Oracle® Database
Graph Developer's Guide for Property Graph

ORACLE"

Oracle Database Graph Developer's Guide for Property Graph, 21.2
F41057-02

Copyright © 2016, 2021, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Prashant Kannan, Chuck Murray, Melliyal Annamalai, Korbinian Schmid, Albert Godfrind, Oskar
van Rest, Jorge Barba, Ana Estrada, Steve Serra, Ryota Yamanaka, Bill Beauregard, Hector Briseno,
Hassan Chafi, Eugene Chong, Souripriya Das, Juan Garcia, Florian Gratzer, Zazhil Herena, Sungpack Hong,
Roberto Infante, Hugo Labra, Gabriela Montiel-Moreno, Eduardo Pacheco, Joao Paiva, Matthew Perry, Diego
Ramirez, Siva Ravada, Carlos Reyes, Jane Tao, Edgar Vazquez, Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XX
Documentation Accessibility XX
Related Documents XX
Conventions XX

Changes in This Release for This Guide

Part | Getting Started with Oracle Property Graphs

1 Property Graph Support Overview

1.1 Introduction to Property Graphs 1-2
1.1.1 What Are Property Graphs? 1-2
1.1.2 About the Property Graph Feature of Oracle Database 1-3

1.1.2.1 In-Memory Graph Server (PGX) 1-4
1.1.2.2 Options for Property Graph Architecture 1-4

1.2 Before You Begin with Oracle Property Graphs 1-7
1.2.1 Database Compatibility and Restrictions 1-8
1.2.2 Downloading Oracle Graph Server and Client 1-8
1.2.3 Installing PL/SQL Packages in Oracle Database 1-9

1.3 Oracle Graph Server and Client Installation 1-10
1.3.1 Installing Oracle Graph Server 1-11
1.3.2 Deploying Oracle Graph Server to a Web Server 1-12

1.3.2.1 Deploying to Apache Tomcat 1-13
1.3.2.2 Deploying to Oracle WebLogic Server 1-14
1.3.3 Upgrading Oracle Graph Server 1-15
1.3.4 Uninstalling Oracle Graph Server 1-15
1.3.5 Installing Oracle Graph Client 1-15
1.3.5.1 Installing the Java Client 1-15
1.3.5.2 Installing the Python Client 1-16

ORACLE iii

1.3.5.3 Uninstalling the Python Client 1-18

1.3.5.4 Enabling the Graph Visualization Application 1-19

1.3.5.5 Deploying the Graph Visualization Application 1-19

1.3.5.6 Installing the Graph Zeppelin Interpreter Client 1-23

1.4 Setting Up Transport Layer Security 1-24
1.4.1 Generating a Self-Signed Server Certificate 1-24
1.4.2 Configuring the Graph Server (PGX) 1-25
1.4.3 Configuring a Client to Trust the Self-Signed Certificate 1-26

1.5 Adding Permissions to Publish the Graph 1-27
1.6 Security Best Practices with Graph Data 1-28
1.7 Interactive Graph Shell 1-28
1.8 Using Graph Server Functionality as a Library 1-30
1.9 Storing Graphs in Oracle Database and Loading Graphs into Memory 1-32
1.9.1 Two-Tier Mode 1-32
1.9.2 Three-Tier Mode 1-32
1.10 Using Oracle Graph with the Autonomous Database 1-33
1.10.1 Two-Tier Deployments of Oracle Graph with Autonomous Database 1-33
1.10.2 Three-Tier Deployments of Oracle Graph with Autonomous Database 1-34
1.11 Migrating Property Graph Applications from Before Release 21c 1-37
1.12 Upgrading From Graph Server and Client 20.4.x to 21.x 1-39
1.13 Using the Graph Zeppelin Interpreter Client 1-42

2 Quick Starts for Using Oracle Property Graph

2.1 Quick Start: Interactively Analyze Graph Data 2-1
2.1.1 Quick Start: Create and Query a Graph in the Database, Load into In-Memory
Graph Server (PGX) for Analytics 2-1
2.1.1.1 Create and Query a Graph in the Database 2-2
2.1.1.2 Load the Graph into Memory and Run Graph Analytics 2-6
2.1.2 Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server
(PGX) 2-9
2.1.3 Quick Start: Executing PGQL Queries in SQLcl 2-14
2.2 QuickStart: Run Graph Analytics Using the Python Shell 2-14
2.3 Quick Start: Using the Python Client as a Module 2-15
2.4 Oracle LiveLabs Workshops for Graphs 2-17
3 Property Graph Views on Oracle Database Tables

4 Using the In-Memory Graph Server (PGX)

4.1 Overview of the In-Memory Graph Server (PGX) 4-2

ORACLE iv

41.1
41.2

Design of the In-Memory Graph Server (PGX)
Usage Modes of the In-memory Graph Server (PGX)

4.2 User Authentication and Authorization

421
42.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

Privileges and Roles in Oracle Database

Basic Steps for Using an Oracle Database for Authentication
Prepare the Graph Server for Database Authentication

Connect to the Server from JShell with Database Authentication
Read Data from the Database

Store the Database Password in a Keystore

Token Expiration

Advanced Access Configuration

4.2.8.1 Customizing Roles and Permissions

4.2.9

Revoking Access to the Graph Server

4.2.10 Examples of Custom Authorization Rules

4211

Kerberos Enabled Authentication

4.2.11.1 Prerequisite Requirements

4.2.11.2 Prepare the Graph Server for Kerberos Authentication

4.2.11.3 Login to the Graph Server Using Kerberos Ticket
4.3 About Vertex and Edge IDs

4.4 Keeping the Graph in Oracle Database Synchronized with the Graph Server

4.4.1

4.5 Optimizing Graphs for Read Versus Updates in the In-Memory Graph Server (PGX)

Examples of Synchronizing

4.6 Storing a Graph Snapshot on Disk

4.7 Executing Built-in Algorithms

4.7.1
4.7.2
4.7.3

About Built-In Algorithms in the In-Memory Graph Server (PGX)
Running the Triangle Counting Algorithm
Running the PageRank Algorithm

4.8 Using Custom PGX Graph Algorithms

48.1

Writing a Custom PGX Algorithm

48.1.1 Collections
4.8.1.2 Iteration
4.8.1.3 Reductions

4.8.2
4.8.3

Compiling and Running a PGX Algorithm
Example Custom PGX Algorithm: PageRank

4.9 Creating Subgraphs

49.1
4.9.2
4.9.3
494

About Filter Expressions

Using a Simple Filter to Create a Subgraph

Using a Complex Filter to Create a Subgraph
Using a Vertex Set to Create a Bipartite Subgraph

4.10 Using Automatic Delta Refresh to Handle Database Changes

4.10.1

ORACLE

Configuring the In-Memory Server for Auto-Refresh

4-2

4-5
4-6
4-7
4-9

4-10

4-11

4-13

4-18

4-19

4-20

4-21

4-21

4-23

4-23

4-24

4-25

4-26

4-28

4-29

4-34

4-35

4-36

4-37

4-38

4-38

4-39

4-39

4-40

4-41

4-41

4-42

4-43

4-43

4-44

4-45

4-45

4-46

4-48

4-48

4.10.2 Configuring Basic Auto-Refresh 4-49
4.10.3 Reading the Graph Using the In-Memory Graph Server (PGX) or a Java
Application 4-49
4.10.4 Checking Out a Specific Snapshot of the Graph 4-50
4.10.5 Advanced Auto-Refresh Configuration 4-51
4.10.6 Special Considerations When Using Auto-Refresh 4-52
4.11 Starting the In-Memory Graph Server (PGX) 4-52
4.11.1 Starting and Stopping the Graph Server (PGX) Using the Command Line 4-52
4.11.2 Configuring the In-Memory Graph Server (PGX) 4-53
4.12 Connecting to the In-Memory Graph Server (PGX) 4-59
4.12.1 Connecting with the Graph Shell 4-59
4,12.2 Connecting with Java 4-62
4.12.2.1 Starting and Stopping the PGX Engine 4-62
4.12.3 Connecting with Python 4-63
4.13 Using Graph Server (PGX) as a Library 4-64
4.14 User-Defined Functions (UDFs) in PGX 4-65
4.15 Using HAProxy for PGX Load Balancing and High Availability 4-69
5 Using the Property Graph Schema
5.1 Property Graph Schema Objects for Oracle Database 5-2
5.1.1 Property Graph Tables (Detailed Information) 5-2
5.1.2 Default Indexes on Vertex (VT$) and Edge (GE$) Tables 5-7
5.1.3 Flexibility in the Property Graph Schema 5-7
5.2 Data Access Layer 5-7
5.3 Getting Started with Property Graphs 5-8
5.3.1 Required Privileges for Database Users 5-8
5.4 Using Java APIs for Property Graph Data 5-8
5.4.1 Overview of the Java APIs 5-9
5.4.1.1 Oracle Graph Property Graph Java APIs 5-9
5.4.1.2 Oracle Database Property Graph Java APIs 5-9
5.4.2 Parallel Loading of Graph Data 5-10
5.4.2.1 JDBC-Based Data Loading 5-10
5.4.2.2 External Table-Based Data Loading 5-19
5.4.2.3 SQL*Loader-Based Data Loading 5-23
5.4.3 Parallel Retrieval of Graph Data 5-26
5.4.4 Using an Element Filter Callback for Subgraph Extraction 5-28
5.4.5 Using Optimization Flags on Reads over Property Graph Data 5-31
5.4.6 Adding and Removing Attributes of a Property Graph Subgraph 5-33
5.4.7 Getting Property Graph Metadata 5-38
5.4.8 Merging New Data into an Existing Property Graph 5-39
5.4.9 Opening and Closing a Property Graph Instance 5-41

ORACLE

Vi

5.4.10
54.11
5.4.12
5.4.13
54.14
5.4.15
5.4.16
5.4.17

Creating Vertices

Creating Edges

Deleting Vertices and Edges

Reading a Graph from a Database into an Embedded In-Memory Analyst
Specifying Labels for Vertices

Building an In-Memory Graph

Dropping a Property Graph

Executing PGQL Queries

5.5 Managing Text Indexing for Property Graph Data

55.1

Configuring a Text Index for Property Graph Data

5.5.1.1 Configuring Text Indexes Using Oracle Text

55.2
5.5.3
554

Using Automatic Indexes for Property Graph Data
Using Manual Indexes for Property Graph Data
Executing Search Queries Over a Property Graph’s Text Indexes

5.5.4.1 Executing Search Queries Over a Text Index Using Oracle Text

555

Handling Data Types

5.5.5.1 Handling Data Types on Oracle Text

5.5.6
5.5.7

Updating Configuration Settings on Text Indexes for Property Graph Data
Using Parallel Query on Text Indexes for Property Graph Data

5.5.7.1 Parallel Text Search Using Oracle Text

5.6 Access Control for Property Graph Data (Graph-Level and OLS)

56.1

Applying Oracle Label Security (OLS) on Property Graph Data

5.7 SQL-Based Property Graph Query and Analytics

57.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6

Simple Property Graph Queries

Text Queries on Property Graphs

Navigation and Graph Pattern Matching

Navigation Options: CONNECT BY and Parallel Recursion
Pivot

SQL-Based Property Graph Analytics

5.7.6.1 Shortest Path Examples
5.7.6.2 Collaborative Filtering Overview and Examples

5.8 Creating Property Graph Views on an RDF Graph

5.9 Oracle Flat File Format Definition

59.1
59.2
593
59.4
595
5.9.6

ORACLE

About the Property Graph Description Files

Edge File

Vertex File

Encoding Special Characters

Example Property Graph in Oracle Flat File Format

Converting an Oracle Database Table to an Oracle-Defined Property Graph
Flat File

5-43
5-43
5-44
5-44
5-45
5-45
5-47
5-47
5-47
5-48
5-48
5-50
5-52
5-52
5-52
5-54
5-54
5-55
5-55
5-55
5-57
5-57
5-62
5-63
5-66
5-71
5-76
5-79
5-80
5-81
5-84
5-90
5-93
5-93
5-93
5-95
5-97
5-98

5-98

Vii

5.9.7 Converting CSV Files for Vertices and Edges to Oracle-Defined Property
Graph Flat Files 5-101
6 Property Graph Query Language (PGQL)

6.1 Creating a Property Graph using PGQL 6-1
6.2 Creating Property Graph Views Using PGQL 6-3
6.3 Pattern Matching with PGQL 6-3
6.4 Edge Patterns Have a Direction with PGQL 6-4
6.5 Vertex and Edge Labels with PGQL 6-5
6.6 Variable-Length Paths with PGQL 6-5
6.7 Aggregation and Sorting with PGQL 6-5
6.8 Executing PGQL Queries Against the In-Memory Graph Server (PGX) 6-6
6.8.1 Getting Started with PGQL 6-6
6.8.2 Supported PGQL Features 6-8
6.8.2.1 Limitations on Quantifiers 6-8
6.8.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns 6-8
6.8.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements 6-9
6.8.4 Java APIs for Executing SELECT Queries 6-9

6.8.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph
Server (PGX) 6-10
6.8.4.2 Executing SELECT Queries Against a PGX Session 6-10
6.8.4.3 lterating Through a Result Set 6-10
6.8.4.4 Printing a Result Set 6-12
6.8.5 Java APIs for Executing UPDATE Queries 6-13
6.8.5.1 Updatability of Graphs Through PGQL 6-14

6.8.5.2 Executing UPDATE Queries against a Graph in the in-memory Graph
Server (PGX) 6-14
6.8.5.3 Executing UPDATE Queries Against a PGX Session 6-15
6.8.5.4 Altering the Underlying Schema of a Graph 6-15
6.8.6 Security Tools for Executing PGQL Queries 6-16
6.8.6.1 Using Bind Variables 6-16
6.8.6.2 Using Identifiers in a Safe Manner 6-17
6.8.7 Best Practices for Tuning PGQL Queries 6-18
6.8.7.1 Memory Allocation 6-18
6.8.7.2 Parallelism 6-19
6.8.7.3 Query Plan Explaining 6-19
6.9 Executing PGQL Queries Directly Against Oracle Database 6-20
6.9.1 PGQL Features Supported 6-21
6.9.1.1 Temporal Types 6-21
6.9.1.2 Type Casting 6-22
6.9.1.3 CONTAINS Built-in Function 6-23

ORACLE

viii

6.9.2 Creating Property Graphs through CREATE PROPERTY GRAPH Statements 6-23
6.9.3 Dropping Property Graphs through DROP PROPERTY GRAPH Statements 6-30
6.9.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL Queries 6-31
6.9.4.1 Basic Query Execution 6-34
6.9.4.2 Executing PGQL Queries Using JDBC Driver 6-43
6.9.4.3 Security Techniques for PGQL Queries 6-44
6.9.4.4 Using a Text Index with PGQL Queries 6-50
6.9.4.5 Obtaining the SQL Translation for a PGQL Query 6-53
6.9.4.6 Additional Options for PGQL Translation and Execution 6-61
6.9.4.7 Querying Another User’s Property Graph 6-80
6.9.4.8 Using Query Optimizer Hints with PGQL 6-82

6.9.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE
Statements 6-85
6.9.5.1 Additional Options for PGQL Statement Execution 6-93
6.9.6 Performance Considerations for PGQL Queries 6-97

7 Graph Visualization Application
7.1 About the Graph Visualization Application 7-1
7.2 How does the Graph Visualization Application Work 7-1
7.3 Using the Graph Visualization Application 7-2
7.3.1 Graph Visualization Modes 7-3
7.3.2 Graph Visualization Settings 7-3
7.3.3 Using Live Search 7-6
7.3.4 Using URL Parameters to Control the Graph Visualization Application 7-7
7.4 REST Endpoints for the Graph Visualization Application 7-7
7.4.1 Login 7-8
7.4.2 List Graphs 7-8
7.4.3 RunaPGQL Query 7-9
7.4.4 GetUser 7-11
7.4.5 Asynchronous REST Endpoints 7-11
7.4.5.1 RunaPGQL Query Asynchronously 7-11
7.4.5.2 Check a Query Completion 7-12
7.4.5.3 Cancel a Query Execution 7-12
7.4.5.4 Retrieve a Query Result 7-13
38 Using the Machine Learning Library (PgxML) for Graphs

8.1 Using the DeepWalk Algorithm 8-1
8.1.1 Loading a Graph 8-2
8.1.2 Building a Minimal DeepWalk Model 8-3
8.1.3 Building a Customized DeepWalk Model 8-3

ORACLE

8.1.4
8.1.5
8.1.6
8.1.7
8.1.8

Training a DeepWalk Model

Getting the Loss Value For a DeepWalk Model
Computing Similar Vertices for a Given Vertex
Computing Similar Vertices for a Vertex Batch
Storing a Trained DeepWalk Model

8.1.8.1 Storing a Trained Model in Another Database

8.1.9

Loading a Pre-Trained DeepWalk Model

8.1.9.1 Loading a Pre-Trained Model From Another Database
8.1.10 Destroying a DeepWalk Model
8.2 Using the Supervised GraphWise Algorithm

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8

Loading a Graph

Building a Minimal GraphWise Model

Advanced Hyperparameter Customization

Training a Supervised GraphWise Model

Getting the Loss Value For a Supervised GraphWise Model
Inferring the Vertex Labels for a Supervised GraphWise Model
Evaluating the Supervised GraphWise Model Performance
Inferring Embeddings for a Supervised GraphWise Model

8.2.8.1 Inferring Embeddings for a Model in Another Database

8.2.9

8.2.10
8.2.11

Storing a Trained Supervised GraphWise Model
Loading a Pre-Trained Supervised GraphWise Model
Destroying a Supervised GraphWise Model

8.3 Using the Unsupervised GraphWise Algorithm

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9

Loading a Graph

Building a Minimal Unsupervised GraphWise Model
Advanced Hyperparameter Customization

Training a Unsupervised GraphWise Model

Getting the Loss Value for a Unsupervised GraphWise Model
Inferring Embeddings for a Unsupervised GraphWise Model
Storing a Unsupervised GraphWise Model

Loading a Pre-Trained Unsupervised GraphWise Model
Destroying a Unsupervised GraphWise Model

8.4 Using the Pg2vec Algorithm

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8

ORACLE

Loading a Graph

Building a Minimal Pg2vec Model

Building a Customized Pg2vec Model

Training a Pg2vec Model

Getting the Loss Value For a Pg2vec Model
Computing Similar Graphlets for a Given Graphlet
Computing Similars for a Graphlet Batch

Inferring a Graphlet Vector

8-4
8-5
8-5
8-6
8-7
8-8

8-9
8-11
8-11
8-12
8-13
8-14
8-16
8-16
8-17
8-18
8-18
8-20
8-20
8-21
8-22
8-22
8-23
8-24
8-25
8-26
8-26
8-27
8-28
8-29
8-29
8-30
8-31
8-31
8-32
8-34
8-34
8-34
8-36
8-37

8.4.9 Inferring Vectors for a Graphlet Batch 8-38

8.4.10 Storing a Trained Pg2vec Model 8-39

8.4.11 Loading a Pre-Trained Pg2vec Model 8-39

8.4.12 Destroying a Pg2vec Model 8-40

o Spatial Support in Property Graphs
9.1 Representing Spatial Data in a Property Graph 9-1
9.2 Creating a Spatial Index on Property Graph Data 9-3
9.3 Querying Spatial Data in a Property Graph 9-4
10 OPG_APIS Package Subprograms

10.1 OPG_APIS.ANALYZE_ PG 10-2
10.2 OPG_APIS.CF 10-4
10.3 OPG_APIS.CF_CLEANUP 10-7
10.4 OPG_APIS.CF_PREP 10-9
10.5 OPG_APIS.CLEAR_PG 10-10
10.6 OPG_APIS.CLEAR_PG_INDICES 10-11
10.7 OPG_APIS.CLONE_GRAPH 10-11
10.8 OPG_APIS.COUNT_TRIANGLE 10-12
10.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP 10-13
10.10 OPG_APIS.COUNT_TRIANGLE_PREP 10-14
10.11 OPG_APIS.COUNT_TRIANGLE_RENUM 10-16
10.12 OPG_APIS.CREATE_EDGES_TEXT_IDX 10-17
10.13 OPG_APIS.CREATE_PG 10-18
10.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB 10-19
10.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB 10-21
10.16 OPG_APIS.CREATE_STAT_TABLE 10-22
10.17 OPG_APIS.CREATE_SUB_GRAPH 10-23
10.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX 10-24
10.19 OPG_APIS.DROP_EDGES TEXT_IDX 10-26
10.20 OPG_APIS.DROP_PG 10-26
10.21 OPG_APIS.DROP_PG_VIEW 10-27
10.22 OPG_APIS.DROP_VERTICES_TEXT_IDX 10-27
10.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM 10-28
10.24 OPG_APIS.EXP_EDGE_TAB_STATS 10-30
10.25 OPG_APIS.EXP_VERTEX_TAB_STATS 10-31
10.26 OPG_APIS.FIND_CC_MAPPING_BASED 10-32
10.27 OPG_APIS.FIND_CLUSTERS_CLEANUP 10-33
10.28 OPG_APIS.FIND_CLUSTERS_PREP 10-34

ORACLE

Xi

10.29 OPG_APIS.FIND_SP 10-36

10.30 OPG_APIS.FIND_SP_CLEANUP 10-37
10.31 OPG_APIS.FIND_SP_PREP 10-38
10.32 OPG_APIS.GET_BUILD_ID 10-39
10.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL 10-39
10.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS 10-41
10.35 OPG_APIS.GET_LATLONG_FROM_V_COL 10-42
10.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS 10-43
10.37 OPG_APIS.GET_LONG_LAT_GEOMETRY 10-44
10.38 OPG_APIS.GET_LATLONG_FROM_V_COL 10-45
10.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS 10-46
10.40 OPG_APIS.GET_SCN 10-47
10.41 OPG_APIS.GET_VERSION 10-47
10.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL 10-48
10.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T _COLS 10-49
10.44 OPG_APIS.GRANT_ACCESS 10-50
10.45 OPG_APIS.IMP_EDGE_TAB_STATS 10-51
10.46 OPG_APIS.IMP_VERTEX_TAB_STATS 10-52
10.47 OPG_APIS.PR 10-54
10.48 OPG_APIS.PR_CLEANUP 10-56
10.49 OPG_APIS.PR_PREP 10-57
10.50 OPG_APIS.PREPARE_TEXT_INDEX 10-58
10.51 OPG_APIS.RENAME_PG 10-58
10.52 OPG_APIS.SPARSIFY_GRAPH 10-59
10.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP 10-61
10.54 OPG_APIS.SPARSIFY_GRAPH_PREP 10-62

11 OPG_GRAPHOP Package Subprograms

11.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB 11-1

Part Il In-Memory Graph Server (PGX) Advanced User Guide

12 Configuring the In-Memory Graph Server (PGX)

12.1 Configuration Parameters for the Graph Server (PGX) Engine 12-1
12.1.1 Configuration of the Graph Server (PGX) Run-Time Parameters 12-11
12.1.2 Specifying the Configuration File to the In-Memory Graph Server (PGX) 12-14
12.1.3 Memory Consumption by the Graph Server (PGX) 12-15

12.1.3.1 Memory Management 12-15

12.2 Configuration Parameters for Connecting to the Graph Server (PGX) 12-17

ORACLE Xii

12.3 Configuration Parameters for the Graph Client 12-17

13 Graphs Management

13.1 Loading a Graph Into the Graph Server (PGX) 13-1
13.1.1 API for Loading Graphs into Memory 13-2
13.1.2 Graph Configuration Options 13-2
13.1.3 Defining the Graph Configuration via Java 13-10
13.1.4 Creating a JSON Configuration to Load a Graph 13-10
13.1.5 Preloading a Graph 13-11
13.1.6 Data Loading Security Best Practices 13-12
13.1.7 Data Format Support Matrix 13-12
13.1.8 Immutability of Loaded Graphs 13-13

13.2 Publishing a Graph 13-13

13.3 Publishing a Preloaded Graph 13-18

13.4 Deleting a Graph 13-19

14 Namespaces and Sharing

14.1 Defining Graph Names 14-1
14.2 Retrieving Graphs by Name 14-1
14.3 Checking Used Names 14-2
14.4 Property Name Resolution and Graph Mutations 14-2

15 PGX Programming Guides

15.1 Design of the Graph Server (PGX) API 15-3
15.2 Data Types and Collections in the Graph Server (PGX) 15-4
15.2.1 Using Collections and Maps 15-7
15.2.1.1 Collection Data Types 15-7
15.2.1.2 Map Data Types 15-11

15.2.2 Using Datetime Data Types 15-15
15.2.2.1 Loading Datetime Data 15-16
15.2.2.2 Specifying Custom Datetime Formats 15-17
15.2.2.3 APIs for Accessing Datetime Data 15-19
15.2.2.4 Querying Datetime Data Using PGQL 15-19
15.2.2.5 Accessing Datetimes from PGQL Result Sets 15-21

15.3 Handling Asynchronous Requests in Graph Server (PGX) 15-23
15.3.1 Blocking Operation 15-23
15.3.2 Chaining Operation 15-24
15.3.3 Cancelling Operation 15-25
15.3.4 Handling Concurrent Asynchronus Operations 15-25

ORACLE Xiii

15.4 Graph Client Sessions
15.5 Graph Mutation and Subgraphs

15.5.1

Altering Graphs

15.5.1.1 Loading Or Removing Additional Vertex or Edge Providers

15.5.2
1553
1554
1555

Simplifying and Copying Graphs
Transposing Graphs
Undirecting Graphs

Advanced Multi-Edge Handling

15.5.5.1 Picking
15.5.5.2 Merging
15.5.5.3 StrategyBuilder in General

15.5.6
15.5.7
15.5.8

Creating a Subgraph
Creating a Bipartite Subgraph
Creating a Sparsified Subgraph

15.6 Managing Transient Data

15.6.1
15.6.2

Managing Transient Properties
Managing Collections and Scalars

15.7 Graph Versioning

1571
15.7.2
15.7.3
15.7.4
15.75
15.7.6

Configuring the Snapshots Source

Creating a Snapshot via Refreshing

Creating a Snapshot via ChangeSet

Checking Out the Latest Snapshots of a Graph
Checking Out Different Snapshots of a Graph
Directly Loading a Specific Snapshot of a Graph

15.8 Labels and Properties

15.8.1
15.8.2

Setting and Getting Property Values
Getting Label Values

15.9 Filter Expressions

1591
15.9.2
15.9.3
15.9.4
15.9.5

Syntax

Type System

Path Finding Filters

Subgraph Filters

Operations on Filter Expressions

15.9.5.1 Defining Filter Expressions

15.9.5.2 Defining Result Set Filters

15.9.5.3 Creating a Subgraph from PGQL Result Set
15.9.5.4 Defining Collection Filters

15.9.5.,5 Creating a Subgraph from Collection Filters

15.9.5.6 Combining Filter Expressions

15.10 Advanced Task Scheduling Using Execution Environments

15.10.1

ORACLE

Enterprise Scheduler Configuration Guide

Xiv

15-26
15-27
15-28
15-28
15-31
15-32
15-33
15-33
15-34
15-35
15-36
15-37
15-37
15-38
15-38
15-38
15-40
15-41
15-42
15-42
15-44
15-46
15-46
15-47
15-48
15-49
15-50
15-50
15-51
15-56
15-56
15-56
15-57
15-57
15-58
15-59
15-60
15-60
15-61
15-62
15-63

15.10.2 Enabling Enterprise Scheduler Features 15-65
15.10.3 Retrieving and Inspecting the Execution Environment 15-65
15.10.4 Modifying and Submitting Tasks Under an Updated Environment 15-66
15.10.5 Using Lambda Syntax 15-67

15.11 Admin API 15-68
15.11.1 Get a Server Instance 15-68
15.11.2 Get Inspection Data 15-68
15.11.3 Get Active Sessions 15-69
15.11.4 Get Cached Graphs 15-71
15.11.5 Get Published Graphs 15-72
15.11.6 Get Currently Loading Graphs 15-72
15.11.7 Get Tasks 15-73
15.11.8 Get Available Memories 15-73

15.12 PgxFrames Tabular Data-Structure 15-73
15.12.1 Loading a PgxFrame from a Database 15-74
15.12.2 Printing the Content of a PgxFrame 15-76
15.12.3 Destroying a PgxFrame 15-77
15.12.4 Storing a PgxFrame to a Database 15-77
15.12.5 Loading and Storing Vector Properties 15-78
15.12.6 Flattening Vector Properties 15-80
15.12.7 Union of PGX Frames 15-80
15.12.8 Joining PGX Frames 15-81
15.12.9 PgxFrame Helpers 15-82
15.12.10 PgxFrame-PgglResultSet Conversions 15-84

16 Working with Files Using the Graph Server (PGX)

16.1 Loading Graph Data from Files 16-1
16.1.1 Graph Configuration for Loading from File 16-2
16.1.2 Specifying the File Path 16-7
16.1.3 Supported File Access Protocols 16-7
16.1.4 Plain Text Formats 16-8

16.1.4.1 Comma-Separated Values (CSV) 16-10
16.1.4.2 Adjacency List (ADJ_LIST) 16-13
16.1.4.3 Edge List (EDGE_LIST) 16-13
16.1.4.4 Two Tables (TWO_TABLES) 16-15
16.1.4.5 Flat File (FLAT_FILE) 16-16

16.1.5 XML File Formats 16-18
16.1.6 Binary File Formats 16-19
16.2 Loading Graph Data in Parallel from Multiple Files 16-25
16.3 Exporting Graphs Into a File 16-27

ORACLE

XV

16.3.1 Exporting a Graph to Disk 16-28
16.4 Exporting a Graph into Multiple Files 16-29

17 Log Management in the Graph Server (PGX)

17.1 Configuring Log4j Logging 17-1

Part lll Supplementary Information for Property Graph Support

A Handling Property Graphs Using a Two-Tables Schema

A.1 Preparing the Two-Tables Schema A-2
A.2 Storing Data in a Property Graph Using a Two-Tables Schema A-4
A.3 Reading Data from a Property Graph Using a Two-Tables Schema A-7

B About Property Graph Data Formats

B.1 GraphSON Data Format B-1
B.2 GraphML Data Format B-2
B.3 GML Data Format B-2
B.4 Oracle Flat File Format B-3

C Mapping Graph Server Roles to Default Privileges

D Disabling Transport Layer Security (TLS) in Graph Server

Index

ORACLE" Xvi

List of Figures

1-1 Simple Property Graph Example

1-2 Three-Tier Property Graph Architecture
1-3 Two-Tier Property Graph Architecture
4-1 Graph Server (PGX) Design

4-2 Session and Transient Properties

4-3 Remote Server Mode

4-4 PGX as a Library

4-5 Edges Matching src.prop == 10

4-6 Graph Created by the Simple Filter

4-7 Edges Matching the outDegree Filter
4-8 Graph Created by the outDegree Filter
5-1 Phones Graph for Collaborative Filtering
6-1 PGQL on Oracle Database (RDBMS)
7-1 Query Visualization

7-2 Graph Visualization Settings Window
7-3 Highlights Options for Vertices

8-1 Pg2vec - Visualization of Two Similar Graphlets
15-1 Picking Strategy

15-2 Merging Strategy

ORACLE

1-3
1-5
1-6
4-3
4-4
4-4

4-44
4-45
4-46
4-46
5-85
6-20

7-2

7-5
8-36

15-35
15-36

XVii

List of Tables

1-1 Graph Size Estimator

1-2 Overview of Tasks to Get Started with Property Graphs
1-3 Components in the Oracle Graph Server and Client Deployment
3-1 Metadata Tables for PG Views

4-1 Privileges and Roles in Oracle Database

4-2 Advanced Access Configuration Options

4-3 Allowed Permissions

4-4 Overview of Built-In Algorithms

4-5 Configuration Parameters for the In-Memory Graph Server (PGX)
4-6 Fields for Each UDF

5-1 Edge File Record Format

5-2 Vertex File Record Format

5-3 Special Character Codes in the Oracle Flat File Format
6-1 Type Casting Support in PGQL (From and To Types)
6-2 PGQL Translation and Execution Options

6-3 PGQL Statement Modification Options

7-1 Available URL Parameters

7-2 Parameters

7-3 Query Parameters

12-1 Configuration Parameters for the Graph Server (PGX) Engine
12-2 Graph Server (PGX) Run-Time Parameters

12-3 Configuration Parameters for the Graph Client

13-1 Graph Config JSON Fields

13-2 Provider Configuration JSON file Options

13-3 Property Configuration

13-4 Loading Configuration

13-5 Error Handling Configuration

13-6 Data Format Support Matrix

15-1 PGX API Interface

15-2 Overview of Data types

15-3 Overview of Datetime Data Types in PGX

15-4 Default Temporal Formats

15-5 Session Information Options

15-6 Graph Information

15-7 Mapping between In-Place and Out-Place Operations
ORACLE

1-5
1-7
1-8
3-1
4-6
4-19
4-21
4-36
4-53
4-68
5-94
5-96
5-97
6-22
6-62
6-93
7-7
7-8
7-9
12-2
12-11
12-17
13-2
13-5
13-6
13-8
13-9
13-12
15-1
15-5
15-15
15-52
15-70
15-72
15-74

XViii

16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
C-1

Loading from File - Graph Configuration Options
CSV Specific Options

Mapping between PGX Property Type and Flat File value_type
Type Encoding

File Layout

Integer Vertex Keys

Long Vertex Keys

String Vertex Keys

String Key Element Layout

Primitive Type Layout

Vector Property Layout

String Type Layout

String Dictionary Layout

String Dictionary Element Layout

Vertex Labels Layout

Shared Pools Layout

Type == Enum

Type == Prefix

String Table for Shared Pools

Property Names Layout

Files CompressionScheme

Graph Configuration when Exporting Graph into Multiple Files
Mapping Graph Server Roles to Default Privileges

ORACLE

16-2
16-5
16-17
16-19
16-20
16-21
16-21
16-21
16-21
16-22
16-22
16-22
16-22
16-23
16-23
16-23
16-24
16-24
16-24
16-24
16-27
16-27
C-1

XiX

Preface

Preface

This document provides conceptual and usage information about Oracle Database
support for working with property graph data.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This document is intended for database and application developers in an Oracle
Database environment.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the following documents:

* Oracle Spatial Developer's Guide

e Oracle Database Graph Developer's Guide for RDF Graph

* Oracle Spatial GeoRaster Developer's Guide

» Oracle Spatial Topology and Network Data Model Developer's Guide
* Oracle Big Data Spatial and Graph User's Guide and Reference

Conventions

The following text conventions are used in this document:

ORACLE XX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE i

Changes in This Release for This Guide

Changes in This Release for This Guide

ORACLE

The following changes apply to property graph support that is shipped with Oracle
Graph Server and Client.

Oracle Graph Server and Client is required for using the property graph feature of
Oracle Database (see Oracle Graph Server and Client Installation), and is released
four times a year.

New Features

Significant New Features in Oracle Graph Server and Client 21.2

Enhanced support for both Supervised and Unsupervised GraphWise Models in
PgxML Library:

— Unsupervised GraphWise, a new algorithm that allows users to generate
embeddings for graph vertices without the requirement of labels

— Edge property support in both Building a Minimal GraphWise Model and
Building a Minimal Unsupervised GraphWise Model, that helps users to gain
more insight while training a Graphwise model

See Using the Machine Learning Library (PgxML) for Graphs for more information.

Python client now supports converting PGQL result set into pandas DataFrame.
See Converting PGQL result set into pandas dataframe for more information.

Extended PGQL support for SHORTEST and CHEAPEST path queries on the graph
server (PGX). Support added for the following path queries:

— ALL SHORTEST
— ANY SHORTEST and ANY CHEAPEST

— +and {nin, nax} quantifiers for ANY SHORTEST, ALL SHORTEST and TOP k
SHORTEST

Added support for query cancellation in the Graph Visualization Application.
See Asynchronous REST Endpoints for more details.

Added support for Oracle Database Kerberos authentication on the graph server
(PGX).
See Kerberos Enabled Authentication for more information.

Enhanced support for property graph views:
— SQLcl support for creating property graph views.

— Support for querying property graph views using the Graph Visualization
Application.

The Java shell is renamed to opg4j and the Java shell prompt is changed from
opg-j shel | > to opg4j >.

The Python shell is renamed to opg4py.

XXIi

Changes in This Release for This Guide

* Added support for executing PGQL queries directly against Oracle Database using the
PGQL JDBC driver.
See Executing PGQL Queries Using JDBC Driver for more information.

* Added a new ID strategy PARTI TI ONED | DS that enables graphs to have multiple vertices
or edges with the same value as their ID.
See About Vertex and Edge IDs for more information.

e Added compatibility for Flashback synchronization with PARTI TI ONED | DS ID strategy.
See Keeping the Graph in Oracle Database Synchronized with the Graph Server for
more information.

Migrating Property Graph Applications to Oracle Database 21c

From Release 21c onwards, Oracle Graph Server and Client must be installed separately. It
is recommended to remove the older property graph libraries from $ORACLE_HOVE. See
Uninstalling Previous Versions of Property Graph Libraries for more details.

Deprecated Features

* PLISQL API OPG_APIS.GET_SCN Function
The PL/SQL APl OPG_APIS.GET_SCN function is deprecated. Instead, to retrieve the
current SCN (system change number), use the
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER function:

SELECT dbns_f | ashback. get _syst em change_nunmber FROM DUAL;

* Two-Table Support
Support for the two-table format described in Handling Property Graphs Using a Two-
Tables Schema was deprecated in 19¢ and will be removed in a future release.

* Apache Tinkerpop API Support
Apache Tinkerpop API support for Oracle Database was deprecated in 19¢c and is
scheduled to be removed in a future release.

* OraclePgqlResultSet
The oracl e. pg. rdbms. Oracl ePgql Resul t Set interface was deprecated in 19c and will be
removed in a future release. Instead, use the standardized interface
oracl e. pgql . | ang. Resul t Set to retrieve values from a PGQL result set.

» Oracle NoSQL Database Support
Property Graph support for data stored in Oracle NoSQL Database is deprecated and will
be removed in a future release.

Desupported Features

* Graph property text search based on Apache Solr/Lucene is desupported. Instead, use
Oracle Text or PGQL query expressions.

 The PGX property type DATE is desupported. Instead, use LOCAL_DATE or
TIMESTAMP.

e Support for the Apache Groovy-based shell was deprecated in 19¢ and is now
desupported.

ORACLE xXiii

Getting Started with Oracle Property Graphs

ORACLE

Part | provides the fundamental information to get you started on the property graph feature
of Oracle Database.

This part covers the following:

Overview of the property graph features

Installing and configuring Oracle Graph Server and Client

Graph data modeling using the in-memory graph server (PGX)
Querying graph data using PGQL

Visualizing property graphs using the Graph Visualization Application

Applying machine learning algorithms to analyze relationships in graph data

Part | contains the following chapters:

Property Graph Support Overview

Quick Starts for Using Oracle Property Graph
This chapter contains quick start tutorials and other resources to help you get started on
working with Oracle property graphs.

Property Graph Views on Oracle Database Tables
You can create property graph views over data stored in Oracle Database. You can
perform various graph analytics operations using PGQL on these views.

Using the In-Memory Graph Server (PGX)
The in-memory Graph server of Oracle Graph supports a set of analytical functions.

Using the Property Graph Schema
This chapter provides conceptual and usage information about creating, storing, and
working with property graph data in an Oracle Database environment.

Property Graph Query Language (PGQL)

PGQL is a SQL-like query language for property graph data structures that consist

of vertices that are connected to other vertices by edges, each of which can have key-
value pairs (properties) associated with them.

Graph Visualization Application
The Graph Visualization application enables interactive exploration and visualization of
property graphs. It can also visualize graphs stored in the database.

Using the Machine Learning Library (PgxML) for Graphs
The in-memory graph server (PGX) provides a machine learning library
oracl e. pgx. api . m |i b, which supports graph-empowered machine learning algorithms.

Spatial Support in Property Graphs
The property graph support in the Oracle Spatial and Graph option is integrated with the
spatial support.

OPG_APIS Package Subprograms
The OPG_APIS package contains subprograms (functions and procedures) for working
with property graphs in an Oracle database.

* OPG_GRAPHOP Package Subprograms
The OPG_GRAPHOP package contains subprograms for various operations on
property graphs in an Oracle database.

ORACLE

Property Graph Support Overview

ORACLE

This chapter provides an overview of Oracle Graph support for property graph features.

Introduction to Property Graphs
Property graphs give you a different way of looking at your data.

Before You Begin with Oracle Property Graphs
Before you begin to create an Oracle Property Graph, you may need to adhere to one or
more of the prerequisites explained in this section.

Oracle Graph Server and Client Installation

This section explains the various operations that you must perform to install, uninstall or
upgrade Oracle Graph Server (PGX). It also includes the steps to install Oracle Graph
Client.

Setting Up Transport Layer Security

The graph server (PGX), by default, allows only encrypted connections using Transport
Layer Security (TLS). TLS requires the server to present a server certificate to the client
and the client must be configured to trust the issuer of that certificate.

Adding Permissions to Publish the Graph
There are two ways by which you can view any graph in your graph server (PGX) session
in the graph visualization application.

Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

Interactive Graph Shell

Both the Oracle Graph server and client packages contain an interactive command-line
application for interacting with all the Java APlIs of the product, locally or on remote
computers.

Using Graph Server Functionality as a Library
The graph functions available with the graph server (PGX) can be used as a library in
your application.

Storing Graphs in Oracle Database and Loading Graphs into Memory

You can work with graphs in two-tier mode (graph client connects directly to Oracle
Database), or three-tier mode (graph client connects to the graph server (PGX) on the
middle-tier, which then connects to Oracle Database).

Using Oracle Graph with the Autonomous Database
Oracle Graph with the Autonomous Database allows you to create property graphs from
data in your Autonomous Database.

Migrating Property Graph Applications from Before Release 21c
If you are migrating from a previous version of Oracle Spatial and Graph to Release 21c,
you may need to make some changes to existing property graph-related applications.

Upgrading From Graph Server and Client 20.4.x to 21.x

If you are upgrading from Graph Server and Client 20.4.x to 21.x version, you may need
to create new roles in database and migrate authorization rules from pgx. conf file to the
database. Also, starting from Graph Server and Client Release 21.1, TLS is enforced at
the time of the RPM file installation.

1-1

Chapter 1
Introduction to Property Graphs

» Using the Graph Zeppelin Interpreter Client
Oracle Graph provides an interpreter client implementation for Apache Zeppelin.
This tutorial topic explains how to perform simple operations using the graph
Zepplin interpreter client.

1.1 Introduction to Property Graphs

Property graphs give you a different way of looking at your data.

You can model your data as a graph by making data entities vertices in the graph, and
relationships between them as edges in the graph. For example, in a bank customer
accounts can be vertices, and cash transfer relationships between them can be edges.

When you view your data as a graph, you can analyze your data based on the
connections and relationships between them. You can run graph analytics algorithms
like PageRank to measure the relative importance of data entities based on the
relationships between them, for example, links between webpages.

* What Are Property Graphs?

* About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics
capabilities in Oracle Database.

1.1.1 What Are Property Graphs?

A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects. Vertices and edges can have multiple properties, which are
represented as key-value pairs.

Each vertex has a unique identifier and can have:

e A set of outgoing edges
e Aset of incoming edges
e A collection of properties

Each edge has a unique identifier and can have:

* An outgoing vertex

* Anincoming vertex

* Atext label that describes the relationship between the two vertices
* A collection of properties

For vertices and edges, each property is identified with a unique name.

The following figure illustrates a very simple property graph with two vertices and one
edge. The two vertices have identifiers 1 and 2. Both vertices have properties nanme
and age. The edge is from the outgoing vertex 1 to the incoming vertex 2. The edge
has a text label knows and a property t ype identifying the type of relationship between
vertices 1 and 2.

ORACLE 1-2

Chapter 1
Introduction to Property Graphs

Figure 1-1 Simple Property Graph Example

name:Alice name:Bob
age:31 age:27

1

knows
type:friends

A property graph can have self-edges (that is, an edge whose source and destination vertex
are the same), as well as multiple edges between the same source and destination vertices.

A property graph can also have different types of vertices and edges in the same graph. For
example a graph can have a set of vertices with label Per son and a set of vertices with label
Pl ace, with different properties relevant to these two sets of vertices.

The property graph data model is similar to the W3C standards-based Resource Description
Framework (RDF) graph data model; however, the property graph data model is simpler and
less precise than RDF.

The property graph data model features and analytic APIs make property graphs a good
candidate for use cases such as these:

» ldentifying influencers in a social network
e Predicting trends and customer behavior
» Discovering relationships based on pattern matching

» Identifying clusters to customize campaigns

Note:

The property graph data model that Oracle supports at the database side does not
allow labels for vertices. However, you can treat the value of a designated vertex
property as one or more labels.

Related Topics
e Specifying Labels for Vertices

1.1.2 About the Property Graph Feature of Oracle Database

ORACLE

The Property Graph feature delivers advanced graph query and analytics capabilities in
Oracle Database.

This feature supports graph operations, indexing, queries, search, and in-memory analytics.

Graphs manage networks of linked data as vertices, edges, and properties of the vertices
and edges. Graphs are commonly used to model, store, and analyze relationships found in
social networks, cybersecurity, utilities and telecommunications, life sciences and clinical
data, and knowledge networks.

1-3

Chapter 1
Introduction to Property Graphs

Typical graph analyses encompass graph traversal, recommendations, finding
communities and influencers, and pattern matching. Industries including
telecommunications, life sciences and healthcare, security, media, and publishing can
benefit from graphs.

The property graph features of Oracle Special and Graph support those use cases
with the following capabilities:

e A scalable graph database
e Developer-based APIs based upon PGQL and Java graph APls
e Text search and query through integration with Oracle Text

e A parallel, in-memory graph server (PGX) for running graph queries and graph
analytics

See In-Memory Graph Server (PGX) for more information.

e Afast, scalable suite of social network analysis functions that include ranking,
centrality, recommender, community detection, and path finding

« Parallel bulk load and export of property graph data in Oracle-defined flat files
format

e A powerful Graph Visualization (GraphViz) application
* Notebook support through integration with Apache Zeppelin

* In-Memory Graph Server (PGX)
* Options for Property Graph Architecture

1.1.2.1 In-Memory Graph Server (PGX)

The in-memory graph server layer enables you to analyze property graphs using
parallel in-memory execution. It provides over 50 analytic functions. Examples of the
categories and specific functions include:

» Centrality - Degree Centrality, Eigenvector Centrality, PageRank, Betweenness
Centrality, Closedness Centrality

e Component and Community - Strongly Connected Components (Tarjan's and
Kosaraju's). Weakly Connected Components

» Twitter's Who-To-Follow, Label Propagation.

» Path Finding - Single source all destination (Bellman-Ford), Dijsktra's shortest
path, Hop Distance (Breadth-first search)

e Community Evaluation - Coefficient (Triangle Counting), Conductance, Modularity,
Adamic-Adar counter.

See Using the In-Memory Graph Server (PGX) for more information on the in-memory
graph server (PGX).

1.1.2.2 Options for Property Graph Architecture

You have two architecture options when using the property graph feature of Oracle
Database:

* Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)
e Load the Graph into Oracle Database (2-Tier)

ORACLE 1-4

Chapter 1
Introduction to Property Graphs

Both options let you use the Property Graph Query Language (PGQL).

Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)

You can load your property graph into the in-memory graph server, which has a specialized
architecture for graph computations. All query and analytics operations on this graph can be
executed in-memory in the graph server. This graph can be created directly from relational
tables or loaded from the property graph schema that stores the graph in the database. You
can modify the graph in memory (insert, update, and delete vertices and edges, and create
new properties for results of executing an algorithm). The graph server does not write the
modifications back to the relational tables.

The in-memory graph server (PGX) typically in a server separate from the database, and can
run standalone, or in a container like Oracle WebLogic Server or Apache Tomcat. This
approach (load your property graph into the in-memory graph server) uses a three-tier
architecture, as shown in the following figure.

Figure 1-2 Three-Tier Property Graph Architecture

Client
(Shell Ul, Zeppelin, Viz}

ﬁ

o
Graph Server (PGX): L Dlex g
B eploye:
Run PGQL queries standalone
and graph ,in WLS, or
analytics) Tomcat

Property Graph Sizing Recommendations

You can compute the memory required by the in-memory graph server (PGX) by using this
calculator, Graph Size Estimator.

For example, the following table shows the memory estimated by the calculator for the given
input:

Table 1-1 Graph Size Estimator

Number Number Properties per Vertex Properties per Edge Estimated graph
of of size
vertices Edges

10M 100M e 4 - Integer Type e 4 - Integer Type 15 GB

e 1 - String Type(15 = 1 - String Type(15
characters) charact ers)

ORACLE 1-5

https://www.oracle.com/webfolder/assets/graph-size-estimator/index.html

Chapter 1
Introduction to Property Graphs

Table 1-1 (Cont.) Graph Size Estimator
]

Number Number Properties per Vertex Properties per Edge Estimated graph
of of size
vertices Edges
100M 1B e 4 - Integer Type e 4 - Integer Type 140 (B
e 1 - String Type(15 = 1 - String Type(15
characters) charact ers)
" Note:

e Reading a graph into memory can take upto twice the amount of memory
needed to represent it in memory. So when you calculate the memory
required for running PGX it is recommended that you double the amount
of memory of the estimated graph size.

e CPU Processors: The recommended number of CPU processors for a
graph with 10M vertices and 100M edges is 2-4 processors, and up to 16
processors for more compute-intensive workloads. Increasing CPU
processors will improve performance.

Load the Graph into Oracle Database (2-Tier)

If you do not need to load the graph into the in-memory graph server, you can use
another approach: create a property graph from data in relational tables, and store it in
the property graph schema (VT$ and GE$ tables). You can then run PGQL queries on
this graph.

You can load this graph into memory for running analytics algorithms and PGQL
gueries not supported in the database. You can configure the in-memory graph server
to periodically fetch updates from the data automatically in the graph to keep the data
synchronized.

This approach uses a two-tier architecture, as shown in the following figure.

Figure 1-3 Two-Tier Property Graph Architecture

e,

Client
(Shell Ul, Zeppelin, Viz)

PGQL Queries
run in database

B!
b=

ORACLE 1-6

Chapter 1

Before You Begin with Oracle Property Graphs

1.2 Before You Begin with Oracle Property Graphs

Before you begin to create an Oracle Property Graph, you may need to adhere to one or
more of the prerequisites explained in this section.

ORACLE

You must perform the tasks listed in Table 1-2 to get started on property graphs.

Table 1-2 Overview of Tasks to Get Started with Property Graphs

Sequen Task
ce

Description

More Information

1 Verify Oracle Database
Requirements

Conform to the following
Oracle Database
prerequisties:

e Oracle Database 12.2
and higher

e AL16UTF16 (instead of
UTF8) must be specified
as the
NLS_NCHAR_CHARAC
TERSET.

e AL32UTF8 (UTF8)
should be the default
character set, but
AL16UTF16 must be the
NLS_NCHAR_CHARAC
TERSET.

Database Compatibility and
Restrictions

2 Download Oracle Graph
Server and Client

Download Oracle Graph
Server and Client from Oracle
Software Delivery Cloud or
from Oracle Technology
Network.

Downloading Oracle Graph
Server and Client

3 Install the PL/SQL patch in
your Oracle Database

Upgrade the PL/SQL Graph
packages in your Oracle
Database.

Installing PL/SQL Packages
in Oracle Database

4 Install Oracle Graph Server

Install Oracle Graph server,
which is available as a
separate downloadable
package.

Installing Oracle Graph
Server

5 Download Oracle Graph
Client

Install Oracle Graph Client to
work with property graphs.

Installing the Java Client

6 Set up transport layer
security

Configure the graph server
and client to trust the self-
signed certificate.

Setting Up Transport Layer
Security

7 Add permissions to publish
the graph

Grant permissions to publish
graphs.

Adding Permissions to
Publish the Graph

» Database Compatibility and Restrictions

* Downloading Oracle Graph Server and Client

» Installing PL/SQL Packages in Oracle Database
Oracle Graph Server and Client will work with Oracle Database 12.2 onward. However,
you must install the updated PL/SQL packages that are part of the Oracle Graph Server

and Client download.

1-7

https://edelivery.oracle.com
https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Chapter 1

Before You Begin with Oracle Property Graphs

1.2.1 Database Compatibility and Restrictions

Oracle Graph Server and Client will work with Oracle Database 12.2 onward. This
includes working with the family of Oracle Autonomous Database -- all versions of
Oracle Autonomous Data Warehouse (shared), Oracle Autonomous Database

(shared), and Oracle Autonomous Database (dedicated).

For details, including any limitations and actions you should take to address them, see
"Database Compatibility Matrix for Oracle Graph Server and Client".

1.2.2 Downloading Oracle Graph Server and Client

You can download Oracle Graph Server and Client from Oracle Software Delivery
Cloud or from Oracle Technology Network.

Table 1-3 summarizes all the files contained in the Oracle Graph Server and Client

deployment.

<ver > denoted in the file name in the Table 1-3 reflects the downloaded Oracle Graph

Server and Client version.

Table 1-3 Components in the Oracle Graph Server and Client Deployment

File

Component

Description

oracl e-graph-<ver>.rpm

Oracle Graph Server

An rpm file to deploy
Oracle Graph Server.

oracl e-graph-client-<ver>. zip

Oracle Graph Client

A zip file containing
Oracle Graph Client.

oracl e- graph- zeppel i n-
interpreter-<ver>.zip

Oracle Graph Apache
Zeppelin Client

A zip file containing
libraries to use
Apache Zeppelin to
work with Oracle
Graph.

oracl e- graph- hdf s- connect or -
ver>.zip

Oracle Graph HDFS
Connector

A zip file containing
libraries to connect
Oracle Graph Server
with the Apache
Hadoop Distributed
Filesystem (HDFS).

oracl e-graph-sql cl - pl ugi n-
<ver>. zip

Oracle Graph PGQL Plugin

for SQLcl

A plugin for SQLcl to
run PGQL queries in
SQLcl.

oracl e- gr aph- webapps- <ver>. zi p

Oracle Graph Web
Applications

A zip file

containing . war files
for deploying graph
servers in an
application server.

ORACLE

1-8

https://blogs.oracle.com/oraclespatial/database-compatibility-matrix-for-oracle-graph-server-and-client
https://edelivery.oracle.com
https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Chapter 1
Before You Begin with Oracle Property Graphs

Table 1-3 (Cont.) Components in the Oracle Graph Server and Client

Deployment
]
File Component Description

oracl e-graph-pl sql - <ver>. zip Oracle Graph PL/SQL A zip file containing

Patch PL/SQL packages. It
is recommended to
update the PL/SQL
Graph packages in
your database with
these packages.
Instructions are in the
README file.

1.2.3 Installing PL/SQL Packages in Oracle Database

Oracle Graph Server and Client will work with Oracle Database 12.2 onward. However, you
must install the updated PL/SQL packages that are part of the Oracle Graph Server and
Client download.

" Note:

You can skip this section if you are using Graph Server and Client with Oracle
Autonomous Database. You only need to create roles and assign permissions by
executing step-5 and step-6 in Basic Steps for Using an Oracle Database for
Authentication. You can run these steps using Database Actions in Oracle Cloud
Infrastructure Console.

1. Download the Oracle Graph PL/SQL patch component, which is a part of the Oracle
Graph Server and Client download from Oracle Software Delivery Cloud.

2. Unzip the file or acl e- graph- pl sgl - <ver>. zi p into a directory of your choice.
<ver> denotes the version downloaded for the Oracle Graph PL/SQL Patch for PL/SQL.
3. Install the PL/SQL packages:

® There are two directories, one for users with Oracle Database 18c or below, and one
for users with Oracle Database 19c or above. As a database user with DBA privilges,
follow the instructions in the README.md file in the appropriate directory (that
matches your database version). This has to be done for every PDB you will use the
graph feature in. For example:

-- Connect as SYSDBA
SQL> ALTER SESSI ON SET CONTAI NER=<YOUR_PDB_NAME>;

SQL> @pgr enov. sql
SQ.> @at opg. sql
4. Create a database user in the database for working with graphs:

a. As a database user with DBA privileges, create a user <gr aphuser >, and grant the
necessary privileges.

ORACLE 1-9

https://edelivery.oracle.com/

5.

Chapter 1
Oracle Graph Server and Client Installation

i. If you plan to use a three-tier architecture (graph queries and analytics
executed in the in-memory graph server (PGX), then grant privileges as
described in the following command:

SQL> GRANT CREATE SESSI ON, CREATE TABLE, CREATE VI EW TO <graphuser >

ii. If you plan to use a two-tier architecture and run graph queries in the
database, then grant privileges as described in Required Privileges for
Database Users:

SQL> GRANT CREATE SESSI ON, ALTER SESSI ON, CREATE TABLE,
CREATE PROCEDURE, CREATE TYPE, CREATE SEQUENCE, CREATE VI EW
CREATE TRI GGER TO <gr aphuser >

b. As a<graphuser> in the database, check that the PL/SQL update is
successful:

SQ.> CONNECT <gr aphuser >/ <passwor d>

SQ.> SELECT opg_api s. get _opg_version() FROV DUAL;
-- Should return 21.2 if you are using
-- Graph Server and Cient 21.2

Grant the appropriate roles (GRAPH_DEVELOPER or GRAPH_ADM NI STRATOR), to the
database user created in step 4 for working with the graphs.

¢ Note:

e See User Authentication and Authorization for more information on
authorization rules for Graph Server (PGX) and Client 21.2.

e See Upgrading From Graph Server and Client 20.4.x to 21.x for
more information if you are migrating to Graph Server (PGX) and
Client 21.1 from an earlier version.

SQ.> GRANT GRAPH DEVELOPER to <graphuser>
SQ.> GRANT GRAPH ADM NI STRATOR to <admi nuser >

1.3 Oracle Graph Server and Client Installation

This section explains the various operations that you must perform to install, uninstall
or upgrade Oracle Graph Server (PGX). It also includes the steps to install Oracle
Graph Client.

ORACLE

Installing Oracle Graph Server

Deploying Oracle Graph Server to a Web Server
Upgrading Oracle Graph Server

Uninstalling Oracle Graph Server

Installing Oracle Graph Client

1-10

Chapter 1
Oracle Graph Server and Client Installation

1.3.1 Installing Oracle Graph Server

ORACLE

You can run Oracle Graph Server in standalone mode or using a webserver like Oracle
WebLogic Server or Apache Tomcat.

The installation steps for installing Oracle Graph Server in standalone mode are as shown:

1. Asaroot user or using sudo, install the RPM file using the rpm command line utility:

sudo rpm-i oracl e-graph-<version>.rpm

Where <ver si on> reflects the version that you downloaded. (For example: or acl e-
graph-21.2.0.0.0.x86_64.rpm

The . r pmfile is the graph server.

The following post-installation steps are carried out at the time of the RPMfile installation:
e Creation of a working directory in / opt/ or acl e/ gr aph/ pgx/tnp_dat a

e Creation of a log directory in / var /| og/ or acl e/ gr aph

e Installation of Python Client

Note:

If Python is not installed in your system, then this step will be skipped.

* Automatic generation of self-signed TLS certificates in / et ¢/ or acl e/ gr aph

Note:

— You can also choose to configure and set up transport layer security
(TLS) in graph server. See Setting Up Transport Layer Security for
more details.

— For demonstration purposes, if you wish to disable transport layer
security (TLS) in graph server, see Disabling Transport Layer Security
(TLS) in Graph Server for more details.

2. Asroot or using sudo, add operating system users allowed to use the server installation
to the operating system group or acl egr aph. For example:

usernmod -a -G oracl egraph <graphuser>

This adds the specified graph user to the group or acl egr aph.
Note that <gr aphuser > must log out and log in again for this to take effect.

3. As<graphuser >, configure the server by modifying the files under / et ¢/ or acl e/ gr aph by

following the steps under Prepare the Graph Server for Database Authentication.

4. Ensure that authentication is enabled for database users that will connect to the graph

server, as explained in User Authentication and Authorization.

1-11

Chapter 1
Oracle Graph Server and Client Installation

5. Asaroot user or using sudo, start the graph server (PGX) by executing the
following command:

sudo systentt!l start pgx

You can verify if the graph server has started by executing the following command:

systentt| status pgx

» If the graph server has successfully started, the response may appear as:

@ pox.service - Oracle Gaph In-Menory Server
Loaded: |oaded (/etc/systend/systenl pgx.service; disabled;
vendor preset: disabled)
Active: active (running) since Wed 2021-01-27 10:06: 06 EST; 33s
ago
Main PID: 32127 (bash)
CG oup: /systemslice/pgx.service
32127 /bin/bash start-server
L—32176 java - D og4j.configurationFile=/etc/oracl e/
graph/ | og4j 2-server.xm -Doracle.jdbc. fanEnabl ed=fal se -cp /opt/
oracl e/ graph/ pgx/bin/../../pgx/server/lib/lactivat...

The graph server is now ready to accept requests.

e If the graph server has not started, then you must check the log files in / var /| og/
or acl e/ graph for errors. Additionally, you can also run the following command to
view any syst end errors:

journal ctl -u pgx.service

Additional installation operations are required for specific use cases, such as:

* Analyze property graphs using Python (see Installing the Python Client).

» Deploy the graph server as a web application with Oracle WebLogic Server (see
Deploying to Oracle WebLogic Server).

* Deploy GraphViz in Oracle WebLogic Server (see Deploying the Graph
Visualization Application in Oracle WebLogic Server).

» Deploy the graph server as a web application with Apache Tomcat (see Deploying
to Apache Tomcat).

For instructions to deploy the graph server in Oracle WebLogic Server or Apache
Tomcat, see:

» Deploying to Oracle WebLogic Server
* Deploying to Apache Tomcat

1.3.2 Deploying Oracle Graph Server to a Web Server

You can deploy Oracle Graph Server to Apache Tomcat or Oracle WebLogic Server.

The following explains the deployment instructions:

ORACLE 1-12

Chapter 1
Oracle Graph Server and Client Installation

Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web application with
Apache Tomcat.

Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web application with
Oracle WebLogic Server.

1.3.2.1 Deploying to Apache Tomcat

The example in this topic shows how to deploy the graph server as a web application with
Apache Tomcat.

ORACLE

The graph server will work with Apache Tomcat 9.0.x.

1.

Download the Oracle Graph Webapps zip file from Oracle Software Delivery Cloud. This
file contains ready-to-deploy Java web application archives (. war files). The file name will
be similar to this: or acl e- gr aph- webapps- <ver si on>. zi p.

Unzip the file into a directory of your choice.

Locate the . war file that follows the naming pattern: gr aph- ser ver - <ver si on>-
pgx<versi on>. var .

Configure the graph server.

a. Modify authentication and other server settings by modifying the VEB- | NF/ cl asses/
pgx. conf file inside the web application archive. See User Authentication and
Authorization section for more information.

b. Optionally, change logging settings by modifying the WEB- | NF/ cl asses/ | og4j 2. xm
file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying the
VEB- | NF/ web. xm file inside the web application archive.

Copy the . war file into the Tomcat webapps directory. For example:

cp graph-server-<versi on>-pgx<versi on> war $CATALI NA_HOVE/ webapps/ pgx. war

" Note:

The name you give the war file in the Tomcat webapps directory determines the
context path of the graph server application. It is recommended naming the war
file as pgx. war .

Configure Tomcat specific settings, like the correct use of TLS/encryption.
Ensure that port 8080 is not already in use.

Start Tomcat:

cd $CATALI NA HOME
.I'bin/startup.sh

The graph server will now listen on | ocal host : 8080/ pgx.

1-13

https://edelivery.oracle.com/

Chapter 1
Oracle Graph Server and Client Installation

You can connect to the server from JShell by running the following command:

$ <client_install_dir>/hin/opg4j --base url https://
| ocal host : 8080/ pgx -u <graphuser>
Related Topics

e The Tomcat documentation (select desired version)

1.3.2.2 Deploying to Oracle WebLogic Server

The example in this topic shows how to deploy the graph server as a web application
with Oracle WebLogic Server.

This example shows how to deploy the graph server with Oracle WebLogic Server.
Graph server supports WebLogic Server version 12.1.x and 12.2.x.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (. war
files). The file name will be similar to this: or acl e- gr aph- webapps- <ver si on>. zi p.

2. Unzip the file into a directory of your choice.

3. Locate the . war file that follows the naming pattern: gr aph- ser ver - <ver si on>-
pgx<versi on>. var .

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the VEB- | NF/
cl asses/ pgx. conf file inside the web application archive.

b. Optionally, change logging settings by modifying the VEB- | NF/ cl asses/
I og4j 2. xm file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying
the VEB- | NF/ web. xni file inside the web application archive.

d. Optionally, change WebLogic Server-specific deployment descriptors by
modifying the VEB- | NF/ webl ogi ¢. xmi file inside the web application archive.

5. Configure WebLogic specific settings, like the correct use of TLS/encryption.
6. Deploy the . war file to WebLogic Server. The following example shows how to do
this from the command line:

. $MW HOVE/ user _pr oj ect s/ donai ns/ nydomai n/ bi n/ set Domai nEnv. sh

. $MW HOVE/ W server/ server/ bi n/ set W.SEnv. sh

j ava webl ogi c. Depl oyer -adminurl http://1ocal host: 7001 -usernane
<usernane> -password <password> -depl oy -source <path-to-war-file>

* Installing Oracle WebLogic Server

1.3.2.2.1 Installing Oracle WebLogic Server

To download and install the latest version of Oracle WebLogic Server, see

http://ww. oracl e.com t echnet wor k/ m ddl ewar e/ webl ogi ¢/ docunent at i on/
i ndex. htm

ORACLE 1-14

http://tomcat.apache.org/
https://edelivery.oracle.com/
https://edelivery.oracle.com/
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

Chapter 1
Oracle Graph Server and Client Installation

1.3.3 Upgrading Oracle Graph Server

To upgrade the graph server, make sure the graph server is shut down, then execute the
following command with the newer RPM file as an argument.

Run the following command as a r oot user or with sudo:

sudo rpm-U oracl e-graph-21.2.0.0.0.x86_64.rpm

1.3.4 Uninstalling Oracle Graph Server

To uninstall the graph server, make sure the graph server is shut down.

Run the following command as a r oot user or with sudo:

sudo rpm -e oracl e-graph

1.3.5 Installing Oracle Graph Client

This sections explains in detail the installation steps for the various clients.

Installing the Java Client
Installing the Python Client

Uninstalling the Python Client
This section describes how to uninstall the Python client.

Enabling the Graph Visualization Application

Deploying the Graph Visualization Application
This section describes the various methods to deploy the Graph Visualization Application.

Installing the Graph Zeppelin Interpreter Client

1.3.5.1 Installing the Java Client

The prerequisites for installing the Java client are:

ORACLE

1.

A Unix-based operation system (such as Linux) or macOS or Microsoft Windows
Oracle JDK 11

Download Oracle Graph Client 21.2 from Oracle Software Cloud.

Unzip the file into a directory of your choice.

Configure your client to trust the self-signed server certificate. See Configuring a Client to
Trust the Self-Signed Certificate for more information.

Connect to the graph server (PGX) using the graph shell for Java as shown:

cd <CLIENT_| NSTALL_DI R>
.I'bin/opgdj --base_url https://<host>: 7007 --username <graphuser>

In the preceding code:

1-15

https://edelivery.oracle.com

Chapter 1
Oracle Graph Server and Client Installation

e <CLIENT_INSTALL_DIR>: Directory where the shell executables are located.

Note:

The shell executables are generally found in / opt / or acl e/
gr aph/ bi n after server installation, and <CLI ENT_| NSTALL_DI R>/ bi n
after the client installation.

» <host>: Server host

e <graphuser>: Database user
You will be prompted for the database password.

" Note:

The default graph server (PGX) port is 7007. If needed, you can
configure the graph server to listen on a different port by changing the
port configuration in server. conf file. See Configuring the In-Memaory
Graph Server (PGX) for more information.

The Java shell starts and the following command line prompt appears as shown:

For an introduction type: /help intro
Oracle Graph Server Shell 21.2.0
Variabl es instance, session, and anal yst ready to use.

opg4j>

See Interactive Graph Shell for more information on the Java client.

1.3.5.2 Installing the Python Client

ORACLE

To install the Python client, you must ensure that your system meets the prerequisites
mentioned in Prerequisites for Installing the Python Client.

You can execute the following steps to install and connect using the Python client:
1. Download the Oracle Graph Client from Oracle Software Cloud.
For example, or acl e- graph-client-21.2.0.zip.
2. Unzip the file into a directory of your choice.
3. Install the client through pi p.
For example,
pip3 install --user oracle-graph-client-21.2.0.zip

4. Configure your client to trust the self-signed server certificate. See Configuring a
Client to Trust the Self-Signed Certificate for more information.

5. Start the shell by running one of the following commands:

1-16

https://edelivery.oracle.com

a.

b.

C.

Chapter 1
Oracle Graph Server and Client Installation

To connect to the PGX server instance located at htt ps: / /| ocal host : 7007 using
base URL parameter:

.I'bin/ opg4py --base_url https://Iocal host: 7007

You are prompted to enter your username and password.

Alternatively, you can also connect to the PGX server instance located at htt ps: //
| ocal host : 7007 with username. For example :

.I'bin/opgdpy --base_url https://local host: 7007 -u <graphuser>

You will be prompted to enter your password.

To start the client shell, and to avoid establishing a connection to any graph server:

. I'bi n/ opgd4py --no_connect

The Python shell starts as shown:

Oracle Graph Server Shell 21.2.0
>>>

* Prerequisites for Installing the Python Client

1.3.5.2.1 Prerequisites for Installing the Python Client

ORACLE

You must ensure that the following prerequisites are met before you install the Python client:

1. Make sure that the following softwares are installed on your system:

Oracle JDK 8 or later

Python 3.5 or later
To verify you are using the right version of the Python client, run the following
command:

$> python3 --version
Python 3.6.1

< Note:

Python 2.x is not supported.
For more information on installing Python 3 on Oracle Linux, see Python for
Oracle Linux.

2. Make sure that the following Python packages are installed on your system:

pyt hon3- devel
pyjnius-1.3.0.zip
six-1.14.0.zip
Cython-0.29.17.zip

1-17

https://yum.oracle.com/oracle-linux-python.html
https://yum.oracle.com/oracle-linux-python.html

Chapter 1
Oracle Graph Server and Client Installation

* pandas

a. To check the list of packages installed in your system and to identify the
missing packages, execute the following command:

pi p3 list

The result may be as shown:

Package Ver si on
Cyt hon 0.29.17
nunpy 1.19.5
pi p 21.1
pyj ni us 1.3.0
Si X 1.14.0

The result shows that the pandas module is missing.
b. Navigate to your Oracle Graph Client installation directory.

* For a server and client installed on the same machine, the Oracle Graph
Client installation directory is located at:

[opt/oracl e/ graph/client/python

* For a client installation using a remote server, the Oracle Graph Client
installation directory is located at:

<pgx_client _dir>/python

where <pgx_cl i ent _di r> is the directory where you extracted the or acl e-
graph-client-21. 2. zi p file.

c. Install the missing dependencies by executing the following command as root:

sudo pip3 install --user <m ssing_nodul e>

where <missing_module> is the missing dependency module that need to be
installed.

For example to install pyj ni us- 1. 3. 0. zi p:

sudo pip3 install --user pyjnius-1.3.0.zip

1.3.5.3 Uninstalling the Python Client

This section describes how to uninstall the Python client.

To uninstall the Python client, run the following command:

pi p3 uninstall pypgx

ORACLE 1-18

Chapter 1
Oracle Graph Server and Client Installation

1.3.5.4 Enabling the Graph Visualization Application

There are two ways you can use the Graph Visualization application:

» Standalone mode
If you install the Graph Server r pmfile, the Graph Visualization application starts up by
default when you start the PGX server.

* Custom web container mode
You can download the or acl e- gr aph- webapps- <ver si on>. zi p package which contains a
web application archive (WAR) file. You can deploy this file into your Oracle Weblogic 12.2
(or later) or Apache Tomcat (9.x or later) web containers.

See Deploying the Graph Visualization Application for more information.

The Graph Visualization application requires the Oracle Graph Server to be installed as a
prerequisite component.
See Installing Oracle Graph Server for more information.

To start the Graph Visualization application in standalone mode:

1. Start the graph server (PGX) as shown:

sudo systentt! start pgx

The Graph Visualization application starts up by default.

2. Configure your Graph Visualization application to trust the self-signed server certificate.
See Configuring a Client to Trust the Self-Signed Certificate for more information.

3. Connect to your browser for running the Graph Visualization application as shown

https://1ocal host: 7007/ ui

One of the following messages may appear:

* Your connection is not private

« Your connection is not secure

Click the Continue or Accept button to proceed.

1.3.5.5 Deploying the Graph Visualization Application

ORACLE

This section describes the various methods to deploy the Graph Visualization Application.

» Deploying the Graph Visualization Application to Apache Tomcat

» Deploying the Graph Visualization Application in Oracle WebLogic Server
The following instructions are for deploying the Graph Visualization application in Oracle
WebLogic Server 12.2.1.3. You might need to make slight modifications, as appropriate,
for different versions of the Weblogic Server.

e Configuring the Web Application Deployment Descriptor

1-19

Chapter 1
Oracle Graph Server and Client Installation

1.3.5.5.1 Deploying the Graph Visualization Application to Apache Tomcat

The following are the steps to deploy the Graph Visualization application to Apache
Tomcat.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: or acl e- gr aph- webapps- <ver si on>. zi p

2. Unzip the file into a directory of your choice.

3. Locate the . war file for deploying the Graph Visualization application to Tomcat. It
follows the naming pattern: gr aphvi z- <ver si on>- pgvi z<gr aphvi z- ver si on>-
toncat . war

4. Configure the Graph Visualization application by editing the WEB- | NF/ web. xni file
as explained in Configuring the Web Application Deployment Descriptor.

5. Copy the . war file into the Tomcat webapps directory. For example:

cp graph-server-<versi on>- pgx<versi on>. war $CATALI NA_ HOVE/ webapps/
ui . war

¢ Note:

The name you give the war file in the Tomcat webapps directory
determines the context path of the graph server application. It is
recommended naming the war file as ui . war .

6. Configure Tomcat specific settings, like the correct use of TLS/encryption
7. Ensure that port 8080 is not already in use.
8. Start Tomcat:

cd $CATALI NA_HOME
.I'bin/startup.sh

The Graph Visualization application is now listening on | ocal host : 8080/ ui .

You can connect to the server from JShell by running the following command:

$ <client_install_dir>/bin/opg-jshell --base_url https://
| ocal host: 8080/ ui -u <graphuser>

1.3.5.5.2 Deploying the Graph Visualization Application in Oracle WebLogic Server

ORACLE

The following instructions are for deploying the Graph Visualization application in
Oracle WebLogic Server 12.2.1.3. You might need to make slight modifications, as
appropriate, for different versions of the Weblogic Server.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: or acl e- gr aph- webapps- <ver si on>. zi p

1-20

https://edelivery.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/

Chapter 1
Oracle Graph Server and Client Installation

Unzip the file into a directory of your choice.

Locate the . war file for deploying the Graph Visualization application to Oracle WebLogic
Server. It follows the naming pattern: gr aphvi z- <ver si on>- pgvi z<gr aphvi z- ver si on>-
w s

Configure the Graph Visualization application by editing the VEB- | NF/ web. xnl file as
explained in Configuring the Web Application Deployment Descriptor.

Start WebLogic Server.

Start Server
cd $MWV HOWE/ user _proj ect s/ domai ns/ base_donai n
. I'bin/ startWebLogi c. sh

Enable tunneling.

In order to be able to deploy the Graph Visualization application WAR file over HTTP, you
must enable tunneling first. Go to the WebLogic admin console (by default on http://

| ocal host: 7001/ consol e). Select Environment (left panel) > Servers (left panel). Click
the server that will run Graph Visualization (main panel). Select (top tab bar), check
Enable Tunneling, and click Save.

Rebuild and deploy the gr aphvi z- <ver si on>- pgvi z<gr aphvi z- ver si on>-w s. war file.
To deploy the repackaged WAR file to WebLogic Server, use the following command,
replacing the <<...>> markers with values matching your installation:

cd $MWV HOVE/ user _proj ect s/ donai ns/ base_donai n

sour ce bin/ set Domai nEnv. sh

j ava webl ogi c. Depl oyer -admi nurl <<adm n-consol e-url>> -usernane <<adnin-
user>> -password <<adni n-password>> -depl oy -upload <<path/to>>/graphvi z-
<<ver si on>>- pgvi z<<gr aphvi z- ver si on>>. war

To undeploy, you can use the following command:

j ava webl ogi c. Depl oyer -adm nurl <<adm n-consol e-url>> -username <<adm n-
user>> -password <<adm n-passwor d>> -name <<pat h/to>>/ graphvi z-
<<ver si on>>- pgvi z<<gr aphvi z- ver si on>>. war - undepl oy

To test the deployment, navigate using your browser to: htt ps: // <<f qdn-
i p>>: <<port>>/ui .

The browser prompts for your credentials (user name and password). After you log in, the
Graph Visualization user interface (Ul) appears and the graphs from PGX is retrieved.

1.3.5.5.3 Configuring the Web Application Deployment Descriptor

ORACLE

In order to deploy the Graph Visualization application to a web server, you need to modify the
VEB- | NF/ web. xm file, present inside the Graph Visualization application deployment WAR file.

If you have installed the RPMfile, the WAR file is located inside the / opt / or acl e/ gr aph/
graphvi z directory.

If you have downloaded the or acl e- gr aph- webapps- <ver si on>. zi p package, the Graph
Visualization application WAR files for the respective web servers are located in the r oot
directory of the package.

1-21

Chapter 1
Oracle Graph Server and Client Installation

The following shows the updates required to the VEB- | NF/ web. xm file:

* Configuring Deployment Descriptor for PGQL on PGX
* Configuring Deployment Descriptor for PGQL on RDBMS

1.3.5.5.3.1 Configuring Deployment Descriptor for PGQL on PGX

To configure the Graph Visualization application to communicate with a graph server
(PGX) deployment (PGQL on PGX):

1. Edit the value for the graphvi z. dri ver. cl ass context parameter as shown:

<cont ext - par an®

<par am nanme>gr aphvi z. dri ver. cl ass</ par am nane>

<par am val ue>or acl e. pgx. graphvi z. dri ver. PgxDri ver </ par am val ue>
</ cont ext - par an»

2. Modify the pgx. base_ur| context parameter to match your PGX deployment
endpoint. Use the correct FQDN or IP address, along with the correct port.

<cont ext - par an®

<par am nane>pgx. base_ur| </ par am name>

<param val ue>http://I ocal host: 8080/ pgx</ par am val ue>
</ cont ext - par an»

< Note:

This step does not have any effect if you use graph visualization in
standalone mode (RPMinstallation). The PGX base URL is set
automatically to point to the local PGX server.

3. Disable secure cookies if using htt p:

<sessi on-confi g>
<t racki ng- node>COKI E</ t r acki ng- node>
<cooki e-confi g>
<secur e>f al se</ secur e>
<http-onl y>true</http-only>
</ cooki e- confi g>
<sessi on-ti neout >60</ sessi on-ti meout >
</ sessi on-confi g>

When the Graph Visualization application is using PGQL on PGX the application
will use your Oracle Database as identity manager by default. This means that you
log into the application using existing Oracle Database credentials (username and
password), and the actions which you are allowed to do on the graph server are
determined by the roles that have been granted to you in the Oracle Database.

1.3.5.5.3.2 Configuring Deployment Descriptor for PGQL on RDBMS

To configure the Graph Visualization application to communicate with Oracle Database
(PGQL on RDBMS):

ORACLE 1-22

Chapter 1
Oracle Graph Server and Client Installation

1. Edit the value for the graphvi z. dri ver. cl ass context parameter as shown:

<cont ext - par an®

<par am nanme>gr aphvi z. dri ver. cl ass</ par am nane>

<par am val ue>or acl e. pg. rdbns. Pgql Dri ver </ par am val ue>
</ cont ext - par an»

2. Set the context parameter graphvi z. dri ver.rdbns. j dbc_url referencing the JDBC URL
of your Oracle Database:

<cont ext - par anp

<par am nanme>gr aphvi z. dri ver. rdbns. j dbc_ur| </ par am name>

<par am val ue>j dbc: oracl e: t hi n: @vyhost : 1521/ nySer vi ce</ par am val ue>
</ cont ext - par an»

¢ Note:

Replace the URL in the example with the JDBC URL that you want to use for
user authentication.

When the Graph Visualization application is using PGQL on RDBMS, the application
displays a custom login page and the user can use their Oracle Database credentials for
user authentication, using the Oracle Database set mentioned in this step. After logging
in, you can see the graphs that you are granted to see on the Oracle Database.

1.3.5.6 Installing the Graph Zeppelin Interpreter Client

To install the graph interpreter into your local Zeppelin installation:

< Note:

The following steps were tested with Zeppelin version 0.9, and might have to be
modified with newer versions.

As a prerequisite, you must have Java 8 set in your system for installing Apache Zeppelin.
1. Download and install Apache Zeppelin.

2. Download and install Apache Groovy 2.4.x

3. Copy the following libraries:

a. Copy the libraries from the Oracle Graph Client for Apache Zeppelin package
into $ZEPPELI N_HOME/ i nt er pr et er/ pgx.

unzi p oracl e-graph-zeppelin-interpreter-21.1.0.zip -d $ZEPPELI N_HOWE/
i nterpreter/pgx

ORACLE 1-23

http://zeppelin.apache.org/download.html
http://groovy-lang.org/download.html

5.

Chapter 1
Setting Up Transport Layer Security

b. Copy the libraries inside $GROOVY_HOVE/ | i b into $ZEPPELI N_HOVE/
i nterpreter/pgx.

cp $GROOVY_HOME/ |i b/ * $ZEPPELI N_HOVE/ i nt er preter/ pgx

Configure your graph Zeppelin interpreter client application to trust the self-signed
server certificate. See Configuring a Client to Trust the Self-Signed Certificate for
more information.

Restart Zeppelin.

1.4 Setting Up Transport Layer Security

The graph server (PGX), by default, allows only encrypted connections using
Transport Layer Security (TLS). TLS requires the server to present a server certificate
to the client and the client must be configured to trust the issuer of that certificate.

Starting with Graph Server and Client Release 21.1, the RPM file installation
generates a self-signed certificate into / et ¢/ or acl e/ gr aph, which the server uses to
enable TLS by default. If self-signed certificates are sufficient for you to get started and
if your connections are only to | ocal host, you can skip to Configuring a Client to Trust
the Self-Signed Certificate .

Generating a Self-Signed Server Certificate
You can create a self-signed server certificate using the openssl command.

Configuring the Graph Server (PGX)
You must specify the path to the server certificate and the server's private key in
PEM format in the graph server (PGX) configuration file.

Configuring a Client to Trust the Self-Signed Certificate
You must configure your client application to accept the self-signed graph server
(PGX) certificate.

1.4.1 Generating a Self-Signed Server Certificate

You can create a self-signed server certificate using the openssl command.

ORACLE

The following steps show how to generate a self-signed server certificate.

1.

Go to the following directory:

cd /etc/oracl e/ graph

Execute the following commands:

openssl req -new -newkey rsa: 2048 -days 365 -nodes -x509 -subj "/
C=US/ ST=W/ St at e/ L=MyTown/ O=MyOr gani zat i on/ CN=ROOT" - keyout
ca_key.pem-out ca_certificate.pem

openssl genrsa -out server_key traditional.pem 2048

openssl pkcs8 -topk8 -in server _key traditional.pem-informpem -
out server_key. pem -outform pem - nocrypt

openssl req -new -subj "/ C=US/ ST=MySt at e/ L=MyTown/ O=MyOr gani zat i on/
CN=l ocal host" -key server_key.pem -out server.csr

chnmod 600 server _key. pem

openssl x509 -req -CA ca certificate. pem-CAkey ca_key.pem-in

1-24

Chapter 1
Setting Up Transport Layer Security

server.csr -out server_certificate.pem-days 365 - CAcreateserial
chown oracl egraph: oracl egraph server_key. pem

Note:

e The certificate mentioned in the above example will only work for the host
| ocal host . If you have a different domain, you must replace | ocal host with
your domain name.

e The above self-signed certificate is valid only for 365 days.

1.4.2 Configuring the Graph Server (PGX)

You must specify the path to the server certificate and the server's private key in PEM format
in the graph server (PGX) configuration file.

Note:

If you deploy the graph server into your web server using the web applications
download package, then this section does not apply. Please refer to the manual of
your web server for instructions on how to configure TLS.

1. Editthe file at/ et c/ oracl e/ graph/ server. conf, and specify the paths to the server
certificate and the server's private key in PEM format, as shown:

{
"port": 7007,
"enable tls": true,
"server_private key": "/etcl/oraclel/graph/server key.pent,
"server_cert": "/etcl/oraclelgraph/server _certificate. pent,
"enabl e client_authentication": false,
"working dir": "/opt/oraclel/graph/pgx/tnp_data"

}

2. Restart the graph server.

¢ Note:

* You should use a certificate issued by a certificate authority (CA) which is
trusted by your organization. If you do not have a CA certificate, you can
temporarily create a self-signed certificate and get started.

e Always use a valid certificate trusted by your organization. We do not
recommend the usage of self-signed certificates for production
environments.

ORACLE 1-25

Chapter 1
Setting Up Transport Layer Security

1.4.3 Configuring a Client to Trust the Self-Signed Certificate

You must configure your client application to accept the self-signed graph server
(PGX) certificate.

ORACLE

To configure a client to trust the self-signed certificate, the root certificate must be
imported to your Java installation local trust store.

For a Java or a Python client, you must import the root certificate to all the Java
installations used by all the clients.

" Note:

The JShell client requires Java 11.

For the Graph Visualization application, you must import the root certificate to the
system Java installation of the environment running the graph server (PGX) or the
web server serving the graph visualization application. That is, the JDK installation
which is used by the OS user running the server that serves the Graph
Visualization application.

For the Graph Zeppelin interpreter client, you must import the root certificate to the
Java installation used by the Zeppelin server.

You can import the root certificate as shown in the following step:

Execute the following command as a r oot user or with sudo:

1. For Java 8 (make sure JAVA HOME is set):

sudo keytool -inport -trustcacerts -keystore $JAVA HOVE/ jre/lib/
security/cacerts -storepass changeit -alias pgx -file /etc/
oracl e/ graph/ ca_certificate. pem -nopronpt

2. For Java 11 (make sure JAVA11 HOME is set):

sudo keytool -inport -trustcacerts -keystore $JAVALL HOVE/li b/
security/cacerts -storepass changeit -alias pgx -file /etc/
oracl e/ graph/ca_certificate. pem -nopronpt

where changei t is the sample keystore password. You can change this password
to a password of your choice. Be sure to remember this password as you will need
it to modify the certificate.

1. If you are upgrading the graph server from a previous release, you must first
delete the certificate by excecuting the following command appropriate to your
Java version. You must run the command using sudo or as a r oot user:

For Java 8:

sudo keytool -delete -alias pgx -keystore $JAVA HOVE jre/lib/
security/cacerts -storepass changeit

1-26

Chapter 1
Adding Permissions to Publish the Graph

For Java 11:

sudo keytool -delete -alias pgx -keystore $JAVAL1 HOVE |ib/security/
cacerts -storepass changeit

2. Import the new certificate as shown in the preceding step.

1.5 Adding Permissions to Publish the Graph

There are two ways by which you can view any graph in your graph server (PGX) session in
the graph visualization application.

When you log into the graph visualization tool in your browser, that will be a different session
from your JShell session or application session. To visualize the graph you are working on in
your JShell session or application session in your graph visualization session, you can
perform one of the following two steps:

1. Get the session id of your working session using the PgxSessi on API, and use that
session id when you log into the graph visualization application. This is the recommended
option.

opg4j > session.getld();
$2 ==> "898bdbc3- af 80- 49b7- 9abe- 10ace6¢9071c" //session id

or

2. Grant PGX_SESSI ON_ADD PUBLI SHED GRAPH permission and then publish the graph as
shown:

a. Grant PGX_SESSI ON_ADD PUBLI SHED GRAPH role in the database to the user visualizing
the graph as shown in the following statement:

GRANT PGX_SESSI ON_ADD_PUBLI SHED_GRAPH TO <gr aphuser >

b. Publish the graph when you are ready to visualize the graph using the publish API.

Note:

* See User Authentication and Authorization for more information on
authorization rules for Graph Server (PGX) and Client 21.1.

e See Upgrading From Graph Server and Client 20.4.x to 21.x for more
information if you are migrating to Graph Server (PGX) and Client 21.2 from
an earlier version.

ORACLE 1-27

Chapter 1
Security Best Practices with Graph Data

1.6 Security Best Practices with Graph Data

Several security-related best practices apply when working with graph data.

Sensitive Information

Graph data can contain sensitive information and should therefore be treated with the
same care as any other type of data. Oracle recommends the following considerations
when using a graph product:

* Avoid storing sensitive information in your graph if that information is not required
for analysis. If you have existing data, only model the relevant subset you need for
analysis as a graph, either by applying a preprocessing step or by using subgraph
and filtering techniques that are part of graph product.

* Model your graph in a way that vertex and edge identifiers are not considered
sensitive information.

* Do not deploy the product into untrusted environments or in a way that gives
access to untrusted client connections.

» Make sure all communication channels are encrypted and that authentication is
always enabled, even if running within a trusted network.

Least Privilege Accounts

The database user account that is being used by the in-memory analyst (PGX) to read
data should be a low-privilege, read-only account. PGX is an in-memory accelerator
that acts as a read-only cache on top of the database, and it does not write any data
back to the database.

If your application requires writing graph data and later analyzing it using PGX, make
sure you use two different database user accounts for each component.

1.7 Interactive Graph Shell

ORACLE

Both the Oracle Graph server and client packages contain an interactive command-
line application for interacting with all the Java APIs of the product, locally or on
remote computers.

This interactive graph shell dynamically interprets command-line inputs from the user,
executes them by invoking the underlying functionality, and can print results or process
them further. The graph shell provides a lightweight and interactive way of exercising
graph functionality without creating a Java application.

The graph shell is especially helpful if want to do any of the following:

e Quickly run a "one-off" graph analysis on a specific data set, rather than creating a
large application

* Run getting started examples and create demos on a sample data set
e Explore the data set, trying different graph analyses on the data set interactively

e Learn how to use the product and develop a sense of what the built-in algorithms
are good for

e Develop and test custom graph analytics algorithms

1-28

ORACLE

Chapter 1
Interactive Graph Shell

This graph shell is implemented on top of the Java Shell tool (JShell). As such, it inherits all
features provided by JShell such as tab-completion, history, reverse search, semicolon
inference, script files, and internal variables.

The graph shell connects to a graph server (PGX) specified by the - - base_ur| parameter.
When the - - base_ur| parameter is not specified, the graph shell creates a local PGX
instance, to run graph functions in the same JVM as the shell as described in Using Graph
Server Functionality as a Library.

Starting the Graph Shell
The Graph Shell uses JShell, which means the shell needs to run on Java 11 or later.

After installation, the shell executables are found in / opt / or acl e/ gr aph/ bi n after server
installation, and <CLI ENT_I NSTALL_DI R>/ bi n after the client installation.

To launch the graph shell and connect to a graph server (PGX) enter the following in your
terminal:

.I'bin/opgdj --base url https://<host>:7007 --username <graphuser>

where :
e <host >: is the server host

e <graphuser>: is the database user

< Note:

You will be prompted for the database password.

" Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can
configure the graph server to listen on a different port by changing the port value in
the server configuration file (server. conf). See Configuring the In-Memory Graph
Server (PGX) for details.

When the shell has started, the following command line prompt appears:

Opg4j >

If you have multiple versions of Java installed, you can easily switch between installations by
setting the JAVA_HOME variable before starting the shell. For example:

export JAVA HOVE=/usr/lib/jvmjava-11l-oracle

Command-line Options

To view the list of available command-line options, add - - hel p to the opg4j command:

.I'bin/opg4j --help

1-29

1.8 Using

ORACLE

Chapter 1
Using Graph Server Functionality as a Library

Batch Execution of Scripts

The graph shell can execute a script by passing the path(s) to the script(s) to the
opg4j command. For example:

.I'bin/opg4j /path/to/script.jsh

Predefined Functions
The graph shell provides the following utility functions:

e println(String): A shorthand for System.out.printin(String).

* loglevel (String | oggerName, String |evel Nane): A convenient function to set
the loglevel.

The | ogl evel function allows you to set the log level for a logger. For example,
| ogl evel ("ROOT", "INFQO') sets the level of the root logger to | NFO. This causes all
logs of | NFOand higher (WARN, ERRCR, FATAL) to be printed to the console.

Script Arguments

You can provide parameters to the script. For example:

.I'bin/opg4j /path/to/script.jsh script-arg-1 script-arg-2

In this example, the script / pat h/ t o/ scri pt . j sh can access the arguments via the
scri pt Args system property. For example:

println(SystemgetProperty("scriptArgs"))// Prints: script-arg-1 script-
arg-2

Staying in Interactive Mode

By default, the graph shell exits after it finishes execution. To stay in interactive mode
after the script finishes successfully, pass the - - keep_r unni ng flag to the shell. For
example:

.I'bin/opg4j -b https://nyserver.com 7007/ /path/to/script.jsh --
keep_running

Graph Server Functionality as a Library

The graph functions available with the graph server (PGX) can be used as a library in
your application.

After the rpm install of the graph server, all the jar files can be found in / opt/ or acl e/
graph/ 1'i b. In this case, the server installation and the client user application are in the
same machine.

For such use cases, development and testing can be done using the interactive Java
shell or the Python shell in embedded (local) mode. This means a local PGX instance
is created and runs in the same JVM as the client. If you start the shell without any
parameters it will start a local PGX instance and run in embedded mode.

1-30

ORACLE

Chapter 1
Using Graph Server Functionality as a Library

Starting the Java Shell in Embedded (local) Mode

For such use cases, development and testing can be done using the interactive Java shell in
embedded (local) mode. This means a local PGX instance is created and runs in the same
JVM as the client. If you start the shell without any parameters it will start a local PGX
instance and run in embedded mode.

Starting the Java shell to use the graph server in embedded mode is only supported in graph
shell executables available with the Graph Server installation. You can launch the Java shell
using the following commands:

cd /opt/oracl e/ graph
. I'bi n/ opg4j

The following shows the response from the graph shell :

opg4j >

The local PGX instance will try to load a PGX configuration file from:

/etcloracl e/ graph/ pgx. conf

You can change the location of the configuration file by passing the - - pgx_conf command-
line option followed by the path to the configuration file:

start local PGX instance with custom config
.I'bin/opg4j --pgx_conf <path_to_pgx.conf>

Starting the Python Shell in Embedded (local) Mode

The python client can be used in embedded mode, which means that the graph server is
running inside the client process as a library.

Note:

For this mode, the Python client and the Graph Server RPM package must be
installed on the same machine.

1. Start the Python shell.

cd /opt/oracl el graph/
. I 'bi n/ opgdpy

2. When the shell is running, you can see the following prompt on your screen

Oracle Gaph Server Shell 21.2.0
>>>

1-31

Chapter 1
Storing Graphs in Oracle Database and Loading Graphs into Memory

1.9 Storing Graphs in Oracle Database and Loading Graphs
Into Memory

You can work with graphs in two-tier mode (graph client connects directly to Oracle
Database), or three-tier mode (graph client connects to the graph server (PGX) on
the middle-tier, which then connects to Oracle Database).

Both modes for connecting to Oracle Database can be used regardless of whether the
database is autonomous or not autonomous.

The database schema storing the graph must have the privileges listed in Required
Privileges for Database Users.

If you are using the Oracle Autonomous Database, see also Using Oracle Graph with
the Autonomous Database for information about two-tier and three-tier deployments.

e Two-Tier Mode
In two-tier mode, the client graph application connects directly to Oracle Database.

e Three-Tier Mode
In three-tier mode, the client graph application connects to the graph server (PGX)
in the middle tier, and the graph server connects to Oracle Database.

1.9.1 Two-Tier Mode

In two-tier mode, the client graph application connects directly to Oracle Database.

The graph is stored in the property graph schema (see Property Graph Schema
Objects for Oracle Database).

You can use the PGQL DDL statement CREATE PROPERTY GRAPH to create a
graph from database tables and store it in the property graph schema. You can then
run PGQL queries on this graph from JShell shell, Java application, or the graph
visualization tool.

The graph can be loaded from the property graph schema into memory in the graph
server for faster processing and for using the analytics API.

1.9.2 Three-Tier Mode

ORACLE

In three-tier mode, the client graph application connects to the graph server (PGX) in
the middle tier, and the graph server connects to Oracle Database.

The graph can be loaded from the property graph schema into the graph server, or
directly from database tables into the graph server.

* Loading a Graph from Property Graph Schema:

Loading a graph from the property graph schema into memory in the graph server
is the same as in the two-tier mode.

* Loading a Graph Directly from Database Tables:

When you load the graph from database tables into memory in the graph server,
you create the graph in memory by directly reading data from the database tables.
You do not create a graph in the property graph schema.

1-32

Chapter 1
Using Oracle Graph with the Autonomous Database

For more information about loading a graph from database tables into memory, see Store
the Database Password in a Keystore.

After the graph is loaded into memory, you can run PGQL queries on this graph from JShell
shell, Java application, or the graph visualization tool. You can run graph analytics API from
JShell shell or Java application, and visualize the results in the graph visualization application
(GraphViz).

1.10 Using Oracle Graph with the Autonomous Database

Oracle Graph with the Autonomous Database allows you to create property graphs from data
in your Autonomous Database.

When using Oracle Autonomous Database in a shared deployment, you can use Graph
Studio, a powerful user interface for developing applications that use graph analysis. Using
Graph Studio, you can automate the modeling of graphs from tables in Autonomous
Database. You can interactively analyze and visualize the graph queries using advanced
notebooks with multiple visualization options. You can execute nearly 60 built-in graph
algorithms in Graph Studio to gain useful insights on your graph data. See Using Graph
Studio in Oracle Autonomous Database for more information.

Alternatively, you can use Oracle Graph Server and Client with the family of Oracle
Autonomous Database to create and work with property graphs.

This includes all versions of Oracle Autonomous Data Warehouse (shared), Oracle
Autonomous Database (shared), and Oracle Autonomous Database (dedicated).

You can connect in two-tier mode (connect directly to Autonomous Database) or three-tier
mode (connect to PGX on the middle tier, which then connects to Autonomous Database).
(For basic information about two-tier and three-tier connection modes, see Storing Graphs in
Oracle Database and Loading Graphs into Memory.)

The database schema storing the graph must have the privileges listed in Required Privileges
for Database Users.

e Two-Tier Deployments of Oracle Graph with Autonomous Database
In two-tier deployments, the client graph application connects directly to the Autonomous
Database.

* Three-Tier Deployments of Oracle Graph with Autonomous Database
In three-tier deployments, the client graph application connects to PGX in a middle tier,
and PGX connects to the Autonomous Database.

1.10.1 Two-Tier Deployments of Oracle Graph with Autonomous Database

ORACLE

In two-tier deployments, the client graph application connects directly to the Autonomous
Database.

1. Install Oracle Graph Client, as explained in Installing the Java Client.

2. Establish a JDBC connection, as described in the Oracle Autonomous Warehouse
documentation.
You must download the wallet and unzip it to a secure location. You can then reference it
when establishing the connection as shown in Example 1-1.

1-33

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E

Chapter 1
Using Oracle Graph with the Autonomous Database

3. Start the Java Shell as shown in the code:

/ bin/ opg-j shell --no_connect

4. Connect to your database as shown in Example 1-1.

" Note:

If you need to use the Graph Visualization Application, you must additionally
install the Oracle Graph Server.

e See Installing Oracle Graph Server for more details.

e See Deploying the Graph Visualization Application for more details on
deploying the Graph Visualization Application in Tomcat or Oracle
WebLogic Server.

Example 1-1 Creating a Database Connection in a Two-Tier Graph Deployment
with Autonomous Database

opg4j > var jdbcUrl = "jdbc:oracle:thin: @tns_alias>?
TNS_ADM N=<wal | et | ocation>" // jdbc url to the DB
opg4j > var user = "<user>"

opg4j > var pass = "<password>"

opg4j > var conn = DriverMnager. get Connection(jdbcU |, user, pass) //
connecting to the DB

conn ==> oracle.jdbc.driver.T4CConnecti on@7e6ch0l

In the preceding example:

* <tns_alias>: TNS alias used in t nsnanes. or a file

» <wallet_location>: Path to the directory where the wallet is stored
» <user>: Name of the database user

» <password>: Password for the user

1.10.2 Three-Tier Deployments of Oracle Graph with Autonomous

Database

ORACLE

In three-tier deployments, the client graph application connects to PGX in a middle tier,
and PGX connects to the Autonomous Database.

The wallets downloaded from the Oracle Cloud Console are mainly routing wallets,
meaning they are used to route the connection to the right database and to encrypt the
connection. In most cases, they are not auto-login wallets, so they do not contain the
password for the actual connection. The password usually needs to be provided
separately to the wallet location.

The graph server does not support a wallet stored on the client file system or provided
directly by remote users. The high level implications of this are:

1-34

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgdg/installing-oracle-graph-server.html#GUID-AEED18CC-1363-470E-9422-1151204B63A5

Chapter 1
Using Oracle Graph with the Autonomous Database

* The server administrator provides the wallet and stores the wallet securely on the
server's file system.

» Similar to Java EE connection pools, remote users will use that wallet when connecting.
This means the server administrator trusts all remote users to use the wallet. As with any
production deployments, the PGX server must be configured to enforce authentication
and authorization to establish that trust.

* Remote users still need to provide a user name and password when sending a graph
read request, just as with non-autonomous databases.

* You can only configure one wallet for each PGX server.
Having the same PGX server connecting to multiple Autonomous Databases is not
supported. If you have that use case, start one PGX server for each Autonomous Database.

Pre-loaded graphs

To read a graph from Autonomous Database into PGX at server startup, follow the steps
described in Store the Database Password in a Keystore to:

1. Create a Java Keystore containing the database password

2. Create a PGX graph configuration file describing the location and properties of the graph
to be loaded

3. Update the / opt/ oracl e/ graph/ pgx. conf file to reference the graph configuration file
As root user, edit the service file at / et ¢/ syst emd/ syst enf pgx. servi ce and specify the
environment variable under the [Service] directive:

Envi ronment =" JAVA OPTS=- Dor acl e. net.tns_adm n=/et ¢/ oracl e/ graph/wal | ets"

Make sure that the directory (/ et ¢/ or acl e/ gr aph/ wal | et s in the preceding code) is readable
by the Oracle Graph user, which is the user that starts up the PGX server when using
syst emd.

In addition, edit the ExecSt art command to specify the location of the keystore containing the
password:

ExecStart=/bi n/ bash start-server --secret-store /etc/keystore.pl2

Note:

Please note that / et ¢/ keyst or e. p12 must not be password protected for this to
work. Instead protect the file via file system permission that is only readable by
oracl egraph user.

After the file is edited, reload the changes using:

systenct| daenon-rel oad

ORACLE 1-35

ORACLE

Chapter 1
Using Oracle Graph with the Autonomous Database

Finally start the server:

sudo systenct!l start pgx

On-demand graph loading

To allow remote users of PGX to read from the Autonomous Database on demand,
you can choose from two approaches:

Provide the path to the wallet at server startup time via the or acl e. net.tns_adnin
system property. Remote users have to provide the TNS address name, username
and keystore alias (password) in their graph configuration files. The wallet is
stored securely on the graph server's file system, and the server administrator
trusts all remote users to use the wallet to connect to an Autonomous Database.

For example, the server administrator edits the service file at / et ¢/ syst entd/
syst eni pgx. servi ce and specifies the environment variable the under the
[Service] directive:

Envi ronment =" JAVA_OPTS=- Dor acl e. net . t ns_admni n=/ et ¢/ or acl e/ gr aph/
wal | et s"

and then start the server using

systentt| start pgx

The /et c/ oracl e/ graph/ wal | et s/t nsnames. or a file contains an address as
follows:

sonbrero_nedi um = (description= (retry_count=20)(retry_del ay=3)
(address=(protocol =t cps) (port=1522) (host =adb. us-

ashburn-1. oracl ecl oud. conm)

(connect _dat a=(servi ce_name=| 8| ghol gaOuj xsa_sonbr ero_nedi um adwc. ora
cl ecl oud. com) (security=(ssl_server_cert_dn="CN=adwc. uscom

east- 1. oracl ecl oud. com QU=Cracl e BMCS US, O=Cr acl e

Cor porati on, L=Redwood Gity, ST=Cal i forni a, C=US")))

Now remote users can read data into the server by sending a graph configuration
file with the following connection properties:

{
"jdbc_url": "jdbc:oracle:thin: @onbrero_mediunt,
"usernanme": "hr",
"keystore_ alias": "databasel",

}

Note that the keystore still lives on the client side and should contain the password
for the hr user referenced in the config object, as explained in Store the Database
Password in a Keystore. A similar approach works for Tomcat or WebLogic Server
deployments.

1-36

Chapter 1
Migrating Property Graph Applications from Before Release 21¢

Use Java EE connection pools in your web application server. Remote users only have to
provide the name of the datasource in their graph configuration files. The wallet and the
connection credentials are stored securely in the web application server's file system, and
the server administrator trusts all remote users to use a connection from the pool to
connect to an Autonomous Database.

You can find instructions how to set up such a data source at the following locations:
— WebLogic Server: Configuring a WebLogic Data Source to use ATP

— Tomcat: https://www.oracle.com/technetwork/database/application-development/jdbc/
documentation/atp-5073445.html#Tomcat

If you gave the data source the name adb_ds, you can the reference them by sending a
graph configuration file with the following connection properties:

{

: dét asource_id": "adb_ds",

1.11 Migrating Property Graph Applications from Before Release

21c

ORACLE

If you are migrating from a previous version of Oracle Spatial and Graph to Release 21c, you
may need to make some changes to existing property graph-related applications.

Also note that Oracle Graph Server and Client is required for property graph applications.
This can be downloaded from Oracle Software Delivery Cloud or from Oracle Downloads

page.

Security-Related Changes

The Property Graph feature contains a series of enhancements to further strengthen the
security of the property graph component of product. The following enhancements may
require manual changes to existing graph applications so that they continue to work properly.

Graph configuration files now require sensitive information such as passwords to
be stored in Java Keystore files

If you use graph configuration files you are required to use Java Keystore files to store
sensitive information such as passwords. (See Store the Database Password in a
Keystore for how to create and reference such a keystore.)

All existing graph configuration files with secrets in them must be migrated to the
keystore-based approach.

In a three-tier deployment, access to the PGX server file system requires a
directories allowlist

By default, the PGX server does not allow remote access to the local file system. This
can be explicitly allowed, though, in / et ¢/ or acl e/ gr aph/ pgx. conf by setting

allow local filesystemtotrue. If yousetallow |ocal filesystemtotrue, you must

1-37

https://blogs.oracle.com/weblogicserver/atp-database-use-with-weblogic-server-v2
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=vkBw18Qn2e8sD-qiMKBhvTE1KGzdAecEuVRxNVq-qYyUUUJsW5gO!-1637381810
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client.html

ORACLE

Chapter 1
Migrating Property Graph Applications from Before Release 21¢

also specify a list of directories that are allowed to be accessed, by setting
dat asource_dir_whitelist. For example:

"allow | ocal filesystem': true,
"datasource_dir_whitelist": ["/scratch/datal", "/scratch/data2"]

This will allow remote users to read and write data on the server's file-system from
and into / scrat ch/ datal and / scrat ch/ dat a2.

In a three-tier deployment, reading from remote locations into PGX is no
longer allowed by default

Previously, PGX allowed graph data to be read from remote locations over FTP or
HTTP. This is no longer allowed by default and requires explicit opt-in by the
server administrator. To opt-in, specify the al | owed_r enot e_| oadi ng_| ocati ons
configuration option in /et ¢/ oracl e/ graph/ pgx. conf . For example:

al l owed_renote_| oading_l ocations: ["*"]

In addition:

— The ftp and http protocols are no longer supported for loading or storing data
because they are unencrypted and thus insecure.

— Configuration files can no longer be loaded from remote locations, but must be
loaded from the local file system.

Removed shell command line options
The following command line options of the Groovy-based opg shell have been
removed and will no longer work:

— --attach - the shell no longer supports attaching to existing sessions via
command line

— --password - the shell will prompt now for the password

Also note that the Groovy-based shell has been deprecated, and you are
encourage to use the new JShell-based shell instead (see Interactive Graph
Shell).

Changes to PGX APIs
The following APIs no longer return graph configuration information:

— Serverl nstance#get G aphl nfo()
— Serverlnstance#get G aphl nf os()
— Serverlnstance#get Server State()

The REST API now identifies collections, graphs, and properties by UUID instead
of a name.

The namespaces for graphs and properties are session private by default now.
This implies that some operations that would previously throw an exception due to
a naming conflict could succeed now.

PgxG aph#publ i sh() throws an exception now if a graph with the given name has
been published before.

1-38

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.x

Migrating Data to a New Database Version

Oracle Graph Server and Client works with older database versions. (See Database
Compatibility and Restrictions for information.) If as part of your upgrade you also upgraded
your Oracle Database, you can migrate your existing graph data that was stored using the
Oracle Property Graph format by invoking the following helper script in your database after
the upgrade:

sql pl us> EXECUTE nusys. opg. nmigrate pg to_current(graph_name=>' nygraph');

The preceding example migrates the property graph mygraph to the current database
version.

Uninstalling Previous Versions of Property Graph Libraries
This is only necessary if you are using Oracle Database versions 12.2, 18c, or 19c.

Use of the Property Graph feature of Oracle Database now requires Oracle Graph Server
and Client that is installed separately. After you have completed the Graph Server and Client
installation, complete the preceding migration steps (if needed), and confirmed that
everything is working well, it is recommended that you remove the binaries of older graph
installations from your Oracle Database installation by performing the following un-install
steps:

1. Make sure the Property Graph mid-tier components are not in use on the target database
host. For example, ensure that there is no application running which uses any files
under $ORACLE_HOVE/ md/ pr oper ty_gr aph. Examples of such an application are a running
PGX server on the same host as the database or a client application that references the
JAR files under $ORACLE_HOWE/ nd/ property_graph/lib.

It is not necessary to shut down the database to perform the uninstall. The Oracle
database itself does not reference or use any files under $ORACLE_HOMVE/ nd/

property_graph.

2. Remove the files under $ORACLE_HOVE/ md/ property_graph on your database host. On
Linux, you can copy the following helper script to your database host and run it with as
the DBA operating system user: / opt / or acl e/ graph/ scri pt s/ pat ch- opg- or acl e-
hone. sh

1.12 Upgrading From Graph Server and Client 20.4.x to 21.x

ORACLE

If you are upgrading from Graph Server and Client 20.4.x to 21.x version, you may need to
create new roles in database and migrate authorization rules from pgx. conf file to the
database. Also, starting from Graph Server and Client Release 21.1, TLS is enforced at the
time of the RPM file installation.

One of the main enhancements of Graph Server and Client Release 21.1 is moving the graph
access permissions from the pgx. conf file to the database. A new set of graph roles with
default permissions are created automatically in the database, at the time of the PL/SQL
packages installation. See Table C-1 in the appendix for more details on the default
mappings.

In order to comply with this feature you must perform the database actions explained in the
following sections:

1-39

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.x

Creating additional roles in the database

The roles in the database with additional privileges are created when you install the
21.x PL/SQL packages in your database as part of the upgrade. If you are not able to
install the PL/SQL packages, for example if you are using an Autonomous Database,
see User Authentication and Authorization for more information on manually creating
these roles in the database with the default set of privileges.

Migrating authorization rules

You must execute database GRANTS for user-added mappings contained in the
pgx. conf file when upgrading to 21.x.

The following examples explain the various scenarios where migration of authorization
rules may or may not apply.

Example 1-2 Migrating user-added mappings to database

To migrate the following user-added mappings in pgx. conf file:

"aut horization": [{
"pgx_rol e": "CGRAPH_DEVELOPER',
"pgx_permssions": [{
“grant”: "PGX_SESSI ON_ADD PUBLI SHED GRAPH'
¥

GRANT

CGRANT PGX_SESSI ON_ADD_PUBLI SHED GRAPH TO GRAPH_DEVELOPER

Example 1-3 Migrating user-added file system authorization rules to database

To migrate the following user-added file system authorization rules in pgx. conf file:

"file_locations": [{
"name": "ny_hdfs_graph_data",
"l ocation": "hdfs:/datalgraphs"
H,
"aut horization": [{
"pgx_role": "GRAPH DEVELOPER',
"pgx_perm ssions": [{
"file_location": "my_hdfs_graph_data",
"grant": "read"

b

ORACLE 1-40

ORACLE

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.x

CREATE OR REPLACE DI RECTORY ny_hdfs_graph_data AS ' hdfs:/dat a/ graphs'
GRANT READ ON DI RECTORY ny_hdfs_graph_data TO GRAPH DEVELOPER

Example 1-4 User-added graph authorization rules for preloaded graphs

< Note:

No migration required for user-added graph authorization rules for preloaded
graphs.

You must not migrate user-added graph authorization rules for preloaded graphs (as shown
in the following code) as these rules continue to be configured in pgx. conf file.

"preload_graphs": [{
"path": "/datal/ny-graph.json",
"nanme": "gl obal graph"
H,
"aut horization": [{
"pgx_role": "GRAPH DEVELOPER',
"pgx_perm ssions": [{
"prel oaded _graph": "gl obal graph",
"grant": "read"

b

Self-signed TLS certificate now generated upon RPM installation

In Graph Server and Client 21.x the RPM installation generates a self-signed certificate
into / et ¢/ or acl e/ gr aph, which the server uses to enable TLS by default.

According to security best practices, access to the certificate is restricted to the or acl egr aph
operating system user. The implication of this is that you no longer can start the graph server
via the / opt / or acl e/ graph/ pgx/ bi n/ start - server script, even if your user is part of the
oracl egr aph group. Instead, manage the lifecycle of the graph server via syst enct |
commands. For example:

sudo systentt!| start pgx

Another possible option is to change the ownership of the certificate as shown:

sudo chown <youruser> /etc/oracl e/ graph/ server_key. pem

Turning off TLS is not recommended as it reduces the security of your connection. However,
if you must do so, see Disabling Transport Layer Security (TLS) in Graph Server for more
details.

1-41

Chapter 1
Using the Graph Zeppelin Interpreter Client

1.13 Using the Graph Zeppelin Interpreter Client

ORACLE

Oracle Graph provides an interpreter client implementation for Apache Zeppelin. This
tutorial topic explains how to perform simple operations using the graph Zepplin
interpreter client.

See Installing the Graph Zeppelin Interpreter Client for more details to install the graph
interpreter into your local Zeppelin installation.

Using the Interpreter

If you named the graph interpreter pgx, you can send paragraphs to the graph server
by starting the paragraphs with the %gx directive, just as with any other interpreter.

The interpreter acts like a client that talks to a remote graph server. You cannot run a
graph server instance embedded inside the Zeppelin interpreter. You must provide the
graph server base URL and connection information as illustrated in the following
example:

%pgx
i nport oracle.pgx.api.*
i nport groovy.json.*

baseUr| = '<base-url>'
usernane = '<username>'
password = ' <password>'

conn = new URL("$baseUr!/auth/token"). openConnecti on()
conn. set Request Property(' Content-Type', 'application/json')
token = conn.with {

doQutput = true

request Met hod = ' POST'

outputStreamwithWiter { witer ->

witer << JsonQutput.todson([username: username, password:

password])

return new JsonSl urper (). parseText(content.text).access token

}

i nstance = Pgx. getlnstance(baseUrl, token)
session = instance. createSession("ny-session")

The in-memory analyst Zeppelin interpreter evaluates paragraphs in the same way
that the in-memory analyst shell does, and returns the output. Therefore, any valid in-
memory analyst shell script will run in the in-memory analyst interpreter, as in the
following example:

%pgx

g_brands = session.readG aphWthProperties("/opt/datal exomerce/
brand cat.json")

g_brands. get NunVertices()

rank = anal yst. pagerank(g_brands, 0.001, 0.85, 100)

rank. get TopKVval ues(10)

1-42

ORACLE

Chapter 1
Using the Graph Zeppelin Interpreter Client

The following figure shows the results of that query after you click the icon to execute it.

B ol ¢ e

ID value

Cell Phones & Accessories 0.10107276500035282
Cases 0.060593137960391966
Basic Cases 0.058782080785810285
Accessories 0.05657872563693525

As you can see in the preceding figure, the Zeppelin interpreter automatically renders the
values returned by rank. get TopKVal ues(10) as a Zeppelin table, to make it more convenient
for you to browse results.

Besides the property values (get TopKVal ues(), get Bot t onkVal ues(), and get Val ues()), the
following return types are automatically rendered as table also if they are returned from a
paragraph:

* Pggl Resul t Set - the object returned by the queryPgql ("...") method of the PgxGr aph
class.

* Maplterabl e - the object returned by the entri es() method of the PgxMap class

All other return types and errors are returned as normal strings, just as the in-memory analyst
shell does.

For more information about Zeppelin, see the official Zeppelin documentation.

1-43

https://zeppelin.apache.org/

Quick Starts for Using Oracle Property Graph

This chapter contains quick start tutorials and other resources to help you get started on
working with Oracle property graphs.

Quick Start: Interactively Analyze Graph Data
This tutorial shows how you can quickly get started using property graph data and learn
to execute PGQL queries and run graph algorithms on the data and display results.

QuickStart: Run Graph Analytics Using the Python Shell
This tutorial shows how you can get started using property graph data using the Python
shell.

Quick Start: Using the Python Client as a Module
This section describes how to use the Python client as a module in Python applications.

Oracle LiveLabs Workshops for Graphs
You can also explore Oracle Property Graph features using the graph workshops in
Oracle LivelLabs.

2.1 Quick Start: Interactively Analyze Graph Data

This tutorial shows how you can quickly get started using property graph data and learn to
execute PGQL queries and run graph algorithms on the data and display results.

The tutorials in this section are:

Quick Start: Create and Query a Graph in the Database, Load into In-Memory Graph
Server (PGX) for Analytics

This tutorial shows how you can get started using property graph data when you create a
graph and persist it in the database. The graph can be queried in the database. This
tutorial uses the JShell client.

Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server (PGX)
This tutorial shows how you can quickly get started using property graph data when using
the in-memory graph server (PGX).

Quick Start: Executing PGQL Queries in SQLcl
This tutorial provides you resources to get started on executing PGQL Queries in SQLcl.

2.1.1 Quick Start: Create and Query a Graph in the Database, Load into In-
Memory Graph Server (PGX) for Analytics

This tutorial shows how you can get started using property graph data when you create a
graph and persist it in the database. The graph can be queried in the database. This tutorial
uses the JShell client.

ORACLE

See Create and Query a Graph in the Database for more information on creating and storing
graphs in database.

Convert existing relational data into a graph in the database.

2-1

Chapter 2
Quick Start: Interactively Analyze Graph Data

e Query this graph using PGQL.

In Load the Graph into Memory and Run Graph Analytics, you will run graph
algorithms after loading the graph into the in-memaory graph server (PGX).

* Load the graph into the in-memory graph server (PGX), run graph algorithms on
this graph, and visualize results.

Prerequisites for the following quickstart are:
* Aninstallation of Oracle Graph server (this is PGX, the in-memory graph server).

See Oracle Graph Server and Client Installation for information to download
Oracle Graph Server and Client.

» Aninstallation of Oracle Graph client

« Javall
— The in-memory graph server can work with Java 8 or Java 11.
— The JShell client used in this example requires Java 11.

For Java downloads, see https://www.oracle.com/technetwork/java/javase/
overview/index.html.

» Connection details for your Oracle Database. See Database Compatibility and
Restrictions to identify any limitations. The Property Graph feature is supported for
Oracle Database versions 12.2 and later.

» Basic knowledge about how to run commands on Oracle Database (for example,
using SQL*Pl us or SQL Devel oper).

Set up the example data
This example uses the HR (human resources) sample dataset.

» For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

* If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

e Create and Query a Graph in the Database
In this section, you will use the Oracle Graph client to create a graph from
relational tables and store it in the property graph schema in the database.

e Load the Graph into Memory and Run Graph Analytics

2.1.1.1 Create and Query a Graph in the Database

ORACLE

In this section, you will use the Oracle Graph client to create a graph from relational
tables and store it in the property graph schema in the database.

Major tasks for this tutorial:
e Start the shell
* Open a JDBC database connection

e Create a PGQL connection

2-2

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

» Write and execute the graph creation statement
* Run afew PGQL queries
Start the shell

On the system where Oracle Graph client is installed, start the shell by as follows:

cd <client-install-dir>
.I'bin/opg4j --noconnect

The - - noconnect option indicates that you are not connecting to the in-memory graph server
(PGX). You will only be connecting to the database in this example.

Note that JAVA_HOME should be set to Java 11 before you start the shell. For example:

export JAVA HOVE=/usr/lib/jvnljava-11-oracle

See Interactive Graph Shell for details about the shell.

Open a JDBC database connection

Inside the shell prompt, use the standard JDBC Java API to obtain a database connection
object. For example:

opgdj > var jdbcUrl = "<jdbc-url>" // for exanple:

j dbc: oracl e: thi n: @yhost: 1521/ nyservi ce

opg4j > var user = "<db-user>" // for exanple: hr

opg4j > var pass = "<db-pass>"

opg4j > var conn = DriverMnager. get Connection(jdbcUl, user, pass)
conn ==> oracle.jdbc.driver. T4CConnecti on@7e6¢ch01

Connecting to an Autonomous Database works the same way: provide a JDBC URL that
points to the local wallet. See Using Oracle Graph with the Autonomous Database for an
example.

Create a PGQL connection

Convert the JDBC connection into a PGQL connection object. For example:

opg4j > conn. set Aut oCommi t (f al se)
opg4j > var pggql = Pggl Connecti on. get Connecti on(conn)
pggl ==> oracl e. pg. rdbms. pgql . Pgql Connect i on@f b3d3bb

Write and execute the graph creation statement

Using a text editor, write a CREATE PROPERTY GRAPH statement that describes how the
HR sample data should be converted into a graph. Save this file as create.pgqgl at a location
of your choice. For example:

CREATE PROPERTY GRAPH hr
VERTEX TABLES (
enpl oyees LABEL enpl oyee
PROPERTI ES ARE ALL COLUWNS EXCEPT (job_id, manager id,

2-3

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

departrment _id),

)

departments LABEL depart nent

PROPERTI ES (departnent _id, department_name),
j obs LABEL job

PROPERTI ES ARE ALL COLUMWNS,
job_history

PROPERTIES (start_date, end_date),
| ocations LABEL |ocation

PROPERTI ES ARE ALL COLUWNS EXCEPT (country_id),
countries LABEL country

PROPERTI ES ARE ALL COLUWNS EXCEPT (region_id),
regi ons LABEL region

EDGE TABLES (

enpl oyees AS works_for
SOURCE enpl oyees
DESTI NATI ON KEY (manager _id) REFERENCES enpl oyees
NO PROPERTI ES,
enmpl oyees AS works_at
SOURCE enpl oyees
DESTI NATI ON depart nent s
NO PROPERTI ES,
enmpl oyees AS works_as
SOURCE enpl oyees
DESTI NATI ON j obs
NO PROPERTI ES,
departments AS managed_by
SOURCE depart ments
DESTI NATI ON enpl oyees
NO PROPERTI ES,
job_history AS for_enpl oyee
SOURCE j ob_hi story
DESTI NATI ON enpl oyees
LABEL for
NO PROPERTI ES,
job_history AS for_departnent
SOURCE j ob_hi story
DESTI NATI ON depart nents
LABEL for
NO PROPERTI ES,
job_history AS for_job
SOURCE j ob_hi story
DESTI NATI ON j obs
LABEL for
NO PROPERTI ES,
departments AS departnent | ocated_in
SOURCE depart ment s
DESTI NATI ON | ocat i ons
LABEL | ocated in
NO PROPERTI ES,
| ocations AS | ocation_located in
SOURCE | ocati ons
DESTI NATI ON countries
LABEL | ocated in
NO PROPERTI ES,

2-4

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

countries AS country located_in
SOURCE countries
DESTI NATI ON r egi ons
LABEL | ocated in
NO PROPERTI ES

Then, back in your graph shell, execute the CREATE PROPERTY GRAPH statement by sending
it to your PGQL connection. Replace <path> with the path to the directory containing the
create. pgqgl file:

opg4j > pgql . prepareSt atenent (Fi |l es. readString(Pat hs. get (" <pat h>/
create.pgql"))).execute()
$16 ==> fal se

Run a few PGQL queries

Now that you have a graph named hr, you can use PGQL to run a few queries against it
directly on the database. For example:

/1 define a little helper function that executes the query, prints the
results and properly closes the statenent

opg4j > Consumer<String> query = q -> { try(var s = pgql.prepareStatenent(q))
{ s.execute(); s.getResultSet().print(); } catch(Exception e) { throw new
Runt i meException(e); } }

query ==> $Lanbda$605/ 0x0000000100ae6440@c9e7af 2

[l print the nunber of vertices in the graph
opg4j > query. accept ("sel ect count(v) fromhr match (v)")

N +
| count(v) |
N +
| 215 |
N +

[l print the nunber of edges in the graph
opg4j > query. accept ("sel ect count(e) fromhr match ()-[e]->()")

/1 find the highest earning managers
opg4j > query. accept ("sel ect distinct mFIRST_NAME, m LAST_NAME, m SALARY
fromhr match (v: EMPLOYEE) - [: WORKS_FOR] - >(m EMPLOYEE) order by m SALARY

desc")

o i +
| mFIRST_NAME | m LAST_NAME | m SALARY |
o i +
Steven	King	24000.0
Lex	De Haan	17000.0
Neena	Kochhar	17000.0
John	Russell	14000.0

2-5

Chapter 2
Quick Start: Interactively Analyze Graph Data

Karen	Partners	13500.0
Mchael	Hartstein	13000.0
Alberto	Errazuriz	12000.0
Shelley	Higgins	12000.0
Nancy	Geenberg	12000.0
Den	Raphaely	11000.0
Gerald	Canbrault	11000.0
Eleni	Zl ot key	10500.0
Al exander	Hunol d	9000.0
Adam	Fripp	8200.0
Matthew	Weiss	8000.0
Payam	Kaufling	7900.0
Shanta	Voll man	6500.0
Kevin	Mourgos	5800.0
o e e e e e memeeaaaaa +

/1 find the average salary of accountants in the Americas

opg4j > query. accept ("sel ect avg(e. SALARY) fromhr match (e: EMPLOYEE) -
[h: WORKS_AT] - > (d: DEPARTMENT) -[:LOCATED IN]-> (:LOCATION) -

[: LOCATED INJ-> (: COUNTRY) -[:LOCATED IN-> (r:REG ON) where

r.REG ON_NAME = ' Americas' and d. DEPARTMENT_NAME = ' Accounting' ")

2.1.1.2 Load the Graph into Memory and Run Graph Analytics

ORACLE

Major tasks for this tutorial:
* Load the graph from the property graph schema into memory
» Execute algorithms and query the algorithm results

» Share the Graph with Other Sessions

Load the graph from the property graph schema into memory

In this section of the quickstart, you will load the graph stored in the Property Graphs
schema in the database into the in-memory graph server (PGX). This will enable you
to run a variety of different built-in algorithms on the graph and will also improve query
performance for larger graphs.

First, start the JShell client and connect to the in-memory graph server (PGX):

.I'bin/opg4j --base url https://<graph server host>:7007 --usernane
<graphuser >

<gr aphuser > is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

2-6

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

< Note:

For demo purposes only, if you have set enabl e_tl s tofal se inthe /etc/oracl e/
graph/ server. conf file you can use an htt p instead of ht t ps connection.

.I'bin/opg4j --base url http://<graph server host>: 7007 --username <graphuser>

This starts the shell and makes a connection to the graph server.

Note:

Always use low-privilege read-only database user accounts for PGX, as explained
in Security Best Practices with Graph Data.

Next load the graph into memory in this server.

To load the graph into memory, create a PGX graph config object, using the PGX graph
config builder API to do this directly in the shell.

The following example creates a PGX graph config object. It lists the properties to load into
memory so that you can exclude other properties, thus reducing memory consumption.

Suppl i er<G aphConfig> pgxConfig = () -> { return

G aphConfi gBui | der. f or PropertyG aphRdbns()

.setNange("hr")
.addVert exProperty
.addVert exProperty
.addVert exProperty
.addVert exProperty

(" COUNTRY_NAME", PropertyType. STRING
(" DEPARTMVENT_NAME", PropertyType. STRI NG
("FI RST_NAME", PropertyType. STRING
("LAST_NAME", PropertyType. STRING
.addVertexProperty("EMAIL", PropertyType. STRING
.addVert exProperty(" PHONE_NUMBER', PropertyType. STRI NG
.addVert exProperty(" SALARY", PropertyType. DOUBLE)
.addVertexProperty("M N_SALARY", PropertyType. DOUBLE)
.addVert exProperty(" MAX_SALARY", PropertyType. DOUBLE)
.addVert exProperty(" STREET_ADDRESS', PropertyType. STRING
.addVert exProperty("POSTAL_CODE", PropertyType. STRING
.addVertexProperty("CI TY", PropertyType. STRI NG

.addVert exProperty(" STATE_PROVI NCE", PropertyType. STRING
.addVert exProperty("REG ON_NAME', PropertyType. STRING
.setPartitionWileLoadi ng(PartitionWileLoadi ng. BY_LABEL)
. set LoadVert exLabel s(true)

. set LoadEdgeLabel (true)

Cbuiltd(); }

Now that you have a graph config object, use the following API to read the graph into PGX:

opg4j > var graph = session. readG aphWthProperties(pgxConfig.get())
graph ==> PgxGraph[name=hr, N=215, E=433, cr eat ed=1586996113457]

2-7

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

The session object is created for you automatically.

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run any built-in algorithm using a
single API invocation. For example, for pager ank:

opg4j > anal yst . pager ank(graph)
$31==> Vert exProperty[nanme=pager ank, t ype=doubl e, gr aph=hr]

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg4j > session. queryPggl ("sel ect m FI RST_NAME, m LAST_NAME, m pager ank
fromhr match (m EMPLOYEE) order by m pagerank desc linit
10").print().close()

| mFIRST_NAME | m LAST_NAME | m pagerank |

| Adam| Fripp | 0.002959240305566317

| John | Russell | 0.0028810951120575284

| Mchael | Hartstein | 0.002181365227465801
| Al exander | Hunold | 0.002082616009054747
| Den | Raphaely | 0.0020378615199327507

| Shelley | Higgins | 0.002028946863425767

| Nancy | Greenberg | 0.0017419394483596667
| Steven | King | 0.0016622985848193119

| Neena | Kochhar | 0.0015252785582170803

| Jennifer | Wialen | 0.0014263044976976823

Share the Graph with Other Sessions

After you load the graph into the in-memory graph server, you can use the publ i sh()
API to make the graph visible to other sessions, such as the graph visualization
session. For example:

opg4j > graph. publ i sh(VertexProperty. ALL, EdgeProperty.ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pager ank.

You can use the Graph Visualization Application by navigating to <ny- server -
name>: 7007/ ui / in your browser.

You can connect to a particular client session by providing the session ID when you
log into the Graph Visualization Application. You will then be able to visualize all
graphs in the session, even if they have not been published.

opg4j > session

sessi on ==> PgxSessi on[| D=5adf 83ab- 31b1- 4a0e- 8c08-
d6a95ba63eel, sour ce=pgxShel |]

2-8

Chapter 2
Quick Start: Interactively Analyze Graph Data

The session id is 5adf 83ab- 31b1- 4a0e- 8c08- d6a95ba63ee0.

Note:

You must create a server certificate to connect to the in-memory graph server
(PGX) from the Graph Visualization Application. See Setting Up Transport Layer
Security for more details.

2.1.2 Quick Start: Create, Query, and Analyze a Graph in In-Memory
Graph Server (PGX)

ORACLE

This tutorial shows how you can quickly get started using property graph data when using the
in-memory graph server (PGX).

This is for use cases where the graph is available as long as the in-memory graph server
(PGX) session is active. The graph is not persisted in the database.

* Create a graph in the in-memory graph server (PGX), directly from existing relational data
* Query this graph using PGQL in the in-memory graph server (PGX)

* Run graph algorithms in the in-memory graph server (PGX) on this graph and display
results

Prerequisites for the following quickstart are:
* Aninstallation of Oracle Graph server (this is PGX, the in-memory graph server).
See Installing Oracle Graph Server for information to download Oracle Graph Server.
* Aninstallation of Oracle Graph client.
See Installing the Java Client for information to download Oracle Graph Client.

You will authenticate yourself as the database user to the in-memory graph server, and
these database credentials are used to access the database tables and create a graph.

e Javall
— The in-memory graph server can work with Java 8 or Java 11.
— The JShell client used in this example requires Java 11.

For Java downloads, see https://www.oracle.com/technetwork/java/javase/overview/
index.html.

Major tasks for this tutorial:

e Set up the example data

e Start the shell

e Write and execute the graph creation statement

* Run afew PGQL queries

e Execute algorithms and query the algorithm results

e Share the Graph with Other Sessions

2-9

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

Set up the example data

This example uses the HR (human resources) sample dataset.

* For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

* If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

Start the shell

On the system where Oracle Graph Client is installed, start the shell as follows. This is
an example of starting a shell in remote mode and connecting to the in-memory graph
server (PGX):

.I'bin/opg4j --base url https://<graph server host>:7007 --usernane
<gr aphuser >

<gr aphuser > is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

" Note:

For demo purposes only, if you have set enabl e tls tofal seinthe/etc/
oracl e/ graph/ server. conf file you can use an htt p instead of ht t ps
connection.

.I'bin/opg4j --base url http://<graph server host>: 7007 --username
<gr aphuser >

This starts the shell and makes a connection to the graph server.

Note that, JAVA HOME should be set to Java 11 before you start the shell. For example:

export JAVA HOME=/usr/lib/jvmjava-1l-oracle

See Interactive Graph Shell for details about the shell.

Write and execute the graph creation statement

Create a graph with employees, departments, and “enpl oyee works at departnent”,
by executing a CREATE PROPERTY GRAPH statement. The following statement creates a
graph in the in-memory graph server (PGX):

opg4j > String statement =
" CREATE PROPERTY GRAPH hr_sinplified "

+ " VERTEX TABLES ("
+ " hr. enpl oyees LABEL enpl oyee

2-10

https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

+ " PROPERTI ES ARE ALL COLUWNS EXCEPT (job_id, manager _id,
departrment _id), "

+ " hr.departnents LABEL department "

+ " PROPERTI ES (departnent _id, department_nanme) "

+")"

+ " EDGE TABLES ("

+ " hr. enpl oyees AS works_at "

+ " SOURCE KEY (enpl oyee id) REFERENCES enpl oyees "

+ " DESTI NATI ON departnents "

+ " PROPERTI ES (enployee_id) "

+)"

opg-j shel | > sessi on. execut ePgql (st at enent);

To get a handle to the graph, execute:

opg4j > PgxGaph g = session. get G aph("HR_SI MPLI FI ED");

Run a few PGQL queries

You can use this handle to run PGQL queries on this graph. For example, to find the
department that “Nandita Sarchand” works for, execute:

opg4j > String query =
"SELECT dep. department _name "
+ "FROM MATCH (enp: Enpl oyee) -[:works_at]-> (dep: Departnent) "
+ "WHERE enp.first_name = 'Nandita' AND enp.last_nane = 'Sarchand "
+ "ORDER BY 1";
opg4j > Pgqgl Resul t Set resultSet = g. queryPgql (query);
opg4j > resultSet.print();

o +
| department _name |
o +
| Shipping |
o +

To get an overview of the types of vertices and their frequencies, execute:

opg4j > String query =
"SELECT | abel (n), COUNT(*) "
+ "FROM MATCH (n) "
+ "GROUP BY | abel (n) "
+ "ORDER BY COUNT(*) DESC';
opg4j > Pgqgl Resul t Set resultSet = g. queryPgql (query);
opg4j > resultSet.print();

| EMPLOYEE | 107 |
| DEPARTMENT | 27 |

2-11

ORACLE

Chapter 2
Quick Start: Interactively Analyze Graph Data

To get an overview of the types of edges and their frequencies, execute:

opg4j > String query =
"SELECT | abel (n) AS srcLbl, label(e) AS edgeLbl, Iabel(m AS

dstLbl, COUNT(*) "

+ "FROM MATCH (n) -[e]-> (m "

+ "GROUP BY srclLbl, edgelLbl, dstLbl

+ "ORDER BY COUNT(*) DESC';
opg4j > Pgqgl Resul t Set resultSet = g. queryPgql (query);
opg4j > resultSet.print();

o e e e eeeeaaas +
| srcLbl | edgeLbl | dstLbl | COUNT(*) |
o e e e eeeeaaas +
| EMPLOYEE | WORKS_AT | DEPARTMENT | 106 |
o e e e eeeeaaas +

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run each built-in algorithms using a
single API invocation. For example, for pager ank:

opg4j > anal yst . pager ank(g)
$31==> Vert exProperty[nane=pager ank, t ype=doubl e, gr aph=hr]

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg4j > session. queryPgql ("sel ect m FI RST_NAME, m LAST_NAME, m pager ank
from HR_SI MPLI FI ED mat ch (m EMPLOYEE) where m FI RST_NAME = 'Nandita’
“Y.print().close()

o e e e e e e e e e oo +
| m FIRST_NAME | m LAST_NAME | m pager ank |
o e e e e e e e e e oo +
| Nandita | Sarchand | 0.001119402985074627 |
o e e e e e e e e e oo +

In the following example, we order departments by their pager ank value. Departments
with higher pager ank values have more employees.

opg4j > session. queryPgql ("sel ect m DEPARTMENT _NAME, m pagerank from
HR_SI MPLI FI ED nmat ch (m DEPARTMENT) order by m pagerank
").print().close();

| m DEPARTMENT_NAME | m pagerank |

Manufacturing	0.001119402985074627
Construction	0.001119402985074627
Contracting	0.001119402985074627

| Operations | 0.001119402985074627 |

2-12

Chapter 2
Quick Start: Interactively Analyze Graph Data

I T Support | 0.001119402985074627

NOC | 0.001119402985074627

| T Hel pdesk | 0.001119402985074627
CGovernnment Sales | 0.001119402985074627
Retail Sales | 0.001119402985074627 |
Recruiting | 0.001119402985074627
Payrol | | 0.001119402985074627

Treasury | 0.001119402985074627
Corporate Tax | 0.001119402985074627
Control And Credit | 0.001119402985074627
Shar ehol der Services | 0.001119402985074627 |
Benefits | 0.001119402985074627

Human Resources | 0.0020708955223880596
Adm nistration | 0.0020708955223880596
Public Relations | 0.0020708955223880596
Marketing | 0.003022388059701493
Accounting | 0.003022388059701493
Executive | 0.003973880597014925

IT | 0.005876865671641792

Purchasing | 0.006828358208955224

Fi nance | 0.006828358208955224

Sales | 0.03347014925373134

Shi pping | 0.043936567164179076

Share the Graph with Other Sessions

After you load the graph into the server, you can use the publi sh() API to make the graph
visible to other sessions, such as the graph visualization session. For example:

opg4j > graph. publ i sh(VertexProperty. ALL, EdgeProperty.ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pager ank.

Ensure that the logged-in user has the privilege to publish graphs. You can do this by adding
the privilege PGX_SESSI ON_ADD PUBLI SHED GRAPH to the GRAPH_DEVELOPER role as explained in
Adding Permissions to Publish the Graph. We had given the GRAPH DEVELCOPER role to the
database user in Installing PL/SQL Packages in Oracle Database.

You can use the Graph Visualization Application by navigating to <ny- ser ver -
name>: 7007/ ui / in your browser.

You can connect to a particular client session by providing the session ID when you log into
the Graph Visualization Application. You will then be able to visualize all graphs in the
session, even if they have not been published.

opg4j > session
sessi on ==> PgxSessi on[| D=5adf 83ab- 31b1- 4a0e- 8¢c08-
d6a95ha63eel, sour ce=pgxShel |]

The session id is 5adf 83ab- 31b1- 4a0e- 8c08- d6a95ba63ee0.

ORACLE 2-13

Chapter 2
QuickStart: Run Graph Analytics Using the Python Shell

< Note:

You must create a server certificate to connect to the in-memory graph
server (PGX) from the Graph Visualization Application. See Setting Up
Transport Layer Security for more details.

2.1.3 Quick Start: Executing PGQL Queries in SQLcl

This tutorial provides you resources to get started on executing PGQL Queries in
SQLcl.

You can execute PGQL queries in SQLcl with a plugin that is available with Oracle
Graph Server and Client.

See Execute PGQL Queries in SQLcl for more details.

You can also refer to PGQL Plug-in for SQLcl PGQL Plug-in for SQLcl section in the
SQLcl documentation.

2.2 QuickStart: Run Graph Analytics Using the Python Shell

This tutorial shows how you can get started using property graph data using the
Python shell.

As a prerequisite for this quick start, you must ensure that you have completed the
following installations:

* Installing Oracle Graph Server
* Installing the Python Client
1. Start the Python shell as shown:

.I'bin/opgdpy --base_url https://local host: 7007

You are prompted to enter your username and password.

2. Verify that the Python client is connected to a remote graph server (PGX) instance
as shown:

Oracle Graph Server Shell 21.2.0

>>> jnstance

Server | nstance(enbedded: Fal se, base url: https://Iocal host: 7007
version: <oracle. pgx.conmon. Versionlnfo at 0x7fb7lalb2f 68

j cl ass=or acl e/ pgx/ common/ Ver si onl nfo j sel f =<Local Ref obj =0xadd938
at 0x7fb71a1808f 0>>)

3. Create the graph using the graph builder Python API.

>>> graph = session.create_graph_buil der().add_edge(1,
2).add_edge(2, 3).build("my_graph")

ORACLE 2-14

https://blogs.oracle.com/oraclespatial/executing-property-graph-pgql-queries-in-sqlcl
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-command-line/20.3&id=GUID-E0EFA43F-003F-4C8C-8056-54E9A428B8B7

Chapter 2
Quick Start: Using the Python Client as a Module
4. Execute any built-in algorithm on the graph. For example:

>>> anal yst. pager ank(graph)
VertexProperty(name: pagerank, type: double, graph: ny_graph)

5. Execute any PGQL queries and print the PGQL result set as shown:

>>> rs = session.query _pgqgl ("select id(x), x.pagerank frommtch (x) on

ny_graph”)

>>> rs.print()
oo +
| id(x) | pagerank |
oo +
| 1 | 0.05000000000000001 |
| 2 | 0.09250000000000003 |
| 3 | 0.12862500000000002 |
oo +

Converting PGQL result set into pandas dataframe

Additionally, you can also convert the PGQL result set to a pandas. Dat aFr ane object
using the t o_pandas() method. This makes it easier to perform various data filtering
operations on the result set and it can also be used in Lambda functions. For example,

exampl e_query = (
"SELECT n.name as nane, n.age as age
"WHERE (n)"

)
result_set = sanpl e_graph. query_pgql (exanpl e_query)
result _df = result_set.to_pandas()

result_df['age_bin'] = result_df['age'].apply(lanbda x: int(x)/20) #
create age bins based on age ranges

" Note:

To view the complete set of available Python APls, see Pypgx API.

2.3 Quick Start: Using the Python Client as a Module

This section describes how to use the Python client as a module in Python applications.

Embedded Server

You can use the python client as a module as illustrated in the following example.

ORACLE 2-15

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

ORACLE

Chapter 2
Quick Start: Using the Python Client as a Module

< Note:

For this mode, the Python client and the Graph Server RPM package must
be installed on the same machine.

i mport os
0s. envi ron[" PGX_CLASSPATH'] = "/opt/oracle/graph/lib/*"

i mport pypgx

session = pypgx. get_session()

graph = session.create_graph_builder().add edge(1l, 2).add_edge(2
3). buil d("ny_graph")

anal yst = session.create_anal yst ()

anal yst. pager ank(graph)

rs = session.query pgql ("select id(x), x.pagerank frommatch (x) on
ny_graph")

rs.print()

To execute, save the above program into a file named progr am py and run the
following command.

pyt hon3 program py

You will see the following output:

g +
| id(x) | pagerank |
g +
1	0.05000000000000001
2	0.09250000000000003
3	0.12862500000000002
g +

See Converting PGQL result set into pandas dataframe for more details on converting
a PGQL result set into pandas dataframe.

< Note:

To view the complete set of available Python APIs, see Pypgx API.

Remote Server

For this mode, all you need is the Python client to be installed. In your Python
program, you must authenticate with the remote server before you can create a
session as illustrated in the following example.

2-16

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

Chapter 2
Oracle LiveLabs Workshops for Graphs

< Note:

Replace the base_url, username, and password with values to match your
environment details.

i nport pypgx as pgx
i mport pypgx. pg. rdbns. graph_server as graph_server

base url = "https://I|ocal host:7007"
username = "scott"
password = "tiger"

instance = graph_server.get _instance(base_url, username, password)
session = instance. create_session("python_pgx_client")
print (session)

To execute, save the above program into a file named pr ogr am py and run the following
command:

pyt hon3 program py

After successful login, you'll see the following message indicating a PGX session was
created:

PgxSessi on(i d: 0bdd4828- c3cc-4cef-92c8-0f cd105416f 0, nane: python_pgx_client)

" Note:

To view the complete set of available Python APls, see Pypgx API.

2.4 Oracle LiveLabs Workshops for Graphs

You can also explore Oracle Property Graph features using the graph workshops in Oracle
LiveLabs.

See the Oracle LiveLabs Workshop for a complete example on querying, analyzing and
visualizing graphs using data stored in a free tier Autonomous Database instance. You will
provision a new free tier Autonomous Database instance, load data into it, create a graph,
and then query, analyze and visualize the graph.

ORACLE 2-17

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

Property Graph Views on Oracle Database

Tables

You can create property graph views over data stored in Oracle Database. You can perform
various graph analytics operations using PGQL on these views.

The CREATE PROPERTY GRAPH statement in PGQL can be used to create a view-like object that
contains metadata about the graph. This graph can be queried using PGQL.

The property graph views are created directly over data that exists in the relational database
tables. Since the graph is stored in the database tables it has a schema. This is unlike the
graphs created with a flexible schema, where the data is copied from the source tables to
property graph schema tables as described in Property Graph Schema Objects for Oracle
Database.

One of the main benefits of property graph views, is that all updates to the database tables
are immediately reflected in the graph.

Metadata Tables for PG Views

Each time a CREATE PROPERTY GRAPH statement is executed, metadata tables are created in
the user's own schema.

The following table describes the set of metadata tables that are created for each graph on
executing CREATE PROPERTY GRAPH statement.

All columns shown underlined in the Table 3-1 are part of the primary key of the table. Also all
columns have a NOT NULL constraint.

Table 3-1 Metadata Tables for PG Views
]

Table Name

Description

graphName_ELEM_TAB Metadata for graph element (vertex/edge) tables (one row per element table):

LES$

e ET_NAME: the name of the element table (the "alias")

. ET_TYPE: either "VERTEX" or "EDGE"

e SCHEMA NAME: the name of the schema of the underlying table
e TABLE_NAMNE: the name of underlying table

graphName_LABEL$ Metadata on labels of element tables (one row per label; one label per element table):

o LABEL_NAME: the name of the label
« ET_NAME: the name of the element table (the "alias")
. ET_TYPE: either "VERTEX" or "EDGE"

graphName_PROPERTY Metadata describing the columns that are exposed through a label (one row per property)

$

« PROPERTY_NAME: the name of the property

e ET_NAME: the name of the element table (the "alias")

. ET_TYPE: either "VERTEX" or "EDGE"

« LABEL_NAME: the name of the label that this property belongs to

e COLUWN_NAME: the name of the column (initially, only the case where property
names equal column names is allowed)

ORACLE

3-1

Chapter 3

Table 3-1 (Cont.) Metadata Tables for PG Views

__|]
Table Name Description

graphName_KEY$ Metadata describing a vertex/edge key (one row per column in the key)
e COLUWN NAME: the name of the column in the key

e COLUWN_NUMBER: the number of the column in the key
For example, in KEY (a, b, ¢), "a" has number 1, "b" has number 2 and "c" has
number 3.

. KEY TYPE: either "VERTEX" or "EDGE"
e ET_NAME: the name of the element table (the "alias")

graphName_SRC _DST_ Metadata describing the edge source/destination keys (one row per column of a key):
KEY$ < ET_NAME: the name of the element table (the "alias"), which is always an edge table
* VT _NAME: the name of the vertex table
. KEY TYPE: either "EDGE_SOURCE" or "EDGE_DESTINATION"
e ET_COLUWN_NAME: the name of the key column

e ET_COLUMN_NUMBER: the number of the column in the key.
For example, in KEY (a, b, ¢), "a" has number 1, "b" has number 2 and "c" has
number 3.

Note:

Currently, support is only for SOURCE KEY (...)
REFERENCES T1. So only the edge source/destination key
is stored.

Example 3-1 To create a Property Graph View

Consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH st udent _net work
VERTEX TABLES(
person
KEY (id)
LABEL st udent
PROPERTI ES(nane),
university
KEY (id)
PROPERTI ES(nane)
)
EDGE TABLES(
knows
key (personl, person2)
SOURCE KEY (personl) REFERENCES person
DESTI NATI ON KEY (person2) REFERENCES person
NO PROPERTI ES,
person AS student Of
key (id, university)
SOURCE KEY (id) REFERENCES person
DESTI NATI ON KEY (university) REFERENCES university

ORACLE 3-2

ORACLE

Chapter 3

NO PROPERTI ES

)
OPTI ONS (PG VI EW

The OPTI ONS clause allows the creation of a property graph view instead of the creation of
property graph schema graph. You must simply pass the CREATE PROPERTY GRAPH statement
to the execut e method:

< Note:
* You can create property graph views using the RDBMS Java API or through
SQLcl.
e You can query property graph views using the graph visualization tool or SQLcl.

« Both creation and querying of property graph views are not supported when
using Python API.

stnt . execut e(" CREATE PROPERTY GRAPH student network ...");

This results in the creation of the following metadata tables:

SQL> SELECT * FROM STUDENT _NETWORK_ELEM TABLES;

ET_NAME ET_TYPE SCHEMA NAME TABLE_NAME
PERSON VERTEX ScoTT PERSON

UNI VERSI TY VERTEX ScorT UNI VERSI TY
KNOWS EDGE ScorT KNOWS
STUDENTOF EDGE ScorT PERSON

SQL> SELECT * FROM STUDENT NETWORK_LABELS;

LABEL_NANE ET_NAME ET_TYPE
STUDENT PERSON VERTEX
UNI VERSI TY UNI VERSI TY VERTEX
KNOWS KNOWS EDGE
STUDENTOF STUDENTOF EDGE

SQL> SELECT * FROM STUDENT NETWORK_PROPERTYS:

PROPERTY_NAME ET_NAME ET_TYPE LABEL_NANME COLUWN_NANMVE
NAME PERSON VERTEX STUDENT NAMVE
NAME UNI VERSI TY VERTEX UNI VERSI TY NAMVE

SQL> SELECT * FROM STUDENT NETWORK_KEY$;

COLUWN_NAME COLUWN_NUMVBER KEY_TY ET_NAME

3-3

ORACLE

Chapter 3

1 VERTEX PERSON
1 VERTEX UNI VERSI TY

ID

PERSONL
PERSON2

ID

UNI VERSI TY

1 EDGE
2 EDGE
1 EDGE
2 EDGE

KNOWG
KNOWG
STUDENTOF
STUDENTOF

SQL> SELECT * FROM STUDENT _NETWORK_SRC DST_KEYS$:

ET_NAME VT_NAME
ET_COLUMN_NUMBER

KEY_TYPE

ET_COLUWN_NAME

KNOWS PERSON
PERSONL

KNOWS PERSON
PERSON2

STUDENTCF PERSON
ID

STUDENTOF UNI VERSI TY
UNI VERSI TY

EDGE_SOURCE

1

EDGE_DESTI NATI ON

1

EDGE_SOURCE

1

EDGE_DESTI NATI ON

1

You can now run PGQL queries on the property graph view st udent _net wor k.

3-4

Using the In-Memory Graph Server (PGX)

ORACLE

The in-memory Graph server of Oracle Graph supports a set of analytical functions.

This chapter provides examples using the in-memory Graph Server (also referred to as
Property Graph In-Memory Analytics, and often abbreviated as PGX in the Javadoc,
command line, path descriptions, error messages, and examples). It contains the following
major topics.

Overview of the In-Memory Graph Server (PGX)

The In-Memory Graph Server (PGX) is an in-memory graph server for fast, parallel graph
guery and analytics. The server uses light-weight in-memory data structures to enable
fast execution of graph algorithms.

User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both
username and password based as well as Kerberos based authentication is supported.

About Vertex and Edge IDs

Keeping the Graph in Oracle Database Synchronized with the Graph Server

You can use the Fl ashbackSynchr oni zer API to automatically apply changes made to
graph in the database to the corresponding PgxG aph object in memory, thus keeping
both synchronized.

Optimizing Graphs for Read Versus Updates in the In-Memory Graph Server (PGX)

Storing a Graph Snapshot on Disk

After reading a graph into memory using either Java or the Shell, if you make some
changes to the graph such as running the PageRank algorithm and storing the values as
vertex properties, you can store this snapshot of the graph on disk.

Executing Built-in Algorithms
The in-memory graph server (PGX) contains a set of built-in algorithms that are available
as Java APIs.

Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java and have it
automatically compiled to an efficient parallel implementation.

Creating Subgraphs

You can create subgraphs based on a graph that has been loaded into memory. You can
use filter expressions or create bipartite subgraphs based on a vertex (node) collection
that specifies the left set of the bipartite graph.

Using Automatic Delta Refresh to Handle Database Changes

You can automatically refresh (auto-refresh) graphs periodically to keep the in-memory
graph synchronized with changes to the property graph stored in the property graph
tables in Oracle Database (VT$ and GE$ tables).

Starting the In-Memory Graph Server (PGX)
This section describes the commands to start and stop the in-memory graph
server(PGX).

4-1

Chapter 4
Overview of the In-Memory Graph Server (PGX)

» Connecting to the In-Memory Graph Server (PGX)
This section explains how to connect to the in-memory graph server (PGX)
running in remote mode or when deployed as a web application on Apache
Tomcat or Oracle WebLogic Server.

* Using Graph Server (PGX) as a Library

* User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their
PGQL queries or custom graph algorithms, to complement built-in functions with
custom requirements.

* Using HAProxy for PGX Load Balancing and High Availability
HAProxy is a high-performance TCP/HTTP load balancer and proxy server that
allows multiplexing incoming requests across multiple web servers.

4.1 Overview of the In-Memory Graph Server (PGX)

The In-Memory Graph Server (PGX) is an in-memory graph server for fast, parallel
graph query and analytics. The server uses light-weight in-memory data structures to
enable fast execution of graph algorithms.

There are multiple options to load a graph into the graph server either from Oracle
Database or from files.

The graph server can be deployed standalone (it includes an embedded Apache
Tomcat instance), or deployed in Oracle WebLogic Server or Apache Tomcat.

» Design of the In-Memory Graph Server (PGX)
* Usage Modes of the In-memory Graph Server (PGX)

4.1.1 Design of the In-Memory Graph Server (PGX)

ORACLE

The design of the in-memory graph server (PGX) is based on a Server-Client usage
model. See Usage Modes of the In-memory Graph Server (PGX) for more details on
the different graph server (PGX) execution modes.

The following figure shows the graph server (PGX) design:

4-2

ORACLE

Chapter 4
Overview of the In-Memory Graph Server (PGX)

Figure 4-1 Graph Server (PGX) Design

Client#1 Client#2

(session) (session)

request
response

Engine &

PGX
(Server)

(Thread-pools)

The core concepts of the graph server (PGX) design are as follows

e Multiple graph clients can connect to the in-memory graph server at the same time.

e Each client request are processed by the graph server asynchronously. The client
requests are queued up first and processed later, when resources are available. The
client can poll the server to check if a request has been finished.

e Internally, the server maintains its own engine (thread pools) for running parallel graph
algorithms and queries. The engine tries to process each analytics request concurrently
with as many threads as possible.

Isolation Between Concurrent Clients

The graph server (PGX) supports data isolation between concurrent clients. Each client has
its own private workspace, called session. Sessions are isolated from each other. Each client
can load a graph instance into its own session, independently from other clients.

If multiple clients load the same graph instance the graph server can share one graph
instance between multiple clients under the hood. Each client can add additional vertex or
edge properties to a loaded graph in its own session. Such properties are transient
properties, and are private to each session and not visible to another session as shown in the
following figure:

4-3

Chapter 4
Overview of the In-Memory Graph Server (PGX)

Figure 4-2 Session and Transient Properties

Client #1 Client #2

Shared

Graph A

PropB Prop B

Transient Transient

Similarly, if a client creates a mutated version of the loaded graph, the graph server will
create a private graph instance for that client.

4.1.2 Usage Modes of the In-memory Graph Server (PGX)

This section presents an overview of the different usage modes of the graph server
(PGX). The graph server can be executed in one of the following usage modes.

Remote Server Mode

In the remote server mode, the main PGX execution engine is deployed as a RESTful
application on a powerful server machine, and you can connect to it remotely from
your machine using graph shell. Also, multiple clients can connect to the same graph
server (PGX) at the same time and therefore the graph server is time-shared among
these clients.

The following figure shows the graph server (PGX) in a remote execution mode:

Figure 4-3 Remote Server Mode

User Interaction

PGX-Shell
(Client)

ORACLE" 4-4

Chapter 4
User Authentication and Authorization

The remote server mode is useful for the following situations where you want to:

» Perform graph analysis on a large data set with a powerful server-class machine that has
many cores and a large memory.

* The server-class machine is shared by multiple clients.

See Starting the In-Memory Graph Server (PGX) for instructions on how to start the graph
server (PGX) in remote server mode.

Using Graph Server (PGX) as a Library
You can also include the graph server (PGX) as a normal Java library in your application.

The following figure shows the graph server (PGX) used as a library in an application:

Figure 4-4 PGX as a Library

User Application

PGX

The embedded mode is useful when you want to build an application having graph analsis as
a part of its functionality.

See Using Graph Server (PGX) as a Library for more information.

Deploying Graph Server (PGX) as Servlet Web Application

You can deploy the graph server (PGX) as a web application using Apache Tomcat or Oracle
WebLogic Server.

See Deploying Oracle Graph Server to a Web Server for instructions to deploy the graph
server (PGX) in Apache Tomcat or Oracle WebLogic Server.

4.2 User Authentication and Authorization

ORACLE

The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both
username and password based as well as Kerberos based authentication is supported.

The actions that you are allowed to do on the graph server are determined by the privileges
enabled by roles that have been granted to you in the Oracle Database.

* Privileges and Roles in Oracle Database
All database users that work with graphs require the CREATE SESSI ON privilege in the
database.

4-5

Chapter 4
User Authentication and Authorization

» Basic Steps for Using an Oracle Database for Authentication
You can follow the steps explained in this section to authenticate users to the
graph server (PGX).

* Prepare the Graph Server for Database Authentication
Locate the pgx. conf file of your installation.

e Connect to the Server from JShell with Database Authentication
You can use the JShell client to connect to the server in remote mode, using
database authentication.

* Read Data from the Database
Once logged in, you can now read data from the database into the graph server
without specifying any connection information in the graph configuration.

e Store the Database Password in a Keystore

e Token Expiration
By default, tokens are valid for 1 hour.

e Advanced Access Configuration
You can customize the following fields inside the pgx_r eal mblock in the pgx. conf
file to customize login behavior.

* Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you
defined the access rules in your pgx.conf file.

* Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

* Kerberos Enabled Authentication
The graph server (PGX) can authenticate users using an Oracle Database with
Kerberos enabled as identity provider.

4.2.1 Privileges and Roles in Oracle Database

ORACLE

All database users that work with graphs require the CREATE SESSI ON privilege in the
database.

Roles that are created for working with graphs are in Table 4-1. These roles are
created when you install the PL/SQL package of the Oracle Graph Server and Client
distribution on the target database.

Table 4-1 Privileges and Roles in Oracle Database
|

Role Operations enabled by this role Used By

PGX_SESSI ON_CREATE Create a new PGX session using the Graph developers and
Serverinstance.createSession API. graph users

PGX_SERVER CGET_INFO Get status information on the PGX Users who administer
instance using the Admin API. PGX

PGX_SERVER MANAGE Manage the PGX instance using the Users who administer

(i ncl udes Admin API to stop or restart PGX. PGX

PGX_SERVER GET_| NFO)

4-6

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html

Chapter 4
User Authentication and Authorization

Table 4-1 (Cont.) Privileges and Roles in Oracle Database

___|
Role Operations enabled by this role Used By

PGX_SESSI ON_NEW GRAPH Create a new graph in PGX by loading Graph developers and

from the database using a config file, graph users
using the CREATE PROPERTY GRAPH

statement in PGQL, creating a sub-graph

from another graph, or using the

GraphBuilder.

PGX_SESSI ON_GET_PUBLI Query and view graphs published by Graph developers and
SHED GRAPH another user to the public namespace. graph users

PGX_SESS|I ON_ADD PUBLI Publish a graph to the public namespace. Graph developers
SHED GRAPH (i ncl udes
PGX_SESSI ON_GET_PUBLI

SHED GRAPH)

PGX_SESSI ON_COWPI LE_A Compile an algorithm using the PGX Graph developers
LGORI THM Algorithm API.

PGX_SESSI ON_READ_MCDE Load and use an ML model using PgxML. Graph developers
L

PGX_SESSI ON_MODI FY_MO Create, train, and store an ML model Graph developers
DEL using PgxML.

Few additional roles are also created to group multiple roles together. They provide a
convenient way to grant multiple roles to database users. See Mapping Graph Server Roles

toD

You
and

efault Privileges for more information on these additional roles.

can create additional groups that are useful for your application, as described in Adding
Removing Roles and Defining Permissions for Individual Users.

4.2.2 Basic Steps for Using an Oracle Database for Authentication

You
(PG

1.

ORACLE

can follow the steps explained in this section to authenticate users to the graph server
X).

Use an Oracle Database version that is supported by Oracle Graph Server and Client:
version 12.2 or later, including Autonomous Database.

Be sure that you have ADMIN access (or SYSDBA access for non-autonomous
databases) to grant and revoke users access to the graph server (PGX).

Be sure that all existing users to which you plan to grant access to the graph server have
at least the CREATE SESSION privilege granted.

Be sure that the database is accessible via JDBC from the host where the Graph Server
runs.

As ADMIN (or SYSDBA on non-autonomous databases), run the following procedure to
create the roles required by the graph server:

4-7

ORACLE

Chapter 4
User Authentication and Authorization

< Note:

You can skip this step if you install the PL/SQL packages as part of the
Oracle Graph Server and Client installation. All the roles shown in the
following code are created as part of the PL/SQL installation
automatically. You need to add them separately only if you are using
Oracle Graph Server and Client with Autonomous Database. You can
run this code using Database Actions in Oracle Cloud Infrastructure
Console.

DECLARE
PRAGVA AUTONOMOUS_TRANSACTI ON,
rol e_exi sts EXCEPTI ON,
PRAGVA EXCEPTI ON_I NI T(rol e_exists, -01921);
TYPE graph_roles_table 1S TABLE OF VARCHAR2(50);
graph_rol es graph_rol es_table;
BEG N
graph_roles : = graph_rol es_tabl g(
' GRAPH_DEVELOPER
' GRAPH_ADM NI STRATCR
' GRAPH_USER ,
" PGX_SESSI ON_CREATE'
' PGX_SERVER GET_| NFO ,
" PGX_SERVER _MANAGE' ,
' PGX_SESSI ON_READ_MODEL'
' PGX_SESSI ON_MODI FY_MODEL"
" PGX_SESSI ON_NEW GRAPH ,
' PGX_SESSI ON_GET_PUBLI SHED_GRAPH ,
' PGX_SESSI ON_COWPI LE_ALGORI THM
" PGX_SESSI ON_ADD PUBLI SHED GRAPH);
FOR elemIN 1 .. graph_roles.count LOOP

BEG N
dbns_output.put line('create graph roles: ' || elem|]| ":
CREATE ROLE ' || graph_roles(elem);
EXECUTE | MVEDI ATE ' CREATE ROLE ' || graph_rol es(eleny;
EXCEPTI ON

WHEN rol e_exists THEN
dbns_output.put _line(' create_graph roles: role already
exi sts. continue');
VWHEN OTHERS THEN
RAI SE;
END;
END LOCP;
EXCEPTI ON
when ot hers then
dbms_out put. put _line('create_graph_roles: hit error ');
raise;
END;
/

Assign default permissions to the roles GRAPH_DEVELOPER, GRAPH_USER
and GRAPH_ADMINISTRATOR to group multiple permissions together.

4-8

GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT

Chapter 4
User Authentication and Authorization

Note:

You can skip this step if you install the PL/SQL packages as part of the Oracle
Graph Server and Client installation. All the grants shown in the following code
are executed as part of the PL/SQL installation automatically. You need to
execute these grants separately only if you are using Oracle Graph Server and
Client with Autonomous Database. You can run this code using Database
Actions in Oracle Cloud Infrastructure Console.

PGX_SESS| ON_CREATE TO GRAPH ADM NI STRATOR,
PGX_SERVER GET | NFO TO GRAPH_ADM NI STRATOR;
PGX_SERVER MANAGE TO GRAPH_ADM NI STRATOR;

PGX_SESS| ON_CREATE TO GRAPH DEVELOPER;

PGX_SESSI ON_NEW GRAPH TO GRAPH DEVELOPER;

PGX_SESSI ON_GET_PUBLI SHED GRAPH TO GRAPH_DEVELOPER:
PGX_SESSI ON_MODI FY_MODEL TO GRAPH_DEVELOPER:
PGX_SESS| ON_READ MODEL TO GRAPH_DEVELOPER:
PGX_SESSI ON_CREATE TO GRAPH_USER;

PGX_SESSI ON_GET_PUBLI SHED GRAPH TO GRAPH_USER:

7. Assign roles to all the database developers who should have access to the graph server
(PGX). For example:

GRANT

graph_devel oper TO <graphuser >

where <gr aphuser > is a user in the database. You can also assign individual permissions
(roles prefixed with PGX) to users directly.

8. Assign the administrator role to users who should have administrative access. For
example:

GRANT

graph_adm nistrator to <admi nistratoruser>

where <admi ni strat or user > is a user in the database.

4.2.3 Prepare the Graph Server for Database Authentication

Locate the pgx. conf file of your installation.

ORACLE

If you installed the graph server via RPM, the file is located at: / et ¢/ or acl e/ gr aph/ pgx. conf

If you use the webapps package to deploy into Tomcat or WebLogic Server, the pgx. conf file
is located inside the web application archive file (WAR file) at: EB- | NF/ cl asses/ pgx. conf

Tip: On Linux, you can use vim to edit the file directly inside the WAR file without unzipping it
first. For example:

Vi m graph- server-<versi on>- pgx<ver si on>. war

4-9

Chapter 4
User Authentication and Authorization

Inside the pgx. conf file, locate the j dbc_url line of the realm options:

: .pégx_r ealm': {

"inplementation": "oracle.pg.identity.DatabaseReal nf',
"options": {
“jdbc_url": "<REPLACE- W TH DATABASE- URL- TO- USE- FOR- AUTHENTI CATI ON>",

"t oken_expiration_seconds": 3600,

Replace the text with the JIDBC URL pointing to your database that you configured in
the previous step. For example:

"pgx_real m': {
“inplementation": "oracle.pg.identity.DatabaseReal ni',
"options": {
"jdbc_url": "jdbc:oracl e:thin: @yhost: 1521/ nyservice",

"t oken_expiration_seconds": 3600,

If you are using an Autonomous Database, specify the JDBC URL like this:

"pgx_real nf': {
"inplementation": "oracle.pg.identity.DatabaseReal ni',
"options": {

"jdbc_url": "jdbc:oracle:thin:@y_identifier | ow?TNS ADM N=/ et ¢/
oracl e/ graph/ wal | et",
"t oken_expiration_seconds": 3600,

where / et c/ oracl e/ graph/ wal | et is an example path to the unzipped wallet file that
you downloaded from your Autonomous Database service console, and

my_i dentifier_| owis one of the connect identifiers specified in / et ¢/ or acl e/ gr aph/
wal | et/ t nsnanes. or a.

Now, start the graph server. If you installed via RPM, execute the following command
as aroot user or with sudo:

sudo systenttl start pgx

4.2.4 Connect to the Server from JShell with Database Authentication

You can use the JShell client to connect to the server in remote mode, using database
authentication.

To connect to the server in remote mode:

.I'bin/opg4j --base url https://local host:7007 --usernane <database user>

You will be prompted for the database password.

ORACLE 4-10

Chapter 4
User Authentication and Authorization

If you are using a Java client program, you can connect to the server as shown in the
following example:

i mport oracl e. pg. rdbms. *
i nport oracle. pgx.api.*

Serverlnstance instance = GaphServer.getlnstance("https://local host:7007",
"<dat abase user>", "<database password>");
PgxSessi on session = instance. createSession("nmy-session");

Internally, users are authenticated with the graph server using JSON Web Tokens (JWT). See
Token Expiration for more details about token expiration.

4.2.5 Read Data from the Database

ORACLE

Once logged in, you can now read data from the database into the graph server without
specifying any connection information in the graph configuration.

Your database user must exist and have read access on the graph data in the database.

For example, the following graph configuration will read a property graph named hr into
memory, authenticating as <dat abase user >/ <dat abase passwor d> with the database:

G aphConfig config = G aphConfi gBuil der. forPropertyG aphRdbns()
.set Nane("hr")
.addVertexProperty("FI RST_NAME", PropertyType. STRING
.addVert exProperty("LAST_NAME", PropertyType. STRING
.addVertexProperty("EMAIL", PropertyType. STRI NG
.addVertexProperty("CITY", PropertyType. STRING
.setPartitionWileLoadi ng(PartitionWhileLoadi ng. BY LABEL)
. set LoadVert exLabel s(true)
. set LoadEdgeLabel (true)
Cbuild();

PgxGraph hr = session.readG aphWthProperties(config);

The following example is a graph configuration in JSON format that reads from relational
tables into the graph server, without any connection information being provided in the
configuration file itself:

{

"name":"hr",
"vertex_id_strategy":"no_ids",
"vertex_providers":|[
{
"name": " Enpl oyees”,
"format":"rdbns",
"dat abase_t abl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE_I D',

"key_type":"string",
"props”:|

4-11

ORACLE

Chapter 4
User Authentication and Authorization

"name": " FI RST_NAME",
"type":"string"

"name": " LAST NAME",
"type":"string"

"nane": " Departnents"”,
"format":"rdbms",
"dat abase_t abl e_nane": " DEPARTMENTS",
"key_col um": " DEPARTMVENT I D',
"key_type":"string",
"props":|

{

"name": " DEPARTMENT _NAME",

"type":"string"

}
1,
"edge_providers":|
{
"name": " Wor ksFor",
"format":"rdbms",
"dat abase_tabl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"source_col um": "EMPLOYEE | D',
"destination_colum":"EMPLOYEE | D",
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Enpl oyees"

"name": " Wr ksAs",

"format":"rdbms",

"dat abase_tabl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"source_col um": "EMPLOYEE | D',
"destination_colum":"JOB ID',
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Jobs"

For more information about how to read data from the database into the graph server,
see Store the Database Password in a Keystore.

4-12

Chapter 4
User Authentication and Authorization

4.2.6 Store the Database Password in a Keystore

ORACLE

PGX requires a database account to read data from the database into memory. The account
should be a low-privilege account (see Security Best Practices with Graph Data).

As described in Read Data from the Database, you can read data from the database into the

graph server without specifying additional authentication as long as the token is valid for that

database user. But if you want to access a graph from a different user, you can do so, as long
as that user's password is stored in a Java Keystore file for protection.

You can use the keyt ool command that is bundled together with the JDK to generate such a
keystore file on the command line. See the following script as an example:

Add a password for the 'databasel' connection

keyt ool -inportpass -alias databasel -keystore keystore.pl2
1. Enter the password for the keystore

2. Enter the password for the database

Add anot her password (for the 'database2' connection)
keyt ool -inportpass -alias database2 -keystore keystore.pl2

List what's in the keystore using the keytool
keytool -list -keystore keystore.pl2

If you are using Java version 8 or lower, you should pass the additional parameter -
storetype pkcsl2 to the keytool commands in the preceding example.

You can store more than one password into a single keystore file. Each password can be
referenced using the alias name provided.

» Either, Write the PGX graph configuration file to load from the property graph schema
* Or, Write the PGX graph configuration file to load a graph directly from relational tables
* Read the data

e Secure coding tips for graph client applications

Either, Write the PGX graph configuration file to load from the property graph schema

Next write a PGX graph configuration file in JSON format. The file tells PGX where to load
the data from, how the data looks like and the keystore alias to use. The following example
shows a graph configuration to read data stored in the Oracle property graph format.

{
"format": "pg",
"db_engi ne": "rdbns",
"name": "hr",
"jdbc_url": "jdbc:oracle:thin: @yhost:1521/orcl",

"usernane": "hr",
"keystore alias": "databasel",
"vertex_props": [{
"name": " COUNTRY_NAME",
"type": "string"
oA
"name": " DEPARTMENT _NAME',

4-13

ORACLE

Chapter 4
User Authentication and Authorization

"type": "string"
boA

"name": " SALARY",

"type": "double"

H,
"partition_while_|oading": "by_label",
"l oadi ng": {
"l oad_vertex_|abel s": true,
"| oad_edge_| abel ": true
}

}

(For the full list of available configuration fields, including their meanings and default
values, see Graph Configuration Options.)

Or, Write the PGX graph configuration file to load a graph directly from relational
tables

The following example loads a subset of the HR sample data from relational tables
directly into PGX as a graph. The configuration file specifies a mapping from relational
to graph format by using the concept of vertex and edge providers.

¢ Note:

Specifying the vert ex_provi ders and edge_provi der s properties loads the
data into an optimized representation of the graph.

“name": "hr",

"jdbc_url":"jdbc:oracle:thin: @yhost: 1521/ orcl ",
“usernane": "hr",

"keystore alias":"databasel",

"vertex_id strategy": "no_ids",
"vertex_providers":|

{
"name": " Enpl oyees",
“format": "rdbns",
"dat abase_t abl e_name": " EMPLOYEES",
"key_col um": " EMPLOYEE_| D",
"key type": "string",
“props":|
{
"name": " FI RST_NAME",

"type":"string"

B

{
"name": " LAST_NAME",
"type":"string"

B

{

"nane": " EMAI L",
"type":"string"

4-14

“name": " SALARY",

"type": "l ong"

"name": " Jobs",
"format":"rdbms",
"dat abase_tabl e _nane":"JOBS',
"key_colum":"JOB I D',
"key_type": "string",
"props":|

{

"name":"JOB_TI TLE",

"type":"string"

"nane": " Departnents"”,
"format":"rdbms",
"dat abase_t abl e_nane": " DEPARTMENTS",
"key_col um": " DEPARTMVENT I D',
"key_type": "string",
"props":|

{

"name": " DEPARTMENT _NAME",

"type":"string"

}
1,
"edge_providers":|
{
"name": " WrksFor",
"format":"rdbms",
"dat abase_tabl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"source_col um": "EMPLOYEE | D',
"destination_colum":"EMPLOYEE | D",
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Enpl oyees"

"name": " Wor ksAs",

"format":"rdbms",

"dat abase_tabl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"source_col um": "EMPLOYEE | D',
"destination_colum":"JOB ID',
"source_vertex_provider":"Enpl oyees",

"destination_vertex_provider":"Jobs"

ORACLE

Chapter 4
User Authentication and Authorization

4-15

ORACLE

Chapter 4
User Authentication and Authorization

"name": " WorkedAt ",
"format":"rdbms",
"dat abase_table_nane":"JOB_H STORY",
"key_col um": "EMPLOYEE | D",
"source_col um": "EMPLOYEE | D',
"destination_col um": " DEPARTMENT | D',
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Departments",
"props":|
{
"name": " START_DATE",
"type":"local date"
b
{
"nanme": "END_DATE",
"type":"local date"

Read the data

Now you can instruct PGX to connect to the database and read the data by passing in
both the keystore and the configuration file to PGX, using one of the following
approaches:

Interactively in the graph shell

If you are using the graph shell, start it with the - - secr et _st or e option. It will
prompt you for the keystore password and then attach the keystore to your current
session. For example:

cd /opt/oracl e/ graph
.I'bin/opg4j --secret_store /etc/my-secrets/keystore.pl2

enter password for keystore /etc/my-secrets/keystore. pl2:

Inside the shell, you can then use normal PGX APIs to read the graph into
memory by passing the JSON file you just wrote into the
readG aphW t hProperties API:

opg4j > var graph = session.readG aphWthProperties("config.json")
graph ==> PgxGaph[name=hr, N=215, E=415, cr eat ed=1576882388130]

As a PGX preloaded graph

As a server administrator, you can instruct PGX to load graphs into memory upon
server startup. To do so, modify the PGX configuration file at / et ¢/ or acl e/ gr aph/
pgx. conf and add the path the graph configuration file to the prel oad_graphs
section. For example:

{

4-16

Chapter 4
User Authentication and Authorization

"prel oad_graphs": [{
“name": "hr",
“path": "/path/to/config.json"
H,
"aut horization": [{
"pgx_role": "GRAPH DEVELCOPER',
"pgx_permssions": [{
"“prel oaded_graph": "hr",
"grant": "read"
}H
¥

]

As root user, edit the service file at / et ¢/ syst emd/ syst en pgx. servi ce and change the
ExecSt art command to specify the location of the keystore containing the password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.pl2

Note:

Please note that / et ¢/ keyst or e. p12 must not be password protected for this to
work. Instead protect the file via file system permission that is only readable by
oracl egraph user.

After the file is edited, reload the changes using:

sudo systenttl daenon-rel oad

Finally start the server:

sudo systenct!l start pgx

* InaJava application
To register a keystore in a Java application, use the r egi st er Keyst ore() API on the
PgxSessi on object. For example:

i mport oracl e. pgx. api . *;
class Main {

public static void main(String[] args) throws Exception {
String baseUrl = args[0];
String keystorePath = "/etc/ny-secrets/keystore. pl2";
char[] keystorePassword = args[1].toCharArray();
String graphConfigPath = args[2];
Serverlnstance instance = Pgx. getlnstance(baseUrl);
try (PgxSession session = instance.createSession("ny-session")) {
session. regi st er Keyst or e(keyst orePat h, keystorePassword);

ORACLE 4-17

Chapter 4
User Authentication and Authorization

PgxGraph graph =
sessi on. readG aphW t hProperti es(graphConfi gPath);
Systemout.printIn("N =" + graph.getNunVertices() + " E="
+ graph. get NunEdges());
}
}
}

You can compile and run the preceding sample program using the Oracle Graph
Client package. For example:

cd $GRAPH CLI ENT

/1 create Main.java with above contents

javac -cp 'lib/*" Min.java

java -cp ".:conf:lib/*" Main http://nmyhost: 7007 MyKeyst orePassword
pat h/to/ config.json

Secure coding tips for graph client applications

When writing graph client applications, make sure to never store any passwords or
other secrets in clear text in any files or in any of your code.

Do not accept passwords or other secrets through command line arguments either.
Instead, use Consol e. ht nl #r eadPasswor d() from the JDK.

4.2.7 Token Expiration

ORACLE

By default, tokens are valid for 1 hour.

Internally, the graph client automatically renews tokens which are about to expire in
less than 30 minutes. This is also configurable by re-authenticating your credentials
with the database. By default, tokens can only be automatically renewed for up to 24
times, then you need to login again.

If the maximum amount of auto-renewals is reached, you can log in again without
losing any of your session data by using the G aphSer ver #r eaut henti cat e
(instance, "<user>", "<password>") API.

" Note:

If a session time out occurs before you re-authenticate, then you may lose
your session data.

For example:

opg4j > var graph = session.readG aphWthProperties(config) // fails
because token cannot be renewed anynore

opg4j > GraphServer.reauthenticate(instance, "<user>", "<password>") //
log in again

opg4j > var graph = session.readG aphWthProperties(config) Il

4-18

Chapter 4
User Authentication and Authorization

wor ks now

4.2.8 Advanced Access Configuration

ORACLE

You can customize the following fields inside the pgx_r eal mblock in the pgx. conf file to
customize login behavior.

Table 4-2 Advanced Access Configuration Options

Field Name Explanation Default

t oken_expiration_seconds After how many seconds the 3600 (1 hour)
generated bearer token will
expire.

connect _timeout_mlliseco After how many milliseconds an 10000

nds connection attempt to the

specified JDBC URL will time
out, resulting in the login attempt
being rejected.

max_pool _si ze Maximum number of JDBC 64
connections allowed per user. If
the number is reached, attempts
to read from the database will fail
for the current user.

Max_num users Maximum number of active, 512
signed in users to allow. If this
number is reached, the graph
server will reject login attempts.

max_num t oken_refresh Maximum amount of times a 24
token can be automatically
refreshed before requiring a login
again.

To configure the refresh time on the client side before token expiration, use the following API
to login:

int refreshTi meBef oreTokenExpiry = 900; // in seconds, default is 1800 (30 ninutes)
Serverlnstance instance = G aphServer. getlnstance("https://local host:7007", "<database
user>", "<database password>",

ref reshTi meBef or eTokenExpiry);

Note:

The preceding options work only if the realm implementation is configured to be
oracl e.pg.identity. Dat abaseReal m

e Customizing Roles and Permissions
You can fully customize the permissions to roles mapping by adding and removing roles
and specifying permissions for a role. You can also authorize individual users instead of
roles.

4-19

Chapter 4
User Authentication and Authorization

4.2.8.1 Customizing Roles and Permissions

You can fully customize the permissions to roles mapping by adding and removing
roles and specifying permissions for a role. You can also authorize individual users
instead of roles.

This topic includes examples of how to customize the permission mapping.

e Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by
modifying the authorization list.

e Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for
individual users.

e Defining Permissions to Use Custom Graph Algorithms
You can define permissions to allow developers to compile custom graph
algorithms.

4.2.8.1.1 Adding and Removing Roles

You can add new role permission mappings or remove existing mappings by modifying
the authorization list.

For example:

CREATE ROLE MY_CUSTOM ROLE 1
GRANT PGX_SESSI ON_CREATE TO MY_CUSTOM ROLE1
GRANT PGX_SERVER GET_| NFO TO MY_CUSTOM ROLE1
GRANT MY_CUSTOM ROLEL TO SCOTT
4.2.8.1.2 Defining Permissions for Individual Users

In addition to defining permissions for roles, you can define permissions for individual
users.

For example:

GRANT PGX_SESSI ON_CREATE TO SCOTT
GRANT PGX_SERVER GET_| NFO TO SCOTT

4.2.8.1.3 Defining Permissions to Use Custom Graph Algorithms

You can define permissions to allow developers to compile custom graph algorithms.

For example,

® Add the following static permission to the list of permissions:

GRANT PGX_SESSI ON_COVPI LE_ALGORI THV TO GRAPH_DEVELOPER

ORACLE 4-20

Chapter 4
User Authentication and Authorization

4.2.9 Revoking Access to the Graph Server

To revoke a user's ability to access the graph server, either drop the user from the database
or revoke the corresponding roles from the user, depending on how you defined the access
rules in your pgx.conf file.

For example:

REVOKE graph_devel oper FROM scott

Revoking Graph Permissions

If you have the MANAGE permission on a graph, you can revoke graph access from users or
roles using the PgxG aph#r evokePer mi ssi on API. For example:

PgxGraph g = ...

g. revokePer m ssi on(new PgxRol e(" GRAPH DEVELOPER")) // revokes previously
granted rol e access

g. revokePer m ssi on(new PgxUser ("SCOTT")) // revokes previously granted user
access

4.2.10 Examples of Custom Authorization Rules

ORACLE

You can define custom authorization rules for developers.
* Example 4-1
* Example 4-2
* Example 4-3
Example 4-1 Allowing Developers to Publish Graphs

Sharing of graphs with other users should be done in Oracle Database where possible. Use
GRANT statements on the database tables so that other users can create graphs from the
tables. If the graph is in the Property Graph schema use the OPG_APIS.GRANT_ACCESS
API to share the graph.

In the in-memory graph server you can use the following permissions to share a graph that is
already in memory, with other users connected to the graph server.

Table 4-3 Allowed Permissions
|

Permission Actions Enabled by this Permission

READ * READ the graph via the PGX API or in PGQL
queries in PGX, create a subgraph, or clone
the graph

MANAGE * Publish the graph or snapshot

e Includes READ and EXPORT
e Grant or revoke READ and EXPORT
permissions on the graph
EXPORT * Export the graph to a file.
* Includes READ permission.

4-21

Chapter 4
User Authentication and Authorization

The creator of the graph automatically gets the MANAGE permission granted on the
graph. If you have the MANAGE permission, you can grant other roles or users READ
or EXPORT permission on the graph. You cannot grant MANAGE on a graph. The
following example of a user named userA shows how:

i nport oracle. pgx.api.*
i mport oracl e. pgx. cormon. aut h. *

PgxSessi on session = G aphServer. getlnstance("<base-url>", "<userA>",
"<passwor d- of - user A") . creat eSessi on("userA")

PgxGraph g = session.readG aphWthProperties("exanpl es/ sanpl e-
graph. json", "sanple-graph")

g. grant Per mi ssi on(new PgxRol e(" GRAPH_DEVELOPER"),

PgxResour cePer ni ssi on. READ)

g. publ i sh()

Now other users with the GRAPH_DEVELOPER role can access this graph and have
READ access on it, as shown in the following example of userB:

PgxSessi on session = GaphServer. getlnstance("<base-url>", "<userB>",
" <passwor d- of - user B") . creat eSessi on(" user B")

PgxGraph g = session. get G aph("sanpl e-graph")

g. queryPggl ("sel ect count(*) frommatch (v)").print().close()

Similarly, graphs can be shared with individual users instead of roles, as shown in the
following example:

g. grant Per mi ssi on(new PgxUser (" OTHER_USER"),
PgxResour cePer mi ssi on. EXPORT)

where OTHER_USER is the user name of the user that will receive the EXPORT
permission on graph g.

Example 4-2 Allowing Developers to Access Preloaded Graphs

To allow developers to access preloaded graphs (graphs loaded during graph server
startup), grant the read permission on the preloaded graph in the pgx.conf file. For
example:

"prel oad_graphs": [{
"path": "/datalny-graph.json",
"name": "gl obal _graph"
H,
"aut horization": [{
"pgx_role": "GRAPH DEVELOPER',
"pgx_perm ssions": [{
"prel oaded _graph": "gl obal graph”
"grant": "read"

} y
You can grant READ, EXPORT, or MANAGE permission.

ORACLE 4-22

Chapter 4
User Authentication and Authorization

Example 4-3 Allowing Developers Access to the Hadoop Distributed Filesystem
(HDFS) or the Local File System

To allow developers to read files from HDFS, you must first declare the HDFS directory and
then map it to a read or write permission. For example:

CREATE OR REPLACE DI RECTORY pgx_file_location AS 'hdfs:/datalgraphs'
GRANT READ ON DI RECTORY pgx_file_location TO GRAPH DEVELOPER

Similarly, you can add another permission with GRANT WRI TE to allow write access. Such a
write access is required in order to export graphs.

Access to the local file system (where the graph server runs) can be granted the same way.
The only difference is that location would be an absolute file path without the hdf s: prefix.
For example:

CREATE OR REPLACE DI RECTORY pgx_file | ocation AS '/opt/oracle/graph/data'

Note that in addition to the preceding configuration, the operating system user that runs the
graph server process must have the corresponding directory privileges to actually read or
write into those directories.

4.2.11 Kerberos Enabled Authentication

The graph server (PGX) can authenticate users using an Oracle Database with Kerberos
enabled as identity provider.

Note:

Kerberos Authentication is not supported in the Graph Visualization Application.

You can log into the graph server using a Kerberos ticket and the actions which you are
allowed to do on the graph server are determined by the roles that have been granted to you
in the Oracle Database.

e Prerequisite Requirements
e Prepare the Graph Server for Kerberos Authentication

e Login to the Graph Server Using Kerberos Ticket

4.2.11.1 Prerequisite Requirements

ORACLE

In order to enable Kerberos authentication on the in-memory graph server (PGX), the
following system requirements must be met:

* The database needs to have Kerberos authentication enabled. See Configuring Kerberos
Authentication for more information.

« Both the database and the Kerberos Authentication Server need to be reachable from the
host where the graph server runs.

4-23

Chapter 4
User Authentication and Authorization

* The database is prepared for graph server authentication. That is, relevant graph
roles have been granted to users who will log into the graph server.

4.2.11.2 Prepare the Graph Server for Kerberos Authentication

The following are the steps to enable Kerberos authentication on the in-memory graph
server (PGX):

1. Locate the pgx. conf file of your installation.

¢ Note:

If you installed the graph server via RPM, the file is located at: / et ¢/
oracl e/ graph/ pgx. conf

2. Locate the krb5_conf _fil e line of the realm options, inside the pgx. conf file:

"pgx_real n': {
"inplementation": "oracle.pg.identity.DatabaseReal ni',
"options": {

"krb5 conf file": "<REPLACE-W TH KRB5- CONF- FI LE- PATH TO- ENABLE-
KERBEROS- AUTHENTI CATI ON>",
"krb5 ticket cache dir": "/dev/shn',
"krb5 _max_cache_size": 1024
1
b

3. Replace the text with the kr b5. conf file that you are using for the database and
user authentication. For example:

"pgx_real n': {
"inplementation": "oracle.pg.identity. DatabaseReal nf,
"options": {

"krb5 conf file": "/etc/krb5.conf",
"krb5 ticket cache dir": "/dev/shm',
"krb5_max_cache_size": 1024
}
b

" Note:

The file provided for the kr b5 _conf _fil e option needs to be valid and
readable by the graph server. In case you don't replace the

krb5_conf _fil e value or the value is empty, then the graph server will
not use Kerberos authentication.

Also, you can set the cache directory that will be used for the graph server to
temporarily store Kerberos tickets given by clients as well as the maximum cache

ORACLE 4-24

Chapter 4
User Authentication and Authorization

size after which new login attempts will be rejected. The cache size represents the
maximum amount of concurrent Kerberos sessions active on the graph server.

4.2.11.3 Login to the Graph Server Using Kerberos Ticket

The following are the steps to login to the in-memory graph server (PGX) using Kerberos
ticket:

1.

ORACLE

Create a new Kerberos ticket using the oki nit command:

$ okinit <username>

This will prompt for your password and then create a new Kerberos ticket.
Connect to a remote graph server with only the base URL parameter using JShell:

$ opg4j -b https://local host: 7007

Or using Python client:

$ opgdpy -b https://local host: 7007

On Linux, JShell and Python interactive client shells automatically detect the Kerberos
ticket on your local file system and use that to authenticate with the graph server.

In case the auto-detection is not working, you can also explicitly pass in the ticket to the
shell. Run the okl i st command, to find the location of the ticket on the local file system.

$ okl i st

Kerberos Utilities for Linux: Version 19.0.0.0.0 - Production on 31-
MAR- 2021 15: 26: 46

Copyright (c) 1996, 2019 Oracle. Al rights reserved.
Configuration file : /etc/krb5. conf.
Ti cket cache: FILE: /tnp/krb5cc 54321

Default principal: oracle@ealm

Specify your Kerberos ticket path using the - - ker beros_ti cket parameter. For example,
using JShell:

$ opg4j -b https://1ocal host: 7007 --kerberos_ticket /tnp/krb5cc_54321

Or using Python Client:

$ opg4py -b https://local host: 7007 --kerberos_ticket /tnp/krb5cc_54321

4-25

Chapter 4
About Vertex and Edge IDs

If you are using a Java client program (or JShell on embedded mode), you can get
a server instance using the following API:

Serverlnstance instance = GaphServer.getlnstance("https://
| ocal host: 7007", "/tnp/krb5cc_54321");
PgxSessi on session = instance. createSession("my-session");

If you are using a Python Client program (or opg4py on embedded mode), you can
get a server instance using the following API

i nstance = graph_server.get instance("https://|ocal host:7007",
"/tnp/ krb5cc_54321")
session = instance. create_session("my-session")

If you are connecting to a remote graph server, all you need is the Oracle Graph
Client to be installed. For example:

i mport sys
i nport pypgx as pgx

sys. pat h. append("/ pat h/t o/ graph/cl i ent/oracl e-graph-client-21.2.0/
pyt hon/ pypgx/ pg/ rdbns")

i mport graph_server

base url = "https://I|ocal host:7007"
kerberos_ticket = "/tnp/krb5cc_54321"

instance = graph_server.get _instance(base_url, kerberos_ticket)
print (instance)

4.3 About Vertex and Edge IDs

ORACLE

Generating vertex and edge IDs when loading from database tables into PGX

PGX enforces by default the existence of a unique identifier for each vertex and edge
in a graph, so that they can be retrieved by using PgxG aph. get Vertex(1D i d) and
PgxG aph. get Edge(1 D i d) or by PGQL queries using the built-in i d() method.

The ID generation strategies can be selected through the configuration parameters
vertex_id strategy and edge_id_strategy.

Using keys to generate IDs

The default strategy to generate the vertex IDs is to use the keys provided during
loading of the graph (keys_as_i ds). In that case, each vertex should have a vertex key
that is unique across all providers.

4-26

Chapter 4
About Vertex and Edge IDs

For edges, by default no keys are required in the edge data, and edge IDs will be
automatically generated by PGX (unst abl e_gener at ed_i ds). Note that the generation of
edge IDs is not guaranteed to be deterministic. If required, it is also possible to load edge
keys as IDs.

The partitioned_ids strategy requires keys to be unique only within a vertex or edge
provider (data source). The keys do not have to be globally unique. Globally unique IDs are
derived from a combination of the provider name and the key inside the provider, as

<provi der _name>(<uni que_key_ wi t hi n_provi der>). For example, Account (1).

The partititioned ids strategy can be set through the configuration fields
vertex_id_strategy and edge_i d_strat egy. For example,

{
"name": "bank_graph_anal ytics",
"optimzed for": "updates”,
"vertex_id_strategy" : "partitioned_ids",
"edge_id_strategy" : "partitioned_ids",
"vertex_providers": [
{
"nanme": "Accounts",
"format": "rdbns",
"dat abase_tabl e_nanme": "BANK NODES',
"key_colum": "ID",
"key_type": "integer",
"props": [
{
"nanme": "keyProp",
"type": "long",
"colum": 1
b
{
"name": "nunber",
"type": "long",
"colum": 2
}
1
"l oadi ng": {
"create_key_mapping" : true
}
}
1
"edge_providers": |
{
"name": "Transfers",
"format": "rdbns",
"dat abase_tabl e name": "BANK EDGES AMI™,

"key_colum": "ID",
"source_colum": "SRC ID',
"destination_colum": "DEST ID",

"source_vertex_provider": "Accounts",
"destination_vertex_provider": "Accounts",
"props": [
{
"nanme": "keyProp",

ORACLE 4-27

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

"type": "long",
"colum": 1
b
{
"name": "anmount",
"type": "double",
"colum": 4
}
1,
"l oadi ng": {
"create_key_mapping" : true
}
}
]
}
Note:

All available key types are supported in combination with partitioned IDs.

After the graph is loaded, PGX maintains information about which property of a
provider corresponds to the key of the provider. In the preceding example, the vertex
property keyPr op happens to correspond to the vertex key (“col um”: 1) and also the
edge property keyPr op happens to correspond to the edge key (again, "col um": 1).
Each provider can have at most one such "key property" and the property can have
any name.

Key properties are used for internal optimizations as well as for providing keys for the
vertex or edge or both when inserting new entities. Key properties are currently non-
updatable. Trying to update a key property will result in an error. For example,

vertex key property |ID cannot be updated

Using an auto-incrementer to generate IDs

It is recommended to always set creat e_key_mappi ng to t r ue to benefit from
performance optimizations. But if there are no single-column keys for edges,
create_key mappi ng can be set to f al se. Similarly, creat e_key_mappi ng can be set to
f al se for vertex providers also. IDs will be generated via an auto-incrementer, for
example Account s(1), Account s(2), Account s(3).

4.4 Keeping the Graph in Oracle Database Synchronized
with the Graph Server

ORACLE

You can use the Fl ashbackSynchr oni zer API to automatically apply changes made to
graph in the database to the corresponding PgxG aph object in memory, thus keeping
both synchronized.

This API uses Oracle's Flashback Technology to fetch the changes in the database
since the last fetch and then push those changes into the graph server using the
ChangeSet API. After the changes are applied, the usual snapshot semantics of the

4-28

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

graph server apply: each delta fetch application creates a new in-memory snapshot. Any
gueries or algorithms that are executing concurrently to snapshot creation are unaffected by
the changes until the corresponding session refreshes its PgxG aph object to the latest state
by calling the sessi on. set Snapshot (graph, PgxSessi on. LATEST SNAPSHOT) procedure.

For detailed information about Oracle Flashback technology, see the Database Development
Guide.

Prerequisites for Synchronizing

The Oracle database must have Flashback enabled and the database user that you use to
perform synchronization must have:

* Read access to all tables which need to be kept synchronized.

* Permission to use flashback APIs. For example:

GRANT EXECUTE ON DBM5_FLASHBACK TO <user>

The database must also be configured to retain changes for the amount of time needed by
your use case.

Types of graphs that can be synchronized
Not all PgxG aph objects in PGX can be synchronized. The following limitations apply:

* Only the original creator of the graph can synchronize it. That is, the current user must
have the MANAGE permission of the graph.

* Only graphs loaded from database tables ("partitioned graphs") can be synchronized.
Graphs created from other formats or graphs created via the graph builder APl cannot be
synchronized.

* Only the latest snapshot of a graph can be synchronized.

Types of changes that can be synchronized

The synchronizer supports keeping the in-memory graph snapshot in sync with the following
database-side modifications:

» insertion of new vertices and edges
* removal of existing vertices and edges
e update of property values of any vertex or edge

The synchronizer does not support schema-level changes to the input graph, such as:

- alteration of the list of input vertex or edge tables
- alteration of any columns of any input tables (vertex or edge tables)

Furthermore, the synchronizer does not support updates to vertex and edge keys.
For detailed examples, see the following topic:

* Examples of Synchronizing

4.4.1 Examples of Synchronizing

You can perform your graph synchronization using the following examples:

ORACLE 4-29

ORACLE

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

Example 4-4
Example 4-5

Example 4-4 Synchronizing Graphs Using CREATE PROPERTY GRAPH Statement

1.

Assume you have the following Oracle Database tables, PERSONS and
FRIENDSHIPS.

CREATE TABLE persons (

person_i d NUVMBER GENERATED ALWAYS AS | DENTI TY (START WTH 1
| NCREMENT BY 1),

nanme VARCHAR2(200),

bi rt hdat e DATE,

hei ght FLOAT DEFAULT on null 0,

CONSTRAI NT person_pk PRI MARY KEY (person_id)

)

CREATE TABLE fri endships (

friendshi p_id NUMBER GENERATED ALWAYS AS | DENTI TY (START WTH 1
| NCREMENT BY 1),

person_a NUMBER,

person_b NUMBER,

meet i ng_dat e DATE,

CONSTRAI NT fk_person_a_id FOREI GN KEY (person_a) REFERENCES
persons(person_id),

CONSTRAI NT fk_person_b_id FOREI GN KEY (person_b) REFERENCES
per sons(person_i d)

CONSTRAI NT fs_pk PRI MARY KEY (friendship_id)

)i

You can add some sample data into these tables as shown:

I NSERT | NTO persons (nane, height, birthdate) VALUES (' John', 1.80,
to_date('13/06/1963", ' DY MM YYYY'));

I NSERT | NTO persons (nane, height, birthdate) VALUES (' Mary', 1.65,
to_date('25/09/1982"', ' DY MM YYYY'));

| NSERT | NTO persons (nane, height, birthdate) VALUES ('Bob', 1.75,
to_date('11/03/1966', ' DY MM YYYY'));

I NSERT | NTO persons (nane, height, birthdate) VALUES (' Alice',
1.70, to_date('01/02/1987", ' DD MM YYYY'));

I NSERT I NTO friendshi ps (person_a, person_b, neeting date) VALUES
(1, 3, to_date('01/09/1972', 'DDF MM YYYY'));
I NSERT I NTO friendshi ps (person_a, person_b, neeting date) VALUES
(2, 4, to_date('19/09/1992', 'DD MM YYYY'));
I NSERT I NTO friendshi ps (person_a, person_b, neeting date) VALUES
(4, 2, to_date('19/09/1992', 'DD MM YYYY'));
I NSERT I NTO friendshi ps (person_a, person_b, neeting date) VALUES
(3, 2, to_date('10/07/2001', ' DD MM YYYY'));

Write the corresponding CREATE PROPERTY GRAPH statement which describes how
to load those tables as a graph as shown in the following Java code example:

sessi on. execut ePgql (
" CREATE PROPERTY GRAPH friends VERTEX TABLES ("

4-30

ORACLE

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

+ " persons KEY (person_id) LABEL person PROPERTIES
(name, hei ght, birthdate)"

+)"

+ "EDGE TABLES ("

+ " friendships "

+ " KEY (friendship_id) "

+ " SOURCE KEY (person_a) REFERENCES persons "

+ " DESTI NATI ON KEY (person_b) REFERENCES persons "
+ " LABEL friendof PROPERTIES (meeting_date)"

+)"

);
PgxGaph graph = session. getGaph("friends");

This creates a snapshot of the graph which is loaded into memory. You can now run
algorithms and queries on the graph.

Now change the data in the input tables in the database. For example, add new persons
to the PERSONS table and also add another edge.

You can open a new JDBC connection to the database and run a few INSERT
statements as shown in the following code:

Connection conn = DriverManager. get Connection("<jdbc-url>", "<user>",
"<pass>");

conn. creat eSt at enent (). execut eQuery("I NSERT I NTO persons(nane, birthdate,
hei ght) VALUES (' Mariana',to_date('21/08/1996',"' DD MM YYYY'), 1.65)");
conn. creat eSt at enent () . execut eQuery(" I NSERT | NTO persons (nane,

bi rthdate, height) VALUES (' Francisco',to_date(' 13/06/1963","' DD MM
YYYY'), 1.75)");

conn. creat eSt at enent () . execut eQuery("I NSERT | NTO friendshi ps (person_a,
person_b, meeting date) VALUES (1, 6, to_date('13/06/2013,' DOy MM
YYYY'))");

conn. conmi t () ;

Committing the changes to the database causes the graph in memory to became out of
sync with the database source tables.

You can synchronize the in-memory graph with the database by creating a new
synchronizer object as shown in the following code:

Synchroni zer synchroni zer = new
Synchroni zer . Bui | der <Fl ashbackSynchroni zer >()
. set Type(Fl ashbackSynchroni zer. cl ass)
. set G aph(graph)
. set Connect i on(conn)
Cbui 1 d();

Internally, the graph server keeps track of the Oracle system change number (SCN) the
current graph snapshot belongs to. The synchronizer is a client-side component which
connects to the database, detects changes by comparing state of the the original input
tables using the current SCN via the flashback mechanism and then sends any changes
to the graph server using the changeset API. In order to do so, the synchronizer needs to
know how to connect to the database (conn parameter) as well as which graph to keep in
sync (gr aph parameter).

4-31

ORACLE

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

» Alternatively, you can use this equivalent shortcut:

Synchroni zer synchroni zer =
graph. creat eSynchroni zer (Fl ashbackSynchroni zer. cl ass, conn);

Call the sync() operation, to fetch the database changes and create a new in-
memory snapshot:

graph = synchroni zer. sync();

You will notice that the two new vertices and the new edge have been applied to
the graph:

graph ==> PgxGraph[name=FRI ENDS, N=6, E=5, cr eat ed=1594754376861]

Splitting the Fetching and Applying of Changes

The synchroni zer. sync() invocation in the preceding code, fetches the changes
and applies them in one call. However, you can encode a more complex update
logic by splitting this process into separate f et ch() and appl y() invocations. For
example:

synchroni zer.fetch() // fetches changes fromthe database

i f (synchronizer.get G aphDelta(). getTotal Nunber Of Changes() > 100)

{ I/ only create snapshot if there have been nore than 100 changes
synchroni zer. appl y()

}

Example 4-5 Synchronizing Graphs Created Via Graph Configuration Objects

Example 4-4 uses a CREATE PROPERTY GRAPH statement to create the graph which
hides some of the more advanced graph configuration options.

Though synchronization of graphs created via graph configuration objects is supported
in general, the following few limitations apply:

Only partitioned graph configurations with all providers being database tables are
supported.

Each edge or vertex provider or both must specify the owner of the table by setting
the username field. For example, if user SCOTT owns the table, then set the
username accordingly in the provider block of that table:

"usernanme": "scott"
In the root loading block, the snapshot source must be set to change_set :
"l oading": {

"snapshots_source": "change set"

}

4-32

Chapter 4
Keeping the Graph in Oracle Database Synchronized with the Graph Server

* ltis highly recommended to set the "optim zed_f or" field to "updat es" to avoid memory
exhaustion when creating many snapshots:
"optimzed for": "updates”

You can load the same graph shown in Example 4-4 using the following graph configuration

(JSON) file:

{
"name": "“friends",
"optimzed for": "updates",

"vertex_id strategy": "partitioned_ids",
"edge id_strategy": "partitioned_ids",
"edge id_type": "long",

"vertex_id_type": "long",
"jdbc_url": "<jdbc_url>",
"username": "<usernanme>",

"keystore_ alias": "<keystore_ alias>",
"vertex_providers": [
{

“format": "rdbns",
"usernane": "<username>",
"key_type": "long",
"name": "person",
"dat abase_tabl e_name": "persons",
“key_colum": "person_id",

“props": [
|

"l oadi ng": {
"create_key_mapping": true
}
}

]

dge_providers": [

{
“format": "rdbns",
“usernane": "<usernane>",
"name": "friendOf",
“source_vertex_provider": "person",
“destination_vertex_provider": "person",
"dat abase_tabl e_name": "friendships",
“source_colum": "person_a",
“destination_colum": "person_b",
"key_colum": "friendship_id",
"key_type":"long",
“props": [

]

"l oadi ng": {
"create_key_mapping": true
}
}

]

oadi ng": {

ORACLE 4-33

Chapter 4
Optimizing Graphs for Read Versus Updates in the In-Memory Graph Server (PGX)

"snapshots_source": "change_set"

}
}

Note:

« Inthe preceding JSON file, replace the values <j dbc_ur| >, <user name>,
and <keyst ore_al i as> with the values for connecting to your database.

« When using the graph configuration file, you can load the graph into
memory using JShell (be sure to register the keystore containing the
database password when starting it) :

var pgxGaph =
session. readG aphWt hProperties("<nane_of _config_file>. json"

K

4.5 Optimizing Graphs for Read Versus Updates in the In-
Memory Graph Server (PGX)

ORACLE

The in-memory graph server (PGX) can store an optimized graph for other reads or
updates. This is only relevant when the updates are made directly to a graph instance
in the in-memory graph server.

Graph Optimized for Reads

Graphs optimized for reads will provide the best performance for graph analytics and
PGQL queries. In this case there could be potentially higher latencies to update the
graph (adding or removing vertex and edges or updating the property values of
previously existing vertex or edges through G aphChangeSet API). There could also be
higher memory consumption. When using graphs optimized for reads, each updated
graph or graph snapshot consumes memory proportional to the size of the graph in
terms of vertices and edges.

The optim zed_for configuration property can be set to r eads when loading the graph
into the in-memory graph server (PGX) to create a graph instance that is optimized for
reads.

Graph Optimized for Updates

Graphs optimized for updates use a representation enabling low-latency update of
graphs. With this representation, the graph server can reach millisecond-scale
latencies when updating graphs with millions of vertices and edges (this is indicative
and will vary depending on the hardware configuration).

To achieve faster update operations, graph server avoids as much as possible doing a
full duplication of the previous graph (snapshot) to create a new graph (snapshot).
This also improves the memory consumption (in typical scenarios). New snapshots (or
new graphs) will only consume additional memaory proportional to the memory required
for the changes applied.

4-34

Chapter 4
Storing a Graph Snapshot on Disk

In this representation, there could be lower performance of graph queries and analytics.

The optim zed_for configuration property can be set to updat es when loading the graph into
the in-memory graph server (PGX) to create a graph instance that is optimized for reads.

4.6 Storing a Graph Snapshot on Disk

ORACLE

After reading a graph into memory using either Java or the Shell, if you make some changes
to the graph such as running the PageRank algorithm and storing the values as vertex
properties, you can store this snapshot of the graph on disk.

This is helpful if you want to save the state of the graph in memory, such as if you must shut
down the in-memory graph server to migrate to a newer version, or if you must shut it down
for some other reason.

(Storing graphs over HTTP/REST is currently not supported.)

A snapshot of a graph can be saved as a file in a binary format (called a PGB file) if you want
to save the state of the graph in memory, such as if you must shut down the in-memory graph
server to migrate to a newer version, or if you must shut it down for some other reason.

In general, we recommend that you store the graph queries and analytics APIs that had been
executed, and that after the in-memory graph server has been restarted, you reload and re-
execute the APIs. But if you must save the state of the graph, you can use the logic in the
following example to save the graph snapshot from the shell.

In a three-tier deployment, the file is written on the server-side file system. You must also
ensure that the file location to write is specified in the in-memory graph server. (As explained
in Three-Tier Deployments of Oracle Graph with Autonomous Database, in a three-tier
deployment, access to the PGX server file system requires a list of allowed locations to be
specified.)

opg4j > var graph =

sessi on. creat eG aphBui | der (). addVertex(1).addVertex(2).addVertex(3).addEdge(1
, 2) . addEdge(2, 3) . addEdge(3, 1).build()

graph ==> PgxG aph[nane=anonynous_graph_1, N=3, E=3, creat ed=1581623669674]

opg4j > anal yst . pager ank(gr aph)
$3 ==> Vert exProperty[name=pager ank, t ype=doubl e, gr aph=anonynous_gr aph_1]

/1 Now save the state of this graph

opg4j > g.store(Format. PGB, "/tnp/snapshot. pgb")

$4 ==> {"edge props":[],"vertex_uris":["/tnp/snapshot.pgb"], "l oading":
{},"attributes":{},"edge uris":[],"vertex_props":

[{"nanme": "pagerank", "dinension":0,"type":"double"}],"error_handling":
{},"vertex_id_type":"integer","format": "pgh"}

/1 reload fromdisk

opg4j > var graphFronDi sk = session. readG aphFi | e("/tnp/ snapshot. pgh")

graphFronDi sk ==> PgxG aph[name=snapshot , N=3, E=3, cr eat ed=1581623739395]
/'l previously conputed properties are still part of the graph and can be

queri ed
opg4j > graphFronDi sk. queryPgql ("sel ect x.pagerank match (x)").print().close()

4-35

Chapter 4
Executing Built-in Algorithms

The following example is essentially the same as the preceding one, but it uses
partitioned graphs. Note that in the case of partitioned graphs, multiple PGB files are
being generated, one for each vertex/edge partition in the graph.

opg4j > anal yst . pager ank(gr aph)

$3 ==>

Ver t exPr oper t y[name=pager ank, t ype=doubl e, gr aph=anonynous_graph_1]//
store graph including all props to disk

/1 Now save the state of this graph

opg4j > var storedPgbConfig = g.store(ProviderFormat. PGB, "/tnp/
snapshot ")

$4 ==> {"edge _props":[],"vertex_uris":["/tnp/snapshot.pgb"], "l oadi ng":
{},"attributes":{},"edge uris":[],"vertex_props":

[{"nanme": "pagerank", "di mension":0,"type": "double"}], "error_handling":
{},"vertex_id type":"integer","
/1 Reload from di sk

opg4j > var graphFronDi sk =
sessi on. readG aphWt hProperti es(storedPgbConfi g)

graphFronDi sk ==> PgxGraph[nane=snapshot, N=3, E=3, cr eat ed=1581623739395]
/1 Previously conmputed properties are still part of the graph and can
be queried

opg4j > graphFronDi sk. queryPgql ("sel ect x. pagerank match

(x)").print().close()

format": "pgb"}

4.7 Executing Built-in Algorithms

ORACLE

The in-memory graph server (PGX) contains a set of built-in algorithms that are
available as Java APIs.

The following table provides an overview of the available algorithms, grouped by
category.

¢ Note:

These algorithms can be invoked through the Anal yst interface. See the
Analyst Class in Javadoc for more details.

Table 4-4 Overview of Built-In Algorithms

___|
Category Algorithms

Classic graph algorithms Prim's Algorithm

Community detection Conductance Minimization (Soman and Narang Algorithm),
Infomap, Label Propagation, Louvain

Connected components Strongly Connected Components, Weakly Connected
Components (WCC)

Link predition WTF (Whom To Follow) Algorithm

Matrix factorization Matrix Factorization

Other Graph Traversal Algorithms

4-36

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Analyst.html

Chapter 4
Executing Built-in Algorithms

Table 4-4 (Cont.) Overview of Built-In Algorithms

Category

Algorithms

Path finding

All Vertices and Edges on Filtered Path, Bellman-Ford Algorithms,
Bidirectional Dijkstra Algorithms, Compute Distance Index,
Compute High-Degree Vertices, Dijkstra Algorithms, Enumerate
Simple Paths, Fast Path Finding, Fattest Path, Filtered Fast Path
Finding, Hop Distance Algorithms

Ranking and walking

Closeness Centrality Algorithms, Degree Centrality Algorithms,
Eigenvector Centrality, Hyperlink-Induced Topic Search (HITS),
PageRank Algorithms, Random Walk with Restart, Stochastic
Approach for Link-Structure Analysis (SALSA) Algorithms, Vertex
Betweenness Centrality Algorithms

Structure evaluation

Adamic-Adar index, Bipartite Check, Conductance, Cycle
Detection Algorithms, Degree Distribution Algorithms, Eccentricity
Algorithms, K-Core, Local Clustering Coefficient (LCC),
Modularity, Partition Conductance, Reachability Algorithms,
Topological Ordering Algorithms, Triangle Counting Algorithms

This following topics describe the use of the in-memory graph server (PGX) using Triangle
Counting and PageRank analytics as examples.

e About Built-In Algorithms in the In-Memory Graph Server (PGX)

* Running the Triangle Counting Algorithm

* Running the PageRank Algorithm

4.7.1 About Built-In Algorithms in the In-Memory Graph Server (PGX)

The in-memory graph server (PGX) contains a set of built-in algorithms that are available as
Java APIs. The details of the APIs are documented in the Javadoc that is included in the
product documentation library. Specifically, see the Bui | ti nAl gori t hns interface Method
Summary for a list of the supported in-memory analyst methods.

For example, this is the PageRank procedure signature:

/**

* (O assic pagerank algorithm Tine conplexity: QQE * K} with E = nunber of edges, K

is
i terations)

@ar am graph

@aramd

a
*

*

*

*

* @Qarame
*

*

*

* @ar am max
*
*
*

gi ven constant (max

graph

maxi mum error for termnating the iteration
danpi ng factor

maxi mum nunber of iterations

@eturn Vertex Property holding the result as a double

/

public <ID extends Conparabl e<I D>> VertexProperty<ID, Doubl e> pagerank(PgxG aph
graph, double e, double d, int max);

ORACLE

4-37

Chapter 4
Executing Built-in Algorithms

4.7.2 Running the Triangle Counting Algorithm

For triangle counting, the sort ByDegr ee boolean parameter of count Tri angl es()
allows you to control whether the graph should first be sorted by degree (t r ue) or not
(fal se). If true, more memory will be used, but the algorithm will run faster; however,
if your graph is very large, you might want to turn this optimization off to avoid running
out of memaory.

Using the Shell to Run Triangle Counting

opg4j > anal yst. count Tri angl es(graph, true)
=> 1

Using Java to Run Triangle Counting
i nport oracle. pgx. api . *;

Anal yst anal yst = session. createAnal yst();
long triangles = anal yst.count Tri angl es(graph, true);

The algorithm finds one triangle in the sample graph.

Tip:

When using the graph shell, you can increase the amount of log output
during execution by changing the logging level. See information about
the : | ogl evel command with : h : | ogl evel .

4.7.3 Running the PageRank Algorithm

PageRank computes a rank value between 0 and 1 for each vertex (node) in the graph
and stores the values in a doubl e property. The algorithm therefore creates a vertex
property of type doubl e for the output.

In the in-memory graph server (PGX), there are two types of vertex and edge
properties:

» Persistent Properties: Properties that are loaded with the graph from a data
source are fixed, in-memory copies of the data on disk, and are therefore
persistent. Persistent properties are read-only, immutable and shared between
sessions.

» Transient Properties: Values can only be written to transient properties, which
are private to a session. You can create transient properties by calling
createVertexProperty and creat eEdgePr operty on PgxG aph objects, or by
copying existing properties using cl one() on Property objects.

Transient properties hold the results of computation by algorithms. For example,
the PageRank algorithm computes a rank value between 0 and 1 for each vertex
in the graph and stores these values in a transient property named pg_r ank.
Transient properties are destroyed when the Analyst object is destroyed.

This example obtains the top three vertices with the highest PageRank values. It uses
a transient vertex property of type doubl e to hold the computed PageRank values. The

ORACLE 4-38

4.8 Using

Chapter 4
Using Custom PGX Graph Algorithms

PageRank algorithm uses the following default values for the input parameters: error
(tolerance = 0.001), damping factor = 0.85, and maximum number of iterations = 100.

Using the Shell to Run PageRank

opg4j > rank = anal yst. pagerank(graph, 0.001, 0.85, 100);
==> e

opg4j > rank. get TopKval ues(3)

==> 128=0. 1402019732468347

==> 333=0. 12002296283541904

==> 99=0. 09708583862990475

Using Java to Run PageRank

import java.util.Mp.Entry;
i mport oracl e. pgx. api . *;

Anal yst anal yst = session. createAnal yst();

Vert exProperty<lnteger, Double> rank = anal yst. pagerank(graph, 0.001, 0.85, 100);
for (Entry<integer, Double> entry : rank.get TopKval ues(3)) {

Systemout. printin(entry.getKey() + "=" + entry.getValue());

}

Custom PGX Graph Algorithms

A custom PGX graph algorithm allows you to write a graph algorithm in Java and have it
automatically compiled to an efficient parallel implementation.

For more detailed information that appears in the following subtopics, see the PGX Algorithm
Specification.

e Writing a Custom PGX Algorithm
e Compiling and Running a PGX Algorithm
* Example Custom PGX Algorithm: PageRank

4.8.1 Writing a Custom PGX Algorithm

ORACLE

A PGX algorithm is a regular .java file with a single class definition that is annotated with
@x aphAl gori t hm For example:

i mport oracl e. pgx. al gorithm annotati ons. GraphAl gorithm

@ aphAl gorithm
public class M/Al gorithm{

}

A PGX algorithm class must contain exactly one public method which will be used as entry
point. The class may contain any number of private methods.

For example:

i mport oracl e. pgx. al gorithm PgxG aph;
i nport oracle.pgx.al gorithm VertexProperty;
i mport oracl e. pgx.al gorithm annotations. GraphAl gorithm

4-39

https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf
https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf

Chapter 4
Using Custom PGX Graph Algorithms

i mport oracl e. pgx. al gorithm annotations. Qut;
@ aphAl gorithm
public class M/A gorithm {
public int nyAl gorithn(PgxGaph g, @ut VertexProperty<lnteger>
di stance) {
Systemout.printIn("M first PGX Al gorithm program");

return 42;

As with normal Java methods, a PGX algorithm method only supports primitive data
types as return values (an integer in this example). More interesting is the @ut
annotation, which marks the vertex property di st ance as output parameter. The caller
passes output parameters by reference. This way, the caller has a reference to the
modified property after the algorithm terminates.

e Collections
e lteration

e Reductions

4.8.1.1 Collections

To create a collection you call the .create() function. For example, a
VertexProperty<integer> is created as follows:

Vert exProperty<lnteger> di stance = VertexProperty.create();

To get the value of a property at a certain vertex v:
di stance. get(v);
Similarly, to set the property of a certain vertex v to a value e:

di stance. set(v, e);

You can even create properties of collections:

Vert exProperty<VertexSequence> path = VertexProperty.create();

However, PGX Algorithm assignments are always by value (as opposed to by
reference). To make this explicit, you must call . cl one() when assigning a collection:

Vert exSequence sequence = path.get(v).clone();

ORACLE 4-40

Chapter 4
Using Custom PGX Graph Algorithms

Another consequence of values being passed by value is that you can check for equality
using the == operator instead of the Java method . equal s() . For example:

PgxVertex vl = G get RandonVertex();
PgxVertex v2 = G get RandonVertex();
Systemout . println(vl == v2);

4.8.1.2 Iteration

The most common operations in PGX algorithms are iterations (such as looping over all
vertices, and looping over a vertex's neighbors) and graph traversal (such as breath-first/
depth-first). All collections expose a f or Each and f or Sequent i al method by which you can
iterate over the collection in parallel and in sequence, respectively.

For example:

e To iterate over a graph's vertices in parallel:
G getVertices().forEach(v -> {
1 -

e To iterate over a graph's vertices in sequence:
G getVertices().forSequential (v -> {

1

» To traverse a graph's vertices from r in breadth-first order:

i mport oracl e. pgx.al gorithm Traversal ;
Traversal .inBFS(G r).forward(n -> {

1

Inside the f or war d (or backwar d) lambda you can access the current level of the BFS (or
DFS) traversal by cal | i ng currentLevel ().

4.8.1.3 Reductions

ORACLE

Within these parallel blocks it is common to atomically update, or reduce to, a variable
defined outside the lambda. These atomic reductions are available as methods on

Scal ar<T>: reduceAdd, reduceMil, reduceAnd, and so on. For example, to count the
number of vertices in a graph:

public int countVertices() {
Scal ar<I nteger> count = Scal ar.create(0);

G get Vertices().forEach(n -> {
count . reduceAdd(1);

1

4-41

Chapter 4
Using Custom PGX Graph Algorithms

return count.get();

Sometimes you want to update multiple values atomically. For example, you might
want to find the smallest property value as well as the vertex whose property value
attains this smallest value. Due to the parallel execution, two separate reduction
statements might get you in an inconsistent state.

To solve this problem the Reduct i ons class provides ar gM n and ar gMax functions. The
first argument to ar gM n is the current value and the second argument is the potential
new minimum. Additionally, you can chain andUpdat e calls on the Ar gM nMax object to
indicate other variables and the values that they should be updated to (atomically). For
example:

Vert exProperty<lnteger> rank = VertexProperty.create();
int mnRank = | nteger. MAX_VALUE;
PgxVertex mnVertex = PgxVertex. NONE;

G get Vertices().forEach(n ->
argM n(m nRank, rank. get(n)).andUpdate(ni nVertex, n)

):

4.8.2 Compiling and Running a PGX Algorithm

ORACLE

To be able to compile and run a custom PGX algorithm, you must perform several
actions:

1. Settwo configuration parameters in the conf/ pgx. conf file:
e Setthe graph_al gorithm | anguage option to JAVA.

e Setthejava_hone_dir option to the path to your Java home (use <system
j ava- hone- di r > to have PGX infer Java home from the system properties).

{
"graph_al gorithm | anguage": "JAVA",
"java_home_dir": "<systemjava-home-dir>"

}

2. Create a session (either implicitly in the shell or explicitly in Java). For example:

cd $PGX_HOME
. I bi n/ opg4j

3. Compile a PGX Algorithm. For example:
nyAl gorithm = sessi on. conpi | eProgran("/path/to/ A gorithmjava")
4. Run the algorithm. For example:
graph = session.readG aphWthProperties("/path/to/config.edge.json")

property = graph. createVertexProperty(PropertyType. | NTEGER)
nyAl gorithm run(graph, property)

4-42

Chapter 4
Creating Subgraphs

4.8.3 Example Custom PGX Algorithm: PageRank

The following is an implementation of pager ank as a PGX algorithm:

i mport oracl e. pgx. al gorithm PgxG aph;

i mport oracl e. pgx.al gorithm Scal ar;

i mport oracl e. pgx.al gorithm VertexProperty;

i mport oracl e. pgx. al gorithm annotati ons. GraphAl gorithm
i mport oracl e. pgx.al gorithm annotations. Qut;

@ aphAl gorithm
public class Pagerank {
public voi d pagerank(PgxG aph G double tol, double damp, int max_iter,
bool ean norm @ut VertexProperty<Doubl e> rank) {
Scal ar<Doubl e> diff = Scal ar.create();
int cnt = 0;
double N = G get NumVertices();

rank.setAll (1 / N);
do {
diff.set(0.0);
Scal ar <Doubl e> dangling_factor = Scal ar. create(0d);

if (norm {
dangling factor.set(danp / N * GgetVertices().filter(v ->
v.get Qut Degree() == 0).sun(rank::get));
}

G getVertices().forEach(t -> {
doubl e in_sum = t.getlnNeighbors().sumw -> rank.get(w) /
w. get Qut Degree());
double val = (1 - danp) / N + danp * in_sum + dangling factor.get();
diff.reduceAdd(Mat h. abs(val - rank.get(t)));
rank. setDeferred(t, val);

IOk
cnt +4;
} while (diff.get() > tol & cnt < max_iter);

}
}

4.9 Creating Subgraphs

ORACLE

You can create subgraphs based on a graph that has been loaded into memory. You can use
filter expressions or create bipartite subgraphs based on a vertex (node) collection that
specifies the left set of the bipartite graph.

For information about reading a graph into memory, see Loading a Graph Into the Graph
Server (PGX) for the various methods to load a graph into the in-memory graph server
(PGX).

e About Filter Expressions

* Using a Simple Filter to Create a Subgraph

4-43

Chapter 4
Creating Subgraphs

* Using a Complex Filter to Create a Subgraph
* Using a Vertex Set to Create a Bipartite Subgraph

4.9.1 About Filter Expressions

Filter expressions are expressions that are evaluated for each edge. The expression
can define predicates that a vertex or an edge must fulfil to be contained in the result,
in this case a subgraph.

Consider an example graph that consists of four vertices (nodes) and four edges. For
an edge to match the filter expression src. prop == 10, the source vertex prop
property must equal 10. Two edges match that filter expression, as shown in the
following figure.

Figure 4-5 Edges Matching src.prop == 10

cost: 27.03 id: 1908
prop: 889

cost: 8.51

cost: 51.09

cost: 338.0

id: 333

The following figure shows the graph that results when the filter is applied.

ORACLE 4-44

Chapter 4
Creating Subgraphs

Figure 4-6 Graph Created by the Simple Filter

id: 128 cost: 27.03 id: 1908

prﬂpy > prop: BBS

cost: 8.51

The vertex filter src. prop == 10 filters out the edges associated with vertex 333 and the
vertex itself.

4.9.2 Using a Simple Filter to Create a Subgraph
The following examples create the subgraph described in About Filter Expressions.

Using the Shell to Create a Subgraph

subgraph = graph.filter(new VertexFilter("vertex.prop == 10"))

Using Java to Create a Subgraph

i mport oracl e. pgx. api . *;
i mport oracle.pgx.api.filter.*;

PgxG aph graph = session.readG aphWthProperties(...);
PgxG aph subgraph = graph.filter(new VertexFilter("vertex.prop == 10"));

4.9.3 Using a Complex Filter to Create a Subgraph

This example uses a slightly more complex filter. It uses the out Degr ee function, which
calculates the number of outgoing edges for an identifier (source sr ¢ or destination dst). The
following filter expression matches all edges with a cost property value greater than 50 and a
destination vertex (node) with an out Degr ee greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in the following figure.

ORACLE 4-45

4.9.4 Using a Vertex Set to Create a Bipartite Subgraph

ORACLE

Figure 4-7 Edges Matching the outDegree Filter

cost: 27.03 id: 1908

cost: 8.51

L prop: 889

cost: 51.09

cost: 336.0 id: 333

Chapter 4
Creating Subgraphs

The following figure shows the graph that results when the filter is applied. The filter
excludes the edges associated with the vertices 99 and 1908, and so excludes those

vertices also.

Figure 4-8 Graph Created by the outDegree Filter

cost: 51.09

You can create a bipartite subgraph by specifying a set of vertices (nodes), which are
used as the left side. A bipartite subgraph has edges only between the left set of
vertices and the right set of vertices. There are no edges within those sets, such as
between two nodes on the left side. In the in-memory graph server (PGX), vertices that
are isolated because all incoming and outgoing edges were deleted are not part of the

bipartite subgraph.

4-46

ORACLE

Chapter 4
Creating Subgraphs

The following figure shows a bipartite subgraph. No properties are shown.

Left set of nodes Right set of nodes

The following examples create a bipartite subgraph from the simple graph shown in About
Filter Expressions. They create a vertex collection and fill it with the vertices for the left side.

Using the Shell to Create a Bipartite Subgraph

opg4j > s = graph. createVertexSet ()

==> R

opg4j > s.addAl | ([graph. get Vertex(333), graph.getVertex(99)])
==> R

opg4j > s.size()

=> 2

opg4j > bG aph = graph. bi partiteSubG aphFronleft Set(s)

==> PGX Bipartite G aph named sanpl e- sub- graph-4

Using Java to Create a Bipartite Subgraph

i nport oracl e. pgx. api . *;

VertexSet<Integer> s = graph. createVertexSet();
s. addAl | (graph. get Vertex(333), graph.getVertex(99));
Bi partiteG aph bGaph = graph. bi partiteSubG aphFromnieftSet(s);

When you create a subgraph, the in-memory graph server (PGX) automatically creates a
Boolean vertex (node) property that indicates whether the vertex is on the left side. You can
specify a unigue name for the property.

The resulting bipartite subgraph looks like this:

4-47

Chapter 4
Using Automatic Delta Refresh to Handle Database Changes

id: 99
prop: 2
isLeft: true

cost: 8.51
id: 128
prop: 10
isLeft: false

cost: 51.09

id: 333
prop: 6
isLeft: true

Vertex 1908 is excluded from the bipartite subgraph. The only edge that connected
that vertex extended from 128 to 1908. The edge was removed, because it violated
the bipartite properties of the subgraph. Vertex 1908 had no other edges, and so was
removed as well.

4.10 Using Automatic Delta Refresh to Handle Database

Changes

You can automatically refresh (auto-refresh) graphs periodically to keep the in-memory
graph synchronized with changes to the property graph stored in the property graph
tables in Oracle Database (VT$ and GES$ tables).

Note that the auto-refresh feature is not supported when loading a graph into PGX in
memory directly from relational tables.

* Configuring the In-Memory Server for Auto-Refresh
» Configuring Basic Auto-Refresh

* Reading the Graph Using the In-Memory Graph Server (PGX) or a Java
Application

* Checking Out a Specific Snapshot of the Graph
* Advanced Auto-Refresh Configuration

* Special Considerations When Using Auto-Refresh

4.10.1 Configuring the In-Memory Server for Auto-Refresh

ORACLE

Because auto-refresh can create many snapshots and therefore may lead to a high
memory usage, by default the option to enable auto-refresh for graphs is available only
to administrators.

To allow all users to auto-refresh graphs, you must include the following line into the
in-memory graph server (PGX) configuration file (located in $ORACLE_HOVE/ nd/
property_graph/ pgx/ conf/pgx. conf):

{

"all ow user _auto_refresh": true

}

4-48

Chapter 4
Using Automatic Delta Refresh to Handle Database Changes

4.10.2 Configuring Basic Auto-Refresh

Auto-refresh is configured in the loading section of the graph configuration. The example in
this topic sets up auto-refresh to check for updates every minute, and to create a new
snapshot when the data source has changed.

The following block (JSON format) enables the auto-refresh feature in the configuration file of
the sample graph:

{

"format": "pg",

"jdbc_url": "jdbc:oracle:thin: @ydatabaseserver: 1521/ dbName",

"usernane": "scott",

"password": "<password>",

"name": "ny_graph",

"vertex_props": [{

"nane": "prop",
"type": "integer"

H,

"edge props": [{
"nane": "cost",
"type": "double"

H,

"separator": " ",

"l oadi ng": {
"auto_refresh": true,
"update_interval _sec": 60

¥

}

Notice the additional | oadi ng section containing the auto-refresh settings. You can also use
the Java APIs to construct the same graph configuration programmatically:

G aphConfig config = G aphConfi gBuil der. for PropertyG aphRdbns()
.setJdbcUrl ("] dbc: oracl e: t hi n: @rydat abaseserver: 1521/ dbNane")
. set Username("scott")
. set Passwor d(" <passwor d>")
.