYSDATE)

2117789

The following query using the preceding scN value as shown:

SELECT * FROM GRAPH TABLE (students graph AS OF SCN 2117789
MATCH
(a IS person) -[e]-> (b IS person)
COLUMNS (a.name AS a, b.name AS b, e.meeting date AS met on)
)i

The query produces the following output:

A B MET ON

Mary John 19-SEP-00
Bob Mary 10-JUL-01
John Bob 01-SEP-00
Mary Alice 19-SEP-00

Example 5-19 Query Using TIMESTAMP

The following query uses a TIMESTAMP value as shown:

SQL> SELECT * FROM GRAPH TABLE (students graph AS OF TIMESTAMP
SYSTIMESTAMP
MATCH
(a IS person WHERE a.name='John') -[e]-> (b IS person)
COLUMNS (a.name AS a, b.name AS b, e.meeting date AS met on)
)i

ORACLE 5-20

ORACLE

Chapter 5

Examples for SQL Graph Queries

The query produces the following output:

John Bob 01-SEP-00

Example 5-20 Query Using the VERTEX_ID and EDGE_ID ldentifiers

SELECT * FROM GRAPH TABLE (students graph

MATCH

(a IS person) -[e IS friends]-> (b IS person)

COLUMNS (JSON_ SERIALIZE (VERTEX ID(a)) AS id a , JSON SERIALIZE (EDGE ID(e))

As id e)
):

The query produces a JSON data type output that includes the graph owner, graph name and
graph element table name and the key value as shown:

ID A

{"GRAPH OWNER":"GRAPHUSER",
"GRAPH NAME":"STUDENTS GRAP
H","ELEM TABLE":"PERSONS","
KEY VALUE":{"PERSON ID":1}}

{"GRAPH OWNER":"GRAPHUSER",
"GRAPH NAME":"STUDENTS GRAP
H","ELEM TABLE":"PERSONS","
KEY VALUE":{"PERSON ID":2}}

{"GRAPH OWNER":"GRAPHUSER",
"GRAPH NAME":"STUDENTS GRAP
H","ELEM TABLE":"PERSONS","
KEY VALUE":{"PERSON ID":2}}

{"GRAPH OWNER":"GRAPHUSER",
"GRAPH NAME":"STUDENTS GRAP
H","ELEM TABLE":"PERSONS","
KEY VALUE":{"PERSON ID":3}}

{"GRAPH OWNER":"GRAPHUSER", "GR
APH NAME":"STUDENTS GRAPH","EL
EM TABLE":"FRIENDS","KEY VALUE

":{"FRIENDSHIP ID":1}}

{"GRAPH OWNER":"GRAPHUSER", "GR
APH NAME":"STUDENTS GRAPH","EL
EM TABLE":"FRIENDS","KEY VALUE
":{"FRIENDSHIP ID":2}}

{"GRAPH OWNER":"GRAPHUSER", "GR
APH NAME":"STUDENTS GRAPH","EL
EM TABLE":"FRIENDS","KEY VALUE
": {"FRIENDSHIP ID":3}}

{"GRAPH OWNER":"GRAPHUSER", "GR
APH NAME":"STUDENTS GRAPH","EL
EM TABLE":"FRIENDS","KEY VALUE

":{"FRIENDSHIP ID":4}}

Example 5-21 Query Using the VERTEX EQUAL Predicate

SELECT * FROM GRAPH TABLE (students graph

MATCH

(a IS person WHERE a.name='John') -[e IS friends]->{,1} (b IS person)

WHERE VERTEX EQUAL(a,Db)

COLUMNS (JSON_SERIALIZE (VERTEX ID(a)) AS id a , JSON_SERIALIZE (VERTEX ID(Db))

AS id b)
)i

5-21

Chapter 5
Examples for SQL Graph Queries

The query produces a JSON data type output that includes the graph owner, graph
name and graph element table name and the key value as shown:

{"GRAPH_OWNER":"GRAPHUSER", {"GRAPH OWNER":"GRAPHUSER",
"GRAPH NAME":"STUDENTS GRAP "GRAPH NAME":"STUDENTS GRAP
H","ELEM TABLE":"PERSONS"," H","ELEM TABLE":"PERSONS","
KEY VALUE":{"PERSON ID":1}} KEY VALUE":{"PERSON ID":1}}

e Setting Up Sample Data in the Database

5.8.1 Setting Up Sample Data in the Database

ORACLE

In order to create the SQL property graph, students_graph, shown in Creating a SQL
Property Graph, the following sample tables with data need to be set up in the
database.

1. Connect to the database as the schema user.

2. Run the following SQL script to create the university, persons, students, and
friendships tables with sample data in the database.

CREATE TABLE university (

id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT
BY 1),

name VARCHARZ (10),

CONSTRAINT u_pk PRIMARY KEY (id));

INSERT INTO university (name) VALUES ('ABC');
INSERT INTO university (name) VALUES ('XYZ');

CREATE TABLE persons (

person_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT

BY 1),

name VARCHARZ? (10),

birthdate DATE,

height FLOAT DEFAULT ON NULL 0,

hr data JSON,

CONSTRAINT person pk PRIMARY KEY (person id)

)i

INSERT INTO persons (name, height, birthdate, hr data)
VALUES ('John', 1.80, to_date('l3/06/l963', 'DD/MM/YYYY'"),
'{"department":"IT", "role":"Software Developer"}');

INSERT INTO persons (name, height, birthdate, hr data)
VALUES ('Mary', 1.65, to date('25/09/1982', 'DD/MM/YYYY'),
'"{"department":"HR", "role":"HR Manager"}');

INSERT INTO persons (name, height, birthdate, hr data)

VALUES ('Bob', 1.75, to_date('ll/03/l966', 'DD/MM/YYYY'),
'{"department":"IT","role":"Technical Consultant"}'");

5-22

Chapter 5
Examples for SQL Graph Queries

INSERT INTO persons (name, height, birthdate, hr data)
VALUES ('Alice', 1.70, to date('01/02/1987', 'DD/MM/YYYY'),
"{"department":"HR","role":"HR Assistant"}"');

CREATE TABLE student of (

s_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY
l) !

s univ_id NUMBER,

s_person_id NUMBER,

subject VARCHAR2 (10),

CONSTRAINT stud pk PRIMARY KEY (s id),

CONSTRAINT stud fk person FOREIGN KEY (s person id) REFERENCES
persons (person_id),

CONSTRAINT stud fk univ FOREIGN KEY (s univ_id) REFERENCES
university(id)

)

INSERT INTO student of(s univ_id, s person id,subject) VALUES
(1,1, 'Arts'");

INSERT INTO student of(s univ_id, s person id,subject) VALUES
(1,3, "Music');

INSERT INTO student of(s univ_id, s person id,subject) VALUES
(2,2, 'Math');

INSERT INTO student of(s univ_id, s person id,subject) VALUES
(2,4, 'Science');

CREATE TABLE friends (

friendship id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1),

person a NUMBER,

person_b NUMBER,

meeting date DATE,

CONSTRAINT fk person a id FOREIGN KEY (person_a) REFERENCES
persons (person_id),

CONSTRAINT fk person b id FOREIGN KEY (person b) REFERENCES
persons (person_id),

CONSTRAINT fs pk PRIMARY KEY (friendship id)
)

INSERT INTO friends (person a, person b, meeting date) VALUES (1, 3,
to date('01/09/2000', 'DD/MM/YYYY'));
INSERT INTO friends (person a, person b, meeting date) VALUES (2, 4,
to_date('l9/09/2000', 'DD/MM/YYYY'")) ;
INSERT INTO friends (person a, person b, meeting date) VALUES (2, 1,
to_date('l9/09/2000', 'DD/MM/YYYY'")) ;
INSERT INTO friends (person a, person b, meeting date) VALUES (3, 2,
to date('10/07/2001', 'DD/MM/YYYY'));

ORACLE' 5.3

Chapter 5
Supported Features and Limitations for Querying a SQL Property Graph

5.9 Supported Features and Limitations for Querying a SQL
Property Graph

ORACLE

This section provides the list of supported and unsupported features for querying a
SQL Property Graph.

Supported Features

» Single label, no label, label disjunction and label conjunction are supported in label
expressions inside a graph pattern. For more information, see:

— Table 5-2 in Label Expressions
— Examples for SQL Graph Queries

* Any directed edge patterns (MATCH (a)-[e]- (b) are supported.
See Example 5-7.

* Anonymous vertex (MATCH ()-[e]->()) and edge (MATCH (a)-[]->(b)) variables
are supported.
See Example 5-8.

e Complex path pattern queries are supported.
See Example 5-9, Example 5-10 and Example 5-11.

» Bounded recursive path pattern queries are supported.
See Example 5-14.

* Bind variables are supported inside a WHERE clause.
See Example 5-16.

* VERTEX IDand EDGE ID operators that uniquely identify a vertex and an edge
respectively can be used within a SQL graph query.

— See Vertex and Edge ldentifiers.
— See Example 5-20.

* VERTEX EQUAL and EDGE_EQUAL predicates for matching vertex and edge identifiers
are supported.

— See Vertex and Edge ldentifiers.
— See Example 5-21.

* SQL and JSON expressions are supported inside WHERE and COLUMNS clauses.
See Example 4-6.

» JSON simplified syntax is supported to access properties of type JSON.
See Example 4-6.

e PL/SQL functions are supported inside a WHERE or COLUMNS clause.
See Example 5-17.

* Single line and multi-line comments are supported within a graph query.

» All identifiers within the GRAPH TABLE operator in a SQL graph query, such as
graph names, alias names, graph element pattern variable names, labels and
property names follow the standard SQL rules about case sensitivity:

— ldentifiers within double quotes are case sensitive.

5-24

Chapter 5
Tuning SQL Property Graph Queries

— lIdentifiers not enclosed in double quotes are implicitly converted to uppercase and
enclosed in double quotes.

e SQL hints are supported inside and outside the SQL graph query for tuning.
See Tuning SQL Property Graph Queries for more information.

* You can query a graph defined in another schema if you have the required privileges.
See Granting System and Object Privileges for SQL Property Graphs for more
information.

Limitations

* Variable-length pattern matching goals (such as ANY, ALL, ALL SHORTEST, ANY CHEAPEST,
and so on) are not supported.

» Path pattern variables (MATCH p = (n)-[e]->(m)) are not supported.
» Clauses such as COST and TOTAL COST are not supported.
e Inline subqueries and LATERAL inline views are not supported.

e SQL Macros are not supported.

5.10 Tuning SQL Property Graph Queries

ORACLE

You can tune a SQL graph query using the EXPLAIN PLAN statement.

The GRAPH TABLE operator with the property graph is internally translated into equivalent
SQL. You can therefore generate the EXPLAIN PLAN for the property graph query as shown:

SQL> EXPLAIN PLAN FOR SELECT * FROM GRAPH TABLE (students graph
MATCH (a is person)-[e is friends]-> (b is person)

COLUMNS (a.name AS a , b.name AS b)

):

Explained.

The EXPLAIN PLAN can be viewed as shown:

SQL> SELECT * FROM TABLE (DBMS XPLAN.DISPLAY (format=>'ALL'));

Plan hash value: 1420380663

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
Time |
| 0 | SELECT STATEMENT \ | 4 264 | 10 (10) |
00:00:01 |
[* 1 | HASH JOIN \ | 4 264 | 10 (10) |
00:00:01 |
[* 2 HASH JOIN \ | 4 184 | 7T (15) |
00:00:01 |
| 3 | TABLE ACCESS FULL| PERSONS | 4 80 | 3 (0) 1
00:00:01 |
| 4 | TABLE ACCESS FULL| FRIENDSHIPS | 4 104 | 3 (0) |
00:00:01 |

5-25

ORACLE

| 5

TABLE ACCESS FULL | PERSONS
(0) 1 00:00:01 |

Query Block Name / Object Alias

SEL$B92C7F25
SEL$B92C7F25 / "A"Q"SELS$213F43E5"
SEL$B92C7F25 / "E"Q"SELS$213F43E5"
SEL$B92C7F25 / "B"Q"SELS$213F43E5"

Chapter 5

Tuning SQL Property Graph Queries

(identified by operation id):

You can tune the preceding query by using optimizer hints. For instance, the following
example uses the PARALLEL hint and the hint usage can be seen in the following
execution plan:

SQL> EXPLAIN PLAN FOR SELECT /*+ PARALLEL(4) */ * FROM GRAPH TABLE
(students_graph

MATCH (a is person)-[e is friends]->

COLUMNS

) ;

(a.name AS a ,

Explained.

SQL>

b.name AS D)

(b is person)

SELECT * FROM TABLE (DBMS XPLAN.DISPLAY (format=>'ALL'));

Plan hash value: 1486901074

| Id
| Cost

| Operation

(%CPU) | Time TO

| IN-OUT |

| Name

PQ Distrib |

* 10

O — O — O — N —

SELECT STATEMENT

(0) 1 00:00:01 |
PX COORDINATOR
| |
PX SEND QC (RANDOM)
(0) 00:00:01 | Q1,00
NESTED LOOPS
(0) 00:00:01 | Q1,00
NESTED LOOPS
(0) 00:00:01 | Q1,00
NESTED LOOPS
(0) 00:00:01 | Q1,00
PX BLOCK ITERATOR
| | 01,00
TABLE ACCESS FULL
(0)1 00:00:01 | Q1,00

TABLE ACCESS BY INDEX ROWID|

(0)1 00:00:01 | Q1,00

INDEX UNIQUE SCAN

(0)1 00:00:01 | Q1,00
INDEX UNIQUE SCAN

(0)1 00:00:01 | Q1,00

P->S

PCWP

PCWP

PCWP

PCWC

PCWP

PCWP

PCWP

PCWP

:TQ10000
QC (RAND) |

|
FRIENDSHIPS

|
PERSONS

PERSON_ PK

|
PERSON_PK

| 104

5-26

Chapter 5
Type Compatibility Rules for Determining Property Types

[11 | TABLE ACCESS BY INDEX ROWID | PERSONS 1 | 20 |
0 (0)] 00:00:01 | Q1,00 | PCWP |

Query Block Name / Object Alias (identified by operation id):

1 - SELSB92C7F25

7 - SEL$B92C7F25 / "E"Q"SEL$213F43E5"
8 - SEL$SB92CT7F25 / "A"@"SELS213F43E5"
9 - SEL$B92CT7F25 / "A"@"SELS213F43E5"
10 - SELS$B92C7F25 / "B"@"SELS$213F43E5"
11 - SELS$B92C7F25 / "B"@"SELS$213F43E5"

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1

0 - STATEMENT

PLAN TABLE OUTPUT

- PARALLEL (4)

- dynamic statistics used: dynamic sampling (level=2)
- Degree of Parallelism is 4 because of hint

5.11 Type Compatibility Rules for Determining Property Types

ORACLE

When using shared property names that are union compatible, the property type is
determined by certain type compatibility rules.

The following summarizes the rules for determining the type of a property for union
compatible properties at the time of DDL creation and also during query compilation:

» If expressions exposed by a same property of a shared label are character data, then the
data type of the property is determined as follows:

— If all expressions are of data type CHAR of equal length, then the property has a data
type CHAR of that length. If the expression are all of data type CHAR, but with different
lengths, then the property type is VARCHAR2 with the length of the larger CHAR type.

— If any, or all of the expressions are of data type VARCHAR?2, then the property has data
type VARCHAR?2. The length of the VARCHAR? is the maximum length size of the input
columns.

e If expressions exposed by a same property of a shared label are numeric data, then the
data type of the property is determined by numeric precedence:

— If any expression exposed by a property is of data type BINARY DOUBLE, then the
property has the data type BINARY DOUBLE.

— If no expression defining the property are of data type BINARY DOUBLE, but any
expression is of type BINARY FLOAT, then the property has data type BINARY FLOAT.

— If all expressions defining the property are of data type NUMBER, then the property has
data type NUMBER.

5-27

Chapter 5
Viewing and Querying SQL Property Graphs Using SQL Developer

If expressions exposed by a same property of a shared label are date and
timestamp data, then the data type of the property is determined as follows:

— If all expressions are of data type DATE, then property has data type DATE.

— If any, or all of the expressions are of data type TIMESTAMP, then the property
has data type TIMESTAMP.

5.12 Viewing and Querying SQL Property Graphs Using
SQL Developer

Using SQL Developer 23.1, you can view all the SQL property graphs existing in your
database schema by expanding SQL Property Graphs under the Property Graph
node in the Connections navigator.

Figure 5-1 SQL Property Graphs in SQL Developer

& -

&8

bl

=@ XML DB Repository
L? OLAP Option
P:c‘g Analytic Views
{3 Scheduler
f:_'_:;, Property Graph
& 8 PGQL Property Graphs
BVYSGL Property Graphs|
4%, BANK_SQL_PG
& STUDENT_NETWORK
£, STUDENTS_GRAPH
r:; RDF Semantic Graph
ﬁ' Recycle Bin

o e n .

i}

L

The following steps show an example for running graph queries on a SQL property
graph:

1.

ORACLE

Click on any SQL property graph.
This opens a SQL worksheet in another tab.
Run one or more graph queries in the SQL worksheet.

For example:

5-28

Chapter 5
Viewing and Querying SQL Property Graphs Using SQL Developer

Figu

re 5-2 Running SQL Graph queries in SQL Developer

PER-BRA @B |&é@ﬂl 1.25300002 seconds

Worksheet : Query Builder

= SELECT * FROM GRAPH_TABLE (students_graph
HATCH
(a IS person) -[e IS friends] -> (b IS person WHERE b.name='Alice')
WHERE a.name='Mary'
COLUHNS (a.name AS person_a, b.name AS person_b)
)

= SELECT * FROH GRAPH_TABLE (students_graph
HATCH
(a IS person) -[] -> (b IS person)
gnLurluS (a.nane AS person_a, b.name AS person_b)

= SELECT * FROM GRAPH_TABLE (students_graph
HATCH
(a IS person WHERE a.name = 'Bob')-> (b IS person)

-

_ COLUHNS (a.name AS person a. b.name AS person b)

ORACLE"

5-29

Loading a SQL Property Graph into the Graph
Server (PGX)

ORACLE

You can load a full SQL property graph or a subgraph into memory in the graph server (PGX).

" Note:

Ensure that you drop the graph when it is no longer in use to release the graph
server (PGX) memory. See Deleting a Graph for more information.

The following topics describe the various ways to load a SQL property graph into the graph
server (PGX).

* Loading a SQL Property Graph Using the readGraphByName API
You can load a SQL property graph into the graph server (PGX) by calling the
readGraphByName APl on a PgxSession object.

e Loading a Subgraph Using PGQL Queries
You can create an in-memory subgraph from a SQL property graph using the
PgSqglSubgraphReader API.

e Expanding a Subgraph
You can expand an in-memory subgraph by loading graph data from a SQL property
graph into memory, and merging it with the current subgraph.

e Handling Vertex and Edge Identifiers in the Graph Server (PGX)
The Oracle Database maintains globally unique identifiers in JSON format.

e Mapping Oracle Database Types to PGX Types
Learn how the input Oracle database types are mapped to its corresponding PGX types,
when a graph from the database is loaded into the graph server (PGX).

e Privileges to Load a SQL Property Graph
Learn about the privileges required to load a SQL property graph into the graph
server(PGX).

e Restriction on Key Types
Learn about the vertex and edge keys restrictions when loading a full or partial SQL
property graph into memory in the graph server (PGX).

e Loading SQL Property Graphs with Unsupported Key Types
If existing keys in a SQL graph cannot be loaded into the graph server (PGX), then
generated keys maintained by the database may be used instead.

6-1

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

6.1 Loading a SQL Property Graph Using the
readGraphByName API

ORACLE

You can load a SQL property graph into the graph server (PGX) by calling the
readGraphByName APl on a PgxSession object.

When loading a SQL property graph into the graph server (PGX), the full graph
schema will be determined and mapped to a graph configuration. The graphs will be
loaded as partitioned graphs where each vertex or edge table will be mapped to the
respective vertex or edge provider of the same name. Labels and properties will also
be loaded as defined.

However, note that only one label per vertex or edge table is supported in order to load
a SQL graph into the graph server (PGX).

For example, consider the following SQL property graph:

CREATE PROPERTY GRAPH student network
VERTEX TABLES (
persons KEY (person id)
LABEL person
PROPERTIES (person_id, name, birthdate AS dob)
)
EDGE TABLES (
friendships AS friends
KEY (friendship id)
SOURCE KEY (person_a) REFERENCES persons (person_id)
DESTINATION KEY (person b) REFERENCES persons(person_id)
PROPERTIES (friendship id, meeting date)
)i

You can load this SQL graph into memory as shown:

* JShell
 Java
* Python
JShell

opg4j> var graph = session.readGraphByName
("STUDENT NETWORK",GraphSource.PG_SQL)
graph ==> PgxGraph[name=STUDENTS NETWORK,N=4,E=4,created=1681007796946]

Java

PgxGraph graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG_SQL) ;

6-2

Chapter 6
Loading a SQL Property Graph Using the readGraphByName AP

Python

>>> graph = session.read graph by name ("STUDENT NETWORK", "pg sql")
>>> graph
PgxGraph (name: STUDENTS NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

e Loading a SQL Property Graph from a Different Schema
You can specify the schema name when using the readGraphByName API for loading a
SQL property graph.

* Loading a SQL Property Graph Using Graph Optimization Options
You can optimize the read or update performance, when loading a SQL property graph
using the graph optimization options.

* Loading a SQL Property Graph Using OnMissingVertex Options
If either the source or destination vertex or both are missing for an edge, then you can
use the OnMissingVertexOption to specify the behavior for handling the edge with the
missing vertex.

6.1.1 Loading a SQL Property Graph from a Different Schema

ORACLE

You can specify the schema name when using the readGraphByName API for loading a SQL
property graph.

If you only provide the graph name when calling the readGraphByName API, it is assumed that
the graph is owned by current user. But if you want to load a graph owned by another user,
then you must provide the schema name as well. Also, ensure that you have SELECT
permission on the SQL graph and all its underlying data tables.

The following example loads a SQL property graph from the GRAPHUSER schema:

e JShell
e Java
* Python
JShell

opg4j> var graph = session.readGraphByName ("GRAPHUSER", "STUDENT NETWORK",
GraphSource.PG_SQL)
graph ==> PgxGraph[name=STUDENT NETWORK,N=4,E=4,created=1680769031393]

Java

PgxGraph graph = session.readGraphByName ("GRAPHUSER", "STUDENT NETWORK",
GraphSource.PG_SQL) ;

6-3

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

Python

>>> graph = session.read graph by name ("STUDENT NETWORK", "pg sql",
"GRAPHUSER")

>>> graph

PgxGraph (name: STUDENT NETWORK 2, v: 4, e: 4, directed: True,
memory (Mb) : 0)

" See Also:

Privileges to Load a SQL Property Graph

6.1.2 Loading a SQL Property Graph Using Graph Optimization

Options

ORACLE

You can optimize the read or update performance, when loading a SQL property graph
using the graph optimization options.

The following example shows loading a SQL property graph optimized for READ
operation:

e JShell
e Java
* Python
JShell

opg4j> var graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG_SQL,

D> ReadGraphOption.optimizeFor (GraphOptimizedFor.READ))
graph ==> PgxGraph[name=STUDENT NETWORK,N=4,E=4,created=1681008951415]

Java
PgxGraph graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG_SQL,

ReadGraphOption.optimizeFor (GraphOptimizedFor.READ) ;

Python

>>> session.read graph by name ('STUDENT NETWORK', 'pg sql',
options=['optimized for read'])

6-4

ORACLE"

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

PgxGraph (name: STUDENT NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

The following example shows loading a SQL property graph optimized for UPDATE operation.
Also, note that the READ and UPDATE options cannot be used at the same time.

JShell
e Java

e Python
JShell

opg4j> var graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG_SQL,

> ReadGraphOption.optimizeFor (GraphOptimizedFor.UPDATES))
graph ==> PgxGraph[name=STUDENT NETWORK 2,N=4,E=4,created=1681009073501]

Java

PgxGraph graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG_SQL,
ReadGraphOption.optimizeFor (GraphOptimizedFor.UPDATES)) ;

Python
>>> session.read graph by name ('STUDENT NETWORK', 'pg sql',

options=['optimized for updates'])
PgxGraph (name: STUDENT NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

The following example shows loading a SQL property graph with the SYNCHRONIZABLE
optimization option. This option can be used in combination with the READ and UPDATE
options.

e JShell
e Java
* Python

6-5

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

JShell

opg4j> var graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG_SQL,

RS ReadGraphOption.SYNCHRONIZABLE)

graph ==> PgxGraph[name=STUDENT NETWORK,N=4,E=4,created=1696341305374]

Java

PgxGraph graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG SQL,
ReadGraphOption.SYNCHRONIZABLE) ;

Python

>>> session.read graph by name ('STUDENT NETWORK', 'pg sql',
options=['synchronizable'])

PgxGraph (name: STUDENT NETWORK 2, v: 4, e: 4, directed: True,
memory (Mb) : 0)

6.1.3 Loading a SQL Property Graph USINg omissingvertex Options

ORACLE

If either the source or destination vertex or both are missing for an edge, then you can
use the OnMissingVertexOption to specify the behavior for handling the edge with the
missing vertex.

The supported values are:

° OnMissingVertex.ERROR (default): Specifies that an error must be thrown for
edges with missing source or destination vertex.

* OnMissingVertex.IGNORE EDGE: Specifies that the edge for a missing source or
destination vertex must be ignored.

* OnMissingVertex.IGNORE_EDGE_LOG: Specifies that the edge for a missing source
or destination vertex must be ignored and all ignored edges must be logged.

* OnMissingVertex.IGNORE EDGE LOG_ONCE: Specifies that the edge for a missing
source or destination vertex must be ignored and only the first ignored edge must
be logged.

The following example loads a SQL property graph by ignoring the edges with missing
vertices and logging only the first ignored edge.

e JShell
e Java
e Python

6-6

Chapter 6
Loading a Subgraph Using PGQL Queries

JShell

opg4]> session.readGraphByName ("STUDENT NETWORK", GraphSource.PG SQL,
o>

ReadGraphOption.onMissingVertex (OnMissingVertex.IGNORE EDGE LOG ONCE))
$2 ==> PgxGraph[name=STUDENT NETWORK 2,N=4,E=4,created=1697264084059]

Java
PgxGraph graph = session.readGraphByName ("STUDENT NETWORK",
GraphSource.PG_SQL,

ReadGraphOption.onMissingVertex (OnMissingVertex.IGNORE EDGE LOG ONCE)) ;
Python
>>> session.read graph by name ('STUDENT NETWORK', 'pg sql',

options=['on missing vertex ignore edge log once'])
PgxGraph (name: STUDENT NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

6.2 Loading a Subgraph Using PGQL Queries

ORACLE

You can create an in-memory subgraph from a SQL property graph using the
PgSqglSubgraphReader API.

You can specify the subgraph to be loaded in one or more PGQL queries. Each of these
PGQL queries will be executed on the database and all the matched vertices and edges will
be loaded as part of the subgraph. Therefore, vertices and edges will be loaded only if they
match at least one of the queries.

Also, note that you can only create subgraphs from SQL property graphs that exist in the
current database user schema.

The following example creates a subgraph from a SQL property graph using multiple PGQL
gueries:

e JShell
 Java
e Python
JShell
opg4j> var graph = session.readSubgraph() .
ce> fromPgSqgl ("STUDENT_NETWORK") .
> queryPgql ("MATCH (vl IS Person)-[e IS friends]->(v2 IS Person)
WHERE id(vl) = 'PERSONS(1)'").
> queryPgql ("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'").

6-7

Chapter 6
Loading a Subgraph Using PGQL Queries

> load()
graph ==
PgxGraph [name=STUDENT NETWORK 4,N=3,E=1,created=1681009569883]

Java

PgxGraph graph = session.readSubgraph ()
.fromPgSql ("STUDENT NETWORK")
.queryPgqgl ("MATCH (vl IS Person)-[e IS friends]->(v2 IS Person)

WHERE id(vl) = '"PERSONS(1)'")
.queryPgqgl ("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'")
.load();

Python

>>> graph = session.read subgraph from pg sql ("STUDENT NETWORK",

. ["MATCH (vl IS Person)-[e IS friends]->(v2 IS Person) WHERE
id(vl) = '"PERSONS(1)'",

.. "MATCH (v:Person) WHERE id(v) = '"PERSONS(2)'"])

>>> graph
PgxGraph (name: STUDENT NETWORK, v: 3, e: 1, directed: True,
memory (Mb) : 0)

Loading Subgraphs with Custom Names

By default, the new subgraph gets created with the same name as the SQL property
graph. Alternatively, if you want to load a subgraph with a custom name, then you can
configure the subgraph name as shown:

e JShell
 Java
* Python
JShell
opg4j> var graph = session.readSubgraph().
> fromPgSql ("STUDENT NETWORK") .
o> queryPgql ("MATCH (vl IS Person)-[e IS friends]->(v2 IS
Person) WHERE id(vl) = '"PERSONS(1)'").
o> queryPgql ("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'").
o> load("student subgraph")

graph ==> PgxGraph[name=student subgraph,N=3,E=1,created=1681010160515]

ORACLE 6-8

Chapter 6
Expanding a Subgraph

Java

PgxGraph graph = session.readSubgraph ()

.fromPgSql ("STUDENT NETWORK")

.queryPgql ("MATCH (vl IS Person)-[e IS friends]->(v2 IS Person) WHERE
id(vl) = '"PERSONS(1)'")

.queryPgql ("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'")

.load ("student subgraph");

Python

>>> graph = session.read subgraph from pg sql ("STUDENT NETWORK",
. ["MATCH (vl IS Person)-[e IS friends]->(v2 IS Person) WHERE id(vl) =
'"PERSONS (1) '",
"MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"],
graph name="student subgraph")
>>> graph
PgxGraph (name: student subgraph, v: 3, e: 1, directed: True, memory(Mb): 0)

6.3 Expanding a Subgraph

ORACLE

You can expand an in-memory subgraph by loading graph data from a SQL property graph
into memory, and merging it with the current subgraph.

The following applies when merging two subgraphs:

e Expanding a subgraph with data from another SQL graph is only possible if the graph
schemas are compatible.

e The initial subgraph for expanding can also be loaded from a PGQL property graph and
need not necessarily originate from a SQL property graph.

* You can only expand a subgraph by loading graph data from a property graph that exists
in the current database schema.

e Also, see Dynamically Expanding a Subgraph for additional information.

The following example shows the expansion of the subgraph created in Loading a Subgraph
Using PGQL Queries:

e JShell

e Java

* Python

JShell

opg4j> graph = graph.expandGraph() .
LD withPgql () .
D> fromPgSql("STUDENT_NETWORK").

6-9

Chapter 6
Handling Vertex and Edge Identifiers in the Graph Server (PGX)

Lo queryPgqgl ("MATCH (vl IS Person) WHERE id(vl) = 'PERSONS(4)'").
LoD expand ()
graph ==>

PgxGraph [name=anonymous _graph 31,N=4,E=1,created=1681011908378]

Java

PgxGraph graph = graph.expandGraph ()
.withPgqgl ()
.fromPgSql ("STUDENT NETWORK")
.queryPgqgl ("MATCH (vl IS Person) WHERE id(vl) = 'PERSONS(4)'")
.expand () ;

Python

>>> graph = graph.expand with pgqgl ("MATCH (vl IS Person) WHERE id(vl)
= 'PERSONS (4) '", pg sgl name="STUDENT NETWORK")

>>> graph

PgxGraph (name: anonymous graph 34, v: 4, e: 1, directed: True,

memory (Mb) : 0)

6.4 Handling Vertex and Edge Identifiers in the Graph
Server (PGX)

ORACLE

The Oracle Database maintains globally unique identifiers in JSON format.

The following shows an example of a JSON output describing the vertex identifier:

"GRAPH OWNER": "GRAPHUSER",
"GRAPH NAME": "STUDENTS GRAPH",
"ELEM TABLE": "PERSONS",
"KEY VALUE": {

"PERSON _ID": 1
}

See Vertex and Edge Identifiers for more information.

However, the graph server (PGX) will not load the full identifiers, but only the
KEY VALUE column. This ID will then be maintained as a partitioned ID. For instance,
the partitioned ID constructed from the preceding JSON output is: PERSONS (1)

Note that when working with graphs loaded from SQL property graphs, always use the
partitioned ID format to refer to the elements by ID.

6-10

Chapter 6
Mapping Oracle Database Types to PGX Types

6.5 Mapping Oracle Database Types to PGX Types

Learn how the input Oracle database types are mapped to its corresponding PGX types,
when a graph from the database is loaded into the graph server (PGX).

The following table applies for both SQL property graphs and PGQL property graphs.

Table 6-1 Mapping Oracle Database Types to PGX Types

Oracle Database Typel

PGX Type

NUMBER

CHAR or NCHAR

VARCHAR, VARCHAR2, or NVARCHAR2
BINARY FLOAT

BINARY DOUBLE

FLOAT

DATE or TIMESTAMP
TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH TIME ZONE

The following implicit type conversion rules apply:
* NUMBER => LONG (for key columns)

e NUMBER => DOUBLE (for non-key columns)

. NUMBER (m) withm <= 9=> INTEGER

. NUMBER (m) with 9 < m <= 18=>LONG

e NUMBER (m,n) => DOUBLE

In the preceding entries, m is the variable for precision and n
is the variable for scale.

STRING

STRING

FLOAT

DOUBLE

The following implicit type conversion rules apply:
. FLOAT (m) withm <= 23 => FLOAT

. FLOAT (m) with 23 < m=> DOUBLE

In the preceding entries, m is the variable for precision.
TIMESTAMP

TIMESTAMP

TIMESTAMP WITH TIME ZONE

1 Data types for PGQL property graphs and SQL Property Graphs share a one-to-one mapping with Oracle

Database data types.

6.6 Privileges to Load a SQL Property Graph

Learn about the privileges required to load a SQL property graph into the graph server(PGX).

Ensure that you have the following set of permissions:

e SELECT permission is required for the SQL property graph.

— If you are the graph owner, you will automatically get this permission.

— Otherwise, you can grant the permission as shown:
GRANT SELECT ON PROPERTY GRAPH <graph name> TO <user name>;

e SELECT permission is required for all the underlying data tables of the SQL property graph

— This permission is required to access entity keys.

— Note that these permissions are handled separately from the graph permissions.

— You can grant the permission as shown:

ORACLE

6-11

Chapter 6
Restriction on Key Types

GRANT SELECT ON <table name> TO <user name>;

6.7 Restriction on Key Types

Learn about the vertex and edge keys restrictions when loading a full or partial SQL
property graph into memory in the graph server (PGX).

The following applies when loading an entire SQL property graph into memory:

e Itis mandatory that the vertex keys are both accessible and of a supported type.
For vertices, keys need to be one these (PGX) types: INTEGER, LONG, Or STRING.

» Composite vertex keys are not supported. This implies that each vertex table can
have one and only one key column.

* Loading edge keys are optional. This means that if an edge key type is not
supported, then the SQL graph can still be loaded using the readGraphByName API.
In such as case, the graph server (PGX) will not load the edge key, but generate a
new one instead.
For edges, keys can only be numeric and the only supported type is LONG.

e Composite edge keys are not supported.

However, when loading a subgraph from a SQL property graph, both the vertex and
edge keys must be of a supported PGX type. If the graph has at least one edge table
where keys cannot be loaded (either because keys are missing, composite keys, or
unsupported types), then you cannot load a subgraph into the graph server (PGX).

In most cases, this restriction can be worked around by using generated numeric keys
instead of existing keys. See Loading SQL Property Graphs with Unsupported Key
Types for an example.

¢ See Also:

Mapping Oracle Database Types to PGX Types

6.8 Loading SQL Property Graphs with Unsupported Key

Types

ORACLE

If existing keys in a SQL graph cannot be loaded into the graph server (PGX), then
generated keys maintained by the database may be used instead.

Consider the following SQL property graph which is defined with composite edge keys
(USERL, USER2) for its edge table FRIENDS WITH:

CREATE PROPERTY GRAPH SOCIAL NETWORK
VERTEX TABLES (
ACCOUNT
KEY (ID) LABEL USER PROPERTIES (FULL NAME, USERNAME)
)
EDGE TABLES (
FRIENDS WITH
KEY (USER1, USER2)

6-12

Chapter 6
Loading SQL Property Graphs with Unsupported Key Types

SOURCE KEY (USER1) REFERENCES ACCOUNT (USERNAME)
DESTINATION KEY (USER2) REFERENCES ACCOUNT (USERNAME)
NO PROPERTIES

)
OPTIONS (TRUSTED MODE) ;

Although the SOCIAL NETWORK graph can be loaded into the graph server (PGX), the edge
keys will not be loaded. Also, subgraph loading is not supported for composite edge keys.

In order to resolve these issues, you can perform the following workaround steps on the
underlying FRIENDS WITH edge table.

1. Add a numeric key column to the FRIENDS WITH table.

ALTER TABLE FRIENDS WITH ADD ID NUMBER(5) GENERATED ALWAYS AS IDENTITY;

The data table of the FRIENDS WITH provider now has an additional ID column which will
automatically be populated with generated numeric keys.

Note that using GENERATED AS IDENTITY columns require additional permissions in the
database, such as CREATE ANY SEQUENCE.

2. Update the graph definition to use this new column as a key for the FRIENDS WITH edge
table.

a. If you want to create a graph with the same name, then you must first drop the
existing graph.

DROP PROPERTY GRAPH SOCIAL NETWORK;
b. Update and run the new graph definition.

CREATE PROPERTY GRAPH SOCIAL NETWORK
VERTEX TABLES (
ACCOUNT
KEY (ID)
LABEL USER
PROPERTIES (FULL NAME, USERNAME)
)
EDGE TABLES (
FRIENDS WITH
KEY (ID)
SOURCE KEY (USER1) REFERENCES ACCOUNT (USERNAME)
DESTINATION KEY (USER2) REFERENCES ACCOUNT (USERNAME)
NO PROPERTIES
)
OPTIONS (TRUSTED MODE) ;

Alternatively, you may also use a CREATE OR REPLACE PROPERTY GRAPH Statement,
which will override a graph definition, if one with the same name exists already.

The new graph definition supports subgraph loading using the SOCIAL NETWORK SQL
graph.

ORACLE 6-13

Executing PGQL Queries Against SQL
Property Graphs

You can directly run PGQL queries against a SQL property graph in the database.

The PGQL query execution flow is shown in the following figure:

Figure 7-1 PGQL on SQL Property Graphs in Oracle Database

PGOQL on RDBMS
Query Execution, PGQOL to 3QLPGO

JDBEC

Scalable and Persistent Storage

Oracle Database

UMDERLYING DB TAELES , GRAPH ELEMENT TABLES

The basic execution flow is:

1
2
3.
4

The PGQL query is performed on a SQL property graph through a Java API.

The PGQL query is translated to SQL/PGQ (SQL graph query).

The translated SQL/PGQ is submitted to Oracle Database by JDBC.

The SQL/PGQ result set is wrapped as a PGQL result set and returned to the caller.

See Supported PGQL Features and Limitations for SQL Property Graphs for a complete list
of supported and unsupported features.

ORACLE

7-1

Chapter 7
Creating a SQL Property Graph Using PGQL

* Creating a SQL Property Graph Using PGQL
You can create a SQL property graph from the database tables using the CREATE
PROPERTY GRAPH PGQL DDL statement.

* Executing PGQL SELECT Queries on a SQL Property Graph
You can execute PGQL SELECT queries, on a SQL property graph, using the Java
APl in the oracle.pg.rdbms.pggl package.

e Supported PGQL Features and Limitations for SQL Property Graphs
Learn about the supported PGQL features and limitations for SQL property
graphs.

7.1 Creating a SQL Property Graph Using PGQL

You can create a SQL property graph from the database tables using the CREATE
PROPERTY GRAPH PGQL DDL statement.

The following example uses the dataset tables that are created by Importing Data from
CSV Files:

 JShell
e Java

* Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<service>"
opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "<username>", "<password>") ;
opg4j> var pgglConn = PgglConnection.getConnection (conn)
opg4j> var pgglStmt = pgglConn.createStatement ()
opg4j> var pgqgl =

...> "CREATE PROPERTY GRAPH bank sql pg "

..> + "VERTEX TABLES (BANK ACCOUNTS "

..> + "KEY (ID) "
..> + "LABEL Account "
..> + "PROPERTIES (ID, NAME) "
D
..> + "EDGE TABLES (BANK TXNS "
..> + "KEY (TXN _ID) "
..> + "SOURCE KEY (FROM ACCT ID) REFERENCES BANK ACCOUNTS (ID) "
..> + "DESTINATION KEY (TO ACCT ID) REFERENCES BANK ACCOUNTS (ID) "
..> + "LABEL TRANSFER "
..> + "PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT, DESCRIPTION) "
...> + ") OPTIONS (PG _SQL) "
opg4j> pgglStmt.execute (pgql)

ORACLE 7-2

ORACLE

Java

import java.sqgl.Connection;
import java.sqgl.Statement;
import java.sqgl.DriverManager;

import oracle.pg.rdbms.pgqgl.PgglConnection;
import oracle.pg.rdbms.pgqgl.PgglStatement;

/*

Chapter 7
Creating a SQL Property Graph Using PGQL

* This example creates a SQL property graph.

*/
public class CreateSQLGraph
{

public static void main(String[] args) throws Exception

{

int idx=0;

String jdbcUrl = args
String username = args
String password = args
String graph = args

Connection conn = null;
PgglStatement pgglStmt = null;

try {
//Get a jdbc connection

[—

’

’

’

’

conn = DriverManager.getConnection(jdbcUrl, username, password);

conn.setAutoCommit (false);

// Get a PGQL connection

PgglConnection pgglConn = PgglConnection.getConnection (conn);

// Create a PGQL Statement

pgglStmt = pgglConn.createStatement () ;

// Execute PGQL Query
String pgql =

"CREATE PROPERTY GRAPH " + graph + " " +

"VERTEX TABLES (bank accounts " +

"KEY (id) " +

"LABEL Account " +
"PROPERTIES (id, name)" +
myowog

"EDGE TABLES (bank txns " +
"KEY (txn_id) " +

"SOURCE KEY (from acct id) REFERENCES bank accounts (id) " +
"DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (id) "™ +

"LABEL Transfer " +

"PROPERTIES (from acct id, to_acct id, amount, description)" +

") OPTIONS (PG SQL) ";

// Print the results

7-3

Chapter 7
Executing PGQL SELECT Queries on a SQL Property Graph

pgalStmt.execute (pgqgl) ;
}
finally {
// close the statement
if (pgglStmt != null) {
pgglStmt.close () ;
}
// close the connection
if (conn !'= null) {
conn.close();

}

Python

>>> pggl conn = opgdpy.pgqgl.get connection ("<username>","<password>",
"jdbc:oracle:thin:@<host name>:<port>/<service>")
>>> pgql statement = pgql conn.create statement ()
>>> pggl = """
. CREATE PROPERTY GRAPH bank sql pg
. VERTEX TABLES (
BANK ACCOUNTS
KEY (ID)
LABEL Account
.. PROPERTIES (ID, NAME)
-)
. EDGE TABLES (
BANK TXNS
KEY (TXN_ID)
SOURCE KEY (FROM ACCT ID) REFERENCES BANK ACCOUNTS (ID)
DESTINATION KEY (TO_ACCT ID) REFERENCES BANK ACCOUNTS (ID)
LABEL TRANSFER
PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT, DESCRIPTION)
) OPTIONS (PG_SQL)
>>> pgql statement.execute (pgql)
False

See Creating a Property Graph Using PGQL to understand the PGQL concepts.

7.2 Executing PGQL SELECT Queries on a SQL Property
Graph

You can execute PGQL SELECT queries, on a SQL property graph, using the Java API
inthe oracle.pg.rdbms.pggl package.

The following example shows a PGQL SELECT query execution:

ORACLE 7-4

ORACLE

Chapter 7
Executing PGQL SELECT Queries on a SQL Property Graph

e JShell
e Java

* Python
JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<db service>"

opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "<username>", "<password>")

opg4j> conn.setAutoCommit (false)

opg4j> var pgglConn PgglConnection.getConnection (conn)

opg4j> var pgqlStmt = pgglConn.createStatement ()

opg4j> String query "SELECT n.name FROM MATCH (n:person) ON STUDENTS GRAPH"
opg4j> var rs = pgqglStmt.executeQuery(query)

opg4j> rs.print()

fomm +
| NAME |
fomm +
| John |
| Mary |
| Bob |
| Alice |
fomm +
Java

Connection conn =
DriverManager.getConnection ("<jdbcUrl>", "<username>", "<password>") ;

conn.setAutoCommit (false);

PgglConnection pgglConn = PgglConnection.getConnection (conn);

PgglStatement pgqglStmt = pgglConn.createStatement();

String query = "SELECT n.name FROM MATCH (n:person) ON
STUDENTS GRAPH";

PgglResultSet rs = pgglStmt.executeQuery (query);

rs.print();

Python

>>> pggl conn = opgdpy.pgql.get connection ("<username>","<password>",
"<jdbcUrl>")

>>> pgql statement = pgqgl conn.create statement ()

>>> query = "SELECT n.name FROM MATCH (n:person) ON STUDENTS GRAPH"
>>> rs = pgql statement.execute query(query)

>>> rs.print()

fo—m———— +
| NAME |
fo—m———— +
| John |
| Mary |

7-5

Chapter 7

Supported PGQL Features and Limitations for SQL Property Graphs

| Bob |
| Alice |

7.3 Supported PGQL Features and Limitations for SQL

Property Graphs

Learn about the supported PGQL features and limitations for SQL property graphs.

The following table provides the complete list of supported and unsupported PGQL
functionalities for SQL property graphs:

Table 7-1 Supported PGQL Functionalities and Limitations for SQL Property

Graphs

Features PGQL on SQL Property Graphs
CREATE PROPERTY GRAPH Supported
DROP PROPERTY GRAPH Supported
Fixed-length pattern matching Supported
Variable-length pattern matching Not Supported
goals
Variable-length pattern matching Not Supported
quantifiers
Variable-length path unnesting Not Supported
GROUP BY Supported
HAVING Supported
Aggregations Supported:
e COUNT
. MIN, MAX, AVG, SUM
. LISTAGG
Not supported:
« ARRAY AGG
. JSON_ARRAYAGG
DISTINCT Supported
. SELECT DISTINCT
e Aggregation with DISTINCT
(such as, COUNT (DISTINCT
e.prop))
SELECT v.* Not Supported
ORDER BY (+ASC/DESC), LIMIT, Supported
OFFSET
Data Types All available Oracle RDBMS data types supported

ORACLE

7-6

Chapter 7
Supported PGQL Features and Limitations for SQL Property Graphs

Table 7-1 (Cont.) Supported PGQL Functionalities and Limitations for SQL

Property Graphs
__|
Features PGQL on SQL Property Graphs

JSON Supported:

JSON storage:
— JSON strings (VARCHAR?)
— JSON objects

e JSON functions:
Any JSON function call that follows the syntax,
json function name(argl, arg2,..).For
example:
json value (department data,
'S.department')

Limitations:

e Simple Dot Notation

* Any optional clause in a JSON function call (such
as RETURNING, ERROR, and so on) is not supported.
For example:
json_value (department data,
'S.employees[1] .hireDate' RETURNING
DATE)

Operators Supported:
* Relational: +, -, *, /, %, - (unary minus)
* Arithmetic: =, <>, <, >, <=, >=
. Logical: AND, OR, NOT
+ String: | | (concat)

Functions and predicates Supported are all available functions in the Oracle
RDBMS that take the form function name (argl,
arg2, ...) with optional schema and package
qualifiers.

Supported PGQL functions/predicates:

. IS NULL, IS NOT NULL

. LOWER, UPPER

. SUBSTRING

. ABS, CEIL/CEILING, FLOOR, ROUND

e EXTRACT
° CAST
° CASE

. IN and NOT IN

Unsupported PGQL functions/predicates are all vertex/
edge functions

User-defined functions Supported:
* PL/SQL functions
e Functions created via the Oracle Database
Multilingual Engine (MLE)

ORACLE 7.7

ORACLE

Chapter 7

Supported PGQL Features and Limitations for SQL Property Graphs

Table 7-1 (Cont.) Supported PGQL Functionalities and Limitations for SQL

Property Graphs

Features

PGQL on SQL Property Graphs

Subqueries:

e Scalar subqueries

. EXISTS and NOT EXISTS
subqueries

e LATERAL subquery

Supported subqueries:

. EXISTS
. NOT EXISTS
Not supported:

e Scalar subqueries
e LATERAL subquery

GRAPH_TABLE operator Not supported
INSERT/UPDATE/DELETE Not supported
INTERVAL literals and operations Not supported

7-8

Visualizing SQL Graph Queries Using the
APEX Graph Visualization Plug-in

You can use the Oracle Application Express (APEX) Graph Visualization plug-in to visualize
and interact with SQL property graphs in an APEX application.

The following topics explain more about the plug-in:

About the APEX Graph Visualization Plug-in
The APEX Graph Visualization plug-in integrates a Java Script Library that supports
graph visualization in APEX applications.

Getting Started with the APEX Graph Visualization Plug-in
This section helps you get started with the Graph Visualization plug-in in your APEX
application.

Configure Attributes for the APEX Graph Visualization Plug-in
Learn how to customize your graph visualization using the Graph Visualization plug-in
attributes in your APEX application.

8.1 About the APEX Graph Visualization Plug-in

The APEX Graph Visualization plug-in integrates a Java Script Library that supports graph
visualization in APEX applications.

ORACLE

See Graph JavaScript API Reference for Property Graph Visualization for more information.

The plug-in mainly allows you to:

Visualize SQL property graph queries from the graph data in your database.

Explore the graph vertices and edges. You can also select and visualize these graph
elements individually or in groups.

Interact with the graph visualization by performing various actions such as changing the
graph layouts, grouping or ungrouping selected vertices, removing selected vertices or
edges, and so on.

Style the vertices and edges in the graph by configuring the style settings such as size,
color, icon, label values, and so on.

Visualize and study the evolution of the graph over time.

The following figure shows an example of graph visualization in an APEX application using
the plug-in:

8-1

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=graphviz_js_doc

Chapter 8
Getting Started with the APEX Graph Visualization Plug-in

@ Accounta
=]
& Q-
=) Mozhe Atiinson)
= @) © @ rance
=) v,
) Laura Bissot = i g @ presdent
% bﬂé Kevin' Mourgos JoseManuel Urman
Digna Loreniz Adam FriDb -) b 0
) 7 @) o
% = E Payam Kaufliggale % Johp-shen purc
= =)
BrucSymst % % = .
= Alexander Hunold oS B -2 fiena Kockhar Nancy Greenberg ©--
% =) Stevén King = kgiis Popp @
valli Patabatia %% = =] $
= =
ﬁ Irene Mikiilineni @ . <helli Baida cgae\ ST Oy((u'e
David Austin) Mafthew Weiss =S 5 %_
& ‘ =
=] @)
% Der Raphadly QT Daniel Faviet
Steven Male Karep.Colmenares
Qv Shanta Vollman &
= =
Julia Nayer £ =
u_g (_73 —\ Sigal Tobias
James Landry Guy Himuro b%

Alexander Khoo

Note that the plug-in supports icons in the Font APEX library.

8.2 Getting Started with the APEX Graph Visualization Plug-

In

ORACLE

This section helps you get started with the Graph Visualization plug-in in your APEX
application.

Before you get started, ensure that your APEX workspace meets the following
requirements:

e The target application into which you want to import the plug-in exists.
e The target application is connected to Oracle Database 23ai.

e The SQL property graph to be used for visualization exists in the default database
schema.
Using the command editor in the SQL Workshop component, you can create a
SQL property graph using the CREATE PROPERTY GRAPH DDL statement (see Using
the Command Editor).

1. Download the Graph Visualization (Preview) plug-in
(region type plugin graphviz.sql) from the Oracle APEX GitHub repository.

2. Sign in to your APEX workspace (see Signing In to Your Workspace).

3. Import the downloaded plug-in script (region type plugin graphviz.sql) file into
your target APEX application (see Importing Plug-ins).

4. Implement the plug-in in an application page to perform various graph
visualizations.

The following basic example describes the steps to visualize a graph existing in
your database using the Graph Visualization plug-in.

a. Open the application page in Page Designer.
b. Select the Rendering tab on the left pane of the Page Designer.
c. Right-click an existing component and add a new region component.

d. Select the new region and configure the following attributes in the Region tab
of the Property Editor on the right pane of the Page Designer:

i. Enter the Identification Title.

ii. Select Graph Visualization (Preview) as Identification Type.

8-2

https://oracle.github.io/font-apex/
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-9A30095A-1FBF-42EE-B56E-0A6B96805A8A
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-9A30095A-1FBF-42EE-B56E-0A6B96805A8A
https://oracle.github.io/apex/
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-7A8123F6-21D2-4981-A75A-2E94C9CD8BD1#GUID-7A8123F6-21D2-4981-A75A-2E94C9CD8BD1
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-C35440FD-FE8A-4799-A63F-2DB7D34087A2

ORACLE

Chapter 8
Getting Started with the APEX Graph Visualization Plug-in

iii. Select the source Location as Local Database.

iv. Select the Type value.
You can choose either SQL Query or PropertyGraph as the Type value.

v. Embed the SQL graph query to retrieve the graph data.

Depending on the type selected in the previous step, you can provide the query
as shown in the following examples:

* SQL Query: Enter the SQL graph query input as shown:

SELECT *
FROM GRAPH TABLE (
BANK SQL PG
MATCH (a IS account) -[e IS transfer]-> (b IS
account)

WHERE a.id = 816
COLUMNS (vertex id(a) AS id a, edge id(e) AS id e,
vertex id(b) AS id b)
)
* PropertyGraph : Provide the SQL graph query as shown:
— Graph Name: Select the SQL property graph name.

— Match Clause: Enter the MATCH clause of the graph query. For example:
(a IS account) -[e IS transfer]-> (b IS account)

— Columns Clause: Enter the coLUMNS clause of the graph query. For

example:
(vertex id(a) AS id a, edge id(e) AS id e, vertex id(b) AS
id b)

— Where Clause: Optionally, enter the WHERE clause of the query. For
example, a.id = 816.

Run the application page to visualize the graph rendered by the plugin.

Figure 8-1 Visualizing a SQL Graph Query in an APEX Application

816

934 289

287 590 812

Tip:

You can use the Height attribute to control the size of the visualization
panel.

8-3

Chapter 8
Getting Started with the APEX Graph Visualization Plug-in

5. Optionally, if you wish to implement pagination in the preceding graph
visualization, then perform the following steps:

a. Switch ON the SQL Query Supports Pagination setting in the Attributes tab
of the Property Editor for the graph visualization component in your APEX
application.

b. Setthe Page Size value in the Attributes tab of the Property Editor.
c. Save and rerun the application page.
The graph gets rendered with pagination.

6. Optionally, you can import and run the Sample Graph Visualizations application
from Oracle APEX GitHub repository.

See Importing the Sample Graph Visualizations Application in APEX for more
information.

* Importing the Sample Graph Visualizations Application in APEX
The Sample Graph Visualizations application demonstrates the use of the Graph
Visualization plug-in.

8.2.1 Importing the Sample Graph Visualizations Application in APEX

ORACLE

The Sample Graph Visualizations application demonstrates the use of the Graph
Visualization plug-in.

Perform the following steps to import the Sample Graph Visualizations application:

1. Download the Sample Graph Visualizations application from Oracle APEX
GitHub repository.

2. Import the sample-apps/sample-graph-visualizations/sample-graph-
visualizations 23c.sql into your APEX instance by following the steps in
Importing an Application.

You can directly run the sample application once it is installed.

Figure 8-2 Sample Graph Visualization Home Page

Sample Graph Visualizations

o This is a sample application that showcases the features of the Oracle Graph Visualization Toolkit (GVT) APEX plugin. Click on the different features below to explore them in depth.

Network Evolution Styling Saving Graph State

Keyboard Navigation Shortcuts

Also, note that the sample application requires a secure HTTPS connection. If you
want to disable secure connection, then perform the following steps:

8-4

https://github.com/oracle/apex/tree/23.2/sample-apps/sample-graph-visualizations
https://github.com/oracle/apex/tree/23.2/sample-apps/sample-graph-visualizations
https://github.com/oracle/apex/tree/23.2/sample-apps/sample-graph-visualizations
https://docs.oracle.com/en/database/oracle/apex/23.1/htmdb/importing-export-files.html#GUID-D01CF7A6-A593-4ACD-A92C-C94CAC100D61

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

Caution:

It is not recommended to disable secure connections in production deployment.

a. Navigate to the sample application home page in App Builder.
b. Click Shared Components.

c. Click Authentication Schemes under Security.

d. Click the Current authentication scheme.

e. Click the Session Sharing tab and turn off the Secure switch.

f. Click Apply Changes and then run the application.

8.3 Configure Attributes for the APEX Graph Visualization Plug-

In

ORACLE

Learn how to customize your graph visualization using the Graph Visualization plug-in
attributes in your APEX application.

You can configure the attributes for the plug-in component in the Attributes tab (Property
Editor) on the right pane of the Page Designer.

8-5

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

Settings

Page Size

Settings (7]

SQL Query

supports (:)

Pagination
Appearance

Layout - Select - w

Group Edges C'

Veertex Label
Edge Label

Maximum Label
Length

ﬂ Mades

Displa
ey ﬂ Exploration

Styles F]

Callbacks

Expand [A]

FetchActions 7]

Persist (2]

See the Interface page in Graph JavaScript APl Reference for Property Graph
Visualization which describes the interface mapping for the plugin attributes.

The attributes are grouped as per their scope in the following panels:

Settings
Attribute Description
Page Size Specify the number of vertices and edges to be displayed per

page.

ORACLE 8-6

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=js_interface

ORACLE

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

Attribute

Description

Settings

Specify the graph settings in JSON format. See Settings for more
information.

SQL Query supports

Switch on this toggle if you are implementing the paginate

Pagination interface.
Appearance
Attribute Description
Layout Specify the graph layout.

Group Edges

Switch on this toggle to group edges.

Vertex Label

Specify the property to be used for the vertex label.

Edge Label

Specify the property to be used for the edge label.

Maximum Label Length

Specify the maximum length of the label.

Display Modes

Select this checkbox to display the modes panel with the following
options:

* Select:

* Fitto Screen

* Toggles Sticky Mode

Display Exploration

Select this checkbox to display the following graph exploration actions:
* Drop - Delete selected vertices

* Group - Group selected vertices

* Ungroup - Ungroup selected vertices

* Undo last action

* Redo last action

* Reset the visualization to its default state

Styles Specify the styles configuration in JSON format. See Styles for more
information.

Callbacks

Attribute Description

Expand To expand a selected vertex in the graph visualization, see Expand for

more information.

FetchActions

To retrieve the graph actions from a data source, refer to fetchActions
for more information.

Persist

To persist the graph actions to a data source, refer to persist for more
information.

e Settings

You can apply different graph settings such as switching layouts, grouping edges, or
showing the evolution of the graph entities based on a property using the Settings
attribute in the Property Editor of the Page Designer.

You can style a graph using the Styles attribute in the Property Editor of the Page

e Styles
Designer.
* Expand

You can expand a selected vertex in the graph and fetch the adjacent vertices using the
Expand attribute in the Property Editor of the Page Designer.

8-7

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=js_paginate
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_fetchActions
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_persist

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8.3.1 Settings

You can apply different graph settings such as switching layouts, grouping edges, or
showing the evolution of the graph entities based on a property using the Settings
attribute in the Property Editor of the Page Designer.

1. Select the graph visualization component in the Rendering tab on the left pane of
the Page Designer.

2. Select Attributes in the Property Editor on the right pane of the Page Designer.

3. Enter the input for the desired action in JSON format in the Settings input box in
the Settings panel.

See settings in Oracle Graph JavaScript APl Reference for Property Graph
Visualization for more information on the Settings interface.

For instance, the following JSON example provides the layout and pageSize
configurations:

{
"pageSize": 10,
"layout": "concentric"

}

¢ Note:

If the JSON input contains the settings for properties that are already set
in the Appearance panel (such as Layout or Group Edges) or Settings
panel (Page Size), then the property values that are provided directly will
override the JSON values.

The following JSON example shows a sample configuration for adding network
evolution to the graph visualization. The evolution of the graph data is based on
the HireDate property:

"evolution": {

"chart": "line",
"unit": "year",
"vertex": "properties.HireDate"

8.3.2 Styles

You can style a graph using the Styles attribute in the Property Editor of the Page
Designer.

1. Select the graph visualization component in the Rendering tab on the left pane of
the Page Designer.

2. Select Attributes in the Property Editor on the right pane of the Page Designer.

ORACLE 8-8

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_settings

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

3. Enter the input for styling in JSON format in the Styles input box.

See styles in Oracle Graph JavaScript API Reference for Property Graph Visualization for
more information on the Style interface.
The following example shows the JSON input to add a vertex style.

"vertex":{
"size":12,
"label":"${properties.FirstName} ${properties.LastName}",
"color":"#d5445a",
"icon":"fa-user"

Note:

« If the JSON input contains styling for properties that are already set in the
Appearance panel (such as Vertex Label, Edge Label, or Maximum
Label Length), then the property values that are provided directly will
override the JSON values.

e The plug-in supports icons in the Font APEX library.

8.3.3 Expand

ORACLE

You can expand a selected vertex in the graph and fetch the adjacent vertices using the
Expand attribute in the Property Editor of the Page Designer.

1. Switch to the Processing tab on the left pane of the Page Designer and navigate to the
After Submit node.

Right-click and select Create Process from the context menu.
Enter the process Name.
Specify Type as Execute Code.

Select the source Location as Local Database.

@ o & N

Select the source Language as PL/SQL and enter the following code in the PL/SQL
input box.

DECLARE data clob;
id VARCHARZ2 (100) := apex application.g x01;
graph VARCHAR2 (100) := '<graph name>';
hops NUMBER := <no of hops>;
n NUMBER := hops - 1;
match clause VARCHARZ (100);
query VARCHARZ (1000) ;

BEGIN
IF n = 0 THEN
match clause := ' MATCH (x) -[e]-> (z) ';
ELSE

8-9

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_styles
https://oracle.github.io/font-apex/

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

match clause := ' MATCH (x) ->{," [| n || "} (y) -[e]l-> (z)
END IF;
query := 'SELECT id x, id e, id z
FROM GRAPH TABLE (' || graph || match clause ||
'"WHERE JSON value (vertex id(x), ''S.ELEM TABLE'') ||
json query(vertex id(x), ''$.KEY VALUE'' returning varchar2) =
lll“id"lll

COLUMNS (vertex id(x) as id x, edge id(e) as id e,
vertex id(z) as id z))';
SELECT <helper function>(query) INTO data FROM sys.dual;
htp.p(data);

END;

In the preceding code:
e <graph_name>: Name of the graph
* <hops>: Number of hops to be expanded

* <helper_function>: Name of the function that provides the CURSOR for the SQL
graph query as input to the ORA_SQLGRAPH_TO JSON function and obtains the
JSON output for visualization.

Note that the process takes the vertex id to be expanded as input and returns the
resulting output as JSON.

7. Select the execution Point as Ajax Callback.

8. Switch to the Rendering tab on the left pane of the Page Designer and select the
graph visualization component.

9. Switch to the Attributes tab on the right pane and enter the following code in the
Expand input box in the Callbacks panel.

const data = await apex.server.process('<process name>', {
x01: ids[0]

}, { dataType: 'text' });

try {
return JSON.parse (data);

} catch (error) {
return [];

}

In the preceding code, <process_name> refers to the name of process that was
provided at step-3.

10. Click Save.

11. Run the application page and you can now click expand (as shown highlighted in
the following figure) on any specific vertex in the graph.

ORACLE 8-10

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

Figure 8-3 Expanding on a Specific Graph Vertex

934

Expanded Graph Vertices

Expand - Fetch neighbors based on cenfigurable hop count

- e R T e

The inset image in the preceding figure shows the graph with expanded vertices as
rendered by the plug-in.

ORACLE 8-11

PGQL Property Graphs

ORACLE

Learn and work with PGQL property graphs (also known as property graph views).

You can work with PGQL property graphs if you are using Oracle Database 23ai or earlier
database versions.

About PGQL Property Graphs
You can create PGQL property graphs over data stored in Oracle Database. You can
perform various graph analytics operations using PGQL on the graphs.

Loading a PGQL property graph into the Graph Server (PGX)
You can load a full PGQL property graph or a subgraph into the graph server (PGX).

Quick Starts for Using PGQL Property Graphs
This chapter contains quick start tutorials and other resources to help you get started on
working with PGQL property graphs.

Getting Started with the Client Tools
You can use multiple client tools to interact with the graph server (PGX) or directly with
the graph data in the database.

Property Graph Query Language (PGQL)

PGQL is a SQL-like query language for property graph data structures that consist

of vertices that are connected to other vertices by edges, each of which can have key-
value pairs (properties) associated with them.

About PGQL Property Graphs

You can create PGQL property graphs over data stored in Oracle Database. You can perform
various graph analytics operations using PGQL on the graphs.

The following sections explain PGQL property graphs in detail:

* Creating PGQL Property Graphs on Oracle Database Tables
The CREATE PROPERTY GRAPH statement in PGQL can be used to create a view-like
object that contains metadata about the graph. This graph can be queried using PGQL.

» Creating a PGQL Property Graph By Importing a GraphSON file
Using the GraphImporterBuilder API, you can create a PGQL property graph by
importing graph data from a GraphSON file.

* Using JSON to Store Vertex and Edge Properties
You can adopt a flexible schema approach in a PGQL property graph by encoding the
vertex and edge properties as a single JSON value. You can then map this to a property
value in a PGQL property graph.

9.1 Creating PGQL Property Graphs on Oracle Database Tables

The CREATE PROPERTY GRAPH statement in PGQL can be used to create a view-like
object that contains metadata about the graph. This graph can be queried using PGQL.

PGQL property graphs are created directly over data that exists in the relational database
tables. These graphs are stored in the database tables and therefore they have a schema.

One of the main benefits of PGQL property graphs is that all updates to the database tables
are immediately reflected in the graph.

Metadata Tables for PGQL Property Graphs

Each time a CREATE PROPERTY GRAPH statement is executed, metadata tables are created in
the user's own schema.

The following table describes the set of metadata tables that are created for each graph on
executing CREATE PROPERTY GRAPH statement.

All columns shown underlined in the Table 9-1 are part of the primary key of the table. Also all
columns have a NOT NULL constraint.

Table 9-1 Metadata Tables for PGQL Property Graphs
- __]

Table Name

Description

graphName ELEM TABLES Metadata for graph element (vertex/edge) tables (one row per element table):

* ET NAME: the name of the element table (the "alias")

* ET TYPE: either "VERTEX" or "EDGE"

* SCHEMA NAME:the name of the schema of the underlying table
« TABLE NAME: the name of underlying table

ORACLE

9-1

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

Table 9-1 (Cont.) Metadata Tables for PGQL Property Graphs
]

Table Name

Description

graphName LABEL$

Metadata on labels of element tables (one row per label; one label per element
table):
* LABEL NAME: the name of the label

» ET NAME: the name of the element table (the "alias")
. ET_TYPE: either "VERTEX" or "EDGE"

graphName PROPERTYS

Metadata describing the columns that are exposed through a label (one row per

property)

* PROPERTY NAME:the name of the property

* ET NAME: the name of the element table (the "alias")

» ET TYPE: either "VERTEX" or "EDGE"

» LABEL NAME: the name of the label that this property belongs to

* COLUMN NAME: the name of the column (initially, only the case where
property names equal column names is allowed)

graphName KEYS

Metadata describing a vertex/edge key (one row per column in the key)
» COLUMN NAME: the name of the column in the key

¢ COLUMN NUMBER:the number of the column in the key
For example, in KEY (&, b, ¢), "a" has number 1, "b" has number 2 and "c"
has number 3.

» KEY TYPE: either "VERTEX" or "EDGE"

» ET NAME: the name of the element table (the "alias")

graphName SRC_DST KEY$

Metadata describing the edge source/destination keys (one row per column of a

key):

e ET NAME: the name of the element table (the "alias"), which is always an
edg_;e table

+ VT NAME: the name of the vertex table

* KEY TYPE: either "EDGE_SOURCE" or "EDGE_DESTINATION"

* ET COLUMN NAME: the name of the key column

e ET COLUMN NUMBER:the number of the column in the key.

For example, in KEY (a, b, ¢), "a" has number 1, "b" has number 2 and "c"
has number 3.

Note:

Currently, support is only for SOURCE KEY
(...) REFERENCES T1. So only the edge
source/destination key is stored.

Example 9-1 To create a PGQL property graph

Consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH student network
VERTEX TABLES (

person
KEY

ORACLE

(id)

9-2

ORACLE

Chapter 9

Creating PGQL Property Graphs on Oracle Database Tables

LABEL student
PROPERTIES (name),
university
KEY (id)
PROPERTIES (name)
)
EDGE TABLES (
knows
key (personl, person2)
SOURCE KEY (personl) REFERENCES person

DESTINATION KEY (person2) REFERENCES person

NO PROPERTIES,
person AS studentOf
key (id, university)
SOURCE KEY (id) REFERENCES person (id)

(1d)

DESTINATION KEY (university) REFERENCES university (id)

NO PROPERTIES

)
OPTIONS (PG_PGQL)

The 0PTIONS clause allows the creation of a PGQL property graph. You must simply pass the

CREATE PROPERTY GRAPH statement to the execute method:

" Note:

SQLcl.

SQLcl.

stmt.execute ("CREATE PROPERTY GRAPH student network ..

This results in the creation of the following metadata tables:

SQL> SELECT * FROM STUDENT NETWORK ELEM TABLES;

e You can create PGQL property graphs using the RDBMS Java API or through

e You can query PGQL property graphs using the graph visualization tool or

") ;

ET NAME ET TYPE SCHEMA NAME TABLE NAME
PERSON VERTEX SCOTT PERSON
UNIVERSITY VERTEX SCOTT UNIVERSITY
KNOWS EDGE SCOTT KNOWS
STUDENTOF EDGE SCOTT PERSON

SQL> SELECT * FROM STUDENT NETWORK LABELS;

LABEL NAME ET NAME ET TYPE
STUDENT PERSON VERTEX
UNIVERSITY UNIVERSITY VERTEX

9-3

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

KNOWS KNOWS EDGE
STUDENTOF STUDENTOF EDGE

SQL> SELECT * FROM STUDENT NETWORK PROPERTYS;

PROPERTY NAME ET NAME ET TYPE LABEL NAME COLUMN NAME
NAME PERSON VERTEX STUDENT NAME
NAME UNIVERSITY VERTEX UNIVERSITY NAME

SQL> SELECT * FROM STUDENT NETWORK KEYS;

COLUMN NAME COLUMN NUMBER KEY TY ET NAME

ID 1 VERTEX PERSON

ID 1 VERTEX UNIVERSITY
PERSON1 1 EDGE KNOWS
PERSON2 2 EDGE KNOWS

ID 1 EDGE STUDENTOF
UNIVERSITY 2 EDGE STUDENTOF

SQL> SELECT * FROM STUDENT NETWORK SRC DST KEYS$;

ET NAME VT_NAME KEY TYPE ET_COLUMN_ NAME
ET_COLUMN_ NUMBER

KNOWS PERSON EDGE_SOURCE
PERSON1 1

KNOWS PERSON EDGE DESTINATION
PERSON2 1

STUDENTOF PERSON EDGE_SOURCE

ID 1

STUDENTOF UNIVERSITY EDGE DESTINATION
UNIVERSITY 1

You can now run PGQL queries on the student network PGQL property graph.

See Executing PGQL Queries Against PGQL Property Graphs for more details to
create, query and drop PGQL property graphs.

* Retrieving Metadata for PGQL Property Graphs
You can retrieve the metadata of PGQL property graphs created in the database
using the built-in PROPERTY GRAPH METADATA graph in your PGQL queries.

* Privileges for Working with PGQL Property Graphs
Learn about the privileges that are required for working with PGQL property
graphs.

ORACLE 9-4

Chapter 9

Creating PGQL Property Graphs on Oracle Database Tables

9.1.1 Retrieving Metadata for PGQL Property Graphs

You can retrieve the metadata of PGQL property graphs created in the database using the
built-in PROPERTY GRAPH METADATA graph in your PGQL queries.

Figure 9-1 PROPERTY GRAPH METADATA Graph Design

VERTEX_TABLE

PROPERTY_GRAPH

OWNER
GRAPH_NAME

HAS_VERTEX_TABLE J

HAS_SOURCE_TABLE

Q HAS_EDGE_TABLE

OWNER
VERTEX_TABLE_ALIAS
TABLE_NAME

HAS_DESTINATION _TABLE

The PROPERTY GRAPH METADATA graph structure including properties is as shown:

EDGE_TABLE

OWNER
EDGE_TABLE_ALIAS
TABLE_NAME

J

HAS_KEY_COLUMN

HAS_KEY_COLUMN

HAS_LABEL

COLUMN_NAME
ORDINAL_POSITION

The following describes the preceding design of the metadata graph:

PROPERTY GRAPH -[:HAS VERTEX TABLE]-> VERTEX TABLE

HAS_LABEL

-[:HAS_EDGE TABLE]-> EDGE TABLE

VERTEX TABLE -[:HAS KEY COLUMN]-> KEY COLUMN
-[:HAS LABEL]-> LABEL

EDGE TABLE -[:HAS KEY COLUMN]-> KEY COLUMN

i
i
i

HAS LABEL]-> LABEL
HAS SOURCE TABLE]-> VERTEX TABLE
HAS DESTINATION TABLE]-> VERTEX TABLE

LABEL -[:HAS PROPERTY]-> PROPERTY

LABEL_NAME

HAS_PROPERTY

PROPERTY

PROPERTY_NAME

It is important to note the following when using PROPERTY GRAPH METADATA in PGQL queries:

ORACLE"

9-5

ORACLE

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

* The PROPERTY GRAPH METADATA graph is automatically created and updated the
first time you attempt to access it in a PGQL query.

* The PROPERTY GRAPH METADATA graph is similar to a PGQL property graph and has
its own set of metadata tables that describe its structure. In addition to the
metadata tables for PGQL property graphs that are described in Table 9-1, the
graph data for PROPERTY GRAPH METADATA is also stored in database objects that
are listed in the following table:

Table 9-2 Additional Metadata Tables

Table Name Description

PROPERTY GRAPH METADATA GRAPH LIST Metadata table describing the list of PGQL

$ property graphs to which the current user
has access

PROPERTY GRAPH METADATA EDGE KEY C Metadata table describing the edge key

OLUMNSS columns

PROPERTY GRAPH METADATA EDGE LABEL Metadata table describing the edge labels
S$

PROPERTY GRAPH METADATA EDGE TABLE Metadata table describing the edge tables
S3

PROPERTY GRAPH METADATA LABEL PROP Metadata table describing the vertex and

ERTIESS edge label properties
PROPERTY GRAPH METADATA LABELSS Metadata table describing the vertex and
edge labels

PROPERTY GRAPH METADATA VERTEX KEY Metadata table describing the vertex key
_COLUMNSS columns
PROPERTY GRAPH METADATA VERTEX LAB Metadata table describing the vertex labels
ELS$
PROPERTY GRAPH METADATA VERTEX TAB Metadata table describing the vertex tables
LESS

Note:

It is important that you do not alter or remove any of the metadata tables
for the PROPERTY GRAPH METADATA graph.

* When running PGQL queries using the Java API, you must disable autocommit on
the JDBC connection (conn.setAutoCommit (false)). This ensures that
PROPERTY GRAPH METADATA graph gets created automatically.

The following examples show using PROPERTY GRAPH METADATA in PGQL queries to
retrieve the required metadata.

You can retrieve the list of graphs to which you have access as shown:

* JShell

e Java

9-6

ORACLE"

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

* Python

JShell

opg4j> String pgql =

...> "SELECT g.graph name "

..> +"FROM MATCH (g:property graph) ON property graph metadata "
...> +"ORDER BY g.graph name"
pggl ==> "SELECT g.graph name FROM MATCH (g:property graph) ON
property graph metadata ORDER BY g.graph name"
opg43j> pgglStmt.executeQuery(pgqgl) .print ()

Java

String pgql = "SELECT g.graph name "+

"FROM MATCH (g:property graph) ON property graph metadata "+
"ORDER BY g.graph name";

PgglResultSet rs = pgglStmt.executeQuery(pgql);

rs.print();

Python

>>> pggl = '"'
. SELECT g.graph name
. FROM MATCH (g:property graph) ON property graph metadata
. ORDER BY g.graph name

>>> pgql statement.execute query(pgql) .print ()

On execution, the preceding query produces the following result:

| BANK_GRAPH_VIEW |
| FINANCIAL TRANSACTIONS |
| FRIENDS |

You can retrieve the vertex properties of a graph as shown:

e JShell
e Java
* Python

9-7

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

JShell

opg4j> String pgqgl =

...> "SELECT p.property name "

...> +"FROM MATCH (g:property graph)-[:has vertex table]->(v)-
[:has_label]->(l:label)-[:has property]->(p:property) "

..> +"ON property graph metadata "

..> +"WHERE g.graph name = 'FRIENDS' "
pggl ==> "SELECT p.property name FROM MATCH (g:property graph) -
[:has _vertex table]->(v)-[:has label]->(l:label)-[:has property]-
>(p:property) ON property graph metadata WHERE g.graph name =
'FRIENDS' "
opg4di> pgqlStmt.executeQuery (pgqgl) .print ()

Java

String pggl = "SELECT p.property name "+

"FROM MATCH (g:property graph)-[:has vertex table]->(v)-[:has label]-
>(l:label)-[:has property]->(p:property) "+

"ON property graph metadata "+

"WHERE g.graph name = 'FRIENDS' ";

PgglResultSet rs = pgglStmt.executeQuery(pgql);

rs.print();

Python

>>> pggql = '"!

. SELECT p.property name
... FROM MATCH(g:property graph)-[:has vertex table]->(v)-[:has label]-
>(l:label)-[:has property]->(p:property)

. ON property graph metadata

. WHERE g.graph name = 'FRIENDS'

LR |

>>> pggl statement.execute query(pgql) .print ()

On execution, the preceding query produces the following result:

tommm oo +
| PROPERTY NAME |
tommm oo +
| BIRTHDATE |
| HEIGHT |
| NAME |
tommm oo +

9.1.2 Privileges for Working with PGQL Property Graphs

Learn about the privileges that are required for working with PGQL property graphs.

ORACLE 9-8

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file
In order to create PGQL property graphs, ensure that you have the following privileges:

CREATE SESSION
CREATE TABLE

Note that these privileges can be granted directly to the user:

GRANT CREATE SESSION, CREATE TABLE TO <graphuser>

Or they can be granted indirectly through an appropriate role:

GRANT CREATE SESSION, CREATE TABLE TO GRAPH DEVELOPER

For loading a PGQL property graph created by another user into the graph server (PGX), you
must have:

° SELECT permission on the underlying source database tables or views.

e SELECT permission on the metadata tables used by the PGQL property graph.
See Table 9-1 and Table 9-2 for more details on the metadata tables.

9.2 Creating a PGQL Property Graph By Importing a GraphSON

file

ORACLE

Using the GraphImporterBuilder API, you can create a PGQL property graph by importing
graph data from a GraphSON file.

This import functionality consists of the following steps:

1. Parsing of the GraphSON to a data structure.

2. Creating the SQL tables from the data structure and inserting the data.
3. Generating and running the CREATE PROPERTY GRAPH statement.

The following example show using the GraphImporterBuilder API to create a PGQL property
graph from a GraphSON file.

* JShell
 Java
* Python
JShell

opg4j> import oracle.pg.imports.*
opg4j> var importer = new GraphImporter.Builder().

L setFilePath ("<path to graphson file>").

CoD> setBatchSize (2) .

> setInputFormat (GraphImportInputFormat.GRAPHSON) .
> setOutputFormat (GraphImportOutputFormat.PG PGQL) .

9-9

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

setThreads (4) .

setDbJdbcUrl ("<jdbc_url>").

setDbUsername ("<username>") .

setDbPassword ("<password>") .

.. setGraphName ("mygraph") .

> build()

importer ==> oracle.pg.imports.GraphImporter@5d957c£f0
opg4j> var ddl = importer.importGraph ()

vV V V V V

Java

import oracle.pg.imports.*;

GraphImporter importer = new GraphImporter.Builder()
.setFilePath("<path to graphson file>")
.setBatchSize (2)

.setInputFormat (GraphImportInputFormat.GRAPHSON)
.setOutputFormat (GraphImportOutputFormat.PG PGQL)
.setThreads (4)

.setDbJdbcUrl ("<jdbc_url>")
.setDbUsername (" <username>")

.setDbPassword ("<password>")

.setGraphName ("mygraph")

build();

Python

>>> from opg4py.graph importer import GraphImporter
>>> config = {

'jdbc_url' : '<jdbc_url>',

'username' : '<username>',

'password'’ : '<password>',

'file path' : '<path to graphson file>',
'graph _name' . 'mygraph',

'output format': 'pg pgql',

'input format' : 'graphson'

}
>>> importer = GraphImporter (config)
>>> importer.import graph()

The preceding example sets up the required SQL tables in the database, generates
and runs the DDL statement to create mygraph. For instance, this example generates
the following CREATE PROPERTY GRAPH DDL statement:

"CREATE PROPERTY GRAPH mygraph
VERTEX TABLES (
software
KEY (id)
LABEL software
PROPERTIES ARE ALL COLUMNS,
person

ORACLE 9-10

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

KEY (id)
LABEL person
PROPERTIES ARE ALL COLUMNS
)
EDGE TABLES (
created
KEY (id)
SOURCE KEY (sid) REFERENCES person (id)
DESTINATION KEY (did) REFERENCES software (id)
LABEL created
PROPERTIES ARE ALL COLUMNS,
knows
KEY (id)
SOURCE KEY (sid) REFERENCES person (id)
DESTINATION KEY (did) REFERENCES person (id)
LABEL knows
PROPERTIES ARE ALL COLUMNS
) OPTIONS (PG PGQL)"

Alternatively, you can also create a connection to the database by using a data source to
connect to the database as shown in the following example:

JShell
¢ Java
JShell

opg4j> import oracle.pg.imports.*
opg4j> import oracle.jdbc.pool.OracleDataSource

opg4j> var ds = new OracleDataSource() // setup the data source
ds ==> oracle.jdbc.pool.OracleDataSource@4154ecd3
ds.setURL("<jdbc url>")

ds.setUser ("<username>")

ds.setPassword ("<password>")

opg4j> var importer = new GraphImporter.Builder().

c> setFilePath("<path to graphson file>").
setBatchSize (2) .
setInputFormat (GraphImportInputFormat.GRAPHSON) .
setOutputFormat (GraphImportOutputFormat.PG PGQL) .
setThreads (4) .
setDataSource (ds) .
.. setGraphName ("mygraph") .

> build()
importer ==> oracle.pg.imports.GraphImporter@5d957c£f0
opg4j> var ddl = importer.importGraph ()

vV V. V V V V

ORACLE' 9-11

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

Java

import oracle.pg.imports.*;

import oracle.jdbc.pool.OracleDataSource;

//Setup the datasource

var ds = new OracleDataSource();

ds.setURL (<jdbc url>)

ds.setUser (<username>) ;

ds.setPassword (<password>) ;

//Setup the GraphImporter

GraphImporter importer = new GraphImporter.Builder ()
.setFilePath ("<path to graphson file>")
.setBatchSize (2)
.setInputFormat (GraphImportInputFormat.GRAPHSON)
.setOutputFormat (GraphImportOutputFormat.PG PGQL)
.setThreads (4)
.setDataSource (ds)
.setGraphName ("mygraph")
.build();

var ddl = importer.importGraph();

Also, note the following:

* The GraphImporterBuilder API supports GraphSON file format version 3.0 only.
e Only GraphSON data types listed in Table 9-7 are supported.

The following sections provide more details on the GraphImporter parameters and the
data type mapping between GraphSON and Oracle Database.

* Additional Information on the Graphlmporter Parameters
Learn more about the parameters used by the GraphImporter.

* Mapping GraphSON Types to Oracle Database Data Types
The GraphSON data types can be mapped to their corresponding Oracle
Database data types.

9.2.1 Additional Information on the Graphimporter Parameters

ORACLE

Learn more about the parameters used by the GraphImporter.

Table 9-3 Database Connection Parameters

Parameter Description Setter in API Default Optional
Value
dataSource Data source for ~ setDataSource NULL Only if passing
the database dbJdbcUrl, dbUsername
and dbPassword
dbJdbcUrl JDBC url of the setDbJdbcUrl ™" Only if passing a
database dataSouce
dbPassword Database setDbPassword "" Only if passing a
password dataSouce

9-12

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

Table 9-3 (Cont.) Database Connection Parameters
|

Parameter Description Setter in API Default Optional
Value
dbUsername Database user setDbUsername "" Only if passing a
name dataSouce

Table 9-4 Graphlimporter Configuration Parameters
]

Parameter Description Setter in API Default Optional
Value
pathName Path to the setPathname " No
GraphSON file
graphName Resulting graph setGraphName " Yes
name
inFormat Input format for the setInputFormat GraphIm Yes
importer portInp
utForma
t.GRAPH
SON
outFormat Output format for setOutputFormat GraphIm Yes
the importer portOut
putForm
at.pG P
GQL
batchSize Number of rows setBatchSize 1000 Yes

read before
inserting data to
the database

threads Number of threads setThreads 1 Yes
to be used to insert
to the database

Table 9-5 SQL Storage Parameters
]

Parameter Description Setter in API Default Optional
Value
stringFieldSize GraphSON setStringFields 100 Yes

String datatype Size
is translated as
VARCHAR? in the
database.

This parameter
represents the

VARCHAR? size for

the data storage.

ORACLE 9-13

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

Table 9-5 (Cont.) SQL Storage Parameters

Parameter Description Setter in API Default Optional

Value
fractionalSecon The fractional setFractionalSe 6 Yes
dsPrecision seconds precision condsPrecision

parameter found in
TIMESTAMP data
type in the Oracle
Database.

Table 9-6 PGQL Supported Parameters

Parameter Description Setter in API Default Optional
Value
parallel Degree of setPathname 0 Yes

parallelism to use
for query and

update

operations
dynamicSampli Dynamic setGraphName 2 Yes
ng sampling value

matchOptions Additional options setMatchOptio NULL Yes
used to influence ns
query translation
and execution

options Additional options setOptions NULL Yes
used to influence
modify translation
and execution

9.2.2 Mapping GraphSON Types to Oracle Database Data Types

The GraphSON data types can be mapped to their corresponding Oracle Database
data types.

The following table shows GraphSON data types mapping to Oracle Database data
types:

Table 9-7 Mapping GraphSON Types to Oracle Database Types

GraphSON Type Oracle Database Type
String VARCHAR21

g:Int32 NUMBER (10)

g:Int64 NUMBER (10)

g:Float FLOAT

g:Double FLOAT

g:Date DATE

g:Timestamp TIMESTAMP?

g:UUID CHAR (36)

ORACLE 9-14

9.3 Using

ORACLE

Chapter 9
Using JSON to Store Vertex and Edge Properties

1 Youcanusethe stringFieldSize parameter to determine the string size for the database to store on the
String columns.

You can use the fractionalSecondsPrecision parameter to specify the precision on the columns of type
Timestamp.

JSON to Store Vertex and Edge Properties

You can adopt a flexible schema approach in a PGQL property graph by encoding the vertex
and edge properties as a single JSON value. You can then map this to a property value in a
PGQL property graph.

PGQL property graphs do not provide schema flexibility by nature since adding a new label
requires adding a new vertex or edge table, and adding a new property requires adding a
new column, both of which are schema update operations. However, through the use of
JSON you can model schema flexibility on top of PGQL property graphs.

For example, consider the following graph which represents financial transactions between
two Account vertices. The Account can be owned either by a Person or a Company.

Figure 9-2 Financial Transactions Graph

number: 10039 financial_transacticns number: 2090
& transaction
’ amount: $9900.00
L 2 AN
\ \"o name: %, name:
; (" . -) 3
% 4 e CTW;; Company gracle <5 @"\ Liam
%% Mok fof 3
2% wott? B §
o \ & I
%% 9 £§
name: % 5 o~ o
Nikita) ‘ g &
transaction
4— owner amount: $1500.30

transaction ———F
number: 8021 amount: $3000.70 number: 1001

You can create a single table for storing all the vertices and another single table for storing all
the edges, as shown:

CREATE TABLE fin vertex table (
id NUMBER PRIMARY KEY,
properties VARCHARZ2 (2000)

)

INSERT INTO fin vertex table VALUES (1,
"{"type":"Person", "name":"Nikita"}");
INSERT INTO fin vertex table VALUES (2,
"{"type":"Person", "name":"Camille"}");
INSERT INTO fin vertex table VALUES (3, '{"type":"Person",'"name":"Liam"}');
INSERT INTO fin vertex table VALUES (4

'{"type":"Company", "name":"Oracle"}");

4

9-15

Chapter 9
Using JSON to Store Vertex and Edge Properties

INSERT INTO fin vertex table VALUES (5,
"{"type":"Account", "number":10039}");
INSERT INTO fin vertex table VALUES (6,
"{"type":"Account", "number":2090}") ;
INSERT INTO fin vertex table VALUES (7,
"{"type":"Account", "number":8021}");
INSERT INTO fin vertex table VALUES (8,
"{"type":"Account", "number":1001}");

CREATE TABLE fin edge table (

id NUMBER PRIMARY KEY,

src NUMBER REFERENCES fin vertex table (id),
dst NUMBER REFERENCES fin vertex table (id),
properties VARCHAR?2 (2000)

)
INSERT INTO fin edge table VALUES !
INSERT INTO fin edge table VALUES
INSERT INTO fin edge table VALUES
INSERT INTO fin edge table VALUES
INSERT INTO fin edge table VALUES
INSERT INTO fin edge table VALUES (6,
"{"type":"transaction", "amount":1000.00}");
INSERT INTO fin edge table VALUES (7, 7, 8,
"{"type":"transaction", "amount":1500.30}");
INSERT INTO fin edge table VALUES (8, 7, 8,
"{"type":"transaction", "amount":3000.70}");
INSERT INTO fin edge table VALUES (9, 8, o6,
"{"type":"transaction", "amount":9999.50}");
INSERT INTO fin edge table VALUES (10, 6, 5,
"{"type":"transaction", "amount":9900.00}");

1, "{"type":"owner"}")
2, '{"type":"owner"} |) ;

, 3, '{"type":"owner"} |) .
4)
4 |l
7

~
~

’

~

r
1

’

, '{"type":"owner"}
, "{"type":"worksFor"}");

r 4

—~ e~~~ —~

r 4

o U1 b W N
U N o oy U

4

As seen in the preceding code, each vertex and edge is represented by a single row in
the respective tables. The first column is the unique key of the vertex or the edge. The
second and third columns of the edge table are its source key and destination key
respectively. The last column of the vertex and edge tables encodes all the properties
as well as the labels in a JSON object. A JSON is an unordered set of name and value
pairs. Here, you can use such pairs to encode the property names and their values as
well as the label's value. In case of the label, you can choose an arbitrary name such
as "type" or "label". In this example we use "type".

Because all the labels and properties of a vertex or an edge are encoded as a single
JSON value, you do not need to update the schema when new labels or properties are
added to the graph. Instead, you can add new labels and properties by inserting
additional vertices and edges or by updating the JSON value in the underlying table
through SQL.

The following two examples demonstrate how you can extract labels and property
values from JSON objects for PGQL on RDBMS and PGQL on PGX respectively.

ORACLE 9-16

ORACLE

Chapter 9
Using JSON to Store Vertex and Edge Properties

Example 9-2 Extracting JSON properties using JSON_VALUE (PGQL on RDBMS)

The following code creates a PGQL property graph using the fin vertex table and
fin edge table tables and executes a PGQL SELECT query:

PgglStatement pgglStmnt = pgglConn.createStatement();

/* Create the property graph */
pgglStmnt.execute (
"CREATE PROPERTY GRAPH financial transactions " +

" VERTEX TABLES (" +
" fin vertex table PROPERTIES (properties)) " +
" EDGE TABLES (" +

" fin edge table " +

" SOURCE KEY (src) REFERENCES fin vertex table (id) " +

" DESTINATION KEY (dst) REFERENCES fin vertex table (id) " +
" PROPERTIES (properties)) " +

" OPTIONS (PG PGQL)");

/* Set the name of the graph so that we can omit the ON clause from queries
*/
pgglConn.setGraph ("FINANCIAL TRANSACTIONS");

/* PGQL query: find all outgoing transactions from account 8021. Output the
transaction amount and the destination account number. */

PgglResultSet rs = pgglStmnt.executeQuery (
"SELECT JSON VALUE (trans.properties, '$.amount') AS transaction amount, " +
" JSON_VALUE (account2.properties, 'S$.number') AS account number " +
"FROM MATCH (accountl) -[trans]-> (account2) " +
"WHERE JSON_VALUE (accountl.properties, 'S.number') = 8021 " +
" AND JSON VALUE (trans.properties, '$.type') = 'transaction'");

rs.print();
rs.close();
pgglStmnt.close();

In the preceding code, the CREATE PROPERTY GRAPH statement maps the JSON column into a
property named "properties". This property will thus contain all the labels and properties of
the vertex or the edge. The PGQL SELECT query extracts these labels and properties using
JSON_VALUE.

For example, instead of accountl.number = 8021, you must use
JSON_VALUE (accountl.properties, '$.number') = 8021. This causes the query to become
a bit lengthier.

The output of the Java code is:

| 1500.3 | 1001 |
| 3000.7 | 1001 |

9-17

Chapter 9
Using JSON to Store Vertex and Edge Properties

Example 9-3 Using a UDF to extract a JSON property value (PGQL on PGX)

This example consists of two parts. The first part shows the creation of a UDF and the
second part shows loading of the graph into the graph server (PGX) followed by the
execution of a PGQL query using the UDF.

Since the Graph Server (PGX) does not have a built-in JSON_VALUE function like in
PGQL on RDBMS, you can create a Java UDF instead.

Create the Java class (MyJsonUtils.java) that implements the UDF:

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;

public class MyJdsonUtils {
private final static ObjectMapper mapper = new ObjectMapper () ;

public static String get prop(String json string, String prop name)
throws JsonProcessingException {
JsonNode node = mapper.readTree(json string);
return node.path (prop name).asText ();

}

Compile the class with the JARs from /opt/oracle/graph/pgx/server/lib/* added
to the class path. This is because the library folder contains the necessary Jackson
libraries that are required to parse the JSON.

mkdir ./target

javac -classpath .:/opt/oracle/graph/pgx/server/lib/* -d ./target
*.java

cd target

jar cvf MyJsonUtils.jar *

Using the following UDF JSON configuration file (my udfs.json), you can now register
the Java UDF on the graph server (PGX) by following step-3 to step-6 in User-Defined
Functions (UDFs) in PGX:

"user defined functions": [

{

"namespace": "my",
"function name": "get prop",
"language": "java",
"implementation reference": "MyJsonUtils",
"return type": "string",
"arguments": [

{

"name": "json string",

"type": "string"
b
{

ORACLE 9-18

Chapter 9
Using JSON to Store Vertex and Edge Properties

"name": "prop name",
"type": "string"

On implementing the UDF for extracting property values from the JSON, you can now load
the graph into the Graph Server (PGX) and issue a PGQL query:

/* Load the graph into the Graph Server (PGX) */

ServerInstance instance = GraphServer.getInstance ("http://localhost:7007",
username, password.toCharArray());

session = instance.createSession ("my-session");

PgxGraph g = session.readGraphByName ("FINANCIAL TRANSACTIONS",
GraphSource.PG PGQL) ;

/* PGQL query: find all shortest paths from account 10039 to account 2090
following only outgoing transaction

edges. Output the list of transaction amounts along each path as well as
the total amount of the transactions

along each path. */
g.queryPgql (

" SELECT LISTAGG (my.get prop(e.properties, 'amount'), " + ') || ' =" AS
amounts_along path, " +

" SUM(CAST (my.get prop (e.properties, 'amount') AS DOUBLE)) AS
total amount " +

" FROM MATCH ALL SHORTEST (a) (-[e]-> WHERE my.get prop(e.properties,

'type') = 'transaction')* (b) " +
" WHERE my.get prop(a.properties, 'number') = '10039' AND " +
" my.get prop(b.properties, 'number') = '2090"' " +

"ORDER BY total amount").print().close();

The output of the Java code is:

o - +
| amounts along path | total amount |
o - +
| 1000.0 + 1500.3 + 9999.5 = | 12499.8

| 1000.0 + 3000.7 + 9999.5 = | 14000.2 |
o - +

ORACLE' 9-19

Loading a PGQL property graph into the
Graph Server (PGX)

You can load a full PGQL property graph or a subgraph into the graph server (PGX).

" Note:

Ensure that you drop the graph when it is no longer in use to release the graph
server (PGX) memory. See Deleting a Graph for more information.

There are several ways to load a PGQL property graph into the graph server (PGX).

Loading a PGQL Property Graph Using the readGraphByName API
You can load a PGQL property graph by name into the graph server (PGX).

Loading a Graph Using a JSON Configuration File
To load a PGQL property graph into the graph server (PGX), you can create a graph
configuration file, which contains the graph metadata to be loaded.

Loading a Graph by Defining a Graph Configuration Object

You can load a graph from Oracle Database by first defining the graph configuration
object using the GraphConfigBuilder class and then reading the graph into the graph
server (PGX).

Loading a Subgraph from a PGQL Property Graph
You can create a subgraph from a PGQL property graph and load it into memory in the
graph server (PGX).

10.1 Loading a PGQL Property Graph Using the
readGraphByName API

You can load a PGQL property graph by name into the graph server (PGX).

ORACLE

You can use the PgxSessionfreadGraphByName API to load a PGQL property graph:

readGraphByName (String schemaName, String graphName, GraphSource source,
ReadGraphOption options)

The arguments used in the method are described in the following table:

Table 10-1 Parameters for the readGraphByName method
]

Parameter Description Optional
schemaName Schema owner Yes
graphName Name of the PGQL property graph No

10-1

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName API

Table 10-1 (Cont.) Parameters for the readGraphByName method

- ___|
Parameter Description Optional

source Source format for the graph: No
* GraphSource.PG_PGQL: This applies for
PGQL property graphs.
* GraphSource.PG_SQL: This applies for SQL
Property Graphs (refer to Loading a SQL
Property Graph Using the readGraphByName
API).

options Represents the graph optimization options Yes

The readGraphByName () method reads the PGQL property graph metadata tables and
internally generates the graph configuration to load the graph. You must have
PGX SESSION NEW GRAPH permission to use this API.

For example you can load the PGQL property graph as shown:

e JShell
e Java
e Python
JShell

opg4j> var graph = session.readGraphByName ("BANKDATA",
GraphSource.PG PGQL)
$12 ==> PgxGraph[name=bankdata,N=1000,E=5001, created=1625730942294]

Java

PgxGraph graph = session.readGraphByName ("BANKDATA",
GraphSource.PG_PGQL) ;
Graph: PgxGraph[name=bankdata,N=1000,E=5001,created=1625732149262]

Python

>>> graph = session.read graph by name ('BANKDATA', 'pg pgql')

>>> graph

PgxGraph (name: bankdata, v: 1000, e: 5001, directed: True, memory (Mb) :
0)

* Specifying Options for the readGraphByName API
You can specify graph optimization options, OnMissingVertexOption or both when
using the readGraphByName API for loading a PGQL property graph.

ORACLE 10-2

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName API

* Specifying the Schema Name for the readGraphByName API
You can specify the schema name when using the readGraphByName API for loading a
PGQL property graph.

¢ See Also:

Mapping Oracle Database Types to PGX Types for more information on the
supported types in the graph server (PGX)

10.1.1 Specifying Options for the -cadcraphsymane API

ORACLE

You can specify graph optimization options, OnMissingVertexOption or both when using the
readGraphByName API for loading a PGQL property graph.

The ReadGraphOption interface supports an additional options parameter when loading a
PGQL property graph by name.

The following sections explain the various options supported by the ReadGraphOption
interface.
Using the Graph Optimization Options

You can optimize the read or update performance when loading a PGQL property graph by
name by using one of the following options:

° ReadGraphOption.optimizeFor (GraphOptimizedFor.READ): Specifies that the loaded
graph is optimized for READ.

° ReadGraphOption.optimizeFor (GraphOptimizedFor.UPDATES): Specifies that the loaded
graph is optimized for UPDATE.

° ReadGraphOption.synchronizable (): Specifies that the loaded graph can be
synchronized.

It is important to note the following:

* synchronizable () option can be used in combination with UPDATE and READ. However,
the UPDATE and READ options cannot be used at the same time.

» If you are loading a PGQL property graph for SYNCHRONIZABLE option, then ensure that
the vertex and edge keys are numeric and non-composite.

The following example loads a PGQL property graph for READ and SYNCHRONIZABLE options:

* JShell
e Java
* Python
JShell

opg4j> var graph = session.readGraphByName ("BANK GRAPH", GraphSource.PG PGQL,
D>

10-3

https://docs.oracle.com/en/database/oracle/property-graph/22.2/spgjv/oracle/pgx/config/ReadGraphOption.html

ORACLE

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName API

ReadGraphOption.optimizeFor (GraphOptimizedFor.READ),

o> ReadGraphOption.synchronizable())
graph ==>

PgxGraph [name=BANK GRAPH 2,N=1000,E=5001,created=1648457198462]
Java

PgxGraph graph = session.readGraphByName ("BANK GRAPH",
GraphSource.PG_PGQL,

ReadGraphOption.optimizeFor (GraphOptimizedFor.READ),

ReadGraphOption.synchronizable());

Python

>>> graph = session.read graph by name ('BANK GRAPH',
'pg_pggql', options=['optimized for read', 'synchronizable'])

Using the OnMissingVertex Options

If either the source or destination vertex or both are missing for an edge, then you can
use the OnMissingVertexOption which specifies the behavior for handling the edge
with the missing vertex. The following values are supported for this option:

° ReadGraphOption.onMissingVertex (OnMissingVertex.ERROR): This is the default
option and this specifies that an error must be thrown for edges with missing
vertices.

* ReadGraphOption.onMissingVertex (OnMissingVertex.IGNORE EDGE): Specifies
that the edge for a missing vertex must be ignored.

° ReadGraphOption.onMissingVertex (OnMissingVertex.IGNORE EDGE LOG):
Specifies that the edge for a missing vertex must be ignored and all ignored edges
must be logged.

° ReadGraphOption.onMissingVertex (OnMissingVertex.IGNORE EDGE LOG_ONCE):
Specifies that the edge for a missing vertex must be ignored and only the first
ignored edge must be logged.

The following example loads the PGQL property graph by ignoring the edges with
missing vertices and logging only the first ignored edge. Note, to view the logs, you
must update the default Logback configuration file in /etc/oracle/graph/logback.xml
and the graph server (PGX) logger configuration file in /etc/oracle/graph/logback-
server.xml to log the DEBUG logs. You can then view the ignored edges

in /var/opt/log/pgx-server.log file.

» JShell

e Java

10-4

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName AP

* Python

JShell

opg4j> session.readGraphByName ("REGIONS", GraphSource.PG_PGQL,
>

ReadGraphOption.onMissingVertex (OnMissingVertex.IGNORE EDGE LOG ONCE))
$7 ==> PgxGraph[name=REGIONVIEW 3,N=27,E=18,created=1655903219910]
Java

PgxGraph graph = session.readGraphByName ("REGIONS", GraphSource.PG_ PGQL,
ReadGraphOption.onMissingVertex (OnMissingVertex.IGNORE EDGE LOG ONCE));

Python

>>> graph = session.read graph by name ('REGIONS',
'pg_pggl', options=['on missing vertex ignore edge log once'])

10.1.2 Specifying the Schema Name for the readGraphByName API

ORACLE

You can specify the schema name when using the readGraphByName API for loading a PGQL
property graph.

This feature allows you to load a PGQL property graph from another user schema into the
graph server (PGX). However, ensure that you have READ permission on all the underlying
metadata and data tables when loading a PGQL property graph from another schema.

The following example loads a PGQL property graph from the GRAPHUSER schema:

e JShell
e Java
JShell

opgé4j> var graph = session.readGraphByName ("GRAPHUSER", "FRIENDS",
GraphSource.PG_PGQL)
graph ==> PgxGraph[name=FRIENDS,N=6,E=4,created=1672743474212]

Java

PgxGraph graph = session.readGraphByName ("GRAPHUSER", "FRIENDS",
GraphSource.PG PGQL) ;

10-5

Chapter 10
Loading a Graph Using a JSON Configuration File

10.2 Loading a Graph Using a JSON Configuration File

To load a PGQL property graph into the graph server (PGX), you can create a graph
configuration file, which contains the graph metadata to be loaded.

The following shows a sample JSON configuration file:

"name": "BANK GRAPH",
"source name": "BANK GRAPH",
"source type": "pg pgql",
"jdbc_url":"jdbc:oracle:thin:@localhost:1521/orclpdb",
"username" :"graphuser",
"keystore alias":"databasel",
"vertex providers":[
{
"name":"Accounts",
"format":"rdbms",
"database table name":"BANK ACCOUNTS",
"key column":"ID",
"key type": "integer",
"parallel hint degree": 3,
"props": [
{
"name":"ID",
"type":"integer"

"name" :"NAME",
"type":"string"

1
"edge providers":[
{
"name":"Transfers",
"format":"rdbms",
"database table name":"BANK TXNS",
"key column":"ID",
"parallel hint degree": 3,
"source column":"FROM ACCT ID",
"destination column":"TO ACCT ID",
"source vertex provider":"Accounts",
"destination vertex provider":"Accounts",
"props": [
{
"name":"FROM ACCT ID",
"type":"integer"

ORACLE 10-6

Chapter 10
Loading a Graph Using a JSON Configuration File

"name" :"TXN AMOUNT",
"type":"float",
"column":"AMOUNT"

"name" :"DESCRIPTION",
"type":"string"

"name":"TO_ACCT ID",
"type":"integer"

The preceding configuration uses a Java keystore alias to reference the database password
that is stored in a keystore file. See Store the Database Password in a Keystore for more
information.

Also, the edge property AMOUNT is renamed to TXN AMT. This implies that when loading a
graph into the graph server (PGX), you can optionally rename the vertex or edge properties
to have different names other than the names of the underlying columns in the database.

¢ See Also:

e Configuring PARALLEL Hint when Loading a Graph

e Graph Configuration Options for more details on the graph configuration
options.

You can now read the graph into the graph server as shown:

e JShell
e Java
JShell

./bin/opg4j --secret store /etc/oracle/graph/keystore.pl2
enter password for keystore /etc/oracle/graph/keystore.pl2:
For an introduction type: /help intro

Oracle Graph Server Shell 24.1.0

Variables instance, session, and analyst ready to use
opg4j> var g =

ORACLE 10-7

Chapter 10
Loading a Graph Using a JSON Configuration File

session.readGraphWithProperties ("<path to json configuration>")
g ==> PgxGraph[name=BANK GRAPH NEW,N=999,E=4993,created=1675960224397]

Java

ServerInstance instance = GraphServer.getInstance ("https://
localhost:7007", <username>, <password>.toCharArray());
PgxSession session = instance.createSession("my-session");
String keystorePath = "/etc/oracle/graph/keystore.pl2";

char[] keystorePassword = "<keystore password>".toCharArray();
session.registerKeystore (keystorePath, keystorePassword);
PgxGraph g =

session.readGraphWithProperties ("<path to json configuration>");
System.out.println ("Graph: " + g);

e Configuring PARALLEL Hint when Loading a Graph

10.2.1 Configuring PARALLEL Hint when Loading a Graph

ORACLE

You can also optimize the graph loading performance by configuring a specific parallel
hint value using the GraphConfig field, PARALLEL HINT DEGREE, which will be used by
the underlying SQL queries. This can be applied when loading a graph using a JSON
configuration file or through the GraphConfigBuilder API.

The following table describes how the internal queries are configured based on the
specified PARALLEL HINT DEGREE values.

Table 10-2 PARALLEL_HINT_DEGREE values
L

PARALLEL HINT DEGREE Value Parallel hint used in the SQL Statement
Positive integer(n) Uses the given n degree:

SELECT /*+ PARALLEL(n) */ ...
Zero Uses a plain hint

SELECT /*+ PARALLEL */ ...
Negative integer No PARALLEL hint:
(Default value: -1) SELECT ...

¢ See Also:

e Loading a Graph Using a JSON Configuration File for an example using
parallel hint configuration.

e Loading a Graph by Defining a Graph Configuration Object for an
example using parallel hint configuration.

10-8

Chapter 10
Loading a Graph by Defining a Graph Configuration Object

10.3 Loading a Graph by Defining a Graph Configuration Object

ORACLE

You can load a graph from Oracle Database by first defining the graph configuration object
using the GraphConfigBuilder class and then reading the graph into the graph server (PGX).

The following example loads a PGQL property graph into memory, authenticating as
<database user>/<database password> with the database:

e JShell

 Java

JShell

opgd4j> var vertexConfig = new RdbmsEntityProviderConfigBuilder().
Lo setName ("Account") .
Lo setKeyColumn ("ID").
o> setParallelHintDegree (3) .
o>

setDatabaseTableName ("BANK ACCOUNTS") .

> addProperty ("ID",

PropertyType.INTEGER) .
o> build()

opgd4j> var edgeConfig = new RdbmsEntityProviderConfigBuilder().
Lo setName ("Transfer").

DS setKeyColumn ("TXN ID").

Lo setSourceColumn ("FROM _ACCT ID").

c> setDestinationColumn ("TO_ACCT ID").

Lo setSourceVertexProvider ("Account") .
Lol
setDestinationVertexProvider ("Account") .

LD setParallelHintDegree (3) .

o> createKeyMapping (true) .

Lo setDatabaseTableName ("BANK TXNS") .
D addProperty ("FROM _ACCT ID",
PropertyType.INTEGER) .
D addProperty ("TO_ACCT_ID",
PropertyType.INTEGER) .
Cel> addProperty ("AMOUNT",
PropertyType.FLOAT) .

o> build()

opgd4j> var cfg = GraphConfigBuilder.forPartitioned().
o> setJdbcUrl ("Jjdbc:oracle:thin:@localhost:1521/orclpdb") .
setUsername ("graphuser") .
setPassword ("<password>") .
setName ("bank graph").
setSourceName ("bank graph").
setSourceType (SourceType.PG_PGQL) .
setVertexIdType (IdType.INTEGER) .

vV V V V V V

10-9

ORACLE

Chapter 10
Loading a Graph by Defining a Graph Configuration Object

LD addVertexProvider (vertexConfig) .
o> addEdgeProvider (edgeConfig) .
LD build()

opg4j> var g = session.readGraphWithProperties (cfqg)
g ==> PgxGraph[name=bank graph,N=999,E=4993, created=1676806306348]

Java

// Build the vertex provider
RdbmsEntityProviderConfig vertexConfig = new
RdbmsEntityProviderConfigBuilder ()
.setName ("Account")
.setKeyColumn ("ID")
.setParallelHintDegree (3)
.setDatabaseTableName ("BA
NK_ACCOUNTS")
.addProperty ("ID",
PropertyType.INTEGER)
build();
// Build the edge provider
RdbmsEntityProviderConfig edgeConfig = new
RdbmsEntityProviderConfigBuilder ()
.setName ("Transfer")
.setKeyColumn ("TXN ID")
.setSourceColumn ("FROM AC

CT _ID")

.setDestinationColumn ("TO
_ACCT ID")

.setSourceVertexProvider (
"Account")

.setDestinationVertexProv
ider ("Account")
.setParallelHintDegree (3)
.createKeyMapping (true)
.setDatabaseTableName ("BA
NK_TXNS")
.addProperty ("FROM ACCT I
D", PropertyType.INTEGER)
.addProperty ("TO ACCT ID"
, PropertyType.INTEGER)
.addProperty ("AMOUNT",
PropertyType.FLOAT)
build();
// Build the graph
GraphConfig cfg = GraphConfigBuilder.forPartitioned()
.setJdbcUrl ("jdbc:oracle:thin:@localhost:152
1/orclpdb")
.setUsername ("graphuser")
.setPassword ("<password>")
.setName ("bank graph")
.setSourceName ("bank graph")
.setSourceType (SourceType.PG PGQL)
.setVertexIdType (IdType.INTEGER)

10-10

Chapter 10
Loading a Subgraph from a PGQL Property Graph

.addVertexProvider (vertexConfig)
.addEdgeProvider (edgeConfig)
.build();

PgxGraph g = session.readGraphWithProperties(cfqg);

" See Also:
Configuring PARALLEL Hint when Loading a Graph

10.4 Loading a Subgraph from a PGQL Property Graph

You can create a subgraph from a PGQL property graph and load it into memory in the graph
server (PGX).

Instead of loading a full graph into memory, you can load a subgraph. This would consume
less memory.

The following sections explain in detail on loading and expanding of subgraphs:

e PGQL Based Subgraph Loading
You can use the PgViewSubgraphReader#fromPgPgql API to create an in-memory
subgraph from a PGQL property graph using a set of PGQL queries.

* Prepared PGQL Queries
You can also use prepared queries when loading a subgraph from a PGQL property
graph.

* Providing Database Connection Credentials
You can specify the database connection credentials with the
PgViewSubgraphReader#fromPgPgql API instead of using the default credentials of the
current user.

* Dynamically Expanding a Subgraph
You can expand an in-memory subgraph by loading another subgraph into memory and
merging it with the current in-memory subgraph.

10.4.1 PGQL Based Subgraph Loading

You can use the PgViewSubgraphReader#fromPgPgql API to create an in-memory subgraph
from a PGQL property graph using a set of PGQL queries.

These PGQL queries define the vertices and edges that are to be loaded into the subgraph.
You can also use multiple PGQL queries and the resulting output graph is a union of the
subgraphs, each being loaded independently by each PGQL query.

ORACLE 10-11

ORACLE

Chapter 10
Loading a Subgraph from a PGQL Property Graph

< Note:

e Only non-composite vertex and edge keys are supported.
e Only numeric edge keys are supported.

* PGQL queries with GROUP BY or ORDER BY clauses are not supported for
loading of subgraphs from a PGQL property graph.

The following example creates a subgraph from a PGQL property graph using multiple
PGQL queries:

e JShell
« Java
* Python
JShell
opg4j> var graph = session.readSubgraph () .
> fromPgPgqgl ("FRIENDS") .
Cel> queryPgql ("MATCH (v1:Person)-[e:FRIENDOF]-
>(v2:Person) WHERE id(vl) = 'PERSONS(1)'").
o> queryPgqgl ("MATCH (v:Person) WHERE id(v) =
'"PERSONS (2) '") .
o> load()

graph ==> PgxGraph[name=FRIENDS,N=3,E=1,created=1646726883194]

Java

PgxGraph graph = session.readSubgraph ()

.fromPgPgqgl ("FRIENDS")

.queryPgql ("MATCH (vl:Person)-[e:FRIENDOF]-
>(v2:Person) WHERE id(vl) = 'PERSONS(1)'")

.queryPgqgl ("MATCH (v:Person) WHERE id(v) =

'"PERSONS (2) '")

.load();
Python
>>> graph = session.read subgraph from pg pggl ("FRIENDS", ["MATCH
(vl:Person)-[e:FRIENDOF]->(v2:Person) WHERE id(vl) = 'PERSONS(1)'",
. "MATCH (v:Person) WHERE id(v) =
"PERSONS (2) '"1)
>>> graph

PgxGraph (name: FRIENDS, v: 3, e: 1, directed: True, memory(Mb): 0)

10-12

ORACLE"

Chapter 10
Loading a Subgraph from a PGQL Property Graph

The following displays the output for the preceding PGQL query using the graph visualization
tool.

Figure 10-1 Subgraph Visualization

ORACLE Graph Visualization

Graph Server

PGQL Graph Query
1 SELECT id(vl), e, id(v2
2 FROM MATCH (v1:Person)-
2 | MATCH (v:Person) 0
5

v
J]->(v2:Per‘son) ON <subgraph_name>,
<{subgraph_name>

Parallelism

0 A B II:I
PERSONS(3)

PERSONS(1)

PERSONS(2)

Loading Subgraphs with Custom Names

By default, the new subgraph gets created with the same name as the PGQL property graph.
Alternatively, if you want to load a subgraph with a custom name, then you can configure the
subgraph name as shown:

e JShell
 Java
* Python
JShell
opg4j> var graph = session.readSubgraph() .
o> fromPgPgqgl ("FRIENDS") .
o> queryPgql ("MATCH (vl:Person)-[e:FRIENDOF]->(v2:Person)
WHERE id(vl) = '"PERSONS(1)'").
o> queryPgqgl ("MATCH (v:Person) WHERE id(v) =
"PERSONS (2) '") .

10-13

ORACLE

Chapter 10
Loading a Subgraph from a PGQL Property Graph

o> load("friends network")
graph ==> PgxGraph[name=friends network,N=3,E=1,created=1664458398090]

Java

PgxGraph graph = session.readSubgraph ()

.fromPgPgqgl ("FRIENDS")

.queryPgql ("MATCH (vl:Person)-[e:FRIENDOF]-
>(v2:Person) WHERE id(vl) = '"PERSONS(1)'")

.queryPgqgl ("MATCH (v:Person) WHERE id(v) =
'"PERSONS (2) '")

.load("friends network");

Python

>>> graph = session.read subgraph from pg pgql ("FRIENDS",

e ["MATCH (vl1:Person)-[e:FRIENDOF]->(v2:Person)
WHERE id(vl) = 'PERSONS(1)'",

"MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"],
. graph name="friends network")

>>> graph
PgxGraph (name: friends network, v: 3, e: 1, directed: True,
memory (Mb) : 0)

Loading a Subgraph by Explicitly Specifying the Schema Name

If you want to load a subgraph by reading a PGQL property graph from another
schema, you can additionally provide the schema name as an argument to the
PgViewSubgraphReader#fromPgPggl APl . You must also ensure that you have READ
permission on all the underlying metadata and data tables for the PGQL property
graph.

For example:

e JShell
e Java

e Python

JShell

opg4j> var graph = session.readSubgraph ()

..> .fromPgPgqgl ("GRAPHUSER", "FRIENDS")

..> .queryPgql ("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'")
...> Jload()
graph ==> PgxGraph[name=FRIENDS,N=1,E=0,created=1672743755511]

10-14

Chapter 10
Loading a Subgraph from a PGQL Property Graph

Java

PgxGraph graph = session.readSubgraph ()
. fromPgPgql ("GRAPHUSER", "FRIENDS")
.queryPgql ("MATCH (v:Person) WHERE id(v) =
'"PERSONS (2) '")
.load();

Python

>>> graph = session.read subgraph from pg pgqgl ("FRIENDS",
["MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"],
schema="GRAPHUSER")

10.4.2 Prepared PGQL Queries

ORACLE

You can also use prepared queries when loading a subgraph from a PGQL property graph.

You can pass bind variables using prepared PGQL queries. The
PreparedPgViewPgglQuery#preparedPgqlQuery method adds a prepared query to a list of
queries that are executed to load the subgraph. The PreparedPgViewPgqlQuery API sets the
bindings for the variables and continues with the loading of the subgraph.

For example:

JShell
e Java

e Python

JShell

opg4j> var pgViewSubgraphReader = session.readSubgraph() .

o> fromPgPgqgl ("FRIENDS")
pgViewSubgraphReader ==>
oracle.pgx.api.subgraph.PgViewSubgraphReader@33bfe6d3

opg4j> var preparedPgqlQuery = pgViewSubgraphReader.preparedPgqlQuery ("MATCH
(vl:Person)-[e:FriendOf]->(v2:Person) WHERE id(v2)=2")

preparedPgqlQuery ==>
oracle.pgx.api.subgraph.PreparedPgViewPgglQuery@2e6b379c

opg4j> preparedPgglQuery = preparedPgglQuery.withStringArg(l, "PERSONS(3)")
preparedPgqlQuery ==>
oracle.pgx.api.subgraph.PreparedPgViewPgglQuery@2e6b379c

opg4j> var graph = preparedPgqlQuery.load()

graph ==> PgxGraph[name=FRIENDS 2,N=3,E=2,created=1648566047855]

10-15

Chapter 10
Loading a Subgraph from a PGQL Property Graph

Java

import oracle.pgx.api.subgraph.*;

PgViewSubgraphReader pgViewSubgraphReader=
session.readSubgraph () .fromPgPgqgl ("FRIENDS") ;

PreparedPgViewPgqlQuery preparedPgglQuery =
pgViewSubgraphReader.preparedPgglQuery ("MATCH (vl:Person)-[e:FriendOf]-
>(v2:Person) WHERE id(v2)=?");

preparedPgqlQuery = preparedPgqlQuery.withStringArg(l, "PERSONS(3)");
PgxGraph graph = preparedPgqlQuery.load();

Python

>>> from pypgx.api import PreparedPgglQuery

>>> from pypgx.api import PreparedPgglQueryStringArgument

>>> graph = session.read subgraph from pg pgqgl ("FRIENDS",
[PreparedPgqlQuery ("MATCH (vl1:Person)-[e:FriendOf]->(v2:Person)

WHERE id(v2)=?", [PreparedPgqlQueryStringArqgument ("PERSONS(3)")])]1)

>>> graph

PgxGraph (name: FRIENDS, v: 3, e: 2, directed: True, memory(Mb): 0)

10.4.3 Providing Database Connection Credentials

ORACLE

You can specify the database connection credentials with the
PgViewSubgraphReader#fromPgPgql API instead of using the default credentials of the
current user.

The following example shows loading of a subgraph for non-default database
connection settings:

e JShell
e Java
JShell

opg4j> var graph = session.readSubgraph() .
> fromPgPgqgl ("FRIENDS") .

Lo username ("graphuser") .

> password ("<password for graphuser>").

LD keystoreAlias ("databasel").

LoD schema ("GRAPHUSER") .

o> jdbcUrl ("jdbc:oracle:thin:@localhost:1521/
orclpdb").

o> connections (12).

o> queryPgqgl ("MATCH (a:Person)").

10-16

Chapter 10
Loading a Subgraph from a PGQL Property Graph

o> load()
graph ==> PgxGraph[name=FRIENDS,N=4,E=0,created=1648541234520]

Java

PgxGraph graph = session.readSubgraph ()
.fromPgPgqgl ("FRIENDS")
.username ("graphuser")
.password ("<password for graphuser>")
.keystoreAlias ("databasel")
.schema ("GRAPHUSER")
.jdbcUrl ("jdbc:oracle:thin:@localhost:1521/orclpdb")
.connections(12)
.queryPgql ("MATCH (a:Person)")
.load();

10.4.4 Dynamically Expanding a Subgraph

You can expand an in-memory subgraph by loading another subgraph into memory and
merging it with the current in-memory subgraph.

The PgxGraph.expandGraph () method can be used to expand a subgraph. The following
applies when merging two graphs:

» Both the graphs can have separate sets of providers.
e A graph can have some providers same as the other graph. In this case:
— The providers with the same names must have the same labels.

— The graph being merged must have the same or a common subset of properties as
the base graph. However, it is possible that either of the graphs may have more
number of properties.

The following example shows the expansion of the subgraph created in PGQL Based
Subgraph Loading:

e JShell
* Java
* Python
JShell
opg4j> graph = graph.expandGraph() .
Lo withPgql ().
o> fromPgPgqgl ("FRIENDS") .
el queryPgqgl ("MATCH (v1:PERSON) -[e:FRIENDOF]-> (v2:PERSON) WHERE
id(vl) = 'PERSONS(2)'").
o> preparedPgglQuery ("MATCH (v:PERSON) WHERE id(v)

ORACLE 10-17

ORACLE

Chapter 10
Loading a Subgraph from a PGQL Property Graph

in ?").withStringArg(l, "PERSONS (4)").
o> expand ()

graph ==
PgxGraph[name=anonymous _graph 152,N=4,E=3,created=1647347092964]

Java

graph = graph.expandGraph ()

.withPgqgl ()

.fromPgPgql ("FRIENDS")

.queryPgql ("MATCH (v1:PERSON) -[e:FRIENDOF]-> (v2:PERSON)
WHERE id(vl) = 'PERSONS(2)'")

.preparedPgglQuery ("MATCH (v:PERSON) WHERE id(v)
in ?").withStringArg(l, "PERSONS(4)")

.expand () ;

Python

>>> from pypgx.api import PreparedPgqglQuery

>>> from pypgx.api import PreparedPgqglQueryStringArgument

>>> graph = graph.expand with pgqgl (["MATCH (v1:PERSON) -[e:FRIENDOF]->
(v2:PERSON) WHERE id(vl) = 'PERSONS(2)'",

e PreparedPgqglQuery ("MATCH (v:Person) WHERE id(v)=?",
[PreparedPgqlQueryStringArgument ("PERSONS (4)") 1)1,

e pg_view name="FRIENDS")

>>> graph
PgxGraph (name: anonymous graph 66, v: 4, e: 3, directed: True,
memory (Mb) : 0)

The following displays the output for the preceding PGQL query using the graph
visualization tool. The subgraph is now expanded to include the friendof relationship
for PERSONS (2) in addition to PERSONS (1) which was already existing in the subgraph.

10-18

ORACLE

Chapter 10
Loading a Subgraph from a PGQL Property Graph

Figure 10-2 Expanding a Subgraph

Graph Server

PGQL Graph Query

1 SELECT id(v1), e, id(v2), v
2 FROM MATCH (vl:Person)-[e]->(v2:Person) ON <expanded_graph_name>,
3 | MATCH (v:Person) ON <expanded_graph_name>
4
5
Parallelism

0 A = “

PERSONS(4) PERSONS(3)

PERSONS(2) PERSONS(1)

Expanding a Subgraph by Explicitly Specifying the Schema Name

When expanding a graph, you can load another subgraph by reading a PGQL property graph
from a different schema. For this, you must provide the schema name as an argument to the
PgqlViewGraphExpander#fromPgPgql API. You must also ensure that you have READ
permission on all the underlying metadata and data tables for the PGQL property graph.

For example:
e JShell
 Java
e Python
JShell
opg4j> graph = graph.expandGraph() .
> withPgqgl ().
L fromPgPgql ("GRAPHUSER", "FRIENDS").
D> queryPgql ("MATCH (v:Person) WHERE id(v) = 'PERSONS(1)'").
LoD expand ()

graph ==> PgxGraph[name=anonymous graph 18,N=1,E=0,created=1672848726308]

10-19

ORACLE

Chapter 10
Loading a Subgraph from a PGQL Property Graph

Java
graph = graph.expandGraph ()
.withPgql ()
.fromPgPgql ("GRAPHUSER", "FRIENDS")
.queryPgqgl ("MATCH (v:Person) WHERE id(v) = '"PERSONS(1)'")
.expand () ;

Python

>>> graph = graph.expand with pggl ("MATCH (v:Person) WHERE id(v) =
'"PERSONS (1) '",

pg_view name="FRIENDS", schema="GRAPHUSER")
>>> graph
PgxGraph (name: anonymous graph 6, v: 2, e: 0, directed: True,
memory (Mb) : 0)

Using Merging Strategy

When expanding a graph, some vertices and edges that are in the new graph data
may have already been loaded in the base graph. In such cases, if the vertex and
edge property values differ for all vertices and edges that are both in the base graph
and in the new graph to be merged, then the following applies:

» If the merging strategy is KEEP_CURRENT VALUES, then the vertex and edge property
values coming from the new graph are ignored.

» If the merging strategy is UPDATE WITH NEW VALUES, then the vertex and edge
property values are updated with the ones found in the new graph.

For example:

* JShell

¢ Java

JShell

opg4j> import oracle.pgx.api.expansion.PropertyMergeStrategy
opg4j> graph = graph.expandGraph() .

D> withPgqgl ().
> fromPgPgqgl ("FRIENDS") .
LoD queryPgqgl ("MATCH (v1:PERSON) -[e:FRIENDOF]-> (v2:PERSON)
WHERE id(vl) = 'PERSONS(2)'").
LoD preparedPgqlQuery ("MATCH (v:PERSON) WHERE id(v)
in ?").withStringArg(l, "PERSONS(4)").
>

vertexPropertiesMergingStrategy (PropertyMergeStrategy.UPDATE WITH NEW V
ALUES) .
o> expand ()

10-20

Chapter 10
Loading a Subgraph from a PGQL Property Graph

Java

import oracle.pgx.api.expansion.PropertyMergeStrategy;
graph = graph.expandGraph ()

.withPgql ()

.fromPgPgqgl ("FRIENDS")

.queryPgql ("MATCH (v1:PERSON) -[e:FRIENDOF]-> (vZ2:PERSON) WHERE
id(vl) = 'PERSONS(2)'")

.preparedPgglQuery ("MATCH (v:PERSON) WHERE id(v)
in ?").withStringArg(1l, "PERSONS (4)")

.vertexPropertiesMergingStrategy (PropertyMergeStrategy.UPDATE WI
TH _NEW_VALUES)

.expand () ;

ORACLE" 10-21

Quick Starts for Using PGQL Property Graphs

This chapter contains quick start tutorials and other resources to help you get started on
working with PGQL property graphs.

e Using Sample Data for Graph Analysis

e Quick Start: Working with PGQL Property Graphs
This tutorial helps you get started on creating, querying and executing graph algorithms
on PGQL property graphs.

e Quick Start: Using Graph Machine Learning on PGQL Property Graphs
This tutorial helps you get started on applying the DeepWalk machine learning algorithm
on a PGQL property graph.

e Quick Start: Using the Python Client as a Module
This section describes how to use the Python client as a module in Python applications.

e Oracle LiveLabs Workshops for Graphs
You can also explore Oracle Property Graph features using the graph workshops in
Oracle LivelLabs.

11.1 Using Sample Data for Graph Analysis

The rpm installation of the graph server provides you with sample graph data which can be
used for graph analysis. You can access this sample graph data either in /opt/oracle/
graph/data Or <client dir>/data directory.

The bank graph folder contains data that represent the vertices and edges of a graph in
bank nodes.csv and bank_edges_amt.csv files respectively. You can import the graph data
from these .csv files into the database. You can then create a graph for querying and
analyses.

* Importing Data from CSV Files

11.1.1 Importing Data from CSV Files

You can import data from CSV files into the database through Oracle SQL Developer or by
using Oracle Database utilities (such as SQL*Loader or External Tables).

* See Data Import Wizard in Oracle SQL Developer User's Guide on how to import data
from files into tables.

» See Oracle Database Utilities for more information on data transfer utilities.

The following instructions enable you to load data into the database tables using Oracle SQL
Loader.

ORACLE 11-1

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer/21.4&id=GUID-8CA3C91B-3BE7-40DA-B905-6ACE5C9D8F6E
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21&id=GUID-8D037494-07FA-4226-B507-E1B2ED10C144

Chapter 11
Using Sample Data for Graph Analysis

As a prerequisite requirement, you must execute the following SQL statements to
create the vertex (bank accounts) and edge (bank txns) tables in the database:

CREATE TABLE bank accounts(id NUMBER, name VARCHAR2 (10));

CREATE TABLE bank txns(from acct id NUMBER, to_acct id NUMBER,
description VARCHAR2 (10), amount NUMBER) ;

You can then perform the following steps to load the data:
1. Create a SQL*Loader control file to load the vertices from bank nodes.csv as
shown:

load data

infile '<path to bank nodes.csv>'

into table bank accounts

fields terminated by "," optionally enclosed by '"'
(id, name)

2. Invoke SQL*Loader from the command line to load the vertices in bank_accounts
table, using the preceding configuration file as shown:

sqlldr <dbuser>/<password> CONTROL=<path to vertex loader.ctl>

The bank_accounts table gets successfully loaded with 1000 rows.
3. Create a SQL*Loader control file to load the edge from bank_edges amt.csv as
shown:

load data

infile '<path to bank edges amt.csv>'

into table bank txns

fields terminated by "," optionally enclosed by '"'
(from acct id,to_acct id,description,amount)

4. Invoke SQL*Loader from the command line to load the edges in bank_txns table,
using the preceding configuration file as shown:

sqlldr <dbuser>/<password> CONTROL=<path to edge loader.ctl>

The bank_txns table gets successfully loaded with 4996 rows.

5. Execute the following SQL statement to add the primary key constraint in the
bank accounts table:

ALTER TABLE bank accounts ADD PRIMARY KEY (id);

ORACLE 11-2

Chapter 11
Quick Start: Working with PGQL Property Graphs

6. Execute the following SQL statements to add a primary key column to the bank txns
table, populate it with ROWNUM values and then define the primary key constraint:

ALTER TABLE bank txns ADD txn id NUMBER;

UPDATE bank txns SET txn id = ROWNUM;

COMMIT;

ALTER TABLE bank txns ADD PRIMARY KEY (txn id);

7. Execute the following SQL statements to add the foreign key constraints to the
bank txns table:

ALTER TABLE bank txns MODIFY from acct id REFERENCES bank accounts(id);
ALTER TABLE bank txns MODIFY to acct id REFERENCES bank accounts(id);

The sample bank graph data is now available in the database tables.

11.2 Quick Start: Working with PGQL Property Graphs

This tutorial helps you get started on creating, querying and executing graph algorithms on
PGQL property graphs.

The instructions assume that you have loaded the sample bank graph data provided with the
graph server installation in the database tables. See Using Sample Data for Graph Analysis
for more information.

The following instructions are supported with examples that can be executed either with the
OPG4J Java shell or OPG4PY Python shell or through a Java program using the PGX API.

1. Start the interactive graph shell CLI:

* JShell
e Python
JShell

cd /opt/oracle/graph
./bin/opg4j --no_connect
Oracle Graph Server Shell 24.1.0

Python

cd /opt/oracle/graph
./bin/opg4py --no_connect
Oracle Graph Server Shell 24.1.0

2. Obtain a JDBC database connection, if using OPG4J shell or a Java program.

ORACLE' 11-3

ORACLE"

Chapter 11
Quick Start: Working with PGQL Property Graphs

e JShell
e Java
JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host>:<port>/<sid>"
jdbcUrl ==> "jdbc:oracle:thin:@localhost:1521/orclpdb”

opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "<username>","<password>")
conn ==> oracle.jdbc.driver.T4CConnection@7d463c9f

opg4j> conn.setAutoCommit (false);

Java

import java.sgl.DriverManager;

import java.sqgl.Connection;

import java.sqgl.Statement;

import oracle.pg.rdbms.pgql.PgglConnection;
import oracle.pg.rdbms.pgql.PgglStatement;
import oracle.pg.rdbms.pgql.PgglResultSet;
import oracle.pgx.api.*;

import oracle.pg.rdbms.GraphServer;

// Get a jdbc connection

String jdbcUrl="jdbc:oracle:thin:@"+<host>+":"+<port>+"/"+<service>;
conn = DriverManager.getConnection (jdbcUrl, <username>, <password>);
conn.setAutoCommit (false);

Create a PGQL connection.

e JShell
e Java

* Python
JShell

opg4j> var pgglConn = PgglConnection.getConnection (conn)
pgglConn ==> oracle.pg.rdbms.pgql.PgglConnection@5c5¢c784c

Java

PgglConnection pgglConn = PgglConnection.getConnection (conn);

11-4

Chapter 11
Quick Start: Working with PGQL Property Graphs

Python

>>> pgql conn = opgdpy.pggl.get connection ("<username>","<password>",
"Jdbc:oracle:thin:@<host>:<port>/<sid>")

Create a PGQL statement to execute PGQL queries.

e JShell
e Java

* Python
JShell

opg4j> var pgqlStmt = pgglConn.createStatement ()
pgglStmt ==> oracle.pg.rdbms.pgqgl.PgglExecution@29e3c28

Java

PgglStatement pgglStmt = pgglConn.createStatement () ;

Python

>>> pgql statement = pgqgl conn.create statement ()

Create a PGQL property graph using the CREATE PROPERTY GRAPH Statement:

 JShell
e Java

* Python
JShell

opg4j> String pgql =
...> "CREATE PROPERTY GRAPH bank graph "
..> + "VERTEX TABLES (BANK ACCOUNTS AS ACCOUNTS "
"KEY (ID) "
"LABEL ACCOUNTS "
"PROPERTIES (ID, NAME) "

n) "

"EDGE TABLES (BANK TXNS AS TRANSFERS "

V V V VvV
+ + + + +

ORACLE"

11-5

ORACLE

&~V VvV VOV VoV
Vo+ o+ o+ o+ o+

opg
Java

String

Chapter 11
Quick Start: Working with PGQL Property Graphs

"KEY (FROM ACCT ID, TO ACCT ID, AMOUNT) "

"SOURCE KEY (FROM ACCT ID) REFERENCES ACCOUNTS (ID) "
"DESTINATION KEY (TO ACCT ID) REFERENCES ACCOUNTS (ID) "
"LABEL TRANSFERS "

"PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT, DESCRIPTION) "
") OPTIONS (PG _PGQL) "

pgglStmt.execute (pgql)

pgql =
"CREATE PROPERTY GRAPH " + graph + " " +
"VERTEX TABLES (BANK ACCOUNTS AS ACCOUNTS " +
"KEY (ID) " +
"LABEL ACCOUNTS " +
"PROPERTIES (ID, NAME)" +
n) A\l +
"EDGE TABLES (BANK TXNS AS TRANSFERS " +
"KEY (FROM_ACCT ID, TO_ACCT_ID, AMOUNT) " +
"SOURCE KEY (FROM ACCT_ID) REFERENCES ACCOUNTS (ID) " +
"DESTINATION KEY (TO_ACCT_ID) REFERENCES ACCOUNTS (ID) " +
"LABEL TRANSFERS " +
"PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT,

DESCRIPTION)" +

") OPTIONS (PG _PGQL)";

pgglStmt.execute (pgqgl) ;

Python

>>> pgql = nmnn

(ID)

BANK ACCOUNTS (ID)

DESCRIPTION)

nmmnn

CREATE PROPERTY GRAPH bank graph
VERTEX TABLES (
BANK ACCOUNTS
LABEL ACCOUNTS
PROPERTIES (ID, NAME)
)
EDGE TABLES (
BANK TXNS
SOURCE KEY (FROM ACCT ID) REFERENCES BANK ACCOUNTS

DESTINATION KEY (TO_ACCT ID) REFERENCES

LABEL TRANSFERS
PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT,

) OPTIONS (PG_PGQL)

>>> pgql statement.execute (pgql)

False

11-6

ORACLE

Chapter 11
Quick Start: Working with PGQL Property Graphs

The graph gets created successfully.

Execute the following query to retrieve the first 10 elements of the graph as shown:

JShell
e Java
e Python
JShell

opg4j> String pgglQuery =

...> "SELECT e.from acct id, e.to_acct id, e.amount FROM "

...> + "MATCH (n:ACCOUNTS) -[e:TRANSFERS]-> (m:ACCOUNTS) ON BANK GRAPH "
...> + "LIMIT 10"

opg4j> var rs = pgqglStmt.executeQuery (pgglQuery)

rs ==> oracle.pg.rdbms.pgqgl.pgview.PgViewResultSet@1e368085

opgdj> rs.print()

o +
| FROM ACCT ID | TO ACCT ID | AMOUNT |
o +
121	94	1000
121	255	1000
121	221	1000
122	27	1000
122	606	1000
122	495	1000
122	640	1000
122	140	1000
123	95	1000
123	130	1000
o +

$16 ==> oracle.pg.rdbms.pgqgl.pgview.PgViewResultSet@1e368085

Java

String pgglQuery =
"SELECT e.from acct id, e.to acct id, e.amount FROM " +
"MATCH (n:ACCOUNTS) -[e:TRANSFERS]-> (m:ACCOUNTS) ON BANK GRAPH "

"LIMIT 10";
PgglResultSet rs = pgglStmt.executeQuery(pggqlQuery);
rs.print();

Python

>>> pgql — nnn
.. SELECT e.from acct id, e.to _acct id, e.amount FROM
.. MATCH (n:ACCOUNTS) -[e:TRANSFERS]-> (m:ACCOUNTS) on BANK GRAPH
. limit 10

11-7

ORACLE

Chapter 11
Quick Start: Working with PGQL Property Graphs

non

>>> pggl statement.execute query(pgql) .print ()

- +
| FROM ACCT ID | TO ACCT ID | AMOUNT |
- +
121	94	1000
121	255	1000
121	221	1000
122	27	1000
122	606	1000
122	495	1000
122	640	1000
122	140	1000
123	95	1000
123	130	1000
- +

Load the graph into the graph server (PGX). This will enable you to run a variety of
different built-in algorithms on the graph and will also improve query performance
for larger graphs.

e JShell
e Java
* Python
JShell

opgdj> var instance = GraphServer.getInstance ("https://
localhost:7007", "<username>", "<password>".toCharArray())
instance ==> ServerInstance[embedded=false,baseUrl=https://
localhost:7007]

opg4j> var session = instance.createSession("mySession")
session ==
PgxSession[ID=43653128-59cd-4e69-992c-1a2beac05857, source=mySession]
opg4j> var graph =
session.readGraphByName ("BANK GRAPH",GraphSource.PG_PGQL)
graph ==

PgxGraph [name=BANK GRAPH,N=1000,E=4996,created=1643308582055]

Java

ServerInstance instance = GraphServer.getInstance ("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession ("my-session");
PgxGraph graph =
session.readGraphByName ("BANK GRAPH",GraphSource.PG PGQL) ;

11-8

Chapter 11
Quick Start: Working with PGQL Property Graphs

Python

>>> instance = graph server.get instance("https://

localhost:7007", "<username>", "<password>")

>>> session = instance.create session("my session")

>>> graph = session.read graph by name ('BANK GRAPH', 'pg pgql')

>>> graph

PgxGraph (name: BANK GRAPH, v: 1000, e: 4996, directed: True, memory (Mb) :
0)

Execute the PageRank algorithm as shown:

e JShell
e Java

* Python
JShell

opg4j> var analyst = session.createRAnalyst ()

analyst ==> NamedArgumentAnalyst[session=3f0a%a71-£349-4aac-b75f-
a7c4ae50851b]

opg4j> analyst.pagerank (graph)

$10 ==> VertexProperty[name=pagerank, type=double, graph=BANK GRAPH]

Java

Analyst analyst = session.createRnalyst();
analyst.pagerank (graph) ;

Python

>>> analyst = session.create analyst()

>>> analyst.pagerank (graph)
VertexProperty (name: pagerank, type: double, graph: BANK GRAPH)

Query the graph to list the top 10 accounts by pagerank:

e JShell
e Java
* Python

ORACLE"

11-9

ORACLE

Chapter 11
Quick Start: Working with PGQL Property Graphs

JShell

opg4j> String pggl ==> "SELECT a.id, a.pagerank FROM MATCH (a) ON
BANK GRAPH ORDER BY a.pagerank DESC LIMIT 10"
opg4j> session.queryPgql (pgql) .print ()

e +
| id | pagerank

e +
387	0.007292323575404966
406	0.0067300944623203615
135	0.0067205459831892545
934	0.00663484385036358
397	0.005693569761570973
559	0.0052584383114609844
352	0.005216329599236731
330	0.005093350408942336
222	0.004682551613749817
4	0.004569682370461633
e +

$18 ==> PgqlResultSetImpl [graph=BANK GRAPH,numResults=10]

Java

String pgQuery = "SELECT a.id, a.pagerank FROM MATCH (a) ON
BANK GRAPH ORDER BY a.pagerank DESC LIMIT 10";
session.queryPgql (pgQuery) .print () ;

Python

>>> pggl = "SELECT a.id, a.pagerank FROM MATCH (a) ON BANK GRAPH
ORDER BY a.pagerank DESC LIMIT 10"
>>> session.query pgql (pgql) .print ()

Fomm +
| id | pagerank

Fomm +
387	0.007292323575404966
406	0.0067300944623203615
135	0.0067205459831892545
934	0.00663484385036358
397	0.005693569761570973
559	0.0052584383114609844
352	0.005216329599236731
330	0.005093350408942336
222	0.004682551613749817
4	0.004569682370461633
Fomm +

11-10

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11.3 Quick Start: Using Graph Machine Learning on PGQL
Property Graphs

This tutorial helps you get started on applying the DeepWalk machine learning algorithm on a
PGQL property graph.

The instructions assume that the PGQL property graph is already existing in your current
database.

Run the following steps to build and work with a Deep Walk model.

1. Load the PGQL property graph into the graph server (PGX).

e JShell
e Java
e Python
JShell

opgdj> var instance = GraphServer.getInstance ("https://localhost:7007",
"<username>", "<password>".toCharArray())

instance ==> ServerInstance [embedded=false,baseUrl=https://localhost:7007]
opgdj> var session=instance.createSession ("mySession")

session ==
PgxSession[ID=5af9%c362-10a3-4a7¢c-953¢c-602553d4606b, source=mySession]
opg4j> var graph =
session.readGraphByName ("BANK GRAPH",GraphSource.PG_PGQL)

graph ==> PgxGraph[name=BANK GRAPH,N=1000,E=4997, created=1684315831352]

Java

ServerInstance instance = GraphServer.getInstance ("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession ("my-session");
PgxGraph graph =
session.readGraphByName ("BANK GRAPH",GraphSource.PG PGQL) ;

Python

>>> instance = graph server.get instance("https://

localhost:7007", "<username>", "<password>")

>>> session = instance.create session("my session")

>>> graph = session.read graph by name ("BANK GRAPH", "pg pgql")

>>> graph

PgxGraph (name: BANK GRAPH, v: 1000, e: 4997, directed: True, memory (Mb) :
0)

ORACLE 11-11

ORACLE"

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

Build a Deep Walk model using customized hyper-parameters as shown:

 JShell
¢ Java

e Python
JShell

opg4j> var model = session.createAnalyst().deepWalkModelBuilder ().
o> setMinWordFrequency (1) .

setBatchSize (512).

setNumEpochs (1) .

setLayerSize (100).

setLearningRate (0.05).

setMinLearningRate (0.0001) .

setWindowSize (3) .

setWalksPerVertex (6) .

setWalkLength (4) .

setNegativeSample (2) .

LoD build()

model ==> oracle.pgx.api.mllib.DeepWalkModel@6e0f259%

V V V V V V V V V

Java

import oracle.pgx.api.mllib.DeepWalkModel;

DeepWalkModel model= session.createAnalyst () .deepWalkModelBuilder ()
.setMinWordFrequency (1)
.setBatchSize (512)
.setNumEpochs (1)
.setLayerSize (100)
.setLearningRate (0.05)
.setMinLearningRate (0.0001)
.setWindowSize (3)
.setWalksPerVertex (6)
.setWalkLength (4)
.setNegativeSample (2)
Lbuild();

Python

>>> model =
session.create analyst().deepwalk builder (min word frequency= 1,
batch size= 512,
num_epochs= 1,
layer size= 100,
learning rate= 0.05,
min learning rate= 0.0001,

11-12

Chapter 11

Quick Start: Using Graph Machine Learning on PGQL Property Graphs

window size= 3,
walks per vertex= 6,
walk length= 4,
negative sample= 2)

3. Train the Deep Walk model as shown:

e JShell
e Java

* Python
JShell

opg4j> model.fit (graph)

Java

model.fit (graph);

Python

>>> model.fit (graph)

Get the loss value as shown:

e JShell
e Java

e Python
JShell

opg4ij> var loss = model.getLoss ()
loss ==> -2.097562355629634E-5

Java

double loss = model.getLoss();

ORACLE"

11-13

Chapter 11

Quick Start: Using Graph Machine Learning on PGQL Property Graphs

Python

>>> loss = model.loss
>>> loss
-2.0706271243398078e-05

Compute similar vertices as shown:

e JShell
e Java

* Python
JShell

opg4j> var similars = model.computeSimilars ("ACCOUNTS (280)",10)

batchSimilars ==>

oracle.pgx.api.frames.internal.PgxFrameImpl@308e465b

opg4j> batchSimilars.print ()

Java

import oracle.pgx.api.frames.*;

PgxFrame similars = model.computeSimilars ("ACCOUNTS (280)",

similars.print();

Python

>>> similars = model.compute similars ("ACCOUNTS (280)",10)

>>> similars.print ()

The example produces a similar output:

+ _____________________________________
| dstVertex | similarity

+ _____________________________________
| ACCOUNTS (280) | 1.0

| ACCOUNTS (486) | 0.3253505229949951

| ACCOUNTS (615) | 0.2806776463985443

| ACCOUNTS (660) | 0.27348122000694275
| ACCOUNTS (737) | 0.2734076678752899

| ACCOUNTS (368) | 0.2707795202732086

| ACCOUNTS (479) | 0.27019545435905457
| ACCOUNTS (845) | 0.2618815004825592

ORACLE"

11-14

ORACLE"

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

| ACCOUNTS (834) | 0.2543807625770569 |
| ACCOUNTS (249) | 0.24260951578617096 |

Get all trained vectors and store them in a database table as shown:

 JShell
¢ Java

e Python
JShell

opg4j> var vertexVectors = model.getTrainedVertexVectors().flattenAll ()
vertexVectors ==> oracle.pgx.api.frames.internal.PgxFrameImpl@46cb9794
opg4i>
vertexVectors.write().db () .name ("deepwalkframe") .tablename ("vertexVectors"
) .overwrite (true) .store()

Java

PgxFrame vertexVectors = model.getTrainedVertexVectors().flattenAll();
vertexVectors.write ()

.db ()

.name ("vertex vectors")

.tablename ("vertexVectors")

.overwrite (true)

.store();

Python

>>> vertex vectors = model.trained vectors.flatten all()
>>> vertex vectors.write().db(). \

table name("vertex vectors"). \

overwrite (True). \

store ()

Store the trained model in the database as shown:

e JShell
e Java
* Python

11-15

ORACLE"

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

JShell

opg4j> model.export().db().
..> modelstore("bank model").
..> modelname ("model").
o> description ("DeepWalk Model for Bank data").
> store ()

Java

model.export () .db()
.modelstore ("bank model")
.modelname ("model2")
.description ("DeepWalk Model for Bank data")
.store();

Python

>>> model.export () .db (model store="bank model",

model name="model",

ce model description="DeepWalk Model for Bank
data")

Load a pre-trained model from the database as shown:

 JShell
e Java
e Python
JShell

opg4j> session.createAnalyst () .loadDeepWalkModel () .db() .
Lo modelstore ("bank model") .
Lo modelname ("model") .
Lo load()

Java

model = session.createAnalyst().loadDeepWalkModel () .db()
.modelstore ("bank model")
.modelname ("model")
.load();

11-16

Chapter 11
Quick Start: Using the Python Client as a Module

Python

>>> model =
session.create analyst().get deepwalk model loader ().db(model store="bank
model",

model name="model")

9. Destroy the model as shown:

e JShell
e Java

* Python
JShell

opg4j> model.destroy ()

Java

model.destroy () ;

Python

>>> model.destroy ()

See Using the Machine Learning Library (PgxML) for Graphs for more information on the
supported machine learning algorithms.

11.4 Quick Start: Using the Python Client as a Module

ORACLE

This section describes how to use the Python client as a module in Python applications.

Remote Server

For this mode, all you need is the Python client to be installed. In your Python program, you
must authenticate with the remote server before you can create a session as illustrated in the
following example. Note that you must replace the values for base url, jdbc url, username,
and password with values to match your environment details.

import pypgx

import opgédpy

import opgdpy.graph server as graph server

pggl conn = opgdpy.pgql.get connection ("<username>","<password>",

11-17

ORACLE

Chapter 11
Quick Start: Using the Python Client as a Module

"<jdbc url>")
pggl statement = pgql conn.create statement ()
pggl = """
CREATE PROPERTY GRAPH bank graph
VERTEX TABLES (
bank accounts
LABEL ACCOUNTS
PROPERTIES (ID, NAME)
)
EDGE TABLES (
bank txns
SOURCE KEY (from acct id) REFERENCES bank accounts (ID)
DESTINATION KEY (to _acct id) REFERENCES bank accounts (ID)
LABEL TRANSFERS
PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT, DESCRIPTION)
) OPTIONS (PG_PGQL)
pggl statement.execute (pgql)
instance = graph server.get instance("<base url>", "<username>",
"<password>")
session = instance.create session("my session")
graph = session.read graph by name ('BANK GRAPH', 'pg pgql')
analyst = session.create analyst()
analyst.pagerank (graph)
rs = graph.query pgql ("SELECT id(x), x.pagerank FROM MATCH (x) LIMIT
5)
rs.print ()

To execute, save the above program into a file named program.py and run the
following command:

python3 program.py

You will see the following output:

9.749447313256548E-4
0.004584001759076056

BANK_ACCOUNTS \ \
| |
| 5.358461393401424E-4 |
| |
| |

| (2
| BANK ACCOUNTS (4
| BANK ACCOUNTS (6
| (8 0.0013051552434930175
| (1 0.0015040122009364232

BANK ACCOUNTS
BANK ACCOUNTS

Converting PGQL result set into pandas dataframe

Additionally, you can also convert the PGQL result set to a pandas.DataFrame object
using the to_pandas () method. This makes it easier to perform various data filtering
operations on the result set and it can also be used in Lambda functions. For example,

example query = (
"SELECT n.name AS name, n.age AS age "

11-18

Chapter 11
Oracle LiveLabs Workshops for Graphs

"WHERE (n)"

)
result set = sample graph.query pgql (example query)
result df = result set.to pandas()

result df['age bin'] = result df['age'].apply(lambda x: int(x)/20) # create
age bins based on age ranges

Note:

To view the complete set of available Python APIs, see OPG4PY Python API
Reference.

Embedded Server

For this mode, the Python client and the Graph Server RPM package must be installed on the
same machine.

import os

os.environ["PGX CLASSPATH"] = "/opt/oracle/graph/lib/*"
instance = graph server.get embedded instance()

session = instance.create session("python pgx client")
print (session)

To execute, save the above program into a file named program.py and run the following
command.

python3 program.py

After successful login, you must see a similar message indicating a PGX session was
created:

PgxSession(id: 32fc7037-18f1-4381-ba9%4-107e5f63aec2, name: python pgx client)

" Note:

To view the complete set of available Python APls, see OPG4PY Python API
Reference.

11.5 Oracle LiveLabs Workshops for Graphs

ORACLE

You can also explore Oracle Property Graph features using the graph workshops in Oracle
LiveLabs.

See the Oracle LiveLabs Workshop for a complete example on querying, analyzing and
visualizing graphs using data stored in a free tier Autonomous Database instance. You will
provision a new free tier Autonomous Database instance, load data into it, create a graph,
and then query, analyze and visualize the graph.

11-19

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc

Getting Started with the Client Tools

You can use multiple client tools to interact with the graph server (PGX) or directly with the
graph data in the database.

The following sections explain how to use the various client tools:

Interactive Graph Shell CLIs

Both the Oracle Graph server and client packages contain interactive command-line
applications for interacting with the Java APIs and the Python APIs of the product, locally
or on remote computers.

Using Autonomous Database Graph Client

Using the AdbGraphClient API, you can access Graph Studio features in Autonomous
Database programmatically using the Oracle Graph Client or through your Java or
Python application.

Using the Graph Visualization Web Client
You can use the Graph Visualization application to visualize graphs that are either loaded
into the graph server (PGX) or stored in the database.

Using the Jupyter Notebook Interface
You can use the Jupyter notebook interface to create, load, and query PGQL property
graphs through Python.

Additional Client Tools for Querying PGQL Property Graphs
When working with PGQL property graphs in the database, you can use other supported
client tools.

Related Topics

Oracle Graph Client Installation
You can interact with the various graph features using the client CLIs and the graph
visualization web client.

12.3 Using the Graph Visualization Web Client

You can use the Graph Visualization application to visualize graphs that are either loaded into
the graph server (PGX) or stored in the database.

ORACLE

To run the graph visualization application for your installation, see Running the Graph
Visualization Web Client.

Related Topics

Graph Visualization Application

The Graph Visualization application enables interactive exploration and visualization of
property graphs. You can visualize graphs that are loaded into the graph server(PGX)
and the graphs stored in the database.

12-1

Chapter 12
Using the Jupyter Notebook Interface

12.4 Using the Jupyter Notebook Interface

You can use the Jupyter notebook interface to create, load, and query PGQL property
graphs through Python.

Perform the following steps to perform graph analysis using Jupyter Notebook:
1. Install the Jupyter Notebook application following the Jupyter documentation. The
following example installs Jupyter with pip:

pip3 install --user jupyter

Ensure that your Jupyter installation is added to the PATH environment variable.
Run the notebook server using the jupyter notebook command.

Launch the web application using the generated URL and open a new notebook.

a H w DN

Create and analyse a property graph.

* The following example shows creating a PGQL property graph and running
graph queries:

Figure 12-1 Creating a PGQL property graph in Jupyter Notebook

In [5]: import opg4py
import opg4py.graph server as graph server
from pypgx import setloglevel
setloglevel("ROOT", "WARN")

In [6]: pgql_conn = opg4py.pgql.get_connection("graphuser”,"<password>", "jdbc:oracle:thin:@localhost:1521/orclpdb")
pgql_statement = pgql conn.create statement()

In [7]: pgql = """
CREATE PROPERTY GRAPH bg pgql view
VERTEX TABLES (
bank_accounts
LABEL ACCOUNTS
PROPERTIES (ID, NAME)

)
EDGE TABLES (
bank_txns
SOURCE KEY (from acct id) REFERENCES bank accounts
DESTINATION KEY (to_acct_id) REFERENCES bank_accounts
LABEL TRANSFERS
PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT, DESCRIPTION)
) OPTIONS(PG_VIEW)

pgal_statement.execute(pgql)
out[7]: False
In [9]: pggl = """
SELECT e.from acct id, e.to acct id, e.amount FROM

MATCH (n:accounts) -[e:transfers]-> (m:accounts) on bg_pgql_view
LIMIT 10

pgql_statement.execute query(pgql).print()

Y +
| FROM ACCT ID | TO ACCT ID | AMOUNT |
e T T T +
179	688	10000
179	166	1008
179	397	1008

* The following example shows loading the PGQL property graph into the graph
server (PGX) and running graph algorithms for analysis:

ORACLE 12-2

https://docs.jupyter.org/en/latest/install/notebook-classic.html

Chapter 12
Interactive Graph Shell CLIs

Figure 12-2 Running Graph Algorithms in Jupyter Notebook

In [2]: import pypgx
import opg4py
import opg4py.graph_server as graph_server
from pypgx import setloglevel

setloglevel ("ROOT", "WARN")

In [3]: instance = graph_server.get instance("https://localhost:7007","graphuser"”,"<password>")
session = instance.create session("my session")
analyst = session.create analyst()

In [4]: graph = session.read graph by name('BANK GRAPH VIEW', 'pg view')

In [5]: analyst.pagerank(graph)
session.query pgql("SELECT a.id, a.pagerank FROM MATCH (a) ON BANK GRAPH VIEW ORDER BY a.pagerank DESC LIMIT 10").pri

e +
| id | pagerank |

387 | ©.007303928917145903 |
135 | 0.006796553517970221 |
406 | 0.006745390517607187 |
934 | 0.006649948769389787 |
397 | ©.005691263648871763 |
559 | |
352 | |

1 1

220

0.005273571946174811
0.005225624734370808
a

ANR1NRATARA2711904

12.1 Interactive Graph Shell CLIs

Both the Oracle Graph server and client packages contain interactive command-line
applications for interacting with the Java APIs and the Python APIs of the product, locally or
on remote computers.

The interactive graph shells dynamically interpret command-line inputs from the user, execute
them by invoking the underlying functionality, and can print results or process them further.
The graph shells provide a lightweight and interactive way of exercising graph functionality
without creating a Java or Python application.

The graph shells are especially helpful if you want to do any of the following:

* Quickly run a "one-off" graph analysis on a specific data set, rather than creating a large
application

* Run getting started examples and create demos on a sample data set
» Explore the data set, trying different graph analyses on the data set interactively

» Learn how to use the product and develop a sense of what the built-in algorithms are
good for

» Develop and test custom graph analytics algorithms

The graph shell for the Java APl (OPGA4J) is implemented on top of the Java Shell tool
(JShell). As such, it inherits all features provided by JShell such as tab-completion, history,
reverse search, semicolon inference, script files, and internal variables. The graph shell for
the Python API (OPG4Py) uses IPython in case it is installed.

The following sections explain in detail on how to start the graph shell CLlIs:

e Starting the OPG4J Shell
e Starting the OPG4Py Shell

ORACLE 12-3

Chapter 12
Interactive Graph Shell CLIs

¢ See Also:

+ Java API Reference for information on the Java APIs

e Python API Reference for information on the Python APIs

12.1.1 Starting the OPG4J Shell

Launching the OPG4J Shell

The Java shell executables are found in /opt/oracle/graph/bin after the graph
server (PGX) installation, and in <CLIENT INSTALL DIR>/bin after the Java client
installation.

The OPGA4J shell uses JShell, which means the shell needs to run on Java 11 or later.
See Installing the Java Client From the Graph Server and Client Downloads for more
details on the prerequisites. You can then launch the OPG4J shell by entering the
following in your terminal:

cd /opt/oracle/graph
./bin/opg4j

When the shell has started, the following command line prompt appears:

For an introduction type: /help intro
Oracle Graph Server Shell 24.1.0
Variables instance, session, and analyst ready to use.

opg4di>

By default, the OPG4J shell creates a local PGX instance, to run graph functions in the
same JVM as the shell as described in Developing Applications Using Graph Server
Functionality as a Library.

Command-line Options

To view the list of available command-line options, add --help to the opg47 command:

./bin/opg4j --help

To start the opg4j shell without connecting to the graph server (PGX), use the --
no_connect option as shown:

./bin/opg4j --no connect

ORACLE 12-4

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc

ORACLE

Chapter 12
Interactive Graph Shell CLIs

Starting the OPG4J Shell on Remote Mode

The OPGA4J shell can connect to a graph server (PGX) instance that is running on another
JVM (possibly on a different machine). In order to launch the OPG4J shell in remote mode,
you must specify the --base_url parameter as shown:

./bin/opg4j --base url https://<host>:7007 --username <graphuser>

where :
e <host>: is the server host

e <graphuser>: is the database user
You will be prompted for the database password.

¢ Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can
configure the graph server to listen on a different port by changing the port value in
the server configuration file (server.conf). See Configuring the Graph Server
(PGX) for details.

When the shell has started, the following command line prompt appears:

Oracle Graph Server Shell 24.1.0
Variables instance, session, and analyst ready to use.
opg4di>

If you have multiple versions of Java installed, you can easily switch between installations by
setting the JAVA_HOME variable before starting the shell. For example:

export JAVA HOME=/usr/lib/jvm/java-ll-oracle

Batch Execution of Scripts

The OPGA4J shell can execute a script by passing the path(s) to the script(s) to the opg4
command. For example:

./bin/opg4j /path/to/script.jsh

Predefined Functions
The OPGA4J shell provides the following utility functions:
* println(String): A shorthand for System.out.printin(String).

* loglevel (String loggerName, String levelName): A convenient function to set the
loglevel.

The loglevel function allows you to set the log level for a logger. For example,
loglevel ("ROOT", "INFO") sets the level of the root logger to INFO. This causes all logs of
INFO and higher (WARN, ERROR, FATAL) to be printed to the console.

12-5

Chapter 12
Interactive Graph Shell CLIs

Script Arguments

You can also provide parameters to the script executed by the graph server (PGX). For
example:

./bin/opg4j /path/to/script.jsh script-arg-1 script-arg-2

The script /path/to/script.jsh can then access the arguments through the
arguments.scriptArgs variable. The arguments are provided as an array of strings
(string[]). For example:

Arrays.stream(arguments.scriptArgs).forEach((a) ->
System.out.println(a));

The preceding example prints the output as shown:

script-arg-1
script-arg-2

Staying in Interactive Mode

By default, the OPG4J shell exits after it finishes execution. To stay in interactive mode
after the script finishes successfully, pass the --keep running flag to the shell. For
example:

./bin/opg4j -b https://myserver.com:7007/ /path/to/script.jsh --
keep running

12.1.2 Starting the OPG4Py Shell

ORACLE

Launching the OPG4Py Shell

The OPG4Py shell executables are found in /opt/oracle/graph/bin after the graph
server (PGX) installation, and in <CLIENT INSTALL DIR>/bin after the Python client
installation.

Before launching the OPG4Py shell, verify that your system meets these prerequisites.
You can then launch the OPG4Py shell by entering the following in your terminal:

cd /opt/oracle/graph
./bin/opgipy

When the shell has started, the following command line prompt appears:

Oracle Graph Server Shell 24.1.0
>>>

If IPython is installed the following prompt will appear:

In [1]:

12-6

Chapter 12
Using Autonomous Database Graph Client

By default, the OPG4Py shell creates a local PGX instance, to run graph functions in the
same JVM as the shell as described in Developing Applications Using Graph Server
Functionality as a Library.

Command-line Options

To view the list of available command-line options, add --help to the opg4py command:

./bin/opgdpy --help

To start the PyPGX shell without connecting to the graph server (PGX), use the --
no_connect option as shown:

./bin/opg4py --no_connect

Starting the OPG4Py Shell on Remote Mode

The OPG4Py shell can connect to a graph server (PGX) instance that is running on another
JVM (possibly on a different machine). In order to launch the OPG4Py shell in remote mode,
you must specify the --base _url parameter as shown:

./bin/opgdpy --base url https://<host>:7007 --username <graphuser>

where :
e <host>: is the server host

* <graphuser>: is the database user
You will be prompted for the database password.

" Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can
configure the graph server to listen on a different port by changing the port value in
the server configuration file (server.conf). See Configuring the Graph Server
(PGX) for details.

When the OPG4Py shell has started, the following command line prompt appears:

Oracle Graph Server Shell 24.1.0
>>>

12.2 Using Autonomous Database Graph Client

ORACLE

Using the AdbGraphClient API, you can access Graph Studio features in Autonomous
Database programmatically using the Oracle Graph Client or through your Java or Python
application.

This API provides the following capabilities:

e Authenticate with Autonomous Database

12-7

ORACLE

Chapter 12
Using Autonomous Database Graph Client

Manage the Graph Studio environment
Execute graph queries and algorithms against the graph server (PGX)

Execute graph queries directly against Oracle Database

To use the AdbGraphClient API, you must have access to Oracle Graph Client
installation. The API is provided by the Oracle Graph Client library which is a part of
the Oracle Graph Server and Client distribution. See Installing Oracle Graph Client on
how to install and get started with the graph client shell CLIs for Java or Python.

Also, prior to using the Autonomous Database Graph Client, ensure you meet all the
prerequisite requirements explained in Prerequisites for Using Autonomous Database
Graph Client.

The following example shows using the AdbGraphClient API to establish a connection
to Graph Studio, start an environment with allocated memory, load a PGQL property
graph into memory, execute PGQL queries and run algorithms against the graph.

¢ Note:

See the Javadoc and Python API Reference for more information on
AdbGraphClient API.

Start the interactive graph shell CLI and connect to your Autonomous Database
instance with the AdbGraphClient using one of the following methods:

Configuring the AdbGraphClient using Tenancy Details

e JShell
« Java
e Python
JShell

cd /opt/oracle/graph

./bin/opg4j --no_connect

For an introduction type: /help intro

Oracle Graph Server Shell 24.1.0

opg4j> import oracle.pg.rdbms.*

opg4j> var config = AdbGraphClientConfiguration.builder ()
opg4j> config.database ("<DB name>")

opg4j> config.tenancyOcid ("<tenancy OCID>")

opg4j> config.databaseOcid("<database OCID>")

opg4j> config.username ("ADBDEV")

opg4j> config.password("<password for ADBDEV>")

opg4j> config.endpoint ("https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/")

opg4j> var client = new AdbGraphClient (config.build())
client ==> oracle.pg.rdbms.AdbGraphClient@7b8d1537

12-8

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=graph_clients
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=adb_graph_client_java
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=adb_graph_client_python

ORACLE

Chapter 12
Using Autonomous Database Graph Client

Java
import oracle.pg.rdbms.*;

var config = AdbGraphClientConfiguration.builder();
config.tenancyOcid("<tenancy OCID>");
config.databaseOcid("<database OCID>");
config.database ("<DB name>");

config.username ("ADBDEV") ;
config.password("<password for ADBDEV>");
config.endpoint ("https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/");

var client = new AdbGraphClient (config.build());

Python

cd /opt/oracle/graph

./bin/opg4py --no_ connect

Oracle Graph Server Shell 24.1.0

>>> from opg4dpy.adb import AdbClient

>>> config = {
'tenancy ocid': '<tenancy OCID>',
'database': '<DB name>',
'database ocid': '<DB OCID>',
'username': 'ADBDEV',
'password': '<password for ADBDEV>',

... 'endpoint': 'https://<hostname-

prefix>.adb.<region>.oraclecloudapps.com/"

ce }

>>> client = AdbClient (config)

Configuring the AdbGraphClient using JDBC Connection

You can also configure the AdbGraphClient to use a JDBC connection to connect to your
Autonomous Database instance (as shown in the following code). See Connect with
JDBC Thin Driver in Using Oracle Autonomous Database Serverless on how to obtain
the JDBC URL to connect to the Autonomous Database.

However, ensure that you have READ access to the v$pdbs view in your Autonomous
Database instance. By default, the ADMIN user has READ access to the v$pdbs view. For
all other users (non-administrator users), the READ access can be granted by the ADMIN
(GRANT SELECT ON v$pdbs TO <user>).

e JShell
e Java
e Python

12-9

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E

ORACLE

Chapter 12
Using Autonomous Database Graph Client

JShell

import oracle.pg.rdbms.*

opg4j> var conn = DriverManager.getConnection (<jdbcUrl>,
<username>, <password>)

opg4j> var config =
AdbGraphClientConfiguration.fromConnection(conn, <password>)
opg4j> var client = new AdbGraphClient (config)

Java

import oracle.pg.rdbms.*;

AdbGraphClientConfiguration config =
AdbGraphClientConfiguration.fromCredentials (<jdbcUrl>, <username>,
<password>) ;

AdbGraphClient client = new AdbGraphClient (config);

Python

>>> from opgdpy.adb import AdbClient
>>> client = AdbClient.from connection (<jdbcUrl>, <username>,
<password>)

Start the PGX server environment with the desired memory as shown in the
following code.

This submits a job in Graph Studio for environment creation. job.get () waits for
the environment to get started. You can always verify if the environment has
started successfully with client.isAttached (). The method returns a boolean
true if the environment is running.

However, you can skip the step of creating an environment, if
client.isAttached () returns true in the first step of the code.

 JShell
e Java
e Python
JShell

opg4j> client.isAttached()

$9 ==> false

opg4j> var job=client.startEnvironment (10)

job ==> oracle.pg.rdbms.Job@117e9a56 [Not completed]
opg4j> job.get ()

$11 ==> null

opg4j> job.getName ()

$11 ==> "Environment Creation - 16 GBs"

12-10

ORACLE"

Chapter 12
Using Autonomous Database Graph Client

opg4j> job.getType ()

$12 ==> ENVIRONMENT CREATION
opg4j> job.getCreatedBy ()
$13 ==> "ADBDEV"

opg4j> client.isAttached()
$11 ==> true

Java
if (!client.isAttached()) {

var job = client.startEnvironment (10);
job.get();

System.out.println("job details: name=" + job.getName() + "type=

" + job.getType() +"created by= " + job.getCreatedBy());
}

job details: name=Environment Creation - 16 GBstype=

ENVIRONMENT CREATIONcreated by= ADBDEV

Python

>>> client.is_attached()

False

>>> job = client.start environment (10)
>>> job.get ()

>>> job.get name ()

'Environment Creation - 16 GBs'

>>> job.get created by()

'ADBDEV'

>>> client.is_attached()

True

Create an instance and a session object as shown:

e JShell
¢ Java

e Python
JShell

opg4j> var instance = client.getPgxInstance ()

instance ==> ServerInstance[embedded=false,baseUrl=https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/graph/pgx]

opg4j> var session = instance.createSession ("AdbGraphSession")
session ==> PgxSession[ID=c403be26-

ad0c-45cf-87b7-1da2a48bdab4, source=AdbGraphSession]

12-11

Chapter 12
Using Autonomous Database Graph Client

5.

Java

ServerInstance instance = client.getPgxInstance();
PgxSession session = instance.createSession ("AdbGraphSession");

Python

>>> instance = client.get pgx instance()
>>> session = instance.create session("adb-session")

Load a PGQL property graph from your Autonomous Database instance into
memory.

e JShell
e Java
* Python
JShell

opg4j> var graph = session.readGraphByName ("BANK GRAPH",
GraphSource.PG PGQL)

graph ==

PgxGraph [name=BANK GRAPH,N=1000,E=5001,created=1647800790654]
Java

PgxGraph graph = session.readGraphByName ("BANK GRAPH",
GraphSource.PG_PGQL) ;

Python

>>> graph = session.read graph by name ("BANK GRAPH", "pg pgql")

Create an Analyst and execute a Pagerank algorithm on the graph as shown:

JShell
e Java
e Python

ORACLE"

12-12

Chapter 12
Using Autonomous Database Graph Client

JShell

opg4j> session.createAnalyst () .pagerank (graph)
$16 ==> VertexProperty[name=pagerank, type=double,graph=BANK GRAPH]

Java

session.createAnalyst () .pagerank (graph) ;

Python

>>> session.create analyst () .pagerank (graph)
VertexProperty (name: pagerank, type: double, graph: BANK GRAPH)

6. Execute a PGQL query on the graph and print the result set as shown:

 JShell
e Java
e Python
JShell

opg4j> graph.queryPgql ("SELECT a.acct id AS source, a.pagerank, t.amount,
b.acct id AS destination FROM MATCH (a)-[t]->(b) ORDER BY a.pagerank DESC
LIMIT 3").print()

Java

PgglResultSet rs = graph.queryPgql ("SELECT a.acct id AS source,
a.pagerank, t.amount, b.acct id AS destination FROM MATCH (a)-[t]->(b)
ORDER BY a.pagerank DESC LIMIT 3");

rs.print();

Python

>>> rs = graph.query pgql ("SELECT a.acct_id AS source, a.pagerank,
t.amount, b.acct id AS destination FROM MATCH (a)-[t]->(b) ORDER BY
a.pagerank DESC LIMIT 3").print()

ORACLE" 12-13

ORACLE

Chapter 12
Using Autonomous Database Graph Client

On execution, the query produces the following output:

et e e e e e e +
| source | pagerank | amount | destination |
et e e e e e e +
387	0.007302836252205922	1000.0	188
387	0.007302836252205922	1000.0	374
387	0.007302836252205922	1000.0	577
et e e e e e e +

Optionally, you can execute a PGQL query directly against the graph in the
database as shown in the following code.

In order to establish a JDBC connection to the database, you must download the
wallet and save it in a secure location. See JDBC Thin Connections with a Wallet
on how to determine the JDBC URL connection string.

e JShell
e Java
e Python
JShell

opg4j> String jdbcUrl="jdbc:oracle:thin:@<tns alias>?
TNS_ADMIN=<path to wallet>"

opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "ADBDEV", "<password for ADBDEV>"
)

conn ==> oracle.jdbc.driver.T4CConnection@36ee8cTb

opg4j> var pgglConn = PgglConnection.getConnection (conn)

pgglConn ==> oracle.pg.rdbms.pggl.PgglConnection@5£27d271

opg4j> var pgglStmt = pgglConn.createStatement ()

pggqlStmt ==> oracle.pg.rdbms.pggl.PgglExecution@4349f52¢c

opg4j> pgglstmt.executeQuery ("SELECT a.acct id AS source, t.amount,
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK GRAPH
LIMIT 3").print()

Java

import oracle.pg.rdbms.pgqgl.PgglConnection;

import oracle.pg.rdbms.pgqgl.PgglStatement;

import oracle.pg.rdbms.pgqgl.PggqlResultSet;

import oracle.pgx.api.*;

import oracle.pg.rdbms.GraphServer;

import oracle.pg.rdbms.pgqgl.jdbc.PgglddbcRdbmsDriver;

DriverManager.registerDriver (new PgqlJdbcRdbmsDriver());
String jdbcUrl="jdbc:oracle:thin:@<tns alias>?

TNS ADMIN=<path to wallet>";

Connection conn =

12-14

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/adbsa&id=GUID-BE543CFD-6FB4-4C5B-A2EA-9638EC30900D

ORACLE"

Chapter 12
Using Autonomous Database Graph Client

DriverManager.getConnection (jdbcUrl, "ADBDEV", "<password for ADBDEV>");
PgglConnection pgglConn = PgglConnection.getConnection (conn);
PgglStatement pgglStmt = pgglConn.createStatement () ;

PgglResultSet rs = pgglStmt.executeQuery ("SELECT a.acct id AS source,
t.amount, b.acct id AS destination FROM MATCH (a)-[t]->(b) ON BANK GRAPH
LIMIT 3");

rs.print();

Python

>>> jdbcUrl = "jdbc:oracle:thin:@<tns_alias>?TNS ADMIN=<path to wallet>"
>>> pgql conn =
opg4py.pgql.get connection ("ADBDEV", "<password for ADBDEV>", jdbcUrl)
>>> pgql statement = pgql conn.create statement ()

>>> pggl statement.execute query("SELECT a.acct id AS source, t.amount,
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK GRAPH LIMIT

3") .print ()

On execution, the query produces the following output:

o +
| SOURCE | AMOUNT | DESTINATION |
o +
| 1000 | 1000 | 921 |
| 1000 | 1000 | 662

| 1000 | 1000 | 506

o +

Close the session after executing all graph queries as shown:

e JShell
« Java
e Python
JShell

opg4j> session.close()

Java

opg4j> session.close();

Python

>>> session.close()

12-15

Chapter 12
Using Autonomous Database Graph Client

» Prerequisites for Using Autonomous Database Graph Client

e Using the PGX JDBC Driver with the AdbGraphClient API
Starting from Graph Server and Client Release 24.1.0, you can use the PGX
JDBC driver with the AdbGraphClient API to query graphs stored in the memory of
the graph server in Graph Studio on Autonomous Database.

12.2.1 Prerequisites for Using Autonomous Database Graph Client

As a prerequisite requirement to get started with the AdbGraphClient API, you must:

ORACLE

* Provision an Autonomous Database instance in Oracle Autonomous Database.

e Obtain the following information if you are configuring the AdbGraphClient using
the tenancy details. Otherwise, skip this step.

Key Description

More Information

tenancy The Oracle Cloud ID
OCID (OCID) of your tenancy

databa Database name of your
se Autonomous Database
instance

databa The Oracle Cloud ID
se (OCID) of your
OCID Autonomous Database

userna Graph enabled

me Autonomous Database
username, used for
logging into Graph Studio

passwo Database password for
rd the graph user

To determine the OCID for your tenancy, see "Where
to Find your Tenancy's OCID" in: Oracle Cloud
Infrastructure Documentation.

1.

Open the OCI console and click Oracle
Database in the left navigation menu.

Click Autonomous Database and navigate to
the Autonomous Databases page.

Select the required Autonomous Database under
the Display Name column and navigate to the
Autonomous Database Details page.

Note the Database Name under "General
Information” in the Autonomous Database
Information tab.

Open the OCI console and click Oracle
Database in the left navigation menu.

Click Autonomous Database and navigate to
the Autonomous Databases page.

Select the required Autonomous Database under
the Display Name column and navigate to the
Autonomous Database Details page.

Note the Database OCID under "General
Information" in the Autonomous Database
Information tab.

See Create a Graph User for more information.

If the password for a graph user is forgotten, then you
can always reset password for the graph user by
logging into Database Actions as the ADMIN user.
See Edit User for more information.

12-16

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.oracle.com/en/cloud/paas/autonomous-database/csgru/create-graph-user.html
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-web&id=GUID-856BBD92-DFEC-4C6E-A8EE-54368078F699

ORACLE

Chapter 12
Using Autonomous Database Graph Client

Key Description More Information

endpoi Graph Studio endpoint 1

nt URL

Select your Autonomous Database instance and
navigate to the Autonomous Database Details

page.
2. Click the Tools tab.
3. Click on Graph Studio.

4. Copy the URL of the new tab that opens the
Graph Studio login screen.

5. Edit the URL to remove the part after
oraclecloudapps.comto obtain the endpoint
URL.

For example, the following shows the format of a
sample endpoint URL:

https://

<hostname prefix>.adb.<region identifi
er>.oraclecloudapps.com

Access Graph Studio and create a PGQL property graph.

Download, install and start the Oracle Graph Java or Python client.

12.2.2 Using the PGX JDBC Driver with the AdbGraphClient API

Starting from Graph Server and Client Release 24.1.0, you can use the PGX JDBC driver
with the AdbGraphClient API to query graphs stored in the memory of the graph server in
Graph Studio on Autonomous Database.

To use the PGX JDBC driver to connect to your Autonomous Database instance, note the
following:

Register the PGX JDBC driver with the DriverManager:

import java.sqgl.DriverManager;
import oracle.pgx.jdbc.PgxJdbcDriver;

DriverManager.registerDriver (new PgxJdbcDriver());

Use one of the following two ways to establish the connection using the PGX JDBC

Driver:

— Using Properties

properties

properties.
properties.
properties.
properties.
properties.
Connection

= new Properties();

put ("tenancy ocid", "<tenancy OCID>");
put ("database ocid", "<database OCID>");
put ("database", "<database name>");

put ("username", "<username>");

put ("password", "<password>");
connection =

DriverManager.getConnection ("jdbc:oracle:pgx:https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com", properties);

12-17

ORACLE

Chapter 12
Using Autonomous Database Graph Client

— Using a Wallet

Connection connection =
DriverManager.getConnection ("jdbc:oracle:pgx:@<db TNS name>?
TNS ADMIN=<path to wallet>", "<ADB username>", "<ADB password>")

Note that the JDBC URL in the preceding code samples, use jdbc:oracle:pgx:
as the prefix.

Example 12-1 Using the PGX JDBC Driver to run graph queries in Autonomous
Database

The following example establishes a connection using the PGX JDBC driver to
connect to an Autonomous Database instance, starts the compute environment in
Graph Studio, loads a graph into the graph server (PGX), creates a statement, and
runs a PGQL query on the graph.

import java.sqgl.*;

import oracle.pgx.jdbc.*;
import oracle.pg.rdbms.*;
import oracle.pgx.api.*;

public class AdbPgxJdbc {
public static void main(String[] args) throws Exception {

DriverManager.registerDriver (new PgxJdbcDriver());

try (Connection conn =

DriverManager.getConnection ("jdbc:oracle:pgx:@<db TNS name>?

TNS ADMIN=<path to wallet>","ADB username","<ADB password>")) {
AdbGraphClient client = conn.unwrap (AdbGraphClient.class);
if (!client.isAttached()) {

var job = client.startEnvironment (10);
job.get () ;
System.out.println("job details: name=" + job.getName() +

"type= " + job.getType() +"created by= " + job.getCreatedBy());

}
PgxSession session = conn.unwrap (PgxSession.class);
PgxGraph graph = session.readGraphByName ("BANK PGQL GRAPH",
GraphSource.PG_PGQL) ;
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * "+
"FROM GRAPH TABLE
(BANK PGQL GRAPH "+
"MATCH (a IS ACCOUNTS) -[e IS
TRANSFERS]-> (b IS ACCOUNTS) "+
"WHERE a.ID = 179 AND b.ID =
688 "+
"COLUMNS (e.AMOUNT AS

AMOUNT))");
while (rs.next ()) {

System.out.println ("AMOUNT = " + rs.getLong ("AMOUNT"));
}

12-18

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

The resulting output of the preceding code is as shown:

AMOUNT = 7562

Related Topics

 PGX Data Type Compatibility and Casting
You can configure a compatibility mode for the PGX JDBC driver to determine the data
type returned when calling the ResultSet#getObject () method.

e Limitations of the PGX JDBC Driver
Review the limiations of the PGX JDBC driver.

12.5 Additional Client Tools for Querying PGQL Property Graphs

When working with PGQL property graphs in the database, you can use other supported
client tools.

* Using Oracle SQLcl
You can access the graph in the database using SQLcl.

* Using SQL Developer with PGQL Property Graphs
Using SQL Developer 23.1, you can view all the PGQL property graphs existing in your
database schema by expanding PGQL Property Graphs under the Property Graph
node in the Connections navigator.

12.5.1 Using Oracle SQLcl

ORACLE

You can access the graph in the database using SQLcl.

You can run PGQL queries on the graph in SQLcl with a plug-in that is available with Oracle
Graph Server and Client. See PGQL Plug-in for SQLcl in Oracle SQLcl User’s Guide for more
information.

The example in this section helps you get started on executing PGQL queries on a graph in
SQLcl. As a prerequisite, to perform the steps in the example, you must set up the bank
graph data in your database schema using the sample data provided with the graph server
installation. See Using Sample Data for Graph Analysis for more information.

The following example creates a PGQL property graph using the PGQL CREATE PROPERTY
GRAPH statement, executes PGQL queries against the graph and finally drops the graph using
SQLcl.

1. Start SQLcl with your database schema credentials. In the following command,
graphuser is the database user used to connect to SQLcl.

sql graphuser/<password for graphuser>@<tns alias>

SQLcl: Release 21.2 Production on Sun Jan 30 04:30:09 2022
Copyright (c) 1982, 2022, Oracle. All rights reserved.

12-19

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-command-line/23.1&id=GUID-E0EFA43F-003F-4C8C-8056-54E9A428B8B7

ORACLE

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

Connected to:

Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 -
Production

Version 21.3.0.0.0

Enable PGQL mode as shown:
SQL> pggl auto on;

PGQL Auto enabled for schema=[null], graph=[null], execute=[true],
translate=[false]

Note that no arguments are used in the preceding PGQL command.
Create a PGQL property graph on the bank graph data tables.

PGQL> CREATE PROPERTY GRAPH bank graph
2 VERTEX TABLES (

3 bank accounts
4 LABEL ACCOUNTS
5 PROPERTIES (ID, NAME)
6)
7 EDGE TABLES (
8 bank txns
9 SOURCE KEY (from acct id) REFERENCES bank accounts
(id)
10 DESTINATION KEY (to_acct_id) REFERENCES
bank accounts (id)
11 LABEL TRANSFERS
12 PROPERTIES (FROM ACCT ID, TO ACCT ID, AMOUNT,
DESCRIPTION)
13*) OPTIONS (PG_PGQL) ;

Graph created

Set bank_graph as the default graph using the graph argument when enabling
PGQL mode.

PGQL> pggl auto on graph bank graph;

PGQL Auto enabled for schema=[null], graph=[BANK GRAPH],
execute=[true], translate=[false]

Execute PGQL queries against the default graph. For example, the following
PGQL query retrieves the total number of vertices as shown:

PGQL> SELECT COUNT (*) AS num vertices FROM MATCH (n);

NUM _VERTICES

1000

Note that in the preceding query, the graph name is not specified using the on
clause as part of the MATCH clause.

12-20

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

6. Reconnect to SQLcl as another schema user.

PGQL> conn system/<password for system>@<tns alias>;
Connected.

7. Enable PGQL mode using the schema argument to set the default schema used for
creating the graph. Also, set bank graph as the default graph using the graph argument :

PGQL> pggl auto on schema graphuser graph bank graph;

PGQL Auto enabled for schema=[graphuser], graph=[BANK GRAPH],
execute=[true], translate=[false]

8. Execute a PGQL query to retrieve all the edge properties on the graph as shown:

PGQL> SELECT e.* FROM MATCH (n:accounts) -[e:transfers]-> (m:accounts)
LIMIT 10;

AMOUNT DESCRIPTION FROM ACCT ID TO ACCT_ID

1000 transfer 178 921
1000 transfer 178 462
1000 transfer 179 688
1000 transfer 179 166
1000 transfer 179 397
1000 transfer 179 384
1000 transfer 179 900
1000 transfer 180 855
1000 transfer 180 984
1000 transfer 180 352

10 rows selected.

Therefore, you can set a default schema and execute PGQL queries against a default
graph in SQLcl.

9. Finally, drop the graph after executing the required graph queries.
PGQL> DROP PROPERTY GRAPH bank graph;
Graph dropped

Also, see Execute PGQL Queries in SQLcl for more information.

ORACLE 12-21

https://blogs.oracle.com/oraclespatial/executing-property-graph-pgql-queries-in-sqlcl

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

12.5.2 Using SQL Developer with PGQL Property Graphs

Using SQL Developer 23.1, you can view all the PGQL property graphs existing in
your database schema by expanding PGQL Property Graphs under the Property
Graph node in the Connections navigator.

ORACLE

Figure 12-3 PGQL Property Graphs in SQL Developer

LI AR

i

&

|l XML DB Repository

£{a OLAP Option

i3 Analytic Views

{3 Scheduler

r:, Property Graph

S8 ¥5GoL Property Graphs|
£%, BANK_GRAPH_VIEW
4% FRIENDS

- 4% PROPERTY_GRAPH_METADATA
fj;; RDF Semantic Graph
ﬁ' Recycle Bin

The following steps show a few examples for working with PGQL property graphs
using SQL Developer.

1.

Right-click the Property Graph node and select Open PGQL Worksheet.
PGQL Worksheet opens in a new tab and it supports the following actions:
* Run Query: To run a single PGQL query

* Run Script: To run multiple PGQL queries

Create a PGQL property graph by running a CREATE PROPERTY GRAPH statement in
the PGQL Worksheet. For example:

Figure 12-4 Create a PGQL property graph

PGQL

CREATE PROPERTY GRAPH friends_graph

VERTEX TABLES (

persons

KEY (person_id)

LABEL person

PROPERTIES (person_id, name, height, birthdate)
)

EDGE TABLES (

friendships

KEY (friendship_id)

SOURCE KEY (person_a) REFERENCES persons(person_id)
DESTINATION KEY (person_b) REFERENCES persons(person_id)
LABEL friendof

PROPERTIES (meeting_date)

)} OPTIONS (PG_PGQL);

Fs. 4

D Script Output %

#¢88

Graph created

12-22

ORACLE

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

The result of the query execution is displayed in the bottom pane of the Editor. On
successful query execution, you can right click and refresh the PGQL Property Graphs
object to view the newly created graph under PGQL Property Graphs.

Click on the newly created graph.

This opens a PGQL Worksheet in a new tab with the following default query:
SELECT e, v, n FROM MATCH (v)-[e]-(n) ON <graph name> LIMIT 100

Run one or more PGQL queries.

For example, the following shows the execution of PGQL INSERT and SELECT queries:

Figure 12-5 Running Multiple PGQL Queries

E Welcome Page & graphuser A PGQL Worksheet

=

&> 5

PGQL [Run Script|

INSERT INTO FRIENDS_GRAPH VERTEX vl LABELS (Person) PROPERTIES (vl.name= 'ABC', vl.height=1.6, vl.birthdate = to_date('13/06/1963', 'DD/MM/YYYY')),
VERTEX v2 LABELS (Person) PROPERTIES (v2.name= ‘XYZ', v2.height=1.75, v2.birthdate = to_date('19/06/1963', 'DD/MM/YYYY')),
EDGE e BETWEEN vl AND v2 LABELS (friendof) PROPERTIES (e.meeting_date = to_date('19/06/2021', 'DD/MM/YYYY'));

SELECT v1.* PREFIX 'vl_', v2.% PREFIX 'v2_'

FROM HATCH (v1:Person)-[e:friendof]->(v2:Person)

ON FRIENDS_GRAPH;

av

[Script Output x

L8838

3 modified rows.

I

B e +

| v1_PERSON_ID | v1_BIRTHDATE | v1_HEIGHT | v1_NAME | v2_PERSON_ID | v2_BIRTHDATE | v2_HEIGHT | v2_NAME |

B e T e P P T +

| 43 | 1963-06-13 | 1.6 | ABC | 44 | 1963-06-19 | 1.75 | xvz |

| a1 | 1963-06-13 | 1.6 | ABC | 42 | 1963-06-19 | | 1.75 | xvZ |

| a5 | 1963-06-13 | 1.6 | Ton | 46 | 1963-06-19 | | 1.75 | sid |

|1 | 1963-06-13 | 1.8 | John | 2 | 1982-09-25 | 1.65 | Mary |

|3 | 1966-03-11 | 1.75 | Bob |12 | 1982-09-25 | 1.65 | Mary |

|1 | 1963-06-13 | 1.8 | John |3 | 1966-03-11 | Li7s | Bob |

| 2 | 1982-09-25 | 1.65 | Mary | 4 | 1987-62-01 1 1.2 | Alice |

| 61 | 1963-06-13 | 1.6 | ABC | 62 | 1963-06-19 i -] | Xyz |

A i e i s S A A P S e s +

You can view the results in the Script Output tab.

Delete the PGQL property graph as shown:

12-23

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

Figure 12-6 Dropping a PGQL Property Graph

PGOL
DROP PROPERTY GRAPH FRIENDS_GRAPH;

rF%. 4

[Query Result x [P Script Output X

#¢88

Graph dropped.

The graph is dropped.

ORACLE" 12-24

Property Graph Query Language (PGQL)

PGQL is a SQL-like query language for property graph data structures that consist
of vertices that are connected to other vertices by edges, each of which can have key-value
pairs (properties) associated with them.

The language is based on the concept of graph pattern matching, which allows you to specify
patterns that are matched against vertices and edges in a data graph.

Note:
The graph server (PGX) 24.1.0 supports PGQL 2.0 and earlier versions.

The property graph support provides two ways to execute Property Graph Query Language
(PGQL) queries through Java APIs:

e Usethe oracle.pgx.api Java package to query an in-memory snapshot of a graph that
has been loaded into the graph server (PGX), as described in Executing PGQL Queries
Against the Graph Server (PGX).

e Use the oracle.pg.rdbms.pggl Java package to directly query graph data stored in
Oracle Database. See Executing PGQL Queries Against PGQL Property Graphs and
Executing PGQL Queries Against SQL Property Graphs for more information.

For more information about PGQL, see the PGQL Specification.
e Creating a Property Graph Using PGQL

* Pattern Matching with PGQL

» Edge Patterns Have a Direction with PGQL

* Vertex and Edge Labels with PGQL

* Variable-Length Paths with PGQL

e Aggregation and Sorting with PGQL

» Executing PGQL Queries Against PGQL Property Graphs
This topic explains how you can execute PGQL queries directly against PGQL property
graphs on Oracle Database tables.

13.1 Creating a Property Graph Using PGQL

ORACLE

CREATE PROPERTY GRAPH is a PGQL DDL statement to create a PGQL property graph from
the database tables.

The CREATE PROPERTY GRAPH statement starts with the name you give the graph, followed by
a set of vertex tables and edge tables. The graph can have no vertex tables or edge tables
(an empty graph), or vertex tables and no edge tables (a graph with only vertices and no
edges), or both vertex tables and edge tables (a graph with vertices and edges). However, a
graph cannot be specified with only edge tables and no vertex tables.

13-1

https://pgql-lang.org/spec/2.0
https://pgql-lang.org

ORACLE

Chapter 13
Creating a Property Graph Using PGQL

Optionally, you can also create a PGQL property graph from existing graphs. See
Creating a PGQL Property Graph with the BASE GRAPHS Clause for more information.

" Note:

The following best practices are recommended when creating a PGQL
property graph:

e Ensure that a primary key constraint exist for a vertex or an edge key so
that the graph does not contain duplicate vertex or edge keys.

e Ensure that a foreign key constraint exists between the edge and the
referenced vertex tables so that the graph does not contain edges with
missing vertices.

* Runthe pg.validate () function after creating the graph to verify that the
vertex and edge table keys are unique and the source and destination of
the edges exist.

pgglsStmt.execute ("CALL pg.validate ('<graph name>')")

For example, consider the bank accounts and bank txns database tables created
using the sample graph data in opt/oracle/graph/data directory. See Importing Data
from CSV Files for more information.

« BANK_ACCOUNTS is a table with columns id, name. A row is added into this
table for every new account.

* BANK_TXNS is a table with columns txn_id, from acct id, to_acct id,
description, and amount. A row is added into this table for every new transaction
from from acct idto to_acct id.

You can create a PGQL property graph using the database tables as shown:

CREATE PROPERTY GRAPH bank graph
VERTEX TABLES (
bank accounts AS accounts
KEY (id)
LABEL accounts
PROPERTIES (id, name)
)
EDGE TABLES (
bank txns AS transfers
KEY (txn id)
SOURCE KEY (from acct id) REFERENCES accounts (id)
DESTINATION KEY (to acct id) REFERENCES accounts (id)
PROPERTIES (description, amount)
) OPTIONS (PG _PGQL)

The following graph concepts are explained by mapping the database tables to the
graph and using the preceding PGQL DDL statement:

e Vertex tables: A table that contains data entities is a vertex table (for example,
bank accounts).

13-2

ORACLE

Chapter 13
Creating a Property Graph Using PGQL

— Each row in the vertex table is a vertex.
— The columns in the vertex table are properties of the vertex.

— The name of the vertex table is the default label for this set of vertices. Alternatively,
you can specify a label name as part of the CREATE PROPERTY GRAPH
statement.

Edge tables: An edge table can be any table that links two vertex tables, or a table that
has data that indicates an action from a source entity to a target entity. For example,
transfer of money from FROM _ACCOUNT IDto TO ACCOUNT ID is a natural edge.

— Foreign key relationships can give guidance on what links are relevant in your data.
CREATE PROPERTY GRAPH will default to using foreign key relationships to
identify edges.

— Some of the properties of an edge table can be the properties of the edge. For
example, an edge from from acct idto to acct id can have properties
description and amount.

— The name of an edge table is the default label for the set of edges. Alternatively, you
can specify a label name as part of the CREATE PROPERTY GRAPH statement.

Keys:

— Keys in a vertex table: The key of a vertex table identifies a unique vertex in the
graph. The key can be specified in the CREATE PROPERTY GRAPH statement;
otherwise, it defaults to the primary key of the table. If there are duplicate rows in the
table, the CREATE PROPERTY GRAPH statement will return an error.

— Key in an edge table: The key of an edge table uniquely identifies an edge in the
graph. The KEY clause when specifying source and destination vertices uniquely
identifies the source and destination vertex keys.

Table aliases: Vertex and edge tables must have unique names. If you need to identify
multiple vertex tables from the same relational table, or multiple edge tables from the
same relational table, you must use aliases. For example, you can create two vertex
tables bank_accounts and accounts from one table bank_accounts, as shown:

CREATE PROPERTY GRAPH bank transfers
VERTEX TABLES (bank accounts KEY (id)
bank accounts AS accounts KEY (id))

In case any of your vertex and edge table share the same name, then you must again
use a table alias. In the following example, table alias is used for the edge table,
DEPARTMENTS, as there is a vertex table referenced with the same name:

CREATE PROPERTY GRAPH hr
VERTEX TABLES (
employees KEY (employee id)
PROPERTIES ARE ALL COLUMNS,
departments KEY (department id)
PROPERTIES ARE ALL COLUMNS
)
EDGE TABLES (
departments AS managed by
SOURCE KEY (department id) REFERENCES departments (department id)
DESTINATION employees

13-3

Chapter 13
Creating a Property Graph Using PGQL

PROPERTIES ARE ALL COLUMNS
) OPTIONS (PG_PGQL)

* Properties: The vertex and edge properties of a graph are derived from the
columns of the vertex and edge tables respectively and by default have the same
name as the underlying table columns. However, you can choose a different
property name for each column. This helps to avoid conflicts when two tables have
the same column name but with different data types.

In the following example, the vertex properties id and name are renamed to
acct _no and acct name respectively:

CREATE PROPERTY GRAPH bank transfers
VERTEX TABLES (
bank accounts AS accounts
LABEL accounts
PROPERTIES (id AS acct no, name AS acct name)
)

« REFERENCES clause: This connects the source and destination vertices of an
edge to the corresponding vertex tables.

For more details on the CREATE PROPERTY GRAPH statement, see the PGQL
Specification.

Refer to the following table for creating a property graph:

Table 13-1 CREATE PROPERTY GRAPH Statement Support
|

Method More Information

Create a property graph in the graph server Java APIs for Executing CREATE PROPERTY
(PGX) using the oracle.pgx.api Java GRAPH Statements

package

Create a property graph in the graph server Python APIs for Executing CREATE
(PGX) using the pypgx.api Python package PROPERTY GRAPH Statements

Create a PGQL property graph on Oracle Creating a PGQL Property Graph
Database tables

* Creating a PGQL Property Graph with the BASE_GRAPHS Clause
You can create a PGQL property graph by providing a list of existing PGQL
property graphs.

13.1.1 Creating a PGQL Property Graph with the zase czaess Clause

ORACLE

You can create a PGQL property graph by providing a list of existing PGQL property
graphs.

You can specify the BASE GRAPHS clause in the CREATE PROPERTY GRAPH DDL
statement for specifying one or more existing PGQL property graphs from which you
wish to create the new PGQL property graph. It is allowed to specify the BASE GRAPHS
clause without specifying the VERTEX TABLES and EDGE TABLES clauses.

13-4

https://pgql-lang.org/spec/2.0/#creating-a-property-graph
https://pgql-lang.org/spec/2.0/#creating-a-property-graph

ORACLE

Chapter 13
Creating a Property Graph Using PGQL

The syntax of the BASE GRAPHS clause in the CREATE PROPERTY GRAPH statement is as shown:

CreatePropertyGraph = '"CREATE' 'PROPERTY' 'GRAPH' GraphName
BaseGraphs?
VertexTables?
EdgeTables?
BaseGraphs ::= '"BASE' 'GRAPHS' '(' BaseGraph (',' BaseGraph)*
l)l
BaseGraph ::= SchemaQualifiedName
ElementTablesClause = AllElementTables
| ElementTablesList
AllElementTables = 'ALL' 'ELEMENT' 'TABLES' ExceptElementTables?
ExceptElementTables 1= 'EXCEPT' '(' ElementTableReference (','

ElementTableReference)* ')'

ElementTablesList ::= '"('" ElementTable (',' ElementTable)* '")'

ElementTable ::= ElementTableReference TableAlias?

ElementTableReference ::= Identifier

The BASE GRAPHS clause option allows you to duplicate a graph using a different name.

CREATE PROPERTY GRAPH <new_graph>
BASE GRAPHS (<old graph>)
OPTIONS (PG_PGQL)

Also, note that once the new graph is created, it does not have any dependency on
old_graph. This implies that updating or deleting the o1d graph has no impact on the
new_graph.

Consider the following example schema:

13-5

ORACLE

Figure 13-1 Example Schema

Chapter 13

Creating a Property Graph Using PGQL

id

from_person
to_person

relation_type

id

PK
ok | id FK
FK
name
’7 FK | company_id
> PK | id <
name
PK
< FK
PK | number ¢
FK
account_type
— FK | person_id
FK | company_id

from_account
to_account

date

amount

Assume that the following two graphs, social network and bank transactions, are

created from the preceding schema:

Figure 13-2 Graphs Created from the Example Schema

social_network

N P

o,

¥t o v Person "
o)

g ke,

e g

“\B‘)DQ\/ =

<@ T

Person ¢

name:
Camille
Company

%,
name: 's/,’/"o,p
Nikita 5,

name:
o, Ve

Person Oracle

name:
Liam

bank_transactions
number:10039

transaction
amount:$9999.50

Account

transaction
Account amount:$1500.30

transaction

number:8021 amount:$3000.70 nymber:1001

number; 2090

Account

Account

Using the BASE GRAPHS clause, you can then create a new PGQL property graph by
establishing a relationship between both the preceding graphs as shown:

13-6

Chapter 13
Creating a Property Graph Using PGQL

Figure 13-3 Financial_Transactions Graph

number:10039 number: 2090

Account transaction Account
4 amount:$9999.50

name:

oy, s name: g 0,
; h, Camille
o, B ey Company Oracle » %@ name:
e, :,,% worksFor ‘\°°a,°}' > Liam
¢, Yop, Person g
.,‘:’ "ol) (‘"@ a@
000' °i <«° \S;'\V Person
name -0, E <&
T o ® %
Nikita _ amount:$1500.30 "
transaction
Person owner Account Account
: transaction .
number:8021 amount:$3000.70 number: 1001

To obtain this new graph based on the social network and bank transactions graphs:

1. Specify the names of the two graphs, social network and bank_transactions, in the
BASE GRAPHS clause. If a base graph does not exist in the current schema, then the user
must specify the schema name.

2. Eliminate the Knows edge in the social network graph. This can be achieved by using
the ALL ELEMENT TABLES EXCEPT clause and specifying the table name of that edge.
Alternatively, you can use the ELEMENT TABLES clause and specify only the two tables,
Persons and Companies.

3. Create a new edge between the Accounts vertex in the bank transactions graph and
the Persons vertex in the social network graph.

4. Create a new edge between the Accounts vertex in the bank_transactions graph and
the Companies vertex in the social network graph.

The optimized CREATE PROPERTY GRAPH statement with the BASE GRAPHS clause to create the
new PGQL property graph is as shown:

CREATE PROPERTY GRAPH financial transactions
BASE GRAPHS (
bank transactions,
social network ALL ELEMENT TABLES EXCEPT (knows)
)
EDGE TABLES (
Accounts AS PersonOwner
SOURCE KEY ("number") REFERENCES Accounts ("number")
DESTINATION Persons
LABEL owner NO PROPERTIES,
Accounts AS CompanyOwner
SOURCE KEY ("number") REFERENCES Accounts ("number")
DESTINATION Companies
LABEL owner NO PROPERTIES
) OPTIONS (PG _PGQL)

ORACLE 13-7

Chapter 13
Pattern Matching with PGQL

13.2 Pattern Matching with PGQL

Pattern matching is done by specifying one or more path patterns in the MATCH
clause. A single path pattern matches a linear path of vertices and edges, while more
complex patterns can be matched by combining multiple path patterns, separated by
comma. Value expressions (similar to their SQL equivalents) are specified in the
WHERE clause and let you filter out matches, typically by specifying constraints on the
properties of the vertices and edges

For example, assume a graph of TCP/IP connections on a computer network, and you
want to detect cases where someone logged into one machine, from there into
another, and from there into yet another. You would query for that pattern like this:

SELECT id(hostl) AS idl, id(host2) AS id2, id(host3) AS id3 /*
choose what to return */
FROM MATCH

(hostl) -[connectionl]-> (host2) -[connection2]-> (host3) /*
single linear path pattern to match */
WHERE

connectionl.toPort 22 AND connectionl.opened = true AND

connection2.toPort = 22 AND connection2.opened = true AND

connectionl.bytes > 300 AND /*
meaningful amount of data was exchanged */

connection2.bytes > 300 AND

connectionl.start < connection2.start AND /*
second connection within time-frame of first */

connection2.start + connection2.duration < connectionl.start +
connectionl.duration
GROUP BY idl, id2, id3 /*
aggregate multiple matching connections */

For more examples of pattern matching, see the Writing simple queries section in the
PGQL specification.

13.3 Edge Patterns Have a Direction with PGQL

ORACLE

An edge pattern has a direction, as edges in graphs do. Thus, (a) <-[]-
(b) specifies a case where b has an edge pointing at a, whereas (a) -[]-> (b) looks
for an edge in the opposite direction.

The following example finds common friends of April and Chris who are older than
both of them.

SELECT friend.name, friend.dob

FROM MATCH /* note the arrow directions below */
(pl:person) -[:1likes]-> (friend) <-[:likes]- (p2:person)
WHERE

pl.name = 'April' AND p2.name ='Chris' AND
friend.dob > pl.dob AND friend.dob > p2.dob
ORDER BY friend.dob DESC

13-8

https://pgql-lang.org/spec/2.0/#writing-simple-queries

Chapter 13
Vertex and Edge Labels with PGQL

For more examples of edge patterns, see the Edge Patterns section in the PGQL
specification.

13.4 Vertex and Edge Labels with PGQL

Labels are a way of attaching type information to edges and nodes in a graph, and can be
used in constraints in graphs where not all nodes represent the same thing. For example:

SELECT p.name
FROM MATCH (p:person) -[el:likes]-> (ml:movie),
MATCH (p) -[e2:1likes]-> (m2:movie)
WHERE ml.title = 'Star Wars'
AND m2.title 'Avatar'

The example queries a graph which contains a set of vertices with the label person, a set of
vertices with the label movie, and a set of edges with the label 1ikes. A label expression can
start with either a colon (:) or the keyword 1s followed by one or more labels. If more than
one label is used, then the labels are separated by a vertical bar (|).

The following query shows the preceding example query with the keyword 15 for the label
expression:

SELECT p.name
FROM MATCH (p IS person) -[el IS likes]
MATCH (p IS person) -[e2 IS likes]
WHERE ml.title = 'Star Wars'
AND m2.title = 'Avatar'

(ml IS movie),

->
-> (m2 IS movie)

See Also:

Label Expression section in the PGQL specification

13.5 Variable-Length Paths with PGQL

ORACLE

Variable-length path patterns have a quantifier like * to match a variable number of vertices
and edges. Using a PATH macro, you can specify a named path pattern at the start of a
guery that can be embedded into the MATCH clause any number of times, by referencing its
name. The following example finds all of the common ancestors of Mario and Luigi.

PATH has parent AS () -[:has father|has mother]-> ()

SELECT ancestor.name

FROM MATCH (pl:Person) -/:has parent*/-> (ancestor:Person)
, MATCH (p2:Person) -/:has parent*/-> (ancestor)

WHERE
pl.name = 'Mario' AND
p2.name = 'Luigi'

The preceding path specification also shows the use of anonymous constraints, because
there is no need to define names for intermediate edges or nodes that will not be used in

13-9

https://pgql-lang.org/spec/2.0/#edge-patterns
https://pgql-lang.org/spec/2.0/#label-expression

Chapter 13
Aggregation and Sorting with PGQL

additional constraints or query results. Anonymous elements can have constraints,
such as [:has_father|has mother] -- the edge does not get a variable name
(because it will not be referenced elsewhere), but it is constrained.

For more examples of variable-length path pattern matching, see the Variable-Length
Paths section in the PGQL specification.

13.6 Aggregation and Sorting with PGQL

Like SQL, PGQL has support for the following:

* GROUP BY to create groups of solutions
* MIN, MAX, SUM, and AVG aggregations
* ORDER BY to sort results

And for many other familiar SQL constructs.

¢ See Also:

e See Grouping and Aggregation for more information on GROUP BY

e See Sorting and Row Limiting for more information on ORDER BY

13.7 Executing PGQL Queries Against PGQL Property
Graphs

This topic explains how you can execute PGQL queries directly against PGQL
property graphs on Oracle Database tables.

The PGQL query execution flow is shown in the following figure.

ORACLE 13-10

https://pgql-lang.org/spec/2.0/#variable-length-paths
https://pgql-lang.org/spec/2.0/#variable-length-paths
http://pgql-lang.org/spec/2.0/#grouping-and-aggregation
https://pgql-lang.org/spec/2.0/#sorting-and-row-limiting

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

Figure 13-4 PGQL on PGQL Property Graphs in Oracle Database

PGQL on RDBMS
Query Execution, PGOL to 5L

JDBEC

Scalable and Persistent Storage

Oracle Database

SOURCE TABLES, METADATA TABLES (ELEM_TABLES,
LABELS, PROPERTYS, KEYSS, SRC_DST_KEYS)

The basic execution flow is:

1. The PGQL query is submitted to PGQL on RDBMS through a Java API.

2. The PGQL query is translated into SQL statements using the internal metadata tables for
PGQL property graphs.

3. The translated SQL is submitted to Oracle Database by JDBC.

4. The SQL result set is wrapped as a PGQL result set and returned to the caller.

e Supported PGQL Features and Limitations for PGQL Property Graphs
Learn about the supported PGQL features and limitations for PGQL property graphs.

* SQL Translation for a PGQL Query
You can obtain the SQL translation for a PGQL query through the translateQuery() and
getSglTranslation () methods in PgglStatement and PgqlPreparedStatement.

e Performance Considerations for PGQL Queries
* Using the Java and Python APIs to Run PGQL Queries

13.7.1 Supported PGQL Features and Limitations for PGQL Property
Graphs

Learn about the supported PGQL features and limitations for PGQL property graphs.

The following table describes the complete list of supported and unsupported PGQL features
for PGQL property graphs:

ORACLE 13-11

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

Table 13-2 Supported PGQL Functionalities and Limitations for PGQL Property

Graphs

Feature PGQL on PGQL Property Graphs
CREATE PROPERTY GRAPH Supported
DROP PROPERTY GRAPH Supported
Fixed-length pattern matching Supported
Variable-length pattern matching Supported:
goals e Reachability
e Path search prefixes:
— ANY
— ANY SHORTEST
— SHORTEST k
— ALL
e Path modes:
— WALK
Limitations:

e Path search prefixes:
— ALL SHORTEST

— ANY CHEAPEST

— CHEAPEST k
e Path modes:
- TRAIL
- SIMPLE
— ACYCLIC
Variable-length pattern matching Supported:
quantifiers o ¥
o+
e ?
« {n}
¢ {n}
*« {nm}
- {,m}
Variable-length path unnesting Supported:

* ONE ROW PER STEP
Limitation: Quantifier * not supported
Not supported:

* ONE ROW PER VERTEX

GROUP BY

Supported

HAVING

Supported

Aggregations

Supported:
. COUNT

o MIN, MAX, AVG, SUM
. LISTAGG

e JSON_ARRAYAGG
Limitations:

« ARRAY AGG

ORACLE

13-12

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

Table 13-2 (Cont.) Supported PGQL Functionalities and Limitations for PGQL
Property Graphs

Feature PGQL on PGQL Property Graphs
DISTINCT Supported
. SELECT DISTINCT
e Aggregation with DISTINCT
(such as, COUNT (DISTINCT
e.prop))
SELECT v.* Supported
ORDER BY (+ASC/DESC), LIMIT, Supported

OFFSET

Data Types All available Oracle RDBMS data types supported
JSON Supported:
* JSON storage:
— JSON strings (VARCHAR?)
— JSON objects
e JSON functions:
Any JSON function call that follows the syntax,
json function name(argl, arg2,..).For
example:
json value (department data,
'S.department’')
Limitations:
e Simple Dot Notation
e Any optional clause in a JSON function call (such
as RETURNING, ERROR, and so on) is not supported.
For example:
json value (department data,
'S.employees[1].hireDate' RETURNING
DATE)
Operators Supported:

Relational: +, -, *, /, %, = (unary minus)
Arithmetic: =, <>, <, >, <=, >=

Logical: AND, OR, NOT

String: | | (concat)

13-13

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

Table 13-2 (Cont.) Supported PGQL Functionalities and Limitations for PGQL

Property Graphs

Feature

PGQL on PGQL Property Graphs

Functions and predicates

Supported are all available functions in the Oracle

RDBMS that take the form function name (argl,

arg2, ...) with optional schema and package

qualifiers.

Supported PGQL functions/predicates:

. IS NULL, IS NOT NULL

. JAVA_REGEXP_LIKE(basedonCONTAINS

e LOWER, UPPER

° SUBSTRING

. ABS, CEIL/CEILING, FLOOR, ROUND

. EXTRACT

. ID, VERTEX ID, EDGE ID

. LABEL, IS [NOT] LABELED

. ALL DIFFERENT

° CAST

° CASE

. IN and NOT IN

. IS [NOT] SOURCE [OF], IS [NOT]
DESTINATION [OF] (Only supported with Oracle
Database 23ai)

. VERTEX EQUAL, EDGE_EQUAL

Limitations:

. LABELS

. IN DEGREE, OUT DEGREE

User-defined functions

Supported:

* PL/SQL functions

* Functions created via the Oracle Database
Multilingual Engine (MLE)

Subqueries:

e Scalar subqueries

o EXISTS and NOT EXISTS
subqueries

e LATERAL subquery

Supported:
e EXISTS and NOT EXISTS subqueries

e Scalar subqueries
e LATERAL subquery

GRAPH_TABLE operator

Supported

Extension:

. BASE GRAPHS clause in CREATE PROPERTY GRAPH
for creating graphs based on metadata of other
graphs

INSERT/UPDATE/DELETE

Supported for Oracle Database 19c and later

INTERVAL literals and operations

Not supported

« Additional Information on Supported PGQL Features with Examples

13.7.1.1 Additional Information on Supported PGQL Features with Examples

The following PGQL features are supported in PGQL property graphs:

ORACLE

13-14

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

Recursive queries are supported for the following variable-length path finding goals:

Reachability

ANY

ANY SHORTEST
TOP k SHORTEST

Recursive queries are supported for the following horizontal aggregations:

LISTAGG

SELECT LISTAGG(src.first name || ' ' || src.last name, ','")
FROM MATCH TOP 2 SHORTEST ((n:Person) ((src)-[e:knows]->)*
(m:Person))

WHERE n.id = 1234
SUM

SELECT SUM(e.weight + 3)
FROM MATCH TOP 2 SHORTEST ((n:Person) -[e:knows]->* (m:Person))
WHERE n.id = 1234

COUNT

SELECT COUNT (e)
FROM MATCH TOP 2 SHORTEST ((n:Person) -[e:knows]->* (m:Person))
WHERE n.id = 1234

AVG

SELECT AVG(dst.age)

FROM MATCH TOP 2 SHORTEST ((n:Person) (-[e:knows]->(dst))*
(m:Person))

WHERE n.id = 1234

MIN (Only for property value or CAST expressions)

SELECT MIN(CAST (dst.age + 5 AS INTEGER))

FROM MATCH TOP 2 SHORTEST ((n:Person) (-[e:knows]->(dst))*
(m:Person))

WHERE n.id = 1234

MAX (Only for property value or CAST expressions)

SELECT MAX (dst.birthday)

FROM MATCH TOP 2 SHORTEST ((n:Person) (-[e:knows]->(dst))*
(m:Person))

WHERE n.id = 1234

The following quantifiers are supported in recursive queries:

13-15

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

Table 13-3 Supported Quantifiers in PGQL SELECT Queries

Syntax Description

* zero or more

+ one or more

? Zero or one

{n exactly n

{n,} n or more

{n,m} between n and m (inclusive)
{,m} between zero and m (inclusive)

- Data type casting with precision and scale is supported:

SELECT CAST(v.id AS VARCHAR2 (10)) || '»'" || CAST(w.id AS
VARCHAR2 (10)) AS friendOf
FROM MATCH (v) -[:friendOf]->(w)

SELECT CAST (e.mval AS NUMBER(5,2)) AS mval
FROM MATCH () -[e:knows]->()
WHERE e.mval = '342.5'

* Both built-in Oracle Database functions and user defined functions (UDFs) are
supported.
For example:

— Assuming a table has a JSON column with values such as, {"name":"John",
"age": 43}:

SELECT JSON_VALUE (p.attributes, 'S.name') AS name
FROM MATCH (p:Person)
WHERE JSON VALUE (p.attributes, 'S$.age') > 35
— Assuming an Oracle Text index exists on a text column in a table:
SELECT n.text
FROM MATCH (n)
WHERE CONTAINS (n.text, 'cat', 1) > 0
— Assuming a UDF updated id is registered with the graph server (PGX):
SELECT my.updated id(n.ID) FROM MATCH(n) LIMIT 10
» Selecting all properties of vertices or edges is supported through SELECT v.*
clause, where v is the variable whose properties are selected. The following

example retrieves all the edge properties of a graph:

SELECT label(e), e.* FROM MATCH (n)-[e]->(m) ON bank graph LIMIT 3

ORACLE 13-16

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

On execution, the preceding query retrieves all the properties that are bound to the
variable e as shown:

e +
| label (e) | AMOUNT | DESCRIPTION | FROM ACCT ID | TO ACCT ID |
e +
| TRANSFERS | 1000 | transfer | 178 | 921
| TRANSFERS | 1000 | transfer | 178 | 462
| TRANSFERS | 1000 | transfer | 179 | 688
e +

A PREFIX can be specified to avoid duplicate column names in cases where you select all
properties using multiple variables. For example:

SELECT n.* PREFIX 'n ', e.* PREFIX 'e ', m.* PREFIX 'm '

FROM MATCH (n:Accounts) -[e:transfers]-> (m:Accounts)
ON bank graph LIMIT 3

The query output is as follows:

| nID | n NAME | e AMOUNT | e DESCRIPTION | e FROM ACCT ID |
e TO ACCT ID | m_ID | m NAME |

+ ___
___________________ +

| 178 | Account | 1000 | transfer | 178 |

921 | 921 | Account |

| 178 | Account | 1000 | transfer | 178 |

462 | 462 | Account |

| 179 | Account | 1000 | transfer | 179 |

688 | 688 | Account |

+ ___
___________________ +

Label expressions can be used such that only properties that belong to the specified
vertex or edge labels are selected:

SELECT LABEL(n), n.* FROM MATCH (n:Accounts) ON bank graph LIMIT 3

The preceding query output is as shown:

ettt +
| LABEL(n) | ID | NAME |
ettt +
ACCOUNTS	1	Userl
ACCOUNTS	2	User2
ACCOUNTS	3	User3
ettt +

* Support for ALL path finding goal to return all the paths between a pair of vertices.
However, to avoid endless cycling, only the following quantifiers are supported:

ORACLE 13-17

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

- 2
- {n}
{n.m}

- {m}

For example, the following PGQL query finds all the transaction paths from
account 284 to account 616 :

SELECT LISTAGG(e.amount, ' + ') || ' ="', SUM(e.amount) AS
total amount

FROM MATCH ALL (a:Accounts) -[e:Transfers]->{1,4} (b:Accounts)
WHERE a.id = 284 AND b.id = 616

ORDER BY total amount

On execution, the query produces the following result:

o +
| LISTAGG(e.amount, ' + ") || ' ="' | TOTAL AMOUNT |
o +
| 1000 + 1000 + 1000 = | 3000
| 1000 + 1500 + 1000 = | 3500
| 1000 + 1000 + 1000 + 1000 = | 4000
o +

$16 ==> oracle.pg.rdbms.pggl.pgview.PgViewResultSet@4£f38act

Scalar subqueries which return exactly one column and one row is supported.
For example:

SELECT p.name AS name , (
SELECT SUM(t.amount)
FROM MATCH (a) <-[t:transaction]- (:Account)
) AS sum incoming , (
SELECT SUM(t.amount)
FROM MATCH (a) -[t:transaction]-> (:Account)
) AS sum outgoing , (
SELECT COUNT (DISTINCT p2)
FROM MATCH (a) -[t:transaction]- (:Account) -[:owner]->
(p2:Person)
WHERE p2 <> p
) AS num persons transacted with , (
SELECT COUNT (DISTINCT c)
FROM MATCH (a) -[t:transaction]- (:Account) -[:owner]->
(c:Company)
) AS num companies transacted with
FROM MATCH (p:Person) <-[:owner]- (a:Account)
ORDER BY sum outgoing + sum incoming DESC

EXISTS and NOT EXISTS subqueries are supported. Such queries yield TRUE or
FALSE depending on whether the query produces at least one results given the
bindings of the outer query.

13-18

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

For example:

SELECT fof.name, COUNT (friend) AS num common friends

FROM MATCH (p:Person) -[:knows]-> (friend:Person) -[:knows]-> (fof:Person)
WHERE NOT EXISTS (
SELECT * FROM MATCH (p) -[:knows]-> (fof)

PGQL LATERAL subqueries are supported. For example:

SELECT recipient, COUNT(*) AS num large transactions
FROM LATERAL (SELECT m.id AS recipient
FROM MATCH (n IS accounts) -[e IS transfers]-> (m IS
accounts)
WHERE n.id = 772
ORDER BY e.amount DESC)
GROUP BY recipient
ORDER BY num large transactions DESC

PGQL GRAPH TABLE operator is supported. For example:

SELECT * FROM GRAPH TABLE (bank graph
MATCH (a IS accounts) -[e IS transfers]-> (b IS accounts)
COLUMNS (a.id as from ac, e.amount as amount, b.id as to_ac)
) FETCH FIRST FIVE ROWS ONLY

The source (IS [NOT] SOURCE OF) and destination (IS [NOT] DESTINATION OF)
predicates to verify if a vertex is a source or destination of an edge are supported. This is
useful when an edge is matched through an any directed edge pattern (- [e]-). Note that
this PGQL feature is supported only in Oracle Database 23ai. For example:

SELECT e.amount, CASE WHEN n IS SOURCE OF e THEN 'Outgoing transaction'’
ELSE 'Incoming transaction' END AS type

FROM MATCH (n:Accounts) -[e:transfers]- (m:Accounts)

WHERE n.id = 284

ORDER BY type, e.amount

The preceding query produces the following result:

e e T +
| AMOUNT | TYPE

e e T +
1000	Incoming transaction
1200	Outgoing transaction
1300	Outgoing transaction
e e T +

JSON_ARRAYAGG function (see JSON_ARRAYAGG in Oracle Database SQL Language
Reference) to aggregate values into a JSON array is supported.

SELECT JSON ARRAY AGG(n.id) AS txn from
FROM MATCH (n:Accounts) -[e:transfers]- (m:Accounts)
WHERE m.id = 616

13-19

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

On execution, the query produces the following result:

et +
| TXN FROM \
e +
| [202,582,650,108,744,756,801,674,710,764] |
et +

Built-in graph validation function pg.validate () to check if vertex and edge keys
are unique, and if the sources and destinations of edges exist.

pgglStmt.execute ("CALL pg.validate ('BANK TXN GRAPH')")
$1 ==> false

Exceptions are raised for invalid keys or edges having missing vertices as shown:

pgglStmt.execute ("CALL pg.validate ('COUNTRIES')")

opg4j> pgglStmt.execute ("CALL pg.validate ('COUNTRIES')")

| Exception oracle.pg.rdbms.pggl.PgglToSqlException: Invalid
vertex key 60 for edge NO in edge table CTY REG with destination
key column(s) "REGION ID" referencing REGIONS ("REGION ID")

Unnesting of paths using the ONE ROW PER STEP clause is supported in the PGQL
GRAPH TABLE operator query.

SELECT *
FROM GRAPH TABLE (financial transactions
MATCH
(a IS account) -[IS transaction]->+ (a)
KEEP SHORTEST 5 SIMPLE PATHS
WHERE a.number = 10039
ONE ROW PER STEP (vl, e, v2)
COLUMNS (MATCHNUM () AS matchnum,
ELEMENT NUMBER(e) AS elemnum,
vl.number AS accountl,
v2.number AS account2, e.amount))
ORDER BY matchnum, elemnum

As seen in the preceding example, the ONE ROW PER STEP clause declares an
iterator vertex variable, an iterator edge variable, and another iterator vertex
variable. The query produces one row per step (a step is a vertex-edge-vertex
triple) as shown:

o - +
| matchnum | elemnum | accountl | account?2 | amount |
o - +
| 0 | 2 | 10039 | 8021 | 1000.0
[0 | 4 | 8021 | 1001 | 1500.3
| 0 | 6 | 1001 | 2090 | 9999.5
| 0 | 8 | 2090 | 10039 | 9900.0
|1 | 2 | 10039 | 8021 | 1000.0
|1 | 4 | 8021 | 1001 | 3000.7 |
|1 | 6 | 1001 | 2090 | 9999.5

13-20

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

| 8 | 2090 | 10039 [9900.0 |

The preceding output shows two paths, each having 4 edges.

The following are a few PGQL features which are not supported:

The following PGQL SELECT features are not supported:

Use of bind variables in path expressions.
If you attempt to use a bind variable, it will result in an error as shown:

opg4j> String s = "SELECT id(a) FROM MATCH ANY SHORTEST (a) -[e]->*
(b) WHERE id(a) "

s ==> "SELECT id(a) FROM MATCH ANY SHORTEST (a) -[e]->* (b) WHERE
id(a) = 2"

opg4j> PgglPreparedStatement ps = pgglConn.prepareStatement (s);
ps ==> oracle.pg.rdbms.pgql.PgglExecution@7806db3f

opg4j> ps.setString(l, "PERSON(3)");
opg4j> ps.executeQuery();
| Exception java.lang.UnsupportedOperationException: Use of bind

variables for path queries is not supported

in degree and out_degree functions.

< Note:

See Supported PGQL Features and Limitations for PGQL Property Graphs for
a complete list of supported and unsupported PGQL features for PGQL
property graphs.

See Performance Considerations for PGQL Queries for details on
recommended practices to enhance query performance for recursive queries.

13.7.2 SQL Translation for a PGQL Query

You can obtain the SQL translation for a PGQL query through the translateQuery() and
getSglTranslation () methods in PgglStatement and PgqlPreparedStatement.

ORACLE

Using the raw SQL for a PGQL query you can:

Run the SQL directly against the database with other SQL-based tools or interfaces (for
example, SQL*Plus or SQL Developer).

Customize and tune the generated SQL to optimize performance or to satisfy a particular
requirement of your application.

Build a larger SQL query that joins a PGQL subquery with other data stored in Oracle
Database (such as relational tables, spatial data, and JSON data).

Several options are available to influence PGQL query translation and execution. The
following are the main ways to set query options:

13-21

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

e Through explicit arguments to executeQuery, translateQuery, and
PgglConnection.prepareStatement methods

e Through flags in the options string argument of executeQuery and
translateQuery

e Through Java JVM arguments.

The following table summarizes the available query arguments for PGQL translation
and execution.

Table 13-4 PGQL Translation and Execution Options
|

Option De Ex Options JVM Argument
fa pli Flag
ult cit
Ar
gu
me
nt
Degree of parallelism 0 par none none
alle
|
Timeout Unl tim none none
imit eo
ed ut
Dynamic sampling 2 dy none none
na
mic
Sa
mp
ling
Maximum number of Unl ma none none
results imit xR
ed es
ults

Reverse path optimization Tru No REVERSE PA oracle.pg.rdbms.pgql.reversePath=false
e ne TH=F

Pushing source filter Tru No PUSH SRC H oracle.pg.rdbms.pgqgl.pushSrcHops=false
optimization € ne OPS=F

Pushing destination filter Fal No PUSH DST H oracle.pg.rdoms.pggl.pushDstHops=true
optimization se ne OQOPS=T

Creation of views in Fal No SP _CREATE oracle.pg.rdoms.pgql.spCreateView=true
shortest path translation se ne VIEW=T

Creation of tables in Tru No SP _CREATE oracle.pg.rdbms.pggl.spCreateTable=fals
shortest path translation e he TABLE=F e

13.7.3 Performance Considerations for PGQL Queries

The following sections explain a few recommended practices for query performance.

e Recursive Queries
* Using Query Optimizer Hints
e Speed Up Query Translation Using Graph Metadata Cache and Translation Cache

ORACLE 13-22

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13.7.3.1 Recursive Queries

ORACLE

The following indexes are recommended in order to speed up execution of recursive queries:

* For underlying VERTEX tables of the recursive pattern, an index on the key column

» For underlying EDGE tables of the recursive pattern, an index on the source key column

" Note:

You can also create index on (source key, destination key).
For example, consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH people
VERTEX TABLES (
person
KEY (id)
LABEL person
PROPERTIES (name, age)
)
EDGE TABLES (
knows
key (personl, person2)
SOURCE KEY (personl) REFERENCES person (id)
DESTINATION KEY (person2) REFERENCES person (id)
NO PROPERTIES
)
OPTIONS (PG _PGQL)

And also consider the following query:

SELECT COUNT (*)
FROM MATCH ANY SHORTEST ((n:Person) -[e:knows]->* (m:Person))
WHERE n.id = 1234

In order to improve performance of the recursive part of the preceding query, the following
indexes must exist:

* CREATE INDEX <INDEX NAME> ON PERSON (ID)

* CREATE INDEX <INDEX NAME> ON KNOWS (PERSON1) oOr
CREATE INDEX <INDEX NAME> ON KNOWS (PERSON1, PERSONZ)

Composite Vertex Keys

For composite vertex keys, query execution can be optimized with the creation of function-
base indexes on the key columns:

e For underlying VERTEX tables of the recursive pattern, a function-based index on the
comma-separated concatenation of key columns

e For underlying EDGE tables of the recursive pattern, a function-based index on the
comma-separated concatenation of source key columns

13-23

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

< Note:

You can also create index on (source key columns, destination key
columns).

For example, consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH people
VERTEX TABLES (
person
KEY (idl, id2)
LABEL person
PROPERTIES (name, age)
)
EDGE TABLES (
knows
key (id)
SOURCE KEY (idlpersonl, id2personl) REFERENCES person (idl,id2)
DESTINATION KEY (idlperson2, id2person?) REFERENCES person
(id1l, id2)
NO PROPERTIES
)
OPTIONS (PG PGQL)

And also consider the following query:

SELECT COUNT (*)
FROM MATCH ANY SHORTEST ((n:Person) -[e:knows]->* (m:Person))
WHERE n.id = 1234

In order to improve performance of the recursive part of the preceding query, the
following indexes must exist:

* CREATE INDEX <INDEX NAME> ON PERSON (ID1 || ',' || ID2)

° CREATE INDEX <INDEX NAME> ON KNOWS (IDIPERSON1 || ',' || ID2PERSON1) Or
CREATE INDEX <INDEX NAME> ON KNOWS (IDIPERSONL || ',' || IDZPERSONI,
IDIPERSONZ || ',' || ID2PERSONZ2)

If some of the columns in a composite vertex key is a string column, the column needs
to be comma-escaped in the function-base index creation.

For example, if column ID1 in table PERSON of the preceding example is of type
VARCHAR?2 (10), you need to escape the comma for the column as follows:

replace (ID1, ',', "\, ")

So, the indexes to improve performance will result as shown:

* CREATE INDEX <INDEX NAME> ON PERSON (replace(ID1, ',', '\,") || "," ||
1D2)

* CREATE INDEX <INDEX NAME> ON KNOWS (replace (IDIPERSONL, ',', '\,") ||
',' || ID2PERSONI)

13-24

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13.7.3.2 Using Query Optimizer Hints

The following hints can be used to influence translation of PGQL variable-length path
patterns to SQL:

* REVERSE_PATH: Switches on or off the reverse path optimization (ON by default). If ON, it
automatically determines if the pattern can best be evaluated from source to destination
or from destination to source, based on specified filter predicates.

* PUSH_SRC_HOPS: Switches on or off pushing source filter optimization (0N by default). If ON,
then filter predicates are used to limit the number of source vertices (or destination
vertices if path evaluation is reversed) and thereby the search space of variable-length
path pattern evaluations.

* PUSH_DST HOPS: Switches on or off pushing destination filter optimization (OFF by default).
If ON, then filter predicates are used to limit the number of destination vertices (or source
vertices if path evaluation is reversed) and thereby the search space of variable-length
path pattern evaluations.

The preceding hints can be configured as options parameter in the following Java API
methods:

e executeQuery(String pgql, String options)
* translateQuery(String pggl, String options)
e execute(String pgqgl, String matchOptions, String options)

For example, consider the following PGQL query:

SELECT vl.name AS vl, v2.name AS v2, v3.name As v3
FROM MATCH (vl:Person)-[el:friendOf]->(v2:Person),
MATCH ANY (v2:Person)-[e2:friendOf]->*(v3:Person)
WHERE v1.name= 'Bob'

When the preceding query is executed using the default option for PUSH_SRC_HOPS, the output
for start nodes_translation displays the filter expression as shown:

System.out.println(pgglStatement.translateQuery(pgqgl) .getSglTranslation())

start nodes translation => (to_clob('SELECT ''PERSONS'' AS "src table",
el.person b AS "src_ key"
FROM "GRAPHUSER"."PERSONS" "V1", "GRAPHUSER"."FRIENDSHIPS" "E1"
WHERE (((el.person a = vl.person_id) AND NOT (el.person b IS NULL)) AND
(vl.name = ''Bob'')) ")),

end nodes translation => (to clob('SELECT ''PERSONS'' AS "dst table",
v3.person id AS "dst key"
FROM "GRAPHUSER"."PERSONS" "V3"')),

ORACLE 13-25

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

If the preceding query is executed with the hint PUSH SRC HOPS=F, then the query is
translated into SQL as shown:

System.out.println(pgglStatement.translateQuery (pgql,"PUSH SRC HOPS=F")
.getSqglTranslation())

...start nodes translation => (to_clob('SELECT ''PERSONS'' AS
"src_table", vZ.person id AS "src_key"
FROM "GRAPHUSER"."PERSONS" "v2"')),

end nodes_translation => (to_clob('SELECT ''PERSONS'' AS
"dst_table", v3.person id AS "dst key"
FROM "GRAPHUSER"."PERSONS" "V3"')),

13.7.3.3 Speed Up Query Translation Using Graph Metadata Cache and
Translation Cache

ORACLE

The following global caches help to speed up PGQL query translation:

* Graph Metadata Cache: Stores graph metadata such as tables, labels,
properties, and so on.

* Translation Cache: Stores PGQL to SQL translation.
You can configure the caches using the following Java APIs:
e clearTranslationCache()

e disableTranslationCache ()

. enableTranslationCache ()

e setTranslationCacheMaxCapacity(int maxCapacity)
* clearGraphMetadataCache ()

* disableGraphMetadataCache ()

* enableGraphMetadataCache ()

°* setGraphMetadataCacheMaxCapacity(int maxCapacity)
. setGraphMetadataRefreshInterval (long interval)

These preceding methods are part of the PgglConnection class. Separate caches are
maintained for each database user such that cached objects are shared between
different PgglConnection objects if they have the same connection URL and user
underneath.

By default, both the metadata and translation caches are refreshed every 1000ms
(default value) if they are enabled. This makes it easy to sync the metadata cache in
case you are modifying one graph through multiple JVMs. Also, you can increase the
time (in milliseconds) taken for refreshing the cache by calling the
setGraphMetadataRefreshInterval (long interval) function.

13-26

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13.7.4 Using the Java and Python APIs to Run PGQL Queries

You can run PGQL queries on PGQL property graphs using the Java API in the
oracle.pg.rdbms.pgql package. Also, you can use the Python OPG4Py package for
executing PGQL queries against the graph data in the Oracle Database. This package
contains a sub-package Pgql with one or more modules that wraps around the Java APl in
the oracle.pg.rdbms.pggl package.

» Creating a PGQL Property Graph

* Executing PGQL SELECT Queries

» Executing PGQL Queries to Modify PGQL Property Graphs
* Dropping A PGQL Property Graph

13.7.4.1 Creating a PGQL Property Graph

ORACLE

You can create a PGQL property graph using the CREATE PROPERTY GRAPH statement.
Example 13-1 Creating a PGQL Property Graph

The following example describes the creation of a PGQL property graph.

e JShell
e Java
* Python
JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<db service>"
opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "<username>", "<password>") ;
opg4j> var pgglConn = PgqglConnection.getConnection (conn)
opgdi> var pgglStmt = pgglConn.createStatement () //create a PGQL Statement
opg4j> conn.setAutoCommit (false)
opg4j> var pgql =

...> "CREATE PROPERTY GRAPH bank graph "

..> + "VERTEX TABLES (bank accounts AS Accounts "
"KEY (id) "
"LABEL Accounts "
"PROPERTIES (id, name) "
myom
"EDGE TABLES (bank txns AS Transfers "
"KEY (txn_id) "
"SOURCE KEY (from acct id) REFERENCES Accounts (id) "
"DESTINATION KEY (to_acct_id) REFERENCES Accounts (id) "
"LABEL Transfers "
"PROPERTIES (from acct id, to _acct id, amount, description) "
") OPTIONS (PG PGQL) "
pgglStmt.execute (pgql)

&~V VVVVVVVVVYV
V o+ + o+ + + + + + + + +

-]

opg

13-27

ORACLE

Java

import
import
import
import
import
import

/%
* Thi
*/

public

{

publ
{
in
St
St
St
St

Co
Pg

tr

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

java.sqgl.Connection;

java.sqgl.Statement;

java.sql.DriverManager;
oracle.pg.rdbms.pgql.jdbc.PggqlJddbcRdbmsDriver;
oracle.pg.rdbms.pgql.PgglConnection;
oracle.pg.rdbms.pggl.PgglStatement;

s example shows how to create a PGQL property graph.

class PgglCreate

ic static void main(String[] args) throws Exception
t idx=0;

ring jdbcUrl = args[idx++];

ring username = args[idx++];

ring password = args[idx++];

ring graph = args[idx++];

nnection conn = null;

glStatement pgqglStmt = null;

y |

//Get a jdbc connection

DriverManager.registerDriver (new PgglJdbcRdbmsDriver());

conn = DriverManager.getConnection(jdbcUrl, username, password);
conn.setAutoCommit (false);

// Get a PGQL connection

PgglConnection pgglConn = PgglConnection.getConnection (conn);

// Create a PGQL Statement

pgglStmt = pgglConn.createStatement () ;
// Execute PGQL Query

String pgql =

"CREATE PROPERTY GRAPH " + graph + " " +
"VERTEX TABLES (bank accounts as Accounts " +
"KEY (id) " +

"LABEL \"Accounts\"" +

"PROPERTIES (id, name)" +

Mooy

"EDGE TABLES (bank txns as Transfers " +

"KEY (txn_id) " +

"SOURCE KEY (from acct id) REFERENCES Accounts (id) " +
"DESTINATION KEY (to_acct_id) REFERENCES Accounts (id) " +
"LABEL \"Transfers\"" +

"PROPERTIES (from acct id, to_acct id, amount, description)" +
") OPTIONS (PG _PGQL) ";

13-28

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

// Print the results
pgglStmt.execute (pgqgl) ;
}
finally {
// close the statement
if (pgglStmt != null) {
pgglStmt.close();
}
// close the connection
if (conn !'= null) {
conn.close();

}

Python

>>> pggl conn = opgdpy.pgql.get connection ("<username>","<password>",
"jdbc:oracle:thin:@localhost:1521/orclpdb")
>>> pgql statement = pgqgl conn.create statement ()
>>> pggl = """
CREATE PROPERTY GRAPH bank graph
VERTEX TABLES (
bank accounts as Accounts
LABEL Accounts
PROPERTIES (id, name)
)
EDGE TABLES (
bank txns as Transfers
KEY (txn id)
SOURCE KEY (from acct id) REFERENCES Accounts(id)
DESTINATION KEY (to acct id) REFERENCES Accounts (id)
LABEL TRANSFERS
PROPERTIES (from acct id, to_acct id, amount, description)
) OPTIONS (PG_PGQL)
>>> pgql statement.execute (pgql)
False

You can verify the PGQL property graph creation by checking the metadata tables that get
created in the database.

13.7.4.2 Executing PGQL SELECT Queries

You can run PGQL SELECT queries as described in the following examples.

ORACLE 13-29

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

Example 13-2 Running a Simple SELECT Query Using PgqlStatement and
PgglResultSet

In the following example, PgglConnection is used to obtain a PgglStatement. Then, it
calls the executeQuery method of PgqlStatement, which returns a PgqlResultSet
object. PgglResultSet provides a print () method, which displays results in a tabular
mode.

 JShell
e Java
e Python
JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<db service>"
opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "<username>", "<password>") ;

opg4j> var pgglConn = PgglConnection.getConnection (conn)

opg4j> pgglConn.setGraph ("BANK GRAPH")

opg4i> var pgglStmt = pgglConn.createStatement () //create a PGQL
Statement

opg4j> String s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT 3"

opg4j> var resultSet = pgglStmt.executeQuery(s)

opg4j> resultSet.print() //Prints the query result set

Fomm - +
| ID | NAME |
Fomm - +
1	Accountl
2	Account?2
3	Account3
Fomm - +
Java

import java.sqgl.Connection;

import java.sgl.Statement;

import java.sqgl.DriverManager;

import oracle.pg.rdbms.pgqgl.jdbc.PgglddbcRdbmsDriver;
import oracle.pg.rdbms.pgqgl.PgglConnection;

import oracle.pg.rdbms.pgqgl.PgglResultSet;

import oracle.pg.rdbms.pgqgl.PgglStatement;

/*
* This example shows how to execute a SELECT query on a PGQL property
graph.
*/
public class PgglExamplel
{

public static void main(String[] args) throws Exception

13-30

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

int idx=0;

String jdbcUrl = args[idx++];
String username = args[idx++];
String password = args[idx++];
String graph = args[idx++];

Connection conn = null;
PgglStatement pgglStmt = null;
PgglResultSet rs = null;

try {
//Get a jdbc connection
DriverManager.registerDriver (new PgglJdbcRdbmsDriver());
conn = DriverManager.getConnection (jdbcUrl, username, password);
conn.setAutoCommit (false);

// Get a PGQL connection
PgglConnection pgglConn = PgglConnection.getConnection (conn);
pgglConn.setGraph (graph) ;

// Create a PGQL Statement
pgglStmt = pgglConn.createStatement();

// Execute PGQL Query
String query = "SELECT n.* FROM MATCH (n:Accounts) LIMIT 5";
rs = pgglStmt.executeQuery(query) ;

// Print the results
rs.print();

}

finally {
// close the result set
if (rs != null) {

rs.close();
}

// close the statement
if (pgglStmt != null) {
pgglStmt.close () ;

}
// close the connection
if (conn != null) {
conn.close();

}

Python

>>> pggl conn = opgdpy.pgql.get connection ("<username>","<password>",
"<jdbcUrl>")

ORACLE 13-31

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

>>> pgql statement = pggl conn.create statement ()

>>> pgql conn.set graph ("BANK GRAPH")

>>> s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT 3"
>>> pgql statement.execute query(s)

>>> pgql result set = pggl statement.execute query(s)
>>> pgqgl result set.print()

fomm e +
| ID | NAME |
fomm e +
1	Accountl
2	Account2
3	Account3
fomm e +

>>> pgql result set
PgglResultSet (java _pggl result set:
oracle.pg.rdbms.pgqgl.PgglResultSet, # of results: 3)

Also, you can convert the PGQL result set obtained in the preceding code to a Pandas
dataframe using the to_pandas () method.

Note:

The pandas package must be installed in your system to successfully
execute the call to to _pandas (). This package is automatically installed at
the time of the Python client installation for versions Python 3.8 and Python
3.9. However, if your call to to pandas () fails, verify if the pandas module is
installed in your system. In case the module is found missing or your Python
version differs from the earlier mentioned versions, then install the pandas
package manually.

Example 13-3 Running a SELECT Query Using PgqlPreparedStatement

JShell
e Java
e Python
JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<db service>"
opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "<username>", "<password>") ;

opg4j> var pgglConn = PgglConnection.getConnection (conn)

opg4j> pgqglConn.setGraph ("BANK GRAPH");

opg4j> String s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT ?"

opg4j> var ps = pgglConn.prepareStatement (s, 0 /* timeout */, 4 /*
parallel */, 2 /* dynamic sampling */, -1 /* max results */, null /*

13-32

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

match options */, null /* options */)

opg4j> ps.setInt(l, 3)

opg4j> var rs = ps.executeQuery()

opg4j> rs.print() //Prints the query result set
fommmmmm +

| ID | NAME |

fommmmmm +

| 1 | Accountl |

| 2 | Account2 |

| 3 | Account3 |

fommmmmm +

Java

import java.sqgl.Statement;

import java.sqgl.DriverManager;

import oracle.pg.rdbms.pgql.jdbc.PgglddbcRdbmsDriver;
import oracle.pg.rdbms.pgql.*;

public class PgglExample?2

{

public static void main(String[] args) throws Exception

{

int idx=0;

String jdbcUrl = args[idx++];
String username = args[idx++];
String password = args[idx++];
String graph = args[idx++];
Connection conn = null;

PgglStatement pgglStmt = null;

PgglResultSet rs null;
try {
//Get a jdbc connection
DriverManager.registerDriver (new PggqlJddbcRdbmsDriver());
conn = DriverManager.getConnection (jdbcUrl, username, password);
conn.setAutoCommit (false);

// Get a PGQL connection
PgglConnection pgglConn
pgglConn.setGraph (graph) ;

PgglConnection.getConnection (conn);

// Execute PGQL Query

String s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT ?";
PgqlPreparedStatement pStmt = pgqglConn.prepareStatement (s,
null , null);

pStmt.setInt (1,3);

rs = pStmt.executeQuery();

0,
-1

4

// Print the results

ORACLE 13-33

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

rs.print();

}

finally {
// close the result set
if (rs != null) {

rs.close();
}

// close the statement
if (pgglStmt != null) {
pgglStmt.close () ;

}
// close the connection
if (conn !'= null) {
conn.close();

}

Python

>>> pggl conn = opgdpy.pgql.get connection ("<username>","<password>",
"<jdbcUrl>")

>>> pgql statement = pgql conn.create statement ()

>>> pgql conn.set graph ("BANK GRAPH")

>>> s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT °?"

>>> ps = pgql conn.prepare statement (s, timeout=0, parallel=4,
dynamicSampling=2, maxResults=-1, matchOptions=None, options=None)
>>> ps.set int(l,3)

>>> ps.execute query().print()

Fom - +
| ID | NAME |
Fom - +
1	Accountl
2	Account?2
3	Account3
Fom - +

Example 13-4 Running a SELECT Query with Grouping and Aggregation

e JShell
e Java
* Python

ORACLE" 13-34

ORACLE

Chapter 13

Executing PGQL Queries Against PGQL Property Graphs

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<db service>"

opg4j> var conn =

DriverManager.getConnection (jdbcUrl, "<username>", "<password>") ;

var pgglConn = PgqglConnection.getConnection (conn)
pgglConn.setGraph ("BANK GRAPH")
opg4j> var pgqlStmt = pgglConn.createStatement ()
opg4j> String query = "SELECT vl.id, COUNT (v2) AS numTxns
Lo "FROM MATCH (vl)-[e IS Transfers]->(v2) "+
> "GROUP BY vl "+
> "ORDER BY numTxns DESC "+
> "LIMIT 3"
var resultSet = pgglStmt.executeQuery(query)
resultSet.print () //Prints the query result set

opg4i>
opg4di>

Java

import
import
import
import
import
import
import

java.sgl.Connection;

java.sgl.Statement;

java.sqgl.DriverManager;
oracle.pg.rdbms.pgql.jdbc.PgglddbcRdbmsDriver;
oracle.pg.rdbms.pgql.PgglConnection;
oracle.pg.rdbms.pgql.PgglResultSet;
oracle.pg.rdbms.pgql.PgglStatement;

/*

//create a PGQL Statement

"y

* This example shows how to execute a SELECT query with aggregation .*/

public class PgglExample3
{

public static void main(String[] args) throws Exception

{

int idx=0;

String jdbcUrl = args[idx++];
String username = args[idx++];
String password = args[idx++];
String graph = args[idx++];
Connection conn = null;

PgglStatement pgglStmt = null;

PgglResultSet rs = null;

try {
//Get a jdbc connection

13-35

ORACLE

}

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

DriverManager.registerDriver (new PgglJdbcRdbmsDriver());
conn = DriverManager.getConnection (jdbcUrl, username, password);
conn.setAutoCommit (false);

// Get a PGQL connection
PgglConnection pgglConn = PgglConnection.getConnection (conn);
pgglConn.setGraph (graph) ;

// Create a PGQL Statement
pgglStmt = pgglConn.createStatement();

// Execute PGQL Query

String query =
"SELECT vl1.id, COUNT(v2) AS numTxns "+
"FROM MATCH (vl)-[e IS Transfers]->(v2) "+
"GROUP BY v1 "+
"ORDER BY numTxns DESC";

rs = pgglStmt.executeQuery (query);
// Print the results
rs.print();

finally {

// close the result set
if (rs != null) {
rs.close();
}

// close the statement
if (pgglStmt != null) {
pgglStmt.close () ;

}
// close the connection
if (conn != null) {
conn.close();

}

Python

>>> pggl conn = opgdpy.pgql.get connection ("<username>","<password>",
"<jdbcUrl>")

>>> pgql statement = pgqgl conn.create statement ()

>>> pgql conn.set graph ("BANK GRAPH")

>>> query = """

SELECT vl1.id, COUNT(v2) AS numtxns
FROM MATCH (vl)-[e IS Transfers]->(v2)
GROUP BY vl

ORDER BY numtxns DESC

LIMIT 3

non

>>> pgqgl statement.execute query(query).print()

13-36

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

tommm oo +
| ID | NUMTXNS |
tommm oo +
| 687 | 6 |
[195 | 5 |
[192 | 5 |
tommm oo +

Example 13-5 Showing a PGQL Path Query

e JShell
e Java

* Python
JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<db service>"
opg4j> var conn =
DriverManager.getConnection (jdbcUrl, "<username>", "<password>") ;
opg4j> var pgqlConn = PgglConnection.getConnection (conn)
opg4j> pgqlConn.setGraph ("BANK GRAPH")
opgdj> var pgglStmt = pgglConn.createStatement () //create a PGQL Statement
opg4j> String query = "PATH onehop AS ()-[IS transfers]->() "+
> "SELECT vl1.id FROM MATCH (vl)-/:onehop/->(v2) "+
o> "WHERE v2.id = 365"
opg4j> var resultSet = pgglStmt.executeQuery (query)
opg4j> resultSet.print() //Prints the query result set

Java

import java.sqgl.Connection;
import java.sgl.Statement;
import java.sqgl.DriverManager;

ORACLE 13-37

ORACLE

import
import
import
import

oracle.pg.
oracle.pg.
oracle.pg.
oracle.pg.

/*

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

rdbms.pgqgl.jdbc.PgglddbcRdbmsDriver;
rdbms.pggl.PgglConnection;
rdbms.pggl.PgglResultSet;
rdbms.pgqgl.PgglStatement;

* This example shows how to execute a PGQL PATH query.*/

public class PgglExample4
{

public static void main(String[] args) throws Exception

{

int idx=0;

String jdbcUrl args[idx++];
String username args [idx++];
String password args[idx++];
String graph args [idx++];
Connection conn = null;

PgglStatement pgglStmt = null;

PgglResultSet rs = null;

try {

}

//Get a jdbc connection

DriverManager.registerDriver (new PgglJdbcRdbmsDriver());

conn = DriverManager.getConnection (jdbcUrl, username, password);
conn.setAutoCommit (false);

// Get a PGQL connection
PgglConnection pgglConn =
pgglConn.setGraph (graph) ;

PgglConnection.getConnection (conn);

// Create a PGQL Statement
pgglStmt = pgglConn.createStatement();

// Execute PGQL Query

String query =
"PATH onehop AS ()-[IS transfers]->() "+
"SELECT v1.id FROM MATCH (vl)-/:onehop/->(v2) "+
"WHERE v2.id = 365";

rs = pgglStmt.executeQuery (query);

// Print the results
rs.print();

finally {

// close the result set
if (rs !'= null) {
rs.close();
}
// close the statement
if (pgglStmt != null) {

13-38

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

pgglStmt.close();
}
// close the connection
if (conn !'= null) {
conn.close();

}

Python

>>> pggl conn = opgdpy.pgql.get connection ("<username>","<password>",
"<jdbcUrl>")
>>> pgql statement = pgqgl conn.create statement ()
>>> pgql conn.set graph ("BANK GRAPH")
>>> query = """
PATH onehop AS ()-[IS transfers]->()
SELECT vl.id FROM MATCH (v1)-/:onehop/->(v2)
WHERE v2.id = 365

non

>>> pgqgl statement.execute query(query).print()

13.7.4.3 Executing PGQL Queries to Modify PGQL Property Graphs

ORACLE

You can execute PGQL INSERT, UPDATE and DELETE queries against PGQL property graphs
using the OPG4J Java shell, OPG4Py Python shell or through a Java or Python application.

It is important to note that unique IDs are not auto generated when inserting vertices or edges
in a graph. Therefore, you must ensure that the key column values are either present in the
graph properties or they are auto generated by the database (through SEQUENCE and
TRIGGERS or implemented with auto increment functionality using IDENTITY column).

The following example inserts two new vertices and also adds an edge relationship between
the two vertices.

13-39

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

e JShell

 Java

* Python

JShell

opg4j> String pgqgl =

DS "INSERT VERTEX vl LABELS (Person) PROPERTIES (vl.name= 'ABC',

vl.height=1.6, vl.birthdate = to date('13/06/1963"', 'DD/MM/YYYY')) "+
el " , VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ',

v2.height=1.75, v2.birthdate = to date('19/06/1963', 'DD/MM/YYYY')) "+
> " , EDGE e BETWEEN v1 AND v2 LABELS (friendof) PROPERTIES

(e.meeting date = to date('19/06/2021', 'DD/MM/YYYY')) "
pggl ==> "INSERT VERTEX vl LABELS (Person) PROPERTIES (vl.name= 'ABC',
vl.height=1.6, vl.birthdate = to date('13/06/1963', 'DD/MM/

YYYY')) , VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ',
v2.height=1.75, v2.birthdate = to date('19/06/1963', 'DD/MM/
YYYY')) , EDGE e BETWEEN vl AND v2 LABELS (friendof) PROPERTIES

(e.meeting date = to date('19/06/2021', 'DD/MM/YYYY')) "
opg4j> pgqlStmt.execute (pgql)
$14 ==> false

Java

String pgql =

Cel> "INSERT VERTEX vl LABELS (Person) PROPERTIES (vl.name= 'ABC',
vl.height=1.6, vl.birthdate = to date('13/06/1963"', 'DD/MM/YYYY')) "+
Cel> " , VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ',
v2.height=1.75, v2.birthdate = to date('19/06/1963', 'DD/MM/YYYY')) "+
D " , EDGE e BETWEEN vl AND v2 LABELS (friendof) PROPERTIES
(e.meeting date = to date('19/06/2021', 'DD/MM/YYYY')) ";

pgglStmt.execute (pgql) ;

Python

>>> pggql = """

. INSERT VERTEX vl LABELS (Person) PROPERTIES (vl.name= 'ABC',
vl.height=1.6, vl.birthdate = to date('13/06/1963', 'DD/MM/YYYY'))
.. , VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ',
v2.height=1.75, v2.birthdate = to date('19/06/1963', 'DD/MM/YYYY'))
.. , EDGE e BETWEEN vl AND v2 LABELS (friendof) PROPERTIES

(e.meeting date = to _date('19/06/2021', 'DD/MM/YYYY'))

>>> pgql statement.execute (pgql)

False

ORACLE 13-40

ORACLE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

The following example executes an UPDATE query to modify the edge property that was
inserted in the preceding example and subsequently verifies the update operation through a
SELECT query.

e JShell
e Java
* Python
JShell

opg4j> String pgql = "UPDATE e SET (e.meeting date = to_date('12/02/2022"',
'DD/MM/YYYY')) "+

LD "FROM MATCH (vl:Person)-[e:friendof]->(v2:Person) "+

o> "WHERE vl.person id = 27 AND v2.person id = 28"
pggl ==> "UPDATE e SET (e.meeting date = to date('12/02/2022', 'DD/MM/
YYYY')) FROM MATCH (vl:Person)-[e:friendof]->(v2:Person) WHERE vl.person id
= 27 AND v2.person_id = 28"
opg4j> pgglStmt.execute (pggl)
$40 ==> false
opg4j>pgglStmt.executeQuery ("SELECT e.meeting date FROM MATCH (vl:Person)-
[e:friendof]->(v2:Person) WHERE vl.person id = 27").print()

o e +
| MEETING DATE |
o - +
| 2022-02-12 00:00:00.0 |
o e +
Java

String pgql ="UPDATE e SET (e.meeting date = to date('12/02/2022', 'DD/MM/
YYYy')) "+

"FROM MATCH (vl:Person)-[e:friendof]->(v2:Person) "+

"WHERE vl.person id = 27 AND v2.person id = 28";

pgglStmt.execute (pgql) ;

Python

>>> pggql = """
UPDATE e SET (e.meeting date = to date('12/02/2022', 'DD/MM/YYYY'))
FROM MATCH (vl:Person)-[e:friendof]->(v2:Person)
WHERE vl.person id = 27 AND v2.person_id = 28
wnn
>>> pgql statement.execute (pgql)
False
>>> pgql statement.execute query("SELECT e.meeting date FROM
MATCH (vl:Person)-[e:friendof]->(v2:Person) WHERE vl.person id = 27").print()

13-41

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

| 2022-02-12 00:00:00.0 |

A DELETE query allows deleting of vertices and edges in a graph. The following
example executes a DELETE query to delete an edge in the graph.

* JShell
e Java
e Python
JShell

opg4i> pgqlStmt.execute ("DELETE e FROM MATCH (vl1:Person)-[e:friendof]-
>(v2:Person) WHERE v.person id=27")
$14 ==> false

Java

pgglStmt.execute ("DELETE e FROM MATCH (vl:Person)-[e:friendof]-
>(v2:Person) WHERE v.person id=27");

Python

>>> pgql statement.execute ("DELETE e FROM MATCH (vl:Person)-
[e:friendof]->(v2:Person) WHERE vl.person id=27")
False

13.7.4.4 Dropping A PGQL Property Graph

ORACLE

You can use the PGQL DROP PROPERTY GRAPH statement to drop a PGQL property
graph. Note that all the metadata tables for the PGQL property graph are dropped.

Example 13-6 Dropping a PGQL Property Graph

e JShell
e Java
* Python

13-42

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host name>:<port>/<db service>"
opg4j> var conn
DriverManager.getConnection (jdbcUrl, "<username>", "<password>")

opg4j> var pgqlConn = PgglConnection.getConnection (conn)
opgdj> var pgglStmt = pgglConn.createStatement () //create a PGQL Statement
opg4i> pgqlStmt.execute ("DROP PROPERTY GRAPH <graph>")
$9 ==> false
Java
import java.sgl.Connection;
import java.sgl.Statement;
import java.sqgl.DriverManager;
import oracle.pg.rdbms.pgqgl.jdbc.PgglddbcRdbmsDriver;
import oracle.pg.rdbms.pgqgl.PgglConnection;
import oracle.pg.rdbms.pgqgl.PgglStatement;
/**
* This example shows how to drop a PGQL property graph.
*/

public class DropPgglGraph
{

public static void main(String[] args) throws Exception

{

int idx=0;

String jdbcUrl = args[idx++];
String username = args[idx++];
String password = args[idx++];
String graph = args[idx++];
Connection conn = null;

PgglStatement pgglStmt = null;

try {
//Get a jdbc connection
DriverManager.registerDriver (new PgglJdbcRdbmsDriver());
conn = DriverManager.getConnection(jdbcUrl, username, password);
conn.setAutoCommit (false);

// Get a PGQL connection
PgglConnection pgglConn

PgglConnection.getConnection (conn);

// Create PGQL Statement
pgglStmt = pgglConn.createStatement();

String query = "DROP PROPERTY GRAPH " +graph;
pgalStmt.execute (query) ;

}
finally {
// close the statement

if (pgglStmt != null) {

ORACLE 13-43

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

pgglStmt.close();
}
// close the connection
if (conn !'= null) {
conn.close();

}

Python

>>> pggl conn = opgdpy.pgqgl.get connection ("<username>","<password>",
"jdbc:oracle:thin:@localhost:1521/orclpdb")

>>> pgql statement = pgql conn.create statement ()

>>> pggl = "DROP PROPERTY GRAPH <graph>"

>>> pgql statement.execute (pgql)

False

ORACLE"

13-44

Installing Oracle Graph Server (PGX) and
Client

Get started on the installation of the Oracle Graph Server (PGX) and the graph clients.

e Oracle Graph Server and Client Installation
This chapter describes the steps for installing the graph server and the graph clients.

* Getting Started with the Graph Server (PGX)
Once you have installed the graph server (PGX), you can start and connect to a graph
server instance.

ORACLE

Oracle Graph Server and Client Installation

This chapter describes the steps for installing the graph server and the graph clients.

Before You Begin
Before you begin to work with Oracle Property Graphs, you must understand the
workflow for installing Oracle Graph Server and Client.

Oracle Graph Server Installation
You must install the Oracle Graph Server to run graph queries and analytics in the graph
server (PGX).

Oracle Graph Client Installation
You can interact with the various graph features using the client CLIs and the graph
visualization web client.

Setting Up Transport Layer Security

The graph server (PGX), by default, allows only encrypted connections using Transport
Layer Security (TLS). TLS requires the server to present a server certificate to the client
and the client must be configured to trust the issuer of that certificate.

14.1 Before You Begin

Before you begin to work with Oracle Property Graphs, you must understand the workflow for
installing Oracle Graph Server and Client.

ORACLE

Table 14-1 Workflow for Installing Oracle Graph Server and Client

Sequen Task Description More Information
ce
1 Verify Oracle Database Ensure that your Oracle Verifying Database
Requirements Database version is 12.2 and Compatibility
higher.
2 Download Oracle Graph Download Oracle Graph Downloading Oracle Graph
Server and Client Server and Client from Oracle Server and Client

Software Delivery Cloud or
from Oracle Technology

Network.
4 Install Oracle Graph Server Install Oracle Graph server, Installing Oracle Graph
which is available as a Server
separate downloadable
package.
5 Install Oracle Graph Clients Install the graph clients (such Oracle Graph Client
as the graph shell CLIsand Installation
graph visualization
application) to work with
property graphs.
6 Set up transport layer Configure the graph server Setting Up Transport Layer
security and client to trust the self- Security

signed keystore.

14-1

https://edelivery.oracle.com
https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Chapter 14
Before You Begin

Table 14-1 (Cont.) Workflow for Installing Oracle Graph Server and Client

Sequen Task Description More Information

ce

7 Add permissions to publish Grant permissions to publish Adding Permissions to
the graph graphs. Publish the Graph

* Verifying Database Compatibility

* Downloading Oracle Graph Server and Client

14.1.1 Veritying Database Compatibility

Oracle Graph Server and Client works with Oracle Database 12.2 onwards on both on-
premises and cloud environments. The cloud environment includes working with all
versions of Oracle Autonomous Database Serverless and Oracle Autonomous
Database Dedicated.

However, modifying a property graph using a PGQL INSERT, UPDATE, Or DELETE query
is not supported for Oracle Database 12.2.

14.1.2 Downloading Oracle Graph Server and Client

ORACLE

You can download Oracle Graph Server and Client from Oracle Software Delivery
Cloud or from Oracle Technology Network.

Table 14-2 summarizes all the files contained in the Oracle Graph Server and Client
deployment.

<ver> denoted in the file name in the Table 14-2 reflects the downloaded Oracle Graph
Server and Client version.

Table 14-2 Components in the Oracle Graph Server and Client Deployment
|

File Component Description
oracle-graph-<ver>.rpm Oracle Graph Server An rpm file to deploy
Oracle Graph Server.
oracle-graph-client-<ver>.zip Oracle Graph Client A zip file containing
Oracle Graph Client.
oracle-graph-sqglcl-plugin- Oracle Graph PGQL Plugin A plugin for SQLcl to
<ver>.zip for SQLcl run PGQL queries in
SQLcl.
oracle-graph-webapps-<ver>.zip Oracle Graph Web A zip file
Applications containing .war files

for deploying graph
servers in an
application server.

oracle-graph-visualization- Oracle Graph Visualization A zip file containing a
library-<ver>.zip Library Java Script library for
the Graph
Visualization
application.
14-2

https://edelivery.oracle.com
https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Chapter 14
Oracle Graph Server Installation

14.2 Oracle Graph Server Installation

You must install the Oracle Graph Server to run graph queries and analytics in the graph
server (PGX).

You also require the graph server to visualize graphs loaded into the graph server (PGX) and
the graphs in the database.

The following sections explain the steps to install the Oracle Graph Server in a standalone
mode or deploy the server as a web application using Oracle WebLogic Server or Apache
Tomcat.

* System Requirements for Installing Oracle Graph Server
Verify that you meet a few system requirements when installing the Oracle Graph Server
in a standalone mode or when deploying to Oracle WebLogic Server or Apache Tomcat.

* Using the RPM Installation
You can run the downloaded RPM file to install the Oracle Graph Server.

* Deploying Oracle Graph Server to a Web Server
You can deploy Oracle Graph Server to Apache Tomcat or Oracle WebLogic Server.

» User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both
username and password based as well as Kerberos based authentication is supported.

Related Topics

e Learn About the Graph Server (PGX)
The in-memory graph server layer enables you to analyze property graphs using parallel
in-memory execution.

14.2.1 System Requirements for Installing Oracle Graph Server

Verify that you meet a few system requirements when installing the Oracle Graph Server in a
standalone mode or when deploying to Oracle WebLogic Server or Apache Tomcat.

Table 14-3 System Requirements

- ___|
Requirement Type Supported Version

Operating System e Oracle Linux 7 or 8 x64
¢ Red Hat Enterprise Linux (RHEL) 7 or 8

ORACLE 14-3

Chapter 14
Oracle Graph Server Installation

Table 14-3 (Cont.) System Requirements

- ___|
Requirement Type Supported Version

JDK version Oracle JDK 11 or JDK 17
o OpenJDK JDK 11 or JDK 17

< Note:

Due to a bug in Oracle JDK and OpenJDK, it is
recommended to avoid the following JDK
versions:

¢ JDK11.0.9

- JDK11.0.10

« JDK11.0.11

¢ JDK11.0.12

See this note for more details.

14.2.2 Using the RPM Installation

You can run the downloaded RPM file to install the Oracle Graph Server.

e Installing Oracle Graph Server
e Uninstalling Oracle Graph Server

e Upgrading Oracle Graph Server

14.2.2.1 Installing Oracle Graph Server

Before installing the graph server using the RPM file:

e Ensure that you meet the system prerequisites as explained in System
Requirements for Installing Oracle Graph Server.

e Verify if you already have an installed version of the graph server by running the
following command:

sudo rpm -g oracle-graph
[sudo] password for oracle:
oracle-graph-24.1.0-0.x86 64

Graph server installation may throw an error if an installation already exists. In that
case, see Upgrading Oracle Graph Server to upgrade to a newer version.

The installation steps for installing Oracle Graph Server in standalone mode are as
shown:

1. Asaroot user or using sudo, install the RPM file using the rpm command line
utility:

sudo rpm -i oracle-graph-<version>.rpm

ORACLE 14-4

ORACLE

Chapter 14
Oracle Graph Server Installation

Where <version> reflects the version that you downloaded. (For example: oracle-
graph-24.1.0.x86_64.rpm)

The . rpn file is the graph server.

The following post-installation steps are carried out at the time of the rRPM file installation:
» Creation of a working directory in /opt/oracle/graph/pgx/tmp data

» Creation of a log directory in /var/log/oracle/graph

* Automatic generation of self-signed TLS certificates in /etc/oracle/graph

" Note:

— You can also choose to configure and set up transport layer security
(TLS) in graph server. See Setting Up Transport Layer Security for
more details.

— For demonstration purposes, if you wish to disable transport layer
security (TLS) in graph server, see Disabling Transport Layer Security
(TLS) in Graph Server for more details.

2. As root or using sudo, add operating system users allowed to use the server installation
to the operating system group oraclegraph. For example:

usermod -a -G oraclegraph <graphuser>

This adds the specified graph user to the group oraclegraph.
Note that <graphuser> must log out and log in again for this to take effect.

3. As <graphuser>, configure the server by modifying the files under /etc/oracle/graph by
following the steps under Prepare the Graph Server for Database Authentication.

4. Ensure that authentication is enabled for database users that will connect to the graph
server, as explained in User Authentication and Authorization.

5. As a root user or using sudo, start the graph server (PGX) by executing the following
command:
sudo systemctl start pgx

You can verify if the graph server has started by executing the following command:

systemctl status pgx

e If the graph server has successfully started, the response may appear as:

® pgx.service - Oracle Graph In-Memory Server
Loaded: loaded (/etc/systemd/system/pgx.service; disabled; vendor
preset: disabled)
Active: active (running) since Wed 2021-01-27 10:06:06 EST; 33s ago
Main PID: 32127 (bash)
CGroup: /system.slice/pgx.service
F—32127 /bin/bash start-server

14-5

Chapter 14
Oracle Graph Server Installation

L32176 java -Dlogback.configurationFile=/etc/oracle/
graph/logback-server.xml -Doracle.jdbc.fanEnabled=false -cp /opt/
oracle/graph/pgx/bin/../../pgx/server/1lib/jackson-databind. ..

The graph server is now ready to accept requests.

» If the graph server has not started, then you must check the log files in /var/log/
oracle/graph for errors. Additionally, you can also run the following command to
view any systemd errors:

sudo journalctl -u pgx.service

For instructions to deploy the graph server in Oracle WebLogic Server or Apache
Tomcat, see:

» Deploying to Oracle WebLogic Server
* Deploying to Apache Tomcat

You can also deploy the graph server behind a load balancer. See Deploying Oracle
Graph Server Behind a Load Balancer for more information.

14.2.2.2 Uninstalling Oracle Graph Server

To uninstall the graph server, make sure the graph server is shut down.

® Run the following command as a root user or with sudo:

sudo rpm -e oracle-graph

» During uninstall /opt/oracle/graph/pgx/tmp_data/ and /etc/oracle/graph/
server keystore.jks are removed.

14.2.2.3 Upgrading Oracle Graph Server

ORACLE

To upgrade the graph server, ensure that you first shut down the existing graph server
version. You can then run the following command with the newer RPM file as an
argument.

1. Verify the version of your current graph server installation.
sudo rpm -g oracle-graph

2. Stop the graph server if it is already running.
sudo systemctl stop pgx

3. Upgrade the graph server by running the following command as a root user or
with sudo.

sudo rpm -U oracle-graph-24.1.0.x86 64.rpm

Also, note the following:

14-6

Chapter 14
Oracle Graph Server Installation

* The upgrade process automatically preserves the previous PGX (pgx.conf), server
(server.conf), and the logging (1ogback-server.xml, logback.xml) configurations
files. However, if the new version contains changes, then the upgrade process will
create the newest versions of these files with the . rpmnew extension. You can them
compare the two files (to verify if there are any changes in the default parameter
values or if a new parameter is added) and pick up the latest changes.

e Any manual configuration changes in the systemd configuration file for the PGX
service (/etc/systemd/system/pgx.service) is lost. However, if you are using a
drop-in file, then all customizations in the drop-in file are maintained.

« Existing log files in /var/log/oracle/graph are preserved.

« Existing server keystore file (/etc/oracle/graph/server keystore.jks)is
preserved.

Caution:

If you are upgrading the graph server from version 22.3.0 or earlier to
24.1.0, then note that the RPM file installation in Graph Server and Client
Release 24.1.0 will generate a self-signed server keystore file by default. If
you are using a self-signed server certificate, then note that the server
configuration fields, server cert and server private key are deprecated
and will be desupported in a future release. See Setting Up Transport Layer
Security for more information.

4. Verify if the tmp data folder exists in the /opt/oracle/graph/pgx/ directory path.

If it does not exist, then create one and assign ownership and permission as shown:

mkdir -p /opt/oracle/graph/pgx/tmp data
chown -R :oraclegraph /opt/oracle/graph/pgx/tmp data
chmod 0770 /opt/oracle/graph/pgx/tmp data

5. Restart the graph server.

sudo systemctl daemon-reload
sudo systemctl start pgx

14.2.3 Deploying Oracle Graph Server to a Web Server

You can deploy Oracle Graph Server to Apache Tomcat or Oracle WebLogic Server.

However, before deploying the graph server on any one of these web servers, ensure that
your system meets the prerequisites explained in System Requirements for Installing Oracle
Graph Server.

The following explains the deployment instructions to a web server:

e Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web application with
Apache Tomcat.

ORACLE 14-7

Chapter 14
Oracle Graph Server Installation

Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web
application with Oracle WebLogic Server version 14.1.1.

14.2.3.1 Deploying to Apache Tomcat

ORACLE

The example in this topic shows how to deploy the graph server as a web application
with Apache Tomcat.

The graph server will work with Apache Tomcat 9.0.x.

1.

Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war
files). The file name will be similar to this: oracle-graph-webapps-<version>.zip.

Unzip the file into a directory of your choice.

Locate the .war file that follows the naming pattern: graph-server-webapp-
<version>.war.

Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/
classes/pgx.conf file inside the web application archive. See User
Authentication and Authorization section for more information.

b. Optionally, change logging settings by modifying the WEB-INF/classes/
logback.xml file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying
the WEB-INF/web.xnl file inside the web application archive.

Copy the .war file into the Tomcat webapps directory. For example:

cp graph-server-webapp-<version>.war $CATALINA HOME/webapps/pgx.war

< Note:

The name you give the war file in the Tomcat webapps directory
determines the context path of the graph server application. It is
recommended naming the war file as pgx.war.

Configure Tomcat specific settings, like the correct use of TLS/encryption.
Ensure that port 8080 is not already in use.

Start Tomcat:

cd $CATALINA HOME
./bin/startup.sh

The graph server will now listen on localhost:8080/pgx.

14-8

https://edelivery.oracle.com/
https://edelivery.oracle.com/

Chapter 14
Oracle Graph Server Installation

You can connect to the server from JShell by running the following command:

$ <client install dir>/bin/opg4j --base url https://localhost:8080/pgx -u
<graphuser>

Related Topics

e The Tomcat documentation (select desired version)

14.2.3.2 Deploying to Oracle WebLogic Server

The example in this topic shows how to deploy the graph server as a web application with
Oracle WebLogic Server version 14.1.1.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery Cloud. This
file contains ready-to-deploy Java web application archives (.war files). The file name will
be similar to this: oracle-graph-webapps-<version>.zip

2. Unzip the file into a directory of your choice.

3. Locate the .war file that follows the naming pattern: graph-server-webapp-
<version>.war.

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/classes/
pgx.conf file inside the web application archive.

b. Optionally, change logging settings by modifying the WEB-INF/classes/logback.xml
file inside the web application archive.

c. Editthe WEB-INF/web.xnl file inside the web application archive and remove the
following <session-config> element:

<session-config>
<tracking-mode>COOKIE</tracking-mode>
<cookie-config>
<secure>true</secure>
<http-only>true</http-only>
</cookie-config>
<session-timeout>60</session-timeout>
</session-config>

d. Optionally, change other servlet specific deployment descriptors by modifying the
WEB-INF/web.xml file inside the web application archive.

e. Optionally, change WebLogic Server-specific deployment descriptors by modifying
the WEB-INF/weblogic.xml file inside the web application archive.

5. Configure WebLogic specific settings, like the correct use of TLS/encryption.
6. Deploy the .war file to WebLogic Server. The following example shows how to do this

from the command line:

. SMW HOME/user projects/domains/mydomain/bin/setDomainEnv.sh
. SMW HOME/wlserver/server/bin/setWLSEnv.sh

ORACLE 14-9

http://tomcat.apache.org/
https://edelivery.oracle.com/

Chapter 14
Oracle Graph Server Installation

java weblogic.Deployer -adminurl http://localhost:7001 -username
<username> -password <password> -deploy -source <path-to-war-file>

Installing Oracle WebLogic Server

14.2.3.2.1 Installing Oracle WebLogic Server

To download and install the latest version of Oracle WebLogic Server, see

http://www.oracle.com/technetwork/middleware/weblogic/documentation/
index.html

14.2.4 User Authentication and Authorization

The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both
username and password based as well as Kerberos based authentication is
supported.

The actions that you are allowed to do on the graph server are determined by the
privileges enabled by roles that have been granted to you in the Oracle Database.

Basic Steps for Using an Oracle Database for Authentication
You can follow the steps explained in this section to authenticate users to the
graph server (PGX).

Prepare the Graph Server for Database Authentication
Locate the pgx.conf file of your installation.

Store the Database Password in a Keystore

Adding Permissions to Publish the Graph
There are two ways by which you can view any graph in your graph server (PGX)
session in the graph visualization application.

Token Expiration
By default, tokens are valid for 1 hour.

Customizing Roles and Permissions

You can fully customize the permissions to roles mapping by adding and removing
roles and specifying permissions for a role. You can also authorize individual users
instead of roles.

Revoking Access to the Graph Server

To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you
defined the access rules in your pgx.conf file.

Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

Kerberos Enabled Authentication for the Graph Server (PGX)
The graph server (PGX) can authenticate users using an Oracle Database with
Kerberos enabled as identity provider.

14.2.4.1 Basic Steps for Using an Oracle Database for Authentication

You can follow the steps explained in this section to authenticate users to the graph
server (PGX).

ORACLE

14-10

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

Chapter 14
Oracle Graph Server Installation

1. Use an Oracle Database version that is supported by Oracle Graph Server and Client:
version 12.2 or later, including Autonomous Database.

2. Ensure that you have SYSDBA access for your database (or ADMIN access for
autonomous databases) to grant and revoke users access to the graph server (PGX).

3. Ensure that all existing users to which you plan to grant access to the graph server have
at least the following privileges granted.

CREATE SESSION, CREATE TABLE

4. Ensure that the database is accessible through JDBC from the host where the graph
server runs.

5. As SYSDBA (or ADMIN on autonomous databases), run the following procedure to
create the roles required by the graph server.

Note:

If you are using an Autonomous Database Serverless instance, or if your on-
premises Oracle Database version is 23ai, then you can skip this step as these
roles are pre-installed.

-- This procedure creates a list of roles needed for graph.
DECLARE
PRAGMA AUTONOMOUS TRANSACTION;
role exists EXCEPTION;
PRAGMA EXCEPTION INIT(role exists, -01921);
TYPE graph roles table IS TABLE OF VARCHAR2 (50);
graph roles graph roles table;
BEGIN
graph roles := graph roles table(
'GRAPH DEVELOPER',
'GRAPH ADMINISTRATOR',
"GRAPH USER',
"PGX_SESSION CREATE',
'"PGX_SERVER GET INFO',
'"PGX_SERVER MANAGE',
'"PGX_SESSION READ MODEL',
'"PGX_SESSION MODIFY MODEL',
'"PGX_SESSION NEW GRAPH',
'"PGX_SESSION GET PUBLISHED GRAPH',
'"PGX_SESSION COMPILE ALGORITHM',
'"PGX_SESSION ADD PUBLISHED GRAPH');
FOR elem IN 1 .. graph roles.count LOOP

BEGIN
dbms_output.put line('create graph roles: ' || elem || ': CREATE
ROLE ' || graph roles(elem));
EXECUTE IMMEDIATE 'CREATE ROLE ' || graph roles(elem);
EXCEPTION

WHEN role exists THEN
dbms_output.put line('create graph roles: role already exists.
continue');
WHEN OTHERS THEN
RAISE;

ORACLE 14-11

ORACLE

Chapter 14
Oracle Graph Server Installation

END;
END LOOP;
EXCEPTION
when others then
dbms_output.put line('create graph roles: hit error ');
raise;
END;
/

Optionally, this procedure is also available in /opt/oracle/graph/scripts/
create graph roles.sqgl.

See Table 14-4 for more information on the roles.

Assign default permissions to the roles GRAPH DEVELOPER, GRAPH_USER and
GRAPH ADMINISTRATOR to group multiple permissions together.

< Note:

If you are using an Autonomous Database serverless instance, or if your
on-premises Oracle Database version is 23ai, then you can skip this step
as these privileges are available by default.

-- This procedure add some grants to the graph roles.
DECLARE
PRAGMA AUTONOMOUS TRANSACTION;
BEGIN
EXECUTE IMMEDIATE 'GRANT PGX SESSION CREATE TO
GRAPH ADMINISTRATOR';
EXECUTE IMMEDIATE 'GRANT PGX SERVER GET INFO TO
GRAPH ADMINISTRATOR';
EXECUTE IMMEDIATE 'GRANT PGX SERVER MANAGE TO
GRAPH ADMINISTRATOR';
EXECUTE IMMEDIATE 'GRANT PGX SESSION CREATE TO GRAPH DEVELOPER';
EXECUTE IMMEDIATE 'GRANT PGX SESSION NEW GRAPH TO
GRAPH DEVELOPER';
EXECUTE IMMEDIATE 'GRANT PGX SESSION GET PUBLISHED GRAPH TO
GRAPH DEVELOPER';
EXECUTE IMMEDIATE 'GRANT PGX SESSION MODIFY MODEL TO
GRAPH DEVELOPER';
EXECUTE IMMEDIATE 'GRANT PGX SESSION READ MODEL TO
GRAPH DEVELOPER';
EXECUTE IMMEDIATE 'GRANT PGX SESSION CREATE TO GRAPH USER';
EXECUTE IMMEDIATE 'GRANT PGX SESSION GET PUBLISHED GRAPH TO
GRAPH USER';
BEGIN
EXECUTE IMMEDIATE 'GRANT CREATE PROPERTY GRAPH TO
GRAPH DEVELOPER';
EXCEPTION WHEN others then
if sglcode = -990 then
mdsys.opg log.debug('grant create property graph to
graph developer: missing privilege, continue');
else

14-12

raise;
end 1if;
END;
EXCEPTION

when others then

Chapter 14

Oracle Graph Server Installation

dbms_output.put line('add graph roles grants: hit error ');

raise;
END;
/

Optionally, this procedure is also available in /opt/oracle/graph/scripts/
create graph roles.sqgl.

7. Assign roles to all the database developers who should have access to the graph server

(PGX). For example:

GRANT GRAPH DEVELOPER TO <graphuser>

where <graphuser> is a user in the database. You can also assign individual permissions
(roles prefixed with PGX_) to users directly.

8. Assign the administrator role to users who should have administrative access. For

example:

GRANT GRAPH ADMINISTRATOR to <administratoruser>

where <administratoruser> is a user in the database.

e Privileges and Roles in Oracle Database
This section describes the database roles and privileges that are required only if you are
using the graph server (PGX).

14.2.4.1.1 Privileges and Roles in Oracle Database

ORACLE

This section describes the database roles and privileges that are required only if you are
using the graph server (PGX).

Table 14-4 Oracle Database Privileges and Roles Required for Using the Graph

Server (PGX)

Role

Operations enabled by this role

Used By

PGX SESSION CREATE

Create a new PGX session using the
Serverlnstance.createSession API.

Graph developers and
graph users

PGX_SERVER GET INFO

Get status information on the PGX instance
using the Admin API.

Users who administer
PGX

PGX_SERVER MANAGE
(includes
PGX_SERVER GET INFO)

Manage the PGX instance using the Admin
API to stop or restart PGX.

Users who administer
PGX

PGX_SESSION NEW GRAPH

Create a new graph in PGX by loading from
the database using a config file, using the
CREATE PROPERTY GRAPH statement in
PGQL, creating a sub-graph from another
graph, or using the GraphBuilder.

Graph developers and
graph users

14-13

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html

Chapter 14
Oracle Graph Server Installation

Table 14-4 (Cont.) Oracle Database Privileges and Roles Required for Using the
Graph Server (PGX)

Role Operations enabled by this role Used By

PGX SESSION GET PUBLISH Query and view graphs published by another Graph developers and
ED GRAPH user to the public namespace. graph users

PGX SESSION ADD PUBLISH Publish a graph to the public namespace. Graph developers

ED GRAPH (includes
PGX_SESSION GET PUBLISH

ED GRAPH)
PGX SESSION COMPILE ALG Compile an algorithm using the PGX Graph developers
ORITHM Algorithm API.

PGX SESSION READ MODEL Load and use an ML model using PgxML. Graph developers

PGX SESSION MODIFY MODE Create, train, and store an ML model using ~ Graph developers
L PgxML.

Few additional roles are also created to group multiple roles together. They provide a
convenient way to grant multiple roles to database users. See Mapping Graph Server
Roles to Default Privileges for more information on these additional roles.

You can create additional groups that are useful for your application, as described in
Adding and Removing Roles and Defining Permissions for Individual Users.

14.2.4.2 Prepare the Graph Server for Database Authentication

Locate the pgx.conf file of your installation.

If you installed the graph server via RPM, the file is located at: /etc/oracle/graph/
pgx.conf

If you use the webapps package to deploy into Tomcat or WebLogic Server, the
pgx.conf file is located inside the web application archive file (WAR file) at: WEB-INF/
classes/pgx.conf

Tip: On Linux, you can use vim to edit the file directly inside the WAR file without
unzipping it first. For example:

vim graph-server-webapp-<version>.war

Inside the pgx.conf file, locate the jdbc url line of the realm options:

"pgx_realm": {
"implementation": "oracle.pg.identity.DatabaseRealm",
"options": {
"jdbc_url": "<REPLACE-WITH-DATABASE-URL-TO-USE-FOR-
AUTHENTICATION>",
"token expiration seconds": 3600,

ORACLE 14-14

Chapter 14
Oracle Graph Server Installation

Replace the text with the JDBC URL pointing to your database that you configured in the
previous step. For example:

"pgx_realm": {
"implementation": "oracle.pg.identity.DatabaseRealm",
"options": {
"jdbc_url": "jdbc:oracle:thin:@myhost:1521/myservice",
"token expiration seconds": 3600,

Then, start the graph server by running the following command as a root user or with sudo:

sudo systemctl start pgx

Preparing the Graph Server (PGX) to Connect to Autonomous Database
You can configure your graph server(PGX) to connect to an Autonomous Database instance.

Irrespective of whether your graph server (PGX) instance is running on premises or on
Oracle Cloud Infrastructure (OCI), you can perform the following steps to determine the
service name to connect to your Autonomous Database instance and update the JDBC URL
in /etc/oracle/graph/pgx.conf file.

1. Download and save the wallet for your Autonomous Database instance from the Oracle
Cloud Infrastructure (OCI) Console. See Download Client Credentials (Wallets) for more
information.

2. Unzip the wallet to a new subdirectory in /etc/oracle/graph/wallets/<dbname>, and
change the group permission as shown:

sudo unzip Wallet <dbname>.zip -d /etc/oracle/graph/wallets/<dbname>
sudo chgrp -R oraclegraph /etc/oracle/graph/wallets/<dbname>

3. Determine the connect identifier from the tnsnames.ora file in /etc/oracle/graph/
wallets/<dbname> directory. For example, the entry must be similar to:

graphdb low =
description= (retry count=20) (retry delay=3)
(address=
(protocol=tcps) (port=1522)
(host=adwc.example.oraclecloud.com)
)
(connect data=(service name=graphdb low.adwc.oraclecloud.com))
(security=(ssl server cert dn="CN=adwc.example.oraclecloud.com,
OU=Oracle BMCS US, 0O=0Oracle Corporation, L=Redwood City, ST=California,
C=Us"))
)

In the preceding example, graphdb_low is the connect identifier.

ORACLE 14-15

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1

Chapter 14
Oracle Graph Server Installation

4. Update the JDBC URL in /etc/oracle/graph/pgx.conf file with the connect
identifier determined in the preceding step along with the directory path to the
unzipped wallet file. For example:

"pgx_realm": {
"implementation": "oracle.pg.identity.DatabaseRealm",
"options": {
"jdbc_url": "jdbc:oracle:thin:@graphdb_low?TNS_ADMIN=/etc/
oracle/graph/wallets/<dbname>",
"token expiration seconds": 3600,

5. Finally, restart the graph server as shown:

sudo systemctl restart pgx

14.2.4.3 Store the Database Password in a Keystore

ORACLE

PGX requires a database account to read data from the database into memory. The
account should be a low-privilege account (see Security Best Practices with Graph
Data).

As described in Reading Graphs from Oracle Database into the Graph Server (PGX),
you can read data from the database into the graph server without specifying
additional authentication as long as the token is valid for that database user. But if you
want to access a graph from a different user, you can do so, as long as that user's
password is stored in a Java Keystore file for protection.

You can use the keytoo