Oracle® REST Data Services
Developer's Guide

Release 24.2
F99095-02
July 2024

ORACLE"

Oracle REST Data Services Developer's Guide, Release 24.2
F99095-02

Copyright © 2011, 2024, Oracle and/or its affiliates.

Primary Authors: Mamata Basapur, Chuck Murray, Tulika Das

Contributors: Kris Rice, Jeff D. Smith, Colm Divilly, Peter J. Obrien, Dermot O'Neill, Elizabeth Saunders, Ashley Chen,
Sharon Kennedy, Ganesh Pitchaiah, Jason Straub, Vladislav Uvarov

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience XVii
Documentation Accessibility XVii
Related Documents XVii
Conventions XVii

Changes in Release 24.2 Oracle REST Data Services Developer's Guide

Changes in Oracle REST Data Services 24.2 XiX
1 Introduction to Oracle REST Data Services

1.1 About Oracle REST Data Services 1-1

1.2 Features of Oracle REST Data Services 1-2

2 Developing Oracle REST Data Services Applications

2.1 Introduction to Relevant Software 2-2
2.1.1 Oracle APEX 2-2
2.1.2 RESTAPIs 2-2

2.2 Getting Started with RESTful Services 2-2
2.2.1 RESTful Services Terminology 2-3
2.2.2 ORDS RESTful Web Services Architecture Diagrams 2-3
2.2.3 About Request Path Syntax Requirements 2-5
2.2.4 "Getting Started" Documents Included in Installation 2-5
2.2.5 About cURL and Testing RESTful Services 2-6

2.3 Automatic Enabling of Schema Objects for REST Access (AutoREST) 2-6
2.3.1 Examples: Accessing Objects Using RESTful Services 2-8

2.3.1.1 Get Schema Metadata 2-8
2.3.1.2 Get Object Metadata 2-9
2.3.1.3 Get Object Data 2-10
2.3.1.4 Get Table Data Using Paging 2-12
2.3.1.5 Get Table Data Using Query 2-13
2.3.1.6 Get Table Row Using Primary Key 2-14

ORACLE" il

2.3.1.7 Insert Table Row

2.3.1.8 Update/Insert Table Row
2.3.1.9 Delete Using Filter
2.3.1.10 Post by Batch Load

2.3.2

Filtering in Queries

2.3.2.1 FilterObject Grammar
2.3.2.2 Examples: FilterObject Specifications

2.3.3

Auto PL/SQL

2.3.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects
2.3.3.2 Auto-Enabling the PL/SQL Objects

2.3.3.3 Generating the PL/SQL Endpoints

2.3.3.4 Resource Input Payload

2.3.3.5 Resource Payload Response
2.3.3.6 Function Return Value

234

Support for JSON-Relational Duality View

2.3.4.1 Table AutoREST Versus JSON-Relational Duality View AutoREST
2.3.4.2 Support for Enhanced ETag Matching
2.3.4.3 Enhanced JSON QBE (Query by Example) Filtering
2.3.4.4 Enhanced JSON Batch Loading
2.4 Manually Creating RESTful Services Using SQL and PL/SQL

24.1

About Oracle REST Data Services Mechanisms for Passing Parameters

2.4.1.1 Using JSON to Pass Parameters
2.4.1.2 Using Route Patterns to Pass Parameters

2.4.1.3 Using Query Strings for Optional Parameters

242

Using SQL/JSON Database Functions

2.4.2.1 Inserting Nested JSON Objects into Relational Tables
2.4.2.2 Generating Nested JSON Objects from Hierachical Relational Data
2.4.2.3 Testing the RESTful Services

2.5 Manually Creating RESTful Services Using Javascript

251
2.5.2
2.5.3
254
255

Allowed JavaScript Structures

Defining the REST Service and JavaScript Handler Using PL/SQL Function
About Executing SQL in Javascript

About Using the Fetch Function

Referencing MLE Environments

2.6 About Working with Dates Using Oracle REST Data Services

26.1
2.6.2
2.6.3

About Datetime Handling with Oracle REST Data Services
About Setting the Time Zone
Exploring the Sample RESTful Services in APEX (Tutorial)

2.7 Creating RESTful Web Services Using Database Actions

2.8 Configuring Secure Access to RESTful Services

28.1

Authentication

2.8.1.1 First Party Cookie-Based Authentication

ORACLE

2-15
2-16
2-17
2-17
2-18
2-19
2-22
2-27
2-27
2-28
2-31
2-32
2-32
2-33
2-33
2-33
2-34
2-35
2-35
2-36
2-37
2-37
2-42
2-46
2-47
2-47
2-52
2-55
2-57
2-57
2-59
2-60
2-62
2-63
2-65
2-65
2-66
2-67
2-72
2-72
2-72
2-72

2.8.1.2 Third Party OAuth 2.0-Based Authentication
2.8.2 About Privileges for Accessing Resources
2.8.3 About Users and Roles for Accessing Resources
2.8.4 About the File-Based User Repository
2.8.5 Tutorial: Protecting and Accessing Resources
2.8.5.1 OAuth Flows and When to Use Each
2.8.5.2 Assumptions for This Tutorial
2.8.5.3 Steps for This Tutorial
2.9 JWT Bearer Token Authentication and Authorization Using JWT Profile
2.9.1 About JSON Web Tokens (JWTs)
2.9.2 Prerequisites for JWT Authentication
2.9.3 Creating an ORDS JWT Profile
2.9.4 JWT Identity Provider Details
2.9.4.1 Parameters for Verifying JWT Signatures
2.9.4.2 JWT Scopes and ORDS Privileges
2.9.4.3 JWT Subject
2.9.5 Making Requests to ORDS Using a JWT Bearer Token
2.10 About Oracle REST Data Services User Roles

2.10.1 About Oracle APEX Users and Oracle REST Data Services Roles

2.10.1.1 Granting APEX Users Oracle REST Data Services Roles

2.10.1.2 Automatically Granting APEX Users Oracle REST Data Services Roles

2.10.2 Controlling RESTful Service Access with Roles
2.10.2.1 About Defining RESTful Service Roles
2.10.2.2 Associating Roles with RESTful Privileges

2.11 Authenticating Against WebLogic Server User Repositories

2.11.1 Authenticating Against WebLogic Server
2.11.1.1 Creating a WebLogic Server User
2.11.1.2 \Verifying the WebLogic Server User

2.12 Integrating with Existing Group/Role Models

2.12.1 About role-mapping.xml
2.12.1.1 Parameterizing Mapping Rules
2.12.1.2 Dereferencing Parameters
2.12.1.3 Indirect Mappings

2.13 Integrating Oracle REST Data Services and WebLogic Server

2.13.1 Configuring ORDS to Integrate with WebLogic Server

2.14 Using the Oracle REST Data Services PL/SQL API
2.14.1 Creating a RESTful Service Using the PL/SQL API
2.14.2 Testing the RESTful Service

2.15 Oracle REST Data Services Database Authentication

2.15.1 Installing Sample Database Scripts

2.15.2 Enabling the Database Authentication

2.15.3 Configuring the Request Validation Function

ORACLE

2-73
2-73
2-74
2-74
2-75
2-75
2-75
2-76
2-86
2-87
2-88
2-89
2-90
2-91
2-91
2-91
2-92
2-92
2-92
2-93
2-93
2-94
2-94
2-94
2-94
2-95
2-95
2-96
2-96
2-96
2-97
2-97
2-98
2-98
2-99
2-99
2-100
2-101
2-102
2-102
2-103
2-104

2.15.4 Testing the Database Authenticated User 2-104

2.15.5 Uninstalling the Sample Database Schema 2-105
2.16 Overview of Pre-hook Functions 2-105
2.16.1 Configuring the Pre-hook Function 2-106
2.16.2 Using a Pre-hook Function 2-106
2.16.3 Processing of a Request 2-106
2.16.4 Identity Assertion of a User 2-106
2.16.5 Aborting Processing of a Request 2-107
2.16.6 Ensuring Pre-hook is Executable 2-107
2.16.7 Exceptions Handling by Pre-hook Function 2-107
2.16.8 Pre-hook Function Efficiency 2-108
2.16.9 Pre-Hook Examples 2-108
2.16.9.1 Installing the Examples 2-108
2.16.9.2 Uninstalling the Examples 2-111

2.17 Generating Hyperlinks 2-112
2.17.1 Primary Key Hyperlinks 2-112
2.17.1.1 Composite Primary Keys 2-114

2.17.2 Arbitrary Hyperlinks 2-114
2.17.2.1 About the related Link Relation 2-115
2.17.2.2 URL Resolution 2-116

2.18 About HTTP Error Responses 2-119
2.18.1 About error.responseFormat 2-119
2.18.1.1 HTML Mode 2-119
2.18.1.2 json Mode 2-119
2.18.1.3 auto Mode 2-119

3 Implicit Parameters

3.1 List of Implicit Parameters 3-1
3.1.1 About the :body parameter 3-4
3.1.2 About the :body_text Parameter 3-5
3.1.3 About the :content_type Parameter 3-6
3.1.4 About the :current_user Parameter 3-6
3.1.5 About the :status_code Parameter 3-6
3.1.6 About the :forward_location Parameter 3-6
3.1.7 About the Pagination Implicit Parameters 3-8
3.1.7.1 About the :page_offset Parameter 3-9

3.1.7.2 About the :page_size Parameter 3-9

3.1.7.3 About the :row_offset Parameter 3-9

3.1.7.4 About the :row_count Parameter 39

3.1.7.5 About the :fetch_offset Parameter 3-10

3.1.7.6 About the :fetch_size Parameter 3-10

ORACLE

Vi

3.1.7.7 About Automatic Pagination 3-10
3.1.7.8 About Manual Pagination 3-10
4 ORDS PL/SQL Package Reference

4.1 ORDS.CREATE_ROLE 4-1
4.2 ORDS.CREATE_SERVICE 4-1
4.3 ORDS.DEFINE_HANDLER 4-4
4.4 ORDS.DEFINE_MODULE 4-6
45 ORDS.DEFINE_PARAMETER 4-7
4.6 ORDS.DEFINE_PRIVILEGE 4-9
4.7 ORDS.DEFINE_SERVICE 4-11
4.8 ORDS.DEFINE_TEMPLATE 4-14
49 ORDS.DELETE_MODULE 4-15
4.10 ORDS.DELETE_PRIVILEGE 4-16
4.11 ORDS.DELETE_ROLE 4-16
4.12 ORDS.DROP_REST_FOR_SCHEMA 4-17
4.13 ORDS.ENABLE_OBJECT 4-17
4.14 ORDS.DROP_REST_FOR_OBJECT 4-18
4.15 ORDS.ENABLE_SCHEMA 4-19
4.16 ORDS.PUBLISH_MODULE 4-20
4.17 ORDS.RENAME_MODULE 4-20
4.18 ORDS.RENAME_PRIVILEGE 4-21
4.19 ORDS.RENAME_ROLE 4-22
4.20 ORDS.SET_MODULE_ORIGINS_ALLOWED 4-22
421 ORDS.SET_URL_MAPPING 4-23
4.22 ORDS.SET_SESSION_DEFAULTS 4-24
4.23 ORDS.RESET_SESSION_DEFAULTS 4-24
4.24 ORDS.SET_PROPERTY 4-25
4.25 ORDS.UNSET_PROPERTY 4-25

5 Oracle REST Data Services Administration PL/SQL Package Reference

51
5.2
53
5.4
5.5
5.6
5.7
5.8
59

ORACLE

ORDS_ADMIN.CREATE_ROLE
ORDS_ADMIN.DEFINE_HANDLER
ORDS_ADMIN.DEFINE_MODULE
ORDS_ADMIN.DEFINE_PARAMETER
ORDS_ADMIN.DEFINE_PRIVILEGE
ORDS_ADMIN.DEFINE_SERVICE
ORDS_ADMIN.DEFINE_TEMPLATE
ORDS_ADMIN.DELETE_MODULE
ORDS_ADMIN.DELETE_PRIVILEGE

5-1
5-2
5-4
5-5
5-7
5-10
5-13
5-14
5-15

Vii

5.10 ORDS_ADMIN.DELETE_ROLE 5-15
5.11 ORDS_ADMIN.DROP_REST_FOR_SCHEMA 5-16
5.12 ORDS_ADMIN.ENABLE_OBJECT 5-16
5.13 ORDS_ADMIN.DROP_REST_FOR_OBJECT 5-18
5.14 ORDS_ADMIN.ENABLE_SCHEMA 5-18
5.15 ORDS_ADMIN.PUBLISH_MODULE 5-19
5.16 ORDS_ADMIN.RENAME_MODULE 5-20
5.17 ORDS_ADMIN.RENAME_PRIVILEGE 5-21
5.18 ORDS_ADMIN.RENAME_ROLE 5-21
519 ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED 5-22
5.20 ORDS_ADMIN.SET_URL_MAPPING 5-23
5.21 ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB 5-24
5.22 ORDS_ADMIN.DROP_HOUSEKEEPING_JOB 5-24
5.23 ORDS_ADMIN.PERFORM_HOUSEKEEPING 5-25
5.24 ORDS_ADMIN.SET_SESSION_DEFAULTS 5-25
5.25 ORDS_ADMIN.RESET_SESSION_DEFAULTS 5-26
5.26 ORDS_ADMIN.PROVISION_ADMIN_ROLE 5-26
5.27 ORDS_ADMIN.PROVISION_RUNTIME_ROLE 5-27
5.28 ORDS_ADMIN.UNPROVISION_ ROLES 5-27
5.29 ORDS_ADMIN.CONFIG_PLSQL_GATEWAY 5-28
5.30 ORDS_ADMIN.SET_PROPERTY 5-29
5.31 ORDS_ADMIN.SET_PROPERTY 5-30
5.32 ORDS_ADMIN.UNSET_PROPERTY 5-31
6 OAUTH PL/SQL Package Reference
6.1 OAUTH.CREATE_CLIENT 6-1
6.2 OAUTH.DELETE_CLIENT 6-3
6.3 OAUTH.GRANT_CLIENT_ROLE 6-3
6.4 OAUTH.RENAME_CLIENT 6-4
6.5 OAUTH.REVOKE_CLIENT_ROLE 6-5
6.6 OAUTH.UPDATE_CLIENT 6-5
6.7 OAUTH.ROTATE_CLIENT_SECRET 6-7
6.8 OAUTH.UPDATE_CLIENT_SECRET 6-8
6.9 OAUTH.IMPORT_CLIENT 6-9
6.10 OAUTH.CREATE_JWT_PROFILE 6-11
6.11 OAUTH.DELETE_JWT_PROFILE 6-12
7 OAUTH_ADMIN PL/SQL Package Reference
7.1 OAUTH_ADMIN.CREATE_JWT_PROFILE 7-1

ORACLE

viii

7.2 OAUTH_ADMIN.DELETE_JWT_PROFILE 7-3
8 Enabling ORDS Database API

8.1 Basic Setup to Enable ORDS Database API 8-1
8.2 Advanced Setup to Enable the ORDS Database API 8-2
8.2.1 Pluggable Database Lifecycle Management 8-3
8.2.2 Disabling PDB Lifecycle Management 8-3

8.3 Creating a Default Administrator 8-4
8.4 Configuration of Database APl Environment Services 8-4
8.5 Configuration of Database API with Open Service Broker API Compatible Platforms 8-5

9 REST-Enabled SQL Service

9.1 REST-Enabled SQL Service Terminology 9-1
9.2 Configuring the REST-Enabled SQL Service 9-2
9.3 Using cURL with REST-Enabled SQL Service 9-2
9.4 Getting Started with the REST-Enabled SQL Service 9-3
9.4.1 REST-Enabling the Oracle Database Schema 9-4
9.4.2 REST-Enabled SQL Authentication 9-4
9.4.3 REST-Enabled SQL Endpoint 9-4

9.5 REST-Enabled SQL Service Examples 9-5
9.5.1 POST Requests Using application/sql Content-Type 9-5
9.5.1.1 Using a Single SQL Statement 9-6

9.5.1.2 Using a File with cURL 9-7

9.5.1.3 Using Multiple SQL Statements 9-8

9.5.2 POST Requests Using application/json Content-Type 9-11
9.5.2.1 Using a File with cURL 9-11

9.5.2.2 Specifying the Limit Value in a POST Request for Pagination 9-13

9.5.2.3 Specifying the Offset Value in a POST Request for Pagination 9-14

9.5.2.4 Defining Binds in a POST Request 9-16

9.5.2.5 Specifying Batch Statements in a POST Request 9-20

9.5.3 Example POST Request with DATE and TIMESTAMP Format 9-23
9.5.4 Data Types and Formats Supported 9-24

9.6 REST-Enabled SQL Request and Response Specifications 9-29
9.6.1 Request Specification 9-29
9.6.2 Response Specification 9-31

9.7 Supported SQL, SQL*Plus, and SQLcl Statements 9-36
9.7.1 Supported SQL Statements 9-36
9.7.2 Supported PL/SQL Statements 9-37
9.7.3 Supported SQL*Plus Statements 9-37
9.7.3.1 Set System Variables 9-38

ORACLE

9.7.3.2 Show System Variables 9-39

9.7.4 Supported SQLcl Statements 9-40
9.8 REST-Enabled SQL Service and MySQL Database 9-40
9.8.1 Examples 9-40

10 GraphQL in Oracle REST Data Services

10.1 GraphQL Terminology 10-1
10.2 Enabling GraphQL in Oracle REST Data Services 10-1
10.3 Enabling Objects for GraphQL 10-2
10.3.1 Accessing Protected REST-Enabled Objects 10-2
10.4 Accessing Objects Using GraphQL queries 10-2
10.4.1 Getting GraphQL Schema 10-3
10.4.2 Simple Query 10-4
10.4.3 Join Query 10-5
10.4.3.1 Circular Relationships Between Objects 10-11

10.5 Examples of Filtering in Queries 10-13
10.5.1 Supported Data Types 10-13
10.5.2 Filtering by Primary Key 10-13
10.5.2.1 Filtering by Composite Primary Key 10-14

10.5.3 Where Filter 10-14
10.5.3.1 Example: EQUALS (eq) operator 10-16
10.5.3.2 Example: Greater than (>) Operator and Date Data Type 10-17
10.5.3.3 Example: LIKE (like) operator 10-17
10.5.3.4 Example: IN (in) operator 10-18
10.5.3.5 Example: NOT (not) Operator 10-18
10.5.3.6 Example: AND (and) operator 10-20
10.5.3.7 Example: OR (or) operator 10-22
10.5.3.8 Example: Where Filter in Children Types 10-22
10.5.3.9 Working with Dates/Timestamps Using Filters 10-24

10.6 Sorting the Data 10-27
10.6.1 Example: Sorting by Multiple Columns 10-28
10.7 Keyset Pagination 10-29
10.7.1 Example: Pagination with Other Filters 10-30
10.7.2 Example: Pagination in Nested Types 10-30
10.8 Using Dynamic Arguments in Queries: Variables 10-31
10.9 GraphiQL 10-32

11 Extending ORDS Functionality with Plugins

11.1 Plugin Demonstration Example 11-1
11.2 Embedding Graal JavaScript Component 11-1
ORACLE

11.3 Plugin Javascript 11-2
11.3.1 Example Services Purpose and Use 11-3
12 Migrating from mod_plsgl to ORDS
12.1 Oracle HTTP Server mod_plsqgl Authentication 12-1
12.2 Example Oracle HTTP Server DAD file 12-1
12.3 Mapping mod_plsqgl Settings to ORDS 12-3
12.4 Example ORDS Configuration Files 12-7
12.4.1 Example Configuration File for Basic Authentication 12-7
12.4.2 Example Configuration File for Basic Dynamic Authentication 12-7
12.4.3 Example Configuration file for Custom Authentication 12-8
12.5 Example ORDS URL Mapping 12-9
12.6 Example ORDS Default Configuration 12-9
12.7 Oracle REST Data Services Functionality 12-10
12.7.1 Basic Authentication 12-10
12.7.2 Basic Dynamic Authentication 12-10
12.7.3 Custom Authentication 12-10
12.8 ORDS Features 12-11
12.8.1 Request Validation Function 12-11
12.8.2 Pre Process Feature 12-12
12.8.3 Post Process Feature 12-12
12.8.4 File Upload Feature 12-12
12.8.5 Cross-Origin Resource Sharing Feature 12-13
12.8.6 Procedure Allow List 12-13
12.8.6.1 Configuring ORDS PL/SQL Gateway Allow List 12-13
12.9 Modifying Synonyms 12-15
A Setting-up a PL/SQL Gateway User
B Oracle REST Data Services Database Type Mappings
B.1 Oracle Built-in Types B-1
B.2 Handling Structural Database Types B-3
B.3 Oracle Geospacial Encoding B-5
B.4 Enabling Database Mapping Support B-5
C Troubleshooting Oracle REST Data Services
C.1 Enabling Detailed Request Error Messages C-1
C.2 ORDS User Defined Service C-1

ORACLE"

Xi

C.3 Configuring Oracle APEX Static Resources with Oracle REST Data Services C-12

D Third-Party License Information

D.1 Hack 3.003 D-1
D.2 Monaco Editor 0.44.0 D-2
D.3 babel-polyfill 7.20.15 D-3
D.4 gridstack.js 10.1.0 D-3
D.5 d3-flame-graph 4.1.3 D-4
D.6 Dexie 4.0.4 D-13
D.7 Jetty 10.0.21 D-17
D.8 jackson-core 2.16.1 D-29
D.9 Jakarta Activation API (JAF) 2.1.2 D-35
D.10 jackson-annotations 2.16.1 D-37
D.11 jackson-databind 2.16.1 D-42
D.12 graphgl-js 16.8.0 D-50
D.13 avsc5.7.3 D-51
D.14 D37.84 D-51
D.15 long.js5.2.0 D-67
D.16 SnappyJS 0.6.1 D-71
D.17 JavaScript Extension Toolkit (JET) 14.1.5 D-71
D.18 Commons FileUpload 1.5 D-86
D.19 opentelemetry-java 1.24.0 D-89
D.20 Google Guava 33.0.0 D-97
D.21 xml2js 0.6.2 D-104
D.22 Jansi2.4.1 D-105
D.23 commons-io 2.15.1 D-109
D.24 Join Monster 3.3.1 D-113
D.25 SheetJS 0.20.1 D-115
D.26 graphgl-compose 9.0.10 D-119
D.27 hotkeys-js 3.13.7 D-120
D.28 swagger-ui 5.17.12 D-121
D.29 Commons Compress 1.26.0 D-241
Index
ORACLE

Xii

List of Examples

2-1 Enabling the PL/SQL Function

2-2 Enabling the PL/SQL Procedure

2-3 Generating an Endpoint for the Stored Procedure

2-4 Package Procedure and Function Endpoints

2-5 Nested JSON Purchase Order with Nested Lineltems

2-6 PL/SQL Handler Code Used for a POST Request

2-7 GET Handler Code using Oracle REST Data Services Query on Relational Tables for
Generating a Nested JSON object

2-8 PL/SQL API Call for Creating a New test/:id Template and GET Handler in the demo Module

2-9

2-10 ACL Rule in the Database

2-11 Setting the Duser.timezone Java Environment Variable in Standalone Mode

2-12 Setting the Duser.timezone Java Environment Variable in a Java Application Server

2-13 Setting Enabled for all Pools

3-1 Example

6-1 Example to Add Multiple Privileges

9-1 Example cURL Command

9-2 Binds in POST Request

9-3 Complex Bind in POST Request

9-4 Batch statements

9-5 Batch bind values

9-6 Oracle REST Data services Time Zone Set as Europe/London

9-7 PL/SQL Statement

9-8 Script

9-9 Query

9-10 Export

12-1 dads.conf file

12-2 ords_conf/databases/basic_auth/pool.xml

12-3 ords_conf/databases/basic_dynamic_auth/pool.xml

12-4 ords_conf/databases/custom_auth/pool.xml

12-5 ords_conf/databases/basic_auth/paths

12-6 ords_conf/databases/basic_dynamic_auth/paths

12-7 ords_conf/databases/custom_auth/paths

12-8 ords_conf/global/settings.xml

12-9 security.requestValidationFunction

12-10 procedure.preProcess

ORACLE

2-28
2-29
2-31
2-31
2-49
2-50

2-54
2-55
2-57
2-62
2-67
2-67
2-104

6-7
9-2
9-16
9-18
9-20
9-21
9-23
9-37
9-41
9-42
9-44
12-2
12-7
12-7
12-8
12-9
12-9
12-9
12-9
12-12
12-12

Xiii

12-11 procedure.postProcess
12-12 Table upload
12-13 Procedure upload

12-14 Curl command for file upload

ORACLE

12-12
12-12
12-13
12-13

Xiv

List of Figures

1-1 ORDS Landing Page

2-1 Relationship Between Components of the ORDS RESTful Web Services

2-2 Architecture Diagram for a GET Operation

2-3 Selecting the Enable REST Service Option

2-4 Auto Enabling the PL/SQL Package Object

2-5 Adding an Anonymous PL/SQL Block to the Handler for the PUT Method

2-6 Setting the Bind Parameter |_salarychange to Pass for the PUT Method

2-7 Obtaining the URL to Call from the Details Tab

2-8 Displaying the Results from a SQL Query to Confirm the Execution of the PUT Method

2-9 Creating a Template Definition to Include a Route Pattern for Some Parameters or Bind Variables

2-10 Adding a SQL Query to the Handler

2-11 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method with
Some Required Parameter Values

2-12 Using Browser to Show the Results of Using a Query String to Send a GET Method with
Some Parameter Name/Value Pairs

2-13 Complete Response Body in JSON Format

2-14 Generating Nested JSON Objects

ORACLE

1-2
2-4
2-4

2-30

2-30

2-39

2-40

2-40

2-41

2-43

2-44

2-45

2-46

2-53
2-57

XV

List of Tables

2-1 Parameters for batchload

2-2 ORDS Request Object Properties

2-3 ORDS Response Object Functions

3-1 List of Implicit Parameters

3-2 Pagination Implicit Parameters

8-1 Open Service Broker Service Catalog

10-1 Supported Operators

12-1 Mappings of mod_plsql Directives to ORDS Settings
C-1 List of ORDS user defined service

ORACLE

2-17
2-58
2-59
3-1
3-8
8-5
10-15
12-3
C-2

XVi

Preface

Oracle REST Data Services Developer's Guide explains how to develop applications using
Oracle REST Data Services. (Oracle REST Data Services was called Oracle Application
Express Listener before Release 2.0.6.)

Topics:

* Audience

e Documentation Accessibility
* Related Documents

e Conventions

Audience

This document is intended for application developers who develop applications using Oracle
REST Data Services. This guide assumes you are familiar with web technologies, especially
REST (Representational State Transfer), and have a general understanding of Windows and
UNIX platforms.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information and resources relating to Oracle REST Data Services, see the following
the Oracle Technology Network (OTN) site:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Conventions

The following text conventions are used in this document:

ORACLE XVii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that is displayed on the screen, or text that you enter.

ORACLE Xviii

Changes in Release 24.2 Oracle REST Data
Services Developer's Guide

Changes in Oracle REST Data Services 24.2

New Features
Following new feature is included in Oracle REST Data Services release 24.2:

The JavaScript component must be embedded as a plugin to be able to run JavaScript as a
guest language in ORDS that is running in GraalVM for JDK version 21. See Embedding Graal
JavaScript Component.

Other Changes

Updated the following sections in this release:
About Setting the Time Zone.
Example ORDS Configuration Files
Example ORDS URL Mapping
Example ORDS Default Configuration

Third-Party License Information

ORACLE XiX

Introduction to Oracle REST Data Services

This chapter provides an overview of Oracle REST Data Services and its features.

Topics:
e About Oracle REST Data Services

» Features of Oracle REST Data Services

1.1 About Oracle REST Data Services

ORACLE

Oracle REST Data Services (ORDS) is the HTTPS Web Gateway for your Oracle Database,
which includes features such as Oracle Database Actions, Oracle APEX access, REST APIs
for your data and databases, Oracle Database API for MongoDB, and much more. Oracle
REST Data Services is a Java EE-based alternative for Oracle HTTP Server and mod plsql.
The Java EE implementation offers increased functionality including a command-line based
configuration, enhanced security, file caching, and RESTful web services. Oracle REST Data
Services also provides increased flexibility by supporting deployments using Oracle WebLogic
Server, Apache Tomcat, and a standalone mode.

The Oracle APEX architecture requires a web server to proxy requests between a web
browser and the Oracle APEX engine. Oracle REST Data Services Meets the requirement but
its use goes beyond that of Oracle APEX configurations. Oracle REST Data Services simplifies
the deployment process because there is no Oracle home required, as connectivity is provided
using an embedded JDBC driver.

Starting with release 23.2, ORDS provides a default landing page. The landing page displays
the main tools and also lets you know whether a particular tool is enabled or disabled. If a tool
is disabled, then you can click the help button (?) to navigate to the corresponding
documentation and get help to install or enable the tool.

1-1

Chapter 1
Features of Oracle REST Data Services

Figure 1-1 ORDS Landing Page

ORACLE REST Data Services

Oracle REST Data Services (ORDS) is the HTTPS Web Gateway for your Oracle
Database. Features include SQL Developer Web, Oracle APEX access, REST APls for
your data and databases, Oracle Database API for MongoDB, and much more.

e]X]6

SQL Developer Web Oracle APEX OAuth2 Administration

The features from your Fresmotidtsmast popular

favarita dackton toal far enterprise low-code Manage QRDS OAuth2
Oracle Databas?a U application platform for clients.
Ll scalable, secure enterprise
browserl
apps.
Schema

SChema1 GO @

Blogs Tutorials Videos Forums

1.2 Features of Oracle REST Data Services

ORACLE"

This section lists the features of Oracle REST Data Services (ORDS).

Database Actions

Database Actions, is a web-based interface that provides development, data tools,
administration, and monitoring features for Oracle Database. Additionally, ORDS is provided as
a managed feature of the Oracle Autonomous Database Cloud Services.

¢ See Also:

Database Actions Home Page
REST-Enabled SQL

REST-Enabled SQL is a REST API that allows for ad-hoc SQL and SQL Scripts to be
executed. You can POST one or more SQL statements to the service. The service then runs

1-2

https://docs.oracle.com/en/database/oracle/sql-developer-web/

ORACLE

Chapter 1
Features of Oracle REST Data Services

the SQL statements against Oracle Database and returns the results and output to the client in
a JSON format.

Note:
REST-Enabled SQL Service

Database REST APIs

ORDS includes a collection of more than 500 REST APIs for performing operations such as
monitoring and maintaining your Oracle Database, including PDB lifecycle management,
performance, security, data dictionary, data pump.

¢ See Also:
Enabling ORDS Database API

REST APIs

Provides the ability to define the REST APIs with SQL and PL/SQL. ORDS marshals SQL and
PL/SQL types to and from JSON, auto-paginates the results of your SQL queries, supports
GeoJSON for spatial, handles common database errors with appropriate HTTPS responses
and much more. Users can also choose to REST enable tables, views, and stored procedures
to take advantage of the AUtoREST feature.

¢ See Also:
ORDS REST APIs

PL/SQL Gateway

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server and
mod_plsgl. An Oracle HTTP Server mod_plsql application can be migrated to ORDS by
defining the new ORDS configuration files. The mod_plsqgl database resources such as before
procedures, after procedures, request validation functions, owa_custom packages, document
upload procedures and document tables require no change when you are migrating to ORDS.
PL/SQL gateway enables you to access your APEX applications from an application server
such as WebLogic or Tomcat.

¢ See Also:

About the Database Users Used by Oracle REST Data Services

1-3

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.4/orrst/index.html

Developing Oracle REST Data Services
Applications

ORACLE

This section explains how to develop applications that use Oracle REST Data Services
(ORDS).

¢ See Also:

If you want to get started quickly, you can try the tutorial in Oracle REST Data
Services Quick Start Guide.

Note:

e Ensure that you have installed and configured both Oracle APEX 4.2 or later, and
Oracle REST Data Services 3.0 or later, prior to attempting the examples
discussed in this chapter.

e Install the Oracle REST APIs prior to using the Oracle REST APIs for JSON Data
Persistence. See Oracle REST Data Services SODA for REST Developer's
Guide

e Refer to the Oracle APEX Documentation, if you are new to Oracle APEX.

Topics:

Introduction to Relevant Software

Getting Started with RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Manually Creating RESTful Services Using SQL and PL/SQL
Manually Creating RESTful Services Using Javascript

About Working with Dates Using Oracle REST Data Services
Creating RESTful Web Services Using Database Actions

Configuring Secure Access to RESTful Services

JWT Bearer Token Authentication and Authorization Using JWT Profile
About Oracle REST Data Services User Roles

Authenticating Against WebLogic Server User Repositories
Integrating with Existing Group/Role Models

Integrating Oracle REST Data Services and WebLogic Server

Using the Oracle REST Data Services PL/SQL API

2-1

https://docs.oracle.com/en/database/oracle/application-express/

Chapter 2
Introduction to Relevant Software

e Oracle REST Data Services Database Authentication
e Overview of Pre-hook Functions

e Generating Hyperlinks

e About HTTP Error Responses

2.1 Introduction to Relevant Software

This section explains some key relevant software for developing applications that use Oracle
REST Data Services.

Topics:
* Oracle APEX
e REST APIs

Related Topics
e About Oracle REST Data Services

2.1.1 Oracle APEX

ORDS makes your APEX applications available to the various application servers like
WebLogic Server or Tomcat, through the PL/SQL Gateway feature. It is a fully-supported, no-
cost option available with all editions of Oracle Database. Using only a web browser, you can
develop and deploy professional applications that are both fast and secure.

2.1.2 REST APIs

Representational State Transfer (REST) is a style of software architecture for distributed
hypermedia systems such as the World Wide Web. An API is described as RESTful when it
conforms to the tenets of REST. Although a full discussion of REST is outside the scope of this
document, a REST API has the following characteristics:

» Data is modelled as a set of resources. Resources are identified by URIs.

* A small, uniform set of operations are used to manipulate resources (for example, PUT,
POST, GET, DELETE).

* Aresource can have multiple representations (for example, a blog might have an HTML
representation and an RSS representation).

* Services are stateless and since it is likely that the client will want to access related
resources, these should be identified in the representation returned, typically by providing
hypertext links.

ORDS provides a built-in web application, SQL Developer Web, which is used to build, test,
document, and secure your REST APIs.

2.2 Getting Started with RESTful Services

ORACLE

This section introduces RESTful Services, and provides guidelines and examples for
developing applications that use RESTful Services.

Topics:

e RESTful Services Terminology

2-2

Chapter 2
Getting Started with RESTful Services

About Request Path Syntax Requirements

"Getting Started" Documents Included in Installation

About cURL and Testing RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Manually Creating RESTful Services Using SQL and PL/SQL

About Working with Dates Using Oracle REST Data Services

Related Topics

Developing Oracle REST Data Services Applications

2.2.1 RESTful Services Terminology

This section introduces some common terms that are used throughout this document:

RESTful service: An HTTP web service that conforms to the tenets of the RESTful
architectural style.

Resource module: An organizational unit that is used to group related resource
templates.

Resource template: An individual RESTful service that is able to service requests for
some set of URIs (Universal Resource Identifiers). The set of URIs is defined by the URI
Pattern of the Resource Template

URI pattern: A pattern for the resource template. Can be either a route pattern or a URI
template, although you are encouraged to use route patterns.

Route pattern: A pattern that focuses on decomposing the path portion of a URI into its
component parts. For example, a pattern of /:object/:1d? will match /emp/101 (matches
a request for the item in the emp resource with id of 101) and will also match /emp/
(matches a request for the emp resource, because the :id parameter is annotated with

the 2 modifier, which indicates that the id parameter is optional).

For a detailed explanation of route patterns, see docs\javadoc\plugin-api\route-
patterns.html, under <sqldeveloper-install>\ords and under the location (if any)
where you manually installed Oracle REST Data Services.

URI template: A simple grammar that defines the specific patterns of URIs that a given
resource template can handle. For example, the pattern employees/{id} will match any
URI whose path begins with employees/, such as employees/2560.

Resource handler: Provides the logic required to service a specific HTTP method for a
specific resource template. For example, the logic of the GET HTTP method for the
preceding resource template might be:

select empno, ename, dept from emp where empno = :id

HTTP operation: HTTP (HyperText Transport Protocol) defines standard methods that can
be performed on resources: GET (retrieve the resource contents), POST (store a new
resource), PUT (update an existing resource), and DELETE (remove a resource).

Related Topics

REST APIs

2.2.2 ORDS RESTful Web Services Architecture Diagrams

This section describes the ORDS RESTful web services architecture diagrams.

ORACLE

2-3

Chapter 2
Getting Started with RESTful Services

The following diagram illustrates the relationship between the different components of the
ORDS RESTful Web Services architecture:

Figure 2-1 Relationship Between Components of the ORDS RESTful Web Services

Key

° o o [Module
Database Schema ~-—------ ORDS Modules |-------— ORDS Templates ——————- ORDS Handlers
(1] (1) (1] [] Template

[] Handler

The Database Schema is the schema that you have REST-enabled. It can contain several
resource modules. Similarly, a resource module, which is the top-level container for the REST
Services offered by ORDS, can contain several resource templates. The resource templates
are represented by the trailing part of the URL. Every resource template can contain four
resource handlers, namely, GET, POST, PUT, and DELETE.

After you create a RESTful Web Service, you can test it by entering the following URL in your
browser:

https://<HOSTNAME: PORT>/<CONTEXT>/<DATABASE SCHEMA ALIAS>/<MODULE_ BASE URI>/
<TEMPLATE URI>/

Where:

° HOSTNAME:PORT/CONTEXT: Specifies the address at which ORDS is running. You can also
refer to it as the ORDS Base URI.

* DATABASE SCHEMA ALIAS: Specifies the name that you provided while REST-enabling your
database schema. By default, it is the name of the schema in lowercase.

* MODULE BASE URI: Specifies the URI of the module.

* TEMPLATE URI: Specifies the URI of the template. This value, along with the
MODULE BASE URI, comprises the ORDS Endpoint URL.

The following diagram illustrates how a GET operation is performed:

Figure 2-2 Architecture Diagram for a GET Operation

ORDS Base URI ORDS Endpoint URL

https://<HOSTNAME:PORT>/ <CONTEXT>/ || <DATABASE_SCHEMA _ALIAS>/ .|| <MODULE_BASE_URI>/ | | <TEMPLATE_URI>/

@z (https://<localhost:8080>/) (ords/) (hr)) @pi/) (employeas/)

In this case, you will enter the following URL in your browser to perform the GET operation:

https://localhost:8080/ords/hr/api/employees/

ORACLE 4

Chapter 2
Getting Started with RESTful Services

2.2.3 About Request Path Syntax Requirements

To prevent path-based attacks, Oracle REST Data Services performs a number of validation
checks on the syntax of the path element of each request URL.

Each path must conform to the following rules:

* Is not empty or whitespace-only

* Does not contain any of the following characters: ?, #, ;, %

* Does not contain the null character (\u0000)

* Does not contain characters in the range: \u0001-\u0031

* Does not end with white space or a period (.)

* Does not contain double forward slash (//) or double back slash(\\)

* Does not contain two or more periods in sequence (.., ..., and So on)
e Total length is {@value #MAX_PATH_LENGTH]} characters or less

* Does not match any of the following names (case insensitive), with or without file
extensions: CON, PRN, AUX, CLOCK$, NUL, COMO, COM1, COM2, COM3, COM4,
COM5, COM6, COM7, COM8, COM9, LPTO, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6,
LPT7, LPT8, LPT9

If you intend to auto-REST enable objects, then avoid object names that do not comply with
these requirements. For example, do not create a table named #EMPS. If you do want to auto-
REST enable objects that have non-compliant names, then you must use an alias that
complies with the requirements.

These requirements are applied to the URL decoded form of the URL, to prevent attempted
circumvention of percent encodings.

2.2.4 "Getting Started" Documents Included in Installation

ORACLE

When you install Oracle REST Data Services, an examples folder is created with subfolders
and files that you may find helpful. The installation folder hierarchy includes this:

ords
conf
docs
examples
soda
getting-started

In this hierarchy:

* examples\soda: Contains sample JSON documents used in some examples included in
Oracle REST Data Services SODA for REST Developer's Guide.

* examples\getting-started: Double-click index.html for a short document about how to
get started developing RESTful Services using Oracle REST Data Services. This
document focuses on using SQL Developer to get started. (SQL Developer is the primary
tool for managing Oracle REST Data Services. For example, the ability to auto-enable
REST support for schemas and tables is available only in SQL Developer.)

2-5

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

2.2.5 About cURL and Testing RESTful Services

Other sections show the testing of RESTful Services using a web browser. However, another
useful way to test RESTful Services is using the command line tool named cURL.

This powerful tool is available for most platforms, and enables you to see and control what
data is being sent to and received from a RESTful service.

curl -1 https://server:port/ords/workspace/hr/employees/7369

This example produces a response like the following:

HTTP/1.1 200 OK

Server: Oracle-REST-Data-Services/2.0.6.78.05.25
ETag: "..."

Content-Type: application/json
Transfer-Encoding: chunked

Date: Thu, 28 Mar 2014 16:49:34 GMT

{
"empno":7369,
"ename" :"SMITH",
"Job": "CLERK",
"mgr":7902,
"hiredate":"1980-12-17T08:00:00Z",
"sal":800,
"deptno":20
}

The -1 option tells cURL to display the HTTP headers returned by the server.

Related Topics
* Exploring the Sample RESTful Services in APEX (Tutorial)

See Also:

curl - command line tool and library
The example in this section uses cURL with the services mentioned in Exploring the
Sample RESTful Services in APEX (Tutorial)

2.3 Automatic Enabling of Schema Objects for REST Access
(AutoREST)

ORACLE

Enabling REST access to a table, view or PL/SQL function, procedure, or package allows it to
be accessed through RESTful services.

AUtoREST is a quick and easy way to expose database tables as REST resources. You lose
some flexibility and customizability if you use the AutoREST feature, but it reduces your time
and effort to a significant extent. AutoRest lets you quickly expose data but (metaphorically)
keeps you on a set of guide rails. For example, you cannot customize the output formats or the
input formats, or do extra validation.

2-6

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

On the other hand, manually created resource modules require you to specify the SQL and
PL/SQL to support the REST resources. Using resource modules requires more effort, but
offers more flexibility; for example, you can customize what fields are included, do joins across
multiple tables, and validate the incoming data using PL/SQL.

So, as an application developer you must make a choice: use the "guide rails" of AutoREST, or
create a resource module to do exactly what you need. If you choose AutoREST, you can just
enable a table (or set of tables) within a schema.

Note that enabling a schema is not equivalent to enabling all tables and views in the schema. It
just means making Oracle REST Data Services aware that the schema exists and that it may
have zero or more resources to expose to HTTP. Those resources may be AutoREST
resources or resource module resources.

If you are using Database Actions or SQL Developer, you can AUTOREST enable the
database objects with convenient wizards. REST Data Services also provides an ORDS
PL/SQL package that can be used to enable objects for REST.

Note:

This feature is only available for Oracle REST Data Services enabled schemas and
not for Oracle APEX workspaces.

¢ See Also:
ORDS.ENABLE_OBJECT

To enable Oracle REST Data Services access to one or more specified tables, views, or
PL/SQL programs, you can do the following in SQL Developer:

1. Enable the schema (the one associated with the connection) for REST access.

Schema level: To enable Oracle REST Data Services access to selected objects (that you
specify in the next step) in the schema associated with a connection, right-click its name in
the Connections navigator and select REST Services, then Enable REST Services. Once
the schema is enabled, you can use that schema or user to login to SQL Developer Web
and REST Enable objects in your schema using the web interface.

(To drop support for Oracle REST Data Services access to objects in the schema
associated with a connection, right-click its name in the Connections navigator and select
REST Services, then Drop REST Services.)

2. Individually enable REST access for the desired objects.

Table or view level: To enable Oracle REST Data Services access to a specified table or
view, right-click its name in the Connections navigator and select Enable REST Services.

3. Schema Alias: You can alias the schema in the URIs for your REST APIs. This prevents
your AP| consumers from knowing your database user accounts.

4. Authorization Required: This protects the API Catalog endpoints for your schema. If you
enable this option, then the requests to the metadata-catalog endpoint on your schema will
require authorization.

For detailed usage information, click the Help button in the wizard or dialog box in SQL
Developer.

2-7

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

2.3.1 Examples: Accessing Objects Using RESTful Services

This section provides examples of using Oracle REST Data Services queries and other
operations against tables and views after you have REST-enabled them.

You can automatically expose table and view objects as RESTful services using SQL
Developer. This topic provides examples of accessing these RESTful services.

Tip:

Although these examples illustrate the URL patterns used to access these resources,
clients should avoid hard coding knowledge of the structure of these URLSs; instead
clients should follow the hyperlinks in the resources to navigate between resources.
The structure of the URL patterns may evolve and change in future releases.

This topic provides examples of accessing objects using RESTful Services.

* Get Schema Metadata

e Get Object Metadata

e Get Object Data

* Get Table Data Using Paging

* Get Table Data Using Query

* Get Table Row Using Primary Key
* Insert Table Row

* Update/lnsert Table Row

* Delete Using Filter

e Post by Batch Load

2.3.1.1 Get Schema Metadata

ORACLE

This example retrieves a list of resources available through the specified schema alias. It
shows RESTful services that are created by automatically enabling a table or view, along with
RESTful Services that are created by resource modules.

This example retrieves a list of resources available through the specified schema alias.
Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/

Result:
{
"items": [
{
"name": "EMP",
"links": [
{
"rel": "describes",

"href": "http://localhost:8080/ords/ordstest/emp/"
I

2-8

}

{

b
{

{

]

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AuUtoREST)

"rel": "canonical",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/",
"mediaType": "application/json"

]

"name": "oracle.examples.hello",
"links": [
"rel": "describes",

"href": "http://localhost:8080/ords/ordstest/examples/hello/"

"rel": "canonical",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/hello/",
"mediaType": "application/json"

14

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 2,
"links": [
"rel": "self",

b
{

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/"

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/"

The list of resources includes:

Resources representing tables or views that have been REST enabled.

Resources defined by resource modules. Note that only resources having a concrete path
(that is, not containing any parameters) will be shown. For example, a resource with a path
of /module/some/path/ will be shown, but a resource with a path of /module/

some/ :parameter/ will not be shown.

Each available resource has two hyperlinks:

The link with relation describes points to the actual resource.

The link with relation canonical describes the resource.

2.3.1.2 Get Object Metadata

This example retrieves the metadata (which describes the object) of an individual object. The
location of the metadata is indicated by the canonical link relation.

ORACLE

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/
<ObjectAlias>/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/emp/

2-9

Result:
{
"name": "EMP",
"primarykey": [
"empnoll
1,
"members": [
{
"name": "empno",
"type": "NUMBER"
I
{
"name": "ename",
"type": "VARCHAR2"
I
{
"name": lljob"’
"type": "VARCHAR2"
I
{
"name": llmgr"’
"type": "NUMBER"
I
{
"name": "hiredate",
"typell: "DATE"
b
{
"name": "sal",
"type": "NUMBER"
I
{
"name": "comm",
"type": "NUMBER"
I
{
"name": "deptno",
"type": "NUMBER"
}
1,
"links": [
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/",
"mediaType": "application/json"
I
{
"rel": "canonical",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

"rel":
"href":

2.3.1.3 Get Object Data

Chapter 2

Automatic Enabling of Schema Objects for REST Access (AutoREST)

"describes",
"http://localhost:8080/ords/ordstest/emp/"

This example retrieves the data in the object. Each row in the object corresponds to a JSON
object embedded within the JSON array

ORACLE

2-10

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
Example: GET http://localhost:8080/ords/ordstest/emp/

Result:

{

"items": [
{
"empno": 7499,
"ename": "ALLEN",
"job": "SALESMAN",

"mgr": 7698,
"hiredate": "1981-02-20T00:00:00Z",
"sal": 1600,
"comm": 300,
"deptno": 30,
"links": [
{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7499"

"empno": 7934,
"ename": "MILLER",
"job": "CLERK",
"mgr": 7782,
"hiredate": "1982-01-23T00:00:002",
"sal": 1300,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"
}
1
}
]I
"hasMore": false,

"limit": 25,
"offset": O,
"count": 13,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/"
}I

{

"rel": "edit",

"href": "http://localhost:8080/ords/ordstest/emp/"
}I

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
}I

{

"rel": "first",

"href": "http://localhost:8080/ords/ordstest/emp/"
}

2-11

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

2.3.1.4 Get Table Data Using Paging

This example specifies the of fset and 1imit parameters to control paging of result data.

ORACLE

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
offset=<0ffset>&limit=<Limit>

Example: GET http://localhost:8080/ords/ordstest/emp/?0ffset=10&1limit=5

Result:

{
"items":

{

[

"empno": 7900,
"ename": "JAMES",

uj ob":
"mgr" :

"CLERK",
7698,

"hiredate": "1981-12-03T00:00:002",

"sal":
"comm"

950,

: null,

"deptno": 30,
"links": [

{

"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7900"

"empno": 7934,
"ename": "MILLER",

uj ob":
"mgr" :

"CLERK",
7782,

"hiredate": "1982-01-23T00:00:002",

"sal":

"comm" :

1300,
null,

"deptno": 10,
"links": [

{

"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"

}
]
}
]I

"hasMore": false,

"limit":

"offset":

"count":
"links":
{

"ral":

"href":

b
{

"ral":

"href":

5!
10,

3!

[

"self",
"http://localhost:8080/ords/ordstest/emp/"
"edit",

"http://localhost:8080/ords/ordstest/emp/"

2-12

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

}l
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
}l
{
"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp/?1limit=5"
}l
{
"rel": "prev",
"href": "http://localhost:8080/ords/ordstest/emp/?0ffset=5&limit=5"
}
]
}

2.3.1.5 Get Table Data Using Query

This example specifies a filter clause to restrict objects returned.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: GET http://localhost:8080/ords/ordstest/emp/?g={"deptno":{"$1lte":20}}
Result:

{

"items": [
{
"empno": 7566,
"ename": "JONES",
"job": "MANAGER",

"mgr": 7839,
"hiredate": "1981-04-01T23:00:00z",
"sal": 2975,
"comm": null,
"deptno": 20,
"links": [
{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7566"

"empno": 7934,
"ename": "MILLER",
"Job": "CLERK",
"mgr": 7782,
"hiredate": "1982-01-23T00:00:00z2",
"sal": 1300,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"
}
]
}

ORACLE 513

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

1
"hasMore": false,

"limit": 25,
"offset": 0,
"count": 7,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/?

q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

I

{

"rel": "edit",

"href": "http://localhost:8080/ords/ordstest/emp/?

q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}l

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
}l

{

"rel": "first",

"href": "http://localhost:8080/ords/ordstest/emp/?

q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}
]

2.3.1.6 Get Table Row Using Primary Key

ORACLE

This example retrieves an object by specifying its identifying key values.

Note:

e If a table does not have a primary key, then ORDS uses the ROWID to uniquely
address the rows.

e The primary keys are not compatible with a REST interface if they meet any of
the following characteristics:

— End with a period

— Contain // or \\

— Begin with /

— Contains two or more periods in sequence (For example: .., ...)

— Contains any of the following characters: “<”,“>" " " 1|" 4" " vy . or [“0fp”
Requests that contain such primary keys returns HTTP 400 Bad Request as
a response. If the primary keys contain any of the preceding incompatible
characters, then it is recommended to have a secondary key that does not
conflict with the link generation rules.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/<KeyValues>
Where <KeyValues> is a comma-separated list of key values (in key order).

Example: GET http://localhost:8080/ords/ordstest/emp/7839

2-14

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Result:

{
"empno": 7839,
"ename": "KING",
"job": "PRESIDENT",
"mgr": null,
"hiredate": "1981-11-17T00:00:002",
"sal": 5000,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7839"
}I
{
"rel": "edit",
"href": "http://localhost:8080/ords/ordstest/emp/7839"

"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}I
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
]
}

2.3.1.7 Insert Table Row

ORACLE

This example inserts data into the object. The body data supplied with the request is a JSON
object containing the data to be inserted.

If the object has a primary key, then the POST request can include the primary key value in the
body. Or, if the table has an IDENTITY CLAUSE, sequence or trigger, then the primary key
column may be omitted. If the table does not have a primary key, then the ROWID of the row is
used as the item's identifier.

If the object lacks a trigger to assign primary key values, then the PUT operation described in
next section,Updatel/lnsert Table Row should be used instead.

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/

Example:

curl -i -H "Content-Type: application/json" -X POST -d "{ \"empno\" :7, \"ename\":
\"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/ordstest/emp/
Content-Type: application/json

{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:

{

"empno": 7,
"ename": "JBOND",
lljob": "SPY"’

"mgr": null,
"hiredate": null,

2-15

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"sal": null,
"comm": null,

"deptno": 11,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7"
}l
{
"rel": "edit",
"href": "http://localhost:8080/ords/ordstest/emp/7"
}l
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}l
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
]
}

2.3.1.8 Update/Insert Table Row

ORACLE

This example inserts or updates (sometimes called an "upsert") data in the object. The body
data supplied with the request is a JSON object containing the data to be inserted or updated.

Pattern: PUT http://<HOST>:<PORT>/ords/<SchemalAlias>/<ObjectAlias>/<KeyValues>
Example:

curl -1 -H "Content-Type: application/json" -X PUT -d "{ \"empno\" :7, \"ename\":
\"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/ordstest/emp/7

Content-Type: application/json

{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:

{

"empno": 7,
"ename": "JBOND",
lljobﬂ: "SPYH’

"mgr": null,
"hiredate": null,
"sal": null,
"comm": null,

"deptno": 11,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7"

}I

{

"rel": "edit",

"href": "http://localhost:8080/ords/ordstest/emp/7"

}I

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}I

2-16

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
]
}

2.3.1.9 Delete Using Filter

This example deletes object data specified by a filter clause.

Pattern: DELETE http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: curl -i -X DELETE "http://localhost:8080/ords/ordstest/emp/?
g={"deptno":11}"

Result:

{
"itemsDeleted": 1

}

2.3.1.10 Post by Batch Load

This example inserts object data using the batch load feature. The body data supplied with the
request is a CSV file. The behavior of the batch operation can be controlled using the optional
query parameters, which are described in Table 2-1.

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/batchload?
<Parameters>

Parameters:

Table 2-1 Parameters for batchload

___|]
Parameter Description

batchesPerCommit Sets the frequency for commits. Optional commit points can be set after a
batch is sent to the database. The default is every 10 batches. 0 indicates
commit deferred to the end of the load. Type: Integer.

batchRows Sets the number of rows in each batch to send to the database. The default is
50 rows per batch. Type: Integer.

dateFormat Sets the format mask for the date data type. This format is used when
converting input data to columns of type date. Type: String.

delimiter Sets the field delimiter for the fields in the file. The default is the comma (,).

enclosures embeddedRightDouble

errors Sets the user option used to limit the number of errors. If the number of errors

exceeds the value specified for errorsMax (the service option) or by errors
(the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be allowed (up to
errorsMax value), specify UNLIMITED (-1) .

ORACLE 2-17

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AuUtoREST)

Table 2-1 (Cont.) Parameters for batchload

. __|
Parameter Description

errorsMax A service option used to limit the number of errors allowed by users. It
intended as an option for the service provider and not to be exposed as a user
option. If the number of errors exceeds the value specified for errorsMax (the
service option) or by errors (the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be allowed,
specify UNLIMITED (-1).

lineEnd Sets the line end (terminator). If the file contains standard line end characters
(\r. \r\n or \n), then 1ineEnd does not need to be specified.

lineMax Sets a maximum line length for identifying lines/rows in the data stream. A
lineMax value will prevent reading an entire stream as a single line when the
incorrect 1ineEnd character is being used. The default is unlimited.

locale Sets the locale.
responseEncoding Sets the encoding for the response stream.
responseFormat Sets the format for response stream. This format determines how messages

and bad data will be formatted. Valid values: RAW, SQL.

timestampFormat Sets the format mask for the time stamp data type. This format is used when
converting input data to columns of type time stamp.

timestampTZFormat Sets the format mask for the time stamp time zone data type. This format is
used when converting input data to columns of type time stamp time zone.

truncate Indicates if and/or how table data rows should be deleted before the load.
False (the default) does not delete table data before the load; True causes
table data to be deleted with the DELETE SQL statement; Truncate causes
table data to be deleted with the TRUNCATE SQL statement.

Example:

POST http://localhost:8080/ords/ordstest/emp/batchload?batchRows=25
Content-Type: text/csv

empno, ename, job,mgr,hiredate, sal, comm,deptno

0,M, SPY MAST,,2005-05-01 11:00:01,4000,,11
7,J.BOND, SPY,0,2005-05-01 11:00:01,2000,,11
9,R.Cooper, SOFTWARE, 0,2005-05-01 11:00:01,10000,,11
26,Max,DENTIST,0,2005-05-01 11:00:01,5000,,11

Result:

#INFO Number of rows processed: 4
#INFO Number of rows in error: 0
#INFO Elapsed time: 00:00:03.939 - (3,939 ms) 0 - SUCCESS: Load processed without errors

2.3.2 Filtering in Queries

ORACLE

This section describes and provides examples of filtering in queries against REST-enabled
tables and views.

Filtering is the process of limiting a collection resource by using a per-request dynamic filter
definition across multiple page resources, where each page contains a subset of items found in
the complete collection. Filtering enables efficient traversal of large collections.

2-18

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

To filter in a query, include the parameter g=FilterObject, where FilterObject is a JSON object
that represents the custom selection and sorting to be applied to the resource. For example,
assume the following resource:

https://example.com/ords/scott/emp/

The following query includes a filter that restricts the ENAME column to "JOHN":

https://example.com/ords/scott/emp/?q={"ENAME" : "JOHN" }

2.3.2.1 FilterObject Grammar

The FilterObject must be a JSON object that complies with the following syntax:

FilterObject { orderby , asof, wmembers }

The orderby, asof, and wmembers attributes are optional, and their definitions are as follows:

orderby
"Sorderby": {orderByMembers}

orderByMembers
orderByProperty
orderByProperty , orderByMembers

orderByProperty
columnName : sortingValue
columnName : sortingNulls
columnName : sortingValues

sortingValues
[sortingValue]
[sortingNulls]
[sortingValue, sortingNulls]
[sortingNulls, sortingValue]

sortingNulls
"NULLS FIRST"
"NULLS LAST"
sortingValue
"ASC"
"DESC"
ll_lll
lllll
-1
1
asof
"Sasof": date
"Sasof": "datechars"

"Sasof": scn
"Sasof": +int

wmembers
wpair
wpair , wmembers

wpair
columnProperty
complexOperatorProperty

ORACLE 519

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

columnProperty

columnName : string

columnName : number

columnName : date

columnName : simpleOperatorObject
columnName : complexOperatorObject

columnName : [complexValues]
columnName
"\p{Alpha} [[\p{Alpha}]] ([[\p{Alnum}]#S$])*$"

complexOperatorProperty
complexKey : [complexValues]
complexKey : simpleOperatorObject

complexKey
"$and"
"$O]f"

complexValues
complexValue , complexValues

complexValue
simpleOperatorObject
complexOperatorObject
columnObject

columnObject
{columnProperty}

simpleOperatorObject
{simpleOperatorProperty}

complexOperatorObject
{complexOperatorProperty}

simpleOperatorProperty

"Seq" : string | number | date
"Sne" : string | number | date
"S1t" : number | date
"Slte" : number | date

"Sgt" : number | date
"Sgte" : number | date
"Sinstr" : string
"Sninstr" : string
"$like" : string

"Snull" : null

"Snotnull" : null
"Sbetween" : betweenValue

betweenValue
[null , betweenNotNull]
[betweenNotNull , null]
[betweenRegular , betweenRegular]

betweenNotNull
number

date

betweenRegular
string

ORACLE" 2.90

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

number
date

Data type definitions include the following:

string
JSONString
number
JSONNumber
date
{"Sdate":"datechars"}
scn
{"Sscn": +int}

Where:

datechars is an RFC3339 date format in UTC (Z)

JSONString
" chars "
chars
char
char chars
char
any-Unicode-character except-"-or-\-or-control-character
\ll
\\
\/
\b
\f
\n
\r
\t
\u four-hex-digits
JSONNumber
int
int frac
int exp
int frac exp
int
digit
digitl-9 digits
- digit
- digitl-9 digits
frac
. digits
exp
e digits
digits
digit
digit digits
e
e
et
a-
E
E+
E_

ORACLE 291

Chapter 2

Automatic Enabling of Schema Objects for REST Access (AutoREST)

The FilterObject must be encoded according to Section 2.1 of RFC3986.

2.3.2.2 Examples: FilterObject Specifications

ORACLE

The following are examples of operators in FilterObject specifications.

ORDER BY property ($orderby)
Order by with literals
{
"Sorderby": {"SALARY": "ASC","ENAME":"DESC"}
}
Order by with numbers
{
"Sorderby": {"SALARY": -1,"ENAME": 1}
}
Order by with nulls first
{
"Sorderby": {"SALARY": ["ASC", "NULLS FIRST"]}
}
Order by with nulls last
{
"Sorderby": ({"SALARY": ["ASC", "NULLS LAST"]}
}
ASOF property ($asof)
With SCN (Implicit)
{
"Sasof": 1273919
}
With SCN (Explicit)
{
"Sasof": {"$scn": "1273919"}
}
With Date (Implicit)
{
"Sasof": "2014-06-30T00:00:002"
}
With Date (Explicit)
{
"Sasof": {"S$Sdate": "2014-06-30T00:00:002"}
}

EQUALS operator ($eq)

(Implicit and explicit equality supported.

2-22

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Implicit (Support String and Dates too)
{

"SALARY": 1000

}
Explicit

{

"SALARY": {"Seq": 1000}
}
Strings

{

"ENAME": {"$eq":"SMITH"}
}

Dates

"HIREDATE": {"S$date": "1981-11-17T08:00:00Z"}

NOT EQUALS operator ($ne)
Number

{

"SALARY": {"S$Sne": 1000}
}
String

{

"ENAME": {"S$ne":"SMITH"}

}

Dates

"HIREDATE": {"S$ne": {"S$date":"1981-11-17T08:00:00Z"}}

LESS THAN operator ($1t)
(Supports dates and numbers only)
Numbers

"SALARY": {"$1t": 10000}

Dates

"SALARY": {"$1t": {"$date":"1999-12-17T08:00:00Z"}}

ORACLE 503

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

LESS THAN OR EQUALS operator ($lte)
(Supports dates and numbers only)

Numbers
"SALARY": {"S$lte": 10000}

Dates

"HIREDATE": {"S$lte": {"$date":"1999-12-17T08:00:00Z2"}}
}

GREATER THAN operator ($gt)
(Supports dates and numbers only)
Numbers

"SALARY": {"$gt": 10000}

Dates

"SALARY": {"$gt": {"$date":"1999-12-17T08:00:00Z"}}

GREATER THAN OR EQUALS operator ($gte)
(Supports dates and numbers only)

Numbers

"SALARY": {"$gte": 10000}

Dates

"HIREDATE": {"S$Sgte": {"$date":"1999-12-17T08:00:00Z2"}}

In string operator ($instr)
(Supports strings only)

{
"ENAME": {"$instr":"MC"}

Not in string operator ($ninstr)
(Supports strings only)

{
"ENAME": {"$ninstr":"MC"}

2-24

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

LIKE operator ($like)
(Supports strings. Eescape character not supported to try to match expressions with _ or
% characters.)

"ENAME": {"$like":"AX%"}

BETWEEN operator ($between)
(Supports string, dates, and numbers)

Numbers

"SALARY": {"$between": [1000,2000]}

Dates

"SALARY": {"Sbetween": [{"$date":"1989-12-17T08:00:00z"},
{"$date":"1999-12-17T08:00:00Z"}]}
}

Strings
{

"ENAME" : {"$between": ["A","C"] }
}

Null Ranges ($lte equivalent)
(Supported by numbers and dates only)

{
"SALARY": {"$between": [null,2000]}

}

Null Ranges ($gte equivalent)
(Supported by numbers and dates only)

{
"SALARY": {"$between": [1000,null]}

NULL operator ($null)
{

"ENAME": {"$null": null}
}

NOT NULL operator ($notnull)

{
"ENAME": {"$notnull": null}

AND operator ($and)
(Supports all operators, including $and and S$or)

ORACLE o

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Column context delegation
(Operators inside $and will use the closest context defined in the JSON tree.)

{

"SALARY": {"$and": [{"Sgt": 1000}, {"$1t":4000}1}
Column context override
(Example: salary greater than 1000 and name like S%)
{

"SALARY": {"$and": [{"Sgt": 1000}, {"ENAME": {"$like":"S%"}} 1 }

Implicit and in columns

"SALARY": [{"$gt": 1000}, {"$1t":4000}]

High order AND

(A1l first columns and or high order operators -- $and and $Sors -- defined at the first
level of the JSON will be joined and an implicit AND)

(Example: Salary greater than 1000 and name starts with S or T)

{

"SALARY": {"$gt": 1000},

"ENAME": {u$or": [{"$like":"S%"}, {"$like":"T%"}]}
Invalid expression (operators $1t and $gt lack column context)
{

"Sand": [{"S$1t": 5000}, {"S$gt": 1000}]

Valid alternatives for the previous invalid expression

"Sand": [{"SALARY": {"$1t": 5000}}, {"SALARY": {"$gt": 1000}}]

"SALARY": [{"$1t": 5000}, {"$gt": 1000}

"SALARY": {"$and": [{"S$1t": 5000}, {"$gt": 1000}1}

OR operator ($or)
(Supports all operators including $and and $or)

Column context delegation
(Operators inside S$or will use the closest context defined in the JSON tree)

{
"ENAME" : {"$or": [{"$eq":"SMITH“},{"$eq":"KING"}]}

2-26

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

}

Column context override
(Example: name starts with S or salary greater than 1000)

{
"SALARY": {"$or": [{"Sgt": 1000}, {"ENAME": {"$like":"S%"}} 1 }
}

2.3.3 Auto PL/SQL

This section explains how PL/SQL is made available through HTTP(S) for Remote Procedure
call (RPC).

The auto PL/SQL feature uses a standard to provide consistent encoding and data transfer in a
stateless web service environment. Using this feature, you can enable Oracle Database stored
PL/SQL functions and procedures at package level through Oracle REST Data Services,
similar to how you enable the views and tables.

Auto Enabling PL/SQL Subprograms

Oracle REST Data Services supports auto enabling of the following PL/SQL objects, based on
their catalog object identifier:

e PL/SQL Procedure
e PL/SQL Function
e PL/SQL Package

The functions, and procedures within the PL/SQL package cannot be individually enabled as
they are named objects within a PL/SQL package object. Therefore, the granularity level
enables the objects at the package level. This granularity level enables to expose all of its
public functions and procedures.

If you want to only enable a subset of functions and procedures, then you must create a
separate delegate package and enable it to expose only that subset of functions and
procedures.

Note:

Overloaded package functions and procedures are not supported.

2.3.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects

ORACLE

This section discusses the method and content-type supported by this feature.

The auto enabling of the PL/SQL Objects feature supports POST as the HTTP method. In
POST method, input parameters are encoded in the payload and output parameters are
decoded from the response.

< Note:

The standard data CRUD to HTTP method mappings are not applicable as this
feature provides an RPC-style interaction.

2-27

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

The content-type supported is application/json.

2.3.3.2 Auto-Enabling the PL/SQL Objects

This section explains how to auto-enable the PL/SQL objects through Oracle REST Data
Services.

You can enable the PL/SQL obijects in one of the following ways:
e Auto-Enabling Using the PL/SQL API
e Auto-Enabling the PL/SQL Objects Using SQL Developer

2.3.3.2.1 Auto-Enabling Using the PL/SQL API

You can enable a PL/SQL object using the Oracle REST Data Services PL/SQL API.

To enable the PL/SQL package, use the Oracle REST Data Services PL/SQL API as shown in
following sample code snippet:

BEGIN
ords.enable object (

p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY PKG',
p_object type => 'PACKAGE',
p_object alias => 'my pkg',
p_auto _rest auth => FALSE);
commit;

END;

/

Example 2-1 Enabling the PL/SQL Function

To enable the PL/SQL function, use the Oracle REST Data Services PL/SQL API as shown in
following sample code snippet:

BEGIN

ords.enable object (
p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY FUNC',
p_object type => 'FUNCTION',
p object alias => 'my func',
p_auto rest auth => FALSE);

commit;
END;
/

ORACLE 508

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Example 2-2 Enabling the PL/SQL Procedure

To enable the PL/SQL procedure, use the Oracle REST Data Services PL/SQL API as shown
in following sample code snippet:

BEGIN

ords.enable object (
p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY PROC',
p _object type => 'PROCEDURE',
p object alias => 'my proc',
p_auto rest auth => FALSE);

commit;
END;

2.3.3.2.2 Auto-Enabling the PL/SQL Objects Using SQL Developer

ORACLE

This section describes how to enable the PL/SQL objects using SQL Developer 4.2 and above.

To enable the PL/SQL objects (for example, package) using SQL Developer, perform the
following steps:

Note:

You can now enable, packages, functions and procedures. However, the granularity
of enabling is either at the whole package level, standalone function level, or at the
standalone procedure level.

1. In SQL Developer, right-click on a package as shown in the following figure:

2-29

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Figure 2-3 Selecting the Enable REST Service Option

- [ifj Packages
=] i
re Edit.
{#5E Edit Body.
H GE E;purt.
e 4 U g Debug Cul+ShifF10
REST Develogpment | Sompile Siag
Compile for Debug Cal+Shif-Fa
[| W | "
&S = Run.. Cal-Fin
[REST Data Services
Compare With]
Qrder Members By ¥
Drop Package...
Grant...
Revake...
Un Test Save Package Spec and Body...
a Uit Tests Enable REST Service...
[Mot conneacted Use as Ternplate. ..
Synchronize Specficgtion and Body...
3 Code Qutline
Dueck DOL]

Select Enable RESTful Services to display the following wizard page:

Figure 2-4 Auto Enabling the PL/ISQL Package Object

Enable ohject

=

regstry_oky

Authorization required ||

hExt >

i

ORACLE"

2-30

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

« Enable object: Enable this option (that is, enable REST access for the package).
* Object alias: Accept registry pkg for the object alias.
e Authorization required: For simplicity, disable this option.

e Onthe RESTful Summary page of the wizard, click Finish.

2.3.3.3 Generating the PL/SQL Endpoints

ORACLE

HTTP endpoints are generated dynamically per request for the enabled database objects.
Oracle REST Data Services uses the connected database catalog to generate the endpoints
using a query.

The following rules apply for all the database objects for generating the HTTP endpoints:

« All names are converted to lowercase

* An endpoint is generated if it is not already allocated

Stored Procedure and Function Endpoints

The function or procedure name is generated into the URL in the same way as tables and
views in the same namesspace.

Example 2-3 Generating an Endpoint for the Stored Procedure

CREATE OR REPLACE PROCEDURE MY SCHEMA.MY PROC IS
BEGIN

NULL;
END;

Following endpoint is generated:

http://localhost:8080/ords/my schema/my proc/

Example 2-4 Package Procedure and Function Endpoints

The package, function, and procedure endpoints are generated with package name as a
parent. Endpoints for functions and procedures that are not overloaded or where the lowercase
name is not already in use are generated.

If you have a package, MY_PKG as defined in the following code snippet:

CREATE OR REPLACE PACKAGE MY SCHEMA.MY PKG AS
PROCEDURE MY PROC;
FUNCTION MY FUNC RETURN VARCHARZ;
PROCEDURE MY PROCZ;
PROCEDURE "my proc2";
PROCEDURE MY PROC3 (P1 IN VARCHAR);
PROCEDURE MY PROC3 (P2 IN NUMBER) ;
END MY PKG;

Then the following endpoints are generated:

http://localhost:8080/ords/my schema/my pkg/MY PROC
http://localhost:8080/ords/my schema/my pkg/MY FUNC

2-31

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Note:

Endpoints for the procedure my proc2 is not generated because its name is not
unique when the name is converted to lowercase, and endpoints for the procedure
my proc3 is not generated because it is overloaded.

2.3.3.4 Resource Input Payload

The input payload is a JSON document with values adhering to the REST standard.

The payload should contain a name/value pair for each IN or IN OUT parameter as shown in
the following code snippet:

{

"pl": "abc",
"p2": 123,
"p3": null

}
< Note:

Where there are no IN or IN OUT parameters, an empty JSON body is required as
shown in the following code snippet:

{

}

Oracle REST Data Services uses the database catalog metadata to unmarshal the JSON

payload into Oracle database types, which is ready to be passed to the database through
JDBC.

2.3.3.5 Resource Payload Response

When the PL/SQL object is executed successfully, it returns a JSON body.

The JSON body returned, contains all OUT and IN OUT output parameter values. Oracle
REST Data Services uses the database catalog metadata to marshal the execution of the
result back into JSON as shown in the following code snippet:

{
"p3" : "abcl23",
"p4" : 1

}

ORACLE 539

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Where there are no OUT or IN OUT parameters, an empty JSON body is returned as shown in
the following code snippet:

{

}

2.3.3.6 Function Return Value

The return value of functions do not have an associated name.

As the return value of functions do not have an associated name, the name "~ret" is used as
shown in the following code snippet:

{
"~ret" : "abcl23"

}

2.3.4 Support for JSON-Relational Duality View

ORDS supports AutoREST enabling of JSON-relational duality view functionality. This
functionality is supported only with Oracle Database 23c or later.

JSON-relational duality view is a revolutionary Oracle Database feature that combines the
benefits of relational databases and NoSQL JSON document stores. This feature allows the
storage of normalized data in relational tables while exposing it to applications in JSON.
Multiple JSON-relational duality views can be created on the same relational data to address
different use cases. In other words, the same relational data can have different JSON
representations.

Note:

For best performance, configure the Oracle REST Data Services (ORDS) metadata
cache.

See Also:

» Configuring ORDS Metadata Cache
* Understanding Configurable Settings
* JSON-Relational Duality Developer's Guide

2.3.4.1 Table AutoREST Versus JSON-Relational Duality View AutoREST

ORACLE

A JSON-relational duality view is classified as a VIEW in Oracle Database, so it can be
AutoRest enabled like any relational view. This section provides a comparison between the
AutoREST functionality of JSON-relational duality views with relational tables:

Similarities:

2-33

https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/overview-json-relational-duality-views.html

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

* Exposes the same set of endpoints and methods (GET, PUT, POST, DELETE, and HEAD)

» Uses the same comma-separated primary key identifier format as that of the associated
root table

e Supports the same Read, Create, Upsert, Of Delete semantics

e Generates the same HTTP If-None-Match header ETag digest, where multiple items are
processed.

e Injects the links hyperlinks field into the response payload
Differences:
e Supported only with Oracle Database 23c or later

* Passes the JSON payload directly between the request or response and the JISON-
relational duality view DATA column.

* Uses the JSON-relational duality view ETag value for HTTP If-Match and If-None-Match
header conditional matching, where a single item is processed (GET, PUT, and DELETE
methods).

* Uses the SODA extended Query by Example (QBE) syntax for rich filtering and ordering
* Uses a JSON-friendly batchload format

2.3.4.2 Support for Enhanced ETag Matching

ORACLE

Oracle REST Data Services (ORDS) integrates with the JSON-relational duality view ETag
feature to support optimistic locking and client caching.

HTTP ETag Matching

ORDS uses the JSON-relational duality view generated ETag instead of its own digest value
when evaluating matching headers for single item operations such a GET (If-None-Match) and
PUT/DELETE (If-Match).

Match Header HTTP False Response Header Example

If-None-Match 304 - "Not Modified" If-None-Match:
"536001F31A8718819AEEF28EC
20D8677"

If-Match 412 - "Precondition If-Match:

Failed" "536001F31A8718819AEEF28EC
20D8677"
Note:

The double-quotes around the ETag value are mandatory.

Database ETag Matching

The Oracle Database also performs ETag matching for UPDATE operations where an ETag is
available in the metadata object of the request payload, otherwise this field is ignored in all
other cases.

2-34

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Content Example HTTP 'False' Response

412 - "Precondition Failed"

" metadata": {
"etag":
"536001F31A8718819AEEF28EC20D8677",
"asof": "00000000002BECD5"

b

2.3.4.3 Enhanced JSON QBE (Query by Example) Filtering

Oracle REST Data Services (ORDS) exposes the same QBE filtering syntax that Simple
Oracle Document Access (SODA) uses, providing the user with a roburst set of JSON
operators and functionality that are more appropriate for processing JSON.

Although, the syntax currently only applies to JSON-relational duality views, it is specified in
the g URL parameter, similar to the relational tables and views.

The following example filters the content of the race dv JSON-relational duality view, where
the points field is greater than 40:

curl http://localhost:8080/ords/janus/race dv/?q={"points":{"$gt":40}}

The following example adds ordering on the points field to the preceding example:

curl http://localhost:8080/ords/janus/race dv/?g={"$query":{"points":
{"Sgt":40}},"Sorderby": [{"path":"points", "datatype":"number"}]}

¢ See Also:

Simple Oracle Document Access (SODA)

2.3.4.4 Enhanced JSON Batch Loading

As the JSON-relational duality view DATA column is mapped directly to the request payload, the
same approach should be applied to batch loading. Therefore, ORDS provides an optimized
batchload endpoint that accepts one of the following JSON content types:

ORACLE 535

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Header Content-Type Description

application/json Freely formatted JSON array of JSON documents
payload. For example

[
WM. 1’

"y":]-

"X":Z,
"yv|:2

application/json; boundary=LF Linefeed delimited list of JSON documents.
Payload example:

n V':l,"y":l}

{"x
{"X":2["y":2}

Each JSON document is passed to the ORDS batch load service as a row and can be fine-
tuned with the query parameters in the same way as in any table.

For example, batchesPerCommit, batchRows, and truncate can be used to optimize the batch
loading process.

The following example shows the batch loading of the points_dv JSON-relational duality view
in batches of 25 rows of JSON document:

curl -i -X POST --data-binary @points.json -H "Content-Type: application/json"
http://localhost:8080/ords/ordstest/points dv/batchload?batchRows=25

The familiar batch process result is returned in the response as shown in the following code
shippet:

HTTP/1.1 200 OK

#INFO Number of rows processed: 2
#INFO Number of rows in error: 0
#INFO Last row processed in final committed batch: 2
SUCCESS: Processed without errors

2.4 Manually Creating RESTful Services Using SQL and PL/SQL

This section describes how to manually create RESTful Services using SQL and PL/SQL and
shows how to use a JSON document to pass parameters to a stored procedure in the body of
a REST request.

This section includes the following topics:

ORACLE 536

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

e About Oracle REST Data Services Mechanisms for Passing Parameters
« Using SQL/JSON Database Functions

2.4.1 About Oracle REST Data Services Mechanisms for Passing
Parameters

This section describes the main mechanisms that Oracle REST Data Services supports for
passing parameters using REST HTTP to handlers that are written by the developer:

e Using JSON to Pass Parameters

You can use JSON in the body of REST requests, such as the posST or PUT method, where
each parameter is a JSON name/value pair.

e Using Route Patterns to Pass Parameters

You can use route patterns for required parameters in the URI to specify parameters for
REST requests such as the GET method, which does not have a body, and in other special
cases.

e Using Query Strings for Optional Parameters

You can use query strings for optional parameters in the URI to specify parameters for
REST requests, such as the GET method, which does not have a body, and in other special
cases.

Prerequisite Setup Tasks To Be Completed Before Performing Tasks for Passing
Parameters

This prerequisite setup information assumes you have completed steps 1 and 2 in Getting
Started with RESTful Services section, where you have REST-enabled the ordstest schema
and emp database table (Step 1) and created and tested the RESTful service from a SQL query
(Step 2). You must complete these two steps before performing the tasks about passing
parameters described in the subsections that follow.

Related Topics
e Getting Started with RESTful Services

2.4.1.1 Using JSON to Pass Parameters

This section shows how to use a JSON document to pass parameters to a stored procedure in
the body of a REST request, such as POST or PUT method, where each parameter is a name/
value pair. This operation performs an update on a record, which in turn returns the change to
the record as an OUT parameter.

Perform the following steps:

ORACLE 2-37

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

1. | # Note:

The following stored procedure performs an update on an existing record in the
emp table to promote an employee by changing any or all of the following: job,
salary, commission, department number, and manager. The stored procedure
returns the salary change as an oUT parameter.

create or replace procedure promote (1 empno IN number, 1 job IN
varchar?,
1 mgr IN number, 1 sal IN number, 1 comm IN number,
1 deptno IN number,
1 salarychange OUT number)
is
oldsalary number;
begin
select nvl(e.sal, 0)into oldsalary FROM emp e
where e.empno = 1 empno;
update emp e set
e.job = nvl(l job, e.job),
.mgr = nvl(l mgr, e.mgr),
.sal nvl(l sal, e.sal),
.comm = nvl(l comm, e.comm),
.deptno = nvl (1l deptno, e.deptno)
where e.empno = 1 empno;
1 salarychange := nvl(l sal, oldsalary) - oldsalary;
end;

€
€
€
€

As a privileged ordstest user, connect to the ordstest schema and create the promote
stored procedure.

2. Perform the following steps to setup a handler for a PUT request on the emp resource to
pass parameters in the body of the PUT method in a JSON document to the promote stored
procedure.

a. Using Oracle SQL Developer, in the REST Development section, right click on the emp
template and select Add Handler for the PUT method.

b. Inthe Create Resource Handler dialog, click the green plus symbol to add the MIME
type application/json and then click Apply to send it a JSON document in the body
of the PUT method.

c. Using the SQL Worksheet, add the following anonymous PL/SQL block: begin
promote
(:1 empno, :1 job, :1 mgr, :1 sal, :1 comm, :1 deptno, :1 salarychange);
end; as shown in the following figure.

ORACLE 538

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Figure 2-5 Adding an Anonymous PL/SQL Block to the Handler for the PUT
Method

Parameters | Details

FrE9-090 BB @&@oEus a8 -
Worksheet |Que(yBui\der

‘begin (m}

promote (:1 empno, :1_job, :legr, 1 _sal, :1 comm, :1_deptno, :1_salarychange):
‘end;

Reports. w | =
All Reports

(= Analytic View Reparts
Iﬂﬁ Data Dictionary Reparts
[} Data Modeler Reports

[+ [OLAP Reparts

[&}-(E- TimesTen Reports
[-[E User Defined Reports

REST Development w | =
B« @
= emp) —

£ GET

: kal PuT

=] Errv!aobJ‘:dmt"D
£.E] Ger

M S— IAv'

d. Click the Parameters tab to set the Bind Parameter as 1 _salarychange , the Access
Method as an oUT parameter, the Source Type as RESPONSE, and Data Type as
INTEGER as shown in the following figure. This is the promote procedure’s ou