Oracle Spatial and Graph
Property Graph Developer’s Guide

ORACLE"

Oracle Spatial and Graph Property Graph Developer’s Guide, 20.4
F15915-08

Copyright © 2016, 2020, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Prashant Kannan, Chuck Murray, Melliyal Annamalai, Jorge Barba, Bill Beauregard, Hector
Briseno, Hassan Chafi, Eugene Chong, Souripriya Das, Ana Estrada, Juan Garcia, Florian Gratzer, Zazhil
Herena, Sungpack Hong, Roberto Infante, Hugo Labra, Gabriela Montiel-Moreno, Eduardo Pacheco, Joao
Paiva, Matthew Perry, Diego Ramirez, Siva Ravada, Carlos Reyes, Steve Serra, Korbinian Schmid, Jane
Tao, Oskar van Rest, Edgar Vazquez, Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xiv
Documentation Accessibility Xiv
Related Documents Xiv
Conventions Xiv

Changes in This Release for This Guide

1 Property Graph Support Overview

1.1 About the Property Graph Feature of Oracle Database 1-1
1.2 Property Graph Prerequisites 1-2
1.3 Property Graph Features 1-8
1.3.1 Property Graph Sizing Recommendations 1-9
1.4 Security Best Practices with Graph Data 1-9
1.5 Interactive Graph Shell 1-10
1.6 Storing Graphs in Oracle Database and Loading Graphs into Memory 1-12
1.6.1 Two-Tier Mode 1-12
1.6.2 Three-Tier Mode 1-13
1.7 Using Oracle Graph with the Autonomous Database 1-13
1.7.1 Two-Tier Deployments of Oracle Graph with Autonomous Database 1-14
1.7.2 Three-Tier Deployments of Oracle Graph with Autonomous Database 1-14
1.8 Migrating Property Graph Applications from Before Release 21c 1-17
1.9 Quick Start: Interactively Analyze Graph Data 1-19
1.9.1 Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph
Server (PGX) 1-19
1.9.2 Quick Start: Create and Query a Graph in the Database, Load into In-
Memory Graph Server (PGX) for Analytics 1-24
1.9.2.1 Create and Query a Graph in the Database 1-25
1.9.2.2 Load the Graph into Memory and Run Graph Analytics 1-29
1.9.3 Quick Start: Executing PGQL Queries in SQLcl 1-32
1.10 Managing Property Graphs With Python Client 1-32

ORACLE iii

1.10.1 Installing the Python Client 1-32

1.10.2 Using the Python Client 1-33

1.10.2.1 Interactive Mode Using Python Shell 1-33

1.10.2.2 Module Mode 1-35

1.10.3 Troubleshooting the Python Client 1-37

1.10.4 Uninstalling the Python Client 1-38
Using Property Graphs in an Oracle Database Environment

2.1 About Property Graphs 2-2

2.1.1 What Are Property Graphs? 2-2

2.1.2 What Is Oracle Database Support for Property Graphs? 2-3

2.1.2.1 In-Memory Graph Server (PGX) 2-4

2.1.2.2 Data Access Layer 2-4

2.1.2.3 Options for Property Graph Architecture 2-5

2.2 About Property Graph Data Formats 2-6

2.2.1 GraphML Data Format 2-6

2.2.2 GraphSON Data Format 2-8

2.2.3 GML Data Format 2-9

2.2.4 Oracle Flat File Format 2-10

2.3 Property Graph Schema Objects for Oracle Database 2-11

2.3.1 Property Graph Tables (Detailed Information) 2-12

2.3.2 Default Indexes on Vertex (VT$) and Edge (GES$) Tables 2-17

2.3.3 Flexibility in the Property Graph Schema 2-17

2.4 Getting Started with Property Graphs 2-17

2.4.1 Required Privileges for Database Users 2-18

2.5 Using Java APIs for Property Graph Data 2-18

2.5.1 Overview of the Java APIs 2-19

2.5.1.1 Oracle Graph Property Graph Java APIs 2-19

2.5.1.2 TinkerPop Java APIs 2-19

2.5.1.3 Oracle Database Property Graph Java APIs 2-19

2.5.2 Parallel Loading of Graph Data 2-19

2.5.2.1 JDBC-Based Data Loading 2-20

2.5.2.2 External Table-Based Data Loading 2-28

2.5.2.3 SQL*Loader-Based Data Loading 2-33

2.5.3 Parallel Retrieval of Graph Data 2-36

2.5.4 Using an Element Filter Callback for Subgraph Extraction 2-38

2.5.5 Using Optimization Flags on Reads over Property Graph Data 2-41

2.5.6 Adding and Removing Attributes of a Property Graph Subgraph 2-43

2.5.7 Getting Property Graph Metadata 2-48

2.5.8 Merging New Data into an Existing Property Graph 2-49

ORACLE

2.5.9 Opening and Closing a Property Graph Instance 2-52
2.5.10 Creating Vertices 2-53
2511 Creating Edges 2-53
2.5.12 Deleting Vertices and Edges 2-54
2.5.13 Reading a Graph from a Database into an Embedded In-Memory
Analyst 2-54
2.5.14 Specifying Labels for Vertices 2-55
2.5.15 Building an In-Memory Graph 2-56
2.5.16 Dropping a Property Graph 2-57
2.5.17 Executing PGQL Queries 2-57
2.6 Managing Text Indexing for Property Graph Data 2-57
2.6.1 Configuring a Text Index for Property Graph Data 2-58
2.6.1.1 Configuring Text Indexes Using Oracle Text 2-58
2.6.2 Using Automatic Indexes for Property Graph Data 2-61
2.6.3 Using Manual Indexes for Property Graph Data 2-62
2.6.4 Executing Search Queries Over a Property Graph’s Text Indexes 2-63
2.6.4.1 Executing Search Queries Over a Text Index Using Oracle Text 2-63
2.6.5 Handling Data Types 2-64
2.6.5.1 Handling Data Types on Oracle Text 2-64
2.6.6 Updating Configuration Settings on Text Indexes for Property Graph
Data 2-65
2.6.7 Using Parallel Query on Text Indexes for Property Graph Data 2-65
2.6.7.1 Parallel Text Search Using Oracle Text 2-66
2.7 Access Control for Property Graph Data (Graph-Level and OLS) 2-67
2.7.1 Applying Oracle Label Security (OLS) on Property Graph Data 2-68
2.8 Using the Groovy-Based Shell with Property Graph Data 2-73
2.9 Using the Graph Zeppelin Interpreter Client 2-75
2.10 Creating Property Graph Views on an RDF Graph 2-77
2.11 Oracle Flat File Format Definition 2-80
2.11.1 About the Property Graph Description Files 2-81
2.11.2 Edge File 2-81
2.11.3 Vertex File 2-83
2.11.4 Encoding Special Characters 2-85
2.11.5 Example Property Graph in Oracle Flat File Format 2-85
2.11.6 Converting an Oracle Database Table to an Oracle-Defined Property
Graph Flat File 2-86
2.11.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files 2-89
3 Using the In-Memory Graph Server (PGX)
3.1 PGX User Authentication and Authorization 3-2

ORACLE

3.1.1 Prepare the Graph Server for Database Authentication 3-3

3.1.2 Connect to the Server from JShell with Database Authentication 3-4
3.1.3 Generate and Use a Token 3-5
3.1.4 Read Data from the Database 3-6
3.1.5 Token Expiration 3-7
3.1.6 Advanced Access Configuration 3-8
3.1.6.1 Customizing Roles and Permissions 3-9

3.1.6.2 Adding and Removing Roles 3-9

3.1.6.3 Defining Permissions for Individual Users 3-10

3.1.7 Examples of Custom Authorization Rules 3-10
3.1.8 Revoking Access to the Graph Server 3-13

3.2 Reading Data from Oracle Database into Memory 3-13
3.3 Keeping the Graph in Oracle Database Synchronized with the Graph Server 3-20
3.3.1 Example of Synchronizing 3-21

3.4 Configuring the In-Memory Analyst 3-24
3.4.1 Specifying the Configuration File to the In-Memory Analyst 3-35

3.5 Storing a Graph Snapshot on Disk 3-36
3.6 Executing Built-in Algorithms 3-37
3.6.1 About the In-Memory Analyst 3-38
3.6.2 Running the Triangle Counting Algorithm 3-38
3.6.3 Running the PageRank Algorithm 3-39

3.7 Using Custom PGX Graph Algorithms 3-40
3.7.1 Writing a Custom PGX Algorithm 3-40
3.7.1.1 Collections 3-41

3.7.1.2 lteration 3-41

3.7.1.3 Reductions 3-42

3.7.2 Compiling and Running a PGX Algorithm 3-43
3.7.3 Example Custom PGX Algorithm: PageRank 3-43

3.8 Creating Subgraphs 3-44
3.8.1 About Filter Expressions 3-44
3.8.2 Using a Simple Filter to Create a Subgraph 3-45
3.8.3 Using a Complex Filter to Create a Subgraph 3-46
3.8.4 Using a Vertex Set to Create a Bipartite Subgraph 3-47

3.9 Using Automatic Delta Refresh to Handle Database Changes 3-49
3.9.1 Configuring the In-Memory Server for Auto-Refresh 3-49
3.9.2 Configuring Basic Auto-Refresh 3-50
3.9.3 Reading the Graph Using the In-Memory Analyst or a Java Application 3-50
3.9.4 Checking Out a Specific Snapshot of the Graph 3-51
3.9.5 Advanced Auto-Refresh Configuration 3-52
3.10 Starting the In-Memory Analyst Server 3-53
3.10.1 Configuring the In-Memory Analyst Server 3-53

ORACLE vi

3.11 Deploying to Apache Tomcat 3-55

3.11.1 About the Authentication Mechanism 3-56
3.12 Deploying to Oracle WebLogic Server 3-56
3.12.1 Installing Oracle WebLogic Server 3-57
3.13 Connecting to the In-Memory Analyst Server 3-57
3.13.1 Connecting with the In-Memory Analyst Shell 3-57
3.13.1.1 About Logging HTTP Requests 3-57

3.13.2 Connecting with Java 3-58
3.13.3 Connecting with the PGX REST API 3-58
3.14 Managing Property Graph Snapshots 3-64
3.15 User-Defined Functions (UDFs) in PGX 3-66

4 SQL-Based Property Graph Query and Analytics

4.1 Simple Property Graph Queries 4-2
4.2 Text Queries on Property Graphs 4-5
4.3 Navigation and Graph Pattern Matching 4-9
4.4 Navigation Options: CONNECT BY and Parallel Recursion 4-14
4.5 Pivot 4-18
4.6 SQL-Based Property Graph Analytics 4-19

4.6.1 Shortest Path Examples 4-19

4.6.2 Collaborative Filtering Overview and Examples 4-23

5 Property Graph Query Language (PGQL)

5.1 Creating a Property Graph using PGQL 5-1

5.2 Pattern Matching with PGQL 5-3

5.3 Edge Patterns Have a Direction with PGQL 5-4

5.4 Vertex and Edge Labels with PGQL 5-4

5.5 Variable-Length Paths with PGQL 5-4

5.6 Aggregation and Sorting with PGQL 5-5

5.7 Executing PGQL Queries Against the In-Memory Graph Server (PGX) 5-5

5.7.1 Getting Started with PGQL 5-6

5.7.2 Supported PGQL Features 5-7

5.7.2.1 Limitations on Quantifiers 5-8

5.7.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns 5-8

5.7.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements 5-8

5.7.4 Java APIs for Executing SELECT Queries 5-9
5.7.4.1 Executing SELECT Queries Against a Graph in the In-memory

Graph Server (PGX) 5-9

5.7.4.2 Executing SELECT Queries Against a PGX Session 5-9

5.7.4.3 lterating Through a Result Set 5-10

ORACLE vii

5.7.4.4 Printing a Result Set 5-12
5.7.5 Java APIs for Executing UPDATE Queries 5-13
5.7.5.1 Executing UPDATE Queries against a Graph in the in-memory
Graph Server (PGX) 5-13
5.7.5.2 Executing UPDATE Queries Against a PGX Session 5-14
5.7.5.3 Updatability of Graphs Through PGQL 5-14
5.7.5.4 Altering the Underlying Schema of a Graph 5-15
5.7.6 Security Tools for Executing PGQL Queries 5-15
5.7.6.1 Using Bind Variables 5-16
5.7.6.2 Using Identifiers in a Safe Manner 5-17
5.7.7 Best Practices for Tuning PGQL Queries 5-17
5.7.7.1 Memory Allocation 5-18
5.7.7.2 Parallelism 5-18
5.7.7.3 Query Plan Explaining 5-18
5.8 Executing PGQL Queries Directly Against Oracle Database 5-19
5.8.1 PGQL Features Supported 5-21
5.8.1.1 Temporal Types 5-21
5.8.1.2 Type Casting 5-22
5.8.1.3 CONTAINS Built-in Function 5-23
5.8.2 Creating Property Graphs through CREATE PROPERTY GRAPH
Statements 5-23
5.8.3 Dropping Property Graphs through DROP PROPERTY GRAPH
Statements 5-29
5.8.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL
Queries 5-31
5.8.4.1 Basic Query Execution 5-34
5.8.4.2 Security Techniques for PGQL Queries 5-43
5.8.4.3 Using a Text Index with PGQL Queries 5-49
5.8.4.4 Obtaining the SQL Translation for a PGQL Query 5-52
5.8.4.5 Additional Options for PGQL Translation and Execution 5-60
5.8.4.6 Querying Another User’s Property Graph 5-79
5.8.4.7 Using Query Optimizer Hints with PGQL 5-81
5.8.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE
Statements 5-85
5.8.5.1 Additional Options for PGQL Statement Execution 5-93
5.8.6 Performance Considerations for PGQL Queries 5-97
6 Graph Visualization Application
6.1 About the Graph Visualization Application 6-1
6.2 How does the Graph Visualization Application Work 6-1
6.3 Deploying Graph Visualization Application 6-2
6.3.1 How to Deploy the Graph Visualization Application 6-2

ORACLE

viii

6.3.2 Deploying Graph Visualization Application in Oracle WebLogic Server 6-4
6.4 Using GraphViz 6-5

6.4.1 GraphViz Modes 6-6

6.4.2 GraphViz Settings 6-7

6.4.3 Using Live Search 6-10

6.4.4 Using URL Parameters to Control GraphViz 6-11

7 Spatial Support in Property Graphs
7.1 Representing Spatial Data in a Property Graph 7-1
7.2 Creating a Spatial Index on Property Graph Data 7-3
7.3 Querying Spatial Data in a Property Graph 7-4
8 OPG_APIS Package Subprograms

8.1 OPG_APIS.ANALYZE_PG 8-2
8.2 OPG_APIS.CF 8-4
8.3 OPG_APIS.CF_CLEANUP 8-7
8.4 OPG_APIS.CF_PREP 8-9
8.5 OPG_APIS.CLEAR_PG 8-10
8.6 OPG_APIS.CLEAR_PG_INDICES 8-11
8.7 OPG_APIS.CLONE_GRAPH 8-11
8.8 OPG_APIS.COUNT_TRIANGLE 8-12
8.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP 8-13
8.10 OPG_APIS.COUNT_TRIANGLE_PREP 8-14
8.11 OPG_APIS.COUNT_TRIANGLE_RENUM 8-16
8.12 OPG_APIS.CREATE_EDGES_TEXT_IDX 8-17
8.13 OPG_APIS.CREATE_PG 8-18
8.14 OPG_APIS.CREATE_PG_SNAPSHOT TAB 8-19
8.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB 8-21
8.16 OPG_APIS.CREATE_STAT_TABLE 8-22
8.17 OPG_APIS.CREATE_SUB_GRAPH 8-23
8.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX 8-24
8.19 OPG_APIS.DROP_EDGES_TEXT_IDX 8-26
8.20 OPG_APIS.DROP_PG 8-26
8.21 OPG_APIS.DROP_PG_VIEW 8-27
8.22 OPG_APIS.DROP_VERTICES_TEXT_IDX 8-27
8.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM 8-28
8.24 OPG_APIS.EXP_EDGE_TAB_STATS 8-30
8.25 OPG_APIS.EXP_VERTEX_TAB_STATS 8-31
8.26 OPG_APIS.FIND_CC_MAPPING_BASED 8-32

ORACLE

8.27 OPG_APIS.FIND_CLUSTERS_CLEANUP 8-33
8.28 OPG_APIS.FIND_CLUSTERS_PREP 8-34
8.29 OPG_APIS.FIND_SP 8-36
8.30 OPG_APIS.FIND_SP_CLEANUP 8-37
8.31 OPG_APIS.FIND_SP_PREP 8-38
8.32 OPG_APIS.GET_BUILD_ID 8-39
8.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL 8-39
8.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS 8-41
8.35 OPG_APIS.GET_LATLONG_FROM_V_COL 8-42
8.36 OPG_APIS.GET_LATLONG_FROM_V_T _COLS 8-43
8.37 OPG_APIS.GET_LONG_LAT_GEOMETRY 8-44
8.38 OPG_APIS.GET_LATLONG_FROM_V_COL 8-45
8.39 OPG_APIS.GET_LONGLAT FROM_V_T _COLS 8-46
8.40 OPG_APIS.GET_SCN 8-47
8.41 OPG_APIS.GET_VERSION 8-47
8.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL 8-48
8.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS 8-49
8.44 OPG_APIS.GRANT_ACCESS 8-50
8.45 OPG_APIS.IMP_EDGE_TAB_STATS 8-51
8.46 OPG_APIS.IMP_VERTEX_TAB_STATS 8-52
8.47 OPG_APIS.PR 8-54
8.48 OPG_APIS.PR_CLEANUP 8-56
8.49 OPG_APIS.PR_PREP 8-57
8.50 OPG_APIS.PREPARE_TEXT_INDEX 8-58
8.51 OPG_APIS.RENAME_PG 8-59
8.52 OPG_APIS.SPARSIFY_GRAPH 8-59
8.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP 8-61
8.54 OPG_APIS.SPARSIFY_GRAPH_PREP 8-62

o OPG_GRAPHOP Package Subprograms
9.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB 9-1

Part | Supplementary Information for Property Graph Support

A Handling Property Graphs Using a Two-Tables Schema
A.1 Preparing the Two-Tables Schema A-2
A.2 Storing Data in a Property Graph Using a Two-Tables Schema A-4
A.3 Reading Data from a Property Graph Using a Two-Tables Schema A-8

ORACLE

Index

ORACLE"

Xi

List of Figures

2-1 Simple Property Graph Example

2-2 Oracle Property Graph Architecture
2-3 Three-Tier Property Graph Architecture
2-4 Two-Tier Property Graph Architecture
3-1 Edges Matching src.prop == 10

3-2 Graph Created by the Simple Filter

3-3 Edges Matching the outDegree Filter
3-4 Graph Created by the outDegree Filter
4-1 Phones Graph for Collaborative Filtering
5-1 PGQL on Oracle Database (RDBMS)
6-1 Query Visualization

6-2 Query Visualization

6-3 GraphViz Settings Window

6-4 Highlights Options for Vertices
ORACLE

2-2
2-4
2-5
2-6
3-45
3-45
3-46
3-47
4-24
5-20
6-5
6-6
6-7
6-9

Xii

List of Tables

1-1 Property Graph Sizing Recommendations

2-1 Edge File Record Format

2-2 Vertex File Record Format

2-3 Special Character Codes in the Oracle Flat File Format
3-1 Advanced Access Configuration Options

3-2 Configuration Parameters for the In-Memory Analyst
3-3 Configuration Options for In-Memory Analyst Server
3-4 Fields for Each UDF

5-1 Type Casting Support in PGQL (From and To Types)
5-2 PGQL Translation and Execution Options

5-3 PGQL Statement Modification Options

6-1 Available URL Parameters

ORACLE

1-9
2-81
2-83
2-85

3-8
3-25
3-53
3-68
5-22
5-60
5-93
6-11

Xiii

Preface

Preface

This document provides conceptual and usage information about Oracle Spatial and
Graph support for working with property graph data.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This document is intended for database and application developers in an Oracle
Database environment.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the following documents:

* Oracle Spatial Developer's Guide

e Oracle Database Graph Developer's Guide for RDF Graph

* Oracle Spatial GeoRaster Developer's Guide

» Oracle Spatial Topology and Network Data Model Developer's Guide
* Oracle Big Data Spatial and Graph User's Guide and Reference

Conventions

The following text conventions are used in this document:

ORACLE Xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XV

Changes in This Release for This Guide

Changes in This Release for This Guide

ORACLE

The following changes apply to property graph support that is shipped with Oracle
Graph Server and Client.

Oracle Graph Server and Client is required for using the property graph feature of
Oracle Database (see section 1.2), and is released four times a year.

New Features

Significant new features in earlier Oracle Graph Server and Client releases
include:

Graph Visualization tool: Lightweight, single-page web application to visualize
graphs.

In-memory graph representation optimization for reduced memory usage and
faster performance.

User-defined functions (UDFs), for creating custom graph algorithms and
extending product graph algorithms with Java or JavaScript syntax.

Support for Autonomous Database.

Graph server authentication and authorization based on Oracle Database users
and roles.

New Synchronizer API to keep partitioned graphs up-to-date with changes in the
Oracle Database.

PGQL features:

— Added a CREATE PROPERTY GRAPH statement to both PGQL on Oracle
Database and PGQL on PGX for creating property graphs from existing tables

— Added support for CHEAPEST and TOP k CHEAPEST path queries to PGQL on
Graph Server (PGX).

¢ Note:
This support does not apply for PGQL queries executed directly
against graph in Oracle Database.
— Implemented the PGQL 1.3 language specification, which can be found at
https://pgql-lang.org/
— Added support for | NSERT, UPDATE, and DELETE queries
— Added support for MATCH inside FROM and optional ON clauses
— Added support for case insensitivity

— Added support for quoted identifiers

XVi

https://pgql-lang.org/

ORACLE

Changes in This Release for This Guide

— Added support for subqueries after GROUP BY
— Added a PGQL plugin for SQLcl
— New built-in algorithms:

* Compute High Degree Vertices

* Create Distance Index

* Limited Shortest Path (Hop Distance)

* All Reachable Vertices/Edges

* Louvain (community detection)

* Python client for PGX

Significant New Features in Oracle Graph Server and Client 20.4

Use CREATE PROPERTY GRAPH statement to create a graph from tables in the
database and make it available in the in-memory graph server (PGX)

Python client for the in-memory graph server (PGX)
Zeppelin 0.9 (Zeppelin 0.8 is no longer supported)

Use database credentials to log into graph visualization tool

Migrating Property Graph Applications to Oracle Database 21c

From Release 21c onwards, Oracle Graph Server and Client must be installed
separately. It is recommended to remove the older property graph libraries

from $ORACLE_HOME. See Uninstalling Previous Versions of Property Graph Libraries
for more details.

Deprecated Features

PL/SQL APl OPG_APIS.GET_SCN Function

The PL/SQL APl OPG_APIS.GET_SCN function is deprecated. Instead,
to retrieve the current SCN (system change number), use the
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER function:

SELECT dbns_f | ashback. get _syst em change_number FROM DUAL;

Two-Table Support

Support for the two-table format described in Handling Property Graphs Using
a Two-Tables Schema was deprecated in 19c and will be removed in a future
release.

Apache Tinkerpop API Support
Apache Tinkerpop API support for Oracle Database was deprecated in 19¢ and is
scheduled to be removed in a future release.

OraclePgqglResultSet

The oracl e. pg. rdbms. Oracl ePgql Resul t Set interface was deprecated in 19¢ and
will be removed in a future release. Instead, use the standardized interface

oracl e. pggl .l ang. Resul t Set to retrieve values from a PGQL result set.

Desupported Features

Graph property text search based on Apache Solr/Lucene is desupported. Instead,
use Oracle Text or PGQL query expressions.

XVii

Changes in This Release for This Guide

* The PGX property type DATE is desupported. Instead, use LOCAL_DATE or
TIMESTAMP.

» Support for the Apache Groovy-based shell was deprecated in 19¢ and is now
desupported.

ORACLE XVili

Property Graph Support Overview

This chapter provides an overview of Oracle Graph support for property graph
features.

About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics
capabilities in Oracle Database.

Property Graph Prerequisites
The requirements for using the Property Graph feature of Oracle Database are the
following.

Property Graph Features
Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges.

Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

Interactive Graph Shell

Both the Oracle Graph server and client packages contain an interactive
command-line application for interacting with all the Java APlIs of the product,
locally or on remote computers.

Storing Graphs in Oracle Database and Loading Graphs into Memory

You can work with graphs in two-tier mode (graph client connects directly to
Oracle Database), or three-tier mode (graph client connects to the graph server
(PGX) on the middle-tier, which then connects to Oracle Database).

Using Oracle Graph with the Autonomous Database
Oracle Graph Server and Client supports the family of Oracle Autonomous
Database.

Migrating Property Graph Applications from Before Release 21c

If you are migrating from a previous version of Oracle Spatial and Graph to
Release 21c, you may need to make some changes to existing property graph-
related applications.

Quick Start: Interactively Analyze Graph Data
This tutorial shows how you can quickly get started using property graph data.

Managing Property Graphs With Python Client
This section describes how to install Python Client and how to use the Python
Client to work with Property Graphs.

1.1 About the Property Graph Feature of Oracle Database

The Property Graph feature delivers advanced graph query and analytics capabilities
in Oracle Database.

ORACLE

This feature supports graph operations, indexing, queries, search, and in-memory
analytics.

1-1

Chapter 1
Property Graph Prerequisites

1.2 Property Graph Prerequisites

ORACLE

The requirements for using the Property Graph feature of Oracle Database are the
following.

* Oracle Graph Server and Client must be installed, as described later in this topic.

This is required to use the Property Graph feature of Oracle Database and is
supported for Oracle Database 12.2 and higher.

e AL16UTF16 (instead of UTF8) must be specified as the
NLS_NCHAR_CHARACTERSET.

AL32UTF8 (UTF8) should be the default character set, but AL16UTF16 must be the
NLS_NCHAR_CHARACTERSET.

Subtopics:

* Graph Server Installation

e Set up Transport Layer Security
e Graph Server Upgrade

e Graph Server Uninstallation

e Graph Client Installation

» Database Compatibility and Restrictions

Graph Server Installation

Starting with Release 20.1, Graph Server and Client will be available as a separate
downloadable package. The libraries will not be available in $ORACLE_HOME.

For installing the Graph server, the prerequisites are:
e Oracle Linux 6 or 7 x64 or a similar Linux distribution such as RedHat

e Oracle JDK 8 or JDK 11

Graph server can run standalone, or in Oracle WebLogic Server, or Apache Tomcat.
For instructions to deploy Graph server in Oracle WebLogic Server or Apache Tomcat,
see:

* Deploying to Oracle WebLogic Server

* Deploying to Apache Tomcat

The installation steps for installing Graph server in standalone mode are:

1. Download Oracle Graph Server and Client from Oracle Software Delivery Cloud.

2. Asroot, install the RPM file using the rpm command line utility:

rpm-i oracl e-graph-<version>.rpm
Where <ver si on> reflects the version that you downloaded. (For example:

oracl e-graph-20.4.0.0.0.x86_64.rpmn

The . r pmfile is the graph server.

1-2

https://edelivery.oracle.com

ORACLE

Chapter 1
Property Graph Prerequisites

As root, add operating system users allowed to use the server installation to the
operating system group or acl egr aph. For example:

usernod -a -G oracl egraph <graphuser >

This adds the specified graph user to the group or acl egr aph.
Note that <gr aphuser > must log out and log in again for this to take effect.

As <graphuser >, configure the server by modifying the files under /etc/oracle/
graph.

< Note:

For demonstration purposes only, you can edit / et ¢/ or acl e/ gr aph/
server. conf to change enabl e tls to f al se. This will allow you to start
the server as described in the next step. This is not recommended for
production. In a secure configuration, enabl e_t | s should be setto t rue.

Ensure that authentication is enabled for database users that will connect to the
graph server, as explained in PGX User Authentication and Authorization.

As <gr aphuser >, start the PGX server by executing / opt / or acl e/ gr aph/ pgx/ bi n/
start-server.

The PGX server is now ready to accept requests. Log files can be found in / var /| og/
oracl e/ graph.

Additional installation operations are required for specific use cases, such as:

Interactively analyze property graphs locally using the Java Shell tool (JShell).

Deploy the graph server as a web application with Oracle WebLogic Server (see
Deploying to Oracle WebLogic Server).

Deploy GraphViz in Oracle WebLogic Server (see Deploying Graph Visualization
Application in Oracle WebLogic Server).

Deploy the graph server as a web application with Apache Tomcat (see Deploying
to Apache Tomcat).

Set up Transport Layer Security

The graph server, by default, allows only encrypted connections using Transport Layer
Security (TLS). TLS requires the server to present a server certificate to the client and
the client must be configured to trust the issuer of that certificate.

Configure the graph server

Note:

If you deploy the graph server into your web server using the web
applications download package, then this section does not apply. Please
refer to the manual of your web server for instructions on how to configure
TLS.

1-3

Chapter 1
Property Graph Prerequisites

Edit the file at / et ¢/ or acl e/ gr aph/ server. conf, and specify the paths to the server
certificate and the server's private key in PEM format. For example:

{
“port": 7007,
"enable tls": true,
"server_private_key": "/etc/oraclel/graph/server_key. pent,
"server_cert": "/etc/oraclel/graph/server_certificate. pent,
"enabl e_client_authentication": false,
"working_dir": "/opt/oracle/graph/pgx/tnp_data"

}

Restart the server.

Note:

* You should use a certificate issued by a certificate authority (CA) which
is trusted by your organization. If you do not have a CA certificate, you
can temporarily create a self-signed certificate and get started.

e Always use a valid certificate trusted by your organization. We do
not recommend the usage of self-signed certificates for production
environments.

Generate self-signed certificates

The following example shows how to generate a self-signed certificate:

cd /etc/oracl e/ graph

openssl req -new -newkey rsa: 2048 -days 365 -nodes -x509 -subj "/C=US/
ST=M/St at e/ L=MyTown/ O=MyOr gani zat i on/ CN=EROOT" - keyout ca_key. pem - out
ca_certificate. pem

openssl genrsa -out server_key traditional.pem 2048

openss| pkcs8 -topk8 -in server_key_traditional.pem-inform pem -out
server _key. pem -out f orm pem - nocrypt

openssl req -new -subj "/C=US/ ST=MWySt at e/ L=MyTown/ OG=MyOr gani zat i on/
CN=l ocal host" -key server_key.pem -out server.csr

chnod 600 server_key. pem

openssl x509 -req -CA ca_certificate. pem-CAkey ca_key.pem-in
server.csr -out server _certificate. pem-days 365 - CAcreateserial

" Note:

e The certificate mentioned in the above example will only work for the
host | ocal host . If you have a different domain, you must replace
| ocal host with your domain name.

* The above self-signed certificate is valid only for 365 days.

ORACLE 1-4

Chapter 1
Property Graph Prerequisites

Configuring the client to trust the self-signed certificate

To configure a Java client (including jshell) to trust the self-signed certificate, import
the root certificate to your Java installation local trust store.

Consider the following examples:
e Java 8 (make sure JAVA HOME is set):

keytool -inmport -trustcacerts -keystore $JAVA HOWE jrel/lib/security/
cacerts -storepass changeit -alias pgx -inport -file
ca_certificate. pem -nopronpt

e Java 11 (make sure JAVA11 HOME is set):

keytool -import -trustcacerts -keystore $JAVAL1l HOWE/lib/security/
cacerts -storepass changeit -alias pgx -inport -file
ca_certificate. pem -nopronpt

To configure a Python client to trust the self-signed certificate, you need to additionally
set the SSL_CERT_FI LE environment variable pointing to the root certificate, before you
start the Python application.

Consider the following example:

export SSL_CERT FI LE=/etc/oracl e/ graph/ca_certificate.pem

When you configure a browser to trust the self-signed certificate, while using the
Graph Visualization application, one of the following messages might appear:

* Your connection is not private
e Your connection is not secure

Click the Continue or Accept button to proceed.

Prepare the Graph Server for Database Authentication

Connections to the graph server are authenticated by authenticating them as database
users with the role GRAPH_DEVELCPER.

To set up the database connection in the Graph Server configuration file (in a
standalone install):

$ cd /etc/oracl e/ graph
$ vi pgx. conf

In the pgx.conf file, locate the j dbc_ur| line in the realm options. Replace the text with
the JDBC URL for your database. For example:

"pgx_real m': {
"inplementation": "oracle.pg.identity.DatabaseReal ni',
"options": {

"jdbc_url": "jdbc:oracl e:thin: @yhost: 1521/ nyservice",

ORACLE 1-5

ORACLE

Chapter 1
Property Graph Prerequisites

"t oken_expiration_seconds": 14400,

If connecting to an Autonomous Database, your database connection will look like the
example below:

"pgx_real n': {
“inplementation": "oracle.pg.identity.DatabaseReal ni',
"options": {
"jdbc_url": "jdbc:oracl e:thin: @yhost: 1521/ nyservice",

"t oken_expiration_seconds": 14400,

where / et c/ oracl e/ graph/ wal | et is an example path to the unzipped wallet

file that you downloaded from your Autonomous Database service console, and
ny_identifier_I owis one of the connect identifiers specified in / et ¢/ or acl e/ gr aph/
wal | et/ t nsnanes. or a.

Add Permissions to Publish the Graph

Any graph in your Graph Server session must be published to be viewable in
the graph visualization tool accessed in your browser, as that can be a different
session. Add the graph PGX_SESSI ON_ADD_PUBLI SHED GRAPH in the / et ¢/ or acl e/
gr aph/ pgx. conf file:

"authorization": [{
"pgx_rol e": "GRAPH DEVELOPER',
"pgx_perm ssions": [{
"grant": "PGX_SESSI ON_ADD PUBLI SHED GRAPH'
¥

Graph Server Upgrade

To upgrade the graph server, make sure the graph server is shut down, then execute
the following command with the newer RPM file as an argument. For example:

rpm -U oracl e-graph-20.2.0.0.0.x86_64.rpm

Graph Server Uninstallation

To uninstall the graph server, make sure the graph server is shut down, then run the
following command.

rpm-e oracl e-graph

Graph Client Installation
For installing the Graph client, the prerequisites are:

e A Unix-based operation system (such as Linux) or macOS or Microsoft Windows

1-6

ORACLE

Chapter 1
Property Graph Prerequisites

Oracle JDK 11

The base installation steps for the Graph client are:

1.
2.
3.

Download Oracle Graph Client 20.1 from Oracle Software Cloud.
Unzip the file into a directory of your choice.

Connect to a PGX server using Jshell. For example:

cd

<client-install-dir>/bin/opg-jshell --base_url https://
<host >: 7007

Additional installation operations are required for specific use cases, such as:

Install the client into Apache Zeppelin.

Installation of PL/SQL Packages in Oracle Database

Oracle Graph Server and Client will work with Oracle Database 12.2 onward.
However, you must install the updated PL/SQL packages that are part of the Oracle
Graph Server and Client download.

1.
2.
3.

4.

Download Oracle Graph Client for PL/SQL from Oracle Software Delivery Cloud.
Unzip the file into a directory of your choice.
Install the PL/SQL packages:

a. There are two directories, one for users with Oracle Database 18c or below,
and one for users with Oracle Database 19c or above. As a database user
with DBA privilges, follow the instructions in the README.md file in the
appropriate directory (that matches your database version). This has to be
done for every PDB you will use the graph feature in. For example,

-- Connect as SYSDBA

SQ.> alter session set contai ner=<YOUR _PDB_NAME>;
SQL> @pgr enov. sql

SQ.> @at opg. sql

Create a database user in the database for working with graphs:

a. As a database user with DBA privileges, create a user <gr aphuser >, and grant
the necessary privileges.

i. If you plan to use a three-tier architecture (graph queries and analytics
executed in the in-memory graph server (PGX), then grant privileges as
described in the following command:

SQL> GRANT CREATE SESSI ON, CREATE TABLE, CREATE VI EW TO <graphuser >

ii. If you plan to use a two-tier architecture and run graph queries in the
database, then grant privileges as described in Required Privileges for
Database Users:

SQL> GRANT CREATE SESSI ON, ALTER SESSI ON, CREATE TABLE,

CREATE PROCEDURE, CREATE TYPE, CREATE SEQUENCE, CREATE VI EW
CREATE TRI GGER TO <gr aphuser>

1-7

https://edelivery.oracle.com
https://edelivery.oracle.com/

Chapter 1
Property Graph Features

b. As a <graphuser > in the database, check that the PL/SQL update is
successful:

SQ.> connect <graphuser >/ <passwor d>

SQ.> sel ect opg_apis.get_opg_version() from dual;
-- Should return 20.4 if you are using
-- Graph Server and Cient 20.4

5. As a database user with DBA privileges create the GRAPH_DEVELCOPER and
GRAPH_ADM NI STRATOR roles in the Database. Grant this role to the database user
created in step 4.

a. SQL> CREATE ROLE GRAPH DEVELCPER
SQL> CREATE ROLE GRAPH ADM NI STRATCR

b. Grant appropriate roles to the database user who will be working with graphs.

SQL> GRANT GRAPH DEVELCPER to <graphuser>
SQ.> GRANT GRAPH ADM NI STRATOR to <admi nuser >

Database Compatibility and Restrictions

Oracle Graph Server and Client will work with Oracle Database 12.2 onward. This
includes working with the family of Oracle Autonomous Database -- all versions
of Oracle Autonomous Data Warehouse (shared), Oracle Autonomous Database
(shared), and Oracle Autonomous Database (dedicated).

For details, including any limitations and actions you should take to address them, see
"Database Compatibility Matrix for Oracle Graph Server and Client".

1.3 Property Graph Features

ORACLE

Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges.

Graphs are commonly used to model, store, and analyze relationships found in social
networks, cybersecurity, utilities and telecommunications, life sciences and clinical
data, and knowledge networks.

Typical graph analyses encompass graph traversal, recommendations, finding
communities and influencers, and pattern matching. Industries including
telecommunications, life sciences and healthcare, security, media, and publishing can
benefit from graphs.

The property graph features of Oracle Special and Graph support those use cases
with the following capabilities:

* A scalable graph database
» Developer-based APIs based upon PGQL and Java graph APIs
» Text search and query through integration with Oracle Text

* A parallel, in-memory graph server (PGX) for running graph queries and graph
analytics

1-8

https://blogs.oracle.com/oraclespatial/database-compatibility-matrix-for-oracle-graph-server-and-client

Chapter 1
Security Best Practices with Graph Data

A fast, scalable suite of social network analysis functions that include ranking,
centrality, recommender, community detection, and path finding

Parallel bulk load and export of property graph data in Oracle-defined flat files
format

A powerful Graph Visualization (GraphViz) application
Notebook support through integration with Apache Zeppelin

Property Graph Sizing Recommendations

1.3.1 Property Graph Sizing Recommendations

The following are recommendations for property graph installation.

Table 1-1 Property Graph Sizing Recommendations

Graph Size Recommended Physical Recommended Number of CPU
Memory to be Dedicated Processors

10 to 100M Up to 14 GB RAM 2 to 4 processors, and up to 16

edges processors for more compute-intensive
workloads

100M to 1B 14 GB to 100 GB RAM 4 to 12 processors, and up to 16 to 32

edges processors for more compute-intensive
workloads

Over 1B edges Over 100 GB RAM 12 to 32 processors, or more for

especially compute-intensive workloads

1.4 Security Best Practices with Graph Data

Several security-related best practices apply when working with graph data.

ORACLE

Sensitive Information

Graph data can contain sensitive information and should therefore be treated with the
same care as any other type of data. Oracle recommends the following considerations
when using a graph product:

Avoid storing sensitive information in your graph if that information is not required
for analysis. If you have existing data, only model the relevant subset you need for
analysis as a graph, either by applying a preprocessing step or by using subgraph
and filtering techniques that are part of graph product.

Model your graph in a way that vertex and edge identifiers are not considered
sensitive information.

Do not deploy the product into untrusted environments or in a way that gives
access to untrusted client connections.

Make sure all communication channels are encrypted and that authentication is
always enabled, even if running within a trusted network.

Least Privilege Accounts

The database user account that is being used by the in-memory analyst (PGX) to read
data should be a low-privilege, read-only account. PGX is an in-memory accelerator

1-9

Chapter 1
Interactive Graph Shell

that acts as a read-only cache on top of the database, and it does not write any data
back to the database.

If your application requires writing graph data and later analyzing it using PGX, make
sure you use two different database user accounts for each component.

1.5 Interactive Graph Shell

ORACLE

Both the Oracle Graph server and client packages contain an interactive command-
line application for interacting with all the Java APIs of the product, locally or on
remote computers.

This interactive graph shell dynamically interprets command-line inputs from the user,
executes them by invoking the underlying functionality, and can print results or process
them further. The graph shell provides a lightweight and interactive way of exercising
graph functionality without creating a Java application.

The graph shell is especially helpful if want to do any of the following:

* Quickly run a "one-off" graph analysis on a specific data set, rather than creating a
large application

» Explore the data set, trying different graph analyses on the data set interactively

* Learn how to use the product and develop a sense of what the built-in algorithms
are good for

» Develop and test custom graph analytics algorithms

The same graph shell executable can be used in both local or remote modes.

This graph shell is implemented on top of the Java Shell tool (JShell). As such, it
inherits all features provided by JShell such as tab-completion, history, reverse search,
semicolon inference, script files, and internal variables.

The graph shell automatically connects to a PGX instance (either remote or embedded
depending on the - - base_url command-line option) and creates a PGX session. If
--base_url is not specified, a new local PGX instance and session are created.

Starting the Graph Shell
The Graph Shell uses JShell, which means the shell needs to run on Java 11 or later.

After installation, the shell executables can be found in / opt/ or acl e/ gr aph/ bi n after
server installation or <I NSTALL_DI R>/ bi n after client installation. The shell may be
launched by entering the following in your terminal:

. I'bi n/ opg-j shel

This starts the shell in embedded (local) mode, which means the graph functions are
running in the client JVM.

When the shell has started, the following command line prompt appears:

opg-j shel | -rdbns>

1-10

ORACLE

Chapter 1
Interactive Graph Shell

If you have multiple versions of Java installed, you can easily switch between
installations by setting the JAVA_HOME variable before starting the shell. For
example:

export JAVA HOVE=/usr/lib/jvnjava-11-oracle

Command-line Options

To view the list of available command-line options, add - - hel p to the opg-j shel |
command:

.I'bin/opg-jshell --help

Embedded (Local) versus Remote Mode

The graph shell can be started in embedded (local) mode or remote mode. By default
the shell starts in embedded mode, which means a local PGX instance is created
running in the same JVM in which the shell is running.

Embedded mode is only supported in the Graph Server installation. Graph Client
installations only support remote mode.

The local PGX instance will try to load a PGX configuration file from / et ¢/ or acl e/
graph/ pgx. conf . You can change the location of the configuration file by passing the
- - pgx_conf command-line option followed by the path to the configuration file:

start local PGX instance with customconfig
.I'bin/opg-jshell --pgx_conf path/tolmy/pgx.conf

The graph shell can also be started in remote mode. In that case the shell connects
to a PGX instance that runs in a separate JVM (possibly on a different machine).
To launch the shell in remote mode, specify the base URL of the server with the
--base_url option. For example:

.I'bin/opg-jshell --base url https://nyserver.com 7007

Batch Execution of Scripts

The graph shell can execute a script by passing the path(s) to the script(s) to the
opg-j shel | command. For example:

.I'bin/opg-jshell /path/to/script.jsh

Predefined Functions
The graph shell provides the following utility functions:
e println(String): A shorthand for System.out.printin(String).

 loglevel (String | oggerName, String |evel Name): A convenient function to set
the loglevel.

The | ogl evel function allows you to set the log level for a logger. For example,
| ogl evel ("ROOT", "INFO') sets the level of the root logger to | NFO. This causes all
logs of | NFOand higher (WARN, ERRCR, FATAL) to be printed to the console.

1-11

Chapter 1
Storing Graphs in Oracle Database and Loading Graphs into Memory

Script Arguments

You can provide parameters to the script. For example:

.I'bin/opg-jshell /path/to/script.jsh script-arg-1 script-arg-2

In this example, the script / pat h/ t o/ scri pt . j sh can access the arguments via the
scri pt Args system property. For example:

println(SystemgetProperty("scriptArgs"))// Prints: script-arg-1 script-
arg-2

Staying in Interactive Mode

By default, the graph shell exits after it finishes execution. To stay in interactive mode
after the script finishes successfully, pass the - - keep_r unni ng flag to the shell. For
example:

.I'bin/opg-jshell -b https://nyserver.com 7007/ /path/to/script.jsh --
keep_running

1.6 Storing Graphs in Oracle Database and Loading Graphs
Into Memory

You can work with graphs in two-tier mode (graph client connects directly to Oracle
Database), or three-tier mode (graph client connects to the graph server (PGX) on
the middle-tier, which then connects to Oracle Database).

Both modes for connecting to Oracle Database can be used regardless of whether the
database is autonomous or not autonomous.

The database schema storing the graph must have the privileges listed in Required
Privileges for Database Users.

If you are using the Oracle Autonomous Database, see also Using Oracle Graph with
the Autonomous Database for information about two-tier and three-tier deployments.

e Two-Tier Mode
In two-tier mode, the client graph application connects directly to Oracle Database.

e Three-Tier Mode
In three-tier mode, the client graph application connects to the graph server (PGX)
in the middle tier, and the graph server connects to Oracle Database.

1.6.1 Two-Tier Mode

ORACLE

In two-tier mode, the client graph application connects directly to Oracle Database.

The graph is stored in the property graph schema (see Property Graph Schema
Objects for Oracle Database).

You can use the PGQL DDL statement CREATE PROPERTY GRAPH to create a
graph from database tables and store it in the property graph schema. You can then

1-12

Chapter 1
Using Oracle Graph with the Autonomous Database

run PGQL queries on this graph from JShell shell, Java application, or the graph
visualization tool.

The graph can be loaded from the property graph schema into memory in the graph
server for faster processing and for using the analytics API.

1.6.2 Three-Tier Mode

1.7 Using

ORACLE

In three-tier mode, the client graph application connects to the graph server (PGX) in
the middle tier, and the graph server connects to Oracle Database.

The graph can be loaded from the property graph schema into the graph server, or
directly from database tables into the graph server.

* Loading a Graph from Property Graph Schema:

Loading a graph from the property graph schema into memory in the graph server
is the same as in the two-tier mode.

* Loading a Graph Directly from Database Tables:

When you load the graph from database tables into memory in the graph server,
you create the graph in memory by directly reading data from the database tables.
You do not create a graph in the property graph schema.

For more information about loading a graph from database tables into memory,
see Reading Data from Oracle Database into Memory.

After the graph is loaded into memory, you can run PGQL queries on this graph
from JShell shell, Java application, or the graph visualization tool. You can run graph
analytics API from JShell shell or Java application, and visualize the results in the
graph visualization application (GraphViz).

Oracle Graph with the Autonomous Database

Oracle Graph Server and Client supports the family of Oracle Autonomous Database.

This includes all versions of Oracle Autonomous Data Warehouse (shared), Oracle
Autonomous Database (shared), and Oracle Autonomous Database (dedicated).

You can connect in two-tier mode (connect directly to Autonomous Database) or three-
tier mode (connect to PGX on the middle tier, which then connects to Autonomous
Database). (For basic information about two-tier and three-tier connection modes, see
Storing Graphs in Oracle Database and Loading Graphs into Memory.)

The database schema storing the graph must have the privileges listed in Required
Privileges for Database Users.

* Two-Tier Deployments of Oracle Graph with Autonomous Database
In two-tier deployments, the client graph application connects directly to the
Autonomous Database.

e Three-Tier Deployments of Oracle Graph with Autonomous Database
In three-tier deployments, the client graph application connects to PGX in a middle
tier, and PGX connects to the Autonomous Database.

1-13

Chapter 1
Using Oracle Graph with the Autonomous Database

1.7.1 Two-Tier Deployments of Oracle Graph with Autonomous

Database

In two-tier deployments, the client graph application connects directly to the
Autonomous Database.

Install Oracle Graph Server, as explained in Property Graph Prerequisites.

Establish a JDBC connection, as described in the Oracle Autonomous Warehouse
documentation.

Note that the Oracle Graph Server installation already contains all the necessary
JDBC client libraries for connecting to Autonomous Databases. You do not have
to install them yourself. You only have to download the wallet, unzip it to a secure
location, and then reference it when establishing the connection.

For example:

opg-j shel | -rdbnms> var jdbcUrl =

"jdbc:oracle:thin: @hb201901151442 | ow?TNS_ADM N=/etc/wal | et "
opg-j shel | -rdbms> var user = "hr"

opg-j shel | -rdbnms> var pass = "ChangeMe1234# "

opg-j shel | -rdbnms> var conn = DriverManager. get Connection(j dbcUrl,
user, pass)

conn ==> oracle.jdbc.driver. T4CConnecti on@7e6ch01

Use the connection in your graph application.

1.7.2 Three-Tier Deployments of Oracle Graph with Autonomous

Database

ORACLE

In three-tier deployments, the client graph application connects to PGX in a middle tier,
and PGX connects to the Autonomous Database.

The wallets downloaded from the Oracle Cloud Console are mainly routing wallets,
meaning they are used to route the connection to the right database and to encrypt
the connection. In most cases, they are not auto-login wallets, so they do not contain
the password for the actual connection. The password usually needs to be provided
separately to the wallet location.

The graph server does not support a wallet stored on the client file system or provided
directly by remote users. The high level implications of this are:

The server administrator provides the wallet and stores the wallet securely on the
server's file system.

Similar to Java EE connection pools, remote users will use that wallet when
connecting. This means the server administrator trusts all remote users to use the
wallet. As with any production deployments, the PGX server must be configured to
enforce authentication and authorization to establish that trust.

Remote users still need to provide a user name and password when sending a
graph read request, just as with non-autonomous databases.

You can only configure one wallet for each PGX server.

1-14

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E

ORACLE

Chapter 1
Using Oracle Graph with the Autonomous Database

Having the same PGX server connecting to multiple Autonomous Databases is not
supported. If you have that use case, start start one PGX server for each Autonomous
Database.

Pre-loaded graphs

To read a graph from Autonomous Database into PGX at server startup, follow the
steps described in Reading Data from Oracle Database into Memory to:

1. Create a Java Keystore containing the database password

2. Create a PGX graph configuration file describing the location and properties of the
graph to be loaded

3. Update the / opt/ oracl e/ graph/ pgx. conf file to reference the graph configuration
file

Then, configure the server JVM to reference the unzipped Oracle Wallet location
before starting up by setting the JAVA_OPTS environment. For example:

export JAVA OPTS="-Doracle.net.tns_adnin=/etc/wallet -
Dor acl e. j dbc. f anEnabl ed=f al se"

cd /opt/oracl e/ graph

.l pgx/bin/start-server --secret-store /etc/keystore.pl2

If you start the PGX server using syst ent, edit the service file at / et ¢/ syst end/
syst enl pgx. servi ce and specify the environment variable the under the [Service]
directive:

Envi ronment =" JAVA_OPTS=- Dor acl e. net.tns_adnmi n=/etc/wal | et"

Make sure that the directory (/ et ¢/ wal | et in the preceding example) is readable by
the Oracle Graph user, which is the user that starts up the PGX server when using
syst end.

After the file is edited, reload the changes using:

systenct| daenon-rel oad

On-demand graph loading

To allow remote users of PGX to read from the Autonomous Database on demand,
you can choose from two approaches:

* Provide the path to the wallet at server startup time via the oracl e. net.tns_adnin
system property. Remote users have to provide the TNS address name, username
and keystore alias (password) in their graph configuration files. The wallet is
stored securely on the graph server's file system, and the server administrator
trusts all remote users to use the wallet to connect to an Autonomous Database.

For example, the server administrator starts the PGX server as follows:

export JAVA OPTS="-Doracl e.net.tns_adm n=/etc/wal l et -
Dor acl e. j dbc. f anEnabl ed=f al se"

1-15

ORACLE

Chapter 1
Using Oracle Graph with the Autonomous Database

cd /opt/oracl e/ graph
.l pgx/bin/start-server --secret-store /etc/keystore.pl2

The / et c/ wal | et/ t nsnanes. or a file contains an address as follows:

sonbrero_medi um = (description= (retry_count=20)(retry_del ay=3)
(address=(protocol =t cps) (port=1522) (host =adb. us-

ashburn-1. oracl ecl oud. com)

(connect _dat a=(servi ce_name=| 8| ghol gaOuj xsa_sonbr er o_nedi um adwc. ora
cl ecl oud. com) (security=(ssl_server_cert_dn="CN=adwc. uscom

east-1. oracl ecl oud. com QU=Oracl e BMCS US, O=COr acl e

Cor porati on, L=Redwood City, ST=Cal i fornia, CCUS")))

Now remote users can read data into the server by sending a graph configuration
file with the following connection properties:

{
"jdbc_url": "jdbc:oracle:thin: @onbrero_mediunt,
"usernane": "hr",
"keystore_alias": "databasel",

}

Note that the keystore still lives on the client side and should contain the password
for the hr user referenced in the config object, as explained in Reading Data from
Oracle Database into Memory. A similar approach works for Tomcat or WebLogic
Server deployments.

Use Java EE connection pools in your web application server. Remote users only
have to provide the name of the datasource in their graph configuration files. The
wallet and the connection credentials are stored securely in the web application
server's file system, and the server administrator trusts all remote users to use a
connection from the pool to connect to an Autonomous Database.

You can find instructions how to set up such a data source at the following
locations:

— WebLogic Server: Configuring a WebLogic Data Source to use ATP

— Tomcat: https://www.oracle.com/technetwork/database/application-
development/jdbc/documentation/atp-5073445.html#Tomcat

If you gave the data source the name adb_ds, you can the reference them by
sending a graph configuration file with the following connection properties:

{

: dét asource_id": "adb_ds",

1-16

https://blogs.oracle.com/weblogicserver/atp-database-use-with-weblogic-server-v2
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat

Chapter 1
Migrating Property Graph Applications from Before Release 21¢

1.8 Migrating Property Graph Applications from Before
Release 21c

ORACLE

If you are migrating from a previous version of Oracle Spatial and Graph to Release
21c, you may need to make some changes to existing property graph-related
applications.

Also note that Oracle Graph Server and Client is required for property graph
applications. This can be downloaded from Oracle Software Delivery Cloud or from
Oracle Downloads page.

Security-Related Changes

The Property Graph feature contains a series of enhancements to further strengthen
the security of the property graph component of product. The following enhancements
may require manual changes to existing graph applications so that they continue to
work properly.

* Graph configuration files now require sensitive information such as
passwords to be stored in Java Keystore files
If you use graph configuration files you are required to use Java Keystore files to
store sensitive information such as passwords. (See Reading Data from Oracle
Database into Memory for how to create and reference such a keystore.)

All existing graph configuration files with secrets in them must be migrated to the
keystore-based approach.

¢ In athree-tier deployment, access to the PGX server file system requires a
whitelist
By default, the PGX server does not allow remote access to the local file system.
This can be explicitly allowed, though, in/ et ¢/ or acl e/ gr aph/ pgx. conf by setting
allow | ocal filesystemtotrue. If yousetallow |ocal filesystemtotrue,
you must also specify a list of directories that are "whitelisted" to be accessed, by
setting dat asour ce_di r_whi tel i st. For example:

"allow | ocal filesystem': true,
"datasource_dir_whitelist": ["/scratch/datal", "/scratch/data2"]

This will allow remote users to read and write data on the server's file-system from
and into / scrat ch/ datal and / scrat ch/ dat a2.

* In a three-tier deployment, reading from remote locations into PGX is no
longer allowed by default
Previously, PGX allowed graph data to be read from remote locations over FTP
or HTTP. This is no longer allowed by default and requires explicit opt-in by the
server administrator. To opt-in, specify the al | owed_renot e_| oadi ng_| ocati ons
configuration option in /et c/ or acl e/ gr aph/ pgx. conf . For example:

al oned_renot e_| oadi ng_|l ocations: ["*"]
In addition:

— The ftp and http protocols are no longer supported for loading or storing data
because they are unencrypted and thus insecure.

1-17

https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=vkBw18Qn2e8sD-qiMKBhvTE1KGzdAecEuVRxNVq-qYyUUUJsW5gO!-1637381810
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client.html

ORACLE

Chapter 1
Migrating Property Graph Applications from Before Release 21¢

— Configuration files can no longer be loaded from remote locations, but must be
loaded from the local file system.

Removed shell command line options
The following command line options of the Groovy-based opg shell have been
removed and will no longer work:

— --attach - the shell no longer supports attaching to existing sessions via
command line

— --password - the shell will prompt now for the password

Also note that the Groovy-based shell has been deprecated, and you are
encourage to use the new JShell-based shell instead (see Interactive Graph
Shell).

Changes to PGX APIs
The following APIs no longer return graph configuration information:

— Serverl nstance#get G aphl nfo()
— Serverlnstance#get G aphl nf os()
— Serverlnstance#get Server State()

The REST API now identifies collections, graphs, and properties by UUID instead
of a name.

The namespaces for graphs and properties are session private by default now.
This implies that some operations that would previously throw an exception due to
a naming conflict could succeed now.

PgxG aph#publ i sh() throws an exception now if a graph with the given name has
been published before.

Migrating Data to a New Database Version

Oracle Graph Server and Client works with older database versions. (See the
"Database Compatibility and Restrictions" subtopic in Property Graph Prerequisites for
information.) If as part of your upgrade you also upgraded your Oracle Database, you
can migrate your existing graph data that was stored using the Oracle Property Graph
format by invoking the following helper script in your database after the upgrade:

sql pl us> execute ndsys.opg.nigrate pg to_current(graph_name=>' nygraph');

The preceding example migrates the property graph mygraph to the current database
version.

Uninstalling Previous Versions of Property Graph Libraries
This is only necessary if you are using Oracle Database versions 12.2, 18c, or 19c.

Use of the Property Graph feature of Oracle Database now requires Oracle Graph
Server and Client that is installed separately. After you have completed the Graph
Server and Client installation, complete the preceding migration steps (if needed),
and confirmed that everything is working well, it is recommended that you remove
the binaries of older graph installations from your Oracle Database installation by
performing the following un-install steps:

Make sure the Property Graph mid-tier components are not in use on the
target database host. For example, ensure that there is no application running

1-18

Chapter 1
Quick Start: Interactively Analyze Graph Data

which uses any files under $ORACLE_HOWE/ nd/ pr oper t y_gr aph. Examples of such
an application are a running PGX server on the same host as the database

or a client application that references the JAR files under $ORACLE_HOVE/ nd/
property _graph/lib.

It is not necessary to shut down the database to perform the uninstall. The Oracle
database itself does not reference or use any files under $ORACLE_HOVE/ nd/

property_graph.

2. Remove the files under $ORACLE_HOVE/ nd/ pr operty_gr aph on your database host.
On Linux, you can copy the following helper script to your database host and run it
with as the DBA operating system user: / opt/ or acl e/ graph/ scri pt s/ pat ch- opg-
oracl e- hone. sh

1.9 Quick Start: Interactively Analyze Graph Data

This tutorial shows how you can quickly get started using property graph data.
You will learn how to:

» Convert existing relational data into a graph.
* Query that data using PGQL.
* Run graph algorithms on that data and display results.

The tutorials in this section are:

e Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server
(PGX)
This tutorial shows how you can quickly get started using property graph data
when using the in-memory graph server (PGX).

e Quick Start: Create and Query a Graph in the Database, Load into In-Memory
Graph Server (PGX) for Analytics
In Section 1.9. 2.1, this tutorial shows how you can get started using property
graph data when you create a graph and persist it in the database. The graph can
be queried in the database. This tutorial uses the JShell client.

* Quick Start: Executing PGQL Queries in SQLcl

1.9.1 Quick Start: Create, Query, and Analyze a Graph in In-Memory
Graph Server (PGX)

ORACLE

This tutorial shows how you can quickly get started using property graph data when
using the in-memory graph server (PGX).

This is for use cases where the graph is available as long as the in-memory graph
server (PGX) session is active. The graph is not persisted in the database.

» Create a graph in the in-memory graph server (PGX), directly from existing
relational data

* Query this graph using PGQL in the in-memory graph server (PGX)

* Run graph algorithms in the in-memory graph server (PGX) on this graph and
display results

Prerequisites for the following quickstart are:

1-19

Chapter 1
Quick Start: Interactively Analyze Graph Data

* Aninstallation of Oracle Graph server (this is PGX, the in-memaory graph server).

See Property Graph Prerequisites for information to download Oracle Graph
Server and Client.

* Aninstallation of Oracle Graph client.

You will authenticate yourself as the database user to the in-memory graph server,
and these database credentials are used to access the database tables and create
a graph.

« Javall
— The in-memory graph server can work with Java 8 or Java 11.
— The JShell client used in this example requires Java 11.

For Java downloads, see https://www.oracle.com/technetwork/java/javase/
overview/index.html.

Major tasks for this tutorial:

e Set up the example data

e Start the shell

» Write and execute the graph creation statement

* Run afew PGQL queries

» Execute algorithms and query the algorithm results

e Share the Graph with Other Sessions

Set up the example data

This example uses the HR (human resources) sample dataset.

» For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

* If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

Start the shell

On the system where Oracle Graph client is installed, start the shell as follows. This is
an example of starting a shell in remote mode and connecting to the in-memory graph
server (PGX):

.Ibin/opg-jshell --base_url https://<graph server host>:7007 --username
<graphuser >

<gr aphuser > is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

ORACLE 1-20

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

ORACLE

Chapter 1
Quick Start: Interactively Analyze Graph Data

< Note:

For demo purposes only, if you have set enabl e_t| s to fal se in the / et ¢/
oracl e/ graph/ server. conf file you can use an htt p instead of ht t ps
connection.

.I'bin/opg-jshell --base url http://<graph server host>: 7007 --usernanme
<gr aphuser >

This starts the shell and makes a connection to the graph server.

Note that, JAVA_HOME should be set to Java 11 before you start the shell. For example:

export JAVA HOVE=/usr/lib/jvm java-11l-oracle

See Interactive Graph Shell for details about the shell.

Write and execute the graph creation statement

Create a graph with employees, departments, and “enpl oyee works at departnment”,
by executing a CREATE PROPERTY GRAPH statement. The following statement creates a
graph in the in-memory graph server (PGX):

opg-j shell> String statenent =
" CREATE PROPERTY GRAPH hr _sinplified "
+ " VERTEX TABLES ("

+ " hr. enpl oyees LABEL enpl oyee "

+ " PROPERTI ES ARE ALL COLUWNS EXCEPT (job_id, manager _id,
departrment _id), "

+ " hr. departnents LABEL departnment "

+ " PROPERTI ES (departnent _id, department_nanme) "

+0o)

+ " EDGE TABLES ("

+ " hr. enpl oyees AS works_at "

+ " SOURCE KEY (enployee id) REFERENCES enpl oyees "

+ " DESTI NATI ON departnents "

+ " PROPERTI ES (enployee id) "

MR

opg-j shel | > sessi on. execut ePgql (st at enent);

To get a handle to the graph, execute:
opg-j shel | > PgxG aph g = session. get G aph("HR_SI MPLI FI ED");

Run a few PGQL queries

You can use this handle to run PGQL queries on this graph. For example, to find the
department that “Nandita Sarchand” works for, execute:

opg-jshel | > String query =
"SELECT dep. department nanme

1-21

ORACLE

Chapter 1
Quick Start: Interactively Analyze Graph Data

+ "FROM MATCH (enp: Enpl oyee) -[:works_at]-> (dep: Departnent) "
+ "WHERE enp.first_name = 'Nandita'" AND enp.last_name = ' Sarchand’
+ "ORDER BY 1";

opg-j shel I > Pgqgl Resul t Set resultSet = g.queryPgql (query);

opg-j shell> resultSet.print();

oo +
| department _nane |
oo +
| Shi ppi ng |
oo +

To get an overview of the types of vertices and their frequencies, execute:

opg-jshell> String query =
"SELECT | abel (n), COUNT(*) "
+ "FROM MATCH (n) "
+ "GROUP BY | abel (n) "
+ "ORDER BY COUNT(*) DESC';
opg-j shel I > Pgqgl Resul t Set resultSet = g.queryPgql (query);
opg-jshell> resultSet.print();

| EMPLOYEE | 107 |
| DEPARTMENT | 27 |

To get an overview of the types of edges and their frequencies, execute:

opg-jshell > String query =
"SELECT | abel (n) AS srcLbl, |abel(e) AS edgelbl, |abel(m AS

dstLbl, COUNT(*) "

+ "FROM MATCH (n) -[e]-> (m "

+ "GROUP BY srclLbl, edgelLbl, dstLbl

+ "ORDER BY COUNT(*) DESC';
opg-j shel | > Pggl Resul t Set resultSet = g.queryPgql (query);
opg-jshell > resultSet.print();

e o e e e e e emeee—aao- +
| srcLbl | edgeLbl | dstLbl | COUNT(*) |
e o e e e e e emeee—aao- +
| EMPLOYEE | WORKS_AT | DEPARTMENT | 106 |
e o e e e e e emeee—aao- +

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run each built-in algorithms using a
single API invocation. For example, for pager ank:

opg-j shel | > anal yst. pager ank(g)
$31==> Vert exProperty[name=pager ank, t ype=doubl e, gr aph=hr]

1-22

ORACLE

Chapter 1
Quick Start: Interactively Analyze Graph Data

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg-j shel | > session. queryPgql ("sel ect m FI RST_NAME, m LAST_NAME,
m pager ank from HR_SI MPLI FI ED mat ch (m EMPLOYEE) where m Fl RST_NAME =
“Nandita’ “).print().close()

e +
| mFIRST_NAME | m LAST_NAME | m pagerank |
e +
| Nandita | Sarchand | 0.001119402985074627 |
e +

In the following example, we order departments by their pager ank value. Departments
with higher pager ank values have more employees.

opg-j shel | > sessi on. queryPgql ("sel ect m DEPARTMENT_NAME, m pager ank
from HR_SI MPLI FI ED mat ch (m DEPARTMENT) order by m pagerank
").print().close();

| m DEPARTMENT_NAME | m pagerank |

| Manufacturing | 0.001119402985074627

| Construction | 0.001119402985074627

| Contracting | 0.001119402985074627

| Operations | 0.001119402985074627

| I'T Support | 0.001119402985074627

| NOC | 0.001119402985074627

| I'T Hel pdesk | 0.001119402985074627

| Government Sales | 0.001119402985074627

| Retail Sales | 0.001119402985074627 |

| Recruiting | 0.001119402985074627

| Payroll | 0.001119402985074627

| Treasury | 0.001119402985074627

| Corporate Tax | 0.001119402985074627

| Control And Credit | 0.001119402985074627

| Sharehol der Services | 0.001119402985074627 |
| Benefits | 0.001119402985074627

| Human Resources | 0.0020708955223880596

| Administration | 0.0020708955223880596

| Public Relations | 0.0020708955223880596

| Marketing | 0.003022388059701493

| Accounting | 0.003022388059701493
| Executive | 0.003973880597014925
| IT| 0.005876865671641792
| Purchasing | 0.006828358208955224
| Finance | 0.006828358208955224
| Sales | 0.03347014925373134 |
| Shipping | 0.043936567164179076

1-23

Chapter 1
Quick Start: Interactively Analyze Graph Data

Share the Graph with Other Sessions

After you load the graph into the server, you can use the publi sh() API to make the
graph visible to other sessions, such as the graph visualization session. For example:

opg-j shel | > graph. publ i sh(VertexProperty. ALL, EdgeProperty. ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pager ank.

Ensure that the logged-in user has the privilege to publish graphs. You can do this
by adding the privilege PGX_SESSI ON_ADD_PUBLI| SHED GRAPH to the GRAPH_DEVELOPER
role as explained in Add Permissions to Publish the Graph. We had given the
GRAPH_DEVELOPER role to the database user in Installation of PL/SQL Packages in
Oracle Database .

You can use the Graph Visualization Application by navigating to <ny- server -
name>: 7007/ ui / in your browser.

You can connect to a particular client session by providing the session ID when you
log into the Graph Visualization Application. You will then be able to visualize all
graphs in the session, even if they have not been published.

opg-j shel I > session
session ==> PgxSessi on[| D=5adf 83ab- 31b1- 4a0e- 8c08-
d6a95ba63eel, sour ce=pgxShel |]

The session id is 5adf 83ab- 31b1- 4a0e- 8¢c08- d6a95ba63ee0.

¢ Note:

You must create a server certificate to connect to the in-memory graph
server (PGX) from the Graph Visualization Application. See Set up Transport
Layer Security for more details.

1.9.2 Quick Start: Create and Query a Graph in the Database, Load
into In-Memaory Graph Server (PGX) for Analytics

ORACLE

In Section 1.9. 2.1, this tutorial shows how you can get started using property graph
data when you create a graph and persist it in the database. The graph can be queried
in the database. This tutorial uses the JShell client.

e Convert existing relational data into a graph in the database.
e Query this graph using PGQL.

In Section 1.9. 2.2, you will run graph algorithms after loading the graph into the
in-memory graph server (PGX).

* Load the graph into the in-memory graph server (PGX), run graph algorithms on
this graph, and visualize results.

Prerequisites for the following quickstart are:

1-24

Chapter 1
Quick Start: Interactively Analyze Graph Data

* Aninstallation of Oracle Graph server (this is PGX, the in-memaory graph server).

See Property Graph Prerequisites for information to download Oracle Graph
Server and Client.

* Aninstallation of Oracle Graph client

« Javall
— The in-memory graph server can work with Java 8 or Java 11.
— The JShell client used in this example requires Java 11.

For Java downloads, see https://www.oracle.com/technetwork/java/javase/
overview/index.html.

» Connection details your Oracle Database. See Database Compatibility and
Restrictions to identify any limitations. The Property Graph feature is supported
for Oracle Database versions 12.2 and later.

» Basic knowledge about how to run commands on Oracle Database (for example,
using SQL*Pl us or SQL Devel oper).

Set up the example data
This example uses the HR (human resources) sample dataset.

» For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

» If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

e Create and Query a Graph in the Database
In this section, you will use the Oracle Graph client to create a graph from
relational tables and store it in the property graph schema in the database.

* Load the Graph into Memory and Run Graph Analytics

1.9.2.1 Create and Query a Graph in the Database

In this section, you will use the Oracle Graph client to create a graph from relational
tables and store it in the property graph schema in the database.

Major tasks for this tutorial:

e Start the shell

e Open a JDBC database connection

e Create a PGQL connection

e Write and execute the graph creation statement

* Run afew PGQL queries

ORACLE 1-25

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

ORACLE

Chapter 1
Quick Start: Interactively Analyze Graph Data

Start the shell

On the system where Oracle Graph client is installed, start the shell by as follows:

cd <client-install-dir>
.I'bin/opg-jshell --noconnect

<gr aphuser > is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

The - - noconnect option indicates that you are not connecting to the in-memory graph
server (PGX). You will only be connecting to the database in this example.

Note that JAVA_HOME should be set to Java 11 before you start the shell. For example:

export JAVA HOMVE=/usr/lib/jvmjava-11-oracle

See Interactive Graph Shell for details about the shell.

Open a JDBC database connection

Inside the shell prompt, use the standard JDBC Java API to obtain a database
connection object. For example:

opg-j shell > var jdbcUrl = "<jdbc-url>" // for exanple:

j dbc: oracl e: thi n: @yhost: 1521/ nyservi ce

opg-j shel | > var user = "<db-user>" // for exanple: hr

opg-j shel | > var pass = "<db-pass>"

opg-j shel | > var conn = DriverMnager. get Connection(jdbcU |, user, pass)
conn ==> oracle.jdbc.driver. T4CConnecti on@7e6¢ch01

Connecting to an Autonomous Database works the same way: provide a JDBC URL
that points to the local wallet. See Using Oracle Graph with the Autonomous Database
for an example.

Create a PGQL connection

Convert the JDBC connection into a PGQL connection object. For example:

opg-j shel I > conn. set Aut oCommi t (f al se)
opg-j shel I > var pggl = Pgqgl Connecti on. get Connecti on(conn)
pggl ==> oracl e. pg. rdbms. pgql . Pgql Connect i on@f b3d3bb

Write and execute the graph creation statement

Using a text editor, write a CREATE PROPERTY GRAPH statement that describes
how the HR sample data should be converted into a graph. Save this file as
create.pgql at a location of your choice. For example:

CREATE PROPERTY GRAPH hr
VERTEX TABLES (
enpl oyees LABEL enpl oyee
PROPERTI ES ARE ALL COLUWNS EXCEPT (job_id, manager id,

1-26

Chapter 1
Quick Start: Interactively Analyze Graph Data

departrment _id),
departments LABEL depart nent
PROPERTI ES (departnent _id, department_name),
j obs LABEL job
PROPERTI ES ARE ALL COLUMWNS,
job_history
PROPERTIES (start_date, end_date),
| ocations LABEL |ocation
PROPERTI ES ARE ALL COLUWNS EXCEPT (country_id),
countries LABEL country
PROPERTI ES ARE ALL COLUWNS EXCEPT (region_id),
regi ons LABEL region
)
EDGE TABLES (
enpl oyees AS works_for
SOURCE enpl oyees
DESTI NATI ON KEY (manager _id) REFERENCES enpl oyees
NO PROPERTI ES,
enmpl oyees AS works_at
SOURCE enpl oyees
DESTI NATI ON depart nent s
NO PROPERTI ES,
enmpl oyees AS works_as
SOURCE enpl oyees
DESTI NATI ON j obs
NO PROPERTI ES,
departments AS managed_by
SOURCE depart ments
DESTI NATI ON enpl oyees
NO PROPERTI ES,
job_history AS for_enpl oyee
SOURCE j ob_hi story
DESTI NATI ON enpl oyees
LABEL for
NO PROPERTI ES,
job_history AS for_departnent
SOURCE j ob_hi story
DESTI NATI ON depart nents
LABEL for
NO PROPERTI ES,
job_history AS for_job
SOURCE j ob_hi story
DESTI NATI ON j obs
LABEL for
NO PROPERTI ES,
departments AS departnent | ocated_in
SOURCE depart ment s
DESTI NATI ON | ocat i ons
LABEL | ocated in
NO PROPERTI ES,
| ocations AS | ocation_located in
SOURCE | ocati ons
DESTI NATI ON countries
LABEL | ocated in
NO PROPERTI ES,

ORACLE 1-27

ORACLE

Chapter 1
Quick Start: Interactively Analyze Graph Data

countries AS country located_in
SOURCE countries
DESTI NATI ON r egi ons
LABEL | ocated in
NO PROPERTI ES

Then, back in your graph shell, execute the CREATE PROPERTY GRAPH statement by
sending it to your PGQL connection. Replace <path> with the path to the directory
containing the creat e. pgql file:

opg-j shel | > pgql . prepareStat enent (Fil es. readString(Pat hs. get ("<pat h>/
create.pgql"))).execute()
$16 ==> fal se

Run a few PGQL queries

Now that you have a graph named hr, you can use PGQL to run a few queries against
it directly on the database. For example:

/1 define a little helper function that executes the query, prints the
results and properly closes the statenent

opg-j shel I > Consuner<String> query = q -> { try(var s =

pgql . prepareStatenent (q)) { s.execute(); s.getResultSet().print(); }
cat ch(Exception e) { throw new RuntimeException(e); } }

query ==> $Lanbda$605/ 0x0000000100ae6440@c9e7af 2

[l print the nunber of vertices in the graph
opg-j shel | > query. accept ("sel ect count(v) fromhr match (v)")

[l print the nunber of edges in the graph
opg-j shel I > query. accept ("sel ect count(e) fromhr match ()-[e]l->()")

/1 find the highest earning managers

opg-j shel I > query. accept ("sel ect distinct mFI RST_NAVE, m LAST_NAME,

m SALARY from hr match (v: EMPLOYEE) - [: WORKS_FOR] - >(m EMPLOYEE) order by
m SALARY desc")

o i +
| mFIRST_NAME | m LAST_NAME | m SALARY |
o i +
Steven	King	24000.0
Lex	De Haan	17000.0
Neena	Kochhar	17000.0
John	Russell	14000.0

1-28

Chapter 1
Quick Start: Interactively Analyze Graph Data

Karen	Partners	13500.0
Mchael	Hartstein	13000.0
Alberto	Errazuriz	12000.0
Shelley	Higgins	12000.0
Nancy	Geenberg	12000.0
Den	Raphaely	11000.0
Gerald	Canbrault	11000.0
Eleni	Zl ot key	10500.0
Al exander	Hunol d	9000.0
Adam	Fripp	8200.0
Matthew	Weiss	8000.0
Payam	Kaufling	7900.0
Shanta	Voll man	6500.0
Kevin	Mourgos	5800.0
o e e e e e memeeaaaaa +

/1 find the average salary of accountants in the Americas

opg-j shel | > query. accept ("sel ect avg(e. SALARY) from hr match

(e: EMPLOYEE) -[h: WORKS_AT] -> (d: DEPARTMENT) -[:LOCATED IN]->

(: LOCATION) -[:LOCATED IN-> (:COUNTRY) -[:LOCATED IN-> (r:REG ON)
where r.REG ON_NAME = ' Americas' and d. DEPARTMENT_NAME = ' Accounting'")

oo +
| avg(e. SALARY) |
oo +
| 14500.0 |
oo +

1.9.2.2 Load the Graph into Memory and Run Graph Analytics

Major tasks for this tutorial:
* Load the graph from the property graph schema into memory
» Execute algorithms and query the algorithm results

e Share the Graph with Other Sessions

Load the graph from the property graph schema into memory

In this section of the quickstart, you will load the graph stored in the Property Graphs
schema in the database into the in-memory graph server (PGX). This will enable you
to run a variety of different built-in algorithms on the graph and will also improve query
performance for larger graphs.

First, start the JShell client and connect to the in-memory graph server (PGX):

.I'bin/opg-jshell --base_url https://<graph server host>:7007 --username
<graphuser >

<gr aphuser > is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

ORACLE 1-29

ORACLE

Chapter 1
Quick Start: Interactively Analyze Graph Data

< Note:

For demo purposes only, if you have set enabl e_t| s tofal se in the / et ¢/
oracl e/ graph/ server. conf file you can use an htt p instead of ht t ps
connection.

.I'bin/opg-jshell --base url http://<graph server host>: 7007 --usernanme
<gr aphuser >

This starts the shell and makes a connection to the graph server.

Note:

Always use low-privilege read-only database user accounts for PGX, as
explained in Security Best Practices with Graph Data.

Next load the graph into memory in this server.

To load the graph into memory, create a PGX graph config object, using the PGX
graph config builder API to do this directly in the shell.

The following example creates a PGX graph config object. It lists the properties to
load into memory so that you can exclude other properties, thus reducing memory
consumption.

Suppl i er<G aphConfig> pgxConfig = () -> { return

G aphConfi gBui | der. f or PropertyG aphRdbns()

.setNane("hr")
.addVert exProperty
.addVert exProperty
.addVert exProperty
.addVert exProperty

(" COUNTRY_NAME", PropertyType. STRING
(" DEPARTMVENT_NAME", PropertyType. STRI NG
("FI RST_NAME", PropertyType. STRING
("LAST_NAME", PropertyType. STRING
.addVertexProperty("EMAIL", PropertyType. STRING
.addVert exProperty(" PHONE_NUMBER', PropertyType. STRI NG
.addVert exProperty(" SALARY", PropertyType. DOUBLE)
.addVertexProperty("M N_SALARY", PropertyType. DOUBLE)
.addVert exProperty(" MAX_SALARY", PropertyType. DOUBLE)
.addVert exProperty(" STREET_ADDRESS', PropertyType. STRING
.addVert exProperty("POSTAL_CODE", PropertyType. STRING
.addVertexProperty("CI TY", PropertyType. STRI NG

.addVert exProperty(" STATE_PROVI NCE", PropertyType. STRING
.addVert exProperty("REG ON_NAME', PropertyType. STRING
.setPartitionWileLoadi ng(PartitionWileLoading. BY_LABEL)
. set LoadVert exLabel s(true)

. set LoadEdgeLabel (true)

Cbuiltd(); }

1-30

ORACLE

Chapter 1
Quick Start: Interactively Analyze Graph Data

Now that you have a graph config object, use the following API to read the graph into
PGX:

opg-j shel | > var graph = session.readG aphWthProperties(pgxConfig.get())
graph ==> PgxG aph[name=hr, N=215, E=433, cr eat ed=1586996113457]

The session object is created for you automatically.

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run any built-in algorithm using a
single API invocation. For example, for pager ank:

opg-j shel | > anal yst. pager ank(graph)
$31==> Vert exProperty[name=pager ank, t ype=doubl e, gr aph=hr]

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg-j shel | > session. queryPgql ("sel ect m FI RST_NAME, m LAST_NAME,
m pagerank fromhr nmatch (m EMPLOYEE) order by m pagerank desc linit
10").print().close()

| Adam | Fripp | 0.002959240305566317

| John | Russell | 0.0028810951120575284

| Mchael | Hartstein | 0.002181365227465801
| Alexander | Hunold | 0.002082616009054747
| Den | Raphaely | 0.0020378615199327507

| Shelley | Higgins | 0.002028946863425767

| Nancy | Geenberg | 0.0017419394483596667
| Steven | King | 0.0016622985848193119

| Neena | Kochhar | 0.0015252785582170803

| Jennifer | Whalen | 0.0014263044976976823

Share the Graph with Other Sessions

After you load the graph into the in-memory graph server, you can use the publ i sh()
API to make the graph visible to other sessions, such as the graph visualization
session. For example:

opg-j shel | > graph. publ i sh(VertexProperty. ALL, EdgeProperty. ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pager ank.

You can use the Graph Visualization Application by navigating to <ny- ser ver -
name>: 7007/ ui / in your browser.

1-31

Chapter 1
Managing Property Graphs With Python Client

You can connect to a particular client session by providing the session ID when you
log into the Graph Visualization Application. You will then be able to visualize all
graphs in the session, even if they have not been published.

opg-j shel I > session
session ==> PgxSessi on[| D=5adf 83ab- 31b1- 4a0e- 8¢c08-
d6a95ha63eel, sour ce=pgxShel |]

The session id is 5adf 83ab- 31b1- 4a0e- 8c08- d6a95ba63ee0.

< Note:

You must create a server certificate to connect to the in-memory graph
server (PGX) from the Graph Visualization Application. See Set up Transport
Layer Security for more details.

1.9.3 Quick Start: Executing PGQL Queries in SQLcl

You can execute PGQL queries in SQLcl with a plugin that is available with Oracle
Graph Server and Client.

See Execute PGQL Queries in SQLcl for more details.

You can also refer to PGQL Plug-in for SQLcIPGQL Plug-in for SQLcl section in the
SQLcl documentation.

1.10 Managing Property Graphs With Python Client

This section describes how to install Python Client and how to use the Python Client to
work with Property Graphs.

* Installing the Python Client

* Using the Python Client
You can use the Python client in an interactive mode (through Python shell) or as a
module used by a Python program.

* Troubleshooting the Python Client
This section helps you to troubleshoot issues on installing or using the Python
client.

* Uninstalling the Python Client
This section describes how to uninstall the Python client.

1.10.1 Installing the Python Client

Make sure that the following softwares are installed on the system before you install
the Python client:

e Oracle JDK 8 or later
e Python 3.5 or later

ORACLE 1-32

https://blogs.oracle.com/oraclespatial/executing-property-graph-pgql-queries-in-sqlcl
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-command-line/20.3&id=GUID-E0EFA43F-003F-4C8C-8056-54E9A428B8B7

Chapter 1
Managing Property Graphs With Python Client

< Note:

Python 2.x is not supported.
For more information on installing Python 3 on Oracle Linux, see Python for
Oracle Linux.

To install the Python client:
1. Download the Oracle Graph Client zip file.

For example, or acl e- graph-client-20.4.0.zip.
2. Install the client through pi p.

For example,

pi p3 --user install oracle-graph-client-20.4.0.zip

1.10.2 Using the Python Client

You can use the Python client in an interactive mode (through Python shell) or as a
module used by a Python program.

In either of those two modes, you can connect to a graph server running on a different
host (remote server) or in the client process (embedded server).

* Interactive Mode Using Python Shell
This section describes how you can use the Python client interactively using the
Python shell.

* Module Mode
This section describes how to use the Python client as a module in Python
applications.

1.10.2.1 Interactive Mode Using Python Shell

This section describes how you can use the Python client interactively using the
Python shell.

Embedded Server

The python client can be used in embedded mode, which means that the graph server
is running inside the client process as a library.

Note:

For this mode, the Python client and the Graph Server RPM package must
be installed on the same machine.

1. Start the Python shell.

cd /opt/oracl el graph/
. I'bi n/ opgpy

2. When the shell is running, you can see the following prompt on your screen

ORACLE 1-33

https://yum.oracle.com/oracle-linux-python.html
https://yum.oracle.com/oracle-linux-python.html

ORACLE

Chapter 1
Managing Property Graphs With Python Client

Oracle Graph Server Shell 20.4.0
>>>

Remote Server

You can use the Python client can be used to connect to a running graph server
instance, by following these instructions:

1. Unzip the client package.

unzip oracle-graph-client-20.4.0.zip
cd oracl e-graph-client-20.4.0

2. Start the shell by running one of the following commands:

a. To connect to the PGX server instance located at htt ps: //1 ocal host: 7007
using login credentials:

.I'bin/opgpy --base_url https://local host: 7007 --username scott

You are prompted to enter your password.

b. If you have an existing authentication token for the graph server, do the
following to connect the graph server:

.I'bin/opgpy --base_url https://|ocal host: 7007

You will be prompted to enter your authentication token.

c. To start the client shell, and to avoid establishing a connection to any graph
server:

. I'bin/ opgpy --no_connect
3. When the shell is running, you will see the following appear in your screen:

Oracle Gaph dient Shell 20.4.0
>>>

Shell Example

After the shell starts up successfully, the variables session, instance, analyst are
already pre-defined and ready to use as illustrated in the following example:

Oracle Graph Server Shell 20.4.0

>>> jnstance

Serverlnstance(enbedded: True, version: <oracle.pgx.conmmon. Versionlnfo
at Ox7f 7cf b5ee200 j cl ass=oracl e/ pgx/ common/ Ver si onl nfo jsel f=<Local Ref
obj =0x3692a48 at 0x7f 7d04084570>>)

>>> graph = session.create_graph_builder().add edge(1l, 2).add_edge(2
3). buil d("ny_graph")

>>> anal yst. pager ank(graph)

VertexProperty(name: pagerank, type: double, graph: ny_graph)

>>> rs = session.query _pgql ("select id(x), x.pagerank frommtch (x) on
ny_graph")

>>> rs.print()

e m e eaeeeeeeeanaeaaeaan +
| id(x) | pagerank |
e m e eaeeeeeeeanaeaaeaan +
| 1 | 0.05000000000000001 |
| 2 | 0.09250000000000003 |

1-34

Chapter 1
Managing Property Graphs With Python Client

| 3 | 0.12862500000000002 |

Note:

To view the complete set of available Python APIs, see Pypgx API.

1.10.2.2 Module Mode

ORACLE

This section describes how to use the Python client as a module in Python
applications.

Embedded Server

you can use the python client as a module as illustrated in the following example.

" Note:

For this mode, the Python client and the Graph Server RPM package must
be installed on the same machine.

i mport os
0s. envi ron["PGX_CLASSPATH'] = "/opt/oracle/graph/lib/*"

i mport pypgx

session = pypgx. get_session()

graph = session.create_graph_builder().add _edge(1l, 2).add_edge(2
3). build("nmy_graph")

anal yst = session.create_anal yst()

anal yst. pager ank(gr aph)

rs = session.query_pgql ("select id(x), x.pagerank frommatch (x) on
ny_graph”)

rs.print()

To execute, save the above program into a file named pr ogr am py and run the
following command.

pyt hon3 program py

You will see the following output:

o e e +
| id(x) | pagerank |
o e e +
| 1 | 0.05000000000000001 |
| 2 | 0.09250000000000003 |

1-35

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

ORACLE

Chapter 1
Managing Property Graphs With Python Client

| 3 | 0.12862500000000002 |

Note:

To view the complete set of available Python APIs, see Pypgx API.

Remote Server

For this mode, all you need is the Python client to be installed. In your Python
program, you must authenticate with the remote server before you can create a
session as illustrated in the following example.

Note:

Replace the base_url, username, and password with values to match your
environment details.

i nport json

i nport os

i mport platform

i nport sys

fromurllib.request inport Request, urlopen
fromurllib.error inport HTTPError

i mport pypgx as pgx

base url = "https://I|ocal host:7007"
usernane = "scott"
password = "tiger"

def generateToken():
body = json.dunps({ 'username': usernane, 'password':
password }).encode('utf8")
headers = { 'content-type': 'application/json' }
request = Request(base_url + '/auth/token', data=body,
header s=header s)
try:
response = urlopen(request).read().decode(' utf-8")
return json.loads(response).get('access_token')
except HTTPError as err
if err.code == 400:
print(' Authentication failed no usernane/ password given')
elif err.code == 401
print (' Authentication failed invalid username/password')
el se:
print("Server returned HTTP response code: {} for URL:
{}".format(err.code, err.url))
0s._exit(1)

1-36

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

Chapter 1
Managing Property Graphs With Python Client

session = pgx. get_session(base_url =base_url, token=generateToken())
print (session)

To execute, save the above program into a file named pr ogr am py and run the
following command:

pyt hon3 program py

After successful login, you'll see the following message indicating a PGX session was
created:

PgxSessi on(i d: 0bdd4828- c3cc- 4cef - 92¢8- 0f cd105416f 0, nane:
pyt hon_pgx_cl i ent)

" Note:

To view the complete set of available Python APls, see Pypgx API.

1.10.3 Troubleshooting the Python Client

This section helps you to troubleshoot issues on installing or using the Python client.

Verifying your Python client version

The Python client installation relies on python3 pointing to Python 3.5 or later
version.To verify you are using the right version of the Python client, run the following
command:

$> python3 --version
Python 3.6.1

Missing modules after installation

In some cases, the Python client installation might fail to install some required
dependencies, and you might see the following error message when running the shell:

InportError: No nodul e named 'jnius_config'

To fix this, you can manually install the required dependencies by following these
steps:

1. Navigate to your Oracle Graph Client installation directory.

2. Run the following commands in the same order:

python3 -mpip install python/Cython-0.29.17.zip
python3 -mpip install python/six-1.14.0.zip
python3 -mpip install python/pyjnius-1.3.0.zip

ORACLE 1-37

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

Chapter 1
Managing Property Graphs With Python Client

1.10.4 Uninstalling the Python Client

This section describes how to uninstall the Python client.

To uninstall the Python client, run the following command:

pi p3 uninstall pypgx

ORACLE 1-38

Using Property Graphs in an Oracle
Database Environment

ORACLE

This chapter provides conceptual and usage information about creating, storing, and
working with property graph data in an Oracle Database environment.

e About Property Graphs
Property graphs give you a different way of looking at your data.

e About Property Graph Data Formats
Several graph formats are supported for property graph data.

e Property Graph Schema Obijects for Oracle Database
The property graph PL/SQL and Java APIs use special Oracle Database schema
objects.

» Getting Started with Property Graphs
Follow these steps to get started with property graphs.

e Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APlIs to create the property
graph and objects in it.

* Managing Text Indexing for Property Graph Data
Indexes in Oracle Spatial and Graph property graph support allow fast retrieval
of elements by a particular key/value or key/text pair. These indexes are created
based on an element type (vertices or edges), a set of keys (and values), and an
index type.

e Access Control for Property Graph Data (Graph-Level and OLS)
Oracle Graph supports two access control and security models: graph level
access control, and fine-grained security through integration with Oracle Label
Security (OLS).

e Using the Groovy-Based Shell with Property Graph Data
The Oracle Graph property graph support includes a built-in Groovy-based shell
(based on the original Gremlin Groovy shell script). With this command-line shell
interface, you can explore the Java APIs.

e Using the Graph Zeppelin Interpreter Client
Oracle Graph provides an interpreter client implementation for Apache Zeppelin.
This tutorial topic explains how to install the graph interpreter into your local
Zeppelin installation and to perform simple operations.

e Creating Property Graph Views on an RDF Graph
With Oracle Graph, you can view RDF data as a property graph to execute graph
analytics operations by creating property graph views over an RDF graph stored in
Oracle Database.

e Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

2-1

Chapter 2
About Property Graphs

2.1 About Property Graphs

Property graphs give you a different way of looking at your data.

You can model your data as a graph by making data entities vertices in the graph, and
relationships between them as edges in the graph. For example, in a bank customer
accounts can be vertices, and cash transfer relationships between them can be edges.

When you view your data as a graph, you can analyze your data based on the
connections and relationships between them. You can run graph analytics algorithms
like PageRank to measure the relative importance of data entities based on the
relationships between them, for example, links between webpages.

* What Are Property Graphs?
* What Is Oracle Database Support for Property Graphs?

2.1.1 What Are Property Graphs?

ORACLE

A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects. Vertices and edges can have multiple properties, which are
represented as key-value pairs.

Each vertex has a unique identifier and can have:

e A set of outgoing edges
e Aset of incoming edges
e A collection of properties

Each edge has a unique identifier and can have:

* An outgoing vertex

* Anincoming vertex

* Atext label that describes the relationship between the two vertices
* A collection of properties

For vertices and edges, each property is identified with a unique name.

The following figure illustrates a very simple property graph with two vertices and one
edge. The two vertices have identifiers 1 and 2. Both vertices have properties nanme
and age. The edge is from the outgoing vertex 1 to the incoming vertex 2. The edge
has a text label knows and a property t ype identifying the type of relationship between
vertices 1 and 2.

Figure 2-1 Simple Property Graph Example

name:Alice name:Bob
age:31 age:27

1

knows
type:friends

2-2

Chapter 2
About Property Graphs

A property graph can have self-edges (that is, an edge whose source and destination
vertex are the same), as well as multiple edges between the same source and
destination vertices.

A property graph can also have different types of vertices and edges in the same
graph. For example a graph can have a set of vertices with label Per son and a set
of vertices with label Pl ace, with different properties relevant to these two sets of
vertices.

The property graph data model is similar to the W3C standards-based Resource
Description Framework (RDF) graph data model; however, the property graph data
model is simpler and less precise than RDF.

The property graph data model features and analytic APIs make property graphs a
good candidate for use cases such as these:

» ldentifying influencers in a social network
e Predicting trends and customer behavior
» Discovering relationships based on pattern matching

» Identifying clusters to customize campaigns

" Note:

The property graph data model that Oracle supports at the database side
does not allow labels for vertices. However, you can treat the value of a
designated vertex property as one or more labels.

Related Topics
e Specifying Labels for Vertices

2.1.2 What Is Oracle Database Support for Property Graphs?

Property graphs are supported in Oracle Database, in addition to being supported for
Big Data in Hadoop. This support consists of a set of PL/SQL packages, a data access
layer, and an analytics layer.

The following figure provides an overview of the Oracle property graph architecture.

ORACLE 2-3

Chapter 2
About Property Graphs

Figure 2-2 Oracle Property Graph Architecture

Graph Analytics
p yt k= »
In-memory Parallel Graph Analytics m
=
1)
- o
v

Graph Data Access Layer
(Java APIls: Blueprints, Text Search, ...) ‘c::

221 AlD

J

Scalable and Persistent Storage

Oracle Database

PL/50L packages, PG Schema [VTS, GES, ITS, 555, GTS),
50L-based graph query, 50L-based graph analytics,
OLS Security, Compression, Oracle Text Index

In-Memory Graph Server (PGX)
Data Access Layer

Options for Property Graph Architecture

2.1.2.1 In-Memory Graph Server (PGX)

The in-memory graph server layer enables you to analyze property graphs using
parallel in-memory execution. It provides over 50 analytic functions. Examples of the
categories and specific functions include:

Centrality - Degree Centrality, Eigenvector Centrality, PageRank, Betweenness
Centrality, Closedness Centrality

Component and Community - Strongly Connected Components (Tarjan's and
Kosaraju's). Weakly Connected Components

Twitter's Who-To-Follow, Label Propagation.

Path Finding - Single source all destination (Bellman-Ford), Dijsktra's shortest
path, Hop Distance (Breadth-first search)

Community Evaluation - Coefficient (Triangle Counting), Conductance, Modularity,
Adamic-Adar counter.

2.1.2.2 Data Access Layer

The data access layer provides a set of Java APIs that you can use to create and drop
property graphs, add and remove vertices and edges, search for vertices and edges
using key-value pairs, create text indexes, and perform other manipulations.

ORACLE

2-4

Chapter 2
About Property Graphs

For more information, see:

* Managing Text Indexing for Property Graph Data
» Using Java APIs for Property Graph Data

» Property Graph Schema Obijects for Oracle Database (PL/SQL and Java APIs)
and OPG_APIS Package Subprograms (PL/SQL API).

2.1.2.3 Options for Property Graph Architecture

You have two architecture options when using the property graph feature of Oracle
Database:

e Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)
e Load the Graph into Oracle Database (2-Tier)
Both options let you use the Property Graph Query Language (PGQL).

Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)

You can load your property graph into the in-memory graph server, which has a
specialized architecture for graph computations. All query and analytics operations on
this graph can be executed in-memory in the graph server. This graph can be created
directly from relational tables or loaded from the property graph schema that stores the
graph in the database. You can modify the graph in memory (insert, update, and delete
vertices and edges, and create new properties for results of executing an algorithm).
The graph server does not write the modifications back to the relational tables.

The in-memory graph server (PGX) typically in a server separate from the database,
and can run standalone, or in a container like Oracle WebLogic Server or Apache
Tomcat. This approach (load your property graph into the in-memory graph server)
uses a three-tier architecture, as shown in the following figure.

Figure 2-3 Three-Tier Property Graph Architecture

Client
(Shell Ul, Zeppelin, Viz)

{

Nl ™
Graph Server (PGX): PGX
Run PGQL queries deployed

standalone
and graph ,in WLS, or
analytics J Tomcat

N

Load the Graph into Oracle Database (2-Tier)

If you do not need to load the graph into the in-memory graph server, you can use
another approach: create a property graph from data in relational tables, and store it in

ORACLE 2-5

Chapter 2
About Property Graph Data Formats

the property graph schema (VT$ and GE$ tables). You can then run PGQL queries on
this graph.

You can load this graph into memory for running analytics algorithms and PGQL
gueries not supported in the database. You can configure the in-memory graph server
to periodically fetch updates from the data automatically in the graph to keep the data
synchronized.

This approach uses a two-tier architecture, as shown in the following figure.

Figure 2-4 Two-Tier Property Graph Architecture

Client
{Shell U, Zeppelin, Viz)

-

PGQL Queries
run in database

i

2.2 About Property Graph Data Formats

Several graph formats are supported for property graph data.
e GraphML Data Format

e GraphSON Data Format

* GML Data Format

¢ Oracle Flat File Format

2.2.1 GraphML Data Format

ORACLE

The GraphML file format uses XML to describe graphs.

* The first example in this topic shows a GraphML description of the property graph
shown in What Are Property Graphs?.

* The second example in this topic shows the GraphML description of the same
graph for Tinkerpop 3. Notice the addition of vertex and edge labels referred as
| abel Vand | abel E, respectively.

Example 2-1 GraphML Description of a Simple Property Graph

<?xm version="1.0" encodi ng="UTF-8"?>
<graphm xm ns="http://graphn . graphdraw ng. or g/ xm ns">
<key id="name" for="node" attr.name="nane" attr.type="string"/>
<key id="age" for="node" attr.nanme="age" attr.type="int"/>
<key id="type" for="edge" attr.name="type" attr.type="string"/>
<graph id="PG' edgedefaul t="directed">
<node id="1">

2-6

ORACLE

Chapter 2
About Property Graph Data Formats

<data key="nane">Ali ce</ dat a>
<data key="age">31</ dat a>

</ node>

<node id="2">
<data key="nanme">Bob</ dat a>
<data key="age">27</ dat a>

</ node>

<edge id="3" source="1" target="2" |abel ="knows">
<data key="type">friends</dat a>

</ edge>

</ graph>
</ graphn >

Example 2-2 Tinkerpop 3 GraphML Description of a Simple Property Graph

<?xm version="1.0" encodi ng="UTF-8"?>
<graphm xm ns="http://graphnl . graphdraw ng. or g/ xm ns">
<key id="label V' for="node" attr.name="|abel V' attr.type="string" />
<key id="nanme" for="node" attr.nane="nane" attr.type="string" />
<key id="age" for="node" attr.name="age" attr.type="int" />
<key id="label E" for="edge" attr.name="|abel E' attr.type="string" />
<key id="type" for="edge" attr.nane="type" attr.type="string" />
<graph id="PG' edgedefaul t="directed">
<node id="1">
<data key="1|abel V'>person</ dat a>
<dat a key="nanme">Al i ce</ dat a>
<data key="age">31</dat a>
</ node>
<node id="2">
<data key="1|abel V'>person</ dat a>
<data key="name" >Bob</ dat a>
<data key="age">27</ dat a>
</ node>
<edge id="3" source="1" target="2">
<data key="1|abel E'>knows</ dat a>
<data key="type">friends</ dat a>
</ edge>
</ graph>
</ graphni >

Methods are provided to import and export graphs from and into GraphML format.

The following fragments of code show how to import and export GraphML data in
Tinkerpop 2 and Tinkerpop 3 versions.

/1 Get graph instance
O acl ePropertyG aph opg = O acl ePropertyG aph. get | nstance(oracle, graphNane);

[l 1mport graph in G aphM format

String fileName = "./nygraph. graphm";

PrintStream ps = new PrintStrean("./output")

Oracl ePropertyG aphUtils.inmport GaphM.(opg, fil eNang, ps);

/1 Export graph into G aphM fornat

String fileName = "./nygraph. graphm";

PrintStreamps = new PrintStrean("./output")

Oracl ePropertyG aphUtils. export G aphM.(opg, fil eNang, ps);

[l Inmport graph into Tinkerpop 3 G aphM format

String fileName = "./nygraphT3. graphm";

PrintStream ps = new PrintStrean("./output")

Oracl ePropertyG aphUtils.inport G aphM.Ti nker pop3(opg, fil eNang, ps);

2-7

Chapter 2
About Property Graph Data Formats

/'l Export graph into Tinkerpop 3 G aphM format

String fileName = "./nygraphT3. graphm ";

PrintStreamps = new PrintStream"./output");

Oracl ePropertyG aphUtil s. export G aphM.Ti nker pop3(opg, fil eNang, ps);

Related Topics
e GraphML File Format

2.2.2 GraphSON Data Format

The GraphSON file format is based on JavaScript Object Notation (JSON) for
describing graphs.

* The first example in this topic shows a GraphSON description of the property
graph shown in What Are Property Graphs?.

* The second example in this topic shows the GraphSON description of the same
graph for Tinkerpop 3.

Example 2-3 GraphSON Description of a Simple Property Graph

{
"graph": {
"node": " NORMAL",
"vertices": [
{
"name": "Alice",
"age": 31,
toidrro 1ty
" _type": "vertex"
3
{
"name": "Bob",
"age": 27,
tidrot2n,
" _type": "vertex"
}
1.
"edges": [
{
"type": "friends",
tidr "3,
" _type": "edge",
"_outV': "1",
"_invto o2,
" label": "knows"
}
]
}
}

Example 2-4 GraphSON 3.0 Description of a Simple Property Graph

{"id":{"@ype":"g: I nt64", " @al ue": 1}, "l abel ": "person", "out E": {"knows": [{"id":
{"@ype":"g:Int64","@alue":3},"inV':{"@ype":"g: I nt64"," @al ue": 2}, "properties":
{"type":"friends"}}]}, "properties":{"name": [{"id":

{"@ype":"g:Int64", " @al ue": 66724076}, "val ue": "Alice"}], "age": [{"id":
{"@ype":"g:Int64", " @al ue": 96543}, "val ue": {"@ype":"g: I nt32"," @al ue":31}}]}}
{"id":{"@ype":"g:Int64", " @al ue": 2}, "l abel ": "person","inE":

ORACLE 2-8

http://graphml.graphdrawing.org/

Chapter 2
About Property Graph Data Formats

{"knows": [{"id":{"@ype":"g:Int64", " @al ue": 3}, "out V':

{"@ype":"g:Int64","@al ue":1},"properties":{"type":"friends"}}]}, "properties":
{"name":[{"id":{"@ype":"g: I nt64", " @al ue": 3440674}, "val ue":"Bob"}], "age": [{"id":
{"@ype":"g:Int64", " @al ue": 96540}, "val ue": {"@ype":"g: I nt 32", " @al ue":27}}1}}

Methods are provided to import and export graphs from and into GraphSON format.

The following fragments of code show how to import and export GraphSON data
in Tinkerpop 2 and Tinkerpop 3 versions. Note that the Tinkerpop 3 version has a
“Tinkerpop3” suffix. This is to maintain backward compatibility.

/] Get graph instance
Oracl ePropertyG aph opg = O acl ePropertyG aph. get |l nstance(args, szG aphNang);

/1 1Tmport graph in G aphSON format

String fileName = "./nygraph. graphson";

PrintStreamps = new PrintStream"./output");

Oracl ePropertyG aphUtil s.inport GaphSON(opg, fi | eName, ps) ;

/] Export graph into G aphSON for mat

String fileName = "./nygraph. graphson";

PrintStreamps = new PrintStream"./output");

Oracl ePropertyG aphUtil s. export G aphSON(opg, fi | eName, ps) ;

/1 1Tmport graph into Tinkerpop 3 G aphSON for mat

String fileName = "./nygraphT3. graphson”;

PrintStreamps = new PrintStream"./output");

Oracl ePropertyG aphUtil s. inport G aphSONTi nker pop3(opg, fi | eNane, ps);

/] Export graph into Tinkerpop 3 G aphSON for mat

String fileName = "./nygraphT3. graphson”;

PrintStreamps = new PrintStream"./output");

Oracl ePropertyG aphUti | s. export G aphSONTi nker pop3(opg, fi | eName, ps);

Related Topics
e GraphSON Reader and Writer Library

2.2.3 GML Data Format

ORACLE

The Graph Modeling Language (GML) file format uses ASCII to describe graphs.

< Note:

GML Data Format is not supported in Tinkerpop 3, and it has been
deprecated in Tinkerpop 2.

The example in this topic shows a GML description of the property graph shown in
What Are Property Graphs?.

Example 2-5 GML Description of a Simple Property Graph

graph [
comment "Sinple property graph”
directed 1
I sPlanar 1
node [

2-9

https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library

Chapter 2
About Property Graph Data Formats

id1
| abel "1"
nane "Alice"
age 31
]
node |
id2
| abel "2"
nane " Bob"
age 27
]
edge |
source 1
target 2
| abel "knows"

type "friends"
]
]

Methods are provided to import and export graphs from and into GML format.

The following fragments of code show how to import and export GML data. Note that
these methods are deprecated and their use is discouraged:

/] Get graph instance
Oracl ePropertyG aph opg = O acl ePropertyG aph. get | nstance(args, szG aphNang);

/1 lmport graph in GW format

String fileName = "./nygraph.gm";

PrintStream ps = new PrintStream"./output")

Oracl ePropertyG aphUtils.inport GML(opg, fil eNane, ps);

/] Export graph into GW format

String fileName = "./nygraph.gm";

PrintStream ps = new PrintStream"./output")

Oracl ePropertyG aphUtils. export GML(opg, fil eNane, ps);
Related Topics

e GML: A Portable Graph File Format" by Michael Himsolt

2.2.4 Oracle Flat File Format

The Oracle flat file format exclusively describes property graphs. It is more concise
and provides better data type support than the other file formats. The Oracle flat file
format uses two files for a graph description, one for the vertices and one for edges.
Commas separate the fields of the records.

Example 2-6 Oracle Flat File Description of a Simple Property Graph

The following shows the Oracle flat files that describe the simple property graph
example shown in What Are Property Graphs?.

Vertex file:
1,nane, 1,Alice,,
1, age, 2,,31

2, nane, 1, Bob,
2, age, 2,,27

Edge file:

ORACLE 2-10

https://www.semanticscholar.org/paper/GML%3A-A-portable-Graph-File-Format-Himsolt/d0a56b07a59a29b48d6f957763add90e05925c2c

Chapter 2
Property Graph Schema Objects for Oracle Database

1,1, 2, knows, type, 1, friends,,

The following shows the flat file description of the same graph for Tinkerpop 3, which
has an additional field for storing the vertex label.

Vertex file:

1,nane, 1, Alice,,, person
1, age, 2, , 31,, person

2, nane, 1, Bob, , , person
2, age, 2, , 27, , person

Edge file:

3,1, 2, knows, type, 1, friends,,

Methods are provided tto import and export graphs from and into Flat File format.

The following fragments of code show how to export a graph into Oracle Flat File
Format. To import graphs, see Parallel Loading of Graph Data.

/] Get graph instance
Oracl ePropertyG aph opg = O acl ePropertyG aph. get I nstance(args, szG aphNang);

/1 Export graph into Flat File Format

String vertexFileName = "./nygraph. opv";

String edgeFil eNane = "./nygraph. ope";

int dop = 2;

Bool ean append = fal se;

Oracl ePropertyGaphUtils. exportFl at Fi |l es(opg, vert exFi | eName, edgeFi | eNane, dop, appe
nd);

Related Topics

* Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

2.3 Property Graph Schema Obijects for Oracle Database

The property graph PL/SQL and Java APIs use special Oracle Database schema
objects.

This topic describes objects related to the property graph schema approach to working
with graph data. It is a more flexible approach than the deprecated two-tables schema
approach described in Handling Property Graphs Using a Two-Tables Schema, which
has limitations.

Oracle Spatial and Graph lets you store, query, manipulate, and query property graph
data in Oracle Database. For example, to create a property graph named myGraph,
you can use either the Java APIs (or acl e. pg. rdbms. Or acl ePr opert yG aph) or the
PL/SQL APIs (MDSYS.OPG_APIS package).

ORACLE 2-11

Chapter 2
Property Graph Schema Objects for Oracle Database

< Note:

An Oracle Partitioning license is required if you use the property graph
schema. For performance and scalability, both VT$ and GE$ tables are hash
partitioned based on IDs, and the number of partitions is customizable. The
number of partitions should be a value that is power of 2 (2, 4, 8, 16, and

so on). The partitions are named sequentially starting from "p1", so for a
property graph created with 8 partitions, the set of partitions will be "p1",
"p2", ..., "p8".

With the PL/SQL API:

BEG N
opg_api s. create_pg(
‘nmyGaph’,
dop => 4, -- degree of parallelism
num hash_ptns => 8, -- nunber of hash partitions used to
store the graph
tbs => ' USERS', -- tabl espace
options => ' COMPRESS=T'
);
END;
/
With the Java API:

cfg = G aphConfi gBuil der
.forPropertyG aphRdbns()
.setJdbcUrl ("jdbc:oracle:thin: @27.0.0.1:1521:orcl")
. set User name(" <your _user _nanme>")
. set Passwor d(" <your _passwor d>")
. set Nane("myGr aph")
. set MaxNunmConnect i ons(8)
. set LoadEdgeLabel (fal se)
Cbuild();

Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(cfg);
* Property Graph Tables (Detailed Information)

e Default Indexes on Vertex (VT$) and Edge (GE$) Tables
* Flexibility in the Property Graph Schema

2.3.1 Property Graph Tables (Detailed Information)

ORACLE

After a property graph is established in the database, several tables are created
automatically in the user's schema, with the graph name as the prefix and VT$ or GE$
as the suffix. For example, for a graph named nyG aph, table myGraphVT$ is created
to store vertices and their properties (K/V pairs), and table myGraphGES$ is created to
store edges and their properties.

2-12

ORACLE

Chapter 2
Property Graph Schema Objects for Oracle Database

Additional internal tables are created with IT$ and GT$ suffixes, to store text index
metadata and graph skeleton (topological structure).

The definitions of tables myGraphVT$ and myGraphGES$ are as follows. They are
important for SQL-based analytics and SQL-based property graph query. In both the
VT$ and GES$ tables, VTS, VTE, and FE are reserved columns; column SL is for the
security label; and columns K, T, V, VN, and VT together store all information about
a property (K/V pair) of a graph element. In the VT$ table, VID is a long integer

for storing the vertex ID. In the GE$ table, EID, SVID, and DVID are long integer
columns for storing edge ID, source (from) vertex ID, and destination (to) vertex ID,
respectively.

SQL> describe myG aphVT$

Narre Nul | ? Type

VID NOT NULL NUMBER

K NVARCHAR2(3100)
T NUMBER(38)

Vv NVARCHAR2(15000)
VN NUMBER

VT TI MESTAMP(6) W TH TI ME ZONE
SL NUMBER

VTS DATE

VTE DATE

FE NVARCHAR2(4000)

Narre Nul | ? Type

EID NOT NULL NUMBER

SVID NOT NULL NUMBER

DVID NOT NULL NUMBER

EL NVARCHAR2(3100)
K NVARCHAR2(3100)
T NUMBER(38)

\Y NVARCHAR2(15000)
VN NUMBER

VT TI MESTAMP(6) W TH TI ME ZONE
SL NUMBER

VTS DATE

VTE DATE

FE NVARCHAR2(4000)

For simplicity, only simple graph names are allowed, and they are case insensitive.

In both the VT$ and GE$ tables, Columns K, T, V, VN, VT together store all information
about a property (K/V pair) of a graph element, while SL is used for security label, and
VTS, VTE, FE are reserved columns.

In the property graph schema design, a property value is stored in the VN column
if the value has numeric data type (long, int, double, float, and so on), in the VT
column if the value is a timestamp, or in the V column for Strings, boolean and other

2-13

ORACLE

Chapter 2
Property Graph Schema Objects for Oracle Database

serializable data types. For better Oracle Text query support, a literal representation

of the property value is saved in the V column even if the data type is numeric or
timestamp. To differentiate all the supported data types, an integer ID is saved in the
T column. (The possible T column integer ID values are those listed for the value_type
field in the table in Vertex File.)

The K column in both VT$ and GES$ tables stores the property key. Each edge must
have a label of String type, and the labels are stored in the EL column of the GE$
table.

The T column in both VT$ and GE$ tables is a number representing the data type
of the value of the property it describes. For example 1 means the value is a string,
2 means the value is an integer, and so on. Some T column possible values and
associated data types are as follows:

« 1: STRING

- INTEGER
- FLOAT

: DOUBLE

: DATE

: BOOLEAN
: LONG

: SHORT
:BYTE

« 10: CHAR

L]
© 00 N O 0o B~ W N

e 20: Spatial data (see Representing Spatial Data in a Property Graph)

To support international characters, NVARCHAR columns are used in VT$ and GE$
tables. Oracle highly recommends UTF8 as the default database character set. In
addition, the V column has a size of 15000, which requires the enabling of 32K
VARCHAR (MAX_STRI NG _SI ZE = EXTENDED).

The VT$ table schema for storing vertices contains these columns:

* VID, along column denoting the ID of the vertex.
* VL, a string column denoting the label of the vertex.

* K, a string column denoting the name of the property. If there is no property
associated to the vertex, the value of this column should be a whitespace.

e T, along column denoting the type of the property.

* V, astring column denoting the value of the property as a String. If the property
type is numeric, a String format version of the value is stored in this column.
Similarly, if the property is timestamp based, a String format version of the value is
stored.

* VN, a numeric column denoting the value of a numeric property. This column
stores the property value only if the property type is numeric.

* VT, atimestamp with time zone column storing the value of a date time property.
This column stores the property value only if the property type is timestamp based.

2-14

ORACLE

Chapter 2
Property Graph Schema Objects for Oracle Database

e SL, a numeric column reserved for the security label set using Oracle Label
Security (for further details on using Security Labels, see Access Control for
Property Graph Data (Graph-Level and OLS)).

e VTS, atimestamp with time zone column reserved for future extensions.
* VTE, atimestamp with time zone column reserved for future extensions.
* FE, a string column reserved for future extensions.

The following example inserts rows into a table named CONNECTIONSVTS. It
includes T column values 1 through 10 (representing various data types).

I NSERT | NTO connectionsvt $(vid, k,t,v,vn,vt) VALUES (2001, '1-STRING,
1, '"Some String', NULL, NULL);

I NSERT | NTO connectionsvt$(vid, k,t,v,vn,vt) VALUES (2001, '2-1NTEGER ,
2, NULL, 21, NULL);

I NSERT | NTO connectionsvt $(vid, k,t,v,vn,vt) VALUES (2001, '3-FLQOAT', 3,
NULL, 21.5, NULL);

I NSERT | NTO connectionsvt $(vid, k,t,v,vn,vt) VALUES (2001, '4-DOUBLE',
4, NULL, 21.5, NULL);

I NSERT | NTO connectionsvt $(vid, k, t,v,vn,vt) VALUES (2001, '5-DATE , 5,
NULL, NULL, tinestanp'2018-07-20 15:32:53.991000');

I NSERT | NTO connectionsvt $(vid, k, t,v,vn,vt) VALUES (2001, '6-BOOLEAN ,
6, "Y', NULL, NULL);

I NSERT | NTO connectionsvt $(vid, k,t,v,vn,vt) VALUES (2001, '7-LONG, 7,
NULL, 42, NULL);

I NSERT | NTO connectionsvt $(vid, k,t,v,vn,vt) VALUES (2001, '8-SHORT', 8,
NULL, 10, NULL);

I NSERT | NTO connectionsvt $(vid, k, t,v,vn,vt) VALUES (2001, '9-BYTE, 9,
NULL, 10, NULL);

I NSERT | NTO connectionsvt $(vid, k, t,v,vn,vt) VALUES (2001, '10-CHAR,
10, "A', NULL, NULL);

UPDATE connectionsVT$ SET V = coal esce(v,to_nchar(vn),to_nchar(vt))
VWHERE vi d=2001;
COWM T;

The GES$ table schema for storing edges contains these columns:

e EID, along column denoting the ID of the edge.

e SVID, along column denoting the ID of the outgoing (origin) vertex.

e DVID, along column denoting the ID of the incoming (destination) vertex.
e EL, a string column denoting the label of the edge.

e K, a string column denoting the name of the property. If there is no property
associated to the vertex, the value of this column should be a whitespace.

e T, along column denoting the type of the property.

eV, a string column denoting the value of the property as a String. If the property
type is numeric, a String format version of the value is stored in this column.
Similarly, if the property is timestamp based, a String format version of the value is
stored.

* VN, a numeric column denoting the value of a numeric property. This column
stores the property value only if the property type is numeric.

2-15

ORACLE

Chapter 2
Property Graph Schema Objects for Oracle Database

e VT, atimestamp with time zone column storing the value of a date time property.
This column stores the property value only if the property type is timestamp based.

e SL, a numeric column reserved for the security label set using Oracle Label
Security (for further details on using Security Labels, see Access Control for
Property Graph Data (Graph-Level and OLS)).

* VTS, atimestamp with time zone column column reserved for future extensions.
* VTE, atimestamp with time zone column reserved for future extensionss.
* FE, a string column reserved for future extensions.

In addition to the VT$ and GES$ tables, Oracle Spatial and Graph maintains other
internal tables.

An internal graph skeleton table, defined with the GT$ suffix, is used to store the
topological structure of a graph, and contains these columns:

e EID, along column denoting the ID of the edge.

e EL, a string column denoting the label of the edge.

e SVID, along column denoting the ID of the outgoing (origin) vertex.

e DVID, along column denoting the ID of the incoming (destination) vertex.
e ELH, a raw column specifying the hash value of an edge label.

e ELS, ainteger column specifying the edge label size with respect to total of
characters.

An internal text index metadata table, created with IT$ suffix, is used to store
metadata information on text indexes created using the Oracle Text search engine.

It is automatically populated based on the text indexes created. The IT$ table includes
the following columns for general information about a text index:

e EIN, a string column denoting the name of the text index.

» ET, a numeric column denoting the entities used to build the text index, if it is a
vertex (1) or edge (2) text index.

e IT, a numeric column denoting the type of the text index, if it is an automatic (1) or
manual (2) text index.

* SE, a numeric column denoting the search engine used to index the entities
properties (2 indicates Oracle Text).

* K, a string column denoting the property name used for text indexing.

For Oracle Text-based indexes, the following columns are used to describe the
configuration of the text index (for further details on building an Oracle Text-based
index, see Configuring Text Indexes Using Oracle Text):

* PO, a column denoting the preferred owner for the text index configuration
settings. By default, the package owner is set to MDSYS.

» DS, a string column specifying the data store used to build the text index.

* FIL, a string column specifying the filter used to build the text index.

e STR, a string column specifying the storage property used to build the text index.
* WL, a string column specifying the word list used when building the text index.

» SL, a string column specifying the stop list used to build the text index.

2-16

Chapter 2
Getting Started with Property Graphs

LXR, a string column specifying the lexer used by Oracle Text during text indexing.

OPTS, a string column specifying additional configuration options.

An internal table, defined with the SS$ suffix, is created for Oracle internal use only.

2.3.2 Default Indexes on Vertex (VT$) and Edge (GE$) Tables

For query performance, several indexes on property graph tables are created by
default. The index names follow the same convention as the table names, including
using the graph name as the prefix. For example, for the property graph nyG aph, the
following local (partitioned) indexes are created:

A unigue index nyG aphXQv$ on nyG aphVT$(VI D, K)
A unigque index nyG aphXQE$ on nyG aphGE$(EI D, K)
An index myG aphXSE$ on nyG aphGE$(SVID, DVID, EID, WN)
An index myG aphXDE$ on myG aphGE$(DVID, SVID, EID, WN)

2.3.3 Flexibility in the Property Graph Schema

The property graph schema design does not use a catalog or centralized repository
of any kind. Each property graph is separately stored and managed by a schema of
user's choice. A user's schema may have one or more property graphs.

This design provides considerable flexibility to users. For example:

Users can create additional indexes as desired.

Different property graphs can have a different set of indexes or compression
options for the base tables.

Different property graphs can have different numbers of hash patrtitions.

You can even drop the XSE$ or XDES$ index for a property graph; however, for
integrity you should keep the unique constraints.

2.4 Getting Started with Property Graphs

Follow these steps to get started with property graphs.

ORACLE

1.

The first time you use property graphs, ensure that the software is installed and
operational.

Interact with a graph using one or more of the following options:

» Use Java APIs in your Java application. The Java APIs can also be run in the
JShell Command line interface for prototype and demo purposes.

* Run PGQL queries:
— In the Java application, or
— Inthe Graph visualization interface, or
— Inthe SQLcl client

* Run PGQL queries and execute Java APIs in the Apache Zeppelin interpreter

2-17

Chapter 2
Using Java APIs for Property Graph Data

* Required Privileges for Database Users
The database schema that contains the graph tables (either Property Graph
schema objects or relational tables that will be directly loaded as a graph in
memory) requires certain privileges.

Related Topics

* Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property
graph and objects in it.

2.4.1 Required Privileges for Database Users

2.5 Using

ORACLE

The database schema that contains the graph tables (either Property Graph schema
objects or relational tables that will be directly loaded as a graph in memory) requires
certain privileges.

ALTER SESSI ON
CREATE PROCEDURE
CREATE SEQUENCE
CREATE SESSI ON
CREATE TABLE
CREATE TRI GGER
CREATE TYPE
CREATE VI EW

Java APIs for Property Graph Data

Creating a property graph involves using the Java APIs to create the property graph
and objects in it.

* Overview of the Java APIs

e Parallel Loading of Graph Data

e Parallel Retrieval of Graph Data

* Using an Element Filter Callback for Subgraph Extraction

* Using Optimization Flags on Reads over Property Graph Data
* Adding and Removing Attributes of a Property Graph Subgraph
e Getting Property Graph Metadata

* Merging New Data into an Existing Property Graph

* Opening and Closing a Property Graph Instance

» Creating Vertices

» Creating Edges

» Deleting Vertices and Edges

* Reading a Graph from a Database into an Embedded In-Memory Analyst
* Specifying Labels for Vertices

e Building an In-Memory Graph

* Dropping a Property Graph

2-18

Chapter 2
Using Java APIs for Property Graph Data

* Executing PGQL Queries

2.5.1 Overview of the Java APIs

The Java APIs that you can use for property graphs include the following:
e Oracle Graph Property Graph Java APIs

* TinkerPop Java APIs

e Oracle Database Property Graph Java APls

2.5.1.1 Oracle Graph Property Graph Java APIs

Oracle Graph property graph support provides database-specific APIs for Oracle
Database.

To use the Oracle Spatial and Graph API, import the classes into your Java program:

i nport oracl e. pg. common. *;

i nmport oracle.pg.text.*;

i nport oracl e. pg. rdbms. *;

inport oracle. pgx.config.*;

i nport oracl e. pgx. common. t ypes. *;

2.5.1.2 TinkerPop Java APIs

Apache TinkerPop supports the property graph data model. The API provides utilities
for manipulating graphs, which you use primarily through the Spatial and Graph
property graph data access layer Java APlIs.

To use the TinkerPop APIs, import the classes into your Java program:

i nport org.apache. tinkerpop.gremin.structure. Vertex;
i nport org.apache.tinkerpop.grentin.structure. Edge;

Related Topics
e Blueprints: A Property Graph Model Interface API

2.5.1.3 Oracle Database Property Graph Java APIs

The Oracle Database property graph Java APls enable you to create and populate a
property graph stored in Oracle Database.

To use these Java APIs, import the classes into your Java program. For example:

i nport oracle. pg.rdbns. *;
inport java.sql.*;

2.5.2 Parallel Loading of Graph Data

ORACLE

A Java APl is provided for performing parallel loading of graph data.

Oracle Spatial and Graph supports loading graph data into Oracle Database. Graph
data can be loaded into the property graph using the following approaches:

* Vertices and/or edges can be added incrementally using the
graph. addVertex(hj ect id)/graph. addedge(Cbj ect id) APIs.

2-19

http://www.tinkerpop.com/docs/javadocs/blueprints/2.3.0/index.html

Chapter 2
Using Java APIs for Property Graph Data

* Graph data can be loaded from a file in Oracle flat-File format in parallel using the
O acl ePropertyG aphDat aLoader API.

e A property graph in GraphML, GML, or GraphSON can be loaded using
GWLReader , G aphM.Reader , and Gr aphSONReader , respectively.

This topic focuses on the parallel loading of a property graph in Oracle-defined flat file
format.

Parallel data loading provides an optimized solution to data loading where the vertices
(or edges) input streams are split into multiple chunks and loaded into Oracle
Database in parallel. This operation involves two main overlapping phases:

e Splitting. The vertices and edges input streams are split into multiple chunks and
saved into a temporary input stream. The number of chunks is determined by the
degree of parallelism specified

* Graph loading. For each chunk, a loader thread is created to process information
about the vertices (or edges) information and to load the data into the property
graph tables.

Oracl ePropertyG aphDat aLoader supports parallel data loading using several different
options:

» JDBC-Based Data Loading
* External Table-Based Data Loading
* SQL*Loader-Based Data Loading

2.5.2.1 JDBC-Based Data Loading

ORACLE

JDBC-based data loading uses Java Database Connectivity (JDBC) APIs to load the
graph data into Oracle Database. In this option, the vertices (or edges) in the given
input stream will be spread among multiple chunks by the splitter thread. Each chunk
will be processed by a different loader thread that inserts all the elements in the chunk
into a temporary work table using JDBC batching. The number of splitter and loader
threads used is determined by the degree of parallelism (DOP) specified by the user.

After all the graph data is loaded into the temporary work tables, all the data stored in
the temporary work tables is loaded into the property graph VT$ and GE$ tables.

The following example loads the graph data from a vertex and edge files in Oracle-
defined flat-file format using a JDBC-based parallel data loading with a degree of
parallelism of 48.

String szOPVFile

"../..ldatalconnections.opv";

String szOPEFile = "../../datalconnections. ope";
Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(args,
szG aphNane) ;

opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();

opgdl . | oadDat a(opg, szOPVFile, szOPEFile, 48 /* DOP */, 1000 /*
batch size */, true /* rebuild index flag */, "pddl=t,pdm=t" /*
options */);

):

To optimize the performance of the data loading operations, a set of flags and hints
can be specified when calling the JDBC-based data loading. These hints include:

2-20

Chapter 2
Using Java APIs for Property Graph Data

» DOP: The degree of parallelism to use when loading the data. This parameter
determines the number of chunks to generate when splitting the file as well as the
number of loader threads to use when loading the data into the property graph
VT$ and GES$ tables.

» Batch Size: An integer specifying the batch size to use for Oracle update
statements in batching mode. The default batch size used in the JDBC-based
data loading is 1000.

* Rebuild index: If this flag is set to t r ue, the data loader will disable all the indexes
and constraints defined over the property graph where the data will be loaded.
After all the data is loaded into the property graph, all the indexes and constraints
will be rebuilt.

e Load options: An option (or multiple options delimited by commas) to optimize
the data loading operations. These options include:

— NO_DUP=T: Assumes the input data does not have invalid duplicates. In a
valid property graph, each vertex (edge) can at most have one value for a
given property key. In an invalid property graph, a vertex (edge) may have
two or more values for a particular key. As an example, a vertex, v, has two
key/value pairs: name/"John" and name/"Johnny" and they share the same
key.

— PDML=T: Enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

— PDDL=T: Enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

— KEEP_WORK_TABS=T: Skips cleaning and deleting the working tables after
the data loading is complete. This is for debugging use only.

— KEEP_TMP_FILES=T: Skips removing the temporary splitter files after the
data loading is complete. This is for debug only.

- Splitter Flag: An integer value defining the type of files or streams used in the
splitting phase to generate the data chunks used in the graph loading phase. The
temporary files can be created as regular files (0), named pipes (1), or piped
streams (2). By default, JDBC-based data loading uses

Piped streams to handle intermediate data chunksPiped streams are for JDBC-
based loader only. They are purely in-memory and efficient, and do not require any
files created on the operating system.

Regular files consume space on the local operating system, while named pipes
appear as empty files on the local operating system. Note that not every operating
system has support for named pipes.

- Split File Prefix: The prefix used for the temporary files or pipes created when the
splitting phase is generating the data chunks for the graph loading. By default, the
prefix “OPG_Chunk” is used for regular files and “OPG_Pipe” is used for named

pipes.

e Tablespace: The name of the tablespace where all the temporary work tables will
be created.

Subtopics:

» JDBC-Based Data Loading with Multiple Files

ORACLE 2-21

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

» JDBC-Based Data Loading with Partitions
» JDBC-based Parallel Data Loading Using Fine-Tuning

JDBC-Based Data Loading with Multiple Files

JDBC-based data loading also supports loading vertices and edges from multiple files
or input streams into the database. The following code fragment loads multiple vertex
and edge files using the parallel data loading APIs. In the example, two string arrays
szOPVFiles and szOPEFiles are used to hold the input files.

String[] szOPVFiles = new String[] {"../../datal/connections-
pl.opv",
"..l../datalconnections-

p2.opv"};
String[] szOPEFiles = new String[] {"../../datalconnections-
pl. ope",
"..l../datalconnections-
p2.ope"};

Oracl ePropertyG aph opg = Oracl ePropertyG aph. getlnstance(args,
szG aphNane) ;
opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgdl . | oadDat a(opg, szOPVFiles, szOPEFiles, 48 /* DOP */,
1000 /* batch size */,
true /* rebuild index flag */,
"pddl =t, pdm =t" /* options */);

JDBC-Based Data Loading with Partitions

When dealing with graph data from thousands to hundreds of thousands elements, the
JDBC-based data loading API allows loading the graph data in Oracle Flat file format
into Oracle Database using logical partitioning.

Each partition represents a subset of vertices (or edges) in the graph data file of size
is approximately the number of distinct element IDs in the file divided by the number

of partitions. Each partition is identified by an integer ID in the range of [0, Number of
partitions — 1].

To use parallel data loading with partitions, you must specify the total number of
logical partitions to use and the partition offset (start ID) in addition to the base
parameters used in the | oadDat a API. To fully load a graph data file or input stream
into the database, you must execute the data loading operation as many times as the
defined number of partitions. For example, to load the graph data from a file using two
partitions, there should be two data loading API calls using an offset of 0 and 1. Each
call to the data loader can be processed using multiple threads or a separate Java
client on a single system or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream)
and a single edge file (or input stream). Additionally, this option requires disabling the
indices and constraints on vertices and edges. These indices and constraints must be
rebuilt after all partitions have been loaded.

The following example loads the graph data using two partitions. Each partition is
loaded by one Java process Dat aLoader Wr ker . To coordinate multiple workers, a
coordinator process named DataLoaderCoordinator is used. This example does the
following

2-22

Chapter 2
Using Java APIs for Property Graph Data

1. Disables all indexes and constraints,

2. Creates a temporary working table, loaderProgress, that records the data
loading progress (that is, how many workers have finished their work. All
Dat aLoader Wr ker processes start loading data after the working table is created.

3. Increments the progress by 1.

4. Keeps polling (using the Dat aLoader Coor di nat or process) the progress until all
Dat aLoader Wr ker processes are done.

5. Rebuilds all indexes and constraints.

Note: In Dat aLoader Wor ker , the flag SKI P_I NDEX should be set to t r ue and the flag
rebui | dl ndx should be set to f al se.

/] start DataloaderCoordinator, set dop = 8 and number of partitions = 2
java DatalLoader Coordi nator jdbcUrl wuser password pg 8 2

/1 start the first DatalLoaderWrker, set dop = 8, nunber of partitions

= 2, partition offset =0

java DatalLoaderWrker jdbcUrl user password pg 8 2 0

/1 start the first DatalLoaderWrker, set dop = 8, nunber of partitions

= 2, partition offset =1

java DatalLoaderWrker jdbcUrl user password pg 8 2 1

The Dat aLoader Coor di nat or first disables all indexes and constraints. It then creates
a table named loaderProgress and inserts one row with column progress = 0.

public class Dataloader Coordinator {
public static void main(String[] szArgs) {
String jdbcUrl = szArgs[0];
String user = szArgs[1];
String password = szArgs[2];
String graphName = szArgs[3];
int dop = Integer.parselnt(szArgs[4]);
int numLoaders = Integer.parselnt(szArgs[5]);

Oracle oracle = null;
Oracl ePropertyGaph opg = nul | ;
try {
oracle = new Oracle(jdbcUrl, user, password);
Oracl ePropertyG aphUtils. dropPropertyG aph(oracl e,
gr aphNane) ;
opg = Oracl ePropertyG aph. getlnstance(oracle, graphNane);

Li st<String> vlndi ces = opg. di sabl eVert exTabl el ndi ces();
List<String> vConstraints =

opg. di sabl eVert exTabl eConstraints();
Li st<String> el ndi ces = opg. di sabl eEdgeTabl el ndi ces();
List<String> eConstraints =

opg. di sabl eEdgeTabl eConstrai nts();

String szStnt = null;

try {
szStnt = "drop table | oaderProgress"”;

opg. get Oracl e() . execut eUpdat e(szStnt);

ORACLE 2-23

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

}
catch (SQLException ex) {

if (ex.getErrorCode() == 942) {
/] table does not exist. ignore

}
el se {
t hrow new O acl ePropertyG aphException(ex);

}
}
szStnt = "create table | oaderProgress (progress integer)";
opg. get Oracl e() . execut eUpdat e(szStnt);
szStnt = "insert into | oaderProgress (progress) values (0)";

opg. get Oracl e() . execut eUpdat e(szStnt);
opg. get Oracl e() . get Connection().commt();
while (true) {
i f (checkLoaderProgress(oracle) == nunioaders) {
br eak;
} else {
Thr ead. sl eep(1000);
}
}

opg. rebui | dVert exTabl el ndi ces(vl ndi ces, dop, null);
opg. rebui | dVert exTabl eConstrai nts(vConstraints, dop, null);
opg. rebui | dEdgeTabl el ndi ces(el ndi ces, dop, null);
opg. rebui | dEdgeTabl eConst rai nt s(eConstraints, dop, null);
}
catch (1 OException ex) {
t hrow new Oracl ePropertyG aphException(ex);
}
catch (SQLException ex) {
t hrow new Oracl ePropertyG aphException(ex);
}

catch (InterruptedException ex) {
t hrow new Oracl ePropertyG aphException(ex);
}

catch (Exception ex) {
t hrow new Oracl ePropertyG aphException(ex);
}
finally {
try {
if (opg !'=null) {
opg. shut down() ;

if (oracle !'=null) {
oracl e. di spose();
}

}
catch (Throwable t) {

Systemout.println(t);
}

2-24

Chapter 2
Using Java APIs for Property Graph Data

private static int checkLoaderProgress(Oracle oracle) {
int result = 0;
ResultSet rs = nul | ;

try {
String szStnmt = "select progress from | oaderProgress”;

rs = oracle. executeQuery(szStnt);
if (rs.next()) {
result = rs.getlnt(1);

}

}
catch (Exception ex) {

t hrow new Oracl ePropertyG aphException(ex);

}
finally {
try {
if (rs!=null) {
rs.close();
}
}
catch (Throwable t) {
Systemout.printin(t);
}
}
return result;
}

}

public class DataloaderWrker {

public static void main(String[] szArgs) {
String jdbcUrl = szArgs[O0];
String user = szArgs[1];
String password = szArgs[2];
String graphNane = szArgs[3];
int dop = Integer.parselnt(szArgs[4]);
int numLoaders = Integer.parselnt(szArgs[5]);
int offset = Integer.parselnt(szArgs[6]);

Oracle oracle = null;
Oracl ePropertyGaph opg = nul | ;

try {
oracle = new Oacle(jdbcUrl, user, password);

opg = Oracl ePropertyG aph. getlnstance(oracle, graphNane, 8,
dop, null/*tbs*/, ", SKIP_I NDEX=T,");

Oracl ePropertyG aphDat aLoader opgdal =
Oracl ePropert yG aphDat aLoader . get | nst ance();

while (true) {
i f (checkLoaderProgress(oracle) == 1) {
br eak;
} else {

ORACLE 2-25

ORACLE

of f set,

Chapter 2
Using Java APIs for Property Graph Data

Thr ead. sl eep(1000);

}
}

String opvFile = "../../../datalconnections. opv";

String opeFile = "../../../datalconnections. ope";

opgdal . | oadDat a(opg, opvFile, opeFile, dop, nunLoaders,
1000, false, null, "pddl=t,pdm=t");

updat eLoader Pr ogr ess(oracl e) ;
1
catch (SQLException ex) {

t hrow new Oracl ePropertyG aphException(ex);
1
catch (InterruptedException ex) {

t hrow new Oracl ePropertyG aphException(ex);
1
finally {

try {

if (opg !'=null) {
opg. shut down() ;

if (oracle !'=null) {
oracl e. di spose();

}

}
catch (Throwable t) {

Systemout.printin(t);

}
}
}

private static int checkLoaderProgress(Oracle oracle) {
int result = 0;
ResultSet rs = nul | ;

try {
String szStnt = "select count(*) from | oaderProgress"”;

rs = oracle. executeQuery(szStnt);
if (rs.next()) {
result =rs.getint(1);
}
}
catch (SQ.Exception ex) {

if (ex.getErrorCode() == 942) {
/] table does not exist. ignore

} else {
t hrow new Oracl ePropertyG aphException(ex);
}
}
finally {
try {
if (rs!=null) {
rs.close();
}

2-26

Chapter 2
Using Java APIs for Property Graph Data

}
catch (Throwable t) {

Systemout.printin(t);
}
}

return resul t;

}

private static void updatelLoaderProgress(COacle oracle) {
ResultSet rs = nul | ;

try {
String szStnmt = "update | oaderProgress set progress =
progress + 1";
oracl e. execut eUpdat e(szStnt);
oracl e. get Connection().comit();
}
catch (Exception ex) {
t hrow new Oracl ePropertyG aphException(ex);

1
finally {
try {
if (rs!=null) {
rs.close();
}
}
catch (Throwable t) {
Systemout.printin(t);
}
}
}

JDBC-based Parallel Data Loading Using Fine-Tuning

JDBC-based data loading supports fine-tuning the subset of data from a line to be
loaded, as well as the ID offset to use when loading the elements into the property
graph instance. You can specify the subset of data to load from a file by specifying
the maximum number of lines to read from the file and the offset line number (start
position) for both vertices and edges. This way, data will be loaded from the offset
line number until the maximum number of lines has been read. IIf the maximum line
number is -1, the loading process will scan the data until reaching the end of file.

Because multiple graph data files may have some ID collisions or overlap, the JDBC-
based data loading allows you to define a vertex and edge ID offset. This way, the ID
of each loaded vertex will be the sum of the original vertex ID and the given vertex

ID offset. Similarly, the ID of each loaded edge will be generated from the sum of the
original edge ID and the given edge ID offset. Note that the vertices and edge files
must be correlated, because the in/out vertex ID for the loaded edges will be modified
with respect to the specified vertex ID offset. This operation is supported only in data
loading using a single logical partition.

ORACLE 2-27

Chapter 2
Using Java APIs for Property Graph Data

The following code fragment loads the first 100 vertices and edges lines from the
given graph data file. In this example, an ID offset 0 is used, which indicates no 1D
adjustment is performed.

String szOPVFile = "../../datalconnections. opv";

String szOPEFi | e ..1..ldatal connections. ope";

Il Run the data | oading using fine tuning

long | VertexOfifsetlines = 0;

[ong | EdgeOF fsetlines = O;

ong | VertexMaxlines = 100;

 ong | EdgeMaxlines = 100;

long IVIDO fset = 0;

long |EIDOf fset = 0;

Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(args,
szG aphNane) ;

Oracl ePropertyG aphDat aLoader opgdl =
Oracl ePropert yG aphDat aLoader . get | nstance();

opgdl . | oadDat a(opg, szOPVFile, szOPEFile,
| VertexOffsetlines /* offset of lines to start
| oading from
partition, default 0 */,
| EdgeOffsetlines /* offset of lines to start |oading

from
partition, default 0 */,
| VertexMax!lines /* maxi num nunmber of lines to start loading from
partition, default -1 (all lines in partition)
*/
| EdgeMax| i nes /* maxi mum nunber of lines to start loading from
partition, default -1 (all lines in partition)
*/
IVIDOFfset /* vertex ID offset: the vertex IDw Il be original
vertex ID + offset, default 0 */,
|EIDOfFfset /* edge 1D offset: the edge ID will be original edge
ID
+ of fset, default 0 */,
4 [* DOP */,
1 /* Total nunber of partitions, default 1 */,
0 /* Partition to load: fromO to totalPartitions - 1, default O
*/

Oracl ePropertyG aphDat aLoader . Pl PEDSTREAM / * splitter flag */,
“chunkPrefix" /* prefix: the prefix used to generate split chunks
for regular files or named pipes */,

1000 /* batch size: batch size of Oracle update in batching nmode.
Default value is 1000 */,

true /* rebuild index */,

null /* table space name*/,

“pddl =t,pdm =t" /* options: enable parallel DDL and DML */);

2.5.2.2 External Table-Based Data Loading

External table-based data loading uses an external table to load the graph data into
Oracle Database. External table loading allows users to access the data in external
sources as if it were in a regular relational table in the database. In this case, the

ORACLE 2-28

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

vertices (or edges) in the given input stream will be spread among multiple chunks by
the splitter thread. Each chunk will be processed by a different loader thread that is

in charge of passing all the elements in the chunk to Oracle Database. The number
of splitter and loader threads used is determined by the degree of parallelism (DOP)
specified by the user.

After the external tables are automatically created by the data loading logic, the loader
will read from the external tables and load all the data into the property graph schema
tables (VT$ and GES$).

External-table based data loading requires a directory object where the files read
by the external tables will be stored. This directory can be created by running the
following scripts in a SQL*Plus environment:

create or replace directory tnp_dir as '/tnppath/';
grant read, wite on directory tnp_dir to public;

The following code fragment loads the graph data from a vertex and edge files
in Oracle Flat-file format using an external table-based parallel data loading with a
degree of parallelism of 48.

String szOPVFile = "../../datalconnections. opv";

String szOPEFile = "../../datalconnections. ope";

String szExtDir = "tnp_dir";

Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(args,
szG aphNane) ;

opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();

opgdl . | oadDat aW't hExt Tab(opg, szOPVFile, szOPEFile, 48 /*DOP*/,

true /*named pipe flag: setting the flag

to true will use
named pi pe based splitting;
otherwi se, regular file
based splitting woul d be used*/,
szExtDir /* database directory object */,
true /*rebuild index */,
“pddl =t, pdm =t, NO DUP=T" /*options */);

To optimize the performance of the data loading operations, a set of flags and hints
can be specified when calling the External table-based data loading. These hints
include:

« DOP: The degree of parallelism to use when loading the data. This parameter
determines the number of chunks to generate when splitting the file, as well as
the number of loader threads to use when loading the data into the property graph
VT$ and GES$ tables.

* Rebuild index: If this flag is set to t r ue, the data loader will disable all the indexes
and constraints defined over the property graph where the data will be loaded.
After all the data is loaded into the property graph, all the indexes and constraints
will be rebuilt.

* Load options: An option (or multiple options delimited by commas) to optimize
the data loading operations. These options include:

— NO_DUP=T: Chooses a faster way to load the data into the property graph
tables as no validation for duplicate Key/value pairs will be conducted.

2-29

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

— PDML=T: Enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

— PDDL=T: Enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

— KEEP_WORK_TABS=T: Skips cleaning and deleting the working tables after
the data loading is complete. This is for debugging use only.

— KEEP_TMP_FILES=T: Skips removing the temporary splitter files after the
data loading is complete. This is for debugging use only.

» Splitter Flag: An integer value defining the type of files or streams used in the
splitting phase to generate the data chunks used in the graph loading phase. The
temporary files can be created as regular files (0) or named pipes (1).

By default, External table-based data loading uses regular files to handle
temporary files for data chunks. Named pipes can only be used on operating
system that supports them. It is generally a good practice to use regular files
together with DBFS.

» Split File Prefix: The prefix used for the temporary files or pipes created when the
splitting phase is generating the data chunks for the graph loading. By default, the
prefix “Chunk” is used for regular files and “Pipe” is used for named pipes.

» Tablespace: The name of the tablespace where all the temporary work tables will
be created.

As with the JDBC-based data loading, external table-based data loading supports
parallel data loading using a single file, multiple files, partitions, and fine-tuning.

Subtopics:

e External Table-Based Data Loading with Multiple Files
e External table-based Data Loading with Partitions

e External Table-Based Parallel Data Loading Using Fine-Tuning

External Table-Based Data Loading with Multiple Files

External table-based data loading also supports loading vertices and edges from
multiple files or input streams into the database. The following code fragment loads
multiple vertex and edge files using the parallel data loading APlIs. In the example, two
string arrays szOPVFi | es and szOPEFi | es are used to hold the input files.

String szOPVFile = "../../datalconnections. opv";

String szOPEFile = "../../datalconnections. ope";

String szExtDir = "tnp_dir";

Oracl ePropertyGaph opg = Oracl ePropertyG aph. getl nstance(args,

szG aphNane) ;

opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();

opgdl . | oadDat aW t hExt Tab(opg, szOPVFile, szOPEFile, 48 /* DOP */,
true /* naned pipe flag */,
szExtDir /* database directory object */,
true /* rebuild index flag */,
“pddl =t, pdm =t" /* options */);

2-30

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

External table-based Data Loading with Partitions

When dealing with a very large property graph, the external table-based data loading
API allows loading the graph data in Oracle flat file format into Oracle Database using
logical partitioning. Each partition represents a subset of vertices (or edges) in the
graph data file of size that is approximately the number of distinct element IDs in the
file divided by the number of partitions. Each partition is identified by an integer ID in
the range of [0, Number of partitions — 1].

To use parallel data loading with partitions, you must specify the total number of
partitions to use and the partition offset besides the base parameters used in the

| oadDat aW t hExt Tab API. To fully load a graph data file or input stream into the
database, you must execute the data loading operation as many times as the defined
number of partitions. For example, to load the graph data from a file using two
partitions, there should be two data loading API calls using an offset of 0 and 1. Each
call to the data loader can be processed using multiple threads or a separate Java
client on a single system or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream)
and a single edge file (or input stream). Additionally, this option requires disabling the
indexes and constraints on vertices and edges. These indices and constraints must be
rebuilt after all partitions have been loaded.

The example for JDBC-based data loading with partitions can be easily migrated to
work as external-table based loading with partitions. The only needed changes are to
replace API | oadDat a() with | oadDat aW t hExt Tab(), and supply some additional input
parameters such as the database directory object.

External Table-Based Parallel Data Loading Using Fine-Tuning

External table-based data loading also supports fine-tuning the subset of data from

a line to be loaded, as well as the ID offset to use when loading the elements into
the property graph instance. You can specify the subset of data to load from a file

by specifying the maximum number of lines to read from the file as well as the offset
line number for both vertices and edges. This way, data will be loaded from the offset
line number until the maximum number of lines has been read. If the maximum line
number is -1, the loading process will scan the data until reaching the end of file.

Because graph data files may have some ID collisions, the external table-based data
loading allows you to define a vertex and edge ID offset. This way, the ID of each
loaded vertex will be obtained from the sum of the original vertex ID with the given
vertex ID offset. Similarly, the ID of each loaded edge will be generated from the sum
of the original edge ID with the given edge ID offset. Note that the vertices and edge
files must be correlated, because the in/out vertex ID for the loaded edges will be
modified with respect to the specified vertex ID offset. This operation is supported only
in a data loading using a single partition.

The following code fragment loads the first 100 vertices and edges from the given
graph data file. In this example, no ID offset is provided.

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

/'l Run the data | oading using fine tuning
long | VertexOfifsetlines = 0;
[ong | EdgeOfifsetlines = O;

2-31

Chapter 2
Using Java APIs for Property Graph Data

[ong | VertexMaxlines = 100;
| ong | EdgeMaxlines = 100;

long IVIDOFfset = 0;
long EIDOFfset = 0;
String szExtDir = "tnp_dir";

Oracl ePropertyGaph opg = Oracl ePropertyG aph. getlnstance(args,
szG aphNane) ;

Oracl ePropertyG aphDat aLoader opgdl =
Oracl ePropert yG aphDat aLoader . get | nst ance();

opgdl . | oadDat aW t hExt Tab(opg, szOPVFile, szOPEFile,

| VertexOifsetlines /* offset of lines to

start |oading
frompartition,

default 0 */,

| EdgeOifsetlines /* offset of lines to
start loading from

partition, default O

*/,
| VertexMaxlines /* maxi num nunber of |ines
to start
| oading frompartition,
default -1
(all lines in partition)
*/,

| EdgeMax! i nes /* maxi mum nunber of |ines
to start |oading
frompartition, default

-1 (all lines in
partition) */,
VIDOFfset /* vertex ID offset: the vertex
IDwIl be
original vertex ID + offset,
default 0 */,
|[EIDOfFfset /* edge 1D offset: the edge ID
will be
original edge ID + offset,
default 0 */,
4 [* DOP */,
1 /* Total nunber of partitions, default 1
*/,

0 /* Partition to load (fromO to
total Partitions - 1,
default 0) */,
Oracl ePropertyG aphDat aLoader . NAMEDPI PE
I* splitter flag */,
“chunkPrefix" /* prefix */,
szExtDir /* database directory object */,
true /* rebuild index flag */,
“pddl =t, pdm =t" /* options */);

ORACLE 2-32

Chapter 2
Using Java APIs for Property Graph Data

2.5.2.3 SQL*Loader-Based Data Loading

ORACLE

SQL*Loader-based data loading uses Oracle SQL*Loader to load the graph data into
Oracle Database. SQL*Loader loads data from external files into Oracle Database
tables. In this case, the vertices (or edges) in the given input stream will be spread
among multiple chunks by the splitter thread. Each chunk will be processed by a
different loader thread that inserts all the elements in the chunk into a temporary work
table using SQL*Loader. The number of splitter and loader threads used is determined
by the degree of parallelism (DOP) specified by the user.

After all the graph data is loaded into the temporary work table, the graph loader will
load all the data stored in the temporary work tables into the property graph VT$ and
GES$ tables.

The following code fragment loads the graph data from a vertex and edge files
in Oracle flat-file format using a SQL-based parallel data loading with a degree of
parallelism of 48. To use the APIs, the path to the SQL*Loader must be specified.

String szUser = "username";

String szPassword = "password";

String szDbld = "db18c"; /*service name of the database*/

String szOPVFile = "../../datalconnections. opv";

String szOPEFile = "../../datalconnections. ope";

String szSQ.Loader Path = "<YOUR_ORACLE HOMVE>/ bin/sqlldr";

Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(args,
szG aphNane) ;

opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgdl . | oadDat aW't hSgl Ldr (opg, szUser, szPassword, szDbld,
szOPVFi l e, szOPEFi | e,
48 |* DOP */,
true /*named pipe flag */,
szSQ.Loader Path /* SQ.*Loader path: the
path to
bi n/sql I dr*/,
true /*rebuild index */,
"pddl =t, pdm =t" /* options */);

As with JDBC-based data loading, SQL*Loader-based data loading supports parallel
data loading using a single file, multiple files, partitions, and fine-tuning.

Subtopics:

e SQL*Loader-Based Data Loading with Multiple Files

e SQL*Loader-Based Data Loading with Partitions

e SQL*Loader-Based Parallel Data Loading Using Fine-Tuning
SQL*Loader-Based Data Loading with Multiple Files

SQL*Loader-based data loading supports loading vertices and edges from multiple
files or input streams into the database. The following code fragment loads multiple

2-33

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

vertex and edge files using the parallel data loading APIs. In the example, two string
arrays szOPVFi | es and szCOPEFi | es are used to hold the input files.

String szUser = "username";
String szPassword = "password";
String szDbld = "db18c"; /*service name of the database*/
String[] szOPVFiles = new String[] {"../../datalconnections-
pl.opv",
"..l../datalconnections-
p2.opv"};
String[] szOPEFiles = new String[] {"../../datalconnections-
pl. ope",
"..l../datalconnections-
p2.ope"};
String szSQ.LoaderPath = "../../../dbhome_1/bin/sqlldr";
Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(args,
szG aphNane) ;

opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();

opgdl . | oadDataWthSqgl Ldr (opg, szUser, szPassword, szDbld,
szOPVFi | es, szOPEFi | es,
48 [* DOP */,
true /* naned pipe flag */,
szSQ.Loader Path /* SQL*Loader path */,
true /* rebuild index flag */,
"pddl =t, pdm =t" /* options */);

SQL*Loader-Based Data Loading with Partitions

When dealing with a large property graph, the SQL*Loader-based data loading API
allows loading the graph data in Oracle flat-file format into Oracle Database using
logical partitioning. Each partition represents a subset of vertices (or edges) in the
graph data file of size that is approximately the number of distinct element IDs in the
file divided by the number of partitions. Each partition is identified by an integer ID in
the range of [0, Number of partitions — 1].

To use parallel data loading with partitions, you must specify the total number of
partitions to use and the partition offset, in addition to the base parameters used

in the | oadDat aW t hSql Ldr API. To fully load a graph data file or input stream into

the database, you must execute the data loading operation as many times as the
defined number of partitions. For example, to load the graph data from a file using two
partitions, there should be two data loading API calls using an offset of 0 and 1. Each
call to the data loader can be processed using multiple threads or a separate Java
client on a single system or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream)
and a single edge file (or input stream). Additionally, this option requires disabling the
indexes and constraints on vertices and edges. These indexes and constraints must
be rebuilt after all partitions have been loaded.

The example for JDBC-based data loading with partitions can be easily migrated to
work as SQL*Loader- based loading with partitions. The only changes needed are to
replace API | oadDat a() with | oadDat aW t hSql Ldr (), and supply some additional input
parameters such as the location of SQL*Loader.

2-34

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

SQL*Loader-Based Parallel Data Loading Using Fine-Tuning

SQL Loader-based data loading supports fine-tuning the subset of data from a line to
be loaded, as well as the ID offset to use when loading the elements into the property
graph instance. You can specify the subset of data to load from a file by specifying
the maximum number of lines to read from the file and the offset line number for both
vertices and edges. This way, data will be loaded from the offset line number until

the maximum number of lines has been read. If the maximum line number is -1, the
loading process will scan the data until reaching the end of file.

Because graph data files may have some ID collisions, the SQL Loader-based data
loading allows you to define a vertex and edge ID offset. This way, the ID of each
loaded vertex will be obtained from the sum of the original vertex ID with the given
vertex ID offset. Similarly, the ID of each loaded edge will be generated from the sum
of the original edge ID with the given edge ID offset. Note that the vertices and edge
files must be correlated, because the in/out vertex ID for the loaded edges will be
modified with respect to the specified vertex ID offset. This operation is supported only
in a data loading using a single partition.

The following code fragment loads the first 100 vertices and edges from the given
graph data file. In this example, no ID offset is provided.

String szUser = "username";

String szPassword = "password";

String szDbld = "db18c"; /* service nane of the database */
String szOPVFile = "../../datalconnections. opv";

String szOPEFile = "../../datalconnections. ope";

String szSQ.LoaderPath = "../../../dbhome_1/bin/sqlldr";

/1l Run the data | oading using fine tuning

long | VertexOifsetlines = 0;

[ong | EdgeOi fsetlines = O;

[ong | VertexMaxlines = 100;

 ong | EdgeMaxlines = 100;

long IVIDOFfset = 0;

long EIDOFfset = 0;

Oracl ePropertyGaph opg = Oracl ePropertyG aph. getl nstance(args,
szG aphNane) ;

Oracl ePropertyG aphDat aLoader opgdl =
Oracl ePropertyG aphDat aLoader . get | nst ance();

opgdl . | oadDat aW't hSgl Ldr (opg, szUser, szPassword, szDbld,

SszOPVFi l e, szOPEFi | e,

| VertexOifsetlines /* offset of lines to
start |oading

frompartition,

default 0*/,

| EdgeOifsetlines /* offset of lines to
start loading from

partition, default

0*/,
| VertexMaxlines /* maxi num nunber of |ines
to start
| oading frompartition,
default -1

2-35

Chapter 2
Using Java APlIs for Property Graph Data

(all lines in
partition)*/,
| EdgeMaxl i nes /* maxi mum nunber of |ines
to start |oading
frompartition, default

-1 (all lines in
partition) */,
VIDOFfset /* vertex ID offset: the vertex
IDwll be
original vertex ID + offset,
default 0 */,
|EIDOffset /* edge 1D offset: the edge ID
will be
original edge ID + offset,
default 0 */,
48 |* DOP */,
1 /* Total nunber of partitions, default 1
*/,

0 /* Partition to load (fromO to
total Partitions - 1,
default 0) */,
O acl ePropert yG aphDat aLoader . NAMEDPI PE
I* splitter flag */,
“chunkPrefix" [* prefix */,
szSQ.Loader Path /* SQ.*Loader path: the
path to
bi n/sql I dr*/,
true /* rebuild index */,
“pddl =t, pdm =t" /* options */);

2.5.3 Parallel Retrieval of Graph Data

ORACLE

The parallel property graph query provides a simple Java API to perform parallel scans
on vertices (or edges). Parallel retrieval is an optimized solution taking advantage of
the distribution of the data across table partitions, so each partition is queried using a
separate database connection.

Parallel retrieval will produce an array where each element holds all the vertices (or
edges) from a specific partition (split). The subset of shards queried will be separated
by the given start split ID and the size of the connections array provided. This way, the
subset will consider splits in the range of [start, start - 1 + size of connections array].
Note that an integer ID (in the range of [0, N - 1]) is assigned to all the splits in the
vertex table with N splits.

The following code loads a property graph, opens an array of connections,

and executes a parallel query to retrieve all vertices and edges using the

opened connections. The number of calls to the get Verti cesPartitioned

(get EdgesPartitioned) method is controlled by the total number of splits and the
number of connections used.

Oracl ePropertyGaph opg = Oracl ePropertyG aph. getl nstance(args,
szG aphNane) ;

/1 Clear existing vertices/edges in the property graph

2-36

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

opg. cl ear Repository();

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

/1 This object will handle parallel data |oading
Oracl ePropertyG aphDat aLoader opgdl =

Oracl ePropert yG aphDat aLoader . get | nst ance();
opgdl . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/] Create connections used in parallel query
Oracl e[] oracl eConns = new Oracl e[dop];
Connection[] conns = new Connecti on[dop];
for (int i =0; i <dop; i++) {
oracl eConns[i] = opg.getOracle().clone();
conns[i] = oracleConns[i].getConnection();

}

long | CountV = 0;

/] lterate over all the vertices’ partitionlDs to count all the vertices

for (int partitionlD = 0; partitionlD <

opg. get VertexPartitionsNumber () ;

partitionl D += dop) {
Iterabl e<Vertex>[] iterables
= opg. get VerticesPartitioned(conns /* Connection array */,

true /* skip store to cache */,
partitionlD /* starting partition

*/);
| CountV += consunelterabl es(iterables); /* consune iterables using
threads */
}
/1 Count all vertices
Systemout . println("Vertices found using parallel query: " + | CountV);

I ong | CountE = 0;
/] lterate over all the edges’ partitionlDs to count all the edges
for (int partitionlD = 0; partitionlD < opg.get EdgeTabl ePartitionl Ds();
partitionl D += dop) {
Iterabl e<Edge>[] iterables
= opg. get EdgesPartitioned(conns /* Connection array */,
true /* skip store to cache */,
partitionlD /* starting partitionlD
*/);
| Count E += consunelterabl es(iterables); /* consune iterables using
threads */

}

/1 Count all edges
Systemout . println("Edges found using parallel query: " + | CountE);

/1 O ose the connections to the database after conpleted
for (int idx = 0; idx < conns.length; idx++) {
conns[idx].close();

}

2-37

Chapter 2
Using Java APIs for Property Graph Data

2.5.4 Using an Element Filter Callback for Subgraph Extraction

ORACLE

Oracle Spatial and Graph provides support for an easy subgraph extraction
using user-defined element filter callbacks. An element filter callback defines a
set of conditions that a vertex (or an edge) must meet in order to keep it in

the subgraph. Users can define their own element filtering by implementing the
VertexFilterCal | back and EdgeFi | t er Cal | back API interfaces.

The following code fragment implements a Vert exFi | t er Cal | back that validates if a
vertex does not have a political role and its origin is the United States.
/**

* VertexFilterCallback to retrieve a vertex fromthe United States
* that does not have a political role

*/

private static class NonPoliticianFilterCallback

i npl ements VertexFilterCall back

{

@verride

public bool ean keepVertex(Oracl eVertexBase vertex)

{

String country = vertex.getProperty("country");

String role = vertex.getProperty(“role");

if (country !'= null && country.equal s("United States")) {

if (role == null || !role.toLowerCase().contains("political")) {
return true;

1

1

return fal se;

1

public static NonPoliticianFilterCallback getlnstance()
{

return new NonPoliticianFilterCallback();

1

1

The following code fragment implements an EdgeFi | t er Cal | back that uses the
Vert exFil ter Cal | back to keep only edges connected to the given input vertex, and
whose connections are not politicians and come from the United States.
/**
* EdgeFilterCallback to retrieve all edges connected to an input
* vertex with "col | aborates" |abel, and whose vertex is fromthe
* United States with a role different than political
*/
private static class Col | aboratorsFiltercCallback
i npl ement s EdgeFi | t er Cal | back
{
private VertexFilterCallback mvfc;
private Vertex mstartV,

public Col | aboratorsFilterCall back(VertexFilterCallback vfc,
Vertex v)

{
mvfc = vfc;
mstartV = v;

2-38

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

}

@verride
publi ¢ bool ean keepEdge(O acl eEdgeBase edge)

if ("collaborates". equal s(edge. getLabel ())) {

if (edge.getVertex(Direction.IN).equal s(mstartV) &&
m vfc. keepVertex((Oracl eVertex)

edge. get Vertex(Direction. QUT))) {

return true;

el se if (edge.getVertex(Direction.QUT).equal s(mstartV) &&
m vfc. keepVert ex((O acl eVert ex)

edge. get Vertex(Direction.IN))) {

return true;

}

}

return fal se;

}

public static CollaboratorsFilterCallback
getlnstance(VertexFilterCallback vfc, Vertex v)

{

return new Col | aboratorsFilterCallback(vfc, v);

}
}

Using the filter callbacks previously defined, the following code fragment loads a
property graph, creates an instance of the filter callbacks and later gets all of Robert
Smith’s collaborators who are not politicians and come from the United States.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. getlnstance(
args, szGaphNane);

Il Cear existing vertices/edges in the property graph
opg. cl ear Reposi tory();

String szOPVFile = "../../datal connections.opv";
String szOPEFile = "../../datal connections. ope";

/1 This object will handle parallel data |oading
O acl ePropertyG aphDat aLoader opgdl =

O acl ePropertyG aphDat aLoader . get | nst ance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

Il VertexFilterCallback to retrieve all people fromthe United States // who are
not politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getlnstance();

[l Initial vertex: Robert Smith
Vertex v = opg.getVertices("name", "Robert Smith").iterator().next();

/| EdgeFilterCallback to retrieve all collaborators of Robert Smth
/1 fromthe United States who are not politicians
CollaboratorsFilterCallback cefc =

CollaboratorsFilterCal lback.getlInstance(npvfc, v);

I terabl e<<Edge> smithCol | abs = opg.getEdges((String[])null /* Match any
of the properties */,

2-39

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

cefc /* Match the
EdgeFilterCallback */
).

Iterator<<kEdge> iter = smthCollabs.iterator();

Systemout.println("\n\n-------- Col | aborators of Robert Smith from" +
" the US and non-politician\in\n");

I ong countV = 0;

while (iter.hasNext()) {

Edge edge = iter.next(); // get the edge

/1 check if smithis the IN vertex

if (edge.getVertex(Direction.IN).equals(v)) {

Systemout. println(edge.getVertex(Direction. OUT) + “(Edge ID. " +
edge.getld() + ")"); // get out vertex

}

el se {

Systemout. println(edge. getVertex(Direction.IN+ "(Edge ID: " +
edge.getld() + ")"); // get in vertex

}

count V++;

}

By default, all reading operations such as get all vertices, get all edges

(and parallel approaches) will use the filter callbacks associated with the

property graph using the methods opg. set Vert exFi | t er Cal | back(vfc) and

opg. set EdgeFi | t er Cal | back(ef ¢) . If there is no filter callback set, then all the vertices
(or edges) and edges will be retrieved.

The following code fragment uses the default edge filter callback set on the property
graph to retrieve the edges.

Il VertexFilterCallback to retrieve all people fromthe United States // who are
not politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getlnstance();

[/ Initial vertex: Robert Smith
Vertex v = opg.getVertices("name", "Robert Smith").iterator().next();

/| EdgeFilterCallback to retrieve all collaborators of Robert Smth
/1 fromthe United States who are not politicians
CollaboratorsFilterCallback cefc =
CollaboratorsFilterCallback.getinstance(npvfc, Vv);

opg.setEdgeFilterCal Iback(cefc);

It erabl e<Edge> smithCol | abs = opg.getEdges();
Iterator<Edge> iter = snithCollabs.iterator();

Systemout.println("\n\n-------- Col | aborators of Robert Smith from" +
" the US and non-politicianin\n");

I ong countV = 0;

while (iter.hasNext()) {

Edge edge = iter.next(); // get the edge

[l check if smith is the IN vertex

if (edge.getVertex(Direction.IN).equals(v)) {

Systemout. println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
edge.getld() + ")"); // get out vertex

}

el se {

Systemout. println(edge. getVertex(Direction.IN)+ "(Edge ID: " +

2-40

Chapter 2
Using Java APlIs for Property Graph Data

edge.getld() + ")"); // get in vertex
}

count V++;

}

2.5.5 Using Optimization Flags on Reads over Property Graph Data

ORACLE

Oracle Spatial and Graph provides support for optimization flags to improve graph
iteration performance. Optimization flags allow processing vertices (or edges) as
objects with none or minimal information, such as ID, label, and/or incoming/outgoing
vertices. This way, the time required to process each vertex (or edge) during iteration
is reduced.

The following table shows the optimization flags available when processing vertices (or
edges) in a property graph.

Optimization Flag Description

DO_NOT_CREATE_OBJ Use a predefined constant object when processing vertices or
ECT edges.

JUST_EDGE_ID Construct edge objects with ID only when processing edges.

JUST_LABEL_EDGE_ID Construct edge objects with ID and label only when processing
edges.

JUST_LABEL_VERTEX Construct edge objects with ID, label, and in/out vertex IDs only

_EDGE_ID when processing edges

JUST_VERTEX_EDGE_ Construct edge objects with just ID and in/out vertex IDs when

ID processing edges.

JUST_VERTEX_ID Construct vertex objects with ID only when processing vertices.

The following code fragment uses a set of optimization flags to retrieve only all the IDs
from the vertices and edges in the property graph. The objects retrieved by reading all
vertices and edges will include only the IDs and no Key/Value properties or additional
information.

i nport oracle. pg. common. Oracl ePropertyG aphBase. Opti mi zati onFl ag;
Oracl ePropertyG aph opg = Oracl ePropertyG aph. getlnstance(
args, szGaphNane);

/1 Cear existing vertices/edges in the property graph
opg. cl ear Reposi tory();

String szOPVFile = "../../datal connections. opv";
String szOPEFile = "../../datal connections. ope";

[l This object will handle parallel data |oading
O acl ePropertyG aphDat aLoader opgdl =

O acl ePropertyG aphDat aLoader . get | nst ance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/] Optimzation flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST VERTEX_ID;

/] Optimzation flag to retrieve only edges |Ds
OptimizationFlag optFlagEdge = OptimizationFlag.JUST EDGE_ID;

/1l Print all vertices

2-41

ORACLE

Chapter 2
Using Java APlIs for Property Graph Data

Iterator<Vertex> vertices =
opg.-getVertices((String[1null /* Match any of the
properties */,

null /* Match the VertexFilterCallback */,
optFlagVertex /* optimization flag */
).iterator();

Systemout.println("----- Vertices IDs----");
| ong vCount = O;

while (vertices.hasNext()) {
OacleVertex v = vertices.next();
Systemout. println((Long) v.getld());
vCount ++;

}

Systemout.println("Vertices found: " + vCount);

/1 Print all edges

I terator<Edge> edges =

opg.-getEdges((String[1)null /* Match any of the properties */,
null /* Match the EdgeFilterCallback */,

optFlagEdge /* optimization flag */

).iterator();

Systemout.println("----- Edges ----");
| ong eCount = O;

whil e (edges. hasNext()) {

Edge e = edges.next();

Systemout. println((Long) e.getld());
eCount ++,

}
Systemout. println("Edges found: " + eCount);

By default, all reading operations such as get all vertices, get all edges

(and parallel approaches) will use the optimization flag associated with the

property graph using the method opg. set Def aul t Ver t exOpt Fl ag(opt Fl agVert ex) and
opg. set Def aul t EdgeOpt FI ag(opt Fl agEdge) . If the optimization flags for processing
vertices and edges are not defined, then all the information about the vertices and
edges will be retrieved.

The following code fragment uses the default optimization flags set on the property
graph to retrieve only all the IDs from its vertices and edges.

i mport oracl e. pg. conmmon. Or acl ePropertyG aphBase. Opti mi zat i onFl ag;

/] Optinization flag to retrieve only vertices IDs
OptimizationFl ag opt Fl agVertex = Optim zati onFl ag. JUST_VERTEX | D;

/] Optinization flag to retrieve only edges |Ds
Optimi zationFl ag opt Fl agEdge = Opti m zati onFl ag. JUST_EDCGE | D;

opg.setDefaultVertexOptFlag(optFlagVertex);
opg.setDefaul tEdgeOptFlag(optFlagEdge);

Iterator<Vertex> vertices = opg. getVertlces() iterator();
System out . prlntln(----- Vertices IDs----");

| ong vCount = O;

while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System out. println((Long) v.getl
vCount ++;

d());

2-42

Chapter 2
Using Java APIs for Property Graph Data

}

Systemout.println("Vertices found: " + vCount);

/1 Print all edges

I terator<Edge> edges = opg.getEdges().iterator();
Systemout.println("----- Edges ----");

| ong eCount = O;

whil e (edges. hasNext()) {

Edge e = edges. next();

Systemout.println((Long) e.getld());

eCount ++;

}
Systemout. println("Edges found: " + eCount);

2.5.6 Adding and Removing Attributes of a Property Graph Subgraph

ORACLE

Oracle Spatial and Graph supports updating attributes (key/value pairs) to a subgraph
of vertices and/or edges by using a user-customized operation callback. An operation
callback defines a set of conditions that a vertex (or an edge) must meet in order to
update it (either add or remove the given attribute and value).

You can define your own attribute operations by implementing the Vert exOpCal | back
and EdgeOpCal | back API interfaces. You must override the needOp method, which
defines the conditions to be satisfied by the vertices (or edges) to be included in the
update operation, as well as the get Att ri but eKeyNane and get Attri but eKeyVal ue
methods, which return the key name and value, respectively, to be used when
updating the elements.

The following code fragment implements a Vert expCal | back that operates over the
sm t hCol | abor at or attribute associated only with Robert Smith collaborators. The
value of this property is specified based on the role of the collaborators.

private static class Col | aboratorsVertexOpCal | back
implements VertexOpCal lback

{

private Oracl eVertexBase msnith;

private List<Vertex> msnithCollaborators;

public Col I aborat orsVertexQpCal | back(Oracl ePropertyG aph opg)

{
/1l Get a list of Robert Smith'sCollaborators

msmth = (Oracl eVert exBase) opg. getVertices("name",
"Robert Smith")
.iterator().next();

Iterabl e<Vertex> iter = msnith. getVertices(Direction. BOTH,
"col | aborates");
m smithCol | aborators = Oracl ePropertyGaphUtils.listify(iter);

}

public static CollaboratorsVertexOpCal | back
get | nstance(Oracl ePropertyG aph opg)

{
return new Col | aborat or sVert exQpCal | back(opg);

}

/**

* Add attribute if and only if the vertex is a collaborator of Robert
* Smth

2-43

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

*/

@verride

publi ¢ bool ean needOp(OracleVertexBase v)
{

return msmthCol | aborators !'= null &&
m sm t hCol | abor at ors. cont ai ns(v);

}

@verride
public String getAttributeKeyName(OracleVertexBase v)

{

return "smthCol | aborator";

}

/**

* Define the property's value based on the vertex role

*/

@verride

public Cbject getAttributeKeyValue(OracleVertexBase v)
{

String role = v.getProperty("role");
role = rol e.toLower Case();

if (role.contains("political")) {
return "political";

else if (role.contains("actor") || role.contains("singer") ||
rol e.contains("actress") || role.contains("witer") ||
rol e.contains("producer") || role.contains("director")) {

return "arts";

else if (role.contains("player")) {
return "sports";

else if (role.contains("journalist")) {
return "journalisn;

}
else if (role.contains("business") || role.contains("econonist")) {
return "business";

else if (role.contains("philanthropist")) {
return "philanthropy";

}

return " "

}
}

The following code fragment implements an EdgeOpCal | back that operates over
the sm t hFeud attribute associated only with Robert Smith feuds. The value of this
property is specified based on the role of the collaborators.

private static class FeudsEdgeOpCal | back
implements EdgeOpCal lback

{

private O acleVertexBase msnith;
private List<Edge> m snithFeuds;

publ i c FeudsEdgeOpCal | back(Oracl ePropertyG aph opg)

{
/] CGet alist of Robert Smith's feuds

msmth = (Oracl eVert exBase) opg. getVertices("name",
"Robert Smith")

2-44

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

.iterator().next();

Iterabl e<Vertex> iter = msnith. getVertices(Direction. BOTH,

"feuds");

m sm thFeuds = Oracl ePropertyGaphUtils.listify(iter);

}

public static FeudsEdgeOpCal | back getlnstance(Oracl ePropertyG aph opg)
{

return new FeudsEdgeOpCal | back(opg);

}

/**

* Add attribute if and only if the edge is in the list of Robert Smith's
* feuds

*/

@verride

publi ¢ bool ean needOp(OracleEdgeBase e)

{

return msnmithFeuds !'= null &% m sm thFeuds. contains(e);
}

@verride

public String getAttributeKeyName(OracleEdgeBase e)
{

return "smthFeud";

}

/**

* Define the property's value based on the in/out vertex role
*/

@verride
public Object getAttributeKeyvValue(OracleEdgeBase e)
{

Oracl eVertexBase v = (Oracl eVertexBase) e.getVertex(Direction.IN);
if (msmth.equals(v)) {

v = (Oracl eVertexBase) e.getVertex(Direction. OUT);

}

String role = v.getProperty(“role");

role = rol e.toLower Case();

if (role.contains("political")) {
return "political";

else if (role.contains("actor") || role.contains("singer") ||
rol e.contains("actress") || role.contains("witer") ||
rol e.contains("producer") || role.contains("director")) {

return "arts";

else if (role.contains("journalist")) {
return "journalisn;

else if (role.contains("player")) {
return "sports";

}

else if (role.contains("business") || role.contains("econonist")) {
return "business";

else if (role.contains("philanthropist")) {
return "philanthropy";

}

2-45

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

return " "

}
}

Using the operations callbacks defined previously, the following code fragment loads
a property graph, creates an instance of the operation callbacks, and later adds the
attributes into the pertinent vertices and edges using the addAt t ri but eToAl | Verti ces
and addAttri but eToAl | Edges methods in Or acl ePropert yG aph.

Oracl ePropertyG aph opg = O acl ePropertyG aph. get | nst ance(
args, szG aphNane);

/1 Cear existing vertices/edges in the property graph
opg. cl ear Reposi tory();

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

/1 This object will handle parallel data |oading
O acl ePropertyG aphDat aLoader opgdl =

Or acl ePropert yG aphDat aLoader . get | nst ance();
opgdl! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/] Create the vertex operation callback
CollaboratorsVertexOpCal lback cvoc =
CollaboratorsVertexOpCal Iback.getInstance(opg);

/] Add attribute to all people collaborating with Smith based on their role
opg.addAttributeToAllVertices(cvoc, true /** Skip store to Cache */, dop);

/1 Look up for all collaborators of Smith

I'terabl e<Vertex> col | aborators = opg.get Vertices("smithCollaborator"”,
"political");

Systemout.println("Political collaborators of Robert Smith " +

get VerticesAsString(col |l aborators));

col | aborators = opg. getVertices("smthCollaborator", "business");
System out. println("Business col | aborators of Robert Smith " +
get VerticesAsString(col |l aborators));

/] Add an attribute to all people having a feud with Robert Smith to set
/1 the type of relation they have

FeudsEdgeOpCal Iback feoc = FeudsEdgeOpCallback.getInstance(opg);
opg.addAttributeToAl lEdges(feoc, true /** Skip store to Cache */, dop);

/1 Look up for all feuds of Snith

I terabl e<Edge> feuds = opg. get Edges("smi thFeud", "political");
Systemout.printIn("\n\nPolitical feuds of Robert Smith " +
get EdgesAsString(feuds));

feuds = opg. get Edges("smi t hFeud", "business");
System out. println("Business feuds of Robert Smth " +
get EdgesAsString(feuds));

The following code fragment defines an implementation of Vert exOpCal | back that can
be used to remove vertices having value philanthropy for attribute sni t hCol | abor at or,
then call the API renoveAt tribut eFromAl | Verti ces; It also defines an implementation
of EdgepCal | back that can be used to remove edges having value business for
attribute sm t hFeud, then call the APl renoveAttri but eFr omAl | Edges.

2-46

Chapter 2
Using Java APIs for Property Graph Data

Systemout. println("\n\nRemove 'snithCol | aborator' property fromall the" +
"phi | ant hropy col | aborators")

Phi | ant hr opyCol | abor at or sVert ex(pCal | back pvoc =

Phi | ant hr opyCol | abor at or sVert exQpCal | back. get I nst ance();

opg.removeAttributeFromAlIVertices(pvoc);

Systemout. println("\n\nRemove 'snithFeud' property fromall the" + "business
feuds");
Busi nessFeudsEdgeOpCal | back beoc = Busi nessFeudsEdgeQOpCal | back. get | nstance();

opg.removeAttributeFromAl IEdges(beoc);

/**

* | npl ementation of a EdgeQpCal I back to renove the "smithCol | aborators”
* property fromall people collaborating with Robert Snmith that have a

* philanthropy role

*/

private static class PhilanthropyCollaboratorsVertexQOpCal | back inplenments
Vert exOpCal | back

{
public static PhilanthropyCol | aboratorsVertexOpCal | back get ! nstance()
{
return new Phil ant hropyCol | abor at or sVert exOpCal | back();
}
/**
* Renpve attribute if and only if the property value for
* smthCol | aborator is Philanthropy
*/
@verride
publi ¢ bool ean needOp(Oracl eVert exBase v)
{
String type = v.getProperty("snithCollaborator")
return type !'= null && type.equal s("philanthropy")
}
@verride
public String getAttributeKeyName(O acl eVertexBase v)
{
return "smthCol | aborator";
}
/**
* Define the property's value. In this case can be enpty
*/
@verride
public Object getAttributeKeyVal ue(Oracl eVertexBase v)
{
return " "
}
}
/**

* | nplementation of a EdgeQpCal | back to renove the "smithFeud" property

* fromall connections in a feud with Robert Smith that have a business role
*/

private static class BusinessFeudsEdgeOpCal | back i npl ements EdgeCpCal | back

{
public static Busi nessFeudsEdgeOpCal | back getlnstance()

{

ORACLE 247

Chapter 2
Using Java APIs for Property Graph Data

return new Busi nessFeudsEdgeQpCal | back();
}

/**

* Renove attribute if and only if the property value for smthFeud is
* busi ness

*/

@verride

publi ¢ bool ean needOp(O acl eEdgeBase e€)

{
String type = e.getProperty("snithFeud");
return type !'= null && type.equal s("business");

}

@verride
public String getAttributeKeyNane(Or acl eEdgeBase e)

{

return "smthFeud";

}

/**

* Define the property's value. In this case can be enpty
*/

@verride

public Object getAttributeKeyVal ue(Oracl eEdgeBase e)

{

return " "

}
}

2.5.7 Getting Property Graph Metadata

ORACLE

You can get graph metadata and statistics, such as all graph names in the database;
for each graph, getting the minimum/maximum vertex ID, the minimum/maximum edge
ID, vertex property names, edge property names, number of splits in graph vertex, and
the edge table that supports parallel table scans.

The following code fragment gets the metadata and statistics of the existing property
graphs stored in an Oracle database.

/] Get all graph names in the database
Li st<String> graphNames = Oracl ePropertyG aphUtils. get G aphNames(dbArgs);

for (String graphName : graphNanmes) {
O acl ePropertyG aph opg = O acl ePropertyG aph. getl nstance(args,
graphNane) ;

Systemerr.printIn("\n Gaph nane: " + graphNane);
Systemerr.println(" Total vertices: " +
opg.countVertices(dop));

Systemerr.printIn(" MninmmVertex ID " +
opg.getMinVertexID(dop));

Systemerr.println(" MxinmmVertex ID " +
opg.-getMaxVertexID(dop));

Set <String> propertyNanesV = new HashSet <String>();

opg.getVertexPropertyNames(dop, 0 /* timeout,0 no timeout */,
propertyNamesV) ;

2-48

Chapter 2
Using Java APIs for Property Graph Data

Systemerr.printIn(" Vertices property nanes: " +
get Propert yNamesAsSt ri ng(propertyNamesV));

Systemerr.printIn("\n\n Total edges: " + opg.countEdges(dop));
Systemerr.printIn(" MninumEdge ID: " + opg.getMinEdgelD(dop));
Systemerr.println(" MuxinumEdge ID: " + opg.getMaxEdgelD(dop));

Set <String> propertyNamesE = new HashSet<String>();
opg-getEdgePropertyNames(dop, 0 /* timeout,0 no timeout */,
propertyNamesE) ;

Systemerr.println(" Edge property names: " +
get Propert yNamesAsSt ri ng(propertyNamesE));

Systemerr.printIn("\n\n Table Information: ");
Systemerr.println("Vertex table nunber of splits: " +
(opg-getVertexPartitionsNumber()));
Systemerr.println("Edge table nunber of splits: " +
(opg.getEdgePartitionsNumber()));

}

2.5.8 Merging New Data into an Existing Property Graph

ORACLE

In addition to loading graph data into an empty property graph in Oracle Database,
you can merge new graph data into an existing (empty or non-empty) graph. As with
data loading, data merging splits the input vertices and edges into multiple chunks and
merges them with the existing graph in database in parallel.

When doing the merging, the flows are different depends on whether there is an
overlap between new graph data and existing graph data. Overlap here means that
the same key of a graph element may have different values in the new and existing
graph data. For example, key wei ght of the vertex with ID 1 may have value 0.8 in the
new graph data and value 0.5 in the existing graph data. In this case, you must specify
whether the new value or the existing value should be used for the key.

The following options are available for graph data merging: JDB-based, external table-
based, and SQL loader-based merging.

- JDBC-Based Graph Data Merging
e External Table-Based Data Merging

¢ SQL Loader-Based Data Merging

JDBC-Based Graph Data Merging

JDBC-based data merging uses Java Database Connectivity (JDBC) APIs to load the
new graph data into Oracle Database and then merge the new graph data into an
existing graph.

The following example merges the new graph data from vertex and edge files
szOPVFile and szOPEFile in Oracle-defined Flat-file format with an existing graph
named opg, using a JDBC-based data merging with a DOP (degree of parallelism) of
48, batch size of 1000, and specified data merging options.

String szOPVFile = "../../datalconnectionsNew. opv";
String szOPEFile = "../../datalconnectionsNew. ope";
Oracl ePropertyG aphDat aLoader opgdl =

Oracl ePropert yG aphDat aLoader . get | nstance();

2-49

Chapter 2
Using Java APIs for Property Graph Data

opgdl . mer geDat a(opg, szOPVFile, szOPEFile,

48 | *DOP*/,

1000 /*Batch Size*/,

true /*Rebuild index*/,

“pdm =t, pddl=t, no_dup=t, use_new val _for_dup_key=t" /*Merge
options*/);

To optimize the performance of the data merging operations, a set of flags and hints
can be specified in the merging options parameter when calling the JDBC-based data
merging. These hints include:

» DOP: The degree of parallelism to use when merging the data. This parameter
determines the number of chunks to generate when splitting the file, as well as the
number of loader threads to use when merging the data into the property graph
VT$ and GE$ tables.

» Batch Size: An integer specifying the batch size to use for Oracle JDBC
statements in batching mode.

* Rebuild index: If set to true, the data loader will disable all the indexes and
constraints defined over the property graph into which the data will be loaded.
After all the data is merged into the property graph, all the original indexes and
constraints will be rebuilt and enabled.

* Merge options: An option (or multiple options separated by commas) to optimize
the data merging operations. These options include:

— PDML=T: enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

— PDDL=T: enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

— NO_DUP=T: assumes the input new graph data does not have invalid
duplicates. In a valid property graph, each vertex (or edge) can at most have
one value for a given property key. In an invalid property graph, a vertex (or
edge) may have two or more values for a particular key. As an example, a
vertex, v, has two key/value pairs: name/"John" and name/"Johnny", and they
share the same key.

— OVERLAP=F: assumes there is no overlap between new graph data and
existing graph data. That is, there is no key with multiple distinct values in the
new and existing graph data.

— USE_NEW_VAL_FOR_DUP_KEY=T: if there is overlap between new graph
data and existing graph data, use the value in the new graph data; otherwise,
use the value in the existing graph data.

External Table-Based Data Merging

External table-based data merging uses an external table to load new graph data into
Oracle Database and then merge the new graph data into an existing graph.

ORACLE 2-50

ORACLE

Chapter 2
Using Java APIs for Property Graph Data

External-table based data merging requires a directory object, where the files read by
the external tables will be stored. This directory can be created using the following
SQL*Plus statements:

create or replace directory tnp dir as '/tnppath/';
grant read, wite on directory tnp_dir to public;

The following example merges the new graph data from a vertex and edge files
szOPVFile and szOPEFile in Oracle flat-file format with an existing graph opg using an
external table-based data merging, a DOP (degree of parallelism) of 48, and specified
merging options.

String szOPVFile = "../../datalconnectionsNew. opv";
String szOPEFile = "../../datalconnectionsNew. ope";
String szextDir = "tnmp_dir";
O acl ePropertyG aphDat aLoader opgdl =
O acl ePropert yG aphDat aLoader . get | nst ance();
opgdl . mer geDat aW t hExt Tab(opg, szOPVFile, szOPEFile,
48 | *DOP*/,
true /*Use Naned Pipe for splitting*/,
szExtDir /*database directory object*/,
true /*Rebuild index*/,
“pdm =t, pddl=t, no_dup=t, use_new val for dup key=t" /*Merge
options*/);

SQL Loader-Based Data Merging

SQL loader-based data merging uses Oracle SQL*Loader to load the new graph data
into Oracle Database and then merge the new graph data into an existing graph.

The following example merges the new graph data from a vertex and edge files
szOPVFile and szOPEFile in Oracle Flat-file format with an existing graph opg using
an SQL loader -based data merging with a DOP (degree of parallelism) of 48 and the
specified merging options. To use the APIs, the path to the SQL*Loader needs to be
specified.

String szUser = "username";
String szPassword = "password”;
String szDbld = "db18c"; /*service name of the database*/
String szOPVFile = "../../datal connectionsNew. opv"; O
String szOPEFile = "../../datalconnectionsNew. ope";
String szSQ.Loader Path = "<YOUR ORACLE HOME>/ bin/sqlldr";
O acl ePropertyG aphDat aLoader opgdl =
Oracl ePropert yG aphDat aLoader . get | nst ance();
opgdl . mer geDat aWt hSql Ldr (opg, szUser, szPassword, szDbld, szOPVFile,
szOPEFi | e,
48 | *DOP*/,
true /*Use Naned Pipe for splitting*/,
szSQ.Loader Path /* SQ.*Loader path: the path to bin/sqlldr */,
true /*Rebuild index*/,
“pdm =t, pddl=t, no_dup=t, use_new val for _dup key=t" /*Merge
options*/);

2-51

Chapter 2
Using Java APlIs for Property Graph Data

2.5.9 Opening and Closing a Property Graph Instance

ORACLE

When describing a property graph, use these Oracle Property Graph classes to open
and close the property graph instance properly:

e Oacl ePropertyG aph. get | nst ance: Opens an instance of an Oracle property
graph. This method has two parameters, the connection information and the graph
name. The format of the connection information depends on whether you use
HBase or Oracle NoSQL Database as the backend database.

* OaclePropertyG aph. cl ear Reposi t ory: Removes all vertices and edges from
the property graph instance.

e Oacl ePropertyG aph. shut down: Closes the graph instance.

For Oracle Database, the Or acl ePropert yG aph. get | nst ance method uses an Oracle
instance to manage the database connection. Or acl ePr opert yG aph has a set of
constructors that let you set the graph name, number of hash partitions, degree of
parallelism, tablespace, and options for storage (such as compression). For example:

i mport oracl e. pg. rdbns. *;
Oracle oracle = new Oracl e(j dbcURL, username, password);

Oracl ePropertyGaph opg = Oracl ePropertyG aph. get I nstance(oracl e,

graphNane) ;

opg. cl ear Repository();

1 .

/1 . Graph description
1

/1 O ose the graph instance
opg. shut down() ;

If the in-memory analyst functions are required for an application, you

should use GraphConfi gBui | der to create a graph for Oracle Database,

and instantiate Or acl ePr opert yG aph with that graph name as an argument.

For example, the following code snippet constructs a graph confi g, gets

an O acl ePropert yGraph instance, loads some data into that graph, and gets an
in-memory analyst.

i nport oracle. pgx.config.*;
i nport oracle.pgx.api.*;
i mport oracl e. pgx. conmon. types. *;

PgNosql GraphConfi g cfg = GraphConfigBuilder. forPropertyG aphRdbns ()
.setJdbcUrl ("j dbc: oracl e: t hi n: @host name>: 1521: <si d>")
. set User name(" <user nane>") . set Passwor d(" <passwor d>")
. set Nane(szG aphNane)
. set MaxNunmConnect i ons(8)
. addEdgeProperty("Ibl", PropertyType. STRING "lbl")
. addEdgeProperty("wei ght", PropertyType. DOUBLE, "1000000")
Cbuild();

2-52

Chapter 2
Using Java APIs for Property Graph Data

Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(cfg);

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

/1 performa parallel data |oad

Oracl ePropertyG aphDat aLoader opgdl =
Oracl ePropert yG aphDat aLoader . get | nst ance();

opgdl . | oadDat a(opg, szOPVFile, szOPEFile, 2 /* dop */, 1000, true,
" PDML=T, PDDL=T, NO_DUP=T, ") ;

PgxSessi on session = Pgx. createSession("session-id-1");
PgxG aph g = session.readG aphWthProperties(cfg);

Anal yst anal yst = session. createAnal yst();

2.5.10 Creating Vertices

To create a vertex, use these Oracle Property Graph methods:

e (Oacl ePropertyG aph. addVert ex: Adds a vertex instance to a graph.
 (OacleVertex.setProperty: Assigns a key-value property to a vertex.
 Oracl ePropertyG aph. conmi t: Saves all changes to the property graph instance.

The following code fragment creates two vertices named V1 and V2, with properties
for age, name, weight, height, and sex in the opg property graph instance. The v1
properties set the data types explicitly.

/] Create vertex vl and assign it properties as key-value pairs
Vertex vl = opg. addVertex(1l);
vl. setProperty("age", Integer.valueOf(31));
vl.setProperty("nane", "Alice");
vl.setProperty("weight", Float.valueC (135.0f)
vl.setProperty("height", Double.val ueCf(64.5d)
vl.setProperty("fenale", Bool ean. TRUE);

)
)

—_—— o~

Vertex v2 = opg. addVertex(2l);
v2.setProperty("age", 27);
v2.set Property("nane", "Bob");
v2.setProperty("weight", Float.val ueC (156.0f)
v2.set Property("height", Double.val ued(69.5d)
v2.setProperty("fenale", Bool ean. FALSE);

)
)

—_—— =~

2.5.11 Creating Edges

ORACLE

To create an edge, use these Oracle Property Graph methods:

* Oacl ePropertyG aph. addEdge: Adds an edge instance to a graph.

* (Oracl eEdge. set Property: Assigns a key-value property to an edge.

The following code fragment creates two vertices (v1 and v2) and one edge (el).

/1 Add vertices vl and v2
Vertex vl = opg. addVertex(1l);

2-53

Chapter 2
Using Java APIs for Property Graph Data

vl.setProperty("nane", "Alice");
vl.set Property("age", 31);

Vertex v2 = opg. addVertex(2l);
v2.set Property("name", "Bob");
v2.set Property("age", 27);

/1 Add edge el
Edge el = opg. addEdge(1l, v1, v2, "knows");
el.setProperty("type", "friends");

2.5.12 Deleting Vertices and Edges

You can remove vertex and edge instances individually, or all of them simultaneously.
Use these methods:

* Oacl ePropertyG aph. removeEdge: Removes the specified edge from the graph.

* (OaclePropertyG aph. removeVert ex: Removes the specified vertex from the
graph.

e Oacl ePropertyG aph. cl ear Reposi t ory: Removes all vertices and edges from
the property graph instance.

The following code fragment removes edge el and vertex v1 from the graph instance.
The adjacent edges will also be deleted from the graph when removing a vertex. This
is because every edge must have an beginning and ending vertex. After removing the
beginning or ending vertex, the edge is no longer a valid edge.

/'l Renove edge el
opg. renoveEdge(el);

/1 Renove vertex vl
opg. renoveVertex(vl);

The Oracl ePropertyG aph. cl ear Reposi t ory method can be used to remove all
contents from an Or acl ePropert yG aph instance. However, use it with care because
this action cannot be reversed.

2.5.13 Reading a Graph from a Database into an Embedded In-
Memory Analyst

ORACLE

You can read a graph from Oracle Database into an in-memory analyst that is
embedded in the same client Java application (a single JVM). For the following
example, a correctj ava. i o.tnpdi r setting is required.

int dop = 8; /'l need custom zation
Map<PgxConfi g. Fi el d, Cbj ect> conf Pgx = new HashMap<PgxConfi g. Fi el d,
Gbj ect >() ;

conf Pgx. put (PgxConfi g. Fi el d. ENABLE_GM COWPI LER, fal se);

conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS |1 O, dop); //

conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS_ANALYSI S, dop); // <= # of
physi cal cores

conf Pgx. put (PgxConfi g. Fi el d. NUM_WORKERS_FAST_TRACK_ANALYSI S, 2);
conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_TASK_TI MEQUT_SECS, 0); // no
timeout set

conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_| DLE_TI MEQUT_SECS, 0); // no

2-54

Chapter 2
Using Java APIs for Property Graph Data

timeout set

PgRdbms G aphConfig cfg =
G aphConfi gBui | der. f or PropertyG aphRdbns() . set JdbcUr! ("j dbc: oracl e: t hi n:
@your _db_host >: <db_port>: <db_si d>")

. set User name(" <user nanme>")

. set Passwor d(" <passwor d>")

. set Nane(" <gr aph_name>")

. set MaxNumConnect i ons(8)

. set LoadEdgeLabel (fal se)

Cbui 1 d();
Oracl ePropertyG aph opg = Oracl ePropertyG aph. getl nstance(cfg);
Serverlnstance | ocal I nstance = Pgx. getlnstance();
| ocal I nst ance. st art Engi ne(conf Pgx) ;
PgxSessi on session = | ocal | nstance. creat eSessi on("session-id-1"); //
Put your session description here.

Anal yst anal yst = session. createAnal yst();
/1 The following call will trigger a read of graph data fromthe
dat abase

PgxG aph pgxG aph = session.readG aphWthProperties(opg. getConfig());

long triangles = anal yst.count Tri angl es(pgxG aph, false);
Systemout.printIn("triangles " + triangles);

/1 Remove edge el
opg. removeEdge(el);

/1 Remove vertex vl
opg. removeVertex(vl);

2.5.14 Specifying Labels for Vertices

ORACLE

The database and data access layer do not provide labels for vertices; however, you
can treat the value of a designated vertex property as one or more labels. Such a
transformation is relevant only to the in-memory analyst.

In the following example, a property "count ry" is specified in a call to

set UseVert exPropertyVal ueAsLabel (), and the comma delimiter ", " is specified in

a call to set PropertyVal ueDel i mi ter (). These two together imply that values of the
count ry vertex property will be treated as vertex labels separated by a comma. For
example, if vertex X has a string value " US" for its country property, then its vertex
label will be US; and if vertex Y has a string value " UK, CN', then it will have two labels:

UK and CN.

G aphConf i gBui | der. f or PropertyG aph. ..
. set Name(" <your _graph_name>")

. set UseVer t exPropertyVal ueAsLabel ("country")
.setPropertyVal ueDeliniter(",")

. set LoadVert exLabel s(true)

Cbuild();

2-55

Chapter 2
Using Java APIs for Property Graph Data

Related Topics
* What Are Property Graphs?

2.5.15 Building an In-Memory Graph

In addition to Reading Data from Oracle Database into Memory, you can create an
in-memory graph programmatically. This can simplify development when the size of
graph is small or when the content of the graph is highly dynamic. The key Java
class is G aphBui | der, which can accumulate a set of vertices and edges added with
the addVert ex and addEdge APIs. After all changes are made, an in-memory graph
instance (PgxG aph) can be created by the GraphBui | der.

The following Java code snippet illustrates a graph construction flow. Note that there
are no explicit calls to addVer t ex, because any vertex that does not already exist will
be added dynamically as its adjacent edges are created.

i nport oracle. pgx. api . *;

PgxSessi on session = Pgx. creat eSessi on("exanpl e");
G aphBui | der <I nt eger> bui | der = sessi on. new& aphBui | der () ;

bui | der. addEdge(0,
bui | der. addEdge(1,
bui | der. addEdge(2,
bui | der. addEdge(3,
bui | der. addEdge(4,

AW DNDDN -
N B D Wi
—_ T T —

PgxGaph graph = builder.build();

To construct a graph with vertex properties, you can use set Property against the
vertex objects created.

PgxSessi on session = Pgx. creat eSessi on("exanpl e");
G aphBui | der <I nt eger> bui | der = sessi on. new& aphBui | der ();

bui | der. addVert ex
bui | der. addVert ex
bui | der. addVert ex
bui | der. addVert ex

1).set Property("doubl e-prop", 0.1);
2).set Property("doubl e-prop", 2.0);
3) . set Property("double-prop", 0.3);
4) . set Property("doubl e-prop", 4.56789);

—_~—~ —~

bui | der. addEdge(0, 1,
bui | der. addEdge(1, 2,
bui | der. addEdge(2, 2,
bui | der. addEdge(3, 3,
bui | der. addEdge(4, 4,

N B D W
—_— T

PgxGaph graph = builder.build();

ORACLE 2-56

Chapter 2
Managing Text Indexing for Property Graph Data

To use long integers as vertex and edge identifiers, specify | dType. LONGwhen getting
a new instance of GraphBui | der . For example:

i mport oracl e. pgx. cormon. t ypes. | dType;
G aphBui | der <Long> bui | der = sessi on. newG aphBui | der (1 dType. LONG) ;

During edge construction, you can directly use vertex objects that were previously
created in a call to addEdge.

vl
v2

bui | der. addVertex(1l). set Property("doubl e-prop", 0.5)
bui | der. addVertex(2l). set Property("doubl e-prop", 2.0)

bui | der. addEdge(0, v1, v2)

As with vertices, edges can have properties. The following example sets the edge
label by using set Label :

bui | der. addEdge(4, v4, v2).setProperty("edge-prop",
"edge prop_4 2").setLabel ("l abel")

2.5.16 Dropping a Property Graph

To drop a property graph from the database, use the
O acl ePropertyG aphUi | s. dropPropert yG aph method. This method has two
parameters, the connection information and the graph name. For example:

/1 Drop the graph
Oracle oracle = new Oracl e(jdbcUrl, username, password);
Oracl ePropertyGaphUtils. dropPropertyG aph(oracl e, graphNane);

You can also drop a property graph using the PL/SQL API. For example:

EXECUTE opg_api s. drop_pg(' ny_graph_nane');

2.5.17 Executing PGQL Queries

You can execute PGQL queries directly against Oracle Database with the
Pggl St at ement and Pgql Prepar edSt at enent interfaces. See Executing PGQL Queries
Directly Against Oracle Database for details.

2.6 Managing Text Indexing for Property Graph Data

ORACLE

Indexes in Oracle Spatial and Graph property graph support allow fast retrieval of
elements by a particular key/value or key/text pair. These indexes are created based
on an element type (vertices or edges), a set of keys (and values), and an index type.

Oracle Spatial and Graph supports the use of the Oracle Text indexing technology,
which is a feature of Oracle Database.

Two types of indexing structures are supported.

2-57

Chapter 2
Managing Text Indexing for Property Graph Data

* Automatic text indexes provide automatic indexing of vertices or edges by a set of
property keys. Their main purpose is to enhance query performance on vertices
and edges based on particular key/value pairs.

* Manual text indexes enable you to define multiple indexes over a designated set of
vertices and edges of a property graph. You must specify what graph elements go
into the index.

Oracle Spatial and Graph provides APIs to create manual and automatic text indexes
over property graphs stored in Oracle Database. Indexes are managed using Oracle
Text, a proprietary search and analysis engine. The rest of this section focuses on how
to create text indexes using the property graph capabilities of the Data Access Layer.

» Configuring a Text Index for Property Graph Data

» Using Automatic Indexes for Property Graph Data

» Using Manual Indexes for Property Graph Data

» Executing Search Queries Over a Property Graph’s Text Indexes
e Handling Data Types

» Updating Configuration Settings on Text Indexes for Property Graph Data
Oracle's property graph support manages manual and automatic text indexes
through integration with Oracle Text.

* Using Parallel Query on Text Indexes for Property Graph Data

2.6.1 Configuring a Text Index for Property Graph Data

The configuration of a text index is defined using an Or acl el ndexPar anet er s object.
This object includes information about the index such as search engine, location,
number of directories (or shards), and degree of parallelism.

By default, text indexes are configured based on

the Oracl el ndexPar anet er s associated with the property graph using the

method opg. set Def aul t | ndexPar anet er s(i ndexPar ans) . The initial creation of the
automatic index delimits the configuration and text search engine for future indexed
keys.

Indexes can also be created by specifying a different set of parameters. The following
code fragment creates an automatic text index over an existing property graph using a
Lucene engine with a physical directory.

Il Create an Oracl el ndexParameters object to get Index configuration (search

engi ne, etc).
Oracl el ndexPar anet ers i ndexParans = O acl el ndexPar anet er s. bui | dFS(ar gs)

/1 Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex("nane", Vertex.class, indexParans.getParaneters());

Any index configuration operations cause updates to be made to the IT$ table, which
is explained in Property Graph Tables (Detailed Information).

e Configuring Text Indexes Using Oracle Text

2.6.1.1 Configuring Text Indexes Using Oracle Text

ORACLE

Oracle Spatial and Graph supports automatic text indexes using Oracle Text. Oracle
Text uses standard SQL to index, search, and analyze text values stored in the V

2-58

Chapter 2
Managing Text Indexing for Property Graph Data

column of the vertices (or edges) table. Because Oracle Text indexes all the existing
K/V pairs of the vertices (or edges) in the property graph, this option can be used
only with automatic text indexes and must use a wildcard ("*") indexed key parameter
during the index creation.

Because the property graph feature uses an NVARCHAR typed column for a better
support of Unicode, it is highly recommended that UTF8 (AL32UTF8) be used as the
database character set.

To create an Oracle Text index on the vertices table (or edges table), the ALTER
SESSION privilege is required. The following example grants the privilege.

SQ.> grant alter session to <YOUR_USER SCHEMA HERE>;

If customization is required, grant EXECUTE on CTX_DDL, as in the following
example.

SQ.> grant execute on ctx_ddl to <YOUR USER SCHEMA HERE>;

A text index using Oracle Text uses an Or acl eText | ndexPar anet er s object. The
configuration parameters for indexes using a Oracle Text include:

» Preference owner: the owner of the preference.

- Data store: the datastore preference specifying how the text values are stored.
A datastore preference can be created using ctx_ddl.create_preference API as
follows:

SQ.> -- The following requires access privilege to CTX DDL
SQ.> exec ctx_ddl.create _preference(' SCOIT. OPG_DATASTORE'
' DI RECT_DATASTORE') ;

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_DATASORE. This preference uses a DIRECT_DATASTORE

type.

« Filter: the filter preference determining how text is filtered for indexing. A filter
preference can be created using ct x_ddl . creat e_pref erence, as follows:

SQ> -- The followi ng requires access privilege to CTX _DDL
SQ.> exec ctx_ddl.create preference(' SCOTT. OPG FILTER ,
" AUTO FILTER);

If the value is set to NULL, then the index will be created with
CTXSYS.NULL_FILTER. This preference uses a NULL_FILTER type.

- Storage: the storage preference specifying table space and creation parameters
for tables associated with a Text index. A storage preference can be created using
ctx_ddl.create_preference, as follows:

SQ> -- The followi ng requires access privilege to CTX DDL
SQ.> exec ctx_ddl.create preference(' SCOTT. OPG_STORAGE'
' BASI C_STORAGE') ;

ORACLE 2-59

ORACLE

Chapter 2
Managing Text Indexing for Property Graph Data

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_STORAGE. This preference uses a BASIC_STORAGE type.

* Word list: the word list preference specifying the enabled query options.
These query options may include stemming, fuzzy matching, substring,
and prefix indexing. A data store preference can be created using
ctx_ddl . create_preference, as follows:

SQ.> -- The follow ng exanpl e enabl es stenmi ng and fuzzy matching
for English.

SQ.> exec ctx_ddl.create_preference(' SCOIT. OPG WORDLI ST' ,

' BASI C_WORDLI ST') ;

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_WORDLIST. This preference uses the language stemmer for
your database language.

» Stop list: the stop list preference specifying the list of words that are
not meant to be indexed. A stop list preference can be created using
ctx_ddl.create_stoplist .

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_STOPLIST. This preference uses the stoplist of your
database language.

» Lexer: the lexer preference specifying the language of the text to be indexed. A
lexer preference can be created using ct x_ddl . create_preference, as follows:

SQ> -- The follow ng requires access privilege to CTX DDL
SQ> exec ctx_ddl.create_preference(' SCOTT. OPG_AUTO _LEXER ,
' AUTO LEXER);

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_LEXER. This preference uses a BASIC_LEXER type with
additional options based on the language used at installation time.

The following code fragment creates the configuration for a text index using Oracle
Text with default options and OPG_AUTO_LEXER.

String prefOaner = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String | exer = "OPG_AUTO LEXER';
String options = (String) null;

O acl el ndexPar anet ers par ans

O acl eText I ndexPar amet er s. bui | dOr acl eText (pr ef Oaner,
dat astore,
filter,
st orage,
wordl i st,
stoplist,
| exer,

2-60

Chapter 2
Managing Text Indexing for Property Graph Data

dop,
options);

2.6.2 Using Automatic Indexes for Property Graph Data

ORACLE

An automatic text index provides automatic indexing of vertices or edges by a set of
property keys. Its main purpose is to increase the speed of lookups over vertices and
edges based on particular key/value pair. If an automatic index for the given key is
enabled, then key/value pair lookups will be performed as a text search against the
index instead of as a database lookup.

When specifying an automatic index over a property graph, use the following methods
to create, remove, and manipulate an automatic index:

e (Oacl ePropertyG aph. creat eKeyl ndex(String key, Oass el enentd ass,
Paraneter[] paraneters): Creates an automatic index for all elements of type
el ement C ass by the given property key. The index is configured based on the
specified parameters.

e OaclePropertyG aph. createKeyl ndex(String[] keys, Cass el ementd ass,
Parameter[] paraneters): Creates an automatic index for all elements of type
el ement G ass by using a set of property keys. The index is configured based on
the specified parameters.

 OaclePropertyG aph. dropKeyl ndex(String key, O ass el ementC ass): Drops
the automatic index for all elements of type el ement 0 ass for the given property
key.

e Oacl ePropertyG aph. dropKeyl ndex(String[] keys, Cass el ementd ass):
Drops the automatic index for all elements of type el ement C ass for the given
set of property keys.

e (Oacl ePropertyG aph. get Aut ol ndex(d ass el enent C ass) : Gets an index
instance of the automatic index for type el enent d ass.

e (Oracl ePropertyG aph. get | ndexedKeys(C ass el ement O ass) : Gets the set of
indexed keys currently used in an automatic index for all elements of type
el enent d ass.

By default, indexes are configured based on the O acl el ndexPar anet er s
associated with the property graph using the method
opg. set Def aul t | ndexPar anet er s(i ndexPar ans).

Indexes can also be created by specifying a different set of parameters. This is shown
in the following code snippet.

/] Create an Oracl el ndexParaneters object to get Index configuration (search
engi ne, etc).
Oracl el ndexPar anet ers i ndexParans = O acl el ndexPar anet ers. bui | dFS(ar gs)

/] Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex(" nane", Vertex.class, indexParans. getParaneters());

The code fragment in the next example executes a query over all vertices to find
all matching vertices with the key/value pair nanme: Robert Smi t h. This operation will
execute a lookup into the text index.

Additionally, wildcard searches are supported by specifying the parameter
useW | dCar ds in the get Verti ces API call. Wildcard search is only supported when
automatic indexes are enabled for the specified property key.

2-61

Chapter 2
Managing Text Indexing for Property Graph Data

/1 Find all vertices with name Robert Smith.
Iterator<Vertices> vertices = opg.getVertices("name", "Robert
Smith").iterator();
Systemout.printin("----- Vertices with nanme Robert Smith ----- ");
countV = 0;
while (vertices. hasNext()) {
Systemout.println(vertices.next());
count V++;

}

Systemout. printin("Vertices found: " + countV);

Il Find all vertices with name including keyword "Snith"

/1 Wldcard searching is supported.

bool ean useWldcard = true;

Iterator<Vertices> vertices = opg.getVertices("name", "*Smith*"). iterator();

Systemout.printin("----- Vertices with nane *Smith* ----- ");

countV = 0;

while (vertices. hasNext()) {
Systemout.println(vertices.next());
count V++;

}

Systemout.printin("Vertices found: " + countV);

The preceding code example produces output like the following:

----- Vertices with nanme Robert Smith-----

Vertex 1D 1 {name:str:Robert Smth, role:str:political authority,
occupation: str: CEO of Exanple Corporation, country:str:United States, political
party:str:Bipartisan, religion:str:Unknown}

Vertices found: 1

----- Vertices with nane *Smth* -----

Vertex 1D 1 {name:str:Robert Smth, role:str:political authority,
occupation: str: CEO of Exanple Corporation, country:str:United States, political
party:str:Bipartisan, religion:str:Unknown}

Vertices found: 1

2.6.3 Using Manual Indexes for Property Graph Data

Manual indexes support the definition of multiple indexes over the vertices and edges
of a property graph. A manual index requires that you manually put, get, and remove
elements from the index.

When describing a manual index over a property graph, use the following methods to
add, remove, and manipulate a manual index:

e (OaclePropertyG aph.createlndex(String nane, O ass el ementC ass,
Paraneter[] paraneters): Creates a manual index with the specified name for
all elements of type el ement d ass.

e (Oacl ePropertyG aph. dropl ndex(String nane): Drops the given manual index.

e OaclePropertyG aph. getlndex(String name, Cass el enentd ass): Gets an
index instance of the given manual index for type el ement O ass.

e Oacl ePropertyG aph. getlndices(): Gets an array of index instances for all
manual indexes created in the property graph.

ORACLE 2-62

Chapter 2
Managing Text Indexing for Property Graph Data

2.6.4 Executing Search Queries Over a Property Graph’s Text Indexes

Oracle Spatial and Graph provides a set of utilities to execute text search queries

over automatic and manual text indexes. These utilities vary from querying based on a
particular key/value pair, to executing a text search over a single or multiple keys (with
extended query options such as wildcards, fuzzy searches, and range queries).

» Executing Search Queries Over a Text Index Using Oracle Text

2.6.4.1 Executing Search Queries Over a Text Index Using Oracle Text

ORACLE

Text search queries on Oracle Text are translated into SELECT SQL queries with a
"contains"clause including a score range and ordering, and score ID. Oracle’s property
graph includes an utility called Or acl eText Quer yObj ect , which lets you execute text
search queries over an Oracle Text index.

The following code fragment creates an automatic index using Oracle Text, and
executes a query over the text index by specifying a particular key/value pair.

String prefOmer = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String lexer = "OPG_AUTO LEXER';
String options = (String) null;

Oracl el ndexPar anmet ers par ans

Oracl eText | ndexPar anmet er s. bui | dOr acl eText (pr ef Oaner,
dat ast ore,
filter,
st orage,
wordl i st
stoplist,
| exer,
dop,
options);

opg. set Def aul t | ndexPar anmet er s(i ndexPar ans) ;

/] Create auto indexing on all existing properties, use wildcard for all
opg. creat eKeyl ndex(("*", Vertex.class);

/] Get the auto index object
Oracl el ndex<Vertex> index = ((Oracl el ndex<Vertex>)
opg. get Aut ol ndex(Vert ex. cl ass);

/] Create the text query object for Oracle Text
Oracl eText Quer yObj ect ot qo
= Oracl eText QueryQhj ect. get I nstance("Snmith" /* query body */,
1/* score */,
Scor eRange. PCSI TI VE /* Score
range */,
Direction. ASC /* order by
direction*/);

2-63

Chapter 2
Managing Text Indexing for Property Graph Data

Iterator<Vertex> vertices = index.get("name", otqo).iterator();
Systemout.println("----- Vertices with query: " + otqgo.toString() +" ----- ");
countV = 0;
while (vertices.hasNext()) {

Systemout. println(vertices.next());

count V++;

}

Systemout.println("Vertices found: "+ countV);

You can filter the date type of the matching key/value pairs by specifying the data type
class to execute the query against. The following code fragment executes a query over
the text index to retrieve all properties with a String value including the word Smith.

Il Create the text query object for Oracle Text
O acl eText Quer yObj ect ot qo
= Oracl eText QueryQbj ect. get I nstance("Sm th" /* query body */,

1/* score */,
Scor eRange. PCSI Tl VE
/* Score range */,
Direction. ASC
/* order by direction*/,
"name",
String.class);

Iterator<Vertex> vertices = index.get("name", otqo).iterator();
Systemout.printIn("----- Vertices with query: " + otqo.toString() + " ----- ");
countV = 0;
while (vertices.hasNext()) {

Systemout. println(vertices.next());

count V++;

}

Systemout.println("Vertices found: "+ countV);

2.6.5 Handling Data Types

Oracle's property graph support indexes and stores an element's Key/Value pairs
based on the value data type. The main purpose of handling data types is to provide
extensive query support like numeric and date range queries.

By default, searches over a specific key/value pair are matched up to a query
expression based on the value's data type. For example, to find vertices with the
key/value pair age: 30, a query is executed over all age fields with a data type integer.
If the value is a query expression, you can also specify the data type class of the value
to find by calling the API get (String key, bject value, Cass dtC ass, Bool ean
useW | dcar ds) . If no data type is specified, the query expression will be matched to all
possible data types.

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches.

* Handling Data Types on Oracle Text

2.6.5.1 Handling Data Types on Oracle Text

Text indexes using Oracle Text are created over the K and V text columns of the
property graph tables. In order to provide text indexing capabilities on all available data

ORACLE 2-64

Chapter 2
Managing Text Indexing for Property Graph Data

types, Oracle populates the V column with a string representation of numeric, spatial,
and date time key/value pairs.

To specify the date time and numeric formats used when populating the

V column, you can use the methods set Nunber ToChar Sql For mat St ri ng and

set Ti meToChar Sql For mat St ri ng. The following code snippet shows how to set the
date time and numeric formats in a property graph instance.

Oracl ePropertyG aph opg = O acl ePropertyG aph. getl nstance(args,

szG aphNane) ;
opg. set Nurmber ToChar Sql For mat Stri ng(" TMB") ;
opg. set Ti meToChar Sgl For mat St ri ng(" SYYYY- MVt DD\ " T\ " HH24: M : SS. FFOTZH: TZM') ;

When executing a text search query over a numeric or date time value, you

should use a text expression using the format associated to the property graph.

Oracl ePropertyG aph includes a utility API opg. par seVal ueToChar SQLFor mat St ri ng
that lets you parse a numeric or date time object into format used in the V column
storage. The following code snippet calls this function with a date value and creates a
text query object out of the retrieved text.

Date d = new java.util.Date(100l);
String szDate = opg. par seVal ueToChar SQLFor mat Stri ng(d);

/] Create the text query object for Oracle Text
O acl eText Quer yChj ect otqo
= Oracl eText QueryQhj ect . get I nst ance(szDate /* query body */,
1/* score */,
Scor eRange. PCSI TI VE /* Score
range */,
Direction. ASC /* order by
direction);

2.6.6 Updating Configuration Settings on Text Indexes for Property
Graph Data

Oracle's property graph support manages manual and automatic text indexes through
integration with Oracle Text.

At creation time, you must create an Or acl el ndexPar anet er s object specifying the
search engine and other configuration settings to be used by the text index. After
a text index for property graph is created, these configuration settings cannot be
changed.

For automatic indexes, all vertex index keys are managed by a single text index, and
all edge index keys are managed by a different text index using the configuration
specified when the first vertex or edge key is indexed.

If you need to change the configuration settings, you must first disable the current
index and create it again using a new Or acl el ndexPar anet er s object.

2.6.7 Using Parallel Query on Text Indexes for Property Graph Data

Text indexes in Oracle Spatial and Graph allow executing text queries over millions
of vertices and edges by a particular key/value or key/text pair using parallel query
execution.

ORACLE 2-65

Chapter 2
Managing Text Indexing for Property Graph Data

Parallel text query will produce an array where each element holds all the vertices
(or edges) with an attribute matching the given K/V pair from a shard. The subset of
shards queried will be delimited by the given start sub-directory ID and the size of the
connections array provided. This way, the subset will consider shards in the range of
[start, start - 1 + size of connections array]. Note that an integer ID (in the range of [0,
N - 1]) is assigned to all the shards in index with N shards.

o Parallel Text Search Using Oracle Text

2.6.7.1 Parallel Text Search Using Oracle Text

ORACLE

You can use parallel text query using Oracle Text by calling the

method get Parti tioned in Oracl eText Aut ol ndex, specifying an array of connections
to Oracle Text (Connection objects), the key/value pair to search, and the starting
partition ID.

The following code fragment generates an automatic text index using Oracle Text and
executes a parallel text query. The number of calls to the get Parti ti oned method in
the Or acl eText Aut ol ndex class is controlled by the total number of partitions in the
VT$ (or GE$ tables) and the number of connections used.

Oracl ePropertyG aph opg = O acl ePropertyG aph. getl nstance(..);
String prefOaner = "scott";

String datastore = (String) null;

String filter = (String) null;

String storage = (String) null;

String wordlist = (String) null;

String stoplist = (String) null;

String | exer = "OPG_AUTO LEXER';

String options = (String) null;

O acl el ndexPar anet ers par ans

O acl eText I ndexPar amet er s. bui | dOr acl eText (pr ef Oaner,
dat astore,
filter,
st or age,
wordl i st,
stoplist,
| exer,
dop,
options);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/1 Create auto indexing on all existing properties, use wldcard for all
opg. creat eKeyl ndex(("*", Vertex.class);

/] Create the text query object for Oracle Text
O acl eText Quer yChj ect otqo
= Oracl eText QueryQhj ect. getInstance("Snith" /* query body */,
1 /* score */,
Scor eRange. PCSI TI VE /* Score
range */,
Direction. ASC /* order by
direction*/);

/1 Get the Connection object

2-66

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

Connection[] conns = new Connection[dop];

for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = opg.getOracle().clone().getConnection();
}

/1 Get the auto index object
O acl el ndex<Vertex> index = ((Oracl el ndex<Vertex>)
opg. get Aut ol ndex(Vertex. cl ass);

/] lterate to cover all the partitions in the index
long | Count = O;
for (int split = 0; split < index.getTotal Shards();
split += conns.length) {
Il CGets elenments fromsplit to split + conns.length
Iterabl e<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
"name"'/* key */,
otqo,
true /* wildcards */,
split /* start split ID */);

| Count = countFromterables(iterAr); /* Consune iterables in parallel */

}

/1 Cose the connections
for (int idx = 0; idx < conns.length; idx++) {
conns[idx]-dispose();

}

/1 Count results
Systemout.println("Vertices found using parallel query: " + |Count)

2.7 Access Control for Property Graph Data (Graph-Level

and OLS)

ORACLE

Oracle Graph supports two access control and security models: graph level access
control, and fine-grained security through integration with Oracle Label Security (OLS).

* Graph-level access control relies on grant/revoke to allow/disallow users other
than the owner to access a property graph.

» OLS for property graph data allows sensitivity labels to be associated with
individual vertex or edge stored in a property graph.

The default control of access to property graph data stored in an Oracle Database is at
the graph level: the owner of a graph can grant read, insert, delete, update and select
privileges on the graph to other users.

However, for applications with stringent security requirements, you can enforce a fine-
grained access control mechanism by using the Oracle Label Security option of Oracle
Database. With OLS, for each query, access to specific elements (vertices or edges) is
granted by comparing their labels with the user's labels. (For information about using
OLS, see Oracle Label Security Administrator's Guide .)

With Oracle Label Security enabled, elements (vertices or edges) may not be inserted
in the graph if the same elements exist in the database with a stronger sensitivity
label. For example, assume that you have a vertex with a very sensitive label, such
as: (Vertex ID 1 {nane:str:v1l} "SENSITIVE"). This actually prevents a low-
privileged (PUBLIC) user from updating the vertex: (Vertex 1D 1 {name:str:vl}

2-67

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

"PUBLI C'). On the other hand, if a high-privileged user overwrites a vertex or an
edge that had been created with a low-level security label, the newer label with higher
security will be assigned to the vertex or edge, and the low-privileged user will not be
able to see it anymore.

* Applying Oracle Label Security (OLS) on Property Graph Data
This topic presents an example illustrating how to apply OLS to property graph
data.

2.7.1 Applying Oracle Label Security (OLS) on Property Graph Data

ORACLE

This topic presents an example illustrating how to apply OLS to property graph data.

Because the property graph is stored in regular relational tables, this example is no
different from applying OLS on a regular relational table. The following shows how to
configure and enable OLS, create a security policy with security labels, and apply it
to a property graph. The code examples are very simplified, and do not necessarily
reflect recommended practices regarding user names and passwords.

1. As SYSDBA, create database users named userP, userP2, userS, userTS,
userTS2 and pgAdmin.

CONNECT / as sysdba;

CREATE USER user P | DENTI FI ED BY user Ppass;

CGRANT connect, resource, create table, create view, create any
i ndex TO userP;

GRANT unlimted TABLESPACE to userP,

CREATE USER user P2 | DENTI FI ED BY user P2pass;

GRANT connect, resource, create table, create view, create any
i ndex TO user P2;

GRANT wunlimted TABLESPACE to userP2;

CREATE USER user S | DENTI FI ED BY user Spass;

GRANT connect, resource, create table, create view, create any
i ndex TO userS;

GRANT unlimted TABLESPACE to usersS;

CREATE USER user TS | DENTI FI ED BY user TSpass;

GRANT connect, resource, create table, create view, create any
i ndex TO userTS;

GRANT wunlimted TABLESPACE to userTS;

CREATE USER user TS2 | DENTI FI ED BY user TS2pass;

GRANT connect, resource, create table, create view, create any
i ndex TO userTS2;

GRANT wunlimited TABLESPACE to userTS2;

CREATE USER pgAdmi n | DENTI FI ED BY pgAdm npass;

GRANT connect, resource, create table, create view, create any
i ndex TO pgAdmi n;

GRANT unlimted TABLESPACE to pgAdnin;

2-68

ORACLE

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

As SYSDBA, configure and enable Oracle Label Security.

ALTER USER | bacsys | DENTI FI ED BY | bacsys ACOOUNT UNLOCK;
EXEC LBACSYS. CONFI GURE_OLS;
EXEC LBACSYS. OLS_ENFORCEMENT. ENABLE OLS;

As SYSTEM, grant privileges to sec_admin and hr_sec.

CONNECT syst enf <syst em passwor d>

GRANT connect, create any index to sec_adnin | DENTIFI ED BY password;
GRANT connect, create user, drop user, create role, drop any role
TO hr_sec | DENTI FI ED BY passwor d;

As LBACSYS, create the security policy.

CONNECT | bacsys/ <I bacsys- passwor d>

BEG N
SA_SYSDBA. CREATE_POLI CY (
pol i cy_nanme => ' DEFENSE',
colum_name => 'SL',
defaul t _options => ' READ CONTROL, LABEL_DEFAULT, H DE');
END;
/

As LBACSYS , grant DEFENSE_DBA and execute to sec_admin and hr_sec
users.

GRANT DEFENSE DBA to sec_admi n;
GRANT DEFENSE DBA to hr_sec;

GRANT execute on SA COVWPONENTS to sec_admi n;
CGRANT execute on SA USER ADM N to hr_sec;

As SEC_ADMIN, create three security levels (For simplicity, compartments and
groups are omitted here.)

CONNECT sec_adni n/ <sec_admi n- passwor d>;

BEG N
SA_COVPONENTS. CREATE_LEVEL (
policy nane => ' DEFENSE',
| evel _num => 1000,
short _nane => ' PUB',
| ong_nane => 'PUBLIC);
END;
/
EXECUTE
SA_COVPONENTS. CREATE_LEVEL(' DEFENSE' , 2000, ' CONF' , ' CONFI DENTI AL") ;
EXECUTE
SA_COVPONENTS. CREATE_LEVEL(' DEFENSE' , 3000, "' SENS', ' SENSI TI VE') ;

2-69

ORACLE

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

Create three labels.

EXECUTE SA LABEL_ADM N. CREATE LABEL(' DEFENSE' , 1000, ' PUB');
EXECUTE SA_LABEL_ADM N. CREATE_LABEL(' DEFENSE' , 2000, ' CONF') ;
EXECUTE SA_LABEL_ADM N. CREATE_LABEL(' DEFENSE' , 3000, ' SENS');

As HR_SEC, assign labels and privileges.

CONNECT hr _sec/ <hr _sec- passwor d>;

BEG N

SA _USER_ADM N. SET_USER_LABELS (
policy nane => ' DEFENSE',
user _nanme => 'UT",
max_read | abel => 'SENS',
max_wite |abel =>"'SENS',
mn wite |abel =>"'CONF,
def | abel =>'SENS',
row | abel =>'SENS');

END;

/

EXECUTE SA USER ADM N. SET_USER _LABELS(' DEFENSE', 'userTS', 'SENS');
EXECUTE SA USER _ADM N. SET_USER LABELS(' DEFENSE', ' user TS2',' SENS');
EXECUTE SA USER _ADM N. SET_USER LABELS(' DEFENSE' , 'userS, 'CONF);
EXECUTE SA USER ADM N. SET_USER LABELS (' DEFENSE' , userP', 'PUB',
"PUB', 'PUB', 'PUB', 'PUB');

EXECUTE SA USER ADM N. SET_USER LABELS (' DEFENSE', 'userP2', 'PUB',
"PUB', 'PUB', 'PUB', 'PUB');

EXECUTE SA USER ADM N. SET_USER PRIVS (' DEFENSE', 'pgAdmin', 'FULL');
As SEC_ADMIN, apply the security policies to the desired property graph. Assume
a property graph with the name OLSEXAMPLE with userP as the graph owner. To
apply OLS security, execute the following statements.

CONNECT sec_adni n/ <passwor d>;

EXECUTE SA POLI CY_ADM N. APPLY_TABLE_POLI CY (' DEFENSE , ' userP'
' OLSEXAMPLEVTS') ;

EXECUTE SA POLI CY_ADM N. APPLY_TABLE_POLI CY (' DEFENSE , ' userP'
' OLSEXAMPLEGES') ;

EXECUTE SA POLI CY_ADM N. APPLY_TABLE_POLI CY (' DEFENSE
' OLSEXAMPLEGTS') ;

EXECUTE SA POLI CY_ADM N. APPLY_TABLE_POLI CY (' DEFENSE , ' userP'
' OLSEXAMPLESSS') ;

"userP

Now Oracle Label Security has sensitivity labels to be associated with individual
vertices or edges stored in the property graph.

The following example shows how to create a property graph with name
OLSEXAMPLE, and an example flow to demonstrate the behavior when different
users with different security labels create, read, and write graph elements.

/1l Create Oracle Property G aph
String graphNane = "OLSEXAMPLE";

2-70

ORACLE

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

Oracle connPub = new Oracl e("j dbc: oracl e:thin: @ost:port:SID",

"userP", "userPpass");

Oracl ePropertyG aph graphPub = Oracl ePropertyG aph. get | nst ance(connPub,
graphNane, 48);

Il Grant access to other users

graphPub. grant Access("userP2", "RSIUD"); // Read, Select, Insert,
Updat e, Del ete (RSl UD)

gr aphPub. grant Access("userS", "RSIUD");

graphPub. grant Access("userTS", "RSIUD");

graphPub. grant Access("user TS2", "RSIUD");

/1 Load data

Oracl ePropertyG aphDat aLoader opgdl =

Oracl ePropert yG aphDat aLoader . get | nst ance();

String vfile ="../../datalconnections.opv";

String efile ="../../datalconnections. ope";

graphPub. cl ear Repository();

opgdl . | oadDat a(graphPub, vfile, efile, 48, 1000, true, null);
Systemout.printIn("Vertices with user userP and PUBLI C LABEL: " +
graphPub. count Vertices()); // 78

Systemout.printIn("Vertices with user userP and PUBLI C LABEL: " +
graphPub. count Edges()); [/ 164

/1 Second user with a higher |evel

Oracle connTS = new Oracl e("jdbc: oracl e: thin: @ost:port:SID', "userTS",
"user TpassS');

Oracl ePropertyG aph graphTS = Oracl ePropertyG aph. get | nstance(connTS,
"USERP", graphNane, 8, 48, null, null);

Systemout.printIn("Vertices with user userTS and SENSI TI VE LABEL: " +
graphTS. count Vertices()); // 78

Systemout.printIn("Vertices with user userTS and SENSI TI VE LABEL: " +
graphTS. count Edges()); // 164

/1 Add vertices and edges with the second user
long | MaxVertexl D = graphTS. get MaxVertexl () ;
l ong | MaxEdgel D = graphTS. get MaxEdgel () ;
long size = 10;
Systemout.printIn("\nAdd " + size +
user TS and SENSI TI VE LABEL\n");
for (long idx = 1; idx <= size; idx++) {
Vertex v = graphTS. addVertex(idx + | MaxVertex|D);
v.setProperty("name", "v_" + (idx + | MaxVertexl D));
Edge e = graphTS. addEdge(i dx + | MaxEdgel D, v, graphTS. get Vertex(i dx),
"edge " + (idx + | MaxEdgel D));
}
graphTS. commit();

vertices and edges w th user

/1 User userP with a |ower level only sees the original vertices and
edges, user userTS can see nore

Systemout.printin("Vertices with user userP and PUBLI C LABEL: " +
graphPub. count Vertices()); // 78

Systemout.printin("Vertices with user userP and PUBLI C LABEL: " +
graphPub. count Edges()); [/ 164

Systemout.printIn("Vertices with user userTS and SENSI TI VE LABEL: " +

2-71

ORACLE

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

graphTS. count Vertices()); // 88
Systemout.printIn("Vertices with user userTS and SENSI TI VE LABEL: " +
graphTS. count Edges()); [/ 174

/1 Third user with a higher Ievel

Oracle connTS2 = new Oracl e("j dbc: oracl e:thin: @ost:port:SID",
"userTS2", "userTS2pass”);

Oracl ePropertyG aph graphTS2 = Oracl ePropertyG aph. get I nstance(connTS2,
"USERP", graphNane, 8, 48, null, null);

Systemout.printIn("Vertices with user userTS2 and SENSI TI VE LABEL: " +
graphTS2. count Vertices()); // 88

Systemout.printIn("Vertices with user userTS2 and SENSI TI VE LABEL: " +
graphTS2. count Edges()); [/ 174

[l Fourth user with a internediate |evel

Oracle connS = new Oracl e("jdbc: oracl e:thin: @ost:port:SID', "userS',
"user Spass");

Oracl ePropertyG aph graphS = O acl ePropertyG aph. get | nstance(connS,
"USERP", graphNane, 8, 48, null, null);

Systemout.printIn("Vertices with user userS and CONFI DENTI AL LABEL: "
+ graphS. count Vertices()); // 78

Systemout.printIn("Vertices with user userS and CONFI DENTI AL LABEL: "
+ graphS. count Edges()); // 164

/1 Modify vertices with the fourth user
Systemout.printIn("\nhvdify " + size + " vertices with user userS and
CONFI DENTI AL LABEL\n");
for (long idx = 1; idx <= size; idx++) {
Vertex v = graphS. get Vertex(idx);
v.setProperty("security_l|abel", "CONFIDENTIAL");

}
graphS. commit();

/1 User userP with a lower |evel that userS cannot see the new vertices
/'l Users userS and userTS can see them

Systemout.printIn("Vertices with user userP

with property security_|abel: " +

Oracl ePropertyGaphUtils. size(graphPub. get Vertices("security_| abel ",

" CONFI DENTIAL"))); // 0

Systemout.printIn("Vertices with user userS

Wi th property security_|abel: " +

Oracl ePropertyGaphUtils. size(graphS. get Vertices("security_ | abel",

" CONFI DENTI AL"))); // 10

Systemout. printIn("Vertices with user userTS

Wi th property security_|abel: " +

Oracl ePropertyGaphUtils. size(graphTS. get Vertices("security_|abel ",

" CONFI DENTI AL"))); // 10

Systemout.printin("Vertices with user userP and PUBLI C LABEL: " +
graphPub. count Vertices()); // 68

Systemout.printIn("Vertices with user userTS and SENSI TI VE LABEL: " +
graphTS. count Vertices()); // 88

The preceding example should produce the following output.

2-72

Chapter 2
Using the Groovy-Based Shell with Property Graph Data

Vertices with user userP and PUBLI C LABEL: 78
Vertices with user userP and PUBLI C LABEL: 164
Vertices with user userTS and SENSI Tl VE LABEL: 78
Vertices with user userTS and SENSI TI VE LABEL: 164

Add 10 vertices and edges with user userTS and SENSI TI VE LABEL

Vertices with user userP and PUBLI C LABEL: 78
Vertices with user userP and PUBLI C LABEL: 164
Vertices with user userTS and SENSI TI VE LABEL: 88
Vertices with user userTS and SENSI TI VE LABEL: 174
Vertices with user userTS2 and SENSI TI VE LABEL: 88
Vertices with user userTS2 and SENSI Tl VE LABEL: 174
Vertices with user userS and CONFI DENTI AL LABEL: 78
Vertices with user userS and CONFI DENTI AL LABEL: 164

Modi fy 10 vertices with user userS and CONFI DENTI AL LABEL

Vertices with user userP with property security_label: 0
Vertices with user userS with property security_label: 10
Vertices with user userTS with property security_|label: 10
Vertices with user userP and PUBLI C LABEL: 68

Vertices with user userTS and SENSI TI VE LABEL: 88

2.8 Using the Groovy-Based Shell with Property Graph Data

ORACLE

The Oracle Graph property graph support includes a built-in Groovy-based shell
(based on the original Gremlin Groovy shell script). With this command-line shell
interface, you can explore the Java APIs.

To use this shell, you must first separately download and install Apache Groovy.

To start the shell, go to the <graph client home>/ bi n/ directory. Included is the script
0pg- gr oovy.

The following example connects to an Oracle database, gets an instance of
O acl ePropert yG aph with graph name nyG aph, loads some example graph data,
and gets the list of vertices and edges.

$ sh ./opg-groovy

opg-rdbnms> cfg =

cfg = GraphConfi gBuil der. forPropertyG aphRdbnms() \
.setJdbcUrl ("] dbc: oracle:thin:@27.0.0.1:1521: orcl ")\

.set Username("scott"). set Passwor d(" <password>") \

. set Name(" connections") .set MaxNumConnecti ons(2)\

. set LoadEdgeLabel (fal se) \

. addEdgeProperty("wei ght", PropertyType. DOUBLE, "1000000") \
Cbui 1 d();

opg-rdbnms> opg = Oracl ePropertyG aph. getlnstance(cfg);
==>or acl epropertygraph with name nyG aph

opg-rdbnms> opgdl = Oracl ePropertyG aphDat aLoader. get | nstance();
==>0r acl e. pg. nosql . Or acl ePropert yG aphDat aLoader @76f 1cad

opg-rdbms> opgdl . | oadDat a(opg, new FilelnputStrean("../../data/

connections.opv"), new FilelnputStrean("../../datal/connections.ope"), 4/*dop*/,
1000/ *i Bat chSi ze*/, true /*rebuildlndex*/, null /*szOptions*/); ==>null

2-73

ORACLE

Chapter 2
Using the Groovy-Based Shell with Property Graph Data

opg- rdbns> opg. get Vertices();

==>Vertex ID 5 {country:str:Italy, nane:str:Pope Francis, occupation:str:pope,
religion:str:Catholicism role:str:Catholic religion authority}

[... other output lines onmtted for brevity ...]

opg-rdbrms> opg. get Edges();
==>Edge I D 1139 from Vertex | D 64 {country:str:United States, nane:str:Jeff

Bezos, occupation:str:business man} =[|eads]=> Vertex ID 37 {country:str:United
States, name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines onmtted for brevity ...]

The following example customizes several configuration parameters for in-

memory analytics. It connects to an Oracle database, gets an instance of

O acl ePropert yG aph with graph name nyG aph, loads some example graph data,
gets the list of vertices and edges, gets an in-memory analyst, and executes one of the
built-in analytics, triangle counting.

$ sh ./opg-groovy

opg- r dbns>

opg- r dbrs> dop=2; /1 degree of parallelism

==>2

opg- rdbnms> conf Pgx = new HashMap<PgxConfig. Fiel d, Object>();

opg- rdbms> conf Pgx. put (PgxConfi g. Fi el d. ENABLE_GM COWPI LER, fal se)
==>nul

opg- rdbms> conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS_| O, dop);

==>nul

opg- rdbms> conf Pgx. put (PgxConfi g. Fi el d. NUM_ WORKERS_ANALYSI S, 3);
==>nul

opg- rdbms> conf Pgx. put (PgxConfi g. Fi el d. NUM_ WORKERS_FAST_TRACK_ANALYSI S, 2)
==>nul

opg- rdbms> conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_TASK_TI MEQUT_SECS, 0)
==>nul

opg- rdbms> conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_I DLE_TI MEQUT_SECS, 0)
==>nul

opg-rdbms> instance = Pgx. getlnstance()

==>nul

opg- rdbms> i nstance. st art Engi ne(conf Pgx)

==>nul

opg- r dbns>

cfg = GraphConfigBuil der. forPropertyG aphRdbnms() \
.setJdbcUrl ("] dbc: oracl e:thin:@27.0.0.1:1521: orcl ")\

.set Username("scott"). set Passwor d(" <password>") \

. set Name(" connections") .set MaxNumConnecti ons(2)\

. set LoadEdgeLabel (fal se) \

. addEdgeProperty("wei ght", PropertyType. DOUBLE, "1000000") \
Cbui 1 d();

opg-rdbnms> opg = Oracl ePropertyG aph. getlnstance(cfg);

==>0r acl epropertygraph with name nyG aph

opg-rdbms> opgdl = Oracl ePropertyG aphDat aLoader. get | nstance();
==>or acl e. pg. hbase. Or acl ePr oper t yGr aphDat aLoader @451289b

opg- rdbms> opgdl . | oadData(opg, "../../datal/connections.opv", "../../data/
connections. ope", 4/*dop*/, 1000/*iBatchSize*/, true /*rebuildlndex*/, null /
szOptions/);

==>nul |

opg- rdbnms> opg. get Vertices();

==>Vertex ID 78 {country:str:United States, name:str:Hosain Rahman,
occupation: str: CEO of Jawbone}

2-74

Chapter 2
Using the Graph Zeppelin Interpreter Client

opg- rdbns> opg. get Edges() ;

==>Edge 1D 1139 from Vertex |ID 64 {country:str:United States, nane:str:Jeff
Bezos, occupation:str:business man} =[|eads]=> Vertex ID 37 {country:str:United
States, name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines onmitted for brevity ...]

opg- rdbnms> session = Pgx. creat eSessi on("session-id-1");
opg-rdbnms> g = session. readG aphWthProperties(cfg);
opg- rdbne> anal yst = session. creat eAnal yst ();

opg-rdbnms> triangles = anal yst.countTriangl es(false).get();
==>22

For detailed information about the Java APls, see the Javadoc reference information.

2.9 Using the Graph Zeppelin Interpreter Client

ORACLE

Oracle Graph provides an interpreter client implementation for Apache Zeppelin. This
tutorial topic explains how to install the graph interpreter into your local Zeppelin
installation and to perform simple operations.

Installing the Interpreter

The following steps were tested with Zeppelin version 0.9, and might have to be
modified with newer versions.

1. If you have not already done so, download and install Apache Zeppelin.

Note:

Apache Zeppelin requires Java 8.

2. If you have not already done so, download and install Apache Groovy 2.4.x.
3. Copy libraries:

* Copy the libraries from the Oracle Graph Client for Apache Zeppelin package
into $ZEPPELI N_HOME/ i nt er pr et er/ pgx. For example:

unzip oracl e-graph-zeppelin-interpreter-20.4.0.zip -d
$ZEPPELI N_HOVE/ i nt er pret er/ pgx

e Copy the libraries inside $GROOVY_HOVE/ | i b into $ZEPPELI N_HOVE/
i nterpreter/pgx. For example:

cp $CROOVY_HOWE/ i b/ * $ZEPPELI N_HOVE/ i nt er pr et er / pgx
4. Restart Zeppelin.

Using the Interpreter

If you hamed the graph interpreter pgx, you can send paragraphs to the graph server
by starting the paragraphs with the %gx directive, just as with any other interpreter.

2-75

http://zeppelin.apache.org/download.html
http://groovy-lang.org/download.html

Chapter 2
Using the Graph Zeppelin Interpreter Client

The interpreter acts like a client that talks to a remote graph server. You cannot run
a graph server instance embedded inside the Zeppelin interpreter. You must provide
the graph server base URL and connection information as illustrated in the following
example:

%pgx
i nport oracle. pgx.api.*
i nport groovy.json.*

baseUr| = '<base-url>'
usernane = '<usernanme>'
password = ' <passwor d>'

conn = new URL("$baseUr!|/auth/token"). openConnection()
conn. set Request Property(' Content-Type', 'application/json')
token = conn.with {

doQutput = true

request Met hod = ' POST'

outputStreamwithWiter { witer ->

witer << JsonQutput.todson([username: username, password:

password])

}

return new JsonSl urper (). parseText(content.text).access token

}

i nstance = Pgx. getlnstance(baseUrl, token)
session = instance. createSession("ny-session")

The in-memory analyst Zeppelin interpreter evaluates paragraphs in the same way
that the in-memory analyst shell does, and returns the output. Therefore, any valid
in-memory analyst shell script will run in the in-memory analyst interpreter, as in the
following example:

%pgx

g_brands = session.readG aphWthProperties("/opt/datal exomerce/
brand cat.json")

g_brands. get NunVertices()

rank = anal yst. pagerank(g_brands, 0.001, 0.85, 100)

rank. get TopKval ues(10)

The following figure shows the results of that query after you click the icon to execute
it.

ORACLE 2-76

Chapter 2
Creating Property Graph Views on an RDF Graph

B i & M

D value

Cell Phones & Accessories 0.10107276500035282
Cases 0.060593137960391966
Basic Cases 0.058782080785810285
Accessories 0.05657872563693525

As you can see in the preceding figure, the Zeppelin interpreter automatically renders
the values returned by rank. get TopKVal ues(10) as a Zeppelin table, to make it more
convenient for you to browse results.

Besides the property values (get TopKVal ues(), get Bot t onmkVal ues(), and
get Val ues()), the following return types are automatically rendered as table also if
they are returned from a paragraph:

e Pggl Resul t Set - the object returned by the queryPgql ("...") method of the
PgxG aph class.

e Maplterabl e - the object returned by the entri es() method of the PgxMap class

All other return types and errors are returned as normal strings, just as the in-memory
analyst shell does.

For more information about Zeppelin, see the official Zeppelin documentation.

2.10 Creating Property Graph Views on an RDF Graph

ORACLE

With Oracle Graph, you can view RDF data as a property graph to execute graph
analytics operations by creating property graph views over an RDF graph stored in
Oracle Database.

Given an RDF model (or a virtual model), the property graph feature creates two
views, a <graph_name>VT$ view for vertices and a <graph_name>GES$ view for
edges.

The PGUti | s. creat ePropertyG aphVi ewOnRDF method lets you customize a property
graph view over RDF data:

public static void createPropertyGaphVi ewOnRDF(Connection conn /* a Connection
instance to Oracle database */,
String pgG aphName /* the name of the property graph to be created */,
String rdf Model Name /* the name of the RDF nodel */,
bool ean virtual Model /* a flag represents if the RDF nodel
is virtual rmodel or not;
true — virtual node, false — nornmal nodel */,
RDFPredi cate[] predListForVertexAttrs /* an array of RDFPredicate objects
specifying how to create vertex view using these predicates; each RDFPredicate
includes two fields: an URL of the RDF predicate, the correspondi ng name of
vertex key in the Property Graph. The napping from RDF predicates to vertex keys
wi |l be created based on this paraneter. */,
RDFPredi cate[] predListForEdges /* an array of RDFPredicate specifying how

2-77

https://zeppelin.apache.org/

ORACLE

Chapter 2
Creating Property Graph Views on an RDF Graph

to create edge view using these predicates; each RDFPredicate includes two (or
three) fields: an URL of the RDF predicate, the edge |abel in the Property
Graph, the weight of the edge (optional). The mapping from RDF predicates to
edges will be created based on this paraneter. */)

This operation requires the name of the property graph, the name of the RDF Model
used to generate the Property Graph view, and a set of mappings determining how
triples will be parsed into vertices or edges. The cr eat ePr opert yG aphVi ewOnRDF
method requires a key/value mapping array specifying how RDF predicates are
mapped to Key/Value properties for vertices, and an edge mapping array specifying
how RDF predicates are mapped to edges. The PGt i | s. RDFPredi cat e API lets you
create a map from RDF assertions to vertices/edges.

Vertices are created based on the triples matching at least one of the RDF predicates
in the key/value mappings. Each triple satisfying one of the RDF predicates defined in
the mapping array is parsed into a vertex with ID based on the internal RDF resource
ID of the subject of the triple, and a key/value pair whose key is defined by the
mapping itself and whose value is obtained from the object of the triple.

The following example defines a key/value mapping of the RDF predicate URI
http://purl.org/dc/elements/ 1. 1/titl e to the key/value property with property
nametitle.

String titleURL = "http://purl.org/dc/elenents/1.1/title";
/] create an RDFPredicate to specify howto nap the RDF predicate to vertex keys
RDFPredi cate titl eRDFPredicate
= RDFPredicate. getlnstance(titleURL /* RDF Predicate URl */ ,
"title" /* property name */);

Edges are created based on the triples matching at least one of the RDF predicates
in the edge mapping array. Each triple satisfying the RDF predicate defined in the
mapping array is parsed into an edge with ID based on the row number, an edge label
defined by the mapping itself, a source vertex obtained from the RDF Resource ID of
the subject of the triple, and a destination vertex obtained from the RDF Resource 1D
of the object of the triple. For each triple parsed here, two vertices will be created if
they were not generated from the key/value mapping.

The following example defines an edge mapping of the RDF predicate URI http://
purl.org/dc/el ements/ 1. 1/ ref erence to an edge with a label references and a
weight of 0.5d.

String referencesURL = "http://purl.org/dc/terns/references"”;
/] create an RDFPredicate to specify howto nap the RDF predicate to edges
RDFPr edi cat e ref erencesRDFPr edi cate

= RDFPredicate. getlnstance(referencesURL, "references",
0.5d);

The following example creates a property graph view over the RDF model arti cl es
describing different publications, their authors, and references. The generated property
graph will include vertices with some key/value properties that may include titl e and
creator. The edges in the property graph will be determined by the references among
publications.

Oracle oracle = null;
Connection conn = null;
O acl ePropertyGraph pggraph = null;
try {
/1l create the connection instance to Oracle database
Oracl eDat aSource ds = new oracl e. jdbc. pool . Oracl eDat aSour ce() ;

2-78

ORACLE

Chapter 2
Creating Property Graph Views on an RDF Graph

ds. set URL(j dbcUrl);
conn = (Oracl eConnection) ds. get Connection(user, password);

/'l define sone string variables for RDF predicates

String titleURL = "http://purl.org/dc/elenents/1.1/title";

String creatorURL = "http://purl.org/dc/elenents/1. 1/creator";

String serialnumberURL = "http://purl.org/dc/el ements/ 1. 1/serial nunber"”;
String widthURL = "http://purl.org/dc/el enents/ 1.1/ width";

String weightURL = "http://purl.org/dc/el ements/1. 1/ weight";

String onsaleURL = "http://purl.org/dc/el ements/1. 1/ onsal e";

String publicationDateURL = "http://purl.org/dc/elenents/ 1.1/ publicationDate";
String publicationTimeURL = "http://purl.org/dc/elenents/ 1.1/ publicationTime";
String referencesURL = "http://purl.org/dc/terms/references”;

Il create RDFPredicate[] predsForVertexAttrs to specify how to map
Il RDF predicate to vertex keys
RDFPr edi cate[] predsForVertexAttrs = new RDFPredicate[8];
predsFor VertexAttrs[0] = RDFPredicate.getlnstance(titleURL, "title");
predsFor Vert exAttrs[1] RDFPr edi cat e. get I nstance(creator URL, "creator");
predsFor Vert exAttrs[2] RDFPr edi cat e. get | nst ance(seri al nunber URL,
"serial number");
RDFPr edi cat e. get I nstance(wi dt hURL, "wi dth");
RDFPr edi cat e. get | nst ance(wei ght URL, "wei ght");
(
(

predsFor Vert exAttrs[3]
predsFor Vert exAttrs[4]
predsFor Vert exAttrs[5]
predsFor Vert exAttrs[6]

RDFPr edi cat e. get | nst ance(onsal eURL, "onsal e");
RDFPr edi cat e. get | nst ance(publ i cati onDat eURL,
"publicationDate");
predsFor VertexAttrs[7] = RDFPredi cate. getlnstance(publicationTi neURL,
"publicationTine");

Il create RDFPredicate[] predsForEdges to specify howto map RDF predicates to
/'l edges

RDFPredi cate[] predsFor Edges = new RDFPredicate[1];

predsFor Edges[0] = RDFPredi cate. get I nstance(referencesURL, "references", 0.5d);

/] create PG view on RDF nodel
PGUtils.createPropertyGraphViewOnRDF(conn, "articles'", "articles", false,
predsForVertexAttrs, predsForEdges);

/] get the Property Gaph instance
oracle = new Oracl e(jdbcUrl, user, password);
pggraph = Oracl ePropertyG aph. getInstance(oracle, "articles", 24);

Systemerr.println("------ Vertices fromproperty graph view ------ ");
pggraph. get Vertices();
Systemerr.println("------ Edges from property graph view ------ ");
pggr aph. get Edges() ;

}

finally {

pggr aph. shut down() ;
oracl e. di spose();
conn. close();

}

Given the following triples in the arti cl es RDF model (11 triples), the output property
graph will include two vertices, one for <htt p: // nature. exanpl e. com Articl el> (v1)
and another one for <htt p: // nature. exanpl e. comf Arti cl e2> (v2). For vertex v1,

it has eight properties, whose values are the same as their RDF predicates. For
example, v1's title is “All about XYZ”. Similarly for vertex v2, it has two properties:
titleand creator. The output property graph will include a single edge (eid:1) from
vertex v1 to vertex v2 with an edge label “references” and a weight of 0.5d.

2-79

Chapter 2
Oracle Flat File Format Definition

<http://nature.exanple.comArticlel> <http://purl.org/dc/elements/1.1/title>
“Al'l about XYZ""xsd:string.

<http://nature.exanpl e.com Articlel> <http://purl.org/dc/el ements/1.1/creator>
“Jane Smith”"xsd:string.

<http://nature.example.confArticlel> <http://purl.org/dc/elements/1. 1/

serial nunber> “123456" A"xsd: i nt eger.

<http://nature.exanpl e.com Articlel> <http://purl.org/dc/el ements/1. 1/ w dt h>
“10. 5" Mxsd: fl oat .

<http://nature. exanpl e.com Articlel> <http://purl.org/dc/el enents/1. 1/ weight>
“1.08""xsd: doubl e.

<http://nature. exanpl e.com Articlel> <http://purl.org/dc/el ements/1. 1/ onsal e>
“fal se”"xsd: bool ean.

<http://nature.exanmple.confArticlel> <http://purl.org/dc/elements/1.1/

publ i cationDate> “2016-03- 08" " xsd: dat e)

<http://nature.exanmple.conmfArticlel> <http://purl.org/dc/elements/1.1/
publicationTi me> “2016- 03- 08T10: 10: 10" **xsd: dat eTi ne)
<http://nature.exanple.comArticle2> <http://purl.org/dc/elements/ 1. 1/title> “A
revi ew of ABC'A"xsd:string.

<http://nature.exanpl e. com Article2> <http://purl.org/dc/el ements/1.1/creator>
“Joe Bl oggs”*"xsd: string.

<http://nature.exanple.com Articlel> <http://purl.org/dc/terns/references>
<http://nature.exanpl e.com Article2>.

The preceding code will produce an output similar as the following. Note that the
internal RDF resource ID values may vary across different Oracle databases.

------ Vertices fromproperty graph view ------

Vertex 1D 7299961478807817799 {creator:str:Jane Smth, onsale:bol:fal se,
publicationDate: dat: Mon Mar 07 16:00: 00 PST 2016, publicationTine: dat: Tue Mar

08 02:10: 10 PST 2016, serial nunber:dbl:123456.0, title:str: Al about XYZ,

wei ght:dbl:1.08, wi dth:flo:10.5}

Vertex |1 D 7074365724528867041 {creator:str:Joe Bl oggs, title:str:A review of ABC
------ Edges from property graph view ------

Edge ID 1 from Vertex I D 7299961478807817799 {creator:str:Jane Smth,

onsal e: bol : fal se, publicationDate:dat: Mon Mar 07 16:00: 00 PST 2016,

publicationTi me: dat: Tue Mar 08 02:10: 10 PST 2016, seri al nunber: dbl: 123456. 0,
title:str: All about XYZ, weight:dbl:1.08, width:flo:10.5} =[references]=> Vertex
I D 7074365724528867041 {creator:str:Joe Bloggs, title:str:A review of ABC
edgeKV[{wei ght : dbl : 0. 5}]

2.11 Oracle Flat File Format Definition

ORACLE

A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

e About the Property Graph Description Files

e Edge File

* Vertex File

e Encoding Special Characters

e Example Property Graph in Oracle Flat File Format

e Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat
File

e Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph
Flat Files

2-80

Chapter 2
Oracle Flat File Format Definition

2.11.1 About the Property Graph Description Files

A pair of files describe a property graph:

* Vertex file: Describes the vertices of the property graph. This file has an . opv file
name extension.

» Edge file: Describes the edges of the property graph. This file has an . ope file
name extension.

It is recommended that these two files share the same base name. For example,
si npl e. opv and si npl e. ope define a property graph.

2.11.2 Edge File

Each line in an edge file is a record that describes an edge of the property graph. A
record can describe one key-value property of an edge, thus multiple records are used
to describe an edge with multiple properties.

A record contains nine fields separated by commas. Each record must contain eight
commas to delimit all fields, whether or not they have values:

edge_ID, source_vertex_ID, destination_vertex_ID, edge_label, key _name,
value_type, value, value, value

The following table describes the fields composing an edge file record.

Table 2-1 Edge File Record Format
|

Field Name Description

Number

1 edge_ID An integer that uniquely identifies the edge

2 source_vertex_ID The vertex_ID of the outgoing tail of the edge.

3 destination_vertex_ID The vertex_ID of the incoming head of the edge.

4 edge_label The encoded label of the edge, which describes the
relationship between the two vertices

5 key_name The encoded name of the key in a key-value pair

ORACLE

If the edge has no properties, then enter a space
(920). This example describes edge 100 with no
properties:

100, 1, 2, I'i kes, %R0, , , ,

2-81

ORACLE

Chapter 2
Oracle Flat File Format Definition

Table 2-1 (Cont.) Edge File Record Format

Field Name Description
Number

6 value_type An integer that represents the data type of the value
in the key-value pair:

1 String

2 Integer

3 Float

4 Double

5 Timestamp (date)
6 Boolean

7 Long integer

8 Short integer

9 Byte

10 Char

20 Spatial

101 Serializable Java object

7 value The encoded, nonnull value of key_name when it is
neither numeric nor timestamp (date)

8 value The encoded, nonnull value of key_name when it is
numeric

9 value The encoded, nonnull value of key_name when it is
a timestamp (date)

Use the Java Si npl eDat eFor mat class
to identify the format of the date. This

example describes the date format of
2015- 03-26Th00: 00: 00. 000- 05: 00:

Si npl eDat eFor mat sdf

= new Si npl eDat eFor mat ("yyyy-

M dd' T' HH: nm ss. SSSXXX') ;
encode(sdf.format((java.util.Date) value));

Required Grouping of Edges: An edge can have multiple properties, and the edge
file includes a record (represented by a single line of text in the flat file) for each
combination of an edge ID and a property for that edge. In the edge file, all records
for each edge must be grouped together (that is, not have any intervening records
for other edges. You can accomplish this any way you want, but a convenient way is
to sort the edge file records in ascending (or descending) order by edge ID. (Note,
however, an edge file is not required to have all records sorted by edge ID; this is
merely one way to achieve the grouping requirement.)

When building an edge file in Oracle flat file format, it is important to verify

that the edge property name and value fields are correctly encoded (see

especially Encoding Special Characters). To simplify the encoding, you can use the
Oracl ePropertyG aphUil s. escape Java API.

You can use the Or acl ePropertyG aphUtil s. out put EdgeRecord(os, eid, svid,
dvid, label, key, value) utility method to serialize an edge record directly in Oracle
flat file format. With this method, you no longer need to worry about encoding of

2-82

Chapter 2
Oracle Flat File Format Definition

special characters. The method writes a new line of text in the given output stream
describing the key/value property of the given edge identified by ei d.

Example 2-7 Using OraclePropertyGraphUtils.outputEdgeRecord

This example uses Or acl ePropertyGaphUtil s. out put EdgeRecor d to write two new
lines for edge 100 between vertices 1 and 2 with label fri endCf .

Qutput Stream os = new Fi |l eQut put Strean("./exanpl e. ope");
int sinceYear = 2009;

long eid = 100;

long svid = 1;

long dvid = 2;

Oracl ePropertyGaphUtil s. out put EdgeRecord(os, eid, svid, dvid,
"friendOX", "since (year)", sinceYear);

Oracl ePropertyGaphUtil s. out put EdgeRecord(os, eid, svid, dvid,
"“friendOX", "weight", 1);

os.flush();

o0s.close();

The first line in the generated output file describes the property “since (year)" with
value 2009, and the second line and the next line sets the edge weight to 1.

% cat exanpl e. ope
100, 1, 2, fri endOf, si nce%0(year), 2, , 2009,
100, 1, 2, friendOf, wei ght, 2, , 1,

2.11.3 Vertex File

ORACLE

Each line in a vertex file is a record that describes a vertex of the property graph. A
record can describe one key-value property of a vertex, thus multiple records/lines are
used to describe a vertex with multiple properties.

A record contains fields separated by commas. Each record must contain five commas
to delimit first six fields, whether or not they have values. An optional seventh field can
be added (delimited from the sixth field by a comma) to define a vertex label:

vertex_ID, key _name, value_type, value, value, value, vertex_label

The following table describes the fields composing a vertex file record.

Table 2-2 Vertex File Record Format

Field Name Description

Number

1 vertex_ID An integer that uniquely identifies the vertex
2 key_name The name of the key in the key-value pair

If the vertex has no properties, then enter a space
(920). This example describes vertex 1 with no
properties:

1,%a0,,,,

2-83

ORACLE

Chapter 2
Oracle Flat File Format Definition

Table 2-2 (Cont.) Vertex File Record Format

Field Name Description
Number

3 value_type An integer that represents the data type of the value in
the key-value pair:
1 String
2 Integer
3 Float
4 Double
5 Timestamp (date)
6 Boolean
7 Long integer
8 Short integer
9 Byte
10 Char

20 Spatial data, which can be geospatial
coordinates, lines, polygons, or Well-Known Text
(WKT) literals

101 Serializable Java object

4 value The encoded, nonnull value of key_name when it is
neither numeric nor date

5 value The encoded, nonnull value of key_name when it is
numeric

6 value The encoded, nonnull value of key _name when it is a

timestamp (date)

Use the Java Si npl eDat eFor mat class to identify the

format of the date. This example describes the date
format of 2015- 03- 26T00: 00: 00. 000- 05: 00:

Si npl eDat eFor mat sdf

= new Si npl eDat eFor mat ("yyyy-

MM dd' T' HH: mm ss. SSSXXX") ;
encode(sdf.format ((java.util.Date) value));

7 vertex_label The optional encoded label of the vertex, which can be
used to describe the type or category of the vertex.

Required Grouping of Vertices: A vertex can have multiple properties, and the vertex
file includes a record (represented by a single line of text in the flat file) for each
combination of a vertex ID and a property for that vertex. In the vertex file, all records
for each vertex must be grouped together (that is, not have any intervening records

for other vertices. You can accomplish this any way you want, but a convenient way is
to sort the vertex file records in ascending (or descending) order by vertex ID. (Note,
however, a vertex file is not required to have all records sorted by vertex ID; this is
merely one way to achieve the grouping requirement.)

When building an edge file in Oracle flat file format, it is important to verify

that the vertex property name and value fields are correctly encoded (see
especially Encoding Special Characters). To simplify the encoding, you can use the
Oracl ePropertyG aphUtil s. escape Java API.

2-84

Chapter 2
Oracle Flat File Format Definition

You can use the Or acl ePropertyG aphUtil s. out put Vert exRecord(os, vid, key,
val ue) utility method to serialize a vertex record directly in Oracle flat file format. With
this method, you no longer need to worry about encoding of special characters. The
method writes a new line of text in the given output stream describing the key/value
property of the given vertex identified by vi d.

Example 2-8 Using OraclePropertyGraphUtils.outputVertexRecord

This example uses Or acl ePropertyGraphUtils. out put Vert exRecor d to write two new
lines for vertex 1.

Qut put Stream os = new Fil eQut put Strean("./exanpl e. opv");
long vid = 1,

String | abel = "person";

Oracl ePropertyGraphUtils. out put Vert exRecord(os, vid, |abel,
"Robert Smith");

Oracl ePropertyGaphUtils. out put Vert exRecord(os, vid, label, "birth
year", 1961);

os. flush();

0s.close();

nane",

The first line in the generated output file describes the property name with value
"Robert Smith", and the second line describes his birth year of 1961.

% cat exanpl e. opv
1, nane, 1, Robert %20CSni t h, , , per son
1, birt h%0year, 2,, 1961, , person

2.11.4 Encoding Special Characters

The encoding is UTF-8 for the vertex and edge files. The following table lists the
special characters that must be encoded as strings when they appear in a vertex or
edge property (key-value pair) or an edge label. No other characters require encoding.

Table 2-3 Special Character Codes in the Oracle Flat File Format
|

Special Character String Encoding Description
% 95 Percent

\t %99 Tab

(space) %0 Space

\n 90A New line

\r %D Return

, %RC Comma

2.11.5 Example Property Graph in Oracle Flat File Format

ORACLE

An example property graph in Oracle flat file format is as follows. In this example,
there are two vertices (John and Mary), and a single edge denoting that John is a
friend of Mary.

Y%¢at sinple.opv
1, age, 2, , 10,

2-85

Chapter 2
Oracle Flat File Format Definition

1, nane, 1, John, ,
2, name, 1, Mary, ,
2, hobby, 1, soccer, ,

Y%¢at sinple.ope
100, 1, 2, fri endOXf, %R0, , , ,

2.11.6 Converting an Oracle Database Table to an Oracle-Defined
Property Graph Flat File

You can convert Oracle Database tables that represent the vertices and edges of a
graph into an Oracle-defined flat file format (. opv and . ope file extensions).

If you have graph data stored in Oracle Database tables, you can use Java API
methods to convert that data into flat files, and later load the tables into Oracle
Database as a property graph. This eliminates the need to take some other manual
approach to generating the flat files from existing Oracle Database tables.

Converting a Table Storing Graph Vertices to an .opv File

You can convert an Oracle Database table that contains entities (that can be
represented as vertices of a graph) to a property graph flat file in . opv format.

For example, assume the following relational table: Enpl oyeeTab (enpl D i nteger not
nul |, hasNane varchar(255), hasAge integer, hasSal ary nunber)

Assume that this table has the following data:

101, Jean, 20, 120.0
102, Mary, 21, 50.0
103, Jack, 22, 110.0

Each employee can be viewed as a vertex in the graph. The vertex ID could be
the value of employeelD or an ID generated using some heuristics like hashing. The
columns hasName, hasAge, and hasSalary can be viewed as attributes.

The Java method Or acl ePropertyG aphUti |l s. convert RDBMSTabl e20PV and its
Javadoc information are as follows:

*

/*

* conn: is an connect instance to the Oracle relational database

* rdbrmsTabl eNane: nane of the RDBMS table to be converted

* vidCol Nane is the nane of an colum in RDBMS table to be treated as vertex ID
* |[VIDOffset is the offset will be applied to the vertex ID

* ctams defines howto map colums in the RDBMS table to the attributes

* dop degree of parallelism

* dcl an instance of DataConverterListener to report the progress and control
the behavior when errors happen

*/

Oracl ePropertyG aphUtils. convert RDBMSTabl e20PV(

Connection conn,

String rdbmsTabl eNane,

String vidCol Nare,

long | VIDO f set,

Col umToAt t r Mappi ng[] ctans,

int dop,

Qut put St ream opvCS,

Dat aConverterListener dcl);

ORACLE 2-86

ORACLE

Chapter 2
Oracle Flat File Format Definition

The following code snippet converts this table into an Oracle-defined vertex file (. opv):

/1 location of the output file

String opv = "./Enpl oyeeTab. opv";

Qut put St ream opvCS = new Fi | eQut put St rean(opv);

/1 an array of Col uimToAttrMpping objects; each object defines howto
map a colum in the RDBMS table to an attribute of the vertex in an
Oracl e Property G aph.

Col umToAt t r Mappi ng[] ctams = new Col umToAt t r Mappi ng[3] ;

/1 map colum "hasNane" to attribute "name" of type String

ctams[0] = Col umToAttrMappi ng. get | nst ance("hasName", "nane",

String.cl ass);

/1 map colum "hasAge" to attribute "age" of type Integer

ctams[1] = Col umToAttrMappi ng. get | nst ance("hasAge", "age",

I nteger.class);

/1 map colum "hasSal ary" to attribute "salary" of type Double

ctams[2] = Col umToAttr Mappi ng. get I nstance("hasSal ary",

"sal ary", Doubl e. cl ass);

/1 convert RDBMS table "EnployeeTab" into opv file "./Enpl oyeeTab. opv",
colum "enpl D' is the vertex ID colum, offset 1000l will be applied to
vertex ID, use ctans to map RDBMS colums to attributes, set DOP to 8
Oracl ePropertyG aphUtils. convert RDBMSTabl e20PV(conn, "Enpl oyeeTab",
"enpl D', 1000l, ctans, 8, opvOS, (DataConverterListener) null);

¢ Note:

The lowercase letter "I" as the last character in the offset value 1000l
denotes that the value before it is a long integer.

The conversion result is as follows:

1101, name, 1, Jean, ,
1101, age, 2, , 20,

1101, sal ary, 4, , 120. 0,
1102, nane, 1, Mary, ,
1102, age, 2, , 21,

1102, sal ary, 4, , 50. 0,
1103, nane, 1, Jack, ,
1103, age, 2, , 22,

1103, sal ary, 4,,110. 0,

In this case, each row in table EmployeeTab is converted to one vertex with three
attributes. For example, the row with data "101, Jean, 20, 120.0" is converted to a
vertex with ID 1101 with attributes name/"Jean”, age/20, salary/120.0. There is an
offset between original empID 101 and vertex ID 1101 because an offset 1000l is

applied. An offset is useful to avoid collision in ID values of graph elements.

Converting a Table Storing Graph Edges to an .ope File

You can convert an Oracle Database table that contains entity relationships (that can
be represented as edges of a graph) to a property graph flat filein . ope format.

2-87

ORACLE

Chapter 2
Oracle Flat File Format Definition

For example, assume the following relational table: EnpRel ati onTab (rel ationl D
integer not null, source integer not null, destination integer not null,
rel ati onType varchar(255), startDate date)

Assume that this table has the following data:

90001, 101, 102, nmnage, 10-May-2015
90002, 101, 103, nmnage, 11-Jan-2015
90003, 102, 103, colleague, 11-Jan-2015

Each relation (row) can be viewed as an edge in a graph. Specifically, edge 1D could
be the same as relationID or an ID generated using some heuristics like hashing. The
column relationType can be used to define edge labels, and the column startDate can
be treated as an edge attribute.

The Java method Or acl ePropertyG aphUti |l s. convert RDBVMSTabl e20PE and its
Javadoc information are as follows:

/**
* conn: is an connect instance to the Oracle relational database
r dbnsTabl eNarme: name of the RDBMS table to be converted
ei dCol Nane is the name of an colum in RDBMS table to be treated as edge 1D
[EIDOFfset is the offset will be applied to the edge 1D
svi dCol Narme is the name of an colum in RDBMS table to be treated as source
vertex 1D of the edge
* dvidCol Name is the name of an columm in RDBMS table to be treated as
destination vertex ID of the edge
* |[VIDOfset is the offset will be applied to the vertex ID
* bHasEdgelLabel Col a Bool ean flag represents if the given RDBMS table has a
colum for edge labels; if true, use value of colum el Col Name as the edge
| abel ; otherwi se, use the constant string el Col Nane as the edge | abel
* el Col Name is the name of an columm in RDBMS table to be treated as edge | abels
* ctams defines howto map colums in the RDBMS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterlListener to report the progress and control
the behavi or when errors happen
*/
Oracl ePropertyG aphUtil s. convert RDBMSTabl e2 OPE(
Connection conn,
String rdbnsTabl eName,
String ei dCol Nare,
long | EI DO f set,
String svidCol Nane,
String dvi dCol Nane,
long | VIDO fset,
bool ean bHasEdgeLabel Col ,
String el Col Nane,
Col umToAt t r Mappi ng[] ct ans,
int dop,
Qut put St ream opeGS,
Dat aConverterListener dcl);

*
*
*
*

The following code snippet converts this table into an Oracle-defined edge file (. ope):

/1 location of the output file

String ope = "./EnpRel ati onTab. ope";

Qut put Stream opeCS = new Fi | eQut put St rean(ope);

/1 an array of Col utmToAttrMpping objects; each object defines howto
map a colum in the RDBMS table to an attribute of the edge in an

2-88

Chapter 2
Oracle Flat File Format Definition

Oracle Property Gaph.

Col umToAt t r Mappi ng[] ctams = new Col umToAt t r Mappi ng[1] ;

/1 map colum "startDate" to attribute "since" of type Date

ctams[0] = Col utmToAt t r Mappi ng. get I nst ance(“startDate",

“since", Date. cl ass);

/1 convert RDBMS table “EnpRel ationTab" into ope file “./

EnpRel ati onTab. opv", colum “relationlD" is the edge ID col um, offset
100001 will be applied to edge 1D, the source and destination vertices
of the edge are defined by colums “source” and “destination", offset
10001 will be applied to vertex ID, the RDBMS table has an col um
“relationType" to be treated as edge | abels, use ctams to map RDBMS
colums to edge attributes, set DOP to 8

Oracl ePropertyG aphUtils. convert RDBMSTabl e20PE(conn, “EnpRel ationTab",
“relationl D', 10000/, “source", “destination”, 1000l, true,
“relationType", ctans, 8, opeOS, (DataConverterListener) null);

Note:

The lowercase letter “I" as the last character in the offset value 10000I
denotes that the value before it is a long integer.

The conversion result is as follows:

100001, 1101, 1102, nanage, si nce, 5, ,, 2015- 05- 10T00: 00: 00. 000- 07: 00
100002, 1101, 1103, nmanage, si nce, 5, , , 2015- 01- 11700: 00: 00. 000- 07: 00
100003, 1102, 1103, col | eague, si nce, 5, ,, 2015- 01- 11T700: 00: 00. 000- 07: 00

In this case, each row in table EmpRelationTab is converted to a distinct edge with

the attribute si nce. For example, the row with data “90001, 101, 102, manage, 10-
May-2015" is converted to an edge with ID 100001 linking vertex 1101 to vertex 1102.
This edge has attribute since/“2015-05-10T00:00:00.000-07:00". There is an offset
between original relationID “90001" and edge ID “100001" because an offset 10000l is
applied. Similarly, an offset 1000l is applied to the source and destination vertex IDs.

2.11.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files

ORACLE

Some applications use CSV (comma-separated value) format to encode vertices and
edges of a graph. In this format, each record of the CSV file represents a single vertex
or edge, with all its properties. You can convert a CSV file representing the vertices of
a graph to Oracle-defined flat file format definition (. opv for vertices, . ope for edges).

The CSV file to be converted may include a header line specifying the column name
and the type of the attribute that the column represents. If the header includes only the
attribute names, then the converter will assume that the data type of the values will be
String.

The Java APIs to convert CSV to OPV or OPE receive an | nput St r eamfrom which
they read the vertices or edges (from CSV), and write them in the . opv or . ope format
to an Qut put St r eam The converter APIs also allow customization of the conversion
process.

2-89

ORACLE

Chapter 2
Oracle Flat File Format Definition

The following subtopics provide instructions for converting vertices and edges:

* Vertices: Converting a CSV File to Oracle-Defined Flat File Format (. opv)

» Edges: Converting a CSV File to Oracle-Defined Flat File Format (. ope)

The instructions for both are very similar, but with differences specific to vertices and
edges.

Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)

If the CSV file does not include a header, you must specify a ColumnToAttrMapping
array describing all the attribute names (mapped to its values data types) in the same
order in which they appear in the CSV file. Additionally, the entire columns from the
CSV file must be described in the array, including special columns such as the ID for
the vertices. If you want to specify the headers for the column in the first line of the
same CSV file, then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convertCSV20PV
APIs. The simplest of these APIs requires:

* Anlnput Streamto read vertices from a CSV file

e The name of the column that is representing the vertex ID (this column must
appear in the CSV file)

e Aninteger offset to add to the VID (an offset is useful to avoid collision in ID values
of graph elements)

e A Col umToAtt r Mappi ng array (which must be null if the headers are specified in
the file)

» Degree of parallelism (DOP)
* Aninteger denoting offset (humber of vertex records to skip) before converting
e An Qut put Streamin which the vertex flat file (.opv) will be written

* An optional Dat aConvert erLi st ener that can be used to keep track of the
conversion progress and decide what to do if an error occurs

Additional parameters can be used to specify a different format of the CSV file:

e The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',’.

* The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the
value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

""Hello, world™, the screen showed..."

"But Vader replied: \"No, | am your father.\

* The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified
if the CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

- "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"
"MM/dd/yyyy HH:mm:ss"

2-90

ORACLE

Chapter 2
Oracle Flat File Format Definition

— "ddd, dd MMM yyyy HH":'mm"'ss 'GMT"'
— "dddd, dd MMMM yyyy hh:mm:ss"

- "yyyy-MM-dd"

— "MM/ddlyyyy"

* Aflag indicating if the CSV file contains String values with new line characters.
If this parameter is set to true, all the Strings in the file that contain new lines or
guotation characters as values must be quoted.

"The first lines of Don Quixote are:""In a village of La Mancha, the name of

which | have no desire to call to mind™.

The following code fragment shows how to create a Col umToAt t r Mappi ng array and
use the API to convert a CSV file into an . opv file.

String input CSV
String out put OPV
Col umToAt t r Mappi ng[] ctans

"/ pat h/ nygraph-vertices. csv";
"/ pat h/ nygraph. opv";
new Col uimToAt t r Mappi ng[4] ;

ctanms[0] =

Col umToAt t r Mappi ng. get I nstance("VID', Long. cl ass);
ctams[1] =

Col umToAt t r Mappi ng. get I nstance("name", String.class);
ctanms[2] =

Col umToAt t r Mappi ng. get I nstance("score", Doubl e.class);
ctans| 3] =

Col umToAt t r Mappi ng. get | nst ance("age", I nt eger. cl ass);
String vidCol um ="VID';

i sSCSV = new Fi |l el nput Strean{input CSV);
0sOPV = new Fi |l eQut put St ream new Fi | e(out put OPV)) ;

Il Convert Vertices

Oracl ePropertyG aphUti | sBase. convert CSV20PV(i sCSV, vi dCol um, 0,
ctams, 1, 0, osOPV, null);

i sOPV. cl ose();

0sOPV. cl ose();

In this example, the CSYV file to be converted must not include the header and contain
four columns (the vertex ID, name, score, and age). An example CVS is as follows:

1, John, 4.2, 30

2, Mary, 4. 3,32

3, "Skywal ker, Anakin",5.0, 46
4,"Darth Vader",5.0, 46

5, " Skywal ker, Luke",5.0,53

The resulting . opv file is as follows:

1, nane, 1, John, ,

1, score, 4, ,4. 2,

1, age, 2, , 30,

2, name, 1, Mary, ,

2,score, 4,,4. 3,

2, age, 2, , 32,

3, nang, 1, Skywal ker %2C¥%20Anaki n, ,
3,score, 4,,5.0,

2-91

ORACLE

Chapter 2
Oracle Flat File Format Definition

3, age, 2, , 46,

4, nane, 1, Dart h920Vader, ,
4,score, 4,,5.0,

4, age, 2, , 46,

5, nang, 1, Skywal ker 9%2C%20Luke, ,
5,score, 4,,5.0,

5, age, 2, , 53,

Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)

If the CSV file does not include a header, you must specify a Col urmToAt t r Mappi ng
array describing all the attribute names (mapped to its values data types) in the same
order in which they appear in the CSV file. Additionally, the entire columns from the
CSV file must be described in the array, including special columns such as the ID for
the edges if it applies, and the START _ID, END_ID, and TYPE, which are required. If
you want to specify the headers for the column in the first line of the same CSV file,
then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convert CSV20PE
APIs. The simplest of these APlIs requires:

* Anlnput St reamto read vertices from a CSV file

* The name of the column that is representing the edge ID (this is optional in the
CSV file; if it is not present, the line number will be used as the ID)

* Aninteger offset to add to the EID (an offset is useful to avoid collision in ID values
of graph elements)

* Name of the column that is representing the source vertex ID (this column must
appear in the CSV file)

* Name of the column that is representing the destination vertex ID (this column
must appear in the CSV file)

» Offset to the VID (I O f set VI D). This offset will be added on top of the original
SVID and DVID values. (A variation of this API takes in two arguments
(IO fsetSVIDand | O f set DVI D): one offset for SVID, the other offset for DVID.)

e A boolean flag indicating if the edge label column is present in the CSV file.

e Name of the column that is representing the edge label (if this column is not
present in the CSV file, then this parameter will be used as a constant for all edge
labels)

e A ColumToAttr Mappi ng array (which must be null if the headers are specified in
the file)

* Degree of parallelism (DOP)
* Aninteger denoting offset (hnumber of edge records to skip) before converting
* An Qut put St reamin which the edge flat file (.ope) will be written

* An optional Dat aConverterLi st ener that can be used to keep track of the
conversion progress and decide what to do if an error occurs.

Additional parameters can be used to specify a different format of the CSV file:

e The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',

e The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the

2-92

ORACLE

Chapter 2
Oracle Flat File Format Definition

value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

""Hello, world™, the screen showed..."

"But Vader replied: \"No, | am your father.\

* The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified
if the CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

- "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

- "MM/dd/yyyy HH:mm:ss"

— "ddd, dd MMM yyyy HH":'mm"'ss 'GMT"'
— "dddd, dd MMMM yyyy hh:mm:ss"

- "yyyy-MM-dd"

— "MM/dd/lyyyy"

* Aflag indicating if the CSV file contains String values with new line characters.
If this parameter is set to true, all the Strings in the file that contain new lines or
guotation characters as values must be quoted.

"The first lines of Don Quixote are:""In a village of La Mancha, the name of

which | have no desire to call to mind™.

The following code fragment shows how to use the API to convert a CSV file into
an . ope file with a null Col unmToAt t r Mappi ng array.

String i nput OPE
String out put OPE

"/ pat h/ mygr aph- edges. csv";
"/ pat h/ mygr aph. ope";

String ei dCol um nul | ; [l null inplies that an
i nteger sequence will be used

String svidColum = "START_ID';

String dvidColum = "END |ID";

bool ean hasLabel = true;

String |abel Colum = "TYPE";

i SOPE
0sCPE

= new Fil el nput Strean(i nput OPE) ;
= new Fil eQut put Streamnew Fi |l e(out put OPE));
/'l Convert Edges
Oracl ePropertyG aphUti | sBase. convert CSV20PE(i sOPE, ei dCol um, 0,
svi dCol um, dvi dCol um, haslLabel , |abel Col um, null, 1, 0, osOPE, null);

An input CSV that uses the former example to be converted should include the header
specifying the columns name and their type. An example CSV file is as follows.

START_I D: | ong, wei ght: fl oat, END_I D: | ong, : TYPE

1,1.0,2, 1 oves
1,1.0,5,admres
2,0.9,1,1 oves
1,0.5,3,likes
2,0.0,4,1ikes
4,1.0,5,is the dad of

2-93

ORACLE

3,1.0,4,turns to
5,1.0,3,saves fromthe dark side

The resulting .ope file is as follows.

.l oves, wei ght, 3,, 1.0,

,adm res, wei ght, 3,, 1.0,

.l oves, weight, 3,,0.9,
,likes,weight,3,,0.5,
,likes,weight,3,,0.0,

, 1 s920t he%?0dad%®00f , wei ght, 3, , 1. 0,
, turns%0t o, wei ght, 3, , 1. 0,

gwhrNDNEFELNRE P
WhoOoOpPr,wWELoOoN

N U A WNBE

, saves%0f r on?20t he%®20dar k9%20si de, wei ght, 3, , 1. 0,

Chapter 2
Oracle Flat File Format Definition

2-94

Using the In-Memory Graph Server (PGX)

ORACLE

The in-memory Graph server of Oracle Graph supports a set of analytical functions.

This chapter provides examples using the in-memory Graph Server (also referred

to as Property Graph In-Memory Analytics, and often abbreviated as PGX in the
Javadoc, command line, path descriptions, error messages, and examples). It contains
the following major topics.

PGX User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle database as identity manager by
default.

Reading Data from Oracle Database into Memory

When data is in PGX (that is, when data has been read into memory), you can

run any of the built-in algorithms against your data, even compile and execute your
own custom algorithms and use PGQL to query results.

Keeping the Graph in Oracle Database Synchronized with the Graph Server
You can use the Fl ashbackSynchr oni zer API to automatically apply changes
made to graph in the database to the corresponding PgxG aph object in memory,
thus keeping both synchronized.

Configuring the In-Memory Analyst
You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

Storing a Graph Snapshot on Disk

After reading a graph into memory using either Java or the Shell, if you make
some changes to the graph such as running the PageRank algorithm and storing
the values as vertex properties, you can store this snapshot of the graph on disk.

Executing Built-in Algorithms
The in-memory analyst contains a set of built-in algorithms that are available as
Java APIs.

Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java and
have it automatically compiled to an efficient parallel implementation.

Creating Subgraphs

You can create subgraphs based on a graph that has been loaded into memaory.
You can use filter expressions or create bipartite subgraphs based on a vertex
(node) collection that specifies the left set of the bipartite graph.

Using Automatic Delta Refresh to Handle Database Changes

You can automatically refresh (auto-refresh) graphs periodically to keep the in-
memory graph synchronized with changes to the property graph stored in the
property graph tables in Oracle Database (VT$ and GE$ tables).

Starting the In-Memory Analyst Server
A preconfigured version of Apache Tomcat is bundled, which allows you to start
the in-memory analyst server by running a script.

3-1

Chapter 3
PGX User Authentication and Authorization

* Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web
application with Apache Tomcat.

» Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web
application with Oracle WebLogic Server.

* Connecting to the In-Memory Analyst Server
After the property graph in-memory analyst is installed in a computer running
Oracle Database -- or on a client system without Oracle Database server software
as a web application on Apache Tomcat or Oracle WebLogic Server -- you can
connect to the in-memory analyst server.

* Managing Property Graph Snapshots
You can manage property graph snapshots.

* User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their
PGQL queries or custom graph algorithms, to complement built-in functions with
custom requirements.

3.1 PGX User Authentication and Authorization

ORACLE

The Oracle Graph server (PGX) uses an Oracle database as identity manager by
default.

This means that you log into the graph server using existing Oracle Database
credentials (user name and password), and the actions which you are allowed to do
on the graph server are determined by the roles that have been granted to you in the
Oracle database.

Basic Steps for Using an Oracle Database for Authentication

1. Use an Oracle Database version that is supported by Oracle Graph Server and
Client: version 12.2 or later, including Autonomous Database.

2. Be sure that you have SYSDBA access (or ADMIN access for Autonomous
Database) to grant and revoke users access to the graph server (PGX).

3. Be sure that all existing users to which you plan to grant access to the graph
server have at least the CREATE SESSION privilege granted.

4. Be sure that the database is accessible via JDBC from the host where the Graph
Server runs.

5. As SYSDBA (or ADMIN on Autonomous Database), create the following roles:

CREATE ROLE graph_devel oper
CREATE ROLE graph_admi ni strator

6. Assign roles to all the database developers who should have access the graph
server (PGX). For example:

GRANT graph_devel oper TO <gr aphuser >

where <graphuser> is a user in the database.

3-2

Chapter 3
PGX User Authentication and Authorization

7. Assign the administrator role to users who should have administrative access. For
example:

GRANT graph_admi ni strator to <adninistratoruser>

where <administratoruser> is a user in the database.

e Prepare the Graph Server for Database Authentication
Locate the pgx. conf file of your installation.

* Connect to the Server from JShell with Database Authentication
You can use the JShell client to connect to the server in remote mode, using
database authentication.

* Generate and Use a Token
Generate and use a token for making authenticated remote requests to the graph
server.

* Read Data from the Database
If you have a valid authentication token, you can now read data from the database
into the graph server without specifying any connection information in the graph
configuration for as long as the token is valid.

e Token Expiration
By default, tokens are valid for 4 hours. If the token expires, requests to the graph
server will be rejected.

» Advanced Access Configuration
You can customize the following fields in pgx. conf realm options to customize
login behavior.

* Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

* Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you
defined the access rules in your pgx.conf file.

3.1.1 Prepare the Graph Server for Database Authentication

Locate the pgx. conf file of your installation.

If you installed the graph server via RPM, the file is located at: / et ¢/ oracl e/ gr aph/
pgx. conf

If you use the webapps package to deploy into Tomcat or WebLogic Server, the
pgx. conf file is located inside the web application archive file (WAR file) at: WEB- | NF/
cl asses/ pgx. conf

Tip: On Linux, you can use vim to edit the file directly inside the WAR file without
unzipping it first. For example: vi m pgx- webapp- 20. 3. 0. war

Inside the pgx. conf file, locate the j dbc_url line of the realm options:

"pgx_real n': {
"inplementation": "oracle.pg.identity. DatabaseReal nf,
"options": {

ORACLE 3-3

Chapter 3
PGX User Authentication and Authorization

"jdbc_url"; "<REPLACE- W TH DATABASE- URL- TO- USE- FOR- AUTHENTI CATI ON>",
"t oken_expiration_seconds": 3600,

Replace the text with the JIDBC URL pointing to your database that you configured in
the previous step. For example:

"pgx_real n': {
“inplementation": "oracle.pg.identity.DatabaseReal ni',
"options": {
"jdbc_url": "jdbc:oracl e:thin: @yhost: 1521/ nyservice",

"t oken_expiration_seconds": 3600,

If you are using an Autonomous Database, specify the JDBC URL like this:

"pgx_real nf': {
"inplementation": "oracle.pg.identity.DatabaseReal ni',
"options": {

"jdbc_url": "jdbc:oracle:thin:@y_identifier | ow?TNS ADM N=/ et ¢/
oracl e/ graph/wal | et",
"t oken_expiration_seconds": 3600,

where [et c/ oracl e/ graph/ wal | et is an example path to the unzipped wallet

file that you downloaded from your Autonomous Database service console, and

my_i dentifier_| owis one of the connect identifiers specified in / et ¢/ or acl e/ gr aph/
wal | et/tnsnames. or a.

Now, start the graph server. If you installed via RPM, this can be done using:

systenct| start pgx

3.1.2 Connect to the Server from JShell with Database Authentication

ORACLE

You can use the JShell client to connect to the server in remote mode, using database
authentication.

To connect to the server in remote mode:

.I'bin/opg-jshell --base url https://I|ocal host: 7007 --usernane
<dat abase_user >

You will be prompted for the database password.

If you are using a Java client program, you can connect to the server as shown in the
following example:

i mport oracl e. pg. rdbns. *
i mport oracl e. pgx. api . *

3-4

Chapter 3
PGX User Authentication and Authorization

Serverlnstance instance = GaphServer.getlnstance("https://
| ocal host: 7007", "<database user>", "<database password>");
PgxSessi on session = instance. createSessi on("ny-session");

3.1.3 Generate and Use a Token

ORACLE

Generate and use a token for making authenticated remote requests to the graph
server.

If the graph server listens on htt ps:/ /| ocal host: 7007, you can run the following
command to sign in to the graph server as SCOTT:

curl -X POST -H ' Content-Type: application/json' -d '{"username":
"scott", "password": "<password>"}' https://|ocal host: 7007/ auth/token

The preceding example uses cURL to make an HTTP request to the server, you can
use any HTTP client of your choice.

If the user exists and has one of the graph roles assigned, the server will reply with
something like the following:

{

"token_type": "Bearer",

"expires_in": 3600,

"access_t oken":
"eyJraWQ O JEYXRhYnFzZVJl YWkt 1§ wi YWknl j oi U MyNTYi f Q eyJzdW i O JwZOFkbW ul i wi cnBsZ
XM A si cnVzb3VyY2Ui LCJj b25uZWNOI i wi Z3JhcCGhf YWRt aWbpc3Ry YXRvci JdLCIpc3M G JvenFj bG
UucGecuaVR bnRpdHkucnvzdC5BdXRoZVW0aVWWhdd vbl Nl cnZpY2Ui LCII eHAI G ELOTAXMDULMDVI. D1
4yGwzWzl yj xdi agknj B_WUBVSXnVKHFSYcLDkF2Jcl y MNEOMt gJ Q958 BNFpv B-
ha0ODxn_HLml | k3Cq7aoLi XNOV2WoxpYPQSdTulpU2cKo- Nf KQJF_MagnS-
USwOXozovqt r EsnaW d8uF8vASOVWH OWrBnTt i j 0e99K__t vDgpYQH3cqi cERPI BVMRov90Qg-
Rf uyg106CoGdgr NEMYGA4RR] BXOBFCD15y J2aUf MHUST uk Abh6aWh kKbwwueUngTdj hW xooEwy F-
C_Lj ksVPha2MbzRX- WOC6Zp8Lgxr 6ughx RIWIXpuQ.LaD2Vw4 OampP7MBAl ds S2MY'

}

You can now use the token to make authenticated remote requests to the graph
server.

If you use the JShell client, you will be prompted by the shell to provide the token
when you start the shell in remote mode. For example:

.I'bin/opg-jshell --base url https://Iocal host: 7007

Enter the authentication token: <token>

If you are using a Java client program, you can connect using the following:

i nport oracle.pgx.api.*

3-5

Chapter 3
PGX User Authentication and Authorization

Serverlnstance instance = Pgx.getlnstance("https://Iocal host:7007",
"<t oken>");
PgxSessi on session = instance. createSessi on("ny-session");

3.1.4 Read Data from the Database

ORACLE

If you have a valid authentication token, you can now read data from the database
into the graph server without specifying any connection information in the graph
configuration for as long as the token is valid.

Your database user must exist and have read access on the graph data in the
database.

For example, the following graph configuration will read a property graph named hr
into memory, authenticating as scot t / <passwor d> with the database:

G aphConfig config = G aphConfi gBuil der. forPropertyG aphRdbns()
.set Nane("hr")
.addVert exProperty("FI RST_NAVE", PropertyType. STRING
.addVert exProperty("LAST_NAME', PropertyType. STRING
.addVertexProperty("EMAIL", PropertyType. STRING
.addVertexProperty("CI TY", PropertyType. STRI NG
.setPartitionWileLoading(PartitionWileLoadi ng. BY_LABEL)
. set LoadVert exLabel s(true)
. set LoadEdgeLabel (true)
Cbuild();

PgxGraph hr = session.readG aphWthProperties(config);

The following example is a graph configuration in JSON format that reads from
relational tables into the graph server, without any connection information being
provided in the configuration file itself:

{

n narmll - n hr n ,
"vertex_id strategy":"no_ids",
"vertex_providers":|

{
"name": " Enpl oyees",
“format": "rdbns",
"dat abase_t abl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE_| D",
"key type":"string",
“props":|
{
"name": " Fl RST_NAME",

"type":"string"

}!

{
"nanme": " LAST_NAME",
"type":"string"

}

3-6

Chapter 3
PGX User Authentication and Authorization

b,

{
"nanme": " Departnents"”,
"format":"rdbns",
"dat abase_t abl e_nane": " DEPARTMENTS",
"key_col um": " DEPARTMVENT I D',
"key_type":"string",
"props":|

{
"name": " DEPARTMENT _NAME",
"type":"string"
}

]

}

1,
"edge_providers":|

{
"nanme": "WrksFor ",
"format":"rdbns",
"dat abase_tabl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"source_col um": "EMPLOYEE | D',
"destination_colum":"EMPLOYEE | D",
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Enpl oyees"

b,

{
"nanme": "WrksAs",
"format":"rdbns",
"dat abase_t abl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"source_colum": "EMPLOYEE | D',
"destination_colum":"JOB ID',
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Jobs"

}

For more information about how to read data from the database into the graph server,
see Reading Data from Oracle Database into Memory.

3.1.5 Token Expiration

By default, tokens are valid for 4 hours. If the token expires, requests to the graph
server will be rejected.

If that happens, you can generate a new token by logging in again and
asking the server for a handle to your previous session by using the
Server | nst ance#get Sessi on(" <sessi on-i d>") API. For example:

opg> var sessionld = session.getld() // remenber session IDin variable

ORACLE 3.7

Chapter 3
PGX User Authentication and Authorization

opg> var graph = session.readG aphWthProperties(config) // fails
because token expired

/1 obtain new token (see above for exanple)
opg> var newToken = ...

/1 get reference to previous session back
opg> session = Pgx. getlnstance(instance. getBaselrl (),
newToken) . get Sessi on(sessi onl d)

opg> var graph = session.readG aphWthProperties(config) // works now

3.1.6 Advanced Access Configuration

ORACLE

You can customize the following fields in pgx. conf realm options to customize login
behavior.

Table 3-1 Advanced Access Configuration Options

Field Name Explanation Default
t oken_expiration_second After how many seconds the 14400 (4 hours)
S generated bearer token will
expire.
connect _tinmeout _nillise After how many miliseconds 10000
conds an connection attempt to the

specified JDBC URL will time
out, resulting in the login
attempt being rejected.

max_pool _si ze Maximum number of JDBC 64
connections allowed per user.
If the number is reached,
attempts to read from the
database will fail for the
current user.

max_num users Maximum number of active, 512
signed in users to allow. If
this number is reached, the
graph server will reject login
attempts.

¢ Note:

The preceding options work only if the realm implementation is configured to
be oracle.pg.identity. DatabaseReal m

e Customizing Roles and Permissions
By default, the graph server maps the following roles to the following permissions
in pgx. conf .

* Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by
modifying the authorization list.

3-8

Chapter 3
PGX User Authentication and Authorization

* Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for
individual users.

3.1.6.1 Customizing Roles and Permissions

By default, the graph server maps the following roles to the following permissions in
pgx. conf .

"authorization": [{
"pgx_rol e": "GRAPH_ADM NI STRATOR',

"pgx_perm ssions": [{

“grant": "PGX_SESSI ON_CREATE"
boA

“grant": "PGX_SERVER GET_| NFO'
boA

“grant": "PGX_SERVER MANAGE'
}H

b o

"pgx_rol e": "GRAPH DEVELCPER',
"pgx_perm ssions": [{

“grant": "PGX_SESSI ON_CREATE"
boA

“grant": "PGX_SESSI ON_NEW GRAPH'
boA

"grant": "PGX_SESSI ON_CGET_PUBLI SHED GRAPH'

H
1

You can fully customize this mapping by adding and removing roles and specifying
permissions to which a role maps. You can also authorize individual users instead of
roles. This topic includes examples of how to customize the permission mapping.

To change the authorization mappings, you can:

* Modify the pgx. conf file and then restart the server, or

e Dot at run time by using the Server | nst ance#updat ePgxConfi g() API. You need
the PGX_SERVER_MANAGE permission to do this. Note that using this API will
not persist those changes.

3.1.6.2 Adding and Removing Roles

ORACLE

You can add new role permission mappings or remove existing mappings by modifying
the authorization list.

For example:

"aut horization": [{
"pgx_role": "MY_CUSTOM ROLE 1",
"pgx_permssions": [...]

b o
"pgx_role": "MY_CUSTOM ROLE 2",
"pgx_permssions": [...]

b A

3-9

Chapter 3
PGX User Authentication and Authorization

"pgx_role": "MY_CUSTOM ROLE 3",
"pgx_permssions": [...]

}

Note that role and user names in PGX case case-sensitive, whereas in the database
they will be case-insensitive (if not quoted). This means that if you perform CREATE
ROLE ny_custom rol e_1 in the database, you will have to reference it in the pgx. conf
file with " pgx_rol e": "M_CUSTOM ROLE_1". On the other hand, if you perform CREATE
ROLE "ny_customrol e_2" in the database, you will have to reference it in the

pgx. conf file with "pgx_rol e": "ny_customrole_2".

3.1.6.3 Defining Permissions for Individual Users

In addition to defining permissions for roles, you can define permissions for individual
users.

For example:

"aut horization": [{
"pgx_user": "SCOTT",
"pgx_permssions": [...]

b A
"pgx_user": "JANE",
"pgx_permssions": [...]

b A
"pgx_rol e": "GRAPH_DEVELOPER',
"pgx_permssions": [...]

3.1.7 Examples of Custom Authorization Rules

You can define custom authorization rules for developers.

* Example 3-1

* Example 3-2

* Example 3-3

* Example 3-4

Example 3-1 Allowing Developers to Use Custom Graph Algorithms

To allow developers to compile custom graph algorithms (see Using Custom PGX
Graph Algorithms, add the following static permission to the list of permissions:

"authorization": [{
"pgx_rol e": "GRAPH DEVELCPER',
"pgx_perm ssions": [{
“grant": "PGX_SESSI ON_COVP| LE_ALGORI THV
¥

ORACLE 3-10

ORACLE

Chapter 3
PGX User Authentication and Authorization

Example 3-2 Allowing Developers to Publish Graphs

Allowing graph server users to publish graphs or share graphs with other users which
originate from the Oracle Database breaks the database authorization model. If you
work with graphs in the database, use GRANT statements in the database instead.
See the OPG_APIS.GRANT_ACCESS API for examples how to do this for PG graphs.
When reading from relational tables, use normal GRANT READ statements on tables.

To allow developers to publish graphs, add the following static permission to the list of
permissions:

"authorization": [{
"pgx_rol e": "GRAPH DEVELCPER',
"pgx_perm ssions": [{
“grant": "PGX_SESSI ON_ADD PUBLI SHED GRAPH'
¥

Publishing graphs alone does not give others access to the graph. You must also
specify the type of access. There are three levels of permissions for graphs:

1. READ: allows to read the graph data via the PGX API or in PGQL queries, run
Analyst or custom algorithms on a graph and create a subgraph or clone the given
graph

2. EXPORT: export the graph via the PgxGraph#store() APIs. Includes READ
permission. Please note that in addition to the EXPORT permission, users also
need WRITE permission on a file system in order to export the graph.

3. MANAGE: publish the graph or snapshot, grant or revoke permissions on the
graph. Includes the EXPORT permission.

The creator of the graph automatically gets the MANAGE permission granted on the
graph. If you have the MANAGE permission, you can grant other roles or users READ
or EXPORT permission on the graph. You cannot grant MANAGE on a graph. The
following example of a user named userA shows how:

i mport oracl e. pgx. api . *
i mport oracl e. pgx. cormon. aut h. *

PgxSessi on session = Pgx. getlnstance("<base-url>", "<auth-token-of -
user A>"). creat eSessi on("userA")

PgxGraph g = session.readG aphWthProperties("exanpl es/ sanpl e-
graph. json", "sanple-graph")

g. grant Per ni ssi on(new PgxRol e(" GRAPH DEVELOPER')

PgxResour cePer m ssi on. READ)

g. publish()

Now other users with the GRAPH_DEVELOPER role can access this graph and have
READ access on it, as shown in the following example of userB:

PgxSessi on session = Pgx. getlnstance("<base-url>", "<auth-token-of-
userB>"). creat eSessi on("userB")

3-11

ORACLE

Chapter 3
PGX User Authentication and Authorization

PgxGaph g = session. get Gaph("sanpl e-graph")
g. queryPgql ("sel ect count(*) frommatch (v)").print().close()

Similarly, graphs can be shared with individual users instead of roles, as shown in the
following example:

g. grant Per mi ssi on(new PgxUser (" OTHER _USER'),
PgxResour cePer ni ssi on. EXPORT)

where OTHER_USER is the user name of the user that will receive the EXPORT
permission on graph g.

Example 3-3 Allowing Developers to Access Preloaded Graphs

To allow developers to access preloaded graphs (graphs loaded during graph server
startup), grant the read permission on the preloaded graph. For example:

"prel oad_graphs": [{
"path": "/datalny-graph.json”,
"name": "gl obal _graph”
H,
"authorization": [{
"pgx_rol e": "GRAPH DEVELCPER',
"pgx_perm ssions": [{
"prel oaded_graph": "gl obal _graph”
"grant": "read"

}

You can grant READ, EXPORT, or MANAGE permission.

Example 3-4 Allowing Developers Access to the Hadoop Distributed
Filesystem (HDFS) or the Local File System

To allow developers to read files from HDFS, you must first declare the HDFS directory
and then map it to a read or write permission. For example:

“file_locations": [{
"name": "my_hdfs_graph_data"
"l ocation": "hdfs:/datalgraphs”
H.
“aut horization": [{
"pgx_rol e": "GRAPH DEVELOPER',
"pgx_perm ssions": [{
"file_location": "ny_hdfs_graph_data"
"grant": "read"

b

Similarly, you can add another permission with "grant": "write" to allow write
access. Such a write access is required in order to export graphs.

3-12

Chapter 3
Reading Data from Oracle Database into Memory

Access to the local file system (where the graph server runs) can be granted the same
way. The only difference is that location would be an absolute file path without the
hdf s: prefix. For example:

"l ocation": "/opt/oracle/graph/data"

Note that in addition to the preceding configuration, the operating system user that
runs the graph server process must have the corresponding directory privileges to
actually read or write into those directories.

3.1.8 Revoking Access to the Graph Server

To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you
defined the access rules in your pgx.conf file.

For example:

REVOKE graph_devel oper FROM scott

Revoking Graph Permissions

If you have the MANAGE permission on a graph, you can revoke graph access from
users or roles using the PgxG- aph#r evokePer ni ssi on API. For example:

PgxGraph g = ...

g. revokePer m ssi on(new PgxRol e(" GRAPH DEVELOPER")) // revokes
previously granted role access

g. revokePer m ssi on(new PgxUser ("SCOTT")) // revokes previously granted
user access

3.2 Reading Data from Oracle Database into Memory

ORACLE

When data is in PGX (that is, when data has been read into memory), you can run
any of the built-in algorithms against your data, even compile and execute your own
custom algorithms and use PGQL to query results.

Depending on your needs, there are two different approaches to how you can read
data from the Oracle Database into PGX.

e Graph database use case

You store your data as a graph in the database and manage that data in the
database via graph APIs. You only need PGX as an accelerator for expensive
gueries or to run graph algorithms on the entire graph.

For this use case, you should store the data in the property graph format in

the Oracle Database (VT$ and GE$ tables), use PGQL on RDBMS to manage
the data in the database and then read from that property graph format into

PGX. You can also configure PGX to periodically fetch updates from the database
automatically in the background to keep the data synchronized.

Note that the use of PGX is optional in this use case. For some applications the
capabilities available in the database only are sufficient.

3-13

ORACLE

Chapter 3
Reading Data from Oracle Database into Memory

* Analytics-only use case

Your data is stored in relational form and you want to keep managing that data
using standard PL/SQL. You are not interested in a "graph database" but still want
to benefit from the analytical capabilities of PGX, which exploit the connectivity of
your data for specific analytical use cases.

Note:

This topic applies to both user managed and Autonomous Databases.
However, the examples shown are for user managed Databases. For extra
configuration steps required for Autonomous Databases, see Using Oracle
Graph with the Autonomous Database.

Subtopics:

» Store the database password in a keystore

» Either, Write the PGX graph configuration file to load from the property graph
schema

* Or, Write the PGX graph configuration file to load a graph directly from relational
tables

 Read the data

e Secure coding tips for graph client applications

Store the database password in a keystore

Regardless of your use case, PGX requires a database account to read data from the
database into memory. The account should be a low-privilege account (see Security
Best Practices with Graph Data).

As described in Read Data from the Database, you can read data from the database
into the graph server without specifying additional authentication as long as the token
is valid for that database user. But if you want to access a graph from a different user,
you can do so, as long as that user's password is stored in a Java Keystore file for
protection.

You can use the keyt ool command that is bundled together with the JDK to generate
such a keystore file on the command line. See the following script as an example:

Add a password for the 'databasel' connection

keytool -inportpass -alias databasel -keystore keystore.pl2
1. Enter the password for the keystore

2. Enter the password for the database

Add another password (for the 'database2' connection)
keytool -inportpass -alias database2 -keystore keystore.pl2

List what's in the keystore using the keytool
keytool -list -keystore keystore.pl2

3-14

Chapter 3
Reading Data from Oracle Database into Memory

If you are using Java version 8 or lower, you should pass the additional parameter
-storetype pkcsl2 to the keytool commands in the preceding example.

You can store more than one password into a single keystore file. Each password can
be referenced using the alias name provided.

Either, Write the PGX graph configuration file to load from the property graph
schema

Next write a PGX graph configuration file in JSON format. The file tells PGX where to
load the data from, how the data looks like and the keystore alias to use. The following
example shows a graph configuration to read data stored in the Oracle property graph

format.
{
"format": "pg",
"db_engi ne": "rdbns",
"name": "hr",
"jdbc_url": "jdbc:oracle:thin: @yhost:1521/orcl",
"usernane": "hr",

"keystore_alias": "databasel",
"vertex_props": [{
"nanme": " COUNTRY_NAME",
"type": "string"
oA
"nane": " DEPARTMENT _NAME",
"type": "string"

boA
"nanme": " SALARY",
“type": "double"
H,
"partition_while_|loading": "by_|abel",
"l oadi ng": {

"l oad_vertex_|abel s": true,
"| oad_edge_| abel ": true
}
}

(For the full list of available configuration fields, including their meanings and default
values, see https://docs.oracle.com/cd/E56133_01/latest/reference/loader/database/
pg-format.html.)

Or, Write the PGX graph configuration file to load a graph directly from relational
tables

The following example loads a subset of the HR sample data from relational tables
directly into PGX as a graph. The configuration file specifies a mapping from relational
to graph format by using the concept of vertex and edge providers.

ORACLE 3-15

https://docs.oracle.com/cd/E56133_01/latest/reference/loader/database/pg-format.html
https://docs.oracle.com/cd/E56133_01/latest/reference/loader/database/pg-format.html

ORACLE

Chapter 3
Reading Data from Oracle Database into Memory

< Note:

Specifying the vert ex_provi ders and edge_provi der s properties loads the
data into an optimized representation of the graph.

“name": "hr",

“jdbc_url":"jdbc:oracle:thin: @yhost: 1521/ orcl",
"usernane":"hr",

"keystore_alias":"databasel",

"vertex_id strategy": "no_ids",
“vertex_providers":|

{
"name": " Enpl oyees",
"format":"rdbns",
"dat abase_t abl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"key_type": "string",
“props":|
{
"nanme": " FI RST_NAME",
"type":"string"
¥
{
"name": " LAST_NAME",
"type":"string"
b
{
“name": " EMAIL",
"type":"string"
b
{
"name": " SALARY",
“type":"long"
}
]
b
{
"nane": "Jobs",
"format":"rdbns",
"dat abase_t abl e_name":"JOBS",
"key_colum":"JOB I D',
"key_type": "string",
"props":|
{
"name":"JOB_TI TLE",
"type":"string"
}
]
b
{

"name": " Departnents",

3-16

Chapter 3
Reading Data from Oracle Database into Memory

"format":"rdbms",

"dat abase_t abl e_nane": " DEPARTMENTS",
"key_col um": " DEPARTMVENT I D',
"key_type": "string",

"props":|
{

"name":

n

"type":

}
] 1
"edge_providers":|

{

" DEPARTMENT _NAME",
"string"

"name": " Wor ksFor",

"format":"rdbms",

"dat abase_t abl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",

"source_col um": "EMPLOYEE | D',
"destination_colum":"EMPLOYEE | D",
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Enpl oyees"

"name": "WrksAs",

"format":

":"rdbns",

"dat abase_tabl e_name": " EMPLOYEES",
"key_col um": "EMPLOYEE | D",
"source_col um": "EMPLOYEE | D',
"destination_colum":"JOB ID',
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Jobs"

"name": " Wor kedAt ",

"format":"rdbms",

"dat abase_table_nane":"JOB_H STORY",
"key_col um": "EMPLOYEE | D",

"source_col um": "EMPLOYEE | D',
"destination_col um": " DEPARTMENT | D',
"source_vertex_provider":"Enpl oyees",
"destination_vertex_provider":"Departments",

"props":|
{

"name":
"type":

b
{

"name":
"type":

ORACLE

" START_DATE",
"l ocal _date"

"END_DATE",
"l ocal _date"

3-17

ORACLE

Chapter 3
Reading Data from Oracle Database into Memory

Note about vertex and edge IDs:

PGX enforces by default the existence of a unique identifier for each vertex and edge
in a graph, so that they can be retrieved by using PgxG aph. get Vertex(1D i d) and
PgxG aph. get Edge(1 D i d) or by PGQL queries using the built-in i d() method.

The default strategy to generate the vertex IDs is to use the keys provided during
loading of the graph. In that case, each vertex should have a vertex key that is unique
across all the types of vertices. For edges, by default no keys are required in the edge
data, and edge IDs will be automatically generated by PGX. Note that the generation
of edge IDs is not guaranteed to be deterministic. If required, it is also possible to load
edge keys as IDs.

However, because it may cumbersome for partitioned graphs to define such identifiers,
it is possible to disable that requirement for the vertices and/or edges by setting the
vertex_id_strategy and edge_i d_strat egy graph configuration fields to the value
no_i ds as shown in the preceding example. When disabling vertex (resp. edge) IDs,
the implication is that PGX will forbid the call to APIs using vertex (resp. edge) IDs,
including the ones indicated previously.

If you want to call those APIs but do not have globally unique IDs in your relational
tables, you can specify the unst abl e_generat ed_i ds generation strategy, which
generates new IDs for you. As the name suggests, there is no correlation to the
original IDs in your input tables and there is no guarantee that those IDs are stable.
Same as with the edge IDs, it is possible that loading the same input tables twice
yields two different generated IDs for the same vertex.

Read the data

Now you can instruct PGX to connect to the database and read the data by passing
in both the keystore and the configuration file to PGX, using one of the following
approaches:

* Interactively in the graph shell
If you are using the graph shell, start it with the - - secr et _st or e option. It will
prompt you for the keystore password and then attach the keystore to your current
session. For example:

cd /opt/oracl e/ graph
.I'bin/opg-jshell --secret_store /etc/ny-secrets/keystore.pl2

enter password for keystore /etc/my-secrets/keystore.pl2:

Inside the shell, you can then use normal PGX APIs to read the
graph into memory by passing the JSON file you just wrote into the
readG aphWt hProperties APL:

opg-j shel | -rdbns> var graph =
sessi on. readG aphWthProperties("config.json")
graph ==> PgxGraph[name=hr, N=215, E=415, cr eat ed=1576882388130]

* As aPGX preloaded graph

As a server administrator, you can instruct PGX to load graphs into memory upon
server startup. To do so, modify the PGX configuration file at / et ¢/ or acl e/ gr aph/

3-18

ORACLE

Chapter 3
Reading Data from Oracle Database into Memory

pgx. conf and add the path the graph configuration file to the prel oad_graphs
section. For example:

{
"prel oad_graphs": [{
"nanme": "hr",
"path": "/path/tol/config.json"
H,
}

Now, when you start up the server using the start-server script, provide the path to
the keystore file which will prompt for the keystore password before server startup.
For example:

.l pgx/bin/start-server --secret-store /etc/ny-secrets/keystore.pl2
enter password for keystore /etc/ny-secrets/keystore.pl2:

In a Java application
To register a keystore in a Java application, use the regi st er Keyst ore() APl on
the PgxSessi on object. For example:

i mport oracl e. pgx. api . *;
class Main {

public static void main(String[] args) throws Exception {
String baseUrl = args[0];
String keystorePath = "/etc/ny-secrets/keystore. pl2";
char[] keystorePassword = args[1].toCharArray();
String graphConfigPath = args[2];
Serverlnstance instance = Pgx. getlnstance(baseUrl);
try (PgxSession session = instance.createSession("my-session"))
sessi on. regi st er Keyst ore(keyst orePat h, keyst orePassword);
PgxGraph graph =
sessi on. readG aphW t hProperti es(graphConfi gPat h);
Systemout.printIn("N =" + graph.getNunVertices() + " E="
+ graph. get NunEdges());
1
}
}

You can compile and run the preceding sample program using the Oracle Graph
Client package. For example:

cd $GRAPH CLI ENT

/] create Main.java with above contents

javac -cp 'lib/*" Min.java

java -cp ".:conf:lib/*" Min http://myhost: 7007 MyKeyst orePassword
pat h/to/ config.json

3-19

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

Secure coding tips for graph client applications

When writing graph client applications, make sure to never store any passwords or
other secrets in clear text in any files or in any of your code.

Do not accept passwords or other secrets through command line arguments either.
Instead, use Consol e. ht m #r eadPasswor d() from the JDK.

3.3 Keeping the Graph in Oracle Database Synchronized
with the Graph Server

ORACLE

You can use the Fl ashbackSynchr oni zer API to automatically apply changes made to
graph in the database to the corresponding PgxG aph object in memory, thus keeping
both synchronized.

This API uses Oracle's Flashback Technology to fetch the changes in the database
since the last fetch and then push those changes into the graph server using

the ChangeSet API. After the changes are applied, the usual snapshot semantics
of the graph server apply: each delta fetch application creates a new in-memory
snapshot. Any queries or algorithms that are executing concurrently to snapshot
creation are unaffected by the changes until the corresponding session refreshes
its PgxG aph object to the latest state by calling the sessi on. set Snapshot (gr aph,
PgxSessi on. LATEST _SNAPSHOT) procedure.

For detailed information about Oracle Flashback technology, see the Database
Development Guide.

Prerequisites for Synchronizing

The Oracle database must have Flashback enabled and the database user that you
use to perform synchronization must have:

* Read access to all tables which need to kept synchornized.

* Permission to use flashback APIs. For example:

grant execute on dbns_flashback to <user>

The database must also be configured to retain changes for the amount of time
needed by your use case.

Limitations for Synchronizing
The synchronizer API currently has the following limitations

e Only partitioned graph configurations with all providers being database tables are
supported.

» Both the vertex and edge ID strategy must be set as follows:

"vertex_id_strategy": "keys_as_ids",
"edge_id_strategy": "keys_as_ids"

3-20

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

» Each edgel/vertex provider must be configured to create a key mapping. In each
provider block of the graph configuration, add the following loading section:

"l oading": {
"create_key nmapping": true

}

This implies that vertices and edges must have globally unique ID columns.

- Each edge/vertex provider must specify the owner of the table by setting the
username field. For example, if user SCOTT owns the table, then set the
username accordingly in the provider block of that table:

“usernane": "scott"

e Inthe root loading block, the snapshot source must be set to change_set :

"l oadi ng": {
"snapshots_source": "change set"

}

For a detailed example, including some options, see the following topic.

* Example of Synchronizing
As an example of performing synchronization, assume you have the following
Oracle Database tables, PERSONS and FRIENDSHIPS.

3.3.1 Example of Synchronizing

ORACLE

As an example of performing synchronization, assume you have the following Oracle
Database tables, PERSONS and FRIENDSHIPS.

CREATE TABLE PERSONS (

PERSON_| D NUMBER GENERATED ALWAYS AS | DENTITY (START WTH 1 | NCREMENT
BY 1),

NAVE VARCHAR2(200),

Bl RTHDATE DATE,

HEI GHT FLOAT DEFAULT ON NULL 0,

I NT_PROP | NT DEFAULT ON NULL 0,

CONSTRAI NT person_pk PRI MARY KEY (PERSON_I D)

):

CREATE TABLE FRI ENDSHI PS (

FRI ENDSH P_| D NUMBER GENERATED ALWAYS AS | DENTITY (START WTH 1
| NCREMENT BY 1),

PERSON_A NUMBER,

PERSON_B NUMBER,

VEETI NG_DATE DATE,

TS_PROP TI MESTANP,

CONSTRAI NT fk_PERSON_A | D FOREI GN KEY (PERSON_A) REFERENCES
per sons(PERSON_I D),

CONSTRAI NT fk_PERSON B | D FOREI GN KEY (PERSON_B) REFERENCES
per sons(PERSON_| D)

):

3-21

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

You add some sample data into these tables:

I NSERT | NTO PERSONS (NAME, HEI GHT, BIRTHDATE) VALUES (‘' John', 1.80,
to_date(' 13/ 06/ 1963, ' DD/ MV YYYY'));

I NSERT | NTO PERSONS (NAME, HEI GHT, BIRTHDATE) VALUES (' Mary', 1.65,
to_date(' 25/09/1982', ' DD/ MV YYYY'));

I NSERT | NTO PERSONS (NAME, HEI GHT, BI RTHDATE) VALUES (' Bob', 1.75,
to_date(' 11/03/1966', ' DD/ MV YYYY'));

I NSERT | NTO PERSONS (NAME, HE! GHT, BI RTHDATE) VALUES (' Alice', 1.70,
to_date(' 01/02/ 1987, ' DD/ MV YYYY'));

I NSERT | NTO FRI ENDSH PS (PERSON_A, PERSON B, MEETI NG DATE) VALUES (1,
3, to_date(' 01/09/1972', ' DD/ MM YYYY'));
I NSERT | NTO FRI ENDSH PS (PERSON_A, PERSON B, MEETI NG DATE) VALUES (2,
4, to_date(' 19/09/1992', ' DD/ MM YYYY'));
I NSERT | NTO FRI ENDSH PS (PERSON_A, PERSON B, MEETI NG DATE) VALUES (4,
2, to_date(' 19/09/1992', ' DD/ MM YYYY'));
I NSERT | NTO FRI ENDSH PS (PERSON_A, PERSON B, MEETI NG DATE) VALUES (3,
2, to_date(' 10/07/2001', ' DD/ MV YYYY'));

Synchronizing Using Connection Information in the Graph Configuration

You then want to synchronize using connection information in the graph configuration.
You have the following sample graph configuration (Keyst or eGr aphConf i gExampl e),
which reads those tables as a graph:

{

"nanme": "Peopl eFri endshi ps",
"optinmized for": "updates",
"edge id strategy": "keys_ as_ids",
"edge id type": "long",

"vertex_id type": "long",
"jdbc_url": "<jdbc_url>",
"usernane": "<usernanme>",

"keystore_ alias": "<keystore_ alias>",
"vertex_providers": [

{
“format": "rdbns",
"usernane": "<username>",
"key type": "long",
"name": "person",
"dat abase_tabl e _name": "PERSONS',
"key_colum": "PERSON | D',
“props": |
1
"l oadi ng": {

"create_key mapping": true

}

}

]

dge_providers": [

{

"format": "rdbns",

ORACLE 3-22

ORACLE

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

"usernane": "<usernane>",

"nane": "friendOr",
"source_vertex_provider": "person",
"destination_vertex_provider": "person",

"dat abase_tabl e name": "FRI ENDSH PS",
"source_colum": "PERSON A",
"destination_colum": "PERSON B",
"key_colum": "FRIENDSH P_I D",

nw.on

"key_type":"long",

"props": [
1,
"l oadi ng": {
"create_key_mapping": true
}
}
1,
"l oadi ng": {
"snapshots_source": "change_set"

}
}

(In the preceding example, replace the values <j dbc_ur| >, <user nane>, and
<keyst ore_al i as> with the values for connecting to your database.)

Open the Oracle Property Graph JShell (be sure to register the keystore containing the
database password when starting it), and load the graph into memory:

var pgxGaph = session.readG aphWthProperties("persons_graph.json");

The following output line shows that the example graph has four vertices and four
edges:

pgxG aph ==> PgxGraph[name=Peopl eFri endshi ps, N=4, E=4, cr eat ed=1594754376861]

Now, back in the database, insert a few new rows:

| NSERT | NTO PERSONS (NAME, BI RTHDATE, HEI GHT) VALUES

(" Mariana',to_date('21/08/1996',' DO M YYYY'), 1. 65);

| NSERT | NTO PERSONS (NAME, BI RTHDATE, HEI GHT) VALUES

(" Francisco',to_date(' 13/06/1963","' DD MM YYYY'), 1. 75);

| NSERT | NTO FRI ENDSHI PS (PERSON_A, PERSON B, MEETI NG DATE) VALUES (1,
6, to_date('13/06/2013",' DD/ MM YYYY'));

COWM T,

Back in JShell, you can now use the Fl ashbackSynchroni zer API to automatically
fetch and apply those changes:

var synchroni zer = new

Synchroni zer. Bui | der <Fl ashbackSynchroni zer>() . set Type(Fl ashbackSynchr oni
zer. cl ass). set Graph(pgxG aph). buil d()

pgxG aph = synchroni zer. sync()

3-23

Chapter 3
Configuring the In-Memory Analyst

As you can see from the output, the new vertices and edges have been applied:

pgxG aph ==> PgxG aph[name=Peopl eFri endshi ps, N=6, E=5, cr eat ed=1594754376861]

Note that pgxG aph = synchroni zer. sync() is equivalent to calling the following:

synchroni zer. sync()
sessi on. set Snapshot (pgxG aph, PgxSessi on. LATEST SNAPSHOT)

Splitting the Fetching and Applying of Changes

The synchroni zer. sync() invocation fetches the changes and applies them in one
call. However, you can encode a more complex update logic by splitting this process
into separate fetch() and appl y() invocations. For example:

synchroni zer.fetch() // fetches changes fromthe database

i f (synchronizer.get GaphDelta().getTotal Nunber O Changes() > 100) {
/1 only create snapshot if there have been nore than 100 changes
synchroni zer. appl y()

}

Synchronizing Using an Explicit Oracle Connection

The synchronizer API fetches the changes on the client side. That means the client
needs to connect to the database. In the preceding example, it did that by reading

the connection information available in the graph configuration of the loaded PgxGr aph
object. However, there can be situations in which connection information cannot be
obtained from the PgxG aph object, such as when:

* The associated graph configuration does not contain any database connection
information, and the graph was loaded using credentials of a logged in user; or

* The associated graph configuration contains a datasource ID corresponding to a
connection stored on the server side.

In these cases, you can pass in an Oracle connection object building the synchronizer
object to be used to fetch changes. For example (Exanpl eG aphConfi g.j son):

String jdbcUl = "<JDBC URL>";
String username = "<USERNAME>";
String password = " <PASSWORD>";
Connection connection = DriverManager. get Connection(jdbcUrl, usernang,
passwor d)
Synchroni zer synchroni zer = new
Synchroni zer . Bui | der <Fl ashbackSynchroni zer >()
. set Type(Fl ashbackSynchr oni zer. cl ass)
. set & aph(pgxG aph)
. set Connecti on(connection)
Cbuild();

3.4 Configuring the In-Memory Analyst

You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

ORACLE 3-24

ORACLE

Chapter 3
Configuring the In-Memory Analyst

This file can include the parameters shown in the following table. Some examples

follow the table.

To specify the configuration file, see Specifying the Configuration File to the In-Memory

Analyst.

" Note:

e Relative paths in parameter values are always resolved relative to the
parent directory of the configuration file in which they are specified.
For example, if the configuration file is / pgx/ conf / pgx. conf, then the
file path graph- confi gs/ ny- graph. bi n. j son inside that file would be
resolved to / pgx/ conf / graph- confi gs/ my- graph. bi n. j son.

e The parameter default values are optimized to deliver the best
performance across a wide set of algorithms. Depending on your
workload. you may be able to improve performance further by
experimenting with different strategies, sizes, and thresholds.

Table 3-2 Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

admin_request_cache_ti integer
meout

allow_idle_timeout_over boolean
write

allow_local_filesystem boolean

allow_override_scheduli boolean
ng_information

After how many seconds 60
admin request results get
removed from the cache.
Requests which are not

done or not yet consumed

are excluded from this

timeout. Note: This is only
relevant if PGX is deployed

as a webapp.

If true, sessions can true
overwrite the default idle
timeout.

Allow loading from the local false
file system in client/server

mode. Default is false. If set

to true, additionally specify

the property

dat asource_dir_whiteli

st to list the directories. The
server can only read from

the directories that are listed

here.

If true, allow all users true
to override scheduling

information like task weight,

task priority, and number of
threads

3-25

ORACLE

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

allowed_remote_loading array of string
_locations

allow_task_timeout_over boolean
write

allow_user_auto_refresh boolean

allowed_remote_loading array of string
_locations

basic_scheduler_config object

bfs_iterate_que_task_si
ze

integer

bfs_threshold_parent_re number
ad_based

Allow loading of graphs 0
into the PGX engine from
remote locations (http, https,
ftp, ftps, s3, hdfs). Default

is empty. Value supported

is “*” (asterisk), meaning
that all remote locations

will be allowed. Note

that pre-loaded graphs are
loaded from any location,
regardless of the value

of this setting. WARNING:
Specifying * (asterisk)
should be done only if you
want to explicitly allow users
of the PGX remote interface
to access files on the local
file system.

If true, sessions can true
overwrite the default task
timeout.

If true, users may enable false
auto refresh for graphs

they load. If false, only

graphs mentioned

in prel oad_gr aphs can

have auto refresh enabled.

(This option may reduce 1]
security; use it only if you
know what you are doing!)
Allow loading graphs into
the PGX engine from remote
locations (http, https, ftp,
ftps, s3, hdfs). If empty,

as by default, no remote
location is allowed. If "*"

is specified in the array,

all remote locations are
allowed. Only the value "*"

is currently supported. Note
that pre-loaded graphs are
loaded from any location,
regardless of the value of
this setting.

Configuration parameters for null
the fork join pool backend.

Task size for BFS iterate 128
QUE phase.

Threshold of BFS traversal 0.05
level items to switch to
parent-read-based visiting
strategy.

3-26

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

bfs_threshold_read_bas integer
ed

bfs_threshold_single_thr integer
eaded

character_set string

cni_diff_factor_default integer

cni_small_default integer

cni_stop_recursion_defa integer

ult

datasource_dir_whitelist array of string

dfs_threshold_large integer

enable_csrf_token_chec boolean

ks

enable_gm_compiler boolean

ORACLE

Threshold of BFS traversal 1024
level items to switch to read-
based visiting strategy.

Until what number of BFS 128
traversal level items vertices
are visited single-threaded.

Standard character set utf-8
to use throughout PGX.

UTF-8 is the default. Note:

Some formats may not be
compatible.

Default diff factor value used 8
in the common neighbor
iterator implementations.

Default value used in the 128
common neighbor iterator
implementations, to indicate
below which threshold a

subarray is considered

small.

Default value used in the 96
common neighbor iterator
implementations, to indicate

the minimum size where the
binary search approach is
applied.

If 0
al low_| ocal _filesystem

is set, the list of directories
from which it is allowed to
read files.

Value that determines 4096
at which number of

visited vertices the DFS
implementation will switch

to data structures that are
optimized for larger numbers

of vertices.

If true, the PGX webapp true
will verify the Cross-Site

Request Forgery (CSRF)

token cookie and request
parameters sent by the

client exist and match. This

is to prevent CSRF attacks.

[relevant when profiling false
with solaris studio] When

enabled, label experiments

using the 'er_label'

command.

3-27

ORACLE

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

enable_shutdown_clean boolean
up_hook

enterprise_scheduler_co object
nfig
enterprise_scheduler_fla object
gs

explicit_spin_locks boolean

graph_algorithm_langua enum[GM_LEGA
ge CY, GM, JAVA]

graph_validation_lever enum[low, high]

ignore_incompatible_ba boolean
ckend_operations

in_place_update_consist enum[ALLLOW_|

ency NCONSISTENCIE
S,
CANCEL_TASKS]

init_pgqgl_on_startup boolean

If true, PGX will add a

JVM shutdown hook that will
automatically shutdown PGX
at JVM shutdown. Notice:
Having the shutdown hook
deactivated and not explicitly
shutting down PGX may
result in pollution of your
temp directory.

true

Configuration parameters for null
the enterprise scheduler.

[relevant null
for enterprise_scheduler]
Enterprise scheduler-

specific settings.

true means spin explicitly in true
a loop until lock becomes
available. false means using

JDK locks which rely on

the JVM to decide whether

to context switch or spin.

Setting this value to true

usually results in better
performance.

Front-end compiler to use. gm
Level of validation performed low
on newly loaded or created
graphs.

If true, only log when
encountering incompatible
operations and configuration
values in RTS or FJ pool. If
false, throw exceptions.

false

Consistency model used
when in-place updates
occur. Only relevant if in-
place updates are enabled.
Currently updates are only
applied in place if the
updates are not structural
(Only modifies properties).
Two models are currently
implemented: one only
delays new tasks when an
update occurs, the other
also delays running tasks.

If true PGQL is directly
initialized on start-up of
PGX. Otherwise, it is
initialized during the first use
of PGQL.

allow_inconsistenc
ies

true

3-28

ORACLE

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

interval_to_poll_max integer

java_home_dir string

large_array_threshold integer

max_active_sessions integer

max_distinct_strings_pe integer
r_pool

max_off_heap_size integer

max_queue_size_per_s integer
ession

Exponential backoff upper 1000
bound (in ms) to which -

once reached, the job status
polling interval is fixed

The path to Java's home null
directory. If set to <system

j ava- hone-di r >, use the

j ava. hone system property.

Threshold when the size
of an array is too big

to use a normal Java
array. This depends on
the used JVM. (Defaults to
Integer.MAX_VALUE - 3)

Maximum number of 1024
sessions allowed to be
active at a time.

[only relevant if 65536
string_pooling_strategy is

indexed] Number of distinct

strings per property after

which to stop pooling. If

the limit is reached, an

exception is thrown.

Maximum amount of
off-heap memory (in
megabytes) that PGX is
allowed to allocate before
an OutOfMemoryError will
be thrown. Note: this

limit is not guaranteed

to never be exceeded,
because of rounding and
synchronization trade-offs. It
only serves as threshold
when PGX starts to reject
new memory allocation
requests.

2147483644

<available-
physical-memory>

The maximum number of -1
pending tasks allowed to be

in the queue, per session.

If a session reaches the
maximum, new incoming
requests of that sesssion get
rejected. A negative value
means no limit.

3-29

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

max_snapshot_count integer

memory_allocator enum[basic_alloc
ator,
enterprise_allocat
or]

memory_cleanup_interv integer

al

ms_bfs_frontier_type_str enum[auto_grow,
ategy short, int]
num_spin_locks integer
parallelism integer

pattern_matching_super integer
node_cache_threshold

pooling_factor number

ORACLE

Number of snapshots that 0
may be loaded in the engine
at the same time. New
snapshots can be created
via auto or forced update.

If the number of snapshots
of a graph reaches this
threshold, no more auto-
updates will be performed,
and a forced update will
result in an exception until
one or more snapshots are
removed from memory. A
value of zero indicates to
support an unlimited amount
of snapshots.

The memory allocator to basic_allocator
use.

Memory cleanup interval in 600
seconds.

The type strategy to use for auto_grow
MS-BFS frontiers.

Number of spin locks each 1024
generated app will create

at instantiation. Trade-off:

a small number implies

less memory consumption; a

large number implies faster
execution (if algorithm uses

spin locks).

Number of worker threads ~ <number-of-cpus>
to be used in thread pool.

Note: If the caller thread is

part of another thread-pool,

this value is ignored and

the parallelism of the parent

pool is used.

Minimum number of a 1000
node's neighbor to be a
supernode. This is for the

pattern matching engine.

[only relevant if 0.25
string_pooling_strategy is
on_heap] This value

prevents the string pool to

grow as big as the property

size, which could render the
pooling ineffective.

3-30

ORACLE

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

preload_graphs array of object

random_generator_strat enum[non_determ

egy inistic,
deterministic]
random_seed long

release_memory_thresh double
old

revisit_threshold integer

List of graph configs to be 0
registered at start-up. Each
item includes path to a

graph config, the name of

the graph and whether it
should be published.

Method of generating
random numbers in PGX.

non_deterministic

-24466691093057
031

[relevant

for deterministic random
number generator

only] Seed for the
deterministic random
number generator used
in the in-memory
analyst. The default is
-24466691093057031.

Threshold percentage 0.85
(decimal fraction) of used
memory after which the
engine starts freeing unused
graphs. Examples: A value
of 0.0 means graphs get
freed as soon as their
reference count becomes
zero. That is, all sessions
which loaded that graph
were destroyed/timed out.
A value of 1.0 means
graphs never get freed,

and the engine will

throw OutOfMemaoryErrors
as soon as a graph is
needed which does not fit in
memory anymore. A value
of 0.7 means the engine
keeps all graphs in memory
as long as total memory
consumption is below 70%
of total available memory,
even if there is currently no
session using them. When
consumption exceeds 70%
and another graph needs to
get loaded, unused graphs
get freed until memory
consumption is below 70%
again.

Maximum number of 4096
matched results from a node

to be reached.

3-31

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

scheduler enum[basic_sche The scheduler to advanced_schedul
duler, use. basi ¢c_schedul er er
enterprise_sched uses a scheduler
uler] with basic features.

session_idle_timeout_se integer
cs

session_task_timeout_s integer
ecs

small_task_length integer

spark_streams_interface string

strict_mode boolean

string_pooling_strategy enum[indexed,
on_heap, none]

ORACLE

ent erprise_schedul er
uses a scheduler

with advanced enterprise
features for running
multiple tasks concurrently
and providing better
performance.

Timeout of idling sessions in 0
seconds. Zero (0) means no
timeout

Timeout in seconds to 0
interrupt long-running tasks
submitted by sessions
(algorithms, I/O tasks). Zero
(0) means no timeout.

Task length if the total 128
amount of work is smaller

than default task length (only
relevant for task-stealing
strategies).

The name of an interface null
will be used for spark data
communication.

If true, exceptions are true
thrown and logged

with ERROR level whenever
the engine encounters
configuration problems, such
as invalid keys, mismatches,
and other potential errors.

If false, the engine

logs problems with ERROR/
WARN level (depending on
severity) and makes best
guesses and uses sensible
defaults instead of throwing
exceptions.

[only relevant if on_heap
use_string_pool is enabled]

The string pooling strategy

to use.

3-32

ORACLE

Chapter 3
Configuring the In-Memory Analyst

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

___|
Parameter Type Description Default

task_length integer Default task length (only 4096
relevant for task-stealing
strategies). Should be
between 100 and 10000.
Trade-off: a small number
implies more fine-grained
tasks are generated, higher
stealing throughput; a
large number implies less
memory consumption and
GC activity.

tmp_dir string Temporary directory to store <system-tmp-dir>
compilation artifacts and
other temporary data. If set
to <system-tmp-dir>, uses
the standard tmp directory
of the underlying system
(/tmp on Linux).

udf_config_directory string Directory path containing null
UDF files.

use_memory_mapper_f boolean If true, use memory mapped true

or_reading_pgb files for reading graphs in

PGB format if possible; if
false, always use a stream-
based implementation.

use_memory_mapper_f boolean If true, use memory mapped true
or_storing_pgb files for storing graphs in

PGB format if possible; if

false, always use a stream-

based implementation.

Enterprise Scheduler Parameters

The following parameters are relevant only if the advanced scheduler is used. (They
are ignored if the basic scheduler is used.)

* analysis_task _config

Configuration for analysis tasks. Type: object. Default:
prioritymedi umrax_t hr eads<no- of - CPUs>wei ght <no- of - CPUs>

 fast_analysis_task config

Configuration for fast analysis tasks. Type: object. Default:
priorityhi ghmax_t hr eads<no- of - CPUs>wei ght 1

e maxnum concurrent i o_tasks
Maximum number of concurrent tasks. Type: integer. Default: 3
 num.io_threads_per_task

Configuration for fast analysis tasks. Type: object. Default: <no- of - cpus>

3-33

ORACLE

Chapter 3
Configuring the In-Memory Analyst

Basic Scheduler Parameters

The following parameters are relevant only if the basic scheduler is used. (They are
ignored if the advanced scheduler is used.)

e numworkers_anal ysis

Number of worker threads to use for analysis tasks. Type: integer. Default: <no-
of - CPUs>

e numworkers_fast track_anal ysis

Number of worker threads to use for fast-track analysis tasks. Type: integer.
Default: 1

e numworkers_io

Number of worker threads to use for I/O tasks (load/refresh/write from/to disk).
This value will not affect file-based loaders, because they are always single-
threaded. Database loaders will open a new connection for each 1/0 worker.
Default: <no- of - CPUs>

Example 3-5 Minimal In-Memory Analyst Configuration

The following example causes the in-memory analyst to initialize its analysis thread
pool with 32 workers. (Default values are used for all other parameters.)

{

“enterprise_schedul er_config": {
"anal ysis_task_config": {
"max_threads": 32
}
}
}

Example 3-6 Two Pre-loaded Graphs

sets more fields and specifies two fixed graphs for loading into memory during PGX
startup.

{
“enterprise_schedul er_config": {
"anal ysis_task_config": {
"max_t hreads": 32
¥
"fast_anal ysis_task_config": {
"max_t hreads": 32
}
}

"menory_cl eanup_i nterval ": 600,
"max_active_sessions": 1,

"rel ease_nmenory_threshol d": 0.2,
"prel oad_graphs": [

"path": "graph-configs/ny-graph.bin.json",
"nanme": "ny-graph"

b

{
"path": "graph-configs/ny-other-graph.adj.json",
"name": "ny-other-graph",
"publish": false

}

3-34

Chapter 3
Configuring the In-Memory Analyst

]
}

» Specifying the Configuration File to the In-Memory Analyst

3.4.1 Specifying the Configuration File to the In-Memory Analyst

ORACLE

The in-memory analyst configuration file is parsed by the in-memory analyst at startup-
time whenever Ser ver | nst ance#st ar t Engi ne (or any of its variants) is called. You

can write the path to your configuration file to the in-memory analyst or specify it
programmatically. This topic identifies several ways to specify the file

Programmatically
All configuration fields exist as Java enums. Example:

Map<PgxConfig. Fi el d, Object> pgxCfg = new HashMap<>();
pgxCf g. put (PgxConfi g. Fi el d. MEMORY_CLEANUP_I| NTERVAL, 600);

Serverlnstance instance = ...
i nstance. start Engi ne(pgxCf g) ;

All parameters not explicitly set will get default values.

Explicitly Using a File

Instead of a map, you can write the path to an in-memory analyst configuration JSON
file. Example:

i nstance. start Engi ne("path/to/ pgx.conf"); // file on local file system
i nstance. start Engi ne("cl asspat h: / path/to/ pgx.conf"); // file on current classpath

For all other protocols, you can write directly in the input stream to a JSON file.
Example:

Input Streamis = ...
i nstance. start Engi ne(is);

Implicitly Using a File

If start Engi ne() is called without an argument, the in-memory analyst looks for a
configuration file at the following places, stopping when it finds the file:

e File path found in the Java system property pgx_conf. Example: j ava -
Dpgx_conf =conf/ ny. pgx. config.json ...

« Afile named pgx. conf in the root directory of the current classpath

» Afile named pgx. conf in the root directory relative to the
current Syst em get Property("user.dir") directory

Note: Providing a configuration is optional. A default value for each field will be used
if the field cannot be found in the given configuration file, or if no configuration file is
provided.

Using the Local Shell

To change how the shell configures the local in-memory analyst instance,
edit $PGX_HOWE/ conf / pgx. conf . Changes will be reflected the next time you
invoke $PGX_HOVE/ bi n/ pgx.

3-35

Chapter 3
Storing a Graph Snapshot on Disk

You can also change the location of the configuration file as in the following example:

.I'bin/opg --pgx_conf path/tolny/other/pgx.conf

Setting System Properties

Any parameter can be set using Java system properties by writing -

Dpgx. <Fl ELD>=<VALUE> arguments to the JVM that the in-memory analyst is running
on. Note that setting system properties will overwrite any other configuration. The
following example sets the maximum off-heap size to 256 GB, regardless of what any
other configuration says:

java -Dpgx. max_of f _heap_si ze=256000 ...

Setting Environment Variables

Any parameter can also be set using environment variables by adding 'PGX_' to

the environment variable for the JVM in which the in-memory analyst is executed.
Note that setting environment variables will overwrite any other configuration; but if

a system property and an environment variable are set for the same parameter, the
system property value is used. The following example sets the maximum off-heap size
to 256 GB using an environment variable:

PGX_MAX_OFF_HEAP_S| ZE=256000 java ...

3.5 Storing a Graph Snapshot on Disk

ORACLE

After reading a graph into memory using either Java or the Shell, if you make some
changes to the graph such as running the PageRank algorithm and storing the values
as vertex properties, you can store this snapshot of the graph on disk.

This is helpful if you want to save the state of the graph in memory, such as if you must
shut down the in-memory analyst server to migrate to a newer version, or if you must
shut it down for some other reason.

(Storing graphs over HTTP/REST is currently not supported.)

A snapshot of a graph can be saved as a file in a binary format (called a PGB file) if
you want to save the state of the graph in memory, such as if you must shut down the
in-memory analyst server to migrate to a newer version, or if you must shut it down for
some other reason.

In general, we recommend that you store the graph queries and analytics APIs that
had been executed, and that after the in-memory analyst has been restarted, you
reload and re-execute the APIs. But if you must save the state of the graph, you can
use the logic in the following example to save the graph snapshot from the shell.

In a three-tier deployment, the file is written on the server-side file system. You must
also ensure that the file location to write is specified in the in-memory analyst server.
(As explained in Three-Tier Deployments of Oracle Graph with Autonomous Database,
in a three-tier deployment, access to the PGX server file system requires a list of
allowed locations to be specified.)

opg-j shel I > var graph =

sessi on. creat eG aphBui | der (). addVertex(1).addVertex(2).addVertex(3).addE
dge(1, 2). addEdge(2, 3) . addEdge(3, 1).build()

graph ==> PgxG aph[name=anonynous_graph_1, N=3, E=3, cr eat ed=1581623669674]

3-36

Chapter 3
Executing Built-in Algorithms

opg-j shel | > anal yst. pager ank(gr aph)
$3 ==> Vert exProperty[nanme=pager ank, t ype=doubl e, gr aph=anonyrous_gr aph_1]

/1 Now save the state of this graph

opg-j shel | > g. store(Format. PGB, "/tnp/snapshot.pgh")

$4 ==> {"edge_props":[],"vertex_uris":["/tnmp/snapshot.pgb"], "l oadi ng":
{},"attributes":{},"edge_uris":[],"vertex_props":

[{"name": "pagerank", "di nension":0,"type":"double"}],"error_handling":
{},"vertex_id_type":"integer","format": "pgb"}

/1 reload from di sk

opg-j shel I > var graphFronDi sk = session. readG aphFile("/tnp/

snapshot . pgh")

graphFronDi sk ==> PgxG aph[nane=snapshot, N=3, E=3, cr eat ed=1581623739395]

/1 previously computed properties are still part of the graph and can
be queried
opg-j shel | > graphFronDi sk. queryPgql ("sel ect x.pagerank match

(x)").print().close()

The following example is essentially the same as the preceding one, but it uses
partitioned graphs. Note that in the case of partitioned graphs, multiple PGB files are
being generated, one for each vertex/edge partition in the graph.

-jshel I > anal yst . pager ank(gr aph)

$3 ==>

Ver t exPr oper t y[name=pager ank, t ype=doubl e, gr aph=anonynous_graph_1]//
store graph including all props to disk

/1 Now save the state of this graph

opg-j shel | > var storedPghConfig = g.store(ProviderFormat. PGB, "/tnp/
snapshot ")

$4 ==> {"edge_props":[],"vertex_uris":["/tnp/snapshot.pgb"], "l oadi ng"
{},"attributes":{},"edge uris":[],"vertex_props"

[{"name": "pagerank", "di nension":0,"type":"doubl e"}],"error_handling"
{},"vertex_id_type":"integer","format":"pgh"}

/1 Reload from di sk

opg-j shel I > var graphFronDi sk =

sessi on. readG aphWt hProperties(storedPghConfi g)

graphFronDi sk ==> PgxG aph[name=snapshot, N=3, E=3, cr eat ed=1581623739395]
/1 Previously computed properties

are still part of the graph and can be queried

opg-j shel I > graphFronDi sk. queryPgqgl ("sel ect x. pagerank

mat ch (x)").print().close()

3.6 Executing Built-in Algorithms

ORACLE

The in-memory analyst contains a set of built-in algorithms that are available as Java
APlIs.

This topic describes the use of the in-memory analyst using Triangle Counting and
PageRank analytics as examples.

e About the In-Memory Analyst

3-37

Chapter 3
Executing Built-in Algorithms

* Running the Triangle Counting Algorithm
* Running the PageRank Algorithm

3.6.1 About the In-Memory Analyst

The in-memory analyst contains a set of built-in algorithms that are available as Java
APIs. The details of the APIs are documented in the Javadoc that is included in

the product documentation library. Specifically, see the Bui | ti nAl gori t hns interface
Method Summary for a list of the supported in-memory analyst methods.

For example, this is the PageRank procedure signature:
/**
* (O assic pagerank algorithm Tine conplexity: QCE * K) with E = nunber of

edges, Kis a given constant (nax
* jterations)

*
* @ar am graph
* graph
* @arame
* maxi mumerror for termnating the iteration
* @aramd
* danpi ng factor
* @ar am nmax
* maxi num nunber of iterations
* @eturn Vertex Property holding the result as a double
*/
public <ID extends Conparabl e<l D>> Vert exProperty<I D, Double>
pager ank(PgxGraph graph, double e, double d, int nmax);

3.6.2 Running the Triangle Counting Algorithm

For triangle counting, the sort ByDegr ee boolean parameter of count Tri angl es()
allows you to control whether the graph should first be sorted by degree (t r ue) or not
(fal se). If true, more memory will be used, but the algorithm will run faster; however,
if your graph is very large, you might want to turn this optimization off to avoid running
out of memory.

Using the Shell to Run Triangle Counting

opg> anal yst. count Tri angl es(graph, true)

Using Java to Run Triangle Counting

i mport oracl e. pgx. api . *;

Anal yst anal yst = session. createAnal yst();
long triangles = anal yst. countTriangl es(graph, true);

The algorithm finds one triangle in the sample graph.

ORACLE 3-38

Chapter 3
Executing Built-in Algorithms

Tip:

When using the in-memory analyst shell, you can increase the amount of log
output during execution by changing the logging level. See information about
the : 1 ogl evel command with : h :1ogl evel .

3.6.3 Running the PageRank Algorithm

ORACLE

PageRank computes a rank value between 0 and 1 for each vertex (node) in the graph
and stores the values in a doubl e property. The algorithm therefore creates a vertex
property of type doubl e for the output.

In the in-memory analyst, there are two types of vertex and edge properties:

» Persistent Properties: Properties that are loaded with the graph from a data
source are fixed, in-memory copies of the data on disk, and are therefore
persistent. Persistent properties are read-only, immutable and shared between
sessions.

» Transient Properties: Values can only be written to transient properties,
which are private to a session. You can create transient properties by calling
createVertexProperty and creat eEdgePr operty on PgxG aph objects, or by
copying existing properties using cl one() on Property objects.

Transient properties hold the results of computation by algorithms. For example,
the PageRank algorithm computes a rank value between 0 and 1 for each vertex
in the graph and stores these values in a transient property named pg_r ank.
Transient properties are destroyed when the Analyst object is destroyed.

This example obtains the top three vertices with the highest PageRank values. It uses
a transient vertex property of type doubl e to hold the computed PageRank values. The
PageRank algorithm uses the following default values for the input parameters: error
(tolerance = 0.001), damping factor = 0.85, and maximum number of iterations = 100.

Using the Shell to Run PageRank

opg> rank = anal yst. pagerank(graph, 0.001, 0.85, 100);
==> .

opg> rank. get TopKVval ues(3)

==> 128=0. 1402019732468347

==> 333=0. 12002296283541904

==> 99=0. 09708583862990475

Using Java to Run PageRank

inmport java.util.Mp.Entry;
i nport oracl e. pgx. api . *;

Anal yst anal yst = session. createAnal yst();
Vert exProperty<lnteger, Double> rank = anal yst. pagerank(graph, 0.001, 0.85, 100);
for (Entry<integer, Double> entry : rank.get TopKval ues(3)) {

Systemout. printin(entry.getKey() + "=" + entry.getValue());

}

3-39

Chapter 3
Using Custom PGX Graph Algorithms

3.7 Using Custom PGX Graph Algorithms

A custom PGX graph algorithm allows you to write a graph algorithm in Java and have
it automatically compiled to an efficient parallel implementation.

For more detailed information than appears in the following subtopics, see
the PGX Algorithm specification at https://docs.oracle.com/cd/E56133_01/latest/
PGX_Algorithm_Language_Specification.pdf.

e Writing a Custom PGX Algorithm
e Compiling and Running a PGX Algorithm
e Example Custom PGX Algorithm: PageRank

3.7.1 Writing a Custom PGX Algorithm

ORACLE

A PGX algorithm is a regular .java file with a single class definition that is annotated
with @r aphAl gorit hm For example:

i mport oracl e. pgx. al gorithm annotati ons. GraphAl gorithm

@ aphAl gorithm
public class M/Al gorithm{

}

A PGX algorithm class must contain exactly one public method which will be used as
entry point. For example:

i mport oracl e. pgx. al gorithm PgxG aph;

i mport oracl e. pgx.al gorithm VertexProperty;

i mport oracl e. pgx. al gorithm annotations. GraphAl gorithm
i mport oracl e. pgx. al gorithm annotations. Qut;

@ aphAl gorithm
public class M/A gorithm{
public int nyAl gorithn(PgxGaph g, @ut VertexProperty<lnteger>
di stance) {
Systemout.printIn("M first PGX Al gorithm program");

return 42;

As with normal Java methods, a PGX algorithm method can return a value (an
integer in this example). More interesting is the @ut annotation, which marks the
vertex property di st ance as output parameter. The caller passes output parameters
by reference. This way, the caller has a reference to the modified property after the
algorithm terminates.

e Collections

e |teration

3-40

https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf
https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf

Chapter 3
Using Custom PGX Graph Algorithms

¢ Reductions

3.7.1.1 Collections

To create a collection you call the .create() function. For example, a
VertexProperty<integer> is created as follows:

Vert exProperty<lnteger> di stance = VertexProperty.create();

To get the value of a property at a certain vertex v:

di stance. get (v);

Similarly, to set the property of a certain vertex v to a value e:

di stance. set(v, e);

You can even create properties of collections:

Ver t exProperty<Vert exSequence> path = VertexProperty.create();

However, PGX Algorithm assignments are always by value (as opposed to by
reference). To make this explicit, you must call . cl one() when assigning a collection:

Vert exSequence sequence = path.get(v).clone();

Another consequence of values being passed by value is that you can check for
equality using the == operator instead of the Java method . equal s() . For example:

PgxVertex vl = G get RandonVertex();
PgxVertex v2 = G get RandonVertex();
Systemout. printin(vl == v2);

3.7.1.2 Iteration

The most common operations in PGX algorithms are iterations (such as looping over
all vertices, and looping over a vertex's neighbors) and graph traversal (such as

breath-first/depth-first). All collections expose a f or Each and f or Sequent i al method
by which you can iterate over the collection in parallel and in sequence, respectively.

For example:

» To iterate over a graph's vertices in parallel:
G get Vertices().forEach(v -> {

1)

ORACLE 3-41

Chapter 3
Using Custom PGX Graph Algorithms
» To iterate over a graph's vertices in sequence:

G get Vertices().forSequential (v -> {

1)

» To traverse a graph's vertices from r in breadth-first order:

i mport oracl e. pgx.al gorithm Traversal ;

Traversal .inBFS(G r).forward(n -> {

1)

Inside the f orwar d (or backwar d) lambda you can access the current level of the
BFS (or DFS) traversal by cal I i ng currentLevel ().

3.7.1.3 Reductions

ORACLE

Within these parallel blocks it is common to atomically update, or reduce to, a variable
defined outside the lambda. These atomic reductions are available as methods on
Scal ar<T>: reduceAdd, reduceMil, reduceAnd, and so on. For example, to count
the number of vertices in a graph:

public int countVertices() {
Scal ar<I nteger> count = Scal ar.create(0);

G get Vertices().forEach(n -> {
count. reduceAdd(1);

1

return count.get();

Sometimes you want to update multiple values atomically. For example, you might
want to find the smallest property value as well as the vertex whose property value
attains this smallest value. Due to the parallel execution, two separate reduction
statements might get you in an inconsistent state.

To solve this problem the Reduct i ons class provides ar gM n and ar gMax functions. The
first argument to ar gM n is the current value and the second argument is the potential
new minimum. Additionally, you can chain andUpdat e calls on the Ar gM nMax object to
indicate other variables and the values that they should be updated to (atomically). For
example:

Vert exProperty<lnteger> rank = VertexProperty.create();
int mnRank = Integer. MAX VALUE;
PgxVertex m nVertex = PgxVertex. NONE;

G get Vertices().forEach(n ->
argM n(m nRank, rank.get(n)).andUpdate(m nVertex, n)

)

3-42

Chapter 3
Using Custom PGX Graph Algorithms

3.7.2 Compiling and Running a PGX Algorithm

To be able to compile and run a custom PGX algorithm, you must perform several
actions:

1.

2.

Set two configuration parameters in the conf/ pgx. conf file:
e Setthe graph_al gorithm | anguage option to JAVA.

e Setthejava_hone_dir option to the path to your Java home (use <syst em
j ava- hone- di r > to have PGX infer Java home from the system properties).

Create a session (either implicitly in the shell or explicitly in Java). For example:

cd $PGX_HOME
. I'bin/ opg

Compile a PGX Algorithm. For example:

nyAl gorithm = sessi on. conpi | eProgran("/path/to/ A gorithmjava")
Run the algorithm. For example:

graph = session.readG aphWthProperties("/path/to/config.edge.json")

property = graph. createVertexProperty(PropertyType. | NTEGER)
nyAl gorithm run(graph, property)

3.7.3 Example Custom PGX Algorithm: PageRank

The following is an implementation of pager ank as a PGX algorithm:

ORACLE

i mport oracl e. pgx. al gorithm PgxG aph;

i mport oracl e. pgx.al gorithm Scal ar;

i mport oracle. pgx.al gorithm VertexProperty;

i mport oracl e. pgx. al gorithm annotati ons. GraphAl gorithm
i mport oracl e. pgx. al gorithm annotations. Qut;

@ aphAl gorithm
public class Pagerank {

public voi d pagerank(PgxG aph G double tol, double danp, int

max_iter, boolean norm @ut VertexProperty<Double> rank) {

Scal ar<Doubl e> diff = Scal ar.create();
int cnt = 0;
double N = G get NumVertices();

rank.setAll (1 / N);
do {
diff.set(0.0);
Scal ar <Doubl e> dangling_factor = Scal ar. create(0d);

if (norm {
dangling factor.set(danp / N * GgetVertices().filter(v ->

v.get Qut Degree() == 0).sun(rank::get));
}

3-43

Chapter 3
Creating Subgraphs

G getVertices().forEach(t -> {
doubl e in_sum = t.getlnNeighbors().sumw -> rank.get(w) /
w. get Qut Degree());
double val = (1 - danp) / N + danp * in_sum +
dangl ing_factor.get();
di ff.reduceAdd(Mat h. abs(val - rank.get(t)));
rank. setDeferred(t, val);

IOF
cnt +4;
} while (diff.get() > tol & cnt < max_iter);
}
}

3.8 Creating Subgraphs

You can create subgraphs based on a graph that has been loaded into memory. You
can use filter expressions or create bipartite subgraphs based on a vertex (node)
collection that specifies the left set of the bipartite graph.

For information about reading a graph into memory, see Reading Data from Oracle
Database into Memory.

e About Filter Expressions
» Using a Simple Filter to Create a Subgraph
* Using a Complex Filter to Create a Subgraph

* Using a Vertex Set to Create a Bipartite Subgraph

3.8.1 About Filter Expressions

ORACLE

Filter expressions are expressions that are evaluated for each edge. The expression
can define predicates that an edge must fulfil to be contained in the result, in this case
a subgraph.

Consider an example graph that consists of four vertices (nodes) and four edges.
For an edge to match the filter expression src. prop == 10, the source vertex pr op
property must equal 10. Two edges match that filter expression, as shown in the
following figure.

3-44

Chapter 3
Creating Subgraphs

Figure 3-1 Edges Matching src.prop == 10

cost: 27.03 id: 1908

prop: 869

cost: 8.51

cost: 51.09

cost: 338.0 id: 333

The following figure shows the graph that results when the filter is applied. The filter
excludes the edges associated with vertex 333, and the vertex itself.

Figure 3-2 Graph Created by the Simple Filter

id: 128 cost: 27.03 o id: 1908
nmpy T\ prop: 889

cost: 8.51

Using filter expressions to select a single vertex or a set of vertices is difficult. For
example, selecting only the vertex with the property value 10 is impossible, because
the only way to match the vertex is to match an edge where 10 is either the source
or destination property value. However, when you match an edge you automatically
include the source vertex, destination vertex, and the edge itself in the result.

3.8.2 Using a Simple Filter to Create a Subgraph

The following examples create the subgraph described in About Filter Expressions.

ORACLE 3-45

Chapter 3
Creating Subgraphs

Using the Shell to Create a Subgraph

subgraph = graph.filter(new VertexFilter("vertex.prop == 10"))

Using Java to Create a Subgraph

i mport oracl e. pgx. api . *;
i mport oracle.pgx.api.filter.*;

PgxG aph graph = session.readG aphWthProperties(...);
PgxG aph subgraph = graph.filter(new VertexFilter("vertex.prop == 10"));

3.8.3 Using a Complex Filter to Create a Subgraph

This example uses a slightly more complex filter. It uses the out Degr ee function, which
calculates the number of outgoing edges for an identifier (source sr ¢ or destination
dst). The following filter expression matches all edges with a cost property value
greater than 50 and a destination vertex (node) with an out Degr ee greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in the following
figure.

Figure 3-3 Edges Matching the outDegree Filter

id:- 128 cost: 27.03 . id:1808
prnpy 7\ prop: 889
cost: 8.51
cost: 51.09
cost: 336.0 id: 333

The following figure shows the graph that results when the filter is applied. The filter
excludes the edges associated with vertixes 99 and 1908, and so excludes those
vertices also.

ORACLE 3-46

Chapter 3
Creating Subgraphs

Figure 3-4 Graph Created by the outDegree Filter

cost: 51.09

3.8.4 Using a Vertex Set to Create a Bipartite Subgraph

You can create a bipartite subgraph by specifying a set of vertices (nodes), which

are used as the left side. A bipartite subgraph has edges only between the left set of
vertices and the right set of vertices. There are no edges within those sets, such as
between two nodes on the left side. In the in-memory analyst, vertices that are isolated
because all incoming and outgoing edges were deleted are not part of the bipartite
subgraph.

The following figure shows a bipartite subgraph. No properties are shown.

ORACLE 3-47

ORACLE

Chapter 3
Creating Subgraphs

Left set of nodes Right set of nodes

The following examples create a bipartite subgraph from the simple graph shown in
About Filter Expressions. They create a vertex collection and fill it with the vertices for
the left side.

Using the Shell to Create a Bipartite Subgraph

opg> s = graph.createVertexSet ()

==> R

opg> s.addAl | ([graph. get Vertex(333), graph.getVertex(99)])
==> R

opg> s. size()

=> 2

opg> bG aph = graph. bi partiteSubG aphFronieft Set(s)

==> PGX Bipartite G aph named sanpl e- sub- graph-4

Using Java to Create a Bipartite Subgraph

i nport oracl e. pgx. api . *;

VertexSet<Integer> s = graph. createVertexSet();
s. addAl | (graph. get Vertex(333), graph.getVertex(99));
Bi partiteG aph bGaph = graph. bi partiteSubG aphFromieftSet(s);

When you create a subgraph, the in-memory analyst automatically creates a Boolean
vertex (node) property that indicates whether the vertex is on the left side. You can
specify a unigue name for the property.

The resulting bipartite subgraph looks like this:

3-48

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

id: 99
prop: 2
isLeft: true

cost: 8.51
id: 128
prop: 10
isLeft: false

cost: 51.09

id: 333
prop: 6
isLeft: true

Vertex 1908 is excluded from the bipartite subgraph. The only edge that connected
that vertex extended from 128 to 1908. The edge was removed, because it violated
the bipartite properties of the subgraph. Vertex 1908 had no other edges, and so was
removed also.

3.9 Using Automatic Delta Refresh to Handle Database

Changes

You can automatically refresh (auto-refresh) graphs periodically to keep the in-memory
graph synchronized with changes to the property graph stored in the property graph
tables in Oracle Database (VT$ and GES$ tables).

Note that the auto-refresh feature is not supported when loading a graph into PGX in
memory directly from relational tables.

» Configuring the In-Memory Server for Auto-Refresh

e Configuring Basic Auto-Refresh

* Reading the Graph Using the In-Memory Analyst or a Java Application
* Checking Out a Specific Snapshot of the Graph

* Advanced Auto-Refresh Configuration

3.9.1 Configuring the In-Memory Server for Auto-Refresh

ORACLE

Because auto-refresh can create many snapshots and therefore may lead to a high
memory usage, by default the option to enable auto-refresh for graphs is available only
to administrators.

To allow all users to auto-refresh graphs, you must include the following
line into the in-memory analyst configuration file (located in $ORACLE_HOVE/ nd/
property_graph/ pgx/ conf/ pgx. conf):

{

"all ow user _auto_refresh": true

}

3-49

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

3.9.2 Configuring Basic Auto-Refresh

Auto-refresh is configured in the loading section of the graph configuration. The
example in this topic sets up auto-refresh to check for updates every minute, and
to create a new snapshot when the data source has changed.

The following block (JSON format) enables the auto-refresh feature in the
configuration file of the sample graph:

{

"format": "pg",

"jdbc_url": "jdbc:oracle:thin: @ydatabaseserver: 1521/ dbName",

"usernane": "scott",

"password": "<password>",

"name": "ny_graph",

"vertex_props": [{

"nane": "prop",
"type": "integer"

H,

"edge props": [{
"nane": "cost",
"type": "double"

H,

"separator": " ",

"l oadi ng": {
"auto_refresh": true,
"update_interval _sec": 60

¥

}

Notice the additional | oadi ng section containing the auto-refresh settings. You can
also use the Java APIs to construct the same graph configuration programmatically:

G aphConfig config = G aphConfi gBuil der. for PropertyG aphRdbns()
.setJdbcUrl ("] dbc: oracl e: t hi n: @rydat abaseser ver: 1521/ dbNane")
. set Username("scott")
. set Passwor d(" <passwor d>")
. set Nane("my_graph")
.addVertexProperty("prop", PropertyType.|NTEGER)
. addEdgePr operty("cost", PropertyType. DOUBLE)
. set Aut oRef resh(true)
. set Updat el nt erval Sec(60)
Cbuild();

3.9.3 Reading the Graph Using the In-Memory Analyst or a Java
Application

After creating the graph configuration, you can load the graph into the in-memory
analyst using the regular APIs.

opg> G = session. readG aphWthProperties("graphs/ny-config.pg.json")

ORACLE 3-50

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

After the graph is loaded, a background task is started automatically, and it periodically
checks the data source for updates.

3.9.4 Checking Out a Specific Snapshot of the Graph

ORACLE

The database is queried every minute for updates. If the graph has changed in the
database after the time interval passed, the graph is reloaded and a new snapshot is
created in-memory automatically.

You can "check out" (move a pointer to a different version of) the available in-memory
snhapshots of the graph using the get Avai | abl eSnapshot s() method of PgxSessi on.
Example output is as follows:

opg> sessi on. get Avai | abl eSnapshot s(G

==> GraphMet aData [get NunVertices()=4, getNunEdges()=4, menoryM=0,

dat aSour ceVer si on=1453315103000, creationRequest Ti mest anp=1453315122669
(2016-01-20 10:38:42.669), creationTi mestanp=1453315122685 (2016-01-20
10: 38:42. 685), vertexl dType=i nteger, edgel dType=I ong]

==> G aphMet aData [get NunVertices()=5, getNunEdges()=5, menoryM=3,

dat aSour ceVer si on=1452083654000, creationRequest Ti mest anp=1453314938744
(2016-01-20 10:35:38.744), creationTi mestanp=1453314938833 (2016-01-20
10: 35: 38.833), vertexldType=i nteger, edgel dType=I ong]

The preceding example output contains two entries, one for the originally loaded graph
with 4 vertices and 4 edges, and one for the graph created by auto-refresh with 5
vertices and 5 edges.

To check out out a specific snapshot of the graph, use the setSnapshot() methods
of PgxSession and give it the creationTimestamp of the snapshot you want to load.

For example, if G is pointing to the newer graph with 5 vertices and 5 edges, but
you want to analyze the older version of the graph, you need to set the snapshot
to 1453315122685. In the in-memory analyst shell:

opg> G get NunVertices()
==> 5

opg> G get NunEdges()
==> 5

opg> session. set Snapshot (G 1453315122685)
==> nul |

opg> G get NunVertices()
=>4

opg> G get NunEdges()
=>4

You can also load a specific snapshot of a graph directly using
the readG aphAsCOf () method of PgxSessi on. This is a shortcut for loading a graph
with readG aphW t hProperty() followed by a set Snapshot () . For example:

opg> G = session. readG aphAsOf(config, 1453315122685)

3-51

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

If you do not know or care about what snapshots are currently available in-memory,
you can also specify a time span of how “old” a snapshot is acceptable by specifying
a maximum allowed age. For example, to specify a maximum snapshot age of 60
minutes, you can use the following:

opg> G = session. readG aphWthProperties(config, 60I,
Ti meUni t. M NUTES)

If there are one or more shapshots in memory younger (newer) than the specified
maximum age, the youngest (newest) of those snapshots will be returned. If all the
available snapshots are older than the specified maximum age, or if there is no
snapshot available at all, then a new snapshot will be created automatically.

3.9.5 Advanced Auto-Refresh Configuration

ORACLE

You can specify advanced options for auto-refresh configuration.

Internally, the in-memory analyst fetches the changes since the last check from the
database and creates a new snapshot by applying the delta (changes) to the previous
snapshot. There are two timers: one for fetching and caching the deltas from the
database, the other for actually applying the deltas and creating a new snapshot.

Additionally, you can specify a threshold for the number of cached deltas. If the
number of cached changes grows above this threshold, a new snapshot is created
automatically. The number of cached changes is a simple sum of the number of vertex
changes plus the number of edge changes.

The deltas are fetched periodically and cached on the in-memory analyst server for
two reasons:

e To speed up the actual snapshot creation process
e To account for the case that the database can "forget" changes after a while

You can specify both a threshold and an update timer, which means that both
conditions will be checked before new snapshot is created. At least one of these
parameters (threshold or update timer) must be specified to prevent the delta cache
from becoming too large. The interval at which the source is queried for changes must
not be omitted.

The following parameters show a configuration where the data source is queried for
new deltas every 5 minutes. New snapshots are created every 20 minutes or if the
cached deltas reach a size of 1000 changes.

{

"format": "pg",

"jdbc_url": "jdbc:oracle:thin: @ydatabaseserver: 1521/ dbName",
"usernane": "scott",

"password": "<your_password>",

"name": "my_graph",

"l oadi ng": {
"auto_refresh": true,
“fetch_interval _sec": 300,
"update_interval sec": 1200,
"updat e_threshol d": 1000,

3-52

Chapter 3
Starting the In-Memory Analyst Server

"create_edge id_index": true,
"create_edge i d_mapping": true
}
}

3.10 Starting the In-Memory Analyst Server

A preconfigured version of Apache Tomcat is bundled, which allows you to start the
in-memory analyst server by running a script.

If you need to configure the server before starting it, see Configuring the In-Memory
Analyst Server.

You can start the server by running the following script: / opt / or acl e/ gr aph/ pgx/ bi n/
start-server

Note that running the st art - server script does not start the server as a daemon, and
the terminal will not return until you stop the server (for example, by pressing Ctrl+C to
interrupt the process). This also means that the server will stop running if you close the
terminal in which you started the script.

PGX is integrated with syst ent to run it as a Linux service in the background. To start
the PGX server as a daemon process, use the following command (you must have
root privileges):

systentt| start pgx

To stop the server, use:

systentt| stop pgx

If the server does not start up, you can see if there are any errors by running:

journal ctl -u pgx.service

For more information about how to interact with syst end on Oracle Linux, see the
Oracle Linux administrator's documentation.

» Configuring the In-Memory Analyst Server

3.10.1 Configuring the In-Memory Analyst Server

ORACLE

You can configure the in-memory analyst server by modifying the / et ¢/ or acl e/ gr aph/
server. conf file. The following table shows the valid configuration options, which can
be specified in JSON format.

Table 3-3 Configuration Options for In-Memory Analyst Server

___|
Option Type Description Default

authorization string File that maps clients to server.auth.conf
roles for authorization.

3-53

Chapter 3
Starting the In-Memory Analyst Server

Table 3-3 (Cont.) Configuration Options for In-Memory Analyst Server
|

Option Type Description Default
ca_certs array List of trusted certificates ~ [See information after this
of (PEM format). If table.]

string 'enable_tls' is set to false,
this option has no effect.

enable_client_authentic boolea If true, the client is true
ation n authenticated during TLS
handshake. See the TLS
protocol for details. This
flag does not have any
effect if 'enable_tls' is false.

enable_tls boolea If true, the server enables true
n transport layer security
(TLS).
port integer Port that the PGX server 7007

should listen on

server_cert string The path to the server null
certificate to be presented
to TLS clients (PEM
format). If 'enable_tls' is set
to false, this option has no
effect

server_private_key string the private key of the null
server (PKCS#8, PEM
format). If 'enable_tls' is set
to false, this option has no
effect

The in-memory analyst web server enables two-way SSL/TLS (Transport Layer
Security) by default. The server enforces TLS 1.2 and disables certain cipher suites
known to be vulnerable to attacks. Upon a TLS handshake, both the server and the
client present certificates to each other, which are used to validate the authenticity of
the other party. Client certificates are also used to authorize client applications.

The following is an example server. conf configuration file:

{
"port": 7007,
"server_cert": "certificates/server_certificate.penf,
"server_private_key": "certificates/server_key. pent,
"ca_certs": ["certificates/ca_certificate.pent],
"authorization": "auth/server.auth.conf",
"enable_tls": true,
"enabl e_client_authentication": true

}

The following is an example ser ver. aut h. conf configuration file: mapping client
(applications) identified by their certificate DN string to roles:

“aut horization": [{
"dn": "CN=Cient, OU=Devel opnent, O=Oracle, L=Belnont, ST=California, C=US",
"admin": false

boA

ORACLE 3-54

}

Chapter 3
Deploying to Apache Tomcat

"dn": "CN=Adnmin, OU=Devel opment, O=Oracle, L=Belnont, ST=California, C=US",

"admin": true

You can turn off client-side authentication or SSL/TLS authentication entirely in the
server configuration. However, we recommend having two-way SSL/TLS enabled for
any production usage.

3.11 Deploying to Apache Tomcat

The example in this topic shows how to deploy the graph server as a web application
with Apache Tomcat.

The graph server will work with Apache Tomcat 9.0.x and higher.

1.

ORACLE

Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: or acl e- gr aph- webapps- <ver si on>. zi p

Unzip the file into a directory of your choice.

Locate the .war file for Tomcat. It follows the naming pattern: gr aph- server -
<ver si on>- pgx<ver si on>-t ontat . war

Configure the graph server.

a. Modify authentication and other server settings by modifying the VEB- | NF/
cl asses/ pgx. conf file inside the web application archive.

b. Optionally, change logging settings by modifying the VEB- | NF/ ¢l asses/
I og4j 2. xm file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying
the VEB- | NF/ web. xn file inside the web application archive.

Copy the . war file into the Tomcat webapps directory. For example:

cp graph-server-<version>-pgx<versi on>-toncat.war $CATALI NA HOVE/
webapps/ pgx. war

Configure Tomcat specific settings, like the correct use of TLS/encryption
Ensure that port 8080 is not already in use.

Start Tomcat:

cd $CATALI NA_HOVE
.I'bin/startup.sh

The graph server will now listen on | ocal host : 8080/ pgx.

You can connect to the server from JShell by running the following command:
$ <client_install _dir>/bin/opg-jshell --base_url https://local host: 8080/ pgx
-u <graphuser>

About the Authentication Mechanism

3-55

https://edelivery.oracle.com/
https://edelivery.oracle.com/

Chapter 3
Deploying to Oracle WebLogic Server

Related Topics

The Tomcat documentation (select desired version)

3.11.1 About the Authentication Mechanism

The in-memory analyst web deployment uses BASI C Aut h by default. You should
change to a more secure authentication mechanism for a production deployment.

To change the authentication mechanism, modify the securi ty-constrai nt element of
the web. xn deployment descriptor in the web application archive (WAR) file.

3.12 Deploying to Oracle WebLogic Server

The example in this topic shows how to deploy the graph server as a web application
with Oracle WebLogic Server.

ORACLE

This example shows how to deploy the graph server with Oracle WebLogic Server.
Graph server supports WebLogic Server version 12.1.x and 12.2.x.

1.

Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: or acl e- gr aph- webapps- <ver si on>. zi p

Unzip the file into a directory of your choice
Locate the .war file for Weblogic server.

a. For Weblogic Server version 12.1.x, use this web application archive: gr aph-
server - <versi on>- pgx<ver si on>-w s121x. war

b. For Weblogic Server version 12.2.x, use this web application archive: gr aph-
server - <ver si on>- pgx<ver si on>-w s122x. war

Configure the graph server.

a. Modify authentication and other server settings by modifying the VEB- | NF/
cl asses/ pgx. conf file inside the web application archive.

b. Optionally, change logging settings by modifying the VEB- | NF/ cl asses/
| og4j 2. xm file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying
the VIEB- | NF/ web. xni file inside the web application archive.

d. Optionally, change WebLogic Server-specific deployment descriptors by
modifying the VEB- | NF/ webl ogi ¢. xnl file inside the web application archive.

Configure WebLogic specific settings, like the correct use of TLS/encryption.
Deploy the . war file to WebLogic Server. The following example shows how to do
this from the command line:

. $MW HOWE/ user _pr oj ect s/ donai ns/ nydomai n/ bi n/ set Domai nEnv. sh

. $MW HOVE/ W server/ server/ bi n/ set W.SEnv. sh

java webl ogi c. Depl oyer -adminurl http://1ocal host: 7001 -usernane
<usernane> -password <password> -depl oy -source <path-to-war-file>

Installing Oracle WebLogic Server

3-56

http://tomcat.apache.org/
https://edelivery.oracle.com/
https://edelivery.oracle.com/

Chapter 3
Connecting to the In-Memory Analyst Server

3.12.1 Installing Oracle WebLogic Server

To download and install the latest version of Oracle WebLogic Server, see

http://ww. oracl e. com t echnet wor k/ mi dd| ewar e/ webl ogi ¢/ docunent ati on/
i ndex. htm

3.13 Connecting to the In-Memory Analyst Server

After the property graph in-memory analyst is installed in a computer running Oracle
Database -- or on a client system without Oracle Database server software as a web
application on Apache Tomcat or Oracle WebLogic Server -- you can connect to the
in-memory analyst server.

* Connecting with the In-Memory Analyst Shell
* Connecting with Java
* Connecting with the PGX REST API

3.13.1 Connecting with the In-Memory Analyst Shell

The simplest way to connect to an in-memory analyst instance is to specify the base
URL of the server. The following base URL can connect the SCOTT user to the local
instance listening on port 8080:

http://scott: <password>@ ocal host: 8080/ pgx

To start the in-memory analyst shell with this base URL, you use the - - base_url
command line argument

cd $PGX_HOME
.I'bin/opg-jshell --base_url http://scott:<password>@ ocal host: 8080/ pgx

You can connect to a remote instance the same way. However, the in-memory analyst
currently does not provide remote support for the Control API.

* About Logging HTTP Requests

3.13.1.1 About Logging HTTP Requests

ORACLE

The in-memory analyst shell suppresses all debugging messages by default. To see
which HTTP requests are executed, set the log level for or acl e. pgx to DEBUG, as
shown in this example:

opg> /loglevel oracle.pgx DEBUG

===> | og | evel of oracle.pgx |ogger set to DEBUG

opg> session.readGraphWithProperties("sample_http.adj.json™, "sample™)

10: 24: 25,056 [nmain] DEBUG Renoteltils - Requesting PCST http://

scot t: <passwor d>@ ocal host : 8080/ pgx/ cor e/ sessi on/ sessi on- shel | - 6nqg5dd/ gr aph
HTTP/ 1.1 with payl oad {"graphNane":"sanple", "graphConfig": {"uri":"http://
path.to.sone. server/pgx/sanple.adj", "separator":" ", "edge_props":
[{"type":"doubl e", "name":"cost"}], "node_props":

[{"type":"integer", "nanme":"prop"}],"format":"adj _|ist"}}

10: 24: 25,088 [nmai n] DEBUG Renoteltils - received HITP status 201

10: 24: 25,089 [main] DEBUG Remoteltils - {"futureld":"87d54bed- bdf 9- 4601- 98b7-
ef 632ce31463"}

3-57

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

Chapter 3
Connecting to the In-Memory Analyst Server

10: 24: 25,091 [pool - 1-thread-3] DEBUG PgxRenot eFuture$l - Requesting GET http://
scott: <passwor d>@ ocal host : 8080/ pgx/ f ut ur e/ sessi on/ sessi on-shel | - 6nqg5dd/ resul t/
87d54bed- bdf 9- 4601- 98b7- ef 632ce31463 HITP/ 1.1

10: 24: 25,300 [pool -1-thread-3] DEBUG Renpteltils - received HTTP status 200

10: 24: 25,301 [pool -1-thread-3] DEBUG Rempteltils - {"stats":

{"loadi ngTineM I 1is":0,"estimtedMenor yMegabyt es": 0, "nunEdges”: 4, "nunNodes": 4},"g
raphName": "sanpl ", "nodeProperties":{"prop":"integer"}, "edgeProperties":
{"cost":"doubl e"}}

This example requires that the graph URI points to a file that the in-memory analyst
server can access using HTTP or HDFS.

3.13.2 Connecting with Java

You can specify the base URL when you initialize the in-memory analyst using Java.
An example is as follows. A URL to an in-memory analyst server is provided to the
get I nMemAnal yst API call.

inport oracle. pg.rdbns. *;
inport oracle. pgx. api.*;

PgRdbns G aphConfi gcfg =
G aphConfi gBui | der. f or PropertyG aphRdbrs() . set JdbcUr | ("j dbc: oracl e: thin: @27.0.0.
1:1521: orcl ")
.set Usernane("scott"). set Passwor d("<password>") .set Name("mygraph")
. set MaxNunConnecti ons(2) .setLoadEdgelLabel (fal se)
.addVertexProperty("name", PropertyType. STRING "default_name")
. addEdgeProperty("wei ght", PropertyType. DOUBLE, "1000000")
.bui Id(); Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(cfg);
Serverlnstance renotel nstance = Pgx. getlnstance("http://
scott: <passwor d>@ost nanme: port/ pgx");
PgxSessi on session = renotel nstance. creat eSessi on(" ny-sessi on");

PgxG aph graph = session.readG aphWt hProperties(opg. get Config());

3.13.3 Connecting with the PGX REST API

ORACLE

You can connect to an in-memory analyst instance using the REST APl PGX
endpoints. This enables you to interact with the in-memory analyst in a language other
than Java to implement your own client.

The examples in this topic assume that:

e Linux with curl is installed. curl is a simple command-line utility to interact with
REST endpoints.)

e The PGX server is up and running on htt p: // 1 ocal host: 7007.

* The PGX server has authentication/authorization disabled; that
is, $SORACLE_HOVE/ nd/ pr operty_graph/ pgx/ conf/server. conf contains
"enabl e_tls": fal se. (Thisis a non-default setting and not recommended for
production).

e PGX allows reading graphs from the local file system; that is, $ORACLE_HOVE/ nd/
property_graph/ pgx/ conf/pgx. conf contains "al |l ow | ocal filesystem': true.
(This is a non-default setting and not recommended for production).

For the Swagger specification, you can see a full list of supported endpoints in JSON
by opening http://1 ocal host: 7007/ swagger . j son in your browser.

3-58

https://curl.haxx.se/download.html

ORACLE

Chapter 3
Connecting to the In-Memory Analyst Server

e Step 1: Obtain a CSRF token

e Step 2: Create a session

» Step 3: Read a graph

e Step 4: Create a property

» Step 5: Run the PageRank algorithm on the loaded graph
e Step 6: Execute a PGQL query

Step 1: Obtain a CSRF token

Request a CSRF token:

curl -v http://1ocal host: 7007/t oken

The response will look like this:

Trying 127.0.0.1...
* Connected to |ocal host (127.0.0.1) port 7007 (#0)

> GET /token HTTP/ 1.1

> Host: |ocal host: 7007

> User-Agent: curl/7.47.0

> Accept: */*

>

< HTTP/1.1 201

< SET-COKIE: _csrf_t oken=9bf 51c8f - 1c75- 455e- 9b57- ec3calc63ccO; Ver si on=1;
H t pOnly

< Content-Length: 0

As you can see in the response, this will set a cookie csrf _token to a token

value. 9bf 51¢8f - 1¢75- 455e- 9b57- ec3calc63ccO is used as an example token for the
following requests. For any write requests, PGX server requires the same token to be
present in both cookie and payload.

Step 2: Create a session

To create a new session, send a JSON payload:

curl -v --cookie ' _csrf_token=9bf51c8f-1c75-455e-9b57-ec3calc63ccl’
-H 'content-type: application/json'" -X POST http://

| ocal host: 7007/ core/vl/sessions -d '{"source":"ny-application",
"idleTimeout":0, "taskTimeout":0, "tineUnitNanme":"M LLI SECONDS",

" csrf_token":"9bf51c8f-1c75- 455e- 9b57- ec3calc63cc0"}’

Replace ny- appl i cati on with a value describing the application that you are running.
This value can be used by server administrators to map sessions to their applications.
Setting idle and task timeouts to 0 means the server will determine when the session
and submitted tasks time out. You must provide the same CSRF token in both the
cookie header and the JSON payload.

The response will look similar to the following:

* Trying 127.0.0.1...

* Connected to local host (127.0.0.1) port 7007 (#0)
> POST /core/vl/sessions HTTP/ 1.1

> Host: | ocal host: 7007

3-59

ORACLE

Chapter 3
Connecting to the In-Memory Analyst Server

> User-Agent: curl/7.47.0

> Accept: */*

> Cookie: _csrf_token=9bf51c8f-1c75-455e-9b57-ec3calc63ccO

> content-type: application/json

> Content-Length: 159

>

* upload conpletely sent off: 159 out of 159 bytes

< HTTP/ 1.1 201

< SET-COXI E: S| D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d; Versi on=1; HttpOnly
< Content-Length: 0

The response sets a cookie to the session ID value that was created for us. Session
ID abae2811- 6dd2- 48b0- 93a8- 8436e078907d is used as an example for subsequent
requests.

Step 3: Read a graph

" Note:

if you want to analyze a pre-loaded graph or a graph that is already
published by another session, you can skip this step. All you need to access
pre-loaded or published graphs is the name of the graph.

To read a graph, send the graph configuration as JSON to the server as shown in the
following example (replace <gr aph- conf i g> with the JSON representation of an actual
PGX graph config).

curl -v -X POST --cookie '_csrf_t oken=9bf 51c8f - 1c75- 455e- 9b57-
ec3calc63ccO; Sl D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d" http://
| ocal host: 7007/ core/ vl/1 oadG aph -H 'content-type:
application/json' -d '{"graphConfig":<graph-

config>, "graphName": nul I, "csrf_token": " 9bf51c8f - 1¢75- 455e- 9b57-
ec3calc63cc0"}’

Here an example of a graph config that reads a property graph from the Oracle
database:

"format": "pg",

"db_engi ne": " RDBMS",

"jdbc_url":"jdbc:oracle:thin: @27.0.0.1:1521; orcl 122",
"usernane":"scott",

"password":"tiger",

"max_num connections": 8,

nane": "connections",

"vertex_props": |
{"name": "name", "type":"string"},
{"name":"role", "type":"string"},
{"name": "occupation", "type":"string"},
{"name":"country", "type":"string"},
{"name":"political party", "type":"string"},
{"name":"religion", "type":"string"}

3-60

ORACLE

Chapter 3
Connecting to the In-Memory Analyst Server

"edge_props": |
{"name": "wei ght", "type":"double", "default":"1"}
]

n

dge_l abel ": true,
"l oadi ng": {
"| oad_edge_| abel ": true
}
}

Passing "graphNanme": nul | tells the server to generate a name.

The server will reply something like the following:

* upload conpletely sent off: 315 out of 315 bytes

< HTTP/ 1.1 202

< Location: http://local host: 7007/ core/vl/futures/8adbef 65-01a9- 4bd0- 87d3-
ffe9df d2ce3c/ st at us

Content - Type: application/json;charset=utf-8

< Content-Length: 51

< Date: Mon, 05 Nov 2018 17:22:22 GMI

<

*

AN

Connection #0 to host |ocal host |eft intact
{"futureld":"8a46ef 65-01a9- 4bd0- 87d3- f f e9df d2ce3c"}

About Asynchronous Requests

Most of the PGX REST endpoints are asynchronous. Instead of keeping the
connection open until the result is ready, PGX server submits as task and immediately
returns a future 1D with status code 200, which then can be used by the client to
periodically request the status of the task or request the result value once done.

From the preceding response, you can request the future status like this:

curl -v --cookie
" Sl D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d" http://I| ocal host: 7007/
core/ vl/futures/ 8a46ef 65-01a9- 4bd0- 87d3-f f e9df d2ce3c/ st at us

Which will return something like:

HTTP/ 1.1 200

Cont ent - Type: application/json;charset=utf-8
Content - Length: 730

Date: Mn, 05 Nov 2018 17:35:19 GMI

N NN NN

*

Connection #0 to host |ocal host left intact

{"id":"ebl7f 75b- edcl- 4a66- 81a0- 4f f Of 8b4ch92","links": [{"href":"http://

| ocal host: 7007/ core/ v1/ futures/ebl7f 75b- e4cl- 4a66- 81a0- 4f f Of 8b4ch92/
status","rel":"self","nmethod": " GET","interaction":["async-
polling"]},{"href":"http://1ocal host: 7007/ core/vl/futures/ebl7f75b-

e4cl- 4a66- 81a0- 4f f Of 8b4ch92", "rel ": "abort", "met hod": " DELETE", "i nteracti on":
["async-polling"]},{"href":"http://]ocal host: 7007/
core/vl/futures/ebl7f 75b- e4cl- 4a66- 81a0- 4f f Of 8b4ch92/

status","rel ":"canonical","method":"CGET","interaction":["async-
polling"]},{"href":"http://1ocal host: 7007/ core/v1l/futures/ebl7f75b-

e4cl- 4a66- 81a0- 4f f Of 8b4ch92/ val ue", "rel ":"rel ated", "nmet hod": " GET", "i nteraction":
["async-polling"]}],"progress": "succeeded", "conpl eted":true,"interval ToPol | ": 1}

3-61

ORACLE

Chapter 3
Connecting to the In-Memory Analyst Server

Besides the status (succeeded in this case), this output also includes links to cancel
the task (DELETE) and to retrieve the result of the task once completed (GET <f ut ure-
i d>/ val ue):

curl -X GET --cookie
' Sl D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d" http:/ /I ocal host: 7007/
core/vl/futures/cdcl5a38-3422-42al- baf 4- 343c140cf 95d/ val ue

Which will return details about the loaded graph, including the name that was
generated by the server (sanpl e):

{"id":"sanmple","links":[{"href":"http://]ocal host: 7007/ core/vl/ graphs/
sanple","rel":"self","nethod":"GET","interaction":["async-polling"]}
{"href":"http://1ocal host: 7007/ core/ v1/ graphs/
sanple","rel":"canonical","method":"CET","interaction":["async-

pol 1ing"]1}], "nodeProperties":{"propl":{"id":"propl","links":[{"href":"http://

| ocal host: 7007/ cor e/ v1/ graphs/ sanpl e/ properti es/

propl","rel":"sel f", "method":"CGET","interaction":["async-polling"]}
{"href":"http://local host: 7007/ core/vl/ graphs/ sanpl e/ properties/
propl","rel":"canonical ", "method":"GET","interaction":["async-

pol Iing"]}],"dimension":0,"name": "propl", "entityType": "vertex", "type":"integer","
transient":fal se}}, "vertexLabel s":null,"edgeLabel ": null,"nmetaData"
{"id":null,"links":nul'l,"nunVertices": 4, "nunEdges": 4, "nenoryM": 0, "dat aSour ceVer s
ion":"1536029578000", "config":{"format":"adj _list", "separator":" ", "edge_props"
[{"type":"double", "name":"cost"}],"error_handling":{},"vertex_props"
[{"type":"integer", "name":"propl"}],"vertex_uris"

["PATH TO FILE"], "vertex_id_type":"integer", "l oadi ng"

{}},"creationRequest Ti mest anp": 1541242100335, "creati onTi nest anp”: 1541242100774, "v
ertexl dType":"integer", "edgel dType": "l ong", "directed":true}, "graphName": "sanpl e"
"edgeProperties":{"cost":{"id":"cost","links":[{"href":"http://local host: 7007/
core/ vl/ graphs/ sanpl e/ properties/cost","rel":"sel f", "method":"CGET", "interaction"
["async-polling"]},{"href":"http://local host: 7007/ core/vl/ graphs/ sanpl e/
properties/cost","rel":"canonical ", "method":"CGET","interaction":["async-
polling"]}],"dinension":0,"nane": "cost","entityType": "edge", "type": "doubl e","tran
sient":false}},"ageMs":0,"transient": fal se}

For simplicity, the remaining steps omit the additional requests to request the status or
value of asynchronous tasks.

Step 4: Create a property

Before you can run the PageRank algorithm on the loaded graph, you must create a
vertex property of type DOUBLE on the graph, which can hold the computed ranking
values:

curl -v -X POST --cookie '_csrf_t oken=9bf 51c8f - 1c75- 455e- 9b57-
ec3calc63ccO; Sl D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d" http://

| ocal host: 7007/ cor e/ v1/ graphs/ sanpl e/ properties -H

‘content-type: application/json' -d

"{"entityType":"vertex", "type":"doubl e", "nane": "pagerank",

"har dNane": f al se, "di mensi on":0," _csrf_token":"9bf51c8f-1c75-455e-9b57-

ec3calc63cc0"}’
Requesting the result of the returned future will return something like:

{"id":"pagerank","links":[{"href":"http://local host: 7007/ core/vl/ graphs/sanpl e/
properties/pagerank","rel":"sel f","nmethod": "GET","interaction":["async-

3-62

ORACLE

Chapter 3
Connecting to the In-Memory Analyst Server

polling"]1},{"href":"http://1ocal host: 7007/ core/vl/ graphs/ sanpl e/ properties/

pager ank","rel ":"canoni cal ", "nethod": "GET","interaction":["async-
polling"]1}],"dinmension": 0, "nane": "pagerank", "entityType": "vertex","type": "doubl e"
,“transient":true}

Step 5: Run the PageRank algorithm on the loaded graph

The following example shows how to run an algorithm (PageRank in this case). The
algorithm ID is part of the URL, and the parameters to be passed into the algorithm are
part of the JSON payload:

curl -v -X POST --cookie '_csrf_t oken=9bf 51c8f - 1c75- 455e- 9b57-
ec3calc63ccO; Sl D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d" http://

| ocal host: 7007/ cor e/ v1/ anal yses/ pgx_buil tin_kla_pagerank/run -H
‘content-type: application/json' -d '{"args":

[{"type":"GRAPH', "val ue": "sanpl e"}, {"type": "DOUBLE I N', "val ue": 0. 001},
{"type":"DOUBLE_I N', "val ue": 0. 85}, {"type": "I NT_IN', "val ue": 100},
{"type":"BOOL_I N', "val ue": true},

{"type": " NODE_PROPERTY", "val ue": "pagerank"}], "expect edRet urnType": "voi d"
, "wor Kkl oadChar acteristics":

[" PARALLELI SM PARALLEL"]," csrf_token": "9bf51c8f-1c75- 455e- 9b57-
ec3calc63cc0"}’

Once the future is completed, the result will look something like this:

{"success":true, "cancel ed": fal se, "exception":null,"returnValue":null,"executionTi
meMs" : 50}

Step 6: Execute a PGQL query

To query the results of the PageRank algorithm, you can run a PGQL query as shown
in the following example:

curl -v -X POST --cookie ' _csrf_token=9bf51c8f-1c75-455e-9b57-
ec3calc63ccO; Sl D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d" http://

| ocal host: 7007/ core/v1/pggl /run -H 'content-type: application/json'

-d " {"pgqgl Query":"SELECT x. pagerank MATCH (x) WHERE

X. pagerank > 0","semantic":"HOMOMORPHI SM', "schemaStrictnesshbde":true,
"graphName" : "sanple", "_csrf_token":"9bf51c8f-1c75-455e-9b57-
ec3calc63cc0"}’

The result is a set of links you can use to interact with the result set of the query:

{"id":"pggl _1","links":[{"href":"http://local host: 7007/ core/v1l/ pgql Proxies/

pogl _1","rel":"sel f", "method": " GET","interaction":["sync"]},{"href":"http://

| ocal host: 7007/ cor e/ v1/ pgql Resul t Proxi es/ pgql _1/

el ements”,"rel":"rel ated", "method": " GET","interaction":["sync"]},{"href":"http://
| ocal host: 7007/ cor e/ v1/ pgql Resul t Proxi es/ pgql _1/

results","rel":"related", "method": " GET","interaction":["sync"]},{"href":"http://

| ocal host: 7007/ cor e/ v1/ pggl Proxi es/

pggl _1","rel ":"canoni cal ", "nmethod": "GET", "interaction":["async-

polling"]}], "exists":true, "graphName":"sanple", "resultSetld":"pgql _1","nunResul ts
"4}

3-63

Chapter 3
Managing Property Graph Snapshots

To request the first 2048 elements of the result set, send:

curl -X GET --cookie 'Sl D=abae2811- 6dd2- 48b0- 93a8- 8436e078907d' http://
| ocal host: 7007/ cor e/ v1/ pgql Proxi es/ pggl _1/resul ts?si ze=2048

The response looks something like this:

{"id":"/'pgx/corel/vl/ pggl Proxies/pgql _1/results","links":[{"href":"http://

| ocal host: 7007/ cor e/ v1/ pgql Proxi es/ pgql _1/

results","rel":"sel f","method": "GET", "interaction":["sync"]},{"href":"http://

| ocal host: 7007/ cor e/ v1/ pgql Proxi es/ pgql _1/

results","rel":"canonical ", "method": " GET","interaction":["async-
polling"]}],"count":4,"total Itens":4,"itens":[[0.3081206521195582],
[0.21367103988538017],[0.21367103988538017],

[0.2645372681096815]], "hasMore": fal se,"of fset":0,"limt":4,"showTotal Results":tru

e}

3.14 Managing Property Graph Snapshots

ORACLE

You can manage property graph snapshots.

¢ Note:

Managing property graph snapshots is intended for advanced users.

You can persist different versions of a property graph as binary snapshots in the
database. The binary snapshots represent a subgraph of graph data computed at
runtime that may be needed for a future use. The snapshots can be read back later
as input for the in-memory analytics, or as an output stream that can be used by the
parallel property graph data loader.

You can store binary snapshots in the <graph_name>SS$ table of the property graph
using the Java API Oracl ePropertyG aphUti | s. st oreBi naryl nMenor yGr aphSnapshot .
This operation requires a connection to the Oracle database holding the property
graph instance, the name of the graph and its owner, the ID of the snapshot, and an
input stream from which the binary snapshot can be read. You can also specify the
time stamp of the snapshot and the degree of parallelism to be used when storing the
snapshot in the table.

You can read a stored binary snapshot using

oracl ePropertyG aphUtil s. readBi naryl nMenGr aphSnapshot . This operation requires
a connection to the Oracle database holding the property graph instance, the name

of the graph and its owner, the ID of the snapshot to read, and an output stream
where the binary file snapshot will be written into. You can also specify the degree of
parallelism to be used when reading the snapshot binary-file from the table.

The following code snippet creates a property graph from the data file in Oracle
Flat-file format, adds a new vertex, and exports the graph into an output stream using
GraphML format. This output stream represents a binary file snapshot, and it is stored

3-64

ORACLE

Chapter 3
Managing Property Graph Snapshots

in the property graph snapshot table. Finally, this example reads back the file from the
shapshot table and creates a second graph from its contents.

String szOPVFile = "../../datal connections. opv";

String szOPEFile = "../../datalconnections. ope";

Oracl ePropertyGaph opg = Oracl ePropertyG aph. getl nstance(args,

szG aphNane) ;

opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();

opgdl . | oadDat a(opg, szOPVFile, szOPEFile, 2 /* dop */, 1000, true,
" PDML=T, PDDL=T, NO_DUP=T, ") ;

/1 Add a new vertex

Vertex v = opg. addVertex(Long. val ueC ("1000"));
v.set Property("name", "Aice");

opg. commi t ();

Systemout.pritnin("Gaph " + szGaphName + " total vertices: " +
opg. count Verti ces(dop));

Systemout.pritnln("Gaph " + szGaphName + " total edges: " +
opg. count Edges(dop)) ;

/1 Get a snapshot of the current graph as a file in graphM. format.
Qut put Stream os = new Byt eArrayQut put Streamn();
Oracl ePropertyGaphUtils. export GraphM.(opg,
0s /* output stream?*/,
Systemout /* streamto show
progress */);

/] Save the snapshot into the SS$ table

Input Streamis = new ByteArrayl nput Strean{os.toByteArray());

O acl ePropertyG aphUtils. storeBi naryl nMena aphSnapshot (szG aphNane,
szG aphOwer /*

owner of the

property graph */,
conn /* dat abase
connection */,

is,

(long) 1 /*
snapshot ID */,

1/* dop */);
0s.close();
is.close();

/1 Read the snapshot back fromthe SS$ table

Qut put St ream snapshot OS = new Byt eArrayQut put St ream() ;

Oracl ePropertyGaphUtil s. readBi naryl nMenGr aphSnapshot (szGaphNarre,
szG aphOmer /*

owner of the

property graph */,

conn /* dat abase
connection */,

new Qut put Strean]

3-65

Chapter 3
User-Defined Functions (UDFs) in PGX

{snapshot CS},

(long) 1 /*
snapshot ID */,

1/* dop */);

I nput St ream snapshot| S = new

Byt eArrayl nput St reamsnapshot CS. t oByt eArray());

String szG aphNaneSnapshot = szGaphNane + " _snap";

Oracl ePropertyG aph opg =

Oracl ePropertyG aph. get | nst ance(ar gs, szG aphNameSnapshot) ;

Oracl ePropertyGaphUtils. i nport GraphM.(opg,
snapshot1S /* input stream*/,
Systemout /* streamto show
progress */);

snapshot CS. cl ose();
snapshot | S. cl ose();

Systemout. pritnln("Gaph " + szG aphNameSnapshot + " total vertices:
+

opg. count Vertices(dop));
Systemout. pritnln("Gaph " + szG aphNameSnapshot +

opg. count Edges(dop)) ;

total edges: +

The preceding example will produce output similar as the following:

Graph test total vertices: 79
Gaph test total edges: 164

Graph test_snap total vertices: 79
Graph test_snap total edges: 164

3.15 User-Defined Functions (UDFs) in PGX

User-defined functions (UDFs) allow users of PGX to add custom logic to their PGQL
gueries or custom graph algorithms, to complement built-in functions with custom
requirements.

Caution:

UDFs enable the running arbitrary code in the PGX server, possibly
accessing sensitive data. Additionally, any PGX session can invoke any of
the UDFs that are enabled on the PGX server. The application administrator
who enables UDFs is responsible for checking the following:

+ All the UDF code can be trusted.

e The UDFs are stored in a secure location that cannot be tampered with.

ORACLE 3-66

Chapter 3
User-Defined Functions (UDFs) in PGX

How to Use UDFs

The following simple example shows how to register a UDF at the PGX server and
invoke it.

1. Create a class with a public static method. For example:

package ny. udfs;

public class MUdfs {
public static String concat(String a, String b) {
return a + b;

}
}

2. Compile the class and compress into a JAR file. For example:

nkdir ./target

javac -d ./target *.java
cd target

jar cvf MyUdfs.jar *

3. Copy the JAR file into / opt / or acl e/ gr aph/ pgx/ server/lib.

4. Create a UDF JSON configuration file. For example, assume that / pat h/ t o/ ny/
udf s/ di r/ ny_udf s. j son contains the following:

{
"user_defined_functions": [
{
"nanespace": "ny",
"l anguage": "java",
“inpl ementation_reference": "ny.package. MyUdf s",
“function_name": "concat",
"return_type": "string",
"argunents": [
{
"name": "a",
"type": "string"
¥
{
"nanme": "b",
"type": "string"
}
]
1
]
}

5. Point to the directory containing the UDF configuration file in / et ¢/ or acl e/ gr aph/
pgx. conf . For example:

"udf _config_directory": "/path/to/my/udfs/dir/"

ORACLE 3-67

Chapter 3
User-Defined Functions (UDFs) in PGX

Restart the PGX server. For example:
sudo systenct!l restart pgx

Try to invoke the UDF from within a PGQL query. For example:

graph. queryPgql (" SELECT ny. concat (ny.concat (n.firstName, ' '),
n. |l ast Name) FROM MATCH (n: Person)")

Try to invoke the UDF from within a PGX algorithm. For example:

i mport oracl e. pgx. al gorithm annotati ons. Udf;

@ aphAl gorithm
public class M/Al ogrithm {
public void bomAl gorithm(PgxG aph g, VertexProperty<String>
firstName, VertexProperty<String> |astNane, @ut
Vert exProperty<String> ful | Name) {

ful | Nare. set (v, concat (firstName. get(v),
| ast Name. get (v)));

}

@Judf (namespace = "ny")

abstract String concat(String a, String b);

}

UDF Configuration File Information

A UDF configuration file is a JSON file containing an array of

user _defined_functions. (An example of such a file is in the step to "Create a UDF
JSON configuration file" in the preceding "How to Use UDFs" subsection.)

Each user-defined function supports the fields shown in the following table.

Table 3-4 Fields for Each UDF
]

Field Data Type Description Required?
function_name string Name of the function used Required
as identifier in PGX
language enum[java, javascript] Source language for Required
he function (j ava or
javascript)
return_type enum[boolean, integer, Return type of the function Required
long, float, double, string]
arguments array of object Array of arguments. For 1
each argument: type,
argument name, required?
implementation_reference string Reference to the function null

name on the classpath

ORACLE

3-68

Chapter 3
User-Defined Functions (UDFs) in PGX

Table 3-4 (Cont.) Fields for Each UDF

Field Data Type Description Required?
namespace string Namespace of the function null
in PGX
source_function_name string Name of the function in the null
source language
source_location string Local file path to the null

function's source code

All configured UDFs must be unique with regard to the combination of the following
fields:

° namespace
e function_name

° arguments

ORACLE 3-69

SQL-Based Property Graph Query and
Analytics

ORACLE

You can use SQL to query property graph data in Oracle Spatial and Graph.

For the property graph support in Oracle Spatial and Graph, all the vertices and edges
data are persisted in relational form in Oracle Database. For detailed information about
the Oracle Spatial and Graph property graph schema objects, see Property Graph
Schema Obijects for Oracle Database.

This chapter provides examples of typical graph queries implemented using SQL.
The audience includes DBAs as well as application developers who understand SQL
syntax and property graph schema objects.

The benefits of querying directly property graph using SQL include:

* There is no need to bring data outside Oracle Database.
* You can leverage the industry-proven SQL engine provided by Oracle Database.

* You can easily join or integrate property graph data with other data types
(relational, JSON, XML, and so on).

* You can take advantage of existing Oracle SQL tuning and database management
tools and user interface.

The examples assume that there is a property graph named connections in the
current schema. The SQL queries and example output are for illustration purpose only,
and your output may be different depending on the data in your connect i ons graph. In
some examples, the output is reformatted for readability.

e Simple Property Graph Queries
The examples in this topic query vertices, edges, and properties of the graph.

» Text Queries on Property Graphs
If values of a property (vertex property or edge property) contain free text, then it
might help performance to create an Oracle Text index on the V column.

* Navigation and Graph Pattern Matching
A key benefit of using a graph data model is that you can easily navigate across
entities (people, movies, products, services, events, and so on) that are modeled
as vertices, following links and relationships modeled as edges. In addition,
graph matching templates can be defined to do such things as detect patterns,
aggregate individuals, and analyze trends.

* Navigation Options: CONNECT BY and Parallel Recursion
The CONNECT BY clause and parallel recursion provide options for advanced
navigation and querying.

* Pivot
The PIVOT clause lets you dynamically add columns to a table to create a new
table.

4-1

Chapter 4
Simple Property Graph Queries

* SQL-Based Property Graph Analytics
In addition to the analytical functions offered by the in-memory analyst, the
property graph feature in Oracle Spatial and Graph supports several native, SQL-
based property graph analytics.

4.1 Simple Property Graph Queries

ORACLE

The examples in this topic query vertices, edges, and properties of the graph.
Example 4-1 Find a Vertex with a Specified Vertex ID
This example find the vertex with vertex ID 1 in the connect i ons graph.
SQ.> select vid, k, v, vn, vt
from connecti onsVT$
where vid=1;
The output might be as follows:

1 country United States
1 nane Robert Smith
1 occupation CEO of Exanple Corporation

Example 4-2 Find an Edge with a Specified Edge ID

This example find the edge with edge ID 100 in the connect i ons graph.

SQ.> select eid,svid,dvid, k,t,v,vn,vt
from connecti onsGE$
wher e ei d=1000;

The output might be as follows:

1000 1 2 weight 3 1 1

In the preceding output, the K of the edge property is "weight" and the type ID of the
value is 3, indicating a float value.

Example 4-3 Perform Simple Counting

This example performs simple counting in the connect i ons graph.

SQ> -- Get the total nunber of K/'V pairs of all the vertices
SQ.> select /*+ parallel */ count(1)
from connecti onsVT$;

299
SQ> -- Get the total nunber of K/'V pairs of all the edges
SQ.> select /*+ parallel (8) */ count(1)
from connect i onsGE$;
164

SQ> -- Get the total nunber of vertices
SQ.> select /*+ parallel */ count(distinct vid)

4-2

Chapter 4
Simple Property Graph Queries

from connecti onsVT$;
78

SQ> -- Get the total nunber of edges
SQ.> select /*+ parallel */ count(distinct eid)
from connect i onsGE$;

164

Example 4-4 Get the Set of Property Keys Used

This example gets the set of property keys used for the vertices n the connect i ons
graph.

SQ > select /*+ parallel */ distinct k
from connecti onsVT$;

conpany
show
occupation

type

team

religion
crimnal charge
musi ¢ genre
genre

name

role

political party
country

13 rows sel ect ed.

SQ > -- get the set of property keys used for edges
SQ.> select /*+ parallel */ distinct k
from connecti onsGES;

wei ght

Example 4-5 Find Vertices with a Value

This example finds vertices with a value (of any property) that is of String type, and
where and the value contains two adjacent occurrences of a, €, i, 0, or u, regardless of
case.n the connecti ons graph.

SQ.> select vid, t, k, v
from connecti onsVT$

where t=1

and regexp_like(v, "([aeiou])\1', "i");
6 1 name Jordan Peele
6 1 show Key and Peel e

ORACLE 4.3

ORACLE

Chapter 4
Simple Property Graph Queries

54 1 nane John Geen

It is usually hard to leverage a B-Tree index for the preceding kind of query because it
is difficult to know beforehand what kind of regular expression is going to be used. For
the above query, you might get the following execution plan. Note that full table scan is
chosen by the optimizer.

| Id | Operation | Nane | Rows | Bytes | Cost (%CPU)|
Ti me | Pstart| Pstop | TQ |INQUT| PQDistrib |

| 0 | SELECT STATEMENT | | 15 | 795 | 28 (0)]
00: 00: 01 | | | | | |

| 1| PX COORDI NATOR | | | |

| | | | | | |

| 2| PX SEND QC (RANDOM) | : TQLO000 | 15 | 795 | 28 (0)]
00: 00: 01 | | | QL,00 | P->S| QC (RAND) |

| 3] PX BLOCK | TERATOR | | 15| 795 | 28 (0)]
00: 00: 01 | 1] 8| Q00| POWC | |

|* 4| TABLE ACCESS FULL| OONNECTI ONSVT$ | 15 | 795 | 28 (0)]
00: 00: 01 | 1] 8| Q00| PCW | |

4 - filter(INTERNAL_FUNCTI ON("V") AND REGEXP_LIKE ("V', U ([aeiou])
\005C1',"i') AND "T"=1 AND | NTERNAL FUNCTI ON("K"))
Not e

- Degree of Parallelismis 2 because of table property

If the Oracle Database In-Memory option is available and memory is sufficient, it can
help performance to place the table (full table or a set of relevant columns) in memory.
One way to achieve that is as follows:

SQ> alter table connectionsVT$ inmenory;
Tabl e altered.

Now, entering the same SQL containing the regular expression shows a plan that
performs a "TABLE ACCESS INMEMORY FULL".

| I'd | Operation | Name | Rows | Bytes | Cost
(%CPU) | Tine | Pstart| Pstop | TQ | INNQUT| PQDistrib |
| 0| SELECT STATEMENT | | 15 | 795 |

28 (0)| 00:00:01 | | | | | |
| 1| PX COORDI NATCR | | I

| 2| PX SEND QC (RANDOW) | : TQLO000 | 15| 795 |
28 (0)| 00:00:01 | | | QLO00| P->S| QC(RAND) |
| 3] PXBLOCK | TERATCR | | 15| 795 |
28 (0)| 00:00:01 | 1] 8| Q00| PO | |
|* 4] TABLE ACCESS INMEMORY FULL| CONNECTIONSVT$ | 15| 795 |

4-4

Chapter 4
Text Queries on Property Graphs

28 (0)| 00:00: 01 | 1] 8] Q00| POW |

4 - filter (I NTERNAL_FUNCTION("V") AND REGEXP_LIKE ("V', U ([aeiou])
\005CL',"i') AND "T"=1 AND | NTERNAL_FUNCTI ON("K"))
Not e

- Degree of Parallelismis 2 because of table property

4.2 Text Queries on Property Graphs

ORACLE

If values of a property (vertex property or edge property) contain free text, then it might
help performance to create an Oracle Text index on the V column.

Oracle Text can process text that is directly stored in the database. The text can be
short strings (such as names or addresses), or it can be full-length documents. These
documents can be in a variety of textual format.

The text can also be in many different languages. Oracle Text can handle any
space-separated languages (including character sets such as Greek or Cyrillic). In
addition, Oracle Text is able to handle the Chinese, Japanese and Korean pictographic
languages)

Because the property graph feature uses NVARCHAR typed column for better support
of Unicode, it is highly recommended that UTF8 (AL32UTF8) be used as the
database character set.

To create an Oracle Text index on the vertices table (or edges table), the ALTER
SESSION privilege is required. For example:

SQ.> grant alter session to <YOUR USER SCHEMVA HERE>;

If customization is required, also grant the EXECUTE privilege on CTX_DDL:

SQ.> grant execute on ctx_ddl to <YOUR USER SCHEMA HERE>;

The following shows some example statements for granting these privileges to
SCOTT.

SQ> conn / as sysdba

Connect ed.

SQ> -- This is a PDB setup --

SQ.> alter session set container=orcl;
Session altered.

SQ.> grant execute on ctx_ddl to scott;
G ant succeeded.

SQ> grant alter session to scott;
Grant succeeded.

4-5

ORACLE

Chapter 4
Text Queries on Property Graphs

Example 4-6 Create a Text Index

This example creates an Oracle Text index on the vertices table (V column) of the
connections graph in the SCOTT schema. Note that the Oracle Text index created
here is for all property keys, not just one or a subset of property keys. In addition, if a
new property is added to the graph and the property value is of String data type, then it
will automatically be included in the same text index.

The example uses the OPG_AUTO_LEXER lexer owned by MDSYS.

SQ.> execute opg_apis.create_vertices_text_idx('scott', 'connections',
pref _owner=>" MDSYS' , |exer=>" OPG AUTO LEXER , dop=>2);

If customization is desired, you can use the ctx_ddl.create_preference API. For
example:

SQ> -- The followi ng requires access privilege to CTX _DDL
SQ.> exec ctx_ddl.create _preference(' SCOTT. OPG_AUTO LEXER ,
' AUTO LEXER);

PL/ SQL procedure successfully conpl et ed.

SQ.> execute opg_apis.create vertices_text idx('scott', 'connections',
pref _owner=>'scott', |exer=>" OPG AUTO LEXER , dop=>2);

PL/ SQL procedure successfully conpl et ed.

You can now use a rich set of functions provided by Oracle Text to perform queries
against graph elements.

" Note:

If you no longer need an Oracle Text index, you can use the
drop_vertices_text idx or opg_apis.drop_edges_text_idx API to drop it. The
following statements drop the text indexes on the vertices and edges of a
graph named connect i ons owned by SCOTT:

SQ.> exec opg_apis.drop_vertices text ldx('scott',
'connections');
SQ.> exec opg_apis.drop_edges text Idx('scott', 'connections');

Example 4-7 Find a Vertex that Has a Property Value

The following example find a vertex that has a property value (of string type)
containing the keyword "Smith".

SQ.> select vid, k, t, v
from connecti onsVT$
where t=1
and contains(v, 'Smth', 1) >0

4-6

ORACLE

Chapter 4
Text Queries on Property Graphs

order by score(1l) desc

The output and SQL execution plan from the preceding statement may appear as
follows. Note that DOMAIN INDEX appears as an operation in the execution plan.

1 nane 1 Robert Smith

Execution Pl an

Pl an hash val ue: 1619508090

| Id | Operation | Nane | Rows | Bytes |
Cost (%CPU) | Time | Pstart| Pstop |

| 0| SELECT STATEMENT | | 1] 56
| 5 (20) | 00:00:01 | | |

| 1] SORT ORDER BY | | 1] 56

| 5 (20) | 00:00:01 | |

|* 2| TABLE ACCESS BY GLOBAL | NDEX ROW D CONNECTI ONSVT$ | 1] 56
| 4 (0)] 00:00:01 | ROWD | ROWD |

[* 3] DOMAIN INDEX | CONNECTI ONSXTVS | |

| 4 (0)] 00:00:01 | | |

2 - filter("T"=1 AND I NTERNAL_FUNCTI ON("K") AND | NTERNAL_FUNCTI ON("V"))
3 - access("CTXSYS'. " CONTAINS' ("V"," Smith', 1) >0)

Example 4-8 Fuzzy Match

The following example finds a vertex that has a property value (of string type)
containing variants of "ameriian" (a deliberate misspelling for this example) Fuzzy
match is used.

SQ> select vid, k, t, v
from connecti onsVT$
where contains(v, “fuzzy(ameriian,,,weight)', 1) >0
order by score(l) desc;

The output and SQL execution plan from the preceding statement may appear as
follows.

8 role 1 anerican business man

9role 1 anerican business man

4 role 1 anerican econom st

6 role 1 anerican conedi an actor

7 role 1 anerican conedian actor

1 occupation 1 44th president of United States of Anerica

6 rows sel ected.

Execution Pl an

4-7

Chapter 4
Text Queries on Property Graphs

Pl an hash val ue: 1619508090

| Id | Operation | Name | Rows | Bytes |
Cost (YCPU)| Tine | Pstart| Pstop |

0 | SELECT STATEMENT | | 1] 56
5 (20)| 00:00:01 | | |

1| SORT ORDER BY | | 1] 56
5 (20)| 00:00:01 | | |

TABLE ACCESS BY GLOBAL | NDEX ROWD| CONNECTI ONSVTS$ | 1] 56
(0)| 00:00:01 | ROWD | ROWD |

DOMAI N | NDEX | CONNECTI ONSXTVS | |

(0)| 00:00:01 | | |

I
I
I
I
|* 2
| 4
I I
| 4

2 - filter(I NTERNAL_FUNCTI ON("K") AND | NTERNAL_FUNCTI ON(" V"))

Example 4-9 Query Relaxation

The following example is a sophisticated Oracle Text query that implements query
relaxation, which enables you to execute the most restrictive version of a query first,
progressively relaxing the query until the required number of matches is obtained.
Using query relaxation with queries that contain multiple strings, you can provide
guidance for determining the “best” matches, so that these appear earlier in the results
than other potential matches.

This example searchs for "american actor" with a query relaxation sequence.
SQ> select vid, k, t, v

from connecti onsVT$
where CONTAINS (v,

' <query>
<textquery |ang="ENGLI SH' grammar =" CONTEXT" >
<progression>

<seg>{american} {actor}</seq>
<seg>{american} NEAR {actor}</seq>
<seg>{american} AND {actor}</seq>
<seg>{american} ACCUM {actor}</seq>
</progression>

</textquery>

<score datatype="1NTEGER" al gorithn=" COUNT"/ >

</ query>") > 0;

The output and SQL execution plan from the preceding statement may appear as

follows.
7 role 1 anerican conedi an actor
6 role 1 anerican conedi an actor
44 occupation 1 actor
8 role 1 anerican busi ness man

ORACLE 4-8

Chapter 4
Navigation and Graph Pattern Matching

53 occupation 1 actor film producer
52 occupation 1 actor

4 role 1 american econoni st
47 occupation 1 actor
9role 1 american busi ness nman

9 rows selected.

Execution Pl an

| Id | Operation | Nare | Rows | Bytes | Cost
(%CPU) | Time | Pstart| Pstop |

| 0| SELECT STATEMENT | | 1 56
| 4 (0)] 00:00:01 | | |

[* 1| TABLE ACCESS BY GLCBAL | NDEX ROWD| CONNECTI ONSVT$ | 1 56
| 4 (0)] 00:00:01 | ROND | ROND |

[* 2| DOVAIN | NDEX | CONNECTI ONSXTV$ | |

I

4 (0)] 00:00:01 | | |

1 - filter(I NTERNAL_FUNCTI ON("K") AND | NTERNAL_FUNCTI ON(" V"))

2 - access("CTXSYS". "CONTAINS"("V", ' <query> <textquery |ang="ENGLI SH'
gr ammar =" CONTEXT" >
<progressi on> <seg>{anerican} {actor}</seq> <seg>{ aneri can}
NEAR {actor}</seq>
<seqg>{anerican} AND {actor}</seq> <seq>{aneri can} ACCUM

{actor}</seq> </ progressi on>

</textquery> <score datatype="INTEGER' al gorithnme" COUNT"/> </
query>')>0)
Example 4-10 Find an Edge

Just as with vertices, you can create an Oracle Text index on the V column
of the edges table (GES$) of a property graph. The following example uses the
OPG_AUTO_LEXER lexer owned by MDSYS.

SQ.> exec opg_apis.create_edges text idx('scott', 'connections',
pref _owner=>' ndsys', |exer=>" OPG_AUTO LEXER , dop=>4);

If customization is required, use the ctx_ddl.create_preference API.

4.3 Navigation and Graph Pattern Matching

A key benefit of using a graph data model is that you can easily navigate across
entities (people, movies, products, services, events, and so on) that are modeled
as vertices, following links and relationships modeled as edges. In addition, graph

ORACLE 4-9

ORACLE

Chapter 4
Navigation and Graph Pattern Matching

matching templates can be defined to do such things as detect patterns, aggregate
individuals, and analyze trends.

This topic provides graph navigation and pattern matching examples using the
example property graph named connections. Most of the SQL statements are
relatively simple, but they can be used as building blocks to implement requirements
that are more sophisticated. It is generally best to start from something simple, and
progressively add complexity.

Example 4-11 Who Are a Person's Collaborators?

The following SQL ststement finds all entities that a vertex with ID 1 collaborates with.
For simplicity, it considers only outgoing relationships.

SQ.> select dvid, el, k, vn, v
from connecti onsGE$
where svid=1
and el =' col | aborates';

" Note:

To find the specific vertex ID of interest, you can perform a text query on the
property graph using keywords or fuzzy matching. (For details and examples,
see Text Queries on Property Graphs.)

The preceding example's output and execution plan may be as follows.

2 collaborates weight 1 1
21 col l aborates weight 1 1
22 col l aborates weight 1 1

26 col l aborates weight 1 1

10 rows sel ected.

| I'd | Operation | Narme | Rows |

Bytes | Cost (%CPU)| Tine | Pstart| Pstop | TQ [IN-OUT| PQDistrib |

| 0 | SELECT STATEMENT | | 10

| 460 | 2 (0)] 00:00:01 | | | | | |

| 1| PX COORDI NATOR | |

I I I | I | I I

| 2 PX SEND QC (RANDOM | :TQLO000 | 10

| 460 | 2 (0)] 00:00:01 | | | QL,00]| P->S| QC (RAND) |

| 3 PX PARTI TI ON HASH ALL | | 10

| 460 | 2 (0)] 00:00:01 | 1] 8| QL,00 | POAC | |

[* 4] TABLE ACCESS BY LOCAL | NDEX RON D BATCHED| CONNECTI ONSGE$ | 10

| 460 | 2 (0)] 00:00:01 | 1] 8| QL,00 | PCWP | |

[* 5] | NDEX RANGE SCAN | CONNECTI ONSXSE$ | 20

| | 1 (0)] 00:00:01 | 1] 8| QL,00 | PCWP | |
4-10

ORACLE

Chapter 4
Navigation and Graph Pattern Matching

4 - filter(INTERNAL_FUNCTI ON("EL") AND "EL"=U col | aborates' AND
| NTERNAL_FUNCTI ON("K") AND | NTERNAL_FUNCTI ON(" V"))
5 - access("SvID'=1)

Example 4-12 Who Are a Person's Collaborators and What are Their
Occupations?

The following SQL statement finds collaborators of the vertex with ID 1, and the
occupation of each collaborator. A join with the vertices table (VT$) is required.

SQ.> select dvid, vertices.v
from connecti onsGE$, connectionsVT$ vertices
where svid=1
and el =' col | abor at es
and dvid=vertices.vid
and vertices. k="' occupation'

The preceding example's output and execution plan may be as follows.

21 67th United States Secretary of State

22 68th United States Secretary of State

23 chancel l or

28 T7th president of Iran

19 junior United States Senator from New York

| Id | Operation | Name | Rows
| Bytes | Cost (%CPU)| Tine | Pstart| Pstop | TQ |INQUT| PQDistrib |

| 0 | SELECT STATEMENT | | 7
| 525 | 7 (0)| 00:00:01 | | | | | |

| 1| PX COORDI NATOR | |

I I I I I I I I

| 2| PX SEND QC (RANDOM | :TQL0000 | 7
| 525 | 7 (0)| 00:00:01 | | | QL,00 | P->S| QC (RAND) |
| 3] NESTED LOOPS | | 7
| 525 | 7 (0)| 00:00:01 | | | Q1,00 | PCWP | |

| 4] PX PARTI TI ON HASH ALL | | 10
| 250 | 2 (0)] 00:00:01 | 1| 8| QL,00 | PCOAC | |

[* 5| TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED| CONNECTI ONSGE$ | 10
| 250 | 2 (0)] 00:00:01 | 1| 8| QL,00 | PCWP |

|[* 6] | NDEX RANGE SCAN | CONNECTI ONSXSE$ | 20
| | 1 (0)] 00:00:01 | 1| 8| QL,00 | PCWP | |

| 7| PARTI TI ON HASH | TERATOR | | 1
| | 0 (0)|] 00:00:01 | KEY | KEY | Q1,00 | PCW | |

[* 8| TABLE ACCESS BY LOCAL | NDEX ROW D | CONNECTI ONSVTS |

I I I | KEY | KEY| Q1,00 | PCW | I

[* 9] | NDEX UNI QUE SCAN | CONNECTI ONSXQV$ | 1
I

| 0 (0)] 00:00:01| KEY| KEY| Q00| PCW | |

4-11

ORACLE

Chapter 4
Navigation and Graph Pattern Matching

Predi cate Information (identified by operation id):

- filter (I NTERNAL_FUNCTI ON("EL") AND "EL"=U col | aborates')
- access("SviD'=1)
- filter (I NTERNAL_FUNCTI ON("VERTI CES"."V"))

(

(

© o o o

- access("DVI D'="VERTI CES". " VI D' AND "VERTI CES". "K"=U occupati on')
filter(I NTERNAL_FUNCTI ON(" VERTI CES". "K"))

Example 4-13 Find a Person's Enemies and Aggregate Them by Their Country

The following SQL statement finds enemies (that is, those with the f euds relationship)
of the vertex with ID 1, and aggregates them by their countries. A join with the vertices
table (VTS$) is required.

SQ> select vertices.v, count(1)
from connecti onsGE$, connectionsVT$ vertices
where svid=1
and el =' feuds
and dvid=vertices.vid
and vertices. k=" country
group by vertices.v;

The example's output and execution plan may be as follows. In this case, the vertex
with ID 1 has 3 enemies in the United States and 1 in Russia.

United States 3

Russi a 1

| Id | Operation | Name | Rows

| Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |INQUT| PQDistrib |
| 0 | SELECT STATEMENT | | 5
| 375 | 5 (20)] 00:00:01 | | | | | |

| 1| PX COORDI NATOR | |

I I I I | I I I I

| 2 PX SEND QC (RANDOM | :TQL0001 | 5
| 375 | 5 (20)] 00:00:01 | | | Q01| P->S| QC (RAND)

I

| 3 HASH GROUP BY | | 5
| 375 | 5 (20)] 00:00:01 | | | QL,01 | PCW | |

| 4| PX RECEI VE | | 5
| 375 | 5 (20)] 00:00:01 | | | QL,01 | PCW | |

| 5| PX SEND HASH | :TQL0000 | 5
| 375 | 5 (20)] 00:00:01 | | | QL,00 | P->P| HASH |
| 6 | HASH GROUP BY | | 5
| 375 | 5 (20)] 00:00:01 | | | QL,00 | PCW | |

| 7 NESTED LOOPS | | 5
| 375 | 4 (0)] 00:00:01 | | | QL,00 | PCW | |

| 8 | PX PARTI TI ON HASH ALL | | 5
| 125 | 2 (0)| 00:00:01 | 1| 8| QL,00 | POAC | |
[* 9] TABLE ACCESS BY LOCAL | NDEX RON D BATCHED| CONNECTI ONSGE$ | 5
| 125 | 2 (0)| 00:00:01 | 1| 8| QL,00 | PCW | |
[* 10 | | NDEX RANGE SCAN | CONNECTI ONSXSE$ | 20

4-12

ORACLE

Chapter 4
Navigation and Graph Pattern Matching

| | 1 (0)| 00:00:01 | 1 8| Q00| PCW | |
| 11| PARTI TI ON HASH | TERATOR | | 1
| | 0 (0)] 00:00:01| KEY| KEY| QL 00| PCW | |
|* 12 | TABLE ACCESS BY LOCAL | NDEX ROW D | CONNECTI ONSVTS$ |

I I I I KEY | KEY | QL,00 | PCW | I
|* 13 | | NDEX UNI QUE SCAN | CONNECTI ONSXQVS$ | 1
| | 0 (0)] 00:00:01| KEY| KEY| Q00| PCW | |

9 - filter (I NTERNAL_FUNCTI ON("EL") AND "EL"=U feuds")
10 - access("SVID'=1)
12 - filter (I NTERNAL_FUNCTI ON("VERTI CES'."V"))
13 - access("DVID'="VERTI CES"."VI D' AND "VERTI CES". "K"=U country")
filter (I NTERNAL_FUNCTI ON("VERTI CES"."K"))

Example 4-14 Find a Person's Collaborators, and aggregate and sort them

The following SQL statement finds the collaborators of the vertex with ID 1,
aggregates them by their country, and sorts them in ascending order.

SQ.> sel ect vertices.v, count(1)
from connecti onsGE$, connectionsVT$ vertices
where svid=1
and el =' col | abor at es’
and dvid=vertices.vid
and vertices. k=" country
group by vertices.v
order by count(1) asc

The example output and execution plan may be as follows. In this case, the vertex with
ID 1 has the most collaborators in the United States.

CGer many 1
Japan 1
I ran 1
United States 7

| Id | Operation | Name |

Rows | Bytes | Cost (%CPU)| Tine | Pstart| Pstop | TQ | IN-QUT| PQ
Distrib |

0 | SELECT STATEMENT | |

I

0] 750 | 9 (23)] 00:00:01 | | | | | |
| 1| PX COORDI NATOR |

I I I I I I I I

I I

| 2] PX SEND QC (ORDER) | :TQL0002 |
0] 750 | 9 (23)] 00:00:01 | | | Q02| P->S| QC
(ORDER) |

4-13

Chapter 4
Navigation Options: CONNECT BY and Parallel Recursion

| 3| SORT ORDER BY | |
0] 750 | 9 (23)] 00:00:01 | | | Q02| POV | |
| 4 PX RECEI VE | |
0] 750 | 9 (23)] 00:00:01 | | | Q02| POV | |
| 5] PX SEND RANGE | :TQLO001 |
0] 750 | 9 (23)] 00:00:01 | | | QLO0Ll| P->P| RANGE |
| 6] HASH GROUP BY | |
0] 750 | 9 (23)] 00:00:01 | | | QL01| POV | |
| 7] PX RECEI VE | |
0] 750 | 9 (23)] 00:00:01 | | | QL01| POV | |
| 8] PX SEND HASH | :TQLO000 |
0] 750 | 9 (23)] 00:00:01 | | | QLO00 | P->P| HASH |
| 9] HASH GROUP BY | |
10| 750 | 9 (23)] 00:00:01 | | | QL00 | POV | |
| 10 | NESTED LOOPS | |
10| 750 | 7 (0)| 00:00: 01 | | | QL00 | POV | |
| 11 | PX PARTI TI ON HASH ALL | |
10| 250 | 2 (0)| 00:00:01 | 1] 8] Q00| PO | |
|* 12 | TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED | CONNECTI ONSGE$ |
10| 250 | 2 (0)| 00:00: 01 | 1] 8] Q00| POW | |
|* 13 | | NDEX RANGE SCAN | CONNECTI ONSXSES |
20 | | 1 (0)| 00:00: 01 | 1] 8] Q00| POW | |
| 14 | PARTI TI ON HASH | TERATOR |

| 1 | 0 (0)] 00:00:01 | KEY| KEY| Q00| PCW

I I

|* 15 | TABLE ACCESS BY LOCAL | NDEX ROW D | CONNECTI ONSVT$

| | | | | KEY| KEY| Q00| POWP

I I

|* 16 | | NDEX UNI QUE SCAN | CONNECTI ONSXQV$

| 1 | 0 (0)] 00:00:01 | KEY| KEY| Q00| PCW

I

12 - filter (I NTERNAL_FUNCTI ON("EL") AND "EL"=U col | aborates')

13 - access("SVID'=1)

15 - filter (I NTERNAL_FUNCTI ON("VERTI CES"."V"))

16 - access("DVID'="VERTICES"."VID' AND "VERTI CES". "K"=U country")
filter (I NTERNAL_FUNCTI ON(" VERTI CES"."K"))

4.4 Navigation Options: CONNECT BY and Parallel

Recursion

ORACLE

The CONNECT BY clause and parallel recursion provide options for advanced
navigation and querying.

« CONNECT BY lets you navigate and find matches in a hierarchical order. To follow
outgoing edges, you can use prior dvid = svid to guide the navigation.

» Parallel recursion lets you perform navigation up to a specified number of hops
away.

The examples use a property graph named connections.

4-14

ORACLE

Chapter 4

Navigation Options: CONNECT BY and Parallel Recursion

Example 4-15 CONNECT WITH

The following SQL statement follows the outgoing edges by 1 hop.
SQ.> select Gdvid
from connecti onsGE$ G

start with svid =1
connect by nocycle prior dvid = svid and level <= 1,

The preceding example's output and execution plan may be as follows.

2

3

4

5

6

7

8

9

10
| Id | Operation | Narme | Rows | Bytes
(%CPU) | Time | Pstart| Pstop | TQ |INQUT| PQDistrib |
| 0 | SELECT STATEMENT | | 7| 273
(67)| 00:00:01 | | | | | |
[* 1| CONNECT BY WTH FI LTERI NG | |
I I I I I I I
| 2| PX COORDI NATOR | | |
I I I I I I I
| 3] PX SEND QC (RANDOM | :TQLO000 | 2| 12
(0)] 00:00:01 | | | QL,00] P->S| QC (RAND) |
| 4] PX PARTI TI ON HASH ALL | | 2| 12
(0)] 00:00:01 | 1] 8| Q1,00 | PO | |
[* 5] | NDEX RANGE SCAN | CONNECTI ONSXSE$ | 2 | 12
(0)] 00:00:01 | 1] 8| QL,00 | PCW | |
[* 6] FILTER | | |
I I I I I I I
| 7| NESTED LOOPS | | 5| 95
(0)] 00:00:01 | | | | | |
| 8 | CONNECT BY PUWP | | |
I I I I I I I
| 9 | PARTI TI ON HASH ALL | | 2| 12
(0)] 00:00:01 | 1] 8 | | | |
|* 10 | | NDEX RANGE SCAN | CONNECTI ONSXSE$ | 2 | 12
(0)] 00:00:01 | 1] 8 | | | |

1 - access("SVID'=PRIOR "DVID")
filter(LEVEL<=2)
5 - access("SvVID'=1)
6 - filter(LEVEL<=2)
10 - access("connect$_by$_punp$_002"."prior dvid "="SVID")

4-15

ORACLE

Chapter 4
Navigation Options: CONNECT BY and Parallel Recursion

To extend from 1 hop to multiple hops, change 1 in the preceding example to another
integer. For example, to change it to 2 hops, specify: | evel <= 2

Example 4-16 Parallel Recursion

The following SQL statement uses recursion within the WITH clause to perform
navigation up to 4 hops away, a using recursively defined graph expansion: g_exp
references g_exp in the query, and that defines the recursion. The example also uses
the PARALLEL optimizer hint for parallel execution.

SQ.> WTH g exp(svid, dvid, depth) as
(
select svid as svid, dvid as dvid, 0 as depth
from connecti onsGE$
where svid=1
uni on al
select g2.svid, gl.dvid, g2.depth + 1
fromg_exp g2, connectionsGE$ gl
where g2. dvid=gl.svid
and g2.depth <= 3
)
select [/*+ parallel(4) */ dvid, depth
from g_exp
where svid=1

The example's output and execution plan may be as follows. Note that CURSOR
DURATI ON MEMORY is chosen in the execution, which indicates the graph expansion
stores the intermediate data in memory.

22
25
24

1

A DA DNS

23
33
22
22

A DA DNS

Execution Pl an

| Id | Operation |
Nane | Rows | Bytes | Cost (%CPU)| Tine | Pstart|
Pstop | TQ |INQUT| PQDistrib |

| 0| SELECT STATEMENT

| | 801 | 31239 | 147 (0)| 00:00:01

| | | | |

| 1| TEMP TABLE TRANSFORVATI ON

| | | | | |
| | | | |

4-16

ORACLE

Chapter 4
Navigation Options: CONNECT BY and Parallel Recursion

| 2| LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_OFDOD6614_11CB2D? | | | | |

I I I I I

| 3] UNION ALL (RECURSIVE W TH) BREADTH FI RST

I I I I I I
I I I I I

| 4 PX COORDI NATCR

I I I I I I
I I I | I

| 5] PX SEND QC (RANDOV)

| : TQ0000 | 2| 12| 0 (0)| 00:00:01 |
I | @,00] P->S| QC (RAND) |

| 6| LOAD AS SELECT ((CURSCR DURATI ON MEMORY) |
SYS_TEMP_OFDOD6614_11CB2D2 | | | | |

I | @,00 | PCW | I

| 7] PX PARTI TI ON HASH ALL

| | 2| 12| 0 (0)| 00:00:01 | 1
I 8| @,00| POVC | I

|* 8| | NDEX RANGE SCAN |

CONNECTI ONSXSE$ | 2] 12| 0 (0)| 00:00:01 | 1
8| Q00| PCW | I

| 9| PX COORDI NATCR

I I I I I I
I I I | I

| 10 | PX SEND QC (RANDOV)

| :TQLO000 | 799 12M 12 (0)| 00:00:01 |
I | Q00| P->S| QC (RAND) |

| 11| LOAD AS SELECT ((CURSCR DURATI ON MEMORY) |
SYS_TEMP_OFDOD6614_11CB2D2 | | | | |

I | QL 00| PCW | I

|* 12 | HASH JOI N

| | 799 12M 12 (0)| 00:00:01 |
I | QL 00| PCW | I

| 13 | BUFFER SORT (REUSE)

I I I I I I
I | QL 00| PCW | I

| 14 | PARTI TI ON HASH ALL

| | 164 | 984 | 2 (0)] 00:00:01 | 1
I 8| Q1,00 | POC | I

| 15| I NDEX FAST FULL SCAN |

CONNECTI ONSXDES$ | 164 | 984 | 2 (0)| 00:00:01 | 1
8| QL00 | PCW | I

| 16 | PX BLOCK | TERATOR

I I I I I I
I | QL 00| POWC | I

|* 17 | TABLE ACCESS FULL |
SYS_TEMP_OFDOD6614_11CB2D2 | | | | |

I | QL 00| PCW | I

| 18 | PX COORDI NATOR

I I I I I I
I I I I I

| 19| PX SEND QC (RANDOW)

| : TQB0000 | 801] 31239 | 135 (0)| 00:00:01 |
I | @,00]| P->S| QC (RAND) |

|* 20 | VI EW

| | 801] 31239 | 135 (0)| 00:00:01 |
I | Q3,00 | PCW | I

| 21| PX BLOCK | TERATOR

| | 801] 12M 135 (0)| 00:00:01 |
I | Q8,00 | POWC | I

| 22| TABLE ACCESS FULL |

4-17

4.5 Pivot

ORACLE

Chapter 4
Pivot

SYS_TEMP_OFDODG614 11CB2D2 | 801 | 12M 135 (0)| 00:00:01 |
I | Q8,00]| PCW | I

8 - access("SvVID'=1)
12 - access("®@"."DVID'="GL"."SVID")
17 - filter("@&"."I NTERNAL_| TERS$"=LEVEL AND "@&"." DEPTH'<=3)
20 - filter("SviD'=1)

The PIVOT clause lets you dynamically add columns to a table to create a new table.

The schema design (VT$ and GE$) of the property graph is narrow ("skinny") rather
than wide ("fat"). This means that if a vertex or edge has multiple properties, those
property keys, values, data types, and so on will be stored using multiple rows instead
of multiple columns. Such a design is very flexible in the sense that you can add
properties dynamically without having to worry about adding too many columns or
even reaching the physical maximum limit of number of columns a table may have.
However, for some applications you may prefer to have a wide table if the properties
are somewhat homogeneous.

Example 4-17 Pivot

The following CREATE TABLE ... AS SELECT statement uses PIVOT to add four
columns: ‘company’,” occupation’,” name’, and ‘religion’.

SQ.> CREATE TABLE table pg_wi de
as
with GAS (select vid, k, t, v
from connecti onsVT$
)

select *

fromG

pi vot (
mn(v) for k in ('conpany', 'occupation', 'name', 'religion')

)i

Tabl e creat ed.

The following DESCRIBE statement shows the definition of the new table, including
the four added columns. (The output is reformatted for readability.)

SQ.> DESCRI BE pg_wi de;

Narre Nul | ? Type
VID NOT NULL NUMBER
T

NUVBER(38)
' conpany'

4-18

Chapter 4
SQL-Based Property Graph Analytics

NVARCHAR2(15000)
"occupation’'
NVARCHAR2(15000)
" name'
NVARCHAR2(15000)
"religion'
NVARCHAR2(15000)

4.6 SQL-Based Property Graph Analytics

In addition to the analytical functions offered by the in-memory analyst, the property
graph feature in Oracle Spatial and Graph supports several native, SQL-based
property graph analytics.

The benefits of SQL-based analytics are:

» Easier analysis of larger graphs that do not fit in physical memory

» Cheaper analysis since no graph data is transferred outside the database
» Better analysis using the current state of a property graph database

* Simpler analysis by eliminating the step of synchronizing an in-memory graph with
the latest updates from the graph database

However, when a graph (or a subgraph) fits in memory, then running analytics
provided by the in-memory analyst usually provides better performance than using
SQL-based analytics.

Because many of the analytics implementation require using intermediate data
structures, most SQL- (and PL/SQL-) based analytics APIs have parameters for
working tables (wt). A typical flow has the following steps:

1. Prepare the working table or tables.
2. Perform analytics (one or multiple calls).
3. Perform cleanup

The following subtopics provide SQL-based examples of some popular types of
property graph analytics.

e Shortest Path Examples

* Collaborative Filtering Overview and Examples

4.6.1 Shortest Path Examples

ORACLE

The following examples demonstrate SQL-based shortest path analytics.
Example 4-18 Shortest Path Setup and Computation

Consider shortest path, for example. Internally, Oracle Database uses the bidirectional
Dijkstra algorithm. The following code snippet shows an entire prepare, perform, and
cleanup workflow.

set serveroutput on

DECLARE

4-19

ORACLE

Chapter 4
SQL-Based Property Graph Analytics

wt1 varchar2(100); -- intermediate working tables
n number;

path var char 2(1000) ;

wei ght s varchar 2(1000);

BEG N
-- prepare
opg_api s.find_sp_prep(' connectionsCGE$', wl);
dbns_out put . put _| i ne(' working table nane] wl);
-- conpute

opg_api s. find_sp(
' connect i onsGES$'

1, -- start vertex ID

53, -- destination vertex ID

w1, -- working table (for Dijkstra
expansi on)

dop => 1, -- degree of parallelism

stats_freq=>1000, -- frequency to collect statistics

pat h_out put => path, -- shortest path (a sequence of
vertices)

wei ghts_output => weights, -- edge weights

options => null

);
dbns_out put . put _|ine(' path " || path);
dbns_out put. put _line('weights ' || weights);

-- cleanup (commented out here; see text after the exanple)
-- opg_apis.find_sp_cleanup(' connectionsGE$', wtl);

END;

/

This example may produce the following output. Note that if no working table name is
provided, the preparation step will automatically generate a temporary table name and
create it. Because the temporary working table name uses the session ID, your output
will probably be different.

wor ki ng tabl e nane " CONNECT| ONSCE$$TWFS12"
path 13 52 53
weights 4 31 11

PL/ SQL procedure successful ly conpl et ed.

If you want to know the definition of the working table or tables, then skip the
cleanup phase (as shown in the preceding example that comments out the call to
find_sp_cl eanup). After the computation is done, you can describe the working table
or tables.

SQL> describe " CONNECTI ONSGE$$TWES12"

Narme Nul |2 Type

NI D NUVBER
D2S NUVBER
P2S NUVBER
D2T NUVBER
P2T NUVBER

4-20

Chapter 4
SQL-Based Property Graph Analytics

T

NUVBER(38)
B NUVBER(38)

For advanced users who want to try different table creation options, such as using
in-memory or advanced compression, you can pre-create the preceding working table
and pass the name in.

Example 4-19 Shortest Path: Create Working Table and Perform Analytics

The following statements show some advanced options, first creating a working table

with the same column structure and basic compression enabled, then passing it to the
SQL-based computation. The code optimizes the intermediate table for computations

with CREATE TABLE compression and in-memory options.

create tabl e connections$MY_EXP(

NI D NUVBER
D2S NUVBER
P2S NUVBER
D2T NUVBER
P2T NUVBER

F NUVBER(38) ,
B NUVBER(38)

) compress nol oggi ng;

DECLARE
wt 1 varchar2(100) : = 'connections$MY_EXP';
n number;
path var char 2(1000) ;
wei ght s varchar 2(1000);
BEG N
dbns_out put . put _| i ne(' working table nane] wl);

-- conpute
opg_api s. find_sp(
' connecti onsGES' ,
1,
53,
w1,
dop => 1,
stats_freq=>1000,
pat h_out put => path,
wei ght s_out put => wei ghts,
options => null
);
dbns_out put . put _|ine(' path
dbns_out put . put _|ine(' weights '

|l path);
|| weights);
-- cleanup
-- opg_apis.find_sp_cl eanup(' connecti onsCGE$
END;
/

wi);

ORACLE 4-21

ORACLE

Chapter 4
SQL-Based Property Graph Analytics

At the end of the computation, if the working table has not been dropped or truncated,
you can check the content of the working table, as follows. Note that the working table
structure may vary between releases.

SQL> sel ect * from connecti ons$MY_EXP,

NI D D2S P2S D2T P2T
F B
1 0 1. 000E+100
1 -1
53 1. 000E+100 0
-1 1
54 1. 000E+100 1 53
-1 1
52 1. 000E+100 1 53
-1 1
5 1 1 1.000E+100
0 -1
26 1 1 1.000E+100
0 -1
8 1000 1 1.000E+100
0 -1
3 1 1 2 52
0 0
15 1 1 1.000E+100
0 -1
21 1 1 1. 000E+100
0 -1
19 1 1 1.000E+100
0 -1

Example 4-20 Shortest Path: Perform Multiple Calls to Same Graph

To perform multiple calls to the same graph, only a single call to the preparation step is
needed. The following shows an example of computing shortest path for multiple pairs
of vertices in the same graph.

DECLARE
wt 1 varchar2(100);
n number;
path var char 2(1000) ;
wei ght s varchar 2(1000);
BEG N
-- prepare
opg_apis.find_sp_prep(' connectionsCGE$', wl);
dbns_out put . put _| i ne(' working table nane "] wl);

-- intermedi ate working tables

-- find shortest path from vertex 1 to vertex 53
opg_apis.find_sp('connectionsGE$', 1, 53,
wtl, dop => 1, stats_freq=>1000, path_output => path
wei ght s_out put => wei ghts, options => null);
dbns_out put . put _|ine(' path " || path);
dbns_out put. put _line('weights ' || weights);

4-22

Chapter 4
SQL-Based Property Graph Analytics

-- find shortest path from vertex 2 to vertex 36
opg_api s.find_sp('connectionsCE$', 2, 36,
w1, dop => 1, stats_freq=>1000, path_output => path,
wei ghts_out put => wei ghts, options => null);
dbns_out put . put _|ine(' path " || path);
dbnms_out put. put _|ine('weights ' || weights);

-- find shortest path from vertex 30 to vertex 4
opg_api s.find_sp('connectionsCGE$', 30, 4,
wtl, dop => 1, stats_freq=>1000, path_output => path
wei ght s_out put => wei ghts, options => null);

dbns_out put . put _|ine(' path " || path);

dbns_out put. put _|ine('weights ' || weights);

-- cleanup

opg_api s. find_sp_cl eanup(' connecti onsGE$', wt1);
END;

/

The example's output may be as follows: three shortest paths have been found for the
multiple pairs of vertices provided.

wor ki ng table nane " CONNECT| ONSGE$$TWFS12"
path 13 52 53

weights 431 11

path 2 36

weights 21 1

path 30 21 114

weights 431 11

PL/ SQL procedure successful ly conpl eted.

4.6.2 Collaborative Filtering Overview and Examples

Collaborative filtering, also referred to as social filtering, filters information by using the
recommendations of other people. Collaborative filtering is widely used in systems that
recommend purchases based on purchases by others with similar preferences.

The following examples demonstrate SQL-based collaborative filtering analytics.
Example 4-21 Collaborative Filtering Setup and Computation

This example shows how to use SQL-based collaborative filtering, specifically using
matrix factorization to recommend telephone brands to customers. This example
assumes there exists a graph called "PHONES" in the database. This example graph
contains customer and item vertices, and edges with a 'rating' label linking some
customer vertices to other some item vertices. The rating labels have a numeric value
corresponding to the rating that a specific customer (edge OUT vertex) assigned to the
specified product (edge IN vertex).

The following figure shows this graph.

ORACLE 4-23

http://recommender-systems.org/collaborative-filtering/

ORACLE

Chapter 4
SQL-Based Property Graph Analytics

Figure 4-1 Phones Graph for Collaborative Filtering

ratin @
rating

set serveroutput on

DECLARE

@

wt | varchar2(32); -- working tables

wt _r varchar?2(32);
wt |1 varchar2(32);
wt_rl varchar2(32);
wt i varchar?2(32);
wt _|d varchar2(32);
wt _rd varchar2(32);

edge_tab_name varchar2(32) :
edge_| abel varchar2(32) :
rating_property varchar2(32) :

iterations i nt eger
mn_error nunber
k i nt eger

learning rate nunber
decrease rate nunber
regul arization nunber

dop nunber

t abl espace varchar2(32) :

options varchar2(32) :
BEG N

- prepare

dbns_out put . put _|ine("' working
dbns_out put . put _| i ne("' worki ng
dbns_out put . put _| i ne("' worki ng
dbns_out put . put _| i ne("' worki ng
dbns_out put . put _| i ne("' worki ng
dbns_out put . put _|ine("' working
dbns_out put . put _|ine("' working

opg_apis.cf_prep(edge_tab name,wt |, wt_r,wt [1,w rl
| I
| r

- conpute

' phonesge$' ;
"rating';

100;
0. 001;
5,
0.001;
0. 95;
0.02;
2,

nul | ;
nul | ;

table wt | | wt_1);
table wt r " || w_r);
table wt 1" || w_11);
table wt _r1 " || wt_rl);
table wt i " || w_i);
table wt_Id "' || w_Id);
table wt_rd ' || wt_rd);

4-24

Chapter 4
SQL-Based Property Graph Analytics

opg_api s. cf(edge_tab_name, edge_| abel ,rating_property,iterations,
mn_error,k,learning_rate, decrease_rate, regul arization, dop,

wtolowt r,w_Il,w o rl,wt_i,w_Id,w_rd,tabl espace, options);

END;

/

no

working table w _| " PHONESGE$$CFL57"
working table w _r " PHONESGE$$CFR57"
working table wt _I1 " PHONESGE$$CFL157"
working table wt _ril " PHONESGE$$CFR157"
working table wt _i " PHONESGE$$CFI 57"
working table wt_Id " PHONESGE$$CFLD57"
working table wt_rd " PHONESGE$$CFRD5 7"

PL/ SQL procedure successfully conpl et ed.

Example 4-22 Collaborative Filtering: Validating the Intermediate Error

At the end of every computation, you can check the current error of the algorithm with
the following query as long as the data in the working tables has not been already
deleted. The following SQL query illustrates how to get the intermediate error of a
current run of the collaborative filtering algorithm.

SELECT /*+ parallel (48) */ SQRT(SUM (wLl-w2)*(wl-w2) +
<regul arization>/2 * (err_reg |+err _regr))) AS err
FROM <wt _i >;

Note that the regularization parameter and the working table name (parameter wt _i)
should be replaced according to the values used when running the OPG_APIS.CF
algorithm. In the preceding previous example, replace <r egul ari zat i on> with 0.02
and <wt _i > with "PHONESGE$$CFI1149" as follows:

SELECT /*+ parallel (48) */ SORT(SUM (wl-w2)*(wl-w2) + 0.02/2 *
(err_reg_l+err_reg_r))) AS err
FROM " PHONESGE$$CFI 149" ;

This query may produce the following output.

4.82163662

f the value of the current error is too high or if the predictions obtained from the
matrix factorization results of the collaborative filtering are not yet useful, you can run
more iterations of the algorithm, by reusing the working tables and the progress made
so far. The following example shows how to make predictions using the SQL-based
collaborative filtering.

ORACLE 4-25

ORACLE

Chapter 4
SQL-Based Property Graph Analytics

Example 4-23 Collaborative Filtering: Making Predictions

The result of the collaborative filtering algorithm is stored in the tableswt _| andwt _r,
which are the two factors of a matrix product. These matrix factors should be used
when making the predictions of the collaborative filtering.

In a typical flow of the algorithm, the two matrix factors can be used to make

the predictions before calling the OPG_APIS.CF_CLEANUP procedure, or they can
be copied and persisted into other tables for later use. The following example
demonstrates the latter case:

DECLARE
wt | varchar?2(32);
wt _r varchar?2(32);
wt |1 varchar2(32);
wt_rl varchar2(32);
wt i varchar?2(32);
wt _|d varchar2(32);
wt_rd varchar2(32);

-- working tables

edge_tab_name varchar2(32) := 'phonesge$';
edge_| abel varchar2(32) := 'rating';
rating_property varchar2(32) :="";
iterations i nt eger = 100;
mn_error nunber = 0.001;
k i nt eger = 5;
learning rate nunber = 0.001;
decrease rate nunber = 0. 95;
regul arization nunber = 0.02;
dop nunber = 2;
t abl espace varchar2(32) := null;
options varchar2(32) := null;

BEG N
-- prepare

opg_apis.cf_prep(edge tab name,wt |, wt_r,wt [1,w rl,w i,w _[dw rd);

-- conpute
opg_api s. cf(edge_tab_name, edge | abel ,rating_property,iterations,

mn_error,k,learning rate, decrease_rate, regularization, dop,
weolowt row ITl,w o rl,wt i,w _Id,w_rd,tabl espace, options);
-- save only these two tables for later predictions
EXECUTE | MVEDI ATE ' CREATE TABLE cust omer _nat AS SELECT * FROM' ||

w |
EXECUTE | MVEDI ATE ' CREATE TABLE item mat AS SELECT * FROM' || w _r;
-- cleanup

opg_api s. cf _cl eanup(' phonesge$' ,wt _|,wt_r,wt 11, wt_rd,wt_i,w _ld,w_rd);

END;
/

4-26

ORACLE

Chapter 4
SQL-Based Property Graph Analytics

This example will produce the only the following output.

PL/ SQL procedure successful ly conpl et ed.

Now that the matrix factors are saved in the tables customer_mat and item_mat,

you can use the following query to check the "error" (difference) between the real
values (those values that previously existed in the graph as 'ratings') and the estimated
predictions (the result of the matrix multiplication in a certain customer row and item
column).

Note that the following query is customized with a join on the vertex table in order
return an NVARCHAR property of the vertices (for example, the name property)
instead of a numeric ID. This query will return all the predictions for every single
customer vertex to every item vertex in the graph.

SELECT /*+ parallel (48) */ M N(vertexl.v) AS custoner,
M N(vertex2.v) AS item
M N(edges.vn) AS real,
SUMI.v * r.v) AS predicted
FROM PHONESGES$ edges,
CUSTOVER_MAT |,
| TEM_MAT r,
PHONESVTS$ vertexl,
PHONESVTS$ vertex2
WHERE | .k =r.k

AND | .c = edges.svid(+)
AND r.p = edges. dvid(+)
AND |.c = vertexl.vid

AND r.p = vertex2.vid
GROUP BY |.c, r.p
ORDER BY |.c, r.p

-- This order by clause is optional

This query may produce an output similar to the following (some rows are omitted for
brevity).

CUSTOMER | TEM REAL PREDI CTED
Adam Appl e 5 3.67375703
Adam Bl ackberry 3.66079652
Adam Danger 2. 77049596
Adam Ericsson 4.21764858
Adam Fi go 3.10631337
Adam CGoogl e 4 4. 42429022
Adam Huawei 3 3.4289115
Ben Appl e 2.82127589
Ben Bl ackberry 2 2.81132282
Ben Danger 3 2.12761307
Ben Ericsson 3 3. 2389595
Ben Fi go 2. 38550534
Ben Googl e 3. 39765075
Ben Huavei 2.63324582
Don Appl e 1.3777496
Don Bl ackberry 1 1. 37288909
Don Danger 1 1. 03900439
Don Ericsson 1.58172236
Don Fi go 1 1.16494421

4-27

ORACLE

Don

Don

Erik
Erik
Erik
Erik
Erik
Erik
Erik

Googl e

Huawei 1
Appl e 3
Bl ackberry 3
Danger
Ericsson 3
Fi go
Googl e 3
Huawei 3

Chapter 4
SQL-Based Property Graph Analytics

1. 65921807
1. 28592648
2. 80809351

2.79818695
2.11767182
3. 2238255

2. 3743591
3. 38177526
2.62094201

If you want to check only some rows to decide whether the prediction results are ready
or more iterations of the algorithm should be run, the previous query can be wrapped
in an outer query. The following example will select only the first 11 results.

SELECT /*+ parallel (48) */ * FROM (
SELECT /*+ parallel (48) */ M N(vertexl.v) AS custoner,
M N(vertex2.v) AS item
M N(edges.vn) AS real,
SUMI.v * r.v) AS predicted
FROM PHONESGES$ edges,
CUSTOMER _MAT |,
| TEM MAT r,
PHONESVTS$ vertexl,
PHONESVTS$ vertex2

WHERE | .k = r.k
AND |.c = edges. svid(+)
AND r.p = edges. dvid(+)
AND |.c = vertexl.vid
AND r.p = vertex2.vid

GROP BY I.c, r.p

ORDER BY |.¢c, r.p

) WHERE rownum <= 11;

This query may produce an output similar to the following.

CUSTOMER | TEM REAL PREDI CTED
Adam Appl e 5 3.67375703
Adam Bl ackberry 3.66079652
Adam Danger 2. 77049596
Adam Ericsson 4.21764858
Adam Fi go 3.10631337
Adam Googl e 4 4.42429022
Adam Huawei 3 3.4289115
Ben Appl e 2.82127589
Ben Bl ackberry 2 2.81132282
Ben Danger 3 2.12761307
Ben Ericsson 3 3. 2389595

To get a prediction for a specific vertex (customer, item, or both) the query can be

restricted with the desired ID values. For example, to get the predicted value of vertex
1 (customer) and vertex 105 (item), you can use the following query.

SELECT /*+ parallel (48) */ M N(vertexl.v) AS custoner,
M N(vertex2.v) AS item
M N(edges.vn) AS real,
SUMI.v * r.v) AS predicted

4-28

ORACLE

Chapter 4
SQL-Based Property Graph Analytics

FROM PHONESGE$ edges,
CUSTOVER_MAT |,
| TEM MAT T,
PHONESVTS$ vertexl,
PHONESVTS$ vert ex2

WHERE | .k =r.k
AND |.c = edges.svid(+)
AND r.p = edges. dvid(+)
AND |.c = vertexl.vid

AND vertexl.vid = 1 /* Renove to get all predictions for item 105 */
AND r.p = vertex2.vid
AND vertex2.vid = 105 /* Renove to get all predictions for custoner 1

*/

/* Remove both lines to get all predictions */
GROUP BY |.c, r.p
ORDER BY | .c, r.p;

This query may produce an output similar to the following.

CUSTOVER | TEM REAL PREDI CTED

4-29

Property Graph Query Language (PGQL)

PGQL is a SQL-like query language for property graph data structures that consist
of vertices that are connected to other vertices by edges, each of which can have
key-value pairs (properties) associated with them.

The language is based on the concept of graph pattern matching, which allows you to
specify patterns that are matched against vertices and edges in a data graph.

The property graph support provides two ways to execute Property Graph Query
Language (PGQL) queries through Java APIs:

* Use the oracl e. pgx. api Java package to query an in-memory snapshot of a
graph that has been loaded into the in-memory analyst (PGX), as described in
Using the In-Memory Graph Server (PGX).

e Use the oracl e. pg. rdbns. pggl Java package to directly query graph data stored
in Oracle Database, as described in Executing PGQL Queries Directly Against
Oracle Database.

For more information about PGQL, see https://pgql-lang.org.
e Creating a Property Graph using PGQL

e Pattern Matching with PGQL

- Edge Patterns Have a Direction with PGQL

e Vertex and Edge Labels with PGQL

e Variable-Length Paths with PGQL

e Aggregation and Sorting with PGQL

e Executing PGQL Queries Against the In-Memory Graph Server (PGX)
This section describes the Java APIs that are used to execute PGQL queries in
the In-Memory graph server (PGX).

e Executing PGQL Queries Directly Against Oracle Database
This topic explains how you can execute PGQL queries directly against the graph
in Oracle Database (as opposed to in-memory).

5.1 Creating a Property Graph using PGQL

ORACLE

CREATE PROPERTY GRAPH is a PGQL DDL statement to create a graph from
database tables. The graph is stored in the property graph schema.

The CREATE PROPERTY GRAPH statement starts with the name you give the graph,
followed by a set of vertex tables and edge tables. The graph can have no vertex
tables or edge tables (an empty graph), or vertex tables and no edge tables (a graph
with only vertices and no edges), or both vertex tables and edge tables (a graph with
vertices and edges). However, a graph cannot be specified with only edge tables and
no vertex tables.

Consider the following example:

5-1

https://pgql-lang.org

Chapter 5
Creating a Property Graph using PGQL

PERSONS is a table with columns ID, NAME, and ACCOUNT_NUMBER. A row is
added to this table for every person who has an account.

* TRANSACTIONS is a table with columns FROM_ACCOUNT, TO_ACCOUNT,
DATE, and AMOUNT. A row is added into this table in the database every time
money is transferred from a FROM_ACCOUNT to a TO_ACCOUNT.

A straightforward mapping of tables to graphs is as follows. The graph concepts
mapped are: vertices, edges, labels, properties.

* Vertex tables: A table that contains data entities is a vertex table.
— Each row in the vertex table is a vertex.
— The columns in the vertex table are properties of the vertex.

— The name of the vertex table is the default label for this set of vertices.
Alternatively, you can specify a label name as part of the CREATE
PROPERTY GRAPH statement.

* Edge tables: An edge table can be any table that links two vertex tables, or a
table that has data that indicates an action from a source entity to a target entity.
For example, a transfer of money from FROM_ACCOUNT to TO_ACCOUNT is a
natural edge.

— Foreign key relationships can give guidance on what links are relevant in
your data. CREATE PROPERTY GRAPH will default to using foreign key
relationships to identify edges.

— Some of the properties of an edge table can be the properties of the edge.
For example, an edge from FROM_ACCOUNT to TO_ACCOUNT can have
properties DATE and AMOUNT.

— The name of an edge table is the default label for this set of edges.
Alternatively, you can specify a label name as part of the CREATE
PROPERTY GRAPH statement.

+ Keys:

— Keys in a vertex table: The key of a vertex table identifies a unique vertex
in the graph. The key can be specified in the CREATE PROPERTY GRAPH
statement; otherwise, it defaults to the primary key of the table. If there are
duplicate rows in the table, the CREATE PROPERTY GRAPH statement will
return an error.

— Key in an edge table: The key of an edge table uniquely identifies an edge
in the graph. The KEY clause when specifying source and destination vertices
uniquely identifies the source and destination vertices.

The following is an example CREATE PROPERTY GRAPH statement for the
tables PERSONS and TRANSACTIONS.

CREATE PROPERTY GRAPH bank_transfers
VERTEX TABLES (persons KEY(account _nunber))
EDGE TABLES(
transactions KEY (fromacct, to_acct, date,
anount)
SOURCE KEY (from account) REFERENCES persons
DESTI NATI ON KEY (to_account) REFERENCES persons
PROPERTI ES (date, anopunt)

ORACLE 5-2

Chapter 5
Pattern Matching with PGQL

* Table aliases: Vertex and edge tables must have unique names. If you need
to identify multiple vertex tables from the same relational table, or multiple edge
tables from the same relational table, you must use aliases. For example, you can
create two vertex tables PERSONS and PERSONS _ID from one table PERSONS,
as in the following example.

CREATE PROPERTY GRAPH bank_transfers
VERTEX TABLES (persons KEY(account _nunber)
persons_id AS persons KEY(id))

« REFERENCES clause: This connects the source and destination vertices of an
edge to the corresponding vertex tables.

For more details, see: https://pgqgl-lang.org/spec/latest/#creating-a-property-graph.

5.2 Pattern Matching with PGQL

Pattern matching is done by specifying one or more path patterns in the MATCH
clause. A single path pattern matches a linear path of vertices and edges, while more
complex patterns can be matched by combining multiple path patterns, separated

by comma. Value expressions (similar to their SQL equivalents) are specified in the
WHERE clause and let you filter out matches, typically by specifying constraints on the
properties of the vertices and edges

For example, assume a graph of TCP/IP connections on a computer network, and
you want to detect cases where someone logged into one machine, from there into
another, and from there into yet another. You would query for that pattern like this:

SELECT id(host1) AS idl, id(host2) AS id2, id(host3) ASid3 [*
choose what to return */
FROM MATCH

(host1) -[connectionl]-> (host2) -[connection2]-> (host3) [*
single linear path pattern to match */
VHERE

connectionl.toPort = 22 AND connectionl. opened = true AND

connection2.toPort 22 AND connection2.opened = true AND

connectionl. bytes > 300 AND [*
meani ngf ul anount of data was exchanged */

connection2. bytes > 300 AND

connectionl.start < connection2.start AND [*
second connection within tine-frame of first */

connection2.start + connection2.duration < connectionl.start +
connectionl. duration
GROUP BY idl, id2, id3 [*
aggregate mul tiple matching connections */

For more examples of pattern matching, see the relevant section of the PGQL
specification.

ORACLE 5-3

https://pgql-lang.org/spec/latest/#creating-a-property-graph
https://pgql-lang.org/spec/latest/#writing-simple-queries
https://pgql-lang.org/spec/latest/#writing-simple-queries

Chapter 5
Edge Patterns Have a Direction with PGQL

5.3 Edge Patterns Have a Direction with PGQL

An edge pattern has a direction, as edges in graphs do. Thus, (a) <-[]-
(b) specifies a case where b has an edge pointing at a, whereas (a) -[]-> (b) looks
for an edge in the opposite direction.

The following example finds common friends of April and Chris who are older than
both of them.

SELECT friend. name, friend. dob

FROV MATCH /* note the arrow directions bel ow */
(pl:person) -[:likes]-> (friend) <-[:likes]- (p2:person)
VHERE

pl.name = "April' AND p2.name ='Chris' AND
friend.dob > pl.dob AND friend.dob > p2.dob
ORDER BY friend. dob DESC

For more examples of edge patterns, see the relevant section of the PGQL
specification here.

5.4 Vertex and Edge Labels with PGQL

Labels are a way of attaching type information to edges and nodes in a graph, and
can be used in constraints in graphs where not all nodes represent the same thing. For
example:

SELECT p. nane
FROM MATCH (p: person) -[el:likes]-> (ml: novie),
MATCH (p) -[e2:likes]-> (nR:novie)
WHERE nml.title = 'Star Wars'
AND n2.title = "Avatar'

For more examples of label expressions, see the relevant section of the PGQL
specification here.

5.5 Variable-Length Paths with PGQL

ORACLE

Variable-length path patterns have a quantifier like * to match a variable number of
vertices and edges. Using a PATH macro, you can specify a named path pattern at the
start of a query that can be embedded into the MATCH clause any humber of times,
by referencing its name. The following example finds all of the common ancestors of
Mario and Luigi.

PATH has_parent AS () -[:has_father|has_nother]-> ()

SELECT ancest or. name

FROM MATCH (pl: Person) -/:has_parent*/-> (ancestor: Person)
, MATCH (p2: Person) -/:has_parent*/-> (ancestor)

VHERE
pl.name = 'Mario' AND
p2.name = 'Luigi’

5-4

http://pgql-lang.org/spec/latest/#edge-patterns
http://pgql-lang.org/spec/latest/#label-expressions

Chapter 5
Aggregation and Sorting with PGQL

The preceding path specification also shows the use of anonymous constraints,
because there is no need to define names for intermediate edges or nodes that will
not be used in additional constraints or query results. Anonymous elements can have
constraints, such as [: has_f at her| has_not her] -- the edge does not get a variable
name (because it will not be referenced elsewhere), but it is constrained.

For more examples of variable-length path pattern matching, see the relevant section
of the PGQL specification here.

5.6 Aggregation and Sorting with PGQL

Like SQL, PGQL has support for the following:
« GROUP BY to create groups of solutions
* MIN, MAX, SUM, and AVG aggregations

* ORDER BY to sort results

And for many other familiar SQL constructs.

For GROUP BY and aggregation, see the relevant section of the PGQL specification
here. For ORDER BY, see the relevant section of the PGQL specification here.

5.7 Executing PGQL Queries Against the In-Memaory Graph
Server (PGX)

ORACLE

This section describes the Java APIs that are used to execute PGQL queries in the
In-Memory graph server (PGX).

e Getting Started with PGQL

e Supported PGQL Features
The In-Memory graph server (PGX) supports all PGQL features except DROP
PROPERTY GRAPH.

» Java APIs for Executing CREATE PROPERTY GRAPH Statements

e Java APIs for Executing SELECT Queries
This section describes the APIs to execute SELECT queries in the In-Memory graph
server (PGX).

e Java APIs for Executing UPDATE Queries
The UPDATE queries make changes to existing graphs using the | NSERT, UPDATE,
and DELETE operations as detailed in the section Graph Modification of the PGQL
1.3 specification.

» Security Tools for Executing PGQL Queries
To safeguard against query injection, bind variables can be used in place of literals
while printldentifier(String identifier) canbe used in place of identifiers
like graph names, labels, and property names.

e Best Practices for Tuning PGQL Queries
This section describes best practices regarding memory allocation, parallelism,
and query planning.

5-5

http://pgql-lang.org/spec/latest/#reachability
http://pgql-lang.org/spec/latest/#grouping-and-aggregation
http://pgql-lang.org/spec/latest/#sorting-and-row-limiting

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5.7.1 Getting Started with PGQL

ORACLE

This section provides an example on how to get started with PGQL. It assumes a
database realm that has been previously set up (follow the steps in 3.1.1 Prepare the
Graph Server for Database Authentication). It also assumes that the user has r ead
access to the HR schema.

First, create a graph with employees, departments, and enpl oyee wor ks at
depart nent, by executing a CREATE PROPERTY GRAPH statement.

Example 5-1 Creating a graph in the in-memory graph server (PGX)
The following statement creates a graph in the in-memory graph server (PGX)
String statenent =

" CREATE PROPERTY GRAPH hr_sinplified "
+ " VERTEX TABLES ("

+ " hr. enpl oyees LABEL enpl oyee "

+ " PROPERTI ES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
departrment _id), "

+ " hr.departnents LABEL department "

+ " PROPERTI ES (departnent_id, department_name) "

+")"

+ " EDGE TABLES ("

+ " hr. enpl oyees AS works_at "

+ " SOURCE KEY (enpl oyee id) REFERENCES enpl oyees "

+ " DESTI NATI ON departnents "

+ " PROPERTI ES (enployee_id) "

+ n)ll;
sessi on. execut ePgql (st atement);

/**
* To get a handle to the graph, execute:
*/
PgxGraph g = session. get G aph("HR_SI MPLI FI ED") ;

/**
* You can use this handle to run PGQL queries on this graph.
* For exanple, to find the department that “Nandita Sarchand” worKks
for, execute:
*/
String query =
"SELECT dep. depart ment _name
+ "FROM MATCH (enp: Enpl oyee) -[:works_at]-> (dep: Departnent) "
+ "WHERE enp.first_name = 'Nandita'" AND enp.last_name = ' Sarchand’
+ "ORDER BY 1";
Pgql Resul t Set result Set = g.queryPgql (query);
resultSet.print();

o e e +
| department _nane |
o e e +
| Shi ppi ng |
o e e +

5-6

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

/**
* To get an overview of the types of vertices and their frequencies,
execut e:
*/
String query =
"SELECT | abel (n), COUNT(*) "

+ "FROM MATCH (n) "

+ "GROUP BY | abel (n) "

+ "ORDER BY COUNT(*) DESC';
Pgql Resul t Set result Set = g.queryPgql (query);
resultSet.print();

| EMPLOYEE | 107 |
| DEPARTMENT | 27 |

/**

*To get an overview of the types of edges and their frequencies,
execut e:

*/

String query =

"SELECT | abel (n) AS srcLbl, I|abel(e) AS edgelbl, |abel(m AS

dstLbl, COUNT(*) "

+ "FROM MATCH (n) -[e]-> (m "

+ "GROUP BY srclbl, edgelLbl, dstLbl "

+ "CORDER BY COUNT(*) DESC';
Pgql Resul t Set result Set = g.queryPgql (query);
resultSet.print();

o e m e e e e e e mmemmemeeaa +
| srcLbl | edgelLbl | dstLbl | COUNT(*) |
o e m e e e e e e mmemmemeeaa +
| EMPLOYEE | WORKS_ AT | DEPARTMENT | 106 |
o e m e e e e e e mmemmemeeaa +

5.7.2 Supported PGQL Features

ORACLE

The In-Memory graph server (PGX) supports all PGQL features except DROP PROPERTY
GRAPH.

Few features have certain limitations that are described below.

e Limitations on Quantifiers
Although all quantifiers such as *, +, and { 1, 4} are supported for reachability
patterns, the only quantifier that is supported for shortest and cheapest path
patterns is * (zero or more).

e Limitations on WHERE and COST Clauses in Quantified Patterns

5-7

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5.7.2.1 Limitations on Quantifiers

Although all quantifiers such as *, +, and {1, 4} are supported for reachability patterns,
the only quantifier that is supported for shortest and cheapest path patterns is * (zero
or more).

5.7.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns

The WHERE and COST clauses in quantified patterns, such as reachability patterns or
shortest and cheapest path patterns, are limited to referencing a single variable only.

The following are examples of queries that are not supported because the WHERE or
COST clauses reference two variables e and x instead of zer o or one:

PATH p AS (n) —[e
. SHORTEST ((n) (
. CHEAPEST ((n) (

]-> (m WHERE e.prop > mprop ...

-[e]-> (x) WHERE e.prop + x.prop > 10)* (m) ...
-[e]-> (x) COST e.prop + x.prop)* (m) ...

The following query is supported because the subquery only references a single
variable a from the outer scope, while the variable ¢ does not count since it is newly
introduced in the subquery:

PATH p AS (a) -> (b)
WHERE EXI STS (SELECT * FROM MATCH (a) -> (c¢)) ...

5.7.3 Java APIs for Executing CREATE PROPERTY GRAPH
Statements

The easiest way to execute a CREATE PROPERTY GRAPH statement is through the
PgxSessi on. execut ePgqgl (String statenment) method.

Example 5-2 Executing a CREATE PROPERTY GRAPH statement
String statenent =

" CREATE PROPERTY GRAPH hr_sinplified "
+ " VERTEX TABLES ("

+ " hr. enpl oyees LABEL enpl oyee "

+ " PROPERTI ES ARE ALL COLUWMNS EXCEPT (job_id, manager_id,
departrment _id), "

+ " hr.departnents LABEL departnent "

+ " PROPERTI ES (departnent _id, department_nanme) "

£y

+ EDGE TABLES ("

+ hr. enpl oyees AS works_at "

+ SOURCE KEY (enpl oyee id) REFERENCES enpl oyees "

+ DESTI NATI ON departnents "

+ PROPERTI ES (enployee id) "

MR
sessi on. execut ePgql (statement);
PgxGraph g = session. get G aph("HR _SI MPLI FI ED") ;

ORACLE 5-8

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

/**

* Alternatively, one can use the prepared statement API, for exanple:
*/

PgxPrepar edSt at enent st mt = sessi on. prepar ePgqgl (st atenent);
stmt . execute();

stmmt. cl ose();

PgxGraph g = session. get G aph("HR_SI MPLI FI ED") ;

5.7.4 Java APIs for Executing SELECT Queries

This section describes the APIs to execute SELECT queries in the In-Memory graph
server (PGX).

e Executing SELECT Queries Against a Graph in the In-memory Graph Server
(PGX)
The PgxGraph. queryPgql (String query) method executes the query in the
session that was used to create the PgxGraph. The method returns a
Pgql Resul t Set .

e Executing SELECT Queries Against a PGX Session
The PgxSessi on. queryPgql (String query) method executes the given query in
the session and returns a Pgqgl Resul t Set .

e |terating Through a Result Set
There are two ways to iterate through a result set: in a JDBC-like manner or using
the Java Iterator interface.

e Printing a Result Set
The following methods of Pgql Resul t Set (package oracl e. pgx. api) are used to
print a result set:

5.7.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph
Server (PGX)

The PgxGr aph. queryPgql (String query) method executes the query in the session
that was used to create the PgxGraph. The method returns a Pgql Resul t Set .

The ON clauses inside the MATCH clauses can be omitted since the query is executed
directly against a PGX graph. For the same reason, the | NTO clauses inside the | NSERT
clauses can be omitted. However, if you want to explicitly specify graph names in the
ON and I NTOclauses, then those graph names have to match the actual name of the
graph (PgxG aph. get Name()).

5.7.4.2 Executing SELECT Queries Against a PGX Session

ORACLE

The PgxSessi on. queryPgql (String query) method executes the given query in the
session and returns a Pgql Resul t Set .

The ON clauses inside the MATCH clauses, and the | NTO clauses inside the | NSERT
clauses, must be specified and cannot be omitted. At this moment, all the ONand | NTO
clauses of a query need to reference the same graph since joining data from multiple
graphs in a single query is not yet supported.

5-9

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5.7.4.3 Iterating Through a Result Set

ORACLE

There are two ways to iterate through a result set: in a JDBC-like manner or using the
Java lterator interface.

For JDBC-like iterations, the methods in Pggl Resul t Set (package or acl e. pgx. api)
are similar to the ones in j ava. sql . Resul t Set . A noteworthy difference is that PGQL's
result set interface is based on the new date and time library that was introduced in
Java 8, while j ava. sql . Resul t Set is based on the legacy j ava. uti | . Dat e. To bridge
the gap, PGQL's result set provides get LegacyDat e(..) for applications that still use
java.util.Date.

A Pggl Resul t Set has a cur sor that is initially set before the first row. Then, the
following methods are available to reposition the cursor:

 next() : bool ean

e previous() : bool ean

* beforeFirst()

o afterlLast()

e« first() : bool ean

 last() : bool ean

e absolute(long row) : bool ean

 relative(long rows) : bool ean
Above methods are documented in more detail here.

After the cursor is positioned at the desired row, the following getters are used to
obtain values:

e getQbject(int columldx) : Chject

e getObject(String columNane) : Object

e getString(int columldx) : String

e getString(String columNane) : String
e getlnteger(int columldx) : Integer

e getlnteger(String columNare) : Integer
e getlLong(int columldx) : Long

e getLong(String columNane) : Long

e getFloat(int columldx) : Float

e getFloat(String columNane) : Float

e getDoubl e(int columldx) : Double

e getDoubl e(String col umNane) : Doubl e

e getBool ean(int columldx) : Bool ean

e getBool ean(String col umName) : Bool ean

e getVertexLabel s(int columldx) : Set<String>

5-10

https://docs.oracle.com/en/database/oracle/oracle-database/20/spgjv/oracle/pg/rdbms/pgql/PgqlResultSetImpl.html

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

e getVertexLabel s(String col umNane) : Set<String>

e getDate(int columldx) : Local Date

e getDate(String columNane) : Local Date

e getTime(int columldx) : Local Tine

e getTime(String columNane) : Local Time

e getTimestanp(int columldx) : Local DateTine

e getTimestanp(String col utmName) : Local DateTi ne

o getTimeWthTimezone(int columldx) : O fsetTime

e getTimeWthTi mezone(String columNane) : OffsetTine

e getTimestanpWthTi mezone(int columldx) : OfsetDateTime
e getTimestanpWthTi mezone(String col umName) : O f set DateTi me
e getlLegacyDate(int columldx) : java.util.Date

e getLegacyDate(String columNane) : java.util.Date

e getList(int columldx) : List<T>

o getList(String col umNane) : List<T>

Above methods are documented in more detail here.

Finally, there is a Pggl Resul t Set . cl ose() which releases the result set’s resources,
and there is a Pgqgl Resul t Set . get Met aDat a() through which the column names and
column count can be retrieved.

An example for result set iteration is as follows:

Pgql Resul t Set result Set = g. queryPgql (
" SELECT owner.nane AS account hol der, SUMt.anount) AS
total transacted with Nikita "

+ " FROVI MATCH (p: Person) -[:ownerOf]-> (accountl: Account) "

+ " , MATCH (accountl) -[t:transaction]- (account2) "

+ " , MATCH (account 2: Account) <-[:ownerOf]- (owner: Person|
Conpany) "

+ " WHERE p.name = 'Nikita' "
+ " GROUP BY owner");

String accountHol der = resultSet.getString(1);
long total Transacted = resultSet. getLong(2);
Systemout. println(accountHolder + ": " + total Transacted);

while (resultSet.next()) {

}

resul t Set. cl ose();

The output of the above example will look like:

Oracle: 4501
Cam | le: 1000

ORACLE 5-11

https://docs.oracle.com/en/database/oracle/oracle-database/20/spgjv/oracle/pg/rdbms/pgql/PgqlResultSetImpl.html

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

In addition, the Pgql Resul t Set is also iterable via the Java Iterator interface. An
example of a “for each loop” over the result set is as follows:

for (PgxResult result : resultSet) {
String accountHol der = result.getString(1);
long total Transacted = result.getLong(2);
System out. println(accountHolder + ": " + total Transacted);

}

The output of the above example will look like:

Oracle: 4501
Canmille: 1000

Note that the same getters that are available for Pgql Resul t Set are also available for
PgxResul t .

5.7.4.4 Printing a Result Set

ORACLE

The following methods of Pgql Resul t Set (package oracl e. pgx. api) are used to
print a result set:

o print() : Pggl Result Set
e print(long numResults) : Pgql Resul t Set
e print(long nunResults, int from : Pgql Result Set

e print(PrintStreamprintStream long nunResults, int from :
Pgqgl Resul t Set

For example:

g. queryPgql (" SELECT COUNT(*) AS nunPersons FROM MATCH
(n:Person)").print().close()

i +
| nunPersons |
i +
| 3 |
i +

Another example:

Pgql Resul t Set result Set = g.queryPgql (
" SELECT owner.nane AS account _hol der, SUMt.anount) AS
total transacted with Nikita "

+ " FROMI MATCH (p: Person) -[:ownerOf]-> (accountl: Account) "

+ " , MATCH (accountl) -[t:transaction]- (account2) "

+ " , MATCH (account 2: Account) <-[:ownerOf]- (owner: Person|
Conpany) "

+ " WHERE p.nanme = "N kita' "

+ " CGROUP BY owner")

resultSet.print().close()

5-12

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

| account _holder | total transacted with Nikita |

| Camille | 1000.0 |
| Oacle | 4501.0 |

5.7.5 Java APIs for Executing UPDATE Queries

The UPDATE queries make changes to existing graphs using the | NSERT, UPDATE, and
DELETE operations as detailed in the section Graph Modification of the PGQL 1.3
specification.

Note that | NSERT allows you to insert new vertices and edges into a graph, UPDATE
allows you to update existing vertices and edges by setting their properties to new
values, and DELETE allows you to delete vertices and edges from a graph.

» Executing UPDATE Queries against a Graph in the in-memory Graph Server
(PGX)
To execute UPDATE queries against a graph, use the
PgxG aph. execut ePgqgl (String query) method.

e Executing UPDATE Queries Against a PGX Session
For now, there is no support for executing UPDATE queries against a PgxSessi on
and therefore, updates always have to be executed against a PgxGraph. To
obtain a graph from a session, use the PgxSessi on. get G aph(String graphName)
method.

e Updatability of Graphs Through PGQL
Graph data that is loaded from the Oracle RDBMS or from CSYV files into the PGX
is not updatable through PGQL right away.

e Altering the Underlying Schema of a Graph
The | NSERT operations can only insert vertices and edges with known labels and
properties. Similarly, UPDATE operations can only set values of known properties.
Thus, new data must always conform to the existing schema of the graph.

5.7.5.1 Executing UPDATE Queries against a Graph in the in-memory Graph
Server (PGX)

ORACLE

To execute UPDATE queries against a graph, use the PgxG aph. execut ePgql (String
query) method.

The following is an example of | NSERT query:

g. execut ePggl ("1 NSERT VERTEX v " +
" LABELS (Person) " +
PROPERTIES (v.firstName = 'Canmille', " +
v.lastName ="' Millins') ");

Note that the | NTO clause of the | NSERT can be omitted. If you use an | NTO clause,
the graph name in the | NTO clause must correspond to the name of the PGX graph
(PgxGraph. get Nane()) that the query is executed against.

5-13

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

The following is an example of UPDATE query:

|l set the date of birth of Camille to 2014-11-15
g. execut ePgql (" UPDATE v SET (v.dob = DATE '2014-11-14') " +
"FROM MATCH (v: Person) " +
"WHERE v.firstName = 'Camill e’ AND v.|astNane

Mil lins'" ");

The following is an example of DELETE query:

/1 delete Camlle fromthe graph
g. execut ePgql ("DELETE v " +
"FROM MATCH (v: Person) " +
"WHERE v.firstName = "Canille' AND v.lastName = 'Millins'

5.7.5.2 Executing UPDATE Queries Against a PGX Session

For now, there is no support for executing UPDATE queries against a PgxSessi on and
therefore, updates always have to be executed against a PgxGraph. To obtain a graph
from a session, use the PgxSessi on. get G aph(String graphName) method.

5.7.5.3 Updatability of Graphs Through PGQL

ORACLE

Graph data that is loaded from the Oracle RDBMS or from CSV files into the PGX is
not updatable through PGQL right away.

First, you need to create a copy of the data through the PgxG aph. cl one() method.
The resulting graph is fully updatable.

Consider the following example:

/1 load a graph fromthe RDBMS or from CSV
PgxGaph g1 = session.readG aphWthProperties("path/to/
graph_config.json");

/1 create an updatable copy of the graph
PgxGaph g2 = g1.cl one("new_graph_name");

/] insert an additional vertex into the graph
g2. execut ePgql ("I NSERT VERTEX v " +
" LABELS (Person) " +
PROPERTIES (v.firstName = '"Canille', " +
v.lastNane =" Millins')");

Additionally, there is also a PgxG aph. cl oneAndExecut ePgql (String query, String
graphName) method that combines the last two steps from above example into a single
step:

/1 create an updatable copy of the graph while inserting a new vertex
PgxGraph g2 _copy = gl.cl oneAndExecut ePgql (
"INSERT VERTEX v " +

5-14

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

LABELS (Person) " +
PROPERTIES (v.firstName = 'Canille', " +
v.lastNane ="' Millins') "
, "new_graph_nanme");

Note that graphs that are created through PgxG aph. cl one() are local to the session.
However, they can be shared with other sessions through the PgxG aph. publ i sh(..)
methods but then they are no longer updatable through PGQL. Only session-local
graphs are updatable but persistent graphs are not.

5.7.5.4 Altering the Underlying Schema of a Graph

The | NSERT operations can only insert vertices and edges with known labels and
properties. Similarly, UPDATE operations can only set values of known properties. Thus,
new data must always conform to the existing schema of the graph.

However, some PGX APIs exist for updating the schema of a graph: while

no APIs exist for adding new labels, new properties can be added through

the PgxG aph. cr eat eVert exProperty(PropertyType type, String nane) and
PgxG aph. creat eEdgeProperty(PropertyType type, String nane) methods. The
new properties are attached to each vertex/edge in the graph, irrespective of their
labels. Initially the properties are assigned a default value but then the values can be
updated through the UPDATE statements.

Consider the following example:

/1 load a graph fromthe RDBMS or from CSV
PgxGaph g = session.readG aphWthProperties("path/to/
graph_config.json");

/1 add a new property to the graph
g. createVertexProperty(PropertyType. LOCAL_DATE, "dob");

/1l set the date of birth of Camille to 2014-11-15
g. execut ePgql (" UPDATE v SET (v.dob = DATE '2014-11-14") " +
"FROM MATCH (v: Person) " +
"WHERE v.firstName = 'Camille' AND v.|lastNane ="'
Mil lins' ");

5.7.6 Security Tools for Executing PGQL Queries

ORACLE

To safeguard against query injection, bind variables can be used in place of literals
while printldentifier(String identifier) canbe used in place of identifiers like
graph names, labels, and property nhames.

* Using Bind Variables
There are two reasons for using bind variables:

» Using ldentifiers in a Safe Manner
When you create a query through string concatenation, not only literals
in queries pose a security risk, but also identifiers like graph names,
labels, and property names do. The only problem is that bind variables
are not supported for such identifier. Therefore, if these identifiers
are variable from the application's perspective, then it is recommended

5-15

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

to protect against query injection by passing the identifier through
theoracle.pgqgl.lang.ir.Pggl Uils.printldentifier(String identifier)
method.

5.7.6.1 Using Bind Variables

ORACLE

There are two reasons for using bind variables:
* |t protects against query injection.

* It speeds up query execution because the same bind variables can be set multiple
times without requiring recompilation of the query.

To create a prepared statement, use one of the following two methods:
* PgxGaph. preparePgql (String query) : PgxPreparedSt at enent
* PgxSession. preparePgql (String query) : PgxPreparedSt at enent

The PgxPr epar edSt at enent (package oracl e. pgx. api) returned from these methods
have setter methods for binding the bind variables to values of the designated data

type.

PreparedStatenent stmmt = g. preparePgql (
"SELECT v.id, v.dob " +
"FROM MATCH (v) " +
"WHERE v.firstName = ? AND v.lastName = ?");
stmmt.setString(1, "Canille");
stmmt.setString(2, "Millins");
Result Set rs = stmmt. execut eQuery();

Each bind variable in the query needs to be set to a value using one of the following
setters of PgxPr epar edSt at enent :

e setBool ean(int paraneterlndex, bool ean x)
e setDoubl e(int parameterlndex, double x)
e setFloat(int paranmeterlndex, float x)
e setInt(int paraneterlndex, int x)
e setlong(int paraneterlndex, |ong x)
e setDate(int paraneterlndex, Local Date x)
e setTime(int paraneterlndex, Local Tine x)
e setTimestanp(int paraneterlndex, Local DateTime Xx)
e setTimeWthTi mezone(int parameterlndex, OfsetTime x)
e setTimestanpWthTi mezone(int paraneterlndex, OfsetDateTine x)
° setArray(int paranmeterlndex, List<?> x)
Once all the bind variables are set, the statement can be executed through:
* PgxPreparedSt at enent . execut eQuer y()
— For SELECT queries only

5-16

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

— Returns a ResultSet
* PgxPreparedSt at enent . execut e()
— For any type of statement

— Returns a Boolean to indicate the form of the result: true in case of a SELECT
query, false otherwise

— In case of SELECT, the ResultSet can afterwards be accessed through
PgxPr epar edSt at ement . get Resul t Set ()

In PGQL, bind variables can be used in place of literals of any data type, including
array literals. An example query with a bind variable to is set to an instance of a String
array is:

Li st<String> countryNames = new ArrayList<String>();
count ryNanes. add(" Scot | and") ;

count ryNanes. add(" Tanzani a") ;

count ryNanes. add(" Serbi a") ;

PreparedStatenent stmmt = g. preparePgql (
"SELECT n.nane, n.population " +
"FROM MATCH (c: Country) " +
"WHERE c. name IN ?");

ResultSet rs = stmmt. executeQuery();

Finally, if a prepared statement is no longer needed, it is closed through
PgxPr epar edSt at enent . cl ose() to free up resources.

5.7.6.2 Using Identifiers in a Safe Manner

When you create a query through string concatenation, not only literals in queries
pose a security risk, but also identifiers like graph names, labels, and property names
do. The only problem is that bind variables are not supported for such identifier.
Therefore, if these identifiers are variable from the application's perspective, then it is
recommended to protect against query injection by passing the identifier through the
oracle.pggl.lang.ir.Pggl UWils.printldentifier(String identifier) method.

Given an identifier string, the method automatically adds double quotes to the start
and end of the identifier and escapes the characters in the identifier appropriately.

Consider the following example:

String graphNanePrint ed
speci al %characters ");
PreparedStatenent stmmt = g. preparePgql (

"SELECT COUNT(*) AS nunVertices FROM MATCH (v) ON " +
graphNanePri nt ed) ;

printldentifier("my graph nane with \"

5.7.7 Best Practices for Tuning PGQL Queries

This section describes best practices regarding memory allocation, parallelism, and
query planning.

ORACLE 5-17

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

* Memory Allocation
The In-Memory Analyst (PGX) has on- heap and of f - heap memory, the earlier
being the standard JVM heap while the latter being a separate heap that is
managed by PGX. Just like graph data, intermediate and final results of PGQL
gueries are partially stored on-heap and partially off-heap. Therefore, both heaps
are needed.

o Parallelism
By default, all available processor threads are used to process PGQL queries.
However, if needed, the number of threads can be limited by setting the
parallelism option of the In-Memory Analyst (PGX).

* Query Plan Explaining
The PgxGr aph. expl ai nPgql (String query) method is used to get insight into the
guery plan of the query. The method returns an instance of Qper ati on (package
oracl e. pgx. api) which has the following methods:

5.7.7.1 Memory Allocation

The In-Memory Analyst (PGX) has on- heap and of f - heap memory, the earlier being
the standard JVM heap while the latter being a separate heap that is managed by
PGX. Just like graph data, intermediate and final results of PGQL queries are partially
stored on-heap and partially off-heap. Therefore, both heaps are needed.

In case of the on-heap memory, the default maximum is chosen upon startup of the
JVM, but it can be overwritten through the - Xnx option.

In case of the off-heap, there is no maximum set by default and the off-heap
memory usage, therefore, keeps increasing automatically until it depletes the system
resources, in which case the operation is cancelled, it's memory is released, and an
appropriate exception is passed to the user. If needed, a maximum off-heap size can
be configured through the nax_of f _heap_si ze option of PGX.

A ratio of 1:1 for on-heap vs. off-heap is recommended as a good starting point

to allow for the largest possible graphs to be loaded and queried. For example, if
you have 256 GB of memory available on your machine, then setting the maximum
on-heap to 125 GB will make sure that there is a similar amount of memory available
for off-heap:

export JAVA OPTS="- Xmx125g"

5.7.7.2 Parallelism

By default, all available processor threads are used to process PGQL queries.
However, if needed, the number of threads can be limited by setting the parallelism
option of the In-Memory Analyst (PGX).

5.7.7.3 Query Plan Explaining

The PgxGr aph. expl ai nPgql (String query) method is used to get insight into the
query plan of the query. The method returns an instance of Cperati on (package
oracl e. pgx. api) which has the following methods:

e print(): for printing the operation and its child operations
e getQperationType(): for getting the type of the operation

e getPatternlnfo(): for getting a string representation of the operation

ORACLE 5-18

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

e get Cost Estimat e(): for getting the cost of the operation

e get Tot al Cost Esti mat e() : for getting the cost of the operations and its child
operations

e getCardinatlityEstimate(): for getting the expected number of result rows
e getChildren(): for accessing the child operations

Consider the following example:

g. expl ai nPgql (" SELECT COUNT(*) FROM MATCH (n) -[el]-> (m -[e2]->
(0)").print()
\--- GROUP BY GoupBy {"cardinality":"42", "cost":"42",
"accunul at edCost ": "58. 1"}
\--- (M -[e2]-> (0) NeighborMatch {"cardinality":"3.12",
"cost":"3.12", "accunul atedCost":"16.1"}
\--- (n) -[el]-> (M NeighborMatch {"cardinality":"5",
"cost":"5", "accunul atedCost":"13"}
\--- (n) RootVertexMatch {"cardinality":"8", "cost":"8",
"accumul at edCost": " 8"}

In the above example, the print () method is used to print the query plan.

If a query plan is not optimal, it is often possible to rewrite the query to improve its
performance. For example, a SELECT query may be split into an UPDATE and a SELECT
guery as a way to improve the total runtime.

Note that the In-Memory Analyst (PGX) does not provide a hint mechanism.

5.8 Executing PGQL Queries Directly Against Oracle
Database

This topic explains how you can execute PGQL queries directly against the graph in
Oracle Database (as opposed to in-memory).

Property Graph Query Language (PGQL) queries can be executed against disk-
resident property graph data stored in Oracle Database. PGQL on Oracle Database
(RDBMS) provides a Java API for executing PGQL queries. Logic in PGQL on
RDBMS translates a submitted PGQL query into an equivalent SQL query, and the
resulting SQL is executed on the database server. PGQL on RDBMS then wraps the
SQL query results with a convenient PGQL result set API.

This PGQL query execution flow is shown in the following figure.

ORACLE 5-19

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

Figure 5-1 PGQL on Oracle Database (RDBMS)

PL/SOL Packages, PG Schema tables (VTS, VDS, GES, GTS, ITS, 585),

PGQL on RDBMS
Query execution, PGQL to SQL

I JOBC

Scalable and Persistent Storage

Oracle Database

5QL-based graph query, SQL-based graph analytics, OLS Security

Compression, Dracle Text Index

The basic execution flow is:

1
2.
3

4.

The PGQL query is submitted to PGQL on RDBMS through a Java API.
The PGQL query is translated to SQL.
The translated SQL is submitted to Oracle Database by JDBC.

The SQL result set is wrapped as a PGQL result set and returned to the caller.

The ability to execute PGQL queries directly against property graph data stored in
Oracle Database provides several benefits.

PGQL provides a more natural way to express graph queries than SQL manually
written to query schema tables, including VT$, VD$, GE$, and GT$.

PGQL queries can be executed without the need to load a snapshot of your graph
data into PGX, so there is no need to worry about staleness of frequently updated
graph data.

PGQL queries can be executed against graph data that is too large to fit in
memory.

The robust and scalable Oracle SQL engine can be used to execute PGQL
queries.

Mature tools for management, monitoring and tuning of Oracle Database can be
used to tune and monitor PGQL queries.

PGQL Features Supported

Creating Property Graphs through CREATE PROPERTY GRAPH Statements
Dropping Property Graphs through DROP PROPERTY GRAPH Statements
Using the oracle.pg.rdbms.pgqgl Java Package to Execute PGQL Queries
Modifying Property Graphs through INSERT, UPDATE, and DELETE Statements

Performance Considerations for PGQL Queries

5-20

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5.8.1 PGQL Features Supported

PGQL is a SQL-like query language for querying property graph data. It is based on
the concept of graph pattern matching and allows you to specify, among other things,
topology constraints, paths, filters, sorting and aggregation.

The Java API for PGQL defined in the or acl e. pg. rdbns. pggl package supports the
PGQL specification with a few exceptions. (The PGQL specification can be found at
https://pgql-lang.org).

The following features of PGQL are not supported.

e Shortest path

« ARRAY_AGG aggregation

 INand NOT IN predicates

e Single CHEAPEST path and TOP-K CHEAPEST path using COST functions

» Case-insensitive matching of uppercased references to labels and properties
In addition, the following features of PGQL require special consideration.

e Temporal Types

e Type Casting

e CONTAINS Built-in Function

5.8.1.1 Temporal Types

ORACLE

The temporal types DATE, TIMESTAMP and TIMESTAMP WITH TIMEZONE are
supported in PGQL queries.

All of these value types are represented internally using the Oracle SQL TIMESTAMP
WITH TIME ZONE type. DATE values are automatically converted to TIMESTAMP
WITH TIME ZONE by assuming the earliest time in UTC+0 timezone (for

example, 2000-01-01 becomes 2000-01-01 00:00:00.00+00:00). TIMESTAMP values
are automatically converted to TIMESTAMP WITH TIME ZONE by assuming

UTC+0 timezone (for example, 2000-01-01 12:00:00.00 becomes 2000-01-01
12:00:00.00+00:00).

Temporal constants are written in PGQL queries as follows.

« DATE'YYYY-MM-DD

e TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF'

e TIMESTAMP WITH TIMEZONE 'YYYY-MM-DD HH24:MI:SS.FFTZH: TZM'

Some examples are DATE '2000-01-01', TIMESTAMP '2000-01-01 14:01:45.23',
TIMESTAMP WITH TIMEZONE '2000-01-01 13:00:00.00-05:00', and TIMESTAMP
WITH TIMEZONE '2000-01-01 13:00:00.00+01:00'.

In addition, temporal values can be obtained by casting string values to a temporal
type. The supported string formats are:

« DATE'YYYY-MM-DD'

* TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF' and 'YYYY-MM-
DD"T"HH24:MI:SS.FF'

5-21

https://pgql-lang.org

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

e TIMESTAMP WITH TIMEZONE 'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM' and
'YYYY-MM-DD"T"HH24:MI:SS.FFTZH:TZM'.

Some examples are CAST ('2005-02-04' AS DATE), CAST ('1990-01-01 12:00:00.00'
AS TIMESTAMP), CAST ('1985-01-01T14:05:05.00-08:00' AS TIMESTAMP WITH
TIMEZONE).

When consuming results from a Pgql Resul t Set object, get Obj ect returns a
j ava. sqgl . Ti mest anp object for temporal types.

Bind variables can only be used for the TIMESTAMP WITH TIMEZONE temporal

type in PGQL, and a set Ti mest anp method that takes a j ava. sql . Ti mest anp

object as input is used to set the bind value. As a simpler alternative, you

can use a string bind variable in a CAST statement to bind temporal values

(for example, CAST (? AS TI MESTAMP W TH TI MEZONE) followed by set String(1,
"1985-01- 01T14: 05: 05. 00- 08: 00")). See also Using Bind Variables in PGQL Queries
for more information about bind variables.

5.8.1.2 Type Casting

Type casting is supported in PGQL with a SQL-style CAST (VALUE AS

DATATYPE) syntax, for example CAST('25' AS INT), CAST (10 AS STRING), CAST
('2005-02-04' AS DATE), CAST(e.weight AS STRING). Supported casting operations
are summarized in the following table. Y indicates that the conversion is supported,
and N indicates that it is not supported. Casting operations on invalid values (for
example, CAST('xyz' AS INT)) or unsupported conversions (for example, CAST (10 AS
TIMESTAMP)) return NULL instead of raising a SQL exception.

Table 5-1 Type Casting Support in PGQL (From and To Types)

“to” type from from from from from from from from from
STRIN INT LON FLOA DOUB BOOLE DAT TIMESTA TIMESTA
G G T LE AN E MP MP WITH

TIMEZON

to STRING Y Y Y Y Y Y Y Y Y

to INT Y Y Y Y Y Y N N N

toLONG Y Y Y Y Y Y N N N

to FLOAT Y Y Y Y Y Y N N N

to Y Y Y Y Y Y N N N

DOUBLE

to Y Y Y Y Y Y N N N

BOOLEAN

to DATE Y N N N N N Y Y Y

to Y N N N N N Y Y Y

TIMESTA

MP

to Y N N N N N Y Y Y

TIMESTA

MP WITH

TIMEZON

E

ORACLE 5-22

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

An example query that uses type casting is:
SELECT e.nane, CAST (e.birthDate AS STRING AS dob

FROM MATCH (e)
WHERE e. birthDate < CAST ('1980-01-01' AS DATE)

5.8.1.3 CONTAINS Built-in Function

A CONTAINS built-in function is supported. It is used in conjunction with an Oracle
Text index on vertex and edge properties. CONTAINS returns t r ue if a value matches
an Oracle Text search string and f al se if it does not match.

An example query is:

SELECT v. nane
FROM MATCH (V)
WHERE CONTAI NS(v. abstract, 'Oracle')

See also Using a Text Index with PGQL Queries for more information about using full
text indexes with PGQL.

5.8.2 Creating Property Graphs through CREATE PROPERTY
GRAPH Statements

ORACLE

You can use PGQL to create property graphs from relational database tables. A
CREATE PROPERTY GRAPH statement defines a set of vertex tables that are
transformed into vertices and a set of edge tables that are transformed into edges. For
each table a key, a label and a set of column properties can be specified. The column
types CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2 , NUMBER, LONG,
FLOAT, DATE, TIMESTAMP and TIMESTAMP WITH TIMEZONE are supported for
CREATE PROPERTY GRAPH column properties.

When a CREATE PROPERTY GRAPH statement is called, a property graph schema
for the graph is created, and the data is copied from the source tables into the
property graph schema tables. The graph is created as a one-time copy and is not
automatically kept in sync with the source data.

Example 5-3 PgqlCreateExamplel.java

This example shows how to create a property graph from a set of relational tables.
Notice that the example creates tables Person, Hobby, and Hobbies, so they should
not exist before running the example. The example also shows how to execute a query
against a property graph.

i mport java.sql. Connection;
import java.sql.Statenent;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgql . Pggl St at enent ;

i mport oracl e. ucp.j dbc. Pool Dat aSour ceFactory;
i mport oracl e. ucp. j dbc. Pool Dat aSour ce;

5-23

ORACLE

/**

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

* This exanple shows how to create a Property Gaph fromrel ational
* data stored in Oracl e Database executing a PGQL create statenent.

*/

public class Pgqgl Creat eExanpl el

{

public static void main(String[] args) throws Exception

{

String password
String graph

args[idx++];
args[idx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Statenent stnmt = null;

Pgql Statenent pgqgl Stnt = null;
Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

conn. set Aut oConmi t (f al se);

/] Create relational data
stnt = conn.createStatement();

/] Tabl e Person

st nt . execut eUpdat e(
"create table Person(
"id NUVBER, "
" name VARCHAR2(20), "
" dob TIMESTAWP "

")

/1 Insert sone data
stnt.executeUpdate("insert into Person values(1,' A an', DATE

+ + + +

' 1995- 05-26')");

stnt.executeUpdate("insert into Person values(2,'Ben', DATE

' 2007-02-15')");

stnt.executeUpdate("insert into Person values(3,'Caire', DATE

' 1967-11-30')");

/] Tabl e Hobby

5-24

ORACLE

st nt . execut eUpdat e(
"create table Hobby("
"oid NUVBER, "
" name VARCHAR2(20) "

")");

/1 Insert sone data
stnt . execut eUpdat e("i nsert
stnt . execut eUpdat e("i nsert

/1 Tabl e Hobbi es
stnt . execut eUpdat e(

"create table Hobbies("+

person NUMBER, "+
" hobby NUMBER, "+
" strength NUMBER "+

")");

/1 Insert sone data

stnt . execut eUpdat e("i nsert
stnt . execut eUpdat e("i nsert
stnt . execut eUpdat e("i nsert
stnt . execut eUpdat e("i nsert
[/ Commit changes
conn.commit();

/1 Get a PGQL connection
Pgql Connection pgqgl Conn =

/] Create a Pgql Statenent

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

+
+
+

into Hobby val ues(1, 'Sports')");
into Hobby values(2, 'Misic')");

into Hobbies values(1, 1, 20)");
into Hobbi es values(1, 2, 30)");
into Hobbi es values(2, 1, 10)");
into Hobbi es values(3, 2, 20)");

Pgql Connect i on. get Connecti on(conn);

pgql Stmt = pggl Conn. creat eStatenent () ;

/] Execute PGQL to create property graph

String pggl =
"Create Property Gaph "
"VERTEX TABLES (" +
Person " +
" Key(id) " +
Label \"people\" +

+ graph + " " +

" PROPERTI ES(name AS \"first_name\", dob AS \"birthday\")," +

" Hobby " +

" Key(id) Label \"hobby\"

II)!I +
"EDGE TABLES (" +
" Hobbies" +

PROPERTI ES(name AS \"name\")" +

" SOURCE KEY(person) REFERENCES Person " +
" DESTI NATI ON KEY(hobby) REFERENCES Hobby " +
" LABEL \"likes\" PROPERTIES (strength AS \"score\")" +

")
pgql Stnt . execute(pgql);

/] Execute a PGQL query to verify Gaph creation

pgql =

"SELECT p.\"first_name\", p.\"birthday\", h.\"nane\",

5-25

ORACLE

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

e.\"score\" " +

"FROM MATCH (p:\"people\")-[e:\"likes\"]->(h:\"hobby\") ON" +

graph;
rs = pgql Stnt. execut eQuery(pgql, "");

/] Print the results
rs.print();
}
finally {
/1 close the sql statnent
if (stmt !'=null) {
stnt.close();
}
/1 close the result set
if (rs!=null) {
rs.close();
}
/1 close the statenent
if (pgglStnt !'=null) {
paql Stnt. cl ose();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}
}
}

The output for Pggl Cr eat eExanpl el. j ava is:

O, +
| first_nane | bi rt hday | nane | score |
O, +
Alan	1995-05-25 17:00:00.0	Music	30.0
Jaire	1967-11-29 16:00:00.0	Music	20.0
Ben	2007-02-14 16:00:00.0	Sports	10.0
Alan	1995-05-25 17:00:00.0	Sports	20.0
O, +

Example 5-4 PgqlCreateExample2.java

This example shows how a create property graph statement without specifying any
keys. Notice that the example creates tables Person, Hobby, and Hobbies, so they

should not exist before running the example.

i mport java.sql. Connection;
i mport java.sql.Statenent;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgql . Pggl St at ement ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

5-26

ORACLE

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

/**

* This exanple shows how to create a Property Gaph fromrelational
* data stored in Oracl e Database executing a PGQL create statenent.

String password
String graph

args[idx++];
args[idx++];

*/
public class Pgqgl Creat eExanpl e2
{
public static void main(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Statenent stnmt = null;

Pgql Statenent pgqgl Stnt = null;
Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce");

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

conn. set Aut oConmi t (f al se);

/] Create relational data
stnt = conn.createStatement();

/] Tabl e Person
stnt . execut eUpdat e(

"create table Person(+
"id NUVBER, "ot
" name VARCHAR2(20), " +
" dob TIMESTAWP, "ot
" CONSTRAINT pk_person PRI MARY KEY(id)" +

")

/!l Insert some data

stnt.executeUpdate("insert into Person values(1,' A an', DATE

'1995-05-26')");
stnt.executeUpdate("insert into Person values(2,'Ben', DATE
'2007-02-15")");

stnt.executeUpdate("insert into Person values(3,'Caire', DATE

' 1967-11-30')");

/] Tabl e Hobby

5-27

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

st nt . execut eUpdat e(
"create table Hobby(" +
"oid NUVBER, "ot
" name VARCHAR2(20), " +
" CONSTRAINT pk_hobby PRI MARY KEY(id)" +

")");

/1 Insert sone data
stnt.executeUpdate("insert into Hobby values(1, 'Sports')");
stnt.executeUpdate("insert into Hobby values(2, 'Misic')");

/1 Tabl e Hobbi es
stnt . execut eUpdat e(
"create table Hobbies("+
" person NUMBER, "+
" hobby NUMBER, "+
" strength NUMBER "+
" CONSTRAINT fk_hobbi esl FOREI GN KEY (person) REFERENCES
Person(id), "+
" CONSTRAINT fk_hobbi es2 FOREI GN KEY (hobby) REFERENCES
Hobby (i d)"+
")");

/1 Insert sone data

stnt.executeUpdate("insert into Hobbies val ues
stnt.executeUpdate("insert into Hobbies val ues
stnt.executeUpdate("insert into Hobbies val ues
stnt.executeUpdate("insert into Hobbies val ues

N
o

N~ DN -
-
=}
—_ = o
—_———

w
o

1

1,
2,
3

—_~—~ —~
N
o

[/ Commit changes
conn.commit();

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);

/] Create a Pgql Statenment
pgql Stmt = pggl Conn. creat eStat enent () ;

/] Execute PGQL to create property graph
String pggl =
"Create Property Graph " + graph + " " +
"VERTEX TABLES (" +
" Person " +
" Label people +
" PROPERTI ES ALL COLUWNS, " +
" Hobby " +
" Label hobby PROPERTIES ALL COLUWNS EXCEPT(id)" +
L
"EDGE TABLES (" +
" Hobbies" +
" SOURCE Person DESTI NATI ON Hobby " +
" LABEL |ikes NO PROPERTIES" +
")
pgql Stnt . execute(pgql);

ORACLE 5-28

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

/] Execute a PGQL query to verify Gaph creation
pgal =

"SELECT p. NAME AS person, p.DOB, h. NAME AS hobby " +

" FROM MATCH (p: peopl e)-[e:likes]->(h:hobby) ON " + graph;
rs = pgql Stnt.executeQuery(pgql, "");

/] Print the results
rs.print();
}
finally {
/1 close the sql statnent
if (stmt !'=null) {
stnt.close();
}
/1 close the result set
if (rs!=null) {
rs.close();
}
/1 close the statenent
if (pgglStnt !'=null) {
paql Stnt. cl ose();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}
}
}

The output for Pgqgl Cr eat eExanpl e2. j ava is:

oo oo i i e e o e eciimmicoim----- +
| PERSON | DOB | HOBBY |
oo oo i i e e o e eciimmicoim----- +
Alan	1995-05-25 17:00:00.0	Music
Caire	1967-11-29 16:00:00.0	Misic
Ben	2007-02-14 16:00:00.0	Sports
Alan	1995-05-25 17:00:00.0	Sports
oo oo i i e e o e eciimmicoim----- +

5.8.3 Dropping Property Graphs through DROP PROPERTY GRAPH

Statements

ORACLE

You can use PGQL to drop property graphs. When a DROP PROPERTY GRAPH
statement is called, all the property graph schema tables of the graph are dropped.

Example 5-5 PgqlDropExamplel.java

This example shows how to drop a property graph.

i mport java.sql. Connecti on;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl St at ement ;

5-29

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to drop a Property executing a PGQL drop
statement.

*/
public class Pgql DropExanpl el
{

public static void main(String[] args) throws Exception

{

String password
String graph

args[idx++];
args[idx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = nul | ;
Pgql Statenent pgqgl Stnt = null;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();
conn. set Aut oConmi t (f al se);

/1 Get a PGQL connection
Pgql Connection pggl Conn = Pgql Connecti on. get Connecti on(conn);

/] Create a Pgql Statenent
pgql Stmt = pggl Conn. creat eStat enent () ;

/] Execute PGQL to drop property graph
String pggl = "Drop Property Graph " + graph;
pgql Stnt . execute(pgql);

—h

inally {
/] close the statenent

if (pgglStnt !'=null) {
paql Stnt. cl ose();

}

/] close the connection

if (conn !=null) {
conn. cl ose();

5-30

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5.8.4 Using the oracle.pg.rdbms.pgqgl Java Package to Execute PGQL
Queries

The Java API in the or acl e. pg. rdbns. pggl package provides support for executing
PGQL queries against Oracle Database. This topic explains how to use the Java API
through a series of examples.

ORACLE 5-31

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

< Note:

Effective with Release 21c, the following classes in the or acl e. pg. r dbms
package are deprecated:

oracl e. pg. rdbnms. Oracl ePgql Col unmmDescri pt or | npl
oracl e. pg. rdbms. Or acl ePgql Col unmmDescri pt or
oracl e. pg. rdbns. Or acl ePgql Execut i onFact ory
oracl e. pg. rdbns. O acl ePgql Executi on

oracl e. pg. rdbns. Pgql Prepar edSt at enent

oracl e. pg. rdbnms. O acl ePgql Resul t El enent | npl
oracl e. pg. rdbns. Oracl ePgql Resul t El ement

oracl e. pg. rdbns. Oracl ePgqgl Resul t | npl

oracl e. pg. rdbms. O acl ePgql Resul t1terabl e

oracl e. pg. rdbns. Oracl ePgql Resul t 1t eratorl npl
oracl e. pg. rdbns. O acl ePgqgl Resul t

oracl e. pg. rdbns. O acl ePgql Resul t Set | npl

oracl e. pg. rdbms. Or acl ePgql Resul t Set

oracl e. pg. rdbns. Oracl ePgql Resul t Set Met aDat al npl
oracl e. pg. rdbms. Or acl ePgql Resul t Set Met aDat a
oracl e. pg. rdbms. Pgqgl Sql QueryTransl npl

oracl e. pg. rdbms. Pgqgl Sql QueryTrans

oracl e. pg. rdbns. Pgql St at ement

You should instead use equivalent classes in or acl e. pg. rdbns. pgql :

oracl e. pg. rdbns. pgql . Pggl Col umDescri pt or | npl
oracl e. pg. rdbms. pgql . Pggl Col umDescr i pt or
oracl e. pg. rdbms. pgql . Pggl Connect i on

oracl e. pg. rdbms. pgql . Pggl Executi on

oracl e. pg. rdbms. pgql . Pgql Prepar edSt at ement
oracl e. pg. rdbns. pgql . Pggl Resul t El enent | npl
oracl e. pg. rdbms. pgql . Pggl Resul t El enent

oracl e. pg. rdbms. pgql . Pggl Resul t Set | np

oracl e. pg. rdbms. pgql . Pggl Resul t Set

oracl e. pg. rdbms. pgql . Pggl Resul t Set Met aDat al npl
oracl e. pg. rdbms. pgal . Pggl Sgl Tr ansl npl

oracl e. pg. rdbms. pgal . Pgqgl Sgl Tr ans

oracl e. pg. rdbms. pgql . Pgqgl St at enent

One difference between or acl e. pg. rdbns. Or acl ePggl Resul t Set

and or acl e. pg. rdbns .pgql. Pgql Resul t Set is that
oracle.pg.rdbms.pgql.PgqlResultSet does not provide APIs to retrieve vertex
and edge objects. Existing code using those interfaces should be changed

to project IDs rather than Or acl eVert ex and O acl eEdge objects. You can
obtain an Or acl eVert ex or Or acl eEdge object from the projected ID values
by calling Or acl eVertex. get I nstance() or O acl eEdge. get | nst ance() . (For
an example, see Example 5-20.)

The following t est _gr aph data set in Oracle flat file format will be used in the
examples in subtopics that follow. The data set includes a vertex file (t est _graph. opv)
and an edge file (t est _graph. ope).

test _graph. opv:

2,fnane, 1, Ray, ,, person
2,1 name, 1, G een,,, person

5-32

ORACLE

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

2,wal,5,,,1985-01-01T12: 00: 00. 000Z, per son
2, age, 2,,41,, person

0, bval,6,Y,,, person
0,fname, 1,Bill,,, person
0, I name, 1, Brown, , , person
0,mval, 1,y,,, person

0, age, 2, , 40, , person
1,bval,6,Y,,, person

1, fnane, 1, John, ,, person
1,1 nane, 1, Bl ack, , , person
1,mwal, 2,,27,, person

1, age, 2, , 30, , person
3,bval,6,N,,, person

3, fname, 1, Susan, , , person
3, name, 1, Bl ue, , , person
3,nval, 6,N,,, person

3, age, 2, , 35, , person

test _graph. ope:

1, knows, nval , 1,, ,

1, knows, firstMetlin, 1, M, ,

1, knows, si nce, 5, ,, 1990- 01- 01T12: 00: 00. 000Z
1,friendO, strength, 2,,6

, knows, nval , 5, ,, 2003-01-01T12: 00: 00. 000Z
,knows, firstMetlin, 1, GA,,

, knows, si nce, 5, ,,2000- 01- 01T12: 00: 00. 000Z
0,friend,strength, 2,,7

, knows, nval , 6, N, ,

, knows, firstMetln,1, SC,

knows, si nce, 5, ,, 2005-01-01T12: 00: 00. 000Z
, knows, nval , 1, N,

,knows, firstMetlin, 1, TX

nows, si nce, 5, ,,1997-01- 01T12: 00: 00. 000Z
nows, mval , 3,,342.5

nows, firstMetlin, 1, TX,

nows, si nce, 5,,,2011-01-01T12: 00: 00. 000Z
riendd,strength, 2,,4

nows, mval , 1, a,

nows, firstMetlin, 1, CA

nows, si nce, 5,,,2010-01-01T12: 00: 00. 000Z
nows, mval , 1, z,

nows, firstMetlin, 1, CA

nows, si nce, 5, ,, 2004- 01- 01T12: 00: 00. 000Z
nows, nval , 2, , 23

nows, firstMetlin, 1, OH,

nows, si nce, 5, ,,2002-01-01T12: 00: 00. 000Z
nows, nval , 3,, 159.7

nows, firstMetin, 1, N,

nows, si nce, 5, ,,1994- 01- 01T12: 00: 00. 000Z
nows, nval , 6,Y,,

nows, firstMetlin, 1, FL,

nows, si nce, 5,,,1999-01- 01T12: 00: 00. 000Z
,friendd,strength, 2,,5

, knows, nval , 2, , 1001

knows, firstMetln, 1, OK

knows, si nce, 5,,, 2003-01-01T12: 00: 00. 000Z
knows, mval , 5, ,,2001- 01- 01T12: 00: 00. 000Z
k
k
f

coo

o -
o -

i
o O o~

- -
= -

i
wW W w -

oo bONMMNMNOOO:"
WwwwwwnhdhhhhPNNND NN
MNNNNEPRPRPOWWWO OO

PP POOOOOOoO"
NN NNDWWWNDNDNST
XX XXXXXXX-~ -
XXX XXIXX*+PTxXxXX=X=xX

1

nows, firstMetlin, 1, CA
nows, si nce, 5, ,, 2006- 01- 01T12: 00: 00. 000Z
riendd,strength,2,,3

NP RPRRRPRREPO0OOOODUIVIUIRRRRPRRRRRPREPERERL,OOORNN~NEAND

SWwWwwkrRkRRF ®"
WWWWNNNPE-
POOOR P E W:

5-33

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

* Basic Query Execution

* Security Techniques for PGQL Queries

* Using a Text Index with PGQL Queries

* Obtaining the SQL Translation for a PGQL Query

* Additional Options for PGQL Translation and Execution
* Querying Another User’s Property Graph

* Using Query Optimizer Hints with PGQL

5.8.4.1 Basic Query Execution

ORACLE

Two main Java Interfaces, Pgql St at ement and Pgql Resul t Set, are used for PGQL
execution. This topic includes several examples of basic query execution.

Example 5-6 GraphLoaderExample.java

G aphLoader Exanpl e. j ava loads some Oracle property graph data that will be used in
subsequent examples in this topic.

i mport oracl e. pg. rdbms. Oracl e;
i mport oracl e. pg. rdbms. Oracl ePropertyG aph;
i mport oracl e. pg. rdbms. Oracl ePropert yG aphDat aLoader ;

/**

* This exanple shows how to create an Oracle Property G aph
* and load data into it fromvertex and edge flat files.
*/

public class G aphLoader Exanpl e

{

public static void main(String[] args) throws Exception

{

int idx=0;

String host args[idx++];
String port args[idx++];
String sid args[idx++];
String user args[idx++];

String password
String graph
String vertexFile
String edgeFile

args[idx++];
args[idx++];
args[idx++];
args[idx++];

Oracle oracle = null;
Oracl ePropertyGaph opg = null;

try {
/|l Create a connection to Oracle

oracle = new Oracl e("jdbc: oracl e: thin: @+host+": "+port +":"+sid,
user, password);

/1 Create a property graph
opg = Oracl ePropertyG aph. getlnstance(oracle, graph);

5-34

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

/] Cear any existing data
opg. cl earRepository();

/] Load data fromopv and ope files
Oracl ePropertyG aphDat aLoader opglLoader =
Or acl ePropertyG aphDat aLoader . get | nst ance();
opgLoader. | oadDat a(opg, vertexFile, edgeFile, 1);

Systemout.printIn("Vertices |oaded:" + opg.countVertices());
Systemout . println("Edges |oaded:" + opg.count Edges());

}
finally {

/1 close the property graph

if (opg !'=null) {
opg. cl ose();

}

/1 close oracle

if (oracle !'=null) {
oracl e. di spose();

}

}
}
}

G aphLoader Exanpl e. j ava gives the following output for t est _graph.

Vertices |oaded: 4
Edges | oaded: 17

Example 5-7 PgqlExamplel.java

Pgqgl Exanpl el. j ava executes a PGQL query and prints the query result.

Pgqgl Connecti on is used to obtain a Pgql St at enent . Next, it calls the execut eQuery
method of Pgql St at enent , which returns a Pgql Resul t Set object. Pgql Resul t Set
provides a pri nt () method, which shows results in a tabular mode.

The Pggl Resul t Set and Pgql St at enent objects should be closed after consuming the
query result.

i mport java.sql. Connection;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgql . Pggl St at enent ;

i mport oracl e. ucp.j dbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp. j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to execute a basic PGQL query agai nst di sk-
resi dent

* PG data stored in Oracle Database and iterate through the result.
*/

public class Pgql Exanpl el

5-35

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

args[idx++];
args[idx++];

String password
String graph

{
public static void main(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql Statenent ps = nul|;
Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Execute query to get a Pgql Result Set object
String pggl =
"SELECT v.\"fnanme\" AS fname, v.\"Inane\" AS |nanme, v.\"nval\"
AS mval "+
"FROM MATCH (v)";
rs = ps.executeQuery(pgql, /* query string */
[* options */);

[l Print the results
rs.print();
}
finally {
/1 close the result set
if (rs!=null) {
rs.close();
}
/1 close the statenent
if (ps !'=null) {
ps.close();

}

/] close the connection

ORACLE 5-36

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

if (conn !=null) {
conn. cl ose();
}
}
}
}

Pgqgl Exanpl el. j ava gives the following output for t est _graph (which can be loaded
using G aphLoader Exanpl e. j ava code).

e eeieieieeeeeeeaaa +
| FNAME | LNAME | MVAL |
e eeieieieeeeeeeaaa +
Susan	Blue	false
Bill	Brown	y
Ray	Geen	1985-01-01 04:00:00.0
John	Black	27
e eeieieieeeeeeeaaa +

Example 5-8 PgqlExample2.java
Pgql Exanpl e2. j ava shows a PGQL query with a temporal filter on an edge property.

e Pgqgl Resul t Set provides an interface for consuming the query result that is very
similar to the j ava. sql . Resul t Set interface.

* Anext() method allows moving through the query result, and a cl ose() method
allows releasing resources after the application is fiished reading the query result.

* In addition, Pgql Resul t Set provides getters for Stri ng, | nt eger, Long, Fl oat,
Doubl e, Bool ean, Local Dat eTi ne, and O f set Dat eTi e, and it provides a generic
get Qbj ect () method for values of any type.

i mport java.sql. Connection;
i mport java.text.Sinpl eDat eFormat;
import java.util.Date;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl St at enent ;

i mport oracle. pgql.lang. Resul t Set;

i mport oracl e. ucp.j dbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to execute a PGQL query with a tenporal edge
* property filter against disk-resident PG data stored in Oracle

Dat abase

* and iterate through the result.

*/

public class Pgql Exanpl e2

{

public static void main(String[] args) throws Exception

5-37

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

String password
String graph

args[idx++];
args[idx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = nul | ;
Pgql Statenent ps = nul|;
ResultSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/] Create a Pgql connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Execute query to get a ResultSet object

String pggl =
"SELECT v.\"fname\" AS nl1, v2.\"fnane\" AS n2, e.\"firstMetIn\"

AS loc "+

"FROM MATCH (Vv)-[e:\"knows\"]->(v2) "+
"WHERE e.\"since\" > TI MESTAWP ' 2000-01-01 00: 00: 00. 00+00: 00" ";
rs = ps.executeQuery(pgql, "");

[l Print results
printResults(rs);

1

finally {
Il close the result set
if (rs!=null) {

rs.close();

}
/1l close the statenent
if (ps !'=null) {

ps.close();
}
/] close the connection
if (conn !=null) {
conn. cl ose();
}

5-38

ORACLE

}
}

/**

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

* Prints a PGQL Result Set

*/

static void printResults(ResultSet rs) throws Exception

{

StringBuffer buff = new StringBuffer("");
Si npl eDat eFormat sdf = new Si npl eDat eFor mat ("yyyy- M\
dd' T' HH: mm ss. SSSXXX") ;
while (rs.next()) {
buf f. append("[");
for (int i =1; i <=rs.getMtabData().getColumCount(); i++) {

}

/1 use generic getChject to handle all types
bj ect nval = rs.getoject(i);
String nStr ="";
if (mval instanceof java.lang.String) {
nStr = "STRING "+mval .toString();

}

el se if (mval instanceof java.lang.Integer) {
nStr = "INTEGER: "+nval .toString();

}

el se if (nmval instanceof java.lang.Long) {
nStr = "LONG "+nval .toString();

}

el se if (nmval instanceof java.lang.Float) {
nStr = "FLOAT: "+nval .toString();

}

el se if (nmval instanceof java.lang.Double) {
nStr = "DOUBLE: "+mval .toString();

}

el se if (nmval instanceof java.sql.Tinestanmp) {
nStr = "DATE: "+sdf.format ((Date)nval);

}

el se if (mval instanceof java.lang.Boolean) {
nStr = "BOOLEAN. "+nval .toString();

}

if (i >1) {
buf f. append(",\t");

}
buf f. append(nBtr);

buf f. append("]\n");

}

Systemout. println(buff.toString());

}
}

Pgqgl Exanpl e2. j ava gives the following output for t est _gr aph (which can be loaded
using G aphLoader Exanpl e. j ava code).

[STRING Susan, STRING Bill, STRING CAl
[STRING Susan, STRING John, STRING CA]
[STRING Susan, STRING Ray, STRING CA|

5-39

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

[STRING Bill, STRING Ray, STRING OH|
[STRING Ray, STRING John, STRING K]
[STRING Ray, STRING Susan, STRING TX]
[STRING John, STRING Susan, STRING SC|
[STRING John, STRING Bill, STRING @A

Example 5-9 PgqlExample3.java

Pgql Exanpl e3. j ava shows a PGQL query with grouping and aggregation.

i mport java.sql. Connection;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;

i mport oracl e. pg. rdbms. pgql . Pggl Resul t Set ;

i mport oracl e. pg. rdbms. pgql . Pggl St at enent ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to execute a PGQL query with aggregation
* agai nst disk-resident PG data stored in Oracle Database and iterate
* through the result.
*/
public class Pgql Exanpl e3
{

public static void main(String[] args) throws Exception

{

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];
String password = args[idx++];
String graph = args[idx++];
Connection conn = null;

Pgql Statenent ps = null;

Pgql Resul tSet rs = nul|;

try {
/1 Get a jdbc connection

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @ +host +": "+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/1 Create a Pgql connection
Pgqgl Connecti on pggl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/1 Create a Pgql Statenment

5-40

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

ps = pgql Conn. creat eSt at ement () ;

/] Execute query to get a ResultSet object
String pggl =
"SELECT v.\"fnanme\" AS \"fname\", COUNT(v2) AS \"friendCnt\" "+
"FROM MATCH (v)-[e:\"friendOf\"]->(v2) "+
"GROUP BY v "+
"ORDER BY \"friendCnt\" DESC';

rs = ps.executeQuery(pgql, "");

[l Print results
rs.print();

1

finally {
Il close the result set
if (rs!=null) {

rs.close();

}
/1 close the statenment
if (ps !'=null) {

ps.close();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}

}
}

Pgqgl Exanpl e3. j ava gives the following output for t est _graph (which can be loaded
using G aphLoader Exanpl e. j ava code).

Femeeeemne e neeaaeaas +
| fname | friendCnt |
Femeeeemne e neeaaeaas +
John	2
Bill	1
Ray	1
Susan	1
R T +

Example 5-10 PgqlExample4.java

Pgql Exanpl e4. j ava shows a PGQL path query.

i mport java.sql. Connection;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgqgl . Pggl St at enent ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFactory;
i mport oracl e. ucp. j dbc. Pool Dat aSour ce;

/**

ORACLE 5-41

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

* This exanple shows how to execute a path query in PGQL agai nst
* disk-resident PG data stored in Oracle Database and iterate
* through the result.

*/

public class Pgql Exanpl e4

{

public static void main(String[] args) throws Exception

{

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];
String password = args[idx++];
String graph = args[idx++];
Connection conn = nul | ;

Pgql Statenent ps = nul|;

Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Or acl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/] Create a Pggl connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenment
ps = pgql Conn. creat eSt at ement () ;

/1l Execute query to get a ResultSet object

String pggl =
"PATH fof AS ()-[:\"friendOf\"|\"knows\"]->() "+

"SELECT v2.\"fnanme\" AS friend "+

"FROM MATCH (v)-/:fof*/->(v2) "+

"WHERE v.\"fname\" = "John' AND v != v2";
rs = ps.executeQery(pgql, "");

/] Print results
rs.print();

finally {

Il close the result set
if (rs!=null) {
rs.close();

}

5-42

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

/] close the statenent
if (ps !'=null) {

ps.close();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}

}
}

Pgqgl Exanpl e4. j ava gives the following output for t est _gr aph(which can be loaded
using G aphLoader Exanpl e. j ava code).

5.8.4.2 Security Techniques for PGQL Queries

Programs executing dynamic queries might be subject to injection attacks that could
compromise integrity and functioning of the applications.

This topic presents some techniques that can be used to prevent injection attacks
when building PGQL queries using string concatenation.

» Using Bind Variables in PGQL Queries
* Verifying PGQL Identifiers

5.8.4.2.1 Using Bind Variables in PGQL Queries

ORACLE

Bind variables can be used in PGQL queries for better performance and increased
security. Constant scalar values in PGQL queries can be replaced with bind variables.
Bind variables are denoted by a '?' (question mark). Consider the following two queries
that select people who are older than a constant age value.

/1 people ol der than 30

SELECT v.fnane AS fnane, v.lname AS | name, v.age AS age
FROM MATCH (V)

WHERE v. age > 30

/1 people ol der than 40

SELECT v.fnane AS fnane, v.lname AS | name, v.age AS age
FROM MATCH (V)

WHERE v. age > 40

The SQL translations for these queries would use the constants 30 and 40 in a similar
way for the age filter. The database would perform a hard parse for each of these
gueries. This hard parse time can often exceed the execution time for simple queries.

5-43

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

You could replace the constant in each query with a bind variable as follows.

SELECT v.fnane AS fnane, v.lname AS | name, v.age AS age
FROM MATCH (v)
WHERE v. age > ?

This will allow the SQL engine to create a generic cursor for this query, which can
be reused for different age values. As a result, a hard parse is no longer required to
execute this query for different age values, and the parse time for each query will be
drastically reduced.

In addition, applications that use bind variables in PGQL queries are less vulnerable to
injection attacks than those that use string concatenation to embed constant values in
PGQL queries.

See also Oracle Database SQL Tuning Guide for more information on cursor sharing
and bind variables.

The Pgql Prepar edSt at enent interface can be used to execute queries with bind
variables as shown in Pgql Exanpl e5. j ava. Pgql Pr epar edSt at ement provides several
set methods for different value types that can be used to set values for query
execution.

There are a few limitations with bind variables in PGQL. Bind variables can only be
used for constant property values. That is, vertices and edges cannot be replaced
with bind variables. Also, once a particular bind variable has been set to a type,

it cannot be set to a different type. For example, if set I nt (1, 30) is executed

for an Pgql Pr epar edSt at enent , you cannot call set String(1, "abc") on that same
Pgqgl PreparedSt at ement .

Example 5-11 PgqglExample5.java

Pggl Exanpl e5. j ava shows how to use bind variables with a PGQL query.

i mport java.sql. Connecti on;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl Prepar edSt at enent ;
i mport oracl e. pg. rdbms. pgql . Pggl Resul t Set ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to use bind variables with a PGQL query.
*/

public class Pgql Exanpl e5

{

public static void main(String[] args) throws Exception

{

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

5-44

ORACLE

String password
String graph

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

args[idx++];
args[idx++];

Connection conn = nul | ;
Pgql PreparedSt atement pps = nul I ;
Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/] Create a Pgql connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Query string with a bind variable (denoted by ?)

String pggl =
"SELECT v.\"fname\" AS fnane, v.\"Iname\" AS |nane, v.\"age\"

AS age "+

"FROM MATCH (v) "+
"WHERE v.\"age\" > ?";

/1 Create a Pgql PreparedSt at ement
pps = pggl Conn. prepar eSt at ement (pgql) ;

// Set filter value to 30
pps.setint(1, 30);

/] execute query
rs = pps. executeQuery();

/] Print query results

Systemout.printin("-- Values for v.\"age\" > 30 --");
rs.print();

/1 close result set

rs.close();

/] set filter value to 40
pps.setint(1, 40);

/] execute query
rs = pps. executeQuery();

[/ Print query results

Systemout.printin("-- Values for v.\"age\" > 40 --");
rs.print();

/1 close result set

rs.close();

5-45

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

}
finally {
/1 close the result set
if (rs!=null) {
rs.close();
}
/1 close the statenent
if (pps !'=null) {
pps. cl ose();
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}
}

}

Pgqgl Exanpl e5. j ava has the following output for t est _graph (which can be loaded
using G aphLoader Exanpl e. j ava code).

-- Values for v.age > 30 --

e +
| fname | Inane | age |
e +
Susan	Blue	35
Bill	Brown	40
Ray	Geen	41
e +		
-- Values for v.age > 40 --		
e +		
fname	Inane	age
e +		
Ray	Geen	41
e +

Example 5-12 PgqlExample6.java

Pgql Exanpl e6. j ava shows a query with two bind variables: one String variable and
one Timestamp variable.

i mport java.sql. Connection;
i mport java.sql. Ti mestanp;

import java.tine.OffsetDateTineg,;
import java.tine.ZoneO fset;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgqgl . Pggl Prepar edSt at enent ;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;

i mport oracl e. ucp.j dbc. Pool Dat aSour ceFactory;
i mport oracl e. ucp. j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to use nultiple bind variables with a PGQL

5-46

ORACLE

query.

*/

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

public class Pgql Exanpl e6

{

public static void main(String[] args) throws Exception

{

String password
String graph

args[idx++];
args[idx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = nul | ;
Pgql PreparedSt atement pps = nul I ;
Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Or acl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/]l Create a Pggl connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Query string with multiple bind variables

String pggl =
"SELECT v1.\"fnanme\" AS fnamel, v2.\"fnanme\" AS fname2 "+
"FROM MATCH (v1)-[e:\"knows\"]->(v2) "+
"WHERE e.\"since\" < ? AND e.\"firstMetIn\" = ?";

/1 Create a Pgql PreparedSt at ement
pps = pggl Conn. prepar eSt at ement (pgql) ;

/] Set e.since < 2006-01-01T12: 00: 00. 00Z
Timestanp t =

Ti mest anp. val ueOf (O f set Dat eTi me. par se("2006- 01-01T12: 00: 01. 00Z") . at Zone
Sanel nst ant (ZoneCf f set . UTC) . t oLocal Dat eTi ne());

pps. set Ti nestanp(1, t);
[l Set e.firstMetin ="'CA
pps.setString(2, "CA");

/] execute query
rs = pps. executeQuery();

[/ Print query results

5-47

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

Systemout.printIn("-- Values for e.\"since\" <
2006-01-01T12: 00: 01. 00Z AND e.\"firstMetIn\" = "'CA" --");

rs.print();

/1 close result set

rs.close();

/] Set e.since < 2000-01-01T12: 00: 00. 00Z

t =
Ti mest anp. val ueOf (O f set Dat eTi me. par se("2000- 01- 01T12: 00: 00. 00Z") . at Zone
Sanel nst ant (ZoneCf f set . UTC) . t oLocal Dat eTi ne()) ;

pps. set Ti mestanp(1, t);

/1 Set e.firstMetin ="'TX

pps.setString(2, "TX');

/] execute query
rs = pps. executeQuery();

/1 Print query results
Systemout.printIn("-- Values for e.\"since\" <
2000-01-01T12: 00: 00. 00Z AND e.\"firstMetln\" = "'TX --")
rs.print();
/1 close result set
rs.close();
}
finally {
/1 close the result set
if (rs!=null) {
rs.close();
}
/1 close the statenent
if (pps !'=null) {
pps. cl ose();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}
}
}

Pgqgl Exanpl e6. j ava gives the following output for t est _graph (which can be loaded
using G aphLoader Exanpl e. j ava code).

-- Values for e."since" < 2006-01-01T12:00:01.00Z AND e."firstMetIn" = "'CA
o e +
| FNAMEL | FNAME2 |
o e +
| Susan | Bill |
| Susan | Ray |
o e +
-- Values for e."since" < 2000-01-01T12:00:00.00Z AND e."firstMetIn" ="'TX
o e +
| FNAMEL | FNAME2 |
o e +

ORACLE 5-48

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5.8.4.2.2 Verifying PGQL Identifiers

For some parts of a PGQL query the parser does not allow use of bind variables. In
such cases, the input can be verified using the printIdentifier method in package
oracle.pgqgl.lang.ir.Pgqgl Wils.

Consider the following query execution that concatenates the graph against which the
graph pattern will be matched:

stnt . execut eQuery("SELECT n. name FROM MATCH (n) ON " + graphName, "");

In order to avoid injection, the identifier gr aphName should be verified as follows:

stnt. execut eQuery(" SELECT n. name FROM MATCH (n) ON " +
Pggl Utils.printlidentifier(graphNane), "");

5.8.4.3 Using a Text Index with PGQL Queries

ORACLE

PGQL queries executed against Oracle Database can use Oracle Text indexes
created for vertex and edge properties. After creating a text index, you can use the
CONTAINS operator to perform a full text search. CONTAINS has two arguments:

a vertex or edge property, and an Oracle Text search string. Any valid Oracle Text
search string can be used, including advanced features such as wildcards, stemming,
and soundex.

Example 5-13 PgqlExample7.java
Pgqgl Exanpl e7. j ava shows how to execute a CONTAINS query.

i mport java.sql.Callabl eStatenent;
i mport java.sql. Connection;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgql . Pggl St at enent ;

i mport oracl e. ucp.j dbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp. j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to use an Oracle Text index with a PGQL query.
*/

public class Pgql Exanpl e7

{

public static void main(String[] args) throws Exception

{

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];

5-49

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

String user = args[idx++];
String password = args[idx++];
String graph = args[idx++];
Connection conn = nul | ;

Pgql Statenent ps = nul|;

Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/] Create text index with SQL API
Cal I abl eSt atement cs = null;
/] text index on vertices
cs = conn. prepareCal | (
"begin opg_apis.create_vertices_text_idx(:1,:2); end;

cs.setString(1,user);
cs.set String(2,graph);
cs. execute();
cs.close();
/] text index on edges
cs = conn. prepareCal | (
"begin opg_apis.create_edges_text_idx(:1,:2); end;
);
cs.setString(1,user);
cs.set String(2,graph);
cs. execute();
cs.close();

n

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Query using CONTAINS text search operator on vertex property
/1 Find all vertices with an | nanme property value that starts
B
String pggl =

"SELECT v.\"fname\" AS fnane, v.\"Inane\" AS |nane "+

"FROM MATCH (v) "+

"WHERE CONTAINS(v.\"Inane\",'B%)";

/1 execute query
rs = ps.executeQery(pgql, "");

5-50

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

[l print results
Systemout.printIn("-- Vertex Property Query --");
rs.print();

/] close result set
rs.close();

/1 Query using CONTAINS text search operator on edge property
/1 Find all knows edges with a firstMetln property val ue that
ends with 'A
pgal =
"SELECT v1.\"fname\" AS fnamel, v2.\"fpame\" AS fnane2,
e \"firstMetin\" AS loc "+
"FROM MATCH (v1)-[e:\"knows\"]->(v2) "+
"WHERE CONTAINS(e.\"firstMetlIn\",' oA)";

Il execute query
rs = ps.executeQuery(pgql, "");

[l print results
Systemout.printIn("-- Edge Property Query --");
rs.print();

}
finally {

/] close the result set

if (rs!=null) {
rs.close();

}

/] close the statenent

if (ps !'=null) {

ps.close();
}
/] close the connection
if (conn !=null) {
conn. cl ose();
}

}
}
}

Pgqgl Exanpl e7. j ava has the following output for t est _graph (which can be loaded
using G aphLoader Exanpl e. j ava code).

-- Vertex Property Query --

Femmmeemne e +
| FNAME | LNAME |
Femmmeemne e +

| Susan | Blue |

| Bill | Brown |

| John | Black |
Femmmeemne e +

-- Edge Property Query -
D T +

| FNAMEL | FNAMEL | LOC |

ORACLE 5-51

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

o +
Susan	Bill	CA
John	Bill	GA
Susan	John	CA
Susan	Ray	CA
o +

5.8.4.4 Obtaining the SQL Translation for a PGQL Query

ORACLE

You can obtain the SQL translation for a PGQL query through methods in
Pgql St at ement and Pgql Pr epar edSt at ement . The raw SQL for a PGQL query can
be useful for several reasons:

* You can execute the SQL directly against the database with other SQL-based
tools or interfaces (for example, SQL*Plus or SQL Developer).

* You can customize and tune the generated SQL to optimize performance or to
satisfy a particular requirement of your application.

* You can build a larger SQL query that joins a PGQL subquery with other data
stored in Oracle Database (such as relational tables, spatial data, and JSON
data).

Example 5-14 PgqlExample8.java

Pggl Exanpl e8. j ava shows how to obtain the raw SQL translation for a PGQL query.
The transl at eQuery method of Pgqgl St at enent returns an Pgql Sgl Quer yTr ans object
that contains information about return columns from the query and the SQL translation
itself.

The translated SQL returns different columns depending on the type of "logical" object
or value projected from the PGQL query. A vertex or edge projected in PGQL has two
corresponding columns projected in the translated SQL.:

e $IT:id type — NVARCHAR(1): 'V' for vertex or 'E' for edge

* $ID: vertex or edge identifier —- NUMBER: same content as VID or EID columns in
VT$ and GES$ tables

A property value or constant scalar value projected in PGQL has four corresponding
columns projected in the translated SQL:

e $T: value type — NUMBER: same content as T column in VT$ and GE$ tables

* $V:value - NVARCHAR2(15000): same content as V column in VT$ and GE$
tables

*« $VN: number value — NUMBER: same content as VN column in VT$ and GE$
tables

* $VT: temporal value — TIMESTAMP WITH TIME ZONE: same content as VT
column in VT$ and GE$ tables

i mport java.sql. Connection;

i mport oracl e. pg. rdbns. pgqgl . Pggl Col unmDescr i ptor;
i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;

i mport oracl e. pg. rdbns. pgql . Pggl St at enent ;

i mport oracl e. pg. rdbns. pgql . Pggl Sgl QueryTrans;

i mport oracl e. ucp.j dbc. Pool Dat aSour ceFact ory;

5-52

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**
* This exanple shows how to obtain the SQ translation for a PGQL
query.
*/
public class Pgql Exanpl e8
{
public static void main(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

String password
String graph

args[idx++];
args[idx++];

Connection conn = nul | ;
Pgql Statenent ps = null;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce");
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/] Create a Pggl connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/1 PG query to be translated

String pggl =
"SELECT v1, v1.\"fname\" AS fnanel, e, e.\"since\" AS since "+

"FROM MATCH (v1)-[e:\"knows\"]->(v2)";

/] Create a Pgql Statenment
ps = pgql Conn. creat eSt at ement () ;

/1 Get the SQ translation
Pgql Sql QueryTrans sql Trans = ps.transl ateQuery(pgql,"");

/] Get the return colum descriptions
Pgql Col umpDescriptor[] cols = sqgl Trans. get Ret urnTypes();

/1 Print colum descriptions

Systemout.printIn("-- Return Colums -------------ommmmomn-- ");
print Ret urnCol s(col s);

5-53

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

/1 Print SQ translation

Systemout.printin("-- SQL Translation ---------------------- ");
Systemout . println(sql Trans. get Sql Transl ation());

}

finally {

/] close the statenent
if (ps !'=null) {

ps.close();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}
}
/**

* Prints return colums for a SQ translation
*/
static void printReturnCol s(Pgql Col umbDescriptor[] cols) throws
Exception
{
StringBuffer buff = new StringBuffer("");

for (int i =0; i <cols.length; i++) {

String col Nane = col s[i].get Col Nane();
Pgql Col umDescri ptor. Type col Type = col s[i]. get Col Type();
int offset = cols[i].getSqgl Ofset();

String readabl eType = ""
switch(col Type) {
case VERTEX
readabl eType
br eak;

case EDCE:
readabl eType
br eak;

case VALUE
readabl eType
br eak;

"VERTEX";

"EDCE";

"VALUE";

}

buf f. append(" col Nanme=[" +col Name+"] col Type=["+readabl eType+"]
of fset=["+of fset+"]\n");
}
Systemout. println(buff.toString());

}
}

Pgqgl Exanpl e8. j ava has the following output for t est _graph (which can be loaded
using G aphLoader Exanpl e. j ava code).

- Return Colums -----------m-mmmmmmnnn-
col Name=[v1] col Type=[VERTEX] of fset=[1]

ORACLE 5-54

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

col Name=[f nanel] col Type=[VALUE] of fset=[3]
col Name=[e] col Type=[EDGE] of fset=[7]
col Name=[si nce] col Type=[VALUE] of fset=[9]
-- SQL Translation ------=---------------
SELECT n'V' AS "V1$I T",
T0$0. SVID AS "V13$I D',
TO$1. T AS "FNAMELST",
TO$1.V AS "FNAMELSV',
TO$1. VN AS "FNAMELSVN',
TO$1. VT AS "FNAMELSVT",
n'E AS "ESIT",
T0$0.EID AS "E$I D',
TO$0. T AS "SI NCEST",
T0$0. V AS "SI NCE$V',
T0$0. VN AS " SI NCESVN',
T0$0. VT AS "SI NCESVT"
FROM (SELECT L.EID, L.SVID, L.DVID, L.EL, RK, RT, RV, RVN, R VT
FROM " SCOTT". TEST_GRAPHGTS L,
(SELECT * FROM "SCOTT". TEST_GRAPHGE$ WHERE K=n'since') R
WHERE L. EID = R EI D(+)
) T0$0,
(SELECT L.VID, L.M,, RK, RT, RV, RVN, R VT
FROM " SCOTT". TEST_GRAPHVDS L,
(SELECT * FROM "SCOTT". TEST_GRAPHVT$ WHERE K=n'fname') R
WHERE L. VID = R VI D(+)
) TO$1
WHERE T0$0. SVI D=T0$1. VI D AND
(T0$0. EL = n' knows' AND T0$0.EL IS NOT NULL)

Example 5-15 PgqlExample9.java

You can also obtain the SQL translation for PGQL queries with bind variables. In

this case, the corresponding SQL translation will also contain bind variables. The

Pggl Sgl QueryTr ans interface has a get Sgl BvLi st method that returns an ordered List
of Java Objects that should be bound to the SQL query (the first Object on the list
should be set at position 1, and the second should be set at position 2, and so on).

Pgqgl Exanpl €9. j ava shows how to get and execute the SQL for a PGQL query with
bind variables.

i mport java.sql. Connection;

i mport java.sql.PreparedStatenent;
i mport java.sql.ResultSet;

i nport java.sql.Ti nestanp;

import java.util.List;

i nport oracle.pg.rdbns. pgql . Pggl Col utmbDescri ptor;
i nport oracle.pg.rdbns. pggl . Pggl Connecti on;

i mport oracl e. pg. rdbms. pgql . Pggl Prepar edSt at enent ;
i nport oracle.pg.rdbns. pgql . Pgqgl Sgl QueryTrans;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.jdbc. Pool Dat aSour ce;

/**

* This exanpl e shows how to obtain and execute the SQ translation for
a

5-55

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

* PGQL query that uses bind variables.

*/

public class Pgql Exanpl e9

{

public static void main(String[] args) throws Exception

{

String password
String graph

args[idx++];
args[idx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql PreparedSt at ement pggl Ps = nul | ;

PreparedSt at ement sql Ps = nul | ;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/] Create a Pggl connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Execute query to get a ResultSet object

String pggl =
"SELECT v1, v1.\"fname\" AS fnanel, vl.\"age\" AS age, ? as

const Val "+

"FROM MATCH (v1) "+
"WHERE v1.\"fname\" = ? OR vl.\"age\" < ?":

/] Create a Pgql Statenent
pgql Ps = pgqgl Conn. prepar eSt at enent (pgql) ;

/1 set bind val ues

pgql Ps. set Doubl e(1, 2.05d);
pgql Ps.setString(2, "Bill");
pgql Ps. setInt (3, 35);

/1 Get the SQL translation
Pgqgl Sql QueryTrans sql Trans = pgql Ps. transl at eQuery("");

/] Get the SQ String

5-56

ORACLE

("+sql

—h

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

String sql Str = sql Trans. get Sql Transl ati on();

/] Get the return colum descriptions
Pgql Col umbDescriptor[] cols = sqgl Trans. get ReturnTypes();

/1 Get the bind val ues
Li st <Qbj ect > bi ndVal s = sql Trans. get Sql BvLi st ();

[/ Print colum descriptions
Systemout.printIn("-- Return Colums -------------ommmmumn-- ");
print Ret urnCol s(col s);

/1 Print SQL translation
Systemout.printin("-- SQL Translation ---------------------- ");
Systemout . println(sql Str);

/1 Print Bind Val ues
Systemout.printIn("\n-- Bind Values ----------------utmo--- ");
for (Cbject obj : bindVvals) {
Systemout . println(obj.toString());
}

/] Execute Query

/] Get PreparedStatenent

sqgl Ps = conn. prepar eSt at ement (" SELECT COUNT(*) FROM
Str+")");

/1 Set bind values and execute the PreparedStatenent
execut ePs(sqgl Ps, bindval s);

/] Set new bind values in the PGQL PreparedStatement
pgql Ps. set Doubl e(1, 3.02d);

pgql Ps.setString(2, "Ray");

pgql Ps. setInt (3, 30);

/1 Print Bind Val ues
bi ndval s = sqgl Trans. get Sql BvLi st ();
Systemout.printIn("\n-- Bind Values ----------------unmo--- ");
for (Cbject obj : bindVvals) {
Systemout . println(obj.toString());
}

/] Execute the PreparedStatenent with new bind val ues
execut ePs(sqgl Ps, bindval s);

inally {

Il close the SQL statenent
if (sqlPs !'=null) {
sql Ps. cl ose();

}

/] close the statenent

if (pgglPs !'=null) {
pgql Ps. cl ose();

}

/] close the connection
if (conn !=null) {

5-57

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

conn. cl ose();

}
}
}

/**

* Executes a SQL PreparedStatenment with the input bind val ues

*/

static void executePs(PreparedStatement ps, List<Qbject> bindVals)
throws Exception

{

ResultSet rs = null
try {
/1 Set bind val ues
for (int idx = 0; idx < bindVals.size(); idx++) {
(bj ect o = bindVals.get(idx);
/1 String
if (o instanceof java.lang.String) {
ps.setNString(idx + 1, (String)o);
}
/1 Int
else if (o instanceof java.lang.Integer) {
ps.setint(idx + 1, ((Integer)o).intValue());
}
/1 Long
else if (o instanceof java.lang.Llong) {
ps.setLong(idx + 1, ((Long)o).longVal ue());
}
/1 Fl oat
else if (o instanceof java.lang.Float) {
ps.setFloat(idx + 1, ((Float)o).floatValue());
}
/1 Doubl e
else if (o instanceof java.lang.Double) {
ps. set Doubl e(idx + 1, ((Double)o). doubleValue());
}
/1 Timestanp
else if (o instanceof java.sql.Tinmestanp) {
ps.set Timestanp(idx + 1, (Tinestanp)o);
}
el se {
ps.setString(idx + 1, bindVals.get(idx).toString());
}
}

/] Execute query
rs = ps.executeQuery();
if (rs.next()) {
Systemout. printIn("\n-- Execute Query: Result has
"+rs.getint(1)+" rows --");
}

}
finally {

/'l close the SQL Result Set
if (rs!=null) {

5-58

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

rs.close();

}
}
}

/**

* Prints return colums for a SQ translation

*/

static void printReturnCol s(Pgql Col umbDescriptor[] cols) throws
Exception

{
StringBuffer buff = new StringBuffer("");

for (int i =0; i <cols.length; i++) {

String col Nane = col s[i].get Col Nane();
Pgql Col umDescri ptor. Type col Type = col s[i]. get Col Type();
int offset = cols[i].getSqgl Ofset();
String readabl eType = "";
switch(col Type) {
case VERTEX
readabl eType
br eak;
case EDCE:
readabl eType
br eak;
case VALUE:
readabl eType
br eak;

"VERTEX";

"EDCE";

"VALUE";

}

buf f. append(" col Nane=[" +col Name+"] col Type=["+readabl eType+"]
of fset=["+of fset+"]\n");

}
Systemout. println(buff.toString());

}
}

Pgqgl Exanpl €9. j ava has the following output for t est _graph (which can be loaded
using G aphLoader Exanpl e. j ava code).

—-- Return Colums -------------mmmmmmon
col Name=[v1] col Type=[VERTEX] of fset=[1]
col Name=[f nanel] col Type=[VALUE] of f set =[3]
col Narme=[age] col Type=[VALUE] of fset=[7]
col Name=[const Val] col Type=[VALUE] of f set =[11]
-- SQ Translation --------cmmmmmmnmnnnna-
SELECT n'V AS "VIS$IT"

T0$0.VID AS "V1$I D'

TO$0. T AS " FNAMELST"

T0$0. V AS " FNAMVEL$V"

T0$0. VN AS " FNAMEL$VN'

TO$0. VT AS "FNAMEL$VT"

TO$1. T AS " AGEST"

TO$1.V AS " AGE$V

5-59

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

TO$1. VN AS "AGESVN',
TO$1. VT AS "AGESVT",
4 AS " CONSTVALS$T",
to_nchar(?,' TM',' NLS Nuneric_Characters="".,""") AS "CONSTVAL$V",
? AS "CONSTVAL$VN',
to_tinmestanp_tz(null) AS "CONSTVALSVT"
FROM (SELECT L.MID, L.VL, RK, RT, RV, RVN, RVT
FROM " SCOTT". TEST_GRAPHVDS L,
(SELECT * FROM "SCOTT". TEST_GRAPHVT$ WHERE K=n'fname') R
WHERE L. VID = R VI D(+)
) T0$0,
(SELECT L.VID, L.M,, RK, RT, RV, RVN, R VT
FROM " SCOTT". TEST_GRAPHVD$ L,
(SELECT * FROM "SCOTT". TEST_GRAPHVT$ WHERE K=n'age') R
WHERE L. VID = R VI D(+)
) T0$1
WHERE T0$0. VI D=T0$1. VID AND
((TO$0.T = 1 AND T0$0.V = ?) OR T0$1.WN < ?)

-- Bind Values -----------mmmmi o
2.05

2.05

Bill

35

-- Execute Query: Result has 2 rows --

-- Bind Values ---------------------o----
3.02

3.02

Ray

30

-- Execute Query: Result has 1 rows --

5.8.4.5 Additional Options for PGQL Translation and Execution

ORACLE

Several options are available to influence PGQL query translation and execution. The
following are the main ways to set query options:

» Through explicit arguments to execut eQuery and t ransl at eQuery

* Through flags in the opt i ons string argument of execut eQuery and
transl at eQuery

e Through Java JVM arguments.

The following table summarizes the available query arguments for PGQL translation
and execution.

Table 5-2 PGQL Translation and Execution Options
|

Option Default Explict Options Flag JVM Argument
Argument
Degree of 0 parallel none none
parallelis
m
Timeout unlimite timeout none none
d

5-60

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

Table 5-2 (Cont.) PGQL Translation and Execution Options
|

Option Default Explict Options Flag JVM Argument
Argument

Dynamic 2 dynamicSampli none none

sampling ng

Maximum unlimite maxResults none none

number d

of results

GT$ table on none USE_GT_TAB=F -

usage Doracle.pg.rdbms.pggl.useGtTab=fal
se

CONNEC off none USE_RW=F -

T BY Doracle.pg.rdbms.pgql.useRW=false

usage

Distinct off none USE_DIST_RW=T -

recursive Doracle.pg.rdbms.pgql.useDistRW=t

WITH rue

usage

Maximum unlimite none MAX_PATH LEN= -

path d n Doracle.pg.rdbms.pgql.maxPathLen

length =n

Set false none EDGE_SET_PART -

partial IAL=T Doracle.pg.rdbms.pggl.edgeSetParti
al=true

Project true none PROJ_NULL_PRO -

null PS=F Doracle.pg.rdbms.pgql.projNullProp

propertie s=false

S

VT$VL on none USE_VL_COL=F -

column Doracle.pg.rdbms.pggl.useVLCol=fa

usage Ise

Query Options Controlled by Explicit Arguments
Using the GT$ Skeleton Table
Path Query Options

Options for Partial Object Construction

5.8.4.5.1 Query Options Controlled by Explicit Arguments

ORACLE

Some query options are controlled by explicit arguments to methods in the Java API.

The execut eQuery method of Pgqgl St at enent has explicit arguments for timeout
in seconds, degree of parallelism, optimizer dynamic sampling, and maximum
number of results.

The transl at eQuery method has explicit arguments for degree of
parallelism, optimizer dynamic sampling, and maximum number of results.
Pgql Pr epar edSt at enent also provides those same additional arguments for
execut eQuery and transl at eQuery.

5-61

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

Example 5-16 PgqlExamplel0.java

Pggl Exanpl e10. j ava shows PGQL query execution with additional options controlled
by explicit arguments.

i mport java.sql. Connection;
i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbms. pgql . Pggl St at enent ;
i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;
/**
* This exanple shows how to execute a PGQL query with various options.
*/
public class Pgql Exanpl e10
{
public static void main(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];
String password = args[idx++];
String graph = args[idx++];

Connection conn = null;

Pgql St at enent ps
Pgql Resul t Set rs

nul | ;
nul | ;

try {

/1 Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host +": "+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/1 Get a PGQL connection
Pgqgl Connecti on pggl Conn = Pgql Connecti on. get Connecti on(conn);
pgqgl Conn. set G- aph(graph);

/1 Create a Pgqgl Statenent
ps = pgql Conn. creat eStat enent () ;

/1 Execute query to get a ResultSet object

String pggl =
"SELECT v1.\"fname\" AS fnamel, v2.\"fname\" AS fname2 "+

5-62

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

"FROM MATCH (v1)-[:\"friendOF\"]->(v2)";
rs = ps.executeQuery(pgql /* query string */,
100 /* timeout (sec): 0 is default and
implies no timeout */,
2 [* parallel: 1 is default */,
6 [* dynam c sanpling: 2 is default */,
50 /* max results: -1 is default and
implies no limt */,
"t [* options */);

/1 Print query results
rs.print();

}

finally {
/1 close the result set
if (rs!=null) {

rs.close();

}
/1 close the statenent
if (ps !'=null) {

ps.close();
}
/] close the connection
if (conn !=null) {
conn. cl ose();
}

}
}
}

Pgqgl Exanpl e10. j ava gives the following output for t est _gr aph (which can be loaded
using GraphLoaderExample.java code).

e +
| FNAVEL | FNAME2 |
e +
Ray	Susan
John	Susan
Bill	John
Susan	John
John	Bill
e +

5.8.4.5.2 Using the GT$ Skeleton Table

The property graph relational schema defines a GT$ skeleton table that stores a
single row for each edge in the graph, no matter how many properties an edge has.
This skeleton table is populated by default so that PGQL query execution can take
advantage of the GT$ table and avoid sorting operations on the GE$ table in many
cases, which gives a significant performance improvement.

You can add "USE_GT_TAB=F" to the opt i ons argument of execut eQuery and
transl at eQuery or use - Dor acl e. pg. rdbns. pgql . useG Tab=f al se in the Java
command line to turn off GT$ table usage.

ORACLE 5-63

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

Example 5-17 PgqlExamplell.java
Pggl Exanpl e11. j ava shows a query that uses the GT$ skeleton table.

i mport java.sql. Connection;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl Sgl Quer yTrans;
i mport oracl e. pg. rdbms. pgql . Pggl St at enent ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanpl e shows how to avoid using the GI$ skeleton table for
* PGQL query execution.
*/

public class Pggl Exanpl ell

{

public static void main(String[] args) throws Exception

{

String password
String graph

args[i dx++];
args[i dx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql Statenent ps = null;

try {

/1 Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host +": "+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/1 Get a PGQL connection
Pgqgl Connecti on pggl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/1 Create a Pgqgl Statenent
ps = pgql Conn. creat eStat enent () ;

/1 Execute query to get a ResultSet object

String pggl =
"SELECT id(v1), id(v2) "+
"FROM MATCH (v1)-[knows]->(v2)";

5-64

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

/1 Get the SQ translation with GI table
Pgql Sql QueryTrans sql Trans = ps.transl ateQuery(pgql,"");

/1 Print SQ translation
Systemout.printIn("-- SQL Translation with GI Table

----------------------);
Systemout . println(sql Trans. get Sql Transl ation());

/] Get the SQL translation without G table
sqgl Trans = ps.transl ateQuery(pgql,"USE _GI_TAB=F");

/1 Print SQL translation
Systemout.printIn("-- SQ Translation w thout GI Table

------------------------- ")
Systemout . println(sql Trans. get Sql Transl ation());

}
finally {

/1 close the statenent
if (ps !'=null) {
ps.close();

}

/1 close the connection
if (conn !=null) {
conn. cl ose();

}
}
}
}

Pgqgl Exanpl ell. j ava gives the following output for t est _gr aph (which can be loaded
using G aphLoader Exanpl e. j ava code).

-- SQ Translation with GI Table ----------memmammnann-

SELECT 7 AS "id(v1)$T",

to_nchar (T0$0. SVID,' TM®',' NLS Nuneric_Characters="".,'"") AS "id(vl)$V",
T0$0. SVID AS "i d(v1) $UN',

to_timestanp_tz(null) AS "id(v1)$vT",

7 AS "id(v2)$T",

to_nchar (T0$0. DVID,' TM®',' NLS Nuneric_Characters="".,"'"") AS "id(v2)$V",
T0$0. DVI D AS "i d(v2) $UN',

to_timestanp_tz(null) AS "id(v2)s$vT"

FROM " SCOTT". TEST_GRAPHGT$ T0$0

-- SQ Translation without GI Table ---------mmmmmmmmmmnanann-

SELECT 7 AS "id(v1)$T",

to_nchar (T0$0. SVID,' TM®',' NLS Nuneric_Characters="".,'"") AS "id(vl)$V",
T0$0. SVID AS "i d(v1) $UN',

to_timestanp_tz(null) AS "id(v1)$vVT",

7 AS "id(v2)$T",

to_nchar (T0$0. DVID,' TMD',' NLS Nuneric_Characters="".,'"") AS "id(v2)$V",
T0$0. DVI D AS "i d(v2) $UN',

to_timestanp_tz(null) AS "id(v2)s$vT"

FROM (SELECT DI STINCT EID, SVID, DVID, EL FROM "SCOTT". TEST_GRAPHGE$) T0$0

5-65

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5.8.4.5.3 Path Query Options

A few options are available for executing path queries in PGQL. There are two

basic evaluation methods available in Oracle SQL: CONNECT BY or recursive WITH
clauses. Recursive WITH is the default evaluation method. In addition, you can further
modify the recursive WITH evaluation method to include a DISTINCT modifier during
the recursive step of query evaluation. Computing distinct vertices at each step

helps prevent a combinatorial explosion in highly connected graphs. The DISTINCT
modifier is not added by default because it requires a specific parameter setting in the
database (" _recursive_with_control "=8).

You can also control the maximum length of paths searched. Path length in this case
is defined as the number of repetitions allowed when evaluating the * and + operators.
The default maximum length is unlimited.

Path evaluation options are summarized as follows.

e CONNECT BY: To use CONNECT BY, specify ' USE_RWF' in the opti ons
argument or specify - Dor acl e. pg. r dbms. pgql . useRWf al se in the Java command
line.

» Distinct Modifier in Recursive WITH: To use the DISTINCT modifier in
the recursive step, first set" _recursive_with_control "=8 in your database
session, then specify ' USE_DI ST_RWT' in the opt i ons argument or specify -
Dor acl e. pg. rdbms. pgql . useDi st RWqt r ue in the Java command line. You will
encounter ORA-32486: unsupported operation in recursive branch of recursive
WITH clause if " _recursive with_control" has not been set to 8 in your session.

* Path Length Restriction: To limit maximum number of repetitions when
evaluating * and + to n, specify ' MAX_PATH_LEN=n" in the query opt i ons argument
or specify - Dor acl e. pg. rdbns. pgql . maxPat hLen=n in the Java command line.

Example 5-18 PgqlExamplel2.java

Pgqgl Exanpl el12. j ava shows path query translations under various options.

i mport java.sql. Connection;
i mport java.sql.Statenent;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl Sgl Quer yTrans;
i mport oracl e. pg. rdbns. pgql . Pggl St at enment ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**
* This exanple shows how to use various options with PGQL path queries.
*/
public class Pgql Exanpl el2
{
public static void main(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];

ORACLE 5-66

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

String password
String graph

args[idx++];
args[idx++];

String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = nul | ;
Pgql Statenent ps = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenment
ps = pgql Conn. creat eSt at ement () ;

/] Set " _recursive_with_control"=8 to enable distinct optimzation
/] optimzation for recursive with
Statenment stnmt = conn.createStatenent();
stnt.executeUpdate("al ter session set
\" recursive_with_control\"=8");
stnt.close();

/] Path Query to illustrate options

String pggl =
"PATH fof AS ()-[:\"friendOF\"]->() "+
"SELECT id(v1l), id(v2) "+
"FROM MATCH (v1)-/:fof*/->(v2) "+
"WHERE id(vl) = 2";

/] get SQ translation with defaults - Non-distinct Recursive WTH
Pgql Sql QueryTrans sql Trans =
ps.transl ateQuery(pgql /* query string */,
2 [* parallel: default is 1 */,
2 /* dynam c sanpling: default is 2 */,
-1 /* max results: -1 inplies no limt */,
"t [* options */);
Systemout.printIn("-- Default Path Translation

-------------------- ")
Systemout . println(sql Trans. get Sql Transl ation()+"\n");

/] get SQL translation with DI STINCT reachability optinization
sqgl Trans =

5-67

ORACLE

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

ps.transl ateQuery(pgqgl /* query string */,

2 [* parallel: default is 1 */,
2 /* dynam c sanpling: default is 2 */,

-1 /* max results: -1 inplies no limt */,

" USE DIST_RMT " /* options */);
Systemout.printIn("-- DI STINCT RWPath Translation

--------------------)

Systemout . println(sql Trans. get Sql Transl ation()+"\n");

/] get SQL translation with CONNECT BY
sqgl Trans =
ps.transl ateQuery(pgql /* query string */,

2 [* parallel: default is 1 */,
2 /* dynam c sanpling: default is 2 */,

-1 /* max results: -1 inplies no limt */,

" USE_ RMF " /* options */);

Systemout.printlIn("-- CONNECT BY Path Transl ation

--------------------)

}
finally {

/1 close the statenent

if (ps !'=null) {
ps.close();

}

/1 close the connection

if (conn !=null) {
conn. cl ose();

}

}

Systemout . println(sqgl Trans. get Sql Transl ation()+"\n");

Pgqgl Exanpl el12. j ava gives the following output for t est _gr aph (which can be loaded

using G aphLoader Exanpl e. j ava code).

-- Default Path Translation --------------cuo---
SELECT /*+ parallel (2) */ * FROM SELECT 7 AS "id(v1)$T",

to_nchar (T0$0. SVID,' TM®',' NLS Nuneric_Characters="".,'"") AS "id(vl)$V",

T0$0. SVID AS "i d(v1) $VN',
to_timestanp_tz(null) AS "id(vl)$vT",
7 AS "id(v2)$T",

to_nchar (T0$0. DVID,' TMD',' NLS Nuneric_Characters="".,"'"") AS "id(v2)$V",

T0$0. DVI D AS "i d(v2) $VN',
to_timestanp_tz(null) AS "id(v2)s$vT"
FROM (/*Pat h[*/ SELECT DI STINCT SVID, DVID
FROM (

SELECT 2 AS SVID, 2 AS DVID

FROM SYS. DUAL

WHERE EXI STS(

SELECT 1

FROM " SCOTT" . TEST_GRAPHVT$

WHERE VID = 2)

UNION ALL

SELECT SVI D, DVI D FROM

(WTH RW (ROOT, DVID) AS

(SELECT ROOT, DVID FROM

5-68

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

(SELECT SVID ROOT, DVID

FROM (SELECT T0$0. SVID AS SVI D,

T0$0. DVI D AS DVI D

FROM " SCOTT". TEST_GRAPHGT$ T0$0

WHERE T0$0. SVID = 2 AND

(TO$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL))
) UNION ALL

SELECT RWRQOT, R DVID

FROM (SELECT T0$0. SVID AS SVI D,

T0$0. DVI D AS DVI D

FROM " SCOTT". TEST_GRAPHGT$ T0$0

WHERE (T0$0.EL = n'friendOf' AND TO$0.EL IS NOT NULL)) R RwW
WHERE RWDVID = R SVID)

CYCLE DVI D SET cycle_col TO 1 DEFAULT 0

SELECT ROOT SVID, DVID FROM RW)/*] Path*/) T0$0
VHERE T0$0. SVID = 2)

-- DISTINCT RWPath Translation --------------------
SELECT /*+ parallel (2) */ * FROWSELECT 7 AS "id(v1)$T",
to_nchar (T0$0.SVID,' TM',"' NLS _Nuneric_Characters="".,""") AS "id(v1l)$V',
T0$0. SVID AS "id(v1) $UN',

to_tinestanp_tz(null) AS "id(vl)$VvT",

7 AS "id(v2)$T",

to_nchar (T0$0.DVID,' TM',"' NLS _Nuneric_Characters="".,""") AS "id(v2)$V',
T0$0. DVID AS "i d(v2) $UN',

to_tinestanp_tz(null) AS "id(v2)$vr"

FROM (/*Pat h[*/ SELECT DI STINCT SVID, DVID

FROM (

SELECT 2 AS SVID, 2 AS DVID

FROM SYS. DUAL

VWHERE EXI STS(

SELECT 1

FROM " SCOTT". TEST_GRAPHVTS$

VWHERE VID = 2)

UNI ON ALL

SELECT SVID, DVID FROM

(WTH RW (ROOT, DVID) AS

(SELECT ROOT, DVID FROM

(SELECT SVID ROOT, DVID

FROM (SELECT T0$0. SVID AS SVI D,

T0$0.DVID AS DVID

FROM " SCOTT". TEST_GRAPHGT$ T0$0

WHERE T0$0.SVID = 2 AND

(TO$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL))

) UNION ALL

SELECT DI STINCT RWROOT, R DVID

FROM (SELECT T0$0. SVID AS SVI D,

T0$0.DVID AS DVID

FROM " SCOTT". TEST_GRAPHGT$ T0$0

WHERE (T0$0.EL = n'friendO' AND T0$0.EL 1S NOT NULL)) R RW
WHERE RWDVID = R SVID)

CYCLE DVID SET cycle_col TO 1 DEFAULT 0

SELECT ROOT SVID, DVID FROM RW)/*]Path*/) T0$0

VWHERE T0$0.SVID = 2)

-- CONNECT BY Path Translation --------------------

SELECT /*+ parallel (2) */ * FROW SELECT 7 AS "id(v1)$T",

to_nchar (T0$0.SVID, ' TM',"' NLS Nuneric_Characters="".,""") AS "id(v1l)$V',
T0$0. SVID AS "id(v1) $UN',

to_tinestanp_tz(null) AS "id(vl)$VT",

7 AS "id(v2)$T",

5-69

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

to_nchar (T0$0.DVID,' TM',"' NLS _Nuneric_Characters="".,""") AS "id(v2)$V',
T0$0. DVID AS "i d(v2) $UN',

to_tinmestanp_tz(null) AS "id(v2)$vr"

FROM (/*Pat h[*/ SELECT DI STINCT SVID, DVID

FROM (

SELECT 2 AS SVID, 2 AS DVID

FROM SYS. DUAL

VWHERE EXI STS(

SELECT 1

FROM " SCOTT". TEST_GRAPHVTS$

VWHERE VID = 2)

UNI ON ALL

SELECT SVID, DVID

FROM

(SELECT CONNECT_BY_ROOT T0$0.SVID AS SVID, T0$0.DVID AS DVID
FROM

SELECT T0%$0. SVID AS SVI D,

T0$0.DVID AS DVID

FROM " SCOTT". TEST_GRAPHGT$ T0$0

WHERE (T0$0.EL = n'friendO'' AND T0$0.EL IS NOT NULL)) T0$0
START WTH T0$0. SVID = 2

CONNECT BY NOCYCLE PRIOR DVID = SVID))/*]Path*/) T0$0
VHERE T0$0.SVID = 2)

The query plan for the first query with the default recursive WITH strategy should look
similar to the following.

-- default RW

0 | SELECT STATEMENT

|

| I
| 1| TEMP TABLE TRANSFORVATI ON
|
|

I
2| LOAD AS SELECT (CURSOR DURATI ON MEMRY)
SYS TEMP_OFDOD6662_37AA44 |
3] UNION ALL (RECURSIVE WTH) BREADTH FI RST

I

I

| 4] PX COORDI NATCR

I I

| 5] PX SEND QC (RANDOV)

| : TQO0000 |

| 6| LOAD AS SELECT ((CURSCR DURATI ON NEMCRY)
SYS_TEMP_OFDOD6662_37AAd4 |

| 7] PX PARTI TI ON HASH ALL

I I

|* 8| TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED |
TEST_GRAPHGT$ |

[* 9| | NDEX RANGE SCAN |
TEST GRAPHXSG$ |

| 10 | PX COORDI NATCR

I I

| 11 | PX SEND QC (RANDOV)

| : TQLO000 |

| 12 | LOAD AS SELECT ((CURSCR DURATI ON NEMCRY)
SYS_TEMP_OFDOD6662_37AAd4 |

| 13 | NESTED LOOPS

5-70

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

I

| 14 | PX BLOCK | TERATOR

I I

|* 15 | TABLE ACCESS FULL

SYS_TEMP_OFDOD6662_37AA44

| 16 | PARTI TI ON HASH ALL

I I

|* 17 | TABLE ACCESS BY LOCAL | NDEX ROWD BATCHED |
TEST_GRAPHGT$ |

|* 18 | | NDEX RANGE SCAN |

TEST_GRAPHXSGS$ |
| 19| PX COORDI NATOR

I

| 20| PX SEND QC (RANDOM

| :T@0001 |

| 21| VI EW

I I

| 22| HASH UNI QUE

I I

| 23| PX RECEI VE

I I

| 24| PX SEND HASH

| : T@0000 |

| 25 | HASH UNI QUE

I I

| 26 | VI EW

I I

| 27| UNI ON- ALL

I I

| 28| PX SELECTOR

I I

|* 29 | FI LTER

I I

| 30| FAST DUAL

I I

| 31| PARTI TI ON HASH SI NGLE
I I

|* 32 | | NDEX SKI P SCAN
TEST_GRAPHXQVS$ |

| 33| VI EW

I I

|* 34 | VI EW

I I

| 35| PX BLOCK | TERATOR
I I

| 36 | TABLE ACCESS FULL
SYS_TEMP_OFDID6662_37AA44

The query plan for the second query that adds a DISTINCT modifier in the recursive
step should look similar to the following.

| 0| SELECT STATEMENT

5-71

ORACLE

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

1| TEMP TABLE TRANSFORMATI ON

I
LOAD AS SELECT (CURSCR DURATI ON' MEMCRY)

I

I

| 2]

SYS_TEMP_OFDOD6669_37AA44 |

| 3] UNI ON ALL (RECURSI VE W TH) BREADTH FI RST

I I

| 4 PX COORDI NATOR

I I

| 5] PX SEND QC (RANDOV)

| : TQ20000 |

| 6] LOAD AS SELECT (CURSOR DURATI ON NEMORY)
SYS_TEMP_OFDID6669_37AA44 |

| 7] PX PARTI TI ON HASH ALL

I I

|* 8| TABLE ACCESS BY LOCAL | NDEX RON D BATCHED |
TEST_GRAPHGT$ |

[* 9| | NDEX RANGE SCAN |
TEST_GRAPHXSGS$ |

| 10 | PX COORDI NATOR

I I

| 11| PX SEND QC (RANDOV)

| :TQLO0O1 |

| 12 | LOAD AS SELECT (CURSOR DURATI ON MEMCRY)
SYS_TEMP_OFDOD6669_37AA44 |

| 13| SORT GROUP BY

I I

| 14 | PX RECEI VE

I I

| 15 | PX SEND HASH

| :TQLO00O |

| 16 | SORT GROUP BY

I I

| 17 | NESTED LOOPS

I I

| 18 | PX BLOCK | TERATOR

I I

|* 19 | TABLE ACCESS FULL
SYS_TEMP_OFDID6669_37AA44 |

| 20| PARTI TI ON HASH ALL

I I

|* 21 | TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED |
TEST_GRAPHGT$ |

|* 22 | | NDEX RANGE SCAN |

TEST_GRAPHXSGS$ |

23 |

24 |

- TQB0001

25 |
26 |
27 |

28 |

- TQ80000

29 |
30 |

31 |

PX COCRDI NATCR
I

PX SEND QC (RANDOM
I
I
I
I
I
I

VI EW
HASH UNI QUE
PX RECEI VE
PX SEND HASH
HASH UNI QUE
VI EW

UNI ON- ALL

5-72

ORACLE

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

I

| 32| PX SELECTOR

I I

|* 33 | FI LTER

I I

| 34| FAST DUAL

I I

| 35| PARTI TI ON HASH SI NGLE
I I

|* 36 | | NDEX SKI P SCAN
TEST_GRAPHXQVS$ |

| 37| VI EW

I I

|* 38 | VI EW

I I

| 39| PX BLOCK | TERATOR
I I

| 40 | TABLE ACCESS FULL
SYS_TEMP_OFDOD6669_37AA44 |

The query plan for the third query that uses CONNECTY BY should look similar to the

following.

0] I
1] VIEW |
2| HASH UNIQUE |
3] VIEW |
4| UNI ON- ALL |
5| FI LTER |
6 | FAST DUAL |
7 PARTI TI ON HASH SI NGLE |
8 | I NDEX SKI P SCAN |
9| VI EW |
0] CONNECT BY W TH FI LTERI NG |
1] I
2| I
3] I
4 | I
5| I
6| I
7 I
8 | I
9| I
0] I

E

PX COORDI NATCR
PX SEND QC (RANDOM)
PX PARTI TI ON HASH ALL
TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED|
I NDEX RANGE SCAN
NESTED LOOPS
CONNECT BY PUMWP
PARTI TI ON HASH ALL
TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED
| NDEX RANGE SCAN

*

TEST_GRAPHXQVS$

- TQLO00O

TEST_GRAPHGT$
TEST_GRAPHXSGS$

TEST_GRAPHGT$
TEST_GRAPHXSGS$

Example 5-19 PgqlExamplel3.java

Pgqgl Exanpl e13. j ava shows how to set length restrictions during path query

evaluation.

i mport java.sql.Connection;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;

5-73

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

i mport oracl e. pg. rdbms. pgql . Pggl St at ement ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to use the maxi mumpath [ength option for
* PGQL path queries.

*/

public class Pgql Exanpl e1l3

{

public static void main(String[] args) throws Exception

{

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

args[idx++];
args[idx++];

String password
String graph

Connection conn = null;
Pgql Statenent ps = nul|;
Pgqgl Resul t Set rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce");
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Path Query to illustrate options
String pggl =
"PATH fof AS ()-[:\"friendOF\"]->() "+
"SELECT v1.\"fname\" AS fnamel, v2.\"fname\" AS fname2 "+
"FROM MATCH (v1)-/:fof*/->(v2) "+
"WHERE v1.\"fname\" = 'Ray'";

/] execute query for 1-hop
rs = ps.executeQuery(pgql, " MAX _PATH LEN=1 ");

5-74

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

[l print results
Systemout.printIn("-- Results for 1-hop ---------------- ");
rs.print();

/] close result set
rs.close();

/] execute query for 2-hop

rs = ps.executeQuery(pgql, " MAX_PATH LEN=2 ");

[l print results

Systemout.printIn("-- Results for 2-hop ---------------- ");
rs.print();

/] close result set
rs.close();

/] execute query for 3-hop
rs = ps.executeQuery(pgql, " MAX _PATH LEN=3 ");

[l print results
Systemout.printIn("-- Results for 3-hop ---------------- ");
rs.print();

/] close result set
rs.close();

—h

inally {
/] close the result set

if (rs!=null) {
rs.close();

}

/1 close the statenent

if (ps !'=null) {

ps.close();
}
/] close the connection
if (conn !=null) {
conn. cl ose();
}

}
}
}

Pgqgl Exanpl e13. j ava has the following output for t est _gr aph (which can be loaded
using G aphLoader Exanpl e. j ava code).

Femeee e +
| FNAMEL | FNAME2 |
Femeee e +
| Ray | Ray |
| Ray | Susan

Femeee e +

ORACLE 5-75

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

o +
| FNAMEL | FNAME2 |
o +
Ray	Susan
Ray	Ray
Ray	John
o +	
-- Results for 3-hop ----------------	
o +	
FNAMEL	FNAME2
o +	
Ray	Susan
Ray	Bill
Ray	Ray
Ray	John
o +

5.8.4.5.4 Options for Partial Object Construction

ORACLE

When reading edges from a query result, there are two possible behaviors when
adding the start and end vertex to any local caches:

» Add only the vertex ID, which is available from the edge itself. This option is the
default, for efficiency.

» Add the vertex ID, and retrieve all properties for the start and end vertex.
For this behavior, you can call set Parti al (true) on each O acl eVert ex object
constructed from your PGQL query result set.

Example 5-20 PgqlExamplel4.java

Pggl Exanpl el4. j ava illustrates this difference in behavior. This program first executes
a query to retrieve all edges, which causes the incident vertices to be added to a

local cache. The second query retrieves all vertices. The program then prints each

O acl eVert ex object to show which properties have been loaded.

i mport java.sql. Connection;

i mport oracl e. pg. rdbns. Oracl e;
i mport oracl e. pg. rdbns. Oracl ePropertyG aph;
i mport oracle. pg. rdbns. Oracl eVertex;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgql . Pggl St at enent ;

i mport oracl e. ucp.j dbc. Pool Dat aSour ceFactory;
i mport oracl e. ucp. j dbc. Pool Dat aSour ce;

/**

* This exanple shows the behavior of setPartial (true) for OracleVertex
obj ects

* created from PGQL query results.

*/
public class Pgql Exanpl el4
{

public static void main(String[] args) throws Exception

5-76

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

String password
String graph

args[idx++];
args[idx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;

Oracle oracle = null;

Oracl ePropertyGaph opg = null;
Pgql Statenent ps = nul|;

Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Query to illustrate set partial

String pggl =
"SELECT id(e), |abel(e) "+
"FROM MATCH (v1)-[e:\"knows\"]->(v2)";

/] execute query

rs = ps.executeQuery(pgql, " ");

[l print results

Systemout.printIn("-- Results for edge query ----------------- ");
rs.print();

/] close result set
rs.close();

/] Create an Oracle Property G aph instance
oracle = new Oracl e(conn);
opg = Oracl ePropertyG aph. getlnstance(oracl e, graph);

/] Query to retrieve vertices

pgql =
"SELECT id(v) "+

5-77

ORACLE

vertex

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

" FROM MATCH (v)";

/] Get each vertex object in result and print with toString()
rs = ps.executeQery(pgql, " ");

/] iterate through result
Systemout.printIn("-- Vertex objects retrieved fromvertex query

while (rs.next()) {
Long vid = rs.getLong(l);
OracleVertex v = Oracl eVertex. getlnstance(opg, vid);
Systemout. printlin(v.toString());

}

/1 close result set

rs.close();

/] Execute the same query but call setPartial (true) for each

rs = ps.executeQery(pgql, " ");
Systemout.printIn("-- Vertex objects retrieved fromvertex query

with setPartial (true) --");

}

}

}

while (rs.next()) {
Long vid = rs.getLong(l);
OracleVertex v = Oracl eVertex. getlnstance(opg, vid);
v.setPartial (true);
Systemout. printlin(v.toString());
}
/1 close result set
rs.close();

finally {

}

/] close the result set

if (rs!=null) {
rs.close();

}

/] close the statenent

if (ps !'=null) {
ps.close();

}

/] close the connection

if (conn !=null) {
conn. cl ose();

}

/1 close the property graph

if (opg !'=null) {
opg. cl ose();

}

/] close oracle

if (oracle !'=null) {
oracl e. di spose();

}

5-78

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

The output for Pggl Exanpl e14. j ava (which can be loaded using
G aphLoader Exanpl e. j ava code) is:

R +
| id(e) | label(e) |
R +
6	knows
11	knows
10	knows
5	knows
4	knows
13	knows
9	knows
12	knows
8	knows
7	knows
14	knows
15	knows
R +

-- Vertex objects retrieved fromvertex query --

Vertex 1D 3 [NULL] {}

Vertex 1D O [NULL] {}

Vertex 1D 2 [NULL] {}

Vertex 1D 1 [NULL] {}

-- Vertex objects retrieved fromvertex query with setPartial (true) --

Vertex 1D 3 [NULL] {bval:bol:false, fname:str:Susan, |nane:str:Blue,

nval : bol : fal se, age:int:35}

Vertex 1D O [NULL] {bval:bol:true, fname:str:Bill, I[nane:str:Brown, nval:str:y,
age: i nt: 40}

Vertex 1D 2 [NULL] {fname:str:Ray, |nane:str:Geen, nval:dat:1985-01-01

04:00: 00. 0, age:int:41}

Vertex 1D 1 [NULL] {bval:bol:true, fnane:str:John, |nane:str:Black, nval:int:27,
age: i nt: 30}

5.8.4.6 Querying Another User’s Property Graph

ORACLE

You can query another user’s property graph data if you have been granted
the appropriate privileges in the database. For example, to query GRAPH1

in SCOTT's schema, you must have READ privilege on SCOTT.GRAPH1GES$,
SCOTT.GRAPH1VTS$, SCOTT.GRAPH1GTS$, and SCOTT.GRAPH1VDS.

Example 5-21 PgqlExamplel5.java

Pggl Exanpl el5. j ava shows how another user can query a graph in SCOTT’s schema.

i mport java.sql. Connection;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbms. pgql . Pggl St at ement ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to query a property graph located in another
user's
* schema. READ privilege on GE$, VT$, GI$ and VD$ tables for the other

5-79

user's

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

* property graph are required to avoid ORA-00942: table or view does

not exist.

*/

public class Pgql Exanpl el5
{

public static void main(String[] args) throws Exception

{
int idx=0;
String host
String port
String sid
String user
String password
String graph

Connection conn = null;
Pgql Statenent ps = nul|;
Pgqgl Resul tSet rs = nul|;

try {

//Get a jdbc connection

args[idx++];
args[idx++];
args[idx++];
args[idx++];
args[idx++];
args[idx++];

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Or acl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);

pds. set User (user);

pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/1 Get a PGQL connection
Pgql Connecti on pgqgl Conn

= Pggl Connecti on. get Connecti on(conn);

pgql Conn. set G aph(graph) ;

/1 Set schema so that we can query Scott's graph
pgql Conn. set Schema(" SCOTT") ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Execute query to get a ResultSet object

String pggl =

"SELECT v.\"fname\" AS fname, v.\"Inane\" AS | name "+

"FROM MATCH (v)";

rs = ps.executeQery(pgql, "");

[/ Print query results

rs.print();

—h

inally {

/] close the result set

if (rs!=null) {

ORACLE

5-80

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

rs.close();

}

/] close the statenent
if (ps !'=null) {

ps.close();

}

/1 close the connection

if (conn !=null) {
conn. cl ose();

}

}
}

}

The following SQL statements create database user USER2 and grant the necessary
privileges. You can also use the O acl ePropert yG aph. grant Access Java API to
achieve the same effect.

SQ.> grant connect, resource, unlimted tablespace to user2 identified by user2;
Grant succeeded.

SQL> grant read on scott.test_graphvt$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphge$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphgt$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphvd$ to user2;

Grant succeeded.

The output for Pggl Exanpl e15. j ava for the t est _gr aph data set when connected to
the database as USER?2 is as follows. Note that t est _gr aph should have already been
loaded (using G aphLoader Exanpl e. j ava code) as GRAPH1 by user SCOTT before
running Pgql Exanpl el15.

Femmmeemeeaeeas +
| FNAME | LNAME |
Femmmeemeeaeeas +
Susan	Blue
Bill	Brown
Ray	Geen
John	Black
Femmmeemeeaeeas +

5.8.4.7 Using Query Optimizer Hints with PGQL

The Java API allows query optimizer hints that influence the join type when executing
PGQL queries. The execut eQuery and t ransl at eQuer y methods in Pgqgl St at enent
and Pgql Prepar edSt at ement accept the following strings in the options argument to
influence the query plan for the corresponding SQL query.

ORACLE 5-81

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

e ALL _EDGE_NL - Use Nested Loop join for all joins that involve the $GE and $GT
tables.

 ALL_EDGE_HASH — Use HASH join for all joins that involve the $GE and $GT
tables.

e ALL VERTEX_NL — Use Nested Loop join for all joins that involve the $VT table.
 ALL_VERTEX_HASH — Use HASH join for all joins that involve the $VT table.
Example 5-22 PgqlExamplel6.java

Pggl Exanpl e16. j ava shows how to use optimizer hints to influence the joins used for a
graph traversal.

i mport java.sql.Connection;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl Sgl Quer yTrans;
i mport oracl e. pg. rdbms. pgql . Pggl St at enent ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**
* This exanple shows how to use query optimizer hints with PGQL
queri es.
*/
public class Pggl Exanpl el6
{

public static void main(String[] args) throws Exception

{

String password
String graph

args[i dx++];
args[i dx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql Statenent ps = nul|;

try {

/1 Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e: thin: @ +host +": "+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();

/1 Get a PGQL connection
Pgqgl Connecti on pggl Conn = Pgql Connecti on. get Connecti on(conn);

5-82

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

pgql Conn. set G aph(graph) ;

/1 Create a Pgql Statenment
ps = pgqgl Conn. creat eSt at ement () ;
/] Query to illustrate join hints
String pggl =
"SELECT id(v1l), id(v4) "+
"FROM MATCH (v1)-[:\"friendOF\"]->(v2)-[:\"friendOf\"]-
>(v3)-[:\"friendOF\"]->(v4)";

/] get SQL translation with hash join hint
Pgql Sql QueryTrans sql Trans =
ps.transl ateQuery(pgql /* query string */,
" ALL_EDGE HASH " /* options */);
/] print SQL translation
Systemout.printin("-- Query with ALL_EDGE HASH
-------------------- ")
Systemout . println(sqgl Trans. get Sql Transl ation()+"\n");

/] get SQL translation with nested | oop join hint
sqgl Trans =
ps.transl ateQuery(pgqgl /* query string */,
" ALL_EDGE NL " /* options */);
/] print SQL translation
Systemout.printIn("-- Query with ALL_EDGE _NL
--------------------- ")
Systemout . println(sql Trans. get Sql Transl ation()+"\n");
}
finally {
/1 close the statenent
if (ps !'=null) {
ps.close();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();

}
}
}
}

The output for Pggl Exanpl e16. j ava for t est _gr aph (which can be loaded using
G aphLoader Exanpl e. j ava code) is:

<~ Query With ALL EDGE HASH -=--=--smsrmmmmcmnn-
SELECT /*+ USE_HASH(TO$0 TO$1 T0$2) */ 7 AS "id(v1)$T",

to_nchar (T0$0. SVID,' TM®',' NLS Nuneric_Characters="".,"'"") AS "id(vl)$V",
T0$0. SVID AS "i d(v1) $UN',

to_timestanp_tz(null) AS "id(vl)$vT",

7 AS "id(v4)$T",

to_nchar(T0$2. DVID,' TM®',' NLS Nuneric_Characters="".,"'"") AS "id(v4)$V',
T0$2. DVID AS "i d(v4) $UN',

to_timestanp_tz(null) AS "id(v4)s$vT"

FROM " SCOTT". TEST_GRAPHGT$ T0$0,

"SCOTT". TEST_GRAPHGTS$ TO0$1,

5-83

ORACLE

"SCOTT". TEST_CGRAPHGT$ T0$2

WHERE T0$0. DVI D=T0$1. SVID AND

TO$1. DVI D=T0$2. SVI D AND
(T0$0. EL
(TO$1. EL
(T0$2. EL

-~ Query with ALL_EDGE NL -------mmmmmmmmmmnne
SELECT /*+ USE_NL(TO$0 TO$1 T0$2) */ 7 AS "id(vl)$T",
to_nchar(T0$0.SVID, ' TM',"' NLS Nuneric_Characters="".,"""

T0$0. SVID AS "i d(v1) $UN',

Chapter 5

Executing PGQL Queries Directly Against Oracle Database

n'friendd' AND T0$0.EL IS NOT NULL) AND
n'friendd' AND TO$1.EL IS NOT NULL) AND
n'friendd' AND T0$2.EL |'S NOT NULL)

to_tinestanp_tz(null) AS "id(vl)$VT",

7 AS "id(va)$T",

to_nchar(T0$2.DVID,' TM',"' NLS Nuneric_Characters="".,"""

T0$2. DVID AS "i d(v4) $UN',

to_tinmestanp_tz(null) AS "id(v4)$vr"

FROM " SCOTT". TEST_GRAPHGT$ T0$0,

"SCOTT". TEST_CGRAPHGT$ TO0$1,
"SCOTT". TEST_CGRAPHGT$ T0$2

WHERE T0$0. DVI D=T0$1. SVID AND

TO$1. DVI D=T0$2. SVI D AND
(T0$0. EL
(TO$1. EL
(T0$2. EL

n'friendd' AND T0$0.EL IS NOT NULL) AND
n'friendd' AND TO$1.EL IS NOT NULL) AND
n'friendd' AND T0$2.EL |'S NOT NULL)

) AS "id(v1)$V",

) AS "id(v4)$V,

The query plan for the first query that uses ALL_EDGE_HASH should look similar to

the following.
| Id | Operation
SELECT STATEMENT
* HASH JO N
* HASH JO N

PARTI TI ON HASH ALL
TABLE ACCESS FULL
PARTI TI ON HASH ALL
TABLE ACCESS FULL
PARTI TI ON HASH ALL
TABLE ACCESS FULL

TEST_GRAPHGTS |

|
TEST_GRAPHGTS |

|
TEST_GRAPHGTS |

The query plan for the second query that uses ALL_EDGE_NL should look similar to

the following.

0 | SELECT STATEMENT

1| NESTED LOOPS

2| NESTED LOOPS

3 PARTI TI ON HASH ALL
4| TABLE ACCESS FULL
5| PARTI TI ON HASH ALL
6 |

7 I NDEX RANGE SCAN
8 | PARTI TI ON HASH ALL

9|

0|

I NDEX RANGE SCAN

TABLE ACCESS BY LOCAL | NDEX ROWN D BATCHED

I
TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED |

I
I
I
I
TEST_GRAPHGTS |

I
TEST_GRAPHGTS |
TEST_GRAPHXSGS |

I
TEST_GRAPHGTS |
TEST_GRAPHXSGS |

5-84

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5.8.5 Modifying Property Graphs through INSERT, UPDATE, and
DELETE Statements

ORACLE

PGQL supports INSERT, UPDATE, and DELETE operations on Property Graphs. The
method execut e in Pgql St at ement lets you execute such DML operations. This topic
provides several examples of such operations.

< Note:

JDBC connection autocommit must be off in order to be able to execute
INSERT, UPDATE, and DELETE statements.

Example 5-23 PgqlExamplel?.java (Insert)

Pgqgl Exanpl el7. j ava inserts several vertices and edges into a graph. Notice that the
special property ora_id is used to define ID values of vertices and edges. If the
property _ora_i d is omitted, a unique ID is generated for each new vertex or edge that
is inserted into the graph.

i mport java.sql. Connection;

i nport oracle.pg.rdbns. pggl . Pggl Connecti on;
i nport oracle.pg.rdbns. pgql . Pgql Resul t Set ;
i nport oracle.pg.rdbns. pgql . Pgql St at enent ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to execute a PGQL | NSERT operation.
*/

public class Pggl Exanpl el7

{

public static void main(String[] args) throws Exception

{

String password
String graph

args[idx++];
args[i dx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql Statenent ps = null;
Pgqgl Resul tSet rs = nul|;

try {

5-85

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Or acl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();
conn. set Aut oConmi t (f al se);

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Execute insert statenent
String pggl =
"I NSERT VERTEX pl LABELS (person) PROPERTIES (pl.\"_ora_id\" =
1, pl.fnanme = 'Jake') "+
" , VERTEX p2 LABELS (person) PROPERTIES (p2.\" _ora_id\"

2, p2.fname = "Any') "+

" , VERTEX p3 LABELS (person) PROPERTIES (p3.\"_ora_id\" =
3, p3.fname = "Erik') "+

" , VERTEX p4 LABELS (person) PROPERTIES (p4.\" _ora_id\" =
4, p4.fname = 'Jane') "+

" , EDGE el BETWEEN pl AND p2 LABELS (knows) PROPERTIES
(el.\"_ora_id\" =1, el.since = DATE '2003-04-21") "+
" , EDGE e2 BETWEEN pl AND p3 LABELS (knows) PROPERTIES
(e2.\"_ora_id\" = 2, e2.since = DATE '2010-02-10") "+
" , EDGE e3 BETWEEN p3 AND p4 LABELS (knows) PROPERTIES
(e3.\"_ora_id\" = 3, e3.since = DATE '1999-01-03") ";
ps. execute(pgql, /* query string */
"", [|* query options */
/* nmodify options */);

/] Execute a query to verify insertion
pgal =
" SELECT id(pl) ASidl, pl.fname AS personl, id(p2) as id2,
p2.fname AS person2, id(e) as e, e.since "+
" FROM MATCH (pl)-[e: knows]->(p2) "+
"ORDER BY idl, id2";
rs = ps.executeQery(pgql, "");

[/ Print the results
rs.print();

1

finally {
Il close the result set
if (rs!=null) {

rs.close();

}
/1l close the statenent
if (ps !'=null) {

ORACLE 5-86

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

ps.close();
}
/] close the connection
if (conn !=null) {
conn. cl ose();
}

}
}
}

The output for Pggl Exanpl el7. j ava is:

o +
| IDL | PERSONL | ID2 | PERSON2 | E | SINCE |
o +
1	Jake	2	Ay	1] 2003-04-20 17:00:00.0	
1	Jake	3	Erik	2	2010-02-09 16:00:00.0
3	Erik	4	Jane	3	1999-01-02 16:00:00.0
o +

For more examples of INSERT statement, see the relevant section of the PGQL
specification here.

Example 5-24 PgqlExamplel8.java (Update)

Pgqgl Exanpl e18. j ava updates several properties of vertices and edges that are
matched in the FROM clause of an UPDATE statement.

i mport java.sql. Connection;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracle. pg. rdbns. pgql . Pggl St at enent ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanpl e shows how to execute a PGQL UPDATE operation.
*/

public class Pgql Exanpl e18

String password
String graph

args[i dx++];
args[i dx++];

{
public static void main(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql Statenent ps = nul|;
Pgql Resul tSet rs = nul|;

5-87

http://pgql-lang.org/spec/1.3/#insert

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact or yd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

agel,

age2,

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

conn. set Aut oConmi t (f al se) ;

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Execute update statenent
String pggl =

"UPDATE pl SET (pl.age = 47, pl.lname = 'Red'), "+

" p2 SET (p2.age = 29, p2.lname = 'White'), "+
" e SET (e.strength = 100) "+

"FROM MATCH (pl) -[e:knows]-> (p2) "+

"WHERE pl.fname = 'Jake' AND p2.fname = 'Amy'";

ps. execute(pgql, /* query string */
"', |* query options */
/* nmodify options */);

/] Execute a query to verify update
pgal =

"SELECT pl.fname AS fnamel, pl.lnane AS | nanel, pl.age AS
"+

" p2.fname AS fname2, p2.lnane AS | name2, p2.age AS
e.strength "+

"FROM MATCH (pl) -[e:knows]-> (p2)";

rs = ps.executeQuery(pgql, "");

/] Print the results
rs.print();

nally {
/] close the result set

if (rs!=null) {
rs.close();

}

/1 close the statenent

if (ps !'=null) {

ps.close();
}
/] close the connection
if (conn !=null) {

conn. cl ose();

5-88

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

The output for Pgql Exanpl e18. j ava applied on a graph where Pggl Exanpl el7.] ava
has been previously executed is:

N O I +
| FNAMEL | LNAME1l | AGEL | FNAME2 | LNAME2 | AGE2 | STRENGTH |
N O N I . +
Jake	Red	47	Ay	Wite	29	100
Jake	Red	47	Erik	<null>	<null>] <null>	
Erik	<null>] <null>	Jane	<null>	<null>	<null>	
N O N I . +

For more examples of UPDATE statement, see the relevant section of the PGQL
specification here.

Example 5-25 PgqlExamplel9.java (Delete)

Pgqgl Exanpl e19. j ava deletes edges that are matched in the FROM clause of a
DELETE statement.

i mport java.sql. Connection;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracle. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgql . Pggl St at ement ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanpl e shows how to execute a PGQL DELETE operation.

String password
String graph

args[i dx++];
args[i dx++];

*/
public class Pggl Exanpl e19
{
public static void nmain(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql Stat enent ps = nul|;
Pgql Resul tSet rs = nul|;

try {

/1 Get a jdbc connection

ORACLE 5-89

http://pgql-lang.org/spec/1.3/#update

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

}

}

}

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

conn. set Aut oConmi t (f al se);

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenent
ps = pgql Conn. creat eSt at ement () ;

/] Execute del ete statenent
String pggl =
"DELETE e "+
" FROM MATCH (pl) -[e:knows]-> (p2) "+
" WHERE pl.fnane = 'Jake'";
ps. execute(pgql, /* query string */
"', |* query options */
/* nmodify options */);

/] Execute a query to verify delete

pgal =
"SELECT pl.fnanme AS fnamel, p2.fnane AS fnane2 "+
" FROM MATCH (pl) -[e:knows]-> (p2)";

rs = ps.executeQery(pgql, "");

/] Print the results
rs.print();

nally {
/] close the result set

if (rs!=null) {
rs.close();

}

/1 close the statenent

if (ps !'=null) {

ps.close();
}
/] close the connection
if (conn !=null) {
conn. cl ose();
}

The output for Pggl Exanpl e19. j ava applied on a graph where Pgql Exanpl e18. j ava
has been previously executed is:

5-90

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

o +
| FNAMEL | FNAME2 |
o +
| Erik | Jane |
o +

For more examples of DELETE statement, see the relevant section of the PGQL
specification here.

Example 5-26 PgqlExample20.java (Multiple Modifications)

Pgqgl Exanpl e20. j ava executes multiple modifications in the same statement: an edge
is inserted, vertex properties are updated, and another edge is deleted.

i mport java.sql. Connection;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbns. pgql . Pggl St at ement ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows how to execute a PGQL
* | NSERT/ UPDATE/ DELETE oper ati on.

String password
String graph

args[i dx++];
args[i dx++];

*/
public class Pgql Exanpl e20
{
public static void main(String[] args) throws Exception
{
int idx=0;
String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = nul | ;
Pgql Statenent ps = nul|;
Pgql Resul tSet rs = nul|;

try {

/1 Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();
conn. set Aut oConmi t (f al se) ;

5-91

http://pgql-lang.org/spec/1.3/#delete

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenment
ps = pgql Conn. creat eSt at ement () ;

/1 Execute | NSERT/ UPDATE/ DELETE st at enent
String pggl =
"I NSERT EDGE f BETWEEN p2 AND pl LABELS (knows) PROPERTIES
(f.since = e.since) "+
"UPDATE pl SET (pl.age
" , p2 SET (p2.age
"DELETE e "+
" FROM MATCH (pl) -[e:knows]-> (p2) "+
" WHERE pl.fnanme = "Erik'";
ps. execute(pgql, /* query string */
"', |* query options */
/* nmodify options */);

30) "+
25) "+

/] Execute a query to verify | NSERT/ UPDATE/ DELETE

pgal =
"SELECT pl.fnanme AS fnamel, pl.age AS agel, "+
" p2.fname AS fname2, p2.age AS age2, e.since "+
" FROM MATCH (pl) -[e:knows]-> (p2)";

rs = ps.executeQery(pgql, "");

/] Print the results
rs.print();
}
finally {
/1 close the result set
if (rs!=null) {
rs.close();
}
/1 close the statenent
if (ps !'=null) {
ps.close();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}
}

The output for Pgql Exanpl €20. j ava applied on a graph where Pggl Exanpl e19. j ava
has been previously executed is:

o mm e e e e e e e eeeeeeaoa- +
| FNAMEL | AGEL | FNAME2 | AGE2 | SINCE |
o mm e e e e e e e eeeeeeaoa- +
| Jane | 25 | Erik | 30 | 1999-01-02 16:00:00.0 |
o mm e e e e e e e eeeeeeaoa- +

5-92

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

For more examples of INSERT/UPDATE/DELETE statements, see the relevant section
of the PGQL specification here.

* Additional Options for PGQL Statement Execution

5.8.5.1 Additional Options for PGQL Statement Execution

Several options are available to influence PGQL statement execution. The following
are the main ways to set query options:

e Through flags in the nodi fy opti ons string argument of execut e
e Through Java JVM arguments.

The following table summarizes the main options for modifying PGQL statement
execution.

Table 5-3 PGQL Statement Modification Options

Option Default Options Flag JVM Argument

Auto commit true if JDBC auto commit AUTO_COMMIT=F -
is off, false if JDBC auto Doracle.pg.rdbms.pgql.auto
commit is on Commit=false

Delete cascade true DELETE_CASCADE=F -

Doracle.pg.rdbms.pgql.dele
teCascade=false

e Turning Off PGQL Auto Commit
* Turning Off Cascading Deletion

5.8.5.1.1 Turning Off PGQL Auto Commit

ORACLE

When an INSERT, UPDATE, or DELETE operation is executed, a commit is performed
automatically at the end of the PGQL execution so that changes are persisted on the
RDBMS side.

The flag AUTO COW T=F can be added to the opt i ons argument of execut e or the

flag Dor acl e. pg. rdbns. pgqgl . aut oConmi t =f al se can be set in the Java command line
to turn off auto commit. Notice that when auto commit is off, you must perform any
necessary commits or rollbacks on the JDBC connection in order to persist or cancel
graph modifications.

Example 5-27 Turn Off Auto Commit and Roll Back Changes

Pggl Exanpl e21. j ava turns off auto commit and performs a rollback of the changes.

i mport java.sql. Connection;

i mport oracl e. pg. rdbms. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbms. pgql . Pggl Resul t Set ;
i mport oracl e. pg. rdbms. pgql . Pggl St at enent ;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

5-93

http://pgql-lang.org/spec/1.3/#mixing-insert-update-and-delete

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

* This exanple shows how to nodify a PGQL graph
*with auto commit off.

*/

public class Pgql Exanpl e21

{

public static void main(String[] args) throws Exception

{

String password
String graph

args[idx++];
args[idx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql St at enent ps
Pgql Resul t Set rs

nul | ;
nul | ;

try {

//Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;

pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);

pds. set Passwor d(passwor d) ;

conn = pds. get Connection();

conn. set Aut oConmi t (f al se);

/1 Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set G aph(graph) ;

/] Create a Pgql Statenment
ps = pgql Conn. creat eSt at ement () ;

/] Delete all the edges in the graph
String pggl =
"DELETE e "+
" FROMMATCH () -[e]-> ()"
ps. execute(pgql, /* query string */
/* query options */
"AUTO COWM T=F" /* nodify options */);

/] Execute a query to verify deletion

pgal =

"SELECT COUNT(e) "+

" FROM MATCH () -[e]-> ()";
rs = ps.executeQery(pgql, "");

Il Print the results
Systemout. println("Nunber of edges after deletion:");

5-94

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

rs.print();
rs.close();

/1 Rol I back the changes. This is possible because
/1 AUTO COW T=F flag was used in execute
conn.rol | back();

/] Execute a query to verify rollback
pgal =
"SELECT COUNT(e) "+
FROM MATCH () -[e]l-> ()";
rs = ps.executeQery(pgql, "");

[/ Print the results
Systemout . println("Nunber of edges after rollback:");
rs.print();

1

finally {
Il close the result set
if (rs!=null) {

rs.close();

}
/1l close the statenment
if (ps !'=null) {

ps.close();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}
}

}
}

Pgqgl Exanpl e21. j ava gives the following output for a graph with one edge:

Nurmber of edges after deletion:

o +
| COUNT(e) |
o +
| 0 I
o +
Nurmber of edges after rollback:
o +
| COUNT(e) |
o +
| 1 I
o +

5.8.5.1.2 Turning Off Cascading Deletion

ORACLE

When a vertex is deleted from a graph, all its input and output edges are also deleted
automatically.

Using the flag DELETE_CASCADE=F in the opt i ons argument of execut e of setting
the flag or setting the flag Dor acl e. pg. rdbns. pgql . aut oConmi t =f al se in the Java

5-95

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

command line lets you turn off cascading deletion. When a vertex with input or output
edges is deleted and cascading deletion is off, an error is thrown to warn about the
unsafe operation that you are trying to perform.

Example 5-28 Turn Off Cascading Deletion

Pgqgl Exanpl e22. j ava attempts to delete a vertex with an output edge when cascading
deletion is off.

i mport java.sql. Connection;

i mport oracl e. pg. rdbns. pgql . Pggl Connecti on;
i mport oracl e. pg. rdbns. pgql . Pggl St at enent ;
i mport oracl e. pg. rdbms. pgql . Pggl ToSql Excepti on;

i mport oracl e. ucp.jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

/**

* This exanple shows the use of DELETE CASCADE fl ag.
*/

public class Pgql Exanpl e22

{

public static void main(String[] args) throws Exception

{

String password
String graph

args[i dx++];
args[i dx++];

int idx=0;

String host = args[idx++];
String port = args[idx++];
String sid = args[idx++];
String user = args[idx++];

Connection conn = null;
Pgql Statenent ps = nul|;

try {

/1 Get a jdbc connection
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connecti onFact oryd assNane(" oracl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @+host+":"+port +":"+sid);
pds. set User (user);
pds. set Passwor d(passwor d) ;
conn = pds. get Connection();
conn. set Aut oConmi t (f al se) ;

/] Get a PGQL connection
Pgql Connection pgqgl Conn = Pgql Connecti on. get Connecti on(conn);
pgql Conn. set Graph(graph) ;

/1 Create a Pgql Statenment
ps = pgql Conn. creat eStat enent () ;

5-96

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

/] Delete all the vertices with output edges
[/ This will throw an error
String pggl =
"DELETE v "+
" FROM MATCH (v) -[e]-> ()";
ps. execute(pgql, /* query string */
/* query options */
"DELETE_CASCADE=F" [/* nmodify options */);
}
catch (Pgqgl ToSql Exception ex){
Systemout.printIn("Error in execution:
}
finally {
/1 close the statenent
if (ps !'=null) {

+ ex. get Message());

ps.close();
}
/1 close the connection
if (conn !=null) {
conn. cl ose();
}

}
}
}

Pgqgl Exanpl e22. j ava gives the following output for a graph with at least one edge:

Error in execution: Attenpting to delete vertices with incom ng/outgoing edges.
Drop edges first or turn on DELETE CASCADE option

5.8.6 Performance Considerations for PGQL Queries

ORACLE

Many factors affect the performance of PGQL queries in Oracle Database. The
following are some recommended practices for query performance.

* Query Optimizer Statistics

» Parallel Query Execution

e Optimizer Dynamic Sampling
e Bind Variables

e Path Queries

Query Optimizer Statistics

Good, up-to-date query optimizer statistics are critical for query performance. Ensure
that you run OPG_APIS.ANALYZE_PG after any significant updates to your property
graph data.

Parallel Query Execution

Use parallel query execution to take advantage of Oracle’s parallel SQL engine.
Parallel execution often gives a significant speedup versus serial execution. Parallel
execution is especially critical for path queries evaluated using the recursive WITH
strategy.

5-97

ORACLE

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

See also the Oracle Database VLDB and Partitioning Guide for more information
about parallel query execution.

Optimizer Dynamic Sampling

Due to the inherent flexibility of the graph data model, static information may not
always produce optimal query plans. In such cases, dynamic sampling can be used
by the query optimizer to sample data at run time for better query plans. The amount
of data sampled is controlled by the dynamic sampling level used. Dynamic sampling
levels range from O to 11. The best level to use depends on a particular dataset and
workload, but levels of 2 (default), 6, or 11 often give good results.

See also Supplemental Dynamic Statistics in the Oracle Database SQL Tuning Guide.

Bind Variables

Use bind variables for constants whenever possible. The use of bind variables
gives a very large reduction in query compilation time, which dramatically increases
throughput for query workloads with queries that differ only in the constant values
used. In addition, queries with bind variables are less vulnerable to injection attacks.

Path Queries

Path queries in PGQL that use the + (plus sign) or * (asterisk) operator to

search for arbitrary length paths require special consideration because of their high
computational complexity. You should use parallel execution and use the DISTINCT
option for Recursive WITH (USE_DIST_RW-=T) for the best performance. Also, for
large, highly connected graphs, it is a good idea to use MAX_PATH_LEN=n to limit the
number of repetitions of the recursive step to a reasonable number. A good strategy
can be to start with a small repetition limit, and iteratively increase the limit to find more
and more results.

5-98

Graph Visualization Application

The Graph Visualization application enables interactive exploration and visualization of
property graphs. It can also visualize graphs stored in the database.

e About the Graph Visualization Application
The Graph Visualization application is a single-page web application that works
with the in-memory graph server (PGX).

» How does the Graph Visualization Application Work
The Graph Visualization application exposes its own web interface and REST
endpoint and can execute PGQL queries against the in-memory graph server
(PGX) or the Oracle Database (PGQL on RDBMS).

» Deploying Graph Visualization Application
This section describes the various methods to deploy the Graph Visualization
Application.

e Using GraphViz

The principal points of entry for the GraphViz application are the query editor and
the graph lists.

6.1 About the Graph Visualization Application

The Graph Visualization application is a single-page web application that works with
the in-memory graph server (PGX).

The in-memory graph analytics server can be deployed in embedded mode or in
Apache Tomcat or Oracle Weblogic Server. Graph Visualization application takes
PGQL queries as an input and renders the result visually. A rich set of client-side
exploration and visualization features can reveal new insights into your graph data.

Graph Visualization application works with the in-memory analytics server. It can
visualize graphs that are have been loaded into the in-memory analytics server, either
preloaded when the in-memory analytics server is started, or loaded at run-time by a
client application and made available through the graph. publ i sh() API.

6.2 How does the Graph Visualization Application Work

ORACLE

The Graph Visualization application exposes its own web interface and REST endpoint
and can execute PGQL queries against the in-memory graph server (PGX) or the
Oracle Database (PGQL on RDBMS).

By default, it uses PGX and therefore requires a running PGX server to function.
Alternatively, you can configure Graph Visualization application to directly talk to the
database via PGQL on RDBMS. Graph Visualization application does not have any Ul
to create graphs, it can only visualize graphs which are already loaded into PGX or
Oracle Database. There are two ways you can use the Graph Visualization application:

 Standalone mode

6-1

Chapter 6
Deploying Graph Visualization Application

If you install the Graph Server r pmfile, the Graph Visualization application starts
up by default when you start the PGX server and is reachable at htt ps://
| ocal host: 7007/ ui .

e Custom web container mode
You can download the Graph Webapps package which contains a web application
archive (WAR) file. You can deploy this file into your Oracle Weblogic 12.2 (or later)
or Apache Tomcat (9.x or later) web containers.

6.3 Deploying Graph Visualization Application

This section describes the various methods to deploy the Graph Visualization
Application.

* How to Deploy the Graph Visualization Application
You can use the instructions in this section to deploy the Graph Visualization
application.

» Deploying Graph Visualization Application in Oracle WebLogic Server
The following instructions are for deploying Graph Visualization application in
Oracle WebLogic Server 12.2.1.3. You might need to make slight modifications,
as appropriate, for different versions of the Weblogic Server.

6.3.1 How to Deploy the Graph Visualization Application

ORACLE

You can use the instructions in this section to deploy the Graph Visualization
application.

To change the PGQL execution mode, modify the VEB- | NF/ web. xm file inside of the
Graph Visualization application WAR file named gr aphvi z- <ver si on>- pgvi z<gr aphvi z-
Ver si on>. war.

If you have installed the RPMfile, the WAR file is located inside the / opt / or acl e/ gr aph/
graphvi z directory.

If you have downloaded the Oracl e G aph Webapps package, the WAR file is located in
the root directory of that webapps package.

e To extract the WAR file and directly modify the file contents, run the following
command:
unzip graphviz-*.war -d /tnp/pgviz/

» Edit the web.xml descriptor using any file editor of your choice:
nano /tnp/ pgvi z/ VEB- | NF/ web. xm

To configure Graph Visualization application to communicate with a PGX
deployment (PGQL on PGX)

1. Locate the graphvi z. dri ver. cl ass context parameter. If applicable, set the value
to oracl e. pgx. graphvi z. dri ver. PgxDri ver (this is the default value):

<cont ext - par an®

<par am nanme>gr aphvi z. dri ver. cl ass</ par am nane>

<par am val ue>or acl e. pgx. graphvi z. dri ver. PgxDri ver </ par am val ue>
</ cont ext - par an»

6-2

ORACLE

Chapter 6
Deploying Graph Visualization Application

2. Locate the pgx. base_url context parameter. Modify the value to match your
secure PGX deployment endpoint. Use the correct FQDN or IP address, along
with the correct port. For example,

<cont ext - par an»

<par am nane>pgx. base_ur| </ par am name>

<par am val ue>htt ps: // myhost : 7007</ par am val ue>
</ cont ext - par an»

¢ Note:

This step does not have any effect if you use Graph Visualization
in standalone mode (RPMinstallation). The PGX base URL is set
automatically to point to the local PGX server.

When Graph Visualization application is using PGQL on PGX the application will use
your Oracle Database as identity manager by default. This means that you log into the
application using existing Oracle Database credentials (username and password), and
the actions which you are allowed to do on the graph server are determined by the
roles that have been granted to you in the Oracle Database.

To configure Graph Visualization application to communicate with Oracle
Database (PGQL on RDBMS)

1. Locate the graphviz.driver.class context parameter. If applicable, set the value to
oracl e. pg. rdbms. Pgql Dri ver:

<cont ext - par an®

<par am nanme>gr aphvi z. dri ver. cl ass</ par am nane>

<par am val ue>or acl e. pg. rdbns. Pgql Dri ver </ par am val ue>
</ cont ext - par an»

2. Set the context parameter graphvi z. dri ver. rdbns. j dbc_ur| referencing the
JDBC URL of your Oracle Database. For example:

<cont ext - par an®

<par am nanme>gr aphvi z. dri ver. rdbns. j dbc_ur| </ par am name>

<par am val ue>j dbc: oracl e: t hi n: @yhost : 1521/ nySer vi ce</ par am
val ue>
</ cont ext - par an»

< Note:

Replace above URL with the JDBC URL that you want to use for user
authentication.

When Graph Visualization application is using PGQL on RDBMS, the application
displays a custom login page and the user can use their Oracle Database credentials
for user authentication, using the Oracle Database set mentioned in step 2. After
logging in, you can see the graphs that you are granted to see on the Oracle
Database.

6-3

Chapter 6
Deploying Graph Visualization Application

Repackage the WAR file

cd /tnp/pgvi z/
jar -cvf graphviz-<version>-pgvi z<graphvi z-versi on>. war *

For the standalone deployment mode, copy the updated WAR file back into / opt /
oracl e/ graph/ graphvi z and then start the server as usual.

6.3.2 Deploying Graph Visualization Application in Oracle WebLogic

Server

ORACLE

The following instructions are for deploying Graph Visualization application in
Oracle WebLogic Server 12.2.1.3. You might need to make slight modifications, as
appropriate, for different versions of the Weblogic Server.

1. Start WebLogic Server.

Start Server
cd $MN HOWVE/ user _proj ect s/ donai ns/ base_donai n
.I'bin/startWbLogic. sh

2. Enable tunneling.
In order to be able to deploy the Graph Visualization application WAR file over
HTTP, you must enable tunneling first. Go to the WebLogic admin console (by
default on http://1 ocal host: 7001/ consol e). Select Environment (left panel) >
Servers (left panel). Click the server that will run graph visualization (main panel).
Select (top tab bar), check Enable Tunneling, and click Save.

3. Deploy the WAR File
To deploy the repackaged WAR file to WebLogic Server, use the following
command, replacing the <<. .. >> markers with values matching your installation:

cd $MWV HOVE/ user _proj ect s/ domai ns/ base_donai n

sour ce bi n/ set Domai nEnv. sh

j ava webl ogi c. Depl oyer -adm nurl <<admi n-consol e-url>> -username
<<adm n-user>> -password <<adni n- passwor d>> -depl oy -upl oad <<pat h/
t 0>>/ graphvi z- <<ver si on>>- pgvi z<<gr aphvi z- ver si on>>. war

To undeploy, you can use the following command:

j ava webl ogi c. Depl oyer -adni nurl <<adm n-consol e-url >> -usernane
<<adm n-user>> -password <<adni n- passwor d>> - name <<path/to>>/
graphvi z- <<ver si on>>- pgvi z<<gr aphvi z- ver si on>>. war -undepl oy

To test the deployment, navigate using your browser to: htt ps: // <<f qdn-
i p>>: <<port>>/ui .

The browser prompts for your credentials (user name and password). After you log
in, the Graph Visualization user interface (Ul) appears and the graphs from PGX is
retrieved.

6-4

Chapter 6
Using GraphViz

6.4 Using GraphViz

ORACLE

The principal points of entry for the GraphViz application are the query editor and the
graph lists.

When you start GraphViz, the graph list will be populated with the graphs loaded in
PGX. To run queries against a graph, select that graph. The query lets you write PGQL
gueries that can be visualized. (PGQL is the SQL-like query language supported by
GraphViz.)

Once the query is ready and the desired graph is selected, click the Run icon to
execute the query. The following figure shows a query visualization identifying all
edges that are directed edges from any vertex in the graph to any other vertex.
Figure 6-1 Query Visualization

ORACLE property Graph Visualization

1 SELECT e

2 MATCH ()-[e]->()

6-5

Chapter 6

Using GraphViz
Figure 6-2 Query Visualization
OQACLE' Graph Visualization graph v
GQL Graph Q
[e]->()
G @ = H
® L]
" @ Exploration
° ®
L ° @ :
[] Modes
® @
@ ® . L]
[] Legend
®
® ® - ®
- 1) p 2] P .
o e p ®
i s » @
@
¢ &) O " °
[]
® ° L
o @
o
L4 ® ®
@ o @ .
® L] ®
@ " ®
o ° *
[]
® @
® @

When a query is successful, the graph visualization is displayed, including nodes
and their connections. You can right-click a node or connection to display tooltip
information, and you can drag the nodes around.

e GraphViz Modes
The buttons on the right let you switch between two modes: Graph Manipulation
and Zoom/Move.

e GraphViz Settings
You can click the Settings gear icon to display the GraphViz settings window.

e Using Live Search
Live Search lets you to search the displayed graph and add live fuzzy search
score to each item, so you can create a Highlight which visually shows the results
of the search in the graph immediately.

e Using URL Parameters to Control GraphViz
You can provide GraphViz input data through URL parameters instead of using the
form fields of the user interface.

6.4.1 GraphViz Modes

The buttons on the right let you switch between two modes: Graph Manipulation and
Zoom/Move.

* Graph Manipulation mode lets you execute actions that modify the visualization.
These actions include:

— Drop removes selected vertices from visualization. Can also be executed from
the tooltip.

ORACLE 6-6

Chapter 6
Using GraphViz

— Group selects multiple vertices and collapses them into a single one.
— Ungroup selects a group of collapsed vertices and ungroups them.

— Expand retrieves a configurable number of neighbors (hops) of selected
vertices. Can also be executed from the tooltip.

— Focus, like Expand, retrieves a configurable number of neighbors, but also
drops all other vertices. Can also be executed from the tooltip.

— Undo undoes the last action.
— Redo redoes the last action.
— Reset resets the visualization to the original state after the query.

* Zoom/Move mode lets you zoom in and out, as well as to move to another part of
the visualization. The Pan to Center button resets the zoom and returns the view
to the original one.

An additional mode, called Sticky mode, lets you cancel the action of dragging the
nodes around.

6.4.2 GraphViz Settings

You can click the Settings gear icon to display the GraphViz settings window.

The settings window lets you modify some parameters for the visualization, and it has
tabs for General, Visualization, and Highlights. The following figure shows this window,
with the Visualization tab selected.

Figure 6-3 GraphViz Settings Window

=5 (Genera # Visualization Highlights

General
Edge Style Straight Curved
dge Marke = None
sge Size 100 v | A

Layouts

I

i
T

A

el

]
4

1
o
w

ORACLE 6-7

ORACLE

Chapter 6
Using GraphViz

The General tab includes the following:

Number of hops: The configurable number of hops for the expand and focus
actions.

Truncate label: Truncates the label if it exceeds the maximum length.
Max. visible label length: Maximum length before truncating.
Show Label On Hover: Controls whether the label is shown on hover.

Display the graph legend: Controls whether the legend is displayed.

The Visualization tab includes the following:

Theme: Select a light or dark mode.
Edge Style: Select straight or curved edges.

Edge Marker: Select arrows or no edge marker. This only applies to directed
edges.

Similar Edges: Select keep or collect.

Page Size: Specify how many vertices and edges are displayed per page.
Layouts: Select between different layouts (random, grid, circle, concentric, ...).
Vertex Label: Select which property to use as the vertex label.

Vertex Label Orientation: Select the relative position of the vertex label.

Edge Label: Select which property to use as the edge label.

The Highlights tab includes customization options that let you modify the appearance
of edges and vertices. Highlighting can be applied based on conditions (filters) on
single or multiple elements. The following figure shows a condition (country = United
St at es) and visual highlight options for vertices.

6-8

ORACLE

Chapter 6
Using GraphViz

Figure 6-4 Highlights Options for Vertices

Conditions [+]
country ¥ || = ¥ United States o
Highlights
Apply To m In Edge Out Edge
nterpolate @

Labe

Animations =

Q @ :: @ D t Cancel

A filter for highlights can contain multiple conditions on any property of the element.
The following conditions are supported.

* =(equal to)
e < (less than)
e <= (less than or equal to)
e > (greater than)
e >=(greater than or equal to)
* I=(not equal to)
e~ (filter is a regular expression)
e * (any: like a wildcard, can match to anything)
The visual highlight customization options include:
* Edges:
— Width
— Color
— Label
— Style

6-9

Chapter 6
Using GraphViz

— Animations
* Vertices:

— Size

— Color

— lcon

— Label

— Image

— Animations

You can export and import highlight options by clicking the Save and Import buttons in
the main window. Save lets you persist the highlight options, and Load lets you apply
previously saved highlight options.

When you click Save, a file is saved containing a JSON object with the highlights
configuration. Later, you can load that file to restore the highlights of the saved
session.

6.4.3 Using Live Search

ORACLE

Live Search lets you to search the displayed graph and add live fuzzy search score to
each item, so you can create a Highlight which visually shows the results of the search
in the graph immediately.

If you run a query, and a graph is displayed, you can add the live search, which is on
the settings dialog. On the bottom of the General tab, you will see these options.

* Enable Live Search: Enables the Live Search feature, adds the search input to
the visualization, and lets you further customize the search.

* Enable Search In: You can select whether you want to search the properties of
Vertices, Edges, or both.

* Properties To Search: Based on what you selected for Enable Search In, you can
set one or more properties to search in. For example, if you disable the search
for edges but you had a property from edges selected, it will be stored and added
back when you enable search for the edges again. (This also works for vertices.)

* Advanced Settings: You can fine-tune the search even more. Each of the
advanced options is documented with context help, visible upon enabling.

— Location: Determines approximately where in the text the pattern is expected
to be found.

— Distance: Determines how close the match must be to the fuzzy location
(specified by location). An exact letter match which is distance characters
away from the fuzzy location would score as a complete mismatch. A distance
of 0 requires the match be at the exact location specified, a distance of 1000
would require a perfect match to be within 800 characters of the location to be
found using a threshold of 0.8.

— Maximum Pattern Length: The maximum length of the pattern. The longer
the pattern (that is, the search query), the more intensive the search operation
will be. Whenever the pattern exceeds this value, an error will be thrown.

— Min Char Match: The minimum length of the pattern. Whenever the pattern
length is below this value, an error will be thrown.

6-10

Chapter 6
Using GraphViz

When the search is enabled, the input will be displayed in the top left part of the Graph
Visualization component. If you start typing, the search will add a score to every vertex
or edge, based on the settings and the search match.

To be able to see the results visually, you have to add a Highlight with interpolation
set to a Live Search score and other settings based on the desired visual change.

6.4.4 Using URL Parameters to Control GraphViz

You can provide GraphViz input data through URL parameters instead of using the
form fields of the user interface.

If you supply the parameters in the URL, the GraphViz application automatically
executes the specified query and hides the input form fields from the screen, so
only the resulting visualization output is visible. This feature is useful if you want to
embed the resulting graph visualization into an existing application, such as through
an iframe.

The following table specifies the available URL parameters:

Table 6-1 Available URL Parameters

Parameter Name Value (must be URL Type Optional?
encoded)
graph Graph name string No
parallelism Degree of parallelism number Yes (defaults to server-side
desired default parallelism)
query PQL query string No
The following URL shows an example of visualizing the PGQL query SELECT v, e
MATCH (v) -[e]-> () LIMT 10 on graph nyG aph with parallelism 4:
https://myhost: 7007/ ui / ?quer y=SELECT%20v %2 C%20e%20MATCHY/R0%28Vv 929%20-
Y%6Be% D YBEYR0%28929%20LI M T%®2010&gr aph=nyG aphé&par al | el i sn=4
ORACLE

6-11

Spatial Support in Property Graphs

The property graph support in the Oracle Spatial and Graph option is integrated with
the spatial support.

The integration has the following aspects: representing spatial data in a property
Graph, creating a spatial index on that spatial data, and querying that spatial data.

Representing Spatial Data in a Property Graph
Creating a Spatial Index on Property Graph Data
Querying Spatial Data in a Property Graph

7.1 Representing Spatial Data in a Property Graph

Spatial data can be used as values of vertex properties and edge properties.

ORACLE

For example, an entity can have a point (longitude/latitude) as the value of a property
named location. As another example, an edge may have a polygon as the value of a
property, and this property can represent the location at which this link (relationship)
was established.

The following shows some example syntax for encoding spatial data in a property
graph.

Point: ' - 122. 230 37. 560'
Point: ' PO NT(-122. 241 37.567)"
Point with SRID specified: ' sri d/ 8307 PO NT(-122.246 37.572)"

Polygon: 'POLYGON((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1
-83.6 34.1))

Polygon with SRID specified: ' sri d/ 8307 POLYGON((-83.6 34.1, -83.6 34.3,
-83.4 34.3, -83.4 34.1, -83.6 34.1))"

Line string: ' LI NESTRING (30 10, 10 30, 40 40)'

Multiline string: ' MULTI LI NESTRING ((10 10, 20 20, 10 40), (40 40, 30 30,
40 20, 30 10))'

Assume a test property graph named t est . The following statements add a set of
vertices with coordinates (longitude and latitude) spacified for each.

insert into testVi$(vid, k, t, v) values(100, 'geoloc', 20, '-122.230
37.560');

insert into testVi$(vid, k, t, v) values(101, 'geoloc', 20, '-122.231
37.561'):

insert into testVi$(vid, k, t, v) values(102, 'geoloc', 20, '-122.236
37.562914");

insert into testVIi$(vid, k, t, v) values(103, 'geoloc', 20, '-122.241
37.567');

7-1

ORACLE

Chapter 7
Representing Spatial Data in a Property Graph

insert into testVI$(vid, k, t, v) values(104, 'geoloc', 20, '-122.246
37.572");
insert into testVI$(vid, k, t, v) values(105, 'geoloc', 20, '-122.251
37.577");
insert into testVI$(vid, k, t, v) values(200, 'geoloc', 20, '-122.256
37.582');
insert into testVI$(vid, k, t, v) values(201, 'geoloc', 20, '-122.261
37.587");

The Spatial data in the property graph can be used to construct SDO_GEOMETRY
objects. For example, the OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS function
can be used to read spatial data from the V column for all T of a specified value

(such as 20), and return SDO_GEOMETRY objects. This function attempts to parse
the value as coordinates if the value appears to be two numbers, and it uses the
SDO_GEOMETRY constructor if the value is not a simple point. Finally, if a SRID is
provided, it uses the SDO_CS_TRANSFORM procedure to transform using the given

coordinate system.

The following example uses the OPG_APIS.GET_GEOMETRY_FROM_V_T COLS
function to get geometries from the t est property graph. It includes some of the
output.

SQ.> select vid, k, opg_apis.get _geometry from v_t cols
fromtestVT$
order by vid, k;

100 geol oc SDO GEOVETRY(2001, 8307, SDO PO NT_TYPE(- 122. 23,
37.56, NULL), NULL, NULL)

101 geol oc SDO GEOMETRY(2001, 8307, SDO PO NT_TYPE(-122.231,
37.561, NULL), NULL, NULL)

102 geol oc SDO GEOVETRY(2001, 8307, SDO PO NT_TYPE(-122. 236,
37.562914, NULL), NULL, NULL)

103 geol oc SDO _GEOMETRY(2001, 8307, SDO PO NT_TYPE(-122. 241,
37.567, NULL), NULL, NULL)

You can generate SDO_GEOMETRY objects from WKT literals. The
following example inserts WKT literals, and then uses the
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS function to construct
SDO_GEOMETRY objects from the V, T columns.

truncate table testCES$;

truncate table testVT$;

insert into testVIi$(vid, k, t, v) values(101, 'geoloc', 20,
"POLYGON((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6
34.1))");

insert into testVIi$(vid, k, t, v) values(103, 'geoloc', 20,

' POl NT(-122. 241 37.567)');

insert into testVIi$(vid, k, t, v) values(105, 'geoloc', 20,

' POl NT(-122. 251 37.577)');

insert into testVIi$(vid, k, t, v) values(200, 'geoloc', 20,

" MULTI LI NESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30
10))");

insert into testVIi$(vid, k, t, v) values(201, 'geoloc', 20, 'LINESTR NG

7-2

Chapter 7
Creating a Spatial Index on Property Graph Data

(30 10, 10 30, 40 40)');

pronmpt show the geonetry info

SQ.> select vid, k, opg_apis.get_wktgeometry from_v_t cols(v,t)
fromtestVT$
order by vid, k;

101 geol oc SDO GEOVETRY(2003, 8307, NULL, SDO ELEM | NFO ARRAY(1,
1003, 1), SDO ORDI NATE ARRAY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3,
-83.4, 34.1, -83.6, 34.1))

103 geol oc SDO GEOVETRY(2001, 8307, SDO PO NT_TYPE(- 122. 241,
37.567, NULL), NULL, NULL)

105 geol oc SDO GEOVETRY(2001, 8307, SDO PO NT_TYPE(- 122. 251,
37.577, NULL), NULL, NULL)

200 geol oc SDO GEOVETRY(2006, 8307, NULL, SDO ELEM I NFO ARRAY(1,
2, 1, 7, 2, 1), SDO ORDI NATE_ARRAY(10, 10, 20, 20, 10, 40, 40, 40, 30,
30, 40, 20, 30, 10))

201 geol oc SDO GEOVETRY(2002, 8307, NULL, SDO ELEM I NFO ARRAY(1,
2, 1), SDO ORDI NATE ARRAY(30, 10, 10, 30, 40, 40))

7.2 Creating a Spatial Index on Property Graph Data

ORACLE

After adding spatial data to a property graph, you can use OPG_APIS package
subprograms to construct SDO_GEOMETRY objects, and then you can create a
function-based spatial index on the vertices (VT$) or the edges (VT$) table.

Using the example property graph named t est , the following statements add the
necessary metadata and create a function-based spatial index.

SQ> -- In the schena that owns the property graph TEST

SQL> --

SQ.> insert into user_sdo_geom netadata val ues(' TESTVT$'
' mdsys. opg_apis.get_geonetry fromv_ t cols(v,t)',
sdo_di m array(

sdo_di m el ement (' Longi tude', -180, 180, 0.005),
sdo_dimel ement (' Latitude', -90, 90, 0.005)), 8307);

commi t;

SQ> -- Create a function-based spatial index
SQL> create index testVIXGECH
on testVT$(nmdsys. opg_api s. get _geonetry_fromv_t_col s(v, t))
i ndextype is ndsys. spatial _index_v2
paraneters ('tabl espace=USERS')
parallel 4
| ocal ;

(To create a spatial index on your own property graph, replace the graph name t est
with the name of your graph.)

If the WKT literals are used in the V

column, then replace mdsys.opg_apis.get_geometry_from_v_t _cols with
mdsys.opg._apis.get_ wktgeometry_from_v_t cols in the preceding two SQL
statements.

7-3

Chapter 7
Querying Spatial Data in a Property Graph

Note that the preceding SQL spatial index creation steps are wrapped in convenient
Java methods in the Oracl ePropert yG aph class defined in the or acl e. pg. r dbns
package:

/**

* This APl creates a default Spatial index on edges. It assunes that

* the ndsys.opg_apis.get_geonetry fromv_t cols(v,t) PL/SQ is going to be
used

* to create a function-based Spatial index. In addition, it adds a predefined

* value into user_sdo_geom netadata. To custom ze, please refer to the dev

* guide for adding a row to user_sdo_geom netadata and then creating a

* Spatial index manually.

* Note that, a DDL will be executed so expect an inplict comit. If you

* have changes that do not want to be persisted, run a rollback before calling

* this method

* @aram dop degree of parallelismused to create the Spatial index

*/
public void createDefaul t Spatial | ndexOnEdges(int dop)

/**

* This APl creates a default Spatial index on vertices. It assunes that

* the ndsys. opg_apis.get_geonetry fromv_t cols(v,t) PL/SQ is going to be
used

* to create a function-based Spatial index. In addition, it adds a predefined

* value into user_sdo_geom netadata. To custom ze, please refer to the dev

* guide for adding a row to user_sdo_geom netadata and then creating a

* Spatial index manually.

* Note that a DDL will be executed so expect an inplict commt. If you

* have changes that do not want to be persisted, run a rollback before calling

* this method

* @aram dop degree of parallelismused to create the Spatial index

*/
public void createDefaul t Spatial | ndexOnVertices(int dop)

7.3 Querying Spatial Data in a Property Graph

ORACLE

Oracle Spatial and Graph geospatial query functions can be applied to spatial data in a
property graph. This topic provides some examples.

Note that a query based on spatial information can be combined with navigation and
pattern matching.

The following example finds entities (vertices) that are within a specified distance
(here, 1 mile) of a location (point geometry).

SQ> -- use SDO WTHI N DI STANCE to filter vertices
SQ> select vid, k, t, v
fromtestvt$
wher e
sdo_wi t hi n_di st ance(ndsys. opg_api s. get _geonetry fromv_t _col s(v, t),
mdsys. sdo_geomnet ry(2001, 8307,
mdsys. sdo_poi nt _type(-122.23, 37.56, null), null, null),
"distance=1 unit=nile') = 'TRUE
order by vid, k;

The output and execution plan may include the following. Notice that a newly created
domain indexTESTVTXGEOS$ is used in the execution.

7-4

Chapter 7
Querying Spatial Data in a Property Graph

100 geol oc 20 -122.230 37.560

101 geol oc 20 -122.231 37.561
| Id | Operation | Name | Rows | Bytes |
Cost (YCPU)| Tine | Pstart| Pstop | TQ |INQUT| PQDistrib |
| 0 | SELECT STATEMENT | | 1| 18176
| 2 (50)| 00:00:01 | | | | | |
| 1| PX COORDI NATOR | | |
I I I I I I I I
| 2] PX SEND QC (ORDER) | :TQLO001 | 1] 18176
| 2 (50)| 00:00:01 | | | Q1,01] P->S| QC (ORDER) |
| 3 SORT ORDER BY | | 1| 18176
| 2 (50)| 00:00:01 | | | QL,01 | PCWP | |
| 4] PX RECEI VE | | 1] 18176
| 1 (0)| 00:00:01 | | | Q1,01 | PCWP | |
| 5| PX SEND RANGE | :TQLO00O | 1| 18176
| 1 (0)| 00:00:01 | | | Q1,00 | P->P | RANGE |
| 6] PX PARTI TI ON HASH ALL | | 1] 18176
| 1 (0)| 00:00:01 | 1] 8| QL,00 | POV | |
[* 7 TABLE ACCESS BY LOCAL | NDEX ROND| TESTVTS$ | 1] 18176
| 1 (0)| 00:00:01 | 1] 8| QL,00 | PCW | |
[* 8| DOMAIN INDEX (SEL: 0.000000 % | TESTVTXGEO$ | |
| 1 (0)| 00:00:01 | | | Qt,00 | | |

7 - filter (I NTERNAL_FUNCTI ON("K") AND | NTERNAL_FUNCTI ON("V"))
8 -
access("MDSYS'. "SDO W TH N_DI STANCE" (" OPG APl S". " GET_GEOMETRY_FROM V_T_COLS' ("V",
"T"), "MDSYS'. " SDO_GEOMETRY" (2001, 8307, " MDSYS' . " SDO P
O NT_TYPE" ((-122. 23), 37. 56, NULL) , NULL, NULL) , ' di st ance=1
uni t=nile')=" TRUE')

The following example sorts entities (vertices) based on their distance from a location.

-- Sort based on distance in mles
SQ> select vid, dist from(
select vid, k, t, v,

sdo_geom sdo_di st ance(ndsys. opg_api s. get _geonetry fromv_t cols(v, t),
mdsys. sdo_geonet ry(2001, 8307,
nmdsys. sdo_point _type(-122.23, 37.56, null), null, null), 1.0,
‘unit=mle') dist
fromtestvt$
where t = 20
) order by dist asc

The output and execution plan may include the following.

ORACLE 7.5

Chapter 7
Querying Spatial Data in a Property Graph

101 .088148935
102 . 385863422
103 . 773127682
104 1.2068052
105 1.64421947
200 2. 08301065

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Tine |
Pstart| Pstop |

| 0| SELECT STATEMENT | | 1| 15062 | 1366 (1)] 00:00:01

I 1] |SORT ORIJER BY | | 1| 15062 | 1366 (1)| 00:00:01

I 2 | ! PARTI TIO\I HASH ALL]| | 1| 15062 | 1365 (1)| 00:00:01

i* 3 |1 : TABﬁE: ACCESS FULL| TESTVTS | 1| 15062 | 1365 (1)] 00:00:01
1 8

3 - filter("T"=20 AND | NTERNAL_FUNCTI ON(" V"))

ORACLE 7-6

OPG_APIS Package Subprograms

ORACLE

The OPG_APIS package contains subprograms (functions and procedures) for
working with property graphs in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and
usage information in earlier chapters of this book.

This chapter provides reference information about the subprograms, in alphabetical
order.

- OPG_APIS.ANALYZE_PG

- OPG_APIS.CF

- OPG_APIS.CF_CLEANUP

- OPG_APIS.CF_PREP

- OPG_APIS.CLEAR_PG

- OPG_APIS.CLEAR_PG_INDICES

- OPG_APIS.CLONE_GRAPH

- OPG_APIS.COUNT_TRIANGLE

- OPG_APIS.COUNT_TRIANGLE_CLEANUP
- OPG_APIS.COUNT_TRIANGLE_PREP

- OPG_APIS.COUNT_TRIANGLE_RENUM

- OPG_APIS.CREATE_EDGES_TEXT_IDX

- OPG_APIS.CREATE_PG

- OPG_APIS.CREATE_PG_SNAPSHOT TAB
- OPG_APIS.CREATE_PG_TEXTIDX_TAB

- OPG_APIS.CREATE_STAT TABLE

- OPG_APIS.CREATE_SUB_GRAPH

- OPG_APIS.CREATE_VERTICES_TEXT_IDX
- OPG_APIS.DROP_EDGES_TEXT_IDX

- OPG_APIS.DROP_PG

- OPG_APIS.DROP_PG_VIEW

- OPG_APIS.DROP_VERTICES_TEXT_IDX

- OPG_APIS.ESTIMATE_TRIANGLE_RENUM
- OPG_APIS.EXP_EDGE_TAB_STATS

- OPG_APIS.EXP_VERTEX_TAB_STATS

- OPG_APIS.FIND_CC_MAPPING_BASED

8-1

OPG_APIS.FIND_CLUSTERS_CLEANUP
OPG_APIS.FIND_CLUSTERS_PREP
OPG_APIS.FIND_SP
OPG_APIS.FIND_SP_CLEANUP
OPG_APIS.FIND_SP_PREP
OPG_APIS.GET_BUILD_ID
OPG_APIS.GET_GEOMETRY_FROM_V_COL
OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
OPG_APIS.GET_LATLONG_FROM_V_COL
OPG_APIS.GET_LATLONG_FROM_V_T_COLS
OPG_APIS.GET_LONG_LAT_GEOMETRY
OPG_APIS.GET_LATLONG_FROM_V_COL
OPG_APIS.GET_LONGLAT FROM_V_T_COLS
OPG_APIS.GET_SCN

OPG_APIS.GET_VERSION
OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS
OPG_APIS.GRANT_ACCESS
OPG_APIS.IMP_EDGE_TAB_STATS
OPG_APIS.IMP_VERTEX_TAB_STATS
OPG_APIS.PR

OPG_APIS.PR_CLEANUP

OPG_APIS.PR_PREP
OPG_APIS.PREPARE_TEXT_INDEX
OPG_APIS.RENAME_PG
OPG_APIS.SPARSIFY_GRAPH
OPG_APIS.SPARSIFY_GRAPH_CLEANUP
OPG_APIS.SPARSIFY_GRAPH_PREP

8.1 OPG_APIS.ANALYZE_PG

ORACLE

Format

OPG_API S. ANALYZE PG
graph_nane I N VARCHAR2,
estimate_percent |N NUMBER,
met hod_opt I N VARCHARZ,
degree I N NUMBER,
cascade | N BOOLEAN,
no_inval i date I N BOOLEAN,
force I N BOOLEAN DEFAULT FALSE,
options IN VARCHAR2 DEFAULT NULL);

Chapter 8
OPG_APIS.ANALYZE_PG

8-2

Chapter 8
OPG_APIS.ANALYZE_PG

Description

Hathers, for a given property graph, statistics for the VT$, GE$, IT$, and GT$ tables.

Parameters

graph_name
Name of the property graph.

estimate_percent

Percentage of rows to estimate in the schema tables (NULL means compute). The
valid range is [0.000001,100]. Use the constant DBMS_STATS. AUTO SAMPLE_SI ZE to
have Oracle Database determine the appropriate sample size for good statistics. This
is the usual default.

mrthod_opt
Accepts either of the following options, or both in combination, for the internal property
graph schema tables:

e FOR ALL [INDEXED | H DDEN] COLUWNS [size_cl ause]

* FOR COLUWNS [size clause] colum|attribute [size_clause] [,colum|
attribute [size_clause]...]

size_cl ause is defined as si ze_cl ause := SIZE {integer | REPEAT | AUTO |
SKEWONL Y}

e integer : Number of histogram buckets. Must be in the range [1,254].
* REPEAT : Collects histograms only on the columns that already have histograms.

e AUTO: Oracle Database determines the columns to collect histograms based on
data distribution and the workload of the columns.

e SKEWONLY : Oracle Database determines the columns to collect histograms based
on the data distribution of the columns

col umm is defined as col um : = col unm_name | (extension)
e colum_nane : name of a column

e extension: Can be either a column group in the format of
(col um_name, colum_nane [, ...]) oran expression.

The usual default is: FOR ALL COLUMNS SI ZE AUTO

degree

Degree of parallelism for the property graph schema tables. The usual default

for degree is NULL, which means use the table default value specified by

the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the
constant DBMS_STATS. DEFAULT DEGREE to specify the default value based on the
initialization parameters. The AUTO _DEGREE value determines the degree of parallelism
automatically. This is either 1 (serial execution) or DEFAULT DEGREE (the system
default value based on number of CPUs and initialization parameters) according to
size of the object.

ORACLE 8-3

Chapter 8
OPG_APIS.CF

cascade

Gathers statistics on the indexes for the property graph schema tables. Use the
constant DBMS_STATS. AUTO CASCADE to have Oracle Database determine whether
index statistics are to be collected or not. This is the usual default.

no_invalidate

If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS. AUTO_| NVALI DATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if one or more underlying tables are locked.

options
(Reserved for future use.)

Usage Notes

Only the owner of the property graph can call this procedure.

Examples
The following example gather statistics for property graph nypg.

EXECUTE OPG_API S. ANALYZE_PQ' nypg', estimate_percent=> 0.001, nethod_opt=>"FOR
ALL COLUMNS SI ZE AUTO, degree=>4, cascade=>true, no_invalidat e=>fal se,
force=>true, options=>NULL);

8.2 OPG_APIS.CF

Format
OPG_API S. CF(
edge_tab_name IN VARCHAR2,
edge_| abel I'N VARCHAR2,
rating_property IN VARCHAR2,
iterations I'N NUMBER DEFAULT 10,
mn_error I'N NUMBER DEFAULT 0. 001,
k I'N NUMBER DEFAULT 5,
learning_rate IN NUMBER DEFAULT 0. 0002,
decrease_rate IN NUMBER DEFAULT 0. 95,
regularization IN NUMBER DEFAULT 0. 02,
dop I'N NUMBER DEFAULT 8,
w | IN OUT VARCHAR?,
Wor IN OUT VARCHAR?,
w1 IN OUT VARCHAR?,
wori IN OUT VARCHAR?,
Wi IN OUT VARCHAR?,
w | d I N OUT VARCHAR?,
w_rd IN OUT VARCHAR?,
t abl espace I'N VARCHAR2 DEFAULT NULL,
options I'N VARCHAR2 DEFAULT NULL);
Description

Runs collaborative filtering using matrix factorization on the given graph. The resulting
factors of the matrix product will be stored on the left and right tables.

ORACLE 8-4

ORACLE

Chapter 8
OPG_APIS.CF

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

edge_label
Label of the edges that hold the rating property.

rating_property
(Reserved for future use: Name of the rating property.)

iterations
Maximum number of iterations that should be performed. Default = 10.

min_error
Minimal error to reach. If at some iteration the error value is lower than this value, the
procedure finishes.. Default = 0.001.

k
Number of features for the left and right side products. Default = 5.

learning_rate
Learning rate for the gradient descent. Default = 0.0002.

decrease_rate
(Reserved for future use: Decrease rate if the learning rate is too large for an effective
gradient descent. Default = 0.95.)

regularization
An additional parameter to avoid overfitting. Default = 0.02

dop
Degree of parallelism. Default = 8.

wt_|
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_I1
Name of the working table that holds the left side intermediate step in the gradient
descent.

wt rl
Name of the working table that holds the right side intermediate step in the gradient
descent.

wt_|
Name of the working table that holds intermediate matrix product.

wt_Id
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

8-5

ORACLE

Chapter 8
OPG_APIS.CF

tablespace
Name of the tablespace to use for storing intermediate data.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

e 'INMEMORY=T'is an option for creating the schema tables with an 'inmemory"
clause.

e 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

For information about collaborative filtering with RDF data, see SQL-Based Property
Graph Analytics, especially Collaborative Filtering Overview and Examples.

If the working tables already exist, you can specify their names for the working
table-related parameters. In this case, the algorithm can continue the progress of the
previous iterations without recreating the tables.

If the working tables do not exist, or if you do not want to use existing working tables,
you must first call the OPG_APIS.CF_PREP procedure, which creates the necessary
working tables.

The final result of the collaborative filtering algorithm are the working tables wt | and
wt _r, which are the two factors of a matrix product. These matrix factors should be
used when making predictions for collaborative filtering.

If (and only if) you have no interest in keeping the output matrix factors and the current
progress of the algorithm for future use, you can call the OPG_APIS.CF_CLEANUP
procedure to drop all the working tables that hold intermediate tables and the output
matrix factors.

Examples

The following example calls the OPG_APIS.CF_PREP procedure to create the
working tables, and then the OPG_APIS.CF procedures to run collaborative filtering
on the phones graph using the edges with the rat i ng label.

DECLARE
wt _| varchar2(32);
wt _r varchar2(32);
wt _| 1 varchar2(32);
wt_r1 varchar2(32);
wt _i varchar2(32);
wt _| d varchar2(32);
wt _rd varchar2(32);

edge_t ab_nane varchar2(32) := 'phonesge$';
edge_| abel varchar2(32) := 'rating';
rating_property varchar2(32) :="";
iterations i nt eger = 100;

m n_error nunber = 0.001;

k i nt eger = 5;
learning rate nunber = 0.001;
decrease_rate nunber = 0. 95;
regul arization nunber = 0.02;

dop nunber = 2;

t abl espace varchar2(32) := null

8-6

Chapter 8
OPG_APIS.CF_CLEANUP

options varchar2(32) := null;
BEG N
opg_api s.cf_prep(edge_tab_nane,wt _|,wt_r,owt _[21,wt_rdl,w_i,w_ldw _rd);
opg_api s. cf(edge_tab_nane, edge_| abel ,rating_property,iterations, mn_error,Kk,
| earning_rate, decrease_rate, regul ari zation, dop,
wt_l,wt w1l w_rd,wt_i,wt_ld w_rd,tabl espace, options);
END;
/

The following example assumes that OPG_APIS.CF_PREP had been run previously,
and it specifies the various working tables that were created during that run. In

this case, the preceding example automatically assigned suffixes like '$$CFL57' to

the names of the working tables. (The output names can be printed when they are
generated or be user-defined in the call to OPG_APIS.CF_PREP.) Thus, the following
example can run more iterations of the algorithm using OPG_APIS.CF without needing
to call OPG_APIS.CF_PREP first, thereby continuing the progress of the previous run.

DECLARE
wt _| varchar2(32) = 'phonesge$$CFL57" ;
wt _r varchar2(32) = 'phonesge$$CFR57" ;
wt_|1 varchar2(32) = 'phonesge$$CFL157" ;
wt_r1 varchar2(32) = 'phonesge$$CFRL57" ;
wt _i varchar2(32) = 'phonesge$$CFl57';
wt_Id varchar2(32) = 'phonesge$$CFLD57" ;
wt_rd varchar2(32) = 'phonesge$$CFRD57" ;

edge_t ab_nane var char2(32) := 'phonesge$';

edge_| abel varchar2(32) := 'rating';

rating_property varchar2(32) :="";

iterations i nt eger = 100;

mn_error nunber = 0.001;

k i nt eger = b5;

learning_rate nunber = 0.001;

decrease rate nunber = 0. 95;

regul arization nunber = 0.02;

dop nunber = 2;

t abl espace varchar2(32) := null;

options varchar2(32) := null;
BEG N

opg_api s. cf (edge_t ab_nane, edge_| abel , rating_property,iterations,mn_error,Kk,
| earning_rate, decrease_rate, regul ari zation, dop,
w_l,wt_r,wt 11, wt_rl,w_i,w_|d, wt_rd,tabl espace, options);
END;
/

8.3 OPG APIS.CF CLEANUP

ORACLE

Format

OPG_API S. CF_CLEANUP(

wt_| N OUT VARCHAR?,
wr N OUT VARCHAR?,
w1 N OUT VARCHAR?,
w ri N OUT VARCHAR?,
Wi N OUT VARCHAR?,
wt_Id N OUT VARCHAR?,
wt _rd N OUT VARCHAR?,
opti ons IN VARCHAR2 DEFAULT NULL):

8-7

ORACLE

Chapter 8
OPG_APIS.CF_CLEANUP

Description

Preforms cleanup work after graph collaborative filtering has been done. All the
working tables that hold intermediate tables and the output matrix factors are dropped.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_|
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_I1
Name of the working table that holds the left side intermediate step in the gradient
descent.

wt_rl
Name of the working table that holds the right side intermediate step in the gradient
descent.

wt_|
Name of the working table that holds intermediate matrix product.

wt_Id
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

options
(Reserved for future use.)

Usage Notes

Call this procedure only when you have no interest in keeping the output matrix factors
and the current progress of the algorithm for future use.

Do not call this procedure if more predictions will be made using the resulting product
factors (wt _| and wt _r tables), unless you have previous made backup copies of these
two tables.

See also the information about the OPG_APIS.CF procedure.

Examples

The following example drops the working tables that were created in the example for
the OPG_APIS.CF_PREP procedure.

DECLARE
wt | varchar2(32) = 'phonesge$$CFL57" ;
wt _r varchar2(32) = 'phonesge$$CFR57";
wt_|1 varchar2(32) = 'phonesge$$CFL157" ;
wt_r1 varchar2(32) = 'phonesge$$CFRL57" ;

wt _i varchar2(32) ' phonesge$$CFI 57" ;

8-8

Chapter 8
OPG_APIS.CF_PREP

wt _| d varchar2(32)

wt _rd varchar2(32)
BEG N

opg_api s. cf _cl eanup(' phonesge$' ,wt |, wt _r,owt |1, wt_rl, wt_i,w_|dw_rd);
END;
/

' phonesge$$CFLDST" ;
' phonesge$$CFRD57" ;

8.4 OPG_APIS.CF_PREP

ORACLE

Format

OPG_API S. CF_PREP(

w_| I N OUT VARCHAR2.
wt_r IN OUT VARCHAR2.
w_l1 IN OUT VARCHAR2.
w_rl IN OUT VARCHAR2.
Wi IN OUT VARCHAR2.
w_ld IN OUT VARCHAR2.
w_rd IN OUT VARCHAR2.
options I'N VARCHAR2 DEFAULT NULL);
Description

Preforms preparation work, including creating the necessary intermediate tables, for a
later call to the OPG_APIS.CF procedure that will perform collaborative filtering.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_|
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_I1
Name of the working table that holds the left side intermediate step in the gradient
descent.

wt rl
Name of the working table that holds the right side intermediate step in the gradient
descent.

wt_|
Name of the working table that holds intermediate matrix product.

wt_Id
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

options

Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

8-9

Chapter 8
OPG_APIS.CLEAR_PG

* 'INMEMORY=T'is an option for creating the schema tables with an ‘inmemory"
clause.

* 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

The names of the working tables can be specified or left as null parameters, If

the name of any working table parameter is not specified, a name is automatically
genenerated and is returned as an OUT parameter. The working table names can
be used when you call the OPG_APIS.CF procedure to run the collaborative filtering
algorithm.

See also the Usage Notes and Examples for OPG_APIS.CF.

Examples

The following example creates the working tables for a graph named phones, and it
prints the names that were automatically generated for the working tables.

DECLARE
wt _| varchar2(32);
wt_r varchar2(32);
wt_l 1 varchar2(32);
wt_r1 varchar2(32);
wt_i varchar2(32);
wt_ld var char2(32);
wt_rd varchar2(32);

BEG N

opg_api s. cf _prep(' phonesge$' ,wt_l ,Wr,
dbns_out put . put _Iine(" wt_| [] wt_I);
dbrs_output. put _line(" w_r ' || w_r);
dbrms_output.put _line(" w_I1" || w_I1);
dbrms_output. put _line(" w_r1 "' || w_rl);
dbrs_output. put _line(" w_i ' || w_i);
dbrs_output. put _line(" w_Id " || w_Id);
dbrs_out put. put _line(" wt_rd " || w_rd);

END;
/

8.5 0PG_APIS.CLEAR PG

ORACLE

Format

OPG APl S. CLEAR PQE
graph_nane | N VARCHAR2);

Description

Clears all data from a property graph.
Parameters

graph_name
Name of the property graph.

8-10

Chapter 8
OPG_APIS.CLEAR_PG_INDICES

Usage Notes

This procedure removes all data in the property graph by deleting data in the graph
tables (VT$, GE$, and so on).

Examples
The following example removes all data from the property graph named nypg.

EXECUTE OPG API S. CLEAR PH(' nypg'):

8.6 OPG_APIS.CLEAR_PG_INDICES

Format

OPG_API S. CLEAR_PY
graph_name |N VARCHAR2);

Description
Removes all text index metadata in the IT$ table of the property graph.
Parameters

graph_name
Name of the property graph.

Usage Notes

This procedure does not actually remove text index data

Examples
The following example removes all index metadata of the property graph named nypg.

EXECUTE OPG API S. CLEAR PG | NDI CES(' nypg');

8.7 OPG_APIS.CLONE_GRAPH

ORACLE

Format
OPG_API S. CLONE_GRAPH(

orgG aph I N VARCHARZ,

newG aph I N VARCHARZ,

dop I N | NTEGER DEFAULT 4,

num hash_ptns I N | NTEGER DEFAULT 8,

tbs IN VARCHAR2 DEFAULT NULL);
Description

Makes a clone of the original graph, giving the new graph a new name.
Parameters

orgGraph
Name of the original property graph.

8-11

Chapter 8
OPG_APIS.COUNT_TRIANGLE

newGraph
Name of the new (clone) property graph.

dop
Degree of parallelism for the operation.

num_hash_ptns
Number of hash partitions used to partition the vertices and edges tables. It is
recommended to use a power of 2 (2, 4, 8, 16, and so on).

tbs
Name of the tablespace to hold all the graph data and index data.

Usage Notes

The original property graph must aleady exist in the database.

Examples

The following example creates a clone graph named nmypgcl one from the property
graph nypg in the tablespace ny_t s using a degree of parallelism of 4 and 8 partitions.

EXECUTE OPG_API S. CLONE_GRAPH(' mypg', 'mnypgclone', 4, 8, 'ny_ts');

8.8 OPG_APIS.COUNT_TRIANGLE

ORACLE

Format

OPG_API S. COUNT_TRI ANGLE(
edge_tab_name | N VARCHARZ,

wt _und IN QUT VARCHARZ,

num sub_ptns | N NUMBER DEFAULT 1,

dop I N | NTEGER DEFAULT 1,

t bs I N VARCHAR2 DEFAULT NULL,
options I'N VARCHAR2 DEFAULT NULL

) RETURN NUVBER

Description

Performs triangle counting in property graph.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_und
A working table holding an undirected version of the graph.

num_sub_ptns

Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

dop
Degree of parallelism for the operation. The default is 1.

8-12

Chapter 8
OPG_APIS.COUNT_TRIANGLE_CLEANUP

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for the operation:

e 'PDML=T' enables parallel DML.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP. procedure must already have been executed.

Examples

The following example performs triangle counting in the property graph named
connections

set serveroutput on
DECLARE
wt 1 varchar2(100); ~-- internediate working table
wt 2 varchar2(100);
wt 3 varchar2(100);
n number;
BEG N
opg_api s. count _triangle_prep(' connectionsCE$', wtl, w2, w3);
n := opg_apis.count_triangle(
' connecti onsGE$'
w1,
num sub_pt ns=>1,
dop=>2,
tbs => 'MYPG TS',
options=>" PDM.=T'
);
dbns_out put. put _Iine('total nunber of triangles ' || n);
END;
/

8.9 OPG_APIS.COUNT TRIANGLE CLEANUP

ORACLE

Format

COUNT_TRI ANGLE_CLEANUP(
edge_tab_name | N VARCHARZ,

wt _undBM I N VARCHARZ,

W _rnmap I N VARCHAR2,

wt _undAM I N VARCHARZ,

options IN VARCHAR2 DEFAULT NULL);
Description

Cleans up and drops the temporary working tables used for triangle counting.

Parameters

edge_tab_name
Name of the property graph edge table.

8-13

Chapter 8
OPG_APIS.COUNT_TRIANGLE_PREP

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

e PDML=T enables parallel DML.

Usage Notes
You should use this procedure to clean up after triangle counting.

The working tables must exist in the database.

Examples

The following example performs triangle counting in the property graph named
connect i ons, and drops the working table after it has finished.

set serveroutput on

DECLARE
wt 1 varchar2(100); -- internmediate working table
wt 2 varchar2(100);
wt 3 varchar2(100);
n nunber;
BEG N
opg_api s. count _triangle_prep(' connectionsGE$', w1, w2, w3);
n := opg_apis.count_triangle_renum
' connecti onsGE$'
w1,
w2,
w 3,
num sub_pt ns=>1,
dop=>2,
ths => ' MYPG TS',
options=>" PDM.=T'
);

dbns_out put. put _line('total nunber of triangles ' || n);
opg_api s. count _triangl e_cl eanup(' connecti onsGE$', w1, w2, w3);
END;

/

8.10 OPG_APIS.COUNT_TRIANGLE_PREP

Format

OPG_API S. COUNT_TRI ANGLE_PREP(
edge_tab_name | N VARCHAR?,
wt _undBM IN OUT VARCHARZ,

ORACLE 8-14

ORACLE

Chapter 8
OPG_APIS.COUNT _TRIANGLE_PREP

wt _r nmap IN QUT VARCHARZ,

w_undAM IN OUT VARCHARZ,

options I N VARCHAR2 DEFAULT NULL);
Description

Prepares for running triangle counting.
Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rhmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

* CREATE_UNDI RECTED=T
e REUSE_UNDI RECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example prepares for triangle counting in a property graph named
connections.

set serveroutput on

DECLARE
wt 1 varchar2(100); -- internediate working table
wt 2 var char2(100);
wt 3 var char2(100);
n nunber;
BEG N
opg_api s. count _triangle_prep(' connectionsGE$', wtl, w2, w3);

n := opg_apis.count_triangle_renun(

' connecti onsGE$'
w1,
w2,
w3,
num sub_pt ns=>1,
dop=>2,
ths => 'MYPG TS,
opti ons=>' CREATE_UNDI RECTED=T, REUSE_UNDI REC TAB=T'

8-15

Chapter 8
OPG_APIS.COUNT_TRIANGLE_RENUM

);
dbns_out put. put _line('total nunber of triangles ' || n);
END;
/

8.11 OPG_APIS.COUNT_TRIANGLE_RENUM

ORACLE

Format

COUNT_TRI ANGLE_RENUM
edge_tab_name | N VARCHAR2

wt _undBM I'N VARCHARZ,

W _r nmap I'N VARCHARZ,

wt _undAM I'N VARCHARZ,

numsub_ptns | N | NTEGER DEFAULT 1,

dop I N I NTEGER DEFAULT 1,

tbs IN VARCHAR2 DEFAULT NULL,
options IN VARCHAR2 DEFAULT NULL

) RETURN NUMVBER,

Description

Performs triangle counting in property graph, with the optimization of renumbering the
vertices of the graph by their degree.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

num_sub_ptns

Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

dop
Degree of parallelism for the operation. The default is 1 (no parallelism).

ths
Name of the tablespace to hold the data stored in working tables.

options

Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

8-16

Chapter 8
OPG_APIS.CREATE_EDGES_TEXT _IDX

e PDML=T enables parallel DML.

Usage Notes
This function makes the algorithm run faster, but requires more space.

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP procedure must already have been executed.

Examples

The following example performs triangle counting in the property graph named
connect i ons. It does not perform the cleanup after it finishes, so you can count
triangles again on the same graph without calling the preparation procedure.

set serveroutput on

DECLARE
w1 varchar2(100); -- internediate working table
wt 2 varchar2(100);
wt 3 varchar2(100);
n nunber;
BEG N
opg_api s. count _triangle_prep('connectionsCGE$', w1, w2, w3);
n := opg_apis.count_triangle_renum
' connect i onsGE$'
w1,
w 2,
w 3,
num sub_pt ns=>1,
dop=>2,
ths => ' MYPG TS',
options=>" PDM.=T'
);
dbns_out put. put _line('total nunber of triangles ' || n);
END;
/

8.12 OPG_APIS.CREATE_EDGES_TEXT_IDX

ORACLE

Format

OPG_API S. CREATE_EDGES_TEXT_| DX(
graph_owner | N VARCHAR?,
graph_name | N VARCHAR?,
pref _owner | N VARCHAR2 DEFAULT NULL,
datastore IN VARCHAR2 DEFAULT NULL,

filter I N VARCHAR2 DEFAULT NULL,
st orage I N VARCHAR2 DEFAULT NULL,
wor dl i st I N VARCHAR2 DEFAULT NULL,
stopli st I N VARCHAR2 DEFAULT NULL,
| exer I N VARCHAR2 DEFAULT NULL,
dop I N I NTEGER DEFAULT NULL,
options IN VARCHAR2 DEFAULT NULL,);
Description

Creates a text index on a property graph edge table.

8-17

Chapter 8
OPG_APIS.CREATE_PG

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

pref_owner
Owner of the preference.

datastore
The way that documents are stored.

filter
The way that documents can be converted to plain text.

storage
The way that the index data is stored.

wordlist
The way that stem and fuzzy queries should be expanded

stoplist
The words or themes that are not to be indexed.

lexer
The language used for indexing.

dop
The degree of parallelism used for index creation.

options
Additional settings for index creation.

Usage Notes
The property graph must exist in the database.

You must have the ALTER SESSION privilege to run this procedure.

Examples

The following example creates a text index on the edge table of property graph nypg,
which is owned by user SCOTT, using the lexer OPG_AUTO LEXER and a degree of
parallelism of 4.

EXECUTE OPG_API S. CREATE_EDGES TEXT_I DX(' SCOTT', 'nypg', 'MDSYS', null, null,
null, null, null, 'OPG_ AUTO LEXER , 4, null);

8.13 OPG_APIS.CREATE PG

Format

OPG_API S. CREATE_PQE
graph_nane I N VARCHAR2,
dop I'N | NTEGER DEFAULT NULL,

ORACLE 8-18

Chapter 8
OPG_APIS.CREATE_PG_SNAPSHOT _TAB

num hash_ptns I N | NTEGER DEFAULT 8,

tbs I N VARCHAR2 DEFAULT NULL,
options I N VARCHAR2 DEFAULT NULL);
Description

Creates, for a given property graph name, the necessary property graph schema
tables that are necessary to store data about vertices, edges, text indexes, and
shapshots.

Parameters

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

num_hash_ptns
Number of hash partitions used to partition the vertices and edges tables. It is
recommended to use a power of 2 (2, 4, 8, 16, and so on).

tbs
Name of the tablespace to hold all the graph data and index data.

options
Options that can be used to customize the creation of indexes on schema tables.
(One or more, comma separated.)

* 'SKIP_INDEX=T" skips the default index creation.

* 'SKIP_ERROR=T 'ignores errors encountered during table/index creation.

* 'INMEMORY=T creqtes the schema tables with an INMEMORYclause.

* 'IMC_MC_B=T' creates the schema tables with an INMEMORY BASIC clause.

Usage Notes

You must have the CREATE TABLE and CREATE INDEX privileges to call this
procedure.

By default, all the schema tables will be created with basic compression enabled.

Examples

The following example creates a property graph named nypg in the tablespace ny _ts
using eight partitions.

EXECUTE OPG API S. CREATE_PG(' nypg', 4, 8, 'ny_ts');

8.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB

ORACLE

Format

OPG_API S. CREATE_PG_SNAPSHOT _TAB(
graph_owner | N VARCHARZ,
graph_nanme | N VARCHARZ,
dop I N I NTEGER DEFAULT NULL,

8-19

ORACLE

Chapter 8
OPG_APIS.CREATE_PG_SNAPSHOT_TAB

t bs IN VARCHAR2 DEFAULT NULL,
options IN VARCHAR2 DEFAULT NULL);

or

OPG_API S. CREATE_PG_SNAPSHOT _TAB(
graph_name | N VARCHAR?2,

dop IN I NTEGER DEFAULT NULL,

tbs IN VARCHAR2 DEFAULT NULL,

options IN VARCHAR2 DEFAULT NULL);
Description

Creates, for a given property graph name, the necessary property graph schema table
(<graph_name>SS$) that stores data about snapshots for the graph.

Parameters

graph_owner
Name of the owner of the property graph.

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold all the graph snapshot data and associated index.

options
Additional settings for the operation:

* 'INMEMORY=T"is an option for creating the schema tables with an ‘inmemory"'
clause.

* 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes
You must have the CREATE TABLE privilege to call this procedure.

The created snapshot table has the following structure, which may change between
releases.

Narme Nul | ? Type
SSI D NOT NULL NUMBER
CONTENTS BLOB
SS_FILE BI NARY FI LE LOB
TS TI NESTAMP(6) W TH TI ME ZONE
SS_COMMVENT VARCHAR2(512)

By default, all schema tables will be created with basic compression enabled.

Examples

The following example creates a snapshot table for property graph nypg in the current
schema, with a degree of parallelism of 4 and using the MY_TS tablespace.

8-20

Chapter 8
OPG_APIS.CREATE_PG_TEXTIDX_TAB

EXECUTE OPG_API S. CREATE_PG SNAPSHOT_TAB(' nypg', 4, 'ny_ts');

8.15 OPG_APIS.CREATE_PG_TEXTIDX _TAB

ORACLE

Format

OPG_API S. CREATE_PG_TEXTI DX_TAB(
graph_owner | N VARCHAR?,
graph_nanme | N VARCHAR?,

dop I'N I NTEGER DEFAULT NULL,
tbs I'N VARCHAR2 DEFAULT NULL,
options IN VARCHAR2 DEFAULT NULL);

or

OPG_AP| S. CREATE_PG TEXTI DX_TAB(
graph_nane | N VARCHAR?,

dop IN I NTEGER DEFAULT NULL,

tbs IN VARCHAR2 DEFAULT NULL,

options IN VARCHAR2 DEFAULT NULL);
Description

Creates, for a given property graph name, the necessary property graph text index
schema table (<graph_name>IT$) that stores data for managing text index metadata
for the graph.

Parameters

graph_owner
Name of the owner of the property graph.

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold all the graph index metadata and associated index.

options
Additional settings for the operation:

* 'INMEMORY=T'is an option for creating the schema tables with an ‘inmemory"
clause.

* 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes
You must have the CREATE TABLE privilege to call this procedure.

The created index metadata table has the following structure, which may change
between releases.

(

EIN nvar char2(80) not null, -- index name

8-21

ORACLE

ET

IT

SE
| ucene

K

when there is no K'V

DT
FS, 3 - JDBC
LeC

NUMDI RS

BE NULL

VERSI ON
USEDT
STOREF

CF
SS
SA
T
SH
RF
VB
PO
DS
FI L
STR
W
SL
LXR
OPTS

nunber,
nunber,
nunber,

nvar char 2(3100)
nunber,

nvar char 2(3100)
nunber,

nvar char 2(100)
nunber

nunber

nvar char 2(3100)
nvar char 2(3100)
nvar char 2(3100)
nunber
nunber
nunber
nunber
nvar char 2
nvar char 2
nvar char 2
nvar char 2
nvar char 2
nvar char 2
nvar char 2
nvar char 2

3100)
3100)
3100)
3100),
3100),
3100),
3100),

)

A

—_— o~~~ o~~~

3100

primary key (EIN K ET)

)

Chapter 8
OPG_APIS.CREATE_STAT_TABLE

- entity type 1 - vertex, 2 -edge
- index type 1 - auto O -
- search engine 1 -solr, O -

manual

- property key use an enpty space
- directory type 1 - MWAP, 2 -

- directory location (1, 2)
- property key used to index CAN

- lucene version
- user data type (1 or 0)
- store fields into |ucene

configuration name
solr server url
solr server adnmin url

- zookeeper tineout

- nunber of shards

- replication factor

- maxi num shards per node

- preferred owner oracle text
-- datastore

- filter

- storage

- word list

- stop list

- lexer

- options

By default, all schema tables will be created with basic compression enabled.

Examples

The following example creates a property graph text index metadata table for property
graph nypg in the current schema, with a degree of parallelism of 4 and using the

MY _TS tablespace.

EXECUTE OPG API S. CREATE_PG_TEXTI DX_TAB(' nypg', 4, 'ny_ts'):

8.16 OPG_APIS.CREATE_STAT _TABLE

Format

OPG_AP| S. CREATE_STAT TABLE(

stattab

Description

I'N VARCHAR2
tbl space | N VARCHAR2 DEFAULT NULL);

Creates a table that can hold property graph statistics.

Parameters

stattab

Name of the table to hold statistics

8-22

Chapter 8
OPG_APIS.CREATE_SUB_GRAPH

tblapace
Name of the tablespace to hold the statistics table. If none is specified, then the
statistics table will be created in the user's default tablespace.

Usage Notes
You must have the CREATE TABLE privilege to call this procedure.

The statistics table has the following columns. Note that the columns and their types
may vary between releases.

Nare Nul | ? Type

STATI D VARCHAR2(128)

TYPE CHAR(1)

VERSI ON NUVBER

FLAGS NUVBER

CL VARCHAR2(128)

c2 VARCHAR2(128)

c3 VARCHAR2(128)

A VARCHAR2(128)

(03] VARCHAR2(128)

C6 VARCHAR2(128)

N1 NUVBER

N2 NUVBER

N3 NUVBER

N NUVBER

N5 NUVBER

N6 NUVBER

N7 NUVBER

N8 NUVBER

N9 NUVBER

N10 NUVBER

N11 NUVBER

N12 NUVBER

N13 NUVBER

D1 DATE

T1 TI MESTAMP(6) W TH TI ME ZONE

R1 RAW 1000)

R2 RAW 1000)

R3 RAW 1000)

CHL VARCHAR2(1000)

CL1 CLOB
Examples

The following example creates a statistics table namednyst at .

EXECUTE OPG_API S. CREATE_STAT_TABLE(' nystat', null);

8.17 OPG_APIS.CREATE_SUB_GRAPH

ORACLE

Format

OPG_API S. CREATE_SUB_GRAPH(
graph_owner I N VARCHAR?,

orgG aph IN VARCHAR?,
new& aph I N VARCHAR?2,
nSrc I N NUMBER,
depth IN NUMBER) ;

8-23

Chapter 8
OPG_APIS.CREATE_VERTICES_TEXT_IDX

Description

Creates a subgraph, which is an expansion from a given vertex. The depth of
expansion is customizable.

Parameters

graph_owner
Owner of the property graph.

orgGraph
Name of the original property graph.

newGraph
Name of the subgraph to be created from the original graph.

nSrc
Vertex ID: the subgraph will be created by expansion from this vertex. For example,
nSrc = 1 starts the expansion from the vertex with ID 1.

depth

Depth of expansion: the expansion, following outgoing edges, will include all vertices
that are within dept h hops away from vertex nSr ¢c. For example, depth = 2 causes
the to should include all vertices that are within 2 hops away from vertex nSr ¢ (vertex
ID 1 in the preceding example).

Usage Notes

The original property graph must exist in the database.

Examples

The following example creates a subgraph nypgsub from the property graph nmypg
whose owner is SCOTT. The subgraph includes vertex 1 and all vertices that are
reachable from the vertex with ID 1 in 2 hops.

EXECUTE OPG_API S. CREATE_SUB_GRAPH(' SCOTT', 'nypg', 'nypgsub', 1, 2);

8.18 OPG_APIS.CREATE_VERTICES_TEXT _IDX

ORACLE

Format

OPG_API S. CREATE_VERTI CES_TEXT_| DX(
graph_owner | N VARCHAR?,
graph_name | N VARCHAR?,
pref _owner | N VARCHAR2 DEFAULT NULL,
datastore IN VARCHAR2 DEFAULT NULL,

filter IN VARCHAR2 DEFAULT NULL,
storage IN VARCHAR2 DEFAULT NULL,
wor dl i st IN VARCHAR2 DEFAULT NULL,
stopli st IN VARCHAR2 DEFAULT NULL,

| exer IN VARCHAR2 DEFAULT NULL,
dop IN I NTEGER DEFAULT NULL,
options IN VARCHAR2 DEFAULT NULL,);

8-24

Chapter 8
OPG_APIS.CREATE_VERTICES_TEXT_IDX

Description

Creates a text index on a property graph vertex table.
Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

pref_owner
Owner of the preference.

datastore
The way that documents are stored.

filter
The way that documents can be converted to plain text.

storage
The way that the index data is stored.

wordlist
The way that stem and fuzzy queries should be expanded

stoplist
The words or themes that are not to be indexed.

lexer
The language used for indexing.

dop
The degree of parallelism used for index creation.

options
Additional settings for index creation.

Usage Notes
The original property graph must exist in the database.

You must have the ALTER SESSION privilege to run this procedure.

Examples

The following example creates a text index on the vertex table of property graph mypg,
which is owned by user SCOTT, using the lexer OPG_AUTO LEXER and a degree of
parallelism of 4.

EXECUTE OPG_API S. CREATE_VERTI CES_TEXT_I DX(' SCOTT', 'nypg', null, null, null,
null, null, null, 'OPG AUTO LEXER , 4, null);

ORACLE 8-25

Chapter 8
OPG_APIS.DROP_EDGES_TEXT_IDX

8.19 OPG_APIS.DROP_EDGES_TEXT_IDX

ORACLE

Format

OPG_API S. DROP_EDGES_TEXT_I DX(
graph_owner | N VARCHARZ,
graph_name | N VARCHAR2,
options IN VARCHAR2 DEFAULT NULL);

Description
Drops a text index on a property graph edge table.
Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

options
Additional settings for the operation.

Usage Notes

A text index must already exist on the property graph edge table.

Examples

The following example drops the text index on the edge table of property graph nypg

that is owned by user SCOTT.

EXECUTE OPG_API S. DROP_EDGES_TEXT_I DX(' SCOTT', 'nypg', null);

8.20 OPG_APIS.DROP PG

Format

OPG_API S. DROP_PQ
graph_nanme | N VARCHAR?);

Description
Drops (deletes) a property graph.
Parameters

graph_name
Name of the property graph.

Usage Notes

All the graph tables (VT$, GE$, and so on) will be dropped from the database.

8-26

Chapter 8
OPG_APIS.DROP_PG_VIEW

Examples
The following example drops the property graph named nypg.
EXECUTE OPG_API S. DROP_PG ' nypg') ;

8.21 OPG_APIS.DROP_PG_VIEW

Format
OPG_API S. DROP_PG VI EW(

graph_name | N VARCHAR?);
options I N VARCHAR?) ;

Description

Drops (deletes) the view definition of a property graph.

Parameters

graph_name
Name of the property graph.

options
(Reserved for future use.)

Usage Notes

Oracle supports creating physical property graphs and property graph views. For
example, given an RDF model, it supports creating property graph views over the
RDF model, so that you can run property graph analytics on top of the RDF graph.

This procedure cannot be undone.

Examples
The following example drops the view definition of the property graph named nypg.

EXECUTE OPG_API S. DROP_PG VI EW' nypg');

8.22 OPG_APIS.DROP VERTICES TEXT IDX

ORACLE

Format

OPG_API S. DROP_VERTI CES_TEXT_I DX(
graph_owner | N VARCHAR2,
graph_name | N VARCHAR2,
options IN VARCHAR2 DEFAULT NULL);

Description

Drops a text index on a property graph vertex table.

8-27

Chapter 8
OPG_APIS.ESTIMATE_TRIANGLE_RENUM

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

options
Additional settings for the operation.

Usage Notes

A text index must already exist on the property graph vertex table.

Examples

The following example drops the text index on the vertex table of property graph nypg
that is owned by user SCOTT.

EXECUTE OPG API S. DROP_VERTI CES_TEXT | DX(' SCOTT', 'nypg', null);

8.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM

Format

COUNT_TRI ANGLE_ESTI MATE(
edge_tab_name | N VARCHAR2

wt _undBM IN VARCHAR?,

Wt _rnmap I N VARCHAR?,

wt _undAM IN VARCHAR?,

numsub_ptns | N | NTEGER DEFAULT 1,
chunk_id I N I NTEGER DEFAULT 1,

dop I N I NTEGER DEFAULT 1,

t bs IN VARCHAR2 DEFAULT NULL,
options IN VARCHAR2 DEFAULT NULL

) RETURN NUVBER

Description
Estimates the number of triangles in a property graph.
Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

ORACLE 8-28

ORACLE

Chapter 8
OPG_APIS.ESTIMATE_TRIANGLE _RENUM

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

num_sub_ptns

Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

chunk_id
The logical subpartition to be used in triangle estimation (Only this partition will be
counted). It must be an integer between 0 and num sub_pt ns*num sub_pt ns- 1.

dop
Degree of parallelism for the operation. The default is 1 (no parallelism).

ths
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

e PDML=T enables parallel DML.

Usage Notes

This function counts the total triangles in a portion of size 1/
(num_sub_pt ns*num sub_pt ns) of the graph; so to estimate the total number of
triangles in the graph, you can multiply the result by num sub_pt ns*num sub_pt ns.

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP procedure must already have been executed.

Examples

The following example estimates the number of triangle in the property graph named
connections. It does not perform the cleanup after it finishes, so you can count
triangles again on the same graph without calling the preparation procedure.

set serveroutput on

DECLARE
wt1 varchar2(100); -- intermediate working table
wt 2 varchar 2(100);
wt 3 varchar 2(100);
n numnber;
BEG N
opg_api s. count _triangle_prep(' connectionsCGE$', wtl, w2, w3);
n := opg_apis.estimte_triangle_renun
' connecti onsGE$'
w1,
w2,
w 3,
num sub_pt ns=>64,
chunk_i d=>2048,
dop=>2,
ths = ' MYPG TS,
options=>" PDM.=T'
);

8-29

Chapter 8
OPG_APIS.EXP_EDGE_TAB_STATS

dbns_out put. put _Iine(' estimated number of triangles ' || (n * 64 * 64));
END;
/

8.24 OPG_APIS.EXP_EDGE_TAB_STATS

ORACLE

Format

OPG_API S. EXP_EDGE_TAB_STATS(
graph_nane I N VARCHAR2,

stattab I N VARCHAR2,

statid | N VARCHAR2 DEFAULT NULL,
cascade I N BOOLEAN DEFAULT TRUE,
st at own I N VARCHAR2 DEFAULT NULL,

stat_category | N VARCHAR2 DEFAULT ' OBJECT_STATS);

Description

Retrieves statistics for the edge table of a given property graph and stores them in the
user-created statistics table.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within st at t ab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing st at t ab.

stat_category

Specifies what statistics to export, using a comma to separate values. The supported
values are ' OBJECT_STATS (the default: table statistics, column statistics, and

index statistics) and ' SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the property
graph edge table statistics, and issues a query to count the relevant rows for the newly
created statistics.

EXECUTE OPG API S. CREATE_STAT TABLE(' nystat',null);

EXECUTE OPG_API S. EXP_EDGE_TAB_STATS(' nypg', 'mystat', 'edge_stats_id_1', true,
nul |, ' OBJECT_STATS);

8-30

Chapter 8
OPG_APIS.EXP_VERTEX_TAB_STATS

SELECT count (1) FROM nystat WHERE statid='" EDGE_STATS ID 1';

153

8.25 OPG_APIS.EXP_VERTEX_TAB_STATS

ORACLE

Format

OPG_API S. EXP_VERTEX_TAB_STATS(
graph_nane I N VARCHARZ,

stattab I N VARCHAR2,

statid I N VARCHAR2 DEFAULT NULL,
cascade I N BOOLEAN DEFAULT TRUE,
st at own I N VARCHAR2 DEFAULT NULL,

stat_category | N VARCHAR2 DEFAULT ' OBJECT_STATS');

Description

Retrieves statistics for the vertex table of a given property graph and stores them in
the user-created statistics table.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within st at t ab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing st at t ab.

stat_category

Specifies what statistics to export, using a comma to separate values. The supported
values are ' OBJECT_STATS (the default: table statistics, column statistics, and

index statistics) and ' SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the property
graph vertex table statistics, and issues a query to count the relevant rows for the
newly created statistics.

EXECUTE OPG API S. CREATE_STAT TABLE(' nystat',null);

EXECUTE OPG_API S. EXP_VERTEX_TAB_STATS(' nypg', 'nystat', 'vertex_stats_id_1',

8-31

Chapter 8
OPG_APIS.FIND_CC_MAPPING_BASED

true, null, '"OBJECT_STATS);
SELECT count (1) FROM nystat WHERE statid=" VERTEX STATS ID 1';

108

8.26 OPG_APIS.FIND_CC_MAPPING BASED

ORACLE

Format

OPG_API S. FI ND_CC_MAPPI NG_BASED(
edge_tab_name | N VARCHAR2,
wt_clusters | N OUT VARCHAR?,

wt_undir I'N QUT VARCHARZ,

wt _cl uas I N QUT VARCHAR2,

Wt _newas I'N QUT VARCHARZ,

w_delta I'N QUT VARCHARZ,

dop I N | NTEGER DEFAULT 4,
rounds I N I NTEGER DEFAULT 0,

tbs I N VARCHAR2 DEFAULT NULL,
options I'N VARCHAR2 DEFAULT NULL);

Description

Finds connected components in a property graph. All connected components will be
stored in the wt _cl ust er s table. The original graph is treated as undirected.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters

A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.

If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta") in cluster assignments.

dop
Degree of parallelism for the operation. The default is 4.

8-32

Chapter 8
OPG_APIS.FIND_CLUSTERS_CLEANUP

rounds

Maximum umber of iterations to perform in searching for connected components. The
default value of 0 (zero) means that computation will continue until all connected
components are found.

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for the operation.

* 'PDML=T enables parallel DML.
Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.FIND_CLUSTERS_PREP. procedure must already have been executed.

Examples

The following example finds the connected components in a property graph named

nmypg.
DECLARE
wt Clusters varchar2(200) := 'nypg_clusters';
wt UnDi r var char 2(200);
wt Ol uas var char 2(200);
wt Newas var char 2(200);
wt Del ta var char 2(200);
BEG N

opg_apis.find_clusters_prep(' nypgGE$', wtCusters, wUnDir,
wt O uas, wtNewas, wtDelta, '');

dbns_out put . put _|ine(' working tables names ' || wtClusters || " '
[| weUnDir || * ' || wwCuas || " ' || wNewas [
|| wDelta);

opg_api s. find_cc_mappi ng_based(' ' nypgCE$', wtClusters, wUnDir,
wt O uas, wtNewas, wtDelta, 8, 0, 'MYTBS', 'PDML=T');

-- logic to consunme results in wdusters

-- e.g.:

-- select /*+ parallel (8) */ count(distinct cluster_id)
-- fromnypg_clusters;

-- cleanup all the working tables
opg_api s.find_clusters_cleanup(' mypgGE$', wtC usters, wUnDir,
wt O uas, wtNewas, wtDelta, '');

END;
/

8.27 OPG_APIS.FIND_CLUSTERS_CLEANUP

Format

OPG_API S. FI ND_CLUSTERS_CLEANUP(
edge_tab_name | N VARCHAR?,
wt_clusters IN QUT VARCHARZ,

ORACLE 8-33

Chapter 8
OPG_APIS.FIND_CLUSTERS_PREP

wt_undir I N QUT VARCHARZ,

wt _cl uas I N OUT VARCHAR?,

wt _newas I N QUT VARCHARZ,

w_delta I N OUT VARCHAR?,

options IN VARCHAR2 DEFAULT NULL);
Description

Cleans up after running weakly connected components (WCC) cluster detection.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters

A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.

If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta”) in cluster assignments.

options
(Reserved for future use.)

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example cleans up after performing doing cluster detection in a property
graph named nypg.

EXECUTE OPG_API S. FI ND_CLUSTERS_CLEANUP(' nypgGE$', wtClusters, wtUnDir, w C uas,
wt Newas, wtDelta, null);

8.28 OPG_APIS.FIND_CLUSTERS_PREP

ORACLE

Format

OPG_API S. FI ND_CLUSTERS_PREP(
edge_tab_name | N VARCHARZ,
wt_clusters I N OUT VARCHAR?,
wt _undir I N OUT VARCHAR?,

8-34

Chapter 8
OPG_APIS.FIND_CLUSTERS_PREP

wt _cl uas I N OUT VARCHAR?,

wt _newas I N QUT VARCHARZ,

w_delta I N OUT VARCHAR?,

options IN VARCHAR2 DEFAULT NULL);
Description

Prepares for running weakly connected components (WCC) cluster detection.
Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters

A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.

If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta”) in cluster assignments.

options
Additional settings for index creation.

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example prepares for doing cluster detection in a property graph named

nypg.

DECLARE
wt Gl usters varchar2(200);
wt UnDi r var char 2(200);
wt G uas var char 2(200);
wt Newas var char 2(200);
wt Del ta var char 2(200);

BEG N

opg_apis.find_clusters_prep(' nypgGE$', wtCusters, wtUnDir,
wt G uas, wtNewas, wtDelta, "');

dbns_out put. put _I'ine(' working tables names ' || wtClusters ||
[| wUnDir || " " || wtCluas || " ' || wtNewas | '
|| wtDelta);

ORACLE 8-35

Chapter 8
OPG_APIS.FIND_SP

END;

8.29 OPG_APIS.FIND_SP

ORACLE

Format

OPG_API'S. FI ND_SP(
edge_tab_name | N VARCHAR?,

sour ce I N NUMVBER,

dest I N NUMVBER,

exp_tab IN QUT VARCHARZ,

dop I N | NTEGER,

stats_freq I N I NTEGER DEFAULT 20000,

pat h_out put QUT VARCHARZ,
wei ght s_out put OUT VARCHAR2,
edge_tab_name | N VARCHAR?,

options IN VARCHAR2 DEFAULT NULL,
scn I'N NUMBER DEFAULT NULL);
Description

Finds the shortest path between given source vertex and destination vertex in the
property graph. It assumes each edge has a numeric weight property. (The actual
edge property name is not significant.)

Parameters

edge_tab_name
Name of the property graph edge table.

source
Source (start) vertex ID.

dest
Destination (end) vertex ID.

exp_tab
Name of the expansion table to be used for shortest path calculations.

dop
Degree of parallelism for the operation.

stats_freq
Frequency for collecting statistics on the table.

path_output
The output shortest path. It consists of IDs of vertices on the shortest path, which are
separated by the space character.

weights_output
The output shortest path weights. It consists of weights of edges on the shortest path,
which are separated by the space character.

options

Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

8-36

Chapter 8
OPG_APIS.FIND_SP_CLEANUP

- CREATE_UNDI RECTED=T
« REUSE_UNDI RECTED TAB=T

scn
SCN for the edge table. It can be null.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.FIND_SP_PREP procedure must have already been called.

Examples

The following example prepares for shortest-path calculation, and then finds the
shortest path from vertex 1 to vertex 35 in a property graph named nypg.

set serveroutput on
DECLARE
w var char 2(2000) ;
wt Exp varchar 2(2000) ;
vPat h varchar2(2000);
BEG N
opg_apis.find_sp_prep(' nypgGE$', wtExp, null);
opg_apis.find_sp(' mypgCGE$', 1, 35, ~wtExp, 1, 200000, vPath, w, null, null);
dbns_out put. put _Iine(' Shortest path ' || vPath);
dbns_out put. put _line(' Path weights ' || W);
END;
/

The output will be similar to the following. It shows one shortest path starting from
vertex 1, to vertex 2, and finally to the destination vertex (35).

Shortest path 1 2 35
Path weights 32 11

8.30 OPG_APIS.FIND_SP_CLEANUP

ORACLE

Format

OPG_API S. FI ND_SP_CLEANUP(
edge_tab_name | N VARCHAR?,

exp_tab IN QUT VARCHARZ,
options IN VARCHAR2 DEFAULT NULL);
Description

Cleans up after running one or more shortest path calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

exp_tab
Name of the expansion table used for shortest path calculations.

8-37

Chapter 8
OPG_APIS.FIND_SP_PREP

options
(Reserved for future use.)

Usage Notes

There is no need to call this procedure after each OPG_APIS.FIND_SP call. You can
run multiple shortest path calculations before calling OPG_APIS.FIND_SP_CLEANUP.

Examples

The following example does cleanup work after doing shortest path calculations in a
property graph named nypg.

EXECUTE OPG API S. FI ND_SP_CLEANUP(' nypgGE$' , wt ExpTab, null);

8.31 OPG_APIS.FIND _SP_PREP

ORACLE

Format

OPG _API S. FI ND_SP_PREP(
edge_tab_name | N VARCHAR?,

exp_tab IN QUT VARCHAR?,
options IN VARCHAR2 DEFAULT NULL);
Description

Prepares for shortest path calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

exp_tab
Name of the expansion table to be used for shortest path calculations. If it is empty,
an intermediate working table will be created and the table name will be returned in
exp_tab.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

* CREATE_UNDI RECTED=T
e REUSE_UNDI RECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example does preparation work before doing shortest path calculations
in a property graph named nypg

set serveroutput on
DECLARE

wt Exp varchar2(2000); -- name of working table for shortest path cal cul ation
BEG N

8-38

Chapter 8
OPG_APIS.GET_BUILD_ID

opg_api s. find_sp_prep(' nypgCE$', wtExp, null);
dbns_out put. put _Iine('Wrking table name ' || wExp);
END;
/

The output will be similar to the following. (Your output may be different depending on
the SQL session ID.)

Working table nane " MYPGGE$STWFS277"

8.32 OPG_APIS.GET BUILD ID

Format

OPG APl S. GET_BUI LD_I D{) RETURN VARCHAR?;

Description

Returns the current build ID of the Oracle Spatial and Graph property graph support, in
YYYYMMDD format.

Parameters

(None.)

Usage Notes

(None.)

Examples

The following example returns the current build ID of the Oracle Spatial and Graph
property graph support.

SQL> SELECT OPG API'S. GET BUILD I D{) FROM DUAL;

OPG API'S. GET BUI LD 1 DY)

20160606

8.33 OPG_APIS.GET _GEOMETRY_FROM_V_COL

ORACLE

Format

OPG_API S. GET_GEOVETRY_FROM V_COL(
v I'N NVARCHAR?,
srid | N NUVBER DEFAULT 8307
) RETURN SDO GEOVETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an
SRID value.

8-39

Chapter 8
OPG_APIS.GET_GEOMETRY_FROM_V_COL

Parameters

v
A String containing spatial data in serialized form.

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following examples show point, line, and polygon geometries.

SQ.> sel ect opg_apis.get _geonetry fromv col ('10.0 5.0',8307) from dual;

OPG_API S. GET_GEOVETRY_FROM V_COL(" 10. 05. 0' , 8307) (SDO_GTYPE, SDO SRI D,
SDO_POI NT(

SDO_GEOVETRY(2001, 8307, SDO PO NT_TYPE(10, 5, NULL), NULL, NULL)

SQ.> select opg_apis.get_geometry fromv_col (' LI NESTRING 30 10, 10
30, 40 40)',8307) fromdual;

OPG_API S. GET_GEOVETRY_FROM V_COL(" LI NESTRI NG 3010, 1030, 4040) ' , 8307)
(SDO GTYPE, S

SDO_GEOVETRY(2002, 8307, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(
30, 10, 10, 30, 40, 40))

SQ.> select opg_apis.get _geonetry fromv_col (" POLYGON((-83.6 34.1,
-83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))', 8307) fromdual;

OPG_API S. GET_GEOVETRY_FROM V_COL(' POLYGON((- 83. 634. 1, - 83. 634. 3, - 83. 434. 3
,-83. 434

SDO_GEOVETRY(2003, 8307, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

ORACLE 8-40

Chapter 8
OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS

8.34 OPG_APIS.GET_GEOMETRY_FROM V T COLS

ORACLE

Format

OPG_API S. GET_GEOVETRY_FROM V_T_COLS(
v N NVARCHARZ,
t I N I NTEGER,
srid |N NUMBER DEFAULT 8307

) RETURN SDO_GEQMVETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

'
A String containing spatial data in serialized form,

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following examples show point, line, and polygon geometries.

SQ.> sel ect opg_apis.get _geonetry fromv_ t cols('10.0 5.0', 20, 8307)
from dual ;

OPG_API S. GET_GEOMETRY_FROM V_T_COLS(" 10. 05. 0', 20, 8307) (SDO_GTYPE,
SDO SRID, SDO_

SDO_GEOVETRY(2001, 8307, SDO PO NT_TYPE(10, 5, NULL), NULL, NULL)

SQ.> sel ect opg_apis.get _geonetry fromv_ t cols('LINESTRING 30 10, 10
30, 40 40)', 20, 8307) fromdual;

OPG_API S. GET_GEOVETRY_FROM V_T_COLS(' LI NESTRI NG 3010, 1030, 4040) ' , 20, 8307
) (SDO_GT

8-41

Chapter 8
OPG_APIS.GET_LATLONG_FROM_V_COL

SDO_GEOMETRY(2002, 8307, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(
30, 10, 10, 30, 40, 40))

SQ > select opg_apis.get_geonetry fromv_ t _col s(' POLYGON((-83.6 34.1,
-83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))', 20, 8307) from dual

OPG_API S. GET_CGEOVETRY_FROM V_T_COLS(" POLYGON((-83.634.1, -83.634. 3,-83.43
4.3, -83.

SDO_GEOVETRY(2003, 8307, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1)
SDO_ORDI NATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

8.35 OPG_APIS.GET LATLONG FROM_V_COL

ORACLE

Format

OPG APl S. GET_LATLONG FROM V_COL(
v I N NVARCHAR?,
srid | N NUVBER DEFAULT 8307
) RETURN SDO GEOMVETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an
SRID value.

Parameters

v
A String containing spatial data in serialized form.

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is
the reverse of the order in an SDO_GEOMETRY object definition, where longitude is
first and latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

8-42

Chapter 8
OPG_APIS.GET_LATLONG_FROM_V_T_COLS

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the
coordinate values of the input point are “swapped” in the returned SDO_GEOMETRY
object.

SQ.> sel ect opg_apis.get latlong fromv col (‘5.1 10.0', 8307) from dual;

OPG_API S. GET_LATLONG FROM V_COL(" 5. 110. 0’ , 8307) (SDO_GTYPE, SDO SR D,
SDO PO NT(X

SDO_GEOVETRY(2001, 8307, SDO POl NT_TYPE(10, 5.1, NULL), NULL, NULL)

8.36 OPG_APIS.GET LATLONG FROM_ V T COLS

ORACLE

Format

OPG API S. GET_LATLONG FROM V_T_COLS(
v I N NVARCHAR?,
t IN | NTEGER,
srid | N NUVBER DEFAULT 8307

) RETURN SDO_GEOVETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is
the reverse of the order in an SDO_GEOMETRY object definition, where longitude is
first and latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

8-43

Chapter 8
OPG_APIS.GET_LONG_LAT_GEOMETRY

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the
coordinate values of the input point are “swapped” in the returned SDO_GEOMETRY
object.

SQ.> sel ect opg_apis.get latlong fromv_ t cols('5.1 10.0', 20,8307) from
dual ;

OPG_API S. GET_LATLONG FROM V_T_COLS(' 5. 110. 0', 20, 8307) (SDO_GTYPE,
SDO SRID, SDO P

SDO_GEOVETRY(2001, 8307, SDO POl NT_TYPE(10, 5.1, NULL), NULL, NULL)

8.37 OPG_APIS.GET LONG LAT GEOMETRY

Format

OPG AP S. GET_LONG_LAT_GEOMETRY(

X I N NUVBER,

y I N NUVBER,

srid | N NUVBER DEFAULT 8307
) RETURN SDO_GEOVETRY;

Description

Returns an SDO_GEOMETRY object constructed using X and Y point coordinate
values, and optionally an SRID value.

Parameters

X
The X (first coordinate) value in the SDO_POINT_TYPE element of the geometry
definition.

y
The Y (second coordinate) value in the SDO_POINT_TYPE element of the geometry

definition.

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

ORACLE 8-44

Chapter 8
OPG_APIS.GET_LATLONG_FROM_V_COL

Examples

The following example returns the geometry object for a point with X, Y coordinates
10.5, 5.0, and it uses 8307 as the SRID in the resulting geometry object.

SQ.> sel ect opg_apis.get long |at_geonetry(10.0, 5.0, 8307) from dual;

OPG_API S. GET_LONG LAT_GEOVETRY(10. 0, 5. 0, 8307) (SDO_GTYPE, SDO SRI D,
SDO PO NT(X,

SDO_GEOVETRY(2001, 8307, SDO POl NT_TYPE(10, 5, NULL), NULL, NULL)

8.38 OPG_APIS.GET LATLONG FROM_ V COL

ORACLE

Format

OPG API S. GET_LATLONG FROM V._COL(
v I N NVARCHAR?,
srid | N NUVBER DEFAULT 8307
) RETURN SDO_GEOVETRY:;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an
SRID value.

Parameters

v
A String containing spatial data in serialized form.

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is
the reverse of the order in an SDO_GEOMETRY object definition, where longitude is
first and latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the
coordinate values of the input point are “swapped” in the returned SDO_GEOMETRY
object.

SQ.> sel ect opg_apis.get latlong fromv_col ('5.1 10.0', 8307) from dual;

8-45

Chapter 8
OPG_APIS.GET_LONGLAT_FROM_V_T_COLS

OPG_API S. GET_LATLONG FROM V_COL("' 5. 110. 0', 8307) (SDO_GTYPE, SDO SRI D,
SDO_POI NT(X

SDO_GEOMETRY(2001, 8307, SDO PO NT_TYPE(10, 5.1, NULL), NULL, NULL)

8.39 OPG_APIS.GET LONGLAT FROM V T COLS

ORACLE

Format

OPG_API S. GET_LONGLAT_FROM V_T_COLS(
v I N NVARCHAR?,
t I N | NTEGER
srid | N NUVBER DEFAULT 8307

) RETURN SDO_GEOVETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the longitude value and the second number is the latitude value (which is
the order in an SDO_GEOMETRY object definition).

The following example returns a point SDO_GEOMETRY object.

SQ.> sel ect opg_apis.get longlat fromv t cols('5.1 10.0', 20,8307) from
dual ;

OPG_API S. GET_LATLONG FROM V_T_COLS(' 5. 110. 0", 20, 8307) (SDO_GTYPE,
SDO SRID, SDO P

8-46

Chapter 8
OPG_APIS.GET_SCN

SDO_GEOMETRY(2001, 8307, SDO PO NT_TYPE(5.1, 10, NULL), NULL, NULL)

8.40 OPG_APIS.GET_SCN

Format

OPG APl S. GET_SCN() RETURN NUMBER;

Description

Returns the SCN (system change number) of the Oracle Spatial and Graph property
graph support, in YYYYMMDD format.

" Note:

Effective with Release 20.3, the OPG_APIS.GET_SCN function is
deprecated. Instead, to retrieve the current SCN (system change number),
use the DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER function:

SELECT dbns_f | ashback. get _syst em change_nunmber FROM DUAL;

Parameters

(None.)

Usage Notes

The SCN value is incremented after each commit.

Examples

The following example returns the current build ID of the Oracle Spatial and Graph
property graph support.

SQL> SELECT OPG API'S. GET_SCN() FROM DUAL;

OPG_API S. GET_SCN()

1478701

8.41 OPG_APIS.GET_VERSION

ORACLE

Format

OPG API'S. GET_VERSI ON() RETURN VARCHAR?;

Description

Returns the current version of the Oracle Spatial and Graph property graph support.

8-47

Chapter 8
OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL

Parameters

(None.)

Usage Notes

(None.)

Examples

The following example returns the current version of the Oracle Spatial and Graph
property graph support.

SQL> SELECT OPG_API S. GET_VERSI O\() FROM DUAL;

OPG APl S. GET_VERSI O\()

12.2.0.1 P1

8.42 OPG_APIS.GET WKTGEOMETRY FROM V COL

ORACLE

Format

OPG_API S. GET_WKTGEOVETRY_FROM V._COL(
v I N NVARCHAR?,
srid | N NUVBER DEFAULT NULL

) RETURN SDO GEOVETRY;

Description

Returns an SDO_GEOMETRY object based on a geometry in WKT (well known text)
form and optionally an SRID.

Parameters

v
A String containing spatial data in serialized form.

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following statements return a point geometry and a line string geometry

SQ.> sel ect opg_apis. get_wktgeonetry fromyv_col (" PONT(10.0 5.1)",
8307) fromdual;

OPG_API S. GET_WKTGEOVETRY_FROM V_COL(' PO NT(10. 05. 1)" , 8307) (SDO_GTYPE,
SDO SRI D,

8-48

8.43

Chapter 8
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T _COLS

SDO_GEOMETRY(2001, 8307, SDO PO NT_TYPE(10, 5.1, NULL), NULL, NULL)

SQ.> sel ect opg_apis. get_wktgeonetry fromyv_col (' LI NESTRI NG 30 10, 10
30, 40 40)',8307) fromdual;

OPG_API S. GET_VIKTGEOMETRY_FROM V_COL(" LI NESTRI NG(3010, 1030, 4040) ' , 8307)
(SDO_GTYPE

SDO_GEOMETRY(2002, 8307, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(
30, 10, 10, 30, 40, 40))

OPG APIS.GET WKTGEOMETRY FROM V T COLS

ORACLE

Format

OPG_API S. GET_VIKTGEOVETRY_FROM V_T_COLS(
v I N NVARCHAR?,
t I N | NTEGER
srid | N NUVBER DEFAULT NULL

) RETURN SDO_GEOVETRY;

Description

Returns an SDO_GEOMETRY object based on a geometry in WKT (well known text)
form, a type value, and optionally an SRID.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid

SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

8-49

Chapter 8
OPG_APIS.GRANT_ACCESS

Examples

The following statements return a point geometry and a polygon geometry

SQ.> sel ect opg_apis.get wktgeonetry fromv_ t col s(' PO NT(10.0
5.1)',20,8307) from dual;

OPG_API S. GET_WKTGEOVETRY_FROM V._T_COLS(' POl NT(10. 05. 1), 20, 8307)
(SDO_GTYPE, SDO.

SDO_GEOVETRY(2001, 8307, SDO POINT_TYPE(10, 5.1, NULL), NULL, NULL)

SQ.> sel ect opg_apis.get wktgeonetry fromv t col s(' POLYGON((-83.6
34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))',20,8307) from
dual ;

OPG_API S. GET_WKTGEOVETRY_FROM V._T_COLS(' POLYGON((- 83. 634. 1, - 83. 634. 3, - 83
.434.3, -

SDO_GEOMETRY(2003, 8307, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

8.44 OPG_APIS.GRANT_ACCESS

ORACLE

Format

OPG_API S. GRANT_ACCESS(
graph_owner I N VARCHAR?,
graph_name | N VARCHAR?,
other _user | N VARCHAR2,
privilege I N VARCHAR?);

Description
Grants access privileges on a property graph to another database user.
Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

other_user
Name of the database user to which on e or more access privileges will be granted.

privilege

A string of characters indicating privileges: R for read, S for select, U for update, D for
delete, | forinsert, Afor all. Do not use commas or any other delimiter.

8-50

Chapter 8
OPG_APIS.IMP_EDGE_TAB_STATS

If you specify A, do not specify any other values because A includes all access
privileges.

Usage Notes
(None.)

Examples

The following example grants read and select (RS) privileges on the nypg property
graph owned by database user SCOTT to database user PGUSR. It then connects as
PGUSR and queries the nypg vertex table in the SCOTT schema.

CONNECT scott/ <passwor d>

EXECUTE OPG_API S. GRANT_ACCESS(' scott', 'nypg', 'pgusr', 'RS");
CONNECT pgusr/ <passwor d>

SELECT count (1) from scott.mypgVT$;

17

8.45 OPG_APIS.IMP_EDGE_TAB_STATS

ORACLE

Format

OPG_API S. | MP_EDGE_TAB_STATS(
graph_nane I N VARCHARZ,

stattab I N VARCHAR2,

statid | N VARCHAR2 DEFAULT NULL,
cascade I N BOOLEAN DEFAULT TRUE,

st at own | N VARCHAR2 DEFAULT NULL,
no_inval i date BOOLEAN DEFAULT FALSE,
force BOOLEAN DEFAULT FALSE,

stat_category | N VARCHAR2 DEFAULT ' OBJECT_STATS);

Description

Retrieves statistics for the given property graph edge table (GE$) from the user
statistics table identified by st at t ab and stores them in the dictionary. If cascade is
TRUE, all index statistics associated with the specified table are also imported.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within st at t ab.

cascade
If TRUE, column and index statistics are exported.

8-51

Chapter 8
OPG_APIS.IMP_VERTEX_TAB_STATS

statown
Schema containing st at t ab.

no_invalidate

If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS. AUTO_| NVALI DATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if the statistics are locked.

stat_category

Specifies what statistics to export, using a comma to separate values. The supported
values are ' OBJECT_STATS (the default: table statistics, column statistics, and

index statistics) and ' SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the edge table
statistics, issues a query to count the relevant rows for the newly created statistics,
and finally imports the statistics back.

EXECUTE OPG API S. CREATE_STAT TABLE(' nystat',null);

EXECUTE OPG_API S. EXP_EDGE_TAB_STATS(' nypg', 'mystat', 'edge_stats_id_1', true,
nul |, ' OBJECT_STATS);

SELECT count (1) FROM nystat WHERE statid='" EDGE_STATS ID 1';
153

EXECUTE OPG_API S. | MP_EDGE_TAB_STATS(' nypg', 'mystat', 'edge_stats_id_1', true,
null, false, true, 'OBJECT_STATS);

8.46 OPG_APIS.IMP_VERTEX_TAB STATS

ORACLE

Format

OPG_API S. | MP_VERTEX_TAB_STATS(
graph_nane I N VARCHAR2,

stattab I N VARCHAR2,

statid | N VARCHAR2 DEFAULT NULL,
cascade I N BOOLEAN DEFAULT TRUE,

st at own | N VARCHAR2 DEFAULT NULL,
no_inval i date BOOLEAN DEFAULT FALSE,
force BOOLEAN DEFAULT FALSE,

stat_category | N VARCHAR2 DEFAULT ' OBJECT_STATS);

Description

Retrieves statistics for the given property graph vertex table (VT$) from the user
statistics table identified by st at t ab and stores them in the dictionary. If cascade is
TRUE, all index statistics associated with the specified table are also imported.

8-52

Chapter 8
OPG_APIS.IMP_VERTEX TAB_STATS

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within st at t ab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing st at t ab.

no_invalidate

If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS. AUTO_| NVALI DATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if the statistics are locked.

stat_category

Specifies what statistics to export, using a comma to separate values. The supported
values are ' OBJECT_STATS' (the default: table statistics, column statistics, and

index statistics) and ' SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the vertex table
statistics, issues a query to count the relevant rows for the newly created statistics,
and finally imports the statistics back.

EXECUTE OPG API S. CREATE_STAT TABLE(' nystat',null);

EXECUTE OPG_API S. EXP_VERTEX_TAB_STATS(' nypg', 'nystat', 'vertex_stats_ id_1',
true, null, '"OBJECT_STATS);

SELECT count (1) FROM nystat WHERE stati d=' VERTEX_STATS ID 1';
108

EXECUTE OPG_API S. | MP_VERTEX_TAB_STATS(' nypg', 'nystat', 'vertex_stats_ id_1',
true, null, false, true, 'OBJECT_STATS);

ORACLE 8-53

Chapter 8
OPG_APIS.PR

8.47 OPG_APIS.PR

ORACLE

Format

OPG_API S. PR(
edge_tab_name | N VARCHAR?,
d I'N NUMBER DEFAULT 0. 85,
num.iterations | N NUMBER DEFAULT 10,
conver gence I'N NUMBER DEFAULT 0. 1,
dop I'N I NTEGER DEFAULT 4,
wt _node_pr IN QUT VARCHARZ,

wt _node_nextpr | N QUT VARCHAR2,
wt _edge_tab_deg I N QUT VARCHAR2,

wt_delta I'N OUT VARCHARZ,
t abl espace I'N VARCHAR2 DEFAULT NULL,
options I'N VARCHAR2 DEFAULT NULL,

numvertices QUT NUMBER);

Description

Prepares for page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

d
Damping factor.

num_iterations
Number of iterations for calculating the page rank values.

convergence
A threshold. If the difference between the page rank value of the current iteration and
next iteration is lower than this threshold, then computation stops.

dop
Degree od parallelism for the operation.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

8-54

Chapter 8
OPG_APIS.PR

tablespace
Name of the tablespace to hold all the graph data and index data.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

« CREATE_UNDI RECTED=T
« REUSE_UNDI RECTED_TAB=T

num_vertices
Number of vertices processed by the page rank calculation.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.PR_PREP procedure must have been called.

Examples

The following example performs preparation, and then calculates the page rank value
of vertices in a property graph named nypg.

set serveroutput on

DECLARE

wt _pr varchar2(2000); -- nane of the table to hold PR value of the current
iteration

wt _npr varchar2(2000); -- nanme of the table to hold PR value for the next
iteration

wt 3 var char 2(2000) ;

wt 4 var char 2(2000) ;

wt 5 var char 2(2000) ;

n_vertices nunber;
BEG N

W _pr :="nypgPR;

opg_apis. pr_prep(' nypgGE$', wt_pr, wt_npr, w3, w4, null);

dbns_out put. put _line(' Working table nanes ' || w_pr

[T we_npr " || wt_npr || ", wt3 " [| w3 [] ", w4 [] wd);

opg_apis.pr(' mypgGe$', 0.85, 10, 0.01, 4, wt_pr, wt_npr, w3, w4, 'SYSAUX,

null, n_vertices)

END;
/

The output will be similar to the following.

Working table names "MYPGPR', wt_npr "MYPGGESTWPRX277", wt3
" MYPGCE$$STWPRE277", wt 4 " MYPGGES$TWPRD277"

The calculated page rank value is stored in the mypgpr table which has the following
definition and data.

SQ.> desc nypgpr;

Nare Nul I ? Type

NODE NOT NULL NUMBER
PR NUMBER
C NUMBER

ORACLE 8-55

Chapter 8
OPG_APIS.PR_CLEANUP

SQL> sel ect node, pr from nmypgpr;

NCDE PR
101 . 1925
201 . 2775
102 . 1925
104 . 74383125
105 . 313625
103 . 1925
100 .15
200 .15

8.48 OPG_APIS.PR_CLEANUP

ORACLE

Format

OPG_API S. PR_CLEANUP(
edge_tab_name | N VARCHAR?,
wt _node_pr IN QUT VARCHARZ,
wt _node_nextpr | N QUT VARCHAR2,
wt _edge_tab_deg I N QUT VARCHAR2,

w_delta IN QUT VARCHARZ,
options I'N VARCHAR2 DEFAULT NULL);
Description

Performs cleanup after performing page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

* CREATE_UNDI RECTED=T
* REUSE_UNDI RECTED TAB=T

8-56

Chapter 8
OPG_APIS.PR_PREP

Usage Notes

You do not need to do cleanup after each call to the OPG_APIS.PR procedure. You
can run several page rank calculations before calling the OPG_APIS.PR_CLEANUP
procedure.

Examples

The following example does the cleanup work after running page rank calculations in a
property graph named nypg.

EXECUTE OPG API S. PR_CLEANUP(' nypgGE$', wt_pr, wt_npr, w3, w4, null);

8.49 OPG_APIS.PR_PREP

ORACLE

Format

OPG_API S. PR_PREP(
edge_tab_name | N VARCHAR?,
wt _node_pr IN QUT VARCHARZ,
wt _node_nextpr | N QUT VARCHAR2,
wt _edge_tab_deg I N QUT VARCHAR2,

w _delta I'N QUT VARCHARZ,
options I'N VARCHAR2 DEFAULT NULL);
Description

Prepares for page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

* CREATE_UNDI RECTED=T
* REUSE_UNDI RECTED TAB=T

Usage Notes

The property graph edge table must exist in the database.

8-57

Chapter 8
OPG_APIS.PREPARE_TEXT_INDEX

Examples

The following example does the preparation work before running page rank
calculations in a property graph named nypg.

set serveroutput on

DECLARE

wt_pr varchar2(2000); -- nane of the table to hold PR value of the current
iteration

Wt _npr varchar2(2000); -- name of the table to hold PR value for the next
iteration

wt 3 var char 2(2000) ;

wt 4 var char 2(2000) ;

wt 5 var char 2(2000) ;
BEG N

W _pr :="nmypgPR ;
opg_apis.pr_prep(' nypgCGE$', wt_pr, wt_npr, w3, w4, null);
dbns_out put. put _line(' Working table nanes ' || w_pr
[l " we_npr ' || wt_npr [| ", w3 "' || w3 [[", w4 ' |] wd);
END;
/

The output will be similar to the following.

Working table nanes "MYPGPR', wt_npr "MYPGGE$STWPRX277", w3
" MYPGGESSTWPRE277", wt 4 " MYPGGESSTWPRD277"

8.50 OPG_APIS.PREPARE_TEXT_INDEX

Format

OPG_API S. PREPARE_TEXT | NDEX() ;

Description

Performs preparatory work needed before a text index can be created on any
NVARCHAR?2 columns.

Parameters

None.

Usage Notes

You must have the ALTER SESSION to run this procedure.

Examples

The following example performs preparatory work needed before a text index can be
created on any NVARCHAR?2 columns.

EXECUTE OPG_API S. PREPARE_TEXT_| NDEX() ;

ORACLE 8-58

8.51 OPG_APIS.RENAME_PG

Format

OPG_API S. RENAME_PQ
graph_nane I N VARCHARZ,
new_gr aph_nane IN VARCHAR?) ;

Description
Renames a property graph.
Parameters

graph_name
Name of the property graph.

new_graph_name
New name for the property graph.

Usage Notes

The graph_nane property graph must exist in the database.

Examples

Chapter 8
OPG_APIS.RENAME_PG

The following example changes the name of a property graph named nypg to mynewpg.

EXECUTE OPG_API S. RENAME_PG' nypg', 'nynewpg');

8.52 OPG_APIS.SPARSIFY_GRAPH

ORACLE

Format

OPG_API S. SPARSI FY_GRAPH(
edge_tab_nane | N VARCHAR?,

threshol d I N NUMBER DEFAULT 0.5,
m n_keep I N I NTEGER DEFAULT 1,
dop I N I NTEGER DEFAULT 4,

wt_out _tab IN QUT VARCHARZ,
wt_und_tab IN QUT VARCHARZ,
wt_hsh tab | N OUT VARCHAR?,
wt_nth_tab IN QUT VARCHARZ,

tbs I'N VARCHAR2 DEFAULT NULL,
options IN VARCHAR2 DEFAULT NULL);
Description

Performs sparsification (edge trimming) for a property graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

8-59

ORACLE

Chapter 8
OPG_APIS.SPARSIFY_GRAPH

threshold

A numeric value controlling how much sparsification needs to be performed. The
lower the value, the more edges will be removed. Some typical values are: 0.1,
0.2,..,05

min_keep
A positive integer indicating at least how many adjacent edges should be kept for
each vertex. A recommended value is 1.

dop
Degree of parallelism for the operation.

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold matching count of min hash values.

tbs
A working table to hold the working table data.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

* 'INMEMORY=T"is an option for creating the schema tables with an ‘inmemory’'
clause.

* 'IMC_MC_B=T creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes
The CREATE TABLE privilege is required to call this procedure.

The sparsification algorithm used is a min hash based local sparsification. See
"Local graph sparsification for scalable clustering”, Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data: https://cs.uwaterloo.ca/
~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

Sparsification only involves the topology of a graph. None of the properties (K/V) are
relevant.

Examples

The following example does the preparation work for the edges table of nypg, prints
out the working table names, and runs sparsification. The output, a sparsified graph, is
stored in a table named LEAN_PG, which has two columns, SVID and DVID.

SQ.> set serveroutput on

DECLARE
ny_lean_pg varchar2(100) := 'lean_pg'; -- output table
wt 2 varchar2(100);
wt 3 varchar2(100);

8-60

https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf
https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

Chapter 8
OPG_APIS.SPARSIFY_GRAPH_CLEANUP

wt 4 var char 2(100);

BEG N
opg_api s. sparsify_graph_prep(' nypgGES$', ny_lean_pg, w2, w3, w4, null);
dbms_output.put_line('w2 ' [| w2 [| ', w3 " || w3 [] ", wd || w4,
opg_api s. sparsify_graph(' nypgGe$', 0.5, 1, 4, ny_lean_pg, w2, w3, w4,

"SEMTS', null);

END;

/

w2 " MYPGGESSTWEPAU275", wt 3 " MYPGGESSTWEPAH275", wt4 " MYPGCES$TWSPAMR 75"

SQL> descri be | ean_pg;

Nare Nul | ? Type
SVID NUMBER
DVI D NUMBER

8.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP

ORACLE

Format

OPG_API S. SPARSI FY_GRAPH_CLEANUP(
edge_tab_name | N VARCHAR2,
wt_out _tab IN QUT VARCHARZ,
wt _und_tab IN QUT VARCHARZ,
wt_hsh_tab I N OUT VARCHARZ,
wt_nmch tab IN OUT VARCHAR?,
options I'N VARCHAR2 DEFAULT NULL);

Description
Cleans up after sparsification (edge trimming) for a property graph edge table.
Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold matching count of min hash values.

tbs
A working table to hold the working table data

options
(Reserved for future use.)

8-61

Chapter 8
OPG_APIS.SPARSIFY_GRAPH_PREP

Usage Notes

The working tables will be dropped after the operation completes.

Examples

The following example does the preparation work for the edges table of nmypg, prints
out the working table names, runs sparsification, and then performs cleanup.

SQ.> set serveroutput on
DECLARE
my_l ean_pg varchar2(100) := 'lean_pg';
wt 2 varchar2(100);
wt 3 varchar2(100);
wt 4 varchar2(100);

BEG N
opg_api s. sparsify_graph_prep(' nypgGES$', ny_lean_pg, w2, w3, w4, null);
dbms_output.put_line('w2 ' [| w2 [| ', w3 " || w3 [] ", wd || w4,

opg_api s. sparsify_graph(' nypgGe$', 0.5, 1, 4, ny_lean_pg, w2, w3, w4,
"SEMTS', null);

-- Add logic here to consume SVID, DVID in LEAN PG table

-- cleanup

opg_api s. sparsi fy_graph_cl eanup(' nypgGES$', ny_lean_pg, w2, w3, w4, null);
END;
/

8.54 OPG_APIS.SPARSIFY_GRAPH_PREP

ORACLE

Format

OPG_API S. SPARSI FY_GRAPH_PRER(
edge_tab_name | N VARCHAR2,
wt_out _tab IN QUT VARCHARZ,
wt _und_tab IN QUT VARCHARZ,
wt_hsh_tab I N OUT VARCHARZ,
wt_nmch tab IN OUT VARCHAR?,
options I'N VARCHAR2 DEFAULT NULL);

Description

Prepares working table names that are necessary to run sparsification for a property
graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

8-62

ORACLE

Chapter 8
OPG_APIS.SPARSIFY_GRAPH_PREP

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold the matching count of min hash values.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

* 'INMEMORY=T'is an option for creating the schema tables with an ‘inmemory"
clause.

* 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

The sparsification algorithm used is a min hash based local sparsification. See
“"Local graph sparsification for scalable clustering”, Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data: https://cs.uwaterloo.ca/
~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

Examples

The following example does the preparation work for the edges table of nypg and
prints out the working table names.

set serveroutput on

DECLARE
my_l ean_pg varchar2(100) := 'lean_pg';
wt 2 var char2(100);
wt 3 var char2(100);
wt 4 var char2(100);
BEG N
opg_api s. sparsify_graph_prep(' nypgGE$', ny_lean_pg, w2, w3, w4, null);
dons_output.put_line('w2 ' || w2 || ", w3 "' || w3 || ', w4 || wd);
END;
/

The output may be similar to the following.

w2 " MYPGGES$TWEPAUR75", wt3 " MYPGGES$STWSPAH275", wt4 " MYPGCES$TWEPAMR75"

8-63

https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf
https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

OPG_GRAPHOP Package Subprograms

The OPG_GRAPHOP package contains subprograms for various operations on
property graphs in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and
usage information in earlier chapters of this book.

This chapter provides reference information about the subprograms, in alphabetical
order.

* OPG_GRAPHOP.POPULATE_SKELETON_TAB

9.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB

ORACLE

Format

OPG_GRAPHOP. POPULATE_SKELETON_TAB(
graph I'N VARCHARZ,
dop I N I NTEGER DEFAULT 4,
tbs IN VARCHAR2 DEFAULT NULL,
options | N VARCHAR2 DEFAULT NULL);

Description

Populates the skeleton table (<graph-name>GT$). By default, any existing content in
the skeleton table is truncated (removed) before the table is populated.

Parameters

graph
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold the index data for the skeleton table.

options
Options that can be used to customize the populating of the skeleton table. (One or
more, comma separated.)

* 'KEEP_DATA=T' causes any existing table not to be removed before the table is
populated. New rows are added after the existing ones.

» 'PDML=T" skips the default index creation.

Usage Notes

You must have the CREATE TABLE and CREATE INDEX privileges to call this
procedure.

9-1

ORACLE

Chapter 9
OPG_GRAPHOP.POPULATE_SKELETON_TAB

There is a unique index constraint on EID column of the skeleton table (GE$). So if
you specify the KEEP_DATA=T option and if the new data overlaps with existing one,
then the unique key constraint will be violated, resulting in an error.

Examples

The following example populates the skeleton table of the property graph named nypg.

EXECUTE OPG GRAPHOP. POPULATE_SKELETON TAB(' nypg', 4, 'pgts', 'PDM.=T');

9-2

Supplementary Information for Property
Graph Support

This document has the following appendixes.

Handling Property Graphs Using a Two-Tables Schema

For property graphs with relatively fixed, simple data structures, where you do
not need the flexibility of <gr aph_name>VT$ and <gr aph_name>GE$ key/value data
tables for vertices and edges, you can use a two-tables schema to achieve better
run-time performance.

Handling Property Graphs Using a Two-
Tables Schema

ORACLE

For property graphs with relatively fixed, simple data structures, where you do not
need the flexibility of <gr aph_nane>VT$ and <gr aph_name>GE$ key/value data tables
for vertices and edges, you can use a two-tables schema to achieve better run-time
performance.

< Note:

Support for the two-tables schema approach described in this topic has been
deprecated and will probably be removed in a future release.

Instead, you are encouraged use the property graph schema approach to
working with graph data, described in Property Graph Schema Objects for
Oracle Database.

The two-tables schema approach is a deprecated alternative to the recommended
approach of using the property graph schema (described in Property Graph Schema
Objects for Oracle Database).

e The property graph schema approach is designed mainly for heterogeneous
and/or large graphs. When a graph model is used to present a dynamic application
domain in which new relationships and possibly new data types for the same
property name(s) are introduced and added to the graph model on the fly, using
the property graph schema is recommended.

When a graph model is used to present a dynamic application domain in which
new relationships and possibly new data types for the same property name(s) are
introduced and added to the graph model on the fly, using the property graph
schema is recommended.

* The two-tables schema approach is designed for homogenous graphs.

If a graph model represents an application domain where the set of relationships
is already known and the total number of distinct relationships is relatively small
(less than 1000), then the two-tables approach is a potential option. This situation
usually happens when the original data source is from one or a set of existing
relational tables or views.

An example of where the two-tables approach might be useful is if all nodes are
employees of a specific organization, and each employee has a limited and fixed set
of attributes and potential relationships. An example of where the two-tables approach
would not be useful is if the nodes can be any individuals who can have different
attributes and relationships, and where attributes and relationships can be dynamically
added and altered.

In the flexible key/value approach (not two-tables), Oracle Spatial and Graph stores
property graph data with a flexible schema: <gr aph_name>VT$ for vertices and

A-1

Appendix A
Preparing the Two-Tables Schema

<gr aph_nane>CE$ for edges. In this schema, vertices and edges are stored using
multiple rows where each row represents a key/value property associated with the
vertex (or the edge) with a flexible data type, determined by the attribute T (type).
This schema design can easily accommodate a heterogeneous graph where vertices
(edges) have different set of properties or data types of property values.

On the other hand, for a property graph with a homogeneous structure, you can store
graph data using a two-tables schema. With this approach, each vertex is stored as a
single row in a named vertex table, and each edge as a single row in a named edge
table. This way, each column in the row corresponds to a property with a fixed data
type. The in-memory analyst can then use this approach to construct and manage the
in-memory graphs.

Note:

The two-tables approach is mainly for providing graph data for the in-memory
analyst to existing Blueprints-based Java APIs, and text indexing does not
work with the two-tables approach.

Graph data change tracking is only available when the property graph
schema approach is used.

The following topics focus on how to create a property graph using a two-tables
schema, as well as how to execute read and write operations over this data.

* Preparing the Two-Tables Schema
e Storing Data in a Property Graph Using a Two-Tables Schema

* Reading Data from a Property Graph Using a Two-Tables Schema

A.1 Preparing the Two-Tables Schema

ORACLE

O acl ePropertyGraphUtil s. prepareTwoTabl esG aphVert exTab lets you customize
the schema of a vertex table using a two-tables schema to store all the vertices in

a graph. This operation requires a connection to an Oracle database, the table owner,
the table name, and two arrays specifying the property names and their data types.
By default, the table schema of the generated table includes the attribute VI D, which
represents the primary key of the table and is mapped to the vertex ID.

The following code snippet creates a vertex table using a two-tables schema. In

this case, the generated table enpl oyeesNodes will include four attributes: nane, age,
addr ess, and SSN (Social Security Number). The primary key of the vertex table is the
generated attribute VI D.

i nport oracl e. pgx. conmon. types. PropertyType,;
Li st<String> propertyNanes = new ArrayList<String>();
propertyNanes. addAl | (new String[4]{ "name", "age", "address", "SSN' });

Li st <PropertyType> = new ArraylLi st<PropertyType>();
propertyType. add(PropertyType. STRING ;
propertyType. add(PropertyType. | NTEGER) ;
propertyType. add(PropertyType. STRING ;
propertyType. add(PropertyType. STRING ;

A-2

ORACLE

Appendix A
Preparing the Two-Tables Schema

OraclePropertyGraphUtils._prepareTwoTablesGraphVertexTab(conn /*
Connection object */,

pg /* table owner */,

"employeesNodes'" /* vertex
table name */,

propertyNames /* property
names */,

propertyTypes /* property
data types */,

"pgts" /* table space */,

null /* storage options */,

true /* no logging */);

The preceding code produces a table schema as follows:

CREATE TABLE enpl oyeenodes
(VID nunber not null,
NAME nvar char 2(15000),
AGE int eger,
ADDRESS nvar char 2(15000),
SSN nvar char 2(15000) ,
CONSTRAI NT enpl oyenodes_pk PRI MARY KEY (VI D)

)

Similarly, Oracl ePropertyG aphUti | s. prepar eTwoTabl esG aphEdgeTab lets you
customize the schema of an edge table using a two-tables schema to store all the
edges in a graph. This operation requires a connection to an Oracle database, the
table owner, the table name, a two arrays specifying the property names and their
data types. By default, the table schema of the generated table includes the following
attributes: El D, which represents the primary key of the table and is mapped to the
edge ID; EL, which is mapped to the edge label; and SVI D and DVI D for the source and
destination vertex IDs, respectively.

The following code snippet creates an edge table using a two-tables schema. In this
case, the generated table or gani zat i onEdges will include the attribute named wei ght .
The primary key of the vertex table is the generated attribute El D, which is the default
attribute of the table schema, mapped to the vertices' ID (long value) values.

i nport oracl e. pgx. conmon. t ypes. PropertyType;
Li st<String> propertyNames = new ArrayList<String>();
propertyNames. addAl | (new String[1]{ "weight" });

Li st <PropertyType> = new Arrayli st <PropertyType>();
propertyType. add(PropertyType. DOUBLE) ;
OraclePropertyGraphUtils._prepareTwoTablesGraphEdgeTab(conn /*
Connection object */,

pg /* table owner */,

organizationEdges" /* edge
table name */,

propertyNames /* property
names */,

propertyTypes /* property
data types */,

"pgts” /* table space */,

A-3

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

null /* storage options */,
true /* no logging */);

The preceding code produces a table structure as follows:

CREATE TABLE or gani zat i onedges
(EI'D nunber not null,
SVI D nunber not null,
DVI D nunber not nul |,
EL nvarchar2(3100),
VEI GHT nunber,
CONSTRAI NT or gani zati onedges_pk PRI MARY KEY (El D)

)

Note that if the table already exists, both pr epar eTwoTabl esG aphEdgeTab and
prepar eTwoTabl esG aphEdgeTab will truncate the table contents.

A.2 Storing Data in a Property Graph Using a Two-Tables

Schema

ORACLE

To load a set of vertices into a vertex table using a two-tables schema, you can

use the API Oracl ePropertyGaphUils. witeTwoTabl esG aphVert exAndProperties.
This operation takes an array of Iterable (or Iterator) of TinkerPop Blueprints Vertex
objects, and reads out the ID and the values for the properties defined in the vertex
table schema. Based on this information, the vertex is later inserted as a new row

in the vertex table. Note that if a vertex does not include a property defined in the
schema, the value for that associated column is set to NULL.

The following code snippet creates a property graph enpl oyeesG aphDAL using the

O acl ePropertyG aph API, and loads two vertices and an edge. Then, it creates a
vertex table enpl oyeesNodes using a two-tables schema and populates it with the data
from the vertices in enpl oyeesG aphDAL. Note that the property emai | in the vertex v1
is not loaded into the enpl oyeesNode table because it is not defined in the schema.
Also, the property SSN for vertex v2 is set NULL because it is not defined in the vertex.

/1 Create enpl oyeesG aphDAL
i nport oracle. pg.rdbns. *;
Oracle oracle = new Oracl e(j dbcURL, username, password);
Oracl ePropertyG aph opgEnpl oyees

= Oracl ePropertyG aph. get | nst ance(oracl e,
"enpl oyeesG aphDAL") ;

Il Create vertex vl and assign it properties as key-value pairs
Vertex vl = opgEnpl oyees. addVertex(1l);

vl.setProperty("age", Integer.valueCO(31));
vl.setProperty("nanme", "Alice");

vl.setProperty("address", "Miin Street 12");
vl.setProperty("email", "alice@uymail.con);

v1.set Property("SSN', "123456789");

Vertex v2 = opgEnpl oyees. addVertex(2l);
v2.setProperty("age", Integer.valueO(27));
v2.set Property("nanme", "Bob");

v2.set Property("adress", "Sesane Street 334");

A-4

ORACLE

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

/1 Add edge el
Edge el = opgEnpl oyees. addEdge(1l, v1, v2, "managerOF");
el.setProperty("weight", 0.5d);

opgEnpl oyees. conmi t () ;

/1 Prepare the vertex table using a Two Tabl es schema

i nport oracl e. pgx. conmon. t ypes. PropertyType;

Li st<String> propertyNanes = new Arraylist<String>();
propertyNames. addAl | (new String[4]{ "name", "age", "address", "SSN' });

Li st <PropertyType> = new Arrayli st <PropertyType>();
propertyType. add(PropertyType. STRING) ;
propertyType. add(PropertyType. | NTEGER)
propertyType. add(PropertyType. STRING) ;
propertyType. add(PropertyType. STRING) ;

Connection conn
= opgEnpl oyees. get Oracl e(). cl one(). get Connection(); /* Cone the
connection
fromthe
property graph
i nstance
*/
OraclePropertyGraphUtils._prepareTwoTablesGraphVertexTab(conn /*
Connection object */,
pg /* table owner */,
"employeesNodes'" /* vertex
table name */,
propertyNames /* property
names */,
propertyTypes /* property
data types */,
"pgts" /* table space */,
null /* storage options */,
true /* no logging */);

/1 Get the vertices fromthe enpl oyeesDAL graph
Iterabl e<Vertex> vertices = opgEnpl oyees. get Vertices();

// Load the vertices into the vertex table using a Two-Tables schema
Connection[] conns = new Connection[1]; /* the connection array size
defines the
Degree of parallelism
(nul tithreading)
*/
conns[1] = conn
OraclePropertyGraphUtils._writeTwoTablesGraphVertexAndProperties(
conn /* Connectionobject */,
pg /* table owner */,
"employeesNodes" /* vertex
table name */,
1000 /* batch size*/,
new Iterable[]

A-5

ORACLE

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

{vertices} /* array of
vertex
iterables */);

To load a set of edges into an edge table using a two-tables schema, you can use

the APl Or acl ePropertyG aphUtils. witeTwoTabl esG aphEdgesAndProperti es. This
operation takes an array of Iterable (or Iterator) of Blueprints Edge objects, and reads
out the ID, EL, SVID, DVID, and the values for the properties defined in the edge table
schema. Based on this information, the edge is later inserted as a new row in the edge
table. Note that if an edge does not include a property defined in the schema, the
value for that given column is set to NULL.

The following code snippet creates a property graph enpl oyeesG aphDAL using the

O acl ePropert yG aph API, and loads two vertices and an edge. Then, it creates a
vertex table or gani zat i onEdges using a two-tables schema, and populates it with the
data from the edges in enpl oyeesG- aphDAL.

/1 Create enpl oyeesG aphDAL
i mport oracle. pg. rdbms. *;
Oracle oracle = new Oracl e(j dbcURL, username, password);
Oracl ePropertyG aph opgEnpl oyees

= Oracl ePropertyG aph. get | nst ance(oracl e,
"enmpl oyeesG aphDAL") ;

/I Create vertex vl and assign it properties as key-value pairs
Vertex vl = opgEnpl oyees. addVertex(1l);

vl.setProperty("age", Integer.valueOf(31));

v1.set Property("nane", "Alice");

vl.setProperty("address", "Main Street 12");
vl.setProperty("email", "alice@rymail.com');

v1.set Property("SSN', "123456789");

Vertex v2 = opgEnpl oyees. addVertex(2l);
v2.setProperty("age", Integer.valueO(27));
v2. set Property("nane", "Bob");

v2.set Property("adress", "Sesane Street 334");

/1 Add edge el
Edge el = opgEnpl oyees. addEdge(1l, v1, v2, "managerO");
el.setProperty("weight", 0.5d);

opgEnpl oyees. conmi t ();

/1 Prepare the edge table using a Two Tabl es schena
i nport oracl e. pgx. conmon. t ypes. PropertyType;
Connection conn
= opgEnpl oyees. get Oracl e().clone(). get Connection(); /*
C one the connection
from
the property graph

i nstance */

Li st<String> propertyNames = new ArrayList<String>();
propertyNames. addAl | (new String[1]{ "weight" });

A-6

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

Li st <PropertyType> = new Arrayli st <PropertyType>();
propertyType. add(PropertyType. DOUBLE) ;
OraclePropertyGraphUtils_prepareTwoTablesGraphEdgeTab(conn /*
Connection object */,

pg /* table owner */,

organizationEdges" /* edge
table name */,

propertyNames /* property
names */,

propertyTypes /* property
data types */,

"pgts" /* table space */,

null /* storage options */,

true /* no logging */);

/1 Get the edges fromthe enpl oyeesDAL graph
I terat or<Edge> edges = opgEnpl oyees. get Edges().iterator();

// Load the edges into the edges table using a Two-Tables schema
Connection[] conns = new Connection[1]; /* the connection array size
defines the

Degree of parallelism
(nul tithreading)

*/

conns[1] = conn
OraclePropertyGraphUtils._writeTwoTablesGraphVertexAndProperties(conn /*

Connection
object */,
pg /* table owner */,
"organizationEdges" /* edge
table
name
*/,
1000 /* batch size*/,
new lterator[] {edges} /*
array of
iterator of
edges */);

To optimize the performance of the storing operations, you can specify a set of flags
and hints when calling the wi t eTwoTabl esG aph APIs. These hints include:

* DOP: Degree of parallelism. The size of the connection array defines the degree
of parallelism to use when loading the data. This determines the number of chunks
to generate when reading the Iterables as well as the number of loader threads to
use when loading the data into the table.

» Batch Size: An integer specifying the batch size to use for Oracle update
statements in batching mode. A recommended batch size is 1000.

ORACLE e

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A.3 Reading Data from a Property Graph Using a Two-
Tables Schema

ORACLE

To read a subset of vertices from a vertex table using a two-tables schema, you can
use the API Oracl ePropertyG aphUtils. readTwoTabl esG aphVert exAndProperti es.
This operation returns an array of Resul t Set objects with all the rows found in the
corresponding splits of the vertex table. Each Resul t Set object in the array uses one
of the connections provided to fetch the vertex rows from the corresponding split. The
splits are determined by the specified number of total splits.

An integer ID (in the range of [0, N - 1]) is assigned to the splits in the vertex table
with N splits. This way, the subset of splits queried will consist of those splits with ID
value in the range between the start split ID and the start split ID plus the size of the
connection array. If the sum is greater than the total number of splits, then the subset
of splits queried will consist of those splits with ID in the range of [start split ID, N - 1].

The following code reads all vertices from a vertex table using a two-tables schema
using a total of 1 split. Note that you can easily create an array of Blueprints Vertex
Iterables by executing the APl on Oracl ePr opert yG aph. The vertices retrieved will
include all the properties defined in the vertex table schema.

ResultSet[] rsAr = readTwoTabl esG aphVert exAndProperties(conns,
"pg" /* table owner */,
"enpl oyeeNodes /*
vertex table
name
*/,

1 /* Total Splits*/,
0 /* Start Split);

Iterabl e<Vertex>[] vertices = getVerticesPartitioned(rsAr /* Result Set
array */,
true /* skip store

to cache */,
null /* vertex
filter
cal | back
*/,

null /*
optimzation flag */);

To optimize reading performance, you can specify the list of property names to retrieve
for each vertex read from the table.

The following code creates a property graph enpl oyeesG aphDAL using the
O acl ePropertyG aph API, and loads two vertices and an edge. Then, it creates a
vertex table enpl oyeNodes using a two-tables schema, and populates it with the data

A-8

ORACLE

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

from the vertices in enpl oyeesG aphDAL. Finally, it reads the vertices out of the vertex
table using only the name property.

/1 Create enpl oyeesG aphDAL
i mport oracl e. pg. rdbms. *;
Oracle oracle = new Oracl e(jdbcURL, username, password);
Oracl ePropertyG aph opgEnpl oyees

= Oracl ePropertyG aph. get | nst ance(or acl e,
"enpl oyeesG aphDAL") ;

/] Create vertex vl and assign it properties as key-value pairs
Vertex vl = opgEnpl oyees. addVertex(1l);

vl.setProperty("age", Integer.valueOi(31));

v1l.set Property("nane", "Alice");

vl.setProperty("address", "Main Street 12");
vl.setProperty("emil", "alice@rymail.con');
vl.setProperty("SSN', "123456789");

Vertex v2 = opgEnpl oyees. addVertex(2l);

v2.set Property("age", Integer.valued(27));
v2. set Property("nane", "Bob");

v2.set Property("adress”, "Sesane Street 334");

/1 Add edge el
Edge el = opgEnpl oyees. addEdge(1l, v1, v2, "managerO");
el.setProperty("weight", 0.5d);

opgEnpl oyees. commit ();

/1 Prepare the vertex table using a Two Tabl es schema

i mport oracl e. pgx. cormon. t ypes. PropertyType;

Li st<String> propertyNanes = new ArraylList<String>();

propertyNames. addAl | (new String[4]{ "name", "age", "address", "SSN' });

Li st <PropertyType> = new ArraylLi st <PropertyType>();
propertyType. add(PropertyType. STRING ;
propertyType. add(PropertyType. | NTEGER) ;
propertyType. add(PropertyType. STRING) ;
propertyType. add(PropertyType. STRING ;

Connection conn
= opgEnpl oyees. get Oracl e(). cl one(). get Connection(); /* Cone the
connection
fromthe
property graph
i nstance
*/
Oracl ePropertyGaphUtils. prepareTwoTabl esG aphVertexTab(conn /*
Connection object */,
pg /* table owner */,
"enpl oyeesNodes" /* vertex
tabl e name */,
propertyNames /* property
names */,
propertyTypes /* property

A-9

ORACLE

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

data types */
"pgts" /* table space */,
null /* storage options */,
true /* no logging */);

/1 CGet the vertices fromthe enpl oyeesDAL graph
Iterabl e<Vertex> vertices = opgEnpl oyees. get Vertices();

/1 Load the vertices into the vertex table using a Two Tables schena
Connection[] conns = new Connection[1]; /* the connection array size
defines the
Degree of parallelism

(mul tithreading)

*/
conns[1] = conn
Oracl ePropertyGaphUtils. witeTwoTabl esG aphVert exAndProperties(conn /*
Connection

object */,

pg /* table owner */,

"enpl oyeesNodes" /* vertex
tabl e nane */,

1000 /* batch size*/,

new | terabl e[]
{vertices} /* array of

vertex

iterables */);

/1 Read the vertices (using only name property)
Li st<String> vPropertyNames = new ArrayList<String>();
vPropertyNanmes. add(" nane");
ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,

"pg” /* table owner */,

"employeeNodes /*
vertex table

name

*/’

vPropertyNames /* list
of property

names */,
1 /* Total Splits*/,
0 /* Start Split);

Iterable<Vertex>[] vertices = getVerticesPartitioned(rsAr /* ResultSet
array */,

true /* skip store
to cache */,

null /* vertex
filter

callback

*/,

null /*
optimization flag */);

for (int idx = 0; vertices.length; idx++) {

A-10

ORACLE

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

Iterator<Vertex> it = vertices[idx].iterator();
while (it.hasNext()) {
Systemout.printin(it.next());

}
}

The preceding code produces output similar to the following:

Vertex 1D 1 {nane:str:Alice}
Vertex 1D 2 {nane:str: Bob}

To read a subset of edges from an edge table using a two-tables schema, you can use
the API Or acl ePropertyG aphUtil s. readTwoTabl esG aphEdgeAndPr operti es. This
operation returns an array of Resul t Set objects with all the rows found in the
corresponding splits of the vertex table. Each Resul t Set object in the array uses one
of the connections provided to fetch the vertex rows from the corresponding split. The
splits are determined by the specified number of total splits.

Similar to what is done for reading vertices, an integer ID (in the range of [0, N - 1]) is
assigned to the splits in the vertex table with N splits. The subset of splits queried will
consist of those splits with ID value in the range between the start split ID and the start
split ID plus the size of the connection array.

The following code creates a property graph enpl oyeesG aphDAL using the

O acl ePropert yG aph API, and loads two vertices and an edge. Then, it creates an
edge table or gani zat i onEdges using a two-tables schema, and populates it with the
data from the edges in enpl oyeesG aphDAL. Finally, it reads the edges out of table
using only the name weight.

/1 Create enpl oyeesG aphDAL
i nport oracle.pg.rdbns. *;
Oracle oracle = new Oracl e(jdbcURL, username, password);
Oracl ePropertyG aph opgEnpl oyees
= Oracl ePropertyG aph. get I nstance(oracl e,
"empl oyeesG aphDAL") ;

/Il Create vertex vl and assign it properties as key-value pairs
Vertex vl = opgEnpl oyees. addVertex(1l);

vl.setProperty("age", Integer.valueCO(31));
vl.setProperty("name", "Alice");

vl.setProperty("address", "Main Street 12");
vl.setProperty("enail", "alice@uyneail.cont);
vl.setProperty("SSN', "123456789");

Vertex v2 = opgEnpl oyees. addVertex(2l);

v2.set Property("age", Integer.valueO(27));
v2.set Property("name", "Bob");
v2.setProperty("adress", "Sesame Street 334");

/1 Add edge el
Edge el = opgEnpl oyees. addEdge(1l, v1, v2, "managerO");
el.setProperty("weight", 0.5d);

opgEnpl oyees. commi t () ;

A-11

ORACLE

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

/1 Prepare the edge table using a Two Tabl es schena

i nport oracl e. pgx. comrmon. t ypes. PropertyType;

Li st<String> propertyNames = new ArrayList<String>();
propertyNames. addAl | (new String[4]{ "weight" });

Li st <PropertyType> = new Arrayli st <PropertyType>();
propertyType. add(PropertyType. DOUBLE) ;

Connection conn
= opgEnpl oyees. get Oracl e(). cl one(). get Connection(); /*
C one the connection
from
the property graph

i nstance */
Oracl ePropertyGaphUtils. prepareTwoTabl esG aphEdgeTab(conn /*
Connection object */,
pg /* table owner */,
"organi zat i onEdges" /* edge

tabl e
name
*/,
propertyNames /* property
names */,

propertyTypes /* property
data types */

"pgts" /* table space */,

null /* storage options */,

true /* no logging */);

/] CGet the edges fromthe enpl oyeesDAL graph
I terabl e<Edge> edges = opgEnpl oyees. get Vertices();

/1 Load the vertices into the vertex table using a Two Tables schena
Connection[] conns = new Connection[1]; /* the connection array size
defines the
Degree of parallelism
(mul tithreading)
*/

conns[1] = conn

Oracl ePropertyGaphUtils. witeTwoTabl esG aphEdgeAndProperties(conn /*
Connection

object */,

pg /* table owner */,

organi zati onEdges" /* edge
tabl e name */,

1000 /* batch size*/,

new lterable[] {edges} /*
array of

edge

iterables */);

/1 Read the edges (using only weight property)

A-12

ORACLE

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

Li st<String> ePropertyNames = new ArrayList<String>();
ePropertyNanes. add("wei ght");
ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,

"pg" /* table owner */,

"organizationkEdges /*
edge table

name

*/’

ePropertyNames /* list
of property

names
*/

1 /* Total Splits*/,
0 /* Start Split);

Iterable<Edge>[] edges = getEdgesPartitioned(rsAr /* ResultSet array */,

true /* skip store
to cache */,

null /* edge
filter

callback

*/,

null /*
optimization flag */);

for (int idx = 0; edges.length; idx++) {
Iterator<kdge> it = edges[idx].iterator();
while (it.hasNext()) {
Systemout.printin(it.next());
}
}

The preceding code produces output similar to the following:

Edge ID 1 fromVertex ID 1 {} =[references]=> Vertex ID 2 {}
edgeKV[{wei ght: dbl : 0. 5}]

A-13

Index

A

ANALYZE_PG procedure, 8-2
automatic delta refresh, 3-49

C

CF procedure, 8-4
CF_CLEANUP procedure, 8-7
CF_PREP procedure, 8-9
CLEAR_PG procedure, 8-10
CLEAR_PG_INDICES procedure, 8-11
CLONE_GRAPH procedure, 8-11
collaborative filtering, 8-4, 8-7, 8-9
connected components

finding, 8-32
COUNT_TRIANGLE function, 8-12
COUNT_TRIANGLE_CLEANUP procedure, 8-13
COUNT_TRIANGLE_PREP procedure, 8-14
COUNT_TRIANGLE_RENUM function, 8-16
CREATE_EDGES_TEXT_IDX procedure, 8-17
CREATE_PG procedure, 8-18
CREATE_PG_SNAPSHOT_TAB procedure, 8-19
CREATE_PG_TEXTIDX_TAB procedure, 8-21
CREATE_STAT_TABLE procedure, 8-22
CREATE_SUB_GRAPH procedure, 8-23
CREATE_VERTICES _TEXT_IDX procedure,

8-24

D

DROP_EDGES_TEXT_IDX procedure, 8-26
DROP_PG procedure, 8-26

DROP_PG_VIEW procedure, 8-27
DROP_VERTICES_TEXT_IDX procedure, 8-27

E

F

FIND_CC_MAPPING_BASED procedure, 8-32
FIND_CLUSTERS_CLEANUP procedure, 8-33
FIND_CLUSTERS_PREP procedure, 8-34
FIND_SP procedure, 8-36
FIND_SP_CLEANUP procedure, 8-37
FIND_SP_PREP procedure, 8-38

G

geometries
getting, 8-39, 8-41
getting from longitude and latitude, 8-44
WKT, 8-48, 8-49
GET_BUILD_ID function, 8-39
GET_GEOMETRY_FROM_V_COL function,
8-39
GET_GEOMETRY_FROM_V_T_COLS function,
8-41
GET_LATLONG_FROM_V_COL function, 8-42,
8-45
GET_LATLONG_FROM_V_T_COLS function,
8-43
GET_LONG_LAT_GEOMETRY function, 8-44
GET_LONGLAT_FROM_V_T_COLS function,
8-46
GET_SCN function, 8-47
GET_VERSION function, 8-47
GET_WKTGEOMETRY_FROM_V_COL function,
8-48
GET_WKTGEOMETRY_FROM_V_T COLS
function, 8-49
GRANT_ACCESS procedure, 8-50

edge table statistics

exporting, 8-30

importing, 8-51
ESTIMATE_TRIANGLE_RENUM function, 8-28
EXP_EDGE_TAB_STATS procedure, 8-30
EXP_VERTEX_TAB_STATS procedure, 8-31

ORACLE

IMP_EDGE_TAB_STATS procedure, 8-51
IMP_VERTEX_TAB_STATS procedure, 8-52
in-memory Graph server (PGX), 3-1

Index-1

O

OPG_APIS package
ANALYZE_PG, 8-2
CF, 84
CF_CLEANUP, 8-7
CF_PREP, 8-9
CLEAR_PG, 8-10
CLEAR_PG_INDICES, 8-11
CLONE_GRAPH, 8-11
COUNT_TRIANGLE, 8-12
COUNT_TRIANGLE_CLEANUP, 8-13
COUNT_TRIANGLE_PREP, 8-14
COUNT_TRIANGLE_RENUM, 8-16
CREATE_EDGES_TEXT _IDX, 8-17
CREATE_PG, 8-18
CREATE_PG_SNAPSHOT_TAB, 8-19
CREATE_PG_TEXTIDX_TAB, 8-21
CREATE_STAT_TABLE, 8-22
CREATE_SUB_GRAPH, 8-23
CREATE_VERTICES_TEXT_IDX, 8-24
DROP_EDGES _TEXT_IDX, 8-26
DROP_PG, 8-26
DROP_PG_VIEW, 8-27
DROP_VERTICES_TEXT_IDX, 8-27
ESTIMATE_TRIANGLE_RENUM, 8-28
EXP_EDGE_TAB_STATS, 8-30
EXP_VERTEX_TAB_STATS, 8-31
FIND_CC_MAPPING_BASED, 8-32
FIND_CLUSTERS_CLEANUP, 8-33
FIND_CLUSTERS_PREP, 8-34
FIND_SP, 8-36
FIND_SP_CLEANUP, 8-37
FIND_SP_PREP, 8-38
GET_BUILD_ID, 8-39
GET_GEOMETRY_FROM_V_COL, 8-39

GET_GEOMETRY_FROM_V_T_COLS, 8-41
GET_LATLONG_FROM_V_COL, 8-42, 8-45

GET_LATLONG_FROM_V_T_COLS, 8-43
GET_LONG_LAT_GEOMETRY, 8-44
GET_LONGLAT_FROM_V_T_COLS, 8-46
GET_SCN, 8-47

GET_VERSION, 8-47
GET_WKTGEOMETRY_FROM_V_COL,

8-48

GET_WKTGEOMETRY_FROM_V_T_COLS,

8-49
GRANT_ACCESS, 8-50
IMP_EDGE_TAB_STATS, 8-51
IMP_VERTEX_TAB_STATS, 8-52
PR, 8-54
PR_CLEANUP, 8-56
PR_PREP, 8-57
PREPARE_TEXT_INDEX, 8-58
reference information, 8-1

ORACLE

OPG_APIS package (continued)
RENAME_PG, 8-59
SPARSIFY_GRAPH, 8-59
SPARSIFY_GRAPH_CLEANUP, 8-61
SPARSIFY_GRAPH_PREP, 8-62

OPG_GRAPHOP package
POPULATE_SKELETON_TAB, 9-1
reference information, 9-1

P

Index

page rank
calculating, 8-54
cleanup, 8-56
preparing to find, 8-57
PGQL (Property Graph Query Language), 5-1
PGX (in-memory Graph server), 3-1
POPULATE_SKELETON_TAB procedure, 9-1
PR procedure, 8-54
PR_CLEANUP procedure, 8-56
PR_PREP procedure, 8-57
PREPARE_TEXT_INDEX procedure, 8-58
property graph
cleanup after sparsifying, 8-61
clearing (removing data from), 8-10
cloning, 8-11
collaborative filtering, 8-4, 8-7, 8-9
creating, 8-18
dropping, 8-26
dropping view definition, 8-27
preparing to sparsify, 8-62
removing text index metadata, 8-11
renaming, 8-59
sparsifying, 8-59
property graph access privileges
grantnig, 8-50
Property Graph Query Language (PGQL), 5-1
property graph statistics table
creating, 8-22
property graph support
getting build ID, 8-39
getting SCN, 8-47
getting version, 8-47

R

RENAME_PG procedure, 8-59

S

shortest path
cleanup, 8-37
finding, 8-36
preparing to find, 8-38

Index-2

skeleton table

populating, 9-1
shapshot table

creating, 8-19
SPARSIFY_GRAPH procedure, 8-59
SPARSIFY_GRAPH_CLEANUP procedure, 8-61
SPARSIFY_GRAPH_PREP procedure, 8-62
statistics for property graph

analyzing, 8-2
subgraph

creating, 8-23

T

text index
on property graph edge table, 8-17
on property graph edge table (dropping),
8-26
on property graph vertex table, 8-24

ORACLE

Index

text index (continued)
on property graph vertex table (dropping),
8-27
preparing, 8-58
text index table
creating, 8-21
triangles
cleanup after counting, 8-13
counting, 8-12
counting and renumbering vertices, 8-16
estimating the number, 8-28
preparing to count, 8-14

V

vertex cluster mappings
preparing, 8-33, 8-34

vertex table statistics
exporting, 8-31
importing, 8-52

Index-3

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for This Guide
	1 Property Graph Support Overview
	1.1 About the Property Graph Feature of Oracle Database
	1.2 Property Graph Prerequisites
	1.3 Property Graph Features
	1.3.1 Property Graph Sizing Recommendations

	1.4 Security Best Practices with Graph Data
	1.5 Interactive Graph Shell
	1.6 Storing Graphs in Oracle Database and Loading Graphs into Memory
	1.6.1 Two-Tier Mode
	1.6.2 Three-Tier Mode

	1.7 Using Oracle Graph with the Autonomous Database
	1.7.1 Two-Tier Deployments of Oracle Graph with Autonomous Database
	1.7.2 Three-Tier Deployments of Oracle Graph with Autonomous Database

	1.8 Migrating Property Graph Applications from Before Release 21c
	1.9 Quick Start: Interactively Analyze Graph Data
	1.9.1 Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server (PGX)
	1.9.2 Quick Start: Create and Query a Graph in the Database, Load into In-Memory Graph Server (PGX) for Analytics
	1.9.2.1 Create and Query a Graph in the Database
	1.9.2.2 Load the Graph into Memory and Run Graph Analytics

	1.9.3 Quick Start: Executing PGQL Queries in SQLcl

	1.10 Managing Property Graphs With Python Client
	1.10.1 Installing the Python Client
	1.10.2 Using the Python Client
	1.10.2.1 Interactive Mode Using Python Shell
	1.10.2.2 Module Mode

	1.10.3 Troubleshooting the Python Client
	1.10.4 Uninstalling the Python Client

	2 Using Property Graphs in an Oracle Database Environment
	2.1 About Property Graphs
	2.1.1 What Are Property Graphs?
	2.1.2 What Is Oracle Database Support for Property Graphs?
	2.1.2.1 In-Memory Graph Server (PGX)
	2.1.2.2 Data Access Layer
	2.1.2.3 Options for Property Graph Architecture

	2.2 About Property Graph Data Formats
	2.2.1 GraphML Data Format
	2.2.2 GraphSON Data Format
	2.2.3 GML Data Format
	2.2.4 Oracle Flat File Format

	2.3 Property Graph Schema Objects for Oracle Database
	2.3.1 Property Graph Tables (Detailed Information)
	2.3.2 Default Indexes on Vertex (VT⁠$) and Edge (GE⁠$) Tables
	2.3.3 Flexibility in the Property Graph Schema

	2.4 Getting Started with Property Graphs
	2.4.1 Required Privileges for Database Users

	2.5 Using Java APIs for Property Graph Data
	2.5.1 Overview of the Java APIs
	2.5.1.1 Oracle Graph Property Graph Java APIs
	2.5.1.2 TinkerPop Java APIs
	2.5.1.3 Oracle Database Property Graph Java APIs

	2.5.2 Parallel Loading of Graph Data
	2.5.2.1 JDBC-Based Data Loading
	2.5.2.2 External Table-Based Data Loading
	2.5.2.3 SQL*Loader-Based Data Loading

	2.5.3 Parallel Retrieval of Graph Data
	2.5.4 Using an Element Filter Callback for Subgraph Extraction
	2.5.5 Using Optimization Flags on Reads over Property Graph Data
	2.5.6 Adding and Removing Attributes of a Property Graph Subgraph
	2.5.7 Getting Property Graph Metadata
	2.5.8 Merging New Data into an Existing Property Graph
	2.5.9 Opening and Closing a Property Graph Instance
	2.5.10 Creating Vertices
	2.5.11 Creating Edges
	2.5.12 Deleting Vertices and Edges
	2.5.13 Reading a Graph from a Database into an Embedded In-Memory Analyst
	2.5.14 Specifying Labels for Vertices
	2.5.15 Building an In-Memory Graph
	2.5.16 Dropping a Property Graph
	2.5.17 Executing PGQL Queries

	2.6 Managing Text Indexing for Property Graph Data
	2.6.1 Configuring a Text Index for Property Graph Data
	2.6.1.1 Configuring Text Indexes Using Oracle Text

	2.6.2 Using Automatic Indexes for Property Graph Data
	2.6.3 Using Manual Indexes for Property Graph Data
	2.6.4 Executing Search Queries Over a Property Graph’s Text Indexes
	2.6.4.1 Executing Search Queries Over a Text Index Using Oracle Text

	2.6.5 Handling Data Types
	2.6.5.1 Handling Data Types on Oracle Text

	2.6.6 Updating Configuration Settings on Text Indexes for Property Graph Data
	2.6.7 Using Parallel Query on Text Indexes for Property Graph Data
	2.6.7.1 Parallel Text Search Using Oracle Text

	2.7 Access Control for Property Graph Data (Graph-Level and OLS)
	2.7.1 Applying Oracle Label Security (OLS) on Property Graph Data

	2.8 Using the Groovy-Based Shell with Property Graph Data
	2.9 Using the Graph Zeppelin Interpreter Client
	2.10 Creating Property Graph Views on an RDF Graph
	2.11 Oracle Flat File Format Definition
	2.11.1 About the Property Graph Description Files
	2.11.2 Edge File
	2.11.3 Vertex File
	2.11.4 Encoding Special Characters
	2.11.5 Example Property Graph in Oracle Flat File Format
	2.11.6 Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat File
	2.11.7 Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph Flat Files

	3 Using the In-Memory Graph Server (PGX)
	3.1 PGX User Authentication and Authorization
	3.1.1 Prepare the Graph Server for Database Authentication
	3.1.2 Connect to the Server from JShell with Database Authentication
	3.1.3 Generate and Use a Token
	3.1.4 Read Data from the Database
	3.1.5 Token Expiration
	3.1.6 Advanced Access Configuration
	3.1.6.1 Customizing Roles and Permissions
	3.1.6.2 Adding and Removing Roles
	3.1.6.3 Defining Permissions for Individual Users

	3.1.7 Examples of Custom Authorization Rules
	3.1.8 Revoking Access to the Graph Server

	3.2 Reading Data from Oracle Database into Memory
	3.3 Keeping the Graph in Oracle Database Synchronized with the Graph Server
	3.3.1 Example of Synchronizing

	3.4 Configuring the In-Memory Analyst
	3.4.1 Specifying the Configuration File to the In-Memory Analyst

	3.5 Storing a Graph Snapshot on Disk
	3.6 Executing Built-in Algorithms
	3.6.1 About the In-Memory Analyst
	3.6.2 Running the Triangle Counting Algorithm
	3.6.3 Running the PageRank Algorithm

	3.7 Using Custom PGX Graph Algorithms
	3.7.1 Writing a Custom PGX Algorithm
	3.7.1.1 Collections
	3.7.1.2 Iteration
	3.7.1.3 Reductions

	3.7.2 Compiling and Running a PGX Algorithm
	3.7.3 Example Custom PGX Algorithm: PageRank

	3.8 Creating Subgraphs
	3.8.1 About Filter Expressions
	3.8.2 Using a Simple Filter to Create a Subgraph
	3.8.3 Using a Complex Filter to Create a Subgraph
	3.8.4 Using a Vertex Set to Create a Bipartite Subgraph

	3.9 Using Automatic Delta Refresh to Handle Database Changes
	3.9.1 Configuring the In-Memory Server for Auto-Refresh
	3.9.2 Configuring Basic Auto-Refresh
	3.9.3 Reading the Graph Using the In-Memory Analyst or a Java Application
	3.9.4 Checking Out a Specific Snapshot of the Graph
	3.9.5 Advanced Auto-Refresh Configuration

	3.10 Starting the In-Memory Analyst Server
	3.10.1 Configuring the In-Memory Analyst Server

	3.11 Deploying to Apache Tomcat
	3.11.1 About the Authentication Mechanism

	3.12 Deploying to Oracle WebLogic Server
	3.12.1 Installing Oracle WebLogic Server

	3.13 Connecting to the In-Memory Analyst Server
	3.13.1 Connecting with the In-Memory Analyst Shell
	3.13.1.1 About Logging HTTP Requests

	3.13.2 Connecting with Java
	3.13.3 Connecting with the PGX REST API

	3.14 Managing Property Graph Snapshots
	3.15 User-Defined Functions (UDFs) in PGX

	4 SQL-Based Property Graph Query and Analytics
	4.1 Simple Property Graph Queries
	4.2 Text Queries on Property Graphs
	4.3 Navigation and Graph Pattern Matching
	4.4 Navigation Options: CONNECT BY and Parallel Recursion
	4.5 Pivot
	4.6 SQL-Based Property Graph Analytics
	4.6.1 Shortest Path Examples
	4.6.2 Collaborative Filtering Overview and Examples

	5 Property Graph Query Language (PGQL)
	5.1 Creating a Property Graph using PGQL
	5.2 Pattern Matching with PGQL
	5.3 Edge Patterns Have a Direction with PGQL
	5.4 Vertex and Edge Labels with PGQL
	5.5 Variable-Length Paths with PGQL
	5.6 Aggregation and Sorting with PGQL
	5.7 Executing PGQL Queries Against the In-Memory Graph Server (PGX)
	5.7.1 Getting Started with PGQL
	5.7.2 Supported PGQL Features
	5.7.2.1 Limitations on Quantifiers
	5.7.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns

	5.7.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements
	5.7.4 Java APIs for Executing SELECT Queries
	5.7.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph Server (PGX)
	5.7.4.2 Executing SELECT Queries Against a PGX Session
	5.7.4.3 Iterating Through a Result Set
	5.7.4.4 Printing a Result Set

	5.7.5 Java APIs for Executing UPDATE Queries
	5.7.5.1 Executing UPDATE Queries against a Graph in the in-memory Graph Server (PGX)
	5.7.5.2 Executing UPDATE Queries Against a PGX Session
	5.7.5.3 Updatability of Graphs Through PGQL
	5.7.5.4 Altering the Underlying Schema of a Graph

	5.7.6 Security Tools for Executing PGQL Queries
	5.7.6.1 Using Bind Variables
	5.7.6.2 Using Identifiers in a Safe Manner

	5.7.7 Best Practices for Tuning PGQL Queries
	5.7.7.1 Memory Allocation
	5.7.7.2 Parallelism
	5.7.7.3 Query Plan Explaining

	5.8 Executing PGQL Queries Directly Against Oracle Database
	5.8.1 PGQL Features Supported
	5.8.1.1 Temporal Types
	5.8.1.2 Type Casting
	5.8.1.3 CONTAINS Built-in Function

	5.8.2 Creating Property Graphs through CREATE PROPERTY GRAPH Statements
	5.8.3 Dropping Property Graphs through DROP PROPERTY GRAPH Statements
	5.8.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL Queries
	5.8.4.1 Basic Query Execution
	5.8.4.2 Security Techniques for PGQL Queries
	5.8.4.2.1 Using Bind Variables in PGQL Queries
	5.8.4.2.2 Verifying PGQL Identifiers

	5.8.4.3 Using a Text Index with PGQL Queries
	5.8.4.4 Obtaining the SQL Translation for a PGQL Query
	5.8.4.5 Additional Options for PGQL Translation and Execution
	5.8.4.5.1 Query Options Controlled by Explicit Arguments
	5.8.4.5.2 Using the GT⁠$ Skeleton Table
	5.8.4.5.3 Path Query Options
	5.8.4.5.4 Options for Partial Object Construction

	5.8.4.6 Querying Another User’s Property Graph
	5.8.4.7 Using Query Optimizer Hints with PGQL

	5.8.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE Statements
	5.8.5.1 Additional Options for PGQL Statement Execution
	5.8.5.1.1 Turning Off PGQL Auto Commit
	5.8.5.1.2 Turning Off Cascading Deletion

	5.8.6 Performance Considerations for PGQL Queries

	6 Graph Visualization Application
	6.1 About the Graph Visualization Application
	6.2 How does the Graph Visualization Application Work
	6.3 Deploying Graph Visualization Application
	6.3.1 How to Deploy the Graph Visualization Application
	6.3.2 Deploying Graph Visualization Application in Oracle WebLogic Server

	6.4 Using GraphViz
	6.4.1 GraphViz Modes
	6.4.2 GraphViz Settings
	6.4.3 Using Live Search
	6.4.4 Using URL Parameters to Control GraphViz

	7 Spatial Support in Property Graphs
	7.1 Representing Spatial Data in a Property Graph
	7.2 Creating a Spatial Index on Property Graph Data
	7.3 Querying Spatial Data in a Property Graph

	8 OPG_APIS Package Subprograms
	8.1 OPG_APIS.ANALYZE_PG
	8.2 OPG_APIS.CF
	8.3 OPG_APIS.CF_CLEANUP
	8.4 OPG_APIS.CF_PREP
	8.5 OPG_APIS.CLEAR_PG
	8.6 OPG_APIS.CLEAR_PG_INDICES
	8.7 OPG_APIS.CLONE_GRAPH
	8.8 OPG_APIS.COUNT_TRIANGLE
	8.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP
	8.10 OPG_APIS.COUNT_TRIANGLE_PREP
	8.11 OPG_APIS.COUNT_TRIANGLE_RENUM
	8.12 OPG_APIS.CREATE_EDGES_TEXT_IDX
	8.13 OPG_APIS.CREATE_PG
	8.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB
	8.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB
	8.16 OPG_APIS.CREATE_STAT_TABLE
	8.17 OPG_APIS.CREATE_SUB_GRAPH
	8.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX
	8.19 OPG_APIS.DROP_EDGES_TEXT_IDX
	8.20 OPG_APIS.DROP_PG
	8.21 OPG_APIS.DROP_PG_VIEW
	8.22 OPG_APIS.DROP_VERTICES_TEXT_IDX
	8.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM
	8.24 OPG_APIS.EXP_EDGE_TAB_STATS
	8.25 OPG_APIS.EXP_VERTEX_TAB_STATS
	8.26 OPG_APIS.FIND_CC_MAPPING_BASED
	8.27 OPG_APIS.FIND_CLUSTERS_CLEANUP
	8.28 OPG_APIS.FIND_CLUSTERS_PREP
	8.29 OPG_APIS.FIND_SP
	8.30 OPG_APIS.FIND_SP_CLEANUP
	8.31 OPG_APIS.FIND_SP_PREP
	8.32 OPG_APIS.GET_BUILD_ID
	8.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL
	8.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
	8.35 OPG_APIS.GET_LATLONG_FROM_V_COL
	8.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS
	8.37 OPG_APIS.GET_LONG_LAT_GEOMETRY
	8.38 OPG_APIS.GET_LATLONG_FROM_V_COL
	8.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS
	8.40 OPG_APIS.GET_SCN
	8.41 OPG_APIS.GET_VERSION
	8.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL
	8.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS
	8.44 OPG_APIS.GRANT_ACCESS
	8.45 OPG_APIS.IMP_EDGE_TAB_STATS
	8.46 OPG_APIS.IMP_VERTEX_TAB_STATS
	8.47 OPG_APIS.PR
	8.48 OPG_APIS.PR_CLEANUP
	8.49 OPG_APIS.PR_PREP
	8.50 OPG_APIS.PREPARE_TEXT_INDEX
	8.51 OPG_APIS.RENAME_PG
	8.52 OPG_APIS.SPARSIFY_GRAPH
	8.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP
	8.54 OPG_APIS.SPARSIFY_GRAPH_PREP

	9 OPG_GRAPHOP Package Subprograms
	9.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB

	Supplementary Information for Property Graph Support
	A Handling Property Graphs Using a Two-Tables Schema
	A.1 Preparing the Two-Tables Schema
	A.2 Storing Data in a Property Graph Using a Two-Tables Schema
	A.3 Reading Data from a Property Graph Using a Two-Tables Schema

	Index

