Creates data load jobs
post
/data-tools/data-loads/
Creates data load jobs
Request
There are no request parameters for this operation.
Supported Media Types
- application/json
Nested Schema : data-load
Type:
Show Source
object
-
columns: array
columns
-
data_load_job_id: string
Name of data load jobExample:
SALES-LOAD-20220529-112233-4567
-
data_load_name: string
Descriptive name for data loadExample:
MY_LOAD_OF_SALES
-
format: object
format
DBMS_CLOUD.COPY_DATA formatting options
-
merge_keys: array
merge_keys
-
object_filter: string
Filter to select subset of filesExample:
*.csv
-
object_filter_type: string
Allowed Values:
[ "GLOB", "REGEX" ]
Type of matching for object_filterExample:GLOB
-
objects: array
data_load_objects
-
partition_column_name: string
Column name to partition table onExample:
FISCAL_YEAR
-
sql_statements: array
sql_statements
SQL statements to perform database operation
-
storage_link_name: string
Name of Cloud Storage LinkExample:
MY-BUCKET
-
table_exists_action: string
Allowed Values:
[ "SKIP", "APPEND", "TRUNCATE", "MERGE", "REPLACE" ]
Action to take when there is an existing table.Example:APPEND
-
table_name: string
Table name to loadExample:
SALES
-
table_schema: string
Database object schemaExample:
SH
-
target_type: string
Allowed Values:
[ "TABLE", "EXTERNAL_TABLE" ]
Type of database object to create.Example:TABLE
Nested Schema : columns
Type:
Show Source
array
Example:
[
{
"column_name":"RECEIVED_DATE",
"datatype":"DATE",
"columnId":1,
"format":"YYYY-MM-DD"
},
{
"column_name":"UNITS",
"datatype":"NUMBER",
"columnId":2,
"length":38
}
]
Nested Schema : format
Type:
object
DBMS_CLOUD.COPY_DATA formatting options
Example:
{
"delimiter":",",
"blankasnull":true,
"characterset":"AL32UTF8"
}
Nested Schema : merge_keys
Type:
Show Source
array
-
Array of:
string
Column name to merge on
Example:
[ 'RECORD_ID' ]
Nested Schema : data_load_objects
Type:
Show Source
array
Example:
[
{
"object_name":"sales1976.csv"
},
{
"object_name":"sales2009.csv"
},
{
"object_name":"sales2013.csv"
}
]
Nested Schema : sql_statements
Type:
array
SQL statements to perform database operation
Show Source
-
Array of:
string
SQL statement
Example:
[
"CREATE TABLE \"MYSCHEMA\".\"EXAMPLE_TABLE\"(\"ID\" NUMBER, \"DATE_RECV\" DATE);"
]
Nested Schema : column
Type:
Show Source
object
-
column_expression: string
Allowed Values:
[ "FILE$NAME", "PATH$NAME", "SYSTIMESTAMP" ]
Populate this column with data about the loadExample:SYSTIMESTAMP
-
column_expression_type: string
Allowed Values:
[ "SDO_AREA", "SDO_LENGTH", "SENTIMENT", "TRANSLATION", "KEY_PHRASE_EXTRACTION", "LANGUAGE_DETECTION" ]
Populate this column intelligently from another columnExample:SDO_LENGTH
-
column_id: integer
Column position in input fileExample:
2
-
column_name: string
Column name in tableExample:
UNITS
-
data_format: string
Data format for certain column typesExample:
YYYY-MM-DD
-
data_length: integer
Length or precision of columnExample:
40
-
data_precision: integer
Precision of data for certain column typesExample:
10
-
data_scale: integer
Scale of data for certain column typesExample:
2
-
data_type: string
Allowed Values:
[ "VARCHAR2", "CLOB", "NUMBER", "INTEGER", "FLOAT", "BINARY_FLOAT", "BINARY_DOUBLE", "DATE", "TIMESTAMP", "TIMESTAMP WITH TIME ZONE", "TIMESTAMP WITH LOCAL TIME ZONE", "NVARCHAR2", "NCLOB", "BOOLEAN", "VECTOR" ]
Data type of columnExample:NUMBER
-
field_name: string
Name of column in input fileExample:
customer name
-
geojson_tolerance: number
Level of precision for GEOJSon dataExample:
0.5
-
geojson_unit: string
Unit of GEOJson data for column from SDO_UNITS_OF_MEASURE tableExample:
KM
-
merge_key: boolean
If true, use this column as a merge key for merge operations
-
primary_key: boolean
Set this column to be the primary key for the table
-
skip_column: boolean
Set to true to not load this columnExample:
false
-
source_path: string
The JSON path expression for this columnExample:
$.EmpNo
Nested Schema : data_load_object
Type:
Show Source
object
-
object_name: string
Name of object to loadExample:
sales.csv
Response
201 Response
List of Data Loads
Nested Schema : data_load_job_ids
Type:
Show Source
array
-
Array of:
object data-load-job-id
ID of data load job
Nested Schema : data-load-job-id
Type:
object
ID of data load job
Show Source
-
data_load_job_id: string
Name of data load jobExample:
SALES-LOAD-20220529-112233-4567
204 Response
No content