
Oracle® Database
Graph Developer's Guide for Property Graph

21.2
F41057-02
June 2021

Oracle Database Graph Developer's Guide for Property Graph, 21.2

F41057-02

Copyright © 2016, 2021, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Prashant Kannan, Chuck Murray, Melliyal Annamalai, Korbinian Schmid, Albert Godfrind, Oskar
van Rest, Jorge Barba, Ana Estrada, Steve Serra, Ryota Yamanaka, Bill Beauregard, Hector Briseno,
Hassan Chafi, Eugene Chong, Souripriya Das, Juan Garcia, Florian Gratzer, Zazhil Herena, Sungpack Hong,
Roberto Infante, Hugo Labra, Gabriela Montiel-Moreno, Eduardo Pacheco, Joao Paiva, Matthew Perry, Diego
Ramirez, Siva Ravada, Carlos Reyes, Jane Tao, Edgar Vazquez, Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xx

Documentation Accessibility xx

Related Documents xx

Conventions xx

 Changes in This Release for This Guide

Part I Getting Started with Oracle Property Graphs

1 Property Graph Support Overview

1.1 Introduction to Property Graphs 1-2

1.1.1 What Are Property Graphs? 1-2

1.1.2 About the Property Graph Feature of Oracle Database 1-3

1.1.2.1 In-Memory Graph Server (PGX) 1-4

1.1.2.2 Options for Property Graph Architecture 1-4

1.2 Before You Begin with Oracle Property Graphs 1-7

1.2.1 Database Compatibility and Restrictions 1-8

1.2.2 Downloading Oracle Graph Server and Client 1-8

1.2.3 Installing PL/SQL Packages in Oracle Database 1-9

1.3 Oracle Graph Server and Client Installation 1-10

1.3.1 Installing Oracle Graph Server 1-11

1.3.2 Deploying Oracle Graph Server to a Web Server 1-12

1.3.2.1 Deploying to Apache Tomcat 1-13

1.3.2.2 Deploying to Oracle WebLogic Server 1-14

1.3.3 Upgrading Oracle Graph Server 1-15

1.3.4 Uninstalling Oracle Graph Server 1-15

1.3.5 Installing Oracle Graph Client 1-15

1.3.5.1 Installing the Java Client 1-15

1.3.5.2 Installing the Python Client 1-16

iii

1.3.5.3 Uninstalling the Python Client 1-18

1.3.5.4 Enabling the Graph Visualization Application 1-19

1.3.5.5 Deploying the Graph Visualization Application 1-19

1.3.5.6 Installing the Graph Zeppelin Interpreter Client 1-23

1.4 Setting Up Transport Layer Security 1-24

1.4.1 Generating a Self-Signed Server Certificate 1-24

1.4.2 Configuring the Graph Server (PGX) 1-25

1.4.3 Configuring a Client to Trust the Self-Signed Certificate 1-26

1.5 Adding Permissions to Publish the Graph 1-27

1.6 Security Best Practices with Graph Data 1-28

1.7 Interactive Graph Shell 1-28

1.8 Using Graph Server Functionality as a Library 1-30

1.9 Storing Graphs in Oracle Database and Loading Graphs into Memory 1-32

1.9.1 Two-Tier Mode 1-32

1.9.2 Three-Tier Mode 1-32

1.10 Using Oracle Graph with the Autonomous Database 1-33

1.10.1 Two-Tier Deployments of Oracle Graph with Autonomous Database 1-33

1.10.2 Three-Tier Deployments of Oracle Graph with Autonomous Database 1-34

1.11 Migrating Property Graph Applications from Before Release 21c 1-37

1.12 Upgrading From Graph Server and Client 20.4.x to 21.x 1-39

1.13 Using the Graph Zeppelin Interpreter Client 1-42

2 Quick Starts for Using Oracle Property Graph

2.1 Quick Start: Interactively Analyze Graph Data 2-1

2.1.1 Quick Start: Create and Query a Graph in the Database, Load into In-Memory
Graph Server (PGX) for Analytics 2-1

2.1.1.1 Create and Query a Graph in the Database 2-2

2.1.1.2 Load the Graph into Memory and Run Graph Analytics 2-6

2.1.2 Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server
(PGX) 2-9

2.1.3 Quick Start: Executing PGQL Queries in SQLcl 2-14

2.2 QuickStart: Run Graph Analytics Using the Python Shell 2-14

2.3 Quick Start: Using the Python Client as a Module 2-15

2.4 Oracle LiveLabs Workshops for Graphs 2-17

3 Property Graph Views on Oracle Database Tables

4 Using the In-Memory Graph Server (PGX)

4.1 Overview of the In-Memory Graph Server (PGX) 4-2

iv

4.1.1 Design of the In-Memory Graph Server (PGX) 4-2

4.1.2 Usage Modes of the In-memory Graph Server (PGX) 4-4

4.2 User Authentication and Authorization 4-5

4.2.1 Privileges and Roles in Oracle Database 4-6

4.2.2 Basic Steps for Using an Oracle Database for Authentication 4-7

4.2.3 Prepare the Graph Server for Database Authentication 4-9

4.2.4 Connect to the Server from JShell with Database Authentication 4-10

4.2.5 Read Data from the Database 4-11

4.2.6 Store the Database Password in a Keystore 4-13

4.2.7 Token Expiration 4-18

4.2.8 Advanced Access Configuration 4-19

4.2.8.1 Customizing Roles and Permissions 4-20

4.2.9 Revoking Access to the Graph Server 4-21

4.2.10 Examples of Custom Authorization Rules 4-21

4.2.11 Kerberos Enabled Authentication 4-23

4.2.11.1 Prerequisite Requirements 4-23

4.2.11.2 Prepare the Graph Server for Kerberos Authentication 4-24

4.2.11.3 Login to the Graph Server Using Kerberos Ticket 4-25

4.3 About Vertex and Edge IDs 4-26

4.4 Keeping the Graph in Oracle Database Synchronized with the Graph Server 4-28

4.4.1 Examples of Synchronizing 4-29

4.5 Optimizing Graphs for Read Versus Updates in the In-Memory Graph Server (PGX) 4-34

4.6 Storing a Graph Snapshot on Disk 4-35

4.7 Executing Built-in Algorithms 4-36

4.7.1 About Built-In Algorithms in the In-Memory Graph Server (PGX) 4-37

4.7.2 Running the Triangle Counting Algorithm 4-38

4.7.3 Running the PageRank Algorithm 4-38

4.8 Using Custom PGX Graph Algorithms 4-39

4.8.1 Writing a Custom PGX Algorithm 4-39

4.8.1.1 Collections 4-40

4.8.1.2 Iteration 4-41

4.8.1.3 Reductions 4-41

4.8.2 Compiling and Running a PGX Algorithm 4-42

4.8.3 Example Custom PGX Algorithm: PageRank 4-43

4.9 Creating Subgraphs 4-43

4.9.1 About Filter Expressions 4-44

4.9.2 Using a Simple Filter to Create a Subgraph 4-45

4.9.3 Using a Complex Filter to Create a Subgraph 4-45

4.9.4 Using a Vertex Set to Create a Bipartite Subgraph 4-46

4.10 Using Automatic Delta Refresh to Handle Database Changes 4-48

4.10.1 Configuring the In-Memory Server for Auto-Refresh 4-48

v

4.10.2 Configuring Basic Auto-Refresh 4-49

4.10.3 Reading the Graph Using the In-Memory Graph Server (PGX) or a Java
Application 4-49

4.10.4 Checking Out a Specific Snapshot of the Graph 4-50

4.10.5 Advanced Auto-Refresh Configuration 4-51

4.10.6 Special Considerations When Using Auto-Refresh 4-52

4.11 Starting the In-Memory Graph Server (PGX) 4-52

4.11.1 Starting and Stopping the Graph Server (PGX) Using the Command Line 4-52

4.11.2 Configuring the In-Memory Graph Server (PGX) 4-53

4.12 Connecting to the In-Memory Graph Server (PGX) 4-59

4.12.1 Connecting with the Graph Shell 4-59

4.12.2 Connecting with Java 4-62

4.12.2.1 Starting and Stopping the PGX Engine 4-62

4.12.3 Connecting with Python 4-63

4.13 Using Graph Server (PGX) as a Library 4-64

4.14 User-Defined Functions (UDFs) in PGX 4-65

4.15 Using HAProxy for PGX Load Balancing and High Availability 4-69

5 Using the Property Graph Schema

5.1 Property Graph Schema Objects for Oracle Database 5-2

5.1.1 Property Graph Tables (Detailed Information) 5-2

5.1.2 Default Indexes on Vertex (VT$) and Edge (GE$) Tables 5-7

5.1.3 Flexibility in the Property Graph Schema 5-7

5.2 Data Access Layer 5-7

5.3 Getting Started with Property Graphs 5-8

5.3.1 Required Privileges for Database Users 5-8

5.4 Using Java APIs for Property Graph Data 5-8

5.4.1 Overview of the Java APIs 5-9

5.4.1.1 Oracle Graph Property Graph Java APIs 5-9

5.4.1.2 Oracle Database Property Graph Java APIs 5-9

5.4.2 Parallel Loading of Graph Data 5-10

5.4.2.1 JDBC-Based Data Loading 5-10

5.4.2.2 External Table-Based Data Loading 5-19

5.4.2.3 SQL*Loader-Based Data Loading 5-23

5.4.3 Parallel Retrieval of Graph Data 5-26

5.4.4 Using an Element Filter Callback for Subgraph Extraction 5-28

5.4.5 Using Optimization Flags on Reads over Property Graph Data 5-31

5.4.6 Adding and Removing Attributes of a Property Graph Subgraph 5-33

5.4.7 Getting Property Graph Metadata 5-38

5.4.8 Merging New Data into an Existing Property Graph 5-39

5.4.9 Opening and Closing a Property Graph Instance 5-41

vi

5.4.10 Creating Vertices 5-43

5.4.11 Creating Edges 5-43

5.4.12 Deleting Vertices and Edges 5-44

5.4.13 Reading a Graph from a Database into an Embedded In-Memory Analyst 5-44

5.4.14 Specifying Labels for Vertices 5-45

5.4.15 Building an In-Memory Graph 5-45

5.4.16 Dropping a Property Graph 5-47

5.4.17 Executing PGQL Queries 5-47

5.5 Managing Text Indexing for Property Graph Data 5-47

5.5.1 Configuring a Text Index for Property Graph Data 5-48

5.5.1.1 Configuring Text Indexes Using Oracle Text 5-48

5.5.2 Using Automatic Indexes for Property Graph Data 5-50

5.5.3 Using Manual Indexes for Property Graph Data 5-52

5.5.4 Executing Search Queries Over a Property Graph’s Text Indexes 5-52

5.5.4.1 Executing Search Queries Over a Text Index Using Oracle Text 5-52

5.5.5 Handling Data Types 5-54

5.5.5.1 Handling Data Types on Oracle Text 5-54

5.5.6 Updating Configuration Settings on Text Indexes for Property Graph Data 5-55

5.5.7 Using Parallel Query on Text Indexes for Property Graph Data 5-55

5.5.7.1 Parallel Text Search Using Oracle Text 5-55

5.6 Access Control for Property Graph Data (Graph-Level and OLS) 5-57

5.6.1 Applying Oracle Label Security (OLS) on Property Graph Data 5-57

5.7 SQL-Based Property Graph Query and Analytics 5-62

5.7.1 Simple Property Graph Queries 5-63

5.7.2 Text Queries on Property Graphs 5-66

5.7.3 Navigation and Graph Pattern Matching 5-71

5.7.4 Navigation Options: CONNECT BY and Parallel Recursion 5-76

5.7.5 Pivot 5-79

5.7.6 SQL-Based Property Graph Analytics 5-80

5.7.6.1 Shortest Path Examples 5-81

5.7.6.2 Collaborative Filtering Overview and Examples 5-84

5.8 Creating Property Graph Views on an RDF Graph 5-90

5.9 Oracle Flat File Format Definition 5-93

5.9.1 About the Property Graph Description Files 5-93

5.9.2 Edge File 5-93

5.9.3 Vertex File 5-95

5.9.4 Encoding Special Characters 5-97

5.9.5 Example Property Graph in Oracle Flat File Format 5-98

5.9.6 Converting an Oracle Database Table to an Oracle-Defined Property Graph
Flat File 5-98

vii

5.9.7 Converting CSV Files for Vertices and Edges to Oracle-Defined Property
Graph Flat Files 5-101

6 Property Graph Query Language (PGQL)

6.1 Creating a Property Graph using PGQL 6-1

6.2 Creating Property Graph Views Using PGQL 6-3

6.3 Pattern Matching with PGQL 6-3

6.4 Edge Patterns Have a Direction with PGQL 6-4

6.5 Vertex and Edge Labels with PGQL 6-5

6.6 Variable-Length Paths with PGQL 6-5

6.7 Aggregation and Sorting with PGQL 6-5

6.8 Executing PGQL Queries Against the In-Memory Graph Server (PGX) 6-6

6.8.1 Getting Started with PGQL 6-6

6.8.2 Supported PGQL Features 6-8

6.8.2.1 Limitations on Quantifiers 6-8

6.8.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns 6-8

6.8.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements 6-9

6.8.4 Java APIs for Executing SELECT Queries 6-9

6.8.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph
Server (PGX) 6-10

6.8.4.2 Executing SELECT Queries Against a PGX Session 6-10

6.8.4.3 Iterating Through a Result Set 6-10

6.8.4.4 Printing a Result Set 6-12

6.8.5 Java APIs for Executing UPDATE Queries 6-13

6.8.5.1 Updatability of Graphs Through PGQL 6-14

6.8.5.2 Executing UPDATE Queries against a Graph in the in-memory Graph
Server (PGX) 6-14

6.8.5.3 Executing UPDATE Queries Against a PGX Session 6-15

6.8.5.4 Altering the Underlying Schema of a Graph 6-15

6.8.6 Security Tools for Executing PGQL Queries 6-16

6.8.6.1 Using Bind Variables 6-16

6.8.6.2 Using Identifiers in a Safe Manner 6-17

6.8.7 Best Practices for Tuning PGQL Queries 6-18

6.8.7.1 Memory Allocation 6-18

6.8.7.2 Parallelism 6-19

6.8.7.3 Query Plan Explaining 6-19

6.9 Executing PGQL Queries Directly Against Oracle Database 6-20

6.9.1 PGQL Features Supported 6-21

6.9.1.1 Temporal Types 6-21

6.9.1.2 Type Casting 6-22

6.9.1.3 CONTAINS Built-in Function 6-23

viii

6.9.2 Creating Property Graphs through CREATE PROPERTY GRAPH Statements 6-23

6.9.3 Dropping Property Graphs through DROP PROPERTY GRAPH Statements 6-30

6.9.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL Queries 6-31

6.9.4.1 Basic Query Execution 6-34

6.9.4.2 Executing PGQL Queries Using JDBC Driver 6-43

6.9.4.3 Security Techniques for PGQL Queries 6-44

6.9.4.4 Using a Text Index with PGQL Queries 6-50

6.9.4.5 Obtaining the SQL Translation for a PGQL Query 6-53

6.9.4.6 Additional Options for PGQL Translation and Execution 6-61

6.9.4.7 Querying Another User’s Property Graph 6-80

6.9.4.8 Using Query Optimizer Hints with PGQL 6-82

6.9.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE
Statements 6-85

6.9.5.1 Additional Options for PGQL Statement Execution 6-93

6.9.6 Performance Considerations for PGQL Queries 6-97

7 Graph Visualization Application

7.1 About the Graph Visualization Application 7-1

7.2 How does the Graph Visualization Application Work 7-1

7.3 Using the Graph Visualization Application 7-2

7.3.1 Graph Visualization Modes 7-3

7.3.2 Graph Visualization Settings 7-3

7.3.3 Using Live Search 7-6

7.3.4 Using URL Parameters to Control the Graph Visualization Application 7-7

7.4 REST Endpoints for the Graph Visualization Application 7-7

7.4.1 Login 7-8

7.4.2 List Graphs 7-8

7.4.3 Run a PGQL Query 7-9

7.4.4 Get User 7-11

7.4.5 Asynchronous REST Endpoints 7-11

7.4.5.1 Run a PGQL Query Asynchronously 7-11

7.4.5.2 Check a Query Completion 7-12

7.4.5.3 Cancel a Query Execution 7-12

7.4.5.4 Retrieve a Query Result 7-13

8 Using the Machine Learning Library (PgxML) for Graphs

8.1 Using the DeepWalk Algorithm 8-1

8.1.1 Loading a Graph 8-2

8.1.2 Building a Minimal DeepWalk Model 8-3

8.1.3 Building a Customized DeepWalk Model 8-3

ix

8.1.4 Training a DeepWalk Model 8-4

8.1.5 Getting the Loss Value For a DeepWalk Model 8-5

8.1.6 Computing Similar Vertices for a Given Vertex 8-5

8.1.7 Computing Similar Vertices for a Vertex Batch 8-6

8.1.8 Storing a Trained DeepWalk Model 8-7

8.1.8.1 Storing a Trained Model in Another Database 8-8

8.1.9 Loading a Pre-Trained DeepWalk Model 8-9

8.1.9.1 Loading a Pre-Trained Model From Another Database 8-9

8.1.10 Destroying a DeepWalk Model 8-11

8.2 Using the Supervised GraphWise Algorithm 8-11

8.2.1 Loading a Graph 8-12

8.2.2 Building a Minimal GraphWise Model 8-13

8.2.3 Advanced Hyperparameter Customization 8-14

8.2.4 Training a Supervised GraphWise Model 8-16

8.2.5 Getting the Loss Value For a Supervised GraphWise Model 8-16

8.2.6 Inferring the Vertex Labels for a Supervised GraphWise Model 8-17

8.2.7 Evaluating the Supervised GraphWise Model Performance 8-18

8.2.8 Inferring Embeddings for a Supervised GraphWise Model 8-18

8.2.8.1 Inferring Embeddings for a Model in Another Database 8-20

8.2.9 Storing a Trained Supervised GraphWise Model 8-20

8.2.10 Loading a Pre-Trained Supervised GraphWise Model 8-21

8.2.11 Destroying a Supervised GraphWise Model 8-22

8.3 Using the Unsupervised GraphWise Algorithm 8-22

8.3.1 Loading a Graph 8-23

8.3.2 Building a Minimal Unsupervised GraphWise Model 8-24

8.3.3 Advanced Hyperparameter Customization 8-25

8.3.4 Training a Unsupervised GraphWise Model 8-26

8.3.5 Getting the Loss Value for a Unsupervised GraphWise Model 8-26

8.3.6 Inferring Embeddings for a Unsupervised GraphWise Model 8-27

8.3.7 Storing a Unsupervised GraphWise Model 8-28

8.3.8 Loading a Pre-Trained Unsupervised GraphWise Model 8-29

8.3.9 Destroying a Unsupervised GraphWise Model 8-29

8.4 Using the Pg2vec Algorithm 8-30

8.4.1 Loading a Graph 8-31

8.4.2 Building a Minimal Pg2vec Model 8-31

8.4.3 Building a Customized Pg2vec Model 8-32

8.4.4 Training a Pg2vec Model 8-34

8.4.5 Getting the Loss Value For a Pg2vec Model 8-34

8.4.6 Computing Similar Graphlets for a Given Graphlet 8-34

8.4.7 Computing Similars for a Graphlet Batch 8-36

8.4.8 Inferring a Graphlet Vector 8-37

x

8.4.9 Inferring Vectors for a Graphlet Batch 8-38

8.4.10 Storing a Trained Pg2vec Model 8-39

8.4.11 Loading a Pre-Trained Pg2vec Model 8-39

8.4.12 Destroying a Pg2vec Model 8-40

9 Spatial Support in Property Graphs

9.1 Representing Spatial Data in a Property Graph 9-1

9.2 Creating a Spatial Index on Property Graph Data 9-3

9.3 Querying Spatial Data in a Property Graph 9-4

10

OPG_APIS Package Subprograms

10.1 OPG_APIS.ANALYZE_PG 10-2

10.2 OPG_APIS.CF 10-4

10.3 OPG_APIS.CF_CLEANUP 10-7

10.4 OPG_APIS.CF_PREP 10-9

10.5 OPG_APIS.CLEAR_PG 10-10

10.6 OPG_APIS.CLEAR_PG_INDICES 10-11

10.7 OPG_APIS.CLONE_GRAPH 10-11

10.8 OPG_APIS.COUNT_TRIANGLE 10-12

10.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP 10-13

10.10 OPG_APIS.COUNT_TRIANGLE_PREP 10-14

10.11 OPG_APIS.COUNT_TRIANGLE_RENUM 10-16

10.12 OPG_APIS.CREATE_EDGES_TEXT_IDX 10-17

10.13 OPG_APIS.CREATE_PG 10-18

10.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB 10-19

10.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB 10-21

10.16 OPG_APIS.CREATE_STAT_TABLE 10-22

10.17 OPG_APIS.CREATE_SUB_GRAPH 10-23

10.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX 10-24

10.19 OPG_APIS.DROP_EDGES_TEXT_IDX 10-26

10.20 OPG_APIS.DROP_PG 10-26

10.21 OPG_APIS.DROP_PG_VIEW 10-27

10.22 OPG_APIS.DROP_VERTICES_TEXT_IDX 10-27

10.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM 10-28

10.24 OPG_APIS.EXP_EDGE_TAB_STATS 10-30

10.25 OPG_APIS.EXP_VERTEX_TAB_STATS 10-31

10.26 OPG_APIS.FIND_CC_MAPPING_BASED 10-32

10.27 OPG_APIS.FIND_CLUSTERS_CLEANUP 10-33

10.28 OPG_APIS.FIND_CLUSTERS_PREP 10-34

xi

10.29 OPG_APIS.FIND_SP 10-36

10.30 OPG_APIS.FIND_SP_CLEANUP 10-37

10.31 OPG_APIS.FIND_SP_PREP 10-38

10.32 OPG_APIS.GET_BUILD_ID 10-39

10.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL 10-39

10.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS 10-41

10.35 OPG_APIS.GET_LATLONG_FROM_V_COL 10-42

10.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS 10-43

10.37 OPG_APIS.GET_LONG_LAT_GEOMETRY 10-44

10.38 OPG_APIS.GET_LATLONG_FROM_V_COL 10-45

10.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS 10-46

10.40 OPG_APIS.GET_SCN 10-47

10.41 OPG_APIS.GET_VERSION 10-47

10.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL 10-48

10.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS 10-49

10.44 OPG_APIS.GRANT_ACCESS 10-50

10.45 OPG_APIS.IMP_EDGE_TAB_STATS 10-51

10.46 OPG_APIS.IMP_VERTEX_TAB_STATS 10-52

10.47 OPG_APIS.PR 10-54

10.48 OPG_APIS.PR_CLEANUP 10-56

10.49 OPG_APIS.PR_PREP 10-57

10.50 OPG_APIS.PREPARE_TEXT_INDEX 10-58

10.51 OPG_APIS.RENAME_PG 10-58

10.52 OPG_APIS.SPARSIFY_GRAPH 10-59

10.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP 10-61

10.54 OPG_APIS.SPARSIFY_GRAPH_PREP 10-62

11

OPG_GRAPHOP Package Subprograms

11.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB 11-1

Part II In-Memory Graph Server (PGX) Advanced User Guide

12

Configuring the In-Memory Graph Server (PGX)

12.1 Configuration Parameters for the Graph Server (PGX) Engine 12-1

12.1.1 Configuration of the Graph Server (PGX) Run-Time Parameters 12-11

12.1.2 Specifying the Configuration File to the In-Memory Graph Server (PGX) 12-14

12.1.3 Memory Consumption by the Graph Server (PGX) 12-15

12.1.3.1 Memory Management 12-15

12.2 Configuration Parameters for Connecting to the Graph Server (PGX) 12-17

xii

12.3 Configuration Parameters for the Graph Client 12-17

13

Graphs Management

13.1 Loading a Graph Into the Graph Server (PGX) 13-1

13.1.1 API for Loading Graphs into Memory 13-2

13.1.2 Graph Configuration Options 13-2

13.1.3 Defining the Graph Configuration via Java 13-10

13.1.4 Creating a JSON Configuration to Load a Graph 13-10

13.1.5 Preloading a Graph 13-11

13.1.6 Data Loading Security Best Practices 13-12

13.1.7 Data Format Support Matrix 13-12

13.1.8 Immutability of Loaded Graphs 13-13

13.2 Publishing a Graph 13-13

13.3 Publishing a Preloaded Graph 13-18

13.4 Deleting a Graph 13-19

14

Namespaces and Sharing

14.1 Defining Graph Names 14-1

14.2 Retrieving Graphs by Name 14-1

14.3 Checking Used Names 14-2

14.4 Property Name Resolution and Graph Mutations 14-2

15

PGX Programming Guides

15.1 Design of the Graph Server (PGX) API 15-3

15.2 Data Types and Collections in the Graph Server (PGX) 15-4

15.2.1 Using Collections and Maps 15-7

15.2.1.1 Collection Data Types 15-7

15.2.1.2 Map Data Types 15-11

15.2.2 Using Datetime Data Types 15-15

15.2.2.1 Loading Datetime Data 15-16

15.2.2.2 Specifying Custom Datetime Formats 15-17

15.2.2.3 APIs for Accessing Datetime Data 15-19

15.2.2.4 Querying Datetime Data Using PGQL 15-19

15.2.2.5 Accessing Datetimes from PGQL Result Sets 15-21

15.3 Handling Asynchronous Requests in Graph Server (PGX) 15-23

15.3.1 Blocking Operation 15-23

15.3.2 Chaining Operation 15-24

15.3.3 Cancelling Operation 15-25

15.3.4 Handling Concurrent Asynchronus Operations 15-25

xiii

15.4 Graph Client Sessions 15-26

15.5 Graph Mutation and Subgraphs 15-27

15.5.1 Altering Graphs 15-28

15.5.1.1 Loading Or Removing Additional Vertex or Edge Providers 15-28

15.5.2 Simplifying and Copying Graphs 15-31

15.5.3 Transposing Graphs 15-32

15.5.4 Undirecting Graphs 15-33

15.5.5 Advanced Multi-Edge Handling 15-33

15.5.5.1 Picking 15-34

15.5.5.2 Merging 15-35

15.5.5.3 StrategyBuilder in General 15-36

15.5.6 Creating a Subgraph 15-37

15.5.7 Creating a Bipartite Subgraph 15-37

15.5.8 Creating a Sparsified Subgraph 15-38

15.6 Managing Transient Data 15-38

15.6.1 Managing Transient Properties 15-38

15.6.2 Managing Collections and Scalars 15-40

15.7 Graph Versioning 15-41

15.7.1 Configuring the Snapshots Source 15-42

15.7.2 Creating a Snapshot via Refreshing 15-42

15.7.3 Creating a Snapshot via ChangeSet 15-44

15.7.4 Checking Out the Latest Snapshots of a Graph 15-46

15.7.5 Checking Out Different Snapshots of a Graph 15-46

15.7.6 Directly Loading a Specific Snapshot of a Graph 15-47

15.8 Labels and Properties 15-48

15.8.1 Setting and Getting Property Values 15-49

15.8.2 Getting Label Values 15-50

15.9 Filter Expressions 15-50

15.9.1 Syntax 15-51

15.9.2 Type System 15-56

15.9.3 Path Finding Filters 15-56

15.9.4 Subgraph Filters 15-56

15.9.5 Operations on Filter Expressions 15-57

15.9.5.1 Defining Filter Expressions 15-57

15.9.5.2 Defining Result Set Filters 15-58

15.9.5.3 Creating a Subgraph from PGQL Result Set 15-59

15.9.5.4 Defining Collection Filters 15-60

15.9.5.5 Creating a Subgraph from Collection Filters 15-60

15.9.5.6 Combining Filter Expressions 15-61

15.10 Advanced Task Scheduling Using Execution Environments 15-62

15.10.1 Enterprise Scheduler Configuration Guide 15-63

xiv

15.10.2 Enabling Enterprise Scheduler Features 15-65

15.10.3 Retrieving and Inspecting the Execution Environment 15-65

15.10.4 Modifying and Submitting Tasks Under an Updated Environment 15-66

15.10.5 Using Lambda Syntax 15-67

15.11 Admin API 15-68

15.11.1 Get a Server Instance 15-68

15.11.2 Get Inspection Data 15-68

15.11.3 Get Active Sessions 15-69

15.11.4 Get Cached Graphs 15-71

15.11.5 Get Published Graphs 15-72

15.11.6 Get Currently Loading Graphs 15-72

15.11.7 Get Tasks 15-73

15.11.8 Get Available Memories 15-73

15.12 PgxFrames Tabular Data-Structure 15-73

15.12.1 Loading a PgxFrame from a Database 15-74

15.12.2 Printing the Content of a PgxFrame 15-76

15.12.3 Destroying a PgxFrame 15-77

15.12.4 Storing a PgxFrame to a Database 15-77

15.12.5 Loading and Storing Vector Properties 15-78

15.12.6 Flattening Vector Properties 15-80

15.12.7 Union of PGX Frames 15-80

15.12.8 Joining PGX Frames 15-81

15.12.9 PgxFrame Helpers 15-82

15.12.10 PgxFrame-PgqlResultSet Conversions 15-84

16

Working with Files Using the Graph Server (PGX)

16.1 Loading Graph Data from Files 16-1

16.1.1 Graph Configuration for Loading from File 16-2

16.1.2 Specifying the File Path 16-7

16.1.3 Supported File Access Protocols 16-7

16.1.4 Plain Text Formats 16-8

16.1.4.1 Comma-Separated Values (CSV) 16-10

16.1.4.2 Adjacency List (ADJ_LIST) 16-13

16.1.4.3 Edge List (EDGE_LIST) 16-13

16.1.4.4 Two Tables (TWO_TABLES) 16-15

16.1.4.5 Flat File (FLAT_FILE) 16-16

16.1.5 XML File Formats 16-18

16.1.6 Binary File Formats 16-19

16.2 Loading Graph Data in Parallel from Multiple Files 16-25

16.3 Exporting Graphs Into a File 16-27

xv

16.3.1 Exporting a Graph to Disk 16-28

16.4 Exporting a Graph into Multiple Files 16-29

17

Log Management in the Graph Server (PGX)

17.1 Configuring Log4j Logging 17-1

Part III Supplementary Information for Property Graph Support

A Handling Property Graphs Using a Two-Tables Schema

A.1 Preparing the Two-Tables Schema A-2

A.2 Storing Data in a Property Graph Using a Two-Tables Schema A-4

A.3 Reading Data from a Property Graph Using a Two-Tables Schema A-7

B About Property Graph Data Formats

B.1 GraphSON Data Format B-1

B.2 GraphML Data Format B-2

B.3 GML Data Format B-2

B.4 Oracle Flat File Format B-3

C Mapping Graph Server Roles to Default Privileges

D Disabling Transport Layer Security (TLS) in Graph Server

Index

xvi

List of Figures

1-1 Simple Property Graph Example 1-3

1-2 Three-Tier Property Graph Architecture 1-5

1-3 Two-Tier Property Graph Architecture 1-6

4-1 Graph Server (PGX) Design 4-3

4-2 Session and Transient Properties 4-4

4-3 Remote Server Mode 4-4

4-4 PGX as a Library 4-5

4-5 Edges Matching src.prop == 10 4-44

4-6 Graph Created by the Simple Filter 4-45

4-7 Edges Matching the outDegree Filter 4-46

4-8 Graph Created by the outDegree Filter 4-46

5-1 Phones Graph for Collaborative Filtering 5-85

6-1 PGQL on Oracle Database (RDBMS) 6-20

7-1 Query Visualization 7-2

7-2 Graph Visualization Settings Window 7-4

7-3 Highlights Options for Vertices 7-5

8-1 Pg2vec - Visualization of Two Similar Graphlets 8-36

15-1 Picking Strategy 15-35

15-2 Merging Strategy 15-36

xvii

List of Tables

1-1 Graph Size Estimator 1-5

1-2 Overview of Tasks to Get Started with Property Graphs 1-7

1-3 Components in the Oracle Graph Server and Client Deployment 1-8

3-1 Metadata Tables for PG Views 3-1

4-1 Privileges and Roles in Oracle Database 4-6

4-2 Advanced Access Configuration Options 4-19

4-3 Allowed Permissions 4-21

4-4 Overview of Built-In Algorithms 4-36

4-5 Configuration Parameters for the In-Memory Graph Server (PGX) 4-53

4-6 Fields for Each UDF 4-68

5-1 Edge File Record Format 5-94

5-2 Vertex File Record Format 5-96

5-3 Special Character Codes in the Oracle Flat File Format 5-97

6-1 Type Casting Support in PGQL (From and To Types) 6-22

6-2 PGQL Translation and Execution Options 6-62

6-3 PGQL Statement Modification Options 6-93

7-1 Available URL Parameters 7-7

7-2 Parameters 7-8

7-3 Query Parameters 7-9

12-1 Configuration Parameters for the Graph Server (PGX) Engine 12-2

12-2 Graph Server (PGX) Run-Time Parameters 12-11

12-3 Configuration Parameters for the Graph Client 12-17

13-1 Graph Config JSON Fields 13-2

13-2 Provider Configuration JSON file Options 13-5

13-3 Property Configuration 13-6

13-4 Loading Configuration 13-8

13-5 Error Handling Configuration 13-9

13-6 Data Format Support Matrix 13-12

15-1 PGX API Interface 15-1

15-2 Overview of Data types 15-5

15-3 Overview of Datetime Data Types in PGX 15-15

15-4 Default Temporal Formats 15-52

15-5 Session Information Options 15-70

15-6 Graph Information 15-72

15-7 Mapping between In-Place and Out-Place Operations 15-74

xviii

16-1 Loading from File - Graph Configuration Options 16-2

16-2 CSV Specific Options 16-5

16-3 Mapping between PGX Property Type and Flat File value_type 16-17

16-4 Type Encoding 16-19

16-5 File Layout 16-20

16-6 Integer Vertex Keys 16-21

16-7 Long Vertex Keys 16-21

16-8 String Vertex Keys 16-21

16-9 String Key Element Layout 16-21

16-10 Primitive Type Layout 16-22

16-11 Vector Property Layout 16-22

16-12 String Type Layout 16-22

16-13 String Dictionary Layout 16-22

16-14 String Dictionary Element Layout 16-23

16-15 Vertex Labels Layout 16-23

16-16 Shared Pools Layout 16-23

16-17 Type == Enum 16-24

16-18 Type == Prefix 16-24

16-19 String Table for Shared Pools 16-24

16-20 Property Names Layout 16-24

16-21 Files CompressionScheme 16-27

16-22 Graph Configuration when Exporting Graph into Multiple Files 16-27

C-1 Mapping Graph Server Roles to Default Privileges C-1

xix

Preface

This document provides conceptual and usage information about Oracle Database
support for working with property graph data.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for database and application developers in an Oracle
Database environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Oracle Spatial Developer's Guide

• Oracle Database Graph Developer's Guide for RDF Graph

• Oracle Spatial GeoRaster Developer's Guide

• Oracle Spatial Topology and Network Data Model Developer's Guide

• Oracle Big Data Spatial and Graph User's Guide and Reference

Conventions
The following text conventions are used in this document:

Preface

xx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxi

Changes in This Release for This Guide

The following changes apply to property graph support that is shipped with Oracle
Graph Server and Client.

Oracle Graph Server and Client is required for using the property graph feature of
Oracle Database (see Oracle Graph Server and Client Installation), and is released
four times a year.

New Features

Significant New Features in Oracle Graph Server and Client 21.2

• Enhanced support for both Supervised and Unsupervised GraphWise Models in
PgxML Library:

– Unsupervised GraphWise, a new algorithm that allows users to generate
embeddings for graph vertices without the requirement of labels

– Edge property support in both Building a Minimal GraphWise Model and
Building a Minimal Unsupervised GraphWise Model, that helps users to gain
more insight while training a Graphwise model

See Using the Machine Learning Library (PgxML) for Graphs for more information.

• Python client now supports converting PGQL result set into pandas DataFrame.
See Converting PGQL result set into pandas dataframe for more information.

• Extended PGQL support for SHORTEST and CHEAPEST path queries on the graph
server (PGX). Support added for the following path queries:

– ALL SHORTEST

– ANY SHORTEST and ANY CHEAPEST

– + and {min,max} quantifiers for ANY SHORTEST, ALL SHORTEST and TOP k
SHORTEST

• Added support for query cancellation in the Graph Visualization Application.
See Asynchronous REST Endpoints for more details.

• Added support for Oracle Database Kerberos authentication on the graph server
(PGX).
See Kerberos Enabled Authentication for more information.

• Enhanced support for property graph views:

– SQLcl support for creating property graph views.

– Support for querying property graph views using the Graph Visualization
Application.

• The Java shell is renamed to opg4j and the Java shell prompt is changed from
opg-jshell> to opg4j>.

• The Python shell is renamed to opg4py.

Changes in This Release for This Guide

xxii

• Added support for executing PGQL queries directly against Oracle Database using the
PGQL JDBC driver.
See Executing PGQL Queries Using JDBC Driver for more information.

• Added a new ID strategy PARTITIONED_IDS that enables graphs to have multiple vertices
or edges with the same value as their ID.
See About Vertex and Edge IDs for more information.

• Added compatibility for Flashback synchronization with PARTITIONED_IDS ID strategy.
See Keeping the Graph in Oracle Database Synchronized with the Graph Server for
more information.

Migrating Property Graph Applications to Oracle Database 21c

From Release 21c onwards, Oracle Graph Server and Client must be installed separately. It
is recommended to remove the older property graph libraries from $ORACLE_HOME. See
Uninstalling Previous Versions of Property Graph Libraries for more details.

Deprecated Features

• PL/SQL API OPG_APIS.GET_SCN Function
The PL/SQL API OPG_APIS.GET_SCN function is deprecated. Instead, to retrieve the
current SCN (system change number), use the
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER function:

SELECT dbms_flashback.get_system_change_number FROM DUAL;

• Two-Table Support
Support for the two-table format described in Handling Property Graphs Using a Two-
Tables Schema was deprecated in 19c and will be removed in a future release.

• Apache Tinkerpop API Support
Apache Tinkerpop API support for Oracle Database was deprecated in 19c and is
scheduled to be removed in a future release.

• OraclePgqlResultSet
The oracle.pg.rdbms.OraclePgqlResultSet interface was deprecated in 19c and will be
removed in a future release. Instead, use the standardized interface
oracle.pgql.lang.ResultSet to retrieve values from a PGQL result set.

• Oracle NoSQL Database Support
Property Graph support for data stored in Oracle NoSQL Database is deprecated and will
be removed in a future release.

Desupported Features

• Graph property text search based on Apache Solr/Lucene is desupported. Instead, use
Oracle Text or PGQL query expressions.

• The PGX property type DATE is desupported. Instead, use LOCAL_DATE or
TIMESTAMP.

• Support for the Apache Groovy-based shell was deprecated in 19c and is now
desupported.

Changes in This Release for This Guide

xxiii

Part I
Getting Started with Oracle Property Graphs

Part I provides the fundamental information to get you started on the property graph feature
of Oracle Database.

This part covers the following:

• Overview of the property graph features

• Installing and configuring Oracle Graph Server and Client

• Graph data modeling using the in-memory graph server (PGX)

• Querying graph data using PGQL

• Visualizing property graphs using the Graph Visualization Application

• Applying machine learning algorithms to analyze relationships in graph data

Part I contains the following chapters:

• Property Graph Support Overview

• Quick Starts for Using Oracle Property Graph
This chapter contains quick start tutorials and other resources to help you get started on
working with Oracle property graphs.

• Property Graph Views on Oracle Database Tables
You can create property graph views over data stored in Oracle Database. You can
perform various graph analytics operations using PGQL on these views.

• Using the In-Memory Graph Server (PGX)
The in-memory Graph server of Oracle Graph supports a set of analytical functions.

• Using the Property Graph Schema
This chapter provides conceptual and usage information about creating, storing, and
working with property graph data in an Oracle Database environment.

• Property Graph Query Language (PGQL)
PGQL is a SQL-like query language for property graph data structures that consist
of vertices that are connected to other vertices by edges, each of which can have key-
value pairs (properties) associated with them.

• Graph Visualization Application
The Graph Visualization application enables interactive exploration and visualization of
property graphs. It can also visualize graphs stored in the database.

• Using the Machine Learning Library (PgxML) for Graphs
The in-memory graph server (PGX) provides a machine learning library
oracle.pgx.api.mllib, which supports graph-empowered machine learning algorithms.

• Spatial Support in Property Graphs
The property graph support in the Oracle Spatial and Graph option is integrated with the
spatial support.

• OPG_APIS Package Subprograms
The OPG_APIS package contains subprograms (functions and procedures) for working
with property graphs in an Oracle database.

• OPG_GRAPHOP Package Subprograms
The OPG_GRAPHOP package contains subprograms for various operations on
property graphs in an Oracle database.

1
Property Graph Support Overview

This chapter provides an overview of Oracle Graph support for property graph features.

• Introduction to Property Graphs
Property graphs give you a different way of looking at your data.

• Before You Begin with Oracle Property Graphs
Before you begin to create an Oracle Property Graph, you may need to adhere to one or
more of the prerequisites explained in this section.

• Oracle Graph Server and Client Installation
This section explains the various operations that you must perform to install, uninstall or
upgrade Oracle Graph Server (PGX). It also includes the steps to install Oracle Graph
Client.

• Setting Up Transport Layer Security
The graph server (PGX), by default, allows only encrypted connections using Transport
Layer Security (TLS). TLS requires the server to present a server certificate to the client
and the client must be configured to trust the issuer of that certificate.

• Adding Permissions to Publish the Graph
There are two ways by which you can view any graph in your graph server (PGX) session
in the graph visualization application.

• Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

• Interactive Graph Shell
Both the Oracle Graph server and client packages contain an interactive command-line
application for interacting with all the Java APIs of the product, locally or on remote
computers.

• Using Graph Server Functionality as a Library
The graph functions available with the graph server (PGX) can be used as a library in
your application.

• Storing Graphs in Oracle Database and Loading Graphs into Memory
You can work with graphs in two-tier mode (graph client connects directly to Oracle
Database), or three-tier mode (graph client connects to the graph server (PGX) on the
middle-tier, which then connects to Oracle Database).

• Using Oracle Graph with the Autonomous Database
Oracle Graph with the Autonomous Database allows you to create property graphs from
data in your Autonomous Database.

• Migrating Property Graph Applications from Before Release 21c
If you are migrating from a previous version of Oracle Spatial and Graph to Release 21c,
you may need to make some changes to existing property graph-related applications.

• Upgrading From Graph Server and Client 20.4.x to 21.x
If you are upgrading from Graph Server and Client 20.4.x to 21.x version, you may need
to create new roles in database and migrate authorization rules from pgx.conf file to the
database. Also, starting from Graph Server and Client Release 21.1, TLS is enforced at
the time of the RPM file installation.

1-1

• Using the Graph Zeppelin Interpreter Client
Oracle Graph provides an interpreter client implementation for Apache Zeppelin.
This tutorial topic explains how to perform simple operations using the graph
Zepplin interpreter client.

1.1 Introduction to Property Graphs
Property graphs give you a different way of looking at your data.

You can model your data as a graph by making data entities vertices in the graph, and
relationships between them as edges in the graph. For example, in a bank customer
accounts can be vertices, and cash transfer relationships between them can be edges.

When you view your data as a graph, you can analyze your data based on the
connections and relationships between them. You can run graph analytics algorithms
like PageRank to measure the relative importance of data entities based on the
relationships between them, for example, links between webpages.

• What Are Property Graphs?

• About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics
capabilities in Oracle Database.

1.1.1 What Are Property Graphs?
A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects. Vertices and edges can have multiple properties, which are
represented as key-value pairs.

Each vertex has a unique identifier and can have:

• A set of outgoing edges

• A set of incoming edges

• A collection of properties

Each edge has a unique identifier and can have:

• An outgoing vertex

• An incoming vertex

• A text label that describes the relationship between the two vertices

• A collection of properties

For vertices and edges, each property is identified with a unique name.

The following figure illustrates a very simple property graph with two vertices and one
edge. The two vertices have identifiers 1 and 2. Both vertices have properties name
and age. The edge is from the outgoing vertex 1 to the incoming vertex 2. The edge
has a text label knows and a property type identifying the type of relationship between
vertices 1 and 2.

Chapter 1
Introduction to Property Graphs

1-2

Figure 1-1 Simple Property Graph Example

A property graph can have self-edges (that is, an edge whose source and destination vertex
are the same), as well as multiple edges between the same source and destination vertices.

A property graph can also have different types of vertices and edges in the same graph. For
example a graph can have a set of vertices with label Person and a set of vertices with label
Place, with different properties relevant to these two sets of vertices.

The property graph data model is similar to the W3C standards-based Resource Description
Framework (RDF) graph data model; however, the property graph data model is simpler and
less precise than RDF.

The property graph data model features and analytic APIs make property graphs a good
candidate for use cases such as these:

• Identifying influencers in a social network

• Predicting trends and customer behavior

• Discovering relationships based on pattern matching

• Identifying clusters to customize campaigns

Note:

The property graph data model that Oracle supports at the database side does not
allow labels for vertices. However, you can treat the value of a designated vertex
property as one or more labels.

Related Topics

• Specifying Labels for Vertices

1.1.2 About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics capabilities in
Oracle Database.

This feature supports graph operations, indexing, queries, search, and in-memory analytics.

Graphs manage networks of linked data as vertices, edges, and properties of the vertices
and edges. Graphs are commonly used to model, store, and analyze relationships found in
social networks, cybersecurity, utilities and telecommunications, life sciences and clinical
data, and knowledge networks.

Chapter 1
Introduction to Property Graphs

1-3

Typical graph analyses encompass graph traversal, recommendations, finding
communities and influencers, and pattern matching. Industries including
telecommunications, life sciences and healthcare, security, media, and publishing can
benefit from graphs.

The property graph features of Oracle Special and Graph support those use cases
with the following capabilities:

• A scalable graph database

• Developer-based APIs based upon PGQL and Java graph APIs

• Text search and query through integration with Oracle Text

• A parallel, in-memory graph server (PGX) for running graph queries and graph
analytics

See In-Memory Graph Server (PGX) for more information.

• A fast, scalable suite of social network analysis functions that include ranking,
centrality, recommender, community detection, and path finding

• Parallel bulk load and export of property graph data in Oracle-defined flat files
format

• A powerful Graph Visualization (GraphViz) application

• Notebook support through integration with Apache Zeppelin

• In-Memory Graph Server (PGX)

• Options for Property Graph Architecture

1.1.2.1 In-Memory Graph Server (PGX)
The in-memory graph server layer enables you to analyze property graphs using
parallel in-memory execution. It provides over 50 analytic functions. Examples of the
categories and specific functions include:

• Centrality - Degree Centrality, Eigenvector Centrality, PageRank, Betweenness
Centrality, Closedness Centrality

• Component and Community - Strongly Connected Components (Tarjan's and
Kosaraju's). Weakly Connected Components

• Twitter's Who-To-Follow, Label Propagation.

• Path Finding - Single source all destination (Bellman-Ford), Dijsktra's shortest
path, Hop Distance (Breadth-first search)

• Community Evaluation - Coefficient (Triangle Counting), Conductance, Modularity,
Adamic-Adar counter.

See Using the In-Memory Graph Server (PGX) for more information on the in-memory
graph server (PGX).

1.1.2.2 Options for Property Graph Architecture
You have two architecture options when using the property graph feature of Oracle
Database:

• Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)

• Load the Graph into Oracle Database (2-Tier)

Chapter 1
Introduction to Property Graphs

1-4

Both options let you use the Property Graph Query Language (PGQL).

Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)

You can load your property graph into the in-memory graph server, which has a specialized
architecture for graph computations. All query and analytics operations on this graph can be
executed in-memory in the graph server. This graph can be created directly from relational
tables or loaded from the property graph schema that stores the graph in the database. You
can modify the graph in memory (insert, update, and delete vertices and edges, and create
new properties for results of executing an algorithm). The graph server does not write the
modifications back to the relational tables.

The in-memory graph server (PGX) typically in a server separate from the database, and can
run standalone, or in a container like Oracle WebLogic Server or Apache Tomcat. This
approach (load your property graph into the in-memory graph server) uses a three-tier
architecture, as shown in the following figure.

Figure 1-2 Three-Tier Property Graph Architecture

Property Graph Sizing Recommendations

You can compute the memory required by the in-memory graph server (PGX) by using this
calculator, Graph Size Estimator.

For example, the following table shows the memory estimated by the calculator for the given
input:

Table 1-1 Graph Size Estimator

Number
of
vertices

Number
of
Edges

Properties per Vertex Properties per Edge Estimated graph
size

10M 100M • 4 - Integer Type
• 1 - String Type(15

characters)

• 4 - Integer Type
• 1 - String Type(15

characters)

15 GB

Chapter 1
Introduction to Property Graphs

1-5

https://www.oracle.com/webfolder/assets/graph-size-estimator/index.html

Table 1-1 (Cont.) Graph Size Estimator

Number
of
vertices

Number
of
Edges

Properties per Vertex Properties per Edge Estimated graph
size

100M 1B • 4 - Integer Type
• 1 - String Type(15

characters)

• 4 - Integer Type
• 1 - String Type(15

characters)

140 GB

Note:

• Reading a graph into memory can take upto twice the amount of memory
needed to represent it in memory. So when you calculate the memory
required for running PGX it is recommended that you double the amount
of memory of the estimated graph size.

• CPU Processors: The recommended number of CPU processors for a
graph with 10M vertices and 100M edges is 2-4 processors, and up to 16
processors for more compute-intensive workloads. Increasing CPU
processors will improve performance.

Load the Graph into Oracle Database (2-Tier)

If you do not need to load the graph into the in-memory graph server, you can use
another approach: create a property graph from data in relational tables, and store it in
the property graph schema (VT$ and GE$ tables). You can then run PGQL queries on
this graph.

You can load this graph into memory for running analytics algorithms and PGQL
queries not supported in the database. You can configure the in-memory graph server
to periodically fetch updates from the data automatically in the graph to keep the data
synchronized.

This approach uses a two-tier architecture, as shown in the following figure.

Figure 1-3 Two-Tier Property Graph Architecture

Chapter 1
Introduction to Property Graphs

1-6

1.2 Before You Begin with Oracle Property Graphs
Before you begin to create an Oracle Property Graph, you may need to adhere to one or
more of the prerequisites explained in this section.

You must perform the tasks listed in Table 1-2 to get started on property graphs.

Table 1-2 Overview of Tasks to Get Started with Property Graphs

Sequen
ce

Task Description More Information

1 Verify Oracle Database
Requirements

Conform to the following
Oracle Database
prerequisties:
• Oracle Database 12.2

and higher
• AL16UTF16 (instead of

UTF8) must be specified
as the
NLS_NCHAR_CHARAC
TERSET.

• AL32UTF8 (UTF8)
should be the default
character set, but
AL16UTF16 must be the
NLS_NCHAR_CHARAC
TERSET.

Database Compatibility and
Restrictions

2 Download Oracle Graph
Server and Client

Download Oracle Graph
Server and Client from Oracle
Software Delivery Cloud or
from Oracle Technology
Network.

Downloading Oracle Graph
Server and Client

3 Install the PL/SQL patch in
your Oracle Database

Upgrade the PL/SQL Graph
packages in your Oracle
Database.

Installing PL/SQL Packages
in Oracle Database

4 Install Oracle Graph Server Install Oracle Graph server,
which is available as a
separate downloadable
package.

Installing Oracle Graph
Server

5 Download Oracle Graph
Client

Install Oracle Graph Client to
work with property graphs.

Installing the Java Client

6 Set up transport layer
security

Configure the graph server
and client to trust the self-
signed certificate.

Setting Up Transport Layer
Security

7 Add permissions to publish
the graph

Grant permissions to publish
graphs.

Adding Permissions to
Publish the Graph

• Database Compatibility and Restrictions

• Downloading Oracle Graph Server and Client

• Installing PL/SQL Packages in Oracle Database
Oracle Graph Server and Client will work with Oracle Database 12.2 onward. However,
you must install the updated PL/SQL packages that are part of the Oracle Graph Server
and Client download.

Chapter 1
Before You Begin with Oracle Property Graphs

1-7

https://edelivery.oracle.com
https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

1.2.1 Database Compatibility and Restrictions
Oracle Graph Server and Client will work with Oracle Database 12.2 onward. This
includes working with the family of Oracle Autonomous Database -- all versions of
Oracle Autonomous Data Warehouse (shared), Oracle Autonomous Database
(shared), and Oracle Autonomous Database (dedicated).

For details, including any limitations and actions you should take to address them, see
"Database Compatibility Matrix for Oracle Graph Server and Client".

1.2.2 Downloading Oracle Graph Server and Client
You can download Oracle Graph Server and Client from Oracle Software Delivery
Cloud or from Oracle Technology Network.

Table 1-3 summarizes all the files contained in the Oracle Graph Server and Client
deployment.

<ver> denoted in the file name in the Table 1-3 reflects the downloaded Oracle Graph
Server and Client version.

Table 1-3 Components in the Oracle Graph Server and Client Deployment

File Component Description

oracle-graph-<ver>.rpm Oracle Graph Server An rpm file to deploy
Oracle Graph Server.

oracle-graph-client-<ver>.zip Oracle Graph Client A zip file containing
Oracle Graph Client.

oracle-graph-zeppelin-
interpreter-<ver>.zip

Oracle Graph Apache
Zeppelin Client

A zip file containing
libraries to use
Apache Zeppelin to
work with Oracle
Graph.

oracle-graph-hdfs-connector-
<ver>.zip

Oracle Graph HDFS
Connector

A zip file containing
libraries to connect
Oracle Graph Server
with the Apache
Hadoop Distributed
Filesystem (HDFS).

oracle-graph-sqlcl-plugin-
<ver>.zip

Oracle Graph PGQL Plugin
for SQLcl

A plugin for SQLcl to
run PGQL queries in
SQLcl.

oracle-graph-webapps-<ver>.zip Oracle Graph Web
Applications

A zip file
containing .war files
for deploying graph
servers in an
application server.

Chapter 1
Before You Begin with Oracle Property Graphs

1-8

https://blogs.oracle.com/oraclespatial/database-compatibility-matrix-for-oracle-graph-server-and-client
https://edelivery.oracle.com
https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Table 1-3 (Cont.) Components in the Oracle Graph Server and Client
Deployment

File Component Description

oracle-graph-plsql-<ver>.zip Oracle Graph PL/SQL
Patch

A zip file containing
PL/SQL packages. It
is recommended to
update the PL/SQL
Graph packages in
your database with
these packages.
Instructions are in the
README file.

1.2.3 Installing PL/SQL Packages in Oracle Database
Oracle Graph Server and Client will work with Oracle Database 12.2 onward. However, you
must install the updated PL/SQL packages that are part of the Oracle Graph Server and
Client download.

Note:

You can skip this section if you are using Graph Server and Client with Oracle
Autonomous Database. You only need to create roles and assign permissions by
executing step-5 and step-6 in Basic Steps for Using an Oracle Database for
Authentication. You can run these steps using Database Actions in Oracle Cloud
Infrastructure Console.

1. Download the Oracle Graph PL/SQL patch component, which is a part of the Oracle
Graph Server and Client download from Oracle Software Delivery Cloud.

2. Unzip the file oracle-graph-plsql-<ver>.zip into a directory of your choice.

<ver> denotes the version downloaded for the Oracle Graph PL/SQL Patch for PL/SQL.

3. Install the PL/SQL packages:

• There are two directories, one for users with Oracle Database 18c or below, and one
for users with Oracle Database 19c or above. As a database user with DBA privilges,
follow the instructions in the README.md file in the appropriate directory (that
matches your database version). This has to be done for every PDB you will use the
graph feature in. For example:

-- Connect as SYSDBA
SQL> ALTER SESSION SET CONTAINER=<YOUR_PDB_NAME>;
SQL> @opgremov.sql
SQL> @catopg.sql

4. Create a database user in the database for working with graphs:

a. As a database user with DBA privileges, create a user <graphuser>, and grant the
necessary privileges.

Chapter 1
Before You Begin with Oracle Property Graphs

1-9

https://edelivery.oracle.com/

i. If you plan to use a three-tier architecture (graph queries and analytics
executed in the in-memory graph server (PGX), then grant privileges as
described in the following command:

SQL> GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW TO <graphuser>

ii. If you plan to use a two-tier architecture and run graph queries in the
database, then grant privileges as described in Required Privileges for
Database Users:

SQL> GRANT CREATE SESSION, ALTER SESSION, CREATE TABLE,
CREATE PROCEDURE, CREATE TYPE, CREATE SEQUENCE, CREATE VIEW,
CREATE TRIGGER TO <graphuser>

b. As a <graphuser> in the database, check that the PL/SQL update is
successful:

SQL> CONNECT <graphuser>/<password>
SQL> SELECT opg_apis.get_opg_version() FROM DUAL;
 -- Should return 21.2 if you are using
 -- Graph Server and Client 21.2

5. Grant the appropriate roles (GRAPH_DEVELOPER or GRAPH_ADMINISTRATOR), to the
database user created in step 4 for working with the graphs.

Note:

• See User Authentication and Authorization for more information on
authorization rules for Graph Server (PGX) and Client 21.2.

• See Upgrading From Graph Server and Client 20.4.x to 21.x for
more information if you are migrating to Graph Server (PGX) and
Client 21.1 from an earlier version.

SQL> GRANT GRAPH_DEVELOPER to <graphuser>
SQL> GRANT GRAPH_ADMINISTRATOR to <adminuser>

1.3 Oracle Graph Server and Client Installation
This section explains the various operations that you must perform to install, uninstall
or upgrade Oracle Graph Server (PGX). It also includes the steps to install Oracle
Graph Client.

• Installing Oracle Graph Server

• Deploying Oracle Graph Server to a Web Server

• Upgrading Oracle Graph Server

• Uninstalling Oracle Graph Server

• Installing Oracle Graph Client

Chapter 1
Oracle Graph Server and Client Installation

1-10

1.3.1 Installing Oracle Graph Server
You can run Oracle Graph Server in standalone mode or using a webserver like Oracle
WebLogic Server or Apache Tomcat.

The installation steps for installing Oracle Graph Server in standalone mode are as shown:

1. As a root user or using sudo, install the RPM file using the rpm command line utility:

sudo rpm -i oracle-graph-<version>.rpm

Where <version> reflects the version that you downloaded. (For example: oracle-
graph-21.2.0.0.0.x86_64.rpm)

The .rpm file is the graph server.

The following post-installation steps are carried out at the time of the RPM file installation:

• Creation of a working directory in /opt/oracle/graph/pgx/tmp_data

• Creation of a log directory in /var/log/oracle/graph

• Installation of Python Client

Note:

If Python is not installed in your system, then this step will be skipped.

• Automatic generation of self-signed TLS certificates in /etc/oracle/graph

Note:

– You can also choose to configure and set up transport layer security
(TLS) in graph server. See Setting Up Transport Layer Security for
more details.

– For demonstration purposes, if you wish to disable transport layer
security (TLS) in graph server, see Disabling Transport Layer Security
(TLS) in Graph Server for more details.

2. As root or using sudo, add operating system users allowed to use the server installation
to the operating system group oraclegraph. For example:

usermod -a -G oraclegraph <graphuser>

This adds the specified graph user to the group oraclegraph.
Note that <graphuser> must log out and log in again for this to take effect.

3. As <graphuser>, configure the server by modifying the files under /etc/oracle/graph by
following the steps under Prepare the Graph Server for Database Authentication.

4. Ensure that authentication is enabled for database users that will connect to the graph
server, as explained in User Authentication and Authorization.

Chapter 1
Oracle Graph Server and Client Installation

1-11

5. As a root user or using sudo, start the graph server (PGX) by executing the
following command:

sudo systemctl start pgx

You can verify if the graph server has started by executing the following command:

systemctl status pgx

• If the graph server has successfully started, the response may appear as:

● pgx.service - Oracle Graph In-Memory Server
 Loaded: loaded (/etc/systemd/system/pgx.service; disabled;
vendor preset: disabled)
 Active: active (running) since Wed 2021-01-27 10:06:06 EST; 33s
ago
 Main PID: 32127 (bash)
 CGroup: /system.slice/pgx.service
 ├─32127 /bin/bash start-server
 └─32176 java -Dlog4j.configurationFile=/etc/oracle/
graph/log4j2-server.xml -Doracle.jdbc.fanEnabled=false -cp /opt/
oracle/graph/pgx/bin/../../pgx/server/lib/activat...

The graph server is now ready to accept requests.

• If the graph server has not started, then you must check the log files in /var/log/
oracle/graph for errors. Additionally, you can also run the following command to
view any systemd errors:

journalctl -u pgx.service

Additional installation operations are required for specific use cases, such as:

• Analyze property graphs using Python (see Installing the Python Client).

• Deploy the graph server as a web application with Oracle WebLogic Server (see
Deploying to Oracle WebLogic Server).

• Deploy GraphViz in Oracle WebLogic Server (see Deploying the Graph
Visualization Application in Oracle WebLogic Server).

• Deploy the graph server as a web application with Apache Tomcat (see Deploying
to Apache Tomcat).

For instructions to deploy the graph server in Oracle WebLogic Server or Apache
Tomcat, see:

• Deploying to Oracle WebLogic Server

• Deploying to Apache Tomcat

1.3.2 Deploying Oracle Graph Server to a Web Server
You can deploy Oracle Graph Server to Apache Tomcat or Oracle WebLogic Server.

The following explains the deployment instructions:

Chapter 1
Oracle Graph Server and Client Installation

1-12

• Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web application with
Apache Tomcat.

• Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web application with
Oracle WebLogic Server.

1.3.2.1 Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web application with
Apache Tomcat.

The graph server will work with Apache Tomcat 9.0.x.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery Cloud. This
file contains ready-to-deploy Java web application archives (.war files). The file name will
be similar to this: oracle-graph-webapps-<version>.zip.

2. Unzip the file into a directory of your choice.

3. Locate the .war file that follows the naming pattern: graph-server-<version>-
pgx<version>.war.

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/classes/
pgx.conf file inside the web application archive. See User Authentication and
Authorization section for more information.

b. Optionally, change logging settings by modifying the WEB-INF/classes/log4j2.xml
file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying the
WEB-INF/web.xml file inside the web application archive.

5. Copy the .war file into the Tomcat webapps directory. For example:

cp graph-server-<version>-pgx<version>.war $CATALINA_HOME/webapps/pgx.war

Note:

The name you give the war file in the Tomcat webapps directory determines the
context path of the graph server application. It is recommended naming the war
file as pgx.war.

6. Configure Tomcat specific settings, like the correct use of TLS/encryption.

7. Ensure that port 8080 is not already in use.

8. Start Tomcat:

cd $CATALINA_HOME
./bin/startup.sh

The graph server will now listen on localhost:8080/pgx.

Chapter 1
Oracle Graph Server and Client Installation

1-13

https://edelivery.oracle.com/

You can connect to the server from JShell by running the following command:

$ <client_install_dir>/bin/opg4j --base_url https://
localhost:8080/pgx -u <graphuser>

Related Topics

• The Tomcat documentation (select desired version)

1.3.2.2 Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web application
with Oracle WebLogic Server.

This example shows how to deploy the graph server with Oracle WebLogic Server.
Graph server supports WebLogic Server version 12.1.x and 12.2.x.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war
files). The file name will be similar to this: oracle-graph-webapps-<version>.zip.

2. Unzip the file into a directory of your choice.

3. Locate the .war file that follows the naming pattern: graph-server-<version>-
pgx<version>.war.

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/
classes/pgx.conf file inside the web application archive.

b. Optionally, change logging settings by modifying the WEB-INF/classes/
log4j2.xml file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying
the WEB-INF/web.xml file inside the web application archive.

d. Optionally, change WebLogic Server-specific deployment descriptors by
modifying the WEB-INF/weblogic.xml file inside the web application archive.

5. Configure WebLogic specific settings, like the correct use of TLS/encryption.

6. Deploy the .war file to WebLogic Server. The following example shows how to do
this from the command line:

. $MW_HOME/user_projects/domains/mydomain/bin/setDomainEnv.sh

. $MW_HOME/wlserver/server/bin/setWLSEnv.sh
java weblogic.Deployer -adminurl http://localhost:7001 -username
<username> -password <password> -deploy -source <path-to-war-file>

• Installing Oracle WebLogic Server

1.3.2.2.1 Installing Oracle WebLogic Server
To download and install the latest version of Oracle WebLogic Server, see

http://www.oracle.com/technetwork/middleware/weblogic/documentation/
index.html

Chapter 1
Oracle Graph Server and Client Installation

1-14

http://tomcat.apache.org/
https://edelivery.oracle.com/
https://edelivery.oracle.com/
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

1.3.3 Upgrading Oracle Graph Server
To upgrade the graph server, make sure the graph server is shut down, then execute the
following command with the newer RPM file as an argument.

• Run the following command as a root user or with sudo:

sudo rpm -U oracle-graph-21.2.0.0.0.x86_64.rpm

1.3.4 Uninstalling Oracle Graph Server
To uninstall the graph server, make sure the graph server is shut down.

• Run the following command as a root user or with sudo:

sudo rpm -e oracle-graph

1.3.5 Installing Oracle Graph Client
This sections explains in detail the installation steps for the various clients.

• Installing the Java Client

• Installing the Python Client

• Uninstalling the Python Client
This section describes how to uninstall the Python client.

• Enabling the Graph Visualization Application

• Deploying the Graph Visualization Application
This section describes the various methods to deploy the Graph Visualization Application.

• Installing the Graph Zeppelin Interpreter Client

1.3.5.1 Installing the Java Client
The prerequisites for installing the Java client are:

• A Unix-based operation system (such as Linux) or macOS or Microsoft Windows

• Oracle JDK 11

1. Download Oracle Graph Client 21.2 from Oracle Software Cloud.

2. Unzip the file into a directory of your choice.

3. Configure your client to trust the self-signed server certificate. See Configuring a Client to
Trust the Self-Signed Certificate for more information.

4. Connect to the graph server (PGX) using the graph shell for Java as shown:

cd <CLIENT_INSTALL_DIR>
./bin/opg4j --base_url https://<host>:7007 --username <graphuser>

In the preceding code:

Chapter 1
Oracle Graph Server and Client Installation

1-15

https://edelivery.oracle.com

• <CLIENT_INSTALL_DIR>: Directory where the shell executables are located.

Note:

The shell executables are generally found in /opt/oracle/
graph/bin after server installation, and <CLIENT_INSTALL_DIR>/bin
after the client installation.

• <host>: Server host

• <graphuser>: Database user
You will be prompted for the database password.

Note:

The default graph server (PGX) port is 7007. If needed, you can
configure the graph server to listen on a different port by changing the
port configuration in server.conf file. See Configuring the In-Memory
Graph Server (PGX) for more information.

The Java shell starts and the following command line prompt appears as shown:

For an introduction type: /help intro
Oracle Graph Server Shell 21.2.0
Variables instance, session, and analyst ready to use.
opg4j>

See Interactive Graph Shell for more information on the Java client.

1.3.5.2 Installing the Python Client
To install the Python client, you must ensure that your system meets the prerequisites
mentioned in Prerequisites for Installing the Python Client.

You can execute the following steps to install and connect using the Python client:

1. Download the Oracle Graph Client from Oracle Software Cloud.

For example, oracle-graph-client-21.2.0.zip.

2. Unzip the file into a directory of your choice.

3. Install the client through pip.

For example,

pip3 install --user oracle-graph-client-21.2.0.zip

4. Configure your client to trust the self-signed server certificate. See Configuring a
Client to Trust the Self-Signed Certificate for more information.

5. Start the shell by running one of the following commands:

Chapter 1
Oracle Graph Server and Client Installation

1-16

https://edelivery.oracle.com

a. To connect to the PGX server instance located at https://localhost:7007 using
base URL parameter:

./bin/opg4py --base_url https://localhost:7007

You are prompted to enter your username and password.

b. Alternatively, you can also connect to the PGX server instance located at https://
localhost:7007 with username. For example :

./bin/opg4py --base_url https://localhost:7007 -u <graphuser>

You will be prompted to enter your password.

c. To start the client shell, and to avoid establishing a connection to any graph server:

./bin/opg4py --no_connect

The Python shell starts as shown:

Oracle Graph Server Shell 21.2.0
>>>

• Prerequisites for Installing the Python Client

1.3.5.2.1 Prerequisites for Installing the Python Client
You must ensure that the following prerequisites are met before you install the Python client:

1. Make sure that the following softwares are installed on your system:

• Oracle JDK 8 or later

• Python 3.5 or later
To verify you are using the right version of the Python client, run the following
command:

$> python3 --version
Python 3.6.1

Note:

Python 2.x is not supported.
For more information on installing Python 3 on Oracle Linux, see Python for
Oracle Linux.

2. Make sure that the following Python packages are installed on your system:

• python3-devel

• pyjnius-1.3.0.zip

• six-1.14.0.zip

• Cython-0.29.17.zip

Chapter 1
Oracle Graph Server and Client Installation

1-17

https://yum.oracle.com/oracle-linux-python.html
https://yum.oracle.com/oracle-linux-python.html

• pandas

a. To check the list of packages installed in your system and to identify the
missing packages, execute the following command:

pip3 list

The result may be as shown:

Package Version
--------------- -------
Cython 0.29.17
numpy 1.19.5
pip 21.1
pyjnius 1.3.0
six 1.14.0

The result shows that the pandas module is missing.

b. Navigate to your Oracle Graph Client installation directory.

• For a server and client installed on the same machine, the Oracle Graph
Client installation directory is located at:

/opt/oracle/graph/client/python

• For a client installation using a remote server, the Oracle Graph Client
installation directory is located at:

<pgx_client_dir>/python

where <pgx_client_dir> is the directory where you extracted the oracle-
graph-client-21.2.zip file.

c. Install the missing dependencies by executing the following command as root:

sudo pip3 install --user <missing_module>

where <missing_module> is the missing dependency module that need to be
installed.

For example to install pyjnius-1.3.0.zip:

sudo pip3 install --user pyjnius-1.3.0.zip

1.3.5.3 Uninstalling the Python Client
This section describes how to uninstall the Python client.

To uninstall the Python client, run the following command:

pip3 uninstall pypgx

Chapter 1
Oracle Graph Server and Client Installation

1-18

1.3.5.4 Enabling the Graph Visualization Application
There are two ways you can use the Graph Visualization application:

• Standalone mode
If you install the Graph Server rpm file, the Graph Visualization application starts up by
default when you start the PGX server.

• Custom web container mode
You can download the oracle-graph-webapps-<version>.zip package which contains a
web application archive (WAR) file. You can deploy this file into your Oracle Weblogic 12.2
(or later) or Apache Tomcat (9.x or later) web containers.

See Deploying the Graph Visualization Application for more information.

The Graph Visualization application requires the Oracle Graph Server to be installed as a
prerequisite component.
See Installing Oracle Graph Server for more information.

To start the Graph Visualization application in standalone mode:

1. Start the graph server (PGX) as shown:

sudo systemctl start pgx

The Graph Visualization application starts up by default.

2. Configure your Graph Visualization application to trust the self-signed server certificate.
See Configuring a Client to Trust the Self-Signed Certificate for more information.

3. Connect to your browser for running the Graph Visualization application as shown

https://localhost:7007/ui

One of the following messages may appear:

• Your connection is not private

• Your connection is not secure

Click the Continue or Accept button to proceed.

1.3.5.5 Deploying the Graph Visualization Application
This section describes the various methods to deploy the Graph Visualization Application.

• Deploying the Graph Visualization Application to Apache Tomcat

• Deploying the Graph Visualization Application in Oracle WebLogic Server
The following instructions are for deploying the Graph Visualization application in Oracle
WebLogic Server 12.2.1.3. You might need to make slight modifications, as appropriate,
for different versions of the Weblogic Server.

• Configuring the Web Application Deployment Descriptor

Chapter 1
Oracle Graph Server and Client Installation

1-19

1.3.5.5.1 Deploying the Graph Visualization Application to Apache Tomcat
The following are the steps to deploy the Graph Visualization application to Apache
Tomcat.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: oracle-graph-webapps-<version>.zip

2. Unzip the file into a directory of your choice.

3. Locate the .war file for deploying the Graph Visualization application to Tomcat. It
follows the naming pattern: graphviz-<version>-pgviz<graphviz-version>-
tomcat.war

4. Configure the Graph Visualization application by editing the WEB-INF/web.xml file
as explained in Configuring the Web Application Deployment Descriptor.

5. Copy the .war file into the Tomcat webapps directory. For example:

cp graph-server-<version>-pgx<version>.war $CATALINA_HOME/webapps/
ui.war

Note:

The name you give the war file in the Tomcat webapps directory
determines the context path of the graph server application. It is
recommended naming the war file as ui.war.

6. Configure Tomcat specific settings, like the correct use of TLS/encryption

7. Ensure that port 8080 is not already in use.

8. Start Tomcat:

cd $CATALINA_HOME
./bin/startup.sh

The Graph Visualization application is now listening on localhost:8080/ui.

You can connect to the server from JShell by running the following command:

$ <client_install_dir>/bin/opg-jshell --base_url https://
localhost:8080/ui -u <graphuser>

1.3.5.5.2 Deploying the Graph Visualization Application in Oracle WebLogic Server
The following instructions are for deploying the Graph Visualization application in
Oracle WebLogic Server 12.2.1.3. You might need to make slight modifications, as
appropriate, for different versions of the Weblogic Server.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: oracle-graph-webapps-<version>.zip

Chapter 1
Oracle Graph Server and Client Installation

1-20

https://edelivery.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/

2. Unzip the file into a directory of your choice.

3. Locate the .war file for deploying the Graph Visualization application to Oracle WebLogic
Server. It follows the naming pattern: graphviz-<version>-pgviz<graphviz-version>-
wls

4. Configure the Graph Visualization application by editing the WEB-INF/web.xml file as
explained in Configuring the Web Application Deployment Descriptor.

5. Start WebLogic Server.

Start Server
cd $MW_HOME/user_projects/domains/base_domain
./bin/startWebLogic.sh

6. Enable tunneling.
In order to be able to deploy the Graph Visualization application WAR file over HTTP, you
must enable tunneling first. Go to the WebLogic admin console (by default on http://
localhost:7001/console). Select Environment (left panel) > Servers (left panel). Click
the server that will run Graph Visualization (main panel). Select (top tab bar), check
Enable Tunneling, and click Save.

7. Rebuild and deploy the graphviz-<version>-pgviz<graphviz-version>-wls.war file.
To deploy the repackaged WAR file to WebLogic Server, use the following command,
replacing the <<...>> markers with values matching your installation:

cd $MW_HOME/user_projects/domains/base_domain
source bin/setDomainEnv.sh
java weblogic.Deployer -adminurl <<admin-console-url>> -username <<admin-
user>> -password <<admin-password>> -deploy -upload <<path/to>>/graphviz-
<<version>>-pgviz<<graphviz-version>>.war

To undeploy, you can use the following command:

java weblogic.Deployer -adminurl <<admin-console-url>> -username <<admin-
user>> -password <<admin-password>> -name <<path/to>>/graphviz-
<<version>>-pgviz<<graphviz-version>>.war -undeploy

To test the deployment, navigate using your browser to: https://<<fqdn-
ip>>:<<port>>/ui.

The browser prompts for your credentials (user name and password). After you log in, the
Graph Visualization user interface (UI) appears and the graphs from PGX is retrieved.

1.3.5.5.3 Configuring the Web Application Deployment Descriptor
In order to deploy the Graph Visualization application to a web server, you need to modify the
WEB-INF/web.xml file, present inside the Graph Visualization application deployment WAR file.

If you have installed the RPM file, the WAR file is located inside the /opt/oracle/graph/
graphviz directory.

If you have downloaded the oracle-graph-webapps-<version>.zip package, the Graph
Visualization application WAR files for the respective web servers are located in the root
directory of the package.

Chapter 1
Oracle Graph Server and Client Installation

1-21

The following shows the updates required to the WEB-INF/web.xml file:

• Configuring Deployment Descriptor for PGQL on PGX

• Configuring Deployment Descriptor for PGQL on RDBMS

1.3.5.5.3.1 Configuring Deployment Descriptor for PGQL on PGX

To configure the Graph Visualization application to communicate with a graph server
(PGX) deployment (PGQL on PGX):

1. Edit the value for the graphviz.driver.class context parameter as shown:

<context-param>
 <param-name>graphviz.driver.class</param-name>
 <param-value>oracle.pgx.graphviz.driver.PgxDriver</param-value>
</context-param>

2. Modify the pgx.base_url context parameter to match your PGX deployment
endpoint. Use the correct FQDN or IP address, along with the correct port.

<context-param>
 <param-name>pgx.base_url</param-name>
 <param-value>http://localhost:8080/pgx</param-value>
</context-param>

Note:

This step does not have any effect if you use graph visualization in
standalone mode (RPM installation). The PGX base URL is set
automatically to point to the local PGX server.

3. Disable secure cookies if using http:

<session-config>
 <tracking-mode>COOKIE</tracking-mode>
 <cookie-config>
 <secure>false</secure>
 <http-only>true</http-only>
 </cookie-config>
 <session-timeout>60</session-timeout>
</session-config>

When the Graph Visualization application is using PGQL on PGX the application
will use your Oracle Database as identity manager by default. This means that you
log into the application using existing Oracle Database credentials (username and
password), and the actions which you are allowed to do on the graph server are
determined by the roles that have been granted to you in the Oracle Database.

1.3.5.5.3.2 Configuring Deployment Descriptor for PGQL on RDBMS

To configure the Graph Visualization application to communicate with Oracle Database
(PGQL on RDBMS):

Chapter 1
Oracle Graph Server and Client Installation

1-22

1. Edit the value for the graphviz.driver.class context parameter as shown:

<context-param>
 <param-name>graphviz.driver.class</param-name>
 <param-value>oracle.pg.rdbms.PgqlDriver</param-value>
</context-param>

2. Set the context parameter graphviz.driver.rdbms.jdbc_url referencing the JDBC URL
of your Oracle Database:

<context-param>
 <param-name>graphviz.driver.rdbms.jdbc_url</param-name>
 <param-value>jdbc:oracle:thin:@myhost:1521/myService</param-value>
</context-param>

Note:

Replace the URL in the example with the JDBC URL that you want to use for
user authentication.

When the Graph Visualization application is using PGQL on RDBMS, the application
displays a custom login page and the user can use their Oracle Database credentials for
user authentication, using the Oracle Database set mentioned in this step. After logging
in, you can see the graphs that you are granted to see on the Oracle Database.

1.3.5.6 Installing the Graph Zeppelin Interpreter Client
To install the graph interpreter into your local Zeppelin installation:

Note:

The following steps were tested with Zeppelin version 0.9, and might have to be
modified with newer versions.

As a prerequisite, you must have Java 8 set in your system for installing Apache Zeppelin.

1. Download and install Apache Zeppelin.

2. Download and install Apache Groovy 2.4.x

3. Copy the following libraries:

a. Copy the libraries from the Oracle Graph Client for Apache Zeppelin package
into $ZEPPELIN_HOME/interpreter/pgx.

unzip oracle-graph-zeppelin-interpreter-21.1.0.zip -d $ZEPPELIN_HOME/
interpreter/pgx

Chapter 1
Oracle Graph Server and Client Installation

1-23

http://zeppelin.apache.org/download.html
http://groovy-lang.org/download.html

b. Copy the libraries inside $GROOVY_HOME/lib into $ZEPPELIN_HOME/
interpreter/pgx.

cp $GROOVY_HOME/lib/* $ZEPPELIN_HOME/interpreter/pgx

4. Configure your graph Zeppelin interpreter client application to trust the self-signed
server certificate. See Configuring a Client to Trust the Self-Signed Certificate for
more information.

5. Restart Zeppelin.

1.4 Setting Up Transport Layer Security
The graph server (PGX), by default, allows only encrypted connections using
Transport Layer Security (TLS). TLS requires the server to present a server certificate
to the client and the client must be configured to trust the issuer of that certificate.

Starting with Graph Server and Client Release 21.1, the RPM file installation
generates a self-signed certificate into /etc/oracle/graph, which the server uses to
enable TLS by default. If self-signed certificates are sufficient for you to get started and
if your connections are only to localhost, you can skip to Configuring a Client to Trust
the Self-Signed Certificate .

• Generating a Self-Signed Server Certificate
You can create a self-signed server certificate using the openssl command.

• Configuring the Graph Server (PGX)
You must specify the path to the server certificate and the server's private key in
PEM format in the graph server (PGX) configuration file.

• Configuring a Client to Trust the Self-Signed Certificate
You must configure your client application to accept the self-signed graph server
(PGX) certificate.

1.4.1 Generating a Self-Signed Server Certificate
You can create a self-signed server certificate using the openssl command.

The following steps show how to generate a self-signed server certificate.

1. Go to the following directory:

cd /etc/oracle/graph

2. Execute the following commands:

openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -subj "/
C=US/ST=MyState/L=MyTown/O=MyOrganization/CN=ROOT" -keyout
ca_key.pem -out ca_certificate.pem
openssl genrsa -out server_key_traditional.pem 2048
openssl pkcs8 -topk8 -in server_key_traditional.pem -inform pem -
out server_key.pem -outform pem -nocrypt
openssl req -new -subj "/C=US/ST=MyState/L=MyTown/O=MyOrganization/
CN=localhost" -key server_key.pem -out server.csr
chmod 600 server_key.pem
openssl x509 -req -CA ca_certificate.pem -CAkey ca_key.pem -in

Chapter 1
Setting Up Transport Layer Security

1-24

server.csr -out server_certificate.pem -days 365 -CAcreateserial
chown oraclegraph:oraclegraph server_key.pem

Note:

• The certificate mentioned in the above example will only work for the host
localhost. If you have a different domain, you must replace localhost with
your domain name.

• The above self-signed certificate is valid only for 365 days.

1.4.2 Configuring the Graph Server (PGX)
You must specify the path to the server certificate and the server's private key in PEM format
in the graph server (PGX) configuration file.

Note:

If you deploy the graph server into your web server using the web applications
download package, then this section does not apply. Please refer to the manual of
your web server for instructions on how to configure TLS.

1. Edit the file at /etc/oracle/graph/server.conf, and specify the paths to the server
certificate and the server's private key in PEM format, as shown:

{
 "port": 7007,
 "enable_tls": true,
 "server_private_key": "/etc/oracle/graph/server_key.pem",
 "server_cert": "/etc/oracle/graph/server_certificate.pem",
 "enable_client_authentication": false,
 "working_dir": "/opt/oracle/graph/pgx/tmp_data"
}

2. Restart the graph server.

Note:

• You should use a certificate issued by a certificate authority (CA) which is
trusted by your organization. If you do not have a CA certificate, you can
temporarily create a self-signed certificate and get started.

• Always use a valid certificate trusted by your organization. We do not
recommend the usage of self-signed certificates for production
environments.

Chapter 1
Setting Up Transport Layer Security

1-25

1.4.3 Configuring a Client to Trust the Self-Signed Certificate
You must configure your client application to accept the self-signed graph server
(PGX) certificate.

To configure a client to trust the self-signed certificate, the root certificate must be
imported to your Java installation local trust store.

• For a Java or a Python client, you must import the root certificate to all the Java
installations used by all the clients.

Note:

The JShell client requires Java 11.

• For the Graph Visualization application, you must import the root certificate to the
system Java installation of the environment running the graph server (PGX) or the
web server serving the graph visualization application. That is, the JDK installation
which is used by the OS user running the server that serves the Graph
Visualization application.

• For the Graph Zeppelin interpreter client, you must import the root certificate to the
Java installation used by the Zeppelin server.

You can import the root certificate as shown in the following step:

• Execute the following command as a root user or with sudo:

1. For Java 8 (make sure JAVA_HOME is set):

sudo keytool -import -trustcacerts -keystore $JAVA_HOME/jre/lib/
security/cacerts -storepass changeit -alias pgx -file /etc/
oracle/graph/ca_certificate.pem -noprompt

2. For Java 11 (make sure JAVA11_HOME is set):

sudo keytool -import -trustcacerts -keystore $JAVA11_HOME/lib/
security/cacerts -storepass changeit -alias pgx -file /etc/
oracle/graph/ca_certificate.pem -noprompt

where changeit is the sample keystore password. You can change this password
to a password of your choice. Be sure to remember this password as you will need
it to modify the certificate.

1. If you are upgrading the graph server from a previous release, you must first
delete the certificate by excecuting the following command appropriate to your
Java version. You must run the command using sudo or as a root user:

For Java 8:

sudo keytool -delete -alias pgx -keystore $JAVA_HOME/jre/lib/
security/cacerts -storepass changeit

Chapter 1
Setting Up Transport Layer Security

1-26

For Java 11:

sudo keytool -delete -alias pgx -keystore $JAVA11_HOME/lib/security/
cacerts -storepass changeit

2. Import the new certificate as shown in the preceding step.

1.5 Adding Permissions to Publish the Graph
There are two ways by which you can view any graph in your graph server (PGX) session in
the graph visualization application.

When you log into the graph visualization tool in your browser, that will be a different session
from your JShell session or application session. To visualize the graph you are working on in
your JShell session or application session in your graph visualization session, you can
perform one of the following two steps:

1. Get the session id of your working session using the PgxSession API, and use that
session id when you log into the graph visualization application. This is the recommended
option.

opg4j> session.getId();
$2 ==> "898bdbc3-af80-49b7-9a5e-10ace6c9071c" //session id

or

2. Grant PGX_SESSION_ADD_PUBLISHED_GRAPH permission and then publish the graph as
shown:

a. Grant PGX_SESSION_ADD_PUBLISHED_GRAPH role in the database to the user visualizing
the graph as shown in the following statement:

GRANT PGX_SESSION_ADD_PUBLISHED_GRAPH TO <graphuser>

b. Publish the graph when you are ready to visualize the graph using the publish API.

Note:

• See User Authentication and Authorization for more information on
authorization rules for Graph Server (PGX) and Client 21.1.

• See Upgrading From Graph Server and Client 20.4.x to 21.x for more
information if you are migrating to Graph Server (PGX) and Client 21.2 from
an earlier version.

Chapter 1
Adding Permissions to Publish the Graph

1-27

1.6 Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

Sensitive Information

Graph data can contain sensitive information and should therefore be treated with the
same care as any other type of data. Oracle recommends the following considerations
when using a graph product:

• Avoid storing sensitive information in your graph if that information is not required
for analysis. If you have existing data, only model the relevant subset you need for
analysis as a graph, either by applying a preprocessing step or by using subgraph
and filtering techniques that are part of graph product.

• Model your graph in a way that vertex and edge identifiers are not considered
sensitive information.

• Do not deploy the product into untrusted environments or in a way that gives
access to untrusted client connections.

• Make sure all communication channels are encrypted and that authentication is
always enabled, even if running within a trusted network.

Least Privilege Accounts

The database user account that is being used by the in-memory analyst (PGX) to read
data should be a low-privilege, read-only account. PGX is an in-memory accelerator
that acts as a read-only cache on top of the database, and it does not write any data
back to the database.

If your application requires writing graph data and later analyzing it using PGX, make
sure you use two different database user accounts for each component.

1.7 Interactive Graph Shell
Both the Oracle Graph server and client packages contain an interactive command-
line application for interacting with all the Java APIs of the product, locally or on
remote computers.

This interactive graph shell dynamically interprets command-line inputs from the user,
executes them by invoking the underlying functionality, and can print results or process
them further. The graph shell provides a lightweight and interactive way of exercising
graph functionality without creating a Java application.

The graph shell is especially helpful if want to do any of the following:

• Quickly run a "one-off" graph analysis on a specific data set, rather than creating a
large application

• Run getting started examples and create demos on a sample data set

• Explore the data set, trying different graph analyses on the data set interactively

• Learn how to use the product and develop a sense of what the built-in algorithms
are good for

• Develop and test custom graph analytics algorithms

Chapter 1
Security Best Practices with Graph Data

1-28

This graph shell is implemented on top of the Java Shell tool (JShell). As such, it inherits all
features provided by JShell such as tab-completion, history, reverse search, semicolon
inference, script files, and internal variables.

The graph shell connects to a graph server (PGX) specified by the --base_url parameter.
When the --base_url parameter is not specified, the graph shell creates a local PGX
instance, to run graph functions in the same JVM as the shell as described in Using Graph
Server Functionality as a Library.

Starting the Graph Shell

The Graph Shell uses JShell, which means the shell needs to run on Java 11 or later.

After installation, the shell executables are found in /opt/oracle/graph/bin after server
installation, and <CLIENT_INSTALL_DIR>/bin after the client installation.

To launch the graph shell and connect to a graph server (PGX) enter the following in your
terminal:

./bin/opg4j --base_url https://<host>:7007 --username <graphuser>

where :

• <host>: is the server host

• <graphuser>: is the database user

Note:

You will be prompted for the database password.

Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can
configure the graph server to listen on a different port by changing the port value in
the server configuration file (server.conf). See Configuring the In-Memory Graph
Server (PGX) for details.

When the shell has started, the following command line prompt appears:

opg4j>

If you have multiple versions of Java installed, you can easily switch between installations by
setting the JAVA_HOME variable before starting the shell. For example:

export JAVA_HOME=/usr/lib/jvm/java-11-oracle

Command-line Options

To view the list of available command-line options, add --help to the opg4j command:

./bin/opg4j --help

Chapter 1
Interactive Graph Shell

1-29

Batch Execution of Scripts

The graph shell can execute a script by passing the path(s) to the script(s) to the
opg4j command. For example:

./bin/opg4j /path/to/script.jsh

Predefined Functions

The graph shell provides the following utility functions:

• println(String): A shorthand for System.out.println(String).

• loglevel(String loggerName, String levelName): A convenient function to set
the loglevel.

The loglevel function allows you to set the log level for a logger. For example,
loglevel("ROOT", "INFO") sets the level of the root logger to INFO. This causes all
logs of INFO and higher (WARN, ERROR, FATAL) to be printed to the console.

Script Arguments

You can provide parameters to the script. For example:

./bin/opg4j /path/to/script.jsh script-arg-1 script-arg-2

In this example, the script /path/to/script.jsh can access the arguments via the
scriptArgs system property. For example:

println(System.getProperty("scriptArgs"))// Prints: script-arg-1 script-
arg-2

Staying in Interactive Mode

By default, the graph shell exits after it finishes execution. To stay in interactive mode
after the script finishes successfully, pass the --keep_running flag to the shell. For
example:

./bin/opg4j -b https://myserver.com:7007/ /path/to/script.jsh --
keep_running

1.8 Using Graph Server Functionality as a Library
The graph functions available with the graph server (PGX) can be used as a library in
your application.

After the rpm install of the graph server, all the jar files can be found in /opt/oracle/
graph/lib. In this case, the server installation and the client user application are in the
same machine.

For such use cases, development and testing can be done using the interactive Java
shell or the Python shell in embedded (local) mode. This means a local PGX instance
is created and runs in the same JVM as the client. If you start the shell without any
parameters it will start a local PGX instance and run in embedded mode.

Chapter 1
Using Graph Server Functionality as a Library

1-30

Starting the Java Shell in Embedded (local) Mode

For such use cases, development and testing can be done using the interactive Java shell in
embedded (local) mode. This means a local PGX instance is created and runs in the same
JVM as the client. If you start the shell without any parameters it will start a local PGX
instance and run in embedded mode.

Starting the Java shell to use the graph server in embedded mode is only supported in graph
shell executables available with the Graph Server installation. You can launch the Java shell
using the following commands:

cd /opt/oracle/graph
./bin/opg4j

The following shows the response from the graph shell :

opg4j>

The local PGX instance will try to load a PGX configuration file from:

/etc/oracle/graph/pgx.conf

You can change the location of the configuration file by passing the --pgx_conf command-
line option followed by the path to the configuration file:

start local PGX instance with custom config
./bin/opg4j --pgx_conf <path_to_pgx.conf>

Starting the Python Shell in Embedded (local) Mode

The python client can be used in embedded mode, which means that the graph server is
running inside the client process as a library.

Note:

For this mode, the Python client and the Graph Server RPM package must be
installed on the same machine.

1. Start the Python shell.

cd /opt/oracle/graph/
./bin/opg4py

2. When the shell is running, you can see the following prompt on your screen

Oracle Graph Server Shell 21.2.0
>>>

Chapter 1
Using Graph Server Functionality as a Library

1-31

1.9 Storing Graphs in Oracle Database and Loading Graphs
into Memory

You can work with graphs in two-tier mode (graph client connects directly to Oracle
Database), or three-tier mode (graph client connects to the graph server (PGX) on
the middle-tier, which then connects to Oracle Database).

Both modes for connecting to Oracle Database can be used regardless of whether the
database is autonomous or not autonomous.

The database schema storing the graph must have the privileges listed in Required
Privileges for Database Users.

If you are using the Oracle Autonomous Database, see also Using Oracle Graph with
the Autonomous Database for information about two-tier and three-tier deployments.

• Two-Tier Mode
In two-tier mode, the client graph application connects directly to Oracle Database.

• Three-Tier Mode
In three-tier mode, the client graph application connects to the graph server (PGX)
in the middle tier, and the graph server connects to Oracle Database.

1.9.1 Two-Tier Mode
In two-tier mode, the client graph application connects directly to Oracle Database.

The graph is stored in the property graph schema (see Property Graph Schema
Objects for Oracle Database).

You can use the PGQL DDL statement CREATE PROPERTY GRAPH to create a
graph from database tables and store it in the property graph schema. You can then
run PGQL queries on this graph from JShell shell, Java application, or the graph
visualization tool.

The graph can be loaded from the property graph schema into memory in the graph
server for faster processing and for using the analytics API.

1.9.2 Three-Tier Mode
In three-tier mode, the client graph application connects to the graph server (PGX) in
the middle tier, and the graph server connects to Oracle Database.

The graph can be loaded from the property graph schema into the graph server, or
directly from database tables into the graph server.

• Loading a Graph from Property Graph Schema:

Loading a graph from the property graph schema into memory in the graph server
is the same as in the two-tier mode.

• Loading a Graph Directly from Database Tables:

When you load the graph from database tables into memory in the graph server,
you create the graph in memory by directly reading data from the database tables.
You do not create a graph in the property graph schema.

Chapter 1
Storing Graphs in Oracle Database and Loading Graphs into Memory

1-32

For more information about loading a graph from database tables into memory, see Store
the Database Password in a Keystore.

After the graph is loaded into memory, you can run PGQL queries on this graph from JShell
shell, Java application, or the graph visualization tool. You can run graph analytics API from
JShell shell or Java application, and visualize the results in the graph visualization application
(GraphViz).

1.10 Using Oracle Graph with the Autonomous Database
Oracle Graph with the Autonomous Database allows you to create property graphs from data
in your Autonomous Database.

When using Oracle Autonomous Database in a shared deployment, you can use Graph
Studio, a powerful user interface for developing applications that use graph analysis. Using
Graph Studio, you can automate the modeling of graphs from tables in Autonomous
Database. You can interactively analyze and visualize the graph queries using advanced
notebooks with multiple visualization options. You can execute nearly 60 built-in graph
algorithms in Graph Studio to gain useful insights on your graph data. See Using Graph
Studio in Oracle Autonomous Database for more information.

Alternatively, you can use Oracle Graph Server and Client with the family of Oracle
Autonomous Database to create and work with property graphs.

This includes all versions of Oracle Autonomous Data Warehouse (shared), Oracle
Autonomous Database (shared), and Oracle Autonomous Database (dedicated).

You can connect in two-tier mode (connect directly to Autonomous Database) or three-tier
mode (connect to PGX on the middle tier, which then connects to Autonomous Database).
(For basic information about two-tier and three-tier connection modes, see Storing Graphs in
Oracle Database and Loading Graphs into Memory.)

The database schema storing the graph must have the privileges listed in Required Privileges
for Database Users.

• Two-Tier Deployments of Oracle Graph with Autonomous Database
In two-tier deployments, the client graph application connects directly to the Autonomous
Database.

• Three-Tier Deployments of Oracle Graph with Autonomous Database
In three-tier deployments, the client graph application connects to PGX in a middle tier,
and PGX connects to the Autonomous Database.

1.10.1 Two-Tier Deployments of Oracle Graph with Autonomous Database
In two-tier deployments, the client graph application connects directly to the Autonomous
Database.

1. Install Oracle Graph Client, as explained in Installing the Java Client.

2. Establish a JDBC connection, as described in the Oracle Autonomous Warehouse
documentation.
You must download the wallet and unzip it to a secure location. You can then reference it
when establishing the connection as shown in Example 1-1.

Chapter 1
Using Oracle Graph with the Autonomous Database

1-33

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E

3. Start the Java Shell as shown in the code:

/bin/opg-jshell --no_connect

4. Connect to your database as shown in Example 1-1.

Note:

If you need to use the Graph Visualization Application, you must additionally
install the Oracle Graph Server.

• See Installing Oracle Graph Server for more details.

• See Deploying the Graph Visualization Application for more details on
deploying the Graph Visualization Application in Tomcat or Oracle
WebLogic Server.

Example 1-1 Creating a Database Connection in a Two-Tier Graph Deployment
with Autonomous Database

opg4j> var jdbcUrl = "jdbc:oracle:thin:@<tns_alias>?
TNS_ADMIN=<wallet_location>" // jdbc url to the DB
opg4j> var user = "<user>"
opg4j> var pass = "<password>"
opg4j> var conn = DriverManager.getConnection(jdbcUrl, user, pass) //
connecting to the DB
conn ==> oracle.jdbc.driver.T4CConnection@57e6cb01

In the preceding example:

• <tns_alias>: TNS alias used in tnsnames.ora file

• <wallet_location>: Path to the directory where the wallet is stored

• <user>: Name of the database user

• <password>: Password for the user

1.10.2 Three-Tier Deployments of Oracle Graph with Autonomous
Database

In three-tier deployments, the client graph application connects to PGX in a middle tier,
and PGX connects to the Autonomous Database.

The wallets downloaded from the Oracle Cloud Console are mainly routing wallets,
meaning they are used to route the connection to the right database and to encrypt the
connection. In most cases, they are not auto-login wallets, so they do not contain the
password for the actual connection. The password usually needs to be provided
separately to the wallet location.

The graph server does not support a wallet stored on the client file system or provided
directly by remote users. The high level implications of this are:

Chapter 1
Using Oracle Graph with the Autonomous Database

1-34

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgdg/installing-oracle-graph-server.html#GUID-AEED18CC-1363-470E-9422-1151204B63A5

• The server administrator provides the wallet and stores the wallet securely on the
server's file system.

• Similar to Java EE connection pools, remote users will use that wallet when connecting.
This means the server administrator trusts all remote users to use the wallet. As with any
production deployments, the PGX server must be configured to enforce authentication
and authorization to establish that trust.

• Remote users still need to provide a user name and password when sending a graph
read request, just as with non-autonomous databases.

• You can only configure one wallet for each PGX server.

Having the same PGX server connecting to multiple Autonomous Databases is not
supported. If you have that use case, start one PGX server for each Autonomous Database.

Pre-loaded graphs

To read a graph from Autonomous Database into PGX at server startup, follow the steps
described in Store the Database Password in a Keystore to:

1. Create a Java Keystore containing the database password

2. Create a PGX graph configuration file describing the location and properties of the graph
to be loaded

3. Update the /opt/oracle/graph/pgx.conf file to reference the graph configuration file

As root user, edit the service file at /etc/systemd/system/pgx.service and specify the
environment variable under the [Service] directive:

Environment="JAVA_OPTS=-Doracle.net.tns_admin=/etc/oracle/graph/wallets"

Make sure that the directory (/etc/oracle/graph/wallets in the preceding code) is readable
by the Oracle Graph user, which is the user that starts up the PGX server when using
systemd.

In addition, edit the ExecStart command to specify the location of the keystore containing the
password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.p12

Note:

Please note that /etc/keystore.p12 must not be password protected for this to
work. Instead protect the file via file system permission that is only readable by
oraclegraph user.

After the file is edited, reload the changes using:

systemctl daemon-reload

Chapter 1
Using Oracle Graph with the Autonomous Database

1-35

Finally start the server:

sudo systemctl start pgx

On-demand graph loading

To allow remote users of PGX to read from the Autonomous Database on demand,
you can choose from two approaches:

• Provide the path to the wallet at server startup time via the oracle.net.tns_admin
system property. Remote users have to provide the TNS address name, username
and keystore alias (password) in their graph configuration files. The wallet is
stored securely on the graph server's file system, and the server administrator
trusts all remote users to use the wallet to connect to an Autonomous Database.

For example, the server administrator edits the service file at /etc/systemd/
system/pgx.service and specifies the environment variable the under the
[Service] directive:

Environment="JAVA_OPTS=-Doracle.net.tns_admin=/etc/oracle/graph/
wallets"

and then start the server using

systemctl start pgx

The /etc/oracle/graph/wallets/tnsnames.ora file contains an address as
follows:

sombrero_medium = (description= (retry_count=20)(retry_delay=3)
(address=(protocol=tcps)(port=1522)(host=adb.us-
ashburn-1.oraclecloud.com))
(connect_data=(service_name=l8lgholga0ujxsa_sombrero_medium.adwc.ora
clecloud.com))(security=(ssl_server_cert_dn="CN=adwc.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle
Corporation,L=Redwood City,ST=California,C=US")))

Now remote users can read data into the server by sending a graph configuration
file with the following connection properties:

{
 ...
 "jdbc_url": "jdbc:oracle:thin:@sombrero_medium",
 "username": "hr",
 "keystore_alias": "database1",
 ...
}

Note that the keystore still lives on the client side and should contain the password
for the hr user referenced in the config object, as explained in Store the Database
Password in a Keystore. A similar approach works for Tomcat or WebLogic Server
deployments.

Chapter 1
Using Oracle Graph with the Autonomous Database

1-36

• Use Java EE connection pools in your web application server. Remote users only have to
provide the name of the datasource in their graph configuration files. The wallet and the
connection credentials are stored securely in the web application server's file system, and
the server administrator trusts all remote users to use a connection from the pool to
connect to an Autonomous Database.

You can find instructions how to set up such a data source at the following locations:

– WebLogic Server: Configuring a WebLogic Data Source to use ATP

– Tomcat: https://www.oracle.com/technetwork/database/application-development/jdbc/
documentation/atp-5073445.html#Tomcat

If you gave the data source the name adb_ds, you can the reference them by sending a
graph configuration file with the following connection properties:

{
 ...
 "datasource_id": "adb_ds",
 ...
}

1.11 Migrating Property Graph Applications from Before Release
21c

If you are migrating from a previous version of Oracle Spatial and Graph to Release 21c, you
may need to make some changes to existing property graph-related applications.

Also note that Oracle Graph Server and Client is required for property graph applications.
This can be downloaded from Oracle Software Delivery Cloud or from Oracle Downloads
page.

Security-Related Changes

The Property Graph feature contains a series of enhancements to further strengthen the
security of the property graph component of product. The following enhancements may
require manual changes to existing graph applications so that they continue to work properly.

• Graph configuration files now require sensitive information such as passwords to
be stored in Java Keystore files
If you use graph configuration files you are required to use Java Keystore files to store
sensitive information such as passwords. (See Store the Database Password in a
Keystore for how to create and reference such a keystore.)

All existing graph configuration files with secrets in them must be migrated to the
keystore-based approach.

• In a three-tier deployment, access to the PGX server file system requires a
directories allowlist
By default, the PGX server does not allow remote access to the local file system. This
can be explicitly allowed, though, in /etc/oracle/graph/pgx.conf by setting
allow_local_filesystem to true. If you set allow_local_filesystem to true, you must

Chapter 1
Migrating Property Graph Applications from Before Release 21c

1-37

https://blogs.oracle.com/weblogicserver/atp-database-use-with-weblogic-server-v2
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=vkBw18Qn2e8sD-qiMKBhvTE1KGzdAecEuVRxNVq-qYyUUUJsW5gO!-1637381810
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client.html

also specify a list of directories that are allowed to be accessed, by setting
datasource_dir_whitelist. For example:

"allow_local_filesystem": true,
"datasource_dir_whitelist": ["/scratch/data1", "/scratch/data2"]

This will allow remote users to read and write data on the server's file-system from
and into /scratch/data1 and /scratch/data2.

• In a three-tier deployment, reading from remote locations into PGX is no
longer allowed by default
Previously, PGX allowed graph data to be read from remote locations over FTP or
HTTP. This is no longer allowed by default and requires explicit opt-in by the
server administrator. To opt-in, specify the allowed_remote_loading_locations
configuration option in /etc/oracle/graph/pgx.conf. For example:

allowed_remote_loading_locations: ["*"]

In addition:

– The ftp and http protocols are no longer supported for loading or storing data
because they are unencrypted and thus insecure.

– Configuration files can no longer be loaded from remote locations, but must be
loaded from the local file system.

• Removed shell command line options
The following command line options of the Groovy-based opg shell have been
removed and will no longer work:

– --attach - the shell no longer supports attaching to existing sessions via
command line

– --password - the shell will prompt now for the password

Also note that the Groovy-based shell has been deprecated, and you are
encourage to use the new JShell-based shell instead (see Interactive Graph
Shell).

• Changes to PGX APIs
The following APIs no longer return graph configuration information:

– ServerInstance#getGraphInfo()

– ServerInstance#getGraphInfos()

– ServerInstance#getServerState()

The REST API now identifies collections, graphs, and properties by UUID instead
of a name.

The namespaces for graphs and properties are session private by default now.
This implies that some operations that would previously throw an exception due to
a naming conflict could succeed now.

PgxGraph#publish() throws an exception now if a graph with the given name has
been published before.

Chapter 1
Migrating Property Graph Applications from Before Release 21c

1-38

Migrating Data to a New Database Version

Oracle Graph Server and Client works with older database versions. (See Database
Compatibility and Restrictions for information.) If as part of your upgrade you also upgraded
your Oracle Database, you can migrate your existing graph data that was stored using the
Oracle Property Graph format by invoking the following helper script in your database after
the upgrade:

sqlplus> EXECUTE mdsys.opg.migrate_pg_to_current(graph_name=>'mygraph');

The preceding example migrates the property graph mygraph to the current database
version.

Uninstalling Previous Versions of Property Graph Libraries

This is only necessary if you are using Oracle Database versions 12.2, 18c, or 19c.

Use of the Property Graph feature of Oracle Database now requires Oracle Graph Server
and Client that is installed separately. After you have completed the Graph Server and Client
installation, complete the preceding migration steps (if needed), and confirmed that
everything is working well, it is recommended that you remove the binaries of older graph
installations from your Oracle Database installation by performing the following un-install
steps:

1. Make sure the Property Graph mid-tier components are not in use on the target database
host. For example, ensure that there is no application running which uses any files
under $ORACLE_HOME/md/property_graph. Examples of such an application are a running
PGX server on the same host as the database or a client application that references the
JAR files under $ORACLE_HOME/md/property_graph/lib.

It is not necessary to shut down the database to perform the uninstall. The Oracle
database itself does not reference or use any files under $ORACLE_HOME/md/
property_graph.

2. Remove the files under $ORACLE_HOME/md/property_graph on your database host. On
Linux, you can copy the following helper script to your database host and run it with as
the DBA operating system user: /opt/oracle/graph/scripts/patch-opg-oracle-
home.sh

1.12 Upgrading From Graph Server and Client 20.4.x to 21.x
If you are upgrading from Graph Server and Client 20.4.x to 21.x version, you may need to
create new roles in database and migrate authorization rules from pgx.conf file to the
database. Also, starting from Graph Server and Client Release 21.1, TLS is enforced at the
time of the RPM file installation.

One of the main enhancements of Graph Server and Client Release 21.1 is moving the graph
access permissions from the pgx.conf file to the database. A new set of graph roles with
default permissions are created automatically in the database, at the time of the PL/SQL
packages installation. See Table C-1 in the appendix for more details on the default
mappings.

In order to comply with this feature you must perform the database actions explained in the
following sections:

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.x

1-39

Creating additional roles in the database

The roles in the database with additional privileges are created when you install the
21.x PL/SQL packages in your database as part of the upgrade. If you are not able to
install the PL/SQL packages, for example if you are using an Autonomous Database,
see User Authentication and Authorization for more information on manually creating
these roles in the database with the default set of privileges.

Migrating authorization rules

You must execute database GRANTS for user-added mappings contained in the
pgx.conf file when upgrading to 21.x.

The following examples explain the various scenarios where migration of authorization
rules may or may not apply.

Example 1-2 Migrating user-added mappings to database

To migrate the following user-added mappings in pgx.conf file:

...
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "grant": "PGX_SESSION_ADD_PUBLISHED_GRAPH"
 },
...

GRANT

GRANT PGX_SESSION_ADD_PUBLISHED_GRAPH TO GRAPH_DEVELOPER

Example 1-3 Migrating user-added file system authorization rules to database

To migrate the following user-added file system authorization rules in pgx.conf file:

...
"file_locations": [{
 "name": "my_hdfs_graph_data",
 "location": "hdfs:/data/graphs"
}],
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "file_location": "my_hdfs_graph_data",
 "grant": "read"
 },
...

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.x

1-40

GRANT

CREATE OR REPLACE DIRECTORY my_hdfs_graph_data AS 'hdfs:/data/graphs'
GRANT READ ON DIRECTORY my_hdfs_graph_data TO GRAPH_DEVELOPER

Example 1-4 User-added graph authorization rules for preloaded graphs

Note:

No migration required for user-added graph authorization rules for preloaded
graphs.

You must not migrate user-added graph authorization rules for preloaded graphs (as shown
in the following code) as these rules continue to be configured in pgx.conf file.

"preload_graphs": [{
 "path": "/data/my-graph.json",
 "name": "global_graph"
}],
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "global_graph",
 "grant": "read"
 },
...

Self-signed TLS certificate now generated upon RPM installation

In Graph Server and Client 21.x the RPM installation generates a self-signed certificate
into /etc/oracle/graph, which the server uses to enable TLS by default.

According to security best practices, access to the certificate is restricted to the oraclegraph
operating system user. The implication of this is that you no longer can start the graph server
via the /opt/oracle/graph/pgx/bin/start-server script, even if your user is part of the
oraclegraph group. Instead, manage the lifecycle of the graph server via systemctl
commands. For example:

sudo systemctl start pgx

Another possible option is to change the ownership of the certificate as shown:

sudo chown <youruser> /etc/oracle/graph/server_key.pem

Turning off TLS is not recommended as it reduces the security of your connection. However,
if you must do so, see Disabling Transport Layer Security (TLS) in Graph Server for more
details.

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.x

1-41

1.13 Using the Graph Zeppelin Interpreter Client
Oracle Graph provides an interpreter client implementation for Apache Zeppelin. This
tutorial topic explains how to perform simple operations using the graph Zepplin
interpreter client.

See Installing the Graph Zeppelin Interpreter Client for more details to install the graph
interpreter into your local Zeppelin installation.

Using the Interpreter

If you named the graph interpreter pgx, you can send paragraphs to the graph server
by starting the paragraphs with the %pgx directive, just as with any other interpreter.

The interpreter acts like a client that talks to a remote graph server. You cannot run a
graph server instance embedded inside the Zeppelin interpreter. You must provide the
graph server base URL and connection information as illustrated in the following
example:

%pgx
import oracle.pgx.api.*
import groovy.json.*

baseUrl = '<base-url>'
username = '<username>'
password = '<password>'

conn = new URL("$baseUrl/auth/token").openConnection()
conn.setRequestProperty('Content-Type', 'application/json')
token = conn.with {
 doOutput = true
 requestMethod = 'POST'
 outputStream.withWriter { writer ->
 writer << JsonOutput.toJson([username: username, password:
password])
 }
 return new JsonSlurper().parseText(content.text).access_token
}

instance = Pgx.getInstance(baseUrl, token)
session = instance.createSession("my-session")

The in-memory analyst Zeppelin interpreter evaluates paragraphs in the same way
that the in-memory analyst shell does, and returns the output. Therefore, any valid in-
memory analyst shell script will run in the in-memory analyst interpreter, as in the
following example:

%pgx
g_brands = session.readGraphWithProperties("/opt/data/exommerce/
brand_cat.json")
g_brands.getNumVertices()
rank = analyst.pagerank(g_brands, 0.001, 0.85, 100)
rank.getTopKValues(10)

Chapter 1
Using the Graph Zeppelin Interpreter Client

1-42

The following figure shows the results of that query after you click the icon to execute it.

As you can see in the preceding figure, the Zeppelin interpreter automatically renders the
values returned by rank.getTopKValues(10) as a Zeppelin table, to make it more convenient
for you to browse results.

Besides the property values (getTopKValues(), getBottomKValues(), and getValues()), the
following return types are automatically rendered as table also if they are returned from a
paragraph:

• PgqlResultSet - the object returned by the queryPgql("...") method of the PgxGraph
class.

• MapIterable - the object returned by the entries() method of the PgxMap class

All other return types and errors are returned as normal strings, just as the in-memory analyst
shell does.

For more information about Zeppelin, see the official Zeppelin documentation.

Chapter 1
Using the Graph Zeppelin Interpreter Client

1-43

https://zeppelin.apache.org/

2
Quick Starts for Using Oracle Property Graph

This chapter contains quick start tutorials and other resources to help you get started on
working with Oracle property graphs.

• Quick Start: Interactively Analyze Graph Data
This tutorial shows how you can quickly get started using property graph data and learn
to execute PGQL queries and run graph algorithms on the data and display results.

• QuickStart: Run Graph Analytics Using the Python Shell
This tutorial shows how you can get started using property graph data using the Python
shell.

• Quick Start: Using the Python Client as a Module
This section describes how to use the Python client as a module in Python applications.

• Oracle LiveLabs Workshops for Graphs
You can also explore Oracle Property Graph features using the graph workshops in
Oracle LiveLabs.

2.1 Quick Start: Interactively Analyze Graph Data
This tutorial shows how you can quickly get started using property graph data and learn to
execute PGQL queries and run graph algorithms on the data and display results.

The tutorials in this section are:

• Quick Start: Create and Query a Graph in the Database, Load into In-Memory Graph
Server (PGX) for Analytics
This tutorial shows how you can get started using property graph data when you create a
graph and persist it in the database. The graph can be queried in the database. This
tutorial uses the JShell client.

• Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server (PGX)
This tutorial shows how you can quickly get started using property graph data when using
the in-memory graph server (PGX).

• Quick Start: Executing PGQL Queries in SQLcl
This tutorial provides you resources to get started on executing PGQL Queries in SQLcl.

2.1.1 Quick Start: Create and Query a Graph in the Database, Load into In-
Memory Graph Server (PGX) for Analytics

This tutorial shows how you can get started using property graph data when you create a
graph and persist it in the database. The graph can be queried in the database. This tutorial
uses the JShell client.

See Create and Query a Graph in the Database for more information on creating and storing
graphs in database.

• Convert existing relational data into a graph in the database.

2-1

• Query this graph using PGQL.

In Load the Graph into Memory and Run Graph Analytics, you will run graph
algorithms after loading the graph into the in-memory graph server (PGX).

• Load the graph into the in-memory graph server (PGX), run graph algorithms on
this graph, and visualize results.

Prerequisites for the following quickstart are:

• An installation of Oracle Graph server (this is PGX, the in-memory graph server).

See Oracle Graph Server and Client Installation for information to download
Oracle Graph Server and Client.

• An installation of Oracle Graph client

• Java 11

– The in-memory graph server can work with Java 8 or Java 11.

– The JShell client used in this example requires Java 11.

For Java downloads, see https://www.oracle.com/technetwork/java/javase/
overview/index.html.

• Connection details for your Oracle Database. See Database Compatibility and
Restrictions to identify any limitations. The Property Graph feature is supported for
Oracle Database versions 12.2 and later.

• Basic knowledge about how to run commands on Oracle Database (for example,
using SQL*Plus or SQL Developer).

Set up the example data

This example uses the HR (human resources) sample dataset.

• For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

• If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

• Create and Query a Graph in the Database
In this section, you will use the Oracle Graph client to create a graph from
relational tables and store it in the property graph schema in the database.

• Load the Graph into Memory and Run Graph Analytics

2.1.1.1 Create and Query a Graph in the Database
In this section, you will use the Oracle Graph client to create a graph from relational
tables and store it in the property graph schema in the database.

Major tasks for this tutorial:

• Start the shell

• Open a JDBC database connection

• Create a PGQL connection

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-2

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

• Write and execute the graph creation statement

• Run a few PGQL queries

Start the shell

On the system where Oracle Graph client is installed, start the shell by as follows:

cd <client-install-dir>
./bin/opg4j --noconnect

The --noconnect option indicates that you are not connecting to the in-memory graph server
(PGX). You will only be connecting to the database in this example.

Note that JAVA_HOME should be set to Java 11 before you start the shell. For example:

export JAVA_HOME=/usr/lib/jvm/java-11-oracle

See Interactive Graph Shell for details about the shell.

Open a JDBC database connection

Inside the shell prompt, use the standard JDBC Java API to obtain a database connection
object. For example:

opg4j> var jdbcUrl = "<jdbc-url>" // for example:
jdbc:oracle:thin:@myhost:1521/myservice
opg4j> var user = "<db-user>" // for example: hr
opg4j> var pass = "<db-pass>"
opg4j> var conn = DriverManager.getConnection(jdbcUrl, user, pass)
conn ==> oracle.jdbc.driver.T4CConnection@57e6cb01

Connecting to an Autonomous Database works the same way: provide a JDBC URL that
points to the local wallet. See Using Oracle Graph with the Autonomous Database for an
example.

Create a PGQL connection

Convert the JDBC connection into a PGQL connection object. For example:

opg4j> conn.setAutoCommit(false)
opg4j> var pgql = PgqlConnection.getConnection(conn)
pgql ==> oracle.pg.rdbms.pgql.PgqlConnection@6fb3d3bb

Write and execute the graph creation statement

Using a text editor, write a CREATE PROPERTY GRAPH statement that describes how the
HR sample data should be converted into a graph. Save this file as create.pgql at a location
of your choice. For example:

CREATE PROPERTY GRAPH hr
 VERTEX TABLES (
 employees LABEL employee
 PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-3

department_id),
 departments LABEL department
 PROPERTIES (department_id, department_name),
 jobs LABEL job
 PROPERTIES ARE ALL COLUMNS,
 job_history
 PROPERTIES (start_date, end_date),
 locations LABEL location
 PROPERTIES ARE ALL COLUMNS EXCEPT (country_id),
 countries LABEL country
 PROPERTIES ARE ALL COLUMNS EXCEPT (region_id),
 regions LABEL region
)
 EDGE TABLES (
 employees AS works_for
 SOURCE employees
 DESTINATION KEY (manager_id) REFERENCES employees
 NO PROPERTIES,
 employees AS works_at
 SOURCE employees
 DESTINATION departments
 NO PROPERTIES,
 employees AS works_as
 SOURCE employees
 DESTINATION jobs
 NO PROPERTIES,
 departments AS managed_by
 SOURCE departments
 DESTINATION employees
 NO PROPERTIES,
 job_history AS for_employee
 SOURCE job_history
 DESTINATION employees
 LABEL for
 NO PROPERTIES,
 job_history AS for_department
 SOURCE job_history
 DESTINATION departments
 LABEL for
 NO PROPERTIES,
 job_history AS for_job
 SOURCE job_history
 DESTINATION jobs
 LABEL for
 NO PROPERTIES,
 departments AS department_located_in
 SOURCE departments
 DESTINATION locations
 LABEL located_in
 NO PROPERTIES,
 locations AS location_located_in
 SOURCE locations
 DESTINATION countries
 LABEL located_in
 NO PROPERTIES,

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-4

 countries AS country_located_in
 SOURCE countries
 DESTINATION regions
 LABEL located_in
 NO PROPERTIES
)

Then, back in your graph shell, execute the CREATE PROPERTY GRAPH statement by sending
it to your PGQL connection. Replace <path> with the path to the directory containing the
create.pgql file:

opg4j> pgql.prepareStatement(Files.readString(Paths.get("<path>/
create.pgql"))).execute()
$16 ==> false

Run a few PGQL queries

Now that you have a graph named hr, you can use PGQL to run a few queries against it
directly on the database. For example:

// define a little helper function that executes the query, prints the
results and properly closes the statement
opg4j> Consumer<String> query = q -> { try(var s = pgql.prepareStatement(q))
{ s.execute(); s.getResultSet().print(); } catch(Exception e) { throw new
RuntimeException(e); } }
query ==> $Lambda$605/0x0000000100ae6440@6c9e7af2

// print the number of vertices in the graph
opg4j> query.accept("select count(v) from hr match (v)")
+----------+
| count(v) |
+----------+
| 215 |
+----------+

// print the number of edges in the graph
opg4j> query.accept("select count(e) from hr match ()-[e]->()")
+----------+
| count(e) |
+----------+
| 433 |
+----------+

// find the highest earning managers
opg4j> query.accept("select distinct m.FIRST_NAME, m.LAST_NAME, m.SALARY
from hr match (v:EMPLOYEE)-[:WORKS_FOR]->(m:EMPLOYEE) order by m.SALARY
desc")
+---------------------------------------+
| m.FIRST_NAME | m.LAST_NAME | m.SALARY |
+---------------------------------------+
Steven	King	24000.0
Lex	De Haan	17000.0
Neena	Kochhar	17000.0
John	Russell	14000.0

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-5

Karen	Partners	13500.0
Michael	Hartstein	13000.0
Alberto	Errazuriz	12000.0
Shelley	Higgins	12000.0
Nancy	Greenberg	12000.0
Den	Raphaely	11000.0
Gerald	Cambrault	11000.0
Eleni	Zlotkey	10500.0
Alexander	Hunold	9000.0
Adam	Fripp	8200.0
Matthew	Weiss	8000.0
Payam	Kaufling	7900.0
Shanta	Vollman	6500.0
Kevin	Mourgos	5800.0
+---------------------------------------+

// find the average salary of accountants in the Americas
opg4j> query.accept("select avg(e.SALARY) from hr match (e:EMPLOYEE) -
[h:WORKS_AT]-> (d:DEPARTMENT) -[:LOCATED_IN]-> (:LOCATION) -
[:LOCATED_IN]-> (:COUNTRY) -[:LOCATED_IN]-> (r:REGION) where
r.REGION_NAME = 'Americas' and d.DEPARTMENT_NAME = 'Accounting'")
+---------------+
| avg(e.SALARY) |
+---------------+
| 14500.0 |
+---------------+

2.1.1.2 Load the Graph into Memory and Run Graph Analytics
Major tasks for this tutorial:

• Load the graph from the property graph schema into memory

• Execute algorithms and query the algorithm results

• Share the Graph with Other Sessions

Load the graph from the property graph schema into memory

In this section of the quickstart, you will load the graph stored in the Property Graphs
schema in the database into the in-memory graph server (PGX). This will enable you
to run a variety of different built-in algorithms on the graph and will also improve query
performance for larger graphs.

First, start the JShell client and connect to the in-memory graph server (PGX):

./bin/opg4j --base_url https://<graph server host>:7007 --username
<graphuser>

<graphuser> is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-6

Note:

For demo purposes only, if you have set enable_tls to false in the /etc/oracle/
graph/server.conf file you can use an http instead of https connection.

./bin/opg4j --base_url http://<graph server host>:7007 --username <graphuser>

This starts the shell and makes a connection to the graph server.

Note:

Always use low-privilege read-only database user accounts for PGX, as explained
in Security Best Practices with Graph Data.

Next load the graph into memory in this server.

To load the graph into memory, create a PGX graph config object, using the PGX graph
config builder API to do this directly in the shell.

The following example creates a PGX graph config object. It lists the properties to load into
memory so that you can exclude other properties, thus reducing memory consumption.

Supplier<GraphConfig> pgxConfig = () -> { return
GraphConfigBuilder.forPropertyGraphRdbms()
.setName("hr")
 .addVertexProperty("COUNTRY_NAME", PropertyType.STRING)
 .addVertexProperty("DEPARTMENT_NAME", PropertyType.STRING)
 .addVertexProperty("FIRST_NAME", PropertyType.STRING)
 .addVertexProperty("LAST_NAME", PropertyType.STRING)
 .addVertexProperty("EMAIL", PropertyType.STRING)
 .addVertexProperty("PHONE_NUMBER", PropertyType.STRING)
 .addVertexProperty("SALARY", PropertyType.DOUBLE)
 .addVertexProperty("MIN_SALARY", PropertyType.DOUBLE)
 .addVertexProperty("MAX_SALARY", PropertyType.DOUBLE)
 .addVertexProperty("STREET_ADDRESS", PropertyType.STRING)
 .addVertexProperty("POSTAL_CODE", PropertyType.STRING)
 .addVertexProperty("CITY", PropertyType.STRING)
 .addVertexProperty("STATE_PROVINCE", PropertyType.STRING)
 .addVertexProperty("REGION_NAME", PropertyType.STRING)
 .setPartitionWhileLoading(PartitionWhileLoading.BY_LABEL)
 .setLoadVertexLabels(true)
 .setLoadEdgeLabel(true)
 .build(); }

Now that you have a graph config object, use the following API to read the graph into PGX:

opg4j> var graph = session.readGraphWithProperties(pgxConfig.get())
graph ==> PgxGraph[name=hr,N=215,E=433,created=1586996113457]

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-7

The session object is created for you automatically.

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run any built-in algorithm using a
single API invocation. For example, for pagerank:

opg4j> analyst.pagerank(graph)
$31==> VertexProperty[name=pagerank,type=double,graph=hr]

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg4j> session.queryPgql("select m.FIRST_NAME, m.LAST_NAME, m.pagerank
from hr match (m:EMPLOYEE) order by m.pagerank desc limit
10").print().close()
+--+
| m.FIRST_NAME | m.LAST_NAME | m.pagerank |
+--+
Adam	Fripp	0.002959240305566317
John	Russell	0.0028810951120575284
Michael	Hartstein	0.002181365227465801
Alexander	Hunold	0.002082616009054747
Den	Raphaely	0.0020378615199327507
Shelley	Higgins	0.002028946863425767
Nancy	Greenberg	0.0017419394483596667
Steven	King	0.0016622985848193119
Neena	Kochhar	0.0015252785582170803
Jennifer	Whalen	0.0014263044976976823
+--+

Share the Graph with Other Sessions

After you load the graph into the in-memory graph server, you can use the publish()
API to make the graph visible to other sessions, such as the graph visualization
session. For example:

opg4j> graph.publish(VertexProperty.ALL, EdgeProperty.ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pagerank.

You can use the Graph Visualization Application by navigating to <my-server-
name>:7007/ui/ in your browser.

You can connect to a particular client session by providing the session ID when you
log into the Graph Visualization Application. You will then be able to visualize all
graphs in the session, even if they have not been published.

opg4j> session
session ==> PgxSession[ID=5adf83ab-31b1-4a0e-8c08-
d6a95ba63ee0,source=pgxShell]

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-8

The session id is 5adf83ab-31b1-4a0e-8c08-d6a95ba63ee0.

Note:

You must create a server certificate to connect to the in-memory graph server
(PGX) from the Graph Visualization Application. See Setting Up Transport Layer
Security for more details.

2.1.2 Quick Start: Create, Query, and Analyze a Graph in In-Memory
Graph Server (PGX)

This tutorial shows how you can quickly get started using property graph data when using the
in-memory graph server (PGX).

This is for use cases where the graph is available as long as the in-memory graph server
(PGX) session is active. The graph is not persisted in the database.

• Create a graph in the in-memory graph server (PGX), directly from existing relational data

• Query this graph using PGQL in the in-memory graph server (PGX)

• Run graph algorithms in the in-memory graph server (PGX) on this graph and display
results

Prerequisites for the following quickstart are:

• An installation of Oracle Graph server (this is PGX, the in-memory graph server).

See Installing Oracle Graph Server for information to download Oracle Graph Server.

• An installation of Oracle Graph client.

See Installing the Java Client for information to download Oracle Graph Client.

You will authenticate yourself as the database user to the in-memory graph server, and
these database credentials are used to access the database tables and create a graph.

• Java 11

– The in-memory graph server can work with Java 8 or Java 11.

– The JShell client used in this example requires Java 11.

For Java downloads, see https://www.oracle.com/technetwork/java/javase/overview/
index.html.

Major tasks for this tutorial:

• Set up the example data

• Start the shell

• Write and execute the graph creation statement

• Run a few PGQL queries

• Execute algorithms and query the algorithm results

• Share the Graph with Other Sessions

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-9

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html

Set up the example data

This example uses the HR (human resources) sample dataset.

• For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

• If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

Start the shell

On the system where Oracle Graph Client is installed, start the shell as follows. This is
an example of starting a shell in remote mode and connecting to the in-memory graph
server (PGX):

./bin/opg4j --base_url https://<graph server host>:7007 --username
<graphuser>

<graphuser> is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

Note:

For demo purposes only, if you have set enable_tls to false in the /etc/
oracle/graph/server.conf file you can use an http instead of https
connection.

./bin/opg4j --base_url http://<graph server host>:7007 --username
<graphuser>

This starts the shell and makes a connection to the graph server.

Note that, JAVA_HOME should be set to Java 11 before you start the shell. For example:

export JAVA_HOME=/usr/lib/jvm/java-11-oracle

See Interactive Graph Shell for details about the shell.

Write and execute the graph creation statement

Create a graph with employees, departments, and “employee works at department”,
by executing a CREATE PROPERTY GRAPH statement. The following statement creates a
graph in the in-memory graph server (PGX):

opg4j> String statement =
 "CREATE PROPERTY GRAPH hr_simplified "
 + " VERTEX TABLES ("
 + " hr.employees LABEL employee "

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-10

https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

 + " PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
department_id), "
 + " hr.departments LABEL department "
 + " PROPERTIES (department_id, department_name) "
 + ") "
 + " EDGE TABLES ("
 + " hr.employees AS works_at "
 + " SOURCE KEY (employee_id) REFERENCES employees "
 + " DESTINATION departments "
 + " PROPERTIES (employee_id) "
 + ")";
opg-jshell> session.executePgql(statement);

To get a handle to the graph, execute:

opg4j> PgxGraph g = session.getGraph("HR_SIMPLIFIED");

Run a few PGQL queries

You can use this handle to run PGQL queries on this graph. For example, to find the
department that “Nandita Sarchand” works for, execute:

opg4j> String query =
 "SELECT dep.department_name "
 + "FROM MATCH (emp:Employee) -[:works_at]-> (dep:Department) "
 + "WHERE emp.first_name = 'Nandita' AND emp.last_name = 'Sarchand' "
 + "ORDER BY 1";
opg4j> PgqlResultSet resultSet = g.queryPgql(query);
opg4j> resultSet.print();
+-----------------+
| department_name |
+-----------------+
| Shipping |
+-----------------+

To get an overview of the types of vertices and their frequencies, execute:

opg4j> String query =
 "SELECT label(n), COUNT(*) "
 + "FROM MATCH (n) "
 + "GROUP BY label(n) "
 + "ORDER BY COUNT(*) DESC";
opg4j> PgqlResultSet resultSet = g.queryPgql(query);
opg4j> resultSet.print();

+-----------------------+
| label(n) | COUNT(*) |
+-----------------------+
| EMPLOYEE | 107 |
| DEPARTMENT | 27 |
+-----------------------+

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-11

To get an overview of the types of edges and their frequencies, execute:

opg4j> String query =
 "SELECT label(n) AS srcLbl, label(e) AS edgeLbl, label(m) AS
dstLbl, COUNT(*) "
 + "FROM MATCH (n) -[e]-> (m) "
 + "GROUP BY srcLbl, edgeLbl, dstLbl "
 + "ORDER BY COUNT(*) DESC";
opg4j> PgqlResultSet resultSet = g.queryPgql(query);
opg4j> resultSet.print();

+---+
| srcLbl | edgeLbl | dstLbl | COUNT(*) |
+---+
| EMPLOYEE | WORKS_AT | DEPARTMENT | 106 |
+---+

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run each built-in algorithms using a
single API invocation. For example, for pagerank:

opg4j> analyst.pagerank(g)
$31==> VertexProperty[name=pagerank,type=double,graph=hr]

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg4j> session.queryPgql("select m.FIRST_NAME, m.LAST_NAME, m.pagerank
from HR_SIMPLIFIED match (m:EMPLOYEE) where m.FIRST_NAME = ‘Nandita’
“).print().close()
+---+
| m.FIRST_NAME | m.LAST_NAME | m.pagerank |
+---+
| Nandita | Sarchand | 0.001119402985074627 |
+---+

In the following example, we order departments by their pagerank value. Departments
with higher pagerank values have more employees.

opg4j> session.queryPgql("select m.DEPARTMENT_NAME, m.pagerank from
HR_SIMPLIFIED match (m:DEPARTMENT) order by m.pagerank
").print().close();

+--+
| m.DEPARTMENT_NAME | m.pagerank |
+--+
Manufacturing	0.001119402985074627
Construction	0.001119402985074627
Contracting	0.001119402985074627
Operations	0.001119402985074627

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-12

IT Support	0.001119402985074627
NOC	0.001119402985074627
IT Helpdesk	0.001119402985074627
Government Sales	0.001119402985074627
Retail Sales	0.001119402985074627
Recruiting	0.001119402985074627
Payroll	0.001119402985074627
Treasury	0.001119402985074627
Corporate Tax	0.001119402985074627
Control And Credit	0.001119402985074627
Shareholder Services	0.001119402985074627
Benefits	0.001119402985074627
Human Resources	0.0020708955223880596
Administration	0.0020708955223880596
Public Relations	0.0020708955223880596
Marketing	0.003022388059701493
Accounting	0.003022388059701493
Executive	0.003973880597014925
IT	0.005876865671641792
Purchasing	0.006828358208955224
Finance	0.006828358208955224
Sales	0.03347014925373134
Shipping	0.043936567164179076
+--+

Share the Graph with Other Sessions

After you load the graph into the server, you can use the publish() API to make the graph
visible to other sessions, such as the graph visualization session. For example:

opg4j> graph.publish(VertexProperty.ALL, EdgeProperty.ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pagerank.

Ensure that the logged-in user has the privilege to publish graphs. You can do this by adding
the privilege PGX_SESSION_ADD_PUBLISHED_GRAPH to the GRAPH_DEVELOPER role as explained in
Adding Permissions to Publish the Graph. We had given the GRAPH_DEVELOPER role to the
database user in Installing PL/SQL Packages in Oracle Database.

You can use the Graph Visualization Application by navigating to <my-server-
name>:7007/ui/ in your browser.

You can connect to a particular client session by providing the session ID when you log into
the Graph Visualization Application. You will then be able to visualize all graphs in the
session, even if they have not been published.

opg4j> session
session ==> PgxSession[ID=5adf83ab-31b1-4a0e-8c08-
d6a95ba63ee0,source=pgxShell]

The session id is 5adf83ab-31b1-4a0e-8c08-d6a95ba63ee0.

Chapter 2
Quick Start: Interactively Analyze Graph Data

2-13

Note:

You must create a server certificate to connect to the in-memory graph
server (PGX) from the Graph Visualization Application. See Setting Up
Transport Layer Security for more details.

2.1.3 Quick Start: Executing PGQL Queries in SQLcl
This tutorial provides you resources to get started on executing PGQL Queries in
SQLcl.

You can execute PGQL queries in SQLcl with a plugin that is available with Oracle
Graph Server and Client.

See Execute PGQL Queries in SQLcl for more details.

You can also refer to PGQL Plug-in for SQLcl PGQL Plug-in for SQLcl section in the
SQLcl documentation.

2.2 QuickStart: Run Graph Analytics Using the Python Shell
This tutorial shows how you can get started using property graph data using the
Python shell.

As a prerequisite for this quick start, you must ensure that you have completed the
following installations:

• Installing Oracle Graph Server

• Installing the Python Client

1. Start the Python shell as shown:

./bin/opg4py --base_url https://localhost:7007

You are prompted to enter your username and password.

2. Verify that the Python client is connected to a remote graph server (PGX) instance
as shown:

Oracle Graph Server Shell 21.2.0
>>> instance
ServerInstance(embedded: False, base_url: https://localhost:7007,
version: <oracle.pgx.common.VersionInfo at 0x7fb71a1b2f68
jclass=oracle/pgx/common/VersionInfo jself=<LocalRef obj=0xadd938
at 0x7fb71a1808f0>>)

3. Create the graph using the graph builder Python API.

>>> graph = session.create_graph_builder().add_edge(1,
2).add_edge(2, 3).build("my_graph")

Chapter 2
QuickStart: Run Graph Analytics Using the Python Shell

2-14

https://blogs.oracle.com/oraclespatial/executing-property-graph-pgql-queries-in-sqlcl
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-command-line/20.3&id=GUID-E0EFA43F-003F-4C8C-8056-54E9A428B8B7

4. Execute any built-in algorithm on the graph. For example:

>>> analyst.pagerank(graph)
VertexProperty(name: pagerank, type: double, graph: my_graph)

5. Execute any PGQL queries and print the PGQL result set as shown:

>>> rs = session.query_pgql("select id(x), x.pagerank from match (x) on
my_graph")
>>> rs.print()
+-----------------------------+
| id(x) | pagerank |
+-----------------------------+
| 1 | 0.05000000000000001 |
| 2 | 0.09250000000000003 |
| 3 | 0.12862500000000002 |
+-----------------------------+

Converting PGQL result set into pandas dataframe

Additionally, you can also convert the PGQL result set to a pandas.DataFrame object
using the to_pandas() method. This makes it easier to perform various data filtering
operations on the result set and it can also be used in Lambda functions. For example,

example_query = (
 "SELECT n.name as name, n.age as age "
 "WHERE (n)"
)
result_set = sample_graph.query_pgql(example_query)
result_df = result_set.to_pandas()

result_df['age_bin'] = result_df['age'].apply(lambda x: int(x)/20) #
create age bins based on age ranges

Note:

To view the complete set of available Python APIs, see Pypgx API.

2.3 Quick Start: Using the Python Client as a Module
This section describes how to use the Python client as a module in Python applications.

Embedded Server

You can use the python client as a module as illustrated in the following example.

Chapter 2
Quick Start: Using the Python Client as a Module

2-15

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

Note:

For this mode, the Python client and the Graph Server RPM package must
be installed on the same machine.

import os
os.environ["PGX_CLASSPATH"] = "/opt/oracle/graph/lib/*"

import pypgx

session = pypgx.get_session()
graph = session.create_graph_builder().add_edge(1, 2).add_edge(2,
3).build("my_graph")
analyst = session.create_analyst()
analyst.pagerank(graph)
rs = session.query_pgql("select id(x), x.pagerank from match (x) on
my_graph")
rs.print()

To execute, save the above program into a file named program.py and run the
following command.

python3 program.py

You will see the following output:

+-----------------------------+
| id(x) | pagerank |
+-----------------------------+
1	0.05000000000000001
2	0.09250000000000003
3	0.12862500000000002
+-----------------------------+

See Converting PGQL result set into pandas dataframe for more details on converting
a PGQL result set into pandas dataframe.

Note:

To view the complete set of available Python APIs, see Pypgx API.

Remote Server

For this mode, all you need is the Python client to be installed. In your Python
program, you must authenticate with the remote server before you can create a
session as illustrated in the following example.

Chapter 2
Quick Start: Using the Python Client as a Module

2-16

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

Note:

Replace the base_url, username, and password with values to match your
environment details.

import pypgx as pgx
import pypgx.pg.rdbms.graph_server as graph_server

base_url = "https://localhost:7007"
username = "scott"
password = "tiger"

instance = graph_server.get_instance(base_url, username, password)
session = instance.create_session("python_pgx_client")
print(session)

To execute, save the above program into a file named program.py and run the following
command:

python3 program.py

After successful login, you'll see the following message indicating a PGX session was
created:

PgxSession(id: 0bdd4828-c3cc-4cef-92c8-0fcd105416f0, name: python_pgx_client)

Note:

To view the complete set of available Python APIs, see Pypgx API.

2.4 Oracle LiveLabs Workshops for Graphs
You can also explore Oracle Property Graph features using the graph workshops in Oracle
LiveLabs.

See the Oracle LiveLabs Workshop for a complete example on querying, analyzing and
visualizing graphs using data stored in a free tier Autonomous Database instance. You will
provision a new free tier Autonomous Database instance, load data into it, create a graph,
and then query, analyze and visualize the graph.

Chapter 2
Oracle LiveLabs Workshops for Graphs

2-17

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

3
Property Graph Views on Oracle Database
Tables

You can create property graph views over data stored in Oracle Database. You can perform
various graph analytics operations using PGQL on these views.

The CREATE PROPERTY GRAPH statement in PGQL can be used to create a view-like object that
contains metadata about the graph. This graph can be queried using PGQL.

The property graph views are created directly over data that exists in the relational database
tables. Since the graph is stored in the database tables it has a schema. This is unlike the
graphs created with a flexible schema, where the data is copied from the source tables to
property graph schema tables as described in Property Graph Schema Objects for Oracle
Database.

One of the main benefits of property graph views, is that all updates to the database tables
are immediately reflected in the graph.

Metadata Tables for PG Views

Each time a CREATE PROPERTY GRAPH statement is executed, metadata tables are created in
the user's own schema.

The following table describes the set of metadata tables that are created for each graph on
executing CREATE PROPERTY GRAPH statement.

All columns shown underlined in the Table 3-1 are part of the primary key of the table. Also all
columns have a NOT NULL constraint.

Table 3-1 Metadata Tables for PG Views

Table Name Description

graphName_ELEM_TAB
LE$

Metadata for graph element (vertex/edge) tables (one row per element table):
• ET_NAME: the name of the element table (the "alias")
• ET_TYPE: either "VERTEX" or "EDGE"
• SCHEMA_NAME: the name of the schema of the underlying table
• TABLE_NAME: the name of underlying table

graphName_LABEL$ Metadata on labels of element tables (one row per label; one label per element table):
• LABEL_NAME: the name of the label
• ET_NAME: the name of the element table (the "alias")
• ET_TYPE: either "VERTEX" or "EDGE"

graphName_PROPERTY
$

Metadata describing the columns that are exposed through a label (one row per property)

• PROPERTY_NAME: the name of the property
• ET_NAME: the name of the element table (the "alias")
• ET_TYPE: either "VERTEX" or "EDGE"
• LABEL_NAME: the name of the label that this property belongs to
• COLUMN_NAME: the name of the column (initially, only the case where property

names equal column names is allowed)

3-1

Table 3-1 (Cont.) Metadata Tables for PG Views

Table Name Description

graphName_KEY$ Metadata describing a vertex/edge key (one row per column in the key)

• COLUMN_NAME: the name of the column in the key
• COLUMN_NUMBER: the number of the column in the key

For example, in KEY (a, b, c), "a" has number 1, "b" has number 2 and "c" has
number 3.

• KEY_TYPE: either "VERTEX" or "EDGE"
• ET_NAME: the name of the element table (the "alias")

graphName_SRC_DST_
KEY$

Metadata describing the edge source/destination keys (one row per column of a key):

• ET_NAME: the name of the element table (the "alias"), which is always an edge table
• VT_NAME: the name of the vertex table
• KEY_TYPE: either "EDGE_SOURCE" or "EDGE_DESTINATION"
• ET_COLUMN_NAME: the name of the key column
• ET_COLUMN_NUMBER: the number of the column in the key.

For example, in KEY (a, b, c), "a" has number 1, "b" has number 2 and "c" has
number 3.

Note:

Currently, support is only for SOURCE KEY (...)
REFERENCES T1. So only the edge source/destination key
is stored.

Example 3-1 To create a Property Graph View

Consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH student_network
 VERTEX TABLES(
 person
 KEY (id)
 LABEL student
 PROPERTIES(name),
 university
 KEY (id)
 PROPERTIES(name)
)
 EDGE TABLES(
 knows
 key (person1, person2)
 SOURCE KEY (person1) REFERENCES person
 DESTINATION KEY (person2) REFERENCES person
 NO PROPERTIES,
 person AS studentOf
 key (id, university)
 SOURCE KEY (id) REFERENCES person
 DESTINATION KEY (university) REFERENCES university

Chapter 3

3-2

 NO PROPERTIES
)
 OPTIONS (PG_VIEW)

The OPTIONS clause allows the creation of a property graph view instead of the creation of
property graph schema graph. You must simply pass the CREATE PROPERTY GRAPH statement
to the execute method:

Note:

• You can create property graph views using the RDBMS Java API or through
SQLcl.

• You can query property graph views using the graph visualization tool or SQLcl.

• Both creation and querying of property graph views are not supported when
using Python API.

stmt.execute("CREATE PROPERTY GRAPH student_network ...");

This results in the creation of the following metadata tables:

SQL> SELECT * FROM STUDENT_NETWORK_ELEM_TABLE$;

ET_NAME ET_TYPE SCHEMA_NAME TABLE_NAME
--------------- ---------- --------------- ---------------
PERSON VERTEX SCOTT PERSON
UNIVERSITY VERTEX SCOTT UNIVERSITY
KNOWS EDGE SCOTT KNOWS
STUDENTOF EDGE SCOTT PERSON

SQL> SELECT * FROM STUDENT_NETWORK_LABEL$;

LABEL_NAME ET_NAME ET_TYPE
--------------- --------------- ----------
STUDENT PERSON VERTEX
UNIVERSITY UNIVERSITY VERTEX
KNOWS KNOWS EDGE
STUDENTOF STUDENTOF EDGE

SQL> SELECT * FROM STUDENT_NETWORK_PROPERTY$;

PROPERTY_NAME ET_NAME ET_TYPE LABEL_NAME COLUMN_NAME
--------------- --------------- ---------- --------------- ---------------
NAME PERSON VERTEX STUDENT NAME
NAME UNIVERSITY VERTEX UNIVERSITY NAME

SQL> SELECT * FROM STUDENT_NETWORK_KEY$;

COLUMN_NAME COLUMN_NUMBER KEY_TY ET_NAME

Chapter 3

3-3

--------------- ------------- ------ ---------------
ID 1 VERTEX PERSON
ID 1 VERTEX UNIVERSITY
PERSON1 1 EDGE KNOWS
PERSON2 2 EDGE KNOWS
ID 1 EDGE STUDENTOF
UNIVERSITY 2 EDGE STUDENTOF

SQL> SELECT * FROM STUDENT_NETWORK_SRC_DST_KEY$;

ET_NAME VT_NAME KEY_TYPE ET_COLUMN_NAME
ET_COLUMN_NUMBER
--------------- ---------- ---------------- ---------------

KNOWS PERSON EDGE_SOURCE
PERSON1 1
KNOWS PERSON EDGE_DESTINATION
PERSON2 1
STUDENTOF PERSON EDGE_SOURCE
ID 1
STUDENTOF UNIVERSITY EDGE_DESTINATION
UNIVERSITY 1

You can now run PGQL queries on the property graph view student_network.

Chapter 3

3-4

4
Using the In-Memory Graph Server (PGX)

The in-memory Graph server of Oracle Graph supports a set of analytical functions.

This chapter provides examples using the in-memory Graph Server (also referred to as
Property Graph In-Memory Analytics, and often abbreviated as PGX in the Javadoc,
command line, path descriptions, error messages, and examples). It contains the following
major topics.

• Overview of the In-Memory Graph Server (PGX)
The In-Memory Graph Server (PGX) is an in-memory graph server for fast, parallel graph
query and analytics. The server uses light-weight in-memory data structures to enable
fast execution of graph algorithms.

• User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both
username and password based as well as Kerberos based authentication is supported.

• About Vertex and Edge IDs

• Keeping the Graph in Oracle Database Synchronized with the Graph Server
You can use the FlashbackSynchronizer API to automatically apply changes made to
graph in the database to the corresponding PgxGraph object in memory, thus keeping
both synchronized.

• Optimizing Graphs for Read Versus Updates in the In-Memory Graph Server (PGX)

• Storing a Graph Snapshot on Disk
After reading a graph into memory using either Java or the Shell, if you make some
changes to the graph such as running the PageRank algorithm and storing the values as
vertex properties, you can store this snapshot of the graph on disk.

• Executing Built-in Algorithms
The in-memory graph server (PGX) contains a set of built-in algorithms that are available
as Java APIs.

• Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java and have it
automatically compiled to an efficient parallel implementation.

• Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory. You can
use filter expressions or create bipartite subgraphs based on a vertex (node) collection
that specifies the left set of the bipartite graph.

• Using Automatic Delta Refresh to Handle Database Changes
You can automatically refresh (auto-refresh) graphs periodically to keep the in-memory
graph synchronized with changes to the property graph stored in the property graph
tables in Oracle Database (VT$ and GE$ tables).

• Starting the In-Memory Graph Server (PGX)
This section describes the commands to start and stop the in-memory graph
server(PGX).

4-1

• Connecting to the In-Memory Graph Server (PGX)
This section explains how to connect to the in-memory graph server (PGX)
running in remote mode or when deployed as a web application on Apache
Tomcat or Oracle WebLogic Server.

• Using Graph Server (PGX) as a Library

• User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their
PGQL queries or custom graph algorithms, to complement built-in functions with
custom requirements.

• Using HAProxy for PGX Load Balancing and High Availability
HAProxy is a high-performance TCP/HTTP load balancer and proxy server that
allows multiplexing incoming requests across multiple web servers.

4.1 Overview of the In-Memory Graph Server (PGX)
The In-Memory Graph Server (PGX) is an in-memory graph server for fast, parallel
graph query and analytics. The server uses light-weight in-memory data structures to
enable fast execution of graph algorithms.

There are multiple options to load a graph into the graph server either from Oracle
Database or from files.

The graph server can be deployed standalone (it includes an embedded Apache
Tomcat instance), or deployed in Oracle WebLogic Server or Apache Tomcat.

• Design of the In-Memory Graph Server (PGX)

• Usage Modes of the In-memory Graph Server (PGX)

4.1.1 Design of the In-Memory Graph Server (PGX)
The design of the in-memory graph server (PGX) is based on a Server-Client usage
model. See Usage Modes of the In-memory Graph Server (PGX) for more details on
the different graph server (PGX) execution modes.

The following figure shows the graph server (PGX) design:

Chapter 4
Overview of the In-Memory Graph Server (PGX)

4-2

Figure 4-1 Graph Server (PGX) Design

The core concepts of the graph server (PGX) design are as follows

• Multiple graph clients can connect to the in-memory graph server at the same time.

• Each client request are processed by the graph server asynchronously. The client
requests are queued up first and processed later, when resources are available. The
client can poll the server to check if a request has been finished.

• Internally, the server maintains its own engine (thread pools) for running parallel graph
algorithms and queries. The engine tries to process each analytics request concurrently
with as many threads as possible.

Isolation Between Concurrent Clients

The graph server (PGX) supports data isolation between concurrent clients. Each client has
its own private workspace, called session. Sessions are isolated from each other. Each client
can load a graph instance into its own session, independently from other clients.

If multiple clients load the same graph instance the graph server can share one graph
instance between multiple clients under the hood. Each client can add additional vertex or
edge properties to a loaded graph in its own session. Such properties are transient
properties, and are private to each session and not visible to another session as shown in the
following figure:

Chapter 4
Overview of the In-Memory Graph Server (PGX)

4-3

Figure 4-2 Session and Transient Properties

Similarly, if a client creates a mutated version of the loaded graph, the graph server will
create a private graph instance for that client.

4.1.2 Usage Modes of the In-memory Graph Server (PGX)
This section presents an overview of the different usage modes of the graph server
(PGX). The graph server can be executed in one of the following usage modes.

Remote Server Mode

In the remote server mode, the main PGX execution engine is deployed as a RESTful
application on a powerful server machine, and you can connect to it remotely from
your machine using graph shell. Also, multiple clients can connect to the same graph
server (PGX) at the same time and therefore the graph server is time-shared among
these clients.

The following figure shows the graph server (PGX) in a remote execution mode:

Figure 4-3 Remote Server Mode

Chapter 4
Overview of the In-Memory Graph Server (PGX)

4-4

The remote server mode is useful for the following situations where you want to:

• Perform graph analysis on a large data set with a powerful server-class machine that has
many cores and a large memory.

• The server-class machine is shared by multiple clients.

See Starting the In-Memory Graph Server (PGX) for instructions on how to start the graph
server (PGX) in remote server mode.

Using Graph Server (PGX) as a Library

You can also include the graph server (PGX) as a normal Java library in your application.

The following figure shows the graph server (PGX) used as a library in an application:

Figure 4-4 PGX as a Library

The embedded mode is useful when you want to build an application having graph analsis as
a part of its functionality.

See Using Graph Server (PGX) as a Library for more information.

Deploying Graph Server (PGX) as Servlet Web Application

You can deploy the graph server (PGX) as a web application using Apache Tomcat or Oracle
WebLogic Server.

See Deploying Oracle Graph Server to a Web Server for instructions to deploy the graph
server (PGX) in Apache Tomcat or Oracle WebLogic Server.

4.2 User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both
username and password based as well as Kerberos based authentication is supported.

The actions that you are allowed to do on the graph server are determined by the privileges
enabled by roles that have been granted to you in the Oracle Database.

• Privileges and Roles in Oracle Database
All database users that work with graphs require the CREATE SESSION privilege in the
database.

Chapter 4
User Authentication and Authorization

4-5

• Basic Steps for Using an Oracle Database for Authentication
You can follow the steps explained in this section to authenticate users to the
graph server (PGX).

• Prepare the Graph Server for Database Authentication
Locate the pgx.conf file of your installation.

• Connect to the Server from JShell with Database Authentication
You can use the JShell client to connect to the server in remote mode, using
database authentication.

• Read Data from the Database
Once logged in, you can now read data from the database into the graph server
without specifying any connection information in the graph configuration.

• Store the Database Password in a Keystore

• Token Expiration
By default, tokens are valid for 1 hour.

• Advanced Access Configuration
You can customize the following fields inside the pgx_realm block in the pgx.conf
file to customize login behavior.

• Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you
defined the access rules in your pgx.conf file.

• Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

• Kerberos Enabled Authentication
The graph server (PGX) can authenticate users using an Oracle Database with
Kerberos enabled as identity provider.

4.2.1 Privileges and Roles in Oracle Database
All database users that work with graphs require the CREATE SESSION privilege in the
database.

Roles that are created for working with graphs are in Table 4-1. These roles are
created when you install the PL/SQL package of the Oracle Graph Server and Client
distribution on the target database.

Table 4-1 Privileges and Roles in Oracle Database

Role Operations enabled by this role Used By

PGX_SESSION_CREATE Create a new PGX session using the
ServerInstance.createSession API.

Graph developers and
graph users

PGX_SERVER_GET_INFO Get status information on the PGX
instance using the Admin API.

Users who administer
PGX

PGX_SERVER_MANAGE
(includes
PGX_SERVER_GET_INFO)

Manage the PGX instance using the
Admin API to stop or restart PGX.

Users who administer
PGX

Chapter 4
User Authentication and Authorization

4-6

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html

Table 4-1 (Cont.) Privileges and Roles in Oracle Database

Role Operations enabled by this role Used By

PGX_SESSION_NEW_GRAPH Create a new graph in PGX by loading
from the database using a config file,
using the CREATE PROPERTY GRAPH
statement in PGQL, creating a sub-graph
from another graph, or using the
GraphBuilder.

Graph developers and
graph users

PGX_SESSION_GET_PUBLI
SHED_GRAPH

Query and view graphs published by
another user to the public namespace.

Graph developers and
graph users

PGX_SESSION_ADD_PUBLI
SHED_GRAPH (includes
PGX_SESSION_GET_PUBLI
SHED_GRAPH)

Publish a graph to the public namespace. Graph developers

PGX_SESSION_COMPILE_A
LGORITHM

Compile an algorithm using the PGX
Algorithm API.

Graph developers

PGX_SESSION_READ_MODE
L

Load and use an ML model using PgxML. Graph developers

PGX_SESSION_MODIFY_MO
DEL

Create, train, and store an ML model
using PgxML.

Graph developers

Few additional roles are also created to group multiple roles together. They provide a
convenient way to grant multiple roles to database users. See Mapping Graph Server Roles
to Default Privileges for more information on these additional roles.

You can create additional groups that are useful for your application, as described in Adding
and Removing Roles and Defining Permissions for Individual Users.

4.2.2 Basic Steps for Using an Oracle Database for Authentication
You can follow the steps explained in this section to authenticate users to the graph server
(PGX).

1. Use an Oracle Database version that is supported by Oracle Graph Server and Client:
version 12.2 or later, including Autonomous Database.

2. Be sure that you have ADMIN access (or SYSDBA access for non-autonomous
databases) to grant and revoke users access to the graph server (PGX).

3. Be sure that all existing users to which you plan to grant access to the graph server have
at least the CREATE SESSION privilege granted.

4. Be sure that the database is accessible via JDBC from the host where the Graph Server
runs.

5. As ADMIN (or SYSDBA on non-autonomous databases), run the following procedure to
create the roles required by the graph server:

Chapter 4
User Authentication and Authorization

4-7

Note:

You can skip this step if you install the PL/SQL packages as part of the
Oracle Graph Server and Client installation. All the roles shown in the
following code are created as part of the PL/SQL installation
automatically. You need to add them separately only if you are using
Oracle Graph Server and Client with Autonomous Database. You can
run this code using Database Actions in Oracle Cloud Infrastructure
Console.

DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 role_exists EXCEPTION;
 PRAGMA EXCEPTION_INIT(role_exists, -01921);
 TYPE graph_roles_table IS TABLE OF VARCHAR2(50);
 graph_roles graph_roles_table;
BEGIN
 graph_roles := graph_roles_table(
 'GRAPH_DEVELOPER',
 'GRAPH_ADMINISTRATOR',
 'GRAPH_USER',
 'PGX_SESSION_CREATE',
 'PGX_SERVER_GET_INFO',
 'PGX_SERVER_MANAGE',
 'PGX_SESSION_READ_MODEL',
 'PGX_SESSION_MODIFY_MODEL',
 'PGX_SESSION_NEW_GRAPH',
 'PGX_SESSION_GET_PUBLISHED_GRAPH',
 'PGX_SESSION_COMPILE_ALGORITHM',
 'PGX_SESSION_ADD_PUBLISHED_GRAPH');
 FOR elem IN 1 .. graph_roles.count LOOP
 BEGIN
 dbms_output.put_line('create_graph_roles: ' || elem || ':
CREATE ROLE ' || graph_roles(elem));
 EXECUTE IMMEDIATE 'CREATE ROLE ' || graph_roles(elem);
 EXCEPTION
 WHEN role_exists THEN
 dbms_output.put_line('create_graph_roles: role already
exists. continue');
 WHEN OTHERS THEN
 RAISE;
 END;
 END LOOP;
EXCEPTION
 when others then
 dbms_output.put_line('create_graph_roles: hit error ');
 raise;
END;
/

6. Assign default permissions to the roles GRAPH_DEVELOPER, GRAPH_USER
and GRAPH_ADMINISTRATOR to group multiple permissions together.

Chapter 4
User Authentication and Authorization

4-8

Note:

You can skip this step if you install the PL/SQL packages as part of the Oracle
Graph Server and Client installation. All the grants shown in the following code
are executed as part of the PL/SQL installation automatically. You need to
execute these grants separately only if you are using Oracle Graph Server and
Client with Autonomous Database. You can run this code using Database
Actions in Oracle Cloud Infrastructure Console.

GRANT PGX_SESSION_CREATE TO GRAPH_ADMINISTRATOR;
GRANT PGX_SERVER_GET_INFO TO GRAPH_ADMINISTRATOR;
GRANT PGX_SERVER_MANAGE TO GRAPH_ADMINISTRATOR;
GRANT PGX_SESSION_CREATE TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_NEW_GRAPH TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_GET_PUBLISHED_GRAPH TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_MODIFY_MODEL TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_READ_MODEL TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_CREATE TO GRAPH_USER;
GRANT PGX_SESSION_GET_PUBLISHED_GRAPH TO GRAPH_USER;

7. Assign roles to all the database developers who should have access to the graph server
(PGX). For example:

GRANT graph_developer TO <graphuser>

where <graphuser> is a user in the database. You can also assign individual permissions
(roles prefixed with PGX_) to users directly.

8. Assign the administrator role to users who should have administrative access. For
example:

GRANT graph_administrator to <administratoruser>

where <administratoruser> is a user in the database.

4.2.3 Prepare the Graph Server for Database Authentication
Locate the pgx.conf file of your installation.

If you installed the graph server via RPM, the file is located at: /etc/oracle/graph/pgx.conf

If you use the webapps package to deploy into Tomcat or WebLogic Server, the pgx.conf file
is located inside the web application archive file (WAR file) at: WEB-INF/classes/pgx.conf

Tip: On Linux, you can use vim to edit the file directly inside the WAR file without unzipping it
first. For example:

vim graph-server-<version>-pgx<version>.war

Chapter 4
User Authentication and Authorization

4-9

Inside the pgx.conf file, locate the jdbc_url line of the realm options:

...
"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 "jdbc_url": "<REPLACE-WITH-DATABASE-URL-TO-USE-FOR-AUTHENTICATION>",
 "token_expiration_seconds": 3600,
...

Replace the text with the JDBC URL pointing to your database that you configured in
the previous step. For example:

...
"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 "jdbc_url": "jdbc:oracle:thin:@myhost:1521/myservice",
 "token_expiration_seconds": 3600,
...

If you are using an Autonomous Database, specify the JDBC URL like this:

...
"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 "jdbc_url": "jdbc:oracle:thin:@my_identifier_low?TNS_ADMIN=/etc/
oracle/graph/wallet",
 "token_expiration_seconds": 3600,
...

where /etc/oracle/graph/wallet is an example path to the unzipped wallet file that
you downloaded from your Autonomous Database service console, and
my_identifier_low is one of the connect identifiers specified in /etc/oracle/graph/
wallet/tnsnames.ora.

Now, start the graph server. If you installed via RPM, execute the following command
as a root user or with sudo:

sudo systemctl start pgx

4.2.4 Connect to the Server from JShell with Database Authentication
You can use the JShell client to connect to the server in remote mode, using database
authentication.

To connect to the server in remote mode:

./bin/opg4j --base_url https://localhost:7007 --username <database_user>

You will be prompted for the database password.

Chapter 4
User Authentication and Authorization

4-10

If you are using a Java client program, you can connect to the server as shown in the
following example:

import oracle.pg.rdbms.*
import oracle.pgx.api.*

...

ServerInstance instance = GraphServer.getInstance("https://localhost:7007",
"<database user>", "<database password>");
PgxSession session = instance.createSession("my-session");

...

Internally, users are authenticated with the graph server using JSON Web Tokens (JWT). See
Token Expiration for more details about token expiration.

4.2.5 Read Data from the Database
Once logged in, you can now read data from the database into the graph server without
specifying any connection information in the graph configuration.

Your database user must exist and have read access on the graph data in the database.

For example, the following graph configuration will read a property graph named hr into
memory, authenticating as <database user>/<database password> with the database:

GraphConfig config = GraphConfigBuilder.forPropertyGraphRdbms()
 .setName("hr")
 .addVertexProperty("FIRST_NAME", PropertyType.STRING)
 .addVertexProperty("LAST_NAME", PropertyType.STRING)
 .addVertexProperty("EMAIL", PropertyType.STRING)
 .addVertexProperty("CITY", PropertyType.STRING)
 .setPartitionWhileLoading(PartitionWhileLoading.BY_LABEL)
 .setLoadVertexLabels(true)
 .setLoadEdgeLabel(true)
 .build();
PgxGraph hr = session.readGraphWithProperties(config);

The following example is a graph configuration in JSON format that reads from relational
tables into the graph server, without any connection information being provided in the
configuration file itself:

{
 "name":"hr",
 "vertex_id_strategy":"no_ids",
 "vertex_providers":[
 {
 "name":"Employees",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "key_type":"string",
 "props":[

Chapter 4
User Authentication and Authorization

4-11

 {
 "name":"FIRST_NAME",
 "type":"string"
 },
 {
 "name":"LAST_NAME",
 "type":"string"
 }
]
 },
 {
 "name":"Departments",
 "format":"rdbms",
 "database_table_name":"DEPARTMENTS",
 "key_column":"DEPARTMENT_ID",
 "key_type":"string",
 "props":[
 {
 "name":"DEPARTMENT_NAME",
 "type":"string"
 }
]
 }
],
 "edge_providers":[
 {
 "name":"WorksFor",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"EMPLOYEE_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Employees"
 },
 {
 "name":"WorksAs",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"JOB_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Jobs"
 }
]
}

For more information about how to read data from the database into the graph server,
see Store the Database Password in a Keystore.

Chapter 4
User Authentication and Authorization

4-12

4.2.6 Store the Database Password in a Keystore
PGX requires a database account to read data from the database into memory. The account
should be a low-privilege account (see Security Best Practices with Graph Data).

As described in Read Data from the Database, you can read data from the database into the
graph server without specifying additional authentication as long as the token is valid for that
database user. But if you want to access a graph from a different user, you can do so, as long
as that user's password is stored in a Java Keystore file for protection.

You can use the keytool command that is bundled together with the JDK to generate such a
keystore file on the command line. See the following script as an example:

Add a password for the 'database1' connection
keytool -importpass -alias database1 -keystore keystore.p12
1. Enter the password for the keystore
2. Enter the password for the database

Add another password (for the 'database2' connection)
keytool -importpass -alias database2 -keystore keystore.p12

List what's in the keystore using the keytool
keytool -list -keystore keystore.p12

If you are using Java version 8 or lower, you should pass the additional parameter -
storetype pkcs12 to the keytool commands in the preceding example.

You can store more than one password into a single keystore file. Each password can be
referenced using the alias name provided.

• Either, Write the PGX graph configuration file to load from the property graph schema

• Or, Write the PGX graph configuration file to load a graph directly from relational tables

• Read the data

• Secure coding tips for graph client applications

Either, Write the PGX graph configuration file to load from the property graph schema

Next write a PGX graph configuration file in JSON format. The file tells PGX where to load
the data from, how the data looks like and the keystore alias to use. The following example
shows a graph configuration to read data stored in the Oracle property graph format.

{
 "format": "pg",
 "db_engine": "rdbms",
 "name": "hr",
 "jdbc_url": "jdbc:oracle:thin:@myhost:1521/orcl",
 "username": "hr",
 "keystore_alias": "database1",
 "vertex_props": [{
 "name": "COUNTRY_NAME",
 "type": "string"
 }, {
 "name": "DEPARTMENT_NAME",

Chapter 4
User Authentication and Authorization

4-13

 "type": "string"
 }, {
 "name": "SALARY",
 "type": "double"
 }],
 "partition_while_loading": "by_label",
 "loading": {
 "load_vertex_labels": true,
 "load_edge_label": true
 }
}

(For the full list of available configuration fields, including their meanings and default
values, see Graph Configuration Options.)

Or, Write the PGX graph configuration file to load a graph directly from relational
tables

The following example loads a subset of the HR sample data from relational tables
directly into PGX as a graph. The configuration file specifies a mapping from relational
to graph format by using the concept of vertex and edge providers.

Note:

Specifying the vertex_providers and edge_providers properties loads the
data into an optimized representation of the graph.

{
 "name":"hr",
 "jdbc_url":"jdbc:oracle:thin:@myhost:1521/orcl",
 "username":"hr",
 "keystore_alias":"database1",
 "vertex_id_strategy": "no_ids",
 "vertex_providers":[
 {
 "name":"Employees",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "key_type": "string",
 "props":[
 {
 "name":"FIRST_NAME",
 "type":"string"
 },
 {
 "name":"LAST_NAME",
 "type":"string"
 },
 {
 "name":"EMAIL",
 "type":"string"

Chapter 4
User Authentication and Authorization

4-14

 },
 {
 "name":"SALARY",
 "type":"long"
 }
]
 },
 {
 "name":"Jobs",
 "format":"rdbms",
 "database_table_name":"JOBS",
 "key_column":"JOB_ID",
 "key_type": "string",
 "props":[
 {
 "name":"JOB_TITLE",
 "type":"string"
 }
]
 },
 {
 "name":"Departments",
 "format":"rdbms",
 "database_table_name":"DEPARTMENTS",
 "key_column":"DEPARTMENT_ID",
 "key_type": "string",
 "props":[
 {
 "name":"DEPARTMENT_NAME",
 "type":"string"
 }
]
 }
],
 "edge_providers":[
 {
 "name":"WorksFor",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"EMPLOYEE_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Employees"
 },
 {
 "name":"WorksAs",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"JOB_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Jobs"
 },

Chapter 4
User Authentication and Authorization

4-15

 {
 "name":"WorkedAt",
 "format":"rdbms",
 "database_table_name":"JOB_HISTORY",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"DEPARTMENT_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Departments",
 "props":[
 {
 "name":"START_DATE",
 "type":"local_date"
 },
 {
 "name":"END_DATE",
 "type":"local_date"
 }
]
 }
]
}

Read the data

Now you can instruct PGX to connect to the database and read the data by passing in
both the keystore and the configuration file to PGX, using one of the following
approaches:

• Interactively in the graph shell
If you are using the graph shell, start it with the --secret_store option. It will
prompt you for the keystore password and then attach the keystore to your current
session. For example:

cd /opt/oracle/graph
./bin/opg4j --secret_store /etc/my-secrets/keystore.p12

 enter password for keystore /etc/my-secrets/keystore.p12:

Inside the shell, you can then use normal PGX APIs to read the graph into
memory by passing the JSON file you just wrote into the
readGraphWithProperties API:

opg4j> var graph = session.readGraphWithProperties("config.json")
graph ==> PgxGraph[name=hr,N=215,E=415,created=1576882388130]

• As a PGX preloaded graph
As a server administrator, you can instruct PGX to load graphs into memory upon
server startup. To do so, modify the PGX configuration file at /etc/oracle/graph/
pgx.conf and add the path the graph configuration file to the preload_graphs
section. For example:

{
 ...

Chapter 4
User Authentication and Authorization

4-16

 "preload_graphs": [{
 "name": "hr",
 "path": "/path/to/config.json"
 }],
 "authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "hr",
 "grant": "read"
 }]
 },

]
}

As root user, edit the service file at /etc/systemd/system/pgx.service and change the
ExecStart command to specify the location of the keystore containing the password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.p12

Note:

Please note that /etc/keystore.p12 must not be password protected for this to
work. Instead protect the file via file system permission that is only readable by
oraclegraph user.

After the file is edited, reload the changes using:

sudo systemctl daemon-reload

Finally start the server:

sudo systemctl start pgx

• In a Java application
To register a keystore in a Java application, use the registerKeystore() API on the
PgxSession object. For example:

import oracle.pgx.api.*;

class Main {

 public static void main(String[] args) throws Exception {
 String baseUrl = args[0];
 String keystorePath = "/etc/my-secrets/keystore.p12";
 char[] keystorePassword = args[1].toCharArray();
 String graphConfigPath = args[2];
 ServerInstance instance = Pgx.getInstance(baseUrl);
 try (PgxSession session = instance.createSession("my-session")) {
 session.registerKeystore(keystorePath, keystorePassword);

Chapter 4
User Authentication and Authorization

4-17

 PgxGraph graph =
session.readGraphWithProperties(graphConfigPath);
 System.out.println("N = " + graph.getNumVertices() + " E = "
+ graph.getNumEdges());
 }
 }
}

You can compile and run the preceding sample program using the Oracle Graph
Client package. For example:

cd $GRAPH_CLIENT
// create Main.java with above contents
javac -cp 'lib/*' Main.java
java -cp '.:conf:lib/*' Main http://myhost:7007 MyKeystorePassword
path/to/config.json

Secure coding tips for graph client applications

When writing graph client applications, make sure to never store any passwords or
other secrets in clear text in any files or in any of your code.

Do not accept passwords or other secrets through command line arguments either.
Instead, use Console.html#readPassword() from the JDK.

4.2.7 Token Expiration
By default, tokens are valid for 1 hour.

Internally, the graph client automatically renews tokens which are about to expire in
less than 30 minutes. This is also configurable by re-authenticating your credentials
with the database. By default, tokens can only be automatically renewed for up to 24
times, then you need to login again.

If the maximum amount of auto-renewals is reached, you can log in again without
losing any of your session data by using the GraphServer#reauthenticate
(instance, "<user>", "<password>") API.

Note:

If a session time out occurs before you re-authenticate, then you may lose
your session data.

For example:

opg4j> var graph = session.readGraphWithProperties(config) // fails
because token cannot be renewed anymore
opg4j> GraphServer.reauthenticate(instance, "<user>", "<password>") //
log in again
opg4j> var graph = session.readGraphWithProperties(config) //

Chapter 4
User Authentication and Authorization

4-18

works now

4.2.8 Advanced Access Configuration
You can customize the following fields inside the pgx_realm block in the pgx.conf file to
customize login behavior.

Table 4-2 Advanced Access Configuration Options

Field Name Explanation Default

token_expiration_seconds After how many seconds the
generated bearer token will
expire.

3600 (1 hour)

connect_timeout_milliseco
nds

After how many milliseconds an
connection attempt to the
specified JDBC URL will time
out, resulting in the login attempt
being rejected.

10000

max_pool_size Maximum number of JDBC
connections allowed per user. If
the number is reached, attempts
to read from the database will fail
for the current user.

64

max_num_users Maximum number of active,
signed in users to allow. If this
number is reached, the graph
server will reject login attempts.

512

max_num_token_refresh Maximum amount of times a
token can be automatically
refreshed before requiring a login
again.

24

To configure the refresh time on the client side before token expiration, use the following API
to login:

int refreshTimeBeforeTokenExpiry = 900; // in seconds, default is 1800 (30 minutes)
ServerInstance instance = GraphServer.getInstance("https://localhost:7007", "<database
user>", "<database password>",
 refreshTimeBeforeTokenExpiry);

Note:

The preceding options work only if the realm implementation is configured to be
oracle.pg.identity.DatabaseRealm.

• Customizing Roles and Permissions
You can fully customize the permissions to roles mapping by adding and removing roles
and specifying permissions for a role. You can also authorize individual users instead of
roles.

Chapter 4
User Authentication and Authorization

4-19

4.2.8.1 Customizing Roles and Permissions
You can fully customize the permissions to roles mapping by adding and removing
roles and specifying permissions for a role. You can also authorize individual users
instead of roles.

This topic includes examples of how to customize the permission mapping.

• Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by
modifying the authorization list.

• Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for
individual users.

• Defining Permissions to Use Custom Graph Algorithms
You can define permissions to allow developers to compile custom graph
algorithms.

4.2.8.1.1 Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by modifying
the authorization list.

For example:

CREATE ROLE MY_CUSTOM_ROLE_1
GRANT PGX_SESSION_CREATE TO MY_CUSTOM_ROLE1
GRANT PGX_SERVER_GET_INFO TO MY_CUSTOM_ROLE1
GRANT MY_CUSTOM_ROLE1 TO SCOTT

4.2.8.1.2 Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for individual
users.

For example:

GRANT PGX_SESSION_CREATE TO SCOTT
GRANT PGX_SERVER_GET_INFO TO SCOTT

4.2.8.1.3 Defining Permissions to Use Custom Graph Algorithms
You can define permissions to allow developers to compile custom graph algorithms.

For example,

• Add the following static permission to the list of permissions:

GRANT PGX_SESSION_COMPILE_ALGORITHM TO GRAPH_DEVELOPER

Chapter 4
User Authentication and Authorization

4-20

4.2.9 Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the database
or revoke the corresponding roles from the user, depending on how you defined the access
rules in your pgx.conf file.

For example:

REVOKE graph_developer FROM scott

Revoking Graph Permissions

If you have the MANAGE permission on a graph, you can revoke graph access from users or
roles using the PgxGraph#revokePermission API. For example:

PgxGraph g = ...
g.revokePermission(new PgxRole("GRAPH_DEVELOPER")) // revokes previously
granted role access
g.revokePermission(new PgxUser("SCOTT")) // revokes previously granted user
access

4.2.10 Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

• Example 4-1

• Example 4-2

• Example 4-3

Example 4-1 Allowing Developers to Publish Graphs

Sharing of graphs with other users should be done in Oracle Database where possible. Use
GRANT statements on the database tables so that other users can create graphs from the
tables. If the graph is in the Property Graph schema use the OPG_APIS.GRANT_ACCESS
API to share the graph.

In the in-memory graph server you can use the following permissions to share a graph that is
already in memory, with other users connected to the graph server.

Table 4-3 Allowed Permissions

Permission Actions Enabled by this Permission

READ • READ the graph via the PGX API or in PGQL
queries in PGX, create a subgraph, or clone
the graph

MANAGE • Publish the graph or snapshot

• Includes READ and EXPORT

• Grant or revoke READ and EXPORT
permissions on the graph

EXPORT • Export the graph to a file.

• Includes READ permission.

Chapter 4
User Authentication and Authorization

4-21

The creator of the graph automatically gets the MANAGE permission granted on the
graph. If you have the MANAGE permission, you can grant other roles or users READ
or EXPORT permission on the graph. You cannot grant MANAGE on a graph. The
following example of a user named userA shows how:

import oracle.pgx.api.*
import oracle.pgx.common.auth.*

PgxSession session = GraphServer.getInstance("<base-url>", "<userA>",
"<password-of-userA").createSession("userA")
PgxGraph g = session.readGraphWithProperties("examples/sample-
graph.json", "sample-graph")
g.grantPermission(new PgxRole("GRAPH_DEVELOPER"),
PgxResourcePermission.READ)
g.publish()

Now other users with the GRAPH_DEVELOPER role can access this graph and have
READ access on it, as shown in the following example of userB:

PgxSession session = GraphServer.getInstance("<base-url>", "<userB>",
"<password-of-userB").createSession("userB")
PgxGraph g = session.getGraph("sample-graph")
g.queryPgql("select count(*) from match (v)").print().close()

Similarly, graphs can be shared with individual users instead of roles, as shown in the
following example:

g.grantPermission(new PgxUser("OTHER_USER"),
PgxResourcePermission.EXPORT)

where OTHER_USER is the user name of the user that will receive the EXPORT
permission on graph g.

Example 4-2 Allowing Developers to Access Preloaded Graphs

To allow developers to access preloaded graphs (graphs loaded during graph server
startup), grant the read permission on the preloaded graph in the pgx.conf file. For
example:

"preload_graphs": [{
 "path": "/data/my-graph.json",
 "name": "global_graph"
}],
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "global_graph"
 "grant": "read"
 },
...

You can grant READ, EXPORT, or MANAGE permission.

Chapter 4
User Authentication and Authorization

4-22

Example 4-3 Allowing Developers Access to the Hadoop Distributed Filesystem
(HDFS) or the Local File System

To allow developers to read files from HDFS, you must first declare the HDFS directory and
then map it to a read or write permission. For example:

CREATE OR REPLACE DIRECTORY pgx_file_location AS 'hdfs:/data/graphs'
GRANT READ ON DIRECTORY pgx_file_location TO GRAPH_DEVELOPER

Similarly, you can add another permission with GRANT WRITE to allow write access. Such a
write access is required in order to export graphs.

Access to the local file system (where the graph server runs) can be granted the same way.
The only difference is that location would be an absolute file path without the hdfs: prefix.
For example:

CREATE OR REPLACE DIRECTORY pgx_file_location AS '/opt/oracle/graph/data'

Note that in addition to the preceding configuration, the operating system user that runs the
graph server process must have the corresponding directory privileges to actually read or
write into those directories.

4.2.11 Kerberos Enabled Authentication
The graph server (PGX) can authenticate users using an Oracle Database with Kerberos
enabled as identity provider.

Note:

Kerberos Authentication is not supported in the Graph Visualization Application.

You can log into the graph server using a Kerberos ticket and the actions which you are
allowed to do on the graph server are determined by the roles that have been granted to you
in the Oracle Database.

• Prerequisite Requirements

• Prepare the Graph Server for Kerberos Authentication

• Login to the Graph Server Using Kerberos Ticket

4.2.11.1 Prerequisite Requirements
In order to enable Kerberos authentication on the in-memory graph server (PGX), the
following system requirements must be met:

• The database needs to have Kerberos authentication enabled. See Configuring Kerberos
Authentication for more information.

• Both the database and the Kerberos Authentication Server need to be reachable from the
host where the graph server runs.

Chapter 4
User Authentication and Authorization

4-23

• The database is prepared for graph server authentication. That is, relevant graph
roles have been granted to users who will log into the graph server.

4.2.11.2 Prepare the Graph Server for Kerberos Authentication
The following are the steps to enable Kerberos authentication on the in-memory graph
server (PGX):

1. Locate the pgx.conf file of your installation.

Note:

If you installed the graph server via RPM, the file is located at: /etc/
oracle/graph/pgx.conf

2. Locate the krb5_conf_file line of the realm options, inside the pgx.conf file:

"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 ...
 "krb5_conf_file": "<REPLACE-WITH-KRB5-CONF-FILE-PATH-TO-ENABLE-
KERBEROS-AUTHENTICATION>",
 "krb5_ticket_cache_dir": "/dev/shm",
 "krb5_max_cache_size": 1024
 }
},

3. Replace the text with the krb5.conf file that you are using for the database and
user authentication. For example:

"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 ...
 "krb5_conf_file": "/etc/krb5.conf",
 "krb5_ticket_cache_dir": "/dev/shm",
 "krb5_max_cache_size": 1024
 }
},

Note:

The file provided for the krb5_conf_file option needs to be valid and
readable by the graph server. In case you don't replace the
krb5_conf_file value or the value is empty, then the graph server will
not use Kerberos authentication.

Also, you can set the cache directory that will be used for the graph server to
temporarily store Kerberos tickets given by clients as well as the maximum cache

Chapter 4
User Authentication and Authorization

4-24

size after which new login attempts will be rejected. The cache size represents the
maximum amount of concurrent Kerberos sessions active on the graph server.

4.2.11.3 Login to the Graph Server Using Kerberos Ticket
The following are the steps to login to the in-memory graph server (PGX) using Kerberos
ticket:

1. Create a new Kerberos ticket using the okinit command:

$ okinit <username>

This will prompt for your password and then create a new Kerberos ticket.

2. Connect to a remote graph server with only the base URL parameter using JShell:

$ opg4j -b https://localhost:7007

Or using Python client:

$ opg4py -b https://localhost:7007

On Linux, JShell and Python interactive client shells automatically detect the Kerberos
ticket on your local file system and use that to authenticate with the graph server.

3. In case the auto-detection is not working, you can also explicitly pass in the ticket to the
shell. Run the oklist command, to find the location of the ticket on the local file system.

$ oklist

Kerberos Utilities for Linux: Version 19.0.0.0.0 - Production on 31-
MAR-2021 15:26:46

Copyright (c) 1996, 2019 Oracle. All rights reserved.

Configuration file : /etc/krb5.conf.
Ticket cache: FILE:/tmp/krb5cc_54321
Default principal: oracle@realm

4. Specify your Kerberos ticket path using the --kerberos_ticket parameter. For example,
using JShell:

$ opg4j -b https://localhost:7007 --kerberos_ticket /tmp/krb5cc_54321

Or using Python Client:

$ opg4py -b https://localhost:7007 --kerberos_ticket /tmp/krb5cc_54321

Chapter 4
User Authentication and Authorization

4-25

If you are using a Java client program (or JShell on embedded mode), you can get
a server instance using the following API:

...
ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "/tmp/krb5cc_54321");
PgxSession session = instance.createSession("my-session");
...

If you are using a Python Client program (or opg4py on embedded mode), you can
get a server instance using the following API

...
instance = graph_server.get_instance("https://localhost:7007",
"/tmp/krb5cc_54321")
session = instance.create_session("my-session")
...

If you are connecting to a remote graph server, all you need is the Oracle Graph
Client to be installed. For example:

import sys
import pypgx as pgx

sys.path.append("/path/to/graph/client/oracle-graph-client-21.2.0/
python/pypgx/pg/rdbms")

import graph_server

base_url = "https://localhost:7007"
kerberos_ticket = "/tmp/krb5cc_54321"

instance = graph_server.get_instance(base_url, kerberos_ticket)
print(instance)

4.3 About Vertex and Edge IDs
Generating vertex and edge IDs when loading from database tables into PGX

PGX enforces by default the existence of a unique identifier for each vertex and edge
in a graph, so that they can be retrieved by using PgxGraph.getVertex(ID id) and
PgxGraph.getEdge(ID id) or by PGQL queries using the built-in id() method.

The ID generation strategies can be selected through the configuration parameters
vertex_id_strategy and edge_id_strategy.

Using keys to generate IDs

The default strategy to generate the vertex IDs is to use the keys provided during
loading of the graph (keys_as_ids). In that case, each vertex should have a vertex key
that is unique across all providers.

Chapter 4
About Vertex and Edge IDs

4-26

For edges, by default no keys are required in the edge data, and edge IDs will be
automatically generated by PGX (unstable_generated_ids). Note that the generation of
edge IDs is not guaranteed to be deterministic. If required, it is also possible to load edge
keys as IDs.

The partitioned_ids strategy requires keys to be unique only within a vertex or edge
provider (data source). The keys do not have to be globally unique. Globally unique IDs are
derived from a combination of the provider name and the key inside the provider, as
<provider_name>(<unique_key_within_provider>). For example, Account(1).

The partititioned_ids strategy can be set through the configuration fields
vertex_id_strategy and edge_id_strategy. For example,

{
 "name": "bank_graph_analytics",
 "optimized_for": "updates",
 "vertex_id_strategy" : "partitioned_ids",
 "edge_id_strategy" : "partitioned_ids",
 "vertex_providers": [
 {
 "name": "Accounts",
 "format": "rdbms",
 "database_table_name": "BANK_NODES",
 "key_column": "ID",
 "key_type": "integer",
 "props": [
 {
 "name": "keyProp",
 "type": "long",
 "column": 1
 },
 {
 "name": "number",
 "type": "long",
 "column": 2
 }
],
 "loading": {
 "create_key_mapping" : true
 }
 }
],
 "edge_providers": [
 {
 "name": "Transfers",
 "format": "rdbms",
 "database_table_name": "BANK_EDGES_AMT",
 "key_column": "ID",
 "source_column": "SRC_ID",
 "destination_column": "DEST_ID",
 "source_vertex_provider": "Accounts",
 "destination_vertex_provider": "Accounts",
 "props": [
 {
 "name": "keyProp",

Chapter 4
About Vertex and Edge IDs

4-27

 "type": "long",
 "column": 1
 },
 {
 "name": "amount",
 "type": "double",
 "column": 4
 }
],
 "loading": {
 "create_key_mapping" : true
 }
 }
]
}

Note:

All available key types are supported in combination with partitioned IDs.

After the graph is loaded, PGX maintains information about which property of a
provider corresponds to the key of the provider. In the preceding example, the vertex
property keyProp happens to correspond to the vertex key ("column": 1) and also the
edge property keyProp happens to correspond to the edge key (again, "column": 1).
Each provider can have at most one such "key property" and the property can have
any name.

Key properties are used for internal optimizations as well as for providing keys for the
vertex or edge or both when inserting new entities. Key properties are currently non-
updatable. Trying to update a key property will result in an error. For example,

vertex key property ID cannot be updated

Using an auto-incrementer to generate IDs

It is recommended to always set create_key_mapping to true to benefit from
performance optimizations. But if there are no single-column keys for edges,
create_key_mapping can be set to false. Similarly, create_key_mapping can be set to
false for vertex providers also. IDs will be generated via an auto-incrementer, for
example Accounts(1), Accounts(2), Accounts(3).

4.4 Keeping the Graph in Oracle Database Synchronized
with the Graph Server

You can use the FlashbackSynchronizer API to automatically apply changes made to
graph in the database to the corresponding PgxGraph object in memory, thus keeping
both synchronized.

This API uses Oracle's Flashback Technology to fetch the changes in the database
since the last fetch and then push those changes into the graph server using the
ChangeSet API. After the changes are applied, the usual snapshot semantics of the

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

4-28

graph server apply: each delta fetch application creates a new in-memory snapshot. Any
queries or algorithms that are executing concurrently to snapshot creation are unaffected by
the changes until the corresponding session refreshes its PgxGraph object to the latest state
by calling the session.setSnapshot(graph, PgxSession.LATEST_SNAPSHOT) procedure.

For detailed information about Oracle Flashback technology, see the Database Development
Guide.

Prerequisites for Synchronizing

The Oracle database must have Flashback enabled and the database user that you use to
perform synchronization must have:

• Read access to all tables which need to be kept synchronized.

• Permission to use flashback APIs. For example:

GRANT EXECUTE ON DBMS_FLASHBACK TO <user>

The database must also be configured to retain changes for the amount of time needed by
your use case.

Types of graphs that can be synchronized

Not all PgxGraph objects in PGX can be synchronized. The following limitations apply:

• Only the original creator of the graph can synchronize it. That is, the current user must
have the MANAGE permission of the graph.

• Only graphs loaded from database tables ("partitioned graphs") can be synchronized.
Graphs created from other formats or graphs created via the graph builder API cannot be
synchronized.

• Only the latest snapshot of a graph can be synchronized.

Types of changes that can be synchronized

The synchronizer supports keeping the in-memory graph snapshot in sync with the following
database-side modifications:

• insertion of new vertices and edges

• removal of existing vertices and edges

• update of property values of any vertex or edge

The synchronizer does not support schema-level changes to the input graph, such as:

• alteration of the list of input vertex or edge tables

• alteration of any columns of any input tables (vertex or edge tables)

Furthermore, the synchronizer does not support updates to vertex and edge keys.

For detailed examples, see the following topic:

• Examples of Synchronizing

4.4.1 Examples of Synchronizing
You can perform your graph synchronization using the following examples:

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

4-29

• Example 4-4

• Example 4-5

Example 4-4 Synchronizing Graphs Using CREATE PROPERTY GRAPH Statement

1. Assume you have the following Oracle Database tables, PERSONS and
FRIENDSHIPS.

CREATE TABLE persons (
 person_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1),
 name VARCHAR2(200),
 birthdate DATE,
 height FLOAT DEFAULT on null 0,
 CONSTRAINT person_pk PRIMARY KEY (person_id)
);

CREATE TABLE friendships (
 friendship_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1),
 person_a NUMBER,
 person_b NUMBER,
 meeting_date DATE,
 CONSTRAINT fk_person_a_id FOREIGN KEY (person_a) REFERENCES
persons(person_id),
 CONSTRAINT fk_person_b_id FOREIGN KEY (person_b) REFERENCES
persons(person_id)
 CONSTRAINT fs_pk PRIMARY KEY (friendship_id)
);

2. You can add some sample data into these tables as shown:

INSERT INTO persons (name, height, birthdate) VALUES ('John', 1.80,
to_date('13/06/1963', 'DD/MM/YYYY'));
INSERT INTO persons (name, height, birthdate) VALUES ('Mary', 1.65,
to_date('25/09/1982', 'DD/MM/YYYY'));
INSERT INTO persons (name, height, birthdate) VALUES ('Bob', 1.75,
to_date('11/03/1966', 'DD/MM/YYYY'));
INSERT INTO persons (name, height, birthdate) VALUES ('Alice',
1.70, to_date('01/02/1987', 'DD/MM/YYYY'));

INSERT INTO friendships (person_a, person_b, meeting_date) VALUES
(1, 3, to_date('01/09/1972', 'DD/MM/YYYY'));
INSERT INTO friendships (person_a, person_b, meeting_date) VALUES
(2, 4, to_date('19/09/1992', 'DD/MM/YYYY'));
INSERT INTO friendships (person_a, person_b, meeting_date) VALUES
(4, 2, to_date('19/09/1992', 'DD/MM/YYYY'));
INSERT INTO friendships (person_a, person_b, meeting_date) VALUES
(3, 2, to_date('10/07/2001', 'DD/MM/YYYY'));

3. Write the corresponding CREATE PROPERTY GRAPH statement which describes how
to load those tables as a graph as shown in the following Java code example:

session.executePgql(
 "CREATE PROPERTY GRAPH friends VERTEX TABLES ("

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

4-30

 + " persons KEY (person_id) LABEL person PROPERTIES
(name,height,birthdate)"
 + ")"
 + "EDGE TABLES ("
 + " friendships "
 + " KEY (friendship_id) "
 + " SOURCE KEY (person_a) REFERENCES persons "
 + " DESTINATION KEY (person_b) REFERENCES persons "
 + " LABEL friendof PROPERTIES (meeting_date)"
 + ")"
);
PgxGraph graph = session.getGraph("friends");

This creates a snapshot of the graph which is loaded into memory. You can now run
algorithms and queries on the graph.

4. Now change the data in the input tables in the database. For example, add new persons
to the PERSONS table and also add another edge.
You can open a new JDBC connection to the database and run a few INSERT
statements as shown in the following code:

Connection conn = DriverManager.getConnection("<jdbc-url>", "<user>",
"<pass>");
conn.createStatement().executeQuery("INSERT INTO persons(name, birthdate,
height) VALUES ('Mariana',to_date('21/08/1996','DD/MM/YYYY'),1.65)");
conn.createStatement().executeQuery("INSERT INTO persons (name,
birthdate, height) VALUES ('Francisco',to_date('13/06/1963','DD/MM/
YYYY'),1.75)");
conn.createStatement().executeQuery("INSERT INTO friendships (person_a,
person_b, meeting_date) VALUES (1, 6, to_date('13/06/2013','DD/MM/
YYYY'))");
conn.commit();

Committing the changes to the database causes the graph in memory to became out of
sync with the database source tables.

5. You can synchronize the in-memory graph with the database by creating a new
synchronizer object as shown in the following code:

Synchronizer synchronizer = new
Synchronizer.Builder<FlashbackSynchronizer>()
 .setType(FlashbackSynchronizer.class)
 .setGraph(graph)
 .setConnection(conn)
 .build();

Internally, the graph server keeps track of the Oracle system change number (SCN) the
current graph snapshot belongs to. The synchronizer is a client-side component which
connects to the database, detects changes by comparing state of the the original input
tables using the current SCN via the flashback mechanism and then sends any changes
to the graph server using the changeset API. In order to do so, the synchronizer needs to
know how to connect to the database (conn parameter) as well as which graph to keep in
sync (graph parameter).

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

4-31

• Alternatively, you can use this equivalent shortcut:

Synchronizer synchronizer =
graph.createSynchronizer(FlashbackSynchronizer.class, conn);

6. Call the sync() operation, to fetch the database changes and create a new in-
memory snapshot:

graph = synchronizer.sync();

You will notice that the two new vertices and the new edge have been applied to
the graph:

graph ==> PgxGraph[name=FRIENDS,N=6,E=5,created=1594754376861]

Splitting the Fetching and Applying of Changes

The synchronizer.sync() invocation in the preceding code, fetches the changes
and applies them in one call. However, you can encode a more complex update
logic by splitting this process into separate fetch() and apply() invocations. For
example:

synchronizer.fetch() // fetches changes from the database
if (synchronizer.getGraphDelta().getTotalNumberOfChanges() > 100)
{ // only create snapshot if there have been more than 100 changes
 synchronizer.apply()
}

Example 4-5 Synchronizing Graphs Created Via Graph Configuration Objects

Example 4-4 uses a CREATE PROPERTY GRAPH statement to create the graph which
hides some of the more advanced graph configuration options.

Though synchronization of graphs created via graph configuration objects is supported
in general, the following few limitations apply:

• Only partitioned graph configurations with all providers being database tables are
supported.

• Each edge or vertex provider or both must specify the owner of the table by setting
the username field. For example, if user SCOTT owns the table, then set the
username accordingly in the provider block of that table:

"username": "scott"

• In the root loading block, the snapshot source must be set to change_set:

"loading": {
 "snapshots_source": "change_set"
}

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

4-32

• It is highly recommended to set the "optimized_for" field to "updates" to avoid memory
exhaustion when creating many snapshots:

"optimized_for": "updates"

You can load the same graph shown in Example 4-4 using the following graph configuration
(JSON) file:

{
 "name": "friends",
 "optimized_for": "updates",
 "vertex_id_strategy": "partitioned_ids",
 "edge_id_strategy": "partitioned_ids",
 "edge_id_type": "long",
 "vertex_id_type": "long",
 "jdbc_url": "<jdbc_url>",
 "username": "<username>",
 "keystore_alias": "<keystore_alias>",
 "vertex_providers": [
 {
 "format": "rdbms",
 "username": "<username>",
 "key_type": "long",
 "name": "person",
 "database_table_name": "persons",
 "key_column": "person_id",
 "props": [
 ...
],
 "loading": {
 "create_key_mapping": true
 }
 }
],
 "edge_providers": [
 {
 "format": "rdbms",
 "username": "<username>",
 "name": "friendOf",
 "source_vertex_provider": "person",
 "destination_vertex_provider": "person",
 "database_table_name": "friendships",
 "source_column": "person_a",
 "destination_column": "person_b",
 "key_column": "friendship_id",
 "key_type":"long",
 "props": [
 ...
],
 "loading": {
 "create_key_mapping": true
 }
 }
],
 "loading": {

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

4-33

 "snapshots_source": "change_set"
 }
}

Note:

• In the preceding JSON file, replace the values <jdbc_url>, <username>,
and <keystore_alias> with the values for connecting to your database.

• When using the graph configuration file, you can load the graph into
memory using JShell (be sure to register the keystore containing the
database password when starting it) :

var pgxGraph =
session.readGraphWithProperties("<name_of_config_file>.json"
);

4.5 Optimizing Graphs for Read Versus Updates in the In-
Memory Graph Server (PGX)

The in-memory graph server (PGX) can store an optimized graph for other reads or
updates. This is only relevant when the updates are made directly to a graph instance
in the in-memory graph server.

Graph Optimized for Reads

Graphs optimized for reads will provide the best performance for graph analytics and
PGQL queries. In this case there could be potentially higher latencies to update the
graph (adding or removing vertex and edges or updating the property values of
previously existing vertex or edges through GraphChangeSet API). There could also be
higher memory consumption. When using graphs optimized for reads, each updated
graph or graph snapshot consumes memory proportional to the size of the graph in
terms of vertices and edges.

The optimized_for configuration property can be set to reads when loading the graph
into the in-memory graph server (PGX) to create a graph instance that is optimized for
reads.

Graph Optimized for Updates

Graphs optimized for updates use a representation enabling low-latency update of
graphs. With this representation, the graph server can reach millisecond-scale
latencies when updating graphs with millions of vertices and edges (this is indicative
and will vary depending on the hardware configuration).

To achieve faster update operations, graph server avoids as much as possible doing a
full duplication of the previous graph (snapshot) to create a new graph (snapshot).
This also improves the memory consumption (in typical scenarios). New snapshots (or
new graphs) will only consume additional memory proportional to the memory required
for the changes applied.

Chapter 4
Optimizing Graphs for Read Versus Updates in the In-Memory Graph Server (PGX)

4-34

In this representation, there could be lower performance of graph queries and analytics.

The optimized_for configuration property can be set to updates when loading the graph into
the in-memory graph server (PGX) to create a graph instance that is optimized for reads.

4.6 Storing a Graph Snapshot on Disk
After reading a graph into memory using either Java or the Shell, if you make some changes
to the graph such as running the PageRank algorithm and storing the values as vertex
properties, you can store this snapshot of the graph on disk.

This is helpful if you want to save the state of the graph in memory, such as if you must shut
down the in-memory graph server to migrate to a newer version, or if you must shut it down
for some other reason.

(Storing graphs over HTTP/REST is currently not supported.)

A snapshot of a graph can be saved as a file in a binary format (called a PGB file) if you want
to save the state of the graph in memory, such as if you must shut down the in-memory graph
server to migrate to a newer version, or if you must shut it down for some other reason.

In general, we recommend that you store the graph queries and analytics APIs that had been
executed, and that after the in-memory graph server has been restarted, you reload and re-
execute the APIs. But if you must save the state of the graph, you can use the logic in the
following example to save the graph snapshot from the shell.

In a three-tier deployment, the file is written on the server-side file system. You must also
ensure that the file location to write is specified in the in-memory graph server. (As explained
in Three-Tier Deployments of Oracle Graph with Autonomous Database, in a three-tier
deployment, access to the PGX server file system requires a list of allowed locations to be
specified.)

opg4j> var graph =
session.createGraphBuilder().addVertex(1).addVertex(2).addVertex(3).addEdge(1
,2).addEdge(2,3).addEdge(3, 1).build()
graph ==> PgxGraph[name=anonymous_graph_1,N=3,E=3,created=1581623669674]

opg4j> analyst.pagerank(graph)
$3 ==> VertexProperty[name=pagerank,type=double,graph=anonymous_graph_1]

// Now save the state of this graph

opg4j> g.store(Format.PGB, "/tmp/snapshot.pgb")
$4 ==> {"edge_props":[],"vertex_uris":["/tmp/snapshot.pgb"],"loading":
{},"attributes":{},"edge_uris":[],"vertex_props":
[{"name":"pagerank","dimension":0,"type":"double"}],"error_handling":
{},"vertex_id_type":"integer","format":"pgb"}

// reload from disk
opg4j> var graphFromDisk = session.readGraphFile("/tmp/snapshot.pgb")
graphFromDisk ==> PgxGraph[name=snapshot,N=3,E=3,created=1581623739395]

// previously computed properties are still part of the graph and can be
queried
opg4j> graphFromDisk.queryPgql("select x.pagerank match (x)").print().close()

Chapter 4
Storing a Graph Snapshot on Disk

4-35

The following example is essentially the same as the preceding one, but it uses
partitioned graphs. Note that in the case of partitioned graphs, multiple PGB files are
being generated, one for each vertex/edge partition in the graph.

opg4j> analyst.pagerank(graph)
$3 ==>
VertexProperty[name=pagerank,type=double,graph=anonymous_graph_1]//
store graph including all props to disk
// Now save the state of this graph
opg4j> var storedPgbConfig = g.store(ProviderFormat.PGB, "/tmp/
snapshot")
$4 ==> {"edge_props":[],"vertex_uris":["/tmp/snapshot.pgb"],"loading":
{},"attributes":{},"edge_uris":[],"vertex_props":
[{"name":"pagerank","dimension":0,"type":"double"}],"error_handling":
{},"vertex_id_type":"integer","format":"pgb"}
// Reload from disk
opg4j> var graphFromDisk =
session.readGraphWithProperties(storedPgbConfig)
graphFromDisk ==> PgxGraph[name=snapshot,N=3,E=3,created=1581623739395]
// Previously computed properties are still part of the graph and can
be queried
opg4j> graphFromDisk.queryPgql("select x.pagerank match
(x)").print().close()

4.7 Executing Built-in Algorithms
The in-memory graph server (PGX) contains a set of built-in algorithms that are
available as Java APIs.

The following table provides an overview of the available algorithms, grouped by
category.

Note:

These algorithms can be invoked through the Analyst interface. See the
Analyst Class in Javadoc for more details.

Table 4-4 Overview of Built-In Algorithms

Category Algorithms

Classic graph algorithms Prim's Algorithm

Community detection Conductance Minimization (Soman and Narang Algorithm),
Infomap, Label Propagation, Louvain

Connected components Strongly Connected Components, Weakly Connected
Components (WCC)

Link predition WTF (Whom To Follow) Algorithm

Matrix factorization Matrix Factorization

Other Graph Traversal Algorithms

Chapter 4
Executing Built-in Algorithms

4-36

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Analyst.html

Table 4-4 (Cont.) Overview of Built-In Algorithms

Category Algorithms

Path finding All Vertices and Edges on Filtered Path, Bellman-Ford Algorithms,
Bidirectional Dijkstra Algorithms, Compute Distance Index,
Compute High-Degree Vertices, Dijkstra Algorithms, Enumerate
Simple Paths, Fast Path Finding, Fattest Path, Filtered Fast Path
Finding, Hop Distance Algorithms

Ranking and walking Closeness Centrality Algorithms, Degree Centrality Algorithms,
Eigenvector Centrality, Hyperlink-Induced Topic Search (HITS),
PageRank Algorithms, Random Walk with Restart, Stochastic
Approach for Link-Structure Analysis (SALSA) Algorithms, Vertex
Betweenness Centrality Algorithms

Structure evaluation Adamic-Adar index, Bipartite Check, Conductance, Cycle
Detection Algorithms, Degree Distribution Algorithms, Eccentricity
Algorithms, K-Core, Local Clustering Coefficient (LCC),
Modularity, Partition Conductance, Reachability Algorithms,
Topological Ordering Algorithms, Triangle Counting Algorithms

This following topics describe the use of the in-memory graph server (PGX) using Triangle
Counting and PageRank analytics as examples.

• About Built-In Algorithms in the In-Memory Graph Server (PGX)

• Running the Triangle Counting Algorithm

• Running the PageRank Algorithm

4.7.1 About Built-In Algorithms in the In-Memory Graph Server (PGX)
The in-memory graph server (PGX) contains a set of built-in algorithms that are available as
Java APIs. The details of the APIs are documented in the Javadoc that is included in the
product documentation library. Specifically, see the BuiltinAlgorithms interface Method
Summary for a list of the supported in-memory analyst methods.

For example, this is the PageRank procedure signature:

/**
 * Classic pagerank algorithm. Time complexity: O(E * K) with E = number of edges, K
is a given constant (max
 * iterations)
 *
 * @param graph
 * graph
 * @param e
 * maximum error for terminating the iteration
 * @param d
 * damping factor
 * @param max
 * maximum number of iterations
 * @return Vertex Property holding the result as a double
 */
 public <ID extends Comparable<ID>> VertexProperty<ID, Double> pagerank(PgxGraph
graph, double e, double d, int max);

Chapter 4
Executing Built-in Algorithms

4-37

4.7.2 Running the Triangle Counting Algorithm
For triangle counting, the sortByDegree boolean parameter of countTriangles()
allows you to control whether the graph should first be sorted by degree (true) or not
(false). If true, more memory will be used, but the algorithm will run faster; however,
if your graph is very large, you might want to turn this optimization off to avoid running
out of memory.

Using the Shell to Run Triangle Counting

opg4j> analyst.countTriangles(graph, true)
==> 1

Using Java to Run Triangle Counting

import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
long triangles = analyst.countTriangles(graph, true);

The algorithm finds one triangle in the sample graph.

Tip:

When using the graph shell, you can increase the amount of log output
during execution by changing the logging level. See information about
the :loglevel command with :h :loglevel.

4.7.3 Running the PageRank Algorithm
PageRank computes a rank value between 0 and 1 for each vertex (node) in the graph
and stores the values in a double property. The algorithm therefore creates a vertex
property of type double for the output.

In the in-memory graph server (PGX), there are two types of vertex and edge
properties:

• Persistent Properties: Properties that are loaded with the graph from a data
source are fixed, in-memory copies of the data on disk, and are therefore
persistent. Persistent properties are read-only, immutable and shared between
sessions.

• Transient Properties: Values can only be written to transient properties, which
are private to a session. You can create transient properties by calling
createVertexProperty and createEdgeProperty on PgxGraph objects, or by
copying existing properties using clone() on Property objects.

Transient properties hold the results of computation by algorithms. For example,
the PageRank algorithm computes a rank value between 0 and 1 for each vertex
in the graph and stores these values in a transient property named pg_rank.
Transient properties are destroyed when the Analyst object is destroyed.

This example obtains the top three vertices with the highest PageRank values. It uses
a transient vertex property of type double to hold the computed PageRank values. The

Chapter 4
Executing Built-in Algorithms

4-38

PageRank algorithm uses the following default values for the input parameters: error
(tolerance = 0.001), damping factor = 0.85, and maximum number of iterations = 100.

Using the Shell to Run PageRank

opg4j> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
==> ...
opg4j> rank.getTopKValues(3)
==> 128=0.1402019732468347
==> 333=0.12002296283541904
==> 99=0.09708583862990475

Using Java to Run PageRank

import java.util.Map.Entry;
import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
VertexProperty<Integer, Double> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
for (Entry<Integer, Double> entry : rank.getTopKValues(3)) {
 System.out.println(entry.getKey() + "=" + entry.getValue());
}

4.8 Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java and have it
automatically compiled to an efficient parallel implementation.

For more detailed information that appears in the following subtopics, see the PGX Algorithm
Specification.

• Writing a Custom PGX Algorithm

• Compiling and Running a PGX Algorithm

• Example Custom PGX Algorithm: PageRank

4.8.1 Writing a Custom PGX Algorithm
A PGX algorithm is a regular .java file with a single class definition that is annotated with
@GraphAlgorithm. For example:

import oracle.pgx.algorithm.annotations.GraphAlgorithm;

@GraphAlgorithm
public class MyAlgorithm {
 ...
}

A PGX algorithm class must contain exactly one public method which will be used as entry
point. The class may contain any number of private methods.

For example:

import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.GraphAlgorithm;

Chapter 4
Using Custom PGX Graph Algorithms

4-39

https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf
https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf

import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class MyAlgorithm {
 public int myAlgorithm(PgxGraph g, @Out VertexProperty<Integer>
distance) {
 System.out.println("My first PGX Algorithm program!");

 return 42;
 }
}

As with normal Java methods, a PGX algorithm method only supports primitive data
types as return values (an integer in this example). More interesting is the @Out
annotation, which marks the vertex property distance as output parameter. The caller
passes output parameters by reference. This way, the caller has a reference to the
modified property after the algorithm terminates.

• Collections

• Iteration

• Reductions

4.8.1.1 Collections
To create a collection you call the .create() function. For example, a
VertexProperty<Integer> is created as follows:

VertexProperty<Integer> distance = VertexProperty.create();

To get the value of a property at a certain vertex v:

distance.get(v);

Similarly, to set the property of a certain vertex v to a value e:

distance.set(v, e);

You can even create properties of collections:

VertexProperty<VertexSequence> path = VertexProperty.create();

However, PGX Algorithm assignments are always by value (as opposed to by
reference). To make this explicit, you must call .clone() when assigning a collection:

VertexSequence sequence = path.get(v).clone();

Chapter 4
Using Custom PGX Graph Algorithms

4-40

Another consequence of values being passed by value is that you can check for equality
using the == operator instead of the Java method .equals(). For example:

PgxVertex v1 = G.getRandomVertex();
PgxVertex v2 = G.getRandomVertex();
System.out.println(v1 == v2);

4.8.1.2 Iteration
The most common operations in PGX algorithms are iterations (such as looping over all
vertices, and looping over a vertex's neighbors) and graph traversal (such as breath-first/
depth-first). All collections expose a forEach and forSequential method by which you can
iterate over the collection in parallel and in sequence, respectively.

For example:

• To iterate over a graph's vertices in parallel:

G.getVertices().forEach(v -> {
 ...
});

• To iterate over a graph's vertices in sequence:

G.getVertices().forSequential(v -> {
 ...
});

• To traverse a graph's vertices from r in breadth-first order:

import oracle.pgx.algorithm.Traversal;

Traversal.inBFS(G, r).forward(n -> {
 ...
});

Inside the forward (or backward) lambda you can access the current level of the BFS (or
DFS) traversal by calling currentLevel().

4.8.1.3 Reductions
Within these parallel blocks it is common to atomically update, or reduce to, a variable
defined outside the lambda. These atomic reductions are available as methods on
Scalar<T>: reduceAdd, reduceMul, reduceAnd, and so on. For example, to count the
number of vertices in a graph:

public int countVertices() {
 Scalar<Integer> count = Scalar.create(0);

 G.getVertices().forEach(n -> {
 count.reduceAdd(1);
 });

Chapter 4
Using Custom PGX Graph Algorithms

4-41

 return count.get();
}

Sometimes you want to update multiple values atomically. For example, you might
want to find the smallest property value as well as the vertex whose property value
attains this smallest value. Due to the parallel execution, two separate reduction
statements might get you in an inconsistent state.

To solve this problem the Reductions class provides argMin and argMax functions. The
first argument to argMin is the current value and the second argument is the potential
new minimum. Additionally, you can chain andUpdate calls on the ArgMinMax object to
indicate other variables and the values that they should be updated to (atomically). For
example:

VertexProperty<Integer> rank = VertexProperty.create();
int minRank = Integer.MAX_VALUE;
PgxVertex minVertex = PgxVertex.NONE;

G.getVertices().forEach(n ->
 argMin(minRank, rank.get(n)).andUpdate(minVertex, n)
);

4.8.2 Compiling and Running a PGX Algorithm
To be able to compile and run a custom PGX algorithm, you must perform several
actions:

1. Set two configuration parameters in the conf/pgx.conf file:

• Set the graph_algorithm_language option to JAVA.

• Set the java_home_dir option to the path to your Java home (use <system-
java-home-dir> to have PGX infer Java home from the system properties).

{
 "graph_algorithm_language": "JAVA",
 "java_home_dir": "<system-java-home-dir>"
}

2. Create a session (either implicitly in the shell or explicitly in Java). For example:

cd $PGX_HOME
./bin/opg4j

3. Compile a PGX Algorithm. For example:

myAlgorithm = session.compileProgram("/path/to/MyAlgorithm.java")

4. Run the algorithm. For example:

graph = session.readGraphWithProperties("/path/to/config.edge.json")
property = graph.createVertexProperty(PropertyType.INTEGER)
myAlgorithm.run(graph, property)

Chapter 4
Using Custom PGX Graph Algorithms

4-42

4.8.3 Example Custom PGX Algorithm: PageRank
The following is an implementation of pagerank as a PGX algorithm:

import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.Scalar;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class Pagerank {
 public void pagerank(PgxGraph G, double tol, double damp, int max_iter,
boolean norm, @Out VertexProperty<Double> rank) {
 Scalar<Double> diff = Scalar.create();
 int cnt = 0;
 double N = G.getNumVertices();

 rank.setAll(1 / N);
 do {
 diff.set(0.0);
 Scalar<Double> dangling_factor = Scalar.create(0d);

 if (norm) {
 dangling_factor.set(damp / N * G.getVertices().filter(v ->
v.getOutDegree() == 0).sum(rank::get));
 }

 G.getVertices().forEach(t -> {
 double in_sum = t.getInNeighbors().sum(w -> rank.get(w) /
w.getOutDegree());
 double val = (1 - damp) / N + damp * in_sum + dangling_factor.get();
 diff.reduceAdd(Math.abs(val - rank.get(t)));
 rank.setDeferred(t, val);
 });
 cnt++;
 } while (diff.get() > tol && cnt < max_iter);
 }
}

4.9 Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory. You can use
filter expressions or create bipartite subgraphs based on a vertex (node) collection that
specifies the left set of the bipartite graph.

For information about reading a graph into memory, see Loading a Graph Into the Graph
Server (PGX) for the various methods to load a graph into the in-memory graph server
(PGX).

• About Filter Expressions

• Using a Simple Filter to Create a Subgraph

Chapter 4
Creating Subgraphs

4-43

• Using a Complex Filter to Create a Subgraph

• Using a Vertex Set to Create a Bipartite Subgraph

4.9.1 About Filter Expressions
Filter expressions are expressions that are evaluated for each edge. The expression
can define predicates that a vertex or an edge must fulfil to be contained in the result,
in this case a subgraph.

Consider an example graph that consists of four vertices (nodes) and four edges. For
an edge to match the filter expression src.prop == 10, the source vertex prop
property must equal 10. Two edges match that filter expression, as shown in the
following figure.

Figure 4-5 Edges Matching src.prop == 10

The following figure shows the graph that results when the filter is applied.

Chapter 4
Creating Subgraphs

4-44

Figure 4-6 Graph Created by the Simple Filter

The vertex filter src.prop == 10 filters out the edges associated with vertex 333 and the
vertex itself.

4.9.2 Using a Simple Filter to Create a Subgraph
The following examples create the subgraph described in About Filter Expressions.

Using the Shell to Create a Subgraph

subgraph = graph.filter(new VertexFilter("vertex.prop == 10"))

Using Java to Create a Subgraph

import oracle.pgx.api.*;
import oracle.pgx.api.filter.*;

PgxGraph graph = session.readGraphWithProperties(...);
PgxGraph subgraph = graph.filter(new VertexFilter("vertex.prop == 10"));

4.9.3 Using a Complex Filter to Create a Subgraph
This example uses a slightly more complex filter. It uses the outDegree function, which
calculates the number of outgoing edges for an identifier (source src or destination dst). The
following filter expression matches all edges with a cost property value greater than 50 and a
destination vertex (node) with an outDegree greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in the following figure.

Chapter 4
Creating Subgraphs

4-45

Figure 4-7 Edges Matching the outDegree Filter

The following figure shows the graph that results when the filter is applied. The filter
excludes the edges associated with the vertices 99 and 1908, and so excludes those
vertices also.

Figure 4-8 Graph Created by the outDegree Filter

4.9.4 Using a Vertex Set to Create a Bipartite Subgraph
You can create a bipartite subgraph by specifying a set of vertices (nodes), which are
used as the left side. A bipartite subgraph has edges only between the left set of
vertices and the right set of vertices. There are no edges within those sets, such as
between two nodes on the left side. In the in-memory graph server (PGX), vertices that
are isolated because all incoming and outgoing edges were deleted are not part of the
bipartite subgraph.

Chapter 4
Creating Subgraphs

4-46

The following figure shows a bipartite subgraph. No properties are shown.

The following examples create a bipartite subgraph from the simple graph shown in About
Filter Expressions. They create a vertex collection and fill it with the vertices for the left side.

Using the Shell to Create a Bipartite Subgraph

opg4j> s = graph.createVertexSet()
==> ...
opg4j> s.addAll([graph.getVertex(333), graph.getVertex(99)])
==> ...
opg4j> s.size()
==> 2
opg4j> bGraph = graph.bipartiteSubGraphFromLeftSet(s)
==> PGX Bipartite Graph named sample-sub-graph-4

Using Java to Create a Bipartite Subgraph

import oracle.pgx.api.*;

VertexSet<Integer> s = graph.createVertexSet();
s.addAll(graph.getVertex(333), graph.getVertex(99));
BipartiteGraph bGraph = graph.bipartiteSubGraphFromLeftSet(s);

When you create a subgraph, the in-memory graph server (PGX) automatically creates a
Boolean vertex (node) property that indicates whether the vertex is on the left side. You can
specify a unique name for the property.

The resulting bipartite subgraph looks like this:

Chapter 4
Creating Subgraphs

4-47

Vertex 1908 is excluded from the bipartite subgraph. The only edge that connected
that vertex extended from 128 to 1908. The edge was removed, because it violated
the bipartite properties of the subgraph. Vertex 1908 had no other edges, and so was
removed as well.

4.10 Using Automatic Delta Refresh to Handle Database
Changes

You can automatically refresh (auto-refresh) graphs periodically to keep the in-memory
graph synchronized with changes to the property graph stored in the property graph
tables in Oracle Database (VT$ and GE$ tables).

Note that the auto-refresh feature is not supported when loading a graph into PGX in
memory directly from relational tables.

• Configuring the In-Memory Server for Auto-Refresh

• Configuring Basic Auto-Refresh

• Reading the Graph Using the In-Memory Graph Server (PGX) or a Java
Application

• Checking Out a Specific Snapshot of the Graph

• Advanced Auto-Refresh Configuration

• Special Considerations When Using Auto-Refresh

4.10.1 Configuring the In-Memory Server for Auto-Refresh
Because auto-refresh can create many snapshots and therefore may lead to a high
memory usage, by default the option to enable auto-refresh for graphs is available only
to administrators.

To allow all users to auto-refresh graphs, you must include the following line into the
in-memory graph server (PGX) configuration file (located in $ORACLE_HOME/md/
property_graph/pgx/conf/pgx.conf):

{
 "allow_user_auto_refresh": true
}

Chapter 4
Using Automatic Delta Refresh to Handle Database Changes

4-48

4.10.2 Configuring Basic Auto-Refresh
Auto-refresh is configured in the loading section of the graph configuration. The example in
this topic sets up auto-refresh to check for updates every minute, and to create a new
snapshot when the data source has changed.

The following block (JSON format) enables the auto-refresh feature in the configuration file of
the sample graph:

{
 "format": "pg",
 "jdbc_url": "jdbc:oracle:thin:@mydatabaseserver:1521/dbName",
 "username": "scott",
 "password": "<password>",
 "name": "my_graph",
 "vertex_props": [{
 "name": "prop",
 "type": "integer"
 }],
 "edge_props": [{
 "name": "cost",
 "type": "double"
 }],
 "separator": " ",
 "loading": {
 "auto_refresh": true,
 "update_interval_sec": 60
 },
}

Notice the additional loading section containing the auto-refresh settings. You can also use
the Java APIs to construct the same graph configuration programmatically:

GraphConfig config = GraphConfigBuilder.forPropertyGraphRdbms()
 .setJdbcUrl("jdbc:oracle:thin:@mydatabaseserver:1521/dbName")
 .setUsername("scott")
 .setPassword("<password>")
 .setName("my_graph")
 .addVertexProperty("prop", PropertyType.INTEGER)
 .addEdgeProperty("cost", PropertyType.DOUBLE)
 .setAutoRefresh(true)
 .setUpdateIntervalSec(60)
 .build();

4.10.3 Reading the Graph Using the In-Memory Graph Server (PGX) or a
Java Application

After creating the graph configuration, you can load the graph into the in-memory graph
server (PGX) using the regular APIs.

opg4j> G = session.readGraphWithProperties("graphs/my-config.pg.json")

Chapter 4
Using Automatic Delta Refresh to Handle Database Changes

4-49

After the graph is loaded, a background task is started automatically, and it periodically
checks the data source for updates.

4.10.4 Checking Out a Specific Snapshot of the Graph
The database is queried every minute for updates. If the graph has changed in the
database after the time interval passed, the graph is reloaded and a new snapshot is
created in-memory automatically.

You can "check out" (move a pointer to a different version of) the available in-memory
snapshots of the graph using the getAvailableSnapshots() method of PgxSession.
Example output is as follows:

opg4j> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0,
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20
10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3,
dataSourceVersion=1452083654000, creationRequestTimestamp=1453314938744
(2016-01-20 10:35:38.744), creationTimestamp=1453314938833 (2016-01-20
10:35:38.833), vertexIdType=integer, edgeIdType=long]

The preceding example output contains two entries, one for the originally loaded graph
with 4 vertices and 4 edges, and one for the graph created by auto-refresh with 5
vertices and 5 edges.

To check out out a specific snapshot of the graph, use the setSnapshot() methods
of PgxSession and give it the creationTimestamp of the snapshot you want to load.

For example, if G is pointing to the newer graph with 5 vertices and 5 edges, but you
want to analyze the older version of the graph, you need to set the snapshot
to 1453315122685. In the graph shell:

opg4j> G.getNumVertices()
==> 5
opg4j> G.getNumEdges()
==> 5

opg4j> session.setSnapshot(G, 1453315122685)
==> null

opg4j> G.getNumVertices()
==> 4
opg4j> G.getNumEdges()
==> 4

You can also load a specific snapshot of a graph directly using
the readGraphAsOf() method of PgxSession. This is a shortcut for loading a graph
with readGraphWithProperty() followed by a setSnapshot(). For example:

opg4j> G = session.readGraphAsOf(config, 1453315122685)

Chapter 4
Using Automatic Delta Refresh to Handle Database Changes

4-50

If you do not know or care about what snapshots are currently available in-memory, you can
also specify a time span of how “old” a snapshot is acceptable by specifying a maximum
allowed age. For example, to specify a maximum snapshot age of 60 minutes, you can use
the following:

opg4j> G = session.readGraphWithProperties(config, 60l, TimeUnit.MINUTES)

If there are one or more snapshots in memory younger (newer) than the specified maximum
age, the youngest (newest) of those snapshots will be returned. If all the available snapshots
are older than the specified maximum age, or if there is no snapshot available at all, then a
new snapshot will be created automatically.

4.10.5 Advanced Auto-Refresh Configuration
You can specify advanced options for auto-refresh configuration.

Internally, the in-memory graph server (PGX) fetches the changes since the last check from
the database and creates a new snapshot by applying the delta (changes) to the previous
snapshot. There are two timers: one for fetching and caching the deltas from the database,
the other for actually applying the deltas and creating a new snapshot.

Additionally, you can specify a threshold for the number of cached deltas. If the number of
cached changes grows above this threshold, a new snapshot is created automatically. The
number of cached changes is a simple sum of the number of vertex changes plus the number
of edge changes.

The deltas are fetched periodically and cached on the in-memory graph server for two
reasons:

• To speed up the actual snapshot creation process

• To account for the case that the database can "forget" changes after a while

You can specify both a threshold and an update timer, which means that both conditions will
be checked before new snapshot is created. At least one of these parameters (threshold or
update timer) must be specified to prevent the delta cache from becoming too large. The
interval at which the source is queried for changes must not be omitted.

The following parameters show a configuration where the data source is queried for new
deltas every 5 minutes. New snapshots are created every 20 minutes or if the cached deltas
reach a size of 1000 changes.

{
 "format": "pg",
 "jdbc_url": "jdbc:oracle:thin:@mydatabaseserver:1521/dbName",
 "username": "scott",
 "password": "<your_password>",
 "name": "my_graph",

 "loading": {
 "auto_refresh": true,
 "fetch_interval_sec": 300,
 "update_interval_sec": 1200,
 "update_threshold": 1000,
 "create_edge_id_index": true,
 "create_edge_id_mapping": true

Chapter 4
Using Automatic Delta Refresh to Handle Database Changes

4-51

 }
}

4.10.6 Special Considerations When Using Auto-Refresh
This section explains a few special considerations when you enable auto-refresh for
graphs in the in-memory graph server (PGX):

• If you call graph.destroy(), auto-refresh does not immediately stop.
It only stops once the graph is actually freed from the server memory.

This happens when all the following conditions are true:

1. No other session is referencing that graph.

2. PGX consumes more than release_memory_threshold memory.
release_memory_threshold is a pgx.conf option that defaults to 85% of
available system memory.

3. The PGX "garbage collector" has been run.
memory_cleanup_interval is a pgx.conf option which defaults to once every
10 minutes.

• If you configure the graph to be loaded with auto-refresh, you cannot omit the jdbc
url, username and keystore parameters from the graph configuration file since
auto-refreshed graphs are not "user bound". You cannot obtain the connection
settings from the user who initiated it.

4.11 Starting the In-Memory Graph Server (PGX)
This section describes the commands to start and stop the in-memory graph
server(PGX).

A preconfigured version of Apache Tomcat is bundled, which allows you to start the in-
memory graph server (PGX) by running a script.

As a prerequisite to start the graph server in remote mode, you must ensure that
Oracle graph server is installed in your system. See Installing Oracle Graph Server for
instructions to install the graph server (PGX).

Note:

See Usage Modes of the In-memory Graph Server (PGX) for more
information on the different graph server execution modes.

• Starting and Stopping the Graph Server (PGX) Using the Command Line

• Configuring the In-Memory Graph Server (PGX)

4.11.1 Starting and Stopping the Graph Server (PGX) Using the
Command Line

PGX is integrated with systemd to run it as a Linux service in the background.

Chapter 4
Starting the In-Memory Graph Server (PGX)

4-52

If you need to configure the server before starting it, see Configuring the In-Memory Graph
Server (PGX) and Configuration Parameters for the Graph Server (PGX) Engine for more
information on the configuration options.

The commands to start and stop the graph server (PGX) and the PGX engine are as follows:

Note:

You can run the following commands without sudo if you are the root user.

To start the PGX server as a daemon process, run the following command:

sudo systemctl start pgx

To stop the server, run the following command:

sudo systemctl stop pgx

If the server does not start up, you can see if there are any errors by running:

journalctl -u pgx.service

For more information about how to interact with systemd on Oracle Linux, see the Oracle
Linux administrator's documentation.

4.11.2 Configuring the In-Memory Graph Server (PGX)
You can configure the in-memory graph server (PGX) by modifying the /etc/oracle/graph/
server.conf file. The following table shows the valid configuration options, which can be
specified in JSON format.

Table 4-5 Configuration Parameters for the In-Memory Graph Server (PGX)

Parameter Type Description Default

ca_certs array of
string

List of files storing trusted
certificates (PEM format). If
enable_tls is set to false,
this field has no effect.

[]

Chapter 4
Starting the In-Memory Graph Server (PGX)

4-53

Table 4-5 (Cont.) Configuration Parameters for the In-Memory Graph Server (PGX)

Parameter Type Description Default

ciphers array of
string

List of cipher suites to be
used by the server. For
example, [cipher1, cipher2.]

["TLS_ECDHE_ECDSA_WITH_AES_128_
GCM_SHA256",
"TLS_ECDHE_ECDSA_WITH_AES_256_G
CM_SHA384",
"TLS_ECDHE_RSA_WITH_AES_128_GCM
_SHA256",
"TLS_ECDHE_RSA_WITH_AES_256_GCM
_SHA384",
"TLS_ECDHE_ECDSA_WITH_AES_128_C
BC_SHA256",
"TLS_ECDHE_RSA_WITH_AES_128_CBC
_SHA256",
"TLS_ECDHE_ECDSA_WITH_AES_256_C
BC_SHA384",
"TLS_ECDHE_RSA_WITH_AES_256_CBC
_SHA384",
"TLS_DHE_RSA_WITH_AES_128_GCM_S
HA256",
"TLS_DHE_DSS_WITH_AES_128_GCM_S
HA256",
"TLS_DHE_RSA_WITH_AES_128_CBC_S
HA256",
"TLS_DHE_DSS_WITH_AES_128_CBC_S
HA256",
"TLS_DHE_DSS_WITH_AES_256_GCM_S
HA384",
"TLS_DHE_RSA_WITH_AES_256_CBC_S
HA256",
"TLS_DHE_DSS_WITH_AES_256_CBC_S
HA256",
"TLS_ECDHE_ECDSA_WITH_AES_128_C
BC_SHA",
"TLS_ECDHE_RSA_WITH_AES_256_CBC
_SHA",
"TLS_ECDHE_ECDSA_WITH_AES_256_C
BC_SHA",
"TLS_DHE_DSS_WITH_AES_128_CBC_S
HA",
"TLS_DHE_RSA_WITH_AES_128_CBC_S
HA",
"TLS_DHE_DSS_WITH_AES_256_CBC_S
HA",
"TLS_DHE_RSA_WITH_AES_256_CBC_S
HA",
"TLS_RSA_WITH_AES_128_GCM_SHA25
6",
"TLS_DH_DSS_WITH_AES_128_GCM_SH
A256",
"TLS_ECDH_ECDSA_WITH_AES_128_GC
M_SHA256",
"TLS_RSA_WITH_AES_256_GCM_SHA38
4",
"TLS_DH_DSS_WITH_AES_256_GCM_SH

Chapter 4
Starting the In-Memory Graph Server (PGX)

4-54

Table 4-5 (Cont.) Configuration Parameters for the In-Memory Graph Server (PGX)

Parameter Type Description Default

A384",
"TLS_ECDH_ECDSA_WITH_AES_256_GC
M_SHA384",
"TLS_RSA_WITH_AES_128_CBC_SHA25
6",
"TLS_DH_DSS_WITH_AES_128_CBC_SH
A256",
"TLS_ECDH_ECDSA_WITH_AES_128_CB
C_SHA256",
"TLS_RSA_WITH_AES_256_CBC_SHA25
6",
"TLS_DH_DSS_WITH_AES_256_CBC_SH
A256",
"TLS_ECDH_ECDSA_WITH_AES_256_CB
C_SHA384",
"TLS_RSA_WITH_AES_128_CBC_SHA",
"TLS_DH_DSS_WITH_AES_128_CBC_SH
A",
"TLS_ECDH_ECDSA_WITH_AES_128_CB
C_SHA",
"TLS_RSA_WITH_AES_256_CBC_SHA",
"TLS_DH_DSS_WITH_AES_256_CBC_SH
A",
"TLS_ECDH_ECDSA_WITH_AES_256_CB
C_SHA"]

context_pat
h

string This can be used to change
the context path. For
example, if you specify port
as 7007 and context path
as /pgx, the server will listen
on https://
localhost:7007/pgx

/

enable_tls boolean If true, the server enables
transport layer security (TLS).

true

port integer Port the graph server (PGX)
server should listen on.

7007

Chapter 4
Starting the In-Memory Graph Server (PGX)

4-55

Table 4-5 (Cont.) Configuration Parameters for the In-Memory Graph Server (PGX)

Parameter Type Description Default

server_cert string The path to the server
certificate to be presented to
TLS clients (PEM format).

N

o

t

e

:

T
h
i
s
f
i
l
e
m
u
s
t
o
n
l
y
c
o
n
t
a
i
n
o
n
e
c
e
r
t
i
f
i
c
a
t
e
.
I

NULL

Chapter 4
Starting the In-Memory Graph Server (PGX)

4-56

Table 4-5 (Cont.) Configuration Parameters for the In-Memory Graph Server (PGX)

Parameter Type Description Default

f
y
o
u
r
c
e
r
t
i
f
i
c
a
t
e
i
s
a
c
h
a
i
n
a
n
d
c
o
n
t
a
i
n
s
a
r
o
o
t
c
e
r
t
i
f
i
c
a
t
e
,
a

Chapter 4
Starting the In-Memory Graph Server (PGX)

4-57

Table 4-5 (Cont.) Configuration Parameters for the In-Memory Graph Server (PGX)

Parameter Type Description Default

d
d
i
t
t
o
c
a
_
c
e
r
t
s
i
n
s
t
e
a
d
.

If enable_tls is set to
false, this field has no effect

server_priv
ate_key

string This is the path to the file
storing the private key of the
server (PEM format). For
security reasons, the file must
have only Read and Write
permissions only for the
owner (600 permissions in a
POSIX filesystem), otherwise
an error will be thrown. If
enable_tls is set to false,
this field has no effect

NULL

tls_version string TLS version to be used by the
server. For example,
TLSv1.2

TLSv1.2

working_dir string The working directory used
by the server to store
temporary files. Needs to be
writeable by the process
which started the server and
should not be touched by any
other process while the
server is running.

The in-memory graph server (PGX) enables two-way SSL/TLS (Transport Layer
Security) by default. The server enforces TLS 1.2 and disables certain cipher suites
known to be vulnerable to attacks. Upon a TLS handshake, both the server and the

Chapter 4
Starting the In-Memory Graph Server (PGX)

4-58

client present certificates to each other, which are used to validate the authenticity of the
other party. Client certificates are also used to authorize client applications.

The following is an example server.conf configuration file:

{
 "port": 7007,
 "enable_tls": true,
 "server_cert": "server_cert.pem",
 "server_private_key": "server_key.pem",
 "ca_certs": [
 "server_cert.pem"
]
 }

4.12 Connecting to the In-Memory Graph Server (PGX)
This section explains how to connect to the in-memory graph server (PGX) running in remote
mode or when deployed as a web application on Apache Tomcat or Oracle WebLogic Server.

The prerequisite requirement to connect to the graph server is to have the in-memory graph
server (PGX) up and running. See Starting and Stopping the Graph Server (PGX) Using the
Command Line for more information on the commands to start the graph server.

Note:

If you are using the graph server (PGX) as a library, see Using Graph Server (PGX)
as a Library for more information.

• Connecting with the Graph Shell

• Connecting with Java

• Connecting with Python

4.12.1 Connecting with the Graph Shell
The simplest way to connect to a remote graph server (PGX) instance is to specify the base
URL of the server along with the database user name required for the graph server (PGX)
authentication as shown:

cd $PGX_HOME
./bin/opg4j --base_url https://<host>:<port> --username <graphuser>

where :

• <host>: is the server host name

• <port>: is the server port

• <graphuser>: is the database user

Chapter 4
Connecting to the In-Memory Graph Server (PGX)

4-59

Note:

You will be prompted for the database password.

See User Authentication and Authorization for more information.

However, the in-memory graph server (PGX), currently does not provide remote
support for the Admin API.

About Logging HTTP Requests

The graph shell suppresses all debugging messages by default. To see which HTTP
requests are executed, set the log level for oracle.pgx to DEBUG, as shown in this
example:

Note:

Enabling these logs can lead to sensitive information like passwords getting
printed on the screen.

opg4j> loglevel("oracle.pgx","DEBUG")
===> Log level of oracle.pgx logger set to DEBUG
opg4j> session.readGraphWithProperties("bank_graph_analytics.json",
"bank_graph");
06:29:03,702 DEBUG CommonsVfsProvider - resolve bank_graph_analytics.json
06:29:03,702 DEBUG AbstractConfigFactory - parse graph config from
bank_graph_analytics.json (parent: file:///opt/oracle/graph)
06:29:03,709 DEBUG RemoteUtils - create session cookie (session ID =
f5d029d7-2924-4cd4-86a9-6999c1ce5e3f)
06:29:03,713 DEBUG RemoteUtils - no value for the sticky cookie given
06:29:03,713 DEBUG RemoteUtils - create csrf token cookie (token =
36acbee2-6b78-4c13-b114-41040809833a)
06:29:03,713 DEBUG HttpRequestExecutor - Requesting POST https://localhost:7007/
core/v1/loadGraph HTTP/1.1 with payload
{"graphConfig":"HRcBVFVcO0dfXU9bUEhGEEYOdkMUElZYRFpcZgBeDxBYCxFcRGY2c21wIBUBEElAW
11HQV5vVhpYAFRIFAMbeC5+NithRx9EEkwUVRADRlFBXVhGFlBpT0ZfSEFpAlZBQ1RXG1kTKiEXSREVCU
AWU1dmElJfRlxKa11GDBJdSV1EQwMPd1paVhZfFxYXSREIB1gBEggbMEVMXEpUUV9HQUgWSV1FFVBDV01
QVg1uAApZEF4IRA9GdHdqMGhkdhseFklREBBdQ1lCCFZDaU9cSxdUGzpFF1wQD1EBQhADRnZOUVZHWllH
QUgWQVdXBVBDURsDQkFSEQBUEVY5DVAdb19YFEdEXF4QDktVDxdRUBQUBVhZV1tYSgZuFwRXCVY5CFQJV
RADRnVsfHJtcWlzJjdrbHViQxUPXVxAZhdIEwAXXxEKCVsDEh4bAlhfX1hGFhcWEQBWQEsUHGQBFE9cSx
dUGzpFF1wQD1EBQkEbXmxWEFJXTXJXDAhBQFYUWxtkchsVGw1QDgAXXxEnBVYLRVxNFxUBEFVdVUldDQM
WF0MUAktIV01cZghUGjpYBEMWD1sDEghNFkJITxUQUExAAgZVXl1pFVhPWlxmVwJcBkcPR3EnKH47fn19
IWQPHhtZUVRrFx1ESBoMQ1BDQlxeXBETT0dTCkELB0FGChBLAFVAQRtPaQEWDQVZSBoMQ1tMWFJmXhFQE
w1qBF0HCkwQWVFKRkotMjkyAElr0w==","graphName":"bank_graph","_csrf_token":"36acbee2
-6b78-4c13-b114-41040809833a"}
06:29:03,788 DEBUG HttpRequestExecutor - received HTTP status 202
06:29:03,789 DEBUG HttpRequestExecutor -
{"futureId":"7f7a2206-8881-4c1e-909f-6e8778be617c"}
06:29:03,789 DEBUG PgxRemoteFuture - Requesting GET https://localhost:7007/
core/v1/futures/x-future-id/status HTTP/1.1
06:29:03,801 DEBUG PgxRemoteFuture - Requesting GET https://localhost:7007/
core/v1/futures/x-future-id/value HTTP/1.1
06:29:03,831 DEBUG RemoteUtils - received HTTP status 201
06:29:03,831 DEBUG RemoteUtils - {"id":"8B473228-0751-49A9-
A945-9A0E4011AB69","links":[{"href":"https://localhost:7007/core/v1/graphs/x-

Chapter 4
Connecting to the In-Memory Graph Server (PGX)

4-60

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html

graph-id","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"https://localhost:7007/core/v1/graphs/x-graph-
id","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"graphName":"bank_graph","vertexTables":{"Accounts":
{"name":"Accounts","metaData":{"name":"Accounts","idType":"integer","labels":
["Accounts"],"properties":[],"edgeProviderNamesWhereSource":
["Transfers"],"edgeProviderNamesWhereDestination":
["Transfers"],"id":null,"links":null},"providerLabels":
["Accounts"],"entityKeyType":"integer","isIdentityKeyMapping":false,"vertexProperties":
{},"vertexLabels":{"id":"04156FFE-A3C1-4A6D-87E5-879A0895BBD4","links":
[{"href":"https://localhost:7007/core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"self","method":"GET","interaction":["async-polling"]},{"href":"https://
localhost:7007/core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":-1,"propertyId":"04156FFE-
A3C1-4A6D-87E5-879A0895BBD4","name":"__vertex_labels__","entityType":"vertex","type":"r
o_string_set","namespace":"2C17C639-3771-3E30-88AE-34D6B380C5EC","transient":false},"tr
ansient":false}},"edgeTables":{"Transfers":{"name":"Transfers","metaData":
{"name":"Transfers","idType":"long","directed":true,"labels":
["Transfers"],"properties":
[{"name":"AMOUNT","id":null,"propertyType":"float","dimension":0,"transient":true,"link
s":null,"propertyId":"AF2A2D0A-9C8C-478F-
BD74-3444A7DD7339"}],"sourceVertexProviderName":"Accounts","destinationVertexProviderNa
me":"Accounts","id":null,"links":null},"providerLabels":
["Transfers"],"entityKeyType":"long","isIdentityKeyMapping":true,"sourceVertexTableName
":"Accounts","destinationVertexTableName":"Accounts","edgeProperties":{"4046D845-
D0C6-4231-A69B-F69D4963CD91":{"id":"4046D845-D0C6-4231-A69B-F69D4963CD91","links":
[{"href":"https://localhost:7007/core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"self","method":"GET","interaction":["async-polling"]},{"href":"https://
localhost:7007/core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"propertyId":"4046D845-D0C6-4231-A69B-
F69D4963CD91","name":"AMOUNT","entityType":"edge","type":"float","namespace":"2C17C639-
3771-3E30-88AE-34D6B380C5EC","transient":false}},"edgeLabel":
{"id":"9763546A-1860-49A4-9292-77D2AA04F4BB","links
06:29:03,836 DEBUG PgxSession - engine reports latest snapshot is 621849 milli-seconds
old. Max age is 0 milli-seconds
06:29:03,836 DEBUG PgxSession - ==> try to check out newer snapshot
06:29:03,836 DEBUG RemoteUtils - create session cookie (session ID =
f5d029d7-2924-4cd4-86a9-6999c1ce5e3f)
06:29:03,836 DEBUG RemoteUtils - no value for the sticky cookie given
06:29:03,836 DEBUG RemoteUtils - create csrf token cookie (token = 36acbee2-6b78-4c13-
b114-41040809833a)
06:29:03,836 DEBUG HttpRequestExecutor - Requesting POST https://localhost:7007/
core/v1/graphs/x-graph-id/refresh HTTP/1.1 with payload
{"blockIfFull":false,"_csrf_token":"36acbee2-6b78-4c13-b114-41040809833a"}
06:29:03,878 DEBUG HttpRequestExecutor - received HTTP status 202
06:29:03,878 DEBUG HttpRequestExecutor - {"futureId":"898d546e-583f-4d37-9ca9-
d1e10134037f"}
06:29:04,135 DEBUG PgxRemoteFuture - Requesting GET https://localhost:7007/core/v1/
futures/x-future-id/status HTTP/1.1
06:29:04,828 DEBUG PgxRemoteFuture - Requesting GET https://localhost:7007/core/v1/
futures/x-future-id/value HTTP/1.1
06:29:04,858 DEBUG RemoteUtils - received HTTP status 201
06:29:04,859 DEBUG RemoteUtils - {"id":"BE960B34-E135-4CF8-AB2F-E1A6E2D7DB60","links":
[{"href":"https://localhost:7007/core/v1/graphs/x-graph-
id","rel":"self","method":"GET","interaction":["async-polling"]},{"href":"https://
localhost:7007/core/v1/graphs/x-graph-
id","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"graphName":"bank_graph","vertexTables":{"Accounts":
{"name":"Accounts","metaData":{"name":"Accounts","idType":"integer","labels":

Chapter 4
Connecting to the In-Memory Graph Server (PGX)

4-61

["Accounts"],"properties":[],"edgeProviderNamesWhereSource":
["Transfers"],"edgeProviderNamesWhereDestination":
["Transfers"],"id":null,"links":null},"providerLabels":
["Accounts"],"entityKeyType":"integer","isIdentityKeyMapping":false,"vertexProper
ties":{},"vertexLabels":{"id":"19D95502-40D5-47F2-9F45-B1CD09ECB989","links":
[{"href":"https://localhost:7007/core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"https://localhost:7007/core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":-1,"propertyId":"19D95502-40D5-47F2-9F45-
B1CD09ECB989","name":"__vertex_labels__","entityType":"vertex","type":"ro_string_
set","namespace":"2C17C639-3771-3E30-88AE-34D6B380C5EC","transient":false},"trans
ient":false}},"edgeTables":{"Transfers":{"name":"Transfers","metaData":
{"name":"Transfers","idType":"long","directed":true,"labels":
["Transfers"],"properties":
[{"name":"AMOUNT","id":null,"propertyType":"float","dimension":0,"transient":true
,"links":null,"propertyId":"9A49BC0C-F8AA-465A-B8D6-
CA5A92BAE2C9"}],"sourceVertexProviderName":"Accounts","destinationVertexProviderN
ame":"Accounts","id":null,"links":null},"providerLabels":
["Transfers"],"entityKeyType":"long","isIdentityKeyMapping":true,"sourceVertexTab
leName":"Accounts","destinationVertexTableName":"Accounts","edgeProperties":
{"FED6FE43-D311-46B6-9A5A-E8DC0D7B56C6":{"id":"FED6FE43-D311-46B6-9A5A-
E8DC0D7B56C6","links":[{"href":"https://localhost:7007/core/v1/graphs/x-graph-id/
properties/x-property-name","rel":"self","method":"GET","interaction":["async-
polling"]},{"href":"https://localhost:7007/core/v1/graphs/x-graph-id/
properties/x-property-name","rel":"canonical","method":"GET","interaction":
["async-polling"]}],"dimension":0,"propertyId":"FED6FE43-D311-46B6-9A5A-
E8DC0D7B56C6","name":"AMOUNT","entityType":"edge","type":"float","namespace":"2C1
7C639-3771-3E30-88AE-34D6B380C5EC","transient":false}},"edgeLabel":
{"id":"371D2AC6-4EC5-45AD-8885-B3590F56D944","links
$5 ==> PgxGraph[name=bank_graph,N=1000,E=5001,created=1621160944599]

4.12.2 Connecting with Java
You can obtain a connection to a remote graph server (PGX) instance by simply
passing the base URL of the remote PGX instance to the getInstance() method. By
doing this, your application automatically uses the PGX client libraries to connect to a
remotely-located graph server (PGX).

You can specify the base URL when you initialize the in-memory graph server (PGX)
instance using Java. An example is as follows. A URL to an in-memory graph server
(PGX) is provided to the getInMemAnalyst API call.

import oracle.pgx.api.*;
import oracle.pg.rdbms.api.*;
ServerInstance instance = GraphServer.getInstance("https://
<hostname>:<port>","<username>","<password>".toCharArray());
PgxSession session = instance.createSession("my-session");

• Starting and Stopping the PGX Engine

4.12.2.1 Starting and Stopping the PGX Engine
You can start the graph server (PGX) from the application by making a call to
instance.startEngine() which takes a JSON object as an argument for PGX
configuration.

Chapter 4
Connecting to the In-Memory Graph Server (PGX)

4-62

Note:

• See Connecting with Java for more information about connecting to a graph
server (PGX) instance and obtaining a ServerInstance object.

• See Configuration Parameters for the Graph Server (PGX) Engine for the
various configuration options for the graph server (PGX).

Stopping the PGX Engine

You can stop the PGX engine using one of the following APIs:

instance.shutdownEngineNow(); // cancels pending tasks, throws exception if
engine is not running
instance.shutdownEngineNowIfRunning(); // cancels pending tasks, only tries
to shut down if engine is running
if (instance.shutdownEngine(30, TimeUnit.SECONDS) == false) {
 // doesn't accept new tasks but finishes up remaining tasks
 // pending tasks didn't finish after 30 seconds
}

Note:

Shutting down the PGX engine keeps the Apache Tomcat server alive, but new
sessions cannot be created. Also, all the current sessions and tasks will be
cancelled and terminated.

4.12.3 Connecting with Python
You can connect to a remote graph server (PGX) instance in your Python program. You must
first authenticate with the remote server before you can create a session as illustrated in the
following example:

import pypgx as pgx
import pypgx.pg.rdbms.graph_server as graph_server

base_url = "https://localhost:7007"
username = "scott"
password = "tiger"

instance = graph_server.get_instance(base_url, username, password)
session = instance.create_session("python_pgx_client")
print(session)

To execute, save the above program into a file named program.py and run the following
command:

python3 program.py

Chapter 4
Connecting to the In-Memory Graph Server (PGX)

4-63

After successful login, you'll see the following message indicating a PGX session was
created:

PgxSession(id: 0bdd4828-c3cc-4cef-92c8-0fcd105416f0, name:
python_pgx_client)

Note:

To view the complete set of available Python APIs, see Pypgx API.

4.13 Using Graph Server (PGX) as a Library
When you utilize PGX as a library in your application, the graph server (PGX) instance
runs in the same JVM as the Java application and all requests are translated into
direct function calls instead of remote procedure invocations.

In this case, you must install the graph server (PGX) using RPM in the same machine
as the client applications. The shell executables provided by the graph server
installation helps you to launch the Java or the Python shell in an embedded server
mode. See Installing Oracle Graph Server for more information.

You can now start the Java shell without any parameters as shown:

cd /opt/oracle/graph
./bin/opg4j

You can also start the Python shell without any parameters as shown:

cd /opt/oracle/graph/
./bin/opg4py

When using Java, you can obtain a reference to the local PGX instance as shown:

import oracle.pg.rdbms.*;
...
ServerInstance instance = GraphServer.getEmbeddedInstance();

In a Python application, you can obtain a reference to the local PGX instance as
shown:

import os
os.environ["PGX_CLASSPATH"] = "/opt/oracle/graph/lib/*"
import pypgx.pg.rdbms.graph_server as graph_server
...
instance = graph_server.get_embedded_instance()

Starting the PGX Engine

PGX provides a convenience mechanism to start the PGX Engine when using the
graph server (PGX) as a library. That is, the graph server (PGX) is automatically
initialized and starts up automatically when ServerInstance.createSession() is
called the first time. This is provided that the engine is not already running at that time.

Chapter 4
Using Graph Server (PGX) as a Library

4-64

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

For this implicit initialization, PGX will configure itself with the PGX configuration file at the
default locations. If the PGX configuration file is not found, PGX will configure itself using
default parameter values as shown in Configuration Parameters for the Graph Server (PGX)
Engine.

Stopping the PGX Engine

When using the graph server (PGX) as a library, the shutdownEngine() method will be called
automatically via a JVM shutdown hook on exit. Specifically, the shutdown hook is invoked
once all the non-daemon threads of the application exit.

It is recommended that you do not terminate your PGX application forcibly with kill -9, as it
will not clear the temp directory. See tmp_dir in Configuration Parameters for the Graph
Server (PGX) Engine.

4.14 User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their PGQL queries
or custom graph algorithms, to complement built-in functions with custom requirements.

Caution:

UDFs enable running arbitrary code in the PGX server, possibly accessing sensitive
data. Additionally, any PGX session can invoke any of the UDFs that are enabled
on the PGX server. The application administrator who enables UDFs is responsible
for checking the following:

• All the UDF code can be trusted.

• The UDFs are stored in a secure location that cannot be tampered with.

Furthermore, PGX assumes UDFs to be state-less and side-effect free.

PGX supports two types of UDFs:

• Java UDFs

• JavaScript UDFs

How to Use Java UDFs

The following simple example shows how to register a Java UDF at the PGX server and
invoke it.

1. Create a class with a public static method. For example:

package my.udfs;

public class MyUdfs {
 public static String concat(String a, String b) {
 return a + b;
 }
}

Chapter 4
User-Defined Functions (UDFs) in PGX

4-65

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

2. Compile the class and compress into a JAR file. For example:

mkdir ./target
javac -d ./target *.java
cd target
jar cvf MyUdfs.jar *

3. Copy the JAR file into /opt/oracle/graph/pgx/server/lib.

4. Create a UDF JSON configuration file. For example, assume that /path/to/my/
udfs/dir/my_udfs.json contains the following:

{
 "user_defined_functions": [
 {
 "namespace": "my",
 "language": "java",
 "implementation_reference": "my.udfs.MyUdfs",
 "function_name": "concat",
 "return_type": "string",
 "arguments": [
 {
 "name": "a",
 "type": "string"
 },
 {
 "name": "b",
 "type": "string"
 }
]
 }
]
}

5. Point to the directory containing the UDF configuration file in /etc/oracle/graph/
pgx.conf. For example:

"udf_config_directory": "/path/to/my/udfs/dir/"

6. Restart the PGX server. For example:

sudo systemctl restart pgx

7. Try to invoke the UDF from within a PGQL query. For example:

graph.queryPgql("SELECT my.concat(my.concat(n.firstName, ' '),
n.lastName) FROM MATCH (n:Person)")

8. Try to invoke the UDF from within a PGX algorithm. For example:

Chapter 4
User-Defined Functions (UDFs) in PGX

4-66

Note:

For each UDF you want to use, you need to create an abstract method with the
same schema that gets annotated with the @Udf annotation.

import oracle.pgx.algorithm.annotations.Udf;
....

@GraphAlgorithm
public class MyAlogrithm {
 public void bomAlgorithm(PgxGraph g, VertexProperty<String> firstName,
VertexProperty<String> lastName, @Out VertexProperty<String> fullName) {

 ... fullName.set(v, concat(firstName.get(v), lastName.get(v))); ...

 }

 @Udf(namespace = "my")
 abstract String concat(String a, String b);
}

JavaScript UDFs

The requirements for a JavaScript UDF is as follows:

• The JavaScript source must contain all dependencies.

• The source must contain at least one valid export.

• The language parameter must be set to javascript in the UDF configuration file.

For example, consider a JavaScript source file format.js as shown:

//format.js
const fun = function(name, country) {
 if (country == null) return name;
 else return name + " (" + country + ")";
}

module.exports = {stringFormat: fun};

In order to load the UDF from format.js, the UDF configuration file will appear as follows:

{
 "namespace": "my",
 "function_name": "format",
 "language": "javascript",
 "source_location": "format.js",
 "source_function_name": "stringFormat",
 "return_type": "string",
 "arguments": [
 {

Chapter 4
User-Defined Functions (UDFs) in PGX

4-67

 "name": "name",
 "type": "string"
 },
 {
 "name": "country",
 "type": "string"
 }
]
}

Note:

In this case, since the name of the UDF and the implementing method differ,
you need to set the name of the UDF in the source_function_name field.
Also, you can provide the path of the source code file in the
source_location field.

UDF Configuration File Information

A UDF configuration file is a JSON file containing an array of
user_defined_functions. (An example of such a file is in the step to "Create a UDF
JSON configuration file" in the preceding How to Use Java UDFs subsection.)

Each user-defined function supports the fields shown in the following table.

Table 4-6 Fields for Each UDF

Field Data Type Description Required?

function_name string Name of the function used
as identifier in PGX

Required

language enum[java, javascript] Source language for he
function (java or
javascript)

Required

return_type enum[boolean, integer,
long, float, double, string]

Return type of the function Required

arguments array of object Array of arguments. For
each argument: type,
argument name, required?

[]

implementation_reference string Reference to the function
name on the classpath

null

namespace string Namespace of the function
in PGX

null

source_code string Source code of the function
provided inline

null

source_function_name string Name of the function in the
source language

null

source_location string Local file path to the
function's source code

null

All configured UDFs must be unique with regard to the combination of the following
fields:

Chapter 4
User-Defined Functions (UDFs) in PGX

4-68

• namespace

• function_name

• arguments

4.15 Using HAProxy for PGX Load Balancing and High
Availability

HAProxy is a high-performance TCP/HTTP load balancer and proxy server that allows
multiplexing incoming requests across multiple web servers.

You can use HAProxy with multiple instances of the in-memory analytics server (PGX) for
high availability. The following example uses the opg shell to connect to PGX.

The following instructions assume you have already installed and configured the in-memory
analyst server, as explained in Starting the In-Memory Graph Server (PGX).

1. If HAProxy is not already installed on Big Data Appliance or your Oracle Linux
distribution, run this command:

yum install haproxy

2. Start the PGX servers.
For example, if you want to load balance PGX across 4 nodes (such as bda02, bda03,
bda04, and bda05) in the Big Data Appliance, start PGX on each of these nodes.
Configure PGX to listen for connections on port 7007.

3. Configue HAProxy.
In this example, you will configure HAProxy to run on host bda01 and to listen for
incoming connections on port 8888. Create a new file haproxy.cfg on host bda01 with
the following content:

global
 maxconn 50000
 log /dev/log local0

defaults
 mode http
 option httplog
 log global
 option forwardfor
 timeout connect 5s
 timeout client 5s
 timeout server 5s
 balance source
 hash-type consistent

listen www
 bind :8888
 server web1 bda02:7007 check
 server web2 bda03:7007 check
 server web3 bda04:7007 check
 server web4 bda05:7007 check

Chapter 4
Using HAProxy for PGX Load Balancing and High Availability

4-69

Specifying balance source maps the clients' IP addresses to corresponding
servers' IP addresses. This is important because the PGX server relies on session
stickiness during an analytics session. (For more information about configuring
HAProxy, see the HAProxy official documentation.)

4. Start the load balancer.
Start HAProxy on bda01 by passing in configuration file that you created in the
preceding step:

haproxy -f haproxy.cfg

5. Test the load balancer.
From any host you can test connectivity to the HAProxy server by passing in the
host and port of the server running HAProxy as the base_url parameter to the opg
client shell. For example:

cd /opt/oracle/oracle-spatial-graph/property_graph
./bin/opg --base_url http://bda01:8888

Note:

The PGX in-memory state is lost if the server goes down. HAProxy will
route commands to another server, but the client must reload all graph
data.

It is recommended that you run a series of PGX commands to test session affinity.
Kill a server and restart the opg shell to confirm that HAProxy redirects the request
to a new server.

Chapter 4
Using HAProxy for PGX Load Balancing and High Availability

4-70

http://cbonte.github.io/haproxy-dconv/2.3/intro.html

5
Using the Property Graph Schema

This chapter provides conceptual and usage information about creating, storing, and working
with property graph data in an Oracle Database environment.

You can create a property graph and store it in the property graph schema in Oracle
Database in one of the following ways:

1. Use the CREATE PROPERTY GRAPH statement to create and populate these property graph
schema objects.

2. Use OPG_APIS.CREATE_PG, to create the property graph schema objects. Then load data
from the database tables into the schema objects using SQL or using the Data Access
Layer APIs. The property graph schema provides a flexible schema option for storing
your graph.

Note:

The original database tables remain as-is and the data is copied from the
original tables into the property graph schema tables.

• Property Graph Schema Objects for Oracle Database
The property graph PL/SQL and Java APIs use special Oracle Database schema objects.

• Data Access Layer

• Getting Started with Property Graphs
Follow these steps to get started with property graphs.

• Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property graph and
objects in it.

• Managing Text Indexing for Property Graph Data
Indexes in Oracle Spatial and Graph property graph support allow fast retrieval of
elements by a particular key/value or key/text pair. These indexes are created based on
an element type (vertices or edges), a set of keys (and values), and an index type.

• Access Control for Property Graph Data (Graph-Level and OLS)
Oracle Graph supports two access control and security models: graph level access
control, and fine-grained security through integration with Oracle Label Security (OLS).

• SQL-Based Property Graph Query and Analytics
You can use SQL to query property graph data in Oracle Spatial and Graph.

• Creating Property Graph Views on an RDF Graph
With Oracle Graph, you can view RDF data as a property graph to execute graph
analytics operations by creating property graph views over an RDF graph stored in
Oracle Database.

• Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

5-1

5.1 Property Graph Schema Objects for Oracle Database
The property graph PL/SQL and Java APIs use special Oracle Database schema
objects.

This topic describes objects related to the property graph schema approach to working
with graph data. It is a more flexible approach than the deprecated two-tables schema
approach described in Handling Property Graphs Using a Two-Tables Schema, which
has limitations.

Oracle Spatial and Graph lets you store, query, manipulate, and query property graph
data in Oracle Database. For example, to create a property graph named myGraph,
you can use either the Java APIs (oracle.pg.rdbms.OraclePropertyGraph) or the
PL/SQL APIs (MDSYS.OPG_APIS package).

With the PL/SQL API:

BEGIN
 opg_apis.create_pg(
 'myGraph',
 dop => 4, -- degree of parallelism
 num_hash_ptns => 8, -- number of hash partitions used to
store the graph
 tbs => 'USERS', -- tablespace
 options => 'COMPRESS=T'
);
END;
/

With the Java API:

 cfg = GraphConfigBuilder
 .forPropertyGraphRdbms()
 .setJdbcUrl("jdbc:oracle:thin:@127.0.0.1:1521:orcl")
 .setUsername("<your_user_name>")
 .setPassword("<your_password>")
 .setName("myGraph")
 .setMaxNumConnections(8)
 .setLoadEdgeLabel(false)
 .build();

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);

• Property Graph Tables (Detailed Information)

• Default Indexes on Vertex (VT$) and Edge (GE$) Tables

• Flexibility in the Property Graph Schema

5.1.1 Property Graph Tables (Detailed Information)
After a property graph is established in the database, several tables are created
automatically in the user's schema, with the graph name as the prefix and VT$ or GE$

Chapter 5
Property Graph Schema Objects for Oracle Database

5-2

as the suffix. For example, for a graph named myGraph, table myGraphVT$ is created to store
vertices and their properties (K/V pairs), and table myGraphGE$ is created to store edges
and their properties.

Additional internal tables are created with IT$ and GT$ suffixes, to store text index metadata
and graph skeleton (topological structure).

The definitions of tables myGraphVT$ and myGraphGE$ are as follows. They are important
for SQL-based analytics and SQL-based property graph query. In both the VT$ and GE$
tables, VTS, VTE, and FE are reserved columns; column SL is for the security label; and
columns K, T, V, VN, and VT together store all information about a property (K/V pair) of a
graph element. In the VT$ table, VID is a long integer for storing the vertex ID. In the GE$
table, EID, SVID, and DVID are long integer columns for storing edge ID, source (from)
vertex ID, and destination (to) vertex ID, respectively.

SQL> describe myGraphVT$
 Name Null? Type
 --- --------

 VID NOT NULL NUMBER
 K NVARCHAR2(3100)
 T NUMBER(38)
 V NVARCHAR2(15000)
 VN NUMBER
 VT TIMESTAMP(6) WITH TIME ZONE
 SL NUMBER
 VTS DATE
 VTE DATE
 FE NVARCHAR2(4000)

SQL> describe myGraphGE$
 Name Null? Type
 --- --------

 EID NOT NULL NUMBER
 SVID NOT NULL NUMBER
 DVID NOT NULL NUMBER
 EL NVARCHAR2(3100)
 K NVARCHAR2(3100)
 T NUMBER(38)
 V NVARCHAR2(15000)
 VN NUMBER
 VT TIMESTAMP(6) WITH TIME ZONE
 SL NUMBER
 VTS DATE
 VTE DATE
 FE NVARCHAR2(4000)

For simplicity, only simple graph names are allowed, and they are case insensitive.

In both the VT$ and GE$ tables, Columns K, T, V, VN, VT together store all information about
a property (K/V pair) of a graph element, while SL is used for security label, and VTS, VTE,
FE are reserved columns.

Chapter 5
Property Graph Schema Objects for Oracle Database

5-3

In the property graph schema design, a property value is stored in the VN column if
the value has numeric data type (long, int, double, float, and so on), in the VT column
if the value is a timestamp, or in the V column for Strings, boolean and other
serializable data types. For better Oracle Text query support, a literal representation of
the property value is saved in the V column even if the data type is numeric or
timestamp. To differentiate all the supported data types, an integer ID is saved in the T
column. (The possible T column integer ID values are those listed for the value_type
field in the table in Vertex File.)

The K column in both VT$ and GE$ tables stores the property key. Each edge must
have a label of String type, and the labels are stored in the EL column of the GE$
table.

The T column in both VT$ and GE$ tables is a number representing the data type of
the value of the property it describes. For example 1 means the value is a string, 2
means the value is an integer, and so on. Some T column possible values and
associated data types are as follows:

• 1: STRING

• 2: INTEGER

• 3: FLOAT

• 4: DOUBLE

• 5: DATE

• 6: BOOLEAN

• 7: LONG

• 8: SHORT

• 9: BYTE

• 10: CHAR

• 20: Spatial data (see Representing Spatial Data in a Property Graph)

To support international characters, NVARCHAR columns are used in VT$ and GE$
tables. Oracle highly recommends UTF8 as the default database character set. In
addition, the V column has a size of 15000, which requires the enabling of 32K
VARCHAR (MAX_STRING_SIZE = EXTENDED).

The VT$ table schema for storing vertices contains these columns:

• VID, a long column denoting the ID of the vertex.

• VL, a string column denoting the label of the vertex.

• K, a string column denoting the name of the property. If there is no property
associated to the vertex, the value of this column should be a whitespace.

• T, a long column denoting the type of the property.

• V, a string column denoting the value of the property as a String. If the property
type is numeric, a String format version of the value is stored in this column.
Similarly, if the property is timestamp based, a String format version of the value is
stored.

• VN, a numeric column denoting the value of a numeric property. This column
stores the property value only if the property type is numeric.

Chapter 5
Property Graph Schema Objects for Oracle Database

5-4

• VT, a timestamp with time zone column storing the value of a date time property. This
column stores the property value only if the property type is timestamp based.

• SL, a numeric column reserved for the security label set using Oracle Label Security (for
further details on using Security Labels, see Access Control for Property Graph Data
(Graph-Level and OLS)).

• VTS, a timestamp with time zone column reserved for future extensions.

• VTE, a timestamp with time zone column reserved for future extensions.

• FE, a string column reserved for future extensions.

The following example inserts rows into a table named CONNECTIONSVT$. It includes T
column values 1 through 10 (representing various data types).

INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '1-STRING', 1,
'Some String', NULL, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '2-INTEGER', 2,
NULL, 21, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '3-FLOAT', 3,
NULL, 21.5, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '4-DOUBLE', 4,
NULL, 21.5, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '5-DATE', 5, NULL,
NULL, timestamp'2018-07-20 15:32:53.991000');
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '6-BOOLEAN', 6,
'Y', NULL, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '7-LONG', 7, NULL,
42, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '8-SHORT', 8,
NULL, 10, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '9-BYTE', 9, NULL,
10, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '10-CHAR', 10,
'A', NULL, NULL);
...
UPDATE connectionsVT$ SET V = coalesce(v,to_nchar(vn),to_nchar(vt)) WHERE
vid=2001;
COMMIT;

The GE$ table schema for storing edges contains these columns:

• EID, a long column denoting the ID of the edge.

• SVID, a long column denoting the ID of the outgoing (origin) vertex.

• DVID, a long column denoting the ID of the incoming (destination) vertex.

• EL, a string column denoting the label of the edge.

• K, a string column denoting the name of the property. If there is no property associated to
the vertex, the value of this column should be a whitespace.

• T, a long column denoting the type of the property.

• V, a string column denoting the value of the property as a String. If the property type is
numeric, a String format version of the value is stored in this column. Similarly, if the
property is timestamp based, a String format version of the value is stored.

Chapter 5
Property Graph Schema Objects for Oracle Database

5-5

• VN, a numeric column denoting the value of a numeric property. This column
stores the property value only if the property type is numeric.

• VT, a timestamp with time zone column storing the value of a date time property.
This column stores the property value only if the property type is timestamp based.

• SL, a numeric column reserved for the security label set using Oracle Label
Security (for further details on using Security Labels, see Access Control for
Property Graph Data (Graph-Level and OLS)).

• VTS, a timestamp with time zone column column reserved for future extensions.

• VTE, a timestamp with time zone column reserved for future extensionss.

• FE, a string column reserved for future extensions.

In addition to the VT$ and GE$ tables, Oracle Spatial and Graph maintains other
internal tables.

An internal graph skeleton table, defined with the GT$ suffix, is used to store the
topological structure of a graph, and contains these columns:

• EID, a long column denoting the ID of the edge.

• EL, a string column denoting the label of the edge.

• SVID, a long column denoting the ID of the outgoing (origin) vertex.

• DVID, a long column denoting the ID of the incoming (destination) vertex.

• ELH, a raw column specifying the hash value of an edge label.

• ELS, a integer column specifying the edge label size with respect to total of
characters.

An internal text index metadata table, created with IT$ suffix, is used to store
metadata information on text indexes created using the Oracle Text search engine. It is
automatically populated based on the text indexes created. The IT$ table includes the
following columns for general information about a text index:

• EIN, a string column denoting the name of the text index.

• ET, a numeric column denoting the entities used to build the text index, if it is a
vertex (1) or edge (2) text index.

• IT, a numeric column denoting the type of the text index, if it is an automatic (1) or
manual (2) text index.

• SE, a numeric column denoting the search engine used to index the entities
properties (2 indicates Oracle Text).

• K, a string column denoting the property name used for text indexing.

For Oracle Text-based indexes, the following columns are used to describe the
configuration of the text index (for further details on building an Oracle Text-based
index, see Configuring Text Indexes Using Oracle Text):

• PO, a column denoting the preferred owner for the text index configuration
settings. By default, the package owner is set to MDSYS.

• DS, a string column specifying the data store used to build the text index.

• FIL, a string column specifying the filter used to build the text index.

• STR, a string column specifying the storage property used to build the text index.

• WL, a string column specifying the word list used when building the text index.

Chapter 5
Property Graph Schema Objects for Oracle Database

5-6

• SL, a string column specifying the stop list used to build the text index.

• LXR, a string column specifying the lexer used by Oracle Text during text indexing.

• OPTS, a string column specifying additional configuration options.

An internal table, defined with the SS$ suffix, is created for Oracle internal use only.

5.1.2 Default Indexes on Vertex (VT$) and Edge (GE$) Tables
For query performance, several indexes on property graph tables are created by default. The
index names follow the same convention as the table names, including using the graph name
as the prefix. For example, for the property graph myGraph, the following local (partitioned)
indexes are created:

• A unique index myGraphXQV$ on myGraphVT$(VID, K)

• A unique index myGraphXQE$ on myGraphGE$(EID, K)

• An index myGraphXSE$ on myGraphGE$(SVID, DVID, EID, VN)

• An index myGraphXDE$ on myGraphGE$(DVID, SVID, EID, VN)

5.1.3 Flexibility in the Property Graph Schema
The property graph schema design does not use a catalog or centralized repository of any
kind. Each property graph is separately stored and managed by a schema of user's choice. A
user's schema may have one or more property graphs.

This design provides considerable flexibility to users. For example:

• Users can create additional indexes as desired.

• Different property graphs can have a different set of indexes or compression options for
the base tables.

• Different property graphs can have different numbers of hash partitions.

• You can even drop the XSE$ or XDE$ index for a property graph; however, for integrity
you should keep the unique constraints.

5.2 Data Access Layer
The data access layer provides a set of Java APIs that you can use to create and drop
property graphs, add and remove vertices and edges, search for vertices and edges using
key-value pairs, create text indexes, and perform other manipulations.

For more information, see:

• Managing Text Indexing for Property Graph Data

• Using Java APIs for Property Graph Data

• Property Graph Schema Objects for Oracle Database (PL/SQL and Java APIs) and
OPG_APIS Package Subprograms (PL/SQL API).

Chapter 5
Data Access Layer

5-7

5.3 Getting Started with Property Graphs
Follow these steps to get started with property graphs.

1. The first time you use property graphs, ensure that the software is installed and
operational.

2. Interact with a graph using one or more of the following options:

• Use Java APIs in your Java application. The Java APIs can also be run in the
JShell Command line interface for prototype and demo purposes.

• Run PGQL queries:

– In the Java application, or

– In the Graph visualization interface, or

– In the SQLcl client

• Run PGQL queries and execute Java APIs in the Apache Zeppelin interpreter

• Required Privileges for Database Users
The database schema that contains the graph tables (either Property Graph
schema objects or relational tables that will be directly loaded as a graph in
memory) requires certain privileges.

Related Topics

• Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property
graph and objects in it.

5.3.1 Required Privileges for Database Users
The database schema that contains the graph tables (either Property Graph schema
objects or relational tables that will be directly loaded as a graph in memory) requires
certain privileges.

ALTER SESSION
CREATE PROCEDURE
CREATE SEQUENCE
CREATE SESSION
CREATE TABLE
CREATE TRIGGER
CREATE TYPE
CREATE VIEW

5.4 Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property graph
and objects in it.

• Overview of the Java APIs

• Parallel Loading of Graph Data

• Parallel Retrieval of Graph Data

Chapter 5
Getting Started with Property Graphs

5-8

• Using an Element Filter Callback for Subgraph Extraction

• Using Optimization Flags on Reads over Property Graph Data

• Adding and Removing Attributes of a Property Graph Subgraph

• Getting Property Graph Metadata

• Merging New Data into an Existing Property Graph

• Opening and Closing a Property Graph Instance

• Creating Vertices

• Creating Edges

• Deleting Vertices and Edges

• Reading a Graph from a Database into an Embedded In-Memory Analyst

• Specifying Labels for Vertices

• Building an In-Memory Graph

• Dropping a Property Graph

• Executing PGQL Queries

5.4.1 Overview of the Java APIs
The Java APIs that you can use for property graphs include the following:

• Oracle Graph Property Graph Java APIs

• Oracle Database Property Graph Java APIs

5.4.1.1 Oracle Graph Property Graph Java APIs
Oracle Graph property graph support provides database-specific APIs for Oracle Database.

To use the Oracle Spatial and Graph API, import the following classes into your Java
program:

import oracle.pg.common.*;
import oracle.pg.text.*;
import oracle.pg.rdbms.*;
import oracle.pg.rdbms.pgql.*;
import oracle.pgx.config.*;
import oracle.pgx.common.types.*;

To compile and run your Java applications, set your classpath to include the jar files in
<client-install-dir>/lib/.

For example:

javac -cp ".:<client-install-dir>/lib/*" Main.java
java -cp ".:<client-install-dir>/lib/*" Main

5.4.1.2 Oracle Database Property Graph Java APIs
The Oracle Database property graph Java APIs enable you to create and populate a property
graph stored in Oracle Database.

Chapter 5
Using Java APIs for Property Graph Data

5-9

To use these Java APIs, import the classes into your Java program. For example:

import oracle.pg.rdbms.*;
import java.sql.*;

5.4.2 Parallel Loading of Graph Data
A Java API is provided for performing parallel loading of graph data.

Oracle Spatial and Graph supports loading graph data into Oracle Database. Graph
data can be loaded into the property graph using the following approaches:

• Vertices and/or edges can be added incrementally using the
graph.addVertex(Object id)/graph.addEdge(Object id) APIs.

• Graph data can be loaded from a file in Oracle flat-File format in parallel using the
OraclePropertyGraphDataLoader API.

• A property graph in GraphML, GML, or GraphSON can be loaded using
GMLReader, GraphMLReader, and GraphSONReader, respectively.

This topic focuses on the parallel loading of a property graph in Oracle-defined flat file
format.

Parallel data loading provides an optimized solution to data loading where the vertices
(or edges) input streams are split into multiple chunks and loaded into Oracle
Database in parallel. This operation involves two main overlapping phases:

• Splitting. The vertices and edges input streams are split into multiple chunks and
saved into a temporary input stream. The number of chunks is determined by the
degree of parallelism specified

• Graph loading. For each chunk, a loader thread is created to process information
about the vertices (or edges) information and to load the data into the property
graph tables.

OraclePropertyGraphDataLoader supports parallel data loading using several different
options:

• JDBC-Based Data Loading

• External Table-Based Data Loading

• SQL*Loader-Based Data Loading

5.4.2.1 JDBC-Based Data Loading
JDBC-based data loading uses Java Database Connectivity (JDBC) APIs to load the
graph data into Oracle Database. In this option, the vertices (or edges) in the given
input stream will be spread among multiple chunks by the splitter thread. Each chunk
will be processed by a different loader thread that inserts all the elements in the chunk
into a temporary work table using JDBC batching. The number of splitter and loader
threads used is determined by the degree of parallelism (DOP) specified by the user.

After all the graph data is loaded into the temporary work tables, all the data stored in
the temporary work tables is loaded into the property graph VT$ and GE$ tables.

Chapter 5
Using Java APIs for Property Graph Data

5-10

The following example loads the graph data from a vertex and edge files in Oracle-defined
flat-file format using a JDBC-based parallel data loading with a degree of parallelism of 48.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFile, szOPEFile, 48 /* DOP */, 1000 /* batch
size */, true /* rebuild index flag */, "pddl=t,pdml=t" /* options */);
);

To optimize the performance of the data loading operations, a set of flags and hints can be
specified when calling the JDBC-based data loading. These hints include:

• DOP: The degree of parallelism to use when loading the data. This parameter
determines the number of chunks to generate when splitting the file as well as the
number of loader threads to use when loading the data into the property graph VT$ and
GE$ tables.

• Batch Size: An integer specifying the batch size to use for Oracle update statements in
batching mode. The default batch size used in the JDBC-based data loading is 1000.

• Rebuild index: If this flag is set to true, the data loader will disable all the indexes and
constraints defined over the property graph where the data will be loaded. After all the
data is loaded into the property graph, all the indexes and constraints will be rebuilt.

• Load options: An option (or multiple options delimited by commas) to optimize the data
loading operations. These options include:

– NO_DUP=T: Assumes the input data does not have invalid duplicates. In a valid
property graph, each vertex (edge) can at most have one value for a given property
key. In an invalid property graph, a vertex (edge) may have two or more values for a
particular key. As an example, a vertex, v, has two key/value pairs: name/"John" and
name/"Johnny" and they share the same key.

– PDML=T: Enables parallel execution for DML operations for the database session
used in the data loader. This hint is used to improve the performance of long-running
batching jobs.

– PDDL=T: Enables parallel execution for DDL operations for the database session
used in the data loader. This hint is used to improve the performance of long-running
batching jobs.

– KEEP_WORK_TABS=T: Skips cleaning and deleting the working tables after the data
loading is complete. This is for debugging use only.

– KEEP_TMP_FILES=T: Skips removing the temporary splitter files after the data
loading is complete. This is for debug only.

• Splitter Flag: An integer value defining the type of files or streams used in the splitting
phase to generate the data chunks used in the graph loading phase. The temporary files
can be created as regular files (0), named pipes (1), or piped streams (2). By default,
JDBC-based data loading uses

Piped streams to handle intermediate data chunksPiped streams are for JDBC-based
loader only. They are purely in-memory and efficient, and do not require any files created
on the operating system.

Chapter 5
Using Java APIs for Property Graph Data

5-11

Regular files consume space on the local operating system, while named pipes
appear as empty files on the local operating system. Note that not every operating
system has support for named pipes.

• Split File Prefix: The prefix used for the temporary files or pipes created when the
splitting phase is generating the data chunks for the graph loading. By default, the
prefix “OPG_Chunk” is used for regular files and “OPG_Pipe” is used for named
pipes.

• Tablespace: The name of the tablespace where all the temporary work tables will
be created.

Subtopics:

• JDBC-Based Data Loading with Multiple Files

• JDBC-Based Data Loading with Partitions

• JDBC-based Parallel Data Loading Using Fine-Tuning

JDBC-Based Data Loading with Multiple Files

JDBC-based data loading also supports loading vertices and edges from multiple files
or input streams into the database. The following code fragment loads multiple vertex
and edge files using the parallel data loading APIs. In the example, two string arrays
szOPVFiles and szOPEFiles are used to hold the input files.

 String[] szOPVFiles = new String[] {"../../data/connections-
p1.opv",
 "../../data/connections-
p2.opv"};
 String[] szOPEFiles = new String[] {"../../data/connections-
p1.ope",
 "../../data/connections-
p2.ope"};
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFiles, szOPEFiles, 48 /* DOP */,
 1000 /* batch size */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

JDBC-Based Data Loading with Partitions

When dealing with graph data from thousands to hundreds of thousands elements, the
JDBC-based data loading API allows loading the graph data in Oracle Flat file format
into Oracle Database using logical partitioning.

Each partition represents a subset of vertices (or edges) in the graph data file of size is
approximately the number of distinct element IDs in the file divided by the number of
partitions. Each partition is identified by an integer ID in the range of [0, Number of
partitions – 1].

To use parallel data loading with partitions, you must specify the total number of logical
partitions to use and the partition offset (start ID) in addition to the base parameters
used in the loadData API. To fully load a graph data file or input stream into the
database, you must execute the data loading operation as many times as the defined

Chapter 5
Using Java APIs for Property Graph Data

5-12

number of partitions. For example, to load the graph data from a file using two partitions,
there should be two data loading API calls using an offset of 0 and 1. Each call to the data
loader can be processed using multiple threads or a separate Java client on a single system
or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream) and a
single edge file (or input stream). Additionally, this option requires disabling the indices and
constraints on vertices and edges. These indices and constraints must be rebuilt after all
partitions have been loaded.

The following example loads the graph data using two partitions. Each partition is loaded by
one Java process DataLoaderWorker. To coordinate multiple workers, a coordinator process
named DataLoaderCoordinator is used. This example does the following

1. Disables all indexes and constraints,

2. Creates a temporary working table, loaderProgress, that records the data loading
progress (that is, how many workers have finished their work. All DataLoaderWorker
processes start loading data after the working table is created.

3. Increments the progress by 1.

4. Keeps polling (using the DataLoaderCoordinator process) the progress until all
DataLoaderWorker processes are done.

5. Rebuilds all indexes and constraints.

Note: In DataLoaderWorker, the flag SKIP_INDEX should be set to true and the flag
rebuildIndx should be set to false.

// start DataLoaderCoordinator, set dop = 8 and number of partitions = 2
java DataLoaderCoordinator jdbcUrl user password pg 8 2
// start the first DataLoaderWorker, set dop = 8, number of partitions = 2,
partition offset = 0
java DataLoaderWorker jdbcUrl user password pg 8 2 0
// start the first DataLoaderWorker, set dop = 8, number of partitions = 2,
partition offset = 1
java DataLoaderWorker jdbcUrl user password pg 8 2 1

The DataLoaderCoordinator first disables all indexes and constraints. It then creates a table
named loaderProgress and inserts one row with column progress = 0.

public class DataLoaderCoordinator {
 public static void main(String[] szArgs) {
 String jdbcUrl = szArgs[0];
 String user = szArgs[1];
 String password = szArgs[2];
 String graphName = szArgs[3];
 int dop = Integer.parseInt(szArgs[4]);
 int numLoaders = Integer.parseInt(szArgs[5]);

 Oracle oracle = null;
 OraclePropertyGraph opg = null;
 try {
 oracle = new Oracle(jdbcUrl, user, password);
 OraclePropertyGraphUtils.dropPropertyGraph(oracle, graphName);
 opg = OraclePropertyGraph.getInstance(oracle, graphName);

Chapter 5
Using Java APIs for Property Graph Data

5-13

 List<String> vIndices = opg.disableVertexTableIndices();
 List<String> vConstraints =
opg.disableVertexTableConstraints();
 List<String> eIndices = opg.disableEdgeTableIndices();
 List<String> eConstraints =
opg.disableEdgeTableConstraints();

 String szStmt = null;
 try {
 szStmt = "drop table loaderProgress";
 opg.getOracle().executeUpdate(szStmt);
 }
 catch (SQLException ex) {
 if (ex.getErrorCode() == 942) {
 // table does not exist. ignore
 }
 else {
 throw new OraclePropertyGraphException(ex);
 }
 }

 szStmt = "create table loaderProgress (progress integer)";
 opg.getOracle().executeUpdate(szStmt);
 szStmt = "insert into loaderProgress (progress) values (0)";
 opg.getOracle().executeUpdate(szStmt);
 opg.getOracle().getConnection().commit();
 while (true) {
 if (checkLoaderProgress(oracle) == numLoaders) {
 break;
 } else {
 Thread.sleep(1000);
 }
 }

 opg.rebuildVertexTableIndices(vIndices, dop, null);
 opg.rebuildVertexTableConstraints(vConstraints, dop, null);
 opg.rebuildEdgeTableIndices(eIndices, dop, null);
 opg.rebuildEdgeTableConstraints(eConstraints, dop, null);
 }
 catch (IOException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (SQLException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (InterruptedException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (Exception ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (opg != null) {

Chapter 5
Using Java APIs for Property Graph Data

5-14

 opg.shutdown();
 }
 if (oracle != null) {
 oracle.dispose();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }

 }

 private static int checkLoaderProgress(Oracle oracle) {
 int result = 0;
 ResultSet rs = null;

 try {
 String szStmt = "select progress from loaderProgress";
 rs = oracle.executeQuery(szStmt);
 if (rs.next()) {
 result = rs.getInt(1);
 }

 }
 catch (Exception ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 return result;
 }
}

public class DataLoaderWorker {

 public static void main(String[] szArgs) {
 String jdbcUrl = szArgs[0];
 String user = szArgs[1];
 String password = szArgs[2];
 String graphName = szArgs[3];
 int dop = Integer.parseInt(szArgs[4]);
 int numLoaders = Integer.parseInt(szArgs[5]);
 int offset = Integer.parseInt(szArgs[6]);

 Oracle oracle = null;
 OraclePropertyGraph opg = null;

Chapter 5
Using Java APIs for Property Graph Data

5-15

 try {
 oracle = new Oracle(jdbcUrl, user, password);
 opg = OraclePropertyGraph.getInstance(oracle, graphName, 8,
dop, null/*tbs*/, ",SKIP_INDEX=T,");
 OraclePropertyGraphDataLoader opgdal =
OraclePropertyGraphDataLoader.getInstance();

 while (true) {
 if (checkLoaderProgress(oracle) == 1) {
 break;
 } else {
 Thread.sleep(1000);
 }
 }

 String opvFile = "../../../data/connections.opv";
 String opeFile = "../../../data/connections.ope";
 opgdal.loadData(opg, opvFile, opeFile, dop, numLoaders,
offset, 1000, false, null, "pddl=t,pdml=t");

 updateLoaderProgress(oracle);
 }
 catch (SQLException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (InterruptedException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (opg != null) {
 opg.shutdown();
 }
 if (oracle != null) {
 oracle.dispose();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 }

 private static int checkLoaderProgress(Oracle oracle) {
 int result = 0;
 ResultSet rs = null;

 try {
 String szStmt = "select count(*) from loaderProgress";
 rs = oracle.executeQuery(szStmt);
 if (rs.next()) {
 result = rs.getInt(1);
 }
 }

Chapter 5
Using Java APIs for Property Graph Data

5-16

 catch (SQLException ex) {
 if (ex.getErrorCode() == 942) {
 // table does not exist. ignore
 } else {
 throw new OraclePropertyGraphException(ex);
 }
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 return result;
 }

 private static void updateLoaderProgress(Oracle oracle) {
 ResultSet rs = null;

 try {
 String szStmt = "update loaderProgress set progress = progress +
1";
 oracle.executeUpdate(szStmt);
 oracle.getConnection().commit();
 }
 catch (Exception ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 }
}

JDBC-based Parallel Data Loading Using Fine-Tuning

JDBC-based data loading supports fine-tuning the subset of data from a line to be loaded, as
well as the ID offset to use when loading the elements into the property graph instance. You
can specify the subset of data to load from a file by specifying the maximum number of lines
to read from the file and the offset line number (start position) for both vertices and edges.
This way, data will be loaded from the offset line number until the maximum number of lines
has been read. IIf the maximum line number is -1, the loading process will scan the data until
reaching the end of file.

Chapter 5
Using Java APIs for Property Graph Data

5-17

Because multiple graph data files may have some ID collisions or overlap, the JDBC-
based data loading allows you to define a vertex and edge ID offset. This way, the ID
of each loaded vertex will be the sum of the original vertex ID and the given vertex ID
offset. Similarly, the ID of each loaded edge will be generated from the sum of the
original edge ID and the given edge ID offset. Note that the vertices and edge files
must be correlated, because the in/out vertex ID for the loaded edges will be modified
with respect to the specified vertex ID offset. This operation is supported only in data
loading using a single logical partition.

The following code fragment loads the first 100 vertices and edges lines from the given
graph data file. In this example, an ID offset 0 is used, which indicates no ID
adjustment is performed.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 // Run the data loading using fine tuning
 long lVertexOffsetlines = 0;
 long lEdgeOffsetlines = 0;
 long lVertexMaxlines = 100;
 long lEdgeMaxlines = 100;
 long lVIDOffset = 0;
 long lEIDOffset = 0;
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();

 opgdl.loadData(opg, szOPVFile, szOPEFile,
 lVertexOffsetlines /* offset of lines to start
loading from
 partition, default 0 */,
 lEdgeOffsetlines /* offset of lines to start loading
from
 partition, default 0 */,
 lVertexMaxlines /* maximum number of lines to start loading from
 partition, default -1 (all lines in partition)
*/,
 lEdgeMaxlines /* maximum number of lines to start loading from
 partition, default -1 (all lines in partition)
*/,
 lVIDOffset /* vertex ID offset: the vertex ID will be original
 vertex ID + offset, default 0 */,
 lEIDOffset /* edge ID offset: the edge ID will be original edge
ID
 + offset, default 0 */,
 4 /* DOP */,
 1 /* Total number of partitions, default 1 */,
 0 /* Partition to load: from 0 to totalPartitions - 1, default 0
*/,
 OraclePropertyGraphDataLoader.PIPEDSTREAM /* splitter flag */,
 "chunkPrefix" /* prefix: the prefix used to generate split chunks
 for regular files or named pipes */,
 1000 /* batch size: batch size of Oracle update in batching mode.
 Default value is 1000 */,
 true /* rebuild index */,

Chapter 5
Using Java APIs for Property Graph Data

5-18

 null /* table space name*/,
 "pddl=t,pdml=t" /* options: enable parallel DDL and DML */);

5.4.2.2 External Table-Based Data Loading
External table-based data loading uses an external table to load the graph data into Oracle
Database. External table loading allows users to access the data in external sources as if it
were in a regular relational table in the database. In this case, the vertices (or edges) in the
given input stream will be spread among multiple chunks by the splitter thread. Each chunk
will be processed by a different loader thread that is in charge of passing all the elements in
the chunk to Oracle Database. The number of splitter and loader threads used is determined
by the degree of parallelism (DOP) specified by the user.

After the external tables are automatically created by the data loading logic, the loader will
read from the external tables and load all the data into the property graph schema tables
(VT$ and GE$).

External-table based data loading requires a directory object where the files read by the
external tables will be stored. This directory can be created by running the following scripts in
a SQL*Plus environment:

create or replace directory tmp_dir as '/tmppath/';
grant read, write on directory tmp_dir to public;

The following code fragment loads the graph data from a vertex and edge files in Oracle Flat-
file format using an external table-based parallel data loading with a degree of parallelism of
48.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szExtDir = "tmp_dir";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadDataWithExtTab(opg, szOPVFile, szOPEFile, 48 /*DOP*/,
 true /*named pipe flag: setting the flag to
true will use
 named pipe based splitting; otherwise,
regular file
 based splitting would be used*/,
 szExtDir /* database directory object */,
 true /*rebuild index */,
 "pddl=t,pdml=t,NO_DUP=T" /*options */);

To optimize the performance of the data loading operations, a set of flags and hints can be
specified when calling the External table-based data loading. These hints include:

• DOP: The degree of parallelism to use when loading the data. This parameter
determines the number of chunks to generate when splitting the file, as well as the
number of loader threads to use when loading the data into the property graph VT$ and
GE$ tables.

Chapter 5
Using Java APIs for Property Graph Data

5-19

• Rebuild index: If this flag is set to true, the data loader will disable all the indexes
and constraints defined over the property graph where the data will be loaded.
After all the data is loaded into the property graph, all the indexes and constraints
will be rebuilt.

• Load options: An option (or multiple options delimited by commas) to optimize
the data loading operations. These options include:

– NO_DUP=T: Chooses a faster way to load the data into the property graph
tables as no validation for duplicate Key/value pairs will be conducted.

– PDML=T: Enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– PDDL=T: Enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– KEEP_WORK_TABS=T: Skips cleaning and deleting the working tables after
the data loading is complete. This is for debugging use only.

– KEEP_TMP_FILES=T: Skips removing the temporary splitter files after the
data loading is complete. This is for debugging use only.

• Splitter Flag: An integer value defining the type of files or streams used in the
splitting phase to generate the data chunks used in the graph loading phase. The
temporary files can be created as regular files (0) or named pipes (1).

By default, External table-based data loading uses regular files to handle
temporary files for data chunks. Named pipes can only be used on operating
system that supports them. It is generally a good practice to use regular files
together with DBFS.

• Split File Prefix: The prefix used for the temporary files or pipes created when the
splitting phase is generating the data chunks for the graph loading. By default, the
prefix “Chunk” is used for regular files and “Pipe” is used for named pipes.

• Tablespace: The name of the tablespace where all the temporary work tables will
be created.

As with the JDBC-based data loading, external table-based data loading supports
parallel data loading using a single file, multiple files, partitions, and fine-tuning.

Subtopics:

• External Table-Based Data Loading with Multiple Files

• External table-based Data Loading with Partitions

• External Table-Based Parallel Data Loading Using Fine-Tuning

External Table-Based Data Loading with Multiple Files

External table-based data loading also supports loading vertices and edges from
multiple files or input streams into the database. The following code fragment loads
multiple vertex and edge files using the parallel data loading APIs. In the example, two
string arrays szOPVFiles and szOPEFiles are used to hold the input files.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szExtDir = "tmp_dir";

Chapter 5
Using Java APIs for Property Graph Data

5-20

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadDataWithExtTab(opg, szOPVFile, szOPEFile, 48 /* DOP */,
 true /* named pipe flag */,
 szExtDir /* database directory object */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

External table-based Data Loading with Partitions

When dealing with a very large property graph, the external table-based data loading API
allows loading the graph data in Oracle flat file format into Oracle Database using logical
partitioning. Each partition represents a subset of vertices (or edges) in the graph data file of
size that is approximately the number of distinct element IDs in the file divided by the number
of partitions. Each partition is identified by an integer ID in the range of [0, Number of
partitions – 1].

To use parallel data loading with partitions, you must specify the total number of partitions to
use and the partition offset besides the base parameters used in the loadDataWithExtTab
API. To fully load a graph data file or input stream into the database, you must execute the
data loading operation as many times as the defined number of partitions. For example, to
load the graph data from a file using two partitions, there should be two data loading API calls
using an offset of 0 and 1. Each call to the data loader can be processed using multiple
threads or a separate Java client on a single system or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream) and a
single edge file (or input stream). Additionally, this option requires disabling the indexes and
constraints on vertices and edges. These indices and constraints must be rebuilt after all
partitions have been loaded.

The example for JDBC-based data loading with partitions can be easily migrated to work as
external-table based loading with partitions. The only needed changes are to replace API
loadData() with loadDataWithExtTab(), and supply some additional input parameters such
as the database directory object.

External Table-Based Parallel Data Loading Using Fine-Tuning

External table-based data loading also supports fine-tuning the subset of data from a line to
be loaded, as well as the ID offset to use when loading the elements into the property graph
instance. You can specify the subset of data to load from a file by specifying the maximum
number of lines to read from the file as well as the offset line number for both vertices and
edges. This way, data will be loaded from the offset line number until the maximum number of
lines has been read. If the maximum line number is -1, the loading process will scan the data
until reaching the end of file.

Because graph data files may have some ID collisions, the external table-based data loading
allows you to define a vertex and edge ID offset. This way, the ID of each loaded vertex will
be obtained from the sum of the original vertex ID with the given vertex ID offset. Similarly,
the ID of each loaded edge will be generated from the sum of the original edge ID with the
given edge ID offset. Note that the vertices and edge files must be correlated, because the
in/out vertex ID for the loaded edges will be modified with respect to the specified vertex ID
offset. This operation is supported only in a data loading using a single partition.

Chapter 5
Using Java APIs for Property Graph Data

5-21

The following code fragment loads the first 100 vertices and edges from the given
graph data file. In this example, no ID offset is provided.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";

 // Run the data loading using fine tuning
 long lVertexOffsetlines = 0;
 long lEdgeOffsetlines = 0;
 long lVertexMaxlines = 100;
 long lEdgeMaxlines = 100;
 long lVIDOffset = 0;
 long lEIDOffset = 0;
 String szExtDir = "tmp_dir";

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();

 opgdl.loadDataWithExtTab(opg, szOPVFile, szOPEFile,
 lVertexOffsetlines /* offset of lines to
start loading
 from partition,
default 0 */,
 lEdgeOffsetlines /* offset of lines to
start loading from
 partition, default 0
*/,
 lVertexMaxlines /* maximum number of lines
to start
 loading from partition,
default -1
 (all lines in partition)
*/,
 lEdgeMaxlines /* maximum number of lines
to start loading
 from partition, default
-1 (all lines in
 partition) */,
 lVIDOffset /* vertex ID offset: the vertex
ID will be
 original vertex ID + offset,
default 0 */,
 lEIDOffset /* edge ID offset: the edge ID
will be
 original edge ID + offset,
default 0 */,
 4 /* DOP */,
 1 /* Total number of partitions, default 1
*/,
 0 /* Partition to load (from 0 to
totalPartitions - 1,
 default 0) */,
 OraclePropertyGraphDataLoader.NAMEDPIPE

Chapter 5
Using Java APIs for Property Graph Data

5-22

 /* splitter flag */,
 "chunkPrefix" /* prefix */,
 szExtDir /* database directory object */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

5.4.2.3 SQL*Loader-Based Data Loading
SQL*Loader-based data loading uses Oracle SQL*Loader to load the graph data into Oracle
Database. SQL*Loader loads data from external files into Oracle Database tables. In this
case, the vertices (or edges) in the given input stream will be spread among multiple chunks
by the splitter thread. Each chunk will be processed by a different loader thread that inserts
all the elements in the chunk into a temporary work table using SQL*Loader. The number of
splitter and loader threads used is determined by the degree of parallelism (DOP) specified
by the user.

After all the graph data is loaded into the temporary work table, the graph loader will load all
the data stored in the temporary work tables into the property graph VT$ and GE$ tables.

The following code fragment loads the graph data from a vertex and edge files in Oracle flat-
file format using a SQL-based parallel data loading with a degree of parallelism of 48. To use
the APIs, the path to the SQL*Loader must be specified.

 String szUser = "username";
 String szPassword = "password";
 String szDbId = "db18c"; /*service name of the database*/
 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szSQLLoaderPath = "<YOUR_ORACLE_HOME>/bin/sqlldr";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);

 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadDataWithSqlLdr(opg, szUser, szPassword, szDbId,
 szOPVFile, szOPEFile,
 48 /* DOP */,
 true /*named pipe flag */,
 szSQLLoaderPath /* SQL*Loader path: the path to
 bin/sqlldr*/,
 true /*rebuild index */,
 "pddl=t,pdml=t" /* options */);

As with JDBC-based data loading, SQL*Loader-based data loading supports parallel data
loading using a single file, multiple files, partitions, and fine-tuning.

Subtopics:

• SQL*Loader-Based Data Loading with Multiple Files

• SQL*Loader-Based Data Loading with Partitions

• SQL*Loader-Based Parallel Data Loading Using Fine-Tuning

Chapter 5
Using Java APIs for Property Graph Data

5-23

SQL*Loader-Based Data Loading with Multiple Files

SQL*Loader-based data loading supports loading vertices and edges from multiple
files or input streams into the database. The following code fragment loads multiple
vertex and edge files using the parallel data loading APIs. In the example, two string
arrays szOPVFiles and szOPEFiles are used to hold the input files.

 String szUser = "username";
 String szPassword = "password";
 String szDbId = "db18c"; /*service name of the database*/
 String[] szOPVFiles = new String[] {"../../data/connections-
p1.opv",
 "../../data/connections-
p2.opv"};
 String[] szOPEFiles = new String[] {"../../data/connections-
p1.ope",
 "../../data/connections-
p2.ope"};
 String szSQLLoaderPath = "../../../dbhome_1/bin/sqlldr";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);

 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl. loadDataWithSqlLdr (opg, szUser, szPassword, szDbId,
 szOPVFiles, szOPEFiles,
 48 /* DOP */,
 true /* named pipe flag */,
 szSQLLoaderPath /* SQL*Loader path */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

SQL*Loader-Based Data Loading with Partitions

When dealing with a large property graph, the SQL*Loader-based data loading API
allows loading the graph data in Oracle flat-file format into Oracle Database using
logical partitioning. Each partition represents a subset of vertices (or edges) in the
graph data file of size that is approximately the number of distinct element IDs in the
file divided by the number of partitions. Each partition is identified by an integer ID in
the range of [0, Number of partitions – 1].

To use parallel data loading with partitions, you must specify the total number of
partitions to use and the partition offset, in addition to the base parameters used in the
loadDataWithSqlLdr API. To fully load a graph data file or input stream into the
database, you must execute the data loading operation as many times as the defined
number of partitions. For example, to load the graph data from a file using two
partitions, there should be two data loading API calls using an offset of 0 and 1. Each
call to the data loader can be processed using multiple threads or a separate Java
client on a single system or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream)
and a single edge file (or input stream). Additionally, this option requires disabling the
indexes and constraints on vertices and edges. These indexes and constraints must
be rebuilt after all partitions have been loaded.

Chapter 5
Using Java APIs for Property Graph Data

5-24

The example for JDBC-based data loading with partitions can be easily migrated to work as
SQL*Loader- based loading with partitions. The only changes needed are to replace API
loadData() with loadDataWithSqlLdr(), and supply some additional input parameters such
as the location of SQL*Loader.

SQL*Loader-Based Parallel Data Loading Using Fine-Tuning

SQL Loader-based data loading supports fine-tuning the subset of data from a line to be
loaded, as well as the ID offset to use when loading the elements into the property graph
instance. You can specify the subset of data to load from a file by specifying the maximum
number of lines to read from the file and the offset line number for both vertices and edges.
This way, data will be loaded from the offset line number until the maximum number of lines
has been read. If the maximum line number is -1, the loading process will scan the data until
reaching the end of file.

Because graph data files may have some ID collisions, the SQL Loader-based data loading
allows you to define a vertex and edge ID offset. This way, the ID of each loaded vertex will
be obtained from the sum of the original vertex ID with the given vertex ID offset. Similarly,
the ID of each loaded edge will be generated from the sum of the original edge ID with the
given edge ID offset. Note that the vertices and edge files must be correlated, because the
in/out vertex ID for the loaded edges will be modified with respect to the specified vertex ID
offset. This operation is supported only in a data loading using a single partition.

The following code fragment loads the first 100 vertices and edges from the given graph data
file. In this example, no ID offset is provided.

 String szUser = "username";
 String szPassword = "password";
 String szDbId = "db18c"; /* service name of the database */
 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szSQLLoaderPath = "../../../dbhome_1/bin/sqlldr";

 // Run the data loading using fine tuning
 long lVertexOffsetlines = 0;
 long lEdgeOffsetlines = 0;
 long lVertexMaxlines = 100;
 long lEdgeMaxlines = 100;
 long lVIDOffset = 0;
 long lEIDOffset = 0;
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();

 opgdl.loadDataWithSqlLdr(opg, szUser, szPassword, szDbId,
 szOPVFile, szOPEFile,
 lVertexOffsetlines /* offset of lines to start
loading
 from partition, default
0*/,
 lEdgeOffsetlines /* offset of lines to start
loading from
 partition, default 0*/,
 lVertexMaxlines /* maximum number of lines to
start

Chapter 5
Using Java APIs for Property Graph Data

5-25

 loading from partition,
default -1
 (all lines in
partition)*/,
 lEdgeMaxlines /* maximum number of lines
to start loading
 from partition, default
-1 (all lines in
 partition) */,
 lVIDOffset /* vertex ID offset: the vertex
ID will be
 original vertex ID + offset,
default 0 */,
 lEIDOffset /* edge ID offset: the edge ID
will be
 original edge ID + offset,
default 0 */,
 48 /* DOP */,
 1 /* Total number of partitions, default 1
*/,
 0 /* Partition to load (from 0 to
totalPartitions - 1,
 default 0) */,
 OraclePropertyGraphDataLoader.NAMEDPIPE
 /* splitter flag */,
 "chunkPrefix" /* prefix */,
 szSQLLoaderPath /* SQL*Loader path: the
path to
 bin/sqlldr*/,
 true /* rebuild index */,
 "pddl=t,pdml=t" /* options */);

5.4.3 Parallel Retrieval of Graph Data
The parallel property graph query provides a simple Java API to perform parallel scans
on vertices (or edges). Parallel retrieval is an optimized solution taking advantage of
the distribution of the data across table partitions, so each partition is queried using a
separate database connection.

Parallel retrieval will produce an array where each element holds all the vertices (or
edges) from a specific partition (split). The subset of shards queried will be separated
by the given start split ID and the size of the connections array provided. This way, the
subset will consider splits in the range of [start, start - 1 + size of connections array].
Note that an integer ID (in the range of [0, N - 1]) is assigned to all the splits in the
vertex table with N splits.

The following code loads a property graph, opens an array of connections, and
executes a parallel query to retrieve all vertices and edges using the opened
connections. The number of calls to the getVerticesPartitioned
(getEdgesPartitioned) method is controlled by the total number of splits and the
number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);

Chapter 5
Using Java APIs for Property Graph Data

5-26

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create connections used in parallel query
Oracle[] oracleConns = new Oracle[dop];
Connection[] conns = new Connection[dop];
for (int i = 0; i < dop; i++) {
 oracleConns[i] = opg.getOracle().clone();
 conns[i] = oracleConns[i].getConnection();
}

long lCountV = 0;
// Iterate over all the vertices’ partitionIDs to count all the vertices
for (int partitionID = 0; partitionID < opg.getVertexPartitionsNumber();
 partitionID += dop) {
 Iterable<Vertex>[] iterables
 = opg.getVerticesPartitioned(conns /* Connection array */,
 true /* skip store to cache */,
 partitionID /* starting partition */);
 lCountV += consumeIterables(iterables); /* consume iterables using
 threads */
}

// Count all vertices
System.out.println("Vertices found using parallel query: " + lCountV);

long lCountE = 0;
// Iterate over all the edges’ partitionIDs to count all the edges
for (int partitionID = 0; partitionID < opg.getEdgeTablePartitionIDs();
 partitionID += dop) {
 Iterable<Edge>[] iterables
 = opg.getEdgesPartitioned(conns /* Connection array */,
 true /* skip store to cache */,
 partitionID /* starting partitionID */);
 lCountE += consumeIterables(iterables); /* consume iterables using
 threads */
}

// Count all edges
System.out.println("Edges found using parallel query: " + lCountE);

// Close the connections to the database after completed
for (int idx = 0; idx < conns.length; idx++) {
 conns[idx].close();
}

Chapter 5
Using Java APIs for Property Graph Data

5-27

5.4.4 Using an Element Filter Callback for Subgraph Extraction
Oracle Spatial and Graph provides support for an easy subgraph extraction using
user-defined element filter callbacks. An element filter callback defines a set of
conditions that a vertex (or an edge) must meet in order to keep it in the subgraph.
Users can define their own element filtering by implementing the
VertexFilterCallback and EdgeFilterCallback API interfaces.

The following code fragment implements a VertexFilterCallback that validates if a
vertex does not have a political role and its origin is the United States.

/**
* VertexFilterCallback to retrieve a vertex from the United States
* that does not have a political role
*/
private static class NonPoliticianFilterCallback
implements VertexFilterCallback
{
@Override
public boolean keepVertex(OracleVertexBase vertex)
{
String country = vertex.getProperty("country");
String role = vertex.getProperty("role");

if (country != null && country.equals("United States")) {
if (role == null || !role.toLowerCase().contains("political")) {
return true;
}
}

return false;
}

public static NonPoliticianFilterCallback getInstance()
{
return new NonPoliticianFilterCallback();
}
}

The following code fragment implements an EdgeFilterCallback that uses the
VertexFilterCallback to keep only edges connected to the given input vertex, and
whose connections are not politicians and come from the United States.

/**
 * EdgeFilterCallback to retrieve all edges connected to an input
 * vertex with "collaborates" label, and whose vertex is from the
 * United States with a role different than political
*/
private static class CollaboratorsFilterCallback
implements EdgeFilterCallback
{
private VertexFilterCallback m_vfc;
private Vertex m_startV;

public CollaboratorsFilterCallback(VertexFilterCallback vfc,
 Vertex v)
{
m_vfc = vfc;
m_startV = v;

Chapter 5
Using Java APIs for Property Graph Data

5-28

}

@Override
public boolean keepEdge(OracleEdgeBase edge)
{
if ("collaborates".equals(edge.getLabel())) {
if (edge.getVertex(Direction.IN).equals(m_startV) &&
m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.OUT))) {
return true;
}
else if (edge.getVertex(Direction.OUT).equals(m_startV) &&
 m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.IN))) {
return true;
}
}

return false;
}

public static CollaboratorsFilterCallback
getInstance(VertexFilterCallback vfc, Vertex v)
{
return new CollaboratorsFilterCallback(vfc, v);
}

}

Using the filter callbacks previously defined, the following code fragment loads a property
graph, creates an instance of the filter callbacks and later gets all of Robert Smith’s
collaborators who are not politicians and come from the United States.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// VertexFilterCallback to retrieve all people from the United States // who are not
politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Robert Smith
Vertex v = opg.getVertices("name", "Robert Smith").iterator().next();

// EdgeFilterCallback to retrieve all collaborators of Robert Smith
// from the United States who are not politicians
CollaboratorsFilterCallback cefc = CollaboratorsFilterCallback.getInstance(npvfc, v);

Iterable<<Edge> smithCollabs = opg.getEdges((String[])null /* Match any
of the properties */,
cefc /* Match the
EdgeFilterCallback */

Chapter 5
Using Java APIs for Property Graph Data

5-29

);
Iterator<<Edge> iter = smithCollabs.iterator();

System.out.println("\n\n--------Collaborators of Robert Smith from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {
Edge edge = iter.next(); // get the edge
// check if smith is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {
 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex
}

countV++;
}

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the filter callbacks associated with the property graph using the
methods opg.setVertexFilterCallback(vfc) and
opg.setEdgeFilterCallback(efc). If there is no filter callback set, then all the vertices
(or edges) and edges will be retrieved.

The following code fragment uses the default edge filter callback set on the property
graph to retrieve the edges.

// VertexFilterCallback to retrieve all people from the United States // who are
not politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Robert Smith
Vertex v = opg.getVertices("name", "Robert Smith").iterator().next();

// EdgeFilterCallback to retrieve all collaborators of Robert Smith
// from the United States who are not politicians
CollaboratorsFilterCallback cefc =
CollaboratorsFilterCallback.getInstance(npvfc, v);

opg.setEdgeFilterCallback(cefc);

Iterable<Edge> smithCollabs = opg.getEdges();
Iterator<Edge> iter = smithCollabs.iterator();

System.out.println("\n\n--------Collaborators of Robert Smith from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {
Edge edge = iter.next(); // get the edge
// check if smith is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {
 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex
}

Chapter 5
Using Java APIs for Property Graph Data

5-30

countV++;
}

5.4.5 Using Optimization Flags on Reads over Property Graph Data
Oracle Spatial and Graph provides support for optimization flags to improve graph iteration
performance. Optimization flags allow processing vertices (or edges) as objects with none or
minimal information, such as ID, label, and/or incoming/outgoing vertices. This way, the time
required to process each vertex (or edge) during iteration is reduced.

The following table shows the optimization flags available when processing vertices (or
edges) in a property graph.

Optimization Flag Description

DO_NOT_CREATE_OBJE
CT

Use a predefined constant object when processing vertices or edges.

JUST_EDGE_ID Construct edge objects with ID only when processing edges.

JUST_LABEL_EDGE_ID Construct edge objects with ID and label only when processing edges.

JUST_LABEL_VERTEX_E
DGE_ID

Construct edge objects with ID, label, and in/out vertex IDs only when
processing edges

JUST_VERTEX_EDGE_ID Construct edge objects with just ID and in/out vertex IDs when processing
edges.

JUST_VERTEX_ID Construct vertex objects with ID only when processing vertices.

The following code fragment uses a set of optimization flags to retrieve only all the IDs from
the vertices and edges in the property graph. The objects retrieved by reading all vertices and
edges will include only the IDs and no Key/Value properties or additional information.

import oracle.pg.common.OraclePropertyGraphBase.OptimizationFlag;
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

// Print all vertices
Iterator<Vertex> vertices =
opg.getVertices((String[])null /* Match any of the
properties */,
null /* Match the VertexFilterCallback */,
optFlagVertex /* optimization flag */
).iterator();

Chapter 5
Using Java APIs for Property Graph Data

5-31

System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}
System.out.println("Vertices found: " + vCount);

// Print all edges
Iterator<Edge> edges =
opg.getEdges((String[])null /* Match any of the properties */,
null /* Match the EdgeFilterCallback */,
optFlagEdge /* optimization flag */
).iterator();

System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the optimization flag associated with the property graph using the
method opg.setDefaultVertexOptFlag(optFlagVertex) and
opg.setDefaultEdgeOptFlag(optFlagEdge). If the optimization flags for processing
vertices and edges are not defined, then all the information about the vertices and
edges will be retrieved.

The following code fragment uses the default optimization flags set on the property
graph to retrieve only all the IDs from its vertices and edges.

import oracle.pg.common.OraclePropertyGraphBase.OptimizationFlag;

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

opg.setDefaultVertexOptFlag(optFlagVertex);
opg.setDefaultEdgeOptFlag(optFlagEdge);

Iterator<Vertex> vertices = opg.getVertices().iterator();
System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}
System.out.println("Vertices found: " + vCount);

// Print all edges
Iterator<Edge> edges = opg.getEdges().iterator();

Chapter 5
Using Java APIs for Property Graph Data

5-32

System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

5.4.6 Adding and Removing Attributes of a Property Graph Subgraph
Oracle Spatial and Graph supports updating attributes (key/value pairs) to a subgraph of
vertices and/or edges by using a user-customized operation callback. An operation callback
defines a set of conditions that a vertex (or an edge) must meet in order to update it (either
add or remove the given attribute and value).

You can define your own attribute operations by implementing the VertexOpCallback and
EdgeOpCallback API interfaces. You must override the needOp method, which defines the
conditions to be satisfied by the vertices (or edges) to be included in the update operation, as
well as the getAttributeKeyName and getAttributeKeyValue methods, which return the key
name and value, respectively, to be used when updating the elements.

The following code fragment implements a VertexOpCallback that operates over the
smithCollaborator attribute associated only with Robert Smith collaborators. The value of
this property is specified based on the role of the collaborators.

private static class CollaboratorsVertexOpCallback
implements VertexOpCallback
{
private OracleVertexBase m_smith;
private List<Vertex> m_smithCollaborators;

public CollaboratorsVertexOpCallback(OraclePropertyGraph opg)
{
// Get a list of Robert Smith'sCollaborators
m_smith = (OracleVertexBase) opg.getVertices("name",
 "Robert Smith")
.iterator().next();

Iterable<Vertex> iter = m_smith.getVertices(Direction.BOTH,
"collaborates");
m_smithCollaborators = OraclePropertyGraphUtils.listify(iter);
}

public static CollaboratorsVertexOpCallback
getInstance(OraclePropertyGraph opg)
{
return new CollaboratorsVertexOpCallback(opg);
}

/**
 * Add attribute if and only if the vertex is a collaborator of Robert
 * Smith
*/
@Override
public boolean needOp(OracleVertexBase v)
{
return m_smithCollaborators != null &&
 m_smithCollaborators.contains(v);
}

Chapter 5
Using Java APIs for Property Graph Data

5-33

@Override
public String getAttributeKeyName(OracleVertexBase v)
{
return "smithCollaborator";
}

/**
 * Define the property's value based on the vertex role
 */
@Override
public Object getAttributeKeyValue(OracleVertexBase v)
{
String role = v.getProperty("role");
role = role.toLowerCase();
if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("player")) {
return "sports";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philanthropist")) {
return "philanthropy";
}
return " ";
}
}

The following code fragment implements an EdgeOpCallback that operates over the
smithFeud attribute associated only with Robert Smith feuds. The value of this
property is specified based on the role of the collaborators.

private static class FeudsEdgeOpCallback
implements EdgeOpCallback
{
private OracleVertexBase m_smith;
private List<Edge> m_smithFeuds;

public FeudsEdgeOpCallback(OraclePropertyGraph opg)
{
// Get a list of Robert Smith's feuds
m_smith = (OracleVertexBase) opg.getVertices("name",
 "Robert Smith")
.iterator().next();

Iterable<Vertex> iter = m_smith.getVertices(Direction.BOTH,
"feuds");
m_smithFeuds = OraclePropertyGraphUtils.listify(iter);
}

Chapter 5
Using Java APIs for Property Graph Data

5-34

public static FeudsEdgeOpCallback getInstance(OraclePropertyGraph opg)
{
return new FeudsEdgeOpCallback(opg);
}

/**
 * Add attribute if and only if the edge is in the list of Robert Smith's
 * feuds
*/
@Override
public boolean needOp(OracleEdgeBase e)
{
return m_smithFeuds != null && m_smithFeuds.contains(e);
}

@Override
public String getAttributeKeyName(OracleEdgeBase e)
{
return "smithFeud";
}

/**
 * Define the property's value based on the in/out vertex role
 */
@Override
public Object getAttributeKeyValue(OracleEdgeBase e)
{
OracleVertexBase v = (OracleVertexBase) e.getVertex(Direction.IN);
if (m_smith.equals(v)) {
v = (OracleVertexBase) e.getVertex(Direction.OUT);
}
String role = v.getProperty("role");
role = role.toLowerCase();

if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("player")) {
return "sports";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philanthropist")) {
return "philanthropy";
}
return " ";
}
}

Using the operations callbacks defined previously, the following code fragment loads a
property graph, creates an instance of the operation callbacks, and later adds the attributes

Chapter 5
Using Java APIs for Property Graph Data

5-35

into the pertinent vertices and edges using the addAttributeToAllVertices and
addAttributeToAllEdges methods in OraclePropertyGraph.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create the vertex operation callback
CollaboratorsVertexOpCallback cvoc =
CollaboratorsVertexOpCallback.getInstance(opg);

// Add attribute to all people collaborating with Smith based on their role
opg.addAttributeToAllVertices(cvoc, true /** Skip store to Cache */, dop);

// Look up for all collaborators of Smith
Iterable<Vertex> collaborators = opg.getVertices("smithCollaborator",
"political");
System.out.println("Political collaborators of Robert Smith " +
getVerticesAsString(collaborators));

collaborators = opg.getVertices("smithCollaborator", "business");
System.out.println("Business collaborators of Robert Smith " +
getVerticesAsString(collaborators));

// Add an attribute to all people having a feud with Robert Smith to set
// the type of relation they have
FeudsEdgeOpCallback feoc = FeudsEdgeOpCallback.getInstance(opg);
opg.addAttributeToAllEdges(feoc, true /** Skip store to Cache */, dop);

// Look up for all feuds of Smith
Iterable<Edge> feuds = opg.getEdges("smithFeud", "political");
System.out.println("\n\nPolitical feuds of Robert Smith " +
getEdgesAsString(feuds));

feuds = opg.getEdges("smithFeud", "business");
System.out.println("Business feuds of Robert Smith " +
getEdgesAsString(feuds));

The following code fragment defines an implementation of VertexOpCallback that can
be used to remove vertices having value philanthropy for attribute smithCollaborator,
then call the API removeAttributeFromAllVertices; It also defines an implementation
of EdgeOpCallback that can be used to remove edges having value business for
attribute smithFeud, then call the API removeAttributeFromAllEdges.

System.out.println("\n\nRemove 'smithCollaborator' property from all the" +
 "philanthropy collaborators");
PhilanthropyCollaboratorsVertexOpCallback pvoc =
PhilanthropyCollaboratorsVertexOpCallback.getInstance();

opg.removeAttributeFromAllVertices(pvoc);

Chapter 5
Using Java APIs for Property Graph Data

5-36

System.out.println("\n\nRemove 'smithFeud' property from all the" + "business feuds");
BusinessFeudsEdgeOpCallback beoc = BusinessFeudsEdgeOpCallback.getInstance();

opg.removeAttributeFromAllEdges(beoc);

/**
 * Implementation of a EdgeOpCallback to remove the "smithCollaborators"
 * property from all people collaborating with Robert Smith that have a
 * philanthropy role
 */
private static class PhilanthropyCollaboratorsVertexOpCallback implements
VertexOpCallback
{
 public static PhilanthropyCollaboratorsVertexOpCallback getInstance()
 {
 return new PhilanthropyCollaboratorsVertexOpCallback();
 }

 /**
 * Remove attribute if and only if the property value for
 * smithCollaborator is Philanthropy
 */
 @Override
 public boolean needOp(OracleVertexBase v)
 {
 String type = v.getProperty("smithCollaborator");
 return type != null && type.equals("philanthropy");
 }

 @Override
 public String getAttributeKeyName(OracleVertexBase v)
 {
 return "smithCollaborator";
 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleVertexBase v)
 {
 return " ";
 }
}

/**
 * Implementation of a EdgeOpCallback to remove the "smithFeud" property
 * from all connections in a feud with Robert Smith that have a business role
 */
private static class BusinessFeudsEdgeOpCallback implements EdgeOpCallback
{
 public static BusinessFeudsEdgeOpCallback getInstance()
 {
 return new BusinessFeudsEdgeOpCallback();
 }

 /**
 * Remove attribute if and only if the property value for smithFeud is
 * business
 */
 @Override

Chapter 5
Using Java APIs for Property Graph Data

5-37

 public boolean needOp(OracleEdgeBase e)
 {
 String type = e.getProperty("smithFeud");
 return type != null && type.equals("business");
 }

 @Override
 public String getAttributeKeyName(OracleEdgeBase e)
 {
 return "smithFeud";
 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleEdgeBase e)
 {
 return " ";
 }
}

5.4.7 Getting Property Graph Metadata
You can get graph metadata and statistics, such as all graph names in the database;
for each graph, getting the minimum/maximum vertex ID, the minimum/maximum edge
ID, vertex property names, edge property names, number of splits in graph vertex, and
the edge table that supports parallel table scans.

The following code fragment gets the metadata and statistics of the existing property
graphs stored in an Oracle database.

// Get all graph names in the database
List<String> graphNames = OraclePropertyGraphUtils.getGraphNames(dbArgs);

for (String graphName : graphNames) {
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
graphName);

System.err.println("\n Graph name: " + graphName);
System.err.println(" Total vertices: " +
 opg.countVertices(dop));

System.err.println(" Minimum Vertex ID: " +
 opg.getMinVertexID(dop));
System.err.println(" Maximum Vertex ID: " +
 opg.getMaxVertexID(dop));

Set<String> propertyNamesV = new HashSet<String>();
opg.getVertexPropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesV);

System.err.println(" Vertices property names: " +
getPropertyNamesAsString(propertyNamesV));

System.err.println("\n\n Total edges: " + opg.countEdges(dop));
System.err.println(" Minimum Edge ID: " + opg.getMinEdgeID(dop));
System.err.println(" Maximum Edge ID: " + opg.getMaxEdgeID(dop));

Set<String> propertyNamesE = new HashSet<String>();

Chapter 5
Using Java APIs for Property Graph Data

5-38

opg.getEdgePropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesE);

System.err.println(" Edge property names: " +
getPropertyNamesAsString(propertyNamesE));

System.err.println("\n\n Table Information: ");
System.err.println("Vertex table number of splits: " +
 (opg.getVertexPartitionsNumber()));
System.err.println("Edge table number of splits: " +
 (opg.getEdgePartitionsNumber()));
}

5.4.8 Merging New Data into an Existing Property Graph
In addition to loading graph data into an empty property graph in Oracle Database, you can
merge new graph data into an existing (empty or non-empty) graph. As with data loading,
data merging splits the input vertices and edges into multiple chunks and merges them with
the existing graph in database in parallel.

When doing the merging, the flows are different depends on whether there is an overlap
between new graph data and existing graph data. Overlap here means that the same key of a
graph element may have different values in the new and existing graph data. For example,
key weight of the vertex with ID 1 may have value 0.8 in the new graph data and value 0.5 in
the existing graph data. In this case, you must specify whether the new value or the existing
value should be used for the key.

The following options are available for graph data merging: JDB-based, external table-based,
and SQL loader-based merging.

• JDBC-Based Graph Data Merging

• External Table-Based Data Merging

• SQL Loader-Based Data Merging

JDBC-Based Graph Data Merging

JDBC-based data merging uses Java Database Connectivity (JDBC) APIs to load the new
graph data into Oracle Database and then merge the new graph data into an existing graph.

The following example merges the new graph data from vertex and edge files szOPVFile and
szOPEFile in Oracle-defined Flat-file format with an existing graph named opg, using a
JDBC-based data merging with a DOP (degree of parallelism) of 48, batch size of 1000, and
specified data merging options.

String szOPVFile = "../../data/connectionsNew.opv";
String szOPEFile = "../../data/connectionsNew.ope";
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.mergeData(opg, szOPVFile, szOPEFile,
 48 /*DOP*/,
 1000 /*Batch Size*/,
 true /*Rebuild index*/,
 "pdml=t, pddl=t, no_dup=t, use_new_val_for_dup_key=t" /*Merge
options*/);

Chapter 5
Using Java APIs for Property Graph Data

5-39

To optimize the performance of the data merging operations, a set of flags and hints
can be specified in the merging options parameter when calling the JDBC-based data
merging. These hints include:

• DOP: The degree of parallelism to use when merging the data. This parameter
determines the number of chunks to generate when splitting the file, as well as the
number of loader threads to use when merging the data into the property graph
VT$ and GE$ tables.

• Batch Size: An integer specifying the batch size to use for Oracle JDBC
statements in batching mode.

• Rebuild index: If set to true, the data loader will disable all the indexes and
constraints defined over the property graph into which the data will be loaded.
After all the data is merged into the property graph, all the original indexes and
constraints will be rebuilt and enabled.

• Merge options: An option (or multiple options separated by commas) to optimize
the data merging operations. These options include:

– PDML=T: enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– PDDL=T: enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– NO_DUP=T: assumes the input new graph data does not have invalid
duplicates. In a valid property graph, each vertex (or edge) can at most have
one value for a given property key. In an invalid property graph, a vertex (or
edge) may have two or more values for a particular key. As an example, a
vertex, v, has two key/value pairs: name/"John" and name/"Johnny", and they
share the same key.

– OVERLAP=F: assumes there is no overlap between new graph data and
existing graph data. That is, there is no key with multiple distinct values in the
new and existing graph data.

– USE_NEW_VAL_FOR_DUP_KEY=T: if there is overlap between new graph
data and existing graph data, use the value in the new graph data; otherwise,
use the value in the existing graph data.

External Table-Based Data Merging

External table-based data merging uses an external table to load new graph data into
Oracle Database and then merge the new graph data into an existing graph.

External-table based data merging requires a directory object, where the files read by
the external tables will be stored. This directory can be created using the following
SQL*Plus statements:

create or replace directory tmp_dir as '/tmppath/';
grant read, write on directory tmp_dir to public;

The following example merges the new graph data from a vertex and edge files
szOPVFile and szOPEFile in Oracle flat-file format with an existing graph opg using an

Chapter 5
Using Java APIs for Property Graph Data

5-40

external table-based data merging, a DOP (degree of parallelism) of 48, and specified
merging options.

String szOPVFile = "../../data/connectionsNew.opv";
String szOPEFile = "../../data/connectionsNew.ope";
String szExtDir = "tmp_dir";
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.mergeDataWithExtTab(opg, szOPVFile, szOPEFile,
 48 /*DOP*/,
 true /*Use Named Pipe for splitting*/,
 szExtDir /*database directory object*/,
 true /*Rebuild index*/,
 "pdml=t, pddl=t, no_dup=t, use_new_val_for_dup_key=t" /*Merge
options*/);

SQL Loader-Based Data Merging

SQL loader-based data merging uses Oracle SQL*Loader to load the new graph data into
Oracle Database and then merge the new graph data into an existing graph.

The following example merges the new graph data from a vertex and edge files szOPVFile
and szOPEFile in Oracle Flat-file format with an existing graph opg using an SQL loader -
based data merging with a DOP (degree of parallelism) of 48 and the specified merging
options. To use the APIs, the path to the SQL*Loader needs to be specified.

String szUser = "username";
String szPassword = "password";
String szDbId = "db18c"; /*service name of the database*/
String szOPVFile = "../../data/connectionsNew.opv"; 0
String szOPEFile = "../../data/connectionsNew.ope";
String szSQLLoaderPath = "<YOUR_ORACLE_HOME>/bin/sqlldr";
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.mergeDataWithSqlLdr(opg, szUser, szPassword, szDbId, szOPVFile,
szOPEFile,
 48 /*DOP*/,
 true /*Use Named Pipe for splitting*/,
 szSQLLoaderPath /* SQL*Loader path: the path to bin/sqlldr */,
 true /*Rebuild index*/,
 "pdml=t, pddl=t, no_dup=t, use_new_val_for_dup_key=t" /*Merge
options*/);

5.4.9 Opening and Closing a Property Graph Instance
When describing a property graph, use these Oracle Property Graph classes to open and
close the property graph instance properly:

• OraclePropertyGraph.getInstance: Opens an instance of an Oracle property graph.
This method has two parameters, the connection information and the graph name. The
format of the connection information depends on whether you use HBase or Oracle
NoSQL Database as the backend database.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges from the
property graph instance.

Chapter 5
Using Java APIs for Property Graph Data

5-41

• OraclePropertyGraph.shutdown: Closes the graph instance.

For Oracle Database, the OraclePropertyGraph.getInstance method uses an Oracle
instance to manage the database connection. OraclePropertyGraph has a set of
constructors that let you set the graph name, number of hash partitions, degree of
parallelism, tablespace, and options for storage (such as compression). For example:

import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(oracle,
graphName);
opg.clearRepository();
// .
// . Graph description
// .
// Close the graph instance
opg.shutdown();

If the in-memory analyst functions are required for an application, you should
use GraphConfigBuilder to create a graph for Oracle Database, and
instantiate OraclePropertyGraph with that graph name as an argument. For example,
the following code snippet constructs a graph config, gets
an OraclePropertyGraph instance, loads some data into that graph, and gets an in-
memory analyst.

import oracle.pgx.config.*;
import oracle.pgx.api.*;
import oracle.pgx.common.types.*;

...

PgNosqlGraphConfig cfg = GraphConfigBuilder. forPropertyGraphRdbms ()
 .setJdbcUrl("jdbc:oracle:thin:@<hostname>:1521:<sid>")
 .setUsername("<username>").setPassword("<password>")
 .setName(szGraphName)
 .setMaxNumConnections(8)
 .addEdgeProperty("lbl", PropertyType.STRING, "lbl")
 .addEdgeProperty("weight", PropertyType.DOUBLE, "1000000")
 .build();

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";

 // perform a parallel data load
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFile, szOPEFile, 2 /* dop */, 1000, true,
"PDML=T,PDDL=T,NO_DUP=T,");

 ...
 PgxSession session = Pgx.createSession("session-id-1");

Chapter 5
Using Java APIs for Property Graph Data

5-42

 PgxGraph g = session.readGraphWithProperties(cfg);

 Analyst analyst = session.createAnalyst();
 ...

5.4.10 Creating Vertices
To create a vertex, use these Oracle Property Graph methods:

• OraclePropertyGraph.addVertex: Adds a vertex instance to a graph.

• OracleVertex.setProperty: Assigns a key-value property to a vertex.

• OraclePropertyGraph.commit: Saves all changes to the property graph instance.

The following code fragment creates two vertices named V1 and V2, with properties for age,
name, weight, height, and sex in the opg property graph instance. The v1 properties set the
data types explicitly.

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opg.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(31));
 v1.setProperty("name", "Alice");
 v1.setProperty("weight", Float.valueOf(135.0f));
 v1.setProperty("height", Double.valueOf(64.5d));
 v1.setProperty("female", Boolean.TRUE);

Vertex v2 = opg.addVertex(2l);
 v2.setProperty("age", 27);
 v2.setProperty("name", "Bob");
 v2.setProperty("weight", Float.valueOf(156.0f));
 v2.setProperty("height", Double.valueOf(69.5d));
 v2.setProperty("female", Boolean.FALSE);

5.4.11 Creating Edges
To create an edge, use these Oracle Property Graph methods:

• OraclePropertyGraph.addEdge: Adds an edge instance to a graph.

• OracleEdge.setProperty: Assigns a key-value property to an edge.

The following code fragment creates two vertices (v1 and v2) and one edge (e1).

// Add vertices v1 and v2
Vertex v1 = opg.addVertex(1l);
v1.setProperty("name", "Alice");
v1.setProperty("age", 31);

Vertex v2 = opg.addVertex(2l);
v2.setProperty("name", "Bob");
v2.setProperty("age", 27);

// Add edge e1
Edge e1 = opg.addEdge(1l, v1, v2, "knows");
e1.setProperty("type", "friends");

Chapter 5
Using Java APIs for Property Graph Data

5-43

5.4.12 Deleting Vertices and Edges
You can remove vertex and edge instances individually, or all of them simultaneously.
Use these methods:

• OraclePropertyGraph.removeEdge: Removes the specified edge from the graph.

• OraclePropertyGraph.removeVertex: Removes the specified vertex from the
graph.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges from
the property graph instance.

The following code fragment removes edge e1 and vertex v1 from the graph instance.
The adjacent edges will also be deleted from the graph when removing a vertex. This
is because every edge must have an beginning and ending vertex. After removing the
beginning or ending vertex, the edge is no longer a valid edge.

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

The OraclePropertyGraph.clearRepository method can be used to remove all
contents from an OraclePropertyGraph instance. However, use it with care because
this action cannot be reversed.

5.4.13 Reading a Graph from a Database into an Embedded In-
Memory Analyst

You can read a graph from Oracle Database into an in-memory analyst that is
embedded in the same client Java application (a single JVM). For the following
example, a correct java.io.tmpdir setting is required.

int dop = 8; // need customization
Map<PgxConfig.Field, Object> confPgx = new HashMap<PgxConfig.Field,
Object>();
confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop); //
confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, dop); // <= # of
physical cores
confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0); // no
timeout set
confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0); // no
timeout set

PgRdbmsGraphConfig cfg =
GraphConfigBuilder.forPropertyGraphRdbms().setJdbcUrl("jdbc:oracle:thin:
@<your_db_host>:<db_port>:<db_sid>")
 .setUsername("<username>")
 .setPassword("<password>")
 .setName("<graph_name>")
 .setMaxNumConnections(8)

Chapter 5
Using Java APIs for Property Graph Data

5-44

 .setLoadEdgeLabel(false)
 .build();
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);
ServerInstance localInstance = Pgx.getInstance();
localInstance.startEngine(confPgx);
PgxSession session = localInstance.createSession("session-id-1"); // Put
your session description here.

Analyst analyst = session.createAnalyst();

// The following call will trigger a read of graph data from the database
PgxGraph pgxGraph = session.readGraphWithProperties(opg.getConfig());

long triangles = analyst.countTriangles(pgxGraph, false);
System.out.println("triangles " + triangles);

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

5.4.14 Specifying Labels for Vertices
The database and data access layer do not provide labels for vertices; however, you can
treat the value of a designated vertex property as one or more labels. Such a transformation
is relevant only to the in-memory analyst.

In the following example, a property "country" is specified in a call to
setUseVertexPropertyValueAsLabel(), and the comma delimiter "," is specified in a call to
setPropertyValueDelimiter(). These two together imply that values of the country vertex
property will be treated as vertex labels separated by a comma. For example, if vertex X has
a string value "US" for its country property, then its vertex label will be US; and if vertex Y has
a string value "UK,CN", then it will have two labels: UK and CN.

GraphConfigBuilder.forPropertyGraph...
 .setName("<your_graph_name>")
 ...
 .setUseVertexPropertyValueAsLabel("country")
 .setPropertyValueDelimiter(",")
 .setLoadVertexLabels(true)
 .build();

Related Topics

• What Are Property Graphs?

5.4.15 Building an In-Memory Graph
In addition to Store the Database Password in a Keystore, you can create an in-memory
graph programmatically. This can simplify development when the size of graph is small or
when the content of the graph is highly dynamic. The key Java class is GraphBuilder, which
can accumulate a set of vertices and edges added with the addVertex and addEdge APIs.

Chapter 5
Using Java APIs for Property Graph Data

5-45

After all changes are made, an in-memory graph instance (PgxGraph) can be created
by the GraphBuilder.

The following Java code snippet illustrates a graph construction flow. Note that there
are no explicit calls to addVertex, because any vertex that does not already exist will
be added dynamically as its adjacent edges are created.

import oracle.pgx.api.*;

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.newGraphBuilder();

builder.addEdge(0, 1, 2);
builder.addEdge(1, 2, 3);
builder.addEdge(2, 2, 4);
builder.addEdge(3, 3, 4);
builder.addEdge(4, 4, 2);

PgxGraph graph = builder.build();

To construct a graph with vertex properties, you can use setProperty against the
vertex objects created.

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.newGraphBuilder();

builder.addVertex(1).setProperty("double-prop", 0.1);
builder.addVertex(2).setProperty("double-prop", 2.0);
builder.addVertex(3).setProperty("double-prop", 0.3);
builder.addVertex(4).setProperty("double-prop", 4.56789);

builder.addEdge(0, 1, 2);
builder.addEdge(1, 2, 3);
builder.addEdge(2, 2, 4);
builder.addEdge(3, 3, 4);
builder.addEdge(4, 4, 2);

PgxGraph graph = builder.build();

To use long integers as vertex and edge identifiers, specify IdType.LONG when getting
a new instance of GraphBuilder. For example:

import oracle.pgx.common.types.IdType;
GraphBuilder<Long> builder = session.newGraphBuilder(IdType.LONG);

During edge construction, you can directly use vertex objects that were previously
created in a call to addEdge.

v1 = builder.addVertex(1l).setProperty("double-prop", 0.5)
v2 = builder.addVertex(2l).setProperty("double-prop", 2.0)

builder.addEdge(0, v1, v2)

Chapter 5
Using Java APIs for Property Graph Data

5-46

As with vertices, edges can have properties. The following example sets the edge label by
using setLabel:

builder.addEdge(4, v4, v2).setProperty("edge-prop",
"edge_prop_4_2").setLabel("label")

5.4.16 Dropping a Property Graph
To drop a property graph from the database, use the
OraclePropertyGraphUtils.dropPropertyGraph method. This method has two parameters,
the connection information and the graph name. For example:

// Drop the graph
Oracle oracle = new Oracle(jdbcUrl, username, password);
OraclePropertyGraphUtils.dropPropertyGraph(oracle, graphName);

You can also drop a property graph using the PL/SQL API. For example:

EXECUTE opg_apis.drop_pg('my_graph_name');

5.4.17 Executing PGQL Queries
You can execute PGQL queries directly against Oracle Database with the PgqlStatement and
PgqlPreparedStatement interfaces. See Executing PGQL Queries Directly Against Oracle
Database for details.

5.5 Managing Text Indexing for Property Graph Data
Indexes in Oracle Spatial and Graph property graph support allow fast retrieval of elements
by a particular key/value or key/text pair. These indexes are created based on an element
type (vertices or edges), a set of keys (and values), and an index type.

Oracle Spatial and Graph supports the use of the Oracle Text indexing technology, which is a
feature of Oracle Database.

Two types of indexing structures are supported.

• Automatic text indexes provide automatic indexing of vertices or edges by a set of
property keys. Their main purpose is to enhance query performance on vertices and
edges based on particular key/value pairs.

• Manual text indexes enable you to define multiple indexes over a designated set of
vertices and edges of a property graph. You must specify what graph elements go into
the index.

Oracle Spatial and Graph provides APIs to create manual and automatic text indexes over
property graphs stored in Oracle Database. Indexes are managed using Oracle Text, a
proprietary search and analysis engine. The rest of this section focuses on how to create text
indexes using the property graph capabilities of the Data Access Layer.

• Configuring a Text Index for Property Graph Data

• Using Automatic Indexes for Property Graph Data

• Using Manual Indexes for Property Graph Data

Chapter 5
Managing Text Indexing for Property Graph Data

5-47

• Executing Search Queries Over a Property Graph’s Text Indexes

• Handling Data Types

• Updating Configuration Settings on Text Indexes for Property Graph Data
Oracle's property graph support manages manual and automatic text indexes
through integration with Oracle Text.

• Using Parallel Query on Text Indexes for Property Graph Data

5.5.1 Configuring a Text Index for Property Graph Data
The configuration of a text index is defined using an OracleIndexParameters object.
This object includes information about the index such as search engine, location,
number of directories (or shards), and degree of parallelism.

By default, text indexes are configured based on
the OracleIndexParameters associated with the property graph using the
method opg.setDefaultIndexParameters(indexParams). The initial creation of the
automatic index delimits the configuration and text search engine for future indexed
keys.

Indexes can also be created by specifying a different set of parameters. The following
code fragment creates an automatic text index over an existing property graph using a
Lucene engine with a physical directory.

// Create an OracleIndexParameters object to get Index configuration (search
engine, etc).
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(args)

// Create auto indexing on above properties for all vertices
opg.createKeyIndex("name", Vertex.class, indexParams.getParameters());

Any index configuration operations cause updates to be made to the IT$ table, which
is explained in Property Graph Tables (Detailed Information).

• Configuring Text Indexes Using Oracle Text

5.5.1.1 Configuring Text Indexes Using Oracle Text
Oracle Spatial and Graph supports automatic text indexes using Oracle Text. Oracle
Text uses standard SQL to index, search, and analyze text values stored in the V
column of the vertices (or edges) table. Because Oracle Text indexes all the existing
K/V pairs of the vertices (or edges) in the property graph, this option can be used only
with automatic text indexes and must use a wildcard ("*") indexed key parameter
during the index creation.

Because the property graph feature uses an NVARCHAR typed column for a better
support of Unicode, it is highly recommended that UTF8 (AL32UTF8) be used as the
database character set.

To create an Oracle Text index on the vertices table (or edges table), the ALTER
SESSION privilege is required. The following example grants the privilege.

SQL> grant alter session to <YOUR_USER_SCHEMA_HERE>;

Chapter 5
Managing Text Indexing for Property Graph Data

5-48

If customization is required, grant EXECUTE on CTX_DDL, as in the following example.

SQL> grant execute on ctx_ddl to <YOUR_USER_SCHEMA_HERE>;

A text index using Oracle Text uses an OracleTextIndexParameters object. The
configuration parameters for indexes using a Oracle Text include:

• Preference owner: the owner of the preference.

• Data store: the datastore preference specifying how the text values are stored. A
datastore preference can be created using ctx_ddl.create_preference API as follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_DATASTORE',
'DIRECT_DATASTORE');

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_DATASORE. This preference uses a DIRECT_DATASTORE type.

• Filter: the filter preference determining how text is filtered for indexing. A filter preference
can be created using ctx_ddl.create_preference, as follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_FILTER', 'AUTO_FILTER');

If the value is set to NULL, then the index will be created with CTXSYS.NULL_FILTER.
This preference uses a NULL_FILTER type.

• Storage: the storage preference specifying table space and creation parameters for
tables associated with a Text index. A storage preference can be created using
ctx_ddl.create_preference, as follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_STORAGE', 'BASIC_STORAGE');

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_STORAGE. This preference uses a BASIC_STORAGE type.

• Word list: the word list preference specifying the enabled query options. These query
options may include stemming, fuzzy matching, substring, and prefix indexing. A data
store preference can be created using ctx_ddl.create_preference, as follows:

SQL> -- The following example enables stemming and fuzzy matching for
English.
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_WORDLIST',
'BASIC_WORDLIST');

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_WORDLIST. This preference uses the language stemmer for your
database language.

• Stop list: the stop list preference specifying the list of words that are not meant to be
indexed. A stop list preference can be created using ctx_ddl.create_stoplist .

Chapter 5
Managing Text Indexing for Property Graph Data

5-49

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_STOPLIST. This preference uses the stoplist of your
database language.

• Lexer: the lexer preference specifying the language of the text to be indexed. A
lexer preference can be created using ctx_ddl.create_preference, as follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_AUTO_LEXER',
'AUTO_LEXER');

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_LEXER. This preference uses a BASIC_LEXER type with
additional options based on the language used at installation time.

The following code fragment creates the configuration for a text index using Oracle
Text with default options and OPG_AUTO_LEXER.

String prefOwner = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String lexer = "OPG_AUTO_LEXER";
String options = (String) null;

OracleIndexParameters params
 =
OracleTextIndexParameters.buildOracleText(prefOwner,
 datastore,
 filter,
 storage,
 wordlist,
 stoplist,
 lexer,
 dop,
 options);

5.5.2 Using Automatic Indexes for Property Graph Data
An automatic text index provides automatic indexing of vertices or edges by a set of
property keys. Its main purpose is to increase the speed of lookups over vertices and
edges based on particular key/value pair. If an automatic index for the given key is
enabled, then key/value pair lookups will be performed as a text search against the
index instead of as a database lookup.

When specifying an automatic index over a property graph, use the following methods
to create, remove, and manipulate an automatic index:

• OraclePropertyGraph.createKeyIndex(String key, Class elementClass,
Parameter[] parameters): Creates an automatic index for all elements of type
elementClass by the given property key. The index is configured based on the
specified parameters.

• OraclePropertyGraph.createKeyIndex(String[] keys, Class elementClass,
Parameter[] parameters): Creates an automatic index for all elements of type

Chapter 5
Managing Text Indexing for Property Graph Data

5-50

elementClass by using a set of property keys. The index is configured based on the
specified parameters.

• OraclePropertyGraph.dropKeyIndex(String key, Class elementClass): Drops the
automatic index for all elements of type elementClass for the given property key.

• OraclePropertyGraph.dropKeyIndex(String[] keys, Class elementClass): Drops the
automatic index for all elements of type elementClass for the given set of property keys.

• OraclePropertyGraph.getAutoIndex(Class elementClass): Gets an index instance of
the automatic index for type elementClass.

• OraclePropertyGraph.getIndexedKeys(Class elementClass): Gets the set of indexed
keys currently used in an automatic index for all elements of type elementClass.

By default, indexes are configured based on the OracleIndexParameters associated with the
property graph using the method opg.setDefaultIndexParameters(indexParams).

Indexes can also be created by specifying a different set of parameters. This is shown in the
following code snippet.

// Create an OracleIndexParameters object to get Index configuration (search engine,
etc).
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(args)

// Create auto indexing on above properties for all vertices
opg.createKeyIndex("name", Vertex.class, indexParams.getParameters());

The code fragment in the next example executes a query over all vertices to find all matching
vertices with the key/value pair name:Robert Smith. This operation will execute a lookup into
the text index.

Additionally, wildcard searches are supported by specifying the parameter useWildCards in
the getVertices API call. Wildcard search is only supported when automatic indexes are
enabled for the specified property key.

// Find all vertices with name Robert Smith.
 Iterator<Vertices> vertices = opg.getVertices("name", "Robert Smith").iterator();
 System.out.println("----- Vertices with name Robert Smith -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

 // Find all vertices with name including keyword "Smith"
 // Wildcard searching is supported.
 boolean useWildcard = true;
 Iterator<Vertices> vertices = opg.getVertices("name", "*Smith*").iterator();
 System.out.println("----- Vertices with name *Smith* -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

The preceding code example produces output like the following:

----- Vertices with name Robert Smith-----
Vertex ID 1 {name:str:Robert Smith, role:str:political authority, occupation:str:CEO

Chapter 5
Managing Text Indexing for Property Graph Data

5-51

of Example Corporation, country:str:United States, political
party:str:Bipartisan, religion:str:Unknown}
Vertices found: 1

----- Vertices with name *Smith* -----
Vertex ID 1 {name:str:Robert Smith, role:str:political authority,
occupation:str:CEO of Example Corporation, country:str:United States, political
party:str:Bipartisan, religion:str:Unknown}
Vertices found: 1

5.5.3 Using Manual Indexes for Property Graph Data
Manual indexes support the definition of multiple indexes over the vertices and edges
of a property graph. A manual index requires that you manually put, get, and remove
elements from the index.

When describing a manual index over a property graph, use the following methods to
add, remove, and manipulate a manual index:

• OraclePropertyGraph.createIndex(String name, Class elementClass,
Parameter[] parameters): Creates a manual index with the specified name for all
elements of type elementClass.

• OraclePropertyGraph.dropIndex(String name): Drops the given manual index.

• OraclePropertyGraph.getIndex(String name, Class elementClass): Gets an
index instance of the given manual index for type elementClass.

• OraclePropertyGraph.getIndices(): Gets an array of index instances for all
manual indexes created in the property graph.

5.5.4 Executing Search Queries Over a Property Graph’s Text Indexes
Oracle Spatial and Graph provides a set of utilities to execute text search queries over
automatic and manual text indexes. These utilities vary from querying based on a
particular key/value pair, to executing a text search over a single or multiple keys (with
extended query options such as wildcards, fuzzy searches, and range queries).

• Executing Search Queries Over a Text Index Using Oracle Text

5.5.4.1 Executing Search Queries Over a Text Index Using Oracle Text
Text search queries on Oracle Text are translated into SELECT SQL queries with a
"contains"clause including a score range and ordering, and score ID. Oracle’s property
graph includes an utility called OracleTextQueryObject, which lets you execute text
search queries over an Oracle Text index.

The following code fragment creates an automatic index using Oracle Text, and
executes a query over the text index by specifying a particular key/value pair.

String prefOwner = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String lexer = "OPG_AUTO_LEXER";
String options = (String) null;

Chapter 5
Managing Text Indexing for Property Graph Data

5-52

OracleIndexParameters params
 = OracleTextIndexParameters.buildOracleText(prefOwner,
 datastore,
 filter,
 storage,
 wordlist,
 stoplist,
 lexer,
 dop,
 options);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on all existing properties, use wildcard for all
opg.createKeyIndex(("*", Vertex.class);

// Get the auto index object
OracleIndex<Vertex> index = ((OracleIndex<Vertex>) opg.getAutoIndex(Vertex.class);

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance("Smith" /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE /* Score range
*/,
 Direction.ASC /* order by
direction*/);

Iterator<Vertex> vertices = index.get("name", otqo).iterator();
System.out.println("----- Vertices with query: " + otqo.toString() + " -----");
countV = 0;
while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
}
System.out.println("Vertices found: "+ countV);

You can filter the date type of the matching key/value pairs by specifying the data type class
to execute the query against. The following code fragment executes a query over the text
index to retrieve all properties with a String value including the word Smith.

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance("Smith" /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE
 /* Score range */,
 Direction.ASC
 /* order by direction*/,
 "name",
 String.class);

Iterator<Vertex> vertices = index.get("name", otqo).iterator();
System.out.println("----- Vertices with query: " + otqo.toString() + " -----");
countV = 0;
while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
}
System.out.println("Vertices found: "+ countV);

Chapter 5
Managing Text Indexing for Property Graph Data

5-53

5.5.5 Handling Data Types
Oracle's property graph support indexes and stores an element's Key/Value pairs
based on the value data type. The main purpose of handling data types is to provide
extensive query support like numeric and date range queries.

By default, searches over a specific key/value pair are matched up to a query
expression based on the value's data type. For example, to find vertices with the key/
value pair age:30, a query is executed over all age fields with a data type integer. If the
value is a query expression, you can also specify the data type class of the value to
find by calling the API get(String key, Object value, Class dtClass, Boolean
useWildcards). If no data type is specified, the query expression will be matched to all
possible data types.

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches.

• Handling Data Types on Oracle Text

5.5.5.1 Handling Data Types on Oracle Text
Text indexes using Oracle Text are created over the K and V text columns of the
property graph tables. In order to provide text indexing capabilities on all available data
types, Oracle populates the V column with a string representation of numeric, spatial,
and date time key/value pairs.

To specify the date time and numeric formats used when populating the V column, you
can use the methods setNumberToCharSqlFormatString and
setTimeToCharSqlFormatString. The following code snippet shows how to set the
date time and numeric formats in a property graph instance.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);
opg.setNumberToCharSqlFormatString("TM9");
opg.setTimeToCharSqlFormatString("SYYYY-MM-DD\"T\"HH24:MI:SS.FF9TZH:TZM");

When executing a text search query over a numeric or date time value, you should use
a text expression using the format associated to the property graph.
OraclePropertyGraph includes a utility API opg.parseValueToCharSQLFormatString
that lets you parse a numeric or date time object into format used in the V column
storage. The following code snippet calls this function with a date value and creates a
text query object out of the retrieved text.

Date d = new java.util.Date(100l);
String szDate = opg.parseValueToCharSQLFormatString(d);

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance(szDate /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE /* Score
range */,
 Direction.ASC /* order by
direction);

Chapter 5
Managing Text Indexing for Property Graph Data

5-54

5.5.6 Updating Configuration Settings on Text Indexes for Property Graph
Data

Oracle's property graph support manages manual and automatic text indexes through
integration with Oracle Text.

At creation time, you must create an OracleIndexParameters object specifying the search
engine and other configuration settings to be used by the text index. After a text index for
property graph is created, these configuration settings cannot be changed.

For automatic indexes, all vertex index keys are managed by a single text index, and all edge
index keys are managed by a different text index using the configuration specified when the
first vertex or edge key is indexed.

If you need to change the configuration settings, you must first disable the current index and
create it again using a new OracleIndexParameters object.

5.5.7 Using Parallel Query on Text Indexes for Property Graph Data
Text indexes in Oracle Spatial and Graph allow executing text queries over millions of
vertices and edges by a particular key/value or key/text pair using parallel query execution.

Parallel text query will produce an array where each element holds all the vertices (or edges)
with an attribute matching the given K/V pair from a shard. The subset of shards queried will
be delimited by the given start sub-directory ID and the size of the connections array
provided. This way, the subset will consider shards in the range of [start, start - 1 + size of
connections array]. Note that an integer ID (in the range of [0, N - 1]) is assigned to all the
shards in index with N shards.

• Parallel Text Search Using Oracle Text

5.5.7.1 Parallel Text Search Using Oracle Text
You can use parallel text query using Oracle Text by calling the
method getPartitioned in OracleTextAutoIndex, specifying an array of connections to
Oracle Text (Connection objects), the key/value pair to search, and the starting partition ID.

The following code fragment generates an automatic text index using Oracle Text and
executes a parallel text query. The number of calls to the getPartitioned method in
the OracleTextAutoIndex class is controlled by the total number of partitions in the VT$ (or
GE$ tables) and the number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(…);
String prefOwner = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String lexer = "OPG_AUTO_LEXER";
String options = (String) null;

OracleIndexParameters params
 = OracleTextIndexParameters.buildOracleText(prefOwner,
 datastore,
 filter,

Chapter 5
Managing Text Indexing for Property Graph Data

5-55

 storage,
 wordlist,
 stoplist,
 lexer,
 dop,
 options);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on all existing properties, use wildcard for all
opg.createKeyIndex(("*", Vertex.class);

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance("Smith" /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE /* Score
range */,
 Direction.ASC /* order by
direction*/);

// Get the Connection object
Connection[] conns = new Connection[dop];
for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = opg.getOracle().clone().getConnection();
}

// Get the auto index object
OracleIndex<Vertex> index = ((OracleIndex<Vertex>)
opg.getAutoIndex(Vertex.class);

// Iterate to cover all the partitions in the index
long lCount = 0;
for (int split = 0; split < index.getTotalShards();
 split += conns.length) {
 // Gets elements from split to split + conns.length
Iterable<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
 "name"/* key */,
 otqo,
 true /* wildcards */,
 split /* start split ID */);

lCount = countFromIterables(iterAr); /* Consume iterables in parallel */
}

// Close the connections
for (int idx = 0; idx < conns.length; idx++) {
conns[idx].dispose();
}

// Count results
System.out.println("Vertices found using parallel query: " + lCount);

Chapter 5
Managing Text Indexing for Property Graph Data

5-56

5.6 Access Control for Property Graph Data (Graph-Level and
OLS)

Oracle Graph supports two access control and security models: graph level access control,
and fine-grained security through integration with Oracle Label Security (OLS).

• Graph-level access control relies on grant/revoke to allow/disallow users other than the
owner to access a property graph.

• OLS for property graph data allows sensitivity labels to be associated with individual
vertex or edge stored in a property graph.

The default control of access to property graph data stored in an Oracle Database is at the
graph level: the owner of a graph can grant read, insert, delete, update and select privileges
on the graph to other users.

However, for applications with stringent security requirements, you can enforce a fine-grained
access control mechanism by using the Oracle Label Security option of Oracle Database.
With OLS, for each query, access to specific elements (vertices or edges) is granted by
comparing their labels with the user's labels. (For information about using OLS, see Oracle
Label Security Administrator's Guide .)

With Oracle Label Security enabled, elements (vertices or edges) may not be inserted in the
graph if the same elements exist in the database with a stronger sensitivity label. For
example, assume that you have a vertex with a very sensitive label, such as: (Vertex ID 1
{name:str:v1} "SENSITIVE"). This actually prevents a low-privileged (PUBLIC) user from
updating the vertex: (Vertex ID 1 {name:str:v1} "PUBLIC"). On the other hand, if a
high-privileged user overwrites a vertex or an edge that had been created with a low-level
security label, the newer label with higher security will be assigned to the vertex or edge, and
the low-privileged user will not be able to see it anymore.

• Applying Oracle Label Security (OLS) on Property Graph Data
This topic presents an example illustrating how to apply OLS to property graph data.

5.6.1 Applying Oracle Label Security (OLS) on Property Graph Data
This topic presents an example illustrating how to apply OLS to property graph data.

Because the property graph is stored in regular relational tables, this example is no different
from applying OLS on a regular relational table. The following shows how to configure and
enable OLS, create a security policy with security labels, and apply it to a property graph. The
code examples are very simplified, and do not necessarily reflect recommended practices
regarding user names and passwords.

1. As SYSDBA, create database users named userP, userP2, userS, userTS, userTS2 and
pgAdmin.

CONNECT / as sysdba;

CREATE USER userP IDENTIFIED BY userPpass;
GRANT connect, resource, create table, create view, create any index TO
userP;
GRANT unlimited TABLESPACE to userP;

Chapter 5
Access Control for Property Graph Data (Graph-Level and OLS)

5-57

CREATE USER userP2 IDENTIFIED BY userP2pass;
GRANT connect, resource, create table, create view, create any
index TO userP2;
GRANT unlimited TABLESPACE to userP2;

CREATE USER userS IDENTIFIED BY userSpass;
GRANT connect, resource, create table, create view, create any
index TO userS;
GRANT unlimited TABLESPACE to userS;

CREATE USER userTS IDENTIFIED BY userTSpass;
GRANT connect, resource, create table, create view, create any
index TO userTS;
GRANT unlimited TABLESPACE to userTS;

CREATE USER userTS2 IDENTIFIED BY userTS2pass;
GRANT connect, resource, create table, create view, create any
index TO userTS2;
GRANT unlimited TABLESPACE to userTS2;

CREATE USER pgAdmin IDENTIFIED BY pgAdminpass;
GRANT connect, resource, create table, create view, create any
index TO pgAdmin;
GRANT unlimited TABLESPACE to pgAdmin;

2. As SYSDBA, configure and enable Oracle Label Security.

ALTER USER lbacsys IDENTIFIED BY lbacsys ACCOUNT UNLOCK;
EXEC LBACSYS.CONFIGURE_OLS;
EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS;

3. As SYSTEM, grant privileges to sec_admin and hr_sec.

CONNECT system/<system-password>
GRANT connect, create any index to sec_admin IDENTIFIED BY password;
GRANT connect, create user, drop user, create role, drop any role
TO hr_sec IDENTIFIED BY password;

4. As LBACSYS, create the security policy.

CONNECT lbacsys/<lbacsys-password>

BEGIN
SA_SYSDBA.CREATE_POLICY (
 policy_name => 'DEFENSE',
 column_name => 'SL',
 default_options => 'READ_CONTROL,LABEL_DEFAULT,HIDE');
END;
/

Chapter 5
Access Control for Property Graph Data (Graph-Level and OLS)

5-58

5. As LBACSYS , grant DEFENSE_DBA and execute to sec_admin and hr_sec users.

GRANT DEFENSE_DBA to sec_admin;
GRANT DEFENSE_DBA to hr_sec;

GRANT execute on SA_COMPONENTS to sec_admin;
GRANT execute on SA_USER_ADMIN to hr_sec;

6. As SEC_ADMIN, create three security levels (For simplicity, compartments and groups
are omitted here.)

CONNECT sec_admin/<sec_admin-password>;

BEGIN
SA_COMPONENTS.CREATE_LEVEL (
 policy_name => 'DEFENSE',
 level_num => 1000,
 short_name => 'PUB',
 long_name => 'PUBLIC');
END;
/
EXECUTE SA_COMPONENTS.CREATE_LEVEL('DEFENSE',2000,'CONF','CONFIDENTIAL');
EXECUTE SA_COMPONENTS.CREATE_LEVEL('DEFENSE',3000,'SENS','SENSITIVE');

7. Create three labels.

EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('DEFENSE',1000,'PUB');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('DEFENSE',2000,'CONF');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('DEFENSE',3000,'SENS');

8. As HR_SEC, assign labels and privileges.

CONNECT hr_sec/<hr_sec-password>;

BEGIN
SA_USER_ADMIN.SET_USER_LABELS (
 policy_name => 'DEFENSE',
 user_name => 'UT',
 max_read_label => 'SENS',
 max_write_label => 'SENS',
 min_write_label => 'CONF',
 def_label => 'SENS',
 row_label => 'SENS');
END;
/

EXECUTE SA_USER_ADMIN.SET_USER_LABELS('DEFENSE', 'userTS', 'SENS');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('DEFENSE','userTS2','SENS');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('DEFENSE', 'userS', 'CONF');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS ('DEFENSE', userP', 'PUB', 'PUB',
'PUB', 'PUB', 'PUB');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS ('DEFENSE', 'userP2', 'PUB', 'PUB',
'PUB', 'PUB', 'PUB');
EXECUTE SA_USER_ADMIN.SET_USER_PRIVS ('DEFENSE', 'pgAdmin', 'FULL');

Chapter 5
Access Control for Property Graph Data (Graph-Level and OLS)

5-59

9. As SEC_ADMIN, apply the security policies to the desired property graph. Assume
a property graph with the name OLSEXAMPLE with userP as the graph owner. To
apply OLS security, execute the following statements.

CONNECT sec_admin/<password>;

EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLEVT$');
EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLEGE$');
EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLEGT$');
EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLESS$');

Now Oracle Label Security has sensitivity labels to be associated with individual
vertices or edges stored in the property graph.

The following example shows how to create a property graph with name
OLSEXAMPLE, and an example flow to demonstrate the behavior when different
users with different security labels create, read, and write graph elements.

// Create Oracle Property Graph
String graphName = "OLSEXAMPLE";
Oracle connPub = new Oracle("jdbc:oracle:thin:@host:port:SID",
"userP", "userPpass");
OraclePropertyGraph graphPub = OraclePropertyGraph.getInstance(connPub,
graphName, 48);

// Grant access to other users
graphPub.grantAccess("userP2", "RSIUD"); // Read, Select, Insert,
Update, Delete (RSIUD)
graphPub.grantAccess("userS", "RSIUD");
graphPub.grantAccess("userTS", "RSIUD");
graphPub.grantAccess("userTS2", "RSIUD");

// Load data
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
String vfile = "../../data/connections.opv";
String efile = "../../data/connections.ope";
graphPub.clearRepository();
opgdl.loadData(graphPub, vfile, efile, 48, 1000, true, null);
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countVertices()); // 78
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countEdges()); // 164

// Second user with a higher level
Oracle connTS = new Oracle("jdbc:oracle:thin:@host:port:SID", "userTS",
"userTpassS");
OraclePropertyGraph graphTS = OraclePropertyGraph.getInstance(connTS,
"USERP", graphName, 8, 48, null, null);
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countVertices()); // 78

Chapter 5
Access Control for Property Graph Data (Graph-Level and OLS)

5-60

System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countEdges()); // 164

// Add vertices and edges with the second user
long lMaxVertexID = graphTS.getMaxVertexID();
long lMaxEdgeID = graphTS.getMaxEdgeID();
long size = 10;
System.out.println("\nAdd " + size + " vertices and edges with user userTS
and SENSITIVE LABEL\n");
for (long idx = 1; idx <= size; idx++) {
 Vertex v = graphTS.addVertex(idx + lMaxVertexID);
 v.setProperty("name", "v_" + (idx + lMaxVertexID));
 Edge e = graphTS.addEdge(idx + lMaxEdgeID, v, graphTS.getVertex(idx),
"edge_" + (idx + lMaxEdgeID));
}
graphTS.commit();

// User userP with a lower level only sees the original vertices and edges,
user userTS can see more
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countVertices()); // 78
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countEdges()); // 164
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countVertices()); // 88
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countEdges()); // 174

// Third user with a higher level
Oracle connTS2 = new Oracle("jdbc:oracle:thin:@host:port:SID", "userTS2",
"userTS2pass");
OraclePropertyGraph graphTS2 = OraclePropertyGraph.getInstance(connTS2,
"USERP", graphName, 8, 48, null, null);
System.out.println("Vertices with user userTS2 and SENSITIVE LABEL: " +
graphTS2.countVertices()); // 88
System.out.println("Vertices with user userTS2 and SENSITIVE LABEL: " +
graphTS2.countEdges()); // 174

// Fourth user with a intermediate level
Oracle connS = new Oracle("jdbc:oracle:thin:@host:port:SID", "userS",
"userSpass");
OraclePropertyGraph graphS = OraclePropertyGraph.getInstance(connS, "USERP",
graphName, 8, 48, null, null);
System.out.println("Vertices with user userS and CONFIDENTIAL LABEL: " +
graphS.countVertices()); // 78
System.out.println("Vertices with user userS and CONFIDENTIAL LABEL: " +
graphS.countEdges()); // 164

// Modify vertices with the fourth user
System.out.println("\nModify " + size + " vertices with user userS and
CONFIDENTIAL LABEL\n");
for (long idx = 1; idx <= size; idx++) {
 Vertex v = graphS.getVertex(idx);
 v.setProperty("security_label", "CONFIDENTIAL");
}

Chapter 5
Access Control for Property Graph Data (Graph-Level and OLS)

5-61

graphS.commit();

// User userP with a lower level that userS cannot see the new vertices
// Users userS and userTS can see them
System.out.println("Vertices with user userP with property
security_label: " +
OraclePropertyGraphUtils.size(graphPub.getVertices("security_label",
"CONFIDENTIAL"))); // 0
System.out.println("Vertices with user userS with property
security_label: " +
OraclePropertyGraphUtils.size(graphS.getVertices("security_label",
"CONFIDENTIAL"))); // 10
System.out.println("Vertices with user userTS with property
security_label: " +
OraclePropertyGraphUtils.size(graphTS.getVertices("security_label",
"CONFIDENTIAL"))); // 10
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countVertices()); // 68
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countVertices()); // 88

The preceding example should produce the following output.

Vertices with user userP and PUBLIC LABEL: 78
Vertices with user userP and PUBLIC LABEL: 164
Vertices with user userTS and SENSITIVE LABEL: 78
Vertices with user userTS and SENSITIVE LABEL: 164

Add 10 vertices and edges with user userTS and SENSITIVE LABEL

Vertices with user userP and PUBLIC LABEL: 78
Vertices with user userP and PUBLIC LABEL: 164
Vertices with user userTS and SENSITIVE LABEL: 88
Vertices with user userTS and SENSITIVE LABEL: 174
Vertices with user userTS2 and SENSITIVE LABEL: 88
Vertices with user userTS2 and SENSITIVE LABEL: 174
Vertices with user userS and CONFIDENTIAL LABEL: 78
Vertices with user userS and CONFIDENTIAL LABEL: 164

Modify 10 vertices with user userS and CONFIDENTIAL LABEL

Vertices with user userP with property security_label: 0
Vertices with user userS with property security_label: 10
Vertices with user userTS with property security_label: 10
Vertices with user userP and PUBLIC LABEL: 68
Vertices with user userTS and SENSITIVE LABEL: 88

5.7 SQL-Based Property Graph Query and Analytics
You can use SQL to query property graph data in Oracle Spatial and Graph.

For the property graph support in Oracle Spatial and Graph, all the vertices and edges
data are persisted in relational form in Oracle Database. For detailed information about
the Oracle Spatial and Graph property graph schema objects, see Property Graph
Schema Objects for Oracle Database.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-62

This chapter provides examples of typical graph queries implemented using SQL. The
audience includes DBAs as well as application developers who understand SQL syntax and
property graph schema objects.

The benefits of querying directly property graph using SQL include:

• There is no need to bring data outside Oracle Database.

• You can leverage the industry-proven SQL engine provided by Oracle Database.

• You can easily join or integrate property graph data with other data types (relational,
JSON, XML, and so on).

• You can take advantage of existing Oracle SQL tuning and database management tools
and user interface.

The examples assume that there is a property graph named connections in the current
schema. The SQL queries and example output are for illustration purpose only, and your
output may be different depending on the data in your connections graph. In some
examples, the output is reformatted for readability.

• Simple Property Graph Queries
The examples in this topic query vertices, edges, and properties of the graph.

• Text Queries on Property Graphs
If values of a property (vertex property or edge property) contain free text, then it might
help performance to create an Oracle Text index on the V column.

• Navigation and Graph Pattern Matching
A key benefit of using a graph data model is that you can easily navigate across entities
(people, movies, products, services, events, and so on) that are modeled as vertices,
following links and relationships modeled as edges. In addition, graph matching
templates can be defined to do such things as detect patterns, aggregate individuals, and
analyze trends.

• Navigation Options: CONNECT BY and Parallel Recursion
The CONNECT BY clause and parallel recursion provide options for advanced navigation
and querying.

• Pivot
The PIVOT clause lets you dynamically add columns to a table to create a new table.

• SQL-Based Property Graph Analytics
In addition to the analytical functions offered by the in-memory analyst, the property
graph feature in Oracle Spatial and Graph supports several native, SQL-based property
graph analytics.

5.7.1 Simple Property Graph Queries
The examples in this topic query vertices, edges, and properties of the graph.

Example 5-1 Find a Vertex with a Specified Vertex ID

This example find the vertex with vertex ID 1 in the connections graph.

SQL> select vid, k, v, vn, vt
 from connectionsVT$
 where vid=1;

The output might be as follows:

Chapter 5
SQL-Based Property Graph Query and Analytics

5-63

 1 country United States
 1 name Robert Smith
 1 occupation CEO of Example Corporation
 ...

Example 5-2 Find an Edge with a Specified Edge ID

This example find the edge with edge ID 100 in the connections graph.

SQL> select eid,svid,dvid,k,t,v,vn,vt
 from connectionsGE$
 where eid=1000;

The output might be as follows:

 1000 1 2 weight 3 1 1

In the preceding output, the K of the edge property is "weight" and the type ID of the
value is 3, indicating a float value.

Example 5-3 Perform Simple Counting

This example performs simple counting in the connections graph.

SQL> -- Get the total number of K/V pairs of all the vertices
SQL> select /*+ parallel */ count(1)
 from connectionsVT$;

 299

SQL> -- Get the total number of K/V pairs of all the edges
SQL> select /*+ parallel(8) */ count(1)
 from connectionsGE$;
 164

SQL> -- Get the total number of vertices
SQL> select /*+ parallel */ count(distinct vid)
 from connectionsVT$;

 78

SQL> -- Get the total number of edges
SQL> select /*+ parallel */ count(distinct eid)
 from connectionsGE$;

 164

Example 5-4 Get the Set of Property Keys Used

This example gets the set of property keys used for the vertices n the connections
graph.

SQL> select /*+ parallel */ distinct k
 from connectionsVT$;

company

Chapter 5
SQL-Based Property Graph Query and Analytics

5-64

show
occupation
type
team
religion
criminal charge
music genre
genre
name
role
political party
country

13 rows selected.

SQL> -- get the set of property keys used for edges
SQL> select /*+ parallel */ distinct k
 from connectionsGE$;

weight

Example 5-5 Find Vertices with a Value

This example finds vertices with a value (of any property) that is of String type, and where
and the value contains two adjacent occurrences of a, e, i, o, or u, regardless of case.n the
connections graph.

SQL> select vid, t, k, v
 from connectionsVT$
 where t=1
 and regexp_like(v, '([aeiou])\1', 'i');

 6 1 name Jordan Peele
 6 1 show Key and Peele
 54 1 name John Green
 ...

It is usually hard to leverage a B-Tree index for the preceding kind of query because it is
difficult to know beforehand what kind of regular expression is going to be used. For the
above query, you might get the following execution plan. Note that full table scan is chosen by
the optimizer.

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 15 | 795 | 28 (0)| 00:00:01
1	PX COORDINATOR				
2	PX SEND QC (RANDOM)	:TQ10000	15	795	28 (0)
		Q1,00	P->S	QC (RAND)	
3	PX BLOCK ITERATOR		15	795	28 (0)
1	8	Q1,00	PCWC		

Chapter 5
SQL-Based Property Graph Query and Analytics

5-65

|* 4 | TABLE ACCESS FULL| CONNECTIONSVT$ | 15 | 795 | 28 (0)|
00:00:01 | 1 | 8 | Q1,00 | PCWP | |

Predicate Information (identified by operation id):

 4 - filter(INTERNAL_FUNCTION("V") AND REGEXP_LIKE ("V",U'([aeiou])
\005C1','i') AND "T"=1 AND INTERNAL_FUNCTION("K"))
Note

 - Degree of Parallelism is 2 because of table property

If the Oracle Database In-Memory option is available and memory is sufficient, it can
help performance to place the table (full table or a set of relevant columns) in memory.
One way to achieve that is as follows:

SQL> alter table connectionsVT$ inmemory;
Table altered.

Now, entering the same SQL containing the regular expression shows a plan that
performs a "TABLE ACCESS INMEMORY FULL".

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU) | Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

--
| 0 | SELECT STATEMENT | | 15 | 795 |
28 (0)| 00:00:01 | | | | | |
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10000	15	795		
28 (0)	00:00:01			Q1,00	P->S	QC (RAND)
3	PX BLOCK ITERATOR		15	795		
28 (0)	00:00:01	1	8	Q1,00	PCWC	
* 4	TABLE ACCESS INMEMORY FULL	CONNECTIONSVT$	15	795		
28 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWP | |

--
Predicate Information (identified by operation id):

 4 - filter(INTERNAL_FUNCTION("V") AND REGEXP_LIKE ("V",U'([aeiou])
\005C1','i') AND "T"=1 AND INTERNAL_FUNCTION("K"))
Note

 - Degree of Parallelism is 2 because of table property

5.7.2 Text Queries on Property Graphs
If values of a property (vertex property or edge property) contain free text, then it might
help performance to create an Oracle Text index on the V column.

Oracle Text can process text that is directly stored in the database. The text can be
short strings (such as names or addresses), or it can be full-length documents. These
documents can be in a variety of textual format.

The text can also be in many different languages. Oracle Text can handle any space-
separated languages (including character sets such as Greek or Cyrillic). In addition,

Chapter 5
SQL-Based Property Graph Query and Analytics

5-66

Oracle Text is able to handle the Chinese, Japanese and Korean pictographic languages)

Because the property graph feature uses NVARCHAR typed column for better support of
Unicode, it is highly recommended that UTF8 (AL32UTF8) be used as the database
character set.

To create an Oracle Text index on the vertices table (or edges table), the ALTER SESSION
privilege is required. For example:

SQL> grant alter session to <YOUR_USER_SCHEMA_HERE>;

If customization is required, also grant the EXECUTE privilege on CTX_DDL:

SQL> grant execute on ctx_ddl to <YOUR_USER_SCHEMA_HERE>;

The following shows some example statements for granting these privileges to SCOTT.

SQL> conn / as sysdba
Connected.
SQL> -- This is a PDB setup --
SQL> alter session set container=orcl;
Session altered.

SQL> grant execute on ctx_ddl to scott;
Grant succeeded.

SQL> grant alter session to scott;
Grant succeeded.

Example 5-6 Create a Text Index

This example creates an Oracle Text index on the vertices table (V column) of the
connections graph in the SCOTT schema. Note that the Oracle Text index created here is for
all property keys, not just one or a subset of property keys. In addition, if a new property is
added to the graph and the property value is of String data type, then it will automatically be
included in the same text index.

The example uses the OPG_AUTO_LEXER lexer owned by MDSYS.

SQL> execute opg_apis.create_vertices_text_idx('scott', 'connections',
pref_owner=>'MDSYS', lexer=>'OPG_AUTO_LEXER', dop=>2);

If customization is desired, you can use the ctx_ddl.create_preference API. For example:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_AUTO_LEXER', 'AUTO_LEXER');

PL/SQL procedure successfully completed.

SQL> execute opg_apis.create_vertices_text_idx('scott', 'connections',
pref_owner=>'scott', lexer=>'OPG_AUTO_LEXER', dop=>2);

PL/SQL procedure successfully completed.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-67

You can now use a rich set of functions provided by Oracle Text to perform queries
against graph elements.

Note:

If you no longer need an Oracle Text index, you can use the
drop_vertices_text_idx or opg_apis.drop_edges_text_idx API to drop it. The
following statements drop the text indexes on the vertices and edges of a
graph named connections owned by SCOTT:

SQL> exec opg_apis.drop_vertices_text_Idx('scott',
'connections');
SQL> exec opg_apis.drop_edges_text_Idx('scott', 'connections');

Example 5-7 Find a Vertex that Has a Property Value

The following example find a vertex that has a property value (of string type)
containing the keyword "Smith".

SQL> select vid, k, t, v
 from connectionsVT$
 where t=1
 and contains(v, 'Smith', 1) > 0
 order by score(1) desc
 ;

The output and SQL execution plan from the preceding statement may appear as
follows. Note that DOMAIN INDEX appears as an operation in the execution plan.

 1 name 1 Robert Smith

Execution Plan
--
Plan hash value: 1619508090

| Id | Operation | Name | Rows | Bytes |
Cost (%CPU) | Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 56
| 5 (20) | 00:00:01 | | |
| 1 | SORT ORDER BY | | 1 | 56
| 5 (20) | 00:00:01 | | |
|* 2 | TABLE ACCESS BY GLOBAL INDEX ROWID| CONNECTIONSVT$ | 1 | 56
4 (0)	00:00:01	ROWID	ROWID
* 3	DOMAIN INDEX	CONNECTIONSXTV$	
4 (0)	00:00:01		

Predicate Information (identified by operation id):

Chapter 5
SQL-Based Property Graph Query and Analytics

5-68

 2 - filter("T"=1 AND INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 3 - access("CTXSYS"."CONTAINS"("V",'Smith',1)>0)

Example 5-8 Fuzzy Match

The following example finds a vertex that has a property value (of string type) containing
variants of "ameriian" (a deliberate misspelling for this example) Fuzzy match is used.

SQL> select vid, k, t, v
 from connectionsVT$
 where contains(v, 'fuzzy(ameriian,,,weight)', 1) > 0
 order by score(1) desc;

The output and SQL execution plan from the preceding statement may appear as follows.

 8 role 1 american business man
 9 role 1 american business man
 4 role 1 american economist
 6 role 1 american comedian actor
 7 role 1 american comedian actor
 1 occupation 1 44th president of United States of America

6 rows selected.

Execution Plan
--
Plan hash value: 1619508090

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 56 | 5
(20)| 00:00:01 | | |
| 1 | SORT ORDER BY | | 1 | 56 | 5
(20)| 00:00:01 | | |
|* 2 | TABLE ACCESS BY GLOBAL INDEX ROWID| CONNECTIONSVT$ | 1 | 56 |
4 (0)| 00:00:01 | ROWID | ROWID |
|* 3 | DOMAIN INDEX | CONNECTIONSXTV$ | | |
4 (0)| 00:00:01 | | |

Predicate Information (identified by operation id):

 2 - filter(INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))

Example 5-9 Query Relaxation

The following example is a sophisticated Oracle Text query that implements query
relaxation, which enables you to execute the most restrictive version of a query first,
progressively relaxing the query until the required number of matches is obtained. Using
query relaxation with queries that contain multiple strings, you can provide guidance for
determining the “best” matches, so that these appear earlier in the results than other potential
matches.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-69

This example searchs for "american actor" with a query relaxation sequence.

SQL> select vid, k, t, v
 from connectionsVT$
 where CONTAINS (v,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>{american} {actor}</seq>
 <seq>{american} NEAR {actor}</seq>
 <seq>{american} AND {actor}</seq>
 <seq>{american} ACCUM {actor}</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 </query>') > 0;

The output and SQL execution plan from the preceding statement may appear as
follows.

 7 role 1 american comedian actor
 6 role 1 american comedian actor
 44 occupation 1 actor
 8 role 1 american business man
 53 occupation 1 actor film producer
 52 occupation 1 actor
 4 role 1 american economist
 47 occupation 1 actor
 9 role 1 american business man

9 rows selected.

Execution Plan
--
Plan hash value: 2158361449

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 56
| 4 (0)| 00:00:01 | | |
|* 1 | TABLE ACCESS BY GLOBAL INDEX ROWID| CONNECTIONSVT$ | 1 | 56
4 (0)	00:00:01	ROWID	ROWID
* 2	DOMAIN INDEX	CONNECTIONSXTV$	
4 (0)	00:00:01		

Predicate Information (identified by operation id):

 1 - filter(INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 2 - access("CTXSYS"."CONTAINS"("V",'<query> <textquery lang="ENGLISH"
grammar="CONTEXT">
 <progression> <seq>{american} {actor}</seq> <seq>{american}

Chapter 5
SQL-Based Property Graph Query and Analytics

5-70

NEAR {actor}</seq>
 <seq>{american} AND {actor}</seq> <seq>{american} ACCUM {actor}</
seq> </progression>
 </textquery> <score datatype="INTEGER" algorithm="COUNT"/> </query>')>0)

Example 5-10 Find an Edge

Just as with vertices, you can create an Oracle Text index on the V column of the edges table
(GE$) of a property graph. The following example uses the OPG_AUTO_LEXER lexer owned
by MDSYS.

SQL> exec opg_apis.create_edges_text_idx('scott', 'connections',
pref_owner=>'mdsys', lexer=>'OPG_AUTO_LEXER', dop=>4);

If customization is required, use the ctx_ddl.create_preference API.

5.7.3 Navigation and Graph Pattern Matching
A key benefit of using a graph data model is that you can easily navigate across entities
(people, movies, products, services, events, and so on) that are modeled as vertices,
following links and relationships modeled as edges. In addition, graph matching templates
can be defined to do such things as detect patterns, aggregate individuals, and analyze
trends.

This topic provides graph navigation and pattern matching examples using the example
property graph named connections. Most of the SQL statements are relatively simple, but
they can be used as building blocks to implement requirements that are more sophisticated. It
is generally best to start from something simple, and progressively add complexity.

Example 5-11 Who Are a Person's Collaborators?

The following SQL ststement finds all entities that a vertex with ID 1 collaborates with. For
simplicity, it considers only outgoing relationships.

SQL> select dvid, el, k, vn, v
 from connectionsGE$
 where svid=1
 and el='collaborates';

Note:

To find the specific vertex ID of interest, you can perform a text query on the
property graph using keywords or fuzzy matching. (For details and examples, see
Text Queries on Property Graphs.)

The preceding example's output and execution plan may be as follows.

 2 collaborates weight 1 1
 21 collaborates weight 1 1
 22 collaborates weight 1 1

 26 collaborates weight 1 1

Chapter 5
SQL-Based Property Graph Query and Analytics

5-71

10 rows selected.

--
| Id | Operation | Name | Rows |
Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

--
| 0 | SELECT STATEMENT | | 10
460	2 (0)	00:00:01					
1	PX COORDINATOR						
2	PX SEND QC (RANDOM)	:TQ10000	10				
460	2 (0)	00:00:01			Q1,00	P->S	QC (RAND)
3	PX PARTITION HASH ALL		10				
460	2 (0)	00:00:01	1	8	Q1,00	PCWC	
* 4	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	CONNECTIONSGE$	10				
460	2 (0)	00:00:01	1	8	Q1,00	PCWP	
* 5	INDEX RANGE SCAN	CONNECTIONSXSE$	20				
	1 (0)	00:00:01	1	8	Q1,00	PCWP	

--

Predicate Information (identified by operation id):

 4 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'collaborates' AND
INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 5 - access("SVID"=1)

Example 5-12 Who Are a Person's Collaborators and What are Their
Occupations?

The following SQL statement finds collaborators of the vertex with ID 1, and the
occupation of each collaborator. A join with the vertices table (VT$) is required.

SQL> select dvid, vertices.v
 from connectionsGE$, connectionsVT$ vertices
 where svid=1
 and el='collaborates'
 and dvid=vertices.vid
 and vertices.k='occupation';

The preceding example's output and execution plan may be as follows.

 21 67th United States Secretary of State
 22 68th United States Secretary of State
 23 chancellor
 28 7th president of Iran
 19 junior United States Senator from New York
...

| Id | Operation | Name | Rows
| Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

Chapter 5
SQL-Based Property Graph Query and Analytics

5-72

| 0 | SELECT STATEMENT | | 7 |
525 | 7 (0)| 00:00:01 | | | | | |
1	PX COORDINATOR						
2	PX SEND QC (RANDOM)	:TQ10000	7				
525	7 (0)	00:00:01			Q1,00	P->S	QC (RAND)
3	NESTED LOOPS		7				
525	7 (0)	00:00:01			Q1,00	PCWP	
4	PX PARTITION HASH ALL		10				
250	2 (0)	00:00:01	1	8	Q1,00	PCWC	
* 5	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	CONNECTIONSGE$	10				
250	2 (0)	00:00:01	1	8	Q1,00	PCWP	
* 6	INDEX RANGE SCAN	CONNECTIONSXSE$	20				
	1 (0)	00:00:01	1	8	Q1,00	PCWP	
7	PARTITION HASH ITERATOR		1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	
* 8	TABLE ACCESS BY LOCAL INDEX ROWID	CONNECTIONSVT$					
			KEY	KEY	Q1,00	PCWP	
* 9	INDEX UNIQUE SCAN	CONNECTIONSXQV$	1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	

Predicate Information (identified by operation id):

 5 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'collaborates')
 6 - access("SVID"=1)
 8 - filter(INTERNAL_FUNCTION("VERTICES"."V"))
 9 - access("DVID"="VERTICES"."VID" AND "VERTICES"."K"=U'occupation')
 filter(INTERNAL_FUNCTION("VERTICES"."K"))

Example 5-13 Find a Person's Enemies and Aggregate Them by Their Country

The following SQL statement finds enemies (that is, those with the feuds relationship) of the
vertex with ID 1, and aggregates them by their countries. A join with the vertices table (VT$)
is required.

SQL> select vertices.v, count(1)
 from connectionsGE$, connectionsVT$ vertices
 where svid=1
 and el='feuds'
 and dvid=vertices.vid
 and vertices.k='country'
 group by vertices.v;

The example's output and execution plan may be as follows. In this case, the vertex with ID 1
has 3 enemies in the United States and 1 in Russia.

United States 3
Russia 1

| Id | Operation | Name | Rows |
Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

Chapter 5
SQL-Based Property Graph Query and Analytics

5-73

| 0 | SELECT STATEMENT | | 5
375	5 (20)	00:00:01					
1	PX COORDINATOR						
2	PX SEND QC (RANDOM)	:TQ10001	5				
375	5 (20)	00:00:01			Q1,01	P->S	QC (RAND)
3	HASH GROUP BY		5				
375	5 (20)	00:00:01			Q1,01	PCWP	
4	PX RECEIVE		5				
375	5 (20)	00:00:01			Q1,01	PCWP	
5	PX SEND HASH	:TQ10000	5				
375	5 (20)	00:00:01			Q1,00	P->P	HASH
6	HASH GROUP BY		5				
375	5 (20)	00:00:01			Q1,00	PCWP	
7	NESTED LOOPS		5				
375	4 (0)	00:00:01			Q1,00	PCWP	
8	PX PARTITION HASH ALL		5				
125	2 (0)	00:00:01	1	8	Q1,00	PCWC	
* 9	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	CONNECTIONSGE$	5				
125	2 (0)	00:00:01	1	8	Q1,00	PCWP	
* 10	INDEX RANGE SCAN	CONNECTIONSXSE$	20				
	1 (0)	00:00:01	1	8	Q1,00	PCWP	
11	PARTITION HASH ITERATOR		1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	
* 12	TABLE ACCESS BY LOCAL INDEX ROWID	CONNECTIONSVT$					
			KEY	KEY	Q1,00	PCWP	
* 13	INDEX UNIQUE SCAN	CONNECTIONSXQV$	1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	

Predicate Information (identified by operation id):

 9 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'feuds')
 10 - access("SVID"=1)
 12 - filter(INTERNAL_FUNCTION("VERTICES"."V"))
 13 - access("DVID"="VERTICES"."VID" AND "VERTICES"."K"=U'country')
 filter(INTERNAL_FUNCTION("VERTICES"."K"))

Example 5-14 Find a Person's Collaborators, and aggregate and sort them

The following SQL statement finds the collaborators of the vertex with ID 1,
aggregates them by their country, and sorts them in ascending order.

SQL> select vertices.v, count(1)
 from connectionsGE$, connectionsVT$ vertices
 where svid=1
 and el='collaborates'
 and dvid=vertices.vid
 and vertices.k='country'
 group by vertices.v
 order by count(1) asc;

The example output and execution plan may be as follows. In this case, the vertex with
ID 1 has the most collaborators in the United States.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-74

Germany 1
Japan 1
Iran 1
United States 7

--
| Id | Operation | Name | Rows |
Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

--
| 0 | SELECT STATEMENT | | 10
750	9 (23)	00:00:01					
1	PX COORDINATOR						
2	PX SEND QC (ORDER)	:TQ10002	10				
750	9 (23)	00:00:01			Q1,02	P->S	QC (ORDER)
3	SORT ORDER BY		10				
750	9 (23)	00:00:01			Q1,02	PCWP	
4	PX RECEIVE		10				
750	9 (23)	00:00:01			Q1,02	PCWP	
5	PX SEND RANGE	:TQ10001	10				
750	9 (23)	00:00:01			Q1,01	P->P	RANGE
6	HASH GROUP BY		10				
750	9 (23)	00:00:01			Q1,01	PCWP	
7	PX RECEIVE		10				
750	9 (23)	00:00:01			Q1,01	PCWP	
8	PX SEND HASH	:TQ10000	10				
750	9 (23)	00:00:01			Q1,00	P->P	HASH
9	HASH GROUP BY		10				
750	9 (23)	00:00:01			Q1,00	PCWP	
10	NESTED LOOPS		10				
750	7 (0)	00:00:01			Q1,00	PCWP	
11	PX PARTITION HASH ALL		10				
250	2 (0)	00:00:01	1	8	Q1,00	PCWC	
* 12	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	CONNECTIONSGE$	10				
250	2 (0)	00:00:01	1	8	Q1,00	PCWP	
* 13	INDEX RANGE SCAN	CONNECTIONSXSE$	20				
	1 (0)	00:00:01	1	8	Q1,00	PCWP	
14	PARTITION HASH ITERATOR		1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	
* 15	TABLE ACCESS BY LOCAL INDEX ROWID	CONNECTIONSVT$					
			KEY	KEY	Q1,00	PCWP	
* 16	INDEX UNIQUE SCAN	CONNECTIONSXQV$	1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	

--

Predicate Information (identified by operation id):

 12 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'collaborates')
 13 - access("SVID"=1)
 15 - filter(INTERNAL_FUNCTION("VERTICES"."V"))
 16 - access("DVID"="VERTICES"."VID" AND "VERTICES"."K"=U'country')
 filter(INTERNAL_FUNCTION("VERTICES"."K"))

Chapter 5
SQL-Based Property Graph Query and Analytics

5-75

5.7.4 Navigation Options: CONNECT BY and Parallel Recursion
The CONNECT BY clause and parallel recursion provide options for advanced
navigation and querying.

• CONNECT BY lets you navigate and find matches in a hierarchical order. To follow
outgoing edges, you can use prior dvid = svid to guide the navigation.

• Parallel recursion lets you perform navigation up to a specified number of hops
away.

The examples use a property graph named connections.

Example 5-15 CONNECT WITH

The following SQL statement follows the outgoing edges by 1 hop.

SQL> select G.dvid
 from connectionsGE$ G
 start with svid = 1
 connect by nocycle prior dvid = svid and level <= 1;

The preceding example's output and execution plan may be as follows.

 2
 3
 4
 5
 6
 7
 8
 9
 10
 ...

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 7 | 273 | 3
(67)| 00:00:01 | | | | | |
* 1	CONNECT BY WITH FILTERING				
2	PX COORDINATOR				
3	PX SEND QC (RANDOM)	:TQ10000	2	12	0
(0)	00:00:01			Q1,00	P->S
4	PX PARTITION HASH ALL		2	12	0
(0)	00:00:01	1	8	Q1,00	PCWC
* 5	INDEX RANGE SCAN	CONNECTIONSXSE$	2	12	0
(0)	00:00:01	1	8	Q1,00	PCWP
* 6	FILTER				
7	NESTED LOOPS		5	95	1
(0)	00:00:01				
8	CONNECT BY PUMP				
9	PARTITION HASH ALL		2	12	0

Chapter 5
SQL-Based Property Graph Query and Analytics

5-76

(0)| 00:00:01 | 1 | 8 | | | |
|* 10 | INDEX RANGE SCAN | CONNECTIONSXSE$ | 2 | 12 | 0 (0)|
00:00:01 | 1 | 8 | | | |

Predicate Information (identified by operation id):

 1 - access("SVID"=PRIOR "DVID")
 filter(LEVEL<=2)
 5 - access("SVID"=1)
 6 - filter(LEVEL<=2)
 10 - access("connect$_by$_pump$_002"."prior dvid "="SVID")

To extend from 1 hop to multiple hops, change 1 in the preceding example to another integer.
For example, to change it to 2 hops, specify: level <= 2

Example 5-16 Parallel Recursion

The following SQL statement uses recursion within the WITH clause to perform navigation up
to 4 hops away, a using recursively defined graph expansion: g_exp references g_exp in the
query, and that defines the recursion. The example also uses the PARALLEL optimizer hint
for parallel execution.

SQL> WITH g_exp(svid, dvid, depth) as
 (
 select svid as svid, dvid as dvid, 0 as depth
 from connectionsGE$
 where svid=1
 union all
 select g2.svid, g1.dvid, g2.depth + 1
 from g_exp g2, connectionsGE$ g1
 where g2.dvid=g1.svid
 and g2.depth <= 3
)
select /*+ parallel(4) */ dvid, depth
 from g_exp
 where svid=1
;

The example's output and execution plan may be as follows. Note that CURSOR DURATION
MEMORY is chosen in the execution, which indicates the graph expansion stores the
intermediate data in memory.

 22 4
 25 4
 24 4
 1 4

 23 4
 33 4
 22 4
 22 4

Execution Plan

Chapter 5
SQL-Based Property Graph Query and Analytics

5-77

| Id | Operation |
Name | Rows | Bytes | Cost (%CPU)| Time | Pstart|
Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT
| | 801 | 31239 | 147 (0)| 00:00:01 |
| | | | |
| 1 | TEMP TABLE TRANSFORMATION
2	LOAD AS SELECT (CURSOR DURATION MEMORY)			
SYS_TEMP_0FD9D6614_11CB2D2				
3	UNION ALL (RECURSIVE WITH) BREADTH FIRST			
4	PX COORDINATOR			
5	PX SEND QC (RANDOM)			
:TQ20000	2	12	0 (0)	00:00:01
	Q2,00	P->S	QC (RAND)	
6	LOAD AS SELECT (CURSOR DURATION MEMORY)			
SYS_TEMP_0FD9D6614_11CB2D2				
	Q2,00	PCWP		
7	PX PARTITION HASH ALL			
	2	12	0 (0)	00:00:01
8	Q2,00	PCWC		
* 8	INDEX RANGE SCAN			
CONNECTIONSXSE$	2	12	0 (0)	00:00:01
8	Q2,00	PCWP		
9	PX COORDINATOR			
10	PX SEND QC (RANDOM)			
:TQ10000	799	12M	12 (0)	00:00:01
	Q1,00	P->S	QC (RAND)	
11	LOAD AS SELECT (CURSOR DURATION MEMORY)			
SYS_TEMP_0FD9D6614_11CB2D2				
	Q1,00	PCWP		
* 12	HASH JOIN			
	799	12M	12 (0)	00:00:01
	Q1,00	PCWP		
13	BUFFER SORT (REUSE)			
	Q1,00	PCWP		
14	PARTITION HASH ALL			
	164	984	2 (0)	00:00:01
8	Q1,00	PCWC		
15	INDEX FAST FULL SCAN			
CONNECTIONSXDE$	164	984	2 (0)	00:00:01
8	Q1,00	PCWP		
16	PX BLOCK ITERATOR			
	Q1,00	PCWC		
* 17	TABLE ACCESS FULL			

Chapter 5
SQL-Based Property Graph Query and Analytics

5-78

SYS_TEMP_0FD9D6614_11CB2D2 | | | | | | |
Q1,00 | PCWP | |
18	PX COORDINATOR							
19	PX SEND QC (RANDOM)	:TQ30000						
801	31239	135 (0)	00:00:01			Q3,00	P->S	QC (RAND)
* 20	VIEW							
801	31239	135 (0)	00:00:01			Q3,00	PCWP	
21	PX BLOCK ITERATOR							
801	12M	135 (0)	00:00:01			Q3,00	PCWC	
22	TABLE ACCESS FULL	SYS_TEMP_0FD9D6614_11CB2D2						
801 | 12M| 135 (0)| 00:00:01 | | | Q3,00 | PCWP | |

Predicate Information (identified by operation id):

 8 - access("SVID"=1)
 12 - access("G2"."DVID"="G1"."SVID")
 17 - filter("G2"."INTERNAL_ITERS$"=LEVEL AND "G2"."DEPTH"<=3)
 20 - filter("SVID"=1)

5.7.5 Pivot
The PIVOT clause lets you dynamically add columns to a table to create a new table.

The schema design (VT$ and GE$) of the property graph is narrow ("skinny") rather than
wide ("fat"). This means that if a vertex or edge has multiple properties, those property keys,
values, data types, and so on will be stored using multiple rows instead of multiple columns.
Such a design is very flexible in the sense that you can add properties dynamically without
having to worry about adding too many columns or even reaching the physical maximum limit
of number of columns a table may have. However, for some applications you may prefer to
have a wide table if the properties are somewhat homogeneous.

Example 5-17 Pivot

The following CREATE TABLE ... AS SELECT statement uses PIVOT to add four columns:
‘company’,’ occupation’,’ name’, and ‘religion’.

SQL> CREATE TABLE table pg_wide
as
 with G AS (select vid, k, t, v
 from connectionsVT$
)
 select *
 from G
 pivot (
 min(v) for k in ('company', 'occupation', 'name', 'religion')
);

Table created.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-79

The following DESCRIBE statement shows the definition of the new table, including
the four added columns. (The output is reformatted for readability.)

SQL> DESCRIBE pg_wide;
 Name Null? Type
--- --------

 VID NOT NULL NUMBER
 T
NUMBER(38)
 'company'
NVARCHAR2(15000)
 'occupation'
NVARCHAR2(15000)
 'name'
NVARCHAR2(15000)
 'religion'
NVARCHAR2(15000)

5.7.6 SQL-Based Property Graph Analytics
In addition to the analytical functions offered by the in-memory analyst, the property
graph feature in Oracle Spatial and Graph supports several native, SQL-based
property graph analytics.

The benefits of SQL-based analytics are:

• Easier analysis of larger graphs that do not fit in physical memory

• Cheaper analysis since no graph data is transferred outside the database

• Better analysis using the current state of a property graph database

• Simpler analysis by eliminating the step of synchronizing an in-memory graph with
the latest updates from the graph database

However, when a graph (or a subgraph) fits in memory, then running analytics
provided by the in-memory analyst usually provides better performance than using
SQL-based analytics.

Because many of the analytics implementation require using intermediate data
structures, most SQL- (and PL/SQL-) based analytics APIs have parameters for
working tables (wt). A typical flow has the following steps:

1. Prepare the working table or tables.

2. Perform analytics (one or multiple calls).

3. Perform cleanup

The following subtopics provide SQL-based examples of some popular types of
property graph analytics.

• Shortest Path Examples

• Collaborative Filtering Overview and Examples

Chapter 5
SQL-Based Property Graph Query and Analytics

5-80

5.7.6.1 Shortest Path Examples
The following examples demonstrate SQL-based shortest path analytics.

Example 5-18 Shortest Path Setup and Computation

Consider shortest path, for example. Internally, Oracle Database uses the bidirectional
Dijkstra algorithm. The following code snippet shows an entire prepare, perform, and
cleanup workflow.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working tables
 n number;
 path varchar2(1000);
 weights varchar2(1000);
BEGIN
 -- prepare
 opg_apis.find_sp_prep('connectionsGE$', wt1);
 dbms_output.put_line('working table name ' || wt1);

 -- compute
 opg_apis.find_sp(
 'connectionsGE$',
 1, -- start vertex ID
 53, -- destination vertex ID
 wt1, -- working table (for Dijkstra expansion)
 dop => 1, -- degree of parallelism
 stats_freq=>1000, -- frequency to collect statistics
 path_output => path, -- shortest path (a sequence of vertices)
 weights_output => weights, -- edge weights
 options => null
);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- cleanup (commented out here; see text after the example)
 -- opg_apis.find_sp_cleanup('connectionsGE$', wt1);
END;
/

This example may produce the following output. Note that if no working table name is
provided, the preparation step will automatically generate a temporary table name and create
it. Because the temporary working table name uses the session ID, your output will probably
be different.

working table name "CONNECTIONSGE$$TWFS12"
path 1 3 52 53
weights 4 3 1 1 1

PL/SQL procedure successfully completed.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-81

If you want to know the definition of the working table or tables, then skip the cleanup
phase (as shown in the preceding example that comments out the call to
find_sp_cleanup). After the computation is done, you can describe the working table
or tables.

SQL> describe "CONNECTIONSGE$$TWFS12"
 Name Null? Type
 --------- -------- ----------------------------
 NID NUMBER
 D2S NUMBER
 P2S NUMBER
 D2T NUMBER
 P2T NUMBER
 F NUMBER(38)
 B NUMBER(38)

For advanced users who want to try different table creation options, such as using in-
memory or advanced compression, you can pre-create the preceding working table
and pass the name in.

Example 5-19 Shortest Path: Create Working Table and Perform Analytics

The following statements show some advanced options, first creating a working table
with the same column structure and basic compression enabled, then passing it to the
SQL-based computation. The code optimizes the intermediate table for computations
with CREATE TABLE compression and in-memory options.

create table connections$MY_EXP(
 NID NUMBER,
 D2S NUMBER,
 P2S NUMBER,
 D2T NUMBER,
 P2T NUMBER,
 F NUMBER(38),
 B NUMBER(38)
) compress nologging;

DECLARE
 wt1 varchar2(100) := 'connections$MY_EXP';
 n number;
 path varchar2(1000);
 weights varchar2(1000);
BEGIN
 dbms_output.put_line('working table name ' || wt1);

 -- compute
 opg_apis.find_sp(
 'connectionsGE$',
 1,
 53,
 wt1,
 dop => 1,
 stats_freq=>1000,
 path_output => path,

Chapter 5
SQL-Based Property Graph Query and Analytics

5-82

 weights_output => weights,
 options => null
);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- cleanup
 -- opg_apis.find_sp_cleanup('connectionsGE$', wt1);
END;
/

At the end of the computation, if the working table has not been dropped or truncated, you
can check the content of the working table, as follows. Note that the working table structure
may vary between releases.

SQL> select * from connections$MY_EXP;
 NID D2S P2S D2T P2T F B
---------- ---------- ---------- ---------- ---------- ---------- ----------
 1 0 1.000E+100 1 -1
 53 1.000E+100 0 -1 1
 54 1.000E+100 1 53 -1 1
 52 1.000E+100 1 53 -1 1
 5 1 1 1.000E+100 0 -1
 26 1 1 1.000E+100 0 -1
 8 1000 1 1.000E+100 0 -1
 3 1 1 2 52 0 0
 15 1 1 1.000E+100 0 -1
 21 1 1 1.000E+100 0 -1
 19 1 1 1.000E+100 0 -1
 ...

Example 5-20 Shortest Path: Perform Multiple Calls to Same Graph

To perform multiple calls to the same graph, only a single call to the preparation step is
needed. The following shows an example of computing shortest path for multiple pairs of
vertices in the same graph.

DECLARE
 wt1 varchar2(100); -- intermediate working tables
 n number;
 path varchar2(1000);
 weights varchar2(1000);
BEGIN
 -- prepare
 opg_apis.find_sp_prep('connectionsGE$', wt1);
 dbms_output.put_line('working table name ' || wt1);

 -- find shortest path from vertex 1 to vertex 53
 opg_apis.find_sp('connectionsGE$', 1, 53,
 wt1, dop => 1, stats_freq=>1000, path_output => path, weights_output
=> weights, options => null);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

Chapter 5
SQL-Based Property Graph Query and Analytics

5-83

 -- find shortest path from vertex 2 to vertex 36
 opg_apis.find_sp('connectionsGE$', 2, 36,
 wt1, dop => 1, stats_freq=>1000, path_output => path,
weights_output => weights, options => null);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- find shortest path from vertex 30 to vertex 4
 opg_apis.find_sp('connectionsGE$', 30, 4,
 wt1, dop => 1, stats_freq=>1000, path_output => path,
weights_output => weights, options => null);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- cleanup
 opg_apis.find_sp_cleanup('connectionsGE$', wt1);
END;
/

The example's output may be as follows: three shortest paths have been found for the
multiple pairs of vertices provided.

working table name "CONNECTIONSGE$$TWFS12"
path 1 3 52 53
weights 4 3 1 1 1
path 2 36
weights 2 1 1
path 30 21 1 4
weights 4 3 1 1 1

PL/SQL procedure successfully completed.

5.7.6.2 Collaborative Filtering Overview and Examples
Collaborative filtering, also referred to as social filtering, filters information by using the
recommendations of other people. Collaborative filtering is widely used in systems that
recommend purchases based on purchases by others with similar preferences.

The following examples demonstrate SQL-based collaborative filtering analytics.

Example 5-21 Collaborative Filtering Setup and Computation

This example shows how to use SQL-based collaborative filtering, specifically using
matrix factorization to recommend telephone brands to customers. This example
assumes there exists a graph called "PHONES" in the database. This example graph
contains customer and item vertices, and edges with a 'rating' label linking some
customer vertices to other some item vertices. The rating labels have a numeric value
corresponding to the rating that a specific customer (edge OUT vertex) assigned to the
specified product (edge IN vertex).

The following figure shows this graph.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-84

http://recommender-systems.org/collaborative-filtering/

Figure 5-1 Phones Graph for Collaborative Filtering

set serveroutput on

DECLARE
 wt_l varchar2(32); -- working tables
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;
 options varchar2(32) := null;
BEGIN

 -- prepare
 opg_apis.cf_prep(edge_tab_name,wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
 dbms_output.put_line('working table wt_l ' || wt_l);
 dbms_output.put_line('working table wt_r ' || wt_r);
 dbms_output.put_line('working table wt_l1 ' || wt_l1);
 dbms_output.put_line('working table wt_r1 ' || wt_r1);
 dbms_output.put_line('working table wt_i ' || wt_i);
 dbms_output.put_line('working table wt_ld ' || wt_ld);
 dbms_output.put_line('working table wt_rd ' || wt_rd);

 -- compute
 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,

Chapter 5
SQL-Based Property Graph Query and Analytics

5-85

min_error,k,learning_rate,decrease_rate,regularization,dop,

wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);
END;
/

no

working table wt_l "PHONESGE$$CFL57"
working table wt_r "PHONESGE$$CFR57"
working table wt_l1 "PHONESGE$$CFL157"
working table wt_r1 "PHONESGE$$CFR157"
working table wt_i "PHONESGE$$CFI57"
working table wt_ld "PHONESGE$$CFLD57"
working table wt_rd "PHONESGE$$CFRD57"

PL/SQL procedure successfully completed.

Example 5-22 Collaborative Filtering: Validating the Intermediate Error

At the end of every computation, you can check the current error of the algorithm with
the following query as long as the data in the working tables has not been already
deleted. The following SQL query illustrates how to get the intermediate error of a
current run of the collaborative filtering algorithm.

SELECT /*+ parallel(48) */ SQRT(SUM((w1-w2)*(w1-w2) +
 <regularization>/2 * (err_reg_l+err_reg_r))) AS err
 FROM <wt_i>;

Note that the regularization parameter and the working table name (parameter wt_i)
should be replaced according to the values used when running the OPG_APIS.CF
algorithm. In the preceding previous example, replace <regularization> with 0.02
and <wt_i> with "PHONESGE$$CFI149" as follows:

SELECT /*+ parallel(48) */ SQRT(SUM((w1-w2)*(w1-w2) + 0.02/2 *
(err_reg_l+err_reg_r))) AS err
 FROM "PHONESGE$$CFI149";

This query may produce the following output.

 ERR

4.82163662

f the value of the current error is too high or if the predictions obtained from the matrix
factorization results of the collaborative filtering are not yet useful, you can run more
iterations of the algorithm, by reusing the working tables and the progress made so far.
The following example shows how to make predictions using the SQL-based
collaborative filtering.

Example 5-23 Collaborative Filtering: Making Predictions

The result of the collaborative filtering algorithm is stored in the tables wt_l and wt_r,
which are the two factors of a matrix product. These matrix factors should be used
when making the predictions of the collaborative filtering.

Chapter 5
SQL-Based Property Graph Query and Analytics

5-86

In a typical flow of the algorithm, the two matrix factors can be used to make the predictions
before calling the OPG_APIS.CF_CLEANUP procedure, or they can be copied and persisted
into other tables for later use. The following example demonstrates the latter case:

DECLARE
 wt_l varchar2(32); -- working tables
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;
 options varchar2(32) := null;
BEGIN

 -- prepare
 opg_apis.cf_prep(edge_tab_name,wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);

 -- compute
 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,
 min_error,k,learning_rate,decrease_rate,regularization,dop,
 wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);

 -- save only these two tables for later predictions
 EXECUTE IMMEDIATE 'CREATE TABLE customer_mat AS SELECT * FROM ' || wt_l;
 EXECUTE IMMEDIATE 'CREATE TABLE item_mat AS SELECT * FROM ' || wt_r;

 -- cleanup
 opg_apis.cf_cleanup('phonesge$',wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
END;
/

This example will produce the only the following output.

PL/SQL procedure successfully completed.

Now that the matrix factors are saved in the tables customer_mat and item_mat, you can use
the following query to check the "error" (difference) between the real values (those values
that previously existed in the graph as 'ratings') and the estimated predictions (the result of
the matrix multiplication in a certain customer row and item column).

Note that the following query is customized with a join on the vertex table in order return an
NVARCHAR property of the vertices (for example, the name property) instead of a numeric

Chapter 5
SQL-Based Property Graph Query and Analytics

5-87

ID. This query will return all the predictions for every single customer vertex to every
item vertex in the graph.

SELECT /*+ parallel(48) */ MIN(vertex1.v) AS customer,
 MIN(vertex2.v) AS item,
 MIN(edges.vn) AS real,
 SUM(l.v * r.v) AS predicted
FROM PHONESGE$ edges,
 CUSTOMER_MAT l,
 ITEM_MAT r,
 PHONESVT$ vertex1,
 PHONESVT$ vertex2
WHERE l.k = r.k
 AND l.c = edges.svid(+)
 AND r.p = edges.dvid(+)
 AND l.c = vertex1.vid
 AND r.p = vertex2.vid
GROUP BY l.c, r.p
ORDER BY l.c, r.p -- This order by clause is optional
;

This query may produce an output similar to the following (some rows are omitted for
brevity).

CUSTOMER ITEM REAL PREDICTED
--
Adam Apple 5 3.67375703
Adam Blackberry 3.66079652
Adam Danger 2.77049596
Adam Ericsson 4.21764858
Adam Figo 3.10631337
Adam Google 4 4.42429022
Adam Huawei 3 3.4289115
Ben Apple 2.82127589
Ben Blackberry 2 2.81132282
Ben Danger 3 2.12761307
Ben Ericsson 3 3.2389595
Ben Figo 2.38550534
Ben Google 3.39765075
Ben Huawei 2.63324582
...
Don Apple 1.3777496
Don Blackberry 1 1.37288909
Don Danger 1 1.03900439
Don Ericsson 1.58172236
Don Figo 1 1.16494421
Don Google 1.65921807
Don Huawei 1 1.28592648
Erik Apple 3 2.80809351
Erik Blackberry 3 2.79818695
Erik Danger 2.11767182
Erik Ericsson 3 3.2238255
Erik Figo 2.3743591
Erik Google 3 3.38177526
Erik Huawei 3 2.62094201

Chapter 5
SQL-Based Property Graph Query and Analytics

5-88

If you want to check only some rows to decide whether the prediction results are ready or
more iterations of the algorithm should be run, the previous query can be wrapped in an outer
query. The following example will select only the first 11 results.

SELECT /*+ parallel(48) */ * FROM (
SELECT /*+ parallel(48) */ MIN(vertex1.v) AS customer,
 MIN(vertex2.v) AS item,
 MIN(edges.vn) AS real,
 SUM(l.v * r.v) AS predicted
FROM PHONESGE$ edges,
 CUSTOMER_MAT l,
 ITEM_MAT r,
 PHONESVT$ vertex1,
 PHONESVT$ vertex2
WHERE l.k = r.k
 AND l.c = edges.svid(+)
 AND r.p = edges.dvid(+)
 AND l.c = vertex1.vid
 AND r.p = vertex2.vid
GROUP BY l.c, r.p
ORDER BY l.c, r.p
) WHERE rownum <= 11;

This query may produce an output similar to the following.

CUSTOMER ITEM REAL PREDICTED
--
Adam Apple 5 3.67375703
Adam Blackberry 3.66079652
Adam Danger 2.77049596
Adam Ericsson 4.21764858
Adam Figo 3.10631337
Adam Google 4 4.42429022
Adam Huawei 3 3.4289115
Ben Apple 2.82127589
Ben Blackberry 2 2.81132282
Ben Danger 3 2.12761307
Ben Ericsson 3 3.2389595

To get a prediction for a specific vertex (customer, item, or both) the query can be restricted
with the desired ID values. For example, to get the predicted value of vertex 1 (customer) and
vertex 105 (item), you can use the following query.

SELECT /*+ parallel(48) */ MIN(vertex1.v) AS customer,
 MIN(vertex2.v) AS item,
 MIN(edges.vn) AS real,
 SUM(l.v * r.v) AS predicted
FROM PHONESGE$ edges,
 CUSTOMER_MAT l,
 ITEM_MAT r,
 PHONESVT$ vertex1,
 PHONESVT$ vertex2
WHERE l.k = r.k
 AND l.c = edges.svid(+)
 AND r.p = edges.dvid(+)
 AND l.c = vertex1.vid

Chapter 5
SQL-Based Property Graph Query and Analytics

5-89

 AND vertex1.vid = 1 /* Remove to get all predictions for item 105 */
 AND r.p = vertex2.vid
 AND vertex2.vid = 105 /* Remove to get all predictions for customer 1
*/
 /* Remove both lines to get all predictions */
GROUP BY l.c, r.p
ORDER BY l.c, r.p;

This query may produce an output similar to the following.

CUSTOMER ITEM REAL PREDICTED
--
Adam Ericsson 4.21764858

5.8 Creating Property Graph Views on an RDF Graph
With Oracle Graph, you can view RDF data as a property graph to execute graph
analytics operations by creating property graph views over an RDF graph stored in
Oracle Database.

Given an RDF model (or a virtual model), the property graph feature creates two
views, a <graph_name>VT$ view for vertices and a <graph_name>GE$ view for
edges.

The PGUtils.createPropertyGraphViewOnRDF method lets you customize a property
graph view over RDF data:

public static void createPropertyGraphViewOnRDF(Connection conn /* a Connection
instance to Oracle database */,
 String pgGraphName /* the name of the property graph to be created */,
 String rdfModelName /* the name of the RDF model */,
 boolean virtualModel /* a flag represents if the RDF model
 is virtual model or not;
 true – virtual mode, false – normal model*/,
 RDFPredicate[] predListForVertexAttrs /* an array of RDFPredicate objects
specifying how to create vertex view using these predicates; each RDFPredicate
includes two fields: an URL of the RDF predicate, the corresponding name of
vertex key in the Property Graph. The mapping from RDF predicates to vertex keys
will be created based on this parameter. */,
 RDFPredicate[] predListForEdges /* an array of RDFPredicate specifying how
to create edge view using these predicates; each RDFPredicate includes two (or
three) fields: an URL of the RDF predicate, the edge label in the Property
Graph, the weight of the edge (optional). The mapping from RDF predicates to
edges will be created based on this parameter. */)

This operation requires the name of the property graph, the name of the RDF Model
used to generate the Property Graph view, and a set of mappings determining how
triples will be parsed into vertices or edges. The createPropertyGraphViewOnRDF
method requires a key/value mapping array specifying how RDF predicates are
mapped to Key/Value properties for vertices, and an edge mapping array specifying
how RDF predicates are mapped to edges. The PGUtils.RDFPredicate API lets you
create a map from RDF assertions to vertices/edges.

Vertices are created based on the triples matching at least one of the RDF predicates
in the key/value mappings. Each triple satisfying one of the RDF predicates defined in
the mapping array is parsed into a vertex with ID based on the internal RDF resource

Chapter 5
Creating Property Graph Views on an RDF Graph

5-90

ID of the subject of the triple, and a key/value pair whose key is defined by the mapping itself
and whose value is obtained from the object of the triple.

The following example defines a key/value mapping of the RDF predicate URI http://
purl.org/dc/elements/1.1/title to the key/value property with property name title.

String titleURL = "http://purl.org/dc/elements/1.1/title";
// create an RDFPredicate to specify how to map the RDF predicate to vertex keys
RDFPredicate titleRDFPredicate
 = RDFPredicate.getInstance(titleURL /* RDF Predicate URI */ ,
 "title" /* property name */);

Edges are created based on the triples matching at least one of the RDF predicates in the
edge mapping array. Each triple satisfying the RDF predicate defined in the mapping array is
parsed into an edge with ID based on the row number, an edge label defined by the mapping
itself, a source vertex obtained from the RDF Resource ID of the subject of the triple, and a
destination vertex obtained from the RDF Resource ID of the object of the triple. For each
triple parsed here, two vertices will be created if they were not generated from the key/value
mapping.

The following example defines an edge mapping of the RDF predicate URI http://
purl.org/dc/elements/1.1/reference to an edge with a label references and a weight of
0.5d.

String referencesURL = "http://purl.org/dc/terms/references";
// create an RDFPredicate to specify how to map the RDF predicate to edges
RDFPredicate referencesRDFPredicate
 = RDFPredicate.getInstance(referencesURL, "references", 0.5d);

The following example creates a property graph view over the RDF model articles
describing different publications, their authors, and references. The generated property graph
will include vertices with some key/value properties that may include title and creator. The
edges in the property graph will be determined by the references among publications.

Oracle oracle = null;
Connection conn = null;
OraclePropertyGraph pggraph = null;
try {
 // create the connection instance to Oracle database
 OracleDataSource ds = new oracle.jdbc.pool.OracleDataSource();
 ds.setURL(jdbcUrl);
 conn = (OracleConnection) ds.getConnection(user, password);

 // define some string variables for RDF predicates
 String titleURL = "http://purl.org/dc/elements/1.1/title";
 String creatorURL = "http://purl.org/dc/elements/1.1/creator";
 String serialnumberURL = "http://purl.org/dc/elements/1.1/serialnumber";
 String widthURL = "http://purl.org/dc/elements/1.1/width";
 String weightURL = "http://purl.org/dc/elements/1.1/weight";
 String onsaleURL = "http://purl.org/dc/elements/1.1/onsale";
 String publicationDateURL = "http://purl.org/dc/elements/1.1/publicationDate";
 String publicationTimeURL = "http://purl.org/dc/elements/1.1/publicationTime";
 String referencesURL = "http://purl.org/dc/terms/references";

 // create RDFPredicate[] predsForVertexAttrs to specify how to map
 // RDF predicate to vertex keys
 RDFPredicate[] predsForVertexAttrs = new RDFPredicate[8];
 predsForVertexAttrs[0] = RDFPredicate.getInstance(titleURL, "title");
 predsForVertexAttrs[1] = RDFPredicate.getInstance(creatorURL, "creator");
 predsForVertexAttrs[2] = RDFPredicate.getInstance(serialnumberURL,

Chapter 5
Creating Property Graph Views on an RDF Graph

5-91

 "serialnumber");
 predsForVertexAttrs[3] = RDFPredicate.getInstance(widthURL, "width");
 predsForVertexAttrs[4] = RDFPredicate.getInstance(weightURL, "weight");
 predsForVertexAttrs[5] = RDFPredicate.getInstance(onsaleURL, "onsale");
 predsForVertexAttrs[6] = RDFPredicate.getInstance(publicationDateURL,
 "publicationDate");
 predsForVertexAttrs[7] = RDFPredicate.getInstance(publicationTimeURL,
 "publicationTime");

 // create RDFPredicate[] predsForEdges to specify how to map RDF predicates to
 // edges
 RDFPredicate[] predsForEdges = new RDFPredicate[1];
 predsForEdges[0] = RDFPredicate.getInstance(referencesURL, "references", 0.5d);

 // create PG view on RDF model
 PGUtils.createPropertyGraphViewOnRDF(conn, "articles", "articles", false,
 predsForVertexAttrs, predsForEdges);

 // get the Property Graph instance
 oracle = new Oracle(jdbcUrl, user, password);
 pggraph = OraclePropertyGraph.getInstance(oracle, "articles", 24);

 System.err.println("------ Vertices from property graph view ------");
 pggraph.getVertices();
 System.err.println("------ Edges from property graph view ------");
 pggraph.getEdges();
}
finally {
 pggraph.shutdown();
 oracle.dispose();
 conn.close();
}

Given the following triples in the articles RDF model (11 triples), the output property
graph will include two vertices, one for <http://nature.example.com/Article1> (v1)
and another one for <http://nature.example.com/Article2> (v2). For vertex v1, it
has eight properties, whose values are the same as their RDF predicates. For
example, v1’s title is “All about XYZ”. Similarly for vertex v2, it has two properties:
title and creator. The output property graph will include a single edge (eid:1) from
vertex v1 to vertex v2 with an edge label “references” and a weight of 0.5d.

<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/title>
“All about XYZ”^^xsd:string.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/creator>
“Jane Smith”^^xsd:string.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/
serialnumber> “123456”^^xsd:integer.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/width>
“10.5”^^xsd:float.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/weight>
“1.08”^^xsd:double.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/onsale>
“false”^^xsd:boolean.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/
publicationDate> “2016-03-08”^^xsd:date)
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/
publicationTime> “2016-03-08T10:10:10”^^xsd:dateTime)
<http://nature.example.com/Article2> <http://purl.org/dc/elements/1.1/title> “A
review of ABC”^^xsd:string.
<http://nature.example.com/Article2> <http://purl.org/dc/elements/1.1/creator>
“Joe Bloggs”^^xsd:string.

Chapter 5
Creating Property Graph Views on an RDF Graph

5-92

<http://nature.example.com/Article1> <http://purl.org/dc/terms/references> <http://
nature.example.com/Article2>.

The preceding code will produce an output similar as the following. Note that the internal RDF
resource ID values may vary across different Oracle databases.

------ Vertices from property graph view ------
Vertex ID 7299961478807817799 {creator:str:Jane Smith, onsale:bol:false,
publicationDate:dat:Mon Mar 07 16:00:00 PST 2016, publicationTime:dat:Tue Mar 08
02:10:10 PST 2016, serialnumber:dbl:123456.0, title:str:All about XYZ,
weight:dbl:1.08, width:flo:10.5}
Vertex ID 7074365724528867041 {creator:str:Joe Bloggs, title:str:A review of ABC}
------ Edges from property graph view ------
Edge ID 1 from Vertex ID 7299961478807817799 {creator:str:Jane Smith,
onsale:bol:false, publicationDate:dat:Mon Mar 07 16:00:00 PST 2016,
publicationTime:dat:Tue Mar 08 02:10:10 PST 2016, serialnumber:dbl:123456.0,
title:str:All about XYZ, weight:dbl:1.08, width:flo:10.5} =[references]=> Vertex ID
7074365724528867041 {creator:str:Joe Bloggs, title:str:A review of ABC}
edgeKV[{weight:dbl:0.5}]

5.9 Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the vertices
and edges.

• About the Property Graph Description Files

• Edge File

• Vertex File

• Encoding Special Characters

• Example Property Graph in Oracle Flat File Format

• Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat File

• Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph Flat Files

5.9.1 About the Property Graph Description Files
A pair of files describe a property graph:

• Vertex file: Describes the vertices of the property graph. This file has an .opv file name
extension.

• Edge file: Describes the edges of the property graph. This file has an .ope file name
extension.

It is recommended that these two files share the same base name. For example, simple.opv
and simple.ope define a property graph.

5.9.2 Edge File
Each line in an edge file is a record that describes an edge of the property graph. A record
can describe one key-value property of an edge, thus multiple records are used to describe
an edge with multiple properties.

A record contains nine fields separated by commas. Each record must contain eight commas
to delimit all fields, whether or not they have values:

Chapter 5
Oracle Flat File Format Definition

5-93

edge_ID, source_vertex_ID, destination_vertex_ID, edge_label, key_name,
value_type, value, value, value

The following table describes the fields composing an edge file record.

Table 5-1 Edge File Record Format

Field
Number

Name Description

1 edge_ID An integer that uniquely identifies the edge

2 source_vertex_ID The vertex_ID of the outgoing tail of the edge.

3 destination_vertex_ID The vertex_ID of the incoming head of the edge.

4 edge_label The encoded label of the edge, which describes the
relationship between the two vertices

5 key_name The encoded name of the key in a key-value pair

If the edge has no properties, then enter a space
(%20). This example describes edge 100 with no
properties:

100,1,2,likes,%20,,,,

6 value_type An integer that represents the data type of the value
in the key-value pair:

1 String
2 Integer
3 Float
4 Double
5 Timestamp (date)
6 Boolean
7 Long integer
8 Short integer
9 Byte
10 Char
20 Spatial
101 Serializable Java object

7 value The encoded, nonnull value of key_name when it is
neither numeric nor timestamp (date)

8 value The encoded, nonnull value of key_name when it is
numeric

9 value The encoded, nonnull value of key_name when it is
a timestamp (date)

Use the Java SimpleDateFormat class to identify
the format of the date. This example describes the
date format of
2015-03-26Th00:00:00.000-05:00:

SimpleDateFormat sdf = new
SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

Chapter 5
Oracle Flat File Format Definition

5-94

Required Grouping of Edges: An edge can have multiple properties, and the edge file
includes a record (represented by a single line of text in the flat file) for each combination of
an edge ID and a property for that edge. In the edge file, all records for each edge must be
grouped together (that is, not have any intervening records for other edges. You can
accomplish this any way you want, but a convenient way is to sort the edge file records in
ascending (or descending) order by edge ID. (Note, however, an edge file is not required to
have all records sorted by edge ID; this is merely one way to achieve the grouping
requirement.)

When building an edge file in Oracle flat file format, it is important to verify that the edge
property name and value fields are correctly encoded (see especially Encoding Special
Characters). To simplify the encoding, you can use the OraclePropertyGraphUtils.escape
Java API.

You can use the OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid,
label, key, value) utility method to serialize an edge record directly in Oracle flat file
format. With this method, you no longer need to worry about encoding of special characters.
The method writes a new line of text in the given output stream describing the key/value
property of the given edge identified by eid.

Example 5-24 Using OraclePropertyGraphUtils.outputEdgeRecord

This example uses OraclePropertyGraphUtils.outputEdgeRecord to write two new lines for
edge 100 between vertices 1 and 2 with label friendOf.

OutputStream os = new FileOutputStream("./example.ope");
int sinceYear = 2009;
long eid = 100;
long svid = 1;
long dvid = 2;
OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid, "friendOf",
"since (year)", sinceYear);
OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid, "friendOf",
"weight", 1);
os.flush();
os.close();

The first line in the generated output file describes the property “since (year)" with value
2009, and the second line and the next line sets the edge weight to 1.

% cat example.ope
100,1,2,friendOf,since%20(year),2,,2009,
100,1,2,friendOf,weight,2,,1,

5.9.3 Vertex File
Each line in a vertex file is a record that describes a vertex of the property graph. A record
can describe one key-value property of a vertex, thus multiple records/lines are used to
describe a vertex with multiple properties.

A record contains fields separated by commas. Each record must contain five commas to
delimit first six fields, whether or not they have values. An optional seventh field can be
added (delimited from the sixth field by a comma) to define a vertex label:

vertex_ID, key_name, value_type, value, value, value, vertex_label

The following table describes the fields composing a vertex file record.

Chapter 5
Oracle Flat File Format Definition

5-95

Table 5-2 Vertex File Record Format

Field
Number

Name Description

1 vertex_ID An integer that uniquely identifies the vertex

2 key_name The name of the key in the key-value pair

If the vertex has no properties, then enter a space
(%20). This example describes vertex 1 with no
properties:

1,%20,,,,

3 value_type An integer that represents the data type of the value in
the key-value pair:

1 String
2 Integer
3 Float
4 Double
5 Timestamp (date)
6 Boolean
7 Long integer
8 Short integer
9 Byte
10 Char
20 Spatial data, which can be geospatial
coordinates, lines, polygons, or Well-Known Text
(WKT) literals
101 Serializable Java object

4 value The encoded, nonnull value of key_name when it is
neither numeric nor date

5 value The encoded, nonnull value of key_name when it is
numeric

6 value The encoded, nonnull value of key_name when it is a
timestamp (date)

Use the Java SimpleDateFormat class to identify the
format of the date. This example describes the date
format of 2015-03-26T00:00:00.000-05:00:

SimpleDateFormat sdf = new
SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

7 vertex_label The optional encoded label of the vertex, which can be
used to describe the type or category of the vertex.

Required Grouping of Vertices: A vertex can have multiple properties, and the vertex
file includes a record (represented by a single line of text in the flat file) for each
combination of a vertex ID and a property for that vertex. In the vertex file, all records
for each vertex must be grouped together (that is, not have any intervening records for
other vertices. You can accomplish this any way you want, but a convenient way is to
sort the vertex file records in ascending (or descending) order by vertex ID. (Note,

Chapter 5
Oracle Flat File Format Definition

5-96

however, a vertex file is not required to have all records sorted by vertex ID; this is merely
one way to achieve the grouping requirement.)

When building an edge file in Oracle flat file format, it is important to verify that the vertex
property name and value fields are correctly encoded (see especially Encoding Special
Characters). To simplify the encoding, you can use the OraclePropertyGraphUtils.escape
Java API.

You can use the OraclePropertyGraphUtils.outputVertexRecord(os, vid, key, value)
utility method to serialize a vertex record directly in Oracle flat file format. With this method,
you no longer need to worry about encoding of special characters. The method writes a new
line of text in the given output stream describing the key/value property of the given vertex
identified by vid.

Example 5-25 Using OraclePropertyGraphUtils.outputVertexRecord

This example uses OraclePropertyGraphUtils.outputVertexRecord to write two new lines
for vertex 1.

OutputStream os = new FileOutputStream("./example.opv");
long vid = 1;
String label = "person";
OraclePropertyGraphUtils.outputVertexRecord(os, vid, label, "name", "Robert
Smith");
OraclePropertyGraphUtils.outputVertexRecord(os, vid, label, "birth year",
1961);
os.flush();
os.close();

The first line in the generated output file describes the property name with value "Robert
Smith", and the second line describes his birth year of 1961.

% cat example.opv
1,name,1,Robert%20OSmith,,,person
1,birth%20year,2,,1961,,person

5.9.4 Encoding Special Characters
The encoding is UTF-8 for the vertex and edge files. The following table lists the special
characters that must be encoded as strings when they appear in a vertex or edge property
(key-value pair) or an edge label. No other characters require encoding.

Table 5-3 Special Character Codes in the Oracle Flat File Format

Special Character String Encoding Description

% %25 Percent

\t %09 Tab

(space) %20 Space

\n %0A New line

\r %0D Return

, %2C Comma

Chapter 5
Oracle Flat File Format Definition

5-97

5.9.5 Example Property Graph in Oracle Flat File Format
An example property graph in Oracle flat file format is as follows. In this example,
there are two vertices (John and Mary), and a single edge denoting that John is a
friend of Mary.

%cat simple.opv
1,age,2,,10,
1,name,1,John,,
2,name,1,Mary,,
2,hobby,1,soccer,,

%cat simple.ope
100,1,2,friendOf,%20,,,,

5.9.6 Converting an Oracle Database Table to an Oracle-Defined
Property Graph Flat File

You can convert Oracle Database tables that represent the vertices and edges of a
graph into an Oracle-defined flat file format (.opv and .ope file extensions).

If you have graph data stored in Oracle Database tables, you can use Java API
methods to convert that data into flat files, and later load the tables into Oracle
Database as a property graph. This eliminates the need to take some other manual
approach to generating the flat files from existing Oracle Database tables.

Converting a Table Storing Graph Vertices to an .opv File

You can convert an Oracle Database table that contains entities (that can be
represented as vertices of a graph) to a property graph flat file in .opv format.

For example, assume the following relational table: EmployeeTab (empID integer not
null, hasName varchar(255), hasAge integer, hasSalary number)

Assume that this table has the following data:

101, Jean, 20, 120.0
102, Mary, 21, 50.0
103, Jack, 22, 110.0
……

Each employee can be viewed as a vertex in the graph. The vertex ID could be the
value of employeeID or an ID generated using some heuristics like hashing. The
columns hasName, hasAge, and hasSalary can be viewed as attributes.

The Java method OraclePropertyGraphUtils.convertRDBMSTable2OPV and its
Javadoc information are as follows:

/**
* conn: is an connect instance to the Oracle relational database
* rdbmsTableName: name of the RDBMS table to be converted
* vidColName is the name of an column in RDBMS table to be treated as vertex ID
* lVIDOffset is the offset will be applied to the vertex ID
* ctams defines how to map columns in the RDBMS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterListener to report the progress and control
the behavior when errors happen

Chapter 5
Oracle Flat File Format Definition

5-98

*/
OraclePropertyGraphUtils.convertRDBMSTable2OPV(
 Connection conn,
 String rdbmsTableName,
 String vidColName,
 long lVIDOffset,
 ColumnToAttrMapping[] ctams,
 int dop,
 OutputStream opvOS,
 DataConverterListener dcl);

The following code snippet converts this table into an Oracle-defined vertex file (.opv):

// location of the output file
String opv = "./EmployeeTab.opv";
OutputStream opvOS = new FileOutputStream(opv);
// an array of ColumnToAttrMapping objects; each object defines how to map a
column in the RDBMS table to an attribute of the vertex in an Oracle
Property Graph.
ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[3];
// map column "hasName" to attribute "name" of type String
ctams[0] = ColumnToAttrMapping.getInstance("hasName", "name", String.class);
// map column "hasAge" to attribute "age" of type Integer
ctams[1] = ColumnToAttrMapping.getInstance("hasAge", "age", Integer.class);
// map column "hasSalary" to attribute "salary" of type Double
ctams[2] = ColumnToAttrMapping.getInstance("hasSalary",
"salary",Double.class);
// convert RDBMS table "EmployeeTab" into opv file "./EmployeeTab.opv",
column "empID" is the vertex ID column, offset 1000l will be applied to
vertex ID, use ctams to map RDBMS columns to attributes, set DOP to 8
OraclePropertyGraphUtils.convertRDBMSTable2OPV(conn, "EmployeeTab", "empID",
1000l, ctams, 8, opvOS, (DataConverterListener) null);

Note:

The lowercase letter "l" as the last character in the offset value 1000l denotes that
the value before it is a long integer.

The conversion result is as follows:

1101,name,1,Jean,,
1101,age,2,,20,
1101,salary,4,,120.0,
1102,name,1,Mary,,
1102,age,2,,21,
1102,salary,4,,50.0,
1103,name,1,Jack,,
1103,age,2,,22,
1103,salary,4,,110.0,

In this case, each row in table EmployeeTab is converted to one vertex with three attributes.
For example, the row with data "101, Jean, 20, 120.0" is converted to a vertex with ID 1101
with attributes name/"Jean", age/20, salary/120.0. There is an offset between original empID

Chapter 5
Oracle Flat File Format Definition

5-99

101 and vertex ID 1101 because an offset 1000l is applied. An offset is useful to avoid
collision in ID values of graph elements.

Converting a Table Storing Graph Edges to an .ope File

You can convert an Oracle Database table that contains entity relationships (that can
be represented as edges of a graph) to a property graph flat filein .ope format.

For example, assume the following relational table: EmpRelationTab (relationID
integer not null, source integer not null, destination integer not null,
relationType varchar(255), startDate date)

Assume that this table has the following data:

90001, 101, 102, manage, 10-May-2015
90002, 101, 103, manage, 11-Jan-2015
90003, 102, 103, colleague, 11-Jan-2015
……

Each relation (row) can be viewed as an edge in a graph. Specifically, edge ID could
be the same as relationID or an ID generated using some heuristics like hashing. The
column relationType can be used to define edge labels, and the column startDate can
be treated as an edge attribute.

The Java method OraclePropertyGraphUtils.convertRDBMSTable2OPE and its
Javadoc information are as follows:

/**
* conn: is an connect instance to the Oracle relational database
* rdbmsTableName: name of the RDBMS table to be converted
* eidColName is the name of an column in RDBMS table to be treated as edge ID
* lEIDOffset is the offset will be applied to the edge ID
* svidColName is the name of an column in RDBMS table to be treated as source
vertex ID of the edge
* dvidColName is the name of an column in RDBMS table to be treated as
destination vertex ID of the edge
* lVIDOffset is the offset will be applied to the vertex ID
* bHasEdgeLabelCol a Boolean flag represents if the given RDBMS table has a
column for edge labels; if true, use value of column elColName as the edge
label; otherwise, use the constant string elColName as the edge label
* elColName is the name of an column in RDBMS table to be treated as edge labels
* ctams defines how to map columns in the RDBMS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterListener to report the progress and control
the behavior when errors happen
*/
OraclePropertyGraphUtils.convertRDBMSTable2OPE(
 Connection conn,
 String rdbmsTableName,
 String eidColName,
 long lEIDOffset,
 String svidColName,
 String dvidColName,
 long lVIDOffset,
 boolean bHasEdgeLabelCol,
 String elColName,
 ColumnToAttrMapping[] ctams,
 int dop,
 OutputStream opeOS,
 DataConverterListener dcl);

Chapter 5
Oracle Flat File Format Definition

5-100

The following code snippet converts this table into an Oracle-defined edge file (.ope):

// location of the output file
String ope = "./EmpRelationTab.ope";
OutputStream opeOS = new FileOutputStream(ope);
// an array of ColumnToAttrMapping objects; each object defines how to map a
column in the RDBMS table to an attribute of the edge in an Oracle Property
Graph.
ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[1];
// map column "startDate" to attribute "since" of type Date
ctams[0] = ColumnToAttrMapping.getInstance(“startDate", “since",Date.class);
// convert RDBMS table “EmpRelationTab" into ope file “./
EmpRelationTab.opv", column “relationID" is the edge ID column, offset
10000l will be applied to edge ID, the source and destination vertices of
the edge are defined by columns “source" and “destination", offset 1000l
will be applied to vertex ID, the RDBMS table has an column “relationType"
to be treated as edge labels, use ctams to map RDBMS columns to edge
attributes, set DOP to 8
OraclePropertyGraphUtils.convertRDBMSTable2OPE(conn, “EmpRelationTab",
“relationID", 10000l, “source", “destination", 1000l, true, “relationType",
ctams, 8, opeOS, (DataConverterListener) null);

Note:

The lowercase letter “l" as the last character in the offset value 10000l denotes that
the value before it is a long integer.

The conversion result is as follows:

100001,1101,1102,manage,since,5,,,2015-05-10T00:00:00.000-07:00
100002,1101,1103,manage,since,5,,,2015-01-11T00:00:00.000-07:00
100003,1102,1103,colleague,since,5,,,2015-01-11T00:00:00.000-07:00

In this case, each row in table EmpRelationTab is converted to a distinct edge with the
attribute since. For example, the row with data “90001, 101, 102, manage, 10-May-2015" is
converted to an edge with ID 100001 linking vertex 1101 to vertex 1102. This edge has
attribute since/“2015-05-10T00:00:00.000-07:00". There is an offset between original
relationID “90001" and edge ID “100001" because an offset 10000l is applied. Similarly, an
offset 1000l is applied to the source and destination vertex IDs.

5.9.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files

Some applications use CSV (comma-separated value) format to encode vertices and edges
of a graph. In this format, each record of the CSV file represents a single vertex or edge, with
all its properties. You can convert a CSV file representing the vertices of a graph to Oracle-
defined flat file format definition (.opv for vertices, .ope for edges).

The CSV file to be converted may include a header line specifying the column name and the
type of the attribute that the column represents. If the header includes only the attribute
names, then the converter will assume that the data type of the values will be String.

Chapter 5
Oracle Flat File Format Definition

5-101

The Java APIs to convert CSV to OPV or OPE receive an InputStream from which
they read the vertices or edges (from CSV), and write them in the .opv or .ope format
to an OutputStream. The converter APIs also allow customization of the conversion
process.

The following subtopics provide instructions for converting vertices and edges:

• Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)

• Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)

The instructions for both are very similar, but with differences specific to vertices and
edges.

Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)

If the CSV file does not include a header, you must specify a ColumnToAttrMapping
array describing all the attribute names (mapped to its values data types) in the same
order in which they appear in the CSV file. Additionally, the entire columns from the
CSV file must be described in the array, including special columns such as the ID for
the vertices. If you want to specify the headers for the column in the first line of the
same CSV file, then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convertCSV2OPV
APIs. The simplest of these APIs requires:

• An InputStream to read vertices from a CSV file

• The name of the column that is representing the vertex ID (this column must
appear in the CSV file)

• An integer offset to add to the VID (an offset is useful to avoid collision in ID values
of graph elements)

• A ColumnToAttrMapping array (which must be null if the headers are specified in
the file)

• Degree of parallelism (DOP)

• An integer denoting offset (number of vertex records to skip) before converting

• An OutputStream in which the vertex flat file (.opv) will be written

• An optional DataConverterListener that can be used to keep track of the
conversion progress and decide what to do if an error occurs

Additional parameters can be used to specify a different format of the CSV file:

• The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',’.

• The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the
value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

– """Hello, world"", the screen showed…"

– "But Vader replied: \"No, I am your father.\""

• The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified if the
CSV has a specific date format. Providing a specific date format helps

Chapter 5
Oracle Flat File Format Definition

5-102

performance, because that format will be used as the first option when trying to parse
date values. Some example date formats are:

– "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

– "MM/dd/yyyy HH:mm:ss"

– "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'"

– "dddd, dd MMMM yyyy hh:mm:ss"

– "yyyy-MM-dd"

– "MM/dd/yyyy"

• A flag indicating if the CSV file contains String values with new line characters. If this
parameter is set to true, all the Strings in the file that contain new lines or quotation
characters as values must be quoted.

– "The first lines of Don Quixote are:""In a village of La Mancha, the name of which I
have no desire to call to mind""."

The following code fragment shows how to create a ColumnToAttrMapping array and use the
API to convert a CSV file into an .opv file.

 String inputCSV = "/path/mygraph-vertices.csv";
 String outputOPV = "/path/mygraph.opv";
 ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[4];
 ctams[0] = ColumnToAttrMapping.getInstance("VID",
Long.class);
 ctams[1] = ColumnToAttrMapping.getInstance("name",
String.class);
 ctams[2] = ColumnToAttrMapping.getInstance("score",
Double.class);
 ctams[3] = ColumnToAttrMapping.getInstance("age",
Integer.class);
 String vidColumn = "VID";

 isCSV = new FileInputStream(inputCSV);
 osOPV = new FileOutputStream(new File(outputOPV));

 // Convert Vertices
 OraclePropertyGraphUtilsBase.convertCSV2OPV(isCSV, vidColumn, 0, ctams,
1, 0, osOPV, null);
 isOPV.close();
 osOPV.close();

In this example, the CSV file to be converted must not include the header and contain four
columns (the vertex ID, name, score, and age). An example CVS is as follows:

1,John,4.2,30
2,Mary,4.3,32
3,"Skywalker, Anakin",5.0,46
4,"Darth Vader",5.0,46
5,"Skywalker, Luke",5.0,53

The resulting .opv file is as follows:

1,name,1,John,,
1,score,4,,4.2,

Chapter 5
Oracle Flat File Format Definition

5-103

1,age,2,,30,
2,name,1,Mary,,
2,score,4,,4.3,
2,age,2,,32,
3,name,1,Skywalker%2C%20Anakin,,
3,score,4,,5.0,
3,age,2,,46,
4,name,1,Darth%20Vader,,
4,score,4,,5.0,
4,age,2,,46,
5,name,1,Skywalker%2C%20Luke,,
5,score,4,,5.0,
5,age,2,,53,

Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)

If the CSV file does not include a header, you must specify a ColumnToAttrMapping
array describing all the attribute names (mapped to its values data types) in the same
order in which they appear in the CSV file. Additionally, the entire columns from the
CSV file must be described in the array, including special columns such as the ID for
the edges if it applies, and the START_ID, END_ID, and TYPE, which are required. If
you want to specify the headers for the column in the first line of the same CSV file,
then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convertCSV2OPE
APIs. The simplest of these APIs requires:

• An InputStream to read vertices from a CSV file

• The name of the column that is representing the edge ID (this is optional in the
CSV file; if it is not present, the line number will be used as the ID)

• An integer offset to add to the EID (an offset is useful to avoid collision in ID values
of graph elements)

• Name of the column that is representing the source vertex ID (this column must
appear in the CSV file)

• Name of the column that is representing the destination vertex ID (this column
must appear in the CSV file)

• Offset to the VID (lOffsetVID). This offset will be added on top of the original
SVID and DVID values. (A variation of this API takes in two arguments
(lOffsetSVID and lOffsetDVID): one offset for SVID, the other offset for DVID.)

• A boolean flag indicating if the edge label column is present in the CSV file.

• Name of the column that is representing the edge label (if this column is not
present in the CSV file, then this parameter will be used as a constant for all edge
labels)

• A ColumnToAttrMapping array (which must be null if the headers are specified in
the file)

• Degree of parallelism (DOP)

• An integer denoting offset (number of edge records to skip) before converting

• An OutputStream in which the edge flat file (.ope) will be written

• An optional DataConverterListener that can be used to keep track of the
conversion progress and decide what to do if an error occurs.

Additional parameters can be used to specify a different format of the CSV file:

Chapter 5
Oracle Flat File Format Definition

5-104

• The delimiter character, which is used to separate tokens in a record. The default is the
comma character ',’.

• The quotation character, which is used to quote String values so they can contain special
characters, for example, commas. If a quotation character appears in the value of the
String itself, it must be escaped either by duplication or by placing a backslash character
'\' before it. Some examples are:

– """Hello, world"", the screen showed…"

– "But Vader replied: \"No, I am your father.\""

• The Date format, which will be used to parse the date values. For the CSV conversion,
this parameter can be null, but it is recommended to be specified if the CSV has a
specific date format. Providing a specific date format helps performance, because that
format will be used as the first option when trying to parse date values. Some example
date formats are:

– "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

– "MM/dd/yyyy HH:mm:ss"

– "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'"

– "dddd, dd MMMM yyyy hh:mm:ss"

– "yyyy-MM-dd"

– "MM/dd/yyyy"

• A flag indicating if the CSV file contains String values with new line characters. If this
parameter is set to true, all the Strings in the file that contain new lines or quotation
characters as values must be quoted.

– "The first lines of Don Quixote are:""In a village of La Mancha, the name of which I
have no desire to call to mind""."

The following code fragment shows how to use the API to convert a CSV file into an .ope file
with a null ColumnToAttrMapping array.

 String inputOPE = "/path/mygraph-edges.csv";
 String outputOPE = "/path/mygraph.ope";
 String eidColumn = null; // null implies that an integer
sequence will be used
 String svidColumn = "START_ID";
 String dvidColumn = "END_ID";
 boolean hasLabel = true;
 String labelColumn = "TYPE";

 isOPE = new FileInputStream(inputOPE);
 osOPE = new FileOutputStream(new File(outputOPE));

 // Convert Edges
 OraclePropertyGraphUtilsBase.convertCSV2OPE(isOPE, eidColumn, 0,
svidColumn, dvidColumn, hasLabel, labelColumn, null, 1, 0, osOPE, null);

An input CSV that uses the former example to be converted should include the header
specifying the columns name and their type. An example CSV file is as follows.

START_ID:long,weight:float,END_ID:long,:TYPE
1,1.0,2,loves

Chapter 5
Oracle Flat File Format Definition

5-105

1,1.0,5,admires
2,0.9,1,loves
1,0.5,3,likes
2,0.0,4,likes
4,1.0,5,is the dad of
3,1.0,4,turns to
5,1.0,3,saves from the dark side

The resulting .ope file is as follows.

1,1,2,loves,weight,3,,1.0,
2,1,5,admires,weight,3,,1.0,
3,2,1,loves,weight,3,,0.9,
4,1,3,likes,weight,3,,0.5,
5,2,4,likes,weight,3,,0.0,
6,4,5,is%20the%20dad%20of,weight,3,,1.0,
7,3,4,turns%20to,weight,3,,1.0,
8,5,3,saves%20from%20the%20dark%20side,weight,3,,1.0,

Chapter 5
Oracle Flat File Format Definition

5-106

6
Property Graph Query Language (PGQL)

PGQL is a SQL-like query language for property graph data structures that consist
of vertices that are connected to other vertices by edges, each of which can have key-value
pairs (properties) associated with them.

The language is based on the concept of graph pattern matching, which allows you to specify
patterns that are matched against vertices and edges in a data graph.

Note:

The graph server (PGX) 21.2.0 supports PGQL 1.3 and earlier versions.

The property graph support provides two ways to execute Property Graph Query Language
(PGQL) queries through Java APIs:

• Use the oracle.pgx.api Java package to query an in-memory snapshot of a graph that
has been loaded into the in-memory analyst (PGX), as described in Using the In-Memory
Graph Server (PGX).

• Use the oracle.pg.rdbms.pgql Java package to directly query graph data stored in
Oracle Database, as described in Executing PGQL Queries Directly Against Oracle
Database.

For more information about PGQL, see https://pgql-lang.org.

• Creating a Property Graph using PGQL

• Creating Property Graph Views Using PGQL

• Pattern Matching with PGQL

• Edge Patterns Have a Direction with PGQL

• Vertex and Edge Labels with PGQL

• Variable-Length Paths with PGQL

• Aggregation and Sorting with PGQL

• Executing PGQL Queries Against the In-Memory Graph Server (PGX)
This section describes the Java APIs that are used to execute PGQL queries in the In-
Memory graph server (PGX).

• Executing PGQL Queries Directly Against Oracle Database
This topic explains how you can execute PGQL queries directly against the graph in
Oracle Database (as opposed to in-memory).

6.1 Creating a Property Graph using PGQL
CREATE PROPERTY GRAPH is a PGQL DDL statement to create a graph from database
tables. The graph is stored in the property graph schema.

6-1

https://pgql-lang.org/spec/1.3/
https://pgql-lang.org

The CREATE PROPERTY GRAPH statement starts with the name you give the graph,
followed by a set of vertex tables and edge tables. The graph can have no vertex
tables or edge tables (an empty graph), or vertex tables and no edge tables (a graph
with only vertices and no edges), or both vertex tables and edge tables (a graph with
vertices and edges). However, a graph cannot be specified with only edge tables and
no vertex tables.

Consider the following example:

• PERSONS is a table with columns ID, NAME, and ACCOUNT_NUMBER. A row is
added to this table for every person who has an account.

• TRANSACTIONS is a table with columns FROM_ACCOUNT, TO_ACCOUNT,
DATE, and AMOUNT. A row is added into this table in the database every time
money is transferred from a FROM_ACCOUNT to a TO_ACCOUNT.

A straightforward mapping of tables to graphs is as follows. The graph concepts
mapped are: vertices, edges, labels, properties.

• Vertex tables: A table that contains data entities is a vertex table.

– Each row in the vertex table is a vertex.

– The columns in the vertex table are properties of the vertex.

– The name of the vertex table is the default label for this set of vertices.
Alternatively, you can specify a label name as part of the CREATE
PROPERTY GRAPH statement.

• Edge tables: An edge table can be any table that links two vertex tables, or a
table that has data that indicates an action from a source entity to a target entity.
For example, a transfer of money from FROM_ACCOUNT to TO_ACCOUNT is a
natural edge.

– Foreign key relationships can give guidance on what links are relevant in your
data. CREATE PROPERTY GRAPH will default to using foreign key
relationships to identify edges.

– Some of the properties of an edge table can be the properties of the edge. For
example, an edge from FROM_ACCOUNT to TO_ACCOUNT can have
properties DATE and AMOUNT.

– The name of an edge table is the default label for this set of edges.
Alternatively, you can specify a label name as part of the CREATE
PROPERTY GRAPH statement.

• Keys:

– Keys in a vertex table: The key of a vertex table identifies a unique vertex in
the graph. The key can be specified in the CREATE PROPERTY GRAPH
statement; otherwise, it defaults to the primary key of the table. If there are
duplicate rows in the table, the CREATE PROPERTY GRAPH statement will
return an error.

– Key in an edge table: The key of an edge table uniquely identifies an edge in
the graph. The KEY clause when specifying source and destination vertices
uniquely identifies the source and destination vertices.

Chapter 6
Creating a Property Graph using PGQL

6-2

The following is an example CREATE PROPERTY GRAPH statement for the tables
PERSONS and TRANSACTIONS.

CREATE PROPERTY GRAPH bank_transfers
 VERTEX TABLES (persons KEY(account_number))
 EDGE TABLES(
 transactions KEY (from_acct, to_acct, date, amount)
 SOURCE KEY (from_account) REFERENCES persons
 DESTINATION KEY (to_account) REFERENCES persons
 PROPERTIES (date, amount)
)

• Table aliases: Vertex and edge tables must have unique names. If you need to identify
multiple vertex tables from the same relational table, or multiple edge tables from the
same relational table, you must use aliases. For example, you can create two vertex
tables PERSONS and PERSONS_ID from one table PERSONS, as in the following
example.

CREATE PROPERTY GRAPH bank_transfers
 VERTEX TABLES (persons KEY(account_number)
 persons_id AS persons KEY(id))

• REFERENCES clause: This connects the source and destination vertices of an edge to
the corresponding vertex tables.

For more details, see: https://pgql-lang.org/spec/latest/#creating-a-property-graph.

6.2 Creating Property Graph Views Using PGQL
You can create property graphs views on relational database tables.

The CREATE PROPERTY GRAPH statement in PGQL is used to create the property graph views.

See Example 3-1 for an example of a CREATE PROPERTY GRAPH statement used to create a
property graph view.

The Java API in oracle.pg.rdbms.pgql package provides support for executing PGQL
queries with a few exceptions.

Creation and querying of property graph views is supported in SQLcl. You can also query
property graph views using the graph visualization tool. Both creation and querying of
property graph views are not supported when using the Python API.

Also, the following PGQL SELECT features are not supported:

• Recursive queries

• Subqueries

• in_degree and out_degree functions

• Bind variables

6.3 Pattern Matching with PGQL
Pattern matching is done by specifying one or more path patterns in the MATCH clause. A
single path pattern matches a linear path of vertices and edges, while more complex patterns

Chapter 6
Creating Property Graph Views Using PGQL

6-3

https://pgql-lang.org/spec/latest/#creating-a-property-graph

can be matched by combining multiple path patterns, separated by comma. Value
expressions (similar to their SQL equivalents) are specified in the WHERE clause and
let you filter out matches, typically by specifying constraints on the properties of the
vertices and edges

For example, assume a graph of TCP/IP connections on a computer network, and you
want to detect cases where someone logged into one machine, from there into
another, and from there into yet another. You would query for that pattern like this:

SELECT id(host1) AS id1, id(host2) AS id2, id(host3) AS id3 /*
choose what to return */
FROM MATCH
 (host1) -[connection1]-> (host2) -[connection2]-> (host3) /*
single linear path pattern to match */
WHERE
 connection1.toPort = 22 AND connection1.opened = true AND
 connection2.toPort = 22 AND connection2.opened = true AND
 connection1.bytes > 300 AND /*
meaningful amount of data was exchanged */
 connection2.bytes > 300 AND
 connection1.start < connection2.start AND /*
second connection within time-frame of first */
 connection2.start + connection2.duration < connection1.start +
connection1.duration
GROUP BY id1, id2, id3 /*
aggregate multiple matching connections */

For more examples of pattern matching, see the relevant section of the PGQL
specification.

6.4 Edge Patterns Have a Direction with PGQL
An edge pattern has a direction, as edges in graphs do. Thus, (a) <-[]-
(b) specifies a case where b has an edge pointing at a, whereas (a) -[]-> (b) looks
for an edge in the opposite direction.

The following example finds common friends of April and Chris who are older than
both of them.

SELECT friend.name, friend.dob
FROM MATCH /* note the arrow directions below */
 (p1:person) -[:likes]-> (friend) <-[:likes]- (p2:person)
WHERE
 p1.name = 'April' AND p2.name ='Chris' AND
 friend.dob > p1.dob AND friend.dob > p2.dob
ORDER BY friend.dob DESC

For more examples of edge patterns, see the relevant section of the PGQL
specification here.

Chapter 6
Edge Patterns Have a Direction with PGQL

6-4

https://pgql-lang.org/spec/latest/#writing-simple-queries
https://pgql-lang.org/spec/latest/#writing-simple-queries
http://pgql-lang.org/spec/latest/#edge-patterns

6.5 Vertex and Edge Labels with PGQL
Labels are a way of attaching type information to edges and nodes in a graph, and can be
used in constraints in graphs where not all nodes represent the same thing. For example:

SELECT p.name
FROM MATCH (p:person) -[e1:likes]-> (m1:movie),
 MATCH (p) -[e2:likes]-> (m2:movie)
WHERE m1.title = 'Star Wars'
 AND m2.title = 'Avatar'

For more examples of label expressions, see the relevant section of the PGQL specification
here.

6.6 Variable-Length Paths with PGQL
Variable-length path patterns have a quantifier like * to match a variable number of vertices
and edges. Using a PATH macro, you can specify a named path pattern at the start of a
query that can be embedded into the MATCH clause any number of times, by referencing its
name. The following example finds all of the common ancestors of Mario and Luigi.

PATH has_parent AS () -[:has_father|has_mother]-> ()
SELECT ancestor.name
FROM MATCH (p1:Person) -/:has_parent*/-> (ancestor:Person)
 , MATCH (p2:Person) -/:has_parent*/-> (ancestor)
WHERE
 p1.name = 'Mario' AND
 p2.name = 'Luigi'

The preceding path specification also shows the use of anonymous constraints, because
there is no need to define names for intermediate edges or nodes that will not be used in
additional constraints or query results. Anonymous elements can have constraints, such as
[:has_father|has_mother] -- the edge does not get a variable name (because it will not be
referenced elsewhere), but it is constrained.

For more examples of variable-length path pattern matching, see the relevant section of the
PGQL specification here.

6.7 Aggregation and Sorting with PGQL
Like SQL, PGQL has support for the following:

• GROUP BY to create groups of solutions

• MIN, MAX, SUM, and AVG aggregations

• ORDER BY to sort results

And for many other familiar SQL constructs.

For GROUP BY and aggregation, see the relevant section of the PGQL specification here.
For ORDER BY, see the relevant section of the PGQL specification here.

Chapter 6
Vertex and Edge Labels with PGQL

6-5

http://pgql-lang.org/spec/latest/#label-expressions
http://pgql-lang.org/spec/latest/#reachability
http://pgql-lang.org/spec/latest/#grouping-and-aggregation
http://pgql-lang.org/spec/latest/#sorting-and-row-limiting

6.8 Executing PGQL Queries Against the In-Memory Graph
Server (PGX)

This section describes the Java APIs that are used to execute PGQL queries in the In-
Memory graph server (PGX).

• Getting Started with PGQL

• Supported PGQL Features
The In-Memory graph server (PGX) supports all PGQL features except DROP
PROPERTY GRAPH.

• Java APIs for Executing CREATE PROPERTY GRAPH Statements

• Java APIs for Executing SELECT Queries
This section describes the APIs to execute SELECT queries in the In-Memory graph
server (PGX).

• Java APIs for Executing UPDATE Queries
The UPDATE queries make changes to existing graphs using the INSERT, UPDATE,
and DELETE operations as detailed in the section Graph Modification of the PGQL
1.3 specification.

• Security Tools for Executing PGQL Queries
To safeguard against query injection, bind variables can be used in place of literals
while printIdentifier(String identifier) can be used in place of identifiers
like graph names, labels, and property names.

• Best Practices for Tuning PGQL Queries
This section describes best practices regarding memory allocation, parallelism,
and query planning.

6.8.1 Getting Started with PGQL
This section provides an example on how to get started with PGQL. It assumes a
database realm that has been previously set up (follow the steps in Prepare the Graph
Server for Database Authentication). It also assumes that the user has read access to
the HR schema.

First, create a graph with employees, departments, and employee works at
department, by executing a CREATE PROPERTY GRAPH statement.

Example 6-1 Creating a graph in the in-memory graph server (PGX)

The following statement creates a graph in the in-memory graph server (PGX)

String statement =
 "CREATE PROPERTY GRAPH hr_simplified "
 + " VERTEX TABLES ("
 + " hr.employees LABEL employee "
 + " PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
department_id), "
 + " hr.departments LABEL department "
 + " PROPERTIES (department_id, department_name) "
 + ") "
 + " EDGE TABLES ("

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-6

 + " hr.employees AS works_at "
 + " SOURCE KEY (employee_id) REFERENCES employees "
 + " DESTINATION departments "
 + " PROPERTIES (employee_id) "
 + ")";
session.executePgql(statement);

/**
 * To get a handle to the graph, execute:
 */
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

/**
 * You can use this handle to run PGQL queries on this graph.
 * For example, to find the department that “Nandita Sarchand” works for,
execute:
 */
String query =
 "SELECT dep.department_name "
 + "FROM MATCH (emp:Employee) -[:works_at]-> (dep:Department) "
 + "WHERE emp.first_name = 'Nandita' AND emp.last_name = 'Sarchand' "
 + "ORDER BY 1";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();
+-----------------+
| department_name |
+-----------------+
| Shipping |
+-----------------+

/**
 * To get an overview of the types of vertices and their frequencies,
execute:
 */
String query =
 "SELECT label(n), COUNT(*) "
 + "FROM MATCH (n) "
 + "GROUP BY label(n) "
 + "ORDER BY COUNT(*) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

+-----------------------+
| label(n) | COUNT(*) |
+-----------------------+
| EMPLOYEE | 107 |
| DEPARTMENT | 27 |
+-----------------------+

/**
 *To get an overview of the types of edges and their frequencies, execute:
 */
 String query =
 "SELECT label(n) AS srcLbl, label(e) AS edgeLbl, label(m) AS dstLbl,
COUNT(*) "

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-7

 + "FROM MATCH (n) -[e]-> (m) "
 + "GROUP BY srcLbl, edgeLbl, dstLbl "
 + "ORDER BY COUNT(*) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

+---+
| srcLbl | edgeLbl | dstLbl | COUNT(*) |
+---+
| EMPLOYEE | WORKS_AT | DEPARTMENT | 106 |
+---+

6.8.2 Supported PGQL Features
The In-Memory graph server (PGX) supports all PGQL features except DROP PROPERTY
GRAPH.

Few features have certain limitations that are described below.

• Limitations on Quantifiers
Although all quantifiers such as *, +, and {1,4} are supported for reachability and
shortest path patterns, the only quantifier that is supported for cheapest path
patterns is * (zero or more).

• Limitations on WHERE and COST Clauses in Quantified Patterns

6.8.2.1 Limitations on Quantifiers
Although all quantifiers such as *, +, and {1,4} are supported for reachability and
shortest path patterns, the only quantifier that is supported for cheapest path patterns
is * (zero or more).

6.8.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns
The WHERE and COST clauses in quantified patterns, such as reachability patterns or
shortest and cheapest path patterns, are limited to referencing a single variable only.

The following are examples of queries that are not supported because the WHERE or
COST clauses reference two variables e and x instead of zero or one:

... PATH p AS (n) –[e]-> (m) WHERE e.prop > m.prop ...

... SHORTEST ((n) (-[e]-> (x) WHERE e.prop + x.prop > 10)* (m)) ...

... CHEAPEST ((n) (-[e]-> (x) COST e.prop + x.prop)* (m)) ...

The following query is supported because the subquery only references a single
variable a from the outer scope, while the variable c does not count since it is newly
introduced in the subquery:

... PATH p AS (a) -> (b)
 WHERE EXISTS (SELECT * FROM MATCH (a) -> (c)) ...

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-8

6.8.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements
The easiest way to execute a CREATE PROPERTY GRAPH statement is through the
PgxSession.executePgql(String statement) method.

Example 6-2 Executing a CREATE PROPERTY GRAPH statement

String statement =
 "CREATE PROPERTY GRAPH hr_simplified "
 + " VERTEX TABLES ("
 + " hr.employees LABEL employee "
 + " PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
department_id), "
 + " hr.departments LABEL department "
 + " PROPERTIES (department_id, department_name) "
 + ") "
 + " EDGE TABLES ("
 + " hr.employees AS works_at "
 + " SOURCE KEY (employee_id) REFERENCES employees "
 + " DESTINATION departments "
 + " PROPERTIES (employee_id) "
 + ")";
session.executePgql(statement);
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

/**
 * Alternatively, one can use the prepared statement API, for example:
 */

PgxPreparedStatement stmnt = session.preparePgql(statement);
stmnt.execute();
stmnt.close();
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

6.8.4 Java APIs for Executing SELECT Queries
This section describes the APIs to execute SELECT queries in the In-Memory graph server
(PGX).

• Executing SELECT Queries Against a Graph in the In-memory Graph Server (PGX)
The PgxGraph.queryPgql(String query) method executes the query in the current
session. The method returns a PgqlResultSet.

• Executing SELECT Queries Against a PGX Session
The PgxSession.queryPgql(String query) method executes the given query in the
session and returns a PgqlResultSet.

• Iterating Through a Result Set
There are two ways to iterate through a result set: in a JDBC-like manner or using the
Java Iterator interface.

• Printing a Result Set
The following methods of PgqlResultSet (package oracle.pgx.api) are used to print a
result set:

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-9

6.8.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph
Server (PGX)

The PgxGraph.queryPgql(String query) method executes the query in the current
session. The method returns a PgqlResultSet.

The ON clauses inside the MATCH clauses can be omitted since the query is executed
directly against a PGX graph. For the same reason, the INTO clauses inside the INSERT
clauses can be omitted. However, if you want to explicitly specify graph names in the
ON and INTO clauses, then those graph names have to match the actual name of the
graph (PgxGraph.getName()).

6.8.4.2 Executing SELECT Queries Against a PGX Session
The PgxSession.queryPgql(String query) method executes the given query in the
session and returns a PgqlResultSet.

The ON clauses inside the MATCH clauses, and the INTO clauses inside the INSERT
clauses, must be specified and cannot be omitted. At this moment, all the ON and INTO
clauses of a query need to reference the same graph since joining data from multiple
graphs in a single query is not yet supported.

6.8.4.3 Iterating Through a Result Set
There are two ways to iterate through a result set: in a JDBC-like manner or using the
Java Iterator interface.

For JDBC-like iterations, the methods in PgqlResultSet (package oracle.pgx.api)
are similar to the ones in java.sql.ResultSet. A noteworthy difference is that PGQL's
result set interface is based on the new date and time library that was introduced in
Java 8, while java.sql.ResultSet is based on the legacy java.util.Date. To bridge
the gap, PGQL's result set provides getLegacyDate(..) for applications that still use
java.util.Date.

A PgqlResultSet has a cursor that is initially set before the first row. Then, the
following methods are available to reposition the cursor:

• next() : boolean

• previous() : boolean

• beforeFirst()

• afterLast()

• first() : boolean

• last() : boolean

• absolute(long row) : boolean

• relative(long rows) : boolean

Above methods are documented in more detail here.

After the cursor is positioned at the desired row, the following getters are used to
obtain values:

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-10

https://docs.oracle.com/en/database/oracle/oracle-database/20/spgjv/oracle/pg/rdbms/pgql/PgqlResultSetImpl.html

• getObject(int columnIdx) : Object

• getObject(String columnName) : Object

• getString(int columnIdx) : String

• getString(String columnName) : String

• getInteger(int columnIdx) : Integer

• getInteger(String columnName) : Integer

• getLong(int columnIdx) : Long

• getLong(String columnName) : Long

• getFloat(int columnIdx) : Float

• getFloat(String columnName) : Float

• getDouble(int columnIdx) : Double

• getDouble(String columnName) : Double

• getBoolean(int columnIdx) : Boolean

• getBoolean(String columnName) : Boolean

• getVertexLabels(int columnIdx) : Set<String>

• getVertexLabels(String columnName) : Set<String>

• getDate(int columnIdx) : LocalDate

• getDate(String columnName) : LocalDate

• getTime(int columnIdx) : LocalTime

• getTime(String columnName) : LocalTime

• getTimestamp(int columnIdx) : LocalDateTime

• getTimestamp(String columnName) : LocalDateTime

• getTimeWithTimezone(int columnIdx) : OffsetTime

• getTimeWithTimezone(String columnName) : OffsetTime

• getTimestampWithTimezone(int columnIdx) : OffsetDateTime

• getTimestampWithTimezone(String columnName) : OffsetDateTime

• getLegacyDate(int columnIdx) : java.util.Date

• getLegacyDate(String columnName) : java.util.Date

• getVertex(int columnIdx) : PgxVertex<ID>

• getVertex(String columnName) : PgxVertex<ID>

• getEdge(int columnIdx) : PgxEdge

• getEdge(String columnName) : PgxEdge

Above methods are documented in more detail here.

Finally, there is a PgqlResultSet.close() which releases the result set’s resources, and
there is a PgqlResultSet.getMetaData() through which the column names and column
count can be retrieved.

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-11

https://docs.oracle.com/en/database/oracle/oracle-database/20/spgjv/oracle/pg/rdbms/pgql/PgqlResultSetImpl.html

An example for result set iteration is as follows:

PgqlResultSet resultSet = g.queryPgql(
 " SELECT owner.name AS account_holder, SUM(t.amount) AS
total_transacted_with_Nikita "
 + " FROM MATCH (p:Person) -[:ownerOf]-> (account1:Account) "
 + " , MATCH (account1) -[t:transaction]- (account2) "
 + " , MATCH (account2:Account) <-[:ownerOf]- (owner:Person|
Company) "
 + " WHERE p.name = 'Nikita' "
 + " GROUP BY owner");

while (resultSet.next()) {
 String accountHolder = resultSet.getString(1);
 long totalTransacted = resultSet.getLong(2);
 System.out.println(accountHolder + ": " + totalTransacted);
}

resultSet.close();

The output of the above example will look like:

Oracle: 4501
Camille: 1000

In addition, the PgqlResultSet is also iterable via the Java Iterator interface. An
example of a “for each loop” over the result set is as follows:

for (PgxResult result : resultSet) {
 String accountHolder = result.getString(1);
 long totalTransacted = result.getLong(2);
 System.out.println(accountHolder + ": " + totalTransacted);
}

The output of the above example will look like:

Oracle: 4501
Camille: 1000

Note that the same getters that are available for PgqlResultSet are also available for
PgxResult.

6.8.4.4 Printing a Result Set
The following methods of PgqlResultSet (package oracle.pgx.api) are used to
print a result set:

• print() : PgqlResultSet

• print(long numResults) : PgqlResultSet

• print(long numResults, int from) : PgqlResultSet

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-12

• print(PrintStream printStream, long numResults, int from) : PgqlResultSet

For example:

g.queryPgql("SELECT COUNT(*) AS numPersons FROM MATCH
(n:Person)").print().close()
+------------+
| numPersons |
+------------+
| 3 |
+------------+

Another example:

PgqlResultSet resultSet = g.queryPgql(
 " SELECT owner.name AS account_holder, SUM(t.amount) AS
total_transacted_with_Nikita "
 + " FROM MATCH (p:Person) -[:ownerOf]-> (account1:Account) "
 + " , MATCH (account1) -[t:transaction]- (account2) "
 + " , MATCH (account2:Account) <-[:ownerOf]- (owner:Person|Company)
"
 + " WHERE p.name = 'Nikita' "
 + " GROUP BY owner")

resultSet.print().close()
+---+
| account_holder | total_transacted_with_Nikita |
+---+
| Camille | 1000.0 |
| Oracle | 4501.0 |
+---+

6.8.5 Java APIs for Executing UPDATE Queries
The UPDATE queries make changes to existing graphs using the INSERT, UPDATE, and DELETE
operations as detailed in the section Graph Modification of the PGQL 1.3 specification.

Note that INSERT allows you to insert new vertices and edges into a graph, UPDATE allows you
to update existing vertices and edges by setting their properties to new values, and DELETE
allows you to delete vertices and edges from a graph.

• Updatability of Graphs Through PGQL
Graph data that is loaded from the Oracle RDBMS or from CSV files into the PGX is not
updatable through PGQL right away.

• Executing UPDATE Queries against a Graph in the in-memory Graph Server (PGX)
To execute UPDATE queries against a graph, use the PgxGraph.executePgql(String
query) method.

• Executing UPDATE Queries Against a PGX Session
For now, there is no support for executing UPDATE queries against a PgxSession and
therefore, updates always have to be executed against a PgxGraph. To obtain a graph
from a session, use the PgxSession.getGraph(String graphName) method.

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-13

• Altering the Underlying Schema of a Graph
The INSERT operations can only insert vertices and edges with known labels and
properties. Similarly, UPDATE operations can only set values of known properties.
Thus, new data must always conform to the existing schema of the graph.

6.8.5.1 Updatability of Graphs Through PGQL
Graph data that is loaded from the Oracle RDBMS or from CSV files into the PGX is
not updatable through PGQL right away.

First, you need to create a copy of the data through the PgxGraph.clone() method.
The resulting graph is fully updatable.

Consider the following example:

// load a graph from the RDBMS or from CSV
PgxGraph g1 = session.readGraphWithProperties("path/to/
graph_config.json");

// create an updatable copy of the graph
PgxGraph g2 = g1.clone("new_graph_name");

// insert an additional vertex into the graph
g2.executePgql("INSERT VERTEX v " +
 " LABELS (Person) " +
 " PROPERTIES (v.firstName = 'Camille', " +
 " v.lastName = ' Mullins')");

Additionally, there is also a PgxGraph.cloneAndExecutePgql(String query, String
graphName) method that combines the last two steps from above example into a single
step:

// create an updatable copy of the graph while inserting a new vertex
PgxGraph g2_copy = g1.cloneAndExecutePgql(
 "INSERT VERTEX v " +
 " LABELS (Person) " +
 " PROPERTIES (v.firstName = 'Camille', " +
 " v.lastName = ' Mullins') "
 , "new_graph_name");

Note that graphs that are created through PgxGraph.clone() are local to the session.
However, they can be shared with other sessions through the PgxGraph.publish(..)
methods but then they are no longer updatable through PGQL. Only session-local
graphs are updatable but persistent graphs are not.

6.8.5.2 Executing UPDATE Queries against a Graph in the in-memory Graph
Server (PGX)

To execute UPDATE queries against a graph, use the PgxGraph.executePgql(String
query) method.

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-14

The following is an example of INSERT query:

g.executePgql("INSERT VERTEX v " +
 " LABELS (Person) " +
 " PROPERTIES (v.firstName = 'Camille', " +
 " v.lastName = ' Mullins') ");

Note that the INTO clause of the INSERT can be omitted. If you use an INTO clause, the graph
name in the INTO clause must correspond to the name of the PGX graph
(PgxGraph.getName()) that the query is executed against.

The following is an example of UPDATE query:

// set the date of birth of Camille to 2014-11-15
g.executePgql("UPDATE v SET (v.dob = DATE '2014-11-14') " +
 "FROM MATCH (v:Person) " +
 "WHERE v.firstName = 'Camille' AND v.lastName = ' Mullins' ");

The following is an example of DELETE query:

// delete Camille from the graph
g.executePgql("DELETE v " +
 "FROM MATCH (v:Person) " +
 "WHERE v.firstName = 'Camille' AND v.lastName = 'Mullins' ");

6.8.5.3 Executing UPDATE Queries Against a PGX Session
For now, there is no support for executing UPDATE queries against a PgxSession and
therefore, updates always have to be executed against a PgxGraph. To obtain a graph from a
session, use the PgxSession.getGraph(String graphName) method.

6.8.5.4 Altering the Underlying Schema of a Graph
The INSERT operations can only insert vertices and edges with known labels and properties.
Similarly, UPDATE operations can only set values of known properties. Thus, new data must
always conform to the existing schema of the graph.

However, some PGX APIs exist for updating the schema of a graph: while no APIs exist for
adding new labels, new properties can be added through the
PgxGraph.createVertexProperty(PropertyType type, String name) and
PgxGraph.createEdgeProperty(PropertyType type, String name) methods. The new
properties are attached to each vertex/edge in the graph, irrespective of their labels. Initially
the properties are assigned a default value but then the values can be updated through the
UPDATE statements.

Consider the following example:

// load a graph from the RDBMS or from CSV
PgxGraph g = session.readGraphWithProperties("path/to/graph_config.json");

// add a new property to the graph
g.createVertexProperty(PropertyType.LOCAL_DATE, "dob");

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-15

// set the date of birth of Camille to 2014-11-15
g.executePgql("UPDATE v SET (v.dob = DATE '2014-11-14') " +
 "FROM MATCH (v:Person) " +
 "WHERE v.firstName = 'Camille' AND v.lastName = '
Mullins' ");

6.8.6 Security Tools for Executing PGQL Queries
To safeguard against query injection, bind variables can be used in place of literals
while printIdentifier(String identifier) can be used in place of identifiers like
graph names, labels, and property names.

• Using Bind Variables
There are two reasons for using bind variables:

• Using Identifiers in a Safe Manner
When you create a query through string concatenation, not only literals in queries
pose a security risk, but also identifiers like graph names, labels, and property
names do. The only problem is that bind variables are not supported for such
identifier. Therefore, if these identifiers are variable from the application's
perspective, then it is recommended to protect against query injection by passing
the identifier through the
oracle.pgql.lang.ir.PgqlUtils.printIdentifier(String identifier)
method.

6.8.6.1 Using Bind Variables
There are two reasons for using bind variables:

• It protects against query injection.

• It speeds up query execution because the same bind variables can be set multiple
times without requiring recompilation of the query.

To create a prepared statement, use one of the following two methods:

• PgxGraph.preparePgql(String query) : PgxPreparedStatement

• PgxSession.preparePgql(String query) : PgxPreparedStatement

The PgxPreparedStatement (package oracle.pgx.api) returned from these methods
have setter methods for binding the bind variables to values of the designated data
type.

PreparedStatement stmnt = g.preparePgql(
 "SELECT v.id, v.dob " +
 "FROM MATCH (v) " +
 "WHERE v.firstName = ? AND v.lastName = ?");
stmnt.setString(1, "Camille");
stmnt.setString(2, "Mullins");
ResultSet rs = stmnt.executeQuery();

Each bind variable in the query needs to be set to a value using one of the following
setters of PgxPreparedStatement:

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-16

• setBoolean(int parameterIndex, boolean x)

• setDouble(int parameterIndex, double x)

• setFloat(int parameterIndex, float x)

• setInt(int parameterIndex, int x)

• setLong(int parameterIndex, long x)

• setDate(int parameterIndex, LocalDate x)

• setTime(int parameterIndex, LocalTime x)

• setTimestamp(int parameterIndex, LocalDateTime x)

• setTimeWithTimezone(int parameterIndex, OffsetTime x)

• setTimestampWithTimezone(int parameterIndex, OffsetDateTime x)

• setArray(int parameterIndex, List<?> x)

Once all the bind variables are set, the statement can be executed through:

• PgxPreparedStatement.executeQuery()

– For SELECT queries only

– Returns a ResultSet

• PgxPreparedStatement.execute()

– For any type of statement

– Returns a Boolean to indicate the form of the result: true in case of a SELECT query,
false otherwise

– In case of SELECT, the ResultSet can afterwards be accessed through
PgxPreparedStatement.getResultSet()

In PGQL, bind variables can be used in place of literals of any data type, including array
literals. An example query with a bind variable to is set to an instance of a String array is:

List<String> countryNames = new ArrayList<String>();
countryNames.add("Scotland");
countryNames.add("Tanzania");
countryNames.add("Serbia");

PreparedStatement stmnt = g.preparePgql(
 "SELECT n.name, n.population " +
 "FROM MATCH (c:Country) " +
 "WHERE c.name IN ?");

ResultSet rs = stmnt.executeQuery();

Finally, if a prepared statement is no longer needed, it is closed through
PgxPreparedStatement.close() to free up resources.

6.8.6.2 Using Identifiers in a Safe Manner
When you create a query through string concatenation, not only literals in queries pose a
security risk, but also identifiers like graph names, labels, and property names do. The only
problem is that bind variables are not supported for such identifier. Therefore, if these

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-17

identifiers are variable from the application's perspective, then it is recommended to
protect against query injection by passing the identifier through the
oracle.pgql.lang.ir.PgqlUtils.printIdentifier(String identifier) method.

Given an identifier string, the method automatically adds double quotes to the start
and end of the identifier and escapes the characters in the identifier appropriately.

Consider the following example:

String graphNamePrinted = printIdentifier("my graph name with \"
special % characters ");
PreparedStatement stmnt = g.preparePgql(
 "SELECT COUNT(*) AS numVertices FROM MATCH (v) ON " +
graphNamePrinted);

6.8.7 Best Practices for Tuning PGQL Queries
This section describes best practices regarding memory allocation, parallelism, and
query planning.

• Memory Allocation
The In-Memory Analyst (PGX) has on-heap and off-heap memory, the earlier
being the standard JVM heap while the latter being a separate heap that is
managed by PGX. Just like graph data, intermediate and final results of PGQL
queries are partially stored on-heap and partially off-heap. Therefore, both heaps
are needed.

• Parallelism
By default, all available processor threads are used to process PGQL queries.
However, if needed, the number of threads can be limited by setting the
parallelism option of the In-Memory Analyst (PGX).

• Query Plan Explaining
The PgxGraph.explainPgql(String query) method is used to get insight into the
query plan of the query. The method returns an instance of Operation (package
oracle.pgx.api) which has the following methods:

6.8.7.1 Memory Allocation
The In-Memory Analyst (PGX) has on-heap and off-heap memory, the earlier being
the standard JVM heap while the latter being a separate heap that is managed by
PGX. Just like graph data, intermediate and final results of PGQL queries are partially
stored on-heap and partially off-heap. Therefore, both heaps are needed.

In case of the on-heap memory, the default maximum is chosen upon startup of the
JVM, but it can be overwritten through the -Xmx option.

In case of the off-heap, there is no maximum set by default and the off-heap memory
usage, therefore, keeps increasing automatically until it depletes the system
resources, in which case the operation is cancelled, it's memory is released, and an
appropriate exception is passed to the user. If needed, a maximum off-heap size can
be configured through the max_off_heap_size option of PGX.

A ratio of 1:1 for on-heap vs. off-heap is recommended as a good starting point to
allow for the largest possible graphs to be loaded and queried. For example, if you
have 256 GB of memory available on your machine, then setting the maximum on-

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-18

heap to 125 GB will make sure that there is a similar amount of memory available for off-
heap:

export JAVA_OPTS="-Xmx125g"

6.8.7.2 Parallelism
By default, all available processor threads are used to process PGQL queries. However, if
needed, the number of threads can be limited by setting the parallelism option of the In-
Memory Analyst (PGX).

See Configuration Parameters for the Graph Server (PGX) Engine for more information on
the graph server configuration parameters.

6.8.7.3 Query Plan Explaining
The PgxGraph.explainPgql(String query) method is used to get insight into the query plan
of the query. The method returns an instance of Operation (package oracle.pgx.api)
which has the following methods:

• print(): for printing the operation and its child operations

• getOperationType(): for getting the type of the operation

• getPatternInfo(): for getting a string representation of the operation

• getCostEstimate(): for getting the cost of the operation

• getTotalCostEstimate(): for getting the cost of the operations and its child operations

• getCardinatlityEstimate(): for getting the expected number of result rows

• getChildren(): for accessing the child operations

Consider the following example:

g.explainPgql("SELECT COUNT(*) FROM MATCH (n) -[e1]-> (m) -[e2]->
(o)").print()
\--- GROUP BY GroupBy {"cardinality":"42", "cost":"42",
"accumulatedCost":"58.1"}
 \--- (m) -[e2]-> (o) NeighborMatch {"cardinality":"3.12",
"cost":"3.12", "accumulatedCost":"16.1"}
 \--- (n) -[e1]-> (m) NeighborMatch {"cardinality":"5", "cost":"5",
"accumulatedCost":"13"}
 \--- (n) RootVertexMatch {"cardinality":"8", "cost":"8",
"accumulatedCost":"8"}

In the above example, the print() method is used to print the query plan.

If a query plan is not optimal, it is often possible to rewrite the query to improve its
performance. For example, a SELECT query may be split into an UPDATE and a SELECT query
as a way to improve the total runtime.

Note that the In-Memory Analyst (PGX) does not provide a hint mechanism.

Chapter 6
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

6-19

6.9 Executing PGQL Queries Directly Against Oracle
Database

This topic explains how you can execute PGQL queries directly against the graph in
Oracle Database (as opposed to in-memory).

Property Graph Query Language (PGQL) queries can be executed against disk-
resident property graph data stored in Oracle Database. PGQL on Oracle Database
(RDBMS) provides a Java API for executing PGQL queries. Logic in PGQL on
RDBMS translates a submitted PGQL query into an equivalent SQL query, and the
resulting SQL is executed on the database server. PGQL on RDBMS then wraps the
SQL query results with a convenient PGQL result set API.

This PGQL query execution flow is shown in the following figure.

Figure 6-1 PGQL on Oracle Database (RDBMS)

The basic execution flow is:

1. The PGQL query is submitted to PGQL on RDBMS through a Java API.

2. The PGQL query is translated to SQL.

3. The translated SQL is submitted to Oracle Database by JDBC.

4. The SQL result set is wrapped as a PGQL result set and returned to the caller.

The ability to execute PGQL queries directly against property graph data stored in
Oracle Database provides several benefits.

• PGQL provides a more natural way to express graph queries than SQL manually
written to query schema tables, including VT$, VD$, GE$, and GT$.

• PGQL queries can be executed without the need to load a snapshot of your graph
data into PGX, so there is no need to worry about staleness of frequently updated
graph data.

• PGQL queries can be executed against graph data that is too large to fit in
memory.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-20

• The robust and scalable Oracle SQL engine can be used to execute PGQL queries.

• Mature tools for management, monitoring and tuning of Oracle Database can be used to
tune and monitor PGQL queries.

• PGQL Features Supported

• Creating Property Graphs through CREATE PROPERTY GRAPH Statements

• Dropping Property Graphs through DROP PROPERTY GRAPH Statements

• Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL Queries

• Modifying Property Graphs through INSERT, UPDATE, and DELETE Statements

• Performance Considerations for PGQL Queries

6.9.1 PGQL Features Supported
PGQL is a SQL-like query language for querying property graph data. It is based on the
concept of graph pattern matching and allows you to specify, among other things, topology
constraints, paths, filters, sorting and aggregation.

The Java API for PGQL defined in the oracle.pg.rdbms.pgql package supports the PGQL
specification with a few exceptions. (The PGQL specification can be found at https://pgql-
lang.org).

The following features of PGQL are not supported.

• Shortest path

• ARRAY_AGG aggregation

• IN and NOT IN predicates

• Single CHEAPEST path and TOP-K CHEAPEST path using COST functions

• Case-insensitive matching of uppercased references to labels and properties

In addition, the following features of PGQL require special consideration.

• Temporal Types

• Type Casting

• CONTAINS Built-in Function

6.9.1.1 Temporal Types
The temporal types DATE, TIMESTAMP and TIMESTAMP WITH TIMEZONE are supported
in PGQL queries.

All of these value types are represented internally using the Oracle SQL TIMESTAMP WITH
TIME ZONE type. DATE values are automatically converted to TIMESTAMP WITH TIME
ZONE by assuming the earliest time in UTC+0 timezone (for example, 2000-01-01 becomes
2000-01-01 00:00:00.00+00:00). TIMESTAMP values are automatically converted to
TIMESTAMP WITH TIME ZONE by assuming UTC+0 timezone (for example, 2000-01-01
12:00:00.00 becomes 2000-01-01 12:00:00.00+00:00).

Temporal constants are written in PGQL queries as follows.

• DATE 'YYYY-MM-DD'

• TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF'

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-21

https://pgql-lang.org
https://pgql-lang.org

• TIMESTAMP WITH TIMEZONE 'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM'

Some examples are DATE '2000-01-01', TIMESTAMP '2000-01-01 14:01:45.23',
TIMESTAMP WITH TIMEZONE '2000-01-01 13:00:00.00-05:00', and TIMESTAMP
WITH TIMEZONE '2000-01-01 13:00:00.00+01:00'.

In addition, temporal values can be obtained by casting string values to a temporal
type. The supported string formats are:

• DATE 'YYYY-MM-DD'

• TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF' and 'YYYY-MM-
DD"T"HH24:MI:SS.FF'

• TIMESTAMP WITH TIMEZONE 'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM' and
'YYYY-MM-DD"T"HH24:MI:SS.FFTZH:TZM'.

Some examples are CAST ('2005-02-04' AS DATE), CAST ('1990-01-01 12:00:00.00'
AS TIMESTAMP), CAST ('1985-01-01T14:05:05.00-08:00' AS TIMESTAMP WITH
TIMEZONE).

When consuming results from a PgqlResultSet object, getObject returns a
java.sql.Timestamp object for temporal types.

Bind variables can only be used for the TIMESTAMP WITH TIMEZONE temporal type
in PGQL, and a setTimestamp method that takes a java.sql.Timestamp object as
input is used to set the bind value. As a simpler alternative, you can use a string bind
variable in a CAST statement to bind temporal values (for example, CAST (? AS
TIMESTAMP WITH TIMEZONE) followed by setString(1,
"1985-01-01T14:05:05.00-08:00")). See also Using Bind Variables in PGQL Queries
for more information about bind variables.

6.9.1.2 Type Casting
Type casting is supported in PGQL with a SQL-style CAST (VALUE AS DATATYPE)
syntax, for example CAST('25' AS INT), CAST (10 AS STRING), CAST ('2005-02-04'
AS DATE), CAST(e.weight AS STRING). Supported casting operations are
summarized in the following table. Y indicates that the conversion is supported, and N
indicates that it is not supported. Casting operations on invalid values (for example,
CAST('xyz' AS INT)) or unsupported conversions (for example, CAST (10 AS
TIMESTAMP)) return NULL instead of raising a SQL exception.

Table 6-1 Type Casting Support in PGQL (From and To Types)

“to” type from
STRIN
G

from
INT

from
LON
G

from
FLOA
T

from
DOUB
LE

from
BOOLE
AN

from
DAT
E

from
TIMESTA
MP

from
TIMESTA
MP WITH
TIMEZON
E

to STRING Y Y Y Y Y Y Y Y Y

to INT Y Y Y Y Y Y N N N

to LONG Y Y Y Y Y Y N N N

to FLOAT Y Y Y Y Y Y N N N

to
DOUBLE

Y Y Y Y Y Y N N N

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-22

Table 6-1 (Cont.) Type Casting Support in PGQL (From and To Types)

“to” type from
STRIN
G

from
INT

from
LON
G

from
FLOA
T

from
DOUB
LE

from
BOOLE
AN

from
DAT
E

from
TIMESTA
MP

from
TIMESTA
MP WITH
TIMEZON
E

to
BOOLEAN

Y Y Y Y Y Y N N N

to DATE Y N N N N N Y Y Y

to
TIMESTA
MP

Y N N N N N Y Y Y

to
TIMESTA
MP WITH
TIMEZON
E

Y N N N N N Y Y Y

An example query that uses type casting is:

SELECT e.name, CAST (e.birthDate AS STRING) AS dob
FROM MATCH (e)
WHERE e.birthDate < CAST ('1980-01-01' AS DATE)

6.9.1.3 CONTAINS Built-in Function
A CONTAINS built-in function is supported. It is used in conjunction with an Oracle Text index
on vertex and edge properties. CONTAINS returns true if a value matches an Oracle Text
search string and false if it does not match.

An example query is:

SELECT v.name
FROM MATCH (v)
WHERE CONTAINS(v.abstract, 'Oracle')

See also Using a Text Index with PGQL Queries for more information about using full text
indexes with PGQL.

6.9.2 Creating Property Graphs through CREATE PROPERTY GRAPH
Statements

You can use PGQL to create property graphs from relational database tables. A CREATE
PROPERTY GRAPH statement defines a set of vertex tables that are transformed into
vertices and a set of edge tables that are transformed into edges. For each table a key, a
label and a set of column properties can be specified. The column types CHAR, NCHAR,
VARCHAR, VARCHAR2, NVARCHAR2 , NUMBER, LONG, FLOAT, DATE, TIMESTAMP and
TIMESTAMP WITH TIMEZONE are supported for CREATE PROPERTY GRAPH column
properties.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-23

When a CREATE PROPERTY GRAPH statement is called, a property graph schema
for the graph is created, and the data is copied from the source tables into the property
graph schema tables. The graph is created as a one-time copy and is not
automatically kept in sync with the source data.

Example 6-3 PgqlCreateExample1.java

This example shows how to create a property graph from a set of relational tables.
Notice that the example creates tables Person, Hobby, and Hobbies, so they should
not exist before running the example. The example also shows how to execute a query
against a property graph.

import java.sql.Connection;
import java.sql.Statement;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to create a Property Graph from relational
 * data stored in Oracle Database executing a PGQL create statement.
 */
public class PgqlCreateExample1
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 Statement stmt = null;
 PgqlStatement pgqlStmt = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-24

 // Create relational data
 stmt = conn.createStatement();

 //Table Person
 stmt.executeUpdate(
 "create table Person(" +
 " id NUMBER, " +
 " name VARCHAR2(20), " +
 " dob TIMESTAMP " +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Person values(1,'Alan', DATE
'1995-05-26')");
 stmt.executeUpdate("insert into Person values(2,'Ben', DATE
'2007-02-15')");
 stmt.executeUpdate("insert into Person values(3,'Claire', DATE
'1967-11-30')");

 // Table Hobby
 stmt.executeUpdate(
 "create table Hobby(" +
 " id NUMBER, " +
 " name VARCHAR2(20) " +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Hobby values(1, 'Sports')");
 stmt.executeUpdate("insert into Hobby values(2, 'Music')");

 // Table Hobbies
 stmt.executeUpdate(
 "create table Hobbies("+
 " person NUMBER, "+
 " hobby NUMBER, "+
 " strength NUMBER "+
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Hobbies values(1, 1, 20)");
 stmt.executeUpdate("insert into Hobbies values(1, 2, 30)");
 stmt.executeUpdate("insert into Hobbies values(2, 1, 10)");
 stmt.executeUpdate("insert into Hobbies values(3, 2, 20)");

 //Commit changes
 conn.commit();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

 // Create a PgqlStatement
 pgqlStmt = pgqlConn.createStatement();

 // Execute PGQL to create property graph
 String pgql =

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-25

 "Create Property Graph " + graph + " " +
 "VERTEX TABLES (" +
 " Person " +
 " Key(id) " +
 " Label \"people\"" +
 " PROPERTIES(name AS \"first_name\", dob AS \"birthday\")," +
 " Hobby " +
 " Key(id) Label \"hobby\" PROPERTIES(name AS \"name\")" +
 ")" +
 "EDGE TABLES (" +
 " Hobbies" +
 " SOURCE KEY(person) REFERENCES Person " +
 " DESTINATION KEY(hobby) REFERENCES Hobby " +
 " LABEL \"likes\" PROPERTIES (strength AS \"score\")" +
 ")";
 pgqlStmt.execute(pgql);

 // Execute a PGQL query to verify Graph creation
 pgql =
 "SELECT p.\"first_name\", p.\"birthday\", h.\"name\",
e.\"score\" " +
 "FROM MATCH (p:\"people\")-[e:\"likes\"]->(h:\"hobby\") ON " +
graph;
 rs = pgqlStmt.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the sql statment
 if (stmt != null) {
 stmt.close();
 }
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pgqlStmt != null) {
 pgqlStmt.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlCreateExample1.java is:

+---+
| first_name | birthday | name | score |
+---+
| Alan | 1995-05-25 17:00:00.0 | Music | 30.0 |

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-26

Claire	1967-11-29 16:00:00.0	Music	20.0
Ben	2007-02-14 16:00:00.0	Sports	10.0
Alan	1995-05-25 17:00:00.0	Sports	20.0
+---+

Example 6-4 PgqlCreateExample2.java

This example shows how a create property graph statement without specifying any keys.
Notice that the example creates tables Person, Hobby, and Hobbies, so they should not exist
before running the example.

import java.sql.Connection;
import java.sql.Statement;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to create a Property Graph from relational
 * data stored in Oracle Database executing a PGQL create statement.
 */
public class PgqlCreateExample2
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 Statement stmt = null;
 PgqlStatement pgqlStmt = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Create relational data
 stmt = conn.createStatement();

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-27

 //Table Person
 stmt.executeUpdate(
 "create table Person(" +
 " id NUMBER, " +
 " name VARCHAR2(20), " +
 " dob TIMESTAMP, " +
 " CONSTRAINT pk_person PRIMARY KEY(id)" +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Person values(1,'Alan', DATE
'1995-05-26')");
 stmt.executeUpdate("insert into Person values(2,'Ben', DATE
'2007-02-15')");
 stmt.executeUpdate("insert into Person values(3,'Claire', DATE
'1967-11-30')");

 // Table Hobby
 stmt.executeUpdate(
 "create table Hobby(" +
 " id NUMBER, " +
 " name VARCHAR2(20), " +
 " CONSTRAINT pk_hobby PRIMARY KEY(id)" +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Hobby values(1, 'Sports')");
 stmt.executeUpdate("insert into Hobby values(2, 'Music')");

 // Table Hobbies
 stmt.executeUpdate(
 "create table Hobbies("+
 " person NUMBER, "+
 " hobby NUMBER, "+
 " strength NUMBER, "+
 " CONSTRAINT fk_hobbies1 FOREIGN KEY (person) REFERENCES
Person(id), "+
 " CONSTRAINT fk_hobbies2 FOREIGN KEY (hobby) REFERENCES
Hobby(id)"+
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Hobbies values(1, 1, 20)");
 stmt.executeUpdate("insert into Hobbies values(1, 2, 30)");
 stmt.executeUpdate("insert into Hobbies values(2, 1, 10)");
 stmt.executeUpdate("insert into Hobbies values(3, 2, 20)");

 //Commit changes
 conn.commit();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

 // Create a PgqlStatement

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-28

 pgqlStmt = pgqlConn.createStatement();

 // Execute PGQL to create property graph
 String pgql =
 "Create Property Graph " + graph + " " +
 "VERTEX TABLES (" +
 " Person " +
 " Label people +
 " PROPERTIES ALL COLUMNS," +
 " Hobby " +
 " Label hobby PROPERTIES ALL COLUMNS EXCEPT(id)" +
 ")" +
 "EDGE TABLES (" +
 " Hobbies" +
 " SOURCE Person DESTINATION Hobby " +
 " LABEL likes NO PROPERTIES" +
 ")";
 pgqlStmt.execute(pgql);

 // Execute a PGQL query to verify Graph creation
 pgql =
 "SELECT p.NAME AS person, p.DOB, h.NAME AS hobby " +
 "FROM MATCH (p:people)-[e:likes]->(h:hobby) ON " + graph;
 rs = pgqlStmt.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the sql statment
 if (stmt != null) {
 stmt.close();
 }
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pgqlStmt != null) {
 pgqlStmt.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlCreateExample2.java is:

+---+
| PERSON | DOB | HOBBY |
+---+
| Alan | 1995-05-25 17:00:00.0 | Music |

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-29

Claire	1967-11-29 16:00:00.0	Music
Ben	2007-02-14 16:00:00.0	Sports
Alan	1995-05-25 17:00:00.0	Sports
+---+

6.9.3 Dropping Property Graphs through DROP PROPERTY GRAPH
Statements

You can use PGQL to drop property graphs. When a DROP PROPERTY GRAPH
statement is called, all the property graph schema tables of the graph are dropped.

Example 6-5 PgqlDropExample1.java

This example shows how to drop a property graph.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to drop a Property executing a PGQL drop
statement.
 */
public class PgqlDropExample1
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement pgqlStmt = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-30

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

 // Create a PgqlStatement
 pgqlStmt = pgqlConn.createStatement();

 // Execute PGQL to drop property graph
 String pgql = "Drop Property Graph " + graph;
 pgqlStmt.execute(pgql);

 }
 finally {
 // close the statement
 if (pgqlStmt != null) {
 pgqlStmt.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

6.9.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL
Queries

The Java API in the oracle.pg.rdbms.pgql package provides support for executing PGQL
queries against Oracle Database. This topic explains how to use the Java API through a
series of examples.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-31

Note:

Effective with Release 21c, the following classes in the oracle.pg.rdbms
package are deprecated:

oracle.pg.rdbms.OraclePgqlColumnDescriptorImpl
oracle.pg.rdbms.OraclePgqlColumnDescriptor
oracle.pg.rdbms.OraclePgqlExecutionFactory
oracle.pg.rdbms.OraclePgqlExecution
oracle.pg.rdbms.PgqlPreparedStatement
oracle.pg.rdbms.OraclePgqlResultElementImpl
oracle.pg.rdbms.OraclePgqlResultElement
oracle.pg.rdbms.OraclePgqlResultImpl
oracle.pg.rdbms.OraclePgqlResultIterable
oracle.pg.rdbms.OraclePgqlResultIteratorImpl
oracle.pg.rdbms.OraclePgqlResult
oracle.pg.rdbms.OraclePgqlResultSetImpl
oracle.pg.rdbms.OraclePgqlResultSet
oracle.pg.rdbms.OraclePgqlResultSetMetaDataImpl
oracle.pg.rdbms.OraclePgqlResultSetMetaData
oracle.pg.rdbms.PgqlSqlQueryTransImpl
oracle.pg.rdbms.PgqlSqlQueryTrans
oracle.pg.rdbms.PgqlStatement

You should instead use equivalent classes in oracle.pg.rdbms.pgql:

oracle.pg.rdbms.pgql.PgqlColumnDescriptorImpl
oracle.pg.rdbms.pgql.PgqlColumnDescriptor
oracle.pg.rdbms.pgql.PgqlConnection
oracle.pg.rdbms.pgql.PgqlExecution
oracle.pg.rdbms.pgql.PgqlPreparedStatement
oracle.pg.rdbms.pgql.PgqlResultElementImpl
oracle.pg.rdbms.pgql.PgqlResultElement
oracle.pg.rdbms.pgql.PgqlResultSetImpl
oracle.pg.rdbms.pgql.PgqlResultSet
oracle.pg.rdbms.pgql.PgqlResultSetMetaDataImpl
oracle.pg.rdbms.pgql.PgqlSqlTransImpl
oracle.pg.rdbms.pgql.PgqlSqlTrans
oracle.pg.rdbms.pgql.PgqlStatement

One difference between oracle.pg.rdbms.OraclePgqlResultSet and
oracle.pg.rdbms.pgql.PgqlResultSet is that
oracle.pg.rdbms.pgql.PgqlResultSet does not provide APIs to retrieve vertex
and edge objects. Existing code using those interfaces should be changed to
project IDs rather than OracleVertex and OracleEdge objects. You can
obtain an OracleVertex or OracleEdge object from the projected ID values
by calling OracleVertex.getInstance() or OracleEdge.getInstance(). (For
an example, see Example 6-21.)

See Oracle Graph Property Graph Java APIs for more details on setting the classpath
for compiling and executing your Java applications.

The following test_graph data set in Oracle flat file format will be used in the
examples in subtopics that follow. The data set includes a vertex file (test_graph.opv)
and an edge file (test_graph.ope).

test_graph.opv:

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-32

2,fname,1,Ray,,,person
2,lname,1,Green,,,person
2,mval,5,,,1985-01-01T12:00:00.000Z,person
2,age,2,,41,,person
0,bval,6,Y,,,person
0,fname,1,Bill,,,person
0,lname,1,Brown,,,person
0,mval,1,y,,,person
0,age,2,,40,,person
1,bval,6,Y,,,person
1,fname,1,John,,,person
1,lname,1,Black,,,person
1,mval,2,,27,,person
1,age,2,,30,,person
3,bval,6,N,,,person
3,fname,1,Susan,,,person
3,lname,1,Blue,,,person
3,mval,6,N,,,person
3,age,2,,35,,person

test_graph.ope:

4,0,1,knows,mval,1,Y,,
4,0,1,knows,firstMetIn,1,MI,,
4,0,1,knows,since,5,,,1990-01-01T12:00:00.000Z
16,0,1,friendOf,strength,2,,6,
7,1,0,knows,mval,5,,,2003-01-01T12:00:00.000Z
7,1,0,knows,firstMetIn,1,GA,,
7,1,0,knows,since,5,,,2000-01-01T12:00:00.000Z
17,1,0,friendOf,strength,2,,7,
9,1,3,knows,mval,6,N,,
9,1,3,knows,firstMetIn,1,SC,,
9,1,3,knows,since,5,,,2005-01-01T12:00:00.000Z
10,2,0,knows,mval,1,N,,
10,2,0,knows,firstMetIn,1,TX,,
10,2,0,knows,since,5,,,1997-01-01T12:00:00.000Z
12,2,3,knows,mval,3,,342.5,
12,2,3,knows,firstMetIn,1,TX,,
12,2,3,knows,since,5,,,2011-01-01T12:00:00.000Z
19,2,3,friendOf,strength,2,,4,
14,3,1,knows,mval,1,a,,
14,3,1,knows,firstMetIn,1,CA,,
14,3,1,knows,since,5,,,2010-01-01T12:00:00.000Z
15,3,2,knows,mval,1,z,,
15,3,2,knows,firstMetIn,1,CA,,
15,3,2,knows,since,5,,,2004-01-01T12:00:00.000Z
5,0,2,knows,mval,2,,23,
5,0,2,knows,firstMetIn,1,OH,,
5,0,2,knows,since,5,,,2002-01-01T12:00:00.000Z
6,0,3,knows,mval,3,,159.7,
6,0,3,knows,firstMetIn,1,IN,,
6,0,3,knows,since,5,,,1994-01-01T12:00:00.000Z
8,1,2,knows,mval,6,Y,,
8,1,2,knows,firstMetIn,1,FL,,
8,1,2,knows,since,5,,,1999-01-01T12:00:00.000Z
18,1,3,friendOf,strength,2,,5,
11,2,1,knows,mval,2,,1001,
11,2,1,knows,firstMetIn,1,OK,,
11,2,1,knows,since,5,,,2003-01-01T12:00:00.000Z
13,3,0,knows,mval,5,,,2001-01-01T12:00:00.000Z
13,3,0,knows,firstMetIn,1,CA,,

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-33

13,3,0,knows,since,5,,,2006-01-01T12:00:00.000Z
20,3,1,friendOf,strength,2,,3,

• Basic Query Execution

• Executing PGQL Queries Using JDBC Driver

• Security Techniques for PGQL Queries

• Using a Text Index with PGQL Queries

• Obtaining the SQL Translation for a PGQL Query

• Additional Options for PGQL Translation and Execution

• Querying Another User’s Property Graph

• Using Query Optimizer Hints with PGQL

6.9.4.1 Basic Query Execution
Two main Java Interfaces, PgqlStatement and PgqlResultSet, are used for PGQL
execution. This topic includes several examples of basic query execution.

Example 6-6 GraphLoaderExample.java

GraphLoaderExample.java loads some Oracle property graph data that will be used in
subsequent examples in this topic.

import oracle.pg.rdbms.Oracle;
import oracle.pg.rdbms.OraclePropertyGraph;
import oracle.pg.rdbms.OraclePropertyGraphDataLoader;

/**
 * This example shows how to create an Oracle Property Graph
 * and load data into it from vertex and edge flat files.
 */
public class GraphLoaderExample
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];
 String vertexFile = args[idx++];
 String edgeFile = args[idx++];

 Oracle oracle = null;
 OraclePropertyGraph opg = null;

 try {
 // Create a connection to Oracle
 oracle = new Oracle("jdbc:oracle:thin:@"+host+":"+port +":"+sid,
user, password);

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-34

 // Create a property graph
 opg = OraclePropertyGraph.getInstance(oracle, graph);

 // Clear any existing data
 opg.clearRepository();

 // Load data from opv and ope files
 OraclePropertyGraphDataLoader opgLoader =
OraclePropertyGraphDataLoader.getInstance();
 opgLoader.loadData(opg, vertexFile, edgeFile, 1);

 System.out.println("Vertices loaded:" + opg.countVertices());
 System.out.println("Edges loaded:" + opg.countEdges());

 }
 finally {
 // close the property graph
 if (opg != null) {
 opg.close();
 }
 // close oracle
 if (oracle != null) {
 oracle.dispose();
 }
 }
 }
}

GraphLoaderExample.java gives the following output for test_graph.

Vertices loaded:4
Edges loaded:17

Example 6-7 PgqlExample1.java

PgqlExample1.java executes a PGQL query and prints the query result. PgqlConnection is
used to obtain a PgqlStatement. Next, it calls the executeQuery method of PgqlStatement,
which returns a PgqlResultSet object. PgqlResultSet provides a print() method, which
shows results in a tabular mode.

The PgqlResultSet and PgqlStatement objects should be closed after consuming the query
result.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a basic PGQL query against disk-

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-35

resident
 * PG data stored in Oracle Database and iterate through the result.
 */
public class PgqlExample1
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a PgqlResultSet object
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname, v.\"mval\"
AS mval "+
 "FROM MATCH (v)";
 rs = ps.executeQuery(pgql, /* query string */
 "" /* options */);

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-36

 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample1.java gives the following output for test_graph (which can be loaded using
GraphLoaderExample.java code).

+---------------------------------------+
| FNAME | LNAME | MVAL |
+---------------------------------------+
Susan	Blue	false
Bill	Brown	y
Ray	Green	1985-01-01 04:00:00.0
John	Black	27
+---------------------------------------+

Example 6-8 PgqlExample2.java

PgqlExample2.java shows a PGQL query with a temporal filter on an edge property.

• PgqlResultSet provides an interface for consuming the query result that is very similar to
the java.sql.ResultSet interface.

• A next() method allows moving through the query result, and a close() method allows
releasing resources after the application is fiished reading the query result.

• In addition, PgqlResultSet provides getters for String, Integer, Long, Float, Double,
Boolean, LocalDateTime, and OffsetDateTime, and it provides a generic getObject()
method for values of any type.

import java.sql.Connection;

import java.text.SimpleDateFormat;

import java.util.Date;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.pgql.lang.ResultSet;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL query with a temporal edge
 * property filter against disk-resident PG data stored in Oracle Database
 * and iterate through the result.
 */
public class PgqlExample2

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-37

{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 ResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v.\"fname\" AS n1, v2.\"fname\" AS n2, e.\"firstMetIn\"
AS loc "+
 "FROM MATCH (v)-[e:\"knows\"]->(v2) "+
 "WHERE e.\"since\" > TIMESTAMP '2000-01-01 00:00:00.00+00:00'";
 rs = ps.executeQuery(pgql, "");

 // Print results
 printResults(rs);
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-38

 if (conn != null) {
 conn.close();
 }
 }
 }

 /**
 * Prints a PGQL ResultSet
 */
 static void printResults(ResultSet rs) throws Exception
 {
 StringBuffer buff = new StringBuffer("");
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSXXX");
 while (rs.next()) {
 buff.append("[");
 for (int i = 1; i <= rs.getMetaData().getColumnCount(); i++) {
 // use generic getObject to handle all types
 Object mval = rs.getObject(i);
 String mStr = "";
 if (mval instanceof java.lang.String) {
 mStr = "STRING: "+mval.toString();
 }
 else if (mval instanceof java.lang.Integer) {
 mStr = "INTEGER: "+mval.toString();
 }
 else if (mval instanceof java.lang.Long) {
 mStr = "LONG: "+mval.toString();
 }
 else if (mval instanceof java.lang.Float) {
 mStr = "FLOAT: "+mval.toString();
 }
 else if (mval instanceof java.lang.Double) {
 mStr = "DOUBLE: "+mval.toString();
 }
 else if (mval instanceof java.sql.Timestamp) {
 mStr = "DATE: "+sdf.format((Date)mval);
 }
 else if (mval instanceof java.lang.Boolean) {
 mStr = "BOOLEAN: "+mval.toString();
 }
 if (i > 1) {
 buff.append(",\t");
 }
 buff.append(mStr);
 }
 buff.append("]\n");
 }
 System.out.println(buff.toString());
 }
}

PgqlExample2.java gives the following output for test_graph (which can be loaded using
GraphLoaderExample.java code).

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-39

[STRING: Susan, STRING: Bill, STRING: CA]
[STRING: Susan, STRING: John, STRING: CA]
[STRING: Susan, STRING: Ray, STRING: CA]
[STRING: Bill, STRING: Ray, STRING: OH]
[STRING: Ray, STRING: John, STRING: OK]
[STRING: Ray, STRING: Susan, STRING: TX]
[STRING: John, STRING: Susan, STRING: SC]
[STRING: John, STRING: Bill, STRING: GA]

Example 6-9 PgqlExample3.java

PgqlExample3.java shows a PGQL query with grouping and aggregation.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL query with aggregation
 * against disk-resident PG data stored in Oracle Database and iterate
 * through the result.
 */
public class PgqlExample3
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {
 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-40

 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v.\"fname\" AS \"fname\", COUNT(v2) AS \"friendCnt\" "+
 "FROM MATCH (v)-[e:\"friendOf\"]->(v2) "+
 "GROUP BY v "+
 "ORDER BY \"friendCnt\" DESC";
 rs = ps.executeQuery(pgql, "");

 // Print results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample3.java gives the following output for test_graph (which can be loaded using
GraphLoaderExample.java code).

+-------------------+
| fname | friendCnt |
+-------------------+
John	2
Bill	1
Ray	1
Susan	1
+-------------------+

Example 6-10 PgqlExample4.java

PgqlExample4.java shows a PGQL path query.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-41

import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a path query in PGQL against
 * disk-resident PG data stored in Oracle Database and iterate
 * through the result.
 */
public class PgqlExample4
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "PATH fof AS ()-[:\"friendOf\"|\"knows\"]->() "+
 "SELECT v2.\"fname\" AS friend "+
 "FROM MATCH (v)-/:fof*/->(v2) "+
 "WHERE v.\"fname\" = 'John' AND v != v2";
 rs = ps.executeQuery(pgql, "");

 // Print results
 rs.print();
 }
 finally {
 // close the result set

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-42

 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample4.java gives the following output for test_graph(which can be loaded using
GraphLoaderExample.java code).

+--------+
| FRIEND |
+--------+
| Susan |
| Bill |
| Ray |
+--------+

6.9.4.2 Executing PGQL Queries Using JDBC Driver
The Oracle Graph Server and Client Release 21.2.0 includes a JDBC driver which allows you
to run PGQL queries directly against the Oracle Database. To use the driver, register the
following class at the JDBC driver manager:

import java.sql.DriverManager;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
...
DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());

To make JDBC use the driver, you need to prefix the JDBC URLs with jdbc:oracle:pgql as
shown in this example:

import java.sql.Connection;
import java.sql.DriverManager;

Connection conn = DriverManager.getConnection("jdbc:oracle:pgql:@<DB
Host>:<DB Port>/<DB SID>", "<DB Username>", "<DB Password>");

The part after jdbc:oracle:pgql follows the same syntax as the regular Oracle JDBC thin
driver. In other words, you can convert any valid Oracle JDBC thin driver URL into a PGQL
driver URL by replacing jdbc:oracle:thin with jdbc:oracle:pgql. Once you obtained a
connection object, you can use it to query property graphs using PGQL syntax. For example:

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-43

Example 6-11 Executing a PGQL Query using the PGQL JDBC driver

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.PreparedStatement;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;

public class PgqlJdbcTest {

 public static void main(String[] args) throws Exception {

 DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
 String jdbcUrl = "jdbc:oracle:pgql:@<DB Host>:<DB Port>/<DB SID>";
 String username = "<DB Username>";
 String password = "<DB Password>";

 try (Connection conn = DriverManager.getConnection(jdbcUrl,
username, password)) {
 String query = "SELECT n.name FROM MATCH(n) ON test_graph WHERE
id(n) = ?";
 PreparedStatement pstmt = conn.prepareStatement(query);
 pstmt.setLong(1, 10L);
 pstmt.execute();
 ResultSet rs = pstmt.getResultSet();
 while(rs.next()){
 System.out.println("NAME = " + rs.getString("name"));
 }
 }
 }
}

Save the preceding code in a file PgqlJdbcTest.java and compile using:

javac -cp "<graph-client>/lib/*" PgqlJdbcTest.java

The driver is also included in a regular graph server (RPM) install. For example:

javac -cp "/opt/oracle/graph/lib/*" PgqlJdbcTest.java

6.9.4.3 Security Techniques for PGQL Queries
Programs executing dynamic queries might be subject to injection attacks that could
compromise integrity and functioning of the applications.

This topic presents some techniques that can be used to prevent injection attacks
when building PGQL queries using string concatenation.

• Using Bind Variables in PGQL Queries

• Verifying PGQL Identifiers

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-44

6.9.4.3.1 Using Bind Variables in PGQL Queries
Bind variables can be used in PGQL queries for better performance and increased security.
Constant scalar values in PGQL queries can be replaced with bind variables. Bind variables
are denoted by a '?' (question mark). Consider the following two queries that select people
who are older than a constant age value.

// people older than 30
SELECT v.fname AS fname, v.lname AS lname, v.age AS age
FROM MATCH (v)
WHERE v.age > 30

// people older than 40
SELECT v.fname AS fname, v.lname AS lname, v.age AS age
FROM MATCH (v)
WHERE v.age > 40

The SQL translations for these queries would use the constants 30 and 40 in a similar way
for the age filter. The database would perform a hard parse for each of these queries. This
hard parse time can often exceed the execution time for simple queries.

You could replace the constant in each query with a bind variable as follows.

SELECT v.fname AS fname, v.lname AS lname, v.age AS age
FROM MATCH (v)
WHERE v.age > ?

This will allow the SQL engine to create a generic cursor for this query, which can be reused
for different age values. As a result, a hard parse is no longer required to execute this query
for different age values, and the parse time for each query will be drastically reduced.

In addition, applications that use bind variables in PGQL queries are less vulnerable to
injection attacks than those that use string concatenation to embed constant values in PGQL
queries.

See also Oracle Database SQL Tuning Guide for more information on cursor sharing and
bind variables.

The PgqlPreparedStatement interface can be used to execute queries with bind variables as
shown in PgqlExample5.java. PgqlPreparedStatement provides several set methods for
different value types that can be used to set values for query execution.

There are a few limitations with bind variables in PGQL. Bind variables can only be used for
constant property values. That is, vertices and edges cannot be replaced with bind variables.
Also, once a particular bind variable has been set to a type, it cannot be set to a different
type. For example, if setInt(1, 30) is executed for an PgqlPreparedStatement, you cannot
call setString(1, "abc") on that same PgqlPreparedStatement.

Example 6-12 PgqlExample5.java

PgqlExample5.java shows how to use bind variables with a PGQL query.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-45

import oracle.pg.rdbms.pgql.PgqlPreparedStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use bind variables with a PGQL query.
 */
public class PgqlExample5
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlPreparedStatement pps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Query string with a bind variable (denoted by ?)
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname, v.\"age\"
AS age "+
 "FROM MATCH (v) "+
 "WHERE v.\"age\" > ?";

 // Create a PgqlPreparedStatement
 pps = pgqlConn.prepareStatement(pgql);

 // Set filter value to 30
 pps.setInt(1, 30);

 // execute query

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-46

 rs = pps.executeQuery();

 // Print query results
 System.out.println("-- Values for v.\"age\" > 30 --");
 rs.print();
 // close result set
 rs.close();

 // set filter value to 40
 pps.setInt(1, 40);

 // execute query
 rs = pps.executeQuery();

 // Print query results
 System.out.println("-- Values for v.\"age\" > 40 --");
 rs.print();
 // close result set
 rs.close();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pps != null) {
 pps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample5.java has the following output for test_graph (which can be loaded using
GraphLoaderExample.java code).

-- Values for v.age > 30 --
+---------------------+
| fname | lname | age |
+---------------------+
Susan	Blue	35
Bill	Brown	40
Ray	Green	41
+---------------------+		
-- Values for v.age > 40 --		
+---------------------+		
fname	lname	age
+---------------------+		
Ray	Green	41
+---------------------+

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-47

Example 6-13 PgqlExample6.java

PgqlExample6.java shows a query with two bind variables: one String variable and
one Timestamp variable.

import java.sql.Connection;
import java.sql.Timestamp;

import java.time.OffsetDateTime;
import java.time.ZoneOffset;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlPreparedStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use multiple bind variables with a PGQL
query.
 */
public class PgqlExample6
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlPreparedStatement pps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Query string with multiple bind variables

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-48

 String pgql =
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2 "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2) "+
 "WHERE e.\"since\" < ? AND e.\"firstMetIn\" = ?";

 // Create a PgqlPreparedStatement
 pps = pgqlConn.prepareStatement(pgql);

 // Set e.since < 2006-01-01T12:00:00.00Z
 Timestamp t =
Timestamp.valueOf(OffsetDateTime.parse("2006-01-01T12:00:01.00Z").atZoneSameI
nstant(ZoneOffset.UTC).toLocalDateTime());
 pps.setTimestamp(1, t);
 // Set e.firstMetIn = 'CA'
 pps.setString(2, "CA");

 // execute query
 rs = pps.executeQuery();

 // Print query results
 System.out.println("-- Values for e.\"since\" <
2006-01-01T12:00:01.00Z AND e.\"firstMetIn\" = 'CA' --");
 rs.print();
 // close result set
 rs.close();

 // Set e.since < 2000-01-01T12:00:00.00Z
 t =
Timestamp.valueOf(OffsetDateTime.parse("2000-01-01T12:00:00.00Z").atZoneSameI
nstant(ZoneOffset.UTC).toLocalDateTime());
 pps.setTimestamp(1, t);
 // Set e.firstMetIn = 'TX'
 pps.setString(2, "TX");

 // execute query
 rs = pps.executeQuery();

 // Print query results
 System.out.println("-- Values for e.\"since\" <
2000-01-01T12:00:00.00Z AND e.\"firstMetIn\" = 'TX' --");
 rs.print();
 // close result set
 rs.close();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pps != null) {
 pps.close();
 }
 // close the connection
 if (conn != null) {

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-49

 conn.close();
 }
 }
 }
}

PgqlExample6.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Values for e."since" < 2006-01-01T12:00:01.00Z AND e."firstMetIn" = 'CA' --
+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
| Susan | Bill |
| Susan | Ray |
+-----------------+
-- Values for e."since" < 2000-01-01T12:00:00.00Z AND e."firstMetIn" = 'TX' --
+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
| Ray | Bill |
+-----------------+

6.9.4.3.2 Verifying PGQL Identifiers
For some parts of a PGQL query the parser does not allow use of bind variables. In
such cases, the input can be verified using the printIdentifier method in package
oracle.pgql.lang.ir.PgqlUtils.

Consider the following query execution that concatenates the graph against which the
graph pattern will be matched:

stmt.executeQuery("SELECT n.name FROM MATCH (n) ON " + graphName, "");

In order to avoid injection, the identifier graphName should be verified as follows:

stmt.executeQuery("SELECT n.name FROM MATCH (n) ON " +
PgqlUtils.printIdentifier(graphName), "");

6.9.4.4 Using a Text Index with PGQL Queries
PGQL queries executed against Oracle Database can use Oracle Text indexes
created for vertex and edge properties. After creating a text index, you can use the
CONTAINS operator to perform a full text search. CONTAINS has two arguments: a
vertex or edge property, and an Oracle Text search string. Any valid Oracle Text
search string can be used, including advanced features such as wildcards, stemming,
and soundex.

Example 6-14 PgqlExample7.java

PgqlExample7.java shows how to execute a CONTAINS query.

import java.sql.CallableStatement;
import java.sql.Connection;

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-50

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use an Oracle Text index with a PGQL query.
 */
public class PgqlExample7
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create text index with SQL API
 CallableStatement cs = null;
 // text index on vertices
 cs = conn.prepareCall(
 "begin opg_apis.create_vertices_text_idx(:1,:2); end;"
);
 cs.setString(1,user);
 cs.setString(2,graph);
 cs.execute();
 cs.close();
 // text index on edges
 cs = conn.prepareCall(
 "begin opg_apis.create_edges_text_idx(:1,:2); end;"
);
 cs.setString(1,user);
 cs.setString(2,graph);
 cs.execute();
 cs.close();

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-51

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Query using CONTAINS text search operator on vertex property
 // Find all vertices with an lname property value that starts
with 'B'
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname "+
 "FROM MATCH (v) "+
 "WHERE CONTAINS(v.\"lname\",'B%')";

 // execute query
 rs = ps.executeQuery(pgql, "");

 // print results
 System.out.println("-- Vertex Property Query --");
 rs.print();

 // close result set
 rs.close();

 // Query using CONTAINS text search operator on edge property
 // Find all knows edges with a firstMetIn property value that
ends with 'A'
 pgql =
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2,
e.\"firstMetIn\" AS loc "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2) "+
 "WHERE CONTAINS(e.\"firstMetIn\",'%A')";

 // execute query
 rs = ps.executeQuery(pgql, "");

 // print results
 System.out.println("-- Edge Property Query --");
 rs.print();

 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-52

 }
 }
 }
}

PgqlExample7.java has the following output for test_graph (which can be loaded using
GraphLoaderExample.java code).

-- Vertex Property Query --
+---------------+
| FNAME | LNAME |
+---------------+
Susan	Blue
Bill	Brown
John	Black
+---------------+	
-- Edge Property Query --	
+-----------------------+	
FNAME1	FNAME1
+-----------------------+	
Susan	Bill
John	Bill
Susan	John
Susan	Ray
+-----------------------+

6.9.4.5 Obtaining the SQL Translation for a PGQL Query
You can obtain the SQL translation for a PGQL query through methods in PgqlStatement and
PgqlPreparedStatement. The raw SQL for a PGQL query can be useful for several reasons:

• You can execute the SQL directly against the database with other SQL-based tools or
interfaces (for example, SQL*Plus or SQL Developer).

• You can customize and tune the generated SQL to optimize performance or to satisfy a
particular requirement of your application.

• You can build a larger SQL query that joins a PGQL subquery with other data stored in
Oracle Database (such as relational tables, spatial data, and JSON data).

Example 6-15 PgqlExample8.java

PgqlExample8.java shows how to obtain the raw SQL translation for a PGQL query. The
translateQuery method of PgqlStatement returns an PgqlSqlQueryTrans object that
contains information about return columns from the query and the SQL translation itself.

The translated SQL returns different columns depending on the type of "logical" object or
value projected from the PGQL query. A vertex or edge projected in PGQL has two
corresponding columns projected in the translated SQL:

• $IT : id type – NVARCHAR(1): 'V' for vertex or 'E' for edge

• $ID : vertex or edge identifier – NUMBER: same content as VID or EID columns in VT$
and GE$ tables

A property value or constant scalar value projected in PGQL has four corresponding columns
projected in the translated SQL:

• $T : value type – NUMBER: same content as T column in VT$ and GE$ tables

• $V: value – NVARCHAR2(15000): same content as V column in VT$ and GE$ tables

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-53

• $VN: number value – NUMBER: same content as VN column in VT$ and GE$
tables

• $VT: temporal value – TIMESTAMP WITH TIME ZONE: same content as VT
column in VT$ and GE$ tables

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlColumnDescriptor;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to obtain the SQL translation for a PGQL
query.
 */
public class PgqlExample8
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // PGQL query to be translated
 String pgql =
 "SELECT v1, v1.\"fname\" AS fname1, e, e.\"since\" AS since "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2)";

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-54

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Get the SQL translation
 PgqlSqlQueryTrans sqlTrans = ps.translateQuery(pgql,"");

 // Get the return column descriptions
 PgqlColumnDescriptor[] cols = sqlTrans.getReturnTypes();

 // Print column descriptions
 System.out.println("-- Return Columns -----------------------");
 printReturnCols(cols);

 // Print SQL translation
 System.out.println("-- SQL Translation ----------------------");
 System.out.println(sqlTrans.getSqlTranslation());
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }

 /**
 * Prints return columns for a SQL translation
 */
 static void printReturnCols(PgqlColumnDescriptor[] cols) throws Exception
 {
 StringBuffer buff = new StringBuffer("");

 for (int i = 0; i < cols.length; i++) {

 String colName = cols[i].getColName();
 PgqlColumnDescriptor.Type colType = cols[i].getColType();
 int offset = cols[i].getSqlOffset();

 String readableType = "";
 switch(colType) {
 case VERTEX:
 readableType = "VERTEX";
 break;
 case EDGE:
 readableType = "EDGE";
 break;
 case VALUE:
 readableType = "VALUE";
 break;
 }

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-55

 buff.append("colName=["+colName+"] colType=["+readableType+"]
offset=["+offset+"]\n");
 }
 System.out.println(buff.toString());
 }
}

PgqlExample8.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Return Columns -----------------------
colName=[v1] colType=[VERTEX] offset=[1]
colName=[fname1] colType=[VALUE] offset=[3]
colName=[e] colType=[EDGE] offset=[7]
colName=[since] colType=[VALUE] offset=[9]
-- SQL Translation ----------------------
SELECT n'V' AS "V1$IT",
T0$0.SVID AS "V1$ID",
T0$1.T AS "FNAME1$T",
T0$1.V AS "FNAME1$V",
T0$1.VN AS "FNAME1$VN",
T0$1.VT AS "FNAME1$VT",
n'E' AS "E$IT",
T0$0.EID AS "E$ID",
T0$0.T AS "SINCE$T",
T0$0.V AS "SINCE$V",
T0$0.VN AS "SINCE$VN",
T0$0.VT AS "SINCE$VT"
FROM (SELECT L.EID, L.SVID, L.DVID, L.EL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHGT$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHGE$ WHERE K=n'since') R
 WHERE L.EID = R.EID(+)
) T0$0,
(SELECT L.VID, L.VL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHVD$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHVT$ WHERE K=n'fname') R
 WHERE L.VID = R.VID(+)
) T0$1
WHERE T0$0.SVID=T0$1.VID AND
(T0$0.EL = n'knows' AND T0$0.EL IS NOT NULL)

Example 6-16 PgqlExample9.java

You can also obtain the SQL translation for PGQL queries with bind variables. In this
case, the corresponding SQL translation will also contain bind variables. The
PgqlSqlQueryTrans interface has a getSqlBvList method that returns an ordered List
of Java Objects that should be bound to the SQL query (the first Object on the list
should be set at position 1, and the second should be set at position 2, and so on).

PgqlExample9.java shows how to get and execute the SQL for a PGQL query with
bind variables.

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.Timestamp;

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-56

import java.util.List;

import oracle.pg.rdbms.pgql.PgqlColumnDescriptor;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlPreparedStatement;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to obtain and execute the SQL translation for a
 * PGQL query that uses bind variables.
 */
public class PgqlExample9
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlPreparedStatement pgqlPs = null;

 PreparedStatement sqlPs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v1, v1.\"fname\" AS fname1, v1.\"age\" AS age, ? as constVal
"+
 "FROM MATCH (v1) "+
 "WHERE v1.\"fname\" = ? OR v1.\"age\" < ?";

 // Create a PgqlStatement

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-57

 pgqlPs = pgqlConn.prepareStatement(pgql);

 // set bind values
 pgqlPs.setDouble(1, 2.05d);
 pgqlPs.setString(2, "Bill");
 pgqlPs.setInt(3, 35);

 // Get the SQL translation
 PgqlSqlQueryTrans sqlTrans = pgqlPs.translateQuery("");

 // Get the SQL String
 String sqlStr = sqlTrans.getSqlTranslation();

 // Get the return column descriptions
 PgqlColumnDescriptor[] cols = sqlTrans.getReturnTypes();

 // Get the bind values
 List<Object> bindVals = sqlTrans.getSqlBvList();

 // Print column descriptions
 System.out.println("-- Return Columns -----------------------");
 printReturnCols(cols);

 // Print SQL translation
 System.out.println("-- SQL Translation ----------------------");
 System.out.println(sqlStr);

 // Print Bind Values
 System.out.println("\n-- Bind Values --------------------------");
 for (Object obj : bindVals) {
 System.out.println(obj.toString());
 }

 // Execute Query
 // Get PreparedStatement
 sqlPs = conn.prepareStatement("SELECT COUNT(*) FROM
("+sqlStr+")");
 // Set bind values and execute the PreparedStatement
 executePs(sqlPs, bindVals);

 // Set new bind values in the PGQL PreparedStatement
 pgqlPs.setDouble(1, 3.02d);
 pgqlPs.setString(2, "Ray");
 pgqlPs.setInt(3, 30);

 // Print Bind Values
 bindVals = sqlTrans.getSqlBvList();
 System.out.println("\n-- Bind Values --------------------------");
 for (Object obj : bindVals) {
 System.out.println(obj.toString());
 }

 // Execute the PreparedStatement with new bind values
 executePs(sqlPs, bindVals);
 }

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-58

 finally {
 // close the SQL statement
 if (sqlPs != null) {
 sqlPs.close();
 }
 // close the statement
 if (pgqlPs != null) {
 pgqlPs.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }

 /**
 * Executes a SQL PreparedStatement with the input bind values
 */
 static void executePs(PreparedStatement ps, List<Object> bindVals) throws
Exception
 {
 ResultSet rs = null;
 try {
 // Set bind values
 for (int idx = 0; idx < bindVals.size(); idx++) {
 Object o = bindVals.get(idx);
 // String
 if (o instanceof java.lang.String) {
 ps.setNString(idx + 1, (String)o);
 }
 // Int
 else if (o instanceof java.lang.Integer) {
 ps.setInt(idx + 1, ((Integer)o).intValue());
 }
 // Long
 else if (o instanceof java.lang.Long) {
 ps.setLong(idx + 1, ((Long)o).longValue());
 }
 // Float
 else if (o instanceof java.lang.Float) {
 ps.setFloat(idx + 1, ((Float)o).floatValue());
 }
 // Double
 else if (o instanceof java.lang.Double) {
 ps.setDouble(idx + 1, ((Double)o).doubleValue());
 }
 // Timestamp
 else if (o instanceof java.sql.Timestamp) {
 ps.setTimestamp(idx + 1, (Timestamp)o);
 }
 else {
 ps.setString(idx + 1, bindVals.get(idx).toString());
 }
 }

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-59

 // Execute query
 rs = ps.executeQuery();
 if (rs.next()) {
 System.out.println("\n-- Execute Query: Result has
"+rs.getInt(1)+" rows --");
 }
 }
 finally {
 // close the SQL ResultSet
 if (rs != null) {
 rs.close();
 }
 }
 }

 /**
 * Prints return columns for a SQL translation
 */
 static void printReturnCols(PgqlColumnDescriptor[] cols) throws
Exception
 {
 StringBuffer buff = new StringBuffer("");

 for (int i = 0; i < cols.length; i++) {

 String colName = cols[i].getColName();
 PgqlColumnDescriptor.Type colType = cols[i].getColType();
 int offset = cols[i].getSqlOffset();

 String readableType = "";
 switch(colType) {
 case VERTEX:
 readableType = "VERTEX";
 break;
 case EDGE:
 readableType = "EDGE";
 break;
 case VALUE:
 readableType = "VALUE";
 break;
 }

 buff.append("colName=["+colName+"] colType=["+readableType+"]
offset=["+offset+"]\n");
 }
 System.out.println(buff.toString());
 }
}

PgqlExample9.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

–-- Return Columns -----------------------
colName=[v1] colType=[VERTEX] offset=[1]

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-60

colName=[fname1] colType=[VALUE] offset=[3]
colName=[age] colType=[VALUE] offset=[7]
colName=[constVal] colType=[VALUE] offset=[11]
-- SQL Translation ----------------------
SELECT n'V' AS "V1$IT",
T0$0.VID AS "V1$ID",
T0$0.T AS "FNAME1$T",
T0$0.V AS "FNAME1$V",
T0$0.VN AS "FNAME1$VN",
T0$0.VT AS "FNAME1$VT",
T0$1.T AS "AGE$T",
T0$1.V AS "AGE$V",
T0$1.VN AS "AGE$VN",
T0$1.VT AS "AGE$VT",
4 AS "CONSTVAL$T",
to_nchar(?,'TM9','NLS_Numeric_Characters=''.,''') AS "CONSTVAL$V",
? AS "CONSTVAL$VN",
to_timestamp_tz(null) AS "CONSTVAL$VT"
FROM (SELECT L.VID, L.VL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHVD$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHVT$ WHERE K=n'fname') R
 WHERE L.VID = R.VID(+)
) T0$0,
(SELECT L.VID, L.VL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHVD$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHVT$ WHERE K=n'age') R
 WHERE L.VID = R.VID(+)
) T0$1
WHERE T0$0.VID=T0$1.VID AND
((T0$0.T = 1 AND T0$0.V = ?) OR T0$1.VN < ?)

-- Bind Values --------------------------
2.05
2.05
Bill
35
-- Execute Query: Result has 2 rows --

-- Bind Values --------------------------
3.02
3.02
Ray
30
-- Execute Query: Result has 1 rows --

6.9.4.6 Additional Options for PGQL Translation and Execution
Several options are available to influence PGQL query translation and execution. The
following are the main ways to set query options:

• Through explicit arguments to executeQuery and translateQuery

• Through flags in the options string argument of executeQuery and translateQuery

• Through Java JVM arguments.

The following table summarizes the available query arguments for PGQL translation and
execution.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-61

Table 6-2 PGQL Translation and Execution Options

Option Default Explict
Argument

Options Flag JVM Argument

Degree of
parallelis
m

0 parallel none none

Timeout unlimite
d

timeout none none

Dynamic
sampling

2 dynamicSampli
ng

none none

Maximum
number
of results

unlimite
d

maxResults none none

GT$ table
usage

on none USE_GT_TAB=F -
Doracle.pg.rdbms.pgql.useGtTab=fal
se

CONNEC
T BY
usage

off none USE_RW=F -
Doracle.pg.rdbms.pgql.useRW=false

Distinct
recursive
WITH
usage

off none USE_DIST_RW=T -
Doracle.pg.rdbms.pgql.useDistRW=t
rue

Maximum
path
length

unlimite
d

none MAX_PATH_LEN=
n

-
Doracle.pg.rdbms.pgql.maxPathLen
=n

Set
partial

false none EDGE_SET_PART
IAL=T

-
Doracle.pg.rdbms.pgql.edgeSetParti
al=true

Project
null
propertie
s

true none PROJ_NULL_PRO
PS=F

-
Doracle.pg.rdbms.pgql.projNullProp
s=false

VT$ VL
column
usage

on none USE_VL_COL=F -
Doracle.pg.rdbms.pgql.useVLCol=fa
lse

• Query Options Controlled by Explicit Arguments

• Using the GT$ Skeleton Table

• Path Query Options

• Options for Partial Object Construction

6.9.4.6.1 Query Options Controlled by Explicit Arguments
Some query options are controlled by explicit arguments to methods in the Java API.

• The executeQuery method of PgqlStatement has explicit arguments for timeout in
seconds, degree of parallelism, optimizer dynamic sampling, and maximum
number of results.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-62

• The translateQuery method has explicit arguments for degree of parallelism, optimizer
dynamic sampling, and maximum number of results. PgqlPreparedStatement also
provides those same additional arguments for executeQuery and translateQuery.

Example 6-17 PgqlExample10.java

PgqlExample10.java shows PGQL query execution with additional options controlled by
explicit arguments.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL query with various options.
 */
public class PgqlExample10
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-63

 String pgql =
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2 "+
 "FROM MATCH (v1)-[:\"friendOf\"]->(v2)";
 rs = ps.executeQuery(pgql /* query string */,
 100 /* timeout (sec): 0 is default and
implies no timeout */,
 2 /* parallel: 1 is default */,
 6 /* dynamic sampling: 2 is default */,
 50 /* max results: -1 is default and
implies no limit */,
 "" /* options */);

 // Print query results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample10.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
Ray	Susan
John	Susan
Bill	John
Susan	John
John	Bill
+-----------------+

6.9.4.6.2 Using the GT$ Skeleton Table
The property graph relational schema defines a GT$ skeleton table that stores a single
row for each edge in the graph, no matter how many properties an edge has. This
skeleton table is populated by default so that PGQL query execution can take
advantage of the GT$ table and avoid sorting operations on the GE$ table in many
cases, which gives a significant performance improvement.

You can add "USE_GT_TAB=F" to the options argument of executeQuery and
translateQuery or use -Doracle.pg.rdbms.pgql.useGtTab=false in the Java
command line to turn off GT$ table usage.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-64

Example 6-18 PgqlExample11.java

PgqlExample11.java shows a query that uses the GT$ skeleton table.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to avoid using the GT$ skeleton table for
 * PGQL query execution.
 */
public class PgqlExample11
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT id(v1), id(v2) "+
 "FROM MATCH (v1)-[knows]->(v2)";

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-65

 // Get the SQL translation with GT table
 PgqlSqlQueryTrans sqlTrans = ps.translateQuery(pgql,"");

 // Print SQL translation
 System.out.println("-- SQL Translation with GT Table
----------------------");
 System.out.println(sqlTrans.getSqlTranslation());

 // Get the SQL translation without GT table
 sqlTrans = ps.translateQuery(pgql,"USE_GT_TAB=F");

 // Print SQL translation
 System.out.println("-- SQL Translation without GT Table
-------------------------");
 System.out.println(sqlTrans.getSqlTranslation());

 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample11.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- SQL Translation with GT Table ----------------------
SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM "SCOTT".TEST_GRAPHGT$ T0$0
-- SQL Translation without GT Table -------------------------
SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (SELECT DISTINCT EID, SVID, DVID,EL FROM "SCOTT".TEST_GRAPHGE$) T0$0

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-66

6.9.4.6.3 Path Query Options
A few options are available for executing path queries in PGQL. There are two basic
evaluation methods available in Oracle SQL: CONNECT BY or recursive WITH clauses.
Recursive WITH is the default evaluation method. In addition, you can further modify the
recursive WITH evaluation method to include a DISTINCT modifier during the recursive step
of query evaluation. Computing distinct vertices at each step helps prevent a combinatorial
explosion in highly connected graphs. The DISTINCT modifier is not added by default
because it requires a specific parameter setting in the database
("_recursive_with_control"=8).

You can also control the maximum length of paths searched. Path length in this case is
defined as the number of repetitions allowed when evaluating the * and + operators. The
default maximum length is unlimited.

Path evaluation options are summarized as follows.

• CONNECT BY: To use CONNECT BY, specify 'USE_RW=F' in the options argument or
specify -Doracle.pg.rdbms.pgql.useRW=false in the Java command line.

• Distinct Modifier in Recursive WITH: To use the DISTINCT modifier in the recursive
step, first set "_recursive_with_control"=8 in your database session, then specify
'USE_DIST_RW=T' in the options argument or specify -
Doracle.pg.rdbms.pgql.useDistRW=true in the Java command line. You will encounter
ORA-32486: unsupported operation in recursive branch of recursive WITH clause if
"_recursive_with_control" has not been set to 8 in your session.

• Path Length Restriction: To limit maximum number of repetitions when evaluating * and
+ to n, specify 'MAX_PATH_LEN=n' in the query options argument or specify -
Doracle.pg.rdbms.pgql.maxPathLen=n in the Java command line.

Example 6-19 PgqlExample12.java

PgqlExample12.java shows path query translations under various options.

import java.sql.Connection;
import java.sql.Statement;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use various options with PGQL path queries.
 */
public class PgqlExample12
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-67

 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Set "_recursive_with_control"=8 to enable distinct optimization
 // optimization for recursive with
 Statement stmt = conn.createStatement();
 stmt.executeUpdate("alter session set
\"_recursive_with_control\"=8");
 stmt.close();

 // Path Query to illustrate options
 String pgql =
 "PATH fof AS ()-[:\"friendOf\"]->() "+
 "SELECT id(v1), id(v2) "+
 "FROM MATCH (v1)-/:fof*/->(v2) "+
 "WHERE id(v1) = 2";

 // get SQL translation with defaults - Non-distinct Recursive WITH
 PgqlSqlQueryTrans sqlTrans =
 ps.translateQuery(pgql /* query string */,
 2 /* parallel: default is 1 */,
 2 /* dynamic sampling: default is 2 */,
 -1 /* max results: -1 implies no limit */,
 "" /* options */);
 System.out.println("-- Default Path Translation
--------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");

 // get SQL translation with DISTINCT reachability optimization
 sqlTrans =
 ps.translateQuery(pgql /* query string */,

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-68

 2 /* parallel: default is 1 */,
 2 /* dynamic sampling: default is 2 */,
 -1 /* max results: -1 implies no limit */,
 " USE_DIST_RW=T " /* options */);
 System.out.println("-- DISTINCT RW Path Translation
--------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");

 // get SQL translation with CONNECT BY
 sqlTrans =
 ps.translateQuery(pgql /* query string */,
 2 /* parallel: default is 1 */,
 2 /* dynamic sampling: default is 2 */,
 -1 /* max results: -1 implies no limit */,
 " USE_RW=F " /* options */);
 System.out.println("-- CONNECT BY Path Translation
--------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample12.java gives the following output for test_graph (which can be loaded using
GraphLoaderExample.java code).

-- Default Path Translation --------------------
SELECT /*+ parallel(2) */ * FROM(SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (/*Path[*/SELECT DISTINCT SVID, DVID
FROM (
SELECT 2 AS SVID, 2 AS DVID
FROM SYS.DUAL
WHERE EXISTS(
SELECT 1
FROM "SCOTT".TEST_GRAPHVT$
WHERE VID = 2)
UNION ALL
SELECT SVID,DVID FROM
(WITH RW (ROOT, DVID) AS
(SELECT ROOT, DVID FROM
(SELECT SVID ROOT, DVID

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-69

FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE T0$0.SVID = 2 AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL))
) UNION ALL
SELECT RW.ROOT, R.DVID
FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE (T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL)) R, RW
WHERE RW.DVID = R.SVID)
CYCLE DVID SET cycle_col TO 1 DEFAULT 0
SELECT ROOT SVID, DVID FROM RW))/*]Path*/) T0$0
WHERE T0$0.SVID = 2)

-- DISTINCT RW Path Translation --------------------
SELECT /*+ parallel(2) */ * FROM(SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (/*Path[*/SELECT DISTINCT SVID, DVID
FROM (
SELECT 2 AS SVID, 2 AS DVID
FROM SYS.DUAL
WHERE EXISTS(
SELECT 1
FROM "SCOTT".TEST_GRAPHVT$
WHERE VID = 2)
UNION ALL
SELECT SVID,DVID FROM
(WITH RW (ROOT, DVID) AS
(SELECT ROOT, DVID FROM
(SELECT SVID ROOT, DVID
FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE T0$0.SVID = 2 AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL))
) UNION ALL
SELECT DISTINCT RW.ROOT, R.DVID
FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE (T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL)) R, RW
WHERE RW.DVID = R.SVID)
CYCLE DVID SET cycle_col TO 1 DEFAULT 0
SELECT ROOT SVID, DVID FROM RW))/*]Path*/) T0$0
WHERE T0$0.SVID = 2)

-- CONNECT BY Path Translation --------------------
SELECT /*+ parallel(2) */ * FROM(SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-70

T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (/*Path[*/SELECT DISTINCT SVID, DVID
FROM (
SELECT 2 AS SVID, 2 AS DVID
FROM SYS.DUAL
WHERE EXISTS(
SELECT 1
FROM "SCOTT".TEST_GRAPHVT$
WHERE VID = 2)
UNION ALL
SELECT SVID, DVID
FROM
(SELECT CONNECT_BY_ROOT T0$0.SVID AS SVID, T0$0.DVID AS DVID
FROM(
SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE (T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL)) T0$0
START WITH T0$0.SVID = 2
CONNECT BY NOCYCLE PRIOR DVID = SVID))/*]Path*/) T0$0
WHERE T0$0.SVID = 2)

The query plan for the first query with the default recursive WITH strategy should look similar
to the following.

-- default RW

| Id | Operation | Name |

0	SELECT STATEMENT	
1	TEMP TABLE TRANSFORMATION	
2	LOAD AS SELECT (CURSOR DURATION MEMORY)	SYS_TEMP_0FD9D6662_37AA44
3	UNION ALL (RECURSIVE WITH) BREADTH FIRST	
4	PX COORDINATOR	
5	PX SEND QC (RANDOM)	:TQ20000
6	LOAD AS SELECT (CURSOR DURATION MEMORY)	SYS_TEMP_0FD9D6662_37AA44
7	PX PARTITION HASH ALL	
* 8	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 9	INDEX RANGE SCAN	TEST_GRAPHXSG$
10	PX COORDINATOR	
11	PX SEND QC (RANDOM)	:TQ10000
12	LOAD AS SELECT (CURSOR DURATION MEMORY)	SYS_TEMP_0FD9D6662_37AA44
13	NESTED LOOPS	
14	PX BLOCK ITERATOR	
* 15	TABLE ACCESS FULL	SYS_TEMP_0FD9D6662_37AA44
16	PARTITION HASH ALL	
* 17	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 18	INDEX RANGE SCAN	TEST_GRAPHXSG$
19	PX COORDINATOR	
20	PX SEND QC (RANDOM)	:TQ30001
21	VIEW	
22	HASH UNIQUE	
23	PX RECEIVE	
24	PX SEND HASH	:TQ30000
25	HASH UNIQUE	
26	VIEW	
27	UNION-ALL	
28	PX SELECTOR	
* 29	FILTER	
30	FAST DUAL	

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-71

| 31 | PARTITION HASH SINGLE
| |
|* 32 | INDEX SKIP SCAN |
TEST_GRAPHXQV$ |
| 33 | VIEW
| |
|* 34 | VIEW
| |
| 35 | PX BLOCK ITERATOR
| |
| 36 | TABLE ACCESS FULL |
SYS_TEMP_0FD9D6662_37AA44

The query plan for the second query that adds a DISTINCT modifier in the recursive
step should look similar to the following.

| Id | Operation |
Name

| 0 | SELECT STATEMENT
| |
| 1 | TEMP TABLE TRANSFORMATION
| |
| 2 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6669_37AA44 |
| 3 | UNION ALL (RECURSIVE WITH) BREADTH FIRST
| |
| 4 | PX COORDINATOR
| |
| 5 | PX SEND QC (RANDOM)
| :TQ20000 |
| 6 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6669_37AA44 |
| 7 | PX PARTITION HASH ALL
| |
|* 8 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED |
TEST_GRAPHGT$ |
|* 9 | INDEX RANGE SCAN |
TEST_GRAPHXSG$ |
| 10 | PX COORDINATOR
| |
| 11 | PX SEND QC (RANDOM)
| :TQ10001 |
| 12 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6669_37AA44 |
| 13 | SORT GROUP BY
| |
| 14 | PX RECEIVE
| |
| 15 | PX SEND HASH
| :TQ10000 |
| 16 | SORT GROUP BY
| |
| 17 | NESTED LOOPS
| |
| 18 | PX BLOCK ITERATOR

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-72

| |
|* 19 | TABLE ACCESS FULL |
SYS_TEMP_0FD9D6669_37AA44 |
| 20 | PARTITION HASH ALL
| |
|* 21 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED |
TEST_GRAPHGT$ |
|* 22 | INDEX RANGE SCAN |
TEST_GRAPHXSG$ |
| 23 | PX COORDINATOR
| |
| 24 | PX SEND QC (RANDOM)
| :TQ30001 |
| 25 | VIEW
| |
| 26 | HASH UNIQUE
| |
| 27 | PX RECEIVE
| |
| 28 | PX SEND HASH
| :TQ30000 |
| 29 | HASH UNIQUE
| |
| 30 | VIEW
| |
| 31 | UNION-ALL
| |
| 32 | PX SELECTOR
| |
|* 33 | FILTER
| |
| 34 | FAST DUAL
| |
| 35 | PARTITION HASH SINGLE
| |
|* 36 | INDEX SKIP SCAN |
TEST_GRAPHXQV$ |
| 37 | VIEW
| |
|* 38 | VIEW
| |
| 39 | PX BLOCK ITERATOR
| |
| 40 | TABLE ACCESS FULL |
SYS_TEMP_0FD9D6669_37AA44

The query plan for the third query that uses CONNECTY BY should look similar to the
following.

| Id | Operation | Name |

0	SELECT STATEMENT	
1	VIEW	
2	HASH UNIQUE	
3	VIEW	
4	UNION-ALL	
* 5	FILTER	
6	FAST DUAL	

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-73

7	PARTITION HASH SINGLE	
* 8	INDEX SKIP SCAN	TEST_GRAPHXQV$
* 9	VIEW	
* 10	CONNECT BY WITH FILTERING	
11	PX COORDINATOR	
12	PX SEND QC (RANDOM)	:TQ10000
13	PX PARTITION HASH ALL	
* 14	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 15	INDEX RANGE SCAN	TEST_GRAPHXSG$
16	NESTED LOOPS	
17	CONNECT BY PUMP	
18	PARTITION HASH ALL	
* 19	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 20	INDEX RANGE SCAN	TEST_GRAPHXSG$

Example 6-20 PgqlExample13.java

PgqlExample13.java shows how to set length restrictions during path query
evaluation.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use the maximum path length option for
 * PGQL path queries.
 */
public class PgqlExample13
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-74

 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Path Query to illustrate options
 String pgql =
 "PATH fof AS ()-[:\"friendOf\"]->() "+
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2 "+
 "FROM MATCH (v1)-/:fof*/->(v2) "+
 "WHERE v1.\"fname\" = 'Ray'";

 // execute query for 1-hop
 rs = ps.executeQuery(pgql, " MAX_PATH_LEN=1 ");

 // print results
 System.out.println("-- Results for 1-hop ----------------");
 rs.print();

 // close result set
 rs.close();

 // execute query for 2-hop
 rs = ps.executeQuery(pgql, " MAX_PATH_LEN=2 ");

 // print results
 System.out.println("-- Results for 2-hop ----------------");
 rs.print();

 // close result set
 rs.close();

 // execute query for 3-hop
 rs = ps.executeQuery(pgql, " MAX_PATH_LEN=3 ");

 // print results
 System.out.println("-- Results for 3-hop ----------------");
 rs.print();

 // close result set
 rs.close();

 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-75

 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample13.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Results for 1-hop ----------------
+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
| Ray | Ray |
| Ray | Susan |
+-----------------+
-- Results for 2-hop ----------------
+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
Ray	Susan
Ray	Ray
Ray	John
+-----------------+	
-- Results for 3-hop ----------------	
+-----------------+	
FNAME1	FNAME2
+-----------------+	
Ray	Susan
Ray	Bill
Ray	Ray
Ray	John
+-----------------+

6.9.4.6.4 Options for Partial Object Construction
When reading edges from a query result, there are two possible behaviors when
adding the start and end vertex to any local caches:

• Add only the vertex ID, which is available from the edge itself. This option is the
default, for efficiency.

• Add the vertex ID, and retrieve all properties for the start and end vertex. For this
behavior, you can call setPartial(true) on each OracleVertex object
constructed from your PGQL query result set.

Example 6-21 PgqlExample14.java

PgqlExample14.java illustrates this difference in behavior. This program first executes
a query to retrieve all edges, which causes the incident vertices to be added to a local

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-76

cache. The second query retrieves all vertices. The program then prints each OracleVertex
object to show which properties have been loaded.

import java.sql.Connection;

import oracle.pg.rdbms.Oracle;
import oracle.pg.rdbms.OraclePropertyGraph;
import oracle.pg.rdbms.OracleVertex;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows the behavior of setPartial(true) for OracleVertex
objects
 * created from PGQL query results.
 */
public class PgqlExample14
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 Oracle oracle = null;
 OraclePropertyGraph opg = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-77

 ps = pgqlConn.createStatement();

 // Query to illustrate set partial
 String pgql =
 "SELECT id(e), label(e) "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2)";

 // execute query
 rs = ps.executeQuery(pgql, " ");

 // print results
 System.out.println("-- Results for edge query -----------------");
 rs.print();

 // close result set
 rs.close();

 // Create an Oracle Property Graph instance
 oracle = new Oracle(conn);
 opg = OraclePropertyGraph.getInstance(oracle,graph);

 // Query to retrieve vertices
 pgql =
 "SELECT id(v) "+
 "FROM MATCH (v)";

 // Get each vertex object in result and print with toString()
 rs = ps.executeQuery(pgql, " ");

 // iterate through result
 System.out.println("-- Vertex objects retrieved from vertex query
--");
 while (rs.next()) {
 Long vid = rs.getLong(1);
 OracleVertex v = OracleVertex.getInstance(opg, vid);
 System.out.println(v.toString());
 }
 // close result set
 rs.close();

 // Execute the same query but call setPartial(true) for each
vertex
 rs = ps.executeQuery(pgql, " ");
 System.out.println("-- Vertex objects retrieved from vertex query
with setPartial(true) --");
 while (rs.next()) {
 Long vid = rs.getLong(1);
 OracleVertex v = OracleVertex.getInstance(opg, vid);
 v.setPartial(true);
 System.out.println(v.toString());
 }
 // close result set
 rs.close();
 }
 finally {

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-78

 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 // close the property graph
 if (opg != null) {
 opg.close();
 }
 // close oracle
 if (oracle != null) {
 oracle.dispose();
 }
 }
 }
}

The output for PgqlExample14.java (which can be loaded using GraphLoaderExample.java
code) is:

-- Results for edge query -----------------
+------------------+
| id(e) | label(e) |
+------------------+
6	knows
11	knows
10	knows
5	knows
4	knows
13	knows
9	knows
12	knows
8	knows
7	knows
14	knows
15	knows
+------------------+
-- Vertex objects retrieved from vertex query --
Vertex ID 3 [NULL] {}
Vertex ID 0 [NULL] {}
Vertex ID 2 [NULL] {}
Vertex ID 1 [NULL] {}
-- Vertex objects retrieved from vertex query with setPartial(true) --
Vertex ID 3 [NULL] {bval:bol:false, fname:str:Susan, lname:str:Blue, mval:bol:false,
age:int:35}
Vertex ID 0 [NULL] {bval:bol:true, fname:str:Bill, lname:str:Brown, mval:str:y,
age:int:40}
Vertex ID 2 [NULL] {fname:str:Ray, lname:str:Green, mval:dat:1985-01-01 04:00:00.0,
age:int:41}
Vertex ID 1 [NULL] {bval:bol:true, fname:str:John, lname:str:Black, mval:int:27,
age:int:30}

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-79

6.9.4.7 Querying Another User’s Property Graph
You can query another user’s property graph data if you have been granted the
appropriate privileges in the database. For example, to query GRAPH1 in SCOTT’s
schema, you must have READ privilege on SCOTT.GRAPH1GE$,
SCOTT.GRAPH1VT$, SCOTT.GRAPH1GT$, and SCOTT.GRAPH1VD$.

Example 6-22 PgqlExample15.java

PgqlExample15.java shows how another user can query a graph in SCOTT’s schema.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to query a property graph located in another
user's
 * schema. READ privilege on GE$, VT$, GT$ and VD$ tables for the other
user's
 * property graph are required to avoid ORA-00942: table or view does
not exist.
 */
public class PgqlExample15
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-80

 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Set schema so that we can query Scott's graph
 pgqlConn.setSchema("SCOTT");

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname "+
 "FROM MATCH (v)";
 rs = ps.executeQuery(pgql, "");

 // Print query results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The following SQL statements create database user USER2 and grant the necessary
privileges. You can also use the OraclePropertyGraph.grantAccess Java API to achieve the
same effect.

SQL> grant connect, resource, unlimited tablespace to user2 identified by user2;

Grant succeeded.

SQL> grant read on scott.test_graphvt$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphge$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphgt$ to user2;

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-81

Grant succeeded.

SQL> grant read on scott.test_graphvd$ to user2;

Grant succeeded.

The output for PgqlExample15.java for the test_graph data set when connected to
the database as USER2 is as follows. Note that test_graph should have already been
loaded (using GraphLoaderExample.java code) as GRAPH1 by user SCOTT before
running PgqlExample15.

+---------------+
| FNAME | LNAME |
+---------------+
Susan	Blue
Bill	Brown
Ray	Green
John	Black
+---------------+

6.9.4.8 Using Query Optimizer Hints with PGQL
The Java API allows query optimizer hints that influence the join type when executing
PGQL queries. The executeQuery and translateQuery methods in PgqlStatement
and PgqlPreparedStatement accept the following strings in the options argument to
influence the query plan for the corresponding SQL query.

• ALL_EDGE_NL – Use Nested Loop join for all joins that involve the $GE and $GT
tables.

• ALL_EDGE_HASH – Use HASH join for all joins that involve the $GE and $GT
tables.

• ALL_VERTEX_NL – Use Nested Loop join for all joins that involve the $VT table.

• ALL_VERTEX_HASH – Use HASH join for all joins that involve the $VT table.

Example 6-23 PgqlExample16.java

PgqlExample16.java shows how to use optimizer hints to influence the joins used for a
graph traversal.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use query optimizer hints with PGQL
queries.
 */
public class PgqlExample16
{

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-82

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();
 // Query to illustrate join hints
 String pgql =
 "SELECT id(v1), id(v4) "+
 "FROM MATCH (v1)-[:\"friendOf\"]->(v2)-[:\"friendOf\"]-
>(v3)-[:\"friendOf\"]->(v4)";

 // get SQL translation with hash join hint
 PgqlSqlQueryTrans sqlTrans =
 ps.translateQuery(pgql /* query string */,
 " ALL_EDGE_HASH " /* options */);
 // print SQL translation
 System.out.println("-- Query with ALL_EDGE_HASH --------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");

 // get SQL translation with nested loop join hint
 sqlTrans =
 ps.translateQuery(pgql /* query string */,
 " ALL_EDGE_NL " /* options */);
 // print SQL translation
 System.out.println("-- Query with ALL_EDGE_NL ---------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-83

 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlExample16.java for test_graph (which can be loaded using
GraphLoaderExample.java code) is:

-- Query with ALL_EDGE_HASH --------------------
SELECT /*+ USE_HASH(T0$0 T0$1 T0$2) */ 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v4)$T",
to_nchar(T0$2.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v4)$V",
T0$2.DVID AS "id(v4)$VN",
to_timestamp_tz(null) AS "id(v4)$VT"
FROM "SCOTT".TEST_GRAPHGT$ T0$0,
"SCOTT".TEST_GRAPHGT$ T0$1,
"SCOTT".TEST_GRAPHGT$ T0$2
WHERE T0$0.DVID=T0$1.SVID AND
T0$1.DVID=T0$2.SVID AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL) AND
(T0$1.EL = n'friendOf' AND T0$1.EL IS NOT NULL) AND
(T0$2.EL = n'friendOf' AND T0$2.EL IS NOT NULL)

-- Query with ALL_EDGE_NL ---------------------
SELECT /*+ USE_NL(T0$0 T0$1 T0$2) */ 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v4)$T",
to_nchar(T0$2.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v4)$V",
T0$2.DVID AS "id(v4)$VN",
to_timestamp_tz(null) AS "id(v4)$VT"
FROM "SCOTT".TEST_GRAPHGT$ T0$0,
"SCOTT".TEST_GRAPHGT$ T0$1,
"SCOTT".TEST_GRAPHGT$ T0$2
WHERE T0$0.DVID=T0$1.SVID AND
T0$1.DVID=T0$2.SVID AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL) AND
(T0$1.EL = n'friendOf' AND T0$1.EL IS NOT NULL) AND
(T0$2.EL = n'friendOf' AND T0$2.EL IS NOT NULL)

The query plan for the first query that uses ALL_EDGE_HASH should look similar to
the following.

| Id | Operation | Name |

0	SELECT STATEMENT	
* 1	HASH JOIN	
* 2	HASH JOIN	
3	PARTITION HASH ALL	
* 4	TABLE ACCESS FULL	TEST_GRAPHGT$

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-84

5	PARTITION HASH ALL	
* 6	TABLE ACCESS FULL	TEST_GRAPHGT$
7	PARTITION HASH ALL	
* 8	TABLE ACCESS FULL	TEST_GRAPHGT$

The query plan for the second query that uses ALL_EDGE_NL should look similar to the
following.

| Id | Operation | Name |

0	SELECT STATEMENT	
1	NESTED LOOPS	
2	NESTED LOOPS	
3	PARTITION HASH ALL	
* 4	TABLE ACCESS FULL	TEST_GRAPHGT$
5	PARTITION HASH ALL	
* 6	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 7	INDEX RANGE SCAN	TEST_GRAPHXSG$
8	PARTITION HASH ALL	
* 9	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 10	INDEX RANGE SCAN	TEST_GRAPHXSG$

6.9.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE
Statements

PGQL supports INSERT, UPDATE, and DELETE operations on Property Graphs. The
method execute in PgqlStatement lets you execute such DML operations. This topic provides
several examples of such operations.

Note:

JDBC connection autocommit must be off in order to be able to execute INSERT,
UPDATE, and DELETE statements.

Example 6-24 PgqlExample17.java (Insert)

PgqlExample17.java inserts several vertices and edges into a graph. Notice that the special
property _ora_id is used to define ID values of vertices and edges. If the property _ora_id is
omitted, a unique ID is generated for each new vertex or edge that is inserted into the graph.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL INSERT operation.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-85

 */
public class PgqlExample17
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute insert statement
 String pgql =
 "INSERT VERTEX p1 LABELS (person) PROPERTIES (p1.\"_ora_id\" =
1, p1.fname = 'Jake') "+
 " , VERTEX p2 LABELS (person) PROPERTIES (p2.\"_ora_id\" =
2, p2.fname = 'Amy') "+
 " , VERTEX p3 LABELS (person) PROPERTIES (p3.\"_ora_id\" =
3, p3.fname = 'Erik') "+
 " , VERTEX p4 LABELS (person) PROPERTIES (p4.\"_ora_id\" =
4, p4.fname = 'Jane') "+
 " , EDGE e1 BETWEEN p1 AND p2 LABELS (knows) PROPERTIES
(e1.\"_ora_id\" = 1, e1.since = DATE '2003-04-21') "+
 " , EDGE e2 BETWEEN p1 AND p3 LABELS (knows) PROPERTIES
(e2.\"_ora_id\" = 2, e2.since = DATE '2010-02-10') "+
 " , EDGE e3 BETWEEN p3 AND p4 LABELS (knows) PROPERTIES
(e3.\"_ora_id\" = 3, e3.since = DATE '1999-01-03') ";
 ps.execute(pgql, /* query string */
 "", /* query options */

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-86

 "" /* modify options */);

 // Execute a query to verify insertion
 pgql =
 " SELECT id(p1) AS id1, p1.fname AS person1, id(p2) as id2,
p2.fname AS person2, id(e) as e, e.since "+
 " FROM MATCH (p1)-[e:knows]->(p2) "+
 "ORDER BY id1, id2";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlExample17.java is:

+---+
| ID1 | PERSON1 | ID2 | PERSON2 | E | SINCE |
+---+
1	Jake	2	Amy	1	2003-04-20 17:00:00.0
1	Jake	3	Erik	2	2010-02-09 16:00:00.0
3	Erik	4	Jane	3	1999-01-02 16:00:00.0
+---+

For more examples of INSERT statement, see the relevant section of the PGQL specification
here.

Example 6-25 PgqlExample18.java (Update)

PgqlExample18.java updates several properties of vertices and edges that are matched in
the FROM clause of an UPDATE statement.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-87

http://pgql-lang.org/spec/1.3/#insert

/**
 * This example shows how to execute a PGQL UPDATE operation.
 */
public class PgqlExample18
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute update statement
 String pgql =
 "UPDATE p1 SET (p1.age = 47, p1.lname = 'Red'), "+
 " p2 SET (p2.age = 29, p2.lname = 'White'), "+
 " e SET (e.strength = 100) "+
 "FROM MATCH (p1) -[e:knows]-> (p2) "+
 "WHERE p1.fname = 'Jake' AND p2.fname = 'Amy'";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "" /* modify options */);

 // Execute a query to verify update
 pgql =
 "SELECT p1.fname AS fname1, p1.lname AS lname1, p1.age AS
age1, "+

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-88

 " p2.fname AS fname2, p2.lname AS lname2, p2.age AS age2,
e.strength "+
 "FROM MATCH (p1) -[e:knows]-> (p2)";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlExample18.java applied on a graph where PgqlExample17.java has
been previously executed is:

+--+
| FNAME1 | LNAME1 | AGE1 | FNAME2 | LNAME2 | AGE2 | STRENGTH |
+--+
Jake	Red	47	Amy	White	29	100
Jake	Red	47	Erik	<null>	<null>	<null>
Erik	<null>	<null>	Jane	<null>	<null>	<null>
+--+

For more examples of UPDATE statement, see the relevant section of the PGQL specification
here.

Example 6-26 PgqlExample19.java (Delete)

PgqlExample19.java deletes edges that are matched in the FROM clause of a DELETE
statement.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL DELETE operation.
 */

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-89

http://pgql-lang.org/spec/1.3/#update

public class PgqlExample19
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute delete statement
 String pgql =
 "DELETE e "+
 " FROM MATCH (p1) -[e:knows]-> (p2) "+
 " WHERE p1.fname = 'Jake'";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "" /* modify options */);

 // Execute a query to verify delete
 pgql =
 "SELECT p1.fname AS fname1, p2.fname AS fname2 "+
 " FROM MATCH (p1) -[e:knows]-> (p2)";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-90

 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlExample19.java applied on a graph where PgqlExample18.java has been
previously executed is:

+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
| Erik | Jane |
+-----------------+

For more examples of DELETE statement, see the relevant section of the PGQL specification
here.

Example 6-27 PgqlExample20.java (Multiple Modifications)

PgqlExample20.java executes multiple modifications in the same statement: an edge is
inserted, vertex properties are updated, and another edge is deleted.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL
 * INSERT/UPDATE/DELETE operation.
 */
public class PgqlExample20
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-91

http://pgql-lang.org/spec/1.3/#delete

 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute INSERT/UPDATE/DELETE statement
 String pgql =
 "INSERT EDGE f BETWEEN p2 AND p1 LABELS (knows) PROPERTIES
(f.since = e.since) "+
 "UPDATE p1 SET (p1.age = 30) "+
 " , p2 SET (p2.age = 25) "+
 "DELETE e "+
 " FROM MATCH (p1) -[e:knows]-> (p2) "+
 " WHERE p1.fname = 'Erik'";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "" /* modify options */);

 // Execute a query to verify INSERT/UPDATE/DELETE
 pgql =
 "SELECT p1.fname AS fname1, p1.age AS age1, "+
 " p2.fname AS fname2, p2.age AS age2, e.since "+
 " FROM MATCH (p1) -[e:knows]-> (p2)";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-92

 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }

The output for PgqlExample20.java applied on a graph where PgqlExample19.java has
been previously executed is:

+---+
| FNAME1 | AGE1 | FNAME2 | AGE2 | SINCE |
+---+
| Jane | 25 | Erik | 30 | 1999-01-02 16:00:00.0 |
+---+

For more examples of INSERT/UPDATE/DELETE statements, see the relevant section of the
PGQL specification here.

• Additional Options for PGQL Statement Execution

6.9.5.1 Additional Options for PGQL Statement Execution
Several options are available to influence PGQL statement execution. The following are the
main ways to set query options:

• Through flags in the modify options string argument of execute

• Through Java JVM arguments.

The following table summarizes the main options for modifying PGQL statement execution.

Table 6-3 PGQL Statement Modification Options

Option Default Options Flag JVM Argument

Auto commit true if JDBC auto commit is
off, false if JDBC auto
commit is on

AUTO_COMMIT=F -
Doracle.pg.rdbms.pgql.auto
Commit=false

Delete cascade true DELETE_CASCADE=F -
Doracle.pg.rdbms.pgql.dele
teCascade=false

• Turning Off PGQL Auto Commit

• Turning Off Cascading Deletion

6.9.5.1.1 Turning Off PGQL Auto Commit
When an INSERT, UPDATE, or DELETE operation is executed, a commit is performed
automatically at the end of the PGQL execution so that changes are persisted on the RDBMS
side.

The flag AUTO_COMMIT=F can be added to the options argument of execute or the flag
Doracle.pg.rdbms.pgql.autoCommit=false can be set in the Java command line to turn off

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-93

http://pgql-lang.org/spec/1.3/#mixing-insert-update-and-delete

auto commit. Notice that when auto commit is off, you must perform any necessary
commits or rollbacks on the JDBC connection in order to persist or cancel graph
modifications.

Example 6-28 Turn Off Auto Commit and Roll Back Changes

PgqlExample21.java turns off auto commit and performs a rollback of the changes.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to modify a PGQL graph
 * with auto commit off.
 */
public class PgqlExample21
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-94

 ps = pgqlConn.createStatement();

 // Delete all the edges in the graph
 String pgql =
 "DELETE e "+
 " FROM MATCH () -[e]-> ()";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "AUTO_COMMIT=F" /* modify options */);

 // Execute a query to verify deletion
 pgql =
 "SELECT COUNT(e) "+
 " FROM MATCH () -[e]-> ()";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 System.out.println("Number of edges after deletion:");
 rs.print();
 rs.close();

 // Rollback the changes. This is possible because
 // AUTO_COMMIT=F flag was used in execute
 conn.rollback();

 // Execute a query to verify rollback
 pgql =
 "SELECT COUNT(e) "+
 " FROM MATCH () -[e]-> ()";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 System.out.println("Number of edges after rollback:");
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample21.java gives the following output for a graph with one edge:

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-95

Number of edges after deletion:
+----------+
| COUNT(e) |
+----------+
| 0 |
+----------+
Number of edges after rollback:
+----------+
| COUNT(e) |
+----------+
| 1 |
+----------+

6.9.5.1.2 Turning Off Cascading Deletion
When a vertex is deleted from a graph, all its input and output edges are also deleted
automatically.

Using the flag DELETE_CASCADE=F in the options argument of execute of setting the
flag or setting the flag Doracle.pg.rdbms.pgql.autoCommit=false in the Java
command line lets you turn off cascading deletion. When a vertex with input or output
edges is deleted and cascading deletion is off, an error is thrown to warn about the
unsafe operation that you are trying to perform.

Example 6-29 Turn Off Cascading Deletion

PgqlExample22.java attempts to delete a vertex with an output edge when cascading
deletion is off.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlToSqlException;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows the use of DELETE_CASCADE flag.
 */
public class PgqlExample22
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-96

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Delete all the vertices with output edges
 // This will throw an error
 String pgql =
 "DELETE v "+
 " FROM MATCH (v) -[e]-> ()";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "DELETE_CASCADE=F" /* modify options */);
 }
 catch (PgqlToSqlException ex){
 System.out.println("Error in execution: " + ex.getMessage());
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample22.java gives the following output for a graph with at least one edge:

Error in execution: Attempting to delete vertices with incoming/outgoing edges. Drop
edges first or turn on DELETE_CASCADE option

6.9.6 Performance Considerations for PGQL Queries
Many factors affect the performance of PGQL queries in Oracle Database. The following are
some recommended practices for query performance.

• Query Optimizer Statistics

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-97

• Parallel Query Execution

• Optimizer Dynamic Sampling

• Bind Variables

• Path Queries

Query Optimizer Statistics

Good, up-to-date query optimizer statistics are critical for query performance. Ensure
that you run OPG_APIS.ANALYZE_PG after any significant updates to your property
graph data.

Parallel Query Execution

Use parallel query execution to take advantage of Oracle’s parallel SQL engine.
Parallel execution often gives a significant speedup versus serial execution. Parallel
execution is especially critical for path queries evaluated using the recursive WITH
strategy.

See also the Oracle Database VLDB and Partitioning Guide for more information
about parallel query execution.

Optimizer Dynamic Sampling

Due to the inherent flexibility of the graph data model, static information may not
always produce optimal query plans. In such cases, dynamic sampling can be used by
the query optimizer to sample data at run time for better query plans. The amount of
data sampled is controlled by the dynamic sampling level used. Dynamic sampling
levels range from 0 to 11. The best level to use depends on a particular dataset and
workload, but levels of 2 (default), 6, or 11 often give good results.

See also Supplemental Dynamic Statistics in the Oracle Database SQL Tuning Guide.

Bind Variables

Use bind variables for constants whenever possible. The use of bind variables gives a
very large reduction in query compilation time, which dramatically increases
throughput for query workloads with queries that differ only in the constant values
used. In addition, queries with bind variables are less vulnerable to injection attacks.

Path Queries

Path queries in PGQL that use the + (plus sign) or * (asterisk) operator to search for
arbitrary length paths require special consideration because of their high
computational complexity. You should use parallel execution and use the DISTINCT
option for Recursive WITH (USE_DIST_RW=T) for the best performance. Also, for
large, highly connected graphs, it is a good idea to use MAX_PATH_LEN=n to limit the
number of repetitions of the recursive step to a reasonable number. A good strategy
can be to start with a small repetition limit, and iteratively increase the limit to find more
and more results.

Chapter 6
Executing PGQL Queries Directly Against Oracle Database

6-98

7
Graph Visualization Application

The Graph Visualization application enables interactive exploration and visualization of
property graphs. It can also visualize graphs stored in the database.

• About the Graph Visualization Application
The Graph Visualization application is a single-page web application that works with the
in-memory graph server (PGX).

• How does the Graph Visualization Application Work
The Graph Visualization application exposes its own web interface and REST endpoint
and can execute PGQL queries against the in-memory graph server (PGX) or the Oracle
Database (PGQL on RDBMS).

• Using the Graph Visualization Application
The principal points of entry for the Graph Visualization application are the query editor
and the graph lists.

• REST Endpoints for the Graph Visualization Application

7.1 About the Graph Visualization Application
The Graph Visualization application is a single-page web application that works with the in-
memory graph server (PGX).

The in-memory graph analytics server can be deployed in embedded mode or in Apache
Tomcat or Oracle Weblogic Server. Graph Visualization application takes PGQL queries as
an input and renders the result visually. A rich set of client-side exploration and visualization
features can reveal new insights into your graph data.

Graph Visualization application works with the in-memory analytics server. It can visualize
graphs that are have been loaded into the in-memory analytics server, either preloaded when
the in-memory analytics server is started, or loaded at run-time by a client application and
made available through the graph.publish() API.

7.2 How does the Graph Visualization Application Work
The Graph Visualization application exposes its own web interface and REST endpoint and
can execute PGQL queries against the in-memory graph server (PGX) or the Oracle
Database (PGQL on RDBMS).

By default, it uses PGX and therefore requires a running PGX server to function. Alternatively,
you can configure Graph Visualization application to directly talk to the database via PGQL
on RDBMS. Graph Visualization application does not have any UI to create graphs, it can
only visualize graphs which are already loaded into PGX or Oracle Database. See REST
Endpoints for the Graph Visualization Application for more information on the graph
visualization REST endpoints.

See Enabling the Graph Visualization Application for more information on starting the Graph
Visualization application.

7-1

7.3 Using the Graph Visualization Application
The principal points of entry for the Graph Visualization application are the query editor
and the graph lists.

When you start the graph visualization application, the graph list will be populated with
the graphs loaded in PGX. To run queries against a graph, select that graph. The
query lets you write PGQL queries that can be visualized. (PGQL is the SQL-like query
language supported by the Graph Visualization application.)

Once the query is ready and the desired graph is selected, click the Run icon to
execute the query. The following figure shows a query visualization identifying all
edges that are directed edges from any vertex in the graph to any other vertex.

Figure 7-1 Query Visualization

When a query is successful, the graph visualization is displayed, including nodes and
their connections. You can right-click a node or connection to display tooltip
information, and you can drag the nodes around.

• Graph Visualization Modes
The buttons on the right let you switch between two modes: Graph Manipulation
and Zoom/Move.

• Graph Visualization Settings
You can click the Settings gear icon to display the Graph Visualization settings
window.

• Using Live Search
Live Search lets you to search the displayed graph and add live fuzzy search
score to each item, so you can create a Highlight which visually shows the results
of the search in the graph immediately.

• Using URL Parameters to Control the Graph Visualization Application
You can provide the Graph Visualization application input data through URL
parameters instead of using the form fields of the user interface.

Chapter 7
Using the Graph Visualization Application

7-2

7.3.1 Graph Visualization Modes
The buttons on the right let you switch between two modes: Graph Manipulation and Zoom/
Move.

• Graph Manipulation mode lets you execute actions that modify the visualization. These
actions include:

– Drop removes selected vertices from visualization. Can also be executed from the
tooltip.

– Group selects multiple vertices and collapses them into a single one.

– Ungroup selects a group of collapsed vertices and ungroups them.

– Expand retrieves a configurable number of neighbors (hops) of selected vertices.
Can also be executed from the tooltip.

– Focus, like Expand, retrieves a configurable number of neighbors, but also drops all
other vertices. Can also be executed from the tooltip.

– Undo undoes the last action.

– Redo redoes the last action.

– Reset resets the visualization to the original state after the query.

• Zoom/Move mode lets you zoom in and out, as well as to move to another part of the
visualization. The Pan to Center button resets the zoom and returns the view to the
original one.

An additional mode, called Sticky mode, lets you cancel the action of dragging the nodes
around.

7.3.2 Graph Visualization Settings
You can click the Settings gear icon to display the Graph Visualization settings window.

The settings window lets you modify some parameters for the visualization, and it has tabs
for General, Visualization, and Highlights. The following figure shows this window, with the
Visualization tab selected.

Chapter 7
Using the Graph Visualization Application

7-3

Figure 7-2 Graph Visualization Settings Window

The General tab includes the following:

• Number of hops: The configurable number of hops for the expand and focus
actions.

• Truncate label: Truncates the label if it exceeds the maximum length.

• Max. visible label length: Maximum length before truncating.

• Show Label On Hover: Controls whether the label is shown on hover.

• Display the graph legend: Controls whether the legend is displayed.

The Visualization tab includes the following:

• Theme: Select a light or dark mode.

• Edge Style: Select straight or curved edges.

• Edge Marker: Select arrows or no edge marker. This only applies to directed
edges.

• Similar Edges: Select keep or collect.

• Page Size: Specify how many vertices and edges are displayed per page.

• Layouts: Select between different layouts (random, grid, circle, concentric, ...).

• Vertex Label: Select which property to use as the vertex label.

• Vertex Label Orientation: Select the relative position of the vertex label.

Chapter 7
Using the Graph Visualization Application

7-4

• Edge Label: Select which property to use as the edge label.

The Highlights tab includes customization options that let you modify the appearance of
edges and vertices. Highlighting can be applied based on conditions (filters) on single or
multiple elements. The following figure shows a condition (country = United States) and
visual highlight options for vertices.

Figure 7-3 Highlights Options for Vertices

A filter for highlights can contain multiple conditions on any property of the element. The
following conditions are supported.

• = (equal to)

• < (less than)

• <= (less than or equal to)

• > (greater than)

• >= (greater than or equal to)

• != (not equal to)

• ~ (filter is a regular expression)

• * (any: like a wildcard, can match to anything)

The visual highlight customization options include:

Chapter 7
Using the Graph Visualization Application

7-5

• Edges:

– Width

– Color

– Label

– Style

– Animations

• Vertices:

– Size

– Color

– Icon

– Label

– Image

– Animations

You can export and import highlight options by clicking the Save and Import buttons in
the main window. Save lets you persist the highlight options, and Load lets you apply
previously saved highlight options.

When you click Save, a file is saved containing a JSON object with the highlights
configuration. Later, you can load that file to restore the highlights of the saved
session.

7.3.3 Using Live Search
Live Search lets you to search the displayed graph and add live fuzzy search score to
each item, so you can create a Highlight which visually shows the results of the search
in the graph immediately.

If you run a query, and a graph is displayed, you can add the live search, which is on
the settings dialog. On the bottom of the General tab, you will see these options.

• Enable Live Search: Enables the Live Search feature, adds the search input to
the visualization, and lets you further customize the search.

• Enable Search In: You can select whether you want to search the properties of
Vertices, Edges, or both.

• Properties To Search: Based on what you selected for Enable Search In, you can
set one or more properties to search in. For example, if you disable the search for
edges but you had a property from edges selected, it will be stored and added
back when you enable search for the edges again. (This also works for vertices.)

• Advanced Settings: You can fine-tune the search even more. Each of the
advanced options is documented with context help, visible upon enabling.

– Location: Determines approximately where in the text the pattern is expected
to be found.

– Distance: Determines how close the match must be to the fuzzy location
(specified by location). An exact letter match which is distance characters
away from the fuzzy location would score as a complete mismatch. A distance
of 0 requires the match be at the exact location specified, a distance of 1000

Chapter 7
Using the Graph Visualization Application

7-6

would require a perfect match to be within 800 characters of the location to be found
using a threshold of 0.8.

– Maximum Pattern Length: The maximum length of the pattern. The longer the
pattern (that is, the search query), the more intensive the search operation will be.
Whenever the pattern exceeds this value, an error will be thrown.

– Min Char Match: The minimum length of the pattern. Whenever the pattern length is
below this value, an error will be thrown.

When the search is enabled, the input will be displayed in the top left part of the Graph
Visualization component. If you start typing, the search will add a score to every vertex or
edge, based on the settings and the search match.

To be able to see the results visually, you have to add a Highlight with interpolation set to a
Live Search score and other settings based on the desired visual change.

7.3.4 Using URL Parameters to Control the Graph Visualization Application
You can provide the Graph Visualization application input data through URL parameters
instead of using the form fields of the user interface.

If you supply the parameters in the URL, the Graph Visualization application automatically
executes the specified query and hides the input form fields from the screen, so only the
resulting visualization output is visible. This feature is useful if you want to embed the
resulting graph visualization into an existing application, such as through an iframe.

The following table specifies the available URL parameters:

Table 7-1 Available URL Parameters

Parameter Name Value (must be URL
encoded)

Type Optional?

graph Graph name string No

parallelism Degree of parallelism
desired

number Yes (defaults to server-side
default parallelism)

query PQL query string No

The following URL shows an example of visualizing the PGQL query SELECT v, e MATCH (v)
-[e]-> () LIMIT 10 on graph myGraph with parallelism 4:

https://myhost:7007/ui/?query=SELECT%20v%2C%20e%20MATCH%20%28v%29%20-%5Be%5D-
%3E%20%28%29%20LIMIT%2010&graph=myGraph¶llelism=4

7.4 REST Endpoints for the Graph Visualization Application
This section explains all the REST endpoints through which you can perform various
operations using the Graph Visualization Application.

The following are the available REST endpoints:

Chapter 7
REST Endpoints for the Graph Visualization Application

7-7

Note:

The examples shown in the REST endpoints assume that:

• The PGX server is up and running on https://localhost:7007.

• Linux with cURL is installed. cURL is used to demonstrate how to access
the graph.publish API using the CA certificate for verifying the graph
server.

• Login

• List Graphs

• Run a PGQL Query

• Get User

• Asynchronous REST Endpoints

7.4.1 Login
HTTP Request: POST https://localhost:7007/ui/v1/login/

Authentication: Uses cookie-based authentication.

Table 7-2 Parameters

Parameter Parameter Type Value

Content-type Header application/x-www-form-urlencoded

username Body <username>

password Body <password>

Request

The following curl command signs the user in to the Graph Visualization application:

curl --cacert /etc/oracle/graph/ca_certificate.pem -X POST -H "Content-
Type: application/x-www-form-urlencoded" -d
'username=oracle&password=<user password>' -c cookie.txt https://
localhost:7007/ui/v1/login/

Response: None

On successful login, the server session cookie is stored in a cookie file, cookie.txt.
Use this cookie file, in the subsequent calls to the API.

7.4.2 List Graphs
HTTP Request: GET https://localhost:7007/ui/v1/graphs
Request

Chapter 7
REST Endpoints for the Graph Visualization Application

7-8

The following curl command lists all the graphs that belong to the user:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/graphs'

Response: The list of the available graphs for the current user. For example:

["hr", "bank_graph_analytics"]

7.4.3 Run a PGQL Query
HTTP Request: GET https://localhost:7007/ui/v1/query?pgql=<PGQL
query>&graph=<graph>¶llelism=<value>&size=<size value>

Table 7-3 Query Parameters

Parameter Description Values

pgql PGQL query string <PGQL query>

graph Name of the graph <graph_name>

parallelism Degree of
Parallelism

<parallelism_value>

size Fetch size (= the
number of rows) of
the query result

<size_value>

Request

The following curl command executes PGQL Query on a property graph:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/query?pgql=SELECT%20e%0AMATCH%20()-%5Be%5D-%3E()
%0ALIMIT%205&graph=hr¶llelism=&size=100'

Response: The PGQL query result in JSON format.

{
 "name": "bank_graph_analytics_2",
 "resultSetId": "pgql_14",
 "graph": {
 "idType": "number",
 "vertices": [
 {
 "_id": "1",
 "p": [],
 "l": [
 "Accounts"
],
 "g": [
 "anonymous_1"
]
 },

Chapter 7
REST Endpoints for the Graph Visualization Application

7-9

 {
 "_id": "418",
 "p": [],
 "l": [
 "Accounts"
],
 "g": [
 "anonymous_2"
]
 },
 {
 "_id": "259",
 "p": [],
 "l": [
 "Accounts"
],
 "g": [
 "anonymous_2"
]
 }
],
 "edges": [
 {
 "_id": "0",
 "p": [
 {
 "n": "AMOUNT",
 "v": "1000.0",
 "s": false
 }
],
 "l": [
 "Transfers"
],
 "g": [
 "e"
],
 "s": "1",
 "d": "259",
 "u": false
 },
 {
 "_id": "1",
 "p": [
 {
 "n": "AMOUNT",
 "v": "1000.0",
 "s": false
 }
],
 "l": [
 "Transfers"
],
 "g": [
 "e"

Chapter 7
REST Endpoints for the Graph Visualization Application

7-10

],
 "s": "1",
 "d": "418",
 "u": false
 }
],
 "paths": [],
 "totalNumResults": 2
 },
 "table":
"e\nPgxEdge[provider=Transfers,ID=0]\nPgxEdge[provider=Transfers,ID=1]"
}

7.4.4 Get User
HTTP Request: GET https://localhost:7007/ui/v1/user

Request

The following curl command gets the name of the current user:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/user'

Response: The name of the current user. For example:

"oracle"

7.4.5 Asynchronous REST Endpoints
Graph Visualization REST endpoints support cancellation of queries.

In order to be able to cancel queries, you need to send the query using the following
asynchronous REST endpoints:

• Run a PGQL Query Asynchronously

• Check a Query Completion

• Cancel a Query Execution

• Retrieve a Query Result

7.4.5.1 Run a PGQL Query Asynchronously
HTTP Request: GET https://localhost:7007/ui/v1/async-query?pgql=<PGQL
query>&graph=<graph>¶llelism=<value>&size=<size value>

See Table 7-3 for more information on query parameters.

Request

Chapter 7
REST Endpoints for the Graph Visualization Application

7-11

The following curl command executes a PGQL query asynchronously on a property
graph:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt
'https://localhost:7007/ui/v1/async-query?pgql=SELECT%20e%0AMATCH%20()-
%5Be%5D-%3E()%0ALIMIT%205&graph=hr¶llelism=&size=100'

Response: None.

Note:

An error message will be returned in case the query is malformed or if the
graph does not exist.

7.4.5.2 Check a Query Completion
HTTP Request: GET https://localhost:7007/ui/v1/async-query-complete

Request

The following curl command checks if the PGQL query execution is completed:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt
'https://localhost:7007/ui/v1/async-query-complete'

Response: A boolean that indicates if the query execution is completed. For example,

true

Note:

You do not have to specify any request ID, as the currently executing query
is attached to your HTTP session. You can only have one query executing
per session. For concurrent query execution, create multiple HTTP sessions
by logging in multiple times.

7.4.5.3 Cancel a Query Execution
HTTP Request: DELETE https://localhost:7007/ui/v1/async-query

Request

The following curl command cancels a currently executing PGQL Query on a property
graph:

curl -X DELETE --cacert /etc/oracle/graph/ca_certificate.pem -b
cookie.txt 'https://localhost:7007/ui/v1/async-query'

Chapter 7
REST Endpoints for the Graph Visualization Application

7-12

Response: Confirmation of the cancellation or an error message if the query has already
completed execution.

7.4.5.4 Retrieve a Query Result
HTTP Request: GET https://localhost:7007/ui/v1/async-result?pgql=<PGQL
query>&graph=<graph>¶llelism=<value>&size=<size value>

See Table 7-3 for more information on query parameters.

Request

The following curl command retrieves the result of a successfully completed query:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/async-result?pgql=SELECT%20e%0AMATCH%20()-%5Be%5D-%3E()
%0ALIMIT%205&graph=hr¶llelism=&size=100'

Response: The PGQL query result in JSON format.

{
 "name": "bank_graph_analytics_2",
 "resultSetId": "pgql_14",
 "graph": {
 "idType": "number",
 "vertices": [
 {
 "_id": "1",
 "p": [],
 "l": [
 "Accounts"
],
 "g": [
 "anonymous_1"
]
 },
 {
 "_id": "418",
 "p": [],
 "l": [
 "Accounts"
],
 "g": [
 "anonymous_2"
]
 },
 {
 "_id": "259",
 "p": [],
 "l": [
 "Accounts"
],
 "g": [
 "anonymous_2"
]

Chapter 7
REST Endpoints for the Graph Visualization Application

7-13

 }
],
 "edges": [
 {
 "_id": "0",
 "p": [
 {
 "n": "AMOUNT",
 "v": "1000.0",
 "s": false
 }
],
 "l": [
 "Transfers"
],
 "g": [
 "e"
],
 "s": "1",
 "d": "259",
 "u": false
 },
 {
 "_id": "1",
 "p": [
 {
 "n": "AMOUNT",
 "v": "1000.0",
 "s": false
 }
],
 "l": [
 "Transfers"
],
 "g": [
 "e"
],
 "s": "1",
 "d": "418",
 "u": false
 }
],
 "paths": [],
 "totalNumResults": 2
 },
 "table":
"e\nPgxEdge[provider=Transfers,ID=0]\nPgxEdge[provider=Transfers,ID=1]"
}

Chapter 7
REST Endpoints for the Graph Visualization Application

7-14

8
Using the Machine Learning Library (PgxML)
for Graphs

The in-memory graph server (PGX) provides a machine learning library
oracle.pgx.api.mllib, which supports graph-empowered machine learning algorithms.

The following machine learning algorithms are currently supported:

• Using the DeepWalk Algorithm
DeepWalk is a widely employed vertex representation learning algorithm used in
industry.

• Using the Supervised GraphWise Algorithm
Supervised GraphWise is an inductive vertex representation learning algorithm which is
able to leverage vertex feature information. It can be applied to a wide variety of tasks,
including vertex classification and link prediction.

• Using the Unsupervised GraphWise Algorithm
Unsupervised GraphWise is an unsupervised inductive vertex representation learning
algorithm which is able to leverage vertex information. The learned embeddings can be
used in various downstream tasks including vertex classification, vertex clustering and
similar vertex search.

• Using the Pg2vec Algorithm
Pg2vec learns representations of graphlets (partitions inside a graph) by employing
edges as the principal learning units and thereby packing more information in each
learning unit (as compared to employing vertices as learning units) for the representation
learning task.

8.1 Using the DeepWalk Algorithm
DeepWalk is a widely employed vertex representation learning algorithm used in industry.

It consists of two main steps:

1. First, the random walk generation step computes random walks for each vertex (with a
pre-defined walk length and a pre-defined number of walks per vertex).

2. Second, these generated walks are fed to a Word2vec algorithm to generate the vector
representation for each vertex (which is the word in the input provided to the Word2vec
algorithm). See KDD paper for more details on DeepWalk algorithm.

DeepWalk creates vertex embeddings for a specific graph and cannot be updated to
incorporate modifications on the graph. Instead, a new DeepWalk model should be trained on
this modified graph. Lastly, it is important to note that the memory consumption of the
DeepWalk model is O(2n*d) where n is the number of vertices in the graph and d is the
embedding length.

The following describes the usage of the main functionalities of DeepWalk in in-memory PGX
using DBpedia graph as an example with 8,637,721 vertices and 165,049,964 edges:

• Loading a Graph

8-1

https://dl.acm.org/citation.cfm?id=2623732
https://wiki.dbpedia.org/

• Building a Minimal DeepWalk Model

• Building a Customized DeepWalk Model

• Training a DeepWalk Model

• Getting the Loss Value For a DeepWalk Model

• Computing Similar Vertices for a Given Vertex

• Computing Similar Vertices for a Vertex Batch

• Storing a Trained DeepWalk Model

• Loading a Pre-Trained DeepWalk Model

• Destroying a DeepWalk Model

8.1.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.
Creating a Session and an Analyst Using JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.DeepWalkModel;
import oracle.pgx.api.frames.*;
...
PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Python

session = pypgx.get_session(session_name="my-session")
analyst = session.create_analyst()

2. Load the graph.

Note:

Though the DeepWalk algorithm implementation can be applied to
directed or undirected graphs, currently only undirected random walks
are considered.

Chapter 8
Using the DeepWalk Algorithm

8-2

Loading a graph using JShell

opg4j> var graph = session.readGraphWithProperties("<path>/<graph.json>");

Loading a graph using Java

PgxGraph graph = session.readGraphWithProperties("<path>/<graph.json>");

Loading a graph using Python

graph = session.read_graph_with_properties("<path>/<graph.json>")

8.1.2 Building a Minimal DeepWalk Model
You can build a DeepWalk model using the minimal configuration and default hyper-
parameters as described in the following code:

Building a Minimal DeepWalk Model Using JShell

opg4j> var model = analyst.deepWalkModelBuilder().
 setWindowSize(3).
 setWalksPerVertex(6).
 setWalkLength(4).
 build();

Building a Minimal DeepWalk Model Using Java

DeepWalkModel model = analyst.deepWalkModelBuilder()
 .setWindowSize(3)
 .setWalksPerVertex(6)
 .setWalkLength(4)
 .build();

Building a Minimal DeepWalk Model Using Python

model =
analyst.deepwalk_builder(window_size=3,walks_per_vertex=6,walk_length=4)

8.1.3 Building a Customized DeepWalk Model
You can build a DeepWalk model using cusomized hyper-parameters as described in the
following code:

Building a Customized DeepWalk model Using JShell

opg4j> var model = analyst.deepWalkModelBuilder().
 setMinWordFrequency(1).
 setBatchSize(512).

Chapter 8
Using the DeepWalk Algorithm

8-3

 setNumEpochs(1).
 setLayerSize(100).
 setLearningRate(0.05).
 setMinLearningRate(0.0001).
 setWindowSize(3).
 setWalksPerVertex(6).
 setWalkLength(4).
 setSampleRate(0.00001).
 setNegativeSample(2).
 setValidationFraction(0.01).
 build();

Building a Customized DeepWalk model Using Java

DeepWalkModel model= analyst.deepWalkModelBuilder()
 .setMinWordFrequency(1)
 .setBatchSize(512)
 .setNumEpochs(1)
 .setLayerSize(100)
 .setLearningRate(0.05)
 .setMinLearningRate(0.0001)
 .setWindowSize(3)
 .setWalksPerVertex(6)
 .setWalkLength(4)
 .setSampleRate(0.00001)
 .setNegativeSample(2)
 .setValidationFraction(0.01)
 .build();

Building a Customized DeepWalk model Using Python

model = analyst.deepwalk_builder(min_word_frequency=1,
 batch_size=512,num_epochs=1,
 layer_size=100,
 learning_rate=0.05,
 min_learning_rate=0.0001,
 window_size=3,
 walks_per_vertex=6,
 walk_length=4,
 sample_rate=0.00001,
 negative_sample=2,
 validation_fraction=0.01)

See DeepWalkModelBuilder in Javadoc for more explanation for each builder
operation along with the default values.

8.1.4 Training a DeepWalk Model
You can train a DeepWalk model with the specified default or customized settings as
described in the following code:

Chapter 8
Using the DeepWalk Algorithm

8-4

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/DeepWalkModelBuilder.html

Training a DeepWalk model Using JShell

opg4j> model.fit(graph);

Training a DeepWalk model Using Java

model.fit(graph);

Training a DeepWalk model Using Python

model.fit(graph)

8.1.5 Getting the Loss Value For a DeepWalk Model
You can fetch the loss value on a specified fraction of training data, that is set in builder using
setValidationFraction as described in the following code:

Getting the Loss Value Using JShell

opg4j> var loss = model.getLoss();

Getting the Loss Value Using Java

double loss = model.getLoss();

Getting the Loss Value Using Python

loss = model.loss

8.1.6 Computing Similar Vertices for a Given Vertex
You can fetch the k most similar vertices for a given vertex as described in the following code:

Computing Similar Vertices for Given Vertex Using JShell

opg4j> var similars = model.computeSimilars("Albert_Einstein", 10);
opg4j> similars.print();

Computing Similar Vertices for Given Vertex Using Java

PgxFrame similars = model.computeSimilars("Albert_Einstein", 10);
similars.print();

Chapter 8
Using the DeepWalk Algorithm

8-5

Computing Similar Vertices for Given Vertex Using Python

similars = model.compute_similars("Albert_Einstein",10)
similars.print()

Searching for similar vertices for Albert_Einstein using the trained model, will result in
the following output:

+---+
| dstVertex | similarity |
+---+
Albert_Einstein	1.0000001192092896
Physics	0.8664291501045227
Werner_Heisenberg	0.8625140190124512
Richard_Feynman	0.8496938943862915
List_of_physicists	0.8415523767471313
Physicist	0.8384397625923157
Max_Planck	0.8370327353477478
Niels_Bohr	0.8340970873832703
Quantum_mechanics	0.8331197500228882
Special_relativity	0.8280861973762512
+---+

8.1.7 Computing Similar Vertices for a Vertex Batch
You can fetch the k most similar vertices for a list of input vertices as described in the
following code:

Computing Similar Vertices for a Vertex Batch Using JShell

opg4j> var vertices = new ArrayList();
opg4j> vertices.add("Machine_learning");
opg4j> vertices.add("Albert_Einstein");
opg4j> batchedSimilars = model.computeSimilars(vertices, 10);
opg4j> batchedSimilars.print();

Computing Similar Vertices for a Vertex Batch Using Java

List vertices = Arrays.asList("Machine_learning","Albert_Einstein");
PgxFrame batchedSimilars = model.computeSimilars(vertices,10);
batchedSimilars.print();

Computing Similar Vertices for a Vertex Batch Using Python

vertices = ["Machine_learning","Albert_Einstein"]
batched_similars = model.compute_similars(vertices,10)
batched_similars.print()

The following describes the output result:

Chapter 8
Using the DeepWalk Algorithm

8-6

http://dbpedia.org/page/Albert_Einstein

+---+
| srcVertex | dstVertex | similarity |
+---+
Machine_learning	Machine_learning	1.0000001192092896
Machine_learning	Data_mining	0.9070799350738525
Machine_learning	Computer_science	0.8963605165481567
Machine_learning	Unsupervised_learning	0.8828719854354858
Machine_learning	R_(programming_language)	0.8821185827255249
Machine_learning	Algorithm	0.8819515705108643
Machine_learning	Artificial_neural_network	0.8773092031478882
Machine_learning	Data_analysis	0.8758628368377686
Machine_learning	List_of_algorithms	0.8737979531288147
Machine_learning	K-means_clustering	0.8715602159500122
Albert_Einstein	Albert_Einstein	1.0000001192092896
Albert_Einstein	Physics	0.8664291501045227
Albert_Einstein	Werner_Heisenberg	0.8625140190124512
Albert_Einstein	Richard_Feynman	0.8496938943862915
Albert_Einstein	List_of_physicists	0.8415523767471313
Albert_Einstein	Physicist	0.8384397625923157
Albert_Einstein	Max_Planck	0.8370327353477478
Albert_Einstein	Niels_Bohr	0.8340970873832703
Albert_Einstein	Quantum_mechanics	0.8331197500228882
Albert_Einstein	Special_relativity	0.8280861973762512
+---+

8.1.8 Storing a Trained DeepWalk Model
You can store models in database. The models get stored as a row inside a model store
table.

The following code shows how to store a trained DeepWalk model in database in a specific
model store table:

Storing a Trained DeepWalk Model Using JShell

opg4j> model.export().db().
 modelstore("modelstoretablename"). // name of the model store
table
 modelname("model"). // model name (primary key
of model store table)
 description("a model description"). // description to store
alongside the model
 store();

Storing a Trained DeepWalk Model Using Java

model.export().db()
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside
the model
 .store();

Chapter 8
Using the DeepWalk Algorithm

8-7

Storing a Trained DeepWalk Model Using Python

model.export().db(model_store="modelstoretablename",
 model_name="model", description="a model description")

Note:

All the preceding examples assume that you are storing the model in the
current logged in database. If you must store the model in a different
database then refer to the examples in Storing a Trained Model in Another
Database.

• Storing a Trained Model in Another Database

8.1.8.1 Storing a Trained Model in Another Database
You can store models in a different database other than the one used for login.

The following code shows how to store a trained model in a different database:

Storing a Trained Model Using JShell

opg4j> model.export().db().
 username("user"). // DB user to use for storing
the model
 password("password"). // password of the DB user
 jdbcUrl("jdbcUrl"). // jdbc url to the DB
 modelstore("modelstoretablename"). // name of the model store
table
 modelname("model"). // model name (primary key of
model store table)
 description("a model description"). // description to store
alongside the model
 store();

Storing a Trained Model Using Java

model.export().db()
 .username("user") // DB user to use for storing the model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside the
model
 .store();

Storing a Trained Model Using Python

model.export().db(username="user",
 password="password",
 model_store="modelstoretablename",
 model_name="model",

Chapter 8
Using the DeepWalk Algorithm

8-8

 description="a model description",
 jdbc_url="jdbc_url")

8.1.9 Loading a Pre-Trained DeepWalk Model
You can load models from a database.

You can load a pre-trained DeepWalk model from a model store table in database as
described in the following code:

Loading a Pre-Trained DeepWalk Model Using JShell

opg4j> var model = analyst.loadDeepWalkModel().db().
 modelstore("modeltablename"). // name of the model store
table
 modelname("model"). // model name (primary key of
model store table)
 load();

Loading a Pre-Trained DeepWalk Model Using Java

DeepWalkModelmodel = analyst.loadDeepWalkModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model store
table)
 .load();

Loading a Pre-Trained DeepWalk Model Using Python

analyst.get_deepwalk_model_loader().db(model_store="modelstoretablename",
 model_name="model")

Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer
to the examples in Loading a Pre-Trained Model From Another Database.

• Loading a Pre-Trained Model From Another Database

8.1.9.1 Loading a Pre-Trained Model From Another Database
You can load models from a different database other than the one used for login.

You can load a pre-trained model from a model store table in database as described in the
following code:

Loading a Pre-Trained Model Using JShell

Chapter 8
Using the DeepWalk Algorithm

8-9

opg4j> var model = analyst.<modelLoader>.db().
 username("user"). // DB user to use for storing the
model
 password("password"). // password of the DB user
 jdbcUrl("jdbcUrl"). // jdbc url to the DB
 modelstore("modeltablename"). // name of the model store table
 modelname("model"). // model name (primary key of
model store table)
 load();

where <modelLoader> applies as follows:

• loadDeepWalkModel(): Loads a Deepwalk model

• loadSupervisedGraphWiseModel(): Loads a Supervised GraphWise model

• loadUnsupervisedGraphWiseModel(): Loads a Unsupervised GraphWise model

• loadPg2vecModel(): Loads a Pg2vec model

Loading a Pre-Trained DeepWalk Model Using Java

DeepWalkModelmodel = analyst.<modelLoader>.db()
 .username("user") // DB user to use for storing the model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model store
table)
 .load();

where <modelLoader> applies as follows:

• loadDeepWalkModel(): Loads a Deepwalk model

• loadSupervisedGraphWiseModel(): Loads a Supervised GraphWise model

• loadUnsupervisedGraphWiseModel(): Loads a Unsupervised GraphWise model

• loadPg2vecModel(): Loads a Pg2vec model

Loading a Pre-Trained DeepWalk Model Using Python

analyst.<modelLoader>.db(username="user",
 password="password",
 model_store="modelstoretablename",
 model_name="model",
 jdbc_url="jdbc_url")

where <modelLoader> applies as follows:

• get_deepwalk_model_loader(): Loads a Deepwalk model

• get_supervised_graphwise_model_loader(): Loads a Supervised GraphWise
model

• get_unsupervised_graphwise_model_loader(): Loads a Unsupervised
GraphWise model

• get_pg2vec_model_loader(): Loads a Pg2vec model

Chapter 8
Using the DeepWalk Algorithm

8-10

8.1.10 Destroying a DeepWalk Model
You can destroy a DeepWalk model as described in the following code:

Destroying a DeepWalk Model Using JShell

opg4j> model.destroy();

Destroying a DeepWalk Model Using Java

model.destroy();

Destroying a DeepWalk Model Using Python

model.destroy()

8.2 Using the Supervised GraphWise Algorithm
Supervised GraphWise is an inductive vertex representation learning algorithm which is
able to leverage vertex feature information. It can be applied to a wide variety of tasks,
including vertex classification and link prediction.

Supervised GraphWise is based on GraphSAGE by Hamilton et al.

Model Structure

A Supervised GraphWise model consists of two graph convolutional layers followed by
several prediction layers.

The forward pass through a convolutional layer for a vertex proceeds as follows:

1. A set of neighbors of the vertex is sampled.

2. The previous layer representations of the neighbors are mean-aggregated, and the
aggregated features are concatenated with the previous layer representation of the
vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized to such that the layer output has unit norm.

The prediction layers are standard neural network layers.

The following describes the usage of the main functionalities of the implementation of
GraphSAGE in PGX using the Cora graph as an example:

• Loading a Graph

• Building a Minimal GraphWise Model

• Advanced Hyperparameter Customization

• Training a Supervised GraphWise Model

• Getting the Loss Value For a Supervised GraphWise Model

• Inferring the Vertex Labels for a Supervised GraphWise Model

Chapter 8
Using the Supervised GraphWise Algorithm

8-11

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://relational.fit.cvut.cz/dataset/CORA

• Evaluating the Supervised GraphWise Model Performance

• Inferring Embeddings for a Supervised GraphWise Model

• Storing a Trained Supervised GraphWise Model

• Loading a Pre-Trained Supervised GraphWise Model

• Destroying a Supervised GraphWise Model

8.2.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.
Creating a Session and an Analyst Using JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.WeightInitScheme;
PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.SupervisedGraphWiseModel;
import oracle.pgx.api.frames.*;
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;
import oracle.pgx.config.mllib.GraphWisePredictionLayerConfig;
import oracle.pgx.config.mllib.SupervisedGraphWiseModelConfig;
import oracle.pgx.config.mllib.WeightInitScheme;
PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Python

session = pypgx.get_session(session_name="my-session")
analyst = session.create_analyst()

2. Load the graph.
Loading a graph Using JShell

opg4j> var fullGraph = session.readGraphWithProperties("<path>/
<full_graph.json>")
opg4j> var trainGraph = session.readGraphWithProperties("<path>/
<train_graph.json>")
opg4j> var testVertices = fullGraph.getVertices()

Chapter 8
Using the Supervised GraphWise Algorithm

8-12

 .stream()
 .filter(v -> !trainGraph.hasVertex(v.getId()))
 .collect(Collectors.toList());

Loading a graph Using Java

PgxGraph fullGraph = session.readGraphWithProperties("<path>/
<full_graph.json>");
PgxGraph trainGraph = session.readGraphWithProperties("<path>/
<train_graph.json>");
List<PgxVertex> testVertices = fullGraph.getVertices()
 .stream()
 .filter(v->!trainGraph.hasVertex(v.getId()))
 .collect(Collectors.toList());

Loading a graph Using Python

full_graph = session.read_graph_with_properties("<path>/
<full_graph.json>")
train_graph = session.read_graph_with_properties("<path>/
<train_graph.json>")
test_vertices = []
train_vertices = train_graph.get_vertices()
for v in full_graph.get_vertices():
 if(not train_vertices.contains(v)):
 test_vertices.append(v)

8.2.2 Building a Minimal GraphWise Model
You can build a GraphWise model using the minimal configuration and default hyper-
parameters as described in the following code:

Note:

Staring from Graph Server and Client Release 21.2, you can create a model with
one of the following options:

• only vertex properties

• only edge properties

• both vertex and edge properties

Building a Minimal GraphWise Model with Vertex and Edge Properties Using JShell

opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
 setVertexInputPropertyNames("features").
 setVertexTargetPropertyName("label").
 setEdgeInputPropertyNames("cost"). //sets the edge

Chapter 8
Using the Supervised GraphWise Algorithm

8-13

properties name
 build();

Building a Minimal GraphWise with Vertex and Edge Properties Model Using
Java

SupervisedGraphWiseModel model =
analyst.supervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")
 .setVertexTargetPropertyName("labels")
 .setEdgeInputPropertyNames("cost") //sets the edge properties name
 .build();

Building a Minimal GraphWise with Vertex Properties Model Using Python

params = dict(vertex_target_property_name="label",
 vertex_input_property_names=["features"])

model = analyst.supervised_graphwise_builder(**params)

Note:

Even though only one vertex and one edge property is specified in the
preceding example, you can specify a list of vertex or edge properties.

8.2.3 Advanced Hyperparameter Customization
You can build a GraphWise model using rich hyperparameter customization.

This is done through the following two sub-config classes:

1. GraphWiseConvLayerConfig

2. GraphWisePredictionLayerConfig

The following code describes the implementation of the configuration using the above
classes in GraphWise model:

Note:

Staring from Graph Server and Client Release 21.2, you can create a model
with one of the following options:

• only vertex properties

• only edge properties

• both vertex and edge properties

Chapter 8
Using the Supervised GraphWise Algorithm

8-14

Building a Customized GraphWise Model with Vertex and Edge Properties Using JShell

opg4j> var weightProperty = analyst.pagerank(trainGraph).getName();
opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
 setNumSampledNeighbors(25).
 setActivationFunction(ActivationFunction.TANH).
 setWeightInitScheme(WeightInitScheme.XAVIER).
 setWeightedAggregationProperty(weightProperty).
 build();
opg4j> var predictionLayerConfig =
analyst.graphWisePredictionLayerConfigBuilder().
 setHiddenDimension(32).
 setActivationFunction(ActivationFunction.RELU).
 setWeightInitScheme(WeightInitScheme.HE).
 build();
opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
 setVertexInputPropertyNames("features").
 setVertexTargetPropertyName("labels").
 setEdgeInputPropertyNames("cost"). //sets the edge
properties name
 setConvLayerConfigs(convLayerConfig).
 setPredictionLayerConfigs(predictionLayerConfig).
 build();

Building a Customized GraphWise Model with Vertex and Edge Properties Using Java

String weightProperty = analyst.pagerank(trainGraph).getName()
GraphWiseConvLayerConfig convLayerConfig =
analyst.graphWiseConvLayerConfigBuilder()
 .setNumSampledNeighbors(25)
 .setActivationFunction(ActivationFunction.TANH)
 .setWeightInitScheme(WeightInitScheme.XAVIER)
 .setWeightedAggregationProperty(weightProperty)
 .build();

GraphWisePredictionLayerConfig predictionLayerConfig =
analyst.graphWisePredictionLayerConfigBuilder()
 .setHiddenDimension(32)
 .setActivationFunction(ActivationFunction.RELU)
 .setWeightInitScheme(WeightInitScheme.HE)
 .build();

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")
 .setVertexTargetPropertyName("labels")
 .setEdgeInputPropertyNames("cost") //sets the edge properties name
 .setConvLayerConfigs(convLayerConfig)
 .setPredictionLayerConfigs(predictionLayerConfig)
 .build();

Chapter 8
Using the Supervised GraphWise Algorithm

8-15

Building a Customized GraphWise Model with Vertex Properties Using Python

weightProperty = analyst.pagerank(train_graph).name

conv_layer_config = dict(num_sampled_neighbors=25,
 activation_fn='TANH',
 weight_init_scheme='XAVIER',
 neighbor_weight_property_name=weightProperty)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

pred_layer_config = dict(hidden_dim=32,
 activation_fn='RELU',
 weight_init_scheme='HE')

pred_layer = analyst.graphwise_pred_layer_config(**pred_layer_config)

params = dict(vertex_target_property_name="labels",
 conv_layer_config=[conv_layer],
 pred_layer_config=[pred_layer],
 vertex_input_property_names=["features"],
 seed=17)

model = analyst.supervised_graphwise_builder(**params)

See SupervisedGraphWiseModelBuilder, GraphWiseConvLayerConfigBuilder and
GraphWisePredictionLayerConfigBuilder in Javadoc for a full description of all
available hyperparameters and their default values.

8.2.4 Training a Supervised GraphWise Model
You can train a Supervised GraphWise model on a graph as described in the following
code:

Training a GraphWise Model Using JShell

opg4j> model.fit(trainGraph);

Training a GraphWise Model Using Java

model.fit(trainGraph);

Training a GraphWise Model Using Python

model.fit(train_graph)

8.2.5 Getting the Loss Value For a Supervised GraphWise Model
You can fetch the training loss value as described in the following code:

Getting the Loss Value Using JShell

Chapter 8
Using the Supervised GraphWise Algorithm

8-16

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/SupervisedGraphWiseModelBuilder.html
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/GraphWiseConvLayerConfigBuilder.html
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/GraphWisePredictionLayerConfigBuilder.html

opg4j> var loss = model.getTrainingLoss();

Getting the Loss Value Using Java

double loss = model.getTrainingLoss();

Getting the Loss Value Using Python

double loss = model.get_training_loss()

8.2.6 Inferring the Vertex Labels for a Supervised GraphWise Model
You can infer the labels for vertices on any graph (including vertices or graphs that were not
seen during training) as described in the following code:

Inferring the Vertex Labels Using JShell

opg4j> var labels = model.inferLabels(fullGraph, testVertices);
opg4j> labels.head().print()

Inferring the Vertex Labels Using Java

PgxFrame labels = model.inferLabels(fullGraph,testVertices);
labels.head().print();

Inferring the Vertex Labels Using Python

labels = model.infer_labels(full_graph, full_graph.get_vertices())
labels.print()

The output will be similar to the following example output:

+----------------------------------+
| vertexId | label |
+----------------------------------+
2	Neural Networks
6	Theory
7	Case Based
22	Rule Learning
30	Theory
34	Neural Networks
47	Case Based
48	Probabalistic Methods
50	Theory
52	Theory
+----------------------------------+

Similarly, you can also get the model confidence for each class by inferring the prediction
logits as described in the following code:

Chapter 8
Using the Supervised GraphWise Algorithm

8-17

Getting the Model Confidence Using JShell

opg4j> var logits = model.inferLogits(fullGraph, testVertices);
opg4j> labels.head().print();

Getting the Model Confidence Using Java

PgxFrame logits = model.inferLogits(fullGraph,testVertices);
logits.head().print();

Getting the Model Confidence Using Python

logits = model.infer_logits(full_graph, test_vertices)
logits.print()

8.2.7 Evaluating the Supervised GraphWise Model Performance
You can evaluate various classification metrics for the model using the
evaluateLabels method as described in the following code:

Evaluating the Supervised GraphWise Model Performance Using JShell

opg4j> model.evaluateLabels(fullGraph, testVertices).print();

Evaluating the Supervised GraphWise Model Performance Using Java

model.evaluateLabels(fullGraph,testVertices).print();

Evaluating the Supervised GraphWise Model Performance Using Python

model.evaluate_labels(full_graph, test_vertices).print()

The output will be similar to the following example output:

+--+
| Accuracy | Precision | Recall | F1-Score |
+--+
| 0.8488 | 0.8523 | 0.831 | 0.8367 |
+--+

8.2.8 Inferring Embeddings for a Supervised GraphWise Model
You can use a trained model to infer embeddings for unseen nodes and store in the
database as described in the following code:

Chapter 8
Using the Supervised GraphWise Algorithm

8-18

Inferring Embeddings Using JShell

opg4j> var vertexVectors = model.inferEmbeddings(fullGraph,
fullGraph.getVertices()).flattenAll();
opg4j> vertexVectors.write().
 db().
 name("vertex vectors").
 tablename("vertexVectors"). // indicate the name of the table in which
the data should be stored
 overwrite(true). // indicate that if there is a table with
the same name, it will be overwritten (truncated)
 store();

Inferring Embeddings Using Java

PgxFrame vertexVectors =
model.inferEmbeddings(fullGraph,fullGraph.getVertices()).flattenAll();
vertexVectors.write()
 .db()
 .name("vertex vectors")
 .tablename("vertexVectors") // indicate the name of the table in which
the data should be stored
 .overwrite(true) // indicate that if there is a table with
the same name, it will be overwritten (truncated)
 .store();

Inferring Embeddings Using Python

vertex_vectors = model.infer_embeddings(full_graph,
full_graph.get_vertices()).flatten_all()
vertexVectors.write().db(name="vertex vectors", "tablename", overwrite=True)

The schema for the vertexVectors will be as follows without flattening (flattenAll splits the
vector column into separate double-valued columns):

+---+
| vertexId | embedding |
+---+

Note:

All the preceding examples assume that you are inferring the embeddings for a
model in the current logged in database. If you must infer embeddings for the model
in a different database then refer to the examples in Inferring Embeddings for a
Model in Another Database.

• Inferring Embeddings for a Model in Another Database

Chapter 8
Using the Supervised GraphWise Algorithm

8-19

8.2.8.1 Inferring Embeddings for a Model in Another Database
You can infer embeddings on a trained model and store in a different database other
than the one used for login.

The following code shows how to infer embeddings and store in a different database:

Inferring Embeddings Using JShell

opg-jshell> var vertexVectors = model.inferEmbeddings(fullGraph,
fullGraph.getVertices()).flattenAll()
opg-jshell> vertexVectors.write()
 .db()
 .username("user") // DB user to use for storing the model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .name("vertex vectors")
 .tablename("vertexVectors") // indicate the name of the table in which the
data should be stored
 .overwrite(true) // indicate that if there is a table with the
same name, it will be overwritten (truncated)
 .store()

Inferring Embeddings Using Java

PgxFrame vertexVectors =
model.inferEmbeddings(fullGraph,fullGraph.getVertices()).flattenAll();
vertexVectors.write()
 .db()
 .username("user") // DB user to use for storing the model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .name("vertex vectors")
 .tablename("vertexVectors") // indicate the name of the table in which the
data should be stored
 .overwrite(true) // indicate that if there is a table with the
same name, it will be overwritten (truncated)
 .store();

Inferring Embeddings Using Python

vertexVectors =
model.infer_embeddings(fullGraph,fullGraph.getVertices()).flattenAll()
vertexVectors.write().db(username="user", password="password",
jdbc_url="jdbcUrl",
 name="vertex vectors", "tablename", overwrite=True)

8.2.9 Storing a Trained Supervised GraphWise Model
You can store models in database. The models get stored as a row inside a model
store table.

The following code shows how to store a trained Supervised GraphWise model in
database in a specific model store table:

Storing a Trained Supervised GraphWise Model Using JShell

opg4j> model.export().db().

Chapter 8
Using the Supervised GraphWise Algorithm

8-20

 modelstore("modelstoretablename"). // name of the model store
table
 modelname("model"). // model name (primary key
of model store table)
 description("a model description"). // description to store
alongside the model
 store();

Storing a Trained Supervised GraphWise Model Using Java

model.export().db()
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside
the model
 .store();

Storing a Trained Supervised GraphWise Model Using Python

model.export().db(model_store="modeltablename",
 model_name="model", description="a model description")

Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

8.2.10 Loading a Pre-Trained Supervised GraphWise Model
You can load models from a database.

You can load a pre-trained Supervised GraphWise model from a model store table in
database as described in the following code:

Loading a Pre-Trained Supervised GraphWise Model Using JShell

opg4j> var model = analyst.loadSupervisedGraphWiseModel().db().
 modelstore("modeltablename"). // name of the model store
table
 modelname("model"). // model name (primary key of
model store table)
 load();

Loading a Pre-Trained Supervised GraphWise Model Using Java

SupervisedGraphWiseModelmodel = analyst.loadSupervisedGraphWiseModel().db()

Chapter 8
Using the Supervised GraphWise Algorithm

8-21

 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .load();

Loading a Pre-Trained Supervised GraphWise Model Using Python

analyst.get_supervised_graphwise_model_loader().db(model_store="modelsto
retablename",

model_name="model")

Note:

All the preceding examples assume that you are loading the model from the
current logged in database. If you must load the model from a different
database then refer to the examples in Loading a Pre-Trained Model From
Another Database.

8.2.11 Destroying a Supervised GraphWise Model
You can destroy a GraphWise model as described in the following code:

Destroying a GraphWise Model Using JShell

opg4j> model.destroy();

Destroying a GraphWise Model Using Java

model.destroy();

Destroying a GraphWise Model Using Python

model.destroy();

8.3 Using the Unsupervised GraphWise Algorithm
Unsupervised GraphWise is an unsupervised inductive vertex representation
learning algorithm which is able to leverage vertex information. The learned
embeddings can be used in various downstream tasks including vertex classification,
vertex clustering and similar vertex search.

Unsupervised GraphWise is based on Deep Graph Infomax (DGI) by Velickovic et al.

Model Structure

A Unsupervised GraphWise model consists of two graph convolutional layers followed
by a DGI Layer.

The forward pass through a convolutional layer for a vertex proceeds as follows:

1. A set of neighbors of the vertex is sampled.

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-22

https://arxiv.org/pdf/1809.10341.pdf

2. The previous layer representations of the neighbors are mean-aggregated, and the
aggregated features are concatenated with the previous layer representation of the
vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized to such that the layer output has unit norm.

The DGI Layer consists of three parts enabling unsupervised learning using embeddings
produced by the convolution layers.

1. Corruption function: Shuffles the node features while preserving the graph structure to
produce negative embedding samples using the convolution layers.

2. Readout function: Sigmoid activated mean of embeddings, used as summary of a
graph.

3. Discriminator: Measures the similarity of positive (unshuffled) embeddings with the
summary as well as the similarity of negative samples with the summary from which the
loss function is computed.

Since none of these contains mutable hyperparameters, the default DGI layer is always used
and cannot be adjusted.

The following describes the usage of the main functionalities of the implementation of DGI in
PGX using the Cora graph as an example:

• Loading a Graph

• Building a Minimal Unsupervised GraphWise Model

• Advanced Hyperparameter Customization

• Training a Unsupervised GraphWise Model

• Getting the Loss Value for a Unsupervised GraphWise Model

• Inferring Embeddings for a Unsupervised GraphWise Model

• Storing a Unsupervised GraphWise Model

• Loading a Pre-Trained Unsupervised GraphWise Model

• Destroying a Unsupervised GraphWise Model

8.3.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

Creating a Session and an Analyst Using JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.UnsupervisedGraphWiseModel;
import oracle.pgx.api.frames.*;

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-23

https://relational.fit.cvut.cz/dataset/CORA

import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;
import oracle.pgx.config.mllib.UnsupervisedGraphWiseModelConfig;
import oracle.pgx.config.mllib.WeightInitScheme;

PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Python

session = pypgx.get_session()
analyst = session.analyst

2. Load the graph.

Loading a graph using JShell

opg4j> var graph = session.readGraphWithProperties("<path/to/
graph_config.json>");

Loading a graph using Java

PgxGraph graph = session.readGraphWithProperties("<path/to/
graph_config.json>");

Loading a graph using Python

graph = session.readGraphWithProperties("<path/to/
graph_config.json>")

You do not need to use a test graph or test vertices, since the model is trained to
be unsupervised.

8.3.2 Building a Minimal Unsupervised GraphWise Model
You can build a Unsupervised GraphWise model with only vertex properties, or only
edge properties or both using the minimal configuration and default hyper-parameters.

• Create a Unsupervised GraphWise model as described in the following code:

Building a Minimal Unsupervised GraphWise Model Using JShell

opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
 setVertexInputPropertyNames("features").
 build()

Building a Minimal Unsupervised GraphWise Model Using Java

UnsupervisedGraphWiseModel model =
analyst.unsupervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")
 .build();

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-24

Building a Minimal Unsupervised GraphWise Model Using Python

model =
analyst.unsupervised_graphwise_builder(vertex_input_property_names=["featu
res"])

8.3.3 Advanced Hyperparameter Customization
You can build a Unsupervised GraphWise model with only vertex properties or only edge
properties or both using rich hyperparameter customization.
This is implemented using the sub-config class, GraphWiseConvLayerConfig.

The following code describes the implementation of the configuration in a Unsupervised
GraphWise model:

• Build a Unsupervised GraphWise model as shown in the following code:

Building a Customized Unsupervised GraphWise Model Using JShell

opg4j> var weightProperty = analyst.pagerank(trainGraph).getName();
opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
 setNumSampledNeighbors(25).
 setActivationFunction(ActivationFunction.TANH).
 setWeightInitScheme(WeightInitScheme.XAVIER).
 setWeightedAggregationProperty(weightProperty).
 build();

opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
 setVertexInputPropertyNames("features").
 setConvLayerConfigs(convLayerConfig).
 build();

Building a Customized Unsupervised GraphWise Model Using Java

String weightProperty = analyst.pagerank(trainGraph).getName();
GraphWiseConvLayerConfig convLayerConfig =
analyst.graphWiseConvLayerConfigBuilder()
 .setNumSampledNeighbors(25)
 .setActivationFunction(ActivationFunction.TANH)
 .setWeightInitScheme(WeightInitScheme.XAVIER)
 .setWeightedAggregationProperty(weightProperty)
 .build();

UnsupervisedGraphWiseModel model =
analyst.unsupervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")
 .setConvLayerConfigs(convLayerConfig)
 .build();

Building a Customized Unsupervised GraphWise Model Using Python

weightProperty = analyst.pagerank(train_graph).name

conv_layer_config = dict(num_sampled_neighbors=25,

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-25

 activation_fn='TANH',
 weight_init_scheme='XAVIER',

neighbor_weight_property_name=weightProperty)
conv_layer =
analyst.graphwise_conv_layer_config(**conv_layer_config)
params = dict(conv_layer_config=[conv_layer],
 vertex_input_property_names=["features"])

model = analyst.unsupervised_graphwise_builder(**params)

See UnsupervisedGraphWiseModelBuilder and
GraphWiseConvLayerConfigBuilder in Javadoc for full description of all available
hyperparameters and their default values.

8.3.4 Training a Unsupervised GraphWise Model
You can train a Unsupervised GraphWise model on a graph.

• Train a Unsupervised GraphWise model as shown in the following code:

Training a Unsupervised GraphWise Model Using JShell

opg4j> model.fit(trainGraph);

Training a Unsupervised GraphWise Model Using Java

model.fit(trainGraph);

Training a Unsupervised GraphWise Model Using Python

model.fit(trainGraph)

8.3.5 Getting the Loss Value for a Unsupervised GraphWise Model
You can fetch the training loss value for a Unsupervised GraphWise Model.

• Get the loss value for a Unsupervised GraphWise model as shown in the following
code:

Getting the Loss Value Using JShell

opg4j> var loss = model.getTrainingLoss();

Getting the Loss Value Using Java

double loss = model.getTrainingLoss();

Getting the Loss Value Using Python

loss = model.get_training_loss()

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-26

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/mllib/UnsupervisedGraphWiseModelBuilder.html
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/mllib/GraphWiseConvLayerConfigBuilder.html

8.3.6 Inferring Embeddings for a Unsupervised GraphWise Model
You can use a trained model to infer embeddings for unseen nodes and store them in the
database as described in the following step:

• Infer embeddings for a Unsupervised GraphWise Model as shown in following code:

Inferring Embeddings Using JShell

opg4j> var vertexVectors = model.inferEmbeddings(fullGraph,
fullGraph.getVertices()).flattenAll();
opg4j> vertexVectors.write().
 db().
 name("vertex vectors").
 tablename("vertexVectors"). // indicate the name of the table in
which the data should be stored
 overwrite(true). // indicate that if there is a table
with the same name, it will be overwritten (truncated)
 store();

Inferring Embeddings Using Java

PgxFrame vertexVectors =
model.inferEmbeddings(fullGraph,fullGraph.getVertices()).flattenAll();
vertexVectors.write()
 .db()
 .name("vertex vectors")
 .tablename("vertexVectors") // indicate the name of the table in
which the data should be stored
 .overwrite(true) // indicate that if there is a table with
the same name, it will be overwritten (truncated)
 .store();

Inferring Embeddings Using Python

vertexVectors =
model.infer_embeddings(fullGraph,fullGraph.getVertices()).flattenAll()
vertexVectors.write().db(name="vertex vectors", "tablename",
overwrite=True)

The schema for the vertexVectors will be as follows without flattening (flattenAll splits
the vector column into separate double-valued columns):

+---+
| vertexId | embedding |
+---+

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-27

Note:

All the preceding examples assume that you are inferring the
embeddings for a model in the current logged in database. If you must
infer embeddings for the model in a different database then refer to the
examples in Inferring Embeddings for a Model in Another Database.

8.3.7 Storing a Unsupervised GraphWise Model
You can store models in database. The models get stored as a row inside a model
store table.

• Store a trained Unsupervised GraphWise Model as shown in following code:

Storing a Trained Unsupervised GraphWise Model Using JShell

opg4j> model.export().db().
 modelstore("modelstoretablename"). // name of the
model store table
 modelname("model"). // model name
(primary key of model store table)
 description("a model description"). // description to
store alongside the model
 store();

Storing a Trained Unsupervised GraphWise Model Using Java

model.export().db()
 .modelstore("modelstoretablename") // name of the model store
table
 .modelname("model") // model name (primary key
of model store table)
 .description("a model description") // description to store
alongside the model
 .store();

Storing a Trained Unsupervised GraphWise Model Using Python

model.export().db(model_store="modelstoretablename",
 model_name="model", description="a model
description")

Note:

All the preceding examples assume that you are storing the model in the
current logged in database. If you must store the model in a different
database then refer to the examples in Storing a Trained Model in
Another Database.

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-28

8.3.8 Loading a Pre-Trained Unsupervised GraphWise Model
You can load models from a database.

• Load a pre-trained Unsupervised GraphWise Model from a model store table as shown in
following code:

Loading a Pre-Trained Unsupervised GraphWise Model Using JShell

opg4j> var model = analyst.loadUnsupervisedGraphWiseModel().db().
 modelstore("modeltablename"). // name of the model store
table
 modelname("model"). // model name (primary key
of model store table)
 load();

Loading a Pre-Trained Unsupervised GraphWise Model Using Java

UnsupervisedGraphWiseModel model =
analyst.loadUnsupervisedGraphWiseModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .load();

Loading a Pre-Trained Unsupervised GraphWise Model Using Python

analyst.get_unsupervised_graphwise_model_loader().db(model_store="modelsto
retablename",
 model_name="model")

Note:

All the preceding examples assume that you are loading the model from the
current logged in database. If you must load the model from a different
database then refer to the examples in Loading a Pre-Trained Model From
Another Database.

8.3.9 Destroying a Unsupervised GraphWise Model
• Destroy a Unsupervised GraphWise model as described in the following code:

Destroy a Unsupervised GraphWise Model Using JShell

opg-jshell> model.destroy();

Destroy a Unsupervised GraphWise Model Using Java

model.destroy();

Chapter 8
Using the Unsupervised GraphWise Algorithm

8-29

Destroy a Unsupervised GraphWise Model Using Python

model.destroy()

8.4 Using the Pg2vec Algorithm
Pg2vec learns representations of graphlets (partitions inside a graph) by employing
edges as the principal learning units and thereby packing more information in each
learning unit (as compared to employing vertices as learning units) for the
representation learning task.

It consists of three main steps:

1. Random walks for each vertex (with pre-defined length per walk and pre-defined
number of walks per vertex) are generated.

2. Each edge in this random walk is mapped as a property.edge-word in the created
document (with the document label as the graph-id) where the property.edge-
word is defined as the concatenation of the properties of the source and
destination vertices.

3. The generated documents (with their attached document labels) are fed to a
doc2vec algorithm which generates the vector representation for each document,
which is a graph in this case.

Pg2vec creates graphlet embeddings for a specific set of graphlets and cannot be
updated to incorporate modifications on these graphlets. Instead, a new Pg2vec model
should be trained on these modified graphlets.

The following represents the memory consumption of Pg2vec model.

O(2(n+m)*d)

where:

• n: is the number of vertices in the graph

• m: is the number of graphlets in the graph

• d: is the embedding length

The following describes the usage of the main functionalities of the implementation of
Pg2vec in PGX using NCI109 dataset as an example with 4127 graphs in it:

• Loading a Graph

• Building a Minimal Pg2vec Model

• Building a Customized Pg2vec Model

• Training a Pg2vec Model

• Getting the Loss Value For a Pg2vec Model

• Computing Similar Graphlets for a Given Graphlet

• Computing Similars for a Graphlet Batch

• Inferring a Graphlet Vector

• Inferring Vectors for a Graphlet Batch

• Storing a Trained Pg2vec Model

Chapter 8
Using the Pg2vec Algorithm

8-30

https://dl.acm.org/citation.cfm?id=3044805.3045025
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

• Loading a Pre-Trained Pg2vec Model

• Destroying a Pg2vec Model

8.4.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.
Creating a Session and an Analyst Using JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.Pg2vecModel;
import oracle.pgx.api.frames.*;
...
PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Python

session = pypgx.get_session(session_name="my-session")
analyst = session.create_analyst()

2. Load the graph.
Loading a graph using JShell

opg4j> var graph = session.readGraphWithProperties("<path>/<graph.json>");

Loading a graph using Java

PgxGraph graph = session.readGraphWithProperties("<path>/<graph.json>");

Loading a graph using Python

graph = session.read_graph_with_properties("<path>/<graph.json>")

8.4.2 Building a Minimal Pg2vec Model
You can build a Pg2vec model using the minimal configuration and default hyper-parameters
as described in the following code:

Chapter 8
Using the Pg2vec Algorithm

8-31

Building a Minimal Pg2vec Model Using JShell

opg4j> var model = analyst.pg2vecModelBuilder().
 setGraphLetIdPropertyName("graph_id").
 setVertexPropertyNames(Arrays.asList("category")).
 setWindowSize(4).
 setWalksPerVertex(5).
 setWalkLength(8).
 build();

Building a Minimal Pg2vec Model Using Java

Pg2vecModel model = analyst.pg2vecModelBuilder()
 .setGraphLetIdPropertyName("graph_id")
 .setVertexPropertyNames(Arrays.asList("category"))
 .setWindowSize(4)
 .setWalksPerVertex(5)
 .setWalkLength(8)
 .build();

Building a Minimal Pg2vec Model Using Python

model = analyst.pg2vec_model_builder(
 graph_let_id_property_name="graph_id",
 vertex_property_names(["category"]),
 window_size=4,
 walks_per_vertex=5,
 walk_length=8)

You can specify the property name to determine each graphlet using the
Pg2vecModelBuilder#setGraphLetIdPropertyName operation and also employ the
vertex properties in Pg2vec which are specified using the
Pg2vecModelBuilder#setVertexPropertyNames operation.

You can also use the weakly connected component (WCC) functionality in PGX to
determine the graphlets in a given graph.

8.4.3 Building a Customized Pg2vec Model
You can build a Pg2vec model using cusomized hyper-parameters as described in the
following code:

Building a Customized Pg2vec model Using JShell

opg4j> var model = analyst.pg2vecModelBuilder().
 setGraphLetIdPropertyName("graph_id").
 setVertexPropertyNames(Arrays.asList("category")).
 setMinWordFrequency(1).

Chapter 8
Using the Pg2vec Algorithm

8-32

 setBatchSize(128).
 setNumEpochs(5).
 setLayerSize(200).
 setLearningRate(0.04).
 setMinLearningRate(0.0001).
 setWindowSize(4).
 setWalksPerVertex(5).
 setWalkLength(8).
 setUseGraphletSize(true).
 setValidationFraction(0.05).
 setGraphletSizePropertyName("<propertyName>").
 build();

Building a Customized Pg2vec model Using Java

Pg2vecModel model= analyst.pg2vecModelBuilder()
 .setGraphLetIdPropertyName("graph_id")
 .setVertexPropertyNames(Arrays.asList("category"))
 .setMinWordFrequency(1)
 .setBatchSize(128)
 .setNumEpochs(5)
 .setLayerSize(200)
 .setLearningRate(0.04)
 .setMinLearningRate(0.0001)
 .setWindowSize(4)
 .setWalksPerVertex(5)
 .setWalkLength(8)
 .setUseGraphletSize(true)
 .setValidationFraction(0.05)
 .setGraphletSizePropertyName("<propertyName>")
 .build();

Building a Customized Pg2vec model Using Python

model = analyst.pg2vec_model_builder(
 graph_let_id_property_name = "graph_id",
 vertex_property_names = ["category"],
 min_word_frequency = 1,
 batch_size = 128,
 num_epochs = 5,
 layer_size = 200,
 learning_rate = 0.04,
 min_learning_rate = 0.0001,
 window_size = 4,
 walks_per_vertex = 5,
 walk_length = 8,
 use_graphlet_size = true,
 graphlet_size_property_name = "<property_name>",
 validation_fraction = 0.05)

Chapter 8
Using the Pg2vec Algorithm

8-33

See Pg2vecModelBuilder in Javadoc for more explanation for each builder operation
along with the default values.

8.4.4 Training a Pg2vec Model
You can train a Pg2vec model with the specified default or customized settings as
described in the following code:

Training a Pg2vec Model Using JShell

opg4j> model.fit(graph);

Training a Pg2vec Model Using Java

model.fit(graph);

Training a Pg2vec Model Using Python

model.fit(graph)

8.4.5 Getting the Loss Value For a Pg2vec Model
You can fetch the training loss value on a specified fraction of training data (set in
builder using setValidationFraction) as described in the following code:

Getting the Loss Value Using JShell

opg4j> var loss = model.getLoss();

Getting the Loss Value Using Java

double loss = model.getLoss();

Getting the Loss Value Using Python

loss = model.loss

8.4.6 Computing Similar Graphlets for a Given Graphlet
You can fetch the k most similar graphlets for a given graphlet as described in the
following code:

Chapter 8
Using the Pg2vec Algorithm

8-34

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/Pg2vecModelBuilder.html

Computing Similar Graphlets for Given Graphlet Using JShell

opg4j> var similars = model.computeSimilars(52, 10);

Computing Similar Graphlets for Given Graphlet Using Java

PgxFrame similars = model.computeSimilars(52, 10);

Computing Similar Graphlets for Given Graphlet Using Python

similars = model.compute_similars(52, 10)

Searching for similar vertices for graphlet with ID = 52 using the trained model and printing it
with similars.print(), will result in the following output:

+----------------------------------+
| dstGraphlet | similarity |
+----------------------------------+
52	1.0
10	0.8748674392700195
23	0.8551455140113831
26	0.8493421673774719
47	0.8411962985992432
25	0.8281504511833191
43	0.8202780485153198
24	0.8179885745048523
8	0.796689510345459
9	0.7947834134101868
+----------------------------------+

The following depicts the visualization of two similar graphlets (top: ID = 52 and bottom: ID =
10):

Chapter 8
Using the Pg2vec Algorithm

8-35

Figure 8-1 Pg2vec - Visualization of Two Similar Graphlets

8.4.7 Computing Similars for a Graphlet Batch
You can fetch the k most similar graphlets for a batch of input graphlets as described
in the following code:

Computing Similar Graphlets for a Graphlet Batch Using JShell

opg4j> var graphlets = new ArrayList();
opg4j> graphlets.add(52);
opg4j> graphlets.add(41);
opg4j> var batchedSimilars = model.computeSimilars(graphlets, 10);

Computing Similar Graphlets for a Graphlet Batch Using Java

List graphlets = Arrays.asList(52,41);
PgxFrame batchedSimilars = model.computeSimilars(graphlets,10);

Computing Similar Graphlets for a Graphlet Batch Using Python

batched_similars = model.compute_similars([52,41],10)

Chapter 8
Using the Pg2vec Algorithm

8-36

Searching for similar vertices for graphlet with ID = 52 and ID = 41 using the trained model
and printing it with batched_similars.print(), will result in the following output:

+--+
| srcGraphlet | dstGraphlet | similarity |
+--+
52	52	1.0
52	10	0.8748674392700195
52	23	0.8551455140113831
52	26	0.8493421673774719
52	47	0.8411962985992432
52	25	0.8281504511833191
52	43	0.8202780485153198
52	24	0.8179885745048523
52	8	0.796689510345459
52	9	0.7947834134101868
41	41	1.0
41	197	0.9653506875038147
41	84	0.9552277326583862
41	157	0.9465565085411072
41	65	0.9287481307983398
41	248	0.9177336096763611
41	315	0.9043129086494446
41	92	0.8998928070068359
41	297	0.8897411227226257
41	50	0.8810243010520935
+--+

8.4.8 Inferring a Graphlet Vector
You can infer the vector representation for a given new graphlet as described in the following
code:

Inferring a Graphlet Vector Using JShell

opg4j> var graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>");
opg4j> inferredVector = model.inferGraphletVector(graphlet);
opg4j> inferredVector.print();

Inferring a Graphlet Vector Using Java

PgxGraph graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>");
PgxFrame inferredVector = model.inferGraphletVector(graphlet);
inferredVector.print();

Chapter 8
Using the Pg2vec Algorithm

8-37

Inferring a Graphlet Vector Using Python

PgxGraph graphlet = session.read_graph_with_properties("<path>/
<graphletConfig.json>")
inferredVector = model.infer_graphlet_vector(graphlet)
inferredVector.print()

The schema for the inferredVector will be similar to the following output:

+---+
| graphlet | embedding |
+---+

8.4.9 Inferring Vectors for a Graphlet Batch
You can infer the vector representations for multiple graphlets (specified with different
graph-ids in a graph) as described in the following code:

Inferring Vectors for a Graphlet Batch Using JShell

opg4j> var graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>");
opg4j> inferredVectorBatched =
model.inferGraphletVectorBatched(graphlets);
opg4j> inferredVectorBatched.print();

Inferring Vectors for a Graphlet Batch Using Java

PgxGraph graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>");
PgxFrame inferredVectorBatched =
model.inferGraphletVectorBatched(graphlets);
inferredVector.print();

Inferring Vectors for a Graphlet Batch Using Python

graphlets = session.read_graph_with_properties("<path>/
<graphletConfig.json>")
inferred_vector_batched = model.infer_graphlet_vector_batched(graphlets)
inferred_vector_batched.print()

The schema is same as for inferGraphletVector but with more rows corresponding
to the input graphlets.

Chapter 8
Using the Pg2vec Algorithm

8-38

8.4.10 Storing a Trained Pg2vec Model
You can store models in database. The models get stored as a row inside a model store
table.

The following code shows how to store a trained Pg2vec model in database in a specific
model store table:

Storing a Trained Pg2vec Model Using JShell

opg4j> model.export().db().
 modelstore("modelstoretablename"). // name of the model store
table
 modelname("model"). // model name (primary key
of model store table)
 description("a model description"). // description to store
alongside the model
 store();

Storing a Trained Pg2vec Model Using Java

model.export().db()
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside
the model
 .store();

Storing a Trained Pg2vec Model Using Python

model.export().db(model_store="modelstoretablename",
 model_name="model", description="a model description")

Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

8.4.11 Loading a Pre-Trained Pg2vec Model
You can load models from a database.

You can load a pre-trained Pg2vec model from a model store table in database as described
in the following:

Chapter 8
Using the Pg2vec Algorithm

8-39

Loading a Pre-Trained Pg2vec Model Using JShell

opg4j> var model = analyst.loadPg2vecModel().db().
 modelstore("modeltablename"). // name of the model
store table
 modelname("model"). // model name (primary
key of model store table)
 load();

Loading a Pre-Trained Pg2vec Model Using Java

Pg2vecModel model = analyst.loadPg2vecModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .load();

Loading a Pre-Trained Pg2vec Model Using Python

analyst.get_pg2vec_model_loader().db(model_store="modelstoretablename",
 model_name="model")

Note:

All the preceding examples assume that you are loading the model from the
current logged in database. If you must load the model from a different
database then refer to the examples in Loading a Pre-Trained Model From
Another Database.

8.4.12 Destroying a Pg2vec Model
You can destroy a Pg2vec model as described in the following code:

Destroying a Pg2vec Model Using JShell

opg4j> model.destroy();

Destroying a Pg2vec Model Using Java

model.destroy();

Destroying a Pg2vec Model Using Python

model.destroy()

Chapter 8
Using the Pg2vec Algorithm

8-40

9
Spatial Support in Property Graphs

The property graph support in the Oracle Spatial and Graph option is integrated with the
spatial support.

The integration has the following aspects: representing spatial data in a property Graph,
creating a spatial index on that spatial data, and querying that spatial data.

• Representing Spatial Data in a Property Graph

• Creating a Spatial Index on Property Graph Data

• Querying Spatial Data in a Property Graph

9.1 Representing Spatial Data in a Property Graph
Spatial data can be used as values of vertex properties and edge properties.

For example, an entity can have a point (longitude/latitude) as the value of a property named
location. As another example, an edge may have a polygon as the value of a property, and
this property can represent the location at which this link (relationship) was established.

The following shows some example syntax for encoding spatial data in a property graph.

• Point: '-122.230 37.560'

• Point: 'POINT(-122.241 37.567)'

• Point with SRID specified: 'srid/8307 POINT(-122.246 37.572)'

• Polygon: 'POLYGON((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6
34.1))'

• Polygon with SRID specified: 'srid/8307 POLYGON((-83.6 34.1, -83.6 34.3, -83.4
34.3, -83.4 34.1, -83.6 34.1))'

• Line string: 'LINESTRING (30 10, 10 30, 40 40)'

• Multiline string: 'MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20,
30 10))'

Assume a test property graph named test. The following statements add a set of vertices
with coordinates (longitude and latitude) spacified for each.

insert into testVT$(vid, k, t, v) values(100, 'geoloc', 20, '-122.230
37.560');
insert into testVT$(vid, k, t, v) values(101, 'geoloc', 20, '-122.231
37.561');
insert into testVT$(vid, k, t, v) values(102, 'geoloc', 20, '-122.236
37.562914');
insert into testVT$(vid, k, t, v) values(103, 'geoloc', 20, '-122.241
37.567');
insert into testVT$(vid, k, t, v) values(104, 'geoloc', 20, '-122.246
37.572');

9-1

insert into testVT$(vid, k, t, v) values(105, 'geoloc', 20, '-122.251
37.577');
insert into testVT$(vid, k, t, v) values(200, 'geoloc', 20, '-122.256
37.582');
insert into testVT$(vid, k, t, v) values(201, 'geoloc', 20, '-122.261
37.587');

The Spatial data in the property graph can be used to construct SDO_GEOMETRY
objects. For example, the OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS function
can be used to read spatial data from the V column for all T of a specified value (such
as 20), and return SDO_GEOMETRY objects. This function attempts to parse the
value as coordinates if the value appears to be two numbers, and it uses the
SDO_GEOMETRY constructor if the value is not a simple point. Finally, if a SRID is
provided, it uses the SDO_CS_TRANSFORM procedure to transform using the given
coordinate system.

The following example uses the OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
function to get geometries from the test property graph. It includes some of the
output.

SQL> select vid, k, opg_apis.get_geometry_from_v_t_cols
 from testVT$
 order by vid, k;
 . . .
 100 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.23,
37.56, NULL), NULL, NULL)
 101 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.231,
37.561, NULL), NULL, NULL)
 102 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.236,
37.562914, NULL), NULL, NULL)
 103 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.241,
37.567, NULL), NULL, NULL)
 . . .

You can generate SDO_GEOMETRY objects from WKT literals. The following
example inserts WKT literals, and then uses the
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS function to construct
SDO_GEOMETRY objects from the V, T columns.

truncate table testGE$;
truncate table testVT$;
insert into testVT$(vid, k, t, v) values(101, 'geoloc', 20,
'POLYGON((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6
34.1))');
insert into testVT$(vid, k, t, v) values(103, 'geoloc', 20,
'POINT(-122.241 37.567)');
insert into testVT$(vid, k, t, v) values(105, 'geoloc', 20,
'POINT(-122.251 37.577)');
insert into testVT$(vid, k, t, v) values(200, 'geoloc', 20,
'MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30
10))');
insert into testVT$(vid, k, t, v) values(201, 'geoloc', 20, 'LINESTRING
(30 10, 10 30, 40 40)');

Chapter 9
Representing Spatial Data in a Property Graph

9-2

prompt show the geometry info
SQL> select vid, k, opg_apis.get_wktgeometry_from_v_t_cols(v,t)
 from testVT$
 order by vid, k;
 . . .
 101 geoloc SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1,
1003, 1), SDO_ORDINATE_ARRAY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4,
34.1, -83.6, 34.1))
 103 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.241, 37.567,
NULL), NULL, NULL)
 105 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.251, 37.577,
NULL), NULL, NULL)
 200 geoloc SDO_GEOMETRY(2006, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2,
1, 7, 2, 1), SDO_ORDINATE_ARRAY(10, 10, 20, 20, 10, 40, 40, 40, 30, 30, 40,
20, 30, 10))
 201 geoloc SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2,
1), SDO_ORDINATE_ARRAY(30, 10, 10, 30, 40, 40))

9.2 Creating a Spatial Index on Property Graph Data
After adding spatial data to a property graph, you can use OPG_APIS package subprograms
to construct SDO_GEOMETRY objects, and then you can create a function-based spatial
index on the vertices (VT$) or the edges (VT$) table.

Using the example property graph named test, the following statements add the necessary
metadata and create a function-based spatial index.

SQL> -- In the schema that owns the property graph TEST:
SQL> --
SQL> insert into user_sdo_geom_metadata values('TESTVT$',
 'mdsys.opg_apis.get_geometry_from_v_t_cols(v,t)',
 sdo_dim_array(
 sdo_dim_element('Longitude', -180, 180, 0.005),
 sdo_dim_element('Latitude', -90, 90, 0.005)), 8307);

commit;

SQL> -- Create a function-based spatial index
SQL> create index testVTXGEO$
 on testVT$(mdsys.opg_apis.get_geometry_from_v_t_cols(v, t))
 indextype is mdsys.spatial_index_v2
 parameters ('tablespace=USERS')
 parallel 4
 local;

(To create a spatial index on your own property graph, replace the graph name test with the
name of your graph.)

If the WKT literals are used in the V column, then replace
mdsys.opg_apis.get_geometry_from_v_t_cols with
mdsys.opg_apis.get_wktgeometry_from_v_t_cols in the preceding two SQL statements.

Note that the preceding SQL spatial index creation steps are wrapped in convenient Java
methods in the OraclePropertyGraph class defined in the oracle.pg.rdbms package:

Chapter 9
Creating a Spatial Index on Property Graph Data

9-3

 /**
 * This API creates a default Spatial index on edges. It assumes that
 * the mdsys.opg_apis.get_geometry_from_v_t_cols(v,t) PL/SQL is going to be
used
 * to create a function-based Spatial index. In addition, it adds a predefined
 * value into user_sdo_geom_metadata. To customize, please refer to the dev
 * guide for adding a row to user_sdo_geom_metadata and then creating a
 * Spatial index manually.
 * Note that, a DDL will be executed so expect an implict commit. If you
 * have changes that do not want to be persisted, run a rollback before calling
 * this method.
 * @param dop degree of parallelism used to create the Spatial index
 */
 public void createDefaultSpatialIndexOnEdges(int dop);

 /**
 * This API creates a default Spatial index on vertices. It assumes that
 * the mdsys.opg_apis.get_geometry_from_v_t_cols(v,t) PL/SQL is going to be
used
 * to create a function-based Spatial index. In addition, it adds a predefined
 * value into user_sdo_geom_metadata. To customize, please refer to the dev
 * guide for adding a row to user_sdo_geom_metadata and then creating a
 * Spatial index manually.
 * Note that a DDL will be executed so expect an implict commit. If you
 * have changes that do not want to be persisted, run a rollback before calling
 * this method.
 * @param dop degree of parallelism used to create the Spatial index
 */
 public void createDefaultSpatialIndexOnVertices(int dop);

9.3 Querying Spatial Data in a Property Graph
Oracle Spatial and Graph geospatial query functions can be applied to spatial data in a
property graph. This topic provides some examples.

Note that a query based on spatial information can be combined with navigation and
pattern matching.

The following example finds entities (vertices) that are within a specified distance
(here, 1 mile) of a location (point geometry).

SQL> -- use SDO_WITHIN_DISTANCE to filter vertices
SQL> select vid, k, t, v
 from testvt$
 where
sdo_within_distance(mdsys.opg_apis.get_geometry_from_v_t_cols(v, t),
 mdsys.sdo_geometry(2001, 8307,
mdsys.sdo_point_type(-122.23, 37.56, null), null, null),
 'distance=1 unit=mile') = 'TRUE'
 order by vid, k;

The output and execution plan may include the following. Notice that a newly created
domain indexTESTVTXGEO$ is used in the execution.

 100 geoloc 20 -122.230 37.560
 101 geoloc 20 -122.231 37.561

Chapter 9
Querying Spatial Data in a Property Graph

9-4

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 1 | 18176 | 2
(50)| 00:00:01 | | | | | |
| 1 | PX COORDINATOR | | |
| | | | | | | |
| 2 | PX SEND QC (ORDER) | :TQ10001 | 1 | 18176 | 2
(50)| 00:00:01 | | | Q1,01 | P->S | QC (ORDER) |
| 3 | SORT ORDER BY | | 1 | 18176 | 2
(50)| 00:00:01 | | | Q1,01 | PCWP | |
| 4 | PX RECEIVE | | 1 | 18176 |
1 (0)| 00:00:01 | | | Q1,01 | PCWP | |
| 5 | PX SEND RANGE | :TQ10000 | 1 | 18176 |
1 (0)| 00:00:01 | | | Q1,00 | P->P | RANGE |
| 6 | PX PARTITION HASH ALL | | 1 | 18176 |
1 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWC | |
|* 7 | TABLE ACCESS BY LOCAL INDEX ROWID| TESTVT$ | 1 | 18176 |
1 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWP | |
|* 8 | DOMAIN INDEX (SEL: 0.000000 %) | TESTVTXGEO$ | | |
1 (0)| 00:00:01 | | | Q1,00 | | |

Predicate Information (identified by operation id):

 7 - filter(INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 8 -
access("MDSYS"."SDO_WITHIN_DISTANCE"("OPG_APIS"."GET_GEOMETRY_FROM_V_T_COLS"("V","T"),"
MDSYS"."SDO_GEOMETRY"(2001,8307,"MDSYS"."SDO_P
 OINT_TYPE"((-122.23),37.56,NULL),NULL,NULL),'distance=1
unit=mile')='TRUE')

The following example sorts entities (vertices) based on their distance from a location.

-- Sort based on distance in miles
SQL> select vid, dist from (
 select vid, k, t, v,
 sdo_geom.sdo_distance(mdsys.opg_apis.get_geometry_from_v_t_cols(v,
t),
 mdsys.sdo_geometry(2001, 8307, mdsys.sdo_point_type(-122.23,
37.56, null), null, null), 1.0, 'unit=mile') dist
 from testvt$
 where t = 20
) order by dist asc
;

The output and execution plan may include the following.

 ...
 101 .088148935
 102 .385863422
 103 .773127682
 104 1.2068052
 105 1.64421947

Chapter 9
Querying Spatial Data in a Property Graph

9-5

 200 2.08301065
 ...

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 15062 | 1366 (1)| 00:00:01
| | |
| 1 | SORT ORDER BY | | 1 | 15062 | 1366 (1)| 00:00:01
| | |
| 2 | PARTITION HASH ALL| | 1 | 15062 | 1365 (1)| 00:00:01
| 1 | 8 |
|* 3 | TABLE ACCESS FULL| TESTVT$ | 1 | 15062 | 1365 (1)| 00:00:01
| 1 | 8 |

Predicate Information (identified by operation id):

 3 - filter("T"=20 AND INTERNAL_FUNCTION("V"))

Chapter 9
Querying Spatial Data in a Property Graph

9-6

10
OPG_APIS Package Subprograms

The OPG_APIS package contains subprograms (functions and procedures) for working with
property graphs in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and usage
information in earlier chapters of this book.

This chapter provides reference information about the subprograms, in alphabetical order.

• OPG_APIS.ANALYZE_PG

• OPG_APIS.CF

• OPG_APIS.CF_CLEANUP

• OPG_APIS.CF_PREP

• OPG_APIS.CLEAR_PG

• OPG_APIS.CLEAR_PG_INDICES

• OPG_APIS.CLONE_GRAPH

• OPG_APIS.COUNT_TRIANGLE

• OPG_APIS.COUNT_TRIANGLE_CLEANUP

• OPG_APIS.COUNT_TRIANGLE_PREP

• OPG_APIS.COUNT_TRIANGLE_RENUM

• OPG_APIS.CREATE_EDGES_TEXT_IDX

• OPG_APIS.CREATE_PG

• OPG_APIS.CREATE_PG_SNAPSHOT_TAB

• OPG_APIS.CREATE_PG_TEXTIDX_TAB

• OPG_APIS.CREATE_STAT_TABLE

• OPG_APIS.CREATE_SUB_GRAPH

• OPG_APIS.CREATE_VERTICES_TEXT_IDX

• OPG_APIS.DROP_EDGES_TEXT_IDX

• OPG_APIS.DROP_PG

• OPG_APIS.DROP_PG_VIEW

• OPG_APIS.DROP_VERTICES_TEXT_IDX

• OPG_APIS.ESTIMATE_TRIANGLE_RENUM

• OPG_APIS.EXP_EDGE_TAB_STATS

• OPG_APIS.EXP_VERTEX_TAB_STATS

• OPG_APIS.FIND_CC_MAPPING_BASED

• OPG_APIS.FIND_CLUSTERS_CLEANUP

10-1

• OPG_APIS.FIND_CLUSTERS_PREP

• OPG_APIS.FIND_SP

• OPG_APIS.FIND_SP_CLEANUP

• OPG_APIS.FIND_SP_PREP

• OPG_APIS.GET_BUILD_ID

• OPG_APIS.GET_GEOMETRY_FROM_V_COL

• OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS

• OPG_APIS.GET_LATLONG_FROM_V_COL

• OPG_APIS.GET_LATLONG_FROM_V_T_COLS

• OPG_APIS.GET_LONG_LAT_GEOMETRY

• OPG_APIS.GET_LATLONG_FROM_V_COL

• OPG_APIS.GET_LONGLAT_FROM_V_T_COLS

• OPG_APIS.GET_SCN

• OPG_APIS.GET_VERSION

• OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL

• OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS

• OPG_APIS.GRANT_ACCESS

• OPG_APIS.IMP_EDGE_TAB_STATS

• OPG_APIS.IMP_VERTEX_TAB_STATS

• OPG_APIS.PR

• OPG_APIS.PR_CLEANUP

• OPG_APIS.PR_PREP

• OPG_APIS.PREPARE_TEXT_INDEX

• OPG_APIS.RENAME_PG

• OPG_APIS.SPARSIFY_GRAPH

• OPG_APIS.SPARSIFY_GRAPH_CLEANUP

• OPG_APIS.SPARSIFY_GRAPH_PREP

10.1 OPG_APIS.ANALYZE_PG
Format

OPG_APIS.ANALYZE_PG(
 graph_name IN VARCHAR2,
 estimate_percent IN NUMBER,
 method_opt IN VARCHAR2,
 degree IN NUMBER,
 cascade IN BOOLEAN,
 no_invalidate IN BOOLEAN,
 force IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL);

Chapter 10
OPG_APIS.ANALYZE_PG

10-2

Description

Hathers, for a given property graph, statistics for the VT$, GE$, IT$, and GT$ tables.

Parameters

graph_name
Name of the property graph.

estimate_percent
Percentage of rows to estimate in the schema tables (NULL means compute). The valid
range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle
Database determine the appropriate sample size for good statistics. This is the usual default.

mrthod_opt
Accepts either of the following options, or both in combination, for the internal property graph
schema tables:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

• integer : Number of histogram buckets. Must be in the range [1,254].

• REPEAT : Collects histograms only on the columns that already have histograms.

• AUTO : Oracle Database determines the columns to collect histograms based on data
distribution and the workload of the columns.

• SKEWONLY : Oracle Database determines the columns to collect histograms based on the
data distribution of the columns

column is defined as column := column_name | (extension)

• column_name : name of a column

• extension: Can be either a column group in the format of
(column_name, column_name [, ...]) or an expression.

The usual default is: FOR ALL COLUMNS SIZE AUTO

degree
Degree of parallelism for the property graph schema tables. The usual default
for degree is NULL, which means use the table default value specified by
the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the
constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This
is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number
of CPUs and initialization parameters) according to size of the object.

cascade
Gathers statistics on the indexes for the property graph schema tables. Use the
constant DBMS_STATS.AUTO_CASCADE to have Oracle Database determine whether index
statistics are to be collected or not. This is the usual default.

Chapter 10
OPG_APIS.ANALYZE_PG

10-3

no_invalidate
If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS.AUTO_INVALIDATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if one or more underlying tables are locked.

options
(Reserved for future use.)

Usage Notes

Only the owner of the property graph can call this procedure.

Examples

The following example gather statistics for property graph mypg.

EXECUTE OPG_APIS.ANALYZE_PG('mypg', estimate_percent=> 0.001, method_opt=>'FOR
ALL COLUMNS SIZE AUTO', degree=>4, cascade=>true, no_invalidate=>false,
force=>true, options=>NULL);

10.2 OPG_APIS.CF
Format

OPG_APIS.CF(
 edge_tab_name IN VARCHAR2,
 edge_label IN VARCHAR2,
 rating_property IN VARCHAR2,
 iterations IN NUMBER DEFAULT 10,
 min_error IN NUMBER DEFAULT 0.001,
 k IN NUMBER DEFAULT 5,
 learning_rate IN NUMBER DEFAULT 0.0002,
 decrease_rate IN NUMBER DEFAULT 0.95,
 regularization IN NUMBER DEFAULT 0.02,
 dop IN NUMBER DEFAULT 8,
 wt_l IN/OUT VARCHAR2,
 wt_r IN/OUT VARCHAR2,
 wt_l1 IN/OUT VARCHAR2,
 wt_r1 IN/OUT VARCHAR2,
 wt_i IN/OUT VARCHAR2,
 wt_ld IN/OUT VARCHAR2,
 wt_rd IN/OUT VARCHAR2,
 tablespace IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Runs collaborative filtering using matrix factorization on the given graph. The resulting
factors of the matrix product will be stored on the left and right tables.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

Chapter 10
OPG_APIS.CF

10-4

edge_label
Label of the edges that hold the rating property.

rating_property
(Reserved for future use: Name of the rating property.)

iterations
Maximum number of iterations that should be performed. Default = 10.

min_error
Minimal error to reach. If at some iteration the error value is lower than this value, the
procedure finishes.. Default = 0.001.

k
Number of features for the left and right side products. Default = 5.

learning_rate
Learning rate for the gradient descent. Default = 0.0002.

decrease_rate
(Reserved for future use: Decrease rate if the learning rate is too large for an effective
gradient descent. Default = 0.95.)

regularization
An additional parameter to avoid overfitting. Default = 0.02

dop
Degree of parallelism. Default = 8.

wt_l
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_l1
Name of the working table that holds the left side intermediate step in the gradient descent.

wt_r1
Name of the working table that holds the right side intermediate step in the gradient descent.

wt_I
Name of the working table that holds intermediate matrix product.

wt_ld
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

tablespace
Name of the tablespace to use for storing intermediate data.

options
Additional settings for operation. An optional string with one or more (comma-separated) of
the following values:

Chapter 10
OPG_APIS.CF

10-5

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

For information about collaborative filtering with RDF data, see SQL-Based Property
Graph Analytics, especially Collaborative Filtering Overview and Examples.

If the working tables already exist, you can specify their names for the working table-
related parameters. In this case, the algorithm can continue the progress of the
previous iterations without recreating the tables.

If the working tables do not exist, or if you do not want to use existing working tables,
you must first call the OPG_APIS.CF_PREP procedure, which creates the necessary
working tables.

The final result of the collaborative filtering algorithm are the working tables wt_l and
wt_r, which are the two factors of a matrix product. These matrix factors should be
used when making predictions for collaborative filtering.

If (and only if) you have no interest in keeping the output matrix factors and the current
progress of the algorithm for future use, you can call the OPG_APIS.CF_CLEANUP
procedure to drop all the working tables that hold intermediate tables and the output
matrix factors.

Examples

The following example calls the OPG_APIS.CF_PREP procedure to create the
working tables, and then the OPG_APIS.CF procedures to run collaborative filtering on
the phones graph using the edges with the rating label.

DECLARE
 wt_l varchar2(32);
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;
 options varchar2(32) := null;
BEGIN
 opg_apis.cf_prep(edge_tab_name,wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,min_error,k,
 learning_rate,decrease_rate,regularization,dop,
 wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);

Chapter 10
OPG_APIS.CF

10-6

END;
/

The following example assumes that OPG_APIS.CF_PREP had been run previously, and it
specifies the various working tables that were created during that run. In this case, the
preceding example automatically assigned suffixes like '$$CFL57' to the names of the
working tables. (The output names can be printed when they are generated or be user-
defined in the call to OPG_APIS.CF_PREP.) Thus, the following example can run more
iterations of the algorithm using OPG_APIS.CF without needing to call OPG_APIS.CF_PREP
first, thereby continuing the progress of the previous run.

DECLARE
 wt_l varchar2(32) = 'phonesge$$CFL57';
 wt_r varchar2(32) = 'phonesge$$CFR57';
 wt_l1 varchar2(32) = 'phonesge$$CFL157';
 wt_r1 varchar2(32) = 'phonesge$$CFR157';
 wt_i varchar2(32) = 'phonesge$$CFI57';
 wt_ld varchar2(32) = 'phonesge$$CFLD57';
 wt_rd varchar2(32) = 'phonesge$$CFRD57';
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;
 options varchar2(32) := null;
BEGIN
 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,min_error,k,
 learning_rate,decrease_rate,regularization,dop,
 wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);
END;
/

10.3 OPG_APIS.CF_CLEANUP
Format

OPG_APIS.CF_CLEANUP(
 wt_l IN/OUT VARCHAR2,
 wt_r IN/OUT VARCHAR2,
 wt_l1 IN/OUT VARCHAR2,
 wt_r1 IN/OUT VARCHAR2,
 wt_i IN/OUT VARCHAR2,
 wt_ld IN/OUT VARCHAR2,
 wt_rd IN/OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Preforms cleanup work after graph collaborative filtering has been done. All the working
tables that hold intermediate tables and the output matrix factors are dropped.

Chapter 10
OPG_APIS.CF_CLEANUP

10-7

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_l
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_l1
Name of the working table that holds the left side intermediate step in the gradient
descent.

wt_r1
Name of the working table that holds the right side intermediate step in the gradient
descent.

wt_I
Name of the working table that holds intermediate matrix product.

wt_ld
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

options
(Reserved for future use.)

Usage Notes

Call this procedure only when you have no interest in keeping the output matrix factors
and the current progress of the algorithm for future use.

Do not call this procedure if more predictions will be made using the resulting product
factors (wt_l and wt_r tables), unless you have previous made backup copies of these
two tables.

See also the information about the OPG_APIS.CF procedure.

Examples

The following example drops the working tables that were created in the example for
the OPG_APIS.CF_PREP procedure.

DECLARE
 wt_l varchar2(32) = 'phonesge$$CFL57';
 wt_r varchar2(32) = 'phonesge$$CFR57';
 wt_l1 varchar2(32) = 'phonesge$$CFL157';
 wt_r1 varchar2(32) = 'phonesge$$CFR157';
 wt_i varchar2(32) = 'phonesge$$CFI57';
 wt_ld varchar2(32) = 'phonesge$$CFLD57';
 wt_rd varchar2(32) = 'phonesge$$CFRD57';
BEGIN
 opg_apis.cf_cleanup('phonesge$',wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);

Chapter 10
OPG_APIS.CF_CLEANUP

10-8

END;
/

10.4 OPG_APIS.CF_PREP
Format

OPG_APIS.CF_PREP(
 wt_l IN/OUT VARCHAR2.
 wt_r IN/OUT VARCHAR2.
 wt_l1 IN/OUT VARCHAR2.
 wt_r1 IN/OUT VARCHAR2.
 wt_i IN/OUT VARCHAR2.
 wt_ld IN/OUT VARCHAR2.
 wt_rd IN/OUT VARCHAR2.
 options IN VARCHAR2 DEFAULT NULL);

Description

Preforms preparation work, including creating the necessary intermediate tables, for a later
call to the OPG_APIS.CF procedure that will perform collaborative filtering.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_l
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_l1
Name of the working table that holds the left side intermediate step in the gradient descent.

wt_r1
Name of the working table that holds the right side intermediate step in the gradient descent.

wt_I
Name of the working table that holds intermediate matrix product.

wt_ld
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

options
Additional settings for operation. An optional string with one or more (comma-separated) of
the following values:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory' clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Chapter 10
OPG_APIS.CF_PREP

10-9

Usage Notes

The names of the working tables can be specified or left as null parameters, If the
name of any working table parameter is not specified, a name is automatically
genenerated and is returned as an OUT parameter. The working table names can be
used when you call the OPG_APIS.CF procedure to run the collaborative filtering
algorithm.

See also the Usage Notes and Examples for OPG_APIS.CF.

Examples

The following example creates the working tables for a graph named phones, and it
prints the names that were automatically generated for the working tables.

DECLARE
 wt_l varchar2(32);
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
BEGIN
 opg_apis.cf_prep('phonesge$',wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
 dbms_output.put_line(' wt_l ' || wt_l);
 dbms_output.put_line(' wt_r ' || wt_r);
 dbms_output.put_line(' wt_l1 ' || wt_l1);
 dbms_output.put_line(' wt_r1 ' || wt_r1);
 dbms_output.put_line(' wt_i ' || wt_i);
 dbms_output.put_line(' wt_ld ' || wt_ld);
 dbms_output.put_line(' wt_rd ' || wt_rd);
END;
/

10.5 OPG_APIS.CLEAR_PG
Format

OPG_APIS.CLEAR_PG(
 graph_name IN VARCHAR2);

Description

Clears all data from a property graph.

Parameters

graph_name
Name of the property graph.

Usage Notes

This procedure removes all data in the property graph by deleting data in the graph
tables (VT$, GE$, and so on).

Chapter 10
OPG_APIS.CLEAR_PG

10-10

Examples

The following example removes all data from the property graph named mypg.

EXECUTE OPG_APIS.CLEAR_PG('mypg');

10.6 OPG_APIS.CLEAR_PG_INDICES
Format

OPG_APIS.CLEAR_PG(
 graph_name IN VARCHAR2);

Description

Removes all text index metadata in the IT$ table of the property graph.

Parameters

graph_name
Name of the property graph.

Usage Notes

This procedure does not actually remove text index data

Examples

The following example removes all index metadata of the property graph named mypg.

EXECUTE OPG_APIS.CLEAR_PG_INDICES('mypg');

10.7 OPG_APIS.CLONE_GRAPH
Format

OPG_APIS.CLONE_GRAPH(
 orgGraph IN VARCHAR2,
 newGraph IN VARCHAR2,
 dop IN INTEGER DEFAULT 4,
 num_hash_ptns IN INTEGER DEFAULT 8,
 tbs IN VARCHAR2 DEFAULT NULL);

Description

Makes a clone of the original graph, giving the new graph a new name.

Parameters

orgGraph
Name of the original property graph.

newGraph
Name of the new (clone) property graph.

Chapter 10
OPG_APIS.CLEAR_PG_INDICES

10-11

dop
Degree of parallelism for the operation.

num_hash_ptns
Number of hash partitions used to partition the vertices and edges tables. It is
recommended to use a power of 2 (2, 4, 8, 16, and so on).

tbs
Name of the tablespace to hold all the graph data and index data.

Usage Notes

The original property graph must aleady exist in the database.

Examples

The following example creates a clone graph named mypgclone from the property
graph mypg in the tablespace my_ts using a degree of parallelism of 4 and 8 partitions.

EXECUTE OPG_APIS.CLONE_GRAPH('mypg', 'mypgclone', 4, 8, 'my_ts');

10.8 OPG_APIS.COUNT_TRIANGLE
Format

OPG_APIS.COUNT_TRIANGLE(
 edge_tab_name IN VARCHAR2,
 wt_und IN OUT VARCHAR2,
 num_sub_ptns IN NUMBER DEFAULT 1,
 dop IN INTEGER DEFAULT 1,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Performs triangle counting in property graph.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_und
A working table holding an undirected version of the graph.

num_sub_ptns
Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

dop
Degree of parallelism for the operation. The default is 1.

tbs
Name of the tablespace to hold the data stored in working tables.

Chapter 10
OPG_APIS.COUNT_TRIANGLE

10-12

options
Additional settings for the operation:

• ’PDML=T' enables parallel DML.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP. procedure must already have been executed.

Examples

The following example performs triangle counting in the property graph named connections

set serveroutput on
DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.count_triangle(
 'connectionsGE$',
 wt1,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);
 dbms_output.put_line('total number of triangles ' || n);
END;
/

10.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP
Format

COUNT_TRIANGLE_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN VARCHAR2,
 wt_rnmap IN VARCHAR2,
 wt_undAM IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up and drops the temporary working tables used for triangle counting.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before renumbering
optimization).

Chapter 10
OPG_APIS.COUNT_TRIANGLE_CLEANUP

10-13

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• PDML=T enables parallel DML.

Usage Notes

You should use this procedure to clean up after triangle counting.

The working tables must exist in the database.

Examples

The following example performs triangle counting in the property graph named
connections, and drops the working table after it has finished.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.count_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);
 dbms_output.put_line('total number of triangles ' || n);
 opg_apis.count_triangle_cleanup('connectionsGE$', wt1, wt2, wt3);
END;
/

10.10 OPG_APIS.COUNT_TRIANGLE_PREP
Format

OPG_APIS.COUNT_TRIANGLE_PREP(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN OUT VARCHAR2,
 wt_rnmap IN OUT VARCHAR2,
 wt_undAM IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Chapter 10
OPG_APIS.COUNT_TRIANGLE_PREP

10-14

Description

Prepares for running triangle counting.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before renumbering
optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

options
Additional settings for operation. An optional string with one or more (comma-separated) of
the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example prepares for triangle counting in a property graph named
connections.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);

 n := opg_apis.count_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'CREATE_UNDIRECTED=T,REUSE_UNDIREC_TAB=T'
);
 dbms_output.put_line('total number of triangles ' || n);

Chapter 10
OPG_APIS.COUNT_TRIANGLE_PREP

10-15

END;
/

10.11 OPG_APIS.COUNT_TRIANGLE_RENUM
Format

COUNT_TRIANGLE_RENUM(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN VARCHAR2,
 wt_rnmap IN VARCHAR2,
 wt_undAM IN VARCHAR2,
 num_sub_ptns IN INTEGER DEFAULT 1,
 dop IN INTEGER DEFAULT 1,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Performs triangle counting in property graph, with the optimization of renumbering the
vertices of the graph by their degree.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

num_sub_ptns
Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

dop
Degree of parallelism for the operation. The default is 1 (no parallelism).

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• PDML=T enables parallel DML.

Chapter 10
OPG_APIS.COUNT_TRIANGLE_RENUM

10-16

Usage Notes

This function makes the algorithm run faster, but requires more space.

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP procedure must already have been executed.

Examples

The following example performs triangle counting in the property graph named connections.
It does not perform the cleanup after it finishes, so you can count triangles again on the same
graph without calling the preparation procedure.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.count_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);
 dbms_output.put_line('total number of triangles ' || n);
END;
/

10.12 OPG_APIS.CREATE_EDGES_TEXT_IDX
Format

OPG_APIS.CREATE_EDGES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 pref_owner IN VARCHAR2 DEFAULT NULL,
 datastore IN VARCHAR2 DEFAULT NULL,
 filter IN VARCHAR2 DEFAULT NULL,
 storage IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 dop IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,);

Description

Creates a text index on a property graph edge table.

Chapter 10
OPG_APIS.CREATE_EDGES_TEXT_IDX

10-17

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

pref_owner
Owner of the preference.

datastore
The way that documents are stored.

filter
The way that documents can be converted to plain text.

storage
The way that the index data is stored.

wordlist
The way that stem and fuzzy queries should be expanded

stoplist
The words or themes that are not to be indexed.

lexer
The language used for indexing.

dop
The degree of parallelism used for index creation.

options
Additional settings for index creation.

Usage Notes

The property graph must exist in the database.

You must have the ALTER SESSION privilege to run this procedure.

Examples

The following example creates a text index on the edge table of property graph mypg,
which is owned by user SCOTT, using the lexer OPG_AUTO_LEXER and a degree of
parallelism of 4.

EXECUTE OPG_APIS.CREATE_EDGES_TEXT_IDX('SCOTT', 'mypg', 'MDSYS', null, null,
null, null, null, 'OPG_AUTO_LEXER', 4, null);

10.13 OPG_APIS.CREATE_PG
Format

OPG_APIS.CREATE_PG(
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,

Chapter 10
OPG_APIS.CREATE_PG

10-18

 num_hash_ptns IN INTEGER DEFAULT 8,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Creates, for a given property graph name, the necessary property graph schema tables that
are necessary to store data about vertices, edges, text indexes, and snapshots.

Parameters

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

num_hash_ptns
Number of hash partitions used to partition the vertices and edges tables. It is recommended
to use a power of 2 (2, 4, 8, 16, and so on).

tbs
Name of the tablespace to hold all the graph data and index data.

options
Options that can be used to customize the creation of indexes on schema tables. (One or
more, comma separated.)

• 'SKIP_INDEX=T' skips the default index creation.

• 'SKIP_ERROR=T 'ignores errors encountered during table/index creation.

• 'INMEMORY=T' creqtes the schema tables with an INMEMORYclause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY BASIC clause.

Usage Notes

You must have the CREATE TABLE and CREATE INDEX privileges to call this procedure.

By default, all the schema tables will be created with basic compression enabled.

Examples

The following example creates a property graph named mypg in the tablespace my_ts using
eight partitions.

EXECUTE OPG_APIS.CREATE_PG('mypg', 4, 8, 'my_ts');

10.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB
Format

OPG_APIS.CREATE_PG_SNAPSHOT_TAB(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Chapter 10
OPG_APIS.CREATE_PG_SNAPSHOT_TAB

10-19

or

OPG_APIS.CREATE_PG_SNAPSHOT_TAB(
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Creates, for a given property graph name, the necessary property graph schema table
(<graph_name>SS$) that stores data about snapshots for the graph.

Parameters

graph_owner
Name of the owner of the property graph.

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold all the graph snapshot data and associated index.

options
Additional settings for the operation:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

You must have the CREATE TABLE privilege to call this procedure.

The created snapshot table has the following structure, which may change between
releases.

Name Null? Type
 --- -------- ----------------------------
 SSID NOT NULL NUMBER
 CONTENTS BLOB
 SS_FILE BINARY FILE LOB
 TS TIMESTAMP(6) WITH TIME ZONE
 SS_COMMENT VARCHAR2(512)

By default, all schema tables will be created with basic compression enabled.

Examples

The following example creates a snapshot table for property graph mypg in the current
schema, with a degree of parallelism of 4 and using the MY_TS tablespace.

EXECUTE OPG_APIS.CREATE_PG_SNAPSHOT_TAB('mypg', 4, 'my_ts');

Chapter 10
OPG_APIS.CREATE_PG_SNAPSHOT_TAB

10-20

10.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB
Format

OPG_APIS.CREATE_PG_TEXTIDX_TAB(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

or

OPG_APIS.CREATE_PG_TEXTIDX_TAB(
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Creates, for a given property graph name, the necessary property graph text index schema
table (<graph_name>IT$) that stores data for managing text index metadata for the graph.

Parameters

graph_owner
Name of the owner of the property graph.

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold all the graph index metadata and associated index.

options
Additional settings for the operation:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory' clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

You must have the CREATE TABLE privilege to call this procedure.

The created index metadata table has the following structure, which may change between
releases.

 (
 EIN nvarchar2(80) not null, -- index name
 ET number, -- entity type 1 - vertex, 2 -edge
 IT number, -- index type 1 - auto 0 - manual
 SE number, -- search engine 1 -solr, 0 - lucene
 K nvarchar2(3100), -- property key use an empty space when

Chapter 10
OPG_APIS.CREATE_PG_TEXTIDX_TAB

10-21

there is no K/V
 DT number, -- directory type 1 - MMAP, 2 -
FS, 3 - JDBC
 LOC nvarchar2(3100), -- directory location (1, 2)
 NUMDIRS number, -- property key used to index CAN
BE NULL
 VERSION nvarchar2(100), -- lucene version
 USEDT number, -- user data type (1 or 0)
 STOREF number, -- store fields into lucene
 CF nvarchar2(3100), -- configuration name
 SS nvarchar2(3100), -- solr server url
 SA nvarchar2(3100), -- solr server admin url
 ZT number, -- zookeeper timeout
 SH number, -- number of shards
 RF number, -- replication factor
 MS number, -- maximum shards per node
 PO nvarchar2(3100), -- preferred owner oracle text
 DS nvarchar2(3100), -- datastore
 FIL nvarchar2(3100), -- filter
 STR nvarchar2(3100), -- storage
 WL nvarchar2(3100), -- word list
 SL nvarchar2(3100), -- stop list
 LXR nvarchar2(3100), -- lexer
 OPTS nvarchar2(3100), -- options
 primary key (EIN, K, ET)
)

By default, all schema tables will be created with basic compression enabled.

Examples

The following example creates a property graph text index metadata table for property
graph mypg in the current schema, with a degree of parallelism of 4 and using the
MY_TS tablespace.

EXECUTE OPG_APIS.CREATE_PG_TEXTIDX_TAB('mypg', 4, 'my_ts');

10.16 OPG_APIS.CREATE_STAT_TABLE
Format

OPG_APIS.CREATE_STAT_TABLE(
 stattab IN VARCHAR2,
 tblspace IN VARCHAR2 DEFAULT NULL);

Description

Creates a table that can hold property graph statistics.

Parameters

stattab
Name of the table to hold statistics

tblapace
Name of the tablespace to hold the statistics table. If none is specified, then the
statistics table will be created in the user's default tablespace.

Chapter 10
OPG_APIS.CREATE_STAT_TABLE

10-22

Usage Notes

You must have the CREATE TABLE privilege to call this procedure.

The statistics table has the following columns. Note that the columns and their types may
vary between releases.

 Name Null? Type
 --- -------- ----------------------------
 STATID VARCHAR2(128)
 TYPE CHAR(1)
 VERSION NUMBER
 FLAGS NUMBER
 C1 VARCHAR2(128)
 C2 VARCHAR2(128)
 C3 VARCHAR2(128)
 C4 VARCHAR2(128)
 C5 VARCHAR2(128)
 C6 VARCHAR2(128)
 N1 NUMBER
 N2 NUMBER
 N3 NUMBER
 N4 NUMBER
 N5 NUMBER
 N6 NUMBER
 N7 NUMBER
 N8 NUMBER
 N9 NUMBER
 N10 NUMBER
 N11 NUMBER
 N12 NUMBER
 N13 NUMBER
 D1 DATE
 T1 TIMESTAMP(6) WITH TIME ZONE
 R1 RAW(1000)
 R2 RAW(1000)
 R3 RAW(1000)
 CH1 VARCHAR2(1000)
 CL1 CLOB

Examples

The following example creates a statistics table namedmystat .

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

10.17 OPG_APIS.CREATE_SUB_GRAPH
Format

OPG_APIS.CREATE_SUB_GRAPH(
 graph_owner IN VARCHAR2,
 orgGraph IN VARCHAR2,
 newGraph IN VARCHAR2,
 nSrc IN NUMBER,
 depth IN NUMBER);

Chapter 10
OPG_APIS.CREATE_SUB_GRAPH

10-23

Description

Creates a subgraph, which is an expansion from a given vertex. The depth of
expansion is customizable.

Parameters

graph_owner
Owner of the property graph.

orgGraph
Name of the original property graph.

newGraph
Name of the subgraph to be created from the original graph.

nSrc
Vertex ID: the subgraph will be created by expansion from this vertex. For example,
nSrc = 1 starts the expansion from the vertex with ID 1.

depth
Depth of expansion: the expansion, following outgoing edges, will include all vertices
that are within depth hops away from vertex nSrc. For example, depth = 2 causes
the to should include all vertices that are within 2 hops away from vertex nSrc (vertex
ID 1 in the preceding example).

Usage Notes

The original property graph must exist in the database.

Examples

The following example creates a subgraph mypgsub from the property graph mypg
whose owner is SCOTT. The subgraph includes vertex 1 and all vertices that are
reachable from the vertex with ID 1 in 2 hops.

EXECUTE OPG_APIS.CREATE_SUB_GRAPH('SCOTT', 'mypg', 'mypgsub', 1, 2);

10.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX
Format

OPG_APIS.CREATE_VERTICES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 pref_owner IN VARCHAR2 DEFAULT NULL,
 datastore IN VARCHAR2 DEFAULT NULL,
 filter IN VARCHAR2 DEFAULT NULL,
 storage IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 dop IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,);

Chapter 10
OPG_APIS.CREATE_VERTICES_TEXT_IDX

10-24

Description

Creates a text index on a property graph vertex table.

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

pref_owner
Owner of the preference.

datastore
The way that documents are stored.

filter
The way that documents can be converted to plain text.

storage
The way that the index data is stored.

wordlist
The way that stem and fuzzy queries should be expanded

stoplist
The words or themes that are not to be indexed.

lexer
The language used for indexing.

dop
The degree of parallelism used for index creation.

options
Additional settings for index creation.

Usage Notes

The original property graph must exist in the database.

You must have the ALTER SESSION privilege to run this procedure.

Examples

The following example creates a text index on the vertex table of property graph mypg, which
is owned by user SCOTT, using the lexer OPG_AUTO_LEXER and a degree of parallelism of 4.

EXECUTE OPG_APIS.CREATE_VERTICES_TEXT_IDX('SCOTT', 'mypg', null, null, null, null,
null, null, 'OPG_AUTO_LEXER', 4, null);

Chapter 10
OPG_APIS.CREATE_VERTICES_TEXT_IDX

10-25

10.19 OPG_APIS.DROP_EDGES_TEXT_IDX
Format

OPG_APIS.DROP_EDGES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Drops a text index on a property graph edge table.

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

options
Additional settings for the operation.

Usage Notes

A text index must already exist on the property graph edge table.

Examples

The following example drops the text index on the edge table of property graph mypg
that is owned by user SCOTT.

EXECUTE OPG_APIS.DROP_EDGES_TEXT_IDX('SCOTT', 'mypg', null);

10.20 OPG_APIS.DROP_PG
Format

OPG_APIS.DROP_PG(
 graph_name IN VARCHAR2);

Description

Drops (deletes) a property graph.

Parameters

graph_name
Name of the property graph.

Usage Notes

All the graph tables (VT$, GE$, and so on) will be dropped from the database.

Chapter 10
OPG_APIS.DROP_EDGES_TEXT_IDX

10-26

Examples

The following example drops the property graph named mypg.

EXECUTE OPG_APIS.DROP_PG('mypg');

10.21 OPG_APIS.DROP_PG_VIEW
Format

OPG_APIS.DROP_PG_VIEW(
 graph_name IN VARCHAR2);
 options IN VARCHAR2);

Description

Drops (deletes) the view definition of a property graph.

Parameters

graph_name
Name of the property graph.

options
(Reserved for future use.)

Usage Notes

Oracle supports creating physical property graphs and property graph views. For example,
given an RDF model, it supports creating property graph views over the RDF model, so that
you can run property graph analytics on top of the RDF graph.

This procedure cannot be undone.

Examples

The following example drops the view definition of the property graph named mypg.

EXECUTE OPG_APIS.DROP_PG_VIEW('mypg');

10.22 OPG_APIS.DROP_VERTICES_TEXT_IDX
Format

OPG_APIS.DROP_VERTICES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Drops a text index on a property graph vertex table.

Chapter 10
OPG_APIS.DROP_PG_VIEW

10-27

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

options
Additional settings for the operation.

Usage Notes

A text index must already exist on the property graph vertex table.

Examples

The following example drops the text index on the vertex table of property graph mypg
that is owned by user SCOTT.

EXECUTE OPG_APIS.DROP_VERTICES_TEXT_IDX('SCOTT', 'mypg', null);

10.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM
Format

COUNT_TRIANGLE_ESTIMATE(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN VARCHAR2,
 wt_rnmap IN VARCHAR2,
 wt_undAM IN VARCHAR2,
 num_sub_ptns IN INTEGER DEFAULT 1,
 chunk_id IN INTEGER DEFAULT 1,
 dop IN INTEGER DEFAULT 1,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Estimates the number of triangles in a property graph.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

Chapter 10
OPG_APIS.ESTIMATE_TRIANGLE_RENUM

10-28

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

num_sub_ptns
Number of logical subpartitions used in calculating triangles . Must be a positive integer,
power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum degree, use the value
1 (the default).

chunk_id
The logical subpartition to be used in triangle estimation (Only this partition will be counted).
It must be an integer between 0 and num_sub_ptns*num_sub_ptns-1.

dop
Degree of parallelism for the operation. The default is 1 (no parallelism).

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for operation. An optional string with one or more (comma-separated) of
the following values:

• PDML=T enables parallel DML.

Usage Notes

This function counts the total triangles in a portion of size 1/(num_sub_ptns*num_sub_ptns)
of the graph; so to estimate the total number of triangles in the graph, you can multiply the
result by num_sub_ptns*num_sub_ptns.

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP procedure must already have been executed.

Examples

The following example estimates the number of triangle in the property graph named
connections. It does not perform the cleanup after it finishes, so you can count triangles
again on the same graph without calling the preparation procedure.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.estimate_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>64,
 chunk_id=>2048,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);

Chapter 10
OPG_APIS.ESTIMATE_TRIANGLE_RENUM

10-29

 dbms_output.put_line('estimated number of triangles ' || (n * 64 * 64));
END;
/

10.24 OPG_APIS.EXP_EDGE_TAB_STATS
Format

OPG_APIS.EXP_EDGE_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the edge table of a given property graph and stores them in the
user-created statistics table.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing stattab.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported
values are 'OBJECT_STATS' (the default: table statistics, column statistics, and index
statistics) and ‘SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the property
graph edge table statistics, and issues a query to count the relevant rows for the newly
created statistics.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_EDGE_TAB_STATS('mypg', 'mystat', 'edge_stats_id_1', true,
null, 'OBJECT_STATS');

Chapter 10
OPG_APIS.EXP_EDGE_TAB_STATS

10-30

SELECT count(1) FROM mystat WHERE statid='EDGE_STATS_ID_1';

 153

10.25 OPG_APIS.EXP_VERTEX_TAB_STATS
Format

OPG_APIS.EXP_VERTEX_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the vertex table of a given property graph and stores them in the user-
created statistics table.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing stattab.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported values
are 'OBJECT_STATS' (the default: table statistics, column statistics, and index statistics) and
‘SYNOPSES' (auxiliary statistics created when statistics are incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the property graph
vertex table statistics, and issues a query to count the relevant rows for the newly created
statistics.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_VERTEX_TAB_STATS('mypg', 'mystat', 'vertex_stats_id_1', true,
null, 'OBJECT_STATS');

Chapter 10
OPG_APIS.EXP_VERTEX_TAB_STATS

10-31

SELECT count(1) FROM mystat WHERE statid='VERTEX_STATS_ID_1';

 108

10.26 OPG_APIS.FIND_CC_MAPPING_BASED
Format

OPG_APIS.FIND_CC_MAPPING_BASED(
 edge_tab_name IN VARCHAR2,
 wt_clusters IN OUT VARCHAR2,
 wt_undir IN OUT VARCHAR2,
 wt_cluas IN OUT VARCHAR2,
 wt_newas IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 dop IN INTEGER DEFAULT 4,
 rounds IN INTEGER DEFAULT 0,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Finds connected components in a property graph. All connected components will be
stored in the wt_clusters table. The original graph is treated as undirected.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters
A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.
If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta") in cluster assignments.

dop
Degree of parallelism for the operation. The default is 4.

Chapter 10
OPG_APIS.FIND_CC_MAPPING_BASED

10-32

rounds
Maximum umber of iterations to perform in searching for connected components. The default
value of 0 (zero) means that computation will continue until all connected components are
found.

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for the operation.

• 'PDML=T' enables parallel DML.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.FIND_CLUSTERS_PREP. procedure must already have been executed.

Examples

The following example finds the connected components in a property graph named mypg.

DECLARE
 wtClusters varchar2(200) := 'mypg_clusters';
 wtUnDir varchar2(200);
 wtCluas varchar2(200);
 wtNewas varchar2(200);
 wtDelta varchar2(200);
BEGIN
 opg_apis.find_clusters_prep('mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, '');
 dbms_output.put_line('working tables names ' || wtClusters || ' '
|| wtUnDir || ' ' || wtCluas || ' ' || wtNewas || ' '
|| wtDelta);

opg_apis.find_cc_mapping_based(''mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, 8, 0, 'MYTBS', 'PDML=T');

--
-- logic to consume results in wtClusters
-- e.g.:
-- select /*+ parallel(8) */ count(distinct cluster_id)
-- from mypg_clusters;

-- cleanup all the working tables
 opg_apis.find_clusters_cleanup('mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, '');

END;
/

10.27 OPG_APIS.FIND_CLUSTERS_CLEANUP
Format

OPG_APIS.FIND_CLUSTERS_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_clusters IN OUT VARCHAR2,
 wt_undir IN OUT VARCHAR2,

Chapter 10
OPG_APIS.FIND_CLUSTERS_CLEANUP

10-33

 wt_cluas IN OUT VARCHAR2,
 wt_newas IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up after running weakly connected components (WCC) cluster detection.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters
A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.
If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta") in cluster assignments.

options
(Reserved for future use.)

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example cleans up after performing doing cluster detection in a property
graph named mypg.

EXECUTE OPG_APIS.FIND_CLUSTERS_CLEANUP('mypgGE$', wtClusters, wtUnDir, wtCluas,
wtNewas, wtDelta, null);

10.28 OPG_APIS.FIND_CLUSTERS_PREP
Format

OPG_APIS.FIND_CLUSTERS_PREP(
 edge_tab_name IN VARCHAR2,
 wt_clusters IN OUT VARCHAR2,
 wt_undir IN OUT VARCHAR2,
 wt_cluas IN OUT VARCHAR2,

Chapter 10
OPG_APIS.FIND_CLUSTERS_PREP

10-34

 wt_newas IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares for running weakly connected components (WCC) cluster detection.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters
A working table holding the final vertex cluster mappings. This table has two columns (VID
NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values, and column
CLUSTER_ID stores the corresponding cluster ID values. Cluster ID values are long integers
that can have gaps between them.
If an empty name is specified, a new table will be generated, and its name will be returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta") in cluster assignments.

options
Additional settings for index creation.

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example prepares for doing cluster detection in a property graph named mypg.

DECLARE
 wtClusters varchar2(200);
 wtUnDir varchar2(200);
 wtCluas varchar2(200);
 wtNewas varchar2(200);
 wtDelta varchar2(200);
BEGIN
 opg_apis.find_clusters_prep('mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, '');
 dbms_output.put_line('working tables names ' || wtClusters || ' '
|| wtUnDir || ' ' || wtCluas || ' ' || wtNewas || ' '
|| wtDelta);
END;
/

Chapter 10
OPG_APIS.FIND_CLUSTERS_PREP

10-35

10.29 OPG_APIS.FIND_SP
Format

OPG_APIS.FIND_SP(
 edge_tab_name IN VARCHAR2,
 source IN NUMBER,
 dest IN NUMBER,
 exp_tab IN OUT VARCHAR2,
 dop IN INTEGER,
 stats_freq IN INTEGER DEFAULT 20000,
 path_output OUT VARCHAR2,
 weights_output OUT VARCHAR2,
 edge_tab_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 scn IN NUMBER DEFAULT NULL);

Description

Finds the shortest path between given source vertex and destination vertex in the
property graph. It assumes each edge has a numeric weight property. (The actual
edge property name is not significant.)

Parameters

edge_tab_name
Name of the property graph edge table.

source
Source (start) vertex ID.

dest
Destination (end) vertex ID.

exp_tab
Name of the expansion table to be used for shortest path calculations.

dop
Degree of parallelism for the operation.

stats_freq
Frequency for collecting statistics on the table.

path_output
The output shortest path. It consists of IDs of vertices on the shortest path, which are
separated by the space character.

weights_output
The output shortest path weights. It consists of weights of edges on the shortest path,
which are separated by the space character.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

Chapter 10
OPG_APIS.FIND_SP

10-36

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

scn
SCN for the edge table. It can be null.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.FIND_SP_PREP procedure must have already been called.

Examples

The following example prepares for shortest-path calculation, and then finds the shortest path
from vertex 1 to vertex 35 in a property graph named mypg.

set serveroutput on
DECLARE
 w varchar2(2000);
 wtExp varchar2(2000);
 vPath varchar2(2000);
BEGIN
 opg_apis.find_sp_prep('mypgGE$', wtExp, null);
 opg_apis.find_sp('mypgGE$', 1, 35, wtExp, 1, 200000, vPath, w, null, null);
 dbms_output.put_line('Shortest path ' || vPath);
 dbms_output.put_line('Path weights ' || w);
END;
/

The output will be similar to the following. It shows one shortest path starting from vertex 1, to
vertex 2, and finally to the destination vertex (35).

Shortest path 1 2 35
Path weights 3 2 1 1

10.30 OPG_APIS.FIND_SP_CLEANUP
Format

OPG_APIS.FIND_SP_CLEANUP(
 edge_tab_name IN VARCHAR2,
 exp_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up after running one or more shortest path calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

exp_tab
Name of the expansion table used for shortest path calculations.

Chapter 10
OPG_APIS.FIND_SP_CLEANUP

10-37

options
(Reserved for future use.)

Usage Notes

There is no need to call this procedure after each OPG_APIS.FIND_SP call. You can
run multiple shortest path calculations before calling OPG_APIS.FIND_SP_CLEANUP.

Examples

The following example does cleanup work after doing shortest path calculations in a
property graph named mypg.

EXECUTE OPG_APIS.FIND_SP_CLEANUP('mypgGE$', wtExpTab, null);

10.31 OPG_APIS.FIND_SP_PREP
Format

OPG_APIS.FIND_SP_PREP(
 edge_tab_name IN VARCHAR2,
 exp_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares for shortest path calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

exp_tab
Name of the expansion table to be used for shortest path calculations. If it is empty,
an intermediate working table will be created and the table name will be returned in
exp_tab.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example does preparation work before doing shortest path calculations
in a property graph named mypg

set serveroutput on
DECLARE
 wtExp varchar2(2000); -- name of working table for shortest path calculation
BEGIN

Chapter 10
OPG_APIS.FIND_SP_PREP

10-38

 opg_apis.find_sp_prep('mypgGE$', wtExp, null);
 dbms_output.put_line('Working table name ' || wtExp);
END;
/

The output will be similar to the following. (Your output may be different depending on the
SQL session ID.)

Working table name "MYPGGE$$TWFS277"

10.32 OPG_APIS.GET_BUILD_ID
Format

OPG_APIS.GET_BUILD_ID() RETURN VARCHAR2;

Description

Returns the current build ID of the Oracle Spatial and Graph property graph support, in
YYYYMMDD format.

Parameters

(None.)

Usage Notes

(None.)

Examples

The following example returns the current build ID of the Oracle Spatial and Graph property
graph support.

SQL> SELECT OPG_APIS.GET_BUILD_ID() FROM DUAL;

OPG_APIS.GET_BUILD_ID()
--
20160606

10.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL
Format

OPG_APIS.GET_GEOMETRY_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an SRID
value.

Chapter 10
OPG_APIS.GET_BUILD_ID

10-39

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following examples show point, line, and polygon geometries.

SQL> select opg_apis.get_geometry_from_v_col('10.0 5.0',8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_COL('10.05.0',8307)(SDO_GTYPE, SDO_SRID,
SDO_POINT(
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5, NULL), NULL, NULL)

SQL> select opg_apis.get_geometry_from_v_col('LINESTRING(30 10, 10
30, 40 40)',8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_COL('LINESTRING(3010,1030,4040)',8307)
(SDO_GTYPE, S
--

SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY(
30, 10, 10, 30, 40, 40))

SQL> select opg_apis.get_geometry_from_v_col('POLYGON((-83.6 34.1,
-83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))', 8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_COL('POLYGON((-83.634.1,-83.634.3,-83.434.3
,-83.434
--

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

Chapter 10
OPG_APIS.GET_GEOMETRY_FROM_V_COL

10-40

10.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
Format

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form,

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null value
or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY object.
The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/latitude
coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of generating
an exception.

Examples

The following examples show point, line, and polygon geometries.

SQL> select opg_apis.get_geometry_from_v_t_cols('10.0 5.0', 20, 8307) from
dual;

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS('10.05.0',20,8307)(SDO_GTYPE, SDO_SRID,
SDO_

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5, NULL), NULL, NULL)

SQL> select opg_apis.get_geometry_from_v_t_cols('LINESTRING(30 10, 10 30, 40
40)', 20, 8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS('LINESTRING(3010,1030,4040)',20,8307)
(SDO_GT

Chapter 10
OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS

10-41

SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY(
30, 10, 10, 30, 40, 40))

SQL> select opg_apis.get_geometry_from_v_t_cols('POLYGON((-83.6 34.1,
-83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))', 20, 8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS('POLYGON((-83.634.1,-83.634.3,-83.43
4.3,-83.
--

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

10.35 OPG_APIS.GET_LATLONG_FROM_V_COL
Format

OPG_APIS.GET_LATLONG_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an
SRID value.

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is
the reverse of the order in an SDO_GEOMETRY object definition, where longitude is
first and latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Chapter 10
OPG_APIS.GET_LATLONG_FROM_V_COL

10-42

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the coordinate
values of the input point are “swapped” in the returned SDO_GEOMETRY object.

SQL> select opg_apis.get_latlong_from_v_col('5.1 10.0', 8307) from dual;

OPG_APIS.GET_LATLONG_FROM_V_COL('5.110.0',8307)(SDO_GTYPE, SDO_SRID,
SDO_POINT(X

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

10.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS
Format

OPG_APIS.GET_LATLONG_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null value
or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY object.
The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/latitude
coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is the
reverse of the order in an SDO_GEOMETRY object definition, where longitude is first and
latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of generating
an exception.

Chapter 10
OPG_APIS.GET_LATLONG_FROM_V_T_COLS

10-43

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the
coordinate values of the input point are “swapped” in the returned SDO_GEOMETRY
object.

SQL> select opg_apis.get_latlong_from_v_t_cols('5.1 10.0',20,8307) from
dual;

OPG_APIS.GET_LATLONG_FROM_V_T_COLS('5.110.0',20,8307)(SDO_GTYPE,
SDO_SRID, SDO_P
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

10.37 OPG_APIS.GET_LONG_LAT_GEOMETRY
Format

OPG_APIS.GET_LONG_LAT_GEOMETRY(
 x IN NUMBER,
 y IN NUMBER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using X and Y point coordinate
values, and optionally an SRID value.

Parameters

x
The X (first coordinate) value in the SDO_POINT_TYPE element of the geometry
definition.

y
The Y (second coordinate) value in the SDO_POINT_TYPE element of the geometry
definition.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Chapter 10
OPG_APIS.GET_LONG_LAT_GEOMETRY

10-44

Examples

The following example returns the geometry object for a point with X, Y coordinates 10.5, 5.0,
and it uses 8307 as the SRID in the resulting geometry object.

SQL> select opg_apis.get_long_lat_geometry(10.0, 5.0, 8307) from dual;

OPG_APIS.GET_LONG_LAT_GEOMETRY(10.0,5.0,8307)(SDO_GTYPE, SDO_SRID,
SDO_POINT(X,

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5, NULL), NULL, NULL)

10.38 OPG_APIS.GET_LATLONG_FROM_V_COL
Format

OPG_APIS.GET_LATLONG_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an SRID
value.

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY object.
The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/latitude
coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is the
reverse of the order in an SDO_GEOMETRY object definition, where longitude is first and
latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of generating
an exception.

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the coordinate
values of the input point are “swapped” in the returned SDO_GEOMETRY object.

SQL> select opg_apis.get_latlong_from_v_col('5.1 10.0', 8307) from dual;

OPG_APIS.GET_LATLONG_FROM_V_COL('5.110.0',8307)(SDO_GTYPE, SDO_SRID,

Chapter 10
OPG_APIS.GET_LATLONG_FROM_V_COL

10-45

SDO_POINT(X
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

10.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS
Format

OPG_APIS.GET_LONGLAT_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the longitude value and the second number is the latitude value (which is
the order in an SDO_GEOMETRY object definition).

The following example returns a point SDO_GEOMETRY object.

SQL> select opg_apis.get_longlat_from_v_t_cols('5.1 10.0',20,8307) from
dual;

OPG_APIS.GET_LATLONG_FROM_V_T_COLS('5.110.0',20,8307)(SDO_GTYPE,
SDO_SRID, SDO_P
--

Chapter 10
OPG_APIS.GET_LONGLAT_FROM_V_T_COLS

10-46

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(5.1, 10, NULL), NULL, NULL)

10.40 OPG_APIS.GET_SCN
Format

OPG_APIS.GET_SCN() RETURN NUMBER;

Description

Returns the SCN (system change number) of the Oracle Spatial and Graph property graph
support, in YYYYMMDD format.

Note:

Effective with Release 20.3, the OPG_APIS.GET_SCN function is deprecated.
Instead, to retrieve the current SCN (system change number), use the
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER function:

SELECT dbms_flashback.get_system_change_number FROM DUAL;

Parameters

(None.)

Usage Notes

The SCN value is incremented after each commit.

Examples

The following example returns the current build ID of the Oracle Spatial and Graph property
graph support.

SQL> SELECT OPG_APIS.GET_SCN() FROM DUAL;

OPG_APIS.GET_SCN()

 1478701

10.41 OPG_APIS.GET_VERSION
Format

OPG_APIS.GET_VERSION() RETURN VARCHAR2;

Description

Returns the current version of the Oracle Spatial and Graph property graph support.

Chapter 10
OPG_APIS.GET_SCN

10-47

Parameters

(None.)

Usage Notes

(None.)

Examples

The following example returns the current version of the Oracle Spatial and Graph
property graph support.

SQL> SELECT OPG_APIS.GET_VERSION() FROM DUAL;

OPG_APIS.GET_VERSION()
--
12.2.0.1 P1

10.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL
Format

OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object based on a geometry in WKT (well known text)
form and optionally an SRID.

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following statements return a point geometry and a line string geometry

SQL> select opg_apis.get_wktgeometry_from_v_col('POINT(10.0 5.1)',
8307) from dual;

OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL('POINT(10.05.1)',8307)(SDO_GTYPE,
SDO_SRID,

Chapter 10
OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL

10-48

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

SQL> select opg_apis.get_wktgeometry_from_v_col('LINESTRING(30 10, 10 30, 40
40)',8307) from dual;

OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL('LINESTRING(3010,1030,4040)',8307)
(SDO_GTYPE

SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY(
30, 10, 10, 30, 40, 40))

10.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS
Format

OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object based on a geometry in WKT (well known text) form, a
type value, and optionally an SRID.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null value
or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY object.
The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/latitude
coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of generating
an exception.

Examples

The following statements return a point geometry and a polygon geometry

SQL> select opg_apis.get_wktgeometry_from_v_t_cols('POINT(10.0
5.1)',20,8307) from dual;

Chapter 10
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS

10-49

OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS('POINT(10.05.1)',20,8307)
(SDO_GTYPE, SDO_
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

SQL> select opg_apis.get_wktgeometry_from_v_t_cols('POLYGON((-83.6
34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))',20,8307) from
dual;

OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS('POLYGON((-83.634.1,-83.634.3,-83
.434.3,-
--

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

10.44 OPG_APIS.GRANT_ACCESS
Format

OPG_APIS.GRANT_ACCESS(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 other_user IN VARCHAR2,
 privilege IN VARCHAR2);

Description

Grants access privileges on a property graph to another database user.

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

other_user
Name of the database user to which on e or more access privileges will be granted.

privilege
A string of characters indicating privileges: R for read, S for select, U for update, D for
delete, I for insert, A for all. Do not use commas or any other delimiter.
If you specify A, do not specify any other values because A includes all access
privileges.

Usage Notes

(None.)

Chapter 10
OPG_APIS.GRANT_ACCESS

10-50

Examples

The following example grants read and select (RS) privileges on the mypg property graph
owned by database user SCOTT to database user PGUSR. It then connects as PGUSR and
queries the mypg vertex table in the SCOTT schema.

CONNECT scott/<password>

EXECUTE OPG_APIS.GRANT_ACCESS('scott', 'mypg', 'pgusr', 'RS');

CONNECT pgusr/<password>

SELECT count(1) from scott.mypgVT$;

 17

10.45 OPG_APIS.IMP_EDGE_TAB_STATS
Format

OPG_APIS.IMP_EDGE_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT FALSE,
 force BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the given property graph edge table (GE$) from the user statistics
table identified by stattab and stores them in the dictionary. If cascade is TRUE, all index
statistics associated with the specified table are also imported.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing stattab.

Chapter 10
OPG_APIS.IMP_EDGE_TAB_STATS

10-51

no_invalidate
If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS.AUTO_INVALIDATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if the statistics are locked.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported
values are 'OBJECT_STATS' (the default: table statistics, column statistics, and index
statistics) and ‘SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the edge table
statistics, issues a query to count the relevant rows for the newly created statistics,
and finally imports the statistics back.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_EDGE_TAB_STATS('mypg', 'mystat', 'edge_stats_id_1', true,
null, 'OBJECT_STATS');

SELECT count(1) FROM mystat WHERE statid='EDGE_STATS_ID_1';

 153

EXECUTE OPG_APIS.IMP_EDGE_TAB_STATS('mypg', 'mystat', 'edge_stats_id_1', true,
null, false, true, 'OBJECT_STATS');

10.46 OPG_APIS.IMP_VERTEX_TAB_STATS
Format

OPG_APIS.IMP_VERTEX_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT FALSE,
 force BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the given property graph vertex table (VT$) from the user
statistics table identified by stattab and stores them in the dictionary. If cascade is
TRUE, all index statistics associated with the specified table are also imported.

Chapter 10
OPG_APIS.IMP_VERTEX_TAB_STATS

10-52

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing stattab.

no_invalidate
If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS.AUTO_INVALIDATE (the usual default) is in effect, Oracle
Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if the statistics are locked.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported values
are 'OBJECT_STATS' (the default: table statistics, column statistics, and index statistics) and
‘SYNOPSES' (auxiliary statistics created when statistics are incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the vertex table
statistics, issues a query to count the relevant rows for the newly created statistics, and finally
imports the statistics back.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_VERTEX_TAB_STATS('mypg', 'mystat', 'vertex_stats_id_1', true,
null, 'OBJECT_STATS');

SELECT count(1) FROM mystat WHERE statid='VERTEX_STATS_ID_1';

 108

EXECUTE OPG_APIS.IMP_VERTEX_TAB_STATS('mypg', 'mystat', 'vertex_stats_id_1', true,
null, false, true, 'OBJECT_STATS');

Chapter 10
OPG_APIS.IMP_VERTEX_TAB_STATS

10-53

10.47 OPG_APIS.PR
Format

OPG_APIS.PR(
 edge_tab_name IN VARCHAR2,
 d IN NUMBER DEFAULT 0.85,
 num_iterations IN NUMBER DEFAULT 10,
 convergence IN NUMBER DEFAULT 0.1,
 dop IN INTEGER DEFAULT 4,
 wt_node_pr IN OUT VARCHAR2,
 wt_node_nextpr IN OUT VARCHAR2,
 wt_edge_tab_deg IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 tablespace IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 num_vertices OUT NUMBER);

Description

Prepares for page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

d
Damping factor.

num_iterations
Number of iterations for calculating the page rank values.

convergence
A threshold. If the difference between the page rank value of the current iteration and
next iteration is lower than this threshold, then computation stops.

dop
Degree od parallelism for the operation.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

Chapter 10
OPG_APIS.PR

10-54

tablespace
Name of the tablespace to hold all the graph data and index data.

options
Additional settings for the operation. An optional string with one or more (comma-separated)
of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

num_vertices
Number of vertices processed by the page rank calculation.

Usage Notes

The property graph edge table must exist in the database, and the OPG_APIS.PR_PREP
procedure must have been called.

Examples

The following example performs preparation, and then calculates the page rank value of
vertices in a property graph named mypg.

set serveroutput on
DECLARE
 wt_pr varchar2(2000); -- name of the table to hold PR value of the current
iteration
 wt_npr varchar2(2000); -- name of the table to hold PR value for the next iteration
 wt3 varchar2(2000);
 wt4 varchar2(2000);
 wt5 varchar2(2000);
 n_vertices number;
BEGIN
 wt_pr := 'mypgPR';
 opg_apis.pr_prep('mypgGE$', wt_pr, wt_npr, wt3, wt4, null);
 dbms_output.put_line('Working table names ' || wt_pr
 || ', wt_npr ' || wt_npr || ', wt3 ' || wt3 || ', wt4 '|| wt4);
 opg_apis.pr('mypgGE$', 0.85, 10, 0.01, 4, wt_pr, wt_npr, wt3, wt4, 'SYSAUX', null,
n_vertices)
;
END;
/

The output will be similar to the following.

Working table names "MYPGPR", wt_npr "MYPGGE$$TWPRX277", wt3
"MYPGGE$$TWPRE277", wt4 "MYPGGE$$TWPRD277"

The calculated page rank value is stored in the mypgpr table which has the following
definition and data.

SQL> desc mypgpr;
 Name Null? Type
 --- -------- ----------------------------
 NODE NOT NULL NUMBER
 PR NUMBER
 C NUMBER

SQL> select node, pr from mypgpr;

Chapter 10
OPG_APIS.PR

10-55

 NODE PR
---------- ----------
 101 .1925
 201 .2775
 102 .1925
 104 .74383125
 105 .313625
 103 .1925
 100 .15
 200 .15

10.48 OPG_APIS.PR_CLEANUP
Format

OPG_APIS.PR_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_node_pr IN OUT VARCHAR2,
 wt_node_nextpr IN OUT VARCHAR2,
 wt_edge_tab_deg IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Performs cleanup after performing page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Usage Notes

You do not need to do cleanup after each call to the OPG_APIS.PR procedure. You
can run several page rank calculations before calling the OPG_APIS.PR_CLEANUP
procedure.

Chapter 10
OPG_APIS.PR_CLEANUP

10-56

Examples

The following example does the cleanup work after running page rank calculations in a
property graph named mypg.

EXECUTE OPG_APIS.PR_CLEANUP('mypgGE$', wt_pr, wt_npr, wt3, wt4, null);

10.49 OPG_APIS.PR_PREP
Format

OPG_APIS.PR_PREP(
 edge_tab_name IN VARCHAR2,
 wt_node_pr IN OUT VARCHAR2,
 wt_node_nextpr IN OUT VARCHAR2,
 wt_edge_tab_deg IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares for page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

options
Additional settings for the operation. An optional string with one or more (comma-separated)
of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example does the preparation work before running page rank calculations in a
property graph named mypg.

Chapter 10
OPG_APIS.PR_PREP

10-57

set serveroutput on
DECLARE
 wt_pr varchar2(2000); -- name of the table to hold PR value of the current
iteration
 wt_npr varchar2(2000); -- name of the table to hold PR value for the next
iteration
 wt3 varchar2(2000);
 wt4 varchar2(2000);
 wt5 varchar2(2000);
BEGIN
 wt_pr := 'mypgPR';
 opg_apis.pr_prep('mypgGE$', wt_pr, wt_npr, wt3, wt4, null);
 dbms_output.put_line('Working table names ' || wt_pr
 || ', wt_npr ' || wt_npr || ', wt3 ' || wt3 || ', wt4 '|| wt4);
END;
/

The output will be similar to the following.

Working table names "MYPGPR", wt_npr "MYPGGE$$TWPRX277", wt3
"MYPGGE$$TWPRE277", wt4 "MYPGGE$$TWPRD277"

10.50 OPG_APIS.PREPARE_TEXT_INDEX
Format

OPG_APIS.PREPARE_TEXT_INDEX();

Description

Performs preparatory work needed before a text index can be created on any
NVARCHAR2 columns.

Parameters

None.

Usage Notes

You must have the ALTER SESSION to run this procedure.

Examples

The following example performs preparatory work needed before a text index can be
created on any NVARCHAR2 columns.

EXECUTE OPG_APIS.PREPARE_TEXT_INDEX();

10.51 OPG_APIS.RENAME_PG
Format

OPG_APIS.RENAME_PG(
 graph_name IN VARCHAR2,
 new_graph_name IN VARCHAR2);

Chapter 10
OPG_APIS.PREPARE_TEXT_INDEX

10-58

Description

Renames a property graph.

Parameters

graph_name
Name of the property graph.

new_graph_name
New name for the property graph.

Usage Notes

The graph_name property graph must exist in the database.

Examples

The following example changes the name of a property graph named mypg to mynewpg.

EXECUTE OPG_APIS.RENAME_PG('mypg', 'mynewpg');

10.52 OPG_APIS.SPARSIFY_GRAPH
Format

OPG_APIS.SPARSIFY_GRAPH(
 edge_tab_name IN VARCHAR2,
 threshold IN NUMBER DEFAULT 0.5,
 min_keep IN INTEGER DEFAULT 1,
 dop IN INTEGER DEFAULT 4,
 wt_out_tab IN OUT VARCHAR2,
 wt_und_tab IN OUT VARCHAR2,
 wt_hsh_tab IN OUT VARCHAR2,
 wt_mch_tab IN OUT VARCHAR2,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Performs sparsification (edge trimming) for a property graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

threshold
A numeric value controlling how much sparsification needs to be performed. The lower the
value, the more edges will be removed. Some typical values are: 0.1, 0.2, ..., 0.5

min_keep
A positive integer indicating at least how many adjacent edges should be kept for each
vertex. A recommended value is 1.

Chapter 10
OPG_APIS.SPARSIFY_GRAPH

10-59

dop
Degree of parallelism for the operation.

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold matching count of min hash values.

tbs
A working table to hold the working table data.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

The CREATE TABLE privilege is required to call this procedure.

The sparsification algorithm used is a min hash based local sparsification. See "Local
graph sparsification for scalable clustering", Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data: https://cs.uwaterloo.ca/~tozsu/
courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

Sparsification only involves the topology of a graph. None of the properties (K/V) are
relevant.

Examples

The following example does the preparation work for the edges table of mypg, prints
out the working table names, and runs sparsification. The output, a sparsified graph, is
stored in a table named LEAN_PG, which has two columns, SVID and DVID.

SQL> set serveroutput on
DECLARE
 my_lean_pg varchar2(100) := 'lean_pg'; -- output table
 wt2 varchar2(100);
 wt3 varchar2(100);
 wt4 varchar2(100);
BEGIN
 opg_apis.sparsify_graph_prep('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
 dbms_output.put_line('wt2 ' || wt2 || ', wt3 ' || wt3 || ', wt4 '|| wt4);

 opg_apis.sparsify_graph('mypgGE$', 0.5, 1, 4, my_lean_pg, wt2, wt3, wt4,
'SEMTS', null);
END;
/

Chapter 10
OPG_APIS.SPARSIFY_GRAPH

10-60

https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf
https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

wt2 "MYPGGE$$TWSPAU275", wt3 "MYPGGE$$TWSPAH275", wt4 "MYPGGE$$TWSPAM275"

SQL> describe lean_pg;
 Name Null? Type
 --- -------- ----------------------------
 SVID NUMBER
 DVID NUMBER

10.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP
Format

OPG_APIS.SPARSIFY_GRAPH_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_out_tab IN OUT VARCHAR2,
 wt_und_tab IN OUT VARCHAR2,
 wt_hsh_tab IN OUT VARCHAR2,
 wt_mch_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up after sparsification (edge trimming) for a property graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold matching count of min hash values.

tbs
A working table to hold the working table data

options
(Reserved for future use.)

Usage Notes

The working tables will be dropped after the operation completes.

Examples

The following example does the preparation work for the edges table of mypg, prints out the
working table names, runs sparsification, and then performs cleanup.

Chapter 10
OPG_APIS.SPARSIFY_GRAPH_CLEANUP

10-61

SQL> set serveroutput on
DECLARE
 my_lean_pg varchar2(100) := 'lean_pg';
 wt2 varchar2(100);
 wt3 varchar2(100);
 wt4 varchar2(100);
BEGIN
 opg_apis.sparsify_graph_prep('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
 dbms_output.put_line('wt2 ' || wt2 || ', wt3 ' || wt3 || ', wt4 '|| wt4);

 opg_apis.sparsify_graph('mypgGE$', 0.5, 1, 4, my_lean_pg, wt2, wt3, wt4,
'SEMTS', null);

 -- Add logic here to consume SVID, DVID in LEAN_PG table
 --

 -- cleanup
 opg_apis.sparsify_graph_cleanup('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
END;
/

10.54 OPG_APIS.SPARSIFY_GRAPH_PREP
Format

OPG_APIS.SPARSIFY_GRAPH_PREP(
 edge_tab_name IN VARCHAR2,
 wt_out_tab IN OUT VARCHAR2,
 wt_und_tab IN OUT VARCHAR2,
 wt_hsh_tab IN OUT VARCHAR2,
 wt_mch_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares working table names that are necessary to run sparsification for a property
graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold the matching count of min hash values.

Chapter 10
OPG_APIS.SPARSIFY_GRAPH_PREP

10-62

options
Additional settings for operation. An optional string with one or more (comma-separated) of
the following values:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory' clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

The sparsification algorithm used is a min hash based local sparsification. See "Local graph
sparsification for scalable clustering", Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data: https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/
presentations/ElbagouryPresentation-2.pdf

Examples

The following example does the preparation work for the edges table of mypg and prints out
the working table names.

set serveroutput on

DECLARE
 my_lean_pg varchar2(100) := 'lean_pg';
 wt2 varchar2(100);
 wt3 varchar2(100);
 wt4 varchar2(100);
BEGIN
 opg_apis.sparsify_graph_prep('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
 dbms_output.put_line('wt2 ' || wt2 || ', wt3 ' || wt3 || ', wt4 '|| wt4);
END;
/

The output may be similar to the following.

wt2 "MYPGGE$$TWSPAU275", wt3 "MYPGGE$$TWSPAH275", wt4 "MYPGGE$$TWSPAM275"

Chapter 10
OPG_APIS.SPARSIFY_GRAPH_PREP

10-63

https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf
https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

11
OPG_GRAPHOP Package Subprograms

The OPG_GRAPHOP package contains subprograms for various operations on property
graphs in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and usage
information in earlier chapters of this book.

This chapter provides reference information about the subprograms, in alphabetical order.

• OPG_GRAPHOP.POPULATE_SKELETON_TAB

11.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB
Format

OPG_GRAPHOP.POPULATE_SKELETON_TAB(
 graph IN VARCHAR2,
 dop IN INTEGER DEFAULT 4,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Populates the skeleton table (<graph-name>GT$). By default, any existing content in the
skeleton table is truncated (removed) before the table is populated.

Parameters

graph
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold the index data for the skeleton table.

options
Options that can be used to customize the populating of the skeleton table. (One or more,
comma separated.)

• 'KEEP_DATA=T' causes any existing table not to be removed before the table is
populated. New rows are added after the existing ones.

• 'PDML=T' skips the default index creation.

Usage Notes

You must have the CREATE TABLE and CREATE INDEX privileges to call this procedure.

11-1

There is a unique index constraint on EID column of the skeleton table (GE$). So if
you specify the KEEP_DATA=T option and if the new data overlaps with existing one,
then the unique key constraint will be violated, resulting in an error.

Examples

The following example populates the skeleton table of the property graph named mypg.

EXECUTE OPG_GRAPHOP.POPULATE_SKELETON_TAB('mypg',4, 'pgts', 'PDML=T');

Chapter 11
OPG_GRAPHOP.POPULATE_SKELETON_TAB

11-2

Part II
In-Memory Graph Server (PGX) Advanced
User Guide

Part II provides in-depth information on using the in-memory graph server (PGX) for
advanced users.

Part II contains the following chapters:

• Configuring the In-Memory Graph Server (PGX)
This chapter explains the configuration options for the in-memory graph server (PGX)
and the graph client.

• Graphs Management
You can load, publish, store and delete graphs

• Namespaces and Sharing
The in-memory graph server (PGX) supports separate namespaces that help you to
organize your entities.

• PGX Programming Guides
You can avail all the PGX functionalities through asynchronous Java APIs. Each
asynchronous method has a synchronous equivalent, which blocks the caller thread until
the server produces a response.

• Working with Files Using the Graph Server (PGX)
This chapter describes in detail about working with different file formats to perform
various actions like loading, storing or exporting a graph using the Graph Server (PGX).

• Log Management in the Graph Server (PGX)
The graph server (PGX) internally uses the SLF4J interface with Log4j as the default
logger implementation.

12
Configuring the In-Memory Graph Server
(PGX)

This chapter explains the configuration options for the in-memory graph server (PGX) and the
graph client.

These options can be configured in /etc/oracle/graph/pgx.conf where the graph server is
installed, or passed to the graph server programmatically.

• Configuration Parameters for the Graph Server (PGX) Engine
You can configure the graph server (PGX) engine and the PGX run-time library by
assigning a single JSON file to the in-memory graph server (PGX) at startup.

• Configuration Parameters for Connecting to the Graph Server (PGX)
You can configure the graph server (PGX) to use the required options at startup.

• Configuration Parameters for the Graph Client
You can configure the PGX graph client. All the parameters are available as command-
line options also.

12.1 Configuration Parameters for the Graph Server (PGX)
Engine

You can configure the graph server (PGX) engine and the PGX run-time library by assigning
a single JSON file to the in-memory graph server (PGX) at startup.

This file includes the parameters shown in the following table.

To specify the configuration file, see Specifying the Configuration File to the In-Memory
Graph Server (PGX).

Note:

• Relative paths in parameter values are always resolved relative to the parent
directory of the configuration file in which they are specified. For example, if the
configuration file is /pgx/conf/pgx.conf, then the file path graph-configs/my-
graph.bin.json inside that file would be resolved to /pgx/conf/graph-
configs/my-graph.bin.json.

• The parameter default values are optimized to deliver the best performance
across a wide set of algorithms. Depending on your workload. you may be able
to improve performance further by experimenting with different strategies, sizes,
and thresholds.

12-1

Table 12-1 Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

admin_request_cache_timeout int
ege
r

After how many seconds admin request results get
removed from the cache. Requests which are not done
or not yet consumed are excluded from this timeout.
Note: This is only relevant if PGX is deployed as a
webapp.

60

allow_idle_timeout_overwrite boo
lea
n

If true, sessions can overwrite the default idle timeout. tru
e

allow_override_scheduling_informat
ion

boo
lea
n

If true, allow all users to override scheduling information
like task weight, task priority, and number of threads

tru
e

allow_task_timeout_overwrite boo
lea
n

If true, sessions can overwrite the default task timeout. tru
e

allow_user_auto_refresh boo
lea
n

If true, users may enable auto refresh for graphs they
load. If false, only graphs mentioned
in preload_graphs can have auto refresh enabled.

fal
se

allowed_remote_loading_locations arr
ay
of
str
ing

Allow loading graphs into the PGX engine from remote
locations (http, https, ftp, ftps, s3, hdfs). If empty, as by
default, no remote location is allowed. If "*" is specified
in the array, all remote locations are allowed. Only the
value "*" is currently supported. Note that pre-loaded
graphs are loaded from any location, regardless of the
value of this setting.

WARNING:

This parameter reduces
security and therefore use
it only when needed.

[]

basic_scheduler_config obj
ect

Configuration parameters for the fork join pool backend. nul
l

bfs_iterate_que_task_size int
ege
r

Task size for BFS iterate QUE phase. 128

bfs_threshold_parent_read_based num
ber

Threshold of BFS traversal level items to switch to
parent-read-based visiting strategy.

0.0
5

bfs_threshold_read_based int
ege
r

Threshold of BFS traversal level items to switch to read-
based visiting strategy.

102
4

bfs_threshold_single_threaded int
ege
r

Until what number of BFS traversal level items vertices
are visited single-threaded.

128

character_set str
ing

Standard character set to use throughout PGX. UTF-8 is
the default. Note: Some formats may not be compatible.

utf
-8

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-2

Table 12-1 (Cont.) Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

cni_diff_factor_default int
ege
r

Default diff factor value used in the common neighbor
iterator implementations.

8

cni_small_default int
ege
r

Default value used in the common neighbor iterator
implementations, to indicate below which threshold a
subarray is considered small.

128

cni_stop_recursion_default int
ege
r

Default value used in the common neighbor iterator
implementations, to indicate the minimum size where the
binary search approach is applied.

96

dfs_threshold_large int
ege
r

Value that determines at which number of visited
vertices the DFS implementation will switch to data
structures that are optimized for larger numbers of
vertices.

409
6

enable_csrf_token_checks boo
lea
n

If true, the PGX webapp will verify the Cross-Site
Request Forgery (CSRF) token cookie and request
parameters sent by the client exist and match. This is to
prevent CSRF attacks.

tru
e

enable_gm_compiler boo
lea
n

If true, enable dynamic compilation of PGX Algorithm
API (or Green-Marl code) during runtime.

tru
e

enable_shutdown_cleanup_hook boo
lea
n

If true, PGX will add a JVM shutdown hook that will
automatically shutdown PGX at JVM shutdown. Notice:
Having the shutdown hook deactivated and not explicitly
shutting down PGX may result in pollution of your temp
directory.

tru
e

enterprise_scheduler_config obj
ect

Configuration parameters for the enterprise scheduler. nul
l

enterprise_scheduler_flags obj
ect

[relevant for enterprise_scheduler] Enterprise
scheduler-specific settings.

nul
l

explicit_spin_locks boo
lea
n

true means spin explicitly in a loop until lock becomes
available. false means using JDK locks which rely on
the JVM to decide whether to context switch or spin.
Setting this value to true usually results in better
performance.

tru
e

file_locations arr
ay
of
obj
ect

The file locations that can be used in the authorization-
config.

[]

graph_algorithm_language enu
m[G
M_L
EGA
CY,
GM,
JAV
A]

Front-end compiler to use. gm

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-3

Table 12-1 (Cont.) Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

graph_validation_level enu
m[l
ow,
hig
h]

Level of validation performed on newly loaded or created
graphs.

low

ignore_incompatible_backend_operat
ions

boo
lea
n

If true, only log when encountering incompatible
operations and configuration values in RTS or FJ pool. If
false, throw exceptions.

fal
se

in_place_update_consistency_model enu
m[A
LLL
OW_
INC
ONS
IST
ENC
IES
,
CAN
CEL
_TA
SKS
]

Consistency model used when in-place updates occur.
Only relevant if in-place updates are enabled. Currently
updates are only applied in place if the updates are not
structural (Only modifies properties). Two models are
currently implemented, one only delays new tasks when
an update occurs, the other also delays running tasks.

all
ow_
inc
ons
ist
enc
ies

init_pgql_on_startup boo
lea
n

If true PGQL is directly initialized on start-up of PGX.
Otherwise, it is initialized during the first use of PGQL.

tru
e

interval_to_poll_max int
ege
r

Exponential backoff upper bound (in ms) to which -once
reached, the job status polling interval is fixed

100
0

java_home_dir str
ing

The path to Java's home directory. If set to <system-
java-home-dir>, use the java.home system property.

nul
l

large_array_threshold int
ege
r

Threshold when the size of an array is too big to use a
normal Java array. This depends on the used JVM.
(Defaults to Integer.MAX_VALUE - 3)

214
748
364
4

max_active_sessions int
ege
r

Maximum number of sessions allowed to be active at a
time.

102
4

max_distinct_strings_per_pool int
ege
r

[only relevant if string_pooling_strategy is indexed]
Number of distinct strings per property after which to
stop pooling. If the limit is reached, an exception is
thrown.

655
36

max_http_client_request_size lon
g

Maximum size in bytes of any http request sent to to
the PGX server over the REST API. Setting it to -1
allows requests of any size.

104
857
60

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-4

Table 12-1 (Cont.) Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

max_off_heap_size int
ege
r

Maximum amount of off-heap memory (in megabytes)
that PGX is allowed to allocate before an
OutOfMemoryError will be thrown.

Note:

This limit is not guaranteed
to never be exceeded,
because of rounding and
synchronization trade-offs.
It only serves as threshold
when PGX starts to reject
new memory allocation
requests.

<av
ail
abl
e-
phy
sic
al-
mem
ory
>

max_queue_size_per_session int
ege
r

The maximum number of pending tasks allowed to be in
the queue, per session. If a session reaches the
maximum, new incoming requests of that sesssion get
rejected. A negative value means infinity or unlimited..

-1

max_snapshot_count int
ege
r

Number of snapshots that may be loaded in the engine
at the same time. New snapshots can be created via
auto or forced update. If the number of snapshots of a
graph reaches this threshold, no more auto-updates will
be performed, and a forced update will result in an
exception until one or more snapshots are removed from
memory. A value of zero indicates to support an
unlimited amount of snapshots.

0

memory_allocator enu
m[b
asi
c_a
llo
cat
or,
ent
erp
ris
e_a
llo
cat
or]

The memory allocator to use. bas
ic_
all
oca
tor

memory_cleanup_interval int
ege
r

Memory cleanup interval in seconds. 600

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-5

Table 12-1 (Cont.) Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

min_array_compaction_threshold num
ber

Minimum value (only relevant for graphs optimized for
updates) that can be used for the
array_compaction_threshold value in graph
configuration. If a graph configuration attemps to use a
value lower than the one specified by
min_array_compaction_threshold, it will use
min_array_compaction_threshold instead.

0.2

min_fetch_interval_sec int
ege
r

For delta-refresh (only relevant if the graph format
supports delta updates), the lowest interval at which a
graph source is queried for changes. You can tune this
value to prevent PGX from hanging due to too frequent
graph delta-refreshing.

2

min_update_interval_sec int
ege
r

For auto-refresh, the lowest interval after which a new
snapshot is created, either by reloading the entire graph
or if the format supports delta-updates, out of the
cached changes (only relevant if the format supports
delta updates). You can tune this value to prevent PGX
from hanging due to too frequent graph auto-refreshing.

2

ms_bfs_frontier_type_strategy enu
m[a
uto
_gr
ow,
sho
rt,
int
]

The type strategy to use for MS-BFS frontiers. aut
o_g
row

num_spin_locks int
ege
r

Number of spin locks each generated app will create at
instantiation. Trade-off: a small number implies less
memory consumption; a large number implies faster
execution (if algorithm uses spin locks).

102
4

parallelism int
ege
r

Number of worker threads to be used in thread pool.
Note: If the caller thread is part of another thread-pool,
this value is ignored and the parallelism of the parent
pool is used.

<nu
mbe
r-
of-
cpu
s>

pattern_matching_supernode_cache_t
hreshold

int
ege
r

Minimum number of a node's neighbor to be a
supernode. This is for the pattern matching engine.

100
0

pgx_realm obj
ect

Configuration parameters for the realm. nul
l

pooling_factor num
ber

[only relevant if string_pooling_strategy is on_heap] This
value prevents the string pool to grow as big as the
property size, which could render the pooling ineffective.

0.2
5

preload_graphs arr
ay
of
obj
ect

List of graph configs to be registered at start-up. Each
item includes path to a graph config, the name of the
graph and whether it should be published.

[]

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-6

Table 12-1 (Cont.) Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

random_generator_strategy enu
m[n
on_
det
erm
ini
sti
c,
det
erm
ini
sti
c]

Method of generating random numbers in PGX. non
_de
ter
min
ist
ic

random_seed lon
g

[relevant for deterministic random number generator
only] Seed for the deterministic random number
generator used in pgx. The default is
-24466691093057031.

-24
466
691
093
057
031

release_memory_threshold num
ber

Threshold percentage (decimal fraction) of used
memory after which the engine starts freeing unused
graphs. Examples: A value of 0.0 means graphs get
freed as soon as their reference count becomes zero.
That is, all sessions which loaded that graph were
destroyed/timed out. A value of 1.0 means graphs never
get freed, and the engine will throw OutOfMemoryErrors
as soon as a graph is needed which does not fit in
memory anymore. A value of 0.7 means the engine
keeps all graphs in memory as long as total memory
consumption is below 70% of total available memory,
even if there is currently no session using them. When
consumption exceeds 70% and another graph needs to
get loaded, unused graphs get freed until memory
consumption is below 70% again.

0.8
5

revisit_threshold int
ege
r

Maximum number of matched results from a node to be
cached.

409
6

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-7

Table 12-1 (Cont.) Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

scheduler enu
m[b
asi
c_s
che
dul
er,
ent
erp
ris
e_s
che
dul
er,
low
_la
ten
cy_
sch
edu
ler
]

The scheduler to use.
• basic_scheduler: uses a scheduler with basic

features
• enterprise_scheduler: uses a scheduler with

advanced enterprise features for running multiple
tasks concurrently and providing better performance

• low_latency_scheduler: uses a scheduler that
privileges latency of tasks over throughput or
fairness across multiple sessions. The
low_latency_scheduler is only available in
embedded mode.

ent
erp
ris
e_s
che
dul
er

session_idle_timeout_secs int
ege
r

Timeout of idling sessions in seconds. Zero (0) means
infinity or no timeout

0

session_task_timeout_secs int
ege
r

Timeout in seconds to interrupt long-running tasks
submitted by sessions (algorithms, I/O tasks). Zero (0)
means infinity or no timeout.

0

small_task_length int
ege
r

Task length if the total amount of work is smaller than
default task length (only relevant for task-stealing
strategies).

128

strict_mode boo
lea
n

If true, exceptions are thrown and logged with ERROR
level whenever the engine encounters configuration
problems, such as invalid keys, mismatches, and other
potential errors. If false, the engine logs problems with
ERROR/WARN level (depending on severity) and makes
best guesses and uses sensible defaults instead of
throwing exceptions.

tru
e

string_pooling_strategy enu
m[i
nde
xed
,
on_
hea
p,
non
e]

The string pooling strategy to use. on_
hea
p

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-8

Table 12-1 (Cont.) Configuration Parameters for the Graph Server (PGX) Engine

Parameter Typ
e

Description Def
ault

task_length int
ege
r

Default task length (only relevant for task-stealing
strategies). Should be between 100 and 10000. Trade-
off: a small number implies more fine-grained tasks are
generated, higher stealing throughput; a large number
implies less memory consumption and GC activity.

409
6

tmp_dir str
ing

Temporary directory to store compilation artifacts and
other temporary data. If set to <system-tmp-dir>, uses
the standard tmp directory of the underlying system (/
tmp on Linux).

nul
l

udf_config_directory str
ing

Directory path containing UDF config files. nul
l

use_index_for_reachability_queries enu
m[a
uto
,
off
]

Create index for reachability queries. aut
o

use_memory_mapper_for_reading_pgb boo
lea
n

If true, use memory mapped files for reading graphs in
PGB format if possible; if false, always use a stream-
based implementation.

tru
e

use_memory_mapper_for_storing_pgb boo
lea
n

If true, use memory mapped files for storing graphs in
PGB format if possible; if false, always use a stream-
based implementation.

tru
e

Enterprise Scheduler Parameters

The following parameters are relevant only if the advanced scheduler is used. (They are
ignored if the basic scheduler is used.)

• analysis_task_config

Configuration for analysis tasks. Type: object. Default: prioritymediummax_threads<no-
of-CPUs>weight<no-of-CPUs>

• fast_analysis_task_config

Configuration for fast analysis tasks. Type: object. Default:
priorityhighmax_threads<no-of-CPUs>weight1

• maxnum_concurrent_io_tasks

Maximum number of concurrent tasks. Type: integer. Default: 3

• num_io_threads_per_task

Configuration for fast analysis tasks. Type: object. Default: <no-of-cpus>

Basic Scheduler Parameters

The following parameters are relevant only if the basic scheduler is used. (They are ignored if
the advanced scheduler is used.)

• num_workers_analysis

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-9

Number of worker threads to use for analysis tasks. Type: integer. Default: <no-
of-CPUs>

• num_workers_fast_track_analysis

Number of worker threads to use for fast-track analysis tasks. Type: integer.
Default: 1

• num_workers_io

Number of worker threads to use for I/O tasks (load/refresh/write from/to disk).
This value will not affect file-based loaders, because they are always single-
threaded. Database loaders will open a new connection for each I/O worker.
Default: <no-of-CPUs>

Example 12-1 Minimal In-Memory Graph Server (PGX) Configuration

The following example causes the in-memory graph server (PGX) to initialize its
analysis thread pool with 32 workers. (Default values are used for all other
parameters.)

{
 "enterprise_scheduler_config": {
 "analysis_task_config": {
 "max_threads": 32
 }
 }
}

Example 12-2 Two Pre-loaded Graphs

This example sets more fields and specifies two fixed graphs for loading into memory
during the graph server (PGX) startup.

{
 "enterprise_scheduler_config": {
 "analysis_task_config": {
 "max_threads": 32
 },
 "fast_analysis_task_config": {
 "max_threads": 32
 }
 },
 "memory_cleanup_interval": 600,
 "max_active_sessions": 1,
 "release_memory_threshold": 0.2,
 "preload_graphs": [
 {
 "path": "graph-configs/my-graph.bin.json",
 "name": "my-graph"
 },
 {
 "path": "graph-configs/my-other-graph.adj.json",
 "name": "my-other-graph",
 "publish": false
 }
],
 "authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "my-graph",
 "grant": "read"

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-10

 },
 {
 "preloaded_graph": "my-other-graph",
 "grant": "read"
 }]
 },

]
}

• Configuration of the Graph Server (PGX) Run-Time Parameters

• Specifying the Configuration File to the In-Memory Graph Server (PGX)

• Memory Consumption by the Graph Server (PGX)
The in-memory graph server (PGX) loads the graph into main memory in order to carry
out analysis on the graph and its properties.

12.1.1 Configuration of the Graph Server (PGX) Run-Time Parameters
You can configure the following graph server (PGX) run-time fields.

Table 12-2 Graph Server (PGX) Run-Time Parameters

Parameter Type Description Default

bfs_iterate_que_task_size integer Task size for BFS iterate QUE phase. 128

bfs_threshold_parent_read_base
d

number Threshold of BFS traversal level items above
which to switch to parent-read-based visiting
strategy.

0.05

bfs_threshold_read_based integer Threshold of BFS traversal level items above
which to switch to read-based visiting strategy.

1024

bfs_threshold_single_threaded integer Number until which BFS traversal level items
vertices are visited single-threaded.

128

character_set string Standard charset to use throughout PGX, UTF-8
will be used as default. Note: Some formats may
not be compatible.

utf-8

cni_diff_factor_default integer Default diff factor value used in the common
neighbor iterator implementations.

8

cni_small_default integer Default value used in the common neighbor
iterator implementations, to indicate below which
threshold a subarray is considered small.

128

cni_stop_recursion_default integer Default value used in the common neighbor
iterator implementations, to indicate the minimum
size where the binary search approach is applied.

96

dfs_threshold_large integer Value that determines at which number of visited
vertices, the DFS implementation will switch to
data-structures that are more optimized for larger
numbers of vertices.

4096

enterprise_scheduler_flags object [relevant for enterprise_scheduler]
Enterprise scheduler specific settings.

null

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-11

Table 12-2 (Cont.) Graph Server (PGX) Run-Time Parameters

Parameter Type Description Default

explicit_spin_locks boolean true means spin explicitly in a loop until lock
becomes available. false means using JDK locks
which rely on the JVM to decide whether to context
switch or spin. Our experiments showed that
setting this value to true results in better
performance.

true

graph_validation_level enum[lo
w,
high]

Level of validation performed on newly loaded or
created graphs.

low

max_distinct_strings_per_pool integer [only relevant if string_pooling_strategy
is indexed] Amount of distinct strings per
property after which to stop pooling. If the limit is
reached an exception is thrown.

65536

max_off_heap_size integer Maximum amount of off-heap memory PGX is
allowed to allocate in megabytes, before an
OutOfMemoryError will be thrown.

Note:

This limit is not
guaranteed to never
be exceeded
because of rounding
and synchronization
trade-offs. It only
serves as threshold
when PGX starts to
reject new memory
allocation requests.

<availa
ble-
physica
l-
memory>

memory_allocator enum[ba
sic_all
ocator,
enterpr
ise_all
ocator]

Denotes which memory allocator to use. basic_a
llocato
r

ms_bfs_frontier_type_strategy enum[au
to_grow
,
short,
int]

The type strategy to use for MS-BFS frontiers. auto_gr
ow

num_spin_locks integer Number of spin locks each generated app will
create at instantiation. Trade-off: small number
implies less memory consumption. Big number
implies faster execution (if algorithm uses spin
locks).

1024

pattern_matching_supernode_cac
he_threshold

integer Minimum number of a node's neighbor to be a
supernode. This is for pattern matching engine.

1000

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-12

Table 12-2 (Cont.) Graph Server (PGX) Run-Time Parameters

Parameter Type Description Default

pooling_factor number [only relevant if string_pooling_strategy
is on_heap] This value prevents the string pool to
grow as big as the property size which could
render the pooling ineffective.

0.25

random_generator_strategy enum[no
n_deter
ministi
c,
determi
nistic]

Method of generating random numbers in PGX. non_det
erminis
tic

random_seed long [relevant for deterministic random number
generator only] Seed for the deterministic random
number generator used in PGX. The default is
-24466691093057031.

-244666
9109305
7031

revisit_threshold integer Maximum number of matched results from a node
to be cached.

4096

scheduler enum[ba
sic_sch
eduler,
enterpr
ise_sch
eduler,
low_lat
ency_sc
heduler
]

Denotes which scheduler to use.
• basic_scheduler: use scheduler with

basic features.
• enterprise_scheduler: use scheduler

with advanced, enterprise features for running
multiple tasks concurrently and increased
performance.

• low_latency_scheduler: use
scheduler that privileges latency of tasks over
throughput or fairness across multiple
sessions. The low_latency_scheduler is only
available in embedded mode

enterpr
ise_sch
eduler

small_task_length integer Task length, if total amount of work is small than
default task length (only relevant for task-stealing
strategies).

128

string_pooling_strategy enum[in
dexed,
on_heap
, none]

Denotes which string pooling strategy to use. on_heap

task_length integer Default task length (only relevant for task-stealing
strategies). F/J pool documentation says this value
should be between 100 and 10000. Trade-off:
small number implies more fine-grained tasks are
generated, higher stealing throughput. High
number implies less memory consumption and GC
activity.

4096

use_index_for_reachability_que
ries

enum[au
to,
off]

Create index for reachability queries. auto

use_memory_mapper_for_reading_
pgb

boolean If true, use memory mapped files for reading
graphs in PGB format if possible; false always
use s stream based implementation.

true

use_memory_mapper_for_storing_
pgb

boolean If true, use memory mapped files for storing in
PGB format if possible; if false always use a
stream based implementation.

true

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-13

12.1.2 Specifying the Configuration File to the In-Memory Graph
Server (PGX)

The in-memory graph server configuration file is parsed by the in-memory graph
server at startup-time whenever ServerInstance#startEngine (or any of its variants)
is called. You can write the path to your configuration file to the in-memory graph
server or specify it programmatically. This topic identifies several ways to specify the
file

Programmatically

All configuration fields exist as Java enums. Example:

Map<PgxConfig.Field, Object> pgxCfg = new HashMap<>();
pgxCfg.put(PgxConfig.Field.MEMORY_CLEANUP_INTERVAL, 600);

ServerInstance instance = ...
instance.startEngine(pgxCfg);

All parameters not explicitly set will get default values.

Explicitly Using a File

Instead of a map, you can write the path to an in-memory graph server configuration
JSON file. Example:

instance.startEngine("path/to/pgx.conf"); // file on local file system
instance.startEngine("classpath:/path/to/pgx.conf"); // file on current classpath

For all other protocols, you can write directly in the input stream to a JSON file.
Example:

InputStream is = ...
instance.startEngine(is);

Implicitly Using a File

If startEngine() is called without an argument, the in-memory graph server (PGX)
looks for a configuration file at the following places, stopping when it finds the file:

• File path found in the Java system property pgx_conf. Example: java -
Dpgx_conf=conf/my.pgx.config.json ...

• A file named pgx.conf in the root directory of the current classpath

• A file named pgx.conf in the root directory relative to the
current System.getProperty("user.dir") directory

Note: Providing a configuration is optional. A default value for each field will be used if
the field cannot be found in the given configuration file, or if no configuration file is
provided.

Using the Shell in Embedded Mode

To change how the shell configures the embedded (local) in-memory graph server
(PGX) instance, edit $PGX_HOME/conf/pgx.conf. Changes will be reflected the next
time you invoke $PGX_HOME/bin/pgx.

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-14

You can also change the location of the configuration file as in the following example:

./bin/opg --pgx_conf path/to/my/other/pgx.conf

Setting System Properties

Any parameter can be set using Java system properties by writing -Dpgx.<FIELD>=<VALUE>
arguments to the JVM that the in-memory graph server (PGX) is running on. Note that setting
system properties will overwrite any other configuration. The following example sets the
maximum off-heap size to 256 GB, regardless of what any other configuration says:

java -Dpgx.max_off_heap_size=256000 ...

Setting Environment Variables

Any parameter can also be set using environment variables by adding 'PGX_' to the
environment variable for the JVM in which the in-memory graph server (PGX) is executed.
Note that setting environment variables will overwrite any other configuration; but if a system
property and an environment variable are set for the same parameter, the system property
value is used. The following example sets the maximum off-heap size to 256 GB using an
environment variable:

PGX_MAX_OFF_HEAP_SIZE=256000 java ...

12.1.3 Memory Consumption by the Graph Server (PGX)
The in-memory graph server (PGX) loads the graph into main memory in order to carry out
analysis on the graph and its properties.

The memory consumed by the graph server for a graph is split between the memory to store
the topology of the graph (the information to indicate what are the vertices and edges in the
graph without their attached properties), and the memory for the properties attached to the
vertices and edges. Internally, the graph server (PGX) stores the graph topology in
compressed sparse row (CSR) format, a data structure which has minimal memory footprint
while providing very fast read access.

• Memory Management

12.1.3.1 Memory Management
The in-memory graph server (PGX) requires both on-heap and off-heap memory to store
graph data.

The allocation of memory for the graph data is as shown:

• Graph indexes and graph topology are stored off-heap.

• All primitive properties (integer, long, double, float, boolean, date, local_date, timestamp,
time, point2d) are stored off-heap.

• String properties are stored on-heap.

Default Configuration of Memory Limits

You can configure both on-heap and off-heap memory limits. In case of the on-heap, if you
don't explicitly set a maximum then it will default to the maximum on-heap size determined by
Java Hotspot, which is based on various factors, including the total amount of physical
memory available. In case of the off-heap, if you don't explicitly set a maximum then it will
default to the total physical available memory on the machine.

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-15

• Configuring On-Heap Limits

• Configuring Off-Heap Limits

12.1.3.1.1 Configuring On-Heap Limits
You can configure on-heap limits using Java command-line options.

The available options are:

• -Xmx: to set the maximum on-heap size of the JVM.

• -Xms: to set the initial on-heap size of the JVM.

• -XX:NewSize: to set the initial size of the young generation

• -XX:MaxNewSize: to set the maximum size of the young generation

The following shows an example to configure the on-heap limits using -XX:MaxNewSize
option in a Java application:

java -Xmx<size_mb>m -Xms<size_mb>m -XX:MaxNewSize=<size_mb>m -
XX:NewSize=<size_mb>m

If you are using a JShell client, then you can set the JAVA_OPTS environment variable
before starting the shell. For example:

export JAVA_OPTS="-Xmx<size_gb>g -Xms<size_gb>g -
XX:MaxNewSize=<size_gb>g -XX:NewSize=<size_gb>g "
cd /opt/oracle/graph/
./bin/opg-jshell

12.1.3.1.2 Configuring Off-Heap Limits
You can specify the off-heap limit by setting the max_off_heap_size field in the graph
server (PGX) configuration. See Configuration Parameters for the Graph Server (PGX)
Engine for more information on the max_off_heap_size parameter.

WARNING:

The off-heap limit is not guaranteed to never be exceeded because of
rounding and synchronization trade-offs.

The off-heap limit can be set using Java system properties using -
Dpgx.max_off_heap_size=<size_in_mb> in the JVM argument.

You can also set the off-heap limit using an environment variable. The following
example sets the maximum off-heap size to 256 GB using an environment variable:

PGX_MAX_OFF_HEAP_SIZE=256000 java ...

Chapter 12
Configuration Parameters for the Graph Server (PGX) Engine

12-16

Note:

If both system property and environment variable are set for off-heap limit, then the
system property value is used.

12.2 Configuration Parameters for Connecting to the Graph
Server (PGX)

You can configure the graph server (PGX) to use the required options at startup.

See Configuring the In-Memory Graph Server (PGX)

12.3 Configuration Parameters for the Graph Client
You can configure the PGX graph client. All the parameters are available as command-line
options also.

Table 12-3 Configuration Parameters for the Graph Client

Parameter Type Description Default

access_token string The authentication token. null

base_url string The base url in the format host [: port]
[/path] of the PGX server REST end-
point. If the base_url is null, the default
will be used which points to embedded PGX
instance.

null

cctrace_out string [relevant for enable_cctrace] When
cctrace is enabled, this option specifies a
path to a file where cctrace should log to. If
null it will use the default PGX logger on
level TRACE. If it is the special
value :stderr: it will log to stderr.

null

cctrace_print_stacktrac
es

boolean [relevant for enable_cctrace] When
cctrace is enabled, this flag prints the
stacktrace for each request and result.

false

client_server_interacti
on_mode

enum[as
ync_pol
ling,
blockin
g]

If async_polling the PGX client would poll
the status of the future until it is completed. If
blocking, the PGX client would send a
request to directly get the value of the future
and the server would block until the future
result is ready.

async_polli
ng

enable_cctrace boolean If true log every call to a Control or Core
interface.

false

keystore string The path to the keystore to use for client
connections. The keystore is used to
authenticate this client at the PGX server if
two-way SSL/TLS is enabled.

null

max_client_http_connect
ions

integer Maximum number of connections to open to
the PGX server.

2

password string Keystore password only. null

Chapter 12
Configuration Parameters for Connecting to the Graph Server (PGX)

12-17

Table 12-3 (Cont.) Configuration Parameters for the Graph Client

Parameter Type Description Default

prefetch_size integer Number of items to be prefetched in remote
iterators.

2048

realm_client_config object Implementation dependent configuration
options for the realm client.

null

remote_future_pending_r
etry_interval

integer Number of milliseconds to wait before
sending another request in case a GET
request for a PgxRemoteFuture receives a
202 - Accepted response.

500

remote_future_timeout integer Time that a GET request for a
PgxRemoteFuture will be alive, until it times
out and tries again. Time in milliseconds, set
it to zero for an infinite timeout. See HTTP
Client SO_TIMEOUT for more details.

300000

tls_version string TLS version to be used by the client. For
example, TLSv1.2.

tlsv1.2

truststore string Path to the truststore to use for client
connections. The truststore is used to
validate the server certificate if
communicating over SSL/TLS.

null

upload_batch_size integer Number of items to be uploaded in a batch.
This is used in
Core#addAllToCollection() and
Core#setProperty().

65536

username string Name of the user. null

Example 12-3 Configure the Graph Client Using the Graph PGX Shell

This following is an example to configure the graph client:

cd /opt/oracle/graph
./bin/opg-jshell --base_url https://myhost:8080/pgx --username scott --
prefetch_size 1024 --upload_batch_size 5000 --remote_future_timeout 20000 --
pending_retry_interval 800

Example 12-4 Configure the Graph Client Using the Java API

The following is an example to configure the graph client programatically using the
Pgx.getInstance methods:

public static ServerInstance getInstance(String baseUrl, String
username, String password, Integer prefetchSize,
 Integer uploadBatchSize, Integer remoteFutureTimeout, Integer
remoteFuturePendingRetryInterval)

Chapter 12
Configuration Parameters for the Graph Client

12-18

To specify key store and trust store for SSL connections use the standard JDK system
properties:

System.setProperty("javax.net.ssl.trustStore","<truststore>");
System.setProperty("javax.net.ssl.keyStore","<keystore>");
System.setProperty("javax.net.ssl.keyStorePassword","<password>");

Chapter 12
Configuration Parameters for the Graph Client

12-19

13
Graphs Management

You can load, publish, store and delete graphs

• Loading a Graph Into the Graph Server (PGX)

• Publishing a Graph

• Publishing a Preloaded Graph

• Deleting a Graph

13.1 Loading a Graph Into the Graph Server (PGX)
Data from relational tables can be modeled as a property graph and loaded into the graph
server.

The graph server (PGX) supports various data sources and data formats for loading graph
data, including file system and database formats. See Data Format Support Matrix to get
more information on the supported data formats.

In order to perform graph analysis with the graph server (PGX), you must first read a graph
into PGX.

There are three ways to read a graph into the graph server (PGX):

• Loading a graph from Oracle Database tables by using the GraphConfigBuilder class to
create Oracle RDBMS graph configs programmatically via Java methods.
See Defining the Graph Configuration via Java for more details.

• Loading a graph from Oracle Database tables by writing a PGX graph configuration file in
JSON format.
See Creating a JSON Configuration to Load a Graph for more details.

• Loading a graph using PGQL - CREATE PROPERTY GRAPH statement.
See Creating a Property Graph using PGQL for more details.

• API for Loading Graphs into Memory

• Graph Configuration Options

• Defining the Graph Configuration via Java

• Creating a JSON Configuration to Load a Graph

• Preloading a Graph

• Data Loading Security Best Practices

• Data Format Support Matrix

• Immutability of Loaded Graphs

13-1

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/config/GraphConfigBuilder.html

13.1.1 API for Loading Graphs into Memory
The following methods in PgxSession can be used to load graphs into the graph server
(PGX) memory:

Loading a graph using Java

PgxGraph readGraphWithProperties(String path)
PgxGraph readGraphWithProperties(String path, String newGraphName)
PgxGraph readGraphWithProperties(GraphConfig config)
PgxGraph readGraphWithProperties(GraphConfig config, String newGraphName)
PgxGraph readGraphWithProperties(GraphConfig config, boolean
forceUpdateIfNotFresh)
PgxGraph readGraphWithProperties(GraphConfig config, boolean
forceUpdateIfNotFresh, String newGraphName)
PgxGraph readGraphWithProperties(GraphConfig config, long maxAge, TimeUnit
maxAgeTimeUnit)
PgxGraph readGraphWithProperties(GraphConfig config, long maxAge, TimeUnit
maxAgeTimeUnit, boolean blockIfFull, String newGraphName)

Loading a graph using Python

read_graph_with_properties(self, config, max_age=9223372036854775807,
max_age_time_unit='days',
 block_if_full=False,
update_if_not_fresh=True, graph_name=None)

The first argument (path to a graph config file or a parsed config object) is the meta-
data of the graph to be read. The meta-data includes the following information:

• Location of the graph data: file location and name, DB location and connection
information and so on

• Format of the graph data: plain text formats, XML-based formats, Binary formats
and so on

• Types and Names of the properties to be loaded

The forceUpdateIfNotFresh and maxAge arguments can be used to fine-control the
age of the snapshot to be read. The graph server (PGX) will return an existing graph
snapshot if the given graph specification was already loaded into memory by a
different session. So, the maxAge argument becomes important if reading from a
database in which the data might change frequently. If no forceUpdateIfNotFresh or
maxAge is specified, PGX will favor cached data over reading new snapshots into
memory.

13.1.2 Graph Configuration Options
The following table lists the JSON fields that are common to all graph configurations:

Table 13-1 Graph Config JSON Fields

Field Type Description Default

name string Name of the graph. Require
d

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-2

Table 13-1 (Cont.) Graph Config JSON Fields

Field Type Description Default

array_compactio
n_threshold

number [only relevant if the graph is optimized for
updates] Threshold used to determined
when to compact the delta-logs into a
new array. If lower than the engine
min_array_compaction_threshold
value,
min_array_compaction_threshold
will be used instead

0.2

attributes object Additional attributes needed to read and
write the graph data.

null

edge_id_strateg
y

enum[no_ids
,
keys_as_ids
,
unstable_ge
nerated_ids
]

Indicates what ID strategy should be used
for the edges of this graph. If not specified
(or set to null), the strategy will be
determined during loading or using a
default value.

null

edge_id_type enum[long] Type of the edge ID. Setting it to long
requires the IDs in the edge providers to
be unique across the graphs; those IDs
will be used as global IDs. Setting it to
null (or omitting it) will allow repeated
IDs across different edge providers and
PGX will automatically generate globally-
unique IDs for the edges.

null

edge_providers array of
object

List of edge providers in this graph. []

error_handling object Error handling configuration. null

external_stores array of
object

Specification of the external stores where
external string properties reside.

[]

jdbc_url string JDBC URL pointing to an RDBMS
instance

null

keystore_alias string Alias to the keystore to use when
connecting to database.

null

loading object Loading-specific configuration to use. null

local_date_form
at

array of
string

array of local_date formats to use
when loading and storing local_date
properties. See DateTimeFormatter for
more details of the format string

[]

max_prefetched_
rows

integer Maximum number of rows prefetched
during each round trip resultset-database.

10000

num_connections integer Number of connections to read and write
data from or to the RDBMS table.

<no-
of-
cpus>

optimized_for enum[read,
updates]

Indicates if the graph should use data-
structures optimized for read-intensive
scenarios or for fast updates.

read

password string Password to use when connecting to
database.

null

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-3

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Table 13-1 (Cont.) Graph Config JSON Fields

Field Type Description Default

point2d string Longitude and latitude as floating point
values separated by a space.

0.0
0.0

redaction_rules array of
object

Array of redaction rules. []

rules_mapping array of
object

Mapping for redaction rules to users and
roles.

[]

schema string Schema to use when reading or writing
RDBMS objects

null

time_format array of
string

The time format to use when loading and
storing time properties. See
DateTimeFormatter for a documentation
of the format string.

[]

time_with_timez
one_format

array of
string

The time with timezone format to use
when loading and storing time with
timezone properties. Please see
DateTimeFormatter for more information
of the format string.

[]

timestamp_forma
t

array of
string

The timestamp format to use when
loading and storing timestamp properties.
See DateTimeFormatter for more
information of the format string.

[]

timestamp_with_
timezone_format

array of
string

The timestamp with timezone format
to use when loading and storing
timestamp with timezone properties.
See DateTimeFormatter for more
information of the format string.

[]

username string Username to use when connecting to an
RDBMS instance.

null

vector_componen
t_delimiter

character Delimiter for the different components of
vector properties.

;

vertex_id_strat
egy

enum[no_ids
,
keys_as_ids
,
unstable_ge
nerated_ids
]

Indicates what ID strategy should be used
for the vertices of this graph. If not
specified (or set to null), the strategy will
be automatically detected.

null

vertex_id_type enum[int,
integer,
long,
string]

Type of the vertex ID. For homogeneous
graphs, if not specified (or set to null), it
will default to a specific value (depending
on the origin of the data).

null

vertex_provider
s

array of
object

List of vertex providers in this graph. []

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-4

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Note:

Database connection fields specified in the graph configuration will be used as
default in case underlying data provider configuration does not specify them.

Provider Configuration JSON file Options

You can specify the meta-information about each provider's data using provider
configurations. Provider configurations include the following information about the provider
data:

• Location of the data: a file, multiple files or database providers

• Information about the properties: name and type of the property

Table 13-2 Provider Configuration JSON file Options

Field Type Description Default

format enum[pgb,
csv, rdbms]

Provider format. Require
d

name string Entity provider name. Require
d

attributes object Additional attributes needed to read and write
the graph data.

null

destination_vert
ex_provider

string Name of the destination vertex provider to be
used for this edge provider.

null

error_handling object Error handling configuration. null

has_keys boolean Indicates if the provided entities data have
keys.

true

key_type enum[int,
integer,
long,
string]

Type of the keys. long

keystore_alias string Alias to the keystore to use when connecting
to database.

null

label string label for the entities loaded from this provider. null

loading object Loading-specific configuration. null

local_date_forma
t

array of
string

Array of local_date formats to use when
loading and storing local_date properties.
See DateTimeFormatter for a documentation
of the format string.

[]

password string Password to use when connecting to
database.

null

point2d string Longitude and latitude as floating point
values separated by a space.

0.0 0.0

props array of
object

Specification of the properties associated
with this entity provider.

[]

source_vertex_pr
ovider

string Name of the source vertex provider to be
used for this edge provider.

null

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-5

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Table 13-2 (Cont.) Provider Configuration JSON file Options

Field Type Description Default

time_format array of
string

The time format to use when loading and
storing time properties. See
DateTimeFormatter for a documentation of
the format string.

[]

time_with_timezo
ne_format

array of
string

The time with timezone format to use when
loading and storing time with timezone
properties. See DateTimeFormatter for a
documentation of the format string.

[]

timestamp_format array of
string

The timestamp format to use when loading
and storing timestamp properties. See
DateTimeFormatter for a documentation of
the format string.

[]

timestamp_with_t
imezone_format

array of
string

The timestamp with timezone format to use
when loading and storing timestamp with
timezone properties. See DateTimeFormatter
for a documentation of the format string.

[]

vector_component
_delimiter

character Delimiter for the different components of
vector properties.

;

Provider Labels

The label field in the provider configuration can be used to set a label for the entities
loaded from the provider. If no label is specified, all entities from the provider are
labeled with the name of the provider. It is only possible to set the same label for two
different providers if they have exactly the same properties (same names and same
types).

Property Configuration

The props entry in the Provider configuration is an object with the following JSON
fields:

Table 13-3 Property Configuration

Field Type Description Default

name string Name of the property. Require
d

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-6

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Table 13-3 (Cont.) Property Configuration

Field Type Description Default

type enum[boolea
n, integer,
vertex,
edge,
float,
long,
double,
string,
date,
local_date,
time,
timestamp,
time_with_t
imezone,
timestamp_w
ith_timezon
e, point2d]

Type of the property .

Note:

date is
deprecated,
use one of
local_da
te / time /
timestam
p /
time_wit
h_timezo
ne /
timestam
p_with_t
imezone
instead).

vertex/edge are place-holders for the
type specified in vertex_id_type/
edge_id_type fields.

Require
d

aggregate enum[identi
ty,
group_key,
min, max,
avg, sum,
concat,
count]

[currently unsupported] which
aggregation function to use, aggregation
always happens by vertex key.

null

column value Name or index (starting from 0) of the
column holding the property data. If it is
not specified, the loader will try to use the
property name as column name (for CSV
format only).

null

default value Default value to be assigned to this
property if datasource does not provide it.
In case of date type: string is expected
to be formatted with yyyy-MM-dd
HH:mm:ss. If no default is present (null),
non-existent properties will contain default
Java types (primitives) or empty string
(string) or 01.01.1970 00:00
(date).

null

dimension integer Dimension of property. 0

drop_after_load
ing

boolean [currently unsupported] indicating helper
properties only used for aggregation,
which are dropped after loading

false

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-7

Table 13-3 (Cont.) Property Configuration

Field Type Description Default

field value Name of the JSON field holding the
property data. Nesting is denoted by dot -
separation. Field names containing dots
are possible, in this case the dots need to
be escaped using backslashes to resolve
ambiguities. Only the exactly specified
object are loaded, if they are non existent,
the default value is used.

null

format array of
string

Array of formats of property. []

group_key string [currently unsupported] can only be used
if the property / key is part of the grouping
expression.

null

max_distinct_st
rings_per_pool

integer [only relevant if
string_pooling_strategy is
indexed] Amount of distinct strings per
property after which to stop pooling. If the
limit is reached an exception is thrown. If
set to null, the default value from the
global PGX configuration will be used.

null

stores array of
object

A list of storage identifiers that indicate
where this property resides.

[]

string_pooling_
strategy

enum[indexe
d, on_heap,
none]

Indicates which string pooling strategy to
use. If set to null, the default value from
the global PGX configuration will be used.

null

Loading Configuration

The loading entry is a JSON object with the following fields:

Table 13-4 Loading Configuration

Field Type Description Default

create_key_mapp
ing

boolean If true, a mapping between entity keys
and internal IDs is prepared during
loading.

true

filter string [currently unsupported] the filter
expression

null

grouping_by array of
string

[currently unsupported] array of edge
properties used for aggregator. For
Vertices, only the ID can be used (default)

[]

load_labels boolean Whether or not to load the entity label if it
is available.

false

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-8

Table 13-4 (Cont.) Loading Configuration

Field Type Description Default

strict_mode boolean If true, exceptions are thrown and
logged with ERROR level whenever loader
encounters problems with input file, such
as invalid format, repeated keys, missing
fields, mismatches and other potential
errors. If false, loader may use less
memory during loading phase, but behave
unexpectedly with erratic input files.

true

Error Handling Configuration

The error_handling entry is a JSON object with the following fields:

Table 13-5 Error Handling Configuration

Field Type Description Default

on_missed_prop_k
ey

enum[silent,
log_warn,
log_warn_once,
error]

Error handling for a missing
property key.

log_warn_
once

on_missing_verte
x

enum[ignore_edge
,
ignore_edge_log,
ignore_edge_log_
once,
create_vertex,
create_vertex_lo
g,
create_vertex_lo
g_once, error]

Error handling for a missing source
or destination vertex of an edge in
a vertex data source.

error

on_parsing_issue enum[silent,
log_warn,
log_warn_once,
error]

Error handling for incorrect data
parsing. If set to silent, log_warn
or log_warn_once, will attempt to
continue loading. Some parsing
issues may not be recoverable and
provoke the end of loading.

error

on_prop_conversi
on

enum[silent,
log_warn,
log_warn_once,
error]

Error handling when encountering
a different property type other than
the one specified, but coercion is
possible.

log_warn_
once

on_type_mismatch enum[silent,
log_warn,
log_warn_once,
error]

Error handling when encountering
a different property type other than
the one specified, but coercion is
not possible.

error

on_vector_length
_mismatch

enum[silent,
log_warn,
log_warn_once,
error]

Error handling for a vector property
that does not have the correct
dimension.

error

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-9

Note:

The only supported setting for the on_missing_vertex error handling
configuration is ignore_edge.

13.1.3 Defining the Graph Configuration via Java
You can load a graph from Oracle Database by first defining the graph configuration
object using the GraphConfigBuilder class and then reading the graph into the graph
server (PGX).

Example 13-1 Reading a graph into the graph server (PGX) using
GraphConfigBuilder

GraphConfig cfg = GraphConfigBuilder.forPropertyGraphRdbms()
 .setJdbcUrl("jdbc:oracle:thin:@<host>:<port>/<sid>")
 .setUsername("<username>")
 .setPassword("<password>")
 .setName("bank_graph_analytics")
 .addVertexProperty("id",PropertyType.INTEGER)
 .addEdgeProperty("amount",PropertyType.INTEGER)
 .setPartitionWhileLoading(PartitionWhileLoading.BY_LABEL)
 .setLoadVertexLabels(true)
 .setLoadEdgeLabel(true)
 .build();

PgxGraph "bank_graph_analytics" = session.readGraphWithProperties(cfg);

See Property Graph Schema Objects for Oracle Database for more information.

13.1.4 Creating a JSON Configuration to Load a Graph
In order to load a graph into the graph server (PGX), you can create a graph
configuration file, which contains metadata about the graph to be loaded. See Graph
Configuration Options for more details on graph configuration options.

The following shows a sample graph configuration file:

{
 "name": "bank_graph_analytics",
 "vertex_providers":[
 {
 "name":"Accounts",
 "format":"rdbms",
 "database_table_name":"BANK_NODES",
 "key_column":"ID",
 "key_type": "integer"
 }
],
 "edge_providers":[
 {
 "name":"Transfers",

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-10

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/config/GraphConfigBuilder.html

 "format":"rdbms",
 "database_table_name":"BANK_EDGES_AMT",
 "key_column":"ID",
 "source_column":"SRC_ID",
 "destination_column":"DEST_ID",
 "source_vertex_provider":"Accounts",
 "destination_vertex_provider":"Accounts",
 "props":[
 {
 "name":"AMOUNT",
 "type":"float"
 }
]
 }
]
}

You can now read the graph into the graph server (PGX) using the PgxSession API method
as shown:

Loading a Graph Using JShell

opg4j> session.readGraphWithProperties("bank_graph_analytics.json")

Loading a Graph Using Java

PgxGraph g = session.readGraphWithProperties("bank_graph_analytics.json")

Loading a Graph Using Python

g = session.read_graph_with_properties("bank_graph_analytics.json")

You can also create a graph configuration file using keystore details. See the example in
Loading Graph Configuration Using Keystore for more information.

See API for Loading Graphs into Memory for more information on PgxSession API methods
for reading graphs into memory.

13.1.5 Preloading a Graph
You can configure the graph server (PGX) to preload graphs in memory at startup-time. This
can be useful when you want the graph server (PGX) to startup automatically and have a
graph (or multiple graphs) ready for its users. For example, deploying the graph server (PGX)
on Kubernetes can be one such scenario.

The configuration for this is done through the preload_graphs configuration field in the graph
server (PGX) configuration file.

The following is an example for preloading a graph using the graph configuration file:

{
 "preload_graphs": [
 {

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-11

 "path": "<path-to-graph-config>",
 "name": "my-graph"
 }
],
 "authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "my-graph",
 "grant": "read"
 }]
 },

]
}

You can access a preloaded graph by its name using the getGraph() method of the
session object.

PgxGraph g = session.getGraph("my-graph");

13.1.6 Data Loading Security Best Practices
Loading graph from the database requires authentication and it is therefore
recommended to adhere to the following guidelines when configuring access to this
kind of data source:

• The user or role used to access the data should be a read-only account that only
has access to the required graph data.

• The graph data should be marked as read-only, for example, with non-updateable
views in the case of the database.

13.1.7 Data Format Support Matrix
The following table illustrates how the different data formats differ in the way IDs,
labels and vector properties are handled.

Note:

The table refers to limitations of the PGX implementation of the format and
not necessarily to limitations of the format itself.

Table 13-6 Data Format Support Matrix

Format Vertex
IDs

Edge IDs Vertex
Labels

Edge
Labels

Vector properties

PGB int,
long,
string

long multiple single supported (vectors can be
of type integer, long,
float or double)

Chapter 13
Loading a Graph Into the Graph Server (PGX)

13-12

Table 13-6 (Cont.) Data Format Support Matrix

Format Vertex
IDs

Edge IDs Vertex
Labels

Edge
Labels

Vector properties

CSV int,
long,
string

long multiple single supported (vectors can be
of type integer, long,
float or double)

ADJ_LIST int,
long,
string

not
supported

not
supported

not
supported

supported (vectors can be
of type integer, long,
float or double)

EDGE_LIST int,
long,
string

not
supported

multiple single supported (vectors can be
of type integer, long,
float or double)

GRAPHML int,
long,
string

not
supported

not
supported

not
supported

not supported

TWO_TABLES int,
long,
string

long multiple single only in text datastore
(vectors can be of type
integer, long, float or
double)

PG
(FLAT_FILE
)

int,
long

long single not supported

13.1.8 Immutability of Loaded Graphs
The graph, once loaded into the graph server (PGX), the graph and its properties are
automatically marked as immutable.

The immutability of loaded graphs is due to the following design choices:

• Typical graph analyses happen on a snapshot of a graph instance, and therefore they do
not require mutations of the graph instance.

• Immutability allows PGX to use an internal graph representation optimized for fast
analysis.

• In remote mode, the graph instance might be shared among multiple clients.

However, the graph server (PGX) also provides methods to privatize and mutate graph
instances for the purpose of analysis. See Graph Mutation and Subgraphs for more
information.

13.2 Publishing a Graph
Publishing a Single Graph Snapshot

The publish() methods in PgxGraph can be used to publish the current selected snapshot of
the graph.

Chapter 13
Publishing a Graph

13-13

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publish__

Note:

Calling publish() without arguments publishes the snapshot with its
persistent properties but does not publish transient properties.

This operation will move the graph name from the session-private namespace to the
public namespace (see Namespaces and Sharing for more information about
namespaces). If a graph with the same name has been already published, the
publish() method will fail with an exception.

Note:

Graphs published with snapshots and single published snapshots share the
same namespace.

For example, see Example 4-1 to publish a graph using publish() method.

If you want to publish specific transient properties, you must list them within the
publish() call.

Publishing a Graph with Transient Properties Using JShell

opg4j> var prop1 = graph.createVertexProperty(PropertyType.INTEGER,
"prop1")
opg4j> prop.fill(0)
opg4j> var cost = graph.createEdgeProperty(PropertyType.DOUBLE, "cost")
opg4j> cost.fill(0d)
opg4j> graph.publish(List.of(prop1), List.of(cost))

Publishing a Graph with Transient Properties Using Java

VertexProperty<Integer, Integer> prop1 =
graph.createVertexProperty(PropertyType.INTEGER, "prop1");
prop.fill(0);
EdgeProperty<Double> cost =
graph.createEdgeProperty(PropertyType.DOUBLE, "cost");
cost.fill(0d);
List<VertexProperty<Integer, Integer> vertexProps = Arrays.asList(prop);
List<EdgeProperty<Double>> edgeProps = Arrays.asList(cost);
graph.publish(vertexProps, edgeProps);

Publishing a Graph with Transient Properties Using Python

prop = graph.create_vertex_property("integer", "prop1")
prop.fill(0)
cost = graph.create_edge_property("double", "cost")
cost.fill(0d)
vertex_props = [prop]
edge_props = [cost]
graph.publish(vertex_props, edge_props)

Chapter 13
Publishing a Graph

13-14

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publish__

Publishing a Graph with Snapshots

If you want to make all snapshots of the graph visible to other sessions, use the
publishWithSnapshots() methods instead. When a graph is published with snapshots, the
GraphMetaData information of each snapshot is also made available to the other sessions,
with the exception of the graph configuration, which is null.

With publishing, all persistent properties of all snapshots are also published and made visible
to the other sessions, while transient properties are session-private and thus should be
published explicitly. Once published, all properties become read-only. Hence, transient
properties are not published when calling publishWithSnapshots() without arguments.

Similar to publishing a single graph snapshot, publishWithSnapshots() method will move
the graph name from the session-private namespace to the public namespace (see
Namespaces and Sharing for more information about namespaces). If a graph with the same
name has been already published, the publishWithSnapshots() method will fail with an
exception.
If you want to publish specific transient properties, you should list them within the
publishWithSnapshots() call, as in the following example.

Publishing a Graph with Transient Properties Using JShell

opg4j> var prop1 = graph.createVertexProperty(PropertyType.INTEGER, "prop1")
opg4j> prop.fill(0)
opg4j> var cost = graph.createEdgeProperty(PropertyType.DOUBLE, "cost")
opg4j> cost.fill(0d)
opg4j> graph.publishWithSnapshots(List.of(prop1), List.of(cost))

Publishing a Graph with Transient Properties Using Java

VertexProperty<Integer, Integer> prop1 =
graph.createVertexProperty(PropertyType.INTEGER, "prop1");
prop.fill(0);
EdgeProperty<Double> cost = graph.createEdgeProperty(PropertyType.DOUBLE,
"cost");
cost.fill(0d);
List<VertexProperty<Integer, Integer> vertexProps = Arrays.asList(prop);
List<EdgeProperty<Double>> edgeProps = Arrays.asList(cost);
graph.publishWithSnapshots(vertexProps,edgeProps);

Publishing a Graph with Transient Properties Using Python

VertexProperty<Integer, Integer> prop1 =
graph.createVertexProperty(PropertyType.INTEGER, "prop1")
prop.fill(0)
EdgeProperty<Double> cost = graph.createEdgeProperty(PropertyType.DOUBLE,
"cost")
cost.fill(0d)
List<VertexProperty<Integer, Integer> vertexProps = Arrays.asList(prop)
List<EdgeProperty<Double>> edgeProps = Arrays.asList(cost)
graph.publishWithSnapshots(vertexProps,edgeProps)

Chapter 13
Publishing a Graph

13-15

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publishWithSnapshots__

Note:

The published properties, like the original transient properties, are associated
to the specific snapshot they had been created on, so they are not visible
on other snapshots.

Referencing a Published Graph from Another Session

Other sessions can reference a published graph by its name via the getGraph()
method of the session object.

The following example references a published graph of session1, myGraph, in
session2.

Referencing a Published Graph Using JShell

opg4j> var session2 = instance.createSession("session2")
opg4j> var graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph")

Referencing a Published Graph Using Java

PgxSession session2 = instance.createSession("session2");
PgxGraph graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph");

Referencing a Published Graph Using Python

session2 = pypgx.get_session("session2");
PgxGraph graph2 = session2.get_graph("myGraph")

session2 can see only the published snapshot. If the graph has been published
without snapshots, calls to the getAvailableSnapshots() method of session2 return
an empty queue.

Instead, if also the snapshots have been published, the call to getGraph() returns the
most recent snapshot available. session2 can see all the available snapshots via
getAvailableSnapshots() and set a specific one via the setSnapshot() method of
PgxSession.

Note:

You must remember to release every graph you reference, when you do not
need it anymore. See Deleting a Graph for more information.

Publishing a Property

After publishing (a single snapshot or all of them), you can still publish transient
properties individually:

Chapter 13
Publishing a Graph

13-16

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_java_lang_String_

Publishing Transient Properties Using JShell

opg4j> graph.getVertexProperty("prop1").publish()
opg4j> graph.getEdgeProperty("cost").publish()

Publishing Transient Properties Using Java

graph.getVertexProperty("prop1").publish();
graph.getEdgeProperty("cost").publish();

Publishing Transient Properties Using Python

graph.get_vertex_property("prop1").publish()
graph.get_edge_property("cost").publish()

Note:

Published properties are associated to the specific snapshot they have been
created on and thus visible only on that snapshot.

Getting a Published Property in Another Session

Sessions referencing a published graph (with or without snapshots) can reference a
published property via the usual getVertexProperty and getEdgeProperty calls of
PgxGraph.
Getting a Published Property Using JShell

opg4j> var session2 = instance.createSession("session2")
opg4j> var graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph")
opg4j> var vertexProperty = graph2.getVertexProperty("prop1")
opg4j> var edgeProperty = graph2.getEdgeProperty("cost")

Getting a Published Property Using Java

PgxSession session2 = instance.createSession("session2");
PgxGraph graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph");
VertexProperty<Integer, Integer> vertexProperty =
graph2.getVertexProperty("prop1");
EdgeProperty<Double> edgeProperty = graph2.getEdgeProperty("cost");

Getting a Published Property Using Python

session2 = pypgx.get_session(session_name ="session2")
graph2 = session2.get_graph("myGraph")
vertex_property = graph2.get_vertex_property("prop1")
edge_property = graph2.get_edge_property("cost")

session2 now has a reference to the published graph of session1 called myGraph and can
reference its published properties via myGraph itself.

Chapter 13
Publishing a Graph

13-17

13.3 Publishing a Preloaded Graph
The publishing behavior for preloaded graphs can be controlled in the configuration.
Unless a different behavior is configured, (only) the first loaded snapshot of a graph is
published. Preloaded published graphs remain in memory even if they are not used by
any session.

There are two options to control the publishing behavior:

• Set the optional flag publish to true, to publish only the graph but no future
snapshots of the graph. This is the default behavior as the default value of this flag
is true.

• Set the optional flag publish_with_snapshots to true, to publish the graph and all
future snapshots of the graph. The default value is false.

Only one of these two flags can be set to true at a time. However, publishing the
graph with snapshots does also publish the first version of the graph.

Example 13-2 Sample Configuration File for Preloading Graphs

This example pgx.conf specifies two graphs for loading into memory during the graph
server (PGX) startup-time. my-graph is published with snapshots while my-other-
graph is published without snapshots.

{
 "enterprise_scheduler_config": {
 "analysis_task_config": {
 "max_threads": 32
 }
 },
 "preload_graphs": [
 {
 "path": "graph-configs/my-graph.bin.json",
 "name": "my-graph",
 "publish": false,
 "publish_with_snapshots": true
 },
 {
 "path": "graph-configs/my-other-graph.adj.json",
 "name": "my-other-graph"
 }
],
 "authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "my-graph",
 "grant": "read"
 },
 {
 "preloaded_graph": "my-other-graph",
 "grant": "read"
 }]
 },

Chapter 13
Publishing a Preloaded Graph

13-18

]
}

The two preloaded graphs can be accessed as follows:

PgxGraph g1 = session.getGraph("my-graph"); //returns the most recent
available snapshot
PgxGraph g2 = session.getGraph("my-other-graph");

13.4 Deleting a Graph
In order to reduce the memory usage of the graph server (PGX), the session must drop the
unused PgxGraph graph objects that it created via PgxSession.getGraph() by invoking the
destroy() method. This step not only destroys the specified graph, but all of its associated
properties, including transient properties as well. In addition, all of the collections related to
the graph instance (for example, a VertexSet) are also destroyed automatically. If a session
holds multiple PgxGraph objects referencing the same graph, invoking destroy() on any of
them will invalidate all the PgxGraph objects referencing that graph, making any operation on
those objects fail:

Deleting a Graph Using Java

PgxGraph graph1 = session.getGraph("myGraphName")
// graph2 references the same graph of graph1
PgxGraph graph2 = session.getGraph("myGraphName")
// both calls throw an exception, as both references are not valid anymore
Set<VertexProperty<?, ?>> properties = graph1.getVertexProperties();
properties = graph2.getVertexProperties()

Deleting a Graph Using Python

graph1 = session.get_graph("myGraphName")

graph2 references the same graph of graph1
 graph2 = session.get_graph("myGraphName")

both calls throw an exception, as both references are not valid anymore
properties = graph1.get_vertex_properties()
properties = graph2.get_vertex_properties()

The same behavior occurs when multiple PgxGraph objects reference the same snapshot.
Since a snapshots is effectively a graph, destroying a PgxGraph object referencing a certain
snapshot invalidates all PgxGraph objects referencing the same snapshot, but does not
invalidate those referencing other snapshots:

// get a snapshot of "myGraphName"
PgxGraph graph1 = session.getGraph("myGraphName");
// graph2 and graph3 reference the same snapshot as graph1
PgxGraph graph2 = session.getGraph("myGraphName");
PgxGraph graph3 = session.getGraph("myGraphName");

// we assume another snapshot is created ...

// make graph3 references the latest snapshot available
session.setSnapshot(graph3, PgxSession.LATEST_SNAPSHOT);

Chapter 13
Deleting a Graph

13-19

graph2.destroy();
// both calls throw an exception, as both references are not valid
anymore
Set<VertexProperty<?, ?>> properties = graph1.getVertexProperties();
properties = graph2.getVertexProperties();

// graph3 is still valid, so the call succeeds
properties = graph3.getVertexProperties();

Note:

Even if a graph is destroyed by a session, the graph data may still remain in
the server memory if the graph is currently shared by other sessions. In such
a case, the graph may still be visible among the available graphs via
PgxSession.getGraphs().

As a safe alternative to manual destruction of each graph, the PGX API supports some
implicit resource management features which allow developers to safely omit the
destroy() call. See Resource Management Considerations for more information.

Chapter 13
Deleting a Graph

13-20

14
Namespaces and Sharing

The in-memory graph server (PGX) supports separate namespaces that help you to organize
your entities.

Each client session has its own session-private namespace and can choose any name
without affecting other sessions. There is also a public namespace for published graphs (for
example, published via the publishWithSnapshots() or the publish() methods).

Similarly, each published graph defines a public namespace for published properties as well
as a private namespace per session. So different sessions can create properties with the
same name on a published graph.

• Defining Graph Names

• Retrieving Graphs by Name

• Checking Used Names

• Property Name Resolution and Graph Mutations

14.1 Defining Graph Names
Graphs that are created in a session either through loading (for example, calling
readGraphWithProperties()) or through mutations will take up a name in the session-private
namespace. A graph will be placed in the public namespace only through publishing (that is,
when calling the publishWithSnapshots() or the publish() methods). Publishing a graph will
move its name from the session-private namespace to the public namespace.

There can only be one graph with a given name in a given namespace, but a name can be
used in different namespaces to refer to different graphs. An operation that creates a new
graph (for example, readGraphWithProperties()) will fail if the chosen name of the new
graph already exists in the session-private namespace. Publishing a graph fails if there is
already a graph in the public namespace with the same name.

14.2 Retrieving Graphs by Name
You can retrieve a graph by name by the following two ways:

• getGraph(Namespace, String): with explicitly mentioning the namespace

• getGraph(String): without explicitly mentioning the namespace

With getGraph(Namespace, String), you need to provide the namespace (either session private
or public). In this case, the graph will be looked up in the given namespace only.

With getGraph(String), the provided name will be first looked up in the private namespace. If no
graph with the given name is found there, then the graph name will be looked up in the public
namespace. In other words, if a graph with the same name is defined in both the public and
the private namespaces, getGraph(String) will return the private graph and you need to use
getGraph(Namespace, String) to get hold of the public graph with that name.

14-1

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publishWithSnapshots__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publish__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#readGraphWithProperties_oracle_pgx_config_GraphConfig_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publishWithSnapshots__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publish__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#readGraphWithProperties_oracle_pgx_config_GraphConfig_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_

14.3 Checking Used Names
To see the currently used names in a namespace you can use the
PgxSession.getGraphs(Namespace) method, which will list all the names in the given
namespace. The names in the returned collection can be used in a
getGraph(Namespace, String) call to retrieve the corresponding PgxGraph.

14.4 Property Name Resolution and Graph Mutations
Property names behave in a similar way as graph names. All property names of a non-
published graph are in the session-private namespace. Once a graph is published with
PgxGraph.publishWithSnapshots() or the PgxGraph.publish() methods, its properties are
published as well and their names move into the public namespace.

Once a graph is published, newly created properties will still be private to the session
and their names will be in the private namespace. Those properties can be published
individually with the Property.publish() method, as long as no other property with the
same name is already published for that graph.

Additionally, new private properties can be created with the same name of an already-
published properties (since the names are part of separate namespaces). To handle
such situations and retrieve the correct property, the PGX API offers the
getVertexProperty(Namespace, String) and the getEdgeProperty(Namespace, String) methods,
which allow specifying the namespace where the property name should be looked up.

Similar to graphs, if you search a property without specifying the namespace, the
private namespace is searched first and if the property is not found, the search
proceeds to the public namespace. This case applies for getVertexProperty(String) or the
getEdgeProperty(String) methods and for PGQL queries.

Likewise, when a mutation on a graph reads or writes a property referred to by name
and two properties exist with the same name, the property in the private namespace is
selected. To override the default selection, some mutation mechanisms accept a
collection of specific Property objects to be copied into the mutated graph. For example,
such mechanism is supported for filter expressions. See Creating Subgraphs for more
details.

Chapter 14
Checking Used Names

14-2

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraphs_oracle_pgx_api_Namespace_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publishWithSnapshots__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publish__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Property.html#publish__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getVertexProperty_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getEdgeProperty_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getVertexProperty_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getEdgeProperty_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Property.html

15
PGX Programming Guides

You can avail all the PGX functionalities through asynchronous Java APIs. Each
asynchronous method has a synchronous equivalent, which blocks the caller thread until the
server produces a response.

These APIs may perform one or any combination of:

• Complex, non-blocking Java applications on top of PGX

• Simple, sequential Java scripts executed by JShell

• ShellPerforming interactive graph analysis in the JShell

Layers of PGX API

The PGX API is composed of a few different Java interfaces. Each interface provides a
distinct layer of abstraction for PGX, as shown in the following table:

Table 15-1 PGX API Interface

Interface Description

ServerInstance The ServerInstance class encapsulates access to a PGX server
instance and can be used to create sessions, start and stop the PGX
engine, monitor the engine status and perform other administrative
tasks. If the instance points to a remote instance, access to the
administrative functions requires special authorization on the HTTP
level by default.

PgxSession A PgxSession represents an active user currently connected to an
instance. Each session gets its own workspace on the server side
which can be used to read graphs, create in-memory data structures,
hold analysis results and custom algorithms. The PgxSession class
provides various methods to create new transient data (currently
collections). If a session is idling for too long, the PGX engine will
automatically destroy it to ensure no resources are wasted.

PgxGraph A PgxGraph represents a client-side handle to the graph data
managed by the PGX server. A graph may contain an arbitrary amount
of properties of type VertexProperty and/or EdgeProperty.

Note:

The PGX currently only supports non-
partitioned graphs, meaning every vertex/
edge has the same properties with the
same names and types as all the other
vertices/edges.

PgxGraph class provides various methods to create new transient data
(including maps and collections) as well as graph mutation operations,
such as undirecting, sorting and filtering.

15-1

Table 15-1 (Cont.) PGX API Interface

Interface Description

Analyst The Analyst API contains all of the built-in algorithms PGX provides.
Analyst objects keep track of all the transient data they created during
algorithm invocations to hold analysis results. Once an Analyst gets
destroyed, all the results it created get freed on the server-side
automatically.

CompiledProgram The CompiledProgram class (PGX Algorithm API) encapsulates
runtime-compiled custom algorithms and allows invocation of those
algorithms using PGX data objects, such as PgxGraph or
VertexProperty, as arguments.

Please see the oracle.pgx.api package in the Javadoc for more details.

• Design of the Graph Server (PGX) API
This guide focuses on the design of the graph server (PGX) API.

• Data Types and Collections in the Graph Server (PGX)
This guide provides you the list of the supported data types and collections in the
graph server (PGX).

• Handling Asynchronous Requests in Graph Server (PGX)
This guide explains in detail the asynchronous methods supported by the PGX
API.

• Graph Client Sessions
The graph server (PGX) assumes there may be multiple concurrent clients, and
each client submits request to the shared PGX server independently.

• Graph Mutation and Subgraphs
This guide discusses the several methods provided by the graph server (PGX) for
mutating graph instances.

• Managing Transient Data
This guide discusses how to handle transient properties and collections.

• Graph Versioning
This guide describes the different ways to work with graph snapshots.

• Labels and Properties
You can perform various actions on the graph property and label values by
executing PGQL queries.

• Filter Expressions
This guide explains the usage of filter expressions.

• Advanced Task Scheduling Using Execution Environments
This guide shows how you can use the advanced scheduling features of the
enterprise scheduler.

• Admin API
This guide shows how to use the graph server (PGX) Admin API to inspect the
server state including sessions, graphs, tasks, memory and thread pools.

• PgxFrames Tabular Data-Structure

Chapter 15

15-2

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/package-frame.html

15.1 Design of the Graph Server (PGX) API
This guide focuses on the design of the graph server (PGX) API.

The design of the PGX API reflects consideration of the following situations:

• Multiple clients may concurrently be accessing a single running instance of PGX, sharing
its resources. Each client needs to maintain its own isolated workspace (session).

• Graph and property data can be large in size and therefore that data only resides on the
server side.

• Some graph analysis may take a significant amount of time.

• Clients may not reside in the same address space (JVM) as PGX. Actually, clients may
not even be Java applications.

Client Sessions

In PGX, each client maintains its own session, an isolated, private workspace. Therefore,
clients first have to obtain a PgxSession object from a PGX ServerInstance before they can
perform any analysis.

Asynchronous Execution

The PGX API is designed for asynchronous execution. That means that each computationally
intensive method in the PGX API immediately returns a PgxFuture object without waiting for
the request to finish. The PgxFuture class implements the Future interface, which can be
used to retrieve the result of a computation at some point in the future.

Note:

The asynchronous execution aspect of this design facilitates multiple (remote)
clients submitting requests to a single server. A request from one client may be
queued up to wait until PGX resources become available. The asynchronous API
allows the client (or calling thread) to work on other tasks until PGX completes the
request.

No Direct References

The PGX API does not return objects with direct reference to PGX internal objects (such as
the graph or its properties) to the client. This is because:

• The client might not be in the same JVM as the server

• The graph instance might be shared by multiple clients

Instead, the PGX API only returns lightweight, stateless pointer objects to those objects.
These pointer objects only holds the ID(name) of the server-side object to which they are
pointing.

Resource Management Considerations

The in-memory graph server (PGX), being an in-memory analytic engine, might allocate large
amounts of memory to hold the graph data of clients. Therefore, it is important that client

Chapter 15
Design of the Graph Server (PGX) API

15-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html

sessions clean up their resources once they have ended. The PGX API supports
several features to make this easier:

• Every object returned by the PGX API pointing to a server-side resource
implements the Destroyable interface, which means all memory-consuming client-
side objects can be destroyed the same way. For example:

PgxGraph myGraph = ...
myGraph.destroyAsync(); // request destruction of myGraph, don't
wait for response
try {
 myGraph.destroy(); // blocks caller thread until destruction
was done
} catch (ExecutionException e) {
 // destruction failed
}

• Destroyable extends AutoClosable, so users can leverage Java's built-in resource
management syntax:

try (PgxGraph myGraph = session.readGraphWithProperties(config)) {
 // do something with myGraph
}
// myGraph is destroyed

• Session time out. In some cases, the PGX server will remove the session and all
its data automatically. This can occur when a client fails to destroy either the data
or its session, or if it does not hear from the session after a configurable timeout.
See Configuration Parameters for the Graph Server (PGX) Engine for more
information to configure timeout parameters.

15.2 Data Types and Collections in the Graph Server (PGX)
This guide provides you the list of the supported data types and collections in the
graph server (PGX).

Primitive Data Types

The following section explains the primitive data types supported by the graph server
(PGX) and their limitations.

PGX supports the following primitive data types.:

• Numeric Types: integer, long, float, and double. These types have the same
size, range and precision of the corresponding Java primitive data type.

• Boolean Type: The boolean data type has only two possible values, true and
false. As with Java and C++, its size is not precisely defined.

• String: String is a primitive data type in PGX. PGX follows the Java conventions
for String representation.

• Datetime Types: date, time, timestamp, time with time zone, and timestamp
with time zone. These types correspond to the Java types shown in Table 15-2
from the standard library package java.util.time.

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-4

http://docs.oracle.com/javase/7/docs/api/java/lang/AutoCloseable.html

• Vertex and Edge: The type vertex or edge of the graph itself is a proper type in PGX.

Note:

• vertex and edge is itself a valid primitive data type. For instance, in a path-
finding algorithm, each vertex can have a temporary property predecessor that
stores which incoming neighbor is the predecessor vertex in the path. Such a
property would have the type vertex.

• local_date must be used instead of date in the graph configuration file. See
Using Datetime Data Types for more examples on usage of datetime data
types.

All properties and scalar variables must be one of the above preceding data types. See
Managing Transient Data for more information on handling transient properties and scalar
variables.

The following table presents the overview of the supported data types, their integration in
different languages and APIs and their minimum and maximum value limitations.

Note:

• For float and double types, the smallest absolute value is included in the table,
the minimum value is the negative of maximum value for these types.

• For string values, PGX supports arbitrary long strings.

Table 15-2 Overview of Data types

Data Type Loading &
Storing

PGX Java
API

PGQL and
Filter
Expression

Minimum Value
Limitation

Maximum Value
Limitation

string string String STRING - -

int/integer int/integer int INT/INTEGER -2147483648 2147483647

long long long LONG -92233720368547
75808

-92233720368547
75807

float float float FLOAT 1.4E-45 3.4028235e+38

double double double DOUBLE 4.9E-324 1.7976931348623
157E308

boolean boolean boolean BOOLEAN - -

date local_date LocalDate DATE -5877641-06-23 5881580-07-11

time time LocalTime TIME 00:00:00.000 23:59:59.999

timestamp timestamp LocalDateTi
me

TIMESTAMP -292275055-05-1
7 00:00:00.000

292278994-08-17
07:12:55.807

time with
time zone

time_with_t
imezone

OffsetTime TIME WITH
TIME ZONE

00:00:00.000+18
:00

23:59:59.999-18
:00

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-5

Table 15-2 (Cont.) Overview of Data types

Data Type Loading &
Storing

PGX Java
API

PGQL and
Filter
Expression

Minimum Value
Limitation

Maximum Value
Limitation

timestamp
with time
zone

timestamp_w
ith_timezon
e

OffsetDateT
ime

TIMESTAMP
WITH TIME
ZONE

-292275055-05-1
7
00:00:00.000+18
:00

292278994-08-17
07:12:55.807-18
:00

vertex - PgxVertex - - -

edge - PgxEdge - - -

Collections

The in-memory graph server (PGX) supports three different collection types:
sequence, set and order. All of these collections can contain values of the vertex
type, but each has different semantics regarding uniqueness and preserving the order
of its elements:

• Sequence: a sequence works basically like a list. It preserves the order of the
elements added to it, and the same element can appear multiple times.

• Set: a set can contain the same value once at the most. Adding a value that is
already in the set will have no effect. set does not preserve the order of the
elements it contains.

• Order: just like the set, the order collection will contain each element once at the
most. But the order preserves the order of the elements inserted into it (that is, it
is a FIFO data structure).

See Collection Data Types for examples on creation and usage of the different
collections.

Immutable Collections

Some operations, like PgxGraph.getVertices() and PgxGraph.getEdges() return immutable
collections. These collections behave like normal collections, but cannot be modified
by operations like addAll or removeAll and clear.

An immutable collection can be transformed into a mutable collection by using the
toMutable method, which returns a mutable copy of the collection. If toMutable is
called on a collection that is already mutable, the method has the same result as the
method clone.

To check if a collection is mutable, use the isMutable method.

Maps

PGX provides the following two kinds of maps:

• Graph-bound maps can hold mappings between types in PropertyType. This is
the kind of maps to use if the key or value types are graph-related like VERTEX and
EDGE otherwise using session-bound maps is recommended.

• Session-bound maps can map between non graph-related types and are directly
bound to the session.

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-6

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getVertices__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getEdges__

See Map Data Types for examples on creation and usage of maps.

• Using Collections and Maps

• Using Datetime Data Types

15.2.1 Using Collections and Maps
This section explains with examples, the creation and usages of collections and maps.

You must first create a session before getting started with the collection and map data types.

Example 15-1 Creating a session using JShell

cd /opt/oracle/graph/
./bin/opg-jshell // starting the shell will create an implicit session

Example 15-2 Creating a session using Java

import oracle.pgx.api.*;
...
PgxSession session=Pgx.createSession("<session_name>");

Example 15-3 Creating a session using Python

from pypgx import get_session
session = get_session(session_name="<session_name>")

• Collection Data Types

• Map Data Types

15.2.1.1 Collection Data Types
The in-memory graph server (PGX) defines two types of collections:

• Graph-bound collections: such as vertex and edge collections. These collections
belong to the graph.

• Session-bound collections: belong to the session.

• Graph-Bound Collections

• Session-Bound Collections

15.2.1.1.1 Graph-Bound Collections
The following describes the usage of graph-bound collections.

You must first load the graph to work with vertex and edge collections as shown in Loading a
Graph Into the Graph Server (PGX) .

Vertex Collections

You can create a vertex collection as shown in the following code:

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-7

Creating a Vertex Collection Using JShell

v0 = graph.getVertex(100) // 'graph' is the loaded graph object. '100' -
> '103' are vertex ids that supposedly
v1 = graph.getVertex(101) // exist in the graph
v2 = graph.getVertex(102)
v3 = graph.getVertex(103)

myVertexSet = graph.createVertexSet("myVertexSet") // A name is
automatically generated if none given
myVertexSet.add(v0) // Adds vertex 'v0'
to the set
myVertexSet.addAll([v1, v2, v3]) // Supports
variadic parameter as well: myVertexSet.addAll(v1, v2, v3)

Creating a Vertex Collection Using Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxVertex v0 = graph.getVertex(100);
PgxVertex v1 = graph.getVertex(101);
PgxVertex v2 = graph.getVertex(102);
PgxVertex v3 = graph.getVertex(103);

VertexSet myVertexSet = graph.createVertexSet("myVertexSet"); // A
name is automatically generated if none given
myVertexSet.add(v0);
myVertexSet.addAll(Arrays.asList(v1, v2, v3));

Creating a Vertex Collection Using Python

...
v0 = graph.get_vertex(100)
v1 = graph.get_vertex(101)
v2 = graph.get_vertex(102)
v3 = graph.get_vertex(103)

my_vertex_set = graph.create_vertex_set("myVertexSet")
my_vertex_set.add(v0)
my_vertex_set.add_all([v1,v2,v3])

Edge Collections

You can create an edge collection as shown in the following code:

Creating an Edge Collection Using JShell

e0 = graph.getEdge(100) // 'graph' is the loaded graph object. '100' ->
'103' are edge ids that supposedly
e1 = graph.getEdge(101) // exist in the graph.
e2 = graph.getEdge(102)

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-8

e3 = graph.getEdge(103)

myEdgeSequence = graph.createEdgeSequence("myEdgeSequence")
myEdgeSequence.add(e0)
myEdgeSequence.addAll([e1, e2, e3])

Creating an Edge Collection Using Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxEdge e0 = graph.getEdge(100);
PgxEdge e1 = graph.getEdge(101);
PgxEdge e2 = graph.getEdge(102);
PgxEdge e3 = graph.getEdge(103);

EdgeSequence myEdgeSequence = graph.createEdgeSequence("myEdgeSequence");
myEdgeSequence.add(e0);
myEdgeSequence.addAll(Arrays.asList(e1, e2, e3));

Creating an Edge Collection Using Python

e0 = graph.get_edge(100)
e1 = graph.get_edge(101)
e2 = graph.get_edge(102)
e3 = graph.get_edge(103)

my_edge_sequence = graph.create_edge_sequence("my_edge_sequence")
my_edge_sequence.add(e0)
my_edge_sequence.add_all([e1, e2, e3])

15.2.1.1.2 Session-Bound Collections
You can create and manipulate collections directly in the session without the need for a
graph. Session-bound collections can be further passed as parameters to graph algorithms or
used like any other collection object. The following sub-sections describe the currently
supported types for these collections.

Scalar Collections

Scalar collections contain simple data types like Integer, Long, Float, Double and Boolean.
They can be managed by the PgxSession APIs:

Creation of a Scalar Collection

You can use createSet() and createSequence() methods to create a scalar collection as
shown in the following code:

Creating a Scalar Collection Using JShell

myIntSet = session.createSet(PropertyType.INTEGER, "myIntSet")
myDoubleSequence = session.createSequence(PropertyType.DOUBLE) // A name will be
automatically generated if none is provided.

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-9

println myDoubleSequence.getName() // Display the
generated name.

Creating a Scalar Collection Using Java

import oracle.pgx.api.*;
import oracle.pgx.common.types.*;
...
ScalarSet myIntSet = session.createSet(PropertyType.INTEGER, "myIntSet");
ScalarSequence myDoubleSequence = session.createSequence(PropertyType.DOUBLE);
System.out.println(myDoubleSequence.getName());

Run Operations on a Scalar Collection

You can run several operations on a scalar collection as shown in the following code:

Running Operations on a Scalar Collection Using JShell

myIntSet.add(10)
myIntSet.addAll([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
myIntSet.addAll([0,1,2]) // Element uniqueness. This operation
has no effect on the set.
println myIntSet

myIntSet.contains(1) // Checks the presence of an element.
This code returns `true`.
myIntSet.remove(10)
myIntSet.removeAll([4, 5, 6, 7, 8, 9]) // Leaves only elements `0, 1, 2, 3`.
println myIntSet

Running Operations on a Scalar Collection Using Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
myIntSet.add(10);
myIntSet.addAll(Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 8, 9));
myIntSet.addAll(Arrays.asList(0, 1, 2))

myIntSet.contains(1); // Returns `true`.
myIntSet.remove(10);
myIntSet.removeAll(Arrays.asList(4, 5, 6, 7, 8, 9));

Traversal of a Scalar Collection

You can traverse a scalar collection either using an iterator or using the new Stream
API. You can add elements of a sequence to a set, traverse a sequence and filter out
elements not required, and then add the rest to another scalar collection.

Traversing a Scalar Collection Using JShell

myIntSet.forEach({x -> print x + "\n"})
myIntSet.stream().filter({x -> x % 2 == 0}).forEach({x ->
myDoubleSequence.add(x)})
println myDoubleSequence

Traversing a Scalar Collection Using Java

import java.util.Iterator;
import java.util.stream.Stream;
import oracle.pgx.api.*;
...

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-10

https://docs.oracle.com/javase/8/docs/api/?java/util/stream/Stream.html

myIntSet.forEach(x -> System.out.println(x))
myIntSet.stream().filter(x -> x % 2 == 0).forEach(myDoubleSequence::add)

15.2.1.2 Map Data Types
The in-memory graph server (PGX) defines two types of maps:

• Graph-bound maps: These maps support any key or value type and are created using a
graph object.

• Session-bound maps: Keys or values in these maps are of any type except from graph-
related types (that is, vertices or edges). These maps belong to the session.

• Graph-Bound Maps

• Session-Bound Maps

15.2.1.2.1 Graph-Bound Maps
Some data types like VERTEX or EDGE depend on the graph. Consequently, mappings involving
these data types also depend on the graph. PGX provides PgxGraph and PgxMap APIs to
manage such maps.

The following describes the usage of graph-bound maps.

You must first load the graph to work with vertex and edge maps.

You can create a graph-bound map using vertices as keys as shown in the following code:

Creating a Graph-bound Map with Vertices as Keys Using JShell

v0 = graph.getVertex(100)
v1 = graph.getVertex(101)
v2 = graph.getVertex(102)
v3 = graph.getVertex(103)

vertexToLongMap = graph.createMap(PropertyType.VERTEX, PropertyType.LONG,
"vertexToLongMap")
vertexToLongMap.put(v0, v0.getDegreeAsync().get())
vertexToLongMap.put(v1, v1.getDegreeAsync().get())
vertexToLongMap.put(v2, v2.getDegreeAsync().get())
vertexToLongMap.put(v3, v3.getDegreeAsync().get())

Creating a Graph-bound Map with Vertices as Keys Using Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxVertex v0 = graph.getVertex(100);
PgxVertex v1 = graph.getVertex(101);
PgxVertex v2 = graph.getVertex(102);
PgxVertex v3 = graph.getVertex(103);

PgxMap<PgxVertex, Long> vertexToLongMap =
graph.createMap(PropertyType.VERTEX, PropertyType.LONG, "vertexToLongMap");
vertexToLongMap.put(v0, v0.getDegree());

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-11

vertexToLongMap.put(v1, v1.getDegree());
vertexToLongMap.put(v2, v2.getDegree());
vertexToLongMap.put(v3, v3.getDegree());

Creating a Graph-bound Map with Vertices as Keys Using Python

v0 = graph.get_vertex(100)
v1 = graph.get_vertex(101)
v2 = graph.get_vertex(102)
v3 = graph.get_vertex(103)

vertex_to_long_map = graph.create_map("vertex", "long",
"vertex_to_long_map")
vertex_to_long_map.put(v0, v0.degree)
vertex_to_long_map.put(v1, v1.degree)
vertex_to_long_map.put(v2, v2.degree)
vertex_to_long_map.put(v3, v3.degree)

You can create graph-bound maps using edges as keys as shown in the following
code:

Creating a Graph-bound Map with Edges as Keys Using JShell

e0 = graph.getEdge(100)
e1 = graph.getEdge(101)
e2 = graph.getEdge(102)
e3 = graph.getEdge(103)

edgeToVertexMap = graph.createMap(PropertyType.EDGE,
PropertyType.VERTEX, "edgeToVertexMap")
edgeToVertexMap.put(e0, e0.getSource())
edgeToVertexMap.put(e1, e1.getSource())
edgeToVertexMap.put(e2, e2.getSource())
edgeToVertexMap.put(e3, e3.getSource())

Creating a Graph-bound Map with Edges as Keys Using Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxEdge e0 = graph.getEdge(100);
PgxEdge e1 = graph.getEdge(101);
PgxEdge e2 = graph.getEdge(102);
PgxEdge e3 = graph.getEdge(103);

PgxMap<PgxEdge, PgxVertex> edgeToVertexMap =
graph.createMap(PropertyType.EDGE, PropertyType.VERTEX,
"edgeToVertexMap");
edgeToVertexMap.put(e0, e0.getSource());
edgeToVertexMap.put(e1, e1.getSource());
edgeToVertexMap.put(e2, e2.getSource());
edgeToVertexMap.put(e3, e3.getSource());

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-12

Creating a Graph-bound Map with Edges as Keys Using Python

e0 = graph.get_edge(100)
e1 = graph.get_edge(101)
e2 = graph.get_edge(102)
e3 = graph.get_edge(103)

edge_to_long_map = graph.create_map("edge", "long", "edge_to_long_map")
edge_to_long_map.put(e0, e0.source)
edge_to_long_map.put(e1, e1.source)
edge_to_long_map.put(e2, e2.source)
edge_to_long_map.put(e3, e3.source)

Note:

If you destroy the graph you will lose the map. Consider using a session-bound
maps instead if your map does not involve any graph-related key or value type.

15.2.1.2.2 Session-Bound Maps
You can directly create maps in the session. But, you cannot use any graph-related data type
as the map key or value type. Session-bound maps can be further passed as parameters to
graph algorithms or used like any other map object. They are managed by PgxSession and
PgxMaps APIs.

Scalar collections contain simple data types like Integer, Long, Float, Double and Boolean.
They can be managed by the PgxSession APIs.

Creation of a Session-bound Map

You can use createMap() method and its overloads to create a session-bound map.

Creating a Session-bound Map Using JShell

intToDouble = session.createMap(PropertyType.INTEGER, PropertyType.DOUBLE,
"intToDouble")
intToTime = session.createMap(PropertyType.INTEGER, PropertyType.TIME) // A name will
be automatically generated.
println intToTime.getName()
println intToTime.getSessionId()
println intToTime.getGraph() // `null`: Not
bound to a graph.
println intToTime.getKeyType()
println intToTime.getValueType()

Creating a Session-bound Map Using Java

import java.time.LocalTime;
import oracle.pgx.api.*;
import oracle.pgx.common.types.*;
...
PgxMap<Integer, Double> intToDouble = session.createMap(PropertyType.INTEGER,
PropertyType.DOUBLE, "intToDouble");
PgxMap<Integer, LocalTime> intToTime = session.createSequence(PropertyType.INTEGER,
PropertyType.TIME);
System.out.println(intToTime.getName());

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-13

System.out.println(intToTime.getSessionId());
System.out.println(intToTime.getGraph()); // `null`: Not bound to a graph.
System.out.println(intToTime.getKeyType());
System.out.println(intToTime.getValueType());

Run Operations on a Session-bound Map

You can run important operations such as setting, removing and checking existence of
entries on a session-bound map as shown in the following code:

Running Operations on a Session-bound Map Using JShell

intToDouble.put(0, 0.314)
intToDouble.put(1, 3.14)
intToDouble.put(2, 31.4)
intToDouble.put(3, 314)

println intToDouble.size() // 4
println intToDouble.get(1)
println intToDouble.get(3)
println intToDouble.get(10) // null

println intToDouble.containsKey(0) // `true`
intToDouble.remove(0)
println intToDouble.containsKey(0) // `false`
println intToDouble.containsKey(10) // `false`
intToDouble.remove(10)
println intToDouble.containsKey(10) // `false`

println intToDouble.put(1, 999) // previous mapped value (`3.14`) is
replaced by `999`
intToDouble.destroy()

Running Operations on a Session-bound Map Using Java

import java.util.Arrays;
import oracle.pgx.api.*;

...

intToDouble.put(0, 0.314);
intToDouble.put(1, 3.14);
intToDouble.put(2, 31.4);
intToDouble.put(3, 314);

System.out.println(inToDouble.size()); // 4
System.out.println(intToDouble.get(1));
System.out.println(intToDouble.get(3));
System.out.println(intToDouble.get(10)); // null

System.out.println(intToDouble.containsKey(0)); // `true`
intToDouble.remove(0);
System.out.println(intToDouble.containsKey(0)); // `false`
System.out.println(intToDouble.containsKey(10)); // `false`
intToDouble.remove(10);
System.out.println(intToDouble.containsKey(10)); // `false`

System.out.println(intToDouble.put(1, 999)); // previous mapped value
(`3.14`) is replaced by `999`
intToDouble.destroy();

Traversal of a Session-bound Map

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-14

You can traverse a session-bound map, using entries() method to get an iterable of map
entries and keys() method to get an iterable of map keys.

Traversing a Session-bound Map Using JShell

intToDouble.entries().forEach {it -> println (it)}
intToDouble.keys().forEach {it -> println (it)}

Traversing a Session-bound Map Using Java

import java.util.Iterable;
import java.util.stream.Stream;
import oracle.pgx.api.*;
...
Iterable<Map.Entry> entries = intToDouble.entries();
entries.forEach(System.out::println);
Iterable<Map.Entry> keys = intToDouble.keys();
keys.forEach(System.out::println);

15.2.2 Using Datetime Data Types
This section explains in detail working of datetime data types such as date, time and
timestamp.

Overview of Datetime Data Types in In-Memory Graph Server (PGX)

Table 15-3 presents the overview of the five datetime data types supported by PGX along
with example values.

Note:

PGX also supports custom format specification when loading data into PGX.

Table 15-3 Overview of Datetime Data Types in PGX

Data Type Loading and
Storing

PGX Java
API

PGQL and
Filter
Expression

Example Value-1 Example Value-1

date local_date LocalDate DATE 2001-01-29 2018-10-08

time time LocalTime TIME 10:15 10:30:01.000

timestamp timestamp LocalDateTi
me

TIMESTAMP 2001-01-29
10:15

2018-10-08
10:30:01.000

time with
time zone

time_with_t
imezone

OffsetTime TIME WITH
TIME ZONE

10:15+01:00 10:30:01.000-08
:00

timestamp
with time
zone

timestamp_w
ith_timezon
e

OffsetDateT
ime

TIMESTAMP
WITH TIME
ZONE

2001-01-29
10:15+01:00

2018-10-08
10:30:01.000-08
:00

• Loading Datetime Data

• Specifying Custom Datetime Formats

• APIs for Accessing Datetime Data

• Querying Datetime Data Using PGQL

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-15

• Accessing Datetimes from PGQL Result Sets

15.2.2.1 Loading Datetime Data
You must first load a graph to work with datetime data. See Loading a Graph Into the
Graph Server (PGX) for more information on graph loading.

The following example shows how to load a graph that has three vertices representing
persons and zero edges.

Example 15-4 Loading Datetime Data

1. Create an EDGE_LIST file persons.edge_list as shown:

1*Judy,1989-01-15,1989-01-15 10:15-08:00
2*Klara,2001-01-29,2001-01-29 21:30-08:00
3*Pete,1995-08-01,1995-08-01 03:00-08:00

2. Create a corresponding graph configuration file persons.edge_list.json as
shown:

{
 "format":"edge_list",
 "uri":"persons.edge_list",
 "vertex_id_type":"long",
 "vertex_props":[
 {
 "name":"name",
 "type":"string"
 },
 {
 "name":"date_of_birth",
 "type":"local_date"
 },
 {
 "name":"timestamp_of_birth",
 "type":"timestamp_with_timezone",
 "format":["yyyy-MM-dd H[H]:m[m][:s[s]][XXX]"]
 }
],
 "edge_props":[
],
 "separator":","
}

3. You can now load the data as shown in the following code:

Loading the graph data Using JShell

opg4j> var graph =
session.readGraphWithProperties("persons.edge_list.json",
"people_graph")

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-16

Loading the graph data Using Java

import oracle.pgx.api.*;
...
PgxGraph graph =
session.readGraphWithProperties("persons.edge_list.json","people_graph");

Loading the graph data Using Python

graph =
session.read_graph_with_properties("persons.edge_list.json",graph_name="pe
ople_graph")

15.2.2.2 Specifying Custom Datetime Formats
You can also manually specify the datetime format(s) of your data.

By default, PGX tries to parse datetime values using a set of predefined formats. If this fails,
an exception like the following is thrown:

property timestamp_of_birth: could not parse value at line 1 for property of
temporal type OffsetDateTime using any of the given formats

In such a case, you can custom format the datetime data.

There are two ways of specifying datetime formats:

• on a per-property basis

• on a per-type basis

Property-Specific Datetime format:

You can custom format the property timestamp_of_birth used in Example 15-4 to the format
yyyy-MM-dd H[H]:m[m][:s[s]][XXX] as shown:

Example 15-5 Specifying Property-Specific Datetime format:

{
 "name":"timestamp_of_birth",
 "type":"timestamp_with_timezone",
 "format":["yyyy-MM-dd H[H]:m[m][:s[s]][XXX]"]
}

where yyyy-MM-dd H[H]:m[m][:s[s]][XXX] specifies that the timestamp values consist of:

• a four-digit year

• a hyphen followed by a two-digit month

• a hyphen followed by a two-digit day

• a space

• an hour, specified as either one or two digits

• a colon followed by a minute, specified as either one or two digits

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-17

• an optional part that consists of a colon followed by a second that is specified as
either one or two digits

• an optional timezone

Note:

• H[H]:m[m] allows the value 01:15 as well as the value 1:15.

• yyyy-MM-dd allows the value 1989-01-15 but not the value 1989-1-15.
However, if two-digit months and days are needed, a format like yyyy-
M[M]-d[d] can be used.

Also the format specification takes a list of formats. In the preceding example, the list
contains only a single format, but you may specify any number of formats. If more than
one format is specified, then when parsing the datetime data, the formats are tried
from left to right until parsing succeeds. In this way, you can even load data that
contains a mixture of values in different formats.

Type-Specific Datetime format:

You can also specify datetime formats on a per-type basis. This is useful in cases
when there are multiple properties that have the same type as well as the same format
because you will only need to specify the datetime format only once.

In case of the per-type specification, the format is used for each vertex or edge
property that has the particular type.

The following example shows two type-specific formats (local_date_format and
timestamp_with_timezone_format):

Example 15-6 Specifying Type-Specific Datetime format:

...
 "edge_props":[
],
 "separator":",",
 "local_date_format":["yyyy-MM-dd"],
 "timestamp_with_timezone_format":["yyyy-MM-dd H[H]:m[m][:s[s]]
[XXX]"]
}

In the example, properties of type date (local_date) have the format yyyy-MM-dd while
properties of type timestamp with time zone (timestamp_with_timezone) have the
format yyyy-MM-dd H[H]:m[m][:s[s]][XXX].

Note:

Property-specific formats always overrides type-specific formats. If you
specify a type-specific format, and the property of the particular type also has
a property-specific format, then only the property-specific format is used to
parse the datetime data.

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-18

15.2.2.3 APIs for Accessing Datetime Data
The in-memory graph server (PGX) uses the new Java 8 temporal data types for accessing
datetime data through the Java API:

• date in PGX maps to LocalDate in Java

• time in PGX maps to LocalTime in Java

• timestamp in PGX maps to LocalDateTime in Java

• time with time zone in PGX maps to OffsetTime in Java

• timestamp with time zone in PGX maps to OffsetDateTime in Java

You can retrieve a date as shown in the following code:

Retrieve a Date Using JShell

opg4j> var dateOfBirthProperty = graph.getVertexProperty("date_of_birth")
opg4j> var birthdayOfJudy = dateOfBirthProperty.get(1)

Retrieve a Date Using Java

import java.time.LocalDate;
import oracle.pgx.api.*;
...
VertexProperty<LocalDate> dateOfBirthProperty =
graph.getVertexProperty("date_of_birth")
LocalDate birthdayOfJudy = dateOfBirthProperty.get(1);

Retrieve a Date Using Python

date_of_birth_property = graph.get_vertex_property("date_of_birth")
birthday_of_judy = date_of_birth_property.get(1)

15.2.2.4 Querying Datetime Data Using PGQL
You can perform various operations such as extracting values from datetimes, comparing
datetime values, and, converting between different datetime types. on datetime data using
PGQL.

The following are example PGQL queries that show different operations that involve datetime
data:

Retrieving Datetime Properties

The following query retrieves the date_of_birth and timestamp_of_birth properties from
the all the persons in the graph.

 SELECT n.name AS name, n.date_of_birth AS birthday, n.timestamp_of_birth
AS timestamp

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-19

https://www.oracle.com/technical-resources/articles/java/jf14-date-time.html

 FROM MATCH (n) ON people_graph
ORDER BY birthday

The result of the query is as follows:

+---+
| name | birthday | timestamp |
+---+
Judy	1989-01-15	1989-01-15T10:15-08:00
Pete	1995-08-01	1995-08-01T03:00-08:00
Klara	2001-01-29	2001-01-29T21:30-08:00
+---+

Comparing Datetime Values

The following query provides an overview of persons who are older than other persons
in the graph:

SELECT n.name AS person1, 'is older than' AS relation, m.name AS person2
 FROM MATCH (n) ON people_graph, (m) ON people_graph
 WHERE n.date_of_birth > m.date_of_birth
ORDER BY person1, person2

The result of the query is as follows:

+-----------------------------------+
| person1 | relation | person2 |
+-----------------------------------+
Klara	is older than	Judy
Klara	is older than	Pete
Pete	is older than	Judy
+-----------------------------------+

Extracting Values from Datetimes

The following query extracts the year, month, and day from the date_of_birth values:

SELECT n.name AS name
 , n.date_of_birth AS dob
 , EXTRACT(YEAR FROM n.date_of_birth) AS year
 , EXTRACT(MONTH FROM n.date_of_birth) AS month
 , EXTRACT(DAY FROM n.date_of_birth) AS day
 FROM MATCH (n) ON people_graph
ORDER BY name

The result of the query is as follows:

+---+
| name | dob | year | month | day |
+---+
| Judy | 1989-01-15 | 1989 | 1 | 15 |
| Klara | 2001-01-29 | 2001 | 1 | 29 |

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-20

| Pete | 1995-08-01 | 1995 | 8 | 1 |
+---+

Converting Between Different Types of Datetime Values

The following query converts the timestamp_of_birth property into values of the following
three datetime types:

• a timestamp (without time zone)

• a time with time zone

• a time (without time zone)

SELECT n.name AS name
 , n.timestamp_of_birth AS original_timestamp
 , CAST(n.timestamp_of_birth AS TIMESTAMP) AS utc_timestamp
 , CAST(n.timestamp_of_birth AS TIME WITH TIME ZONE) AS timezoned_time
 , CAST(n.timestamp_of_birth AS TIME) AS utc_time
 FROM MATCH (n) ON people_graph
ORDER BY original_timestamp

The result of the query is as follows:

+--
---+
| name | original_timestamp | utc_timestamp | timezoned_time |
utc_time |
+--
---+
| Judy | 1989-01-15T10:15-08:00 | 1989-01-15T18:15 | 10:15-08:00 |
18:15 |
| Pete | 1995-08-01T03:00-08:00 | 1995-08-01T11:00 | 03:00-08:00 |
11:00 |
| Klara | 2001-01-29T21:30-08:00 | 2001-01-30T05:30 | 21:30-08:00 |
05:30 |
+--
---+

15.2.2.5 Accessing Datetimes from PGQL Result Sets
You can use the following APIs for retrieving datetime values from PGQL result sets.

LocalDate getDate(int elementIdx)
LocalDate getDate(String variableName)
LocalTime getTime(int elementIdx)
LocalTime getTime(String variableName)
LocalDateTime getTimestamp(int elementIdx)
LocalDateTime getTimestamp(String variableName)
OffsetTime getTimeWithTimezone(int elementIdx)
OffsetTime getTimeWithTimezone(String variableName)
OffsetDateTime getTimestampWithTimezone(int elementIdx)
OffsetDateTime getTimestampWithTimezone(String variableName)

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-21

The following example prints the birthdays of all the persons in the graph is as follows:

Retrieving Datetime Values Using JShell

opg4j> var resultSet = session.queryPgql("""
 SELECT n.name, n.date_of_birth
 FROM MATCH (n) ON people_graph
ORDER BY n.name
""")
opg4j> while (resultSet.next()) {
...> System.out.println(resultSet.getString(1) + " has birthday " +
resultSet.getDate(2));
...> }
opg4j> resultSet.close()

Retrieving Datetime Values Using Java

import java.time.LocalDate;
import oracle.pgx.api.*;
...
PgqlResultSet resultSet = session.queryPgql(
 " SELECT n.name, n.date_of_birth\n" +
 " FROM MATCH (n) ON people_graph\n" +
 "ORDER BY n.name");

while (resultSet.next()) {
 System.out.println(resultSet.getString(1) + " has birthday " +
resultSet.getDate(2));
}

resultSet.close();

The result of the query is as follows:

Judy has birthday 1989-01-15
Klara has birthday 2001-01-29
Pete has birthday 1995-08-01

In addition to the Java types from the new java.time package, the legacy
java.util.Date is also supported through the following APIs:

Date getLegacyDate(int elementIdx)
Date getLegacyDate(String variableName)

Note:

The legacy java.util.Date can store dates, times, as well as timestamps,
so these two APIs can be used for accessing values of any of the five
datetime types.

Chapter 15
Data Types and Collections in the Graph Server (PGX)

15-22

15.3 Handling Asynchronous Requests in Graph Server (PGX)
This guide explains in detail the asynchronous methods supported by the PGX API.

The PGX API is designed to be asynchronous. This means that all of its core methods ending
with Async do not block the caller thread until the request is completed. Instead, a PgxFuture
object is instantly returned.

You can perform the following three actions on the returned PgxFuture object:

• Block

• Chain

• Cancel

• Blocking Operation

• Chaining Operation

• Cancelling Operation

• Handling Concurrent Asynchronus Operations

15.3.1 Blocking Operation
You can easily get the result by calling the get() method on the PgxFuture. The get() blocks
the caller thread until the result is available:

PgxFuture<PgxSession> sessionPromise = instance.createSessionAsync("my-
session");
try {
 // block caller thread
 PgxSession session = sessionPromise.get();
 // do something with session
 ...
} catch (InterruptedException e) {
 // caller thread was interrupted while waiting for result
} catch (ExecutionException e) {
 // an exception was thrown during asynchronous computation
 Throwable cause = e.getCause(); // the actual exception is nested
}

PGX provides blocking convenience methods for every Async method, which calls the get()
method. Typically, those methods have the same name as the asynchronous method they
wrap, but without the Async suffix. For example, the preceding code snippet is equal to:

try {
 // block caller thread
 PgxSession session = instance.createSession("my-session");
 // do something with session
 ...
} catch (InterruptedException e) {
 // caller thread was interrupted while waiting for result
} catch (ExecutionException e) {
 // an exception was thrown during asynchronous computation

Chapter 15
Handling Asynchronous Requests in Graph Server (PGX)

15-23

 Throwable cause = e.getCause(); // the actual exception is nested
}

15.3.2 Chaining Operation
The in-memory graph server (PGX) ships a version of Java 8's CompletableFuture
named PgxFuture, a monadic enhancement of the Future interface.

The CompletableFuture allows chaining of asynchronous computations without polling
or the need of deeply nested callbacks (also known as callback hell). All PgxFuture
instances returned by PGX APIs are instances of CompletableFuture and can be
chained without the need of Java 8.

import java.util.concurrent.CompletableFuture

...

final GraphConfig graphConfig = ...
instance.createSessionAsync("my-session")
 .thenCompose(new Fun<PgxSession, CompletableFuture<PgxGraph>>() {
 @Override
 public CompletableFuture<PgxGraph> apply(PgxSession session) {
 return session.readGraphWithPropertiesAsync(graphConfig);
 }
}).thenAccept(new Action<PgxGraph>() {
 @Override
 public void accept(PgxGraph graph) {
 // do something with loaded graph
 }
});

The asynchronous chaining in the preceding example is explained as follows:

• The first line in the code makes an asynchronous call to createSessionAsync() to
create a session.
Once the promise is resolved, it returns a PgxFuture object, which is the newly
created PgxSession.

• The code then calls the .thenCompose() handler by passing a function which
takes the PgxSession object as an argument.
Inside the function, there is another asynchronous
readGraphWithPropertiesAsync() request which return another PgxFuture
object.

The outer PgxFuture object returned by .thenCompose() gets resolved when the
readGraphWithPropertiesAsync() request completes.

• This is followed by the .thenAccept() handler. The function that is passed
to .thenAccept() does not return anything. Therefore, the future return type
of .thenAccept() is PgxFuture<Void>.

Blocking Versus Chaining

For most use cases, you can block the caller thread. However, blocking can quickly
lead to poor performance or deadlocks once things get more complex. As a rule, use

Chapter 15
Handling Asynchronous Requests in Graph Server (PGX)

15-24

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

blocking to quickly analyze selected graphs in a sequential manner, for example, in shell
scripts or during interactive analysis using the interactive PGX shell.

Use chaining for applications built on top of PGX.

15.3.3 Cancelling Operation
You can cancel a pending request by invoking the cancel method of the returned PgxFuture
instance.

For example:

PgxFuture<Object> promise=...
// do something else
promise.cancel(); // will cancel computation

Any subsequent calls to promise.get() will result in a CancellationException being thrown.

Note:

Due to Java's cooperative threading model, it might take some time before PGX
actually stops the computation.

15.3.4 Handling Concurrent Asynchronus Operations
Using the PgxSession#runConcurrently API provided by the in-memory graph server (PGX),
you can submit a list of suppliers of asynchronous APIs to run concurrently in the PGX
server.

For example:

import oracle.pgx.api.*;

 Supplier<PgxFuture<?>> asyncRequest1 = () ->
session.readGraphWithPropertiesAsync(...);
 Supplier<PgxFuture<?>> asyncRequest2 = () ->
session.getAvailableSnapshotsAsync(...);

 List<Supplier<PgxFuture<?>>> supplierList = Arrays.asList(asyncRequest1,
asyncRequest2);

 //executing the async requests with the enabled optimization feature
 List<?> results = session.runConcurrently(supplierList);

 //the supplied requests are mapped to their results and orderly collected
 PgxGraph graph = (PgxGraph) results.get(0);
 Deque<GraphMetaData> metaData = (Deque<GraphMetaData>) results.get(1);

Chapter 15
Handling Asynchronous Requests in Graph Server (PGX)

15-25

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html#cancel(boolean)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CancellationException.html

15.4 Graph Client Sessions
The graph server (PGX) assumes there may be multiple concurrent clients, and each
client submits request to the shared PGX server independently.

Each session has its own workspace in PGX and is isolated from other sessions.

You can share graphs or properties among sessions.

Creating Sessions

The following methods in the ServerInstance class are used to create sessions:

PgxFuture<PgxSession> createSessionAsync(String source)
PgxFuture<PgxSession> createSessionAsync(String source, long
idleTimeout, long taskTimeout, TimeUnit unit)

PGX offers blocking convenience wrappers around the preceding methods:

Creating a Session Using Java

PgxSession createSession(String source)
PgxSession createSession(String source, long idleTimeout, long
taskTimeout, TimeUnit unit)

The preceding methods accept the following arguments:

• source is any arbitrary string that describes the client. Currently, this string is only
used for logging purposes.

• The user can specify the idle timeout (idleTimeout) and task timeout
(taskTimeout) when creating a new session. If these values are not specified,
default values are used.
See Configuration Parameters for the Graph Server (PGX) Engine for more
informtion on graph server (PGX) configuration options.

Creating a Session Using Python

import pypgx
session = pypgx.get_session()

Destroying Sessions

To destroy a session, simply call:

session.destroyAsync();

Destroying a Session Using Java

session.destroy();

Chapter 15
Graph Client Sessions

15-26

Destroying a Session Using Python

session.destroy()

Administrators can destroy sessions by ID using the following code:

PgxFuture<Void> promise = instance.killSessionAsync(sessionId);
instance.killSession(sessionId); // blocking version

Note:

Calling administrative methods by default requires special authorization in client/
server mode.

When a session is destroyed, PGX reclaims all of the resources associated with the session.
Specifically, all transient data is destroyed immediately. See Managing Transient Data for
more information on transient data.

However, PGX may choose to keep the loaded graph instance in memory for caching
purposes, especially if a graph instance is shared by multiple clients. In summary, every
graph remains in memory until no client is using it.

Note:

A session can be destroyed automatically via the session time-out mechanism.
See Configuration Parameters for the Graph Server (PGX) Engine for more
informtion on graph server (PGX) configuration options.

15.5 Graph Mutation and Subgraphs
This guide discusses the several methods provided by the graph server (PGX) for mutating
graph instances.

You can use the mutation and subgraph methods that are defined in the PgxGraph class, to
mutate a graph.

Note:

All of the mutating methods create a new graph or snapshot instance as the
mutated version of the original graph, rather than mutating the original graph
directly.

• Altering Graphs

• Simplifying and Copying Graphs

• Transposing Graphs

Chapter 15
Graph Mutation and Subgraphs

15-27

• Undirecting Graphs

• Advanced Multi-Edge Handling

• Creating a Subgraph

• Creating a Bipartite Subgraph

• Creating a Sparsified Subgraph

15.5.1 Altering Graphs
This section explains the graph alteration mutation used to add or remove vertex and
edge providers of a graph.

You can add or remove vertex and edge providers in a graph that has been loaded or
created previously. The mutation can either create a new independent graph, or create
a new snapshot for the graph.

You must first create a graph-alteration builder to start altering an existing graph. For
example, the following code shows how to start a graph alteration on a graph that is
stored in a variable graph:

Starting a Graph Alteration Using JShell

opg-jshell> var alterationBuilder = graph.alterGraph();

Starting a Graph Alteration Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.graphalteration.GraphAlterationBuilder;

GraphAlterationBuilder alterationBuilder = graph.alterGraph();

The following topics explain in detail on adding and removing vertex and edge
providers:

• Loading Or Removing Additional Vertex or Edge Providers

15.5.1.1 Loading Or Removing Additional Vertex or Edge Providers
You can alter your graph by adding or removing vertex or edge providers from a
specific datasource.

Keys in Additionally Loaded Providers

The vertex and edge providers that are loaded must provide the respective keys in
accordance with the vertex ID and edge ID strategy of the graph being altered. If the
ID strategy is KEYS_AS_IDS, the provider must create a key mapping. But, if the ID
strategy is UNSTABLE_GENERATED_IDS, it must not create the key mapping.

• Loading Vertex Providers

• Loading Edge Providers

• Removing Vertex or Edge Providers

• Applying the Alteration and Building a Graph or Snapshot

Chapter 15
Graph Mutation and Subgraphs

15-28

15.5.1.1.1 Loading Vertex Providers
You can add a vertex provider, by calling
alterationBuilder.addVertexProvider(EntityProviderConfig vertexProviderConfig).
vertexProviderConfig is a vertex provider configuration and it provides configuration details
such as:

• location of the datasource to load from

• the stored format

• properties of the vertex provider

Additionally, you can also add the provider by calling
alterationBuilder.addVertexProvider(String pathToVertexProviderConfig) where
pathToVertexProviderConfig points to a file accessible from the client that contains a JSON
representation of a vertex provider configuration.

For example, the vertex provider can be added in the alteration as shown:

// loading by indicating the path to the JSON file
alterationBuilder.addVertexProvider("<path-to-vertex-provider-
configuration>");

// or by first loading the content of a JSON file into an
EntityProviderConfig object
EntityProviderConfig vertexProviderConfig = new
AnyFormatEntityProviderConfigFactory().fromPath("<path-to-vertex-provider-
configuration>");
alterationBuilder.addVertexProvider(vertexProviderConfig);

Alternatively, the vertex provider configuration can be built programmatically:

FileEntityProviderConfigBuilder vertexProviderConfigBuilder = new
FileEntityProviderConfigBuilder().
 setFormat().
 setName("typicalVertexProvider").
 setUris("").
 setKeyColumn(1).
 addProperty("prop1", PropertyType.STRING, null, 2).
 addProperty("prop2", PropertyType.LOCAL_DATE, null, 3);

EntityProviderConfig vertexProviderConfig =
vertexProviderConfigBuilder.build();

alterationBuilder.addVertexProvider(vertexProviderConfig);

15.5.1.1.2 Loading Edge Providers
You can add an edge provider, by calling
alterationBuilder.addEdgeProvider(EntityProviderConfig edgeProviderConfig) where
edgeProviderConfig. edgeProviderConfig is an edge provider configuration and it provides
configuration details such as:

• location of the datasource to load from

Chapter 15
Graph Mutation and Subgraphs

15-29

• the stored format

• properties of the edge provider

The source and destination vertex providers to which it is linked must either be already
in the base graph (and not removed in the alteration), or added with the alteration.

Additionally, you can also add the provider by calling
alterationBuilder.addVertexProvider(String pathToVertexProviderConfig)
where pathToVertexProviderConfig points to a file accessible from the client that
contains a JSON representation of an vertex provider configuration.

For example, an edge provider can be added in the alteration as shown:

// loading by indicating the path to the JSON file
alterationBuilder.addEdgeProvider("<path-to-edge-provider-
configuration>");

// or by first loading the content of a JSON file into an
EntityProviderConfig object
EntityProviderConfig edgeProviderConfig = new
AnyFormatEntityProviderConfigFactory().fromPath("<path-to-edge-provider-
configuration>");
alterationBuilder.addEdgeProvider(edgeProviderConfig);

Alternatively, the edge provider configuration can be built programmatically:

FileEntityProviderConfigBuilder edgeProviderConfigBuilder = new
FileEntityProviderConfigBuilder().
 setFormat().
 setName("typicalEdgeProvider").
 hasHeader(true).
 setUris("").
 setSourceVertexProvider("typicalVertexProvider").
 setDestinationVertexProvider("anotherTypicalVertexProvider").
 setSourceColumn("source").
 setDestinationColumn("destination").
 setKeyColumn("EID").
 createKeyMapping(true).
 setErrorHandlingOnMissingVertex(OnMissingVertex.IGNORE_EDGE).
 addProperty("cost", PropertyType.DOUBLE);

EntityProviderConfig edgeProviderConfig =
edgeProviderConfigBuilder.build();

alterationBuilder.addEdgeProvider(edgeProviderConfig);

15.5.1.1.3 Removing Vertex or Edge Providers
You can remove an edge provider by calling
alterationBuilder.removeEdgeProvider(String edgeProviderName), where
edgeProviderName is the name of the edge provider to be removed from the graph.

Similarly, calling alterationBuilder.removeVertexProvider(String
vertexProviderName) will result in the graph to not contain that specific vertex

Chapter 15
Graph Mutation and Subgraphs

15-30

provider. If that vertex provider was the source or destination provider for some edge
providers in the base graph, those edge providers should also be removed before the
application of the alteration or an exception will be thrown.

It is possible to indicate that the edge providers associated to a removed vertex provider
should be automatically removed by calling
alterationBuilder.cascadeEdgeProviderRemovals(boolean
cascadeEdgeProviderRemovals) with cascadeEdgeProviderRemovals set to true.

15.5.1.1.4 Applying the Alteration and Building a Graph or Snapshot
You must call alterationBuilder.build(), once the different vertex and edge providers
have been added or removed in the alteration to actually apply the operation. By calling
alterationBuilder.build(), a new graph is created and that graph contains all the
providers of the base graph excluding the removed providers, and the additionally loaded
providers.

You can also call alterationBuilder.buildNewSnapshot(), in which case, a new snapshot
for the base graph is created and that snapshot contains all the providers of the base graph
excluding the removed providers, and the additionally loaded providers.

15.5.2 Simplifying and Copying Graphs
You can create a simplified version of the graph by calling the simplify() method.

Simplify a Graph Using Java

PgxGraph simplify(Collection<VertexProperty<?, ?>> vertexProps,
 Collection<EdgeProperty<?>> edgeProps, MultiEdges multiEdges,
 SelfEdges selfEdges, TrivialVertices trivialVertices,
 Mode mode, String newGraphName)

Simplify a Graph Using Python

simplify(self, vertex_properties=True, edge_properties=True, keep_multi_edges=False,
 keep_self_edges=False, keep_trivial_vertices=False, in_place=False,
name=None)

The first two arguments (vertexProps and edgeProps) list which properties will be copied into
the newly created simplified graph instance. PGX provides convenience constants
VertexProperty.ALL, EdgeProperty.ALL and VertexProperty.NONE, EdgeProperty.NONE to
specify all properties or none properties to be stored, respectively.

The next three arguments determine which operations will be performed to simplify the graph.

• multiEdges: if MultiEdges.REMOVE_MULTI_EDGES, eliminate multiple edges between a
source vertex and a destination vertex, that is, leave at most one edge between two
vertices. MultiEdges.KEEP_MULTI_EDGES indicates to keep them. By default, PGX picks
one edge out of the multi-edges and takes its properties. See Advanced Multi-Edge
Handling for more fine-grained control over the edge properties during simplification.

• selfEdges: if SelfEdges.REMOVE_SELF_EDGES, eliminate every edge whose source and
destination are the same vertex. SelfEdges.KEEP_MULTI_EDGES indicates to keep them.

• trivialVertices: if TrivialVertices.REMOVE_TRIVIAL_VERTICES, eliminate all the
vertices that have neither incoming edges nor outgoing edges.
TrivialVertices.KEEP_TRIVIAL_VERTICES indicates to keep them.

Chapter 15
Graph Mutation and Subgraphs

15-31

The mode argument, if set to Mode.MUTATE_IN_PLACE , requests that the mutation
occurs directly on the specified graph instance without creating a new one. If set to
Mode.CREATE_COPY, the method will create a new graph instance with the new name in
newGraphName. If newGraphName is omitted (or null), PGX will generate a unique graph
name.

The return value of this method is the simplified PgxGraph instance.

The Mode.MUTATE_IN_PLACE option is only applicable if the graph is marked as
mutable. Every graph is immutable by default when loaded into PGX. To make a
PgxGraph mutable, the client should create a private copy of the graph first, using one
of the following methods:

Copying a Graph Using Java

PgxGraph clone()
PgxGraph clone(String newGraphName)
PgxGraph clone(Collection<VertexProperty<?, ?>> vertexProps,
Collection<EdgeProperty<?>> edgeProps, String newGraphName)

Copying a Graph Using Python

clone(self, vertex_properties=True, edge_properties=True, name=None)

As with simplify(), the user can specify optional properties of the graph to copy with
vertexProps and edgeProps. If no properties are specified, all of the original graph's
properties will be copied into the new graph instance. The user can specify the name
of the newly created graph instance with newGraphName.

15.5.3 Transposing Graphs
You can create a transposed version of the graph.

Transpoing a Graph Using Java

PgxGraph transpose(Collection<VertexProperty<?, ?>> vertexProps,
 Collection<EdgeProperty<?>> edgeProps,
 Map<String, String> edgeLabelMapping,
 Mode mode, String newGraphName)

Transpoing a Graph Using Python

transpose(self, vertex_properties=True, edge_properties=True,
edge_label_mapping=None, in_place=False,
 name=None)

The edgeLabelMapping argument can be used to rename edge labels. If any key in the
given map does not exist as an edge label, it will be ignored.

edgeLabelMapping argument can also be an empty Map or null.

• null: if argument is null, edge labels from source graph will be removed on
transposed graph. (default behavior when using convenience methods).

• empty Map: if argument is an empty Map, edge labels from source graph will be
neither removed or renamed. Instead, it will be kept as it is in source graph.

See Simplifying and Copying Graphs for the meaning of the other parameters.

Chapter 15
Graph Mutation and Subgraphs

15-32

Additionally, the graph server (PGX) provides the following convenience methods from the
PgxGraph class for the common operation of copying all vertex and edge properties into the
transposed graph instance:

• transpose(Mode mode, String newGraphName)

• transpose(String newGraphName)

• transpose(Mode mode)

15.5.4 Undirecting Graphs
The following methods create the undirected version of a graph instance:

Creating Undirected Version of a Graph Using Java

PgxGraph undirect()
PgxGraph undirect(String newGraphName)
PgxGraph undirect(MultiEdges multiEdges, SelfEdges selfEdges, TrivialVertices
trivialVertices, Mode mode, String newGraphName)
PgxGraph undirect(Collection<VertexProperty<?, ?>> vertexProps,
Collection<EdgeProperty<?>> edgeProps, MultiEdges multiEdges, SelfEdges selfEdges,
Mode mode, String newGraphName)

Creating Undirected Version of a Graph Using Python

undirect(self, vertex_properties=True, edge_properties=True, keep_multi_edges=True,
keep_self_edges=True,
 keep_trivial_vertices=True, in_place=False, name=None)

The first two methods create an undirected version of the graph while copying all of the
vertex properties. newGraphName is an optional argument to specify the name of the newly
created graph instance.

In contrast, the third and fourth methods concurrently perform undirecting and simplifying of a
graph. See Simplifying and Copying Graphs for the meaning of each parameter.

All methods return an object of the undirected PgxGraph type.

An undirected graph has some restrictions. Some algorithms are only supported on directed
graphs or are not yet supported for undirected graphs. Further, PGX does not support to
store undirected graphs nor reading from undirected formats. Since the edges do not have a
direction anymore, the behavior of pgxEdge.getSource() or pgxEdge.getDestination() can
be ambiguous. In order to provide deterministic results, PGX will always return the vertex with
the smaller internal id as source and the other as destination vertex.

15.5.5 Advanced Multi-Edge Handling
Both simplify() and undirect() support the removal of multi-edges using
MultiEdges.REMOVE_MULTI_EDGES. If this parameter is set, all multi-edges in this graph are
removed, that is, collapsed. Whenever several multi-edges with edge properties are
collapsed into one edge, you can choose one of the following two strategies supported by the
graph server (PGX) to decide how to treat the corresponding properties:

• Picking

• Merging

If you choose picking, the graph server (PGX) picks one edge out of every set of multi-edges
and copies all its properties including the edge label and key into the new graph. In the case

Chapter 15
Graph Mutation and Subgraphs

15-33

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#transpose_oracle_pgx_api_PgxGraph_Mode_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#transpose_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#transpose_oracle_pgx_api_PgxGraph_Mode_

of merging, the graph server (PGX) creates a completely new edge out for every set of
multi-edges. PGX determines the properties of these new edges by applying a
MergingFunction on every property of the multi-edges.

If there are no multi-edges between two vertices, that is, zero or only one edge, the
chosen strategy does not have an effect on the outcome. The edge is kept with all its
properties as it is.

• Picking

• Merging

• StrategyBuilder in General

15.5.5.1 Picking
This strategy can be used to pick an edge out of multi-edges. The graph server (PGX)
allows the user to define several picking criteria. You can pick by:

• Property

• Label

• Edge-ID

Every picking criteria has to be combined with a PickingStrategyFunction. PGX
supports either PickingStrategyFunction.MIN and PickingStrategyFunction.MAX,
which picks the edge whose property/label/id is either minimal or maximal. If one does
not specify a picking criteria, PGX will non-deterministically pick an edge out of the
multi-edges.

A PickingStrategy can be created using a PickingStrategyBuilder, which can be
retrieved by calling createPickingStrategyBuilder() on the target graph.

You can call one of the following functions as per your chosen picking criteria:

PickingStrategyBuilder setPickByEdgeId(PickingStrategyFunction
pickingStrategyFunction)
PickingStrategyBuilder setPickByLabel(PickingStrategyFunction
pickingStrategyFunction)
PickingStrategyBuilder setPickByProperty(EdgeProperty edgeProperty,
PickingStrategyFunction pickingStrategyFunction)
PickingStrategyBuilder setPickByProperty(String propertyName,
PickingStrategyFunction pickingStrategyFunction)

The following figure shows how PGX picks the edge with the minimal cost and takes
all its properties.

Chapter 15
Graph Mutation and Subgraphs

15-34

Figure 15-1 Picking Strategy

15.5.5.2 Merging
This strategy can be used to merge the properties of multi-edges. The graph server (PGX)
allows the user to define a MergingFunction for every property. Currently, PGX supports the
following functions:

• MergingFunction.MIN

• MergingFunction.MAX

• MergingFunction.SUM

Note:

SUM is only defined on numeric properties.

The following figure shows how the graph server (PGX) merges the different edge properties
and labels. It takes the minimal cost, the sum of distances and the maximal edge label.

Chapter 15
Graph Mutation and Subgraphs

15-35

Figure 15-2 Merging Strategy

15.5.5.3 StrategyBuilder in General
By default, both the StrategyBuilders use the same values as in the convenience
methods of simplify() and undirect(). This includes that all properties are kept by
default. If one wants to drop specific properties, one can either use the
dropVertexProperty() or dropEdgeProperty() functions.

MutationStrategyBuilder setNewGraphName(String newGraphName)
MutationStrategyBuilder setCopyMode(Mode mode)
MutationStrategyBuilder setTrivialVertices(TrivialVertices
trivialVertices)
MutationStrategyBuilder setSelfEdges(SelfEdges selfEdges)
MutationStrategyBuilder setMultiEdges(MultiEdges multiEdges)
MutationStrategyBuilder
dropVertexProperties(Collection<VertexProperty<?, ?>> vertexProperty)
MutationStrategyBuilder dropEdgeProperties(Collection<EdgeProperty<?>>
edgeProperty)
MutationStrategyBuilder dropVertexProperty(VertexProperty<?, ?>
vertexProperty)
MutationStrategyBuilder dropEdgeProperty(EdgeProperty<?> edgeProperty)
MutationStrategy build()

Simplify() and undirect() can be called using a MutationStrategy as follows:

MutationStrategy strategy = strategyBuilder.build()
PgxGraph simplifiedGraph graph.simplify(strategy)
//OR
PgxGraph undirectedGraph graph.undirect(strategy)

Chapter 15
Graph Mutation and Subgraphs

15-36

15.5.6 Creating a Subgraph
PGX provides the following methods for creating subgraphs via a filter (see Filter Expressions
for more information) expression:

Creating a Subgraph Using Java

PgxGraph filter(GraphFilter graphFilter)
PgxGraph filter(GraphFilter graphFilter, String newGraphName)
PgxGraph filter(Collection<VertexProperty<?, ?>> vertexProps, Collection<EdgeProperty<?
>> edgeProps, GraphFilter graphFilter, String newGraphName)

Creating a Subgraph Using Python

filter(self, graph_filter, vertex_properties=True, edge_properties=True, name=None)

As in the other graph mutating methods, the user has the option to specify the name of the
subgraph with the newGraphName parameter and of choosing the vertex and edge properties
to be copied into the subgraph (vertexProps and edgeProps). All of the preceding methods
return a PgxGraph object which represents the created subgraph.

All filter methods require a GraphFilter argument containing a filter expression.
Fundamentally, the filter expression is a Boolean expression that is evaluated for every vertex
and edge in the original graph (in parallel). If the expression is evaluated as true for the
vertex or edge, then that vertex or edge is included in the subgraph.

See Creating Subgraphs for more information on how to create subgraphs from graphs
loaded into memory.

15.5.7 Creating a Bipartite Subgraph
The graph server (PGX) enables the client to create a bipartite subgraph. The following
methods return the created BipartiteGraph instance:

Creating a Bipartie Subgraph using Java

BipartiteGraph bipartiteSubGraphFromLeftSet(VertexSet<?> vertexSet)
BipartiteGraph bipartiteSubGraphFromLeftSet(VertexSet<?> vertexSet, String
newGraphName)
BipartiteGraph bipartiteSubGraphFromLeftSet(Collection<VertexProperty<?, ?>>
vertexProps, Collection<EdgeProperty<?>> edgeProps, VertexSet<?> vertexSet, String
newGraphName)
BipartiteGraph bipartiteSubGraphFromLeftSet(Collection<VertexProperty<?, ?>>
vertexProps, Collection<EdgeProperty<?>> edgeProps, VertexSet<?> vertexSet, String
newGraphName, String isLeftPropName)

Creating a Bipartie Subgraph using Python

bipartite_sub_graph_from_left_set(self, vset, vertex_properties=True,
edge_properties=True, name=None, is_left_name=None)

These methods require an additional argument vertexSet, which points to a set of vertices
(see Using Collections and Maps for more information) whose elements (vertices) would
contain the left vertices (that is, vertices on the left side of the bipartite graph that have only
edges to vertices on the right side) in the resulting bipartite graph.

When creating the bipartite subgraph, PGX automatically inserts an additional boolean vertex
property isLeft. The value of this property is set true for the left vertices and false for the

Chapter 15
Graph Mutation and Subgraphs

15-37

right vertices in the bipartite subgraph. The name of the isLeft vertex property can be
obtained with getIsLeftPropertyAsync() on the returned BipartiteGraph object.

The user has the option to specify a name for the newly created graph (newGraphName)
as well as a custom name for the Boolean left-vertex indicating property
(isLeftPropName). The user can also specify the vertex and edge properties to be
copied into the newly created graph instance (vertexProps and edgeProps).

15.5.8 Creating a Sparsified Subgraph
The graph server (PGX) supports creating a sparsified subgraph of a graph:

Creating a Sparsified Subgraph Using Java

PgxGraph sparsify(double e)
PgxGraph sparsify(double e, String newGraphName)
PgxGraph sparsify(Collection<VertexProperty<?, ?>> vertexProps,
Collection<EdgeProperty<?>> edgeProps, double e, String newGraphName)

Creating a Sparsified Subgraph Using Python

sparsify(self, sparsification, vertex_properties=True, edge_properties=True,
name=None)

The double argument e is the sparsification coefficient with a value between 0.0 and
1.0.

The user again has the option to specify the name for the newly created graph
(newGraphName) as well as the vertex and edge properties to be copied into the newly
created graph instance (vertexProps and edgeProps).

The returned PgxGraph object represents a sparsified subgraph which has fewer edges
than the original graph.

15.6 Managing Transient Data
This guide discusses how to handle transient properties and collections.

The graph server (PGX) allows each client to maintain its own isolated workspace,
called session. Clients may create additional data objects in their own session, which
they can then use for analysis.

• Managing Transient Properties

• Managing Collections and Scalars

15.6.1 Managing Transient Properties
The graph server (PGX) adopts the Property Graph data model. Once a graph is
loaded into PGX, the graph instance itself and its original properties are set as
immutable. However, the client can create and attach additional properties to the
graph dynamically. These extra properties are referred to as transient properties and
are mutable by the client

Chapter 15
Managing Transient Data

15-38

The methods for creating transient properties are available in PgxGraph:

PgxFuture<VertexProperty<ID, V>> createVertexPropertyAsync(PropertyType type)
PgxFuture<VertexProperty<ID, V>> createVertexPropertyAsync(PropertyType
type, String name)
PgxFuture<EdgeProperty<V>> createEdgePropertyAsync(PropertyType type)
PgxFuture<EdgeProperty<V>> createEdgePropertyAsync(PropertyType type, String
name)

In the preceding code:

• PropertyType: is an enum for the data type of the property, which must be one of the
primitive types supported by PGX.

• name: is an optional argument to assign a unique name to the newly created property. If
no name is specified, PGX will assign one to the client.

Note:

Names must be unique. There cannot be two different vertex or edge properties
for the same graph and with the same name.

All methods return a Property object, which represent the newly created transient property.
Both of the underlying classes, VertexProperty<ID, V> and EdgeProperty<V>, are
parametrized with the value type V the property holds. V matches the given PropertyType.
VertexProperty<ID, V> is additionally parametrized with the vertex ID type. This is due to
PGX support of several types of vertex identifiers. See our graph configuration chapter on
how to specify the vertex ID type of a graph. EdgeProperty<V> is not parameterized with the
edge ID type, because PGX only supports edge identifiers of type long.

Creating Transient Properties Using Java

GraphConfig config = GraphConfigBuilder.forFileFormats(...)
 ...
 .setVertexIdType(IdType.LONG)
 ...
 .build();

PgxGraph G = session.readGraphWithProperties(config);
VertexProperty<Long, String> p1 =
G.createVertexProperty(PropertyType.STRING);
EdgeProperty<Double> p2 = G.createEdgeProperty(PropertyType.DOUBLE);

Creating Transient Properties Using Python

G = session.read_graph_with_properties(config)
p1 = G.create_vertex_property("string")
p2 = G.create_edge_property("double")

To delete a transient property from the session, call destroyAsync() (or destroy()) on the
property object.

Chapter 15
Managing Transient Data

15-39

15.6.2 Managing Collections and Scalars
The client can create graph-bound vertex and edge collections to use during the
analysis with the following methods in PgxGraph:

PgxFuture<VertexSequence<E>> createVertexSequenceAsync()
PgxFuture<VertexSequence<E>> createVertexSequenceAsync(String name)
PgxFuture<VertexSet<E>> createVertexSetAsync()
PgxFuture<VertexSet<E>> createVertexSetAsync(String name)
PgxFuture<EdgeSequence> createEdgeSequenceAsync()
PgxFuture<EdgeSequence> createEdgeSequenceAsync(String name)
PgxFuture<EdgeSet> createEdgeSetAsync()
PgxFuture<EdgeSet> createEdgeSetAsync(String name)

PGX also supports scalar collections such as set and sequence. Each of these
collections can hold elements of various primitive data types like INTEGER, LONG, FLOAT,
DOUBLE or BOOLEAN. Scalar collections are session-bound and can be created with the
following methods in PgxSession:

PgxFuture<ScalarSet<T>> createSetAsync(PropertyType contentType, String
name)
PgxFuture<ScalarSequence<T>> createSequenceAsync(PropertyType
contentType, String name)
PgxFuture<ScalarSet<T>> createSetAsync(PropertyType contentType)
PgxFuture<ScalarSequence<T>> createSequenceAsync(PropertyType
contentType)

In the preceding code, the optional argument (name) specifies the name of the newly
created collection. If omitted, PGX chooses a name for the client. As with properties,
the collections holding vertices are parametrized with the ID type of the vertices. Refer
to graph configuration chapter to learn how to specify the vertex ID type of a graph.

The return value is the collection object which points to the newly created empty
collection.

To drop a collection from the session, call destroyAsync() (or destroy()) on the
collection object.

To check which collections are currently allocated for a graph you can use the
following method:

PgxFuture<Map<String, PgxCollection<? extends PgxEntity<?>, ?>>>
getCollectionsAsync()

Checking Collections for a Graph Using Java

Map<String, PgxCollection<? extends PgxEntity<?>, ?>> getCollections()

Checking Collections for a Graph Using Python

get_collections(self)

Chapter 15
Managing Transient Data

15-40

The returned map contains the names of the collections as keys and the collections as
values. The collections can be casted to the matching collection subclass.

PGX supports special Map collection types and allows users to map between different data
types (oracle.pgx.common.types.PropertyType). Maps can be created using PgxGraph or
PgxSession APIs, the difference is that the latter supports only non graph-related types, and
that the created maps directly depend on the session:

PgxFuture<PgxMap<K, V>> createMapAsync(PropertyType keyType, PropertyType
valType)
PgxFuture<PgxMap<K, V>> createMapAsync(PropertyType keyType, PropertyType
valType, String mapName)

Creating Map Collections Using Java

PgxMap<K, V> createMap(PropertyType keyType, PropertyType valType)
PgxMap<K, V> createMap(PropertyType keyType, PropertyType valType, String
mapName)

Similarly, scalar variables can be created in the client session using the following methods:

PgxFuture<Scalar<T>> createScalarAsync(PropertyType type, String
newScalarName)
PgxFuture<Scalar<T>> createScalarAsync(PropertyType type)

Creating Scalar Variables Using Java

Scalar<T> createScalar(PropertyType type, String newScalarName)
Scalar<T> createScalar(PropertyType type)

Creating Scalar Variables Using Python

create_scalar(self,data_type,name=None)

These collections and scalar variables can then be passed as arguments to graph algorithms.
See Using Custom PGX Graph Algorithms for more information.

15.7 Graph Versioning
This guide describes the different ways to work with graph snapshots.

A graph can have multiple snapshots associated with it, reflecting different versions of the
graph. All snapshots of a graph have the same graph configuration associated.

The following topics explains the various operations you can perform on graph snapshots:

• Configuring the Snapshots Source

• Creating a Snapshot via Refreshing

• Creating a Snapshot via ChangeSet

• Checking Out the Latest Snapshots of a Graph

Chapter 15
Graph Versioning

15-41

• Checking Out Different Snapshots of a Graph

• Directly Loading a Specific Snapshot of a Graph

15.7.1 Configuring the Snapshots Source
Snapshots can be created from two sources: Refreshing and ChangeSet.

Refreshing is available for graphs that are read from a persistent data source, that is, a
file. When the data source has changed with respect to the version stored in the graph
server (PGX), it can be read again manually by calling the
PgxSession.readGraphWithProperties() method. Similarly, if auto-refresh is set for
the graph, the graph server (PGX) automatically reads the data source and creates
new snapshots when the data source has changed.

Instead, a ChangeSet is a set of changes to a graph that the user creates and
populates via the PGX ChangeSet API. Once a ChangeSet is created and populated
with the desired changes, the user can simply call
GraphChangeSet.buildNewSnapshot() to create a new snapshot for the graph. In this
way, you are empowered to integrate changes coming from any source into the graph
and build snapshots out of them.

Only one source of snapshots is allowed for a single graph and is chosen during graph
configuration via the snapshots_source option, which can be set to either REFRESH or
CHANGE_SET. In case the snapshots_source option is not explicitly set by the user, the
following default settings apply:

• If the graph is from a persistent data source, the default value is REFRESH, so that
snapshots can be created only by calling
PgxSession.readGraphWithProperties() (or via auto-refresh, if configured).

• If the graph is transient, that is, built from a graph builder, the default value is
CHANGE_SET, since the graph is not backed by a persistent data source from which
changes can be read. It is for this reason, CHANGE_SET is the only admissible value
for transient graphs.

Additionally, the following restrictions apply:

• If auto-refresh is enabled, then snapshots come from reading the backing data
source and hence only REFRESH is admissible for the snapshots_source option.

• If the user attempts to create snapshots in a way that is different from the
configuration (for example, by calling GraphChangeSet.buildNewSnapshot() when
the graph's snapshots_source is REFRESH), the operation is invalid and an
exception is thrown.

15.7.2 Creating a Snapshot via Refreshing
You can create a snapshot via refreshing by performing the following steps:

1. Create a session and load the graph into memory.

2. Check the available snapshots of the graph with
PgxSession.getAvailableSnapshots() method.
Get the Available Snapshots Using JShell

opg4j> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0,
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669

Chapter 15
Graph Versioning

15-42

(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20
10:38:42.685), vertexIdType=integer, edgeIdType=long]

Get the Available Snapshots Using Java

Deque<GraphMetaData> snapshots = session.getAvailableSnapshots(G);
for(GraphMetaData metaData : snapshots) {
 System.out.println(metaData);
}

Get the Available Snapshots Using Python

snapshots = session.get_available_snapshots(G)
for metadata in snapshots:
 print(metadata)

3. Edit the source file to contain an additional vertex and an additional edge or insert two
rows in the database.

4. Reload the updated graph within the same session as you loaded the original graph. A
new snapshot is created.
Load an Updated Graph Using JShell

opg4j> var G = session.readGraphWithProperties(G.getConfig(), true)
==> PGX Graph named 'sample_2' bound to PGX session 'a1744e86-65fb-4bd1-
b2dc-5458b20954a9' registered at PGX Server Instance running in embedded
mode

pgx> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0,
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20
10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3,
dataSourceVersion=1452083654000, creationRequestTimestamp=1453314938744
(2016-01-20 10:35:38.744), creationTimestamp=1453314938833 (2016-01-20
10:35:38.833), vertexIdType=integer, edgeIdType=long]

Load an Updated Graph Using Java

G = session.readGraphWithProperties(G.getConfig(), true);

Deque<GraphMetaData> snapshots = session.getAvailableSnapshots(G);

Load an Updated Graph Using Python

G = session.read_graph_with_properties(G.config,update_if_not_fresh=True)

Note that there are two GraphMetaData objects in the call for available snapshots, one
with 4 vertices and 4 edges and one with 5 vertices and 5 edges.

5. Verify that the graph variable points to the newly loaded graph using getNumVertices()
and getNumEdges() methods.
Get the Number of Vertices and Edges in a Graph Using JShell

opg4j> G.getNumVertices()
==> 5

Chapter 15
Graph Versioning

15-43

opg4j> G.geNumEdges()
==> 5

Get the Number of Vertices and Edges in a Graph Using Java

int vertices = G.getNumVertices();
long edges = G.getNumEdges();

Get the Number of Vertices and Edges in a Graph Using Python

vertices = G.num_vertices
edges = G.num_edges

15.7.3 Creating a Snapshot via ChangeSet
You can create a graph snapshot with ChangeSet via the PGX Java API. When you
want to create the graph from a persistent data source, you can use
PgxSession.readGraphWithProperties() with the snapshots_source configuration
option set to CHANGE_SET.

You can create a snapshot via ChangeSet by performing the following steps:

1. Create a snapshot of a transient graph from database:
Creating a Graph Snapshot Using JShell

opg4j> String statement =
...> "CREATE PROPERTY GRAPH bank_graph "
...> + "VERTEX TABLES (BANK_NODES as ACCOUNTS "
...> + "KEY (ID) "
...> + "LABEL ACCOUNTS "
...> + "PROPERTIES (ID, LABEL) "
...> + ") "
...> + "EDGE TABLES (BANK_EDGES_AMT "
...> + "KEY (SRC_ID, DEST_ID, AMOUNT) "
...> + "SOURCE KEY (SRC_ID) REFERENCES ACCOUNTS "
...> + "DESTINATION KEY (DEST_ID) REFERENCES ACCOUNTS "
...> + "LABEL TRANSFERS "
...> + "PROPERTIES (SRC_ID, DEST_ID, AMOUNT, LABEL) "
...> + ") ";
statement ==> "CREATE PROPERTY GRAPH bank_graph VERTEX TABLES
(BANK_NODES as ACCOUNTS KEY (ID) LABEL ACCOUNTS PROPERTIES (ID,
LABEL)) EDGE TABLES (BANK_EDGES_AMT KEY (SRC_ID, DEST_ID, AMOUNT)
SOURCE KEY (SRC_ID) REFERENCES ACCOUNTS DESTINATION KEY (DEST_ID)
REFERENCES ACCOUNTS LABEL TRANSFERS PROPERTIES (SRC_ID, DEST_ID,
AMOUNT, LABEL)) "
opg4j> session.executePgql(statement);
opg4j> session.getGraph("bank_graph");

Creating a Graph Snapshot Using Java

import oracle.pgx.api.*;
pgqlStmt = pgqlConn.createStatement();
String pgql = "CREATE PROPERTY GRAPH " + bank_graph + " "+
"VERTEX TABLES (BANK_NODES as ACCOUNTS " +
"KEY (ID) " +
"LABEL ACCOUNTS " +

Chapter 15
Graph Versioning

15-44

"PROPERTIES (ID, LABEL) " +
") " +
"EDGE TABLES (BANK_EDGES_AMT " +
"KEY (SRC_ID, DEST_ID, AMOUNT) " +
"SOURCE KEY (SRC_ID) REFERENCES ACCOUNTS " +
"DESTINATION KEY (DEST_ID) REFERENCES ACCOUNTS " +
"LABEL TRANSFERS " +
"PROPERTIES (SRC_ID, DEST_ID, AMOUNT, LABEL) " +
")";
pgqlStmt.execute(pgql);

2. Create a ChangeSet from graph and populate it. The following example shows adding a
new edge between vertices 1 and 4:
Creating a ChangeSet Using JShell

opg4j> var changeSet = graph.<Integer>createChangeSet()
opg4j> changeSet.addEdge(6, 1, 4)

Creating a ChangeSet Using Java

import oracle.pgx.api.*;
GraphChangeSet<Integer> changeSet = graph.createChangeSet();
changeSet.addEdge(6, 1, 4);

Creating a ChangeSet Using Python

changeSet = graph.create_change_set()changeSet.add_edge(1,4,6)

3. Create a second snapshot using GraphChangeSet.buildNewSnapshot() as shown in the
following code:
Creating a ChangeSet with GraphChangeSet API Using JShell

opg4j> var secondSnapshot = changeSet.buildNewSnapshot()
opg4j> session.getAvailableSnapshots(secondSnapshot).size()
==> 2

Creating a ChangeSet with GraphChangeSet API Using Java

PgxGraph secondSnapshot = changeSet.buildNewSnapshot();
System.out.println(session.getAvailableSnapshots(secondSnapshot).size())
;

Creating a ChangeSet with GraphChangeSet API Using Python

second_snapshot = change_set.build_new_snapshot()
print(len(session,get_available_snapshots()))

Thus two snapshots, referenced via the variables graph and secondSnapshot are created.

Chapter 15
Graph Versioning

15-45

15.7.4 Checking Out the Latest Snapshots of a Graph
With multiple snapshots of a graph being available and regardless of their source, you
can check out a specific snapshot using the PgxSession.setSnapshot() method. You
can use the LATEST_SNAPSHOT constant of PgxSession to easily check out the latest
available snapshot, as shown in the following example:

Get the Latest Snapshot Using JShell

opg4j> session.setSnapshot(G, PgxSession.LATEST_SNAPSHOT)
==> null
opg4j> session.getCreationTimestamp()
==> 1453315122685

Get the Latest Snapshot Using Java

session.setSnapshot(G, PgxSession.LATEST_SNAPSHOT);
System.out.println(session.getCreationTimestamp())

See the printed timestamp to verify the most recent snapshot.

15.7.5 Checking Out Different Snapshots of a Graph
You can also check out a specific snapshot, again using the
PgxSession.setSnapshot().

For example, consider the following two snapshots of a graph:

==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0,
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20
10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3,
dataSourceVersion=1452083654000, creationRequestTimestamp=1453314938744
(2016-01-20 10:35:38.744), creationTimestamp=1453314938833 (2016-01-20
10:35:38.833), vertexIdType=integer, edgeIdType=long]

To check out a specific snapshot of the graph, you must pass the creationTimestamp
of the snapshot you want to load to setSnapshot().

For example, if G is pointing to the newest graph with 5 vertices and 5 edges, but you
want to analyze the older graph, you need to set the snapshot to 1453315122685.

Get a Specific Snapshot Using JShell

opg4j> G.getNumVertices()
==> 5
opg4j> G.getNumEdges()
==> 5
opg4j> session.setSnapshot(G, 1453315122685)
==> null
opg4j> G.getNumVertices()

Chapter 15
Graph Versioning

15-46

==> 4
opg4j> G.getNumEdges()
==> 4

Get a Specific Snapshot Using Java

session.setSnapshot(G,1453315122685);

Get a Specific Snapshot Using Python

session.set_snapshot(G,1453315122685)

Note that setting the snapshot, changes the number of vertices and edges from 5 to 4.

Alternatively, you can also retrieve the creation timestamp of each snapshot from its
associated GraphMetaData object via the GraphMetaData.getCreationTimestamp() method.
The easiest way to get the GraphMetaData information of all the snapshots is to use the the
PgxSession.getAvailableSnapshots() method, which returns a collection of GraphMetaData
information of each snapshot ordered by creation timestamp from the most recent to the
oldest.

15.7.6 Directly Loading a Specific Snapshot of a Graph
You can also load a specific snapshot of a graph directly using the
PgxSession.readGraphAsOf() method. This is a shortcut for loading a graph with
readGraphWithProperties() followed by a setSnapshot().

Consider two snapshots of a graph that are already loaded into the PGX session. The
following example shows how to get a reference to a specific snapshot:

1. Get a graph configuration for the graph
Get the Graph Configuration Using JShell

opg4j> var config =
GraphConfigFactory.forAnyFormat().fromPath("<path_to_json>")
==> {"format":"adj_list", ... }

Get the Graph Configuration Using Java

GraphConfig config =
GraphConfigFactory.forAnyFormat().fromPath("<path_to_json>");

Get the Graph Configuration Using Python

config = GraphConfigFactory.for_any_format().from_path("<path_to_json>")

2. Check the loaded snapshots for this graph config using getAvailableSnapshots():
Get the Available Snapshots Using JShell

opg4j> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0,
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669

Chapter 15
Graph Versioning

15-47

(2016-01-20 10:38:42.669), creationTimestamp=1453315122685
(2016-01-20 10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3,
dataSourceVersion=1452083654000,
creationRequestTimestamp=1453314938744 (2016-01-20 10:35:38.744),
creationTimestamp=1453314938833 (2016-01-20 10:35:38.833),
vertexIdType=integer, edgeIdType=long]

Get the Available Snapshots Using Java

Deque<GraphMetaData> snapshots = session.getAvailableSnapshots(G);

Get the Available Snapshots Using Python

session.get_available_snapshots(G)

3. Check out the snapshot of the graph which has 4 vertices and 4 edges and having
the timestamp 1453315122685:
Load a Specific Snapshot Using JShell

opg4j> var G = session.readGraphAsOf(config, 1453315122685)
==> PGX Graph named 'sample' bound to PGX session
'a1744e86-65fb-4bd1-b2dc-5458b20954a9' registered at PGX Server
Instance running in embedded mode
opg4j> G.getNumVertices()
==> 4
opg4j> G.getNumEdges()
==> 4

Load a Specific Snapshot Using Java

PgxGraph G = session.readGraphAsOf(config, 1453315122685)a

Load a Specific Snapshot Using Python

G = read_graph_as_of(config, creation_timestamp=1453315122685)

15.8 Labels and Properties
You can perform various actions on the graph property and label values by executing
PGQL queries.

• Setting and Getting Property Values

• Getting Label Values

Chapter 15
Labels and Properties

15-48

15.8.1 Setting and Getting Property Values
Getting Property Values

You can obtain the vertex or edge property values by executing a SELECT PGQL query on the
graph.

For example:

Getting a Property Value Using JShell

opg4j> session.queryPgql("SELECT e.src_id, e.dest_id, e.amount FROM MATCH
(n:Account) -[e:Transfers]-> (m:Account) on bank_graph").print();

Getting a Property Value Using Java

...

...
PgxGraph g = session.getGraph("bank_graph");
String query =
 "SELECT e.src_id, e.dest_id, e.amount FROM MATCH (n:Account) -
[e:Transfers]-> (m:Account)";
g.queryPgql(query).print();

The resulting property values may appear as:

+---------------------------+
| src_id | dest_id | amount |
+---------------------------+
1	259	1000
1	418	1000
1	584	1000
1	644	1000
1	672	1000
2	493	1000
2	546	1000
2	693	1000
2	833	1000
2	840	1000
+---------------------------+

Setting Property Values

You can set the vertex or edge property values by executing insert or update PGQL queries
on the graph.

For example, to set a new vetex account ID on a graph using INSERT query:

Setting a Property Value Using JShell

opg4j> PgxGraph g = session.getGraph("bank_graph_analytics");
g ==> PgxGraph[name=bank_graph_analytics,N=1000,E=5001,created=1616312153556]
opg4j> PgxGraph g_mutable = g.clone("bank_graph_analytics_copy");

Chapter 15
Labels and Properties

15-49

g_mutable ==>
PgxGraph[name=bank_graph_analytics_copy,N=1000,E=5001,created=1616312413
799]
opg4j> g_mutable.executePgql("INSERT VERTEX v LABELS (Accounts)
PROPERTIES (v.id = 1001)");

Setting a Property Value Using Java

...

...
PgxGraph g1 =
session.readGraphWithProperties("bank_graph_analytics.json");
PgxGraph g2 = g1.clone("bank_graph_analytics_copy");
g2.executePgql("INSERT VERTEX v " +
 " LABELS (Accounts) " +
 " PROPERTIES (v.id = 1001)");

15.8.2 Getting Label Values
You can retrieve the vertex or edge label values of a graph as shown:

PgxGraph g = session.getGraph("bank_graph_analytics");
String query =
 "SELECT LABEL(v), COUNT(*) "
 + "FROM MATCH (v) "
 + "GROUP BY LABEL(v) "
 + "ORDER BY COUNT(v) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

The result may appear as shown:

+-----------------------+
| LABEL(n) | COUNT(*) |
+-----------------------+
| ACCOUNT | 1000 |
+-----------------------+

15.9 Filter Expressions
This guide explains the usage of filter expressions.

Filter expressions are applied in the following scenarios:

• Path-Finding: Include only specific vertices and edges in a path

• Sub-Graphs: Include only specific vertices and edges in a subgraph

• Set creation: Create a vertex or edge set and include only specific vertices or
edges

There are two types of filter expressions:

• Vertex filters:: Evaluated on each vertex

Chapter 15
Filter Expressions

15-50

• Edge filters: Evaluated on each edge, including the two vertices it connects.

These filter expressions will evaluate to true if the current edge or vertex matches the
expression or to false if it does not. Filter expressions are stateless and side-effect free.

The following short example below will evaluate to true for all edges where the source
vertex's string property name is "PGX".

src.name="PGX"

• Syntax

• Type System

• Path Finding Filters

• Subgraph Filters

• Operations on Filter Expressions

15.9.1 Syntax
Trivial Expressions

Always evaluates to true:

true

Always evaluates to false:

false

Constants

Legal constants are integer, long and floating point numbers of single and double precision as
well as strings literals and true and false. Long constants need to be suffixed with l or L.
Floating point numbers are treated as double precision numbers by default. To force a certain
precision you can use f or F for single precision and d or D for double precision floating point
numbers. String literals are UTF-8 character sequences, surrounded by single or double
quotation marks.

25
4294967296L
0.62f
0.33d
"Double quoted string"
'Single quoted string'

Vertex and Edge Identifiers

Depending on the filter type, different identifiers are valid.

Vertex Filter

Vertex filter expressions have only one keyword that addresses the vertex in the current
context.

Chapter 15
Filter Expressions

15-51

vertex denotes the vertex that is currently being evaluated by the filter expression.

vertex

Edge Filter

Edge filter expressions have several keywords that addresses the edge or its vertices
in the current context.

edge denotes the edge that is currently being evaluated by the filter expression.

edge

dst denotes the destination vertex of the current edge. dst is only valid in the
subgraph context.

dst

src denotes the source vertex of the current edge. src is only valid in the subgraph
context.

src

Properties

Filter expressions can access the values of vertex and edge properties.

<id>.<property>

where:

• <id>: is any vertex or edge identifier (that is, src, dst, vertex, edge).

• <property>: is the name of a vertex or edge property.

Note:

This has to be the name of an edge property if the identifier is edge.
Otherwise it has to be a vertex property.

If the property name is a reserved name in the filter expression syntax or contains
spaces, it must be quoted in single or double quotes.

The following code accesses the 'cost' property of the source vertex.

src.cost

Temporal properties support values comparison (constants and property values) using
special constructors. The default temporal formats are shown in the following table:

Table 15-4 Default Temporal Formats

Property Type Constructor

DATE date ('yyyy-MM-dd HH:mm:ss')

LOCAL_DATE date 'yyyy-MM-dd'

TIME time 'HH:mm:ss'

TIME_WITH_TIMEZONE time 'HH:mm:ss+/-XXX'

Chapter 15
Filter Expressions

15-52

Table 15-4 (Cont.) Default Temporal Formats

Property Type Constructor

TIMESTAMP timestamp 'yyyy-MM-dd HH:mm:ss'

TIMESTAMP_WITH_TIMEZONE timestamp 'yyyy-MM-dd HH:mm:ss+/-
XXX'

The following expression accesses the property 'timestamp_withTZ' of an edge and checks if
it is equal to 3/27/2007 06:00+01:00.

edge.timestamp_withTZ = timestamp'2007-03-2706:00:00+01:00'

Note:

Properties of type date can only be checked for equality. date type usage is
deprecated since version 2.5, instead use local date or timestamp types that
support all operations.

Methods

Filter expressions support the following functions:

Degree Functions

1. outDegree() returns the number of outgoing edges of the vertex identifier. degree() is a
synonym for outDegree.

int <id>.degree()
int <id>.outDegree()

The following example determines whether the out-degree of the source vertex is
greater than three:

src.degree() > 3

2. inDegree() returns the number of incoming edges of the vertex identifier.

int <id>.inDegree()

Label Functions

1. hasLabel() checks if a vertex has a label.

boolean <id>.hasLabel('<label>')

The following example determines whether a vertex has the label "city":

vertex.hasLabel('city')

2. label() returns the label of an edge.

string <id>.label()

The following expression checks whether the label of an edge is "clicked_by":

edge.label() = 'clicked_by'

Relational Expressions

Chapter 15
Filter Expressions

15-53

To compare values (e.g., property values or constants), filter expressions provide the
comparison operators listed below. Note: Both == and = are synonyms.

==
=
!=
<
<=
>
>=

The following example checks whether the "cost" property of the source vertex is lower
than or equals to 1.23.

src.cost <= 1.23

Vertex ID Comparison

It is also possible to filter for vertices with a specific vertex ID.

<id> = <vertex_id>

The following example determines whether the source vertex of an edge has the
vertex ID "San Francisco"

src = "San Francisco"

Regular Expressions

Strings can be matched using regular expressions.

<string expression> =~ '<regularexpression>'

The following example checks if the edge label starts with a lowercase letter and ends
with a number:

edge.label() =~ '^[a-z].*[0-9]$'

Note:

The syntax followed for the pattern on the right-hand side, is Java REGEX.

Type Conversions

The following syntax allows converting the type of <expression> to <type>.

(<type>) <expression>

The following example converts the value of the 'cost' property of the source vertex to
an integer value:

(int) src.cost

Boolean Expressions

Filter expressions can be composed to form other filter expressions. This can be done
using the Boolean operators && (and), || (or) and ! (not).

Chapter 15
Filter Expressions

15-54

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Note:

Only boolean operands can be composed.

(! true) || false
edge.cost < INF && dst.visited = false
src.degree() < 10 || !(dst.visited)

Arithmetic Expressions

Any numeric expression can be combined using arithmetic expressions. The available
arithmetic operators are: +, -, *, /, %.

Note:

These operators only work on numeric operands.

1 + 5
-vertex.degree()
edge.cost * 2 > 5
src.value * 2.5 = (dst.inDegree() + 5) / dst.outDegree()

Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest.
An operator on a higher level is evaluated before an operator on a lower level.

1. + (unary plus), - (unary minus)

2. *,/, %

3. +, -

4. =,!=, <, >, <=, >=, =~

5. NOT

6. AND

7. OR

Syntactic Sugar

both and any denote the source and destination vertex of the current edge. They can be used
to express a condition that should be true for both or at least either one of the two vertices.
These keywords are only valid in an edge filter expression. To use them in a vertex filter
results in a runtime type-checking exception.

both
any

The filter expressions inside the following examples are equivalent:

both.property = 1
src.property = 1 && dst.property = 1

any.degree() > 1
src.degree() > 1 || dst.degree() > 1

Chapter 15
Filter Expressions

15-55

15.9.2 Type System
Filter expressions are a very simple type system. There are only the following 13
types:

1. integer (can be abbreviated in expressions with int)

2. long

3. float

4. double

5. boolean

6. string

7. date

8. time

9. time with timezone

10. timestamp

11. timestamp with timezone

12. vertex

13. edge

Conversions are only allowed from one numeric type to another numeric type (i.e.
integer, float, double, long).

Comparisons require both sides to be of the same (or convertible) type.

15.9.3 Path Finding Filters
Filters can be used to limit the analyzed edges when searching for a shortest path
between a source and destination vertex in a graph.

An edge filter expression is evaluated against each edge that is visited during the
traversal of the graph. If the filter evaluates to false on an edge, this edge will be
ignored and will not appear in the resulting shortest path.

It is also possible to use a vertex filter for path finding.

A vertex filter expression is evaluated against each vertex that is visited during the
traversal of the graph, except for the source and destination vertex.

If the filter evaluates to false on a vertex, the edge to this vertex and all outgoing
edges of the vertex will be ignored. The vertex will not appear in the resulting shortest
path.

The source and destination vertex can be any vertex in the graph and the filter is not
evaluated for them.

15.9.4 Subgraph Filters
Edge Filters

Chapter 15
Filter Expressions

15-56

An edge filter expression is evaluated for each edge in the graph. The edge filter has access
to the source and destination vertex of each edge and all of its properties.

If the filter expression evaluates to true, the edge and both the source and destination vertex
will appear in the subgraph.

Vertex Filters

A vertex filter expression is evaluated for every vertex in the graph.

Every vertex for which the filter expression evaluates to true will appear in the subgraph.

Every edge connecting two vertices for which the expression evaluates to true will also
appear in the subgraph.

Result Set Filters

Result set edge and vertex filters allow the creation of edge and vertex sets out of a given
PGQL result set.

Vertex and Edge Collection Filters

Vertex and edge collection filters allow the creation of edge and vertex filters out of a given
vertex and edge collection.

15.9.5 Operations on Filter Expressions
This section explains the various operations that you can perform on filter expressions.

• Defining Filter Expressions

• Defining Result Set Filters

• Creating a Subgraph from PGQL Result Set

• Defining Collection Filters

• Creating a Subgraph from Collection Filters

• Combining Filter Expressions

15.9.5.1 Defining Filter Expressions
You can define a new vertex filter, as shown in the following code:

Defining a Vertex Filter Using JShell

opg4j> var vertexFilter = VertexFilter.fromExpression("vertex.name = 'PGX'")

Defining a Vertex Filter Using Java

VertexFilter vertexFilter = VertexFilter.fromExpression("vertex.name = 'PGX'");

Defining a Vertex Filter Using Python

vertex_filter = VertexFilter("vertex.name = 'PGX'")

You can define a new edge filter, as shown in the following code:

Defining a Edge Filter Using JShell

opg4j> var edgeFilter = EdgeFilter.fromExpression("edge.cost > 5")

Chapter 15
Filter Expressions

15-57

Defining a Edge Filter Using Java

EdgeFilter edgeFilter = EdgeFilter.fromExpression("edge.cost > 5");

Defining a Edge Filter Using Python

vertex_filter = EdgeFilter("edge.cost > 5")

15.9.5.2 Defining Result Set Filters
You can define a result set vertex filter, as shown in the following code:

Defining a Result Set Vertex Filter Using JShell

// Evaluates query on graph g to obtain a result set
opg4j> var resultSet = g.queryPgql("SELECT x FROM MATCH (x) WHERE x.age
> 24")
// Define a filter on the result set for the column "x"
opg4j> var vertexFilter = VertexFilter.fromPgqlResultSet(resultSet, "x")
// Obtain a vertex set
opg4j> var vertexSet = g.getVertices(vertexFilter)

Defining a Result Set Vertex Filter Using Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT x FROM MATCH (x) WHERE
x.age > 24");
// Define a filter on the result set for the column "x"
VertexFilter vertexFilter = VertexFilter.fromPgqlResultSet(resultSet,
"x");
// Obtain a vertex set
VertexSet vertexSet = g.getVertices(vertexFilter);

You can define a result set edge filter, as shown in the following code:

Defining a Result Set Edge Filter Using JShell

// Evaluates query on graph g to obtain result set
opg4j> var resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->()
WHERE e.weight >= 8")
// Define a filter on the result set for the column "e"
opg4j> var edgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e")
// Obtain an edge set
opg4j> var edgeSet = g.getEdges(edgeFilter)

Defining a Result Set Edge Filter Using Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->()
WHERE e.weight >= 8");
// Define a filter on the result set for the column "e"
EdgeFilter edgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e");
// Obtain an edge set
EdgeSet edgeSet = g.getEdges(edgeFilter);

Chapter 15
Filter Expressions

15-58

15.9.5.3 Creating a Subgraph from PGQL Result Set
A subgraph can be obtained from a PGQL result set using result set filters.

You can create a subgraph from a result set vertex filter, as shown in the following code:

Creating a Subgraph from PGQL Result Set Vertex Filter Using JShell

// Evaluates query on graph g to obtain result set
opg4j> var resultSet = g.queryPgql("SELECT x FROM MATCH (x) WHERE x.age >
24")
// Define a filter on the result set for the column "x"
opg4j> var resultSetVertexFilter = VertexFilter.fromPgqlResultSet(resultSet,
"x")
// Create a subgraph of g containing the matched vertices in the resultSet
and the edges that connect them if any.
opg4j> var newGraph = g.filter(resultSetVertexFilter)

Creating a Subgraph from PGQL Result Set Vertex Filter Using Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT x MATCH (x) WHERE x.age > 24")
// Define a filter on the result set for the column "x"
VertexFilter resultSetVertexFilter =
VertexFilter.fromPgqlResultSet(resultSet, "x")
// Create a subgraph of g containing the matched vertices in the resultSet
and the edges that connect them if any.
PgxGraph newGraph = g.filter(resultSetVertexFilter)

You can create a subgraph from a result set edge filter, as shown in the following code:

Creating a Subgraph from PGQL Result Set Edge Filter Using JShell

// Evaluates query on graph g to obtain result set
opg4j> var resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->() WHERE
e.cost < 100")
// Define a filter on the result set for the column "e"
opg4j> var resultSetEdgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e")
// Create a subgraph of g containing the matched edges in the resultSet and
their corresponding source and destination vertices.
opg4j> var newGraph = g.filter(resultSetEdgeFilter)

Creating a Subgraph from PGQL Result Set Edge Filter Using Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->() WHERE
e.cost < 100")
// Define a filter on the result set for the column "e"
EdgeFilter resultSetEdgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e")
// Create a subgraph of g containing the matched edges in the resultSet and
their corresponding source and destination vertices.
PgxGraph newGraph = g.filter(resultSetEdgeFilter)

Chapter 15
Filter Expressions

15-59

15.9.5.4 Defining Collection Filters
You can define a vetex collection filter, as shown in the following code:

Defining a Vertex Collection Filter Using JShell

// Obtain a vertex collection from an algorithm, query execution or any
other way
opg4j> VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
opg4j> var vertexFilter = VertexFilter.fromCollection(vertexCollection)

Defining a Vertex Collection Filter Using Java

// Obtain a vertex collection from an algorithm, query execution or any
other way
VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
VertexFilter vertexFilter =
VertexFilter.fromCollection(vertexCollection);

You can define a edge collection filter, as shown in the following code:

Defining a Edge Collection Filter Using JShell

// Obtain an edge collection from an algorithm, query execution or any
other way
opg4j> EdgeCollection edgeCollection = ...
// Define a filter from the collection
opg4j> var edgeFilter = EdgeFilter.fromCollection(edgeCollection)

Defining a Edge Collection Filter Using Java

// Obtain an edge collection from an algorithm, query execution or any
other way
EdgeCollection edgeCollection = ...
// Define a filter from the collection
EdgeFilter edgeFilter = EdgeFilter.fromCollection(edgeCollection);

15.9.5.5 Creating a Subgraph from Collection Filters
A subgraph can be obtained by using vertex or edge collection filters.

You can create a subgraph from vertex collection filter, as shown in the following code:

Creating a Subgraph from Vertex Collection Filter Using JShell

// Obtain a vertex collection from an algorithm, query execution or any
other way
opg4j> VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
opg4j> var vertexFilter = VertexFilter.fromCollection(vertexCollection)

Chapter 15
Filter Expressions

15-60

// Create a subgraph of g containing the matched vertices in the vertex
collection and the edges that connect them if any.
opg4j> var newGraph = g.filter(vertexFilter)

Creating a Subgraph from Vertex Collection Filter Using Java

// Obtain a vertex collection from an algorithm, query execution or any
other way
VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
VertexFilter vertexFilter = VertexFilter.fromCollection(vertexCollection);
// Create a subgraph of g containing the matched vertices in the vertex
collection and the edges that connect them if any.
PgxGraph newGraph = g.filter(vertexFilter);

You can create a subgraph from edge collection filter, as shown in the following code:

Creating a Subgraph from Edge Collection Filter Using JShell

// Obtain an edge collection from an algorithm, query execution or any other
way
opg4j> EdgeCollection edgeCollection = ...
// Define a filter from the collection
opg4j> var edgeFilter = EdgeFilter.fromCollection(edgeCollection)
// Create a subgraph of g containing the matched edges in the collection and
their corresponding source and destination vertices.
opg4j> var newGraph = g.filter(edgeFilter)

Creating a Subgraph from Edge Collection Filter Using Java

// Obtain an edge collection from an algorithm, query execution or any other
way
EdgeCollection edgeCollection = ...
// Define a filter from the collection
EdgeFilter edgeFilter = EdgeFilter.fromCollection(edgeCollection);
// Create a subgraph of g containing the matched edges in the collection and
their corresponding source and destination vertices.
PgxGraph newGraph = g.filter(edgeFilter);

15.9.5.6 Combining Filter Expressions
Any filter expression used for subgraph filtering, can be combined with any other filter
expression to form a new filter expression.

Filters can be combined using the following operations:

• intersection

• union

The intersection of two filters will only keep a vertex or edge, if both filters would accept it.

Chapter 15
Filter Expressions

15-61

Note:

The intersection of two filters will not behave as an AND in the filter
expression.

The union of two filters will keep a vertex or edge, if one of the filters would accept it.

Note:

The union of filters will not behave as an OR in the filter expression.

In the following example an edge filter is intersected with a vertex filter. The resulting
subgraph will only include vertices that have the name 'PGX' and will only include edges
that have a cost greater than 5.

Intersecting an Edge Filter with a Vertex Filter Using JShell

opg-jshell> var edgeFilter = EdgeFilter.fromExpression("edge.cost > 5")
opg-jshell> var vertexFilter = VertexFilter.fromExpression("vertex.name = 'PGX'")
opg-jshell> var combinedFilter = edgeFilter.intersect(vertexFilter)

Intersecting an Edge Filter with a Vertex Filter Using Java

EdgeFilter edgeFilter = EdgeFilter.fromExpression("edge.cost > 5");
VertexFilter vertexFilter = VertexFilter.fromExpression("vertex.name = 'PGX'");
GraphFilter combinedFilter = edgeFilter.intersect(vertexFilter);

Intersecting an Edge Filter with a Vertex Filter Using Python

edge_filter = EdgeFilter("edge.cost > 5")
vertex_filter = VertexFilter("vertex.name = 'PGX'")
combined_filter = edge_filter.intersect(vertex_filter)

In contrast, the subgraph created by the union of those filters will include vertices that
either have the name 'PGX' or that has an incoming or outgoing edge with a cost
greater than 5. It will also include edges with a cost greater than 5, as well as edges for
which the source and destination vertex have the name 'PGX'.

15.10 Advanced Task Scheduling Using Execution
Environments

This guide shows how you can use the advanced scheduling features of the enterprise
scheduler.

The enterprise scheduler features of the graph server (PGX) are currently only
available for Linux (x86_64), macOS (x86_64) and Solaris (x86_64, sparc).

The following topics provide more detailed information on enabling and scheduling
tasks using the execution environment:

• Enterprise Scheduler Configuration Guide

• Enabling Enterprise Scheduler Features

Chapter 15
Advanced Task Scheduling Using Execution Environments

15-62

• Retrieving and Inspecting the Execution Environment

• Modifying and Submitting Tasks Under an Updated Environment

• Using Lambda Syntax

15.10.1 Enterprise Scheduler Configuration Guide
This chapter describes the extra configuration options for the enterprise scheduler.

Note:

These configuration options are only available if the scheduler configuration
variable is set to enterprise_scheduler in Configuration Parameters for the Graph
Server (PGX) Engine.

The configuration is divided into the following two parts:

1. enteprise_scheduler_config: for setting details about how tasks should be scheduled

2. enterprise_scheduler_flags: where you can configure the enterprise scheduler in more
detail

Enterprise Scheduler Fields

Field Type Description Default

analysis_tas
k_config

object Configuration for analysis tasks.
weight
<no-of-CPUs>

priority
medium

max_threads
<no-of-CPUs>

fast_analysi
s_task_confi
g

object Configuration for fast analysis
tasks. weight

1

priority
high

max_threads
<no-of-CPUs>

max_num_conc
urrent_io_ta
sks

integer Maximum number of concurrent io
tasks at a time.

3

num_io_threa
ds_per_task

integer Number of io threads to use per
task.

<no-of-cpus>

Analysis Task Config Fields

Chapter 15
Advanced Task Scheduling Using Execution Environments

15-63

Field Type Description Default

max_threads integer A hard limit on the number of threads to
use for a task.

required

priority enum[high,
medium,
low]

The priority of the task. Threads are given
to the task with the highest priority at the
moment of execution. If there are more
threads that have the highest priority,
threads are given to the tasks according
to their weight

required

weight integer The weight of the task. Threads are given
to tasks proportionally to their weight.
Tasks with higher weight will get more
threads than tasks with lower weight.
Tasks with the same weight will get the
same amount of threads.

required

Enterprise Scheduler Flags

Field Type Description Default

show_alloca
tions

boolean If true show memory allocation
information.

false

show_enviro
nment

boolean If true show version numbers and main
environment settings at startup.

false

show_loggin
g

boolean If true enable summary logging. This is
available even in non-debug builds and
includes information such as the machine
hardware information obtained at start-up,
and per-job / per-loop information about
the workload.

false

show_profil
ing

boolean If true show profiling information. false

show_schedu
ler_state

boolean If true dump scheduler state on each
update.

false

show_warnin
gs

boolean If true enable warnings. These are non-
fatal errors. For example, if a NUMA-
aware allocation cannot be placed on the
intended socket.

true

Example 15-7 Custom Enterprise Scheduler Configuration

This configuration sets the number of io threads per task to 16, increases the
maximum number of concurrent io tasks to 5. It also sets the configuration for fast
analysis tasks to have a weight of 1, priority of "high" and sets a limit to the maximum
number of threads used to 1.

{
 "enterprise_scheduler_config": {
 "num_io_threads_per_task": 16,
 "max_num_concurrent_io_tasks": 5,
 "fast_analysis_task_config": {
 "weight": 1,
 "priority": "high",
 "max_threads": 1

Chapter 15
Advanced Task Scheduling Using Execution Environments

15-64

 }
 }
}

Example 15-8 Using the Enterprise Scheduler Flags

This configuration enables extra logging output from the enterprise scheduler.

{
 "enterprise_scheduler_flags": {
 "show_logging": true
 }
}

15.10.2 Enabling Enterprise Scheduler Features
You can enable the enterprise scheduler features, by setting the flag
allow_override_scheduling_information of the the graph server (PGX) configuration file to
true:

{"allow_override_scheduling_information":true}

See Configuration Parameters for the Graph Server (PGX) Engine for all configuration
options of the graph server (PGX).

15.10.3 Retrieving and Inspecting the Execution Environment
Execution environments are bound to a session. You can retrieve the execution environment
for a session by calling getExecutionEnvironment() on a PgxSession:

Retrieving the Execution Environment Using JShell

opg4j> execEnv.getValues()
==> [analysis-pool.max_num_threads=4, analysis-pool.weight=4, analysis-
pool.priority=MEDIUM, io-pool.num_threads_per_task=4, fast-track-analysis-
pool.max_num_threads=4, fast-track-analysis-pool.weight=1, fast-track-
analysis-pool.priority=HIGH]

Retrieving the Execution Environment Using Java

import oracle.pgx.api.*;
import java.util.List;
import java.util.Map.Entry;

List<Entry<String, Object>> currentValues = execEnv.getValues();
for (Entry<String, Object> value : currentValues) {
 System.out.println(value.getKey() + " = " + value.getValue());
}

See Enterprise Scheduler Configuration Guide for the values of an unmodified execution
environment.

Chapter 15
Advanced Task Scheduling Using Execution Environments

15-65

To retrieve the sub-environments use the getIoEnvironment(),
getAnalysisEnvironment() and getFastAnalysisEnvironment() methods. Each sub-
environment has their own getValues() method for retrieving the configuration of the
sub-environment.

Retrieving the Sub-Execution Environment Using JShell

opg4j> var ioEnv = execEnv.getIoEnvironment()
ioEnv ==> IoEnvironment[pool=io-pool]
opg4j> ioEnv.getValues()
$5 ==> {num_threads_per_task=4}

opg4j> var analysisEnv = execEnv.getAnalysisEnvironment()
analysisEnv ==> CpuEnvironment[pool=analysis-pool]
opg4j> analysisEnv.getValues()
$7 ==> {max_num_threads=4, weight=4, priority=MEDIUM}

opg4j> var fastAnalysisEnv = execEnv.getFastAnalysisEnvironment()
fastAnalysisEnv ==> CpuEnvironment[pool=fast-track-analysis-pool]
opg4j> fastAnalysisEnv.getValues()
$9 ==> {max_num_threads=4, weight=1, priority=HIGH}

Retrieving the Sub-Execution Environment Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;
import java.util.Map;

IoEnvironment ioEnv = execEnv.getIoEnvironment();
CpuEnvironment analysisEnv = execEnv.getAnalysisEnvironment();
CpuEnvironment fastAnalysisEnv = execEnv.getFastAnalysisEnvironment();

for (Entry<String, Object> value : ioEnv.getValues().getEntrySet()) {
 System.out.println(value.getKey() + " = " + value.getValue());
}

for (Entry<String, Object> value :
analysisEnv.getValues().getEntrySet()) {
 System.out.println(value.getKey() + " = " + value.getValue());
}

for (Entry<String, Object> value :
fastAnalysisEnv.getValues().getEntrySet()) {
 System.out.println(value.getKey() + " = " + value.getValue());
}

15.10.4 Modifying and Submitting Tasks Under an Updated
Environment

You can modify an Input/Output (IO) environment in the number of threads by using
the setNumThreadsPerTask() method of the IoEnvironment. The value is updated
immediately and all tasks that are submitted after updating it are executed with the
updated value.

Chapter 15
Advanced Task Scheduling Using Execution Environments

15-66

Modifying the Execution Environment Using JShell

opg4j> ioEnv.setNumThreadsPerTask(8)
opg4j> var g = session.readGraphWithProperties(...)
==> PgxGraph[name=graph,N=3,E=6,created=0]

Modifying the Execution Environment Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;

ioEnv.setNumThreadsPerTask(8);
PgxGraph g = session.readGraphWithProperties(...)

You can reset an environment to their initial values by calling the ioEnv.reset() method.
Additionally, you can reset all environments at once by calling execEnv.reset() on the
ExecutionEnvironment class.

You can modify CPU environments in their weight, priority and maximum number of threads
using the setWeight(), setPriority() and setMaxThreads() methods:

Modifying the CPU Environment Using JShell

opg4j> analysisEnv.setWeight(50)
opg4j> fastAnalysisEnv.setMaxNumThreads(1)
opg4j> var rank = analyst.pagerank(g)
rank ==> VertexProperty[name=pagerank,type=double,graph=my-graph]

Modifying the CPU Environment Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;

analysisEnv.setWeight(50);
fastAnalysisEnv.setMaxThreads(1);
Analyst analyst = session.createAnalyst();
VertexProperty rank = analyst.pagerank(g);

15.10.5 Using Lambda Syntax
Generally you can perform the following actions in the environment:

1. Set up the execution environment

2. Execute task

3. Reset execution environment

All these actions can be combined and performed in a single step using the set method. For
each set method there is a method using the with prefix which takes the updated value and
a lambda which should be executed using the updated value.

For example, use withNumThreadsPerTask() instead of setNumThreadsPerTask() as shown:

Using Lambda in the Execution Environment Using JShell

Chapter 15
Advanced Task Scheduling Using Execution Environments

15-67

opg-jshell> var g = ioEnv.withNumThreadsPerTask(8, () ->
session.readGraphWithPropertiesAsync(...))
==> PgxGraph[name=graph,N=3,E=6,created=0]

Using Lambda in the Execution Environment Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;

PgxGraph g = ioEnv.withNumThreadsPerTask(8, () ->
session.readGraphWithPropertiesAsync(...));

The preceding code execution is equivalent to the following sequence of actions:

var oldValue = ioEnv.getNumThreadsPerTask()
ioEnv.setNumThreadsPerTask(currentValue)
var g = session.readGraphWithProperties(...)
ioEnv.setNumThreadsPerTask(oldValue)

15.11 Admin API
This guide shows how to use the graph server (PGX) Admin API to inspect the server
state including sessions, graphs, tasks, memory and thread pools.

• Get a Server Instance

• Get Inspection Data

• Get Active Sessions

• Get Cached Graphs

• Get Published Graphs

• Get Currently Loading Graphs

• Get Tasks

• Get Available Memories

15.11.1 Get a Server Instance
You can get a PGX Instance as shown in the following code:

Get a PGX Instance Using Java

import oracle.pgx.api.*;
ServerInstance instance = Pgx.getInstance(Pgx.EMBEDDED_URL);

Get a PGX Instance Using Python

instance = pypgx.get_session(base_url = "url")

15.11.2 Get Inspection Data
Inspection data is information about the server state.

You can get the inspection data using the following code:

Get the Inspection Data Using Java

Chapter 15
Admin API

15-68

JsonNode serverState = instance.getServerState();

Get the Inspection Data Using Python

server_state = instance.get_server_state()

This returns a JsonNode which contains all administration information, such as, number of
graphs loaded, number of sessions, memory usage for graphs and properties and so on.

{
 "cached_graphs": [],
 "published_graphs": [],
 "graphs_currently_loading": [],
 "sessions": [],
 "tasks": [],
 "pools": [],
 "memory": {}
}

15.11.3 Get Active Sessions
serverState.get("sessions") returns an array of current active sessions. Each entry
contains information about a session.

{
 "session_id":"530b5f9a-75c4-4838-9cc3-44df44b035c5",
 "source":"testServerState",
 "task_timeout_ms":0,
 "idle_timeout_ms":0,
 "alive_ms":237,
 "total_analysis_time_ms":115,
 "state":"RELEASED",
 "private_graphs":[
 {
 "name":"anonymous_graph_1",
 "creation_timestamp":1589317879755,
 "is_transient":true,
 "memory":{
 "topology_bytes":46,
 "key_mapping_bytes":30,
 "persistent_property_mem_bytes":0,
 "transient_property_mem_bytes":0
 },
 "vertices_num":1,
 "edges_num":0,
 "persistent_vertex_properties":[

],
 "persistent_edge_properties":[

],
 "transient_vertex_properties":[

],

Chapter 15
Admin API

15-69

 "transient_edge_properties":[

]
 }
],
 "published_graphs":[
 {
 "name":"multigraph",
 "creation_timestamp":1589317879593,
 "is_transient":false,
 "memory":{
 "topology_bytes":110,
 "key_mapping_bytes":56,
 "persistent_property_mem_bytes":64,
 "transient_property_mem_bytes":0
 },
 "vertices_num":2,
 "edges_num":6,
 "persistent_vertex_properties":[
 {
 "loaded":true,
 "mem_size_bytes":16,
 "name":"tProp",
 "type":"string"
 }
],
 "persistent_edge_properties":[
 {
 "loaded":true,
 "mem_size_bytes":48,
 "name":"cost",
 "type":"double"
 }
],
 "transient_vertex_properties":[

],
 "transient_edge_properties":[

]
 }
]
}

The following table explains session information fields:

Table 15-5 Session Information Options

Field Description

sessionID Session' ID generated by PGX server.

source Descriptive string identifying the client session.

Chapter 15
Admin API

15-70

Table 15-5 (Cont.) Session Information Options

Field Description

task_timeout_ms Timeout to interrupt long-running tasks submitted by sessions
(algorithms, I/O tasks) in milliseconds. Set to zero for infinity/no
timeout.

idle_timeout_ms Timeout of idling sessions in milliseconds. Set to zero for
infinity/no timeout.

alive_ms Session's age in milliseconds.

total_analysis_time_m
s

Total session's executing time in milliseconds.

state Current session of the session can be Idle, Submitted, released or
terminating.

private_graphs Session bounded graphs.

published_graphs Published graphs pointed to from the session.

Note:

The is_transient field indicates if the graph is transient. A graph is transient if it is
not loaded from an external source.

15.11.4 Get Cached Graphs
The server state contains also cached graph information
serverState.get("cached_graphs") which returns a collection of graphs cached in memory.
Each entry contains information about a graph as shown:

{
 "name":"sf-1589317879394",
 "creation_timestamp":1589317879394,
 "vertex_properties":[
 {
 "loaded":true,
 "mem_size_bytes":478504,
 "name":"prop1",
 "type":"double"
 }
],
 "edge_properties":[
 {
 "loaded":true,
 "mem_size_bytes":1197720,
 "name":"cost",
 "type":"double"
 },
 {
 "loaded":true,
 "mem_size_bytes":598860,
 "name":"0",
 "type":"integer"

Chapter 15
Admin API

15-71

 }
],
 "memory":{
 "topology_bytes":3921814,
 "key_mapping_bytes":1407466,
 "property_mem_bytes":2275084
 },
 "vertices_num":59813,
 "edges_num":149715
}

The following table explains graph information fields:

Table 15-6 Graph Information

Field Description

name Name of the graph.

creation_timestamp Creation timestamp of the graph.

vertex_properties List of vertex properties, each entry contains the name, type,
memory size used by the property, and a boolean flag to indicate
if the property is loaded into memory.

edge_properties List of edges properties, similar to vertex properties.

memory Memory size used by the whole graph (topology, key mappings
and properties).

vertices_num Number of vertices.

edges_num Number of edges.

15.11.5 Get Published Graphs
serverState.get("published_graphs") returns a list of published graphs.

Each graph entry contains information about the published graph, similar to
cached_graphs.

15.11.6 Get Currently Loading Graphs
serverState.get("graphs_currently_loading") returns progress information about
graphs which are currently loading.

Each entry, corresponding to one graph, is shown as follows:

{
 "name": "anonymous_graph_1",
 "session_id": "530b5f9a-75c4-4838-9cc3-44df44b035c5",
 "start_loading_timestamp": 1605468453030,
 "elapsed_loading_time_ms": 281742,
 "num_vertices_read": 10000000,
 "num_edges_read": 196500000,
 "num_edge_providers_loaded": 1,
 "num_edge_providers_remaining": 9,
 "num_vertex_providers_loaded": 1,
 "num_vertex_providers_remaining": 0,

Chapter 15
Admin API

15-72

 "loading_phase": "reading edges",
 "loading_phase_start_timestamp": 1605468453085,
 "loading_phase_elapsed_time_ms": 281687,
 "loading_phase_state": "current vertex provider index: 1, number of
vertices read for prorvider: 0, current edge provider index: 1, number of
edges read for prorvider: 76,500,000"
}

The name field contains a temporary name of the graph. It may not be equal to the name that
is assigned to graph after loading.

Fields indicating the number of read vertices and edges are updated in regular intervals of
10,000 entities.

The field loading_phase indicates the current phase during graph loading. Valid values are
"reading edges" or "building graph indices". For some loading phases, the field
loading_phase_state contains a string with additional information on the phase. However,
not all loading phases provide this additional information.

Note:

graphs_currently_loading is supported for data formats CSV, ADJ_LIST,
EDGE_LIST, TWO_TABLES and PG (FLAT_FILE) for homogeneous graphs and for
formats CSV and RDBMS for partitioned graphs.

15.11.7 Get Tasks
serverState.get("tasks") returns the last 100 queued tasks.

Each task has a type, the pool to be executed on (the task might be already executed) and
other status fields ({Queued|Started|Done} time), and a sessionid if the task belongs to a
session.

15.11.8 Get Available Memories
This section contains a map of available memories, the key is the hostname and the value is
a list of current available memories (managed and unmanaged). Each entry contains how
much memory is free, used and the maximum available memory.

15.12 PgxFrames Tabular Data-Structure
PgxFrame is a data-structure to load, store and manipulate tabular data. It contains rows and
columns. A PgxFrame can contain multiple columns where each column consist of elements of
the same data type, and has a name. The list of the columns with their names and data types
defines the schema of the frame. (The number of rows in the PgxFrame is not part of the
schema of the frame.)

PgxFrame provides some operations that also output PgxFrames (described later in the
tutorial). Those operations can be performed in-place (meaning that the frame is mutated
during the operation) in order to save memory. In place operations should be used whenever
possible. However, we provide out-place variants, i.e., a new frame is created during the
operation.

Chapter 15
PgxFrames Tabular Data-Structure

15-73

The following table lists all the in-place operations along with the respective out-place
operations:

Table 15-7 Mapping between In-Place and Out-Place Operations

In-place operations Out-place operations

headInPlace head

tailInPlace tail

flattenAllInPlace flattenAll

renameColumnInPlace renameColumn

renameColumnsInPlace renameColumns

selectInPlace select

• Loading a PgxFrame from a Database

• Printing the Content of a PgxFrame

• Destroying a PgxFrame

• Storing a PgxFrame to a Database

• Loading and Storing Vector Properties

• Flattening Vector Properties

• Union of PGX Frames

• Joining PGX Frames

• PgxFrame Helpers

• PgxFrame-PgqlResultSet Conversions

15.12.1 Loading a PgxFrame from a Database
PgxFrames can also be loaded from relational tables in an Oracle database. Each
column of the relational table will correspond to a column in the loaded frame. When
loading PgxFrames from the database, the default behavior is to detect what columns
the table has, and to load them all. If not specified explicitly, the connection details of
the current user and session are used and the columns are detected automatically.

The following describes the steps to load a PgxFrame from a database table:

1. Create a Session and an Analyst.
Creating a Session and an Analyst Using JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.frames.*;
...

Chapter 15
PgxFrames Tabular Data-Structure

15-74

PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Python

session = pypgx.get_session(session_name="my-session")
analyst = session.create_analyst()

2. Load a PgxFrame.
Loading a PgxFrame Using JShell

opg4j> var exampleFrame = session.readFrame().
 db().
 name("framename"). // name of the frame
 tablename("tablename"). // name of the table from where the data must
be loaded
 connections(16). // indicates that 16 connections can be used
to load in parallel
 load();

Loading a PgxFrame Using Java

PgxFrame exampleFrame = session.readFrame()
 .db()
 .name("framename") // name of the frame
 .tablename("tablename") // name of the table from where the data must
be loaded
 .connections(16) // indicates that 16 connections can be used
to load in parallel
 .load();

3. If only a subset of the columns must be loaded, then you must specify the columns with
FrameReader.columns().
Loading a PgxFrame for a Subset of Columns Using JShell

// You must specify jdbc connection, keystore and the columns to load
opg4j> session.registerKeystore("keystore", pathToKeystore,
keystorePassword)
opg4j> var exampleFrame = session.readFrame().
 db().
 name("framename").
 tablename("tablename"). // name of the table from where the data
must be loaded
 jdbcUrl("jdbcUrl").
 username("user").
 keystoreAlias("keytore").
 owner("owner"). // necessary if the table is owned by
another user
 connections(16). // indicates that 16 connections can be
used to load in parallel
 columns(exampleFrameSchema). // columns to load
 load();

Chapter 15
PgxFrames Tabular Data-Structure

15-75

Loading a PgxFrame for a Subset of Columns Using Java

import oracle.pgx.api.frames.schema.datatypes.DataTypes;
import oracle.pgx.api.frames.schema.ColumnDescriptor;
// You must specify jdbc connection, keystore and the columns to
load
session.registerKeystore("keystore", pathToKeystore,
keystorePassword)
PgxFrame exampleFrame = session.readFrame()
 .db()
 .name("framename")
 .tablename("tablename") // name of the table from where
the data must be loaded
 .jdbcUrl("jdbcUrl")
 .username("user")
 .keystoreAlias("keytore")
 .owner("owner") // necessary if the table is owned
by another user
 .connections(16) // indicates that 16 connections
can be used to load in parallel
 .columns(exampleFrameSchema) // columns to load
 .load();

15.12.2 Printing the Content of a PgxFrame
You can observe the contents of a frame using the print functionality as shown:

Printing a PgxFrame Using JShell

opg4j> exampleFrame.print();

Printing a PgxFrame Using Java

exampleFrame.print();

Printing a PgxFrame Using Python

example_frame.print()

The output appears as follows:

+---
--------+
| name | age | salary | married | tax_rate | random |
date_of_birth |
+---
--------+
| John | 27 | 4133300.0 | true | 11.0 | 123456782 |
1985-10-18 |
| Albert | 23 | 5813000.5 | false | 12.0 | 124343142 |
2000-01-14 |

Chapter 15
PgxFrames Tabular Data-Structure

15-76

| Heather | 28 | 1.0130302E7 | true | 10.5 | 827520917 |
1985-10-18 |
| Emily | 24 | 9380080.5 | false | 13.0 | 128973221 |
1910-07-30 |
| "D'Juan" | 27 | 1582093.0 | true | 11.0 | 92384 |
1955-12-01 |
+--
---+

15.12.3 Destroying a PgxFrame
PgxFrames consumes a lot of memory on the graph server (PGX) if they have a lot of rows or
columns. Hence it is necessary to close them with the close() operation. After this operation,
the content of the PgxFrame is not available anymore.

You can close a frame as shown:

Destroying a PgxFrame Using JShell

opg4j> exampleFrame.close();

Destroying a PgxFrame Using Java

exampleFrame.close();

Destroying a PgxFrame Using Python

exampleFrame.close()

15.12.4 Storing a PgxFrame to a Database
When storing a PgxFrame into the database, the frame is stored as a table, where the
columns correspond to the columns of the PgxFrame and the rows correspond to the rows of
the PgxFrame.

Note:

Column order preservation may or may not happen when storing a PgxFrame in the
database.

Overwrite Mode

When storing as a table in the database, you can overwrite an already existing table (with
correct structure).

In overwrite mode, the previous table is truncated (emptied), and the data is then inserted. By
default, it is set to false so that if a table already exists, it will throw an error to the user
unless overwrite is set to true.

Chapter 15
PgxFrames Tabular Data-Structure

15-77

Storing a PgxFrame by Overwriting a table Using JShell

// store as table in the database using jdbc + username + password
opg4j> exampleFrame.write().
 db(). // select the "format" to be relational db
 name("framename"). // name of the frame
 tablename("tablename"). // name of the table in which the data
must be stored
 overwrite(true). // indicates that if there is a table
with the same name, it will be overwritten (truncated)
 connections(16). // indicates that 16 connections can be
used to store in parallel
 jdbcUrl("jdbcUrl").
 username("user").
 password("password").
 store();

Storing a PgxFrame by Overwriting a table Using Java

exampleFrame.write()
 .db() // select the "format" to be relational db
 .name("framename") // name of the frame
 .tablename("tablename") // name of the table in which the data
must be stored
 .overwrite(true) // indicates that if there is a table
with the same name, it will be overwritten (truncated)
 .connections(16) // indicates that 16 connections can be
used to store in parallel
 .jdbcUrl("jdbcUrl")
 .username("user")
 .password("password")
 .store();

15.12.5 Loading and Storing Vector Properties
You can load or store vector properties which are fundamental for PgxML functionality
in the graph server (PGX) using PgxFrames.

In order to load a PgxFrame with vector properties, follow the steps as shown:

1. Create the PgxFrame schema, defining the columns as shown:
Creating PgxFrame Schema Using JShell

opg-jshell> var vecFrameSchema = List.of(
 columnDescriptor("intProp", DataTypes.INTEGER_TYPE),
 columnDescriptor("intProp2", DataTypes.INTEGER_TYPE),
 columnDescriptor("vectProp",
DataTypes.vector(DataTypes.FLOAT_TYPE, 3)),
 columnDescriptor("stringProp", DataTypes.STRING_TYPE),
 columnDescriptor("vectProp2",
DataTypes.vector(DataTypes.FLOAT_TYPE, 2))
).toArray(new ColumnDescriptor[0])

Chapter 15
PgxFrames Tabular Data-Structure

15-78

Creating PgxFrame Schema Using Java

ColumnDescriptor[] vecFrameSchema = {
 columnDescriptor("intProp", DataTypes.INTEGER_TYPE),
 columnDescriptor("intProp2", DataTypes.INTEGER_TYPE),
 columnDescriptor("vectProp", DataTypes.vector(DataTypes.FLOAT_TYPE,
3)),
 columnDescriptor("stringProp", DataTypes.STRING_TYPE),
 columnDescriptor("vectProp2", DataTypes.vector(DataTypes.FLOAT_TYPE,
2))
};

2. Load the PgxFrame with the given schema from the specified path:
Loading thePgxFrame With the Schema Using JShell

opg4j> var vecFrame = session.readFrame().
 db().
 name("vector PgxFrame").
 tablename("tablename"). // name of the table from where the data
must be loaded
 jdbcUrl("jdbcUrl").
 username("user").
 owner("owner"). // necessary if the table is owned by
another user
 connections(16). // indicates that 16 connections can be
used to load in parallel
 columns(vecFrameSchema). // columns to load
 load();

Loading the PgxFrame With the Schema Using Java

PgxFrame vecFrame = session.readFrame()
 .db()
 .name("vector PgxFrame")
 .tablename("tablename") // name of the table from where the data
must be loaded
 .jdbcUrl("jdbcUrl")
 .username("user")
 .owner("owner") // necessary if the table is owned by
another user
 .connections(16) // indicates that 16 connections can be
used to load in parallel
 .columns(vecFrameSchema) // columns to load
 .load();

The final result in the PgxFrame may appear as follows:

+---+
| intProp | intProp2 | vectProp | stringProp | vectProp2 |
+---+
0	2	0.1;0.2;0.3	testProp0	0.1;0.2
1	1	0.1;0.2;0.3	testProp10	0.1;0.2
1	2	0.1;0.2;0.3	testProp20	0.1;0.2
2	3	0.1;0.2;0.3	testProp30	0.1;0.2

Chapter 15
PgxFrames Tabular Data-Structure

15-79

| 3 | 1 | 0.1;0.2;0.3 | testProp40 | 0.1;0.2 |
+---+

15.12.6 Flattening Vector Properties
You can split the vector properties into multiple columns using the flattenAll()
operation.

For example, you can flatten the vector properties for the example explained in
Loading and Storing Vector Properties as shown:

Flattening Vector Properties Using JShell

opg4j> vecFrame.flattenAll();

Flattening Vector Properties Using Java

vecFrame.flattenAll();

The resulting flattened PgxFrame may appear as shown:

+---
-----------------------------+
| intProp | intProp2 | vectProp_0 | vectProp_1 | vectProp_2 |
stringProp | vectProp2_0 | vectProp2_1 |
+---
-----------------------------+
| 0 | 2 | 0.1 | 0.2 | 0.3 |
testProp0 | 0.1 | 0.2 |
| 1 | 1 | 0.1 | 0.2 | 0.3 |
testProp10 | 0.1 | 0.2 |
| 1 | 2 | 0.1 | 0.2 | 0.3 |
testProp20 | 0.1 | 0.2 |
| 2 | 3 | 0.1 | 0.2 | 0.3 |
testProp30 | 0.1 | 0.2 |
| 3 | 1 | 0.1 | 0.2 | 0.3 |
testProp40 | 0.1 | 0.2 |
+---
-----------------------------+

15.12.7 Union of PGX Frames
You can join two PgxFrames that have compatible columns (i.e. same type and order).

Creating a Union of PgxFrames Using JShell

opg4j> <first-frame>.union(<secondframe>).print();

Creating a Union of PgxFrames Using Java

<first-frame>.union(<secondframe>).print();

The rows of the resulting PgxFrame are the union of the rows from the two original
frames.

Chapter 15
PgxFrames Tabular Data-Structure

15-80

Note:

The union operation will not remove duplicate rows that resulted from the union
operation.

15.12.8 Joining PGX Frames
You can join two frames whose rows are correlated through one of the columns using the
join functionality. This allows us to combine frames by checking for equality between rows
for a specific column.

The following example shows joining two PgxFrames exampleFrame and moreInfoFrame on
the name column by calling the join method.

Joining PgxFrames Using JShell

opg4j> exampleFrame.join(moreInfoFrame, "name", "leftFrame",
"rightFrame").print();

Joining PgxFrames Using Java

exampleFrame.join(moreInfoFrame, "name", "leftFrame", "rightFrame").print();

The result may appear as shown:

+--

---+
| leftFrame_name | leftFrame_age | leftFrame_salary | leftFrame_married |
leftFrame_tax_rate | leftFrame_random | leftFrame_date_of_birth |
rightFrame_name | rightFrame_title | rightFrame_reports |
+--

--+
| John | 27 | 4133300.0 | true |
11.0 | 123456782 | 1985-10-18 |
John | Software Engineering Manager | 5 |
| Albert | 23 | 5813000.5 | false |
12.0 | 124343142 | 2000-01-14 |
Albert | Sales Manager | 10 |
| Emily | 24 | 9380080.5 | false |
13.0 | 128973221 | 1910-07-30 |
Emily | Operations Manager | 20 |
+--

--+

The joined frame contains the columns of the two frames involved in the operation for the
rows with the same name.

Chapter 15
PgxFrames Tabular Data-Structure

15-81

Note:

The column prefixes specified in the join() call, leftFrame and rightFrame.

15.12.9 PgxFrame Helpers
PgxFrame supports the following operations:

• head

• tail

• select

• renameColumns

Head Operation

The head operation can be used to only keep the first rows of a PgxFrame. (The result
is deterministic only for ordered PgxFrame.)

Applying Head Operation on a PgxFrame Using JShell

opg4j> vecFrame.head(2).print();

Applying Head Operation on a PgxFrame Using Java

vecFrame.head(2).print();

The output appears as follows:

+---+
| intProp | intProp2 | vectProp | stringProp | vectProp2 |
+---+
| 0 | 2 | 0.1;0.2;0.3 | testProp0 | 0.1;0.2 |
| 1 | 1 | 0.1;0.2;0.3 | testProp10 | 0.1;0.2 |
+---+

Tail Operation

The tail operation can be used to only keep the last rows of a PgxFrame. (The result
is deterministic only for ordered PgxFrame).

Applying Tail Operation on a PgxFrame Using JShell

opg4j> vecFrame.tail(2).print()

Applying Tail Operation on a PgxFrame Using Java

vecFrame.tail(2).print()

Chapter 15
PgxFrames Tabular Data-Structure

15-82

The output appears as follows:

+---+
| intProp | intProp2 | vectProp | stringProp | vectProp2 |
+---+
| 2 | 3 | 0.1;0.2;0.3 | testProp30 | 0.1;0.2 |
| 3 | 1 | 0.1;0.2;0.3 | testProp40 | 0.1;0.2 |
+---+

Select Operation

The select operation can be used to keep only a specified list of columns of an input
PgxFrame.

Applying Select Operation on a PgxFrame Using JShell

opg4j> var vecFrame_selected = vecFrame.select("vectProp2", "vectProp",
"stringProp")

Applying Select Operation on a PgxFrame Using Java

PgxFrame vecFrame_selected =
vecFrame.select("vectProp2","vectProp","stringProp");

Applying Select Operation on a PgxFrame Using Python

vec_frame_selected=vec_frame.select("vectProp2","vectProp","stringProp")

The result may appear as follows:

+--------------------------------------+
| vectProp2 | vectProp | stringProp |
+--------------------------------------+
0.1;0.2	0.1;0.2;0.3	testProp0
0.1;0.2	0.1;0.2;0.3	testProp10
0.1;0.2	0.1;0.2;0.3	testProp20
0.1;0.2	0.1;0.2;0.3	testProp30
0.1;0.2	0.1;0.2;0.3	testProp40
+--------------------------------------+

Rename PgxFrame Columns

You can rename the columns in a PgxFrame to customized names as follows:

Renaming PgxFrame Columns Using JShell

opg4j> var vecFrame_renamed = vecFrame.renameColumns(
 renaming("vectProp2", "vectProp2_renamed"),
 renaming("vectProp", "vectProp_renamed"),
 renaming("stringProp", "stringProp_renamed")
)

Chapter 15
PgxFrames Tabular Data-Structure

15-83

Renaming PgxFrame Columns Using Java

vecFrame_renamed = vecFrame.renameColumns(renaming("vectProp2",
"vectProp2_renamed"),
 renaming("vectProp",
"vectProp_renamed"),
 renaming("stringProp",
"stringProp_renamed"));

The renamed PgxFrame appears as follows:

+---
---------+
| intProp | intProp2 | vectProp_renamed | stringProp_renamed |
vectProp2_renamed |
+---
---------+
| 0 | 2 | 0.1;0.2;0.3 | testProp0 |
0.1;0.2 |
| 1 | 1 | 0.1;0.2;0.3 | testProp10 |
0.1;0.2 |
| 1 | 2 | 0.1;0.2;0.3 | testProp20 |
0.1;0.2 |
| 2 | 3 | 0.1;0.2;0.3 | testProp30 |
0.1;0.2 |
| 3 | 1 | 0.1;0.2;0.3 | testProp40 |
0.1;0.2 |
+---
---------+

15.12.10 PgxFrame-PgqlResultSet Conversions
You can perform conversions between PgxFrames and PgqlResultSets.

PgxFrame to PgqlResultSet

You can convert a PgxFrame to PgqlResultSet as follows:

Converting PgxFrame to PgqlResultSet Using JShell

opg4j> var resultSet = exampleFrame.toPgqlResultSet();

Converting PgxFrame to PgqlResultSet Using Java

PgqlResultSet resultSet = exampleFrame.toPgqlResultSet();

Converting PgxFrame to PgqlResultSet Using Python

result_set = example_frame.to_pgql_result_set()

Chapter 15
PgxFrames Tabular Data-Structure

15-84

You can view the content of the result set through the usual PgqlResultSet APIs.The output
appears as follows:

+--
---+
| name | age | salary | married | tax_rate | random |
date_of_birth |
+--
---+
| John | 27 | 4133300.0 | true | 11.0 | 123456782 |
1985-10-18 |
| Albert | 23 | 5813000.5 | false | 12.0 | 124343142 |
2000-01-14 |
| Heather | 28 | 1.0130302E7 | true | 10.5 | 827520917 |
1985-10-18 |
| Emily | 24 | 9380080.5 | false | 13.0 | 128973221 |
1910-07-30 |
| "D'Juan" | 27 | 1582093.0 | true | 11.0 | 92384 |
1955-12-01 |
+--
---+

PgqlResultSet to PgxFrame

You can convert a PgqlResultSet to a PgxFrameas follows:

Converting a PgqlResultSet to a PgxFrameUsing JShell

opg4j> var query = ...;
opg4j> var graph = ...;
opg4j> var resultSet = graph.queryPgql(query);
opg4j> resultSet.toFrame();

Converting a PgqlResultSet to a PgxFrame Using Java

String query = ...;
PgxGraph graph = ...;
PgqlResultSet resultSet = graph.queryPgql(query);
resultSet.toFrame();

Chapter 15
PgxFrames Tabular Data-Structure

15-85

16
Working with Files Using the Graph Server
(PGX)

This chapter describes in detail about working with different file formats to perform various
actions like loading, storing or exporting a graph using the Graph Server (PGX).

• Loading Graph Data from Files

• Loading Graph Data in Parallel from Multiple Files

• Exporting Graphs Into a File

• Exporting a Graph into Multiple Files

16.1 Loading Graph Data from Files
You can load graph data from files by either of the two ways:

• using the header format specified in the files

• by directly calling the graph builder API

Creating a graph using file header format

The graph server (PGX) uses the header of the files to determine the name and types of the
properties to load. It also infers the column to be used as vertex ID, the columns that indicate
the source and destination vertex ID for edges, and the column to be loaded as vertex or
edge label.

Creating a graph using graph builder API

You can also use PgxSession.readGraphFiles() to load the graph. This method takes the
following three arguments:

• path to the vertex file

• path to the edge file

• name of the graph to be created

Loading the Graph Data from a File Using JShell

opg4j> var loadedGraph = session.readGraphFiles("<path/vertices.csv>", "<path/
edges.csv>", "<graph_name>")

Loading the Graph Data from a File Using Java

import oracle.pgx.api.PgxSession;
import oracle.pgx.api.PgxGraph;

PgxSession session = Pgx.createSession("NewSession");

16-1

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#readGraphFiles_java_util_List_

PgxGraph loadedGraph = session.readGraphFiles("<path/vertices.csv>",
"<path/edges.csv>", "<graph_name>")

Loading the Graph Data from a File Using Python

session = pypgx.get_session(session_name="<session_name>")
loaded_graph = session.read_graph_files("<path/vertices.csv>", "<path/
edges.csv>", "<graph_name>")

The graph server (PGX) supports loading graph data from files for the following data
formats:

• Plain Text Formats

• XML File Formats

• Binary File Formats

• Graph Configuration for Loading from File

• Specifying the File Path

• Supported File Access Protocols

• Plain Text Formats

• XML File Formats

• Binary File Formats

16.1.1 Graph Configuration for Loading from File
The following table presents the graph configuration options to load graph data from all
supported file formats to the graph server (PGX).

Table 16-1 Loading from File - Graph Configuration Options

Field Type Description Default

array_compactio
n_threshold

number [only relevant if the graph is optimized for
updates] Threshold used to determined
when to compact the delta-logs into a
new array. If lower than the engine
min_array_compaction_threshold
value,
min_array_compaction_threshold
will be used instead.

0.2

attributes object Additional attributes needed to read and
write the graph data.

null

detect_gzip boolean Enable or disable automatic gzip
compression detection when loading
graphs.

true

Chapter 16
Loading Graph Data from Files

16-2

Table 16-1 (Cont.) Loading from File - Graph Configuration Options

Field Type Description Default

edge_id_strateg
y

enum[no_ids
,
keys_as_ids
,
unstable_ge
nerated_ids
]

Indicates what ID strategy should be used
for the edges of this graph. If not specified
(or set to null), the strategy will be
determined during loading or using a
default value.

null

edge_id_type enum[long] Type of the edge ID. For homogeneous
graphs, if not specified (or set to null), it
will default to long.

null

edge_props array of
object

Specification of edge properties
associated with graph.

[]

edge_uris array of
string

List of unified resource identifiers. []

error_handling object Error handling configuration. null

external_stores array of
object

Specification of the external stores where
external string properties reside.

[]

format enum[pgb,
edge_list,
adj_list,
graphml,
pg, rdf,
two_tables]

Graph format to be used. null

header boolean First line of file is meant for headers. For
example, 'EdgeId, SourceId, DestId,
EdgeProp1, EdgeProp2'

false

keystore_alias string Alias to the keystore to use when
connecting to the database.

null

loading object Loading-specific configuration. null

local_date_form
at

array of
string

Array of local_date formats to use
when loading and storing local_date
properties. See DateTimeFormatter for
documentation of the format string.

[]

optimized_for enum[read,
updates]

Indicates if the graph must use data-
structures optimized for read-intensive
scenarios or for fast updates.

read

partition_while
_loading

enum[by_lab
el, no]

Indicates if the graph must partitioned
while loading.

null

password string Password to use when connecting to
database.

null

point2d string Longitude and latitude as floating point
values separated by a space.

0.0
0.0

separator string A series of single-character separators for
tokenizing. The characters ", {, } and \n
cannot be used as separators. Default
value is "," for CSV files, and "\t " for
other formats. The first character will be
used as a separator when storing.

null

storing object Storing-specific configuration. null

Chapter 16
Loading Graph Data from Files

16-3

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Table 16-1 (Cont.) Loading from File - Graph Configuration Options

Field Type Description Default

time_format array of
string

The time format to use when loading and
storing time properties. See
DateTimeFormatter for documentation of
the format string.

[]

time_with_timez
one_format

array of
string

The time with timezone format to use
when loading and storing time with
timezone properties. See
DateTimeFormatter for documentation of
the format string.

[]

timestamp_forma
t

array of
string

The timestamp format to use when
loading and storing timestamp properties.
See DateTimeFormatter for
documentation of the format string.

[]

timestamp_with_
timezone_format

array of
string

The timestamp with timezone format to
use when loading and storing timestamp
with timezone properties. See
DateTimeFormatter for documentation of
the format string.

[]

vector_componen
t_delimiter

character Delimiter for the different components of
vector properties.

;

vertex_id_strat
egy

enum[no_ids
,
keys_as_ids
,
unstable_ge
nerated_ids
]

Indicates what ID strategy should be used
for the vertices of this graph. If not
specified (or set to null), the strategy will
be automatically detected.

null

vertex_id_type enum[int,
integer,
long,
string]

Type of the vertex ID. For
homogeneous graphs, if not specified (or
set to null), it will default to a specific
value (depending on the origin of the
data).

null

vertex_props array of
object

Specification of vertex properties
associated with graph.

[]

vertex_uris array of
string

List of unified resource identifiers. []

In the CSV format, the columns used to specify the vertex ID column, vertex labels
column, edge ID column, edge source ID column, edge destination ID column and
the edge label column can be configured with the CSV specific fields as shown in the
following table:

Chapter 16
Loading Graph Data from Files

16-4

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Table 16-2 CSV Specific Options

Field Type Description Default

array_compaction
_threshold

number [only relevant if the graph is optimized for
updates] Threshold used to determined when
to compact the delta-logs into a new array. If
lower than the engine
min_array_compaction_threshold
value,
min_array_compaction_threshold will
be used instead.

0.2

attributes object Additional attributes needed to read and write
the graph data.

null

detect_gzip boolean Enable or disable automatic gzip
compression detection when loading graphs.

true

edge_destination
_column

value Name or index (starting from 1) of column
corresponding to edge destination (for CSV
format only).

null

edge_id_column value Name or index (starting from 1) of column
corresponding to edge id (for CSV format
only).

null

edge_id_strategy enum[no_ids,
keys_as_ids,
unstable_gen
erated_ids]

Indicates what ID strategy should be used for
the edges of this graph. If not specified (or
set to null), the strategy will be determined
during loading or using a default value.

null

edge_id_type enum[long] Type of the edge ID. For homogeneous
graphs, if not specified (or set to null), it will
default to long.

null

edge_label_colum
n

value Name or index (starting from 1) of column
corresponding to edge label (for CSV format
only).

null

edge_props array of
object

Specification of edge properties associated
with graph.

[]

edge_source_colu
mn

value Name or index (starting from 1) of column
corresponding to edge source (for CSV
format only).

null

error_handling object Error handling configuration. null

external_stores array of
object

Specification of the external stores where
external string properties reside.

[]

format enum[pgb,
edge_list,
adj_list,
graphml, pg,
rdf,
two_tables]

Graph format to be used. null

header boolean First line of file is meant for headers. For
example, 'EdgeId, SourceId, DestId,
EdgeProp1, EdgeProp2'.

false

keystore_alias string Alias to the keystore to use when connecting
to database.

null

loading object Loading-specific configuration. null

Chapter 16
Loading Graph Data from Files

16-5

Table 16-2 (Cont.) CSV Specific Options

Field Type Description Default

local_date_forma
t

array of
string

array of local_date formats to use when
loading and storing local_date properties.
See DateTimeFormatter for documentation of
the format string

[]

optimized_for enum[read,
updates]

Indicates if the graph should use data-
structures optimized for read-intensive
scenarios or for fast updates.

read

partition_while_
loading

enum[by_labe
l, no]

Indicates if the graph should be partitioned
while loading.

null

password string Password to use when connecting to
database.

null

point2d string Longitude and latitude as floating point
values separated by a space.

0.0 0.0

separator string a series of single-character separators for
tokenizing. The characters ", {, } and \n
cannot be used as separators. Default value
is "," for CSV files, and "\t " for other
formats. The first character will be used as a
separator when storing.

null

storing object Storing-specific configuration. null

time_format array of
string

The time format to use when loading and
storing time properties. See
DateTimeFormatter for documentation of the
format string

[]

time_with_timezo
ne_format

array of
string

The time with timezone format to use when
loading and storing time with timezone
properties. See DateTimeFormatter for
documentation of the format string.

[]

timestamp_format array of
string

The timestamp format to use when loading
and storing timestamp properties. See
DateTimeFormatter for documentation of the
format string.

[]

timestamp_with_t
imezone_format

array of
string

The timestamp with timezone format to use
when loading and storing timestamp with
timezone properties. See DateTimeFormatter
for documentation of the format string.

[]

vector_component
_delimiter

character Delimiter for the different components of
vector properties.

;

vertex_id_column value Name or index (starting from 1) of column
corresponding to vertex id (for CSV format
only).

null

vertex_id_strate
gy

enum[no_ids,
keys_as_ids,
unstable_gen
erated_ids]

Indicates what ID strategy should be used for
the vertices of this graph. If not specified (or
set to null), the strategy will be automatically
detected.

null

vertex_id_type enum[int,
integer,
long,
string]

Type of the vertex ID. For homogeneous
graphs, if not specified (or set to null), it will
default to a specific value (depending on the
origin of the data).

null

Chapter 16
Loading Graph Data from Files

16-6

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Table 16-2 (Cont.) CSV Specific Options

Field Type Description Default

vertex_labels_co
lumn

value Name or index (starting from 1) of column
corresponding to vertex labels (for CSV
format only).

null

vertex_props array of
object

Specification of vertex properties associated
with graph.

[]

16.1.2 Specifying the File Path
The following examples show how to specify the file path for various file formats.

For formats that contain vertices and edges specified in one file (for example, EdgeList), use
uris as shown in the following code:

{"uris":["path/to/file.format"]}

For formats that require separate files for edges and vertices (for example, FlatFile), use
vertex_uris and edge_uris as shown in the following code:

{"vertex_uris":["vertices1.format","vertices2.format"],"edge_uris":
["edges1.format","edges2.format"]}

PGX will parse graphs in most of the plain text formats in parallel if the graph data is split into
multiple files, as shown in the following code:

{"uris":["file1.format","file2.format",...,"fileN.format"]}

16.1.3 Supported File Access Protocols
The graph server (PGX) supports loading from graph configuration files and graph data files
over various protocols and virtual file systems. The type of file system or protocol is
determined by the scheme of the uniform resource identifier (URI):

• local file system (file:) - this is also the default if the given URI does not contain any
scheme

• classpath (classpath: or res:)

• HDFS (hdfs:)

• HTTPS (https:)

• FTPS (ftps:)

• various archive formats (zip:, jar:, tar:, tgz:, tbz2:, gz: and bz2:). The URI format is
scheme://arch-file-uri[!absolute-path] (if you would like to use the ! as a literal file-
name character it must be escaped using %21).
For example, jar:../lib/classes.jar!/META-INF/graph.json.

Paths may be nested as in tar:gz:https://anyhost/dir/mytar.tar.gz!/mytar.tar!/
path/in/tar/graph.data.

Chapter 16
Loading Graph Data from Files

16-7

Note:

Relative paths are always resolved relative to the parent directory of the
configuration file.

16.1.4 Plain Text Formats
The graph server (PGX) supports the following plain-text formats:

• Comma-Separated Values (CSV)

• Adjacency List (ADJ_LIST)

• Edge List (EDGE_LIST)

• Two Tables (TWO_TABLES)

• Flat File (FLAT_FILE)

Parsing of Vertices

PGX supports three types of vertex identifies (id): integer, long and string. The type
defaults to integer, but can be configured through the vertex_id_type option in the
graph configuration.

Parsing of Edges

Of the various formats and protocols supported by graph server (PGX), only CSV and
flat file parsing support edge identifiers. For all other data sources, the id of an edge is
PGX's internal id, which is an integer from zero to num_edges - 1.

Parsing of Properties

string properties, spatial properties (currently only point2d) and temporal properties
(date, local_date, time, timestamp, time_with_timezone and
timestamp_with_timezone) must be quoted ("<string>") only if they contain a
separator character (usually , for CSV and ' ' for Edge List and Adjacency List) or if
they contain " or \n.

date properties are parsed using Java's SimpleDateFormat utility, instantiated with the
format string yyyy-MM-dd HH:mm:ss unless specified otherwise in the graph
configuration. All other types of temporal properties are parsed using Java's
DateTimeFormatter utility.

point2d can be specified by its longitude followed by its latitude, separated by a
space. Both longitude and latitude are doubles. For example, "-74.0445 40.6892" is
the representation of a point2d instance representing the location of the Statue of
Liberty.

Boolean values are interpreted as true if the value is true (ignoring case), Y (ignoring
case) or 1, false otherwise. The suggested notation for false is false (ignoring case), N
(ignoring case) or 0. All other types are parsed using the parseXXX() functions of its
corresponding Java type, for example, Integer.parseInt(...) for integer types.

Vector properties are supported in the Adjacency List (ADJ_LIST), Comma-Separated
Values (CSV), Edge List (EDGE_LIST), and Two Tables text (TWO_TABLES) formats.
Vector properties with vector components of type integer, long, float and double

Chapter 16
Loading Graph Data from Files

16-8

can be loaded from these formats. In order to specify that a vertex or edge property is a
vector property, the dimension field of the graph property configuration must be set to the
dimension of the vector and be a strictly positive integer value. A vector value is represented
in the supported text formats by the list of the vector components values separated by the
vector component delimiter. By default the vector component delimiter is ;, but this delimiter
can be changed by changing the vector_component_delimiter graph configuration entry.
Therefore a 3-dimensional vector of doubles could for example look like 0.1;0.0004;3.14 in
the text file if the vector component delimiter is ;.

Separators

When using single file formats, IDs and properties are separated with tab or one single space
("\t ") by default, for multiple file formats comma (",") is used instead. However, PGX allows
to configure the separator string.

Parallel Loading

The following formats support parallel loading from multiple files:

• CSV (specify multiple files in vertex_uris and/or edge_uris)

• Adjacency List (specify multiple files in uris)

• Edge List (specify multiple files in uris)

• Two Tables (specify multiple files in vertex_uris and/or edge_uris)

• Flat File (specify multiple files in vertex_uris and/or edge_uris)

Legend

The following abbreviations are used to specify text formats:

• V = Vertex Key

• VG = Neighbor Vertex

• VL = Vertex Labels

• VP = Vertex Property

• VPK = Vertex Property Key

• VPT = Vertex Property Type

• EL = Edge Label

• EP = Edge Property

• EPK = Edge Property Key

• EPT = Edge Property Type

For example <V-2, VG-4> or <V-2, VG-4> denotes the 4th neighbor of the 2nd vertex.

• Comma-Separated Values (CSV)

• Adjacency List (ADJ_LIST)

• Edge List (EDGE_LIST)

• Two Tables (TWO_TABLES)

• Flat File (FLAT_FILE)

Chapter 16
Loading Graph Data from Files

16-9

16.1.4.1 Comma-Separated Values (CSV)
The CSV format is a text file format with vertices and edges stored in different files.
Each line of the files represents a vertex or an edge. The vertex key and labels, the
edge key, source, destination and label, and the attached properties are stored in the
order specified by the file header (first line) and the configuration.

A graph with V vertices, having N vertex properties and K neighbors each, and E
edges, having M edge properties, would be represented in CSV as shown:

vertices.csv

<V-1>,<VL-1>,<V-1, NP-1>,...,<V-1, NP-N>
<V-2>,<VL-2>,<V-2, NP-1>,...,<V-2, NP-N>
...
<V-V>,<VL-N>,<V-V, NP-1>,...,<V-V, NP-N>

edges.csv

<E-1>,<V-1>,<V-1, VG-1>,<EL-1>,<E-1, EP-1>,...,<E-1, EP-M>
...
<E-K>,<V-1>,<V-1, VG-K>,<EL-N>,<E-K, EP-1>,...,<E-K, EP-M>
<E-K+1>,<V-2>,<V-2, VG-1>,<EL-N+1>,<E-K+1, EP-1>,...,<E-K+1, EP-M>
...
<E-V*K>,<V-V>,<V-V, VG-K>,<EL-V*K>,<E-V*K, EP-1>,...,<E-V*K, EP-M>

Example 16-1 Loading graph from a CSV file with header details

The following examples shows a graph configuration file for loading a graph with two
vertices and two edges:

vertices.csv

key,integer_prop,string_prop
1,33,"Alice"
2,42,"Bob"

edges.csv

source,dest,integer_prop,string_prop
1,2,0,"baz"
2,2,-12,"bat"

The corresponding graph configuration file is as shown:

{
 "format": "csv",
 "header": true,
 "vertex_id_column": "key",
 "edge_source_column": "source",
 "edge_destination_column": "dest",
 "vertex_uris": ["vertices.csv"],
 "edge_uris": ["edges.csv"],
 "vertex_props": [
 {

Chapter 16
Loading Graph Data from Files

16-10

 "name": "integer_prop",
 "type": "integer"
 },
 {
 "name": "string_prop",
 "type": "string"
 }
],
 "edge_props": [
 {
 "name": "integer_prop",
 "type": "integer"
 },
 {
 "name": "string_prop",
 "type": "string"
 }
]
}

Example 16-2 Loading graph from a CSV file without header details

The following examples shows a graph configuration file for loading a graph with two vertices
and two edges:

vertices.csv

1,33,"Alice"
2,42,"Bob"

edges.csv

1,2,0,"baz"
2,2,-12,"bat"

The corresponding graph configuration file is as shown:

Note:

The column indices are given in place of the column names.

{
 "format": "csv",
 "header": false,
 "vertex_id_column": 1,
 "edge_source_column": 1,
 "edge_destination_column": 2,
 "vertex_uris": ["vertices.csv"],
 "edge_uris": ["edges.csv"],
 "vertex_props": [
 {

Chapter 16
Loading Graph Data from Files

16-11

 "name": "integer_prop",
 "type": "integer",
 "column": 2
 },
 {
 "name": "string_prop",
 "type": "string",
 "column": 3
 }
],
 "edge_props": [
 {
 "name": "integer_prop",
 "type": "integer",
 "column": 3
 },
 {
 "name": "string_prop",
 "type": "string",
 "column": 4
 }
]
}

If no column indices are set in the configuration file, the columns are assumed to be in
the following order:

• For vertex files: - Vertex ID - Vertex labels (if present) - Vertex properties in the
order they are declared in the configuration

• For edge files: - Edge ID (if present) - Edge source - Edge destination - Edge label
(if present) - Edge properties in the order they are declared in the configuration

Therefore the earlier configuration is equivalent to:

{
 "format": "csv",
 "header": false,
 "vertex_uris": ["vertices.csv"],
 "edge_uris": ["edges.csv"],
 "vertex_props": [
 {
 "name": "integer_prop",
 "type": "integer"
 },
 {
 "name": "string_prop",
 "type": "string"
 }
],
 "edge_props": [
 {
 "name": "integer_prop",
 "type": "integer"
 },
 {

Chapter 16
Loading Graph Data from Files

16-12

 "name": "string_prop",
 "type": "string"
 }
]
}

16.1.4.2 Adjacency List (ADJ_LIST)
The Adjacency List format is a text file format containing a list of neighbors from a vertex, per
line. The format is extended to encode properties. The following shows a graph with V
vertices, having N vertex properties and M edge properties:

<V-1> <V-1, VP-1> ... <V-1, VP-N> <V-1, VG-1> <EP-1> ... <EP-M> <V-1, VG-2> <EP-1> ...
<EP-M>
<V-2> <V-2, VP-1> ... <V-2, VP-N> <V-2, VG-1> <EP-1> ... <EP-M> <V-2, VG-2> <EP-1> ...
<EP-M>
...
<V-V> <V-V, VP-1> ... <V-V, VP-N> <V-V, VG-1> <EP-1> ... <EP-M> <V-V, VG-2> <EP-1> ...
<EP-M>

Note:

Trailing separators will be considered as errors. For example, if whitespace is used
to separate the properties, any trailing whitespace will cause an exception to be
raised.

Example 16-3 Graph in Adjacency List Format

This example shows a graph with 4 vertices (1, 2, 3 and 4), each having a double and a
string property, and 3 edges, each having a boolean and a date property, encoded in
Adjacency List format:

1 8.0 "foo"
2 4.3 "bar" 1 false "1985-10-18 10:00:00"
3 6.1 "bax" 2 true "1961-12-30 14:45:14" 4 false "2001-01-15 07:00:43"
4 17.78 "f00"

Note:

ADJ_LIST is more space efficient than EDGE_LIST. This is because vertices are
first defined and then the edges are being created, indicating that we are repeating
each vertex at least once.

16.1.4.3 Edge List (EDGE_LIST)
The Edge List format is a text file format starting with a section with one vertex per line,
followed by a section with one edge per line. If a vertex does not have any labels or
properties, it is possible to omit the vertex in the first section, but still specify edges for the
vertex in the second section.

Chapter 16
Loading Graph Data from Files

16-13

EdgeList := {Vertex '\n'}* '\n' {Edge '\n'}*

Vertex := VertexId '*' VertexLabels? PropertyValue*
VertexId := Integer | Long | String
VertexLabels := '{' String* '}'

Edge := SrcVertex DstVertex EdgeLabel? PropertyValue*
SrcVertex := VertexId
DstVertex := VertexId
EdgeLabel := String

PropertyValue := Integer | Long | Double | Float | Boolean | String | Date

The vertices start with an identifier (VertexId), followed by a *, an optional set of
vertex labels (VertexLabels?) and the vertex properties (PropertyValue*). A vertex
identifier is either an Integer, a Long, or a String. Furthermore, vertex labels are zero
or more Strings between curly braces ('{' String* '}').

The edges start with source and destination vertex identifiers (SrcVertex DstVertex),
followed by optional edge label (EdgeLabel?) and the edge properties
(PropertyValue*). The edge label is a String.

Example 16-4 Graph in Edge List format

This example shows a graph with two vertices and two edges, with labels and
properties:

1 * { "Person" "Male" } "Mario" 15
2 * { "Person" "Male" } "Luigi" 14
1 2 "likes" 3.5
2 1 "likes" 2.1

The two vertices (lines 1-2) have identifiers 1 and 2 and both have the labels "Person"
and "Male", a string property ("Mario" and "Luigi") and an integer property (15 and 14).
There is an edge from vertex 1 to vertex 2 (line 3) with label "likes" and a double
property with value 3.5, and another edge from vertex 2 to vertex 1 with label "likes"
and a double property with value 2.1.

The following shows the corresponding graph configuration:

{
 "format":"edge_list",
 "uri":"example.edgelist",
 "vertex_id_type":"long",
 "vertex_labels":true,
 "edge_label":true,
 "vertex_props":[
 {
 "name":"name",
 "type":"string"
 },
 {
 "name":"age",
 "type":"int"
 }
],
 "edge_props":[

Chapter 16
Loading Graph Data from Files

16-14

 {
 "name":"rating",
 "type":"double"
 }
],
 "loading_options": {
 "load_vertex_labels":true,
 "load_edge_label":true
 },
 "separator":" "
}

16.1.4.4 Two Tables (TWO_TABLES)
When configured to use file as datastore, the Two Tables format becomes a text file format
similar to the Edge List format, with the only difference that the vertices and edges are stored
in two different files. The vertices file contains vertex IDs followed by vertex properties. The
edges file contains the source vertices and target vertices, followed by edge properties.

A graph with V vertices, having N vertex properties and M edge properties would be
represented in two files as shown in the following:

vertices.ttt:

<V-1> <V-1, NP-1> ... <V-1, NP-N>
<V-2> <V-2, NP-1> ... <V-2, NP-N>
...
<V-V> <V-V, NP-1> ... <V-V, NP-N>

edges.ttt:

<V-1> <V-1, VG-1> <EP-1> ... <EP-M>
<V-1> <V-1, VG-2> <EP-1> ... <EP-M>
...
<V-V> <V-V, VG-1> <EP-1> ... <EP-M>

Example 16-5 Graph in Two Tables Text format

The following example shows the graph of 4 vertices (1, 2, 3 and 4), each having a double
and a string property, and 3 edges, each having a boolean and a date property, encoded in
Two Tables Text format:

vertices.ttt:

1 8.0 "foo"
2 4.3 "bar"
3 6.1 "bax"
4 17.78 "f00"

edges.ttt:

2 1 false "1985-10-18 10:00:00"
3 2 true "1961-12-30 14:45:14"
3 4 false "2001-01-15 07:00:43"

Chapter 16
Loading Graph Data from Files

16-15

Note:

If you are planning on storing big graphs you must consider Two Tables Text
format in order to save disk space.

16.1.4.5 Flat File (FLAT_FILE)
The Flat File format is a text file format containing two description files, one for vertices
and one for edges. Each file consists of a list of properties with the following format:

vertices.opv

vertex_ID, key_name, value_type, value, value, value

<V-1> <V-1, VPK-1> <V-1, VPT-1> [<V-1, VP-1> <V-1, VP-1> <V-1, VP-1>]
...
<V-1> <V-1, VPK-N> <V-1, VPT-1> [<V-1, VP-N> <V-1, VP-N> <V-1, VP-N>]
<V-2> <V-2, VPK-1> <V-2, VPT-1> [<V-2, VP-1> <V-2, VP-1> <V-2, VP-1>]
...
<V-2> <V-2, VPK-N> <V-2, VPT-N> [<V-2, VP-N> <V-2, VP-N> <V-2, VP-N>]
...
<V-V> <V-V, VPK-N> <V-V, VPT-N> [<V-V, VP-N> <V-V, VP-N> <V-V, VP-N>]

edges.ope

edge_ID, source_vertex_ID, destination_vertex_ID, edge_label, key_name,
value_type, value, value, value

<E-1> <V-1, VG-1> <E-1, EL-1> <E-1, EPK-1> <E-1, EPT-1> [<E-1, EP-1> <E-1, EP-1>
<E-1, EP-1>]
...
<E-1> <V-N, VG-N> <E-1, EL-N> <E-1, EPK-N> <E-1, EPT-N> [<E-1, EP-N> <E-1, EP-N>
<E-1, EP-N>]
<E-2> <V-1, VG-1> <E-2, EL-1> <E-2, EPK-1> <E-2, EPT-1> [<E-2, EP-1> <E-2, EP-1>
<E-2, EP-1>]
...
<E-2> <V-N, VG-N> <E-2, EL-N> <E-2, EPK-N> <E-2, EPT-N> [<E-2, EP-N> <E-2, EP-N>
<E-2, EP-N>]
...
<E-E> <V-N, VG-N> <E-E, EL-N> <E-E, EPK-N> <E-E, EPT-N> [<E-E, EP-N> <E-E, EP-N>
<E-E, EP-N>]

Special Considerations when Using Flat File Format

• When no properties are defined for a certain vertex or edge, %20 is used instead of
the key name:

Vertices: 1,%20,,,,
Edges: 1,2,1,"label",%20,,,,

• Values that are not numeric nor date go in the first field; numeric values go in the
second, and dates in the third.

• The following shows the mapping between PGX property type and flat file
value_type:

Chapter 16
Loading Graph Data from Files

16-16

Table 16-3 Mapping between PGX Property Type and Flat File value_type

PGX property type Flat file value_type

STRING 1

INTEGER 2

FLOAT 3

DOUBLE 4

DATE 5

LOCAL_DATE 5

TIME 5

TIMESTAMP 5

TIME_WITH_TIMEZONE 5

TIMESTAMP_WITH_TIMEZONE 5

BOOLEAN 6

LONG 7

POINT2D 200

Note:

When loading a graph in flat file format into PGX, the graph configuration is
used to find the right temporal or spatial type.

• The standard for the flat file format defines commma as the only valid delimiter, therefore
any delimiter set in the graph configuration is ignored and comma is used instead.

• Strings must not be quoted, however the following encoding is needed for some
characters:

– '%' -> '%25'

– '\t' -> '%09'

– ' ' -> '%20'

– '\n' -> '%0A'

– ',' -> '%2C'

• When storing a graph into flat file format, vertex labels will be ignored. Also, when a
graph has no edge label, an empty string ("") will be stored instead.

• When loading a graph in parallel using flat file format, all information regarding a specific
vertex or edge must be contained in the same partition otherwise unexpected behavior
might occur.

Example 16-6 Graph in Flat File Text format

The following example shows a graph of 4 vertices (1, 2, 3 and 4), each having a double and
a string property, and 3 edges, each having a boolean and a date property, encoded in Flat
File Text format:

vertices.opv:

1,doubleProp,4,,8.0,
1,stringProp,1,foo,,
2,doubleProp,4,,4.3,

Chapter 16
Loading Graph Data from Files

16-17

2,stringProp,1,bar,,
3,doubleProp,4,,6.1,
3,stringProp,1,bax,,
4,doubleProp,4,,17.78,
4,stringProp,1,f00,,

edges.ope:

1,2,1,label,boolProp,6,false,,
1,2,1,label,dateProp,5,,,1985-10-18%2010:00:00
2,3,2,label,boolProp,6,true,,
2,3,2,label,dateProp,5,,,1961-12-30%2014:45:14
3,3,4,label,boolProp,6,false,,
3,3,4,label,dateProp,5,,,2001-01-15%2007:00:43

16.1.5 XML File Formats
Graph ML

The graph server (PGX) supports loading graphs from files using the XML-based
Graph ML format. Graphs already in memory may also be exported into GraphML
files. See GraphML specification for a detailed description of the XML schema.

PGX GraphML Limitation

PGX does not support all features of the GraphML format. Some of the limitations are:

• If the graph is undirected (edgedefault="undirected"), then edge properties are
not supported

• All vertices (edges) must have the same amount and type of vertex (edge)
properties

• port, default, and hyperedge are not supported

Example 16-7

The following example graph consists of 3 vertices and 3 edges. Each vertex has an
integer property named number and each edge has a string property named label.
Note that the edges are directed and that the strings for the property do not have to be
put in (double) quotation marks.

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">
 <key attr.name="number" attr.type="integer" for="node" id="number"/>
 <key attr.name="label" attr.type="string" for="edge" id="label"/>
 <graph edgedefault="directed">
 <node id="1">
 <data key="number">2</data>
 </node>
 <node id="2">
 <data key="number">45</data>
 </node>
 <node id="3">
 <data key="number">83</data>
 </node>
 <edge target="2" source="1">
 <data key="label">this graph</data>

Chapter 16
Loading Graph Data from Files

16-18

http://graphml.graphdrawing.org/specification.html

 </edge>
 <edge source="3" target="2">
 <data key="label">forms a</data>
 </edge>
 <edge target="1" source="3">
 <data key="label">triangle</data>
 </edge>
 </graph>
</graphml>

Caution:

Due to the verbose nature of XML, the GraphML format comes with a large
overhead compared to other file-based graph formats. You must use a different
format if you want to consider the load or store performance and file size as
important factors.

16.1.6 Binary File Formats
PGX Binary Format (PGB)

PGX binary format (.pgb) is the proprietary binary format for graph server (PGX), which
allows fast and efficient file processing. Fundamentally, the file is a binary dump of the graph
and property data. Bytes are written in network byte order (big endian).

Type Encoding

Table 16-4 Type Encoding

Value Type Size in bytes

0 Boolean 1

1 Integer 4

2 Long 8

3 Float 4

4 Double 8

7 String varies

11 Vertex labels varies

13 Local date 4

14 Time 4

15 Timestamp 8

16 Time with time zone 8

17 Timestamp with time zone 12

18 Vector property variable: <sizeof component-
type> * <dimension>

Chapter 16
Loading Graph Data from Files

16-19

File Layout

Table 16-5 File Layout

Size in bytes Description Requir
ed

Comment

4 magic word Yes 0x99191191

4 vertex size Yes Allowed values are 4 and 8.

4 edge size Yes Allowed values are 4 and 8.

<vertex size> number of vertices Yes

<edge size> number of edges Yes

<edge size> *
(<numVertices> +
1)

edge begin array Yes

<vertex size> *
<numEdges>

destination vertex
array

Yes

1 component bitmap Yes • 0x0001: node keys
• 0x0002: vertex labels
• 0x0004: edge label
• 0x0008: edge keys
• other bits: reserved

4 vertexKey type No Only present if component bitmap &
0x0001 == 0x0001. See Table 16-4
for type encoding.

<vertex key
layout>

vertex keys No Only present if component bitmap &
0x0001 == 0x0001.

4 edgeKey type No Only present if component bitmap &
0x0008 == 0x0008. See table
Table 16-4 for type encoding

<numEdges> * 8 edge keys No Only present if component bitmap &
0x0008 == 0x0008.

4 number of vertex
properties

Yes

<num vertex
properties> *
<property layout>

property data Yes See Table 16-11.

4 number of edge
properties

Yes

<num edge
properties> *
<property layout>

property data Y See Edge Property Layout.

<vertex labels
layout>

vertex labels No Only present if component bit &
0x0002 == 0x0002.

<edge labels
layout>

edge label No Only present if component bit &
0x0004 == 0x0004.

4 number of shared
pools

Yes

<shared pools
size>

shared pools No

Chapter 16
Loading Graph Data from Files

16-20

Table 16-5 (Cont.) File Layout

Size in bytes Description Requir
ed

Comment

<property names
size>

property names No Only present if component bit &
0x0010 == 0x0010. See
Table 16-20.

Vertex Key Layout

The layout of vertex keys depends on the vertexKey type. PGB supports integer, long and
string vertex keys.

Table 16-6 Integer Vertex Keys

Size in bytes Description Require
d

Comment

<numVertices> * 4 key data Yes For each vertex, the corresponding
integer key value.

Table 16-7 Long Vertex Keys

Size in bytes Description Require
d

Comment

<numVertices> * 8 key data Yes For each vertex, the corresponding long
key value.

Table 16-8 String Vertex Keys

Size in bytes Description Require
d

Comment

4 compression scheme Yes reserved (must be 0)

8 property size Yes size of each element in bytes in the
following data

<number of keys> *
<string key element
layout>

string key data Yes content of the vertex keys (see
Table 16-6)

Table 16-9 String Key Element Layout

Size in bytes Description Require
d

Comment

4 string length Yes length of the string in bytes

<string length> string key data Yes content of the string as bytes, No zero-
character

Property Layout

The following shows the special layout for string properties, and for vector properties:

Chapter 16
Loading Graph Data from Files

16-21

Table 16-10 Primitive Type Layout

Size in bytes Description Requir
ed

Comment

4 property type Yes See Table 16-4 for type encoding.

8 property size Yes Size of the property data in bytes

<property size> property data Yes Stored as <numVertices/
numEdges> * <type size>

Table 16-11 Vector Property Layout

Size in bytes Description Comment

4 vector type mark Always equal to 18.

8 size of vector property
data and extra fields

dataSize = <sizeof component-type> *
<dimension> + 8 (The 8 extra bytes are
for the added following 2 extra fields in the
vector property header.)

4 vector component data
type

Valid types are integer, long, float,
double. Encoded with the value specified in
Table 16-4.

4 vector dimension Number of components per vector value.
Must be greater than 0 to be a valid vector
property.

dataSize - 8 data Stored as array of length * ` in which
the value of the j-th component of
the vector for the i-th entity is
at position i * + j`.

Table 16-12 String Type Layout

Size in bytes Description Requir
ed

Comment

4 property type Yes Must be 7.

8 property size Yes Size of the following data in bytes.

1 reserved Yes Reserved (must be 0).

<dictionary
layout>

dictionary Yes String dictionary used in the property

<numVertices/
numEdges> * 8

property content Yes Content of the string property, stored
as IDs that refer to the strings in the
dictionary.

Table 16-13 String Dictionary Layout

Size in bytes Description Requir
ed

Comment

1 reserved Yes Reserved (must be 0).

8 number of strings Yes Number of strings in the following
dictionary.

Chapter 16
Loading Graph Data from Files

16-22

Table 16-13 (Cont.) String Dictionary Layout

Size in bytes Description Requir
ed

Comment

<number of
strings> *
<dictionary
element layout>

dictionary data Yes See Table 16-14.

Table 16-14 String Dictionary Element Layout

Size in bytes Description Require
d

Comment

8 string id Yes Unique ID of the string.

4 string length Yes Length of the string in bytes.

<string length> string data Yes Content of the string as bytes, No zero-
character

Vertex Labels Layout

Table 16-15 Vertex Labels Layout

Size in bytes Description Require
d

Comment

4 type Yes Must be 11.

8 size Yes Size of the following data in bytes.

<dictionary layout> dictionary Yes String dictionary used in the vertex
labels.

<numVertices + 1> *
8

string id begin array Yes <string ids> offset array for each
vertex.

8 number of string ids Yes The number of string ids.

<number of string
ids> * 8

string ids Yes Array of string ids in the string
dictionary.

Edge Label Layout

The edge label layout follows the string type layout.

Shared Pools Layout

Table 16-16 Shared Pools Layout

Size in bytes Description Require
d

Comment

1 type Yes 1: enum, 2: prefixed

Chapter 16
Loading Graph Data from Files

16-23

Table 16-17 Type == Enum

Size in bytes Description Requir
ed

Comment

8 num strings Yes

<number of
strings> *
<string table
layout>

dictionary data Yes See Table 16-19.

Table 16-18 Type == Prefix

Size in bytes Description Requir
ed

Comment

8 num prefixes Yes

<number of
prefixes> *
<string table
layout>

dictionary data Yes See Table 16-19.

8 num suffixes Yes

<number of
suffixes> *
<string table
layout>

dictionary data Yes See Table 16-19.

Table 16-19 String Table for Shared Pools

Size in bytes Description Requir
ed

Comment

8 string id Yes String can be literal (in case of
enum) or prefix/suffix (in case of
prefix).

4 string length Yes

<string length> string data Yes

Property Names Layout

Table 16-20 Property Names Layout

Size in bytes Description Requir
ed

Comment

8 size Yes String can be literal (in case of
enum) or prefix/suffix (in case of
prefix).

<sum of size of
vertex property
names>

vertex property names No Follows the String Key Element
Layout. See Table 16-9.

Chapter 16
Loading Graph Data from Files

16-24

Table 16-20 (Cont.) Property Names Layout

Size in bytes Description Requir
ed

Comment

<sum of size of
edge property
names>

edge property names No Follows the String Key Element
Layout. See Table 16-9.

16.2 Loading Graph Data in Parallel from Multiple Files
You can load a graph in parallel using multiple files.

The following example demonstrates how to load graph data from multiple files.

For example, consider a vertex file split into four partitions as shown:

vertex_file1

1,Color,1,red,,
2,Color,1,yellow,,

vertex_file2

3,Color,1,blue,,
4,Color,1,green,,

vertex_file3

5,Color,1,orange,,
6,Color,1,white,,

vertex_file4

7,Color,1,black,,

The edge file is split into two partitions as shown:

edge_file1

1,1,2,edge1,Weight,4,,1.0,
2,2,3,edge2,Weight,4,,2.0,
3,3,4,edge3,Weight,4,,3.0,

edge_file2

4,4,5,edge4,Weight,4,,4.0,
5,5,6,edge5,Weight,4,,5.0,
6,6,7,edge6,Weight,4,,6.0,

Chapter 16
Loading Graph Data in Parallel from Multiple Files

16-25

The following graph configuration can be used to load the graph data from four vertex
files and two edge files into the same graph. Note that all the uris are specified inside
the JSON graph configuration.

{
 "format": "flat_file",
 "vertex_uris": ["vertex_file1", "vertex_file2", "vertex_file3",
"vertex_file4"],
 "edge_uris": ["edge_file1", "edge_file2"],
 "separator": ",",
 "edge_props": [
 {
 "name": "Weight",
 "type": "double"
 }
],
 "vertex_props": [
 {
 "name": "Color",
 "type": "string"
 }
]
}

You can also create a graph configuration with multiple file partitions using Java as
shown:

FileGraphConfig config = GraphConfigBuilder
 .forFileFormat(Format.FLAT_FILE)
 .setSeparator(",")
 .addVertexUri("vertex_file1")
 .addVertexUri("vertex_file2")
 .addVertexUri("vertex_file3")
 .addVertexUri("vertex_file4")
 .addEdgeUri("edge_file1")
 .addEdgeUri("edge_file2")
 .addVertexProperty("Color", PropertyType.STRING)
 .addEdgeProperty("Weight", PropertyType.DOUBLE)
 .build();

Note:

The graph configuration in the preceding codes include one double edge
property named "Weight" and one string vertex property named "Color".

You can now load the graph data from the files as explained in Creating a graph using
graph builder API.

The graph server (PGX) will automatically load the graph in parallel, using one thread
for each file. This means that a graph can be loaded in parallel with as many threads
as files are given depending on the configured parallelism for the graph server (PGX)
instance.

Chapter 16
Loading Graph Data in Parallel from Multiple Files

16-26

Note:

Since the graph config will be used for all of the specified files, it is crucial to use the
same format for all these files, that is, using the same separator, having the same
defined properties, complying with the same format specification.

16.3 Exporting Graphs Into a File
The graph server (PGX) allows the client to export a currently loaded graph into a file.

Using the store() method on any PgxGraph object, the client can specify which file format to
store the graph in. The client can also dynamically select the set of properties to be stored
with the graph, that is, not all the properties need to be exported. The client can specify a
CompressionScheme to use when storing as shown:

Table 16-21 Files CompressionScheme

CompressionScheme Supported Formats

NONE All formats

GZIP ADJ_LIST, EDGE_LIST, FLAT_FILE, TWO_TABLES
(text)

The client can export to multiple files as well.

When PGX exports the specified graph into a file, PGX also creates a graph config which the
client receives as return value. This is to help loading the created graph instance later.

When exporting graph data into multiple files a FileGraphStoringConfig can be used which
contains the following JSON fields:

Table 16-22 Graph Configuration when Exporting Graph into Multiple Files

Field Type Description Default

base_path string Base path to use for
storing a graph; file
paths will be
constructed using the
following format _._,
that is, parent_path/
my_graph_1.edges.

null

compression_sche
me

enum[none, gzip] The scheme to use for
compression, or none to
disable compression.

none

delimiter character Delimiter character used
as separator when
storing. The characters
", {, } and \n cannot be
used as delimiters.

null

edge_extension string The extension to use
when creating edge file
partitions.

edges

Chapter 16
Exporting Graphs Into a File

16-27

Table 16-22 (Cont.) Graph Configuration when Exporting Graph into Multiple Files

Field Type Description Default

initial_partitio
n_index

integer The value used as initial
partition index, that is,
initial_partition_i
ndex=1024 ->
my_graph_1024.edges
,
my_graph_1025.edges
.

1

num_partitions integer The number of partitions
that should be created,
when exporting to
multiple files.

1

row_extension string The extension to use
when creating row file
partitions.

rows

vertex_extension string The extension to use
when creating vertex file
partitions.

nodes

• Exporting a Graph to Disk

16.3.1 Exporting a Graph to Disk
You can save a graph loaded into memory to the disk in various formats. Therefore
you can make sub-graphs and graph data computed at runtime through analytics
persistent, for future use. The resulting file can be used later as input for the graph
server (PGX).

Consider the following example where a graph is loaded into memory and PageRank
analysis is executed on the graph.

Loading a Graph and Executing PageRank Analysis Using JShell

var g = session.readGraphWithProperties("<path_to_json>")
var rank = analyst.pagerank(g, 0.001, 0.85, 100)

Loading a Graph and Executing PageRank Analysis Using Java

PgxGraph g = session.readGraphWithProperties("<path_to_json>");
Analyst analyst = session.createAnalyst();
VertexProperty<Integer, Double> rank = analyst.pagerank(g, 0.001, 0.85, 100);

Loading a Graph and Executing PageRank Analysis Using Python

g = session.read_graph_with_properties("<path_to_json>")
analyst = session.create_analyst()
rank = analyst.pagerank(g, 0.001, 0.85, 100)

You can now store the graph, together with the result of the PageRank analysis and all
original edge properties, as a file in edge-list format, on disk. When a graph is stored,
you need to specify the graph format, a path where the file should be stored, the
properties to store and a flag that specifies whether or not a file should be overwritten
should a file with the same name already exist.

Chapter 16
Exporting Graphs Into a File

16-28

Storing a Graph Using JShell

var config = g.store(Format.EDGE_LIST, "<file-path>", List.of(rank), EdgeProperty.ALL,
false)

Storing a Graph Using Java

var config = g.store(Format.EDGE_LIST, "<file-path>", List.of(rank), EdgeProperty.ALL,
false);

Storing a Graph Using Python

config = g.store('edge_list', "<file-path>", vertex_properties = [rank], overwrite=
False)

The graph data can now be found under the file path. The graph configuration returned by the
store method can be used to load the new graph back into memory. To persist the graph
configuration to disk as well, you can use the config's toString method to get a JSON
representation:

Reloading a Graph Using JShell

var path = Paths.get("<file-path>")
Files.writeString(path, config.toString())

Reloading a Graph Using Java

import apache.commons.io.*; // PGX contains a version of Apache Commons IO
...
FileUtils.write(new File("<file-path>"), config.toString());

Reloading a Graph Using Python

with open("<file-path>","w"):
 f.write(str(config))

16.4 Exporting a Graph into Multiple Files
You can store a graph into multiple files using the store method. Most parameters are the
same, as if storing to a single file. However, the main difference lies in specifying how to
partition the data.

You can partition the data in either of the following two ways:

• specifying a FileGraphStoringConfig (see Table 16-22 for more information)

• specifying a base path and the number of partitions

Export into Multiple Files Using FileGraphStoringConfig

You can specify a more detailed way of creating the multiple partitions used to store the
graph by using the FileGraphStoringConfig. You can create a FileGraphStoringConfig
object using a FileGraphStoringConfigBuilder.

For example, the following code specifies that the storing should be done into four partitions
using the specified base path and using zero as the initial index for the partitioning. It also

Chapter 16
Exporting a Graph into Multiple Files

16-29

contains the file extension to use for vertex files and for edge files and finally it sets
comma as the delimiter to be used when storing the graph data:

FileGraphStoringConfig storingConfig = new
FileGraphStoringConfigBuilder(basePath) //
 .setNumPartitions(4) //
 .setInitialPartitionIndex(0) //
 .setVertexExtension(vertexExtension) //
 .setEdgeExtension(edgeExtension) //
 .setDelimiter(',') //
 .build();

You can also partition all tables equally using the numPartitions parameter. This
implies that all tables are exported into the same number of files.

If you do not want to partition the tables equally, you can either create one
PartitionedGraphConfig which contains for each provider a
FileGraphStoringConfig (see Table 16-22) or we can use a version of store() that
takes two maps of FileGraphStoringConfigs, one for the vertex tables and one for the
edge tables.

For the first option, you can create for each vertex and edge table a
FileGraphStoringConfig and put it into a FileEntityProviderConfig using
setStoringOptions in the builder of FileEntityProviderConfig. The providers are
then added to the PartitionedGraphConfig as edge and vertex providers using
addVertexProvider() and addEdgeProvider() in the builder of
PartitionedGraphConfig. Later you can use the store() method which takes the
PartitionedGraphConfig as parameter.

The second option creates for every edge and vertex table a storing configuration,
adds those into a vertex provider and an edge provider map and calls the
corresponding store() method with these maps as parameters.

For example:

FileGraphStoringConfig vertexStoringConfig1 = new
FileGraphStoringConfigBuilder(basePath + "_vertexTable1") //
 .setNumPartitions(4) //
 .setInitialPartitionIndex(0) //
 .setVertexExtension(vertexExtension) //
 .setDelimiter(',') //
 .build();

FileGraphStoringConfig vertexStoringConfig2 = new
FileGraphStoringConfigBuilder(basePath + "_vertexTable2") //
 .setNumPartitions(4) //
 .setInitialPartitionIndex(0) //
 .setVertexExtension(vertexExtension) //
 .setDelimiter(',') //
 .build();

FileGraphStoringConfig edgeStoringConfig1 = new
FileGraphStoringConfigBuilder(basePath + "_edgeTable1") //
 .setNumPartitions(4) //
 .setInitialPartitionIndex(0) //

Chapter 16
Exporting a Graph into Multiple Files

16-30

 .setEdgeExtension(edgeExtension) //
 .setDelimiter(',') //
 .build();

Map<String, FileGraphStoringConfig> vertexStoringConfigs = new HashMap<>();
vertexStoringConfigs.put("vertexTable1", vertexStoringConfig1);
vertexStoringConfigs.put("vertexTable2", vertexStoringConfig2);

Map<String, FileGraphStoringConfig> edgeStoringConfigs = new HashMap<>();
edgeStoringConfigs.put("edgeTable1", edgeStoringConfig);

Export into Multiple Files without FileGraphStoringConfig

If you only need to specify how many partitions are required and the base name to be used, it
is simpler to use store() method by only specifying those parameters. Following this
procedure, the graph server (PGX) will use defaults for the other fields. See Table 16-22 for
more information on default values.

Export into Multiple Files Using a Graph Configuration Object

An alternate way for exporting into multiple files is by creating a FileGraphStoringConfig
and putting it into a Graph Configuration object using setStoringOptions in its builder, and
then using the corresponding version of the store() method.

Chapter 16
Exporting a Graph into Multiple Files

16-31

17
Log Management in the Graph Server (PGX)

The graph server (PGX) internally uses the SLF4J interface with Log4j as the default logger
implementation.

• Configuring Log4j Logging

17.1 Configuring Log4j Logging
The default log4j logging configuration file is located in /etc/oracle/graph/log4j2-
server.xml. This configuration file contains the target location for the logs in /var/log/
oracle/graph/. Additionally, the rolling file appenders are also defined in this configuration
file.

Note:

• Log4j is configured to roll the log files based on both log size (250 MB) and
date.

• Log files are automatically saved in a compressed format in subdirectories, one
directory per month. There can be multiple files on a given day.

• Also, each startup of the graph server(PGX) triggers a new log file.

The log4j configuration file is picked up automatically by the the graph server(PGX). To use
this configuration in your java application, you can set the log4j.configurationFile system
variable when launching the JVM:

java -Dlog4j.configurationFile=$PGX_HOME/conf/log4j2.xml ...

Changing Logging Level During a JShell Session

When connected to the graph server using JShell, you can use the loglevel(String
loggerName, String levelName) function to quickly change the logging level of any logger.
For example:

loglevel("oracle.pgx", "debug")
loglevel("ROOT", "info")
loglevel("org.apache.hadoop", "off")

Changing Slf4j Implementation

You can replace the log4j JARs in $PGX_HOME/third-party with your own slf4j
implementation. You must only place your JAR files in $PGX_HOME/third-party and it will get
wild-card included when the graph shell client is started.

17-1

Logging in a Web Application Server

The graph-server-<version>-pgx<version>.war file in the oracle-graph-webapps-
<version>.zip download package contains the log4j2.xml. This file determines what
should be logged in the web application running on the application server of your
choice. The file is located in the folder WEB-INF/classes inside the graph-server-
<version>-pgx<version>.war file. By default, only errors are logged. But you can
change this file if you want more logging in your web server. You must restart the web
server after you change the file, for the change to take effect.

Chapter 17
Configuring Log4j Logging

17-2

Part III
Supplementary Information for Property
Graph Support

This document has the following appendixes.

• Handling Property Graphs Using a Two-Tables Schema
For property graphs with relatively fixed, simple data structures, where you do not need
the flexibility of <graph_name>VT$ and <graph_name>GE$ key/value data tables for vertices
and edges, you can use a two-tables schema to achieve better run-time performance.

• About Property Graph Data Formats
Several graph formats are supported for property graph data.

• Mapping Graph Server Roles to Default Privileges

• Disabling Transport Layer Security (TLS) in Graph Server

A
Handling Property Graphs Using a Two-
Tables Schema

For property graphs with relatively fixed, simple data structures, where you do not need the
flexibility of <graph_name>VT$ and <graph_name>GE$ key/value data tables for vertices and
edges, you can use a two-tables schema to achieve better run-time performance.

Note:

Support for the two-tables schema approach described in this topic has been
deprecated and will probably be removed in a future release.

Instead, you are encouraged use the property graph schema approach to working
with graph data, described in Property Graph Schema Objects for Oracle Database.

The two-tables schema approach is a deprecated alternative to the recommended approach
of using the property graph schema (described in Property Graph Schema Objects for Oracle
Database).

• The property graph schema approach is designed mainly for heterogeneous and/or large
graphs. When a graph model is used to present a dynamic application domain in which
new relationships and possibly new data types for the same property name(s) are
introduced and added to the graph model on the fly, using the property graph schema is
recommended.

When a graph model is used to present a dynamic application domain in which new
relationships and possibly new data types for the same property name(s) are introduced
and added to the graph model on the fly, using the property graph schema is
recommended.

• The two-tables schema approach is designed for homogenous graphs.

If a graph model represents an application domain where the set of relationships is
already known and the total number of distinct relationships is relatively small (less than
1000), then the two-tables approach is a potential option. This situation usually happens
when the original data source is from one or a set of existing relational tables or views.

An example of where the two-tables approach might be useful is if all nodes are employees
of a specific organization, and each employee has a limited and fixed set of attributes and
potential relationships. An example of where the two-tables approach would not be useful is if
the nodes can be any individuals who can have different attributes and relationships, and
where attributes and relationships can be dynamically added and altered.

In the flexible key/value approach (not two-tables), Oracle Spatial and Graph stores property
graph data with a flexible schema: <graph_name>VT$ for vertices and <graph_name>GE$ for
edges. In this schema, vertices and edges are stored using multiple rows where each row
represents a key/value property associated with the vertex (or the edge) with a flexible data
type, determined by the attribute T (type). This schema design can easily accommodate a

A-1

heterogeneous graph where vertices (edges) have different set of properties or data
types of property values.

On the other hand, for a property graph with a homogeneous structure, you can store
graph data using a two-tables schema. With this approach, each vertex is stored as a
single row in a named vertex table, and each edge as a single row in a named edge
table. This way, each column in the row corresponds to a property with a fixed data
type. The in-memory analyst can then use this approach to construct and manage the
in-memory graphs.

Note:

The two-tables approach is mainly for providing graph data for the in-memory
analyst to existing Blueprints-based Java APIs, and text indexing does not
work with the two-tables approach.

Graph data change tracking is only available when the property graph
schema approach is used.

The following topics focus on how to create a property graph using a two-tables
schema, as well as how to execute read and write operations over this data.

• Preparing the Two-Tables Schema

• Storing Data in a Property Graph Using a Two-Tables Schema

• Reading Data from a Property Graph Using a Two-Tables Schema

A.1 Preparing the Two-Tables Schema
OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab lets you customize
the schema of a vertex table using a two-tables schema to store all the vertices in a
graph. This operation requires a connection to an Oracle database, the table owner,
the table name, and two arrays specifying the property names and their data types. By
default, the table schema of the generated table includes the attribute VID, which
represents the primary key of the table and is mapped to the vertex ID.

The following code snippet creates a vertex table using a two-tables schema. In this
case, the generated table employeesNodes will include four attributes: name, age,
address, and SSN (Social Security Number). The primary key of the vertex table is the
generated attribute VID.

import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "name", "age", "address", "SSN" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.INTEGER);
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.STRING);

OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab(conn /*
Connection object */,

Appendix A
Preparing the Two-Tables Schema

A-2

 pg /* table owner */,
 "employeesNodes" /* vertex table
name */,
 propertyNames /* property names
*/,
 propertyTypes /* property data
types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

The preceding code produces a table schema as follows:

CREATE TABLE employeenodes
(VID number not null,
 NAME nvarchar2(15000),
 AGE integer,
 ADDRESS nvarchar2(15000),
 SSN nvarchar2(15000),
 CONSTRAINT employenodes_pk PRIMARY KEY (VID)
);

Similarly, OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab lets you customize
the schema of an edge table using a two-tables schema to store all the edges in a graph.
This operation requires a connection to an Oracle database, the table owner, the table name,
a two arrays specifying the property names and their data types. By default, the table schema
of the generated table includes the following attributes: EID, which represents the primary key
of the table and is mapped to the edge ID; EL, which is mapped to the edge label; and SVID
and DVID for the source and destination vertex IDs, respectively.

The following code snippet creates an edge table using a two-tables schema. In this case,
the generated table organizationEdges will include the attribute named weight. The primary
key of the vertex table is the generated attribute EID, which is the default attribute of the table
schema, mapped to the vertices' ID (long value) values.

import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[1]{ "weight" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.DOUBLE);
OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab(conn /* Connection
object */,
 pg /* table owner */,
 organizationEdges" /* edge table
name */,
 propertyNames /* property names
*/,
 propertyTypes /* property data
types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

The preceding code produces a table structure as follows:

Appendix A
Preparing the Two-Tables Schema

A-3

CREATE TABLE organizationedges
(EID number not null,
 SVID number not null,
 DVID number not null,
 EL nvarchar2(3100),
 WEIGHT number,
 CONSTRAINT organizationedges_pk PRIMARY KEY (EID)
);

Note that if the table already exists, both prepareTwoTablesGraphEdgeTab and
prepareTwoTablesGraphEdgeTab will truncate the table contents.

A.2 Storing Data in a Property Graph Using a Two-Tables
Schema

To load a set of vertices into a vertex table using a two-tables schema, you can use
the API OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties.
This operation takes an array of Iterable (or Iterator) of TinkerPop Blueprints Vertex
objects, and reads out the ID and the values for the properties defined in the vertex
table schema. Based on this information, the vertex is later inserted as a new row in
the vertex table. Note that if a vertex does not include a property defined in the
schema, the value for that associated column is set to NULL.

The following code snippet creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates a
vertex table employeesNodes using a two-tables schema and populates it with the data
from the vertices in employeesGraphDAL. Note that the property email in the vertex v1
is not loaded into the employeesNode table because it is not defined in the schema.
Also, the property SSN for vertex v2 is set NULL because it is not defined in the vertex.

// Create employeesGraphDAL
import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);
OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opgEmployees.addVertex(1l);
v1.setProperty("age", Integer.valueOf(31));
v1.setProperty("name", "Alice");
v1.setProperty("address", "Main Street 12");
v1.setProperty("email", "alice@mymail.com");
v1.setProperty("SSN", "123456789");

Vertex v2 = opgEmployees.addVertex(2l);
v2.setProperty("age", Integer.valueOf(27));
v2.setProperty("name", "Bob");
v2.setProperty("adress", "Sesame Street 334");

// Add edge e1
Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
e1.setProperty("weight", 0.5d);

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

A-4

opgEmployees.commit();

// Prepare the vertex table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "name", "age", "address", "SSN" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.INTEGER);
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.STRING);

Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /* Clone the
connection
 from the
property graph
 instance */
OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab(conn /* Connection
object */,
 pg /* table owner */,
 "employeesNodes" /* vertex table
name */,
 propertyNames /* property names
*/,
 propertyTypes /* property data
types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the vertices from the employeesDAL graph
Iterable<Vertex> vertices = opgEmployees.getVertices();

// Load the vertices into the vertex table using a Two-Tables schema
Connection[] conns = new Connection[1]; /* the connection array size defines
the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties(
 conn /* Connectionobject */,
 pg /* table owner */,
 "employeesNodes" /* vertex table
name */,
 1000 /* batch size*/,
 new Iterable[] {vertices} /*
array of
 vertex
iterables */);

To load a set of edges into an edge table using a two-tables schema, you can use the API
OraclePropertyGraphUtils.writeTwoTablesGraphEdgesAndProperties. This operation

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

A-5

takes an array of Iterable (or Iterator) of Blueprints Edge objects, and reads out the ID,
EL, SVID, DVID, and the values for the properties defined in the edge table schema.
Based on this information, the edge is later inserted as a new row in the edge table.
Note that if an edge does not include a property defined in the schema, the value for
that given column is set to NULL.

The following code snippet creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates a
vertex table organizationEdges using a two-tables schema, and populates it with the
data from the edges in employeesGraphDAL.

// Create employeesGraphDAL
import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);
OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opgEmployees.addVertex(1l);
v1.setProperty("age", Integer.valueOf(31));
v1.setProperty("name", "Alice");
v1.setProperty("address", "Main Street 12");
v1.setProperty("email", "alice@mymail.com");
v1.setProperty("SSN", "123456789");

Vertex v2 = opgEmployees.addVertex(2l);
v2.setProperty("age", Integer.valueOf(27));
v2.setProperty("name", "Bob");
v2.setProperty("adress", "Sesame Street 334");

// Add edge e1
Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
e1.setProperty("weight", 0.5d);

opgEmployees.commit();

// Prepare the edge table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
 Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /*
Clone the connection
 from
the property graph

instance */
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[1]{ "weight" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.DOUBLE);
OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab(conn /*
Connection object */,
 pg /* table owner */,
 organizationEdges" /* edge

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

A-6

table name */,
 propertyNames /* property names
*/,
 propertyTypes /* property data
types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the edges from the employeesDAL graph
Iterator<Edge> edges = opgEmployees.getEdges().iterator();

// Load the edges into the edges table using a Two-Tables schema
Connection[] conns = new Connection[1]; /* the connection array size defines
the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties(conn /*
Connection

object */,
 pg /* table owner */,
 "organizationEdges" /* edge
table
 name */,
 1000 /* batch size*/,
 new Iterator[] {edges} /* array
of
 iterator of edges
*/);

To optimize the performance of the storing operations, you can specify a set of flags and hints
when calling the writeTwoTablesGraph APIs. These hints include:

• DOP: Degree of parallelism. The size of the connection array defines the degree of
parallelism to use when loading the data. This determines the number of chunks to
generate when reading the Iterables as well as the number of loader threads to use when
loading the data into the table.

• Batch Size: An integer specifying the batch size to use for Oracle update statements in
batching mode. A recommended batch size is 1000.

A.3 Reading Data from a Property Graph Using a Two-Tables
Schema

To read a subset of vertices from a vertex table using a two-tables schema, you can use the
API OraclePropertyGraphUtils.readTwoTablesGraphVertexAndProperties. This operation
returns an array of ResultSet objects with all the rows found in the corresponding splits of the
vertex table. Each ResultSet object in the array uses one of the connections provided to
fetch the vertex rows from the corresponding split. The splits are determined by the specified
number of total splits.

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-7

An integer ID (in the range of [0, N - 1]) is assigned to the splits in the vertex table with
N splits. This way, the subset of splits queried will consist of those splits with ID value
in the range between the start split ID and the start split ID plus the size of the
connection array. If the sum is greater than the total number of splits, then the subset
of splits queried will consist of those splits with ID in the range of [start split ID, N - 1].

The following code reads all vertices from a vertex table using a two-tables schema
using a total of 1 split. Note that you can easily create an array of Blueprints Vertex
Iterables by executing the API on OraclePropertyGraph. The vertices retrieved will
include all the properties defined in the vertex table schema.

ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,
 "pg" /* table owner */,
 "employeeNodes /*
vertex table
 name
*/,

 1 /* Total Splits*/,
 0 /* Start Split);

Iterable<Vertex>[] vertices = getVerticesPartitioned(rsAr /* ResultSet
array */,
 true /* skip store
to cache */,
 null /* vertex
filter
 callback
*/,
 null /*
optimization flag */);

To optimize reading performance, you can specify the list of property names to retrieve
for each vertex read from the table.

The following code creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates a
vertex table employeNodes using a two-tables schema, and populates it with the data
from the vertices in employeesGraphDAL. Finally, it reads the vertices out of the vertex
table using only the name property.

// Create employeesGraphDAL
import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);
OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opgEmployees.addVertex(1l);
v1.setProperty("age", Integer.valueOf(31));
v1.setProperty("name", "Alice");
v1.setProperty("address", "Main Street 12");
v1.setProperty("email", "alice@mymail.com");
v1.setProperty("SSN", "123456789");

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-8

Vertex v2 = opgEmployees.addVertex(2l);
v2.setProperty("age", Integer.valueOf(27));
v2.setProperty("name", "Bob");
v2.setProperty("adress", "Sesame Street 334");

// Add edge e1
Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
e1.setProperty("weight", 0.5d);

opgEmployees.commit();

// Prepare the vertex table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "name", "age", "address", "SSN" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.INTEGER);
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.STRING);

Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /* Clone the
connection
 from the
property graph
 instance */
OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab(conn /* Connection
object */,
 pg /* table owner */,
 "employeesNodes" /* vertex table
name */,
 propertyNames /* property names
*/,
 propertyTypes /* property data
types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the vertices from the employeesDAL graph
Iterable<Vertex> vertices = opgEmployees.getVertices();

// Load the vertices into the vertex table using a Two Tables schema
Connection[] conns = new Connection[1]; /* the connection array size defines
the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties(conn /*
Connection

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-9

object */,
 pg /* table owner */,
 "employeesNodes" /* vertex
table name */,
 1000 /* batch size*/,
 new Iterable[]
{vertices} /* array of
 vertex
iterables */);

// Read the vertices (using only name property)
List<String> vPropertyNames = new ArrayList<String>();
vPropertyNames.add("name");
ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,
 "pg" /* table owner */,
 "employeeNodes /*
vertex table
 name
*/,
 vPropertyNames /* list
of property

names */,
 1 /* Total Splits*/,
 0 /* Start Split);

Iterable<Vertex>[] vertices = getVerticesPartitioned(rsAr /* ResultSet
array */,
 true /* skip store
to cache */,
 null /* vertex
filter
 callback
*/,
 null /*
optimization flag */);

for (int idx = 0; vertices.length; idx++) {
 Iterator<Vertex> it = vertices[idx].iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
}

The preceding code produces output similar to the following:

Vertex ID 1 {name:str:Alice}
Vertex ID 2 {name:str:Bob}

To read a subset of edges from an edge table using a two-tables schema, you can use
the API OraclePropertyGraphUtils.readTwoTablesGraphEdgeAndProperties. This
operation returns an array of ResultSet objects with all the rows found in the
corresponding splits of the vertex table. Each ResultSet object in the array uses one
of the connections provided to fetch the vertex rows from the corresponding split. The
splits are determined by the specified number of total splits.

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-10

Similar to what is done for reading vertices, an integer ID (in the range of [0, N - 1]) is
assigned to the splits in the vertex table with N splits. The subset of splits queried will consist
of those splits with ID value in the range between the start split ID and the start split ID plus
the size of the connection array.

The following code creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates an edge
table organizationEdges using a two-tables schema, and populates it with the data from the
edges in employeesGraphDAL. Finally, it reads the edges out of table using only the name
weight.

 // Create employeesGraphDAL
 import oracle.pg.rdbms.*;
 Oracle oracle = new Oracle(jdbcURL, username, password);
 OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

 // Create vertex v1 and assign it properties as key-value pairs
 Vertex v1 = opgEmployees.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(31));
 v1.setProperty("name", "Alice");
 v1.setProperty("address", "Main Street 12");
 v1.setProperty("email", "alice@mymail.com");
 v1.setProperty("SSN", "123456789");

 Vertex v2 = opgEmployees.addVertex(2l);
 v2.setProperty("age", Integer.valueOf(27));
 v2.setProperty("name", "Bob");
 v2.setProperty("adress", "Sesame Street 334");

 // Add edge e1
 Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
 e1.setProperty("weight", 0.5d);

 opgEmployees.commit();

// Prepare the edge table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "weight" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.DOUBLE);

 Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /* Clone the
connection
 from the
property graph
 instance
*/
OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab(conn /* Connection
object */,

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-11

 pg /* table owner */,
 "organizationEdges" /* edge
table
 name
*/,
 propertyNames /* property
names */,
 propertyTypes /* property
data types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the edges from the employeesDAL graph
Iterable<Edge> edges = opgEmployees.getVertices();

// Load the vertices into the vertex table using a Two Tables schema
Connection[] conns = new Connection[1]; /* the connection array size
defines the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphEdgeAndProperties(conn /*
Connection

object */,
 pg /* table owner */,
 organizationEdges" /* edge
table name */,
 1000 /* batch size*/,
 new Iterable[] {edges} /*
array of
 edge
iterables */);

// Read the edges (using only weight property)
List<String> ePropertyNames = new ArrayList<String>();
ePropertyNames.add("weight");
ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,
 "pg" /* table owner */,
 "organizationEdges /*
edge table
 name
*/,
 ePropertyNames /* list
of property

names
*/,

 1 /* Total Splits*/,
 0 /* Start Split);

Iterable<Edge>[] edges = getEdgesPartitioned(rsAr /* ResultSet array */,

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-12

 true /* skip store to
cache */,
 null /* edge filter
 callback */,
 null /* optimization
flag */);

for (int idx = 0; edges.length; idx++) {
 Iterator<Edge> it = edges[idx].iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
}

The preceding code produces output similar to the following:

Edge ID 1 from Vertex ID 1 {} =[references]=> Vertex ID 2 {} edgeKV[{weight:dbl:0.5}]

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-13

B
About Property Graph Data Formats

Several graph formats are supported for property graph data.

• GraphSON Data Format

• GraphML Data Format

• GML Data Format

• Oracle Flat File Format

B.1 GraphSON Data Format
The GraphSON file format is based on JavaScript Object Notation (JSON) for describing
graphs.

The example in this topic shows a GraphSON description of the property graph shown in
What Are Property Graphs?.

Example B-1 GraphSON Description of a Simple Property Graph

{
 "graph": {
 "mode":"NORMAL",
 "vertices": [
 {
 "name": "Alice",
 "age": 31,
 "_id": "1",
 "_type": "vertex"
 },
 {
 "name": "Bob",
 "age": 27,
 "_id": "2",
 "_type": "vertex"
 }
],
 "edges": [
 {
 "type": "friends",
 "_id": "3",
 "_type": "edge",
 "_outV": "1",
 "_inV": "2",
 "_label": "knows"
 }
]
 }
}

Related Topics

• GraphSON Reader and Writer Library

B-1

https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library

B.2 GraphML Data Format
The GraphML file format uses XML to describe graphs.

The example in this topic shows a GraphML description of the property graph shown in
What Are Property Graphs?.

Example B-2 GraphML Description of a Simple Property Graph

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">
 <key id="name" for="node" attr.name="name" attr.type="string"/>
 <key id="age" for="node" attr.name="age" attr.type="int"/>
 <key id="type" for="edge" attr.name="type" attr.type="string"/>
 <graph id="PG" edgedefault="directed">
 <node id="1">
 <data key="name">Alice</data>
 <data key="age">31</data>
 </node>
 <node id="2">
 <data key="name">Bob</data>
 <data key="age">27</data>
 </node>
 <edge id="3" source="1" target="2" label="knows">
 <data key="type">friends</data>
 </edge>
 </graph>
</graphml>

Related Topics

• GraphML File Format

B.3 GML Data Format
The Graph Modeling Language (GML) file format uses ASCII to describe graphs.

Note:

GML Data Format is not supported in Tinkerpop 3, and it has been
deprecated in Tinkerpop 2.

The example in this topic shows a GML description of the property graph shown in
What Are Property Graphs?.

Example B-3 GML Description of a Simple Property Graph

graph [
 comment "Simple property graph"
 directed 1
 IsPlanar 1
 node [
 id 1
 label "1"
 name "Alice"

Appendix B
GraphML Data Format

B-2

http://graphml.graphdrawing.org/

 age 31
]
 node [
 id 2
 label "2"
 name "Bob"
 age 27
]
 edge [
 source 1
 target 2
 label "knows"
 type "friends"
]
]

Methods are provided to import and export graphs from and into GML format.

The following fragments of code show how to import and export GML data. Note that these
methods are deprecated and their use is discouraged:

// Get graph instance
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args, szGraphName);

// Import graph in GML format
String fileName = "./mygraph.gml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.importGML(opg,fileName,ps);

// Export graph into GML format
String fileName = "./mygraph.gml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.exportGML(opg,fileName,ps);

Related Topics

• GML: A Portable Graph File Format" by Michael Himsolt

B.4 Oracle Flat File Format
The Oracle flat file format exclusively describes property graphs. It is more concise and
provides better data type support than the other file formats. The Oracle flat file format uses
two files for a graph description, one for the vertices and one for edges. Commas separate
the fields of the records.

Example B-4 Oracle Flat File Description of a Simple Property Graph

The following shows the Oracle flat files that describe the simple property graph example
shown in What Are Property Graphs?.

Vertex file:

1,name,1,Alice,,
1,age,2,,31,
2,name,1,Bob,,
2,age,2,,27,

Edge file:

1,1,2,knows,type,1,friends,,

Appendix B
Oracle Flat File Format

B-3

https://www.semanticscholar.org/paper/GML%3A-A-portable-Graph-File-Format-Himsolt/d0a56b07a59a29b48d6f957763add90e05925c2c

The following shows the flat file description of the same graph for Tinkerpop 3, which
has an additional field for storing the vertex label.

Vertex file:

1,name,1,Alice,,,person
1,age,2,,31,,person
2,name,1,Bob,,,person
2,age,2,,27,,person

Edge file:

3,1,2,knows,type,1,friends,,

Methods are provided tto import and export graphs from and into Flat File format.

The following fragments of code show how to export a graph into Oracle Flat File
Format. To import graphs, see Parallel Loading of Graph Data.

// Get graph instance
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args, szGraphName);

// Export graph into Flat File Format
String vertexFileName = "./mygraph.opv";
String edgeFileName = "./mygraph.ope";
int dop = 2;
Boolean append = false;
OraclePropertyGraphUtils.exportFlatFiles(opg,vertexFileName,edgeFileName,dop,appe
nd);

Related Topics

• Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

Appendix B
Oracle Flat File Format

B-4

C
Mapping Graph Server Roles to Default
Privileges

Installing the PL/SQL packages of the Oracle Graph Server and Client distribution on the
target Oracle Database, automatically creates the following roles and assigns the default
permissions as shown in the following table:

Table C-1 Mapping Graph Server Roles to Default Privileges

Roles Description Permission

GRAPH_ADMINISTR
ATOR

User who performs operations on the in-
memory graph server (PGX) using the
Java API. (As compared to running start
and stop operations as an OS user.)

PGX_SESSION_CREATE
PGX_SERVER_GET_INFO
PGX_SERVER_MANAGE

GRAPH_DEVELOPER User who creates graphs, publishes
graphs, modifies graphs, queries
graphs, and views graphs using the
Java API or SQLcl or the graph
visualization application.

PGX_SESSION_CREATE
PGX_SESSION_NEW_GRAPH
PGX_SESSION_GET_PUBLISHED_GR
APH
PGX_SESSION_MODIFY_MODEL
PGX_SESSION_READ_MODEL

GRAPH_USER User who queries graphs and views
graphs Java API or SQLcl or the graph
visualization application.

PGX_SESSION_CREATE
PGX_SESSION_GET_PUBLISHED_GR
APH

C-1

D
Disabling Transport Layer Security (TLS) in
Graph Server

For demonstration or evaluation purposes, it is possible to turn off transport layer security
(TLS) of the graph server.

Caution:

This is not recommended for production. In a secure configuration, the server must
always have TLS enabled.

The following instructions only apply if you installed the graph server via the RPM package.

Note:

If you deployed the graph server into your own web server (e.g Weblogic or Apache
Tomcat), please refer to the manual of your web server for TLS configuration.

1. Edit /etc/oracle/graph/server.conf to change enable_tls to false.

2. Edit the WEB-INF/web.xml file inside the WAR file in /opt/oracle/graph/graphviz and
configure cookies to be sent over non-secure connections by setting <secure>false</
secure> as follows:

<session-config>
 <tracking-mode>COOKIE</tracking-mode>
 <cookie-config>
 <secure>false</secure>
 </cookie-config>
 ...
</session-config>

3. Additionally, replace `https` with `http` in the `pgx.base_url` property in the same WEB-
INF/web.xml file. For example:

<context-param>
 <param-name>pgx.base_url</param-name>
 <param-value>http://localhost:7007</param-value>
</context-param>

4. Restart the server.

sudo systemctl restart pgx

D-1

The graph server now accepts connections over HTTP instead of HTTPS.

On Oracle Linux 7, you can execute the following script to perform the preceding four
steps all at once:

echo "$(jq '.enable_tls = false' /etc/oracle/graph/server.conf)" > /etc/
oracle/graph/server.conf
WAR=$(find /opt/oracle/graph/graphviz -name '*.war')
TMP=$(mktemp -d)
cd $TMP
unzip $WAR WEB-INF/web.xml
sed -i 's|<secure>true</secure>|<secure>false</secure>|' WEB-INF/web.xml
sed -i 's|https://|http://|' WEB-INF/web.xml
sudo zip $WAR WEB-INF/web.xml
rm -r $TMP
sudo systemctl restart pgx

Appendix D

D-2

Index

A
ANALYZE_PG procedure, 10-2
automatic delta refresh, 4-48

C
CF procedure, 10-4
CF_CLEANUP procedure, 10-7
CF_PREP procedure, 10-9
CLEAR_PG procedure, 10-10
CLEAR_PG_INDICES procedure, 10-11
CLONE_GRAPH procedure, 10-11
collaborative filtering, 10-4, 10-7, 10-9
connected components

finding, 10-32
COUNT_TRIANGLE function, 10-12
COUNT_TRIANGLE_CLEANUP procedure,

10-13
COUNT_TRIANGLE_PREP procedure, 10-14
COUNT_TRIANGLE_RENUM function, 10-16
CREATE_EDGES_TEXT_IDX procedure, 10-17
CREATE_PG procedure, 10-18
CREATE_PG_SNAPSHOT_TAB procedure,

10-19
CREATE_PG_TEXTIDX_TAB procedure, 10-21
CREATE_STAT_TABLE procedure, 10-22
CREATE_SUB_GRAPH procedure, 10-23
CREATE_VERTICES_TEXT_IDX procedure,

10-24

D
DROP_EDGES_TEXT_IDX procedure, 10-26
DROP_PG procedure, 10-26
DROP_PG_VIEW procedure, 10-27
DROP_VERTICES_TEXT_IDX procedure, 10-27

E
edge table statistics

exporting, 10-30
importing, 10-51

ESTIMATE_TRIANGLE_RENUM function, 10-28
EXP_EDGE_TAB_STATS procedure, 10-30

EXP_VERTEX_TAB_STATS procedure, 10-31

F
FIND_CC_MAPPING_BASED procedure, 10-32
FIND_CLUSTERS_CLEANUP procedure, 10-33
FIND_CLUSTERS_PREP procedure, 10-34
FIND_SP procedure, 10-36
FIND_SP_CLEANUP procedure, 10-37
FIND_SP_PREP procedure, 10-38

G
geometries

getting, 10-39, 10-41
getting from longitude and latitude, 10-44
WKT, 10-48, 10-49

GET_BUILD_ID function, 10-39
GET_GEOMETRY_FROM_V_COL function,

10-39
GET_GEOMETRY_FROM_V_T_COLS function,

10-41
GET_LATLONG_FROM_V_COL function, 10-42,

10-45
GET_LATLONG_FROM_V_T_COLS function,

10-43
GET_LONG_LAT_GEOMETRY function, 10-44
GET_LONGLAT_FROM_V_T_COLS function,

10-46
GET_SCN function, 10-47
GET_VERSION function, 10-47
GET_WKTGEOMETRY_FROM_V_COL function,

10-48
GET_WKTGEOMETRY_FROM_V_T_COLS

function, 10-49
GRANT_ACCESS procedure, 10-50

I
IMP_EDGE_TAB_STATS procedure, 10-51
IMP_VERTEX_TAB_STATS procedure, 10-52
in-memory Graph server (PGX), 4-1

Index-1

O
OPG_APIS package

ANALYZE_PG, 10-2
CF, 10-4
CF_CLEANUP, 10-7
CF_PREP, 10-9
CLEAR_PG, 10-10
CLEAR_PG_INDICES, 10-11
CLONE_GRAPH, 10-11
COUNT_TRIANGLE, 10-12
COUNT_TRIANGLE_CLEANUP, 10-13
COUNT_TRIANGLE_PREP, 10-14
COUNT_TRIANGLE_RENUM, 10-16
CREATE_EDGES_TEXT_IDX, 10-17
CREATE_PG, 10-18
CREATE_PG_SNAPSHOT_TAB, 10-19
CREATE_PG_TEXTIDX_TAB, 10-21
CREATE_STAT_TABLE, 10-22
CREATE_SUB_GRAPH, 10-23
CREATE_VERTICES_TEXT_IDX, 10-24
DROP_EDGES_TEXT_IDX, 10-26
DROP_PG, 10-26
DROP_PG_VIEW, 10-27
DROP_VERTICES_TEXT_IDX, 10-27
ESTIMATE_TRIANGLE_RENUM, 10-28
EXP_EDGE_TAB_STATS, 10-30
EXP_VERTEX_TAB_STATS, 10-31
FIND_CC_MAPPING_BASED, 10-32
FIND_CLUSTERS_CLEANUP, 10-33
FIND_CLUSTERS_PREP, 10-34
FIND_SP, 10-36
FIND_SP_CLEANUP, 10-37
FIND_SP_PREP, 10-38
GET_BUILD_ID, 10-39
GET_GEOMETRY_FROM_V_COL, 10-39
GET_GEOMETRY_FROM_V_T_COLS,

10-41
GET_LATLONG_FROM_V_COL, 10-42,

10-45
GET_LATLONG_FROM_V_T_COLS, 10-43
GET_LONG_LAT_GEOMETRY, 10-44
GET_LONGLAT_FROM_V_T_COLS, 10-46
GET_SCN, 10-47
GET_VERSION, 10-47
GET_WKTGEOMETRY_FROM_V_COL,

10-48
GET_WKTGEOMETRY_FROM_V_T_COLS,

10-49
GRANT_ACCESS, 10-50
IMP_EDGE_TAB_STATS, 10-51
IMP_VERTEX_TAB_STATS, 10-52
PR, 10-54
PR_CLEANUP, 10-56
PR_PREP, 10-57

OPG_APIS package (continued)
PREPARE_TEXT_INDEX, 10-58
reference information, 10-1
RENAME_PG, 10-58
SPARSIFY_GRAPH, 10-59
SPARSIFY_GRAPH_CLEANUP, 10-61
SPARSIFY_GRAPH_PREP, 10-62

OPG_GRAPHOP package
POPULATE_SKELETON_TAB, 11-1
reference information, 11-1

P
page rank

calculating, 10-54
cleanup, 10-56
preparing to find, 10-57

PGQL (Property Graph Query Language), 6-1
PGX (in-memory Graph server), 4-1
PgxML for Graphs, 8-1

DeepWalk Algorithm, 8-1
Pg2vec Algorithm, 8-30
Supervised GraphWise Algorithm, 8-11
Unsupervised GraphWise Algorithm, 8-22

POPULATE_SKELETON_TAB procedure, 11-1
PR procedure, 10-54
PR_CLEANUP procedure, 10-56
PR_PREP procedure, 10-57
PREPARE_TEXT_INDEX procedure, 10-58
property graph

cleanup after sparsifying, 10-61
clearing (removing data from), 10-10
cloning, 10-11
collaborative filtering, 10-4, 10-7, 10-9
creating, 10-18
dropping, 10-26
dropping view definition, 10-27
preparing to sparsify, 10-62
removing text index metadata, 10-11
renaming, 10-58
sparsifying, 10-59

property graph access privileges
grantnig, 10-50

Property Graph Query Language (PGQL), 6-1
property graph statistics table

creating, 10-22
property graph support

getting build ID, 10-39
getting SCN, 10-47
getting version, 10-47

R
RENAME_PG procedure, 10-58

Index

Index-2

REST Endpoints for Graph Visualization
Application, 7-7

DELETE: Cancel a Query Execution, 7-12
GET: Check a Query Completion, 7-12
GET: Get User, 7-11
GET: List Graphs, 7-8
GET: Retrieve a Query Result, 7-13
GET: Run a PGQL Query, 7-9
GET: Run a PGQL Query Asynchronously,

7-11
POST: Login, 7-8

S
shortest path

cleanup, 10-37
finding, 10-36
preparing to find, 10-38

skeleton table
populating, 11-1

snapshot table
creating, 10-19

SPARSIFY_GRAPH procedure, 10-59
SPARSIFY_GRAPH_CLEANUP procedure,

10-61
SPARSIFY_GRAPH_PREP procedure, 10-62
statistics for property graph

analyzing, 10-2
subgraph

creating, 10-23

T
text index

on property graph edge table, 10-17
on property graph edge table (dropping),

10-26
on property graph vertex table, 10-24
on property graph vertex table (dropping),

10-27
preparing, 10-58

text index table
creating, 10-21

triangles
cleanup after counting, 10-13
counting, 10-12
counting and renumbering vertices, 10-16
estimating the number, 10-28
preparing to count, 10-14

V
vertex cluster mappings

preparing, 10-33, 10-34
vertex table statistics

exporting, 10-31
importing, 10-52

Index

Index-3

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for This Guide
	Part I Getting Started with Oracle Property Graphs
	1 Property Graph Support Overview
	1.1 Introduction to Property Graphs
	1.1.1 What Are Property Graphs?
	1.1.2 About the Property Graph Feature of Oracle Database
	1.1.2.1 In-Memory Graph Server (PGX)
	1.1.2.2 Options for Property Graph Architecture

	1.2 Before You Begin with Oracle Property Graphs
	1.2.1 Database Compatibility and Restrictions
	1.2.2 Downloading Oracle Graph Server and Client
	1.2.3 Installing PL/SQL Packages in Oracle Database

	1.3 Oracle Graph Server and Client Installation
	1.3.1 Installing Oracle Graph Server
	1.3.2 Deploying Oracle Graph Server to a Web Server
	1.3.2.1 Deploying to Apache Tomcat
	1.3.2.2 Deploying to Oracle WebLogic Server
	1.3.2.2.1 Installing Oracle WebLogic Server

	1.3.3 Upgrading Oracle Graph Server
	1.3.4 Uninstalling Oracle Graph Server
	1.3.5 Installing Oracle Graph Client
	1.3.5.1 Installing the Java Client
	1.3.5.2 Installing the Python Client
	1.3.5.2.1 Prerequisites for Installing the Python Client

	1.3.5.3 Uninstalling the Python Client
	1.3.5.4 Enabling the Graph Visualization Application
	1.3.5.5 Deploying the Graph Visualization Application
	1.3.5.5.1 Deploying the Graph Visualization Application to Apache Tomcat
	1.3.5.5.2 Deploying the Graph Visualization Application in Oracle WebLogic Server
	1.3.5.5.3 Configuring the Web Application Deployment Descriptor
	1.3.5.5.3.1 Configuring Deployment Descriptor for PGQL on PGX
	1.3.5.5.3.2 Configuring Deployment Descriptor for PGQL on RDBMS

	1.3.5.6 Installing the Graph Zeppelin Interpreter Client

	1.4 Setting Up Transport Layer Security
	1.4.1 Generating a Self-Signed Server Certificate
	1.4.2 Configuring the Graph Server (PGX)
	1.4.3 Configuring a Client to Trust the Self-Signed Certificate

	1.5 Adding Permissions to Publish the Graph
	1.6 Security Best Practices with Graph Data
	1.7 Interactive Graph Shell
	1.8 Using Graph Server Functionality as a Library
	1.9 Storing Graphs in Oracle Database and Loading Graphs into Memory
	1.9.1 Two-Tier Mode
	1.9.2 Three-Tier Mode

	1.10 Using Oracle Graph with the Autonomous Database
	1.10.1 Two-Tier Deployments of Oracle Graph with Autonomous Database
	1.10.2 Three-Tier Deployments of Oracle Graph with Autonomous Database

	1.11 Migrating Property Graph Applications from Before Release 21c
	1.12 Upgrading From Graph Server and Client 20.4.x to 21.x
	1.13 Using the Graph Zeppelin Interpreter Client

	2 Quick Starts for Using Oracle Property Graph
	2.1 Quick Start: Interactively Analyze Graph Data
	2.1.1 Quick Start: Create and Query a Graph in the Database, Load into In-Memory Graph Server (PGX) for Analytics
	2.1.1.1 Create and Query a Graph in the Database
	2.1.1.2 Load the Graph into Memory and Run Graph Analytics

	2.1.2 Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server (PGX)
	2.1.3 Quick Start: Executing PGQL Queries in SQLcl

	2.2 QuickStart: Run Graph Analytics Using the Python Shell
	2.3 Quick Start: Using the Python Client as a Module
	2.4 Oracle LiveLabs Workshops for Graphs

	3 Property Graph Views on Oracle Database Tables
	4 Using the In-Memory Graph Server (PGX)
	4.1 Overview of the In-Memory Graph Server (PGX)
	4.1.1 Design of the In-Memory Graph Server (PGX)
	4.1.2 Usage Modes of the In-memory Graph Server (PGX)

	4.2 User Authentication and Authorization
	4.2.1 Privileges and Roles in Oracle Database
	4.2.2 Basic Steps for Using an Oracle Database for Authentication
	4.2.3 Prepare the Graph Server for Database Authentication
	4.2.4 Connect to the Server from JShell with Database Authentication
	4.2.5 Read Data from the Database
	4.2.6 Store the Database Password in a Keystore
	4.2.7 Token Expiration
	4.2.8 Advanced Access Configuration
	4.2.8.1 Customizing Roles and Permissions
	4.2.8.1.1 Adding and Removing Roles
	4.2.8.1.2 Defining Permissions for Individual Users
	4.2.8.1.3 Defining Permissions to Use Custom Graph Algorithms

	4.2.9 Revoking Access to the Graph Server
	4.2.10 Examples of Custom Authorization Rules
	4.2.11 Kerberos Enabled Authentication
	4.2.11.1 Prerequisite Requirements
	4.2.11.2 Prepare the Graph Server for Kerberos Authentication
	4.2.11.3 Login to the Graph Server Using Kerberos Ticket

	4.3 About Vertex and Edge IDs
	4.4 Keeping the Graph in Oracle Database Synchronized with the Graph Server
	4.4.1 Examples of Synchronizing

	4.5 Optimizing Graphs for Read Versus Updates in the In-Memory Graph Server (PGX)
	4.6 Storing a Graph Snapshot on Disk
	4.7 Executing Built-in Algorithms
	4.7.1 About Built-In Algorithms in the In-Memory Graph Server (PGX)
	4.7.2 Running the Triangle Counting Algorithm
	4.7.3 Running the PageRank Algorithm

	4.8 Using Custom PGX Graph Algorithms
	4.8.1 Writing a Custom PGX Algorithm
	4.8.1.1 Collections
	4.8.1.2 Iteration
	4.8.1.3 Reductions

	4.8.2 Compiling and Running a PGX Algorithm
	4.8.3 Example Custom PGX Algorithm: PageRank

	4.9 Creating Subgraphs
	4.9.1 About Filter Expressions
	4.9.2 Using a Simple Filter to Create a Subgraph
	4.9.3 Using a Complex Filter to Create a Subgraph
	4.9.4 Using a Vertex Set to Create a Bipartite Subgraph

	4.10 Using Automatic Delta Refresh to Handle Database Changes
	4.10.1 Configuring the In-Memory Server for Auto-Refresh
	4.10.2 Configuring Basic Auto-Refresh
	4.10.3 Reading the Graph Using the In-Memory Graph Server (PGX) or a Java Application
	4.10.4 Checking Out a Specific Snapshot of the Graph
	4.10.5 Advanced Auto-Refresh Configuration
	4.10.6 Special Considerations When Using Auto-Refresh

	4.11 Starting the In-Memory Graph Server (PGX)
	4.11.1 Starting and Stopping the Graph Server (PGX) Using the Command Line
	4.11.2 Configuring the In-Memory Graph Server (PGX)

	4.12 Connecting to the In-Memory Graph Server (PGX)
	4.12.1 Connecting with the Graph Shell
	4.12.2 Connecting with Java
	4.12.2.1 Starting and Stopping the PGX Engine

	4.12.3 Connecting with Python

	4.13 Using Graph Server (PGX) as a Library
	4.14 User-Defined Functions (UDFs) in PGX
	4.15 Using HAProxy for PGX Load Balancing and High Availability

	5 Using the Property Graph Schema
	5.1 Property Graph Schema Objects for Oracle Database
	5.1.1 Property Graph Tables (Detailed Information)
	5.1.2 Default Indexes on Vertex (VT⁠$) and Edge (GE⁠$) Tables
	5.1.3 Flexibility in the Property Graph Schema

	5.2 Data Access Layer
	5.3 Getting Started with Property Graphs
	5.3.1 Required Privileges for Database Users

	5.4 Using Java APIs for Property Graph Data
	5.4.1 Overview of the Java APIs
	5.4.1.1 Oracle Graph Property Graph Java APIs
	5.4.1.2 Oracle Database Property Graph Java APIs

	5.4.2 Parallel Loading of Graph Data
	5.4.2.1 JDBC-Based Data Loading
	5.4.2.2 External Table-Based Data Loading
	5.4.2.3 SQL*Loader-Based Data Loading

	5.4.3 Parallel Retrieval of Graph Data
	5.4.4 Using an Element Filter Callback for Subgraph Extraction
	5.4.5 Using Optimization Flags on Reads over Property Graph Data
	5.4.6 Adding and Removing Attributes of a Property Graph Subgraph
	5.4.7 Getting Property Graph Metadata
	5.4.8 Merging New Data into an Existing Property Graph
	5.4.9 Opening and Closing a Property Graph Instance
	5.4.10 Creating Vertices
	5.4.11 Creating Edges
	5.4.12 Deleting Vertices and Edges
	5.4.13 Reading a Graph from a Database into an Embedded In-Memory Analyst
	5.4.14 Specifying Labels for Vertices
	5.4.15 Building an In-Memory Graph
	5.4.16 Dropping a Property Graph
	5.4.17 Executing PGQL Queries

	5.5 Managing Text Indexing for Property Graph Data
	5.5.1 Configuring a Text Index for Property Graph Data
	5.5.1.1 Configuring Text Indexes Using Oracle Text

	5.5.2 Using Automatic Indexes for Property Graph Data
	5.5.3 Using Manual Indexes for Property Graph Data
	5.5.4 Executing Search Queries Over a Property Graph’s Text Indexes
	5.5.4.1 Executing Search Queries Over a Text Index Using Oracle Text

	5.5.5 Handling Data Types
	5.5.5.1 Handling Data Types on Oracle Text

	5.5.6 Updating Configuration Settings on Text Indexes for Property Graph Data
	5.5.7 Using Parallel Query on Text Indexes for Property Graph Data
	5.5.7.1 Parallel Text Search Using Oracle Text

	5.6 Access Control for Property Graph Data (Graph-Level and OLS)
	5.6.1 Applying Oracle Label Security (OLS) on Property Graph Data

	5.7 SQL-Based Property Graph Query and Analytics
	5.7.1 Simple Property Graph Queries
	5.7.2 Text Queries on Property Graphs
	5.7.3 Navigation and Graph Pattern Matching
	5.7.4 Navigation Options: CONNECT BY and Parallel Recursion
	5.7.5 Pivot
	5.7.6 SQL-Based Property Graph Analytics
	5.7.6.1 Shortest Path Examples
	5.7.6.2 Collaborative Filtering Overview and Examples

	5.8 Creating Property Graph Views on an RDF Graph
	5.9 Oracle Flat File Format Definition
	5.9.1 About the Property Graph Description Files
	5.9.2 Edge File
	5.9.3 Vertex File
	5.9.4 Encoding Special Characters
	5.9.5 Example Property Graph in Oracle Flat File Format
	5.9.6 Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat File
	5.9.7 Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph Flat Files

	6 Property Graph Query Language (PGQL)
	6.1 Creating a Property Graph using PGQL
	6.2 Creating Property Graph Views Using PGQL
	6.3 Pattern Matching with PGQL
	6.4 Edge Patterns Have a Direction with PGQL
	6.5 Vertex and Edge Labels with PGQL
	6.6 Variable-Length Paths with PGQL
	6.7 Aggregation and Sorting with PGQL
	6.8 Executing PGQL Queries Against the In-Memory Graph Server (PGX)
	6.8.1 Getting Started with PGQL
	6.8.2 Supported PGQL Features
	6.8.2.1 Limitations on Quantifiers
	6.8.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns

	6.8.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements
	6.8.4 Java APIs for Executing SELECT Queries
	6.8.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph Server (PGX)
	6.8.4.2 Executing SELECT Queries Against a PGX Session
	6.8.4.3 Iterating Through a Result Set
	6.8.4.4 Printing a Result Set

	6.8.5 Java APIs for Executing UPDATE Queries
	6.8.5.1 Updatability of Graphs Through PGQL
	6.8.5.2 Executing UPDATE Queries against a Graph in the in-memory Graph Server (PGX)
	6.8.5.3 Executing UPDATE Queries Against a PGX Session
	6.8.5.4 Altering the Underlying Schema of a Graph

	6.8.6 Security Tools for Executing PGQL Queries
	6.8.6.1 Using Bind Variables
	6.8.6.2 Using Identifiers in a Safe Manner

	6.8.7 Best Practices for Tuning PGQL Queries
	6.8.7.1 Memory Allocation
	6.8.7.2 Parallelism
	6.8.7.3 Query Plan Explaining

	6.9 Executing PGQL Queries Directly Against Oracle Database
	6.9.1 PGQL Features Supported
	6.9.1.1 Temporal Types
	6.9.1.2 Type Casting
	6.9.1.3 CONTAINS Built-in Function

	6.9.2 Creating Property Graphs through CREATE PROPERTY GRAPH Statements
	6.9.3 Dropping Property Graphs through DROP PROPERTY GRAPH Statements
	6.9.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL Queries
	6.9.4.1 Basic Query Execution
	6.9.4.2 Executing PGQL Queries Using JDBC Driver
	6.9.4.3 Security Techniques for PGQL Queries
	6.9.4.3.1 Using Bind Variables in PGQL Queries
	6.9.4.3.2 Verifying PGQL Identifiers

	6.9.4.4 Using a Text Index with PGQL Queries
	6.9.4.5 Obtaining the SQL Translation for a PGQL Query
	6.9.4.6 Additional Options for PGQL Translation and Execution
	6.9.4.6.1 Query Options Controlled by Explicit Arguments
	6.9.4.6.2 Using the GT⁠$ Skeleton Table
	6.9.4.6.3 Path Query Options
	6.9.4.6.4 Options for Partial Object Construction

	6.9.4.7 Querying Another User’s Property Graph
	6.9.4.8 Using Query Optimizer Hints with PGQL

	6.9.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE Statements
	6.9.5.1 Additional Options for PGQL Statement Execution
	6.9.5.1.1 Turning Off PGQL Auto Commit
	6.9.5.1.2 Turning Off Cascading Deletion

	6.9.6 Performance Considerations for PGQL Queries

	7 Graph Visualization Application
	7.1 About the Graph Visualization Application
	7.2 How does the Graph Visualization Application Work
	7.3 Using the Graph Visualization Application
	7.3.1 Graph Visualization Modes
	7.3.2 Graph Visualization Settings
	7.3.3 Using Live Search
	7.3.4 Using URL Parameters to Control the Graph Visualization Application

	7.4 REST Endpoints for the Graph Visualization Application
	7.4.1 Login
	7.4.2 List Graphs
	7.4.3 Run a PGQL Query
	7.4.4 Get User
	7.4.5 Asynchronous REST Endpoints
	7.4.5.1 Run a PGQL Query Asynchronously
	7.4.5.2 Check a Query Completion
	7.4.5.3 Cancel a Query Execution
	7.4.5.4 Retrieve a Query Result

	8 Using the Machine Learning Library (PgxML) for Graphs
	8.1 Using the DeepWalk Algorithm
	8.1.1 Loading a Graph
	8.1.2 Building a Minimal DeepWalk Model
	8.1.3 Building a Customized DeepWalk Model
	8.1.4 Training a DeepWalk Model
	8.1.5 Getting the Loss Value For a DeepWalk Model
	8.1.6 Computing Similar Vertices for a Given Vertex
	8.1.7 Computing Similar Vertices for a Vertex Batch
	8.1.8 Storing a Trained DeepWalk Model
	8.1.8.1 Storing a Trained Model in Another Database

	8.1.9 Loading a Pre-Trained DeepWalk Model
	8.1.9.1 Loading a Pre-Trained Model From Another Database

	8.1.10 Destroying a DeepWalk Model

	8.2 Using the Supervised GraphWise Algorithm
	8.2.1 Loading a Graph
	8.2.2 Building a Minimal GraphWise Model
	8.2.3 Advanced Hyperparameter Customization
	8.2.4 Training a Supervised GraphWise Model
	8.2.5 Getting the Loss Value For a Supervised GraphWise Model
	8.2.6 Inferring the Vertex Labels for a Supervised GraphWise Model
	8.2.7 Evaluating the Supervised GraphWise Model Performance
	8.2.8 Inferring Embeddings for a Supervised GraphWise Model
	8.2.8.1 Inferring Embeddings for a Model in Another Database

	8.2.9 Storing a Trained Supervised GraphWise Model
	8.2.10 Loading a Pre-Trained Supervised GraphWise Model
	8.2.11 Destroying a Supervised GraphWise Model

	8.3 Using the Unsupervised GraphWise Algorithm
	8.3.1 Loading a Graph
	8.3.2 Building a Minimal Unsupervised GraphWise Model
	8.3.3 Advanced Hyperparameter Customization
	8.3.4 Training a Unsupervised GraphWise Model
	8.3.5 Getting the Loss Value for a Unsupervised GraphWise Model
	8.3.6 Inferring Embeddings for a Unsupervised GraphWise Model
	8.3.7 Storing a Unsupervised GraphWise Model
	8.3.8 Loading a Pre-Trained Unsupervised GraphWise Model
	8.3.9 Destroying a Unsupervised GraphWise Model

	8.4 Using the Pg2vec Algorithm
	8.4.1 Loading a Graph
	8.4.2 Building a Minimal Pg2vec Model
	8.4.3 Building a Customized Pg2vec Model
	8.4.4 Training a Pg2vec Model
	8.4.5 Getting the Loss Value For a Pg2vec Model
	8.4.6 Computing Similar Graphlets for a Given Graphlet
	8.4.7 Computing Similars for a Graphlet Batch
	8.4.8 Inferring a Graphlet Vector
	8.4.9 Inferring Vectors for a Graphlet Batch
	8.4.10 Storing a Trained Pg2vec Model
	8.4.11 Loading a Pre-Trained Pg2vec Model
	8.4.12 Destroying a Pg2vec Model

	9 Spatial Support in Property Graphs
	9.1 Representing Spatial Data in a Property Graph
	9.2 Creating a Spatial Index on Property Graph Data
	9.3 Querying Spatial Data in a Property Graph

	10 OPG_APIS Package Subprograms
	10.1 OPG_APIS.ANALYZE_PG
	10.2 OPG_APIS.CF
	10.3 OPG_APIS.CF_CLEANUP
	10.4 OPG_APIS.CF_PREP
	10.5 OPG_APIS.CLEAR_PG
	10.6 OPG_APIS.CLEAR_PG_INDICES
	10.7 OPG_APIS.CLONE_GRAPH
	10.8 OPG_APIS.COUNT_TRIANGLE
	10.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP
	10.10 OPG_APIS.COUNT_TRIANGLE_PREP
	10.11 OPG_APIS.COUNT_TRIANGLE_RENUM
	10.12 OPG_APIS.CREATE_EDGES_TEXT_IDX
	10.13 OPG_APIS.CREATE_PG
	10.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB
	10.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB
	10.16 OPG_APIS.CREATE_STAT_TABLE
	10.17 OPG_APIS.CREATE_SUB_GRAPH
	10.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX
	10.19 OPG_APIS.DROP_EDGES_TEXT_IDX
	10.20 OPG_APIS.DROP_PG
	10.21 OPG_APIS.DROP_PG_VIEW
	10.22 OPG_APIS.DROP_VERTICES_TEXT_IDX
	10.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM
	10.24 OPG_APIS.EXP_EDGE_TAB_STATS
	10.25 OPG_APIS.EXP_VERTEX_TAB_STATS
	10.26 OPG_APIS.FIND_CC_MAPPING_BASED
	10.27 OPG_APIS.FIND_CLUSTERS_CLEANUP
	10.28 OPG_APIS.FIND_CLUSTERS_PREP
	10.29 OPG_APIS.FIND_SP
	10.30 OPG_APIS.FIND_SP_CLEANUP
	10.31 OPG_APIS.FIND_SP_PREP
	10.32 OPG_APIS.GET_BUILD_ID
	10.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL
	10.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
	10.35 OPG_APIS.GET_LATLONG_FROM_V_COL
	10.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS
	10.37 OPG_APIS.GET_LONG_LAT_GEOMETRY
	10.38 OPG_APIS.GET_LATLONG_FROM_V_COL
	10.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS
	10.40 OPG_APIS.GET_SCN
	10.41 OPG_APIS.GET_VERSION
	10.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL
	10.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS
	10.44 OPG_APIS.GRANT_ACCESS
	10.45 OPG_APIS.IMP_EDGE_TAB_STATS
	10.46 OPG_APIS.IMP_VERTEX_TAB_STATS
	10.47 OPG_APIS.PR
	10.48 OPG_APIS.PR_CLEANUP
	10.49 OPG_APIS.PR_PREP
	10.50 OPG_APIS.PREPARE_TEXT_INDEX
	10.51 OPG_APIS.RENAME_PG
	10.52 OPG_APIS.SPARSIFY_GRAPH
	10.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP
	10.54 OPG_APIS.SPARSIFY_GRAPH_PREP

	11 OPG_GRAPHOP Package Subprograms
	11.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB

	Part II In-Memory Graph Server (PGX) Advanced User Guide
	12 Configuring the In-Memory Graph Server (PGX)
	12.1 Configuration Parameters for the Graph Server (PGX) Engine
	12.1.1 Configuration of the Graph Server (PGX) Run-Time Parameters
	12.1.2 Specifying the Configuration File to the In-Memory Graph Server (PGX)
	12.1.3 Memory Consumption by the Graph Server (PGX)
	12.1.3.1 Memory Management
	12.1.3.1.1 Configuring On-Heap Limits
	12.1.3.1.2 Configuring Off-Heap Limits

	12.2 Configuration Parameters for Connecting to the Graph Server (PGX)
	12.3 Configuration Parameters for the Graph Client

	13 Graphs Management
	13.1 Loading a Graph Into the Graph Server (PGX)
	13.1.1 API for Loading Graphs into Memory
	13.1.2 Graph Configuration Options
	13.1.3 Defining the Graph Configuration via Java
	13.1.4 Creating a JSON Configuration to Load a Graph
	13.1.5 Preloading a Graph
	13.1.6 Data Loading Security Best Practices
	13.1.7 Data Format Support Matrix
	13.1.8 Immutability of Loaded Graphs

	13.2 Publishing a Graph
	13.3 Publishing a Preloaded Graph
	13.4 Deleting a Graph

	14 Namespaces and Sharing
	14.1 Defining Graph Names
	14.2 Retrieving Graphs by Name
	14.3 Checking Used Names
	14.4 Property Name Resolution and Graph Mutations

	15 PGX Programming Guides
	15.1 Design of the Graph Server (PGX) API
	15.2 Data Types and Collections in the Graph Server (PGX)
	15.2.1 Using Collections and Maps
	15.2.1.1 Collection Data Types
	15.2.1.1.1 Graph-Bound Collections
	15.2.1.1.2 Session-Bound Collections

	15.2.1.2 Map Data Types
	15.2.1.2.1 Graph-Bound Maps
	15.2.1.2.2 Session-Bound Maps

	15.2.2 Using Datetime Data Types
	15.2.2.1 Loading Datetime Data
	15.2.2.2 Specifying Custom Datetime Formats
	15.2.2.3 APIs for Accessing Datetime Data
	15.2.2.4 Querying Datetime Data Using PGQL
	15.2.2.5 Accessing Datetimes from PGQL Result Sets

	15.3 Handling Asynchronous Requests in Graph Server (PGX)
	15.3.1 Blocking Operation
	15.3.2 Chaining Operation
	15.3.3 Cancelling Operation
	15.3.4 Handling Concurrent Asynchronus Operations

	15.4 Graph Client Sessions
	15.5 Graph Mutation and Subgraphs
	15.5.1 Altering Graphs
	15.5.1.1 Loading Or Removing Additional Vertex or Edge Providers
	15.5.1.1.1 Loading Vertex Providers
	15.5.1.1.2 Loading Edge Providers
	15.5.1.1.3 Removing Vertex or Edge Providers
	15.5.1.1.4 Applying the Alteration and Building a Graph or Snapshot

	15.5.2 Simplifying and Copying Graphs
	15.5.3 Transposing Graphs
	15.5.4 Undirecting Graphs
	15.5.5 Advanced Multi-Edge Handling
	15.5.5.1 Picking
	15.5.5.2 Merging
	15.5.5.3 StrategyBuilder in General

	15.5.6 Creating a Subgraph
	15.5.7 Creating a Bipartite Subgraph
	15.5.8 Creating a Sparsified Subgraph

	15.6 Managing Transient Data
	15.6.1 Managing Transient Properties
	15.6.2 Managing Collections and Scalars

	15.7 Graph Versioning
	15.7.1 Configuring the Snapshots Source
	15.7.2 Creating a Snapshot via Refreshing
	15.7.3 Creating a Snapshot via ChangeSet
	15.7.4 Checking Out the Latest Snapshots of a Graph
	15.7.5 Checking Out Different Snapshots of a Graph
	15.7.6 Directly Loading a Specific Snapshot of a Graph

	15.8 Labels and Properties
	15.8.1 Setting and Getting Property Values
	15.8.2 Getting Label Values

	15.9 Filter Expressions
	15.9.1 Syntax
	15.9.2 Type System
	15.9.3 Path Finding Filters
	15.9.4 Subgraph Filters
	15.9.5 Operations on Filter Expressions
	15.9.5.1 Defining Filter Expressions
	15.9.5.2 Defining Result Set Filters
	15.9.5.3 Creating a Subgraph from PGQL Result Set
	15.9.5.4 Defining Collection Filters
	15.9.5.5 Creating a Subgraph from Collection Filters
	15.9.5.6 Combining Filter Expressions

	15.10 Advanced Task Scheduling Using Execution Environments
	15.10.1 Enterprise Scheduler Configuration Guide
	15.10.2 Enabling Enterprise Scheduler Features
	15.10.3 Retrieving and Inspecting the Execution Environment
	15.10.4 Modifying and Submitting Tasks Under an Updated Environment
	15.10.5 Using Lambda Syntax

	15.11 Admin API
	15.11.1 Get a Server Instance
	15.11.2 Get Inspection Data
	15.11.3 Get Active Sessions
	15.11.4 Get Cached Graphs
	15.11.5 Get Published Graphs
	15.11.6 Get Currently Loading Graphs
	15.11.7 Get Tasks
	15.11.8 Get Available Memories

	15.12 PgxFrames Tabular Data-Structure
	15.12.1 Loading a PgxFrame from a Database
	15.12.2 Printing the Content of a PgxFrame
	15.12.3 Destroying a PgxFrame
	15.12.4 Storing a PgxFrame to a Database
	15.12.5 Loading and Storing Vector Properties
	15.12.6 Flattening Vector Properties
	15.12.7 Union of PGX Frames
	15.12.8 Joining PGX Frames
	15.12.9 PgxFrame Helpers
	15.12.10 PgxFrame-PgqlResultSet Conversions

	16 Working with Files Using the Graph Server (PGX)
	16.1 Loading Graph Data from Files
	16.1.1 Graph Configuration for Loading from File
	16.1.2 Specifying the File Path
	16.1.3 Supported File Access Protocols
	16.1.4 Plain Text Formats
	16.1.4.1 Comma-Separated Values (CSV)
	16.1.4.2 Adjacency List (ADJ_LIST)
	16.1.4.3 Edge List (EDGE_LIST)
	16.1.4.4 Two Tables (TWO_TABLES)
	16.1.4.5 Flat File (FLAT_FILE)

	16.1.5 XML File Formats
	16.1.6 Binary File Formats

	16.2 Loading Graph Data in Parallel from Multiple Files
	16.3 Exporting Graphs Into a File
	16.3.1 Exporting a Graph to Disk

	16.4 Exporting a Graph into Multiple Files

	17 Log Management in the Graph Server (PGX)
	17.1 Configuring Log4j Logging

	Part III Supplementary Information for Property Graph Support
	A Handling Property Graphs Using a Two-Tables Schema
	A.1 Preparing the Two-Tables Schema
	A.2 Storing Data in a Property Graph Using a Two-Tables Schema
	A.3 Reading Data from a Property Graph Using a Two-Tables Schema

	B About Property Graph Data Formats
	B.1 GraphSON Data Format
	B.2 GraphML Data Format
	B.3 GML Data Format
	B.4 Oracle Flat File Format

	C Mapping Graph Server Roles to Default Privileges
	D Disabling Transport Layer Security (TLS) in Graph Server

	Index

