Oracle® REST Data Services

Installation, Configuration, and Development
Guide

Release 21.4
F50087-02
January 2022

ORACLE"

Oracle REST Data Services Installation, Configuration, and Development Guide, Release 21.4
F50087-02

Copyright © 2011, 2021, Oracle and/or its affiliates.

Primary Authors: Mamata Basapur, Chuck Murray

Contributors: Colm Divilly, Sharon Kennedy, Ganesh Pitchaiah, Kris Rice, Elizabeth Saunders, Jason Straub,
Vladislav Uvarov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XiX
Documentation Accessibility XiX
Related Documents XX
Conventions XX
Changes in This Release for Oracle REST Data Services Installation,
Configuration, and Development Guide
Changes in Oracle REST Data Services Release 21.4 XXi
1 Introduction to Oracle REST Data Services
About Oracle REST Data Services 1-1
Requirements for Using ORDS 1-1
Supported Java EE Application Servers 1-2
Supported Oracle Application Express (APEX) Versions 1-2
System Requirements 1-2
About Using the Command-Line Interface 1-3
About the Database Users Used by Oracle REST Data Services 1-3
Privileges Required for Oracle REST Data Services 1-4
Using Oracle REST Data Services 1-6
Downloading, Configuring, and Installing and Oracle REST Data Services 1-7
Downloading Oracle REST Data Services 1-7
Configuring Oracle REST Data Services 1-8
Installing Oracle REST Data Services 1-8
ORDS Installer Privileges Script 1-8
Advanced Installation Using Command-Line Prompts 1-9
ORDS Parameter File 1-14
Simple Installation Using a Parameter File 1-28
Silent Installation Using a Parameter File 1-28
Changing Default Configuration from the Command Line 1-29
Validating the Oracle REST Data Services Installation 1-30

ORACLE

If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services 1-31

Using SQL Developer Oracle REST Data Services Administration (Optional) 1-31
About SQL Developer Oracle REST Data Services Administration 1-31
Configuring an Administrator User 1-32

Using OAuth2 in Non-HTTPS Environments 1-32

Deploying Oracle REST Data Services 1-33

Standalone Mode 1-33
Starting in Standalone Mode 1-34
Stopping the Server in Standalone Mode 1-35
Configuring a Doc Root for Non-Application Express Static Resources 1-35

Oracle WebLogic Server 1-36
About Oracle WebLogic Server 1-36
Configuring Oracle Application Express Images 1-37
Launching the Administration Server Console 1-37
Deploying ORDS on Oracle WebLogic Server 1-38
Configuring WebLogic to Handle HTTP Basic Challenges Correctly 1-39
Verifying the State and Health of ords and i 1-40

Apache Tomcat 1-41
About Apache Tomcat 1-41
Configuring Oracle Application Express Images 1-41
Deploying ORDS on Apache Tomcat 1-42

Oracle Cloud Infrastructure 1-42
About Oracle Cloud Infrastructure 1-43
Configuring ORDS for High Availability on Oracle Cloud Infrastructure 1-43
Advantages of Deploying ORDS with High Availability on Oracle Cloud
Infrastructure 1-43

Monitoring ORDS 1-44

Enabling the ORDS Instance API 1-44

Authorization for Using the ORDS Instance API 1-44

API Document 1-44

Using the Instance API 1-44

Upgrading Oracle REST Data Services 1-45
Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST Data

Services 1-46
Authorizing Oracle REST Data Services to Access Oracle Data Guard Protected Users 1-46

2 Configuring Oracle REST Data Services (Advanced)

Configuring Multiple Databases 2-1
About the Request URL 2-2
Configuring Additional Databases 2-2
Routing Based on the Request Path Prefix 2-3

ORACLE iv

Example of Routing Based on the Request Path Prefix 2-3

Routing Based on the Request URL Prefix 2-4
Example of Routing Based on the Request URL Prefix 2-4
Support for Oracle RAC Fast Connection Failover 2-4
Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel Settings 2-5
Configuring REST-Enabled SQL Service Settings 2-6
Configuring the Maximum Number of Rows Returned from a Query 2-6
Configuring ICAP Server Integration for Virus Scan 2-7
Configuring ORDS with Kerberos Setup 2-7
Configuring ORDS with Kerberos Setup Using Command-line Interface 2-9
Configuring the Custom Error Pages 2-9
Configuring ORDS Metadata Cache 2-10
Developing RESTful Services for Use with Oracle REST Data Services 2-10
Managing ORDS Administrator Privilege 2-10
Provisioning ORDS_ADMINISTRATOR_ROLE to a User 2-10
Unprovisioning ORDS_ADMINISTRATOR_ROLE from a User 2-11
Managing ORDS Runtime Privilege 2-11
Provisioning ORDS_RUNTIME_ROLE to a User 2-12
Unprovisioning ORDS_RUNTIME_ROLE from a User 2-12
3 Installing and Configuring Customer Managed ORDS on Autonomous
Database
About Customer Managed Oracle REST Data Services on Autonomous Database 3-1
Downloading Wallet and Verifying Connection to Autonomous Database 3-2
Creating Customer Managed Oracle REST Data Services User 3-3
Downloading and Configuring Oracle REST Data Services 3-4
Preparing and Starting ORDS 3-6

4 Using the Multitenant Architecture with Oracle REST Data Services

Setting Up ORDS in a CDB Environment 4-1
Installation Enabling Multiple Releases 4-2
Command Line Installation 4-2
Advanced Installation 4-2

Silent Installation 4-3
Upgrading Oracle REST Data Services in a CDB Environment 4-4
Migrating Oracle REST Data Services in the CDB to Enable Multiple Releases 4-4

Making All PDBs Addressable by Oracle REST Data Services 4-4
Uninstalling Oracle REST Data Services in a CDB Environment 4-4
Setting Up ORDS in an Application Container 4-4

ORACLE Y

Prerequisites for Creating ORDS in an Application Container 4-5
Creating an Application Root Container 4-6
Installing ORDS in the Application Root Container 4-6
Creating an Application Seed 4-7
Creating an Application PDB from the Application Seed 4-8
ORDS Configuration Files Setup 4-9
Specifying the ORDS Configuration Folder 4-9
Creating the ORDS Configuration Files for the Application Root Container 4-10

Making all Application PDBs in an Application Root Container Addressable by
ORDS 4-11
Running ORDS 4-11
Validating ORDS in the Application Root Container 4-12
Upgrading ORDS in the Application Container 4-13
Uninstalling ORDS from the Application Container 4-14
Verifying ORDS in the Application Container 4-15
Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping) 4-15

5 Developing Oracle REST Data Services Applications

Introduction to Relevant Software 5-2
About Oracle Application Express 5-2
About RESTful Web Services 5-2
Getting Started with RESTful Services 5-2
RESTful Services Terminology 5-3
About Request Path Syntax Requirements 5-3
"Getting Started” Documents Included in Installation 5-4
About cURL and Testing RESTful Services 5-5
Automatic Enabling of Schema Objects for REST Access (AutoREST) 5-5
Examples: Accessing Objects Using RESTful Services 5-6
Filtering in Queries 5-17
Auto PL/SQL 5-25
Manually Creating RESTful Services Using SQL and PL/SQL 5-31
About Oracle REST Data Services Mechanisms for Passing Parameters 5-32
Using SQL/JSON Database Functions 5-42
About Working with Dates Using Oracle REST Data Services 5-52
About Datetime Handling with Oracle REST Data Services 5-53
About Setting the Time Zone 5-53
Exploring the Sample RESTful Services in Application Express (Tutorial) 5-54
Configuring Secure Access to RESTful Services 5-59
Authentication 5-59
First Party Cookie-Based Authentication 5-60
Third Party OAuth 2.0-Based Authentication 5-60

ORACLE

Vi

About Privileges for Accessing Resources

About Users and Roles for Accessing Resources

About the File-Based User Repository

Tutorial: Protecting and Accessing Resources
OAuth Flows and When to Use Each
Assumptions for This Tutorial
Steps for This Tutorial

About Oracle REST Data Services User Roles

About Oracle Application Express Users and Oracle REST Data Services Roles
Granting Application Express Users Oracle REST Data Services Roles
Automatically Granting Application Express Users Oracle REST Data Services

Roles

Controlling RESTful Service Access with Roles
About Defining RESTful Service Roles
Associating Roles with RESTful Privileges

Authenticating Against WebLogic Server User Repositories

Authenticating Against WebLogic Server
Creating a WebLogic Server User
Verifying the WebLogic Server User

Integrating with Existing Group/Role Models

About role-mapping.xml
Parameterizing Mapping Rules
Dereferencing Parameters
Indirect Mappings

Integrating Oracle REST Data Services and WebLogic Server
Configuring ORDS to Integrate with WebLogic Server

Using the Oracle REST Data Services PL/SQL API

Creating a RESTful Service Using the PL/SQL API

Testing the RESTful Service
Oracle REST Data Services Database Authentication
Installing Sample Database Scripts
Enabling the Database Authentication
Configuring the Request Validation Function
Testing the Database Authenticated User
Uninstalling the Sample Database Schema
Overview of Pre-hook Functions
Configuring the Pre-hook Function
Using a Pre-hook Function
Processing of a Request
Identity Assertion of a User
Aborting Processing of a Request

ORACLE

5-60
5-61
5-61
5-62
5-62
5-63
5-63
5-74
5-74
5-75

5-75
5-76
5-76
5-76
5-77
5-77
5-77
5-78
5-78
5-79
5-79
5-80
5-80
5-81
5-81
5-82
5-82
5-83
5-84
5-84
5-85
5-86
5-87
5-87
5-87
5-88
5-88
5-88
5-89
5-89

Vii

Ensuring Pre-hook is Executable 5-89
Exceptions Handling by Pre-hook Function 5-90
Pre-hook Function Efficiency 5-90
Pre-Hook Examples 5-90
Installing the Examples 5-90
Uninstalling the Examples 5-94
Generating Hyperlinks 5-94
Primary Key Hyperlinks 5-94
Composite Primary Keys 5-96
Arbitrary Hyperlinks 5-96
About the related Link Relation 5-98

URL Resolution 5-98

About HTTP Error Responses 5-101
About error.responseFormat 5-101
HTML Mode 5-102

json Mode 5-102

auto Mode 5-102

6 REST-Enabled SQL Service

REST-Enabled SQL Service Terminology 6-1
Configuring the REST-Enabled SQL Service 6-2
Using cURL with REST-Enabled SQL Service 6-2
Getting Started with the REST-Enabled SQL Service 6-3
REST-Enabling the Oracle Database Schema 6-3
REST-Enabled SQL Authentication 6-4
REST-Enabled SQL Endpoint 6-4
REST-Enabled SQL Service Examples 6-5
POST Requests Using application/sql Content-Type 6-5
Using a Single SQL Statement 6-5

Using a File with cURL 6-7

Using Multiple SQL Statements 6-8

POST Requests Using application/json Content-Type 6-11
Using a File with cURL 6-11
Specifying the Limit Value in a POST Request for Pagination 6-13
Specifying the Offset Value in a POST Request for Pagination 6-14
Defining Binds in a POST Request 6-16
Specifying Batch Statements in a POST Request 6-20
Example POST Request with DATE and TIMESTAMP Format 6-23
Data Types and Formats Supported 6-25
REST-Enabled SQL Request and Response Specifications 6-29

ORACLE

viii

Request Specification 6-29

Response Specification 6-32
Supported SQL, SQL*Plus, and SQLcl Statements 6-37
Supported SQL Statements 6-37
Supported PL/SQL Statements 6-37
Supported SQL*Plus Statements 6-38
Set System Variables 6-38

Show System Variables 6-39
Supported SQLcl Statements 6-41

7 Migrating from mod_plsqgl to ORDS

Oracle HTTP Server mod_plsql Authentication 7-1
Example Oracle HTTP Server DAD file 7-1
Mapping mod_plsql Settings to ORDS 7-3
Example ORDS Configuration Files 7-7
Example Configuration File for Basic Authentication 7-7
Example Configuration File for Basic Dynamic Authentication 7-8
Example Configuration file for Custom Authentication 7-9
Example ORDS URL Mapping 7-9
Example ORDS Default Configuration 7-10
ORDS Authentication 7-10
Basic Authentication 7-10
Basic Dynamic Authentication 7-11
Custom Authentication 7-11
ORDS Features 7-12
Request Validation Function 7-12
Pre Process Feature 7-12
Post Process Feature 7-13
File Upload Feature 7-13
Cross-Origin Resource Sharing Feature 7-14

8 Oracle REST Data Services PL/SQL Package Reference

ORDS.CREATE_ROLE 8-1
ORDS.CREATE_SERVICE 8-1
ORDS.DEFINE_HANDLER 8-4
ORDS.DEFINE_MODULE 8-6
ORDS.DEFINE_PARAMETER 8-7
ORDS.DEFINE_PRIVILEGE 8-9
ORDS.DEFINE_SERVICE 8-11

ORACLE iX

ORDS.DEFINE_TEMPLATE 8-14

ORDS.DELETE_MODULE 8-16
ORDS.DELETE_PRIVILEGE 8-16
ORDS.DELETE_ROLE 8-17
ORDS.DROP_REST_FOR_SCHEMA 8-17
ORDS.ENABLE_OBJECT 8-18
ORDS.DROP_REST_FOR_OBJECT 8-19
ORDS.ENABLE_SCHEMA 8-19
ORDS.PUBLISH_MODULE 8-20
ORDS.RENAME_MODULE 8-21
ORDS.RENAME_PRIVILEGE 8-22
ORDS.RENAME_ROLE 8-22
ORDS.SET_MODULE_ORIGINS_ALLOWED 8-23
ORDS.SET_URL_MAPPING 8-24
ORDS.SET_SESSION_DEFAULTS 8-24
ORDS.RESET_SESSION_DEFAULTS 8-25
ORDS.SET_PROPERTY 8-26
ORDS.UNSET_PROPERTY 8-26

O Oracle REST Data Services Administration PL/SQL Package Reference

ORDS_ADMIN.CREATE_ROLE 9-1
ORDS_ADMIN.DEFINE_HANDLER 9-2
ORDS_ADMIN.DEFINE_MODULE 9-4
ORDS_ADMIN.DEFINE_PARAMETER 9-5
ORDS_ADMIN.DEFINE_PRIVILEGE 9-7
ORDS_ADMIN.DEFINE_SERVICE 9-10
ORDS_ADMIN.DEFINE_TEMPLATE 9-13
ORDS_ADMIN.DELETE_MODULE 9-14
ORDS_ADMIN.DELETE_PRIVILEGE 9-15
ORDS_ADMIN.DELETE_ROLE 9-15
ORDS_ADMIN.DROP_REST_FOR_SCHEMA 9-16
ORDS_ADMIN.ENABLE_OBJECT 9-16
ORDS_ADMIN.DROP_REST_FOR_OBJECT 9-18
ORDS_ADMIN.ENABLE_SCHEMA 9-18
ORDS_ADMIN.PUBLISH_MODULE 9-19
ORDS_ADMIN.RENAME_MODULE 9-20
ORDS_ADMIN.RENAME_PRIVILEGE 9-21
ORDS_ADMIN.RENAME_ROLE 9-22
ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED 9-22
ORDS_ADMIN.SET_URL_MAPPING 9-23

ORACLE X

ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB 9-24

ORDS_ADMIN.DROP_HOUSEKEEPING_JOB 9-24
ORDS_ADMIN.PERFORM_HOUSEKEEPING 9-25
ORDS_ADMIN.SET_SESSION_DEFAULTS 9-25
ORDS_ADMIN.RESET_SESSION_DEFAULTS 9-26
ORDS_ADMIN.PROVISION_ADMIN_ROLE 9-26
ORDS_ADMIN.PROVISION_RUNTIME_ROLE 9-27
ORDS_ADMIN.UNPROVISION_ ROLES 9-28
ORDS_ADMIN.CONFIG_PLSQL_GATEWAY 9-28
ORDS_ADMIN.SET_PROPERTY 9-29
ORDS_ADMIN.SET_PROPERTY 9-30
ORDS_ADMIN.UNSET_PROPERTY 9-31

10 Implicit Parameters

List of Implicit Parameters 10-1
About the :body parameter 10-5
About the :body_text Parameter 10-6
About the :content_type Parameter 10-6
About the :current_user Parameter 10-6
About the :status_code Parameter 10-6
About the :forward_location Parameter 10-7
About the Pagination Implicit Parameters 10-8

About the :page_offset Parameter 10-9
About the :page_size Parameter 10-9
About the :row_offset Parameter 10-10
About the :row_count Parameter 10-10
About the :fetch_offset Parameter 10-10
About the :fetch_size Parameter 10-10
About Automatic Pagination 10-10
About Manual Pagination 10-11

11 OAUTH PL/SQL Package Reference

OAUTH.CREATE_CLIENT 11-1
OAUTH.DELETE_CLIENT 11-2
OAUTH.GRANT_CLIENT_ROLE 11-3
OAUTH.RENAME_CLIENT 11-4
OAUTH.REVOKE_CLIENT_ROLE 11-4
OAUTH.UPDATE_CLIENT 11-5

ORACLE Xi

12 Enabling ORDS Database API

Basic Setup to Enable ORDS Database API 12-1
Advanced Setup to Enable the ORDS Database API 12-2

Pluggable Database Lifecycle Management 12-3

Disabling PDB Lifecycle Management 12-3
Creating a Default Administrator 12-4
Configuration of Database APl Environment Services 12-5
Configuration of Database APl with Open Service Broker API Compatible Platforms 12-5

A Oracle REST Data Services Database Type Mappings

Oracle Built-in Types A-1
Handling Structural Database Types A-3
Oracle Geospacial Encoding A-5
Enabling Database Mapping Support A-5

B About the Oracle REST Data Services Configuration Files

Locating Configuration Files B-1
Setting the Location of the Configuration Files B-1
Understanding the Configuration Folder Structure B-1
Understanding the Configuration File Format B-2

Understanding the url-mapping.xml File Format B-2
Understanding Configurable Parameters B-3

C Troubleshooting Oracle REST Data Services

Enabling Detailed Request Error Messages C-1
ORDS User Defined Service C-1
Configuring Application Express Static Resources with Oracle REST Data Services C-13

D Creating an Image Gallery

Before You Begin D-1
About URIs D-1
About Browser Support D-2
Creating an Application Express Workspace D-2

Creating the Gallery Database Table D-2

Creating the Gallery RESTful Service Module D-3

Trying Out the Gallery RESTful Service D-4

Creating the Gallery Application D-5

ORACLE Xii

Trying Out the Gallery Application D-8
Securing the Gallery RESTful Services D-8
Protecting the RESTful Services D-8
Modifying the Application to Use First Party Authentication D-9
Accessing the RESTful Services from a Third Party Application D-11
Creating the Third Party Developer User D-11
Registering the Third Party Application D-12
Acquiring an Access Token D-12
Using an Access Token D-14
About Browser Origins D-14
Configuring a RESTful Service for Cross Origin Resource Sharing D-15
Acquiring a Token Using the Authorization Code Protocol Flow D-15
Registering the Client Application D-15
Acquiring an Authorization Code D-16
Exchanging an Authorization Code for an Access Token D-17
Extending OAuth 2.0 Session Duration D-18
About Securing the Access Token D-19

E Third-Party License Information
commons-io E-1
jackson-annotations 2.12.4 E-5
jackson-databind 2.12.4 E-10
jackson-dataformat-xml 2.12.4 E-23
jackson-core 2.12.4 E-30
jackson-jr 2.12.4 E-35
Jakarta Json Processing API (JSON-P) 2.0.1 E-41
Google Guava 30.1.1 E-52
history 5.0.0 E-58
Eclipse Yasson 2.0.2 E-58
Eclipse Parsson 1.0.0 E-71
swagger-ui 3.45.1 E-81
Jetty 9.4.43.v20210629 E-175
Javassist 3.28.0 E-187
avsc 5.5.3 E-206
babel-polyfill 7.8.7 E-206
CodeMirror 5.53.2 E-246
Dexie.js 3.0.3 E-247
SheetJS 0.15.5 E-251
jQuery 3.5.1 E-256
ORACLE Xiii

Monaco Editor 0.22.1 E-257

Index

ORACLE" Xiv

List of Examples

1-1 Parameters to configure for Application Express and APEX RESTful Services and run in
standalone mode

1-2 Parameters to run in standalone mode using http

1-3 Parameters to run in standalone mode using https and providing the ssl certificate paths

1-4

1-5

1-6

2-1 Configuring custom error page for “HTTP 404" status code

2-2 Using Grant command

2-3 Using ORDS_ADMIN package method

2-4 Using REVOKE command

2-5 Using ORDS_ADMIN package method

2-6 Using Grant command

2-7 Using ORDS_ADMIN package method

2-8 Using REVOKE command

2-9 Using ORDS_ADMIN package method

4-1 Configuring ORDS for Application Express

4-2 Configuring ORDS only

5-1 Enabling the PL/SQL Function

5-2 Enabling the PL/SQL Procedure

5-3 Generating an Endpoint for the Stored Procedure

5-4 Package Procedure and Function Endpoints

5-5 Nested JSON Purchase Order with Nested Lineltems

5-6 PL/SQL Handler Code Used for a POST Request

5-7 GET Handler Code using Oracle REST Data Services Query on Relational Tables for
Generating a Nested JSON object

5-8 PL/SQL API Call for Creating a New test/:id Template and GET Handler in the demo Module

5-9 Setting the Duser.timezone Java Environment Variable in Standalone Mode

5-10 Setting the Duser.timezone Java Environment Variable in a Java Application Server

5-11 Setting Enabled for all Pools

6-1 Example cURL Command

6-2 Binds in POST Request

6-3 Complex Bind in POST Request

6-4 Batch statements

6-5 Batch bind values

ORACLE

1-24
1-26
1-27
1-30
1-30
1-30

2-9
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-12
4-10
4-10
5-27
5-27
5-29
5-30
5-43
5-44

5-49
5-50
5-54
5-54
5-86

6-2
6-16
6-18
6-20
6-21

XV

6-6 Oracle REST Data services Time Zone Set as Europe/London
6-7 PL/SQL Statement

7-1 dads.conf file

7-2 ords_conf/ords/conf/basic_auth.xml

7-3 ords_conf/ords/conf/basic_dynamic_auth.xml
7-4 ords_confs/ords/conf/custom_auth.xml

7-5 ords_conf/ords/url-mapping.xmi

7-6 ords_conf/ords/defaults.xml

7-7 security.requestValidationFunction

7-8 procedure.preProcess

7-9 procedure.postProcess

7-10 Table upload

7-11 Procedure upload

7-12 Curl command for file upload

10-1 Example

11-1 Example to Add Multiple Privileges
ORACLE

6-23
6-37
7-2
7-7
7-8
7-9
7-9
7-10
7-12
7-13
7-13
7-13
7-13
7-14
10-5
11-6

XVi

List of Figures

5-1 Selecting the Enable REST Service Option

5-2 Auto Enabling the PL/SQL Package Object

5-3 Adding an Anonymous PL/SQL Block to the Handler for the PUT Method

5-4 Setting the Bind Parameter |_salarychange to Pass for the PUT Method

5-5 Obtaining the URL to Call from the Details Tab

5-6 Displaying the Results from a SQL Query to Confirm the Execution of the PUT Method

5-7 Creating a Template Definition to Include a Route Pattern for Some Parameters or Bind Variables

5-8 Adding a SQL Query to the Handler

5-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method with
Some Required Parameter Values

5-10 Using Browser to Show the Results of Using a Query String to Send a GET Method with
Some Parameter Name/Value Pairs

5-11 Complete Response Body in JSON Format

5-12 Generating Nested JSON Objects

ORACLE

5-28
5-29
5-34
5-34
5-35
5-36
5-37
5-38

5-39

5-41

5-48
5-52

XVii

List of Tables

1-1 Advanced Installation Prompts for Installing and Configuring ORDS
1-2 Options for Configuring Application Express or Migrating from mod_plsq|
1-3 Enabling Features in ORDS

1-4 Options for Running in Standalone Mode

1-5 Parameters for Installing Oracle REST Data Services

1-6 Parameters for Enabling SQL Developer Web

1-7 Parameters for Enabling REST-Enabled SQL

1-8 Parameters for Enabling Database API

1-9 Parameters for Installing into the CDB

1-10 Parameters for Configuring Application Express

1-11 Parameters for Installing Oracle REST Data Services in Standalone Mode
1-12 Miscellaneous Parameters

2-1 Configuration Properties for ORDS Metadata Cache

5-1 Parameters for batchload

7-1 Mappings of mod_plsqgl Directives to ORDS Settings

10-1 List of Implicit Parameters

10-2 Pagination Implicit Parameters

12-1 Open Service Broker Service Catalog

B-1 Oracle REST Data Services Configuration Files Parameters

C-1 List of ORDS user defined service

ORACLE

1-11
1-12
1-13
1-13
1-17
1-19
1-21
1-21
1-21
1-22
1-25
1-27
2-10
5-16

10-1
10-9
12-6
B-3
C-2

XViii

Preface

Oracle REST Data Services Installation, Configuration, and Development Guide explains how
to install and configure Oracle REST Data Services. (Oracle REST Data Services was called
Oracle Application Express Listener before Release 2.0.6.)

" Note:

Effective with Release 3.0, the title of this book is Oracle REST Data Services
Installation, Configuration, and Development Guide. The addition of "Development"
to the title reflects the fact that material from a previous separate unofficial
"Developer's Guide" has been included in this book in Developing Oracle REST
Data Services Applications.

Topics:

* Audience

* Documentation Accessibility
* Related Documents

 Conventions

Audience

This document is intended for system administrators or application developers who are
installing and configuring Oracle REST Data Services. This guide assumes you are familiar
with web technologies, especially REST (Representational State Transfer), and have a
general understanding of Windows and UNIX platforms.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

ORACLE Yix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information and resources relating to Oracle REST Data Services, see the
following the Oracle Technology Network (OTN) site:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that is displayed on the screen, or text that you enter.

ORACLE XX

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Changes in This Release for Oracle REST
Data Services Installation, Configuration, and
Development Guide

This section lists the changes in this document for release 21.4.

Changes in Oracle REST Data Services Release 21.4

This section lists the changes in Oracle REST Data Services for this release.

Following are the changes made in this release:

Updated Oracle REST Data Services PL/SQL Package Reference section with
ORDS.SET PROPERTY and ORDS.UNSET PROPERTY.

Updated Oracle REST Data Services Administration PL/SQL Package Reference section
with ORDS_ADMIN.SET PROPERTY and ORDS_ ADMIN.UNSET PROPERTY.

ORACLE Wi

Introduction to Oracle REST Data Services

This chapter introduces Oracle REST Data Services and also describes how to install and
deploy it. REST stands for Representational State Transfer.

" Note:

Oracle REST Data Services was called Oracle Application Express Listener before
Release 2.0.6.

Topics:

* About Oracle REST Data Services

* Requirements for Using ORDS

» Using Oracle REST Data Services

* Downloading, Configuring, and Installing and Oracle REST Data Services
* Deploying Oracle REST Data Services

* Monitoring ORDS

» Upgrading Oracle REST Data Services

» Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST
Data Services

* Authorizing Oracle REST Data Services to Access Oracle Data Guard Protected Users

About Oracle REST Data Services

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server and
mod_plsql. The Java EE implementation offers increased functionality including a command
line based configuration, enhanced security, file caching, and RESTful web services. Oracle
REST Data Services also provides increased flexibility by supporting deployments using
Oracle WebLogic Server, Apache Tomcat, and a standalone mode.

The Oracle Application Express architecture requires some form of web server to proxy
requests between a web browser and the Oracle Application Express engine. Oracle REST
Data Services satisfies this need but its use goes beyond that of Oracle Application Express
configurations. Oracle REST Data Services simplifies the deployment process because there
is no Oracle home required, as connectivity is provided using an embedded JDBC driver.

Requirements for Using ORDS

ORACLE

This section provides information about supported platforms, system requirements, using
command-line interface, Database users, and privileges required for using ORDS .

1-1

Chapter 1
Requirements for Using ORDS

Topics:

e Supported Java EE Application Servers

e System Requirements

* About Using the Command-Line Interface

* About the Database Users Used by Oracle REST Data Services

* Privileges Required for Oracle REST Data Services

Supported Java EE Application Servers

Oracle REST Data Services supports the following Java EE application servers:

Application Server Supported Release

Oracle WebLogic Server 12c Release 2 (from version 12.2.1.3 and later) and 14c Release
and later

Apache Tomcat Release 8.5.x through Release 9.0.x

Supported Oracle Application Express (APEX) Versions

Oracle REST Data Services supports the currently supported versions of APEX.

¢ See Also:

The Oracle Application Express (Formerly HTML DB) table in the ORACLE
INFORMATION-DRIVEN SUPPORT document for supported versions of
APEX.

System Requirements

Oracle REST Data Services system requirements are as follows:

* Oracle Database (Enterprise Edition, Standard Edition or Standard Edition One)
release 11g Release 2 or later, or Oracle Database 11g Release 2 Express
Edition.

* Oracle Java 8 or later.

* Web browser requirements:
— Microsoft Internet Explorer 8.0 or later.
— Mozilla Firefox 3.0 or later.

— Google Chrome 2.0 or later.

ORACLE 1-2

Chapter 1
Requirements for Using ORDS

< Note:

Oracle Application Express is not a prerequisite for using Oracle REST Data
Services.

If Oracle Application Express is installed and if RESTful services have been
configured during the installation (see the step Configuring Oracle REST Data
Services in Oracle Application Express Installation Guide), then Oracle REST Data
Services supports it, including executing the RESTful services defined in Oracle
Application Express.

About Using the Command-Line Interface

Oracle REST Data Services provides several command line commands. For example, you
can configure the location where Oracle REST Data Services stores configuration files,
configure the database Oracle REST Data Services uses, and start Oracle REST Data
Services in standalone mode.

To display a full list of available commands, go to the directory or folder containing the
ords.war file and execute the following command:

java -jar ords.war help

A list of the available commands is displayed. To see instructions on how to use each of
these commands, enter help followed by the command name, for example:

java -jar ords.war help configdir

About the Database Users Used by Oracle REST Data Services

ORACLE

Oracle REST Data Services uses the following database users:

User Name Required Description

APEX PUBLIC USER Only if using Oracle If you use Oracle REST Data Services with
REST Data Services Oracle Application Express, this is the
with Oracle database user used when invoking PL/SQL

Application Express Gateway operations, for example, all Oracle
Application Express operations.

For information on unlocking the
APEX_PUBLIC_USER, see Configure
APEX_PUBLIC_USER Account in Oracle
Application Express Installation Guide.

APEX REST PUBLIC USER Only if using RESTful The database user used when invoking Oracle
Services defined in Application Express RESTful Services if
Application Express RESTful Services defined in Application

of version 5.0 or Express workspaces are being accessed
above.
APEX LISTENER Only if using RESTful The database user used to query RESTful

Services defined in Services definitions stored in Oracle
Application Express Application Express if RESTful Services

of version 5.0 or defined in Application Express workspaces
above. are being accessed

1-3

Chapter 1
Requirements for Using ORDS

User Name Required Description

ORDS_METADATA Yes Owner of the PL/SQL packages used for
implementing many Oracle REST Data
Services capabilities. ORDS_METADATA is
where the metadata about Oracle REST Data
Services-enabled schemas is stored.

It is not accessed directly by Oracle REST
Data Services; the Oracle REST Data
Services application never creates a
connection to the ORDS_METADATA schema.
The schema password is set to a random
string, connect privilege is revoked, and the
password is expired.

ORDS PUBLIC USER Yes User for invoking RESTful Services in the
Oracle REST Data Services-enabled
schemas.

The APEX <xxx> users are created during the Oracle Application Express installation
process.

Privileges Required for Oracle REST Data Services

As part of the Oracle REST Data Services installation, privileges are granted to
several users and roles:

+ ORDS_RUNTIME ROLE role

— ORDS_RUNTIME ROLE is granted EXECUTE on the following packages if these
packages are not granted EXECUTE to PUBLIC:

* SYS.DBMS LOB

* SYS.DBMS SESSION
* SYS.DBMS UTILITY
¥ SYS.WPIUTL

— ORDS_RUNTIME ROLE is granted the necessary ORDS METADATA object privileges
to determine the repository version and to access the connection pool
configurations.

* ORDS_PUBLIC USER user
— ORDS_PUBLIC USER is granted connect to allow connection to the database.

— ORDS_PUBLIC USER is granted role, ORDS_RUNTIME ROLE to allow the user to act
as an ORDS runtime user

° ORDS ADMINISTRATOR ROLE role

— ORDS_ADMINISTRATOR ROLE is granted EXECUTE on
ORDS_METADATA.ORDS ADMIN PL/SQL package.

e PUBLIC

— PUBLIC is granted EXECUTE on ORDS_METADATA.ORDS REPVERSION view to allow
the repository version to be queried by anyone.

— PUBLIC is granted SELECT on many ORDS METADATA Views.

ORACLE 1-4

ORACLE

Chapter 1
Requirements for Using ORDS

PUBLIC is granted EXECUTE on ORDS METADATA PL/SQL packages that are available for
developer users.

ORDS_METADATA schema

ORDS_METADATA schema is granted on the following packages if these packages are
not granted EXECUTE on PUBLIC:

* SYS.DBMS ASSERT

* SYS.DBMS LOB

* SYS.DBMS OUTPUT

* SYS.DBMS SCHEDULER

* SYS.DBMS SESSION

* SYS.DBMS UTILITY

* SYS.DEFAULT JOB CLASS
* SYS.HTP

* SYS.OWA

* SYS.WPG_DOCLOAD

ORDS_METADATA is granted SELECT (11g) or READ (12c or later) on the following view if
it is not granted SELECT Or READ to PUBLIC:

* SYS.SESSION PRIVS

ORDS_METADATA schema is granted EXECUTE on the following packages:
* SYS.DBMS CRYPTO

* SYS.DBMS METADATA

ORDS_METADATA schema is granted SELECT (11g) or READ (12c or later) on the following
views:

* SYS.DBA_OBJECTS
* SYS.DBA_ROLE_PRIVS
* SYS.DBA_TAB COLUMNS

ORDS METADATA schema is granted SELECT including WITH GRANT OPTION on the
following views:

* 8YS. USER _CONS_COLUMNS

* SYS.USER _CONSTRAINTS

* SYS.USER OBJECTS

* SYS.USER PROCEDURES

* SYS.USER TAB COLUMNS

* SYS.USER TABLES

* SYS.USER VIEWS

ORDS_METADATA schema is granted the following system privileges:

* ALTER USER

1-5

Chapter 1
Using Oracle REST Data Services

* CREATE ANY TRIGGER

* CREATE JOB

* CREATE PUBLIC SYNONYM
* DROP PUBLIC SYNONYM

— ORDS_METADATA schema is granted the necessary object privileges to migrate
Application Express REST data to ORDS METADATA tables.

— ORDS_METADATA schema is granted ORDS ADMINISTRATOR ROLE,
ORDS_RUNTIME ROLE roles with administrator option.

* PUBLIC is granted SELECT on many ORDS METADATA tables and views.

e PUBLIC is granted EXECUTE on PL/SQL packages that are available for users to
invoke.

* ORDS_METADATA is granted EXECUTE on the following packages if these packages
are not granted EXECUTE to PUBLIC:

— SYS.DBMS ASSERT
— SYS.DBMS LOB

— SYS.DBMS_ OUTPUT

— SYS.DBMS SCHEDULER

— SYS.DBMS SESSION

— SYS.DBMS UTILITY

— SYS.DEFAULT JOB CLASS
— SYS.HTP

— SYS.OWA

— SYS.WPG_DOCLOAD

* ORDS_METADATA is granted the necessary object privileges to migrate Application
Express REST data to ORDS METADATA tables.

Using Oracle REST Data Services

This section lists the steps to use Oracle REST Data Services.

1. Before deploying, you must download, install, and configure Oracle REST Data
Services.

» Downloading, Configuring, and Installing and Oracle REST Data Services
2. Deploy Oracle REST Data Services using one of the following options:
» Deploying Oracle REST Data Services
— Standalone Mode
— Oracle WebLogc Server
— Apache Tomcat

— Oracle Cloud Infrastructure

ORACLE 1-6

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Related Topics
e Standalone Mode

* Oracle WebLogic Server

Downloading, Configuring, and Installing and Oracle REST Data
Services

You must complete the following steps listed in this topic before deploying to an application
server.

" Note:

The procedures in this topic apply to installing Oracle REST Data Services in a
traditional (non-CDB) database.

Downloading Oracle REST Data Services
Configuring Oracle REST Data Services

Installing Oracle REST Data Services

P O NP

Validating the Oracle REST Data Services Installation

Related Topics
e Using the Multitenant Architecture with Oracle REST Data Services
e About the Database Users Used by Oracle REST Data Services

e If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

" See Also:

* Oracle REST Data Services Downloads

e To use the Oracle REST API for JSON Data Persistence, you must also install
the Oracle REST API. See "Oracle REST API Installation" in Oracle REST Data
Services SODA for REST Developer's Guide

Downloading Oracle REST Data Services

The topic describes the steps to download Oracle REST Data Services.

1. Download the file ords.version.number.zip from the Oracle REST Data Services
download page.

Note that the version.number in the file name reflects the current release number.
2. Unzip the downloaded zip file into a directory (or folder) of your choice:

* UNIX and Linux: unzip ords.version.number.zip

ORACLE 1-7

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

* Windows: Double-click the file ords. version.number.zip in Windows
Explorer

¢ See Also:

Oracle REST Data Services Downloads

Configuring Oracle REST Data Services

You can configure ORDS to meet your requirements.

To display a full list of available commands, go to the directory or folder containing the
ords.war file and execute the following command:

java -jar ords.war help

¢ See Also:

Configuring Oracle REST Data Services (Advanced)

Installing Oracle REST Data Services

To install Oracle REST Data Services, choose one of the following installation options:

e Advanced Installation Using Command-Line Prompts
e Silent Installation Using a Parameter File

You can reinstall or uninstall Oracle REST Data Services if required.

See Also:

Oracle REST Data Services Downloads

ORDS Installer Privileges Script

This section describes about the script file that provides privileges to the user to install,
upgrade, validate and uninstall ORDS.

Note:

This script is used when you do not want to use SYS AS SYSDBA to install,
upgrade, validate and uninstall ORDS for Oracle PDB or Oracle 11g.

Starting with ORDS 19.2 release, the Oracle REST Data Services installation archive
file contains a script, ords_installer privileges.sql which is located in the installer

ORACLE 1-8

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

folder. The script provides the assigned database user the privileges to install, upgrade,
validate and uninstall ORDS in Oracle Pluggable Database or Oracle 11g.

Perform the following steps:

1. Using SQLcl or SQL*Plus, connect to Oracle PDB or 11g database with SYSDBA
privileges.

2. Execute the following script providing the database user:

SQL> @/path/to/installer/ords installer privileges.sql exampleuser
SQL> exit

You must use the specified database user to install, upgrade, validate and uninstall ORDS.

Advanced Installation Using Command-Line Prompts

ORACLE

You can perform an advanced installation in which you are prompted for the necessary
parameter values.

To perform an advanced installation, enter the following command:

java -jar ords.war install advanced

Note:

Use the following on-line help command to check for additional options available for
the install command: java -jar ords.war help install

During installation, Oracle REST Data Services checks if configuration files already exist in
the specified configuration folder:

» If configuration files do not exist in that folder, then they are created. For example:
defaults.xml, apex pu.xml files

» If configuration files from an earlier release exist in that folder, Oracle REST Data
Services checks if <name> pu.xml is present. If it is not present, then you are prompted to
enter the password for the ORDS_PUBLIC_USER account. If the configuration files
<name> al.xml and <name> rt.xml from Release 2.0.n exist, then they are preserved.
(However, in Releases 2.0.n RESTful Services was optional, and therefore the files might
not exist in the configuration folder.)

e If multiple configuration files exist from a previous release (examples: apex.xml,
apex_al.xml, apex rt.xml, sales.xml, sales al.xml, sales rt.xml, ...), and if
<name> pu.xml does not exist, then you are prompted to select the database
configuration so that the Oracle REST Data Services schema can be created in that
database.

The following shows an example for an advanced installation. In this example, if you
accepted the default value as 1 for Enter 1 if you wish to start in standalone mode or
2 to exit [1], the remaining prompts are displayed; and if you will be using Oracle
Application Express, then you must specify the APEX static resources location.

d:\ords> java -jar ords.war install advanced

This Oracle REST Data Services instance has not yet been configured.

1-9

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Please complete the following prompts
Enter the location to store configuration data: /path/to/config

Specify the database connection type to use.

Enter number for [1] Basic [2] TNS [3] Custom URL [1]:

Enter the name of the database server [localhost]:

Enter the database listen port [1521]:

Enter 1 to specify the database service name, or 2 to specify the database SID
[1]:

Enter the database service name:orcl

Enter 1 if you want to verify/install Oracle REST Data Services schema or 2 to
skip this step [1]:

Enter the database password for ORDS PUBLIC USER:

Confirm password:

Requires to login with administrator privileges to verify Oracle REST Data
Services schema.

Enter the administrator username:EXAMPLEUSER

Enter the database password for EXAMPLEUSER:

Confirm password:

Connecting to database user: EXAMPLEUSER url: jdbc:oracle:thin:@//localhost:1521/
orcl

Retrieving information.
Enter the default tablespace for ORDS METADATA [SYSAUX]:
Enter the temporary tablespace for ORDS METADATA [TEMP]:
Enter the default tablespace for ORDS PUBLIC USER [USERS]:
Enter the temporary tablespace for ORDS PUBLIC USER [TEMP]:
Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.
If using Oracle Application Express or migrating from mod plsgl then you must
enter 1 [1]:
Enter the PL/SQL Gateway database user name [APEX PUBLIC USER]:
Enter the database password for APEX PUBLIC USER:
Confirm password:
Enter 1 to specify passwords for Application Express RESTful Services database
users (APEX LISTENER, APEX REST PUBLIC USER) or 2 to skip this step [1]:
Enter the database password for APEX LISTENER:
Confirm password:
Enter the database password for APEX REST PUBLIC USER:
Confirm password:
Enter a number to select a feature to enable:
[1] SQL Developer Web (Enables all features)
[2] REST Enabled SQL
[3] Database API
[4] REST Enabled SQL and Database API
[5] None
Choose [1]:
Enter 1 if you wish to start in standalone mode or 2 to exit [1]:
Enter the APEX static resources location:/path/to/apex/images
Enter 1 if using HTTP or 2 if using HTTPS [1]:
Enter the HTTP port [8080]:
OR
Enter 1 if using HTTP or 2 if using HTTPS [1]:2
Enter the HTTPS port [8443]:
Enter the SSL hostname:mysslhost
Enter 1 to use the self-signed certificate or 2 if you will provide the SSL
certificate [1]:

ORACLE 1-10

ORACLE

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Descriptions for Advanced Installation Prompts

This section describes the options you can choose while performing advanced installation of

Oracle REST Data Services schema.

Table 1-1 Advanced Installation Prompts for Installing and Configuring ORDS

Options

Description

This Oracle REST Data Services
instance has not yet been configured.
Please complete the following prompts
Enter the location to store
configuration data:/path/to/config

Specify the database connection type to
use. Enter number for [1] Basic [2] TNS
[3] Custom URL [1]:

The following example is for a Basic Connection:
Enter the name of the database server
[localhost]:

Enter the database listen port [1521]:

Enter 1 to specify the database
service name, or 2 to specify the
database SID [1]:

Enter the database service name:orcl

The following example is for a TNS Connection:
Enter the TNS Network Alias:orcl

Specify the location for the ORDS configuration
files. If the location does not exist, then it will be
created.

Specify if you want a Basic connection, TNS
connection or Custom URL connection

Specify the Oracle database hostname.
Specify the Oracle database port.
Specify the Oracle database service name, if you

choose option 1. Otherwise, if you choose option 2
then, specify the Oracle database SID.

Specify the TNS network alias identifier.

The following example is for a Custom URL Connection:

Enter the Custom JDBC URL:
jdbc:oracle:thin:@//localhost:1521/0rcl

Enter 1 if you want to verify/
install Oracle REST Data Services
schema

or 2 to skip this step [1]:

Enter the database password for
ORDS_PUBLIC USER:

Confirm password:

Specify the custom url.

Specify 1 to install the Oracle REST Data Services
schema and create the Oracle REST Data
Services proxy user, ORDS_PUBLIC USER.

Specify the proxy user, ORDS_PUBLIC USER and
the corresponding password.

1-11

ORACLE

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-1 (Cont.) Advanced Installation Prompts for Installing and Configuring ORDS
]

Options

Description

Requires to login with administrator

privileges to verify Oracle REST
Data Services schema.

Enter the administrator

username :EXAMPLEUSER

Enter the database password for
EXAMPLEUSER:

Confirm password:

Enter the default tablespace for
ORDS METADATA [SYSAUX]:

Enter the temporary tablespace for
ORDS_METADATA [TEMP] :

Enter the default tablespace for
ORDS_PUBLIC USER [USERS]:

Enter the temporary tablespace for
ORDS_PUBLIC USER [TEMP]

Specify the user with ORDS Installer privileges or

the SYS AS SYSDBA account.
Specify the password of the user.

Specify the default tablespace and temporary
tablespace for the Oracle REST Data Services
schema, ORDS METADATA.

Specify the default tablespace and temporary
tablespace for the Oracle REST Data Services
proxy user, ORDS PUBLIC USER

Table 1-2 Options for Configuring Application Express or Migrating from

mod_plsql

|
Description

Options

Enter 1 if you want to use PL/SQL
Gateway or 2 to skip this step.
If using Oracle

Application Express or migrating
from mod plsql

then you must enter 1 [1]:

Enter the PL/SQL Gateway database
user name [APEX PUBLIC USER]:
Confirm password:

Enter the database password for
APEX PUBLIC USER:

You can perform one of the following:

If you are using Oracle Application
Express, then specify the PL/SQL
gateway user as APEX PUBLIC USER and
the corresponding database password.
If you are migrating from Oracle
mod_plsql, then specify the PL/SQL
gateway database username and
database password.

If you are not using either Oracle
Application Express or migrating from
Oracle mod_plsql, then select 2 to skip
this step.

1-12

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-2 (Cont.) Options for Configuring Application Express or Migrating

from mod_plsql

Options

Description

Enter 1 to specify passwords for

Application Express RESTful
Services

database user (APEX LISTENER,

APEX REST PUBLIC USER) or 2
skip this step [1]:

Enter the database password for

APEX LISTENER:
Confirm password:

If you have specified APEX_PUBLIC_USER
for the PL/SQL Gateway user, then you have
the option of using Application Express
RESTful Services.

Specify 2 if you do not want to use Application
Express RESTful Services and skip this step.
For Application Express 5.0 and above, option
1is required. The database users are created
using the script apex rest config.sql
provided in the Application Express installation
media.

to

Enter the database password for

APEX REST PUBLIC USER:
Confirm password:

Table 1-3 Enabling Features in ORDS

Options

Description

Enter a number to select a feature to
enable:

[1] SQL Developer Web
features)

(Enables all

Specify 1 to enable all the features: SQL Developer
Web, REST Enabled SQL and Database API. Specify 2
for REST Enabled SQL or 3 for Database API. Specify 4
to enable both REST Enabled SQL and Database API.

Refer to "Accessing SQL Developer Web", "REST
Enabled SQL Service", and "Enabling ORDS Database

[2] REST Enabled SQL ! -)
[3] Database API API" documentation for more information.
[4] REST Enabled SQL and Database API
[5] None
Choose [1]:
Table 1-4 Options for Running in Standalone Mode
. ___|]
Options Description
Enter 1 if you wish to start in Specify 1 to start in standalone mode using the
standalone mode or 2 to exit [1]: Jetty web server that is bundled with ORDS.
Enter the APEX static resources Specify the location of the Application Express
location:/path/to/apex/images images. This prompt will appear if you have
specified APEX PUBLIC USER for the PL/SQL
Gateway user.
Specify the HTTP port if you choose 1.
Enter 1 if using HTTP or 2 if using
HTTPS [1]:
Enter the HTTP port [8080]:
ORACLE 1-13

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-4 (Cont.) Options for Running in Standalone Mode

Options Description
Specify the HTTPS port and the Secure Socket
OR Layer (SSL) hostname if you choose 2.

Enter 1 if using HTTP or 2 if using
HTTPS [1]:2

Enter the HTTPS port [8443]:

Enter the SSL hostname:mysslhost
Enter 1 to use the self-signed
certificate or 2 if you will provide
the SSL certifi

cate [1]:

OR

Enter 1 to use the self-signed
certificate or 2 if you will provide
the SSL certifi

cate [1]:2

Enter the path for the SSL
Certificate:/path/to/sslcert

Enter the path for the SSL
Certificates private
key:/path/to/sslcertprivatekey

You have the option of using the self-signed
certificate which generates the self-signed
certificate automatically.

Specify the path for the SSL certificate and the
path for SSL certificate private key if you choose
2.

Related Topics
e REST-Enabled SQL Service

* About the Oracle REST Data Services Configuration Files

e Starting in Standalone Mode

» Downloading, Configuring, and Installing and Oracle REST Data Services

» Installing Application Express and Configuring Oracle REST Data Services

e Accessing SQL Developer Web
e Enabling ORDS Database API

This section describes how to enable the Oracle REST Data Services (ORDS)

Database API.

ORDS Parameter File

Oracle REST Data Services can be installed in either simple or silent mode without

ORACLE

any user interaction.

You can perform either simple or silent installation for Oracle REST Data Services
using the parameters specified in the params/ords params.properties file under the
location where you installed Oracle REST Data Services. This is the default Oracle
REST Data Services parameter file. You can edit that file to change the default values

to reflect your environment and preferences.

1-14

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

You can perform the installation for Oracle REST Data Services using the parameters
specified in the params/ords params.properties file under the location where you installed
Oracle REST Data Services. This is the default Oracle REST Data Services parameter file.
The Oracle REST Data Services parameter file consists of key or value pairs in the format
key=value.

Alternatively, you have the option of specifying your own Oracle REST Data Services
parameter file by including the --parameterFile option. If the --parameterFile option is not
specified, the default Oracle REST Data Services parameter file is used.

Parameters Used in ORDS Parameter File

This section lists the parameters used in ORDS parameter file.

Topics:

* Parameters for Database Connection

» Parameters for Installing Oracle REST Data Services
» Parameters for Installing into the CDB

» Parameters for Configuring Application Express

e Parameters for Running in Standalone Mode

¢ Miscellaneous Parameters

Parameters for Database Connection

This section lists the database connection parameters that must be specified in the properties
file. You can specify a Basic, TNS or Custom URL connection.

Topics:
» Parameters for Basic Connection
e Parameters for TNS Connection

e Parameters for Custom URL Connection

Parameters for Basic Connection

ORACLE

This section lists the parameters that must be specified in the properties file for basic
database connection.

For basic connection, you must specify db.hostname and db.port database connection
parameters. In addition, specify either db.servicename or db.sid parameters. If you are
specifying a database connection to an Oracle 12.x PDB, then provide the db.servicename
parameter.

Key Type Description Example
db.connectionType string Specifies the connection basic
type. The value is
basic.
db.hostname string Specifies the host myhostname
system for the Oracle
database.
db.port numeric Specifies the database 1521

listener port.

1-15

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Key Type Description Example
db.servicename string Specifies the network orcl.example.com
service name of the
database.
db.sid string Specifies the name of orcl

the database.

Parameters for TNS Connection
This section lists the parameters for TNS connection to install ORDS.

Key Type Description Example

db.connectionType string Specifies the tns
connection type. The
value is tns.

db.tnsDirectory string Specifies the folder of /path/to/
where the tnsfolder
tnsnames.ora file is
located.

db.tnsAliasName string Specifies the tns alias orcl

name that must exist
in the tnsnames.ora
file.

Parameters for Custom URL Connection
This section lists the parameters for Custom URL connection to install ORDS.

Key Type Description Example

db.connectionType string Specifies the customurl
connection type. The
value is customurl.

db.customURL string Specifies the custom jdbc:oracle:thin:
url. @//
localhost:1521/
orcl

Parameters for Installing Oracle REST Data Services

This section lists the parameters required for installing Oracle REST Data Services
schema.

To install Oracle REST Data Services schema, following parameters must be
specified:

e Username and password of the user with ORDS Installer privileges or with SYS
AS SYSDBA account.

¢ ORDS_PUBLIC_USER password

e Existing default and temporary tablespaces for the ORDS_METADATA schema
and ORDS_PUBLIC_USER.

ORACLE 1-16

< Note:

Table 1-5 Parameters for Installing Oracle REST Data Services

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

If all of the default and temporary tablespace parameters are omitted in the Oracle
REST Data Services parameter file, then the Oracle database default and
temporary tablespaces are used.

Key Type Description Example
rest.services.ords. boolean Specifies whether to true
add install the Oracle REST

Data Services schema.

Set the value to true.

Supported values:

e true

» false (default)
user.public.passwor string Specifies the password password
d for

ORDS_PUBLIC_USER.
schema.tablespace.d string Specifies the SYSAUX
efault ORDS_METADATA

default tablespace.

Specify an existing

default tablespace.
schema.tablespace.t string Specifies the TEMP
emp ORDS_METADATA

temporary tablespace.

Specify an existing

temporary tablespace.
user.tablespace.def string Specifies the SYSAUX
ault ORDS_PUBLIC_USER

default tablespace.

Specify an existing

default tablespace.
user.tablespace.tem string Specifies the TEMP
o) ORDS_PUBLIC_USER

temporary tablespace.

Specify an existing

temporary tablespace.
bequeath.connect boolean Specifies whether to true

connect as bequeath.
Supported values:

e true

- false (default)

Related Topics

» Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST

Data Services

ORACLE

1-17

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Parameters for Enabling SQL Developer Web

This section lists the parameters for enabling SQL Developer Web.

ORACLE 1-18

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-6 Parameters for Enabling SQL Developer Web
]

Key Type Description Example
feature.sdw string Specifies if SQL true
Developer Web is
enabled.
\J
N
t
e

O'(DE"CD'OO_(D<(DUI_,O(/)©3_'_O'QJD(D"OTI

OB "TOoOODC —O<O®S "~

ORACLE' 1-19

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-6 (Cont.) Parameters for Enabling SQL Developer Web

- ___|
Key Type Description Example

HQ nn O O O 3B [n»n

(DCH("’(DO'OU)_QJ""U)CB(D<II—‘-(—"OQ)-

Default value is false.

restEnabledSqgl.acti string Specifies if REST- true
ve Enabled SQL is
enabled.

Default value is false.

database.api.enabled string Specifies if the true
Database APl is
enabled. Default value is
false.

Parameters for Enabling REST-Enabled SQL

This section describes the parameter for enabling REST-Enabled SQL.

ORACLE 1-20

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-7 Parameters for Enabling REST-Enabled SQL
]

Key Type Description Example
restEnabledSqgl.acti string Specifies if REST- true
ve Enabled SQL is

enabled.

Default value is false.

Parameters for Enabling Database API

This section describes the parameter for enabling Database API.

Table 1-8 Parameters for Enabling Database API

Key Type

Description Example

database.api.enable string
d

Specifies if Database true
APl is enabled.

Default value is false.

Parameters for Installing into the CDB

This section lists the parameters required for installing Oracle REST Data Services into the

CDB and all of its PDBs.

Oracle database 12.x provides you the option of installing Oracle REST Data Services in the

CDB and all of its PDBs.

< Note:

Provide the CDB service name for db.servicename or sid for db.sid.

Table 1-9 Parameters for Installing into the CDB

Key Type

Description Example

pdb.open.asneeded boolean

ORACLE

Specifies whether to true
open all PDBs in read

write mode if their status

is either closed or read

only. If the value is set to

true, then the following

PDB parameters are

ignored:
e pdb.open.readwr
ite

e pdb.skip.closed
e pdb.skip.readon

ly
Supported values:
e true

» false (default)

1-21

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-9 (Cont.) Parameters for Installing into the CDB

- ___|
Key Type Description Example

pdb.open.readwrite string Specifies the list of PDB PDB1, PDB2, MYPDB
service names to open
for read write mode if
their status is read only.

pdb.skip.closed boolean Specifies whether to true
skip PDBs that are
closed.
Supported values:
e true

» false (default)

pdb.skip.readonly boolean Specifies whether to true
skip PDBs with read
only status.
Supported values:
o true

- false (default)
pdb.exclude string Specifies the list of PDB PDB3, PDB4, PDB X

service names to
exclude for install.

Related Topics

* Setting Up ORDS in a CDB Environment
This section describes how to setup Oracle REST Data Services (ORDS) into a
multitenant container database (CDB) environment.

Parameters for Configuring Application Express
This section lists the parameters for using Application Express.

Table 1-10 Parameters for Configuring Application Express

___|
Key Type Description Example

plsgl.gateway.add boolean Specifies whetherto true
configure Oracle
REST Data Services
for Application
Express. Set this
value to true.

Supported values:

+ true
» false (default)
db.username string Specifies the PL/ISQL APEX PUBLIC USER

gateway username.
For Application
Express, you must
specify
APEX_PUBLIC_USE
R.

ORACLE 1-22

ORACLE

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-10 (Cont.) Parameters for Configuring Application Express

Key Type

Description Example

db.password string

rest.services.ape boolean
x.add

user.apex.listene string
r.password

Specifies the
password for
APEX_PUBLIC_USE
R. The password must
match
APEX_PUBLIC_USE
R database password.

password

Specifies whetherto true
configure Oracle

REST Data Services

for Application

Express RESTful

Services.

Supported values:

o true

« false (default)

Set this value to true if

you want to use APEX
RESTful Services.

Specifies the
password for
APEX_LISTENER. If
rest.services.ape
x.add is set to true,
you must provide a
password for
APEX_LISTENER.
The password must
match
APEX_LISTENER
database password.
Otherwise, if
rest.services.ape
x.add is set to false,
omit this parameter.

password

1-23

ORACLE

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-10 (Cont.) Parameters for Configuring Application Express

Key Type

Description Example

user.apex.restpub string
lic.password

security.external String
SessionTrustedOri
gins

Specifies the
password for
APEX_REST_PUBLIC
_USER. If
rest.services.ape
x.add is set to true,
you must provide a
password for
APEX_REST_PUBLIC
_USER. The
password must match
APEX_REST_PUBLIC
_USER database
password. Otherwise,
if
rest.services.ape
x.add is set to false,
omit this parameter.

password

Comma separated list http://fexample.com,
of origins that are https://

trusted to make CORS example.com:8443
requests for PL/SQL

Gateway or APEX.

Example 1-1 Parameters to configure for Application Express and APEX
RESTful Services and run in standalone mode

Following example shows parameters to install Oracle REST Data Services, configure
for Application Express and APEX RESTful Services and run in standalone mode

using http:

Note:

db.hostname=localhost
db.password=password
db.port=1521
db.servicename=orcl.example.com
db.username=APEX PUBLIC USER
plsgl.gateway.add=true
rest.services.apex.add=true
rest.services.ords.add=true
schema.tablespace.default=SYSAUX
schema.tablespace. temp=TEMP
standalone.http.port=8080
standalone.mode=true

Passwords in the parameter file will be encrypted during installation. The
encrypted passwords are stored in the parameter file. For example,
user.public.password=@0585904F6C9B442532D5212962835D00C8.

1-24

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

standalone.static.images=/path/to/images
standalone.use.https=false
user.apex.listener.password=password
user.apex.restpublic.password=password
user.public.password=password
user.tablespace.default=SYSAUX
user.tablespace. temp=TEMP

" See Also:

e Forinformation on APEX_PUBLIC_USER, refer to section Configuring the
APEX_PUBLIC_USER Account, in Oracle Application Express Installation
Guide.

e Forinformation on APEX_LISTENER and APEX_REST_PUBLIC_USER, refer
to section, Configuring RESTful Services with Oracle REST Data Services in
Oracle Application Express Installation Guide.

Parameters for Running in Standalone Mode
This section lists parameters for running Oracle REST Data Services in standalone mode.

Table 1-11 Parameters for Installing Oracle REST Data Services in Standalone Mode

- ___|
Key Type Description Example

standalone.mode boolean Indicates whether to use true
the web application
server (Jetty) that is
included with Oracle
REST Data Services.

Supported values:
o true

« false (default)

standalone.http.por numeric Specifies the HTTP 8080

t listener port.

standalone.use.http boolean Specifies whether to use true

S https.

standalone.https.po numeric Specifies HTTPS 8443

rt listener port.

standalone.ssl.host string Specifies the Secure mysecurehost

Socket Layer (SSL)
certificate hostname.
You must specify this
option if you are using
https.

ORACLE 1-25

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-11 (Cont.) Parameters for Installing Oracle REST Data Services in Standalone
Mode

- ___|
Key Type Description Example

standalone.use.ssl. boolean Specifies whether you true
cert will provide the SSL
certificate. If this value is
set to true, you must
specify the
standalone.ssl.cert
.path and
standalone.ssl.key.
path.

standalone.ssl.cert string Specifies the SSL /path/to/ssl/cert
.path certificate path. If you

are providing the SSL

certificate, you must

specify the certificate

location.

standalone.ssl.key. string Specifies the SSL /path/to/ssl/key
path certificate key path. If

you are providing the

SSL certificate, you

must specify the

certificate key location.

standalone.static.i string Specifies the location of /path/to/apex/
mages Application Express images

images. If you are using

Application Express,

specify the location of

Application Express

images.

" Note:

On Microsoft Windows systems, if you specify an Application Express static
images location for standalone.static.images, use the backslash character
(/) before the colon, and use a forwardslash for the folder separator. For
example, standalone.static.images=d\:/test/apex426/apex/images/

Example 1-2 Parameters to run in standalone mode using http

Following code snippet shows an example of the list of parameters to specify for
installing Oracle REST Data Services and running in standalone mode using http:

db.hostname=localhost
db.port=1521
db.servicename=orcl.example.com
plsgl.gateway.add=false
rest.services.apex.add=false
rest.services.ords.add=true
schema.tablespace.default=SYSAUX

ORACLE 1-26

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

schema.tablespace.temp=TEMP
standalone.http.port=8080
standalone.mode=true
standalone.use.https=false
user.public.password=password
user.tablespace.default=SYSAUX
user.tablespace. temp=TEMP

Example 1-3 Parameters to run in standalone mode using https and providing the ssli
certificate paths

Following code snippet shows an example of the list of parameters to specify for installing
and running Oracle REST Data Services in standalone mode using https and providing the
ssl certificate paths:

db.hostname=localhost

db.port=1521
db.servicename=orcl.example.com
plsgl.gateway.add=false
rest.services.apex.add=false
rest.services.ords.add=true
schema.tablespace.default=SYSAUX
schema.tablespace. temp=TEMP
standalone.https.port=8443
standalone.mode=true
standalone.ssl.cert.path=/path/to/ssl/cert
standalone.ssl.host=mysecurehost
standalone.ssl.key.path=/path/to/ssl/key
standalone.use.https=true
standalone.use.ssl.cert=true
user.public.password=password
user.tablespace.default=SYSAUX
user.tablespace. temp=TEMP

Related Topics

» Standalone Mode

Miscellaneous Parameters

ORACLE

This section lists some miscellaneous parameters.

Table 1-12 Miscellaneous Parameters

|
Key Type Description Example

migrate.apex.rest boolean Specifies whether to true
migrate APEX RESTful
Services definitions to
Oracle REST Data
Services schema.

Supported values:
o true

» false (default)

1-27

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Simple Installation Using a Parameter File

Oracle REST Data Services can be installed in simple mode without any user
interaction.

You can perform a simple installation of Oracle REST Data Services using an ORDS
parameters file. A simple installation prompts you for the information if the required
parameter does not exist in the ORDS parameter file.

Following is an example code snippet for installing Oracle REST Data Services in
simple mode:

java -jar ords.war install simple
java -jar ords.war install --parameterFile /path/to/
my params.properties simple

java -jar ords.war install
java -jar ords.war install --parameterFile /path/to/

my params.properties

java -jar ords.war

¢ Note:

Use the following on-line help command to check for additional options
available for the install command: java -jar ords.war help install

Silent Installation Using a Parameter File

Oracle REST Data Services can be installed in silent mode without any user
interaction.

You can perform a silent installation of Oracle REST Data Services using an ORDS
parameters file. A silent installation must have the required parameters defined in the
parameter file; otherwise, an error occurs.

Following is an example code snippet for installing Oracle REST Data Services in
silent mode:

java -jar ords.war install --silent
java-jar ords.war install --silent --parameterFile /path/to/
my params.properties

Note:

Use the following on-line help command to check for additional options
available for the install command: java -jar ords.war help install

ORACLE 1-28

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Parameters Required for Silent Installation

This section describes the parameters required for installing Oracle REST Data Services in
silent mode.

If you want to install Oracle REST Data Services in silent mode, then the required parameters
must be defined in the ORDS parameter file.

Parameter Group Required Parameters Description

Database Connection Refer to "Parameters for Specify Basic, TNS or Custom

Database Connection" section URL connection.
for the list of parameters.

Installing ORDS rest.services.ords.add If
Supported values: rest.services.ords.add=tr
. true ue, then refer to "Parameters
. false Used in ORDS Parameter File."
section for additional parameters.
Configuring for Application plsgl.gateway.add Ifplsgl.gateway.add=true,
Express or PL/SQL Gateway Supported values: then refer to "Parameters for
. true Configuring Application Express"
. false section for additional required
parameters.
Running in Standalone Mode standalone.mode If standalone.mode=true,
Supported values: then refer to "Parameters for
. true Running Oracle REST Data
. false Services in Standalone Mode"

for additional required
parameters.

Related Topics

Parameters for Database Connection
This section lists the database connection parameters that must be specified in the
properties file. You can specify a Basic, TNS or Custom URL connection.

Parameters for Installing Oracle REST Data Services
This section lists the parameters required for installing Oracle REST Data Services
schema.

Parameters Used in ORDS Parameter File
This section lists the parameters used in ORDS parameter file.

Parameters for Configuring Application Express
This section lists the parameters for using Application Express.

Standalone Mode

Changing Default Configuration from the Command Line

ORACLE

This section describes how you can update the ORDS default configuration file.

The following set property command is used to update the ORDS default configuration file:

$ java -jar ords.war set-property <property key> <value>

ORDS must be restarted for the changes to take effect.

1-29

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Example 1-4

Examples of Enabling a Feature.

The following example updates the properties in the existing defaults.xml file to
enable SQL Developer Web.

$ java -jar ords.war set-property feature.sdw true
$ java -jar ords.war set-property restEnabledSql.active true
$ java -jar ords.war set-property database.api.enabled true

Example 1-5

The following example updates the properties in the existing defaults.xml file to
enable REST-Enable SQL.

$ java -jar ords.war set-property restEnabledSqgl.active true
Example 1-6

The following example updates the properties in the existing defaults.xml file to
enable Database API.

$ java -jar ords.war set-property database.api.enabled true

Validating the Oracle REST Data Services Installation

ORACLE

If you want to check that the Oracle REST Data Services installation is valid, go to the
directory or folder containing the ords.war file and enter the validate command in the
following format:

java -jar ords.war validate [--database <dbname>]

" Note:

When you install Oracle REST Data Services, it attempts to find the Oracle
Application Express (APEX) schema and creates a view. This view joins the
relevant tables in the APEX schema to the tables in the Oracle REST Data
Services schema. If you install Oracle REST Data Services before APEX,
then Oracle REST Data Services cannot find the APEX schema and it
creates a stub view in place of the missing APEX tables.

Oracle highly recommends that you install Oracle REST Data Services after
APEX to ensure that the APEX objects, which Oracle REST Data Services
needs to query, are present. If you install Oracle REST Data Services before
APEX, then use the validate command to force Oracle REST Data Services
to reconstruct the queries against the APEX schema.

If --database is specified, <dbname> is the pool name that is stored in the Oracle
REST Data Services configuration files.

You are prompted for any necessary information that cannot be obtained from the
configuration of pool name, such as host, port, SID or service name, and the name
and password of the user with ORDS Installer privileges, or SYS AS SYSDBA user.

1-30

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

< Note:

If the validate command is run against a CDB, then it will validate the CDB and all of
its PDBs.

If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

If you want to reinstall Oracle REST Data Services, you must first uninstall the existing Oracle
REST Data Services; and before you uninstall, ensure that Oracle REST Data Services is
stopped.

Uninstalling Oracle REST Data Services removes the ORDS_METADATA schema, the
ORDS_PUBLIC_USER user, and Oracle REST Data Services-related database objects
(including public synonyms) if they exist in the database. To uninstall (remove, or deinstall)
Oracle REST Data Services, go to the directory or folder containing the ords.war file and
enter the uninstall command as follows:

java -jar ords.war uninstall

The uninstall command prompts you for some necessary information (host, port, SID or
service name, username, password).

¢ See Also:

To uninstall Oracle REST Data Services from a CDB, see Using the Multitenant
Architecture with Oracle REST Data Services .

Using SQL Developer Oracle REST Data Services Administration

(Optional)

This section describes how to use Oracle SQL Developer to administer Oracle REST Data
Services.

¢ See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer User's Guide

Topics:
e About SQL Developer Oracle REST Data Services Administration

» Configuring an Administrator User

About SQL Developer Oracle REST Data Services Administration

ORACLE

Oracle SQL Developer enables you to administer Oracle REST Data Services using a
graphical user interface. To take full advantage of these administration capabilities, you must

1-31

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

use SQL Developer Release 4.1 or later. Using SQL Developer for Oracle REST Data
Services administration is optional.

Using this graphical user interface, you can update the database connections, JDBC
settings, URL mappings, RESTful connections, security (allowed procedures, blocked
procedures, validation function and virus scanning), Caching, Pre/Post Processing
Procedures, Environment, and Excel Settings. Oracle SQL Developer also provides
statistical reporting, error reporting, and logging.

¢ See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer
User's Guide

Configuring an Administrator User

If you want to be able to administer Oracle REST Data Services using SQL Developer,
then you must configure an administrator user as follows:

» Execute the following command:

java -jar ords.war user adminlistener "Listener Administrator"
* Enter a password for the adminlistener user.
e Confirm the password for the adminlistener user.

* If you are using Oracle REST Data Services without HTTPS, follow the steps listed
under the section,Using OAuth2 in Non-HTTPS Environments.

When using SQL Developer to retrieve and/or upload an Oracle REST Data Services
configuration, when prompted, enter the credentials provided in the preceding list.

Using OAuth2 in Non-HTTPS Environments

ORACLE

RESTful Services can be protected with the OAuth2 protocol to control access to
nonpublic data. To prevent data snooping, OAuth2 requires all requests involved in the
OAuth2 authentication process to be transported using HTTPS. The default behavior
of Oracle REST Data Services is to verify that all OAuth2 related requests have been
received using HTTPS. It will refuse to service any such requests received over HTTP,
returning an HTTP status code of 403 Forbidden.

This default behavior can be disabled in environments where HTTPS is not available
as follows:

1. Locate the folder where the Oracle REST Data Services configuration is stored.

2. Edit the file named defaults.xml.

3. Add the following setting to the end of this file just before the </properties> tag.
<entry key="security.verifySSL">false</entry>

4. Save the file.

5. Restart Oracle REST Data Services if it is running.

1-32

Chapter 1
Deploying Oracle REST Data Services

Note that it is only appropriate to use this setting in development or test environments. It is
never appropriate to use this setting in production environments because it will result in user
credentials being passed in clear text.

Note:

Oracle REST Data Services must be restarted after making configuration changes.
See your application server documentation for information on how to restart
applications.

Deploying Oracle REST Data Services

To deploy Oracle REST Data Service, you can choose one of the following options:
» Standalone Mode

* Oracle WebLogic Server

* Apache Tomcat

e Oracle Cloud Infrastructure

Standalone Mode

ORACLE

Although Oracle REST Data Services supports the Java EE application servers, you also
have the option of running in standalone mode. This section describes how to run Oracle
REST Data Services in standalone mode.

Standalone mode is suitable for development use and is supported in production
deployments. Standalone mode, however, has minimal management capabilities when
compared to most Java EE application servers and may not have adequate management
capabilities for production use in some environments.

" Note:

Run the following help command to check the additional options available for the
standalone command:

java -jar ords.war help standalone

Topics:

e Starting in Standalone Mode

* Stopping the Server in Standalone Mode

* Configuring a Doc Root for Non-Application Express Static Resources
Related Topics

e Supported Java EE Application Servers

1-33

Chapter 1
Deploying Oracle REST Data Services

Starting in Standalone Mode

To launch Oracle REST Data Services in standalone mode:
1. To start Standalone mode, execute the following command:

java -jar ords.war standalone

If you have not yet completed the standalone configuration, you are prompted to
do so.

Tip:

To see help on standalone mode options, execute the following
command:

java -jar ords.war help standalone

" Note:

If you want to use RESTful services that require secure access, you
should use HTTPS.

2. When prompted, specify the location of the folder containing the Oracle
Application Express static resources used by Oracle REST Data Services, or
press Enter if you do not want to specify this location.

3. When prompted select if you want Oracle REST Data Services to generate a self-
signed certificate automatically or if you want to provide your own certificate. If you
want to use your own certificate, provide the path for the Certificate and DER
encoded related private key when prompted.

If the private key has not already been converted to DER, see section, Converting
a Private Key to DER (Linux and Unix) before you enter the values here.

You are only prompted for these values the first time you launch standalone mode.

Note:

Ensure that no other servers are listening on the port you choose. The
default port 8080 is commonly used by HTTP or application servers,
including the embedded PL/SQL gateway; the default secure port 8443 is
commonly used by HTTPS.

Related Topics
e Using OAuth2 in Non-HTTPS Environments

e Converting a Private Key to DER (Linux and Unix)

ORACLE 1-34

Chapter 1
Deploying Oracle REST Data Services

Converting a Private Key to DER (Linux and Unix)

Usually, you would have created a private key and a Certificate Signing Request before
obtaining your signed certificate. The private key needs to be converted into DER in order for
Oracle REST Data Services to read it properly.

For example, assume that the original private key was created using the OpenSSL tool with a
command similar to either of the following:

openssl req -new -newkey rsa:2048 -nodes -keyout yourdomain.key -out
yourdomain.csr

or

openssl genrsa -out private.em 2048

In this case, you must run a command similar to the following to convert it and remove the
encryption: openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdomain.key -out
yourdomain.der -nocrypt

openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdomain.key -out
yourdomain.der -nocrypt

After doing this, you can include the path to yourdomain.der when prompted by Oracle REST
Data Services, or you can modify the following entries in conf/ords/standalone/
standalone.properties:

ssl.cert=<path to yourdomain.crt>
ssl.cert.key=<path to yourdomain.der>
ssl.host=yourdomain

Also, ensure that jetty.secure.port is set.

Stopping the Server in Standalone Mode

To stop the Oracle REST Data Services server in standalone mode, at a command prompt
press Ctrl+C.

Configuring a Doc Root for Non-Application Express Static Resources

ORACLE

You can configure a doc root for standalone mode to deploy static resources that are outside
the /1 folder that is reserved for Application Express static resources.

To do so, specify the --doc-root parameter with the standalone mode command, as in the
following example:

java -jar ords.war standalone --doc-root /var/www/html

The preceding example makes any resource located within /var/www/html available under
http://server:port/. For example, if the file /var/www/html/hello.txt exists, it will be
accessible at http://server:port/hello.txt.

1-35

Chapter 1
Deploying Oracle REST Data Services

The value specified for --doc-root is stored in ${config.dir}/ords/standalone/
standalone.properties in the standalone.doc.root property. If a custom doc root is
not specified using --doc-root, then the default doc-root value of ${config.dir}/
ords/standalone/doc_root is used. Any file placed within this folder will be available
at the root context.

This approach has the following features and considerations:

 HTML resources can be addressed without their file extension. For example, if a
file named hello.html exists in the doc root, it can be accessed at the URI
http://server:port/hello.

e Attempts to address a HTML resource with its file extension are redirected to the
location without an extension. For example, if the URI http://server:port/
hello.html is accessed, then the client is redirected to http://server:port/
hello.

The usual practice is to serve HTML resources without their file extensions, so this
feature facilitates that practice, while the redirect handles the case where the
resource is addressed with its file extension.

* Index pages for folders are supported. If a folder contains a file named index.html
or index.htm, then that file is used as the index page for the folder. For example,
if /var/www/html contains /abc/xyz/index.html, then accessing http://
server:port/abc/xyz/ displays the contents of index.html.

e Addressing a folder without a trailing slash causes a redirect to the URI with a
trailing slash. For example, if a client accesses http://server:port/abc/xyz,
then the server issues a redirect to http://server:port/abc/xyz/.

* Resources are generated with weak etags based on the modification stamp of the
file and with a Cache Control header that causes the resources to be cached for 1
hour.

Oracle WebLogic Server

This section describes how to deploy Oracle REST Data Services on Oracle WebLogic
Server. It assumes that you have completed the installation process and are familiar
with Oracle WebLogic Server. If you are unfamiliar with domains, managed servers,
deployment, security, users and roles, refer to your Oracle WebLogic Server
documentation.

Topics:

e About Oracle WebLogic Server

* Configuring Oracle Application Express Images

* Launching the Administration Server Console

* Deploying ORDS on Oracle WebLogic Server

» Configuring WebLogic to Handle HTTP Basic Challenges Correctly

* Verifying the State and Health of ords and i

About Oracle WebLogic Server

You can download Oracle WebLogic Server from Oracle Technology Network.

ORACLE 1-36

Chapter 1
Deploying Oracle REST Data Services

To learn more about installing Oracle WebLogic Server, see Oracle Fusion Middleware
Getting Started With Installation for Oracle WebLogic Server and Oracle Fusion Middleware
Installation Guide for Oracle WebLogic Server.

¢ See Also:

Oracle Fusion Middleware Software Downloads

Configuring Oracle Application Express Images

If you are using Oracle Application Express, you must create a web archive to reference the
Oracle Application Express, image files. However, if you are not using Oracle Application
Express, you may skip the rest of this section about configuring Oracle Application Express
images.

Before you begin, you must create a web archive (WAR) file to reference the Oracle
Application Express image files. Use the static command to create a web archive file named
i.war:

java -jar ords.war static <apex directory>\images
Where:

° <apex directory> is the directory location of Oracle Application Express.

This command runs the static command contained in the ords.war file. It packages the
Application Express static images into an archive file named i.war.

The created images WAR does not contain the static resources; instead, it references the
location where the static resources are stored. Therefore the static resources must be
available at the specified path on the server where the WAR is deployed.

Tip:

Use java -jar ords.war help static to see the full range of options for the
static command.

Use the i.war file to deploy to WebLogic in the following steps:

1. Launching the Administration Server Console
2. Installing the Oracle WebLogic Server Deployment
3. Configuring WebLogic to Handle HTTP Basic Challenges Correctly

Launching the Administration Server Console

To launch the Administration Server console:

1. Start an Administration Server.

2. Launch the WebLogic Administration Console by typing the following URL in your web
browser:

ORACLE 1-37

Chapter 1
Deploying Oracle REST Data Services

http://<host>:<port>/console

Where:
e <host>is the DNS name or IP address of the Administration Server.

* <port>is the port on which the Administration Server is listening for requests
(port 7001 by default).

3. Enter your WebLogic Administrator username and password.

4. If your domain is in Production mode, click the Lock & Edit button on the left-pane
below the submenu Change Center. If your domain is in Development mode, this
button does not appeatr.

Deploying ORDS on Oracle WebLogic Server

Tip:

The Oracle REST Data Services files, ords.war and i.war, must be
available before you start this task.

To deploy:

1. Go to the WebLogic Server Home Page. Below Domain Configuration, select
Deployments.

The Summary of Deployments is displayed.
2. Click Install.
3. Specify the location of the ords.war file and click Next.

The ords.war file is located in the folder where you unzipped the Oracle REST
Data Services ZIP file.

Tip:

WebLogic Server determines the context root from the file name of a
WAR archive. If you need to keep backward compatibility, so that URLs
are of the form http://server/apex/... rather than http://server/ords/..., then
you must rename ords.war t0 apex.war before the deployment.

The Install Application assistant is displayed.
4. Select Install this deployment as an application and click Next.

5. Select the servers and/or clusters to which you want to deploy the application or
module and click Next.

ORACLE 1-38

Chapter 1
Deploying Oracle REST Data Services

Tip:

If you have not created additional Managed Servers or clusters, you do not see
this assistant page.

6. In the Optional Settings, specify the following:
a. Name - Enter:
ords
b. Security - Select the following:

Custom Roles: Use roles that are defined in the Administration Console; use
policies that are defined in the deployment descriptor

c. Source accessibility - Select:
Use the defaults defined by the deployment's targets
7. Click Next.
A summary page is displayed.
8. Under Additional configuration, select one of the following:
* Yes, take me to the deployment's configuration - Displays the Configuration page.

* No I will review the configuration later - Returns you to the Summary of
Deployments page.

9. Review the summary of configuration settings that you have specified.
10. Click Finish.
11. Repeat the previous steps to deploy the i.war file.
In the optional settings, specify the following:
a. Name - Enter:
i
b. Security - Select:

Custom Roles: Use roles that are defined in the Administration Console; use
policies that are defined in the deployment descriptor

c. Source Accessibility - Select:
Use the defaults defined by the deployment's targets

12. If your domain is in Production Mode, then on the Change Center click Activate
Changes.

Related Topics
e Downloading, Configuring, and Installing and Oracle REST Data Services

e Configuring Oracle Application Express Images

Configuring WebLogic to Handle HTTP Basic Challenges Correctly

By default WebLogic Server attempts to intercept all HTTP Basic Authentication challenges.
This default behavior needs to be disabled for Oracle REST Data Services to function

ORACLE 1-39

Chapter 1
Deploying Oracle REST Data Services

correctly. This is achieved by updating the enforce-valid-basic-auth-credentials
flag. The WebLogic Server Administration Console does not display the enforce-
valid-basic-auth-credentials setting. You can use WebLogic Scripting Tool
(WLST) commands to check, and edit the value in a running server.

The following WLST commands display the domain settings:
connect ('weblogic', 'weblogic', 't3://localhost:7001")
cd('SecurityConfiguration')

cd('mydomain')
1s()

If the domain settings displayed, contains the following entry:

-r-- EnforceValidBasicAuthCredentials true

Then you must set this entry to false.

To set the entry to false, use the WLST commands as follows:

connect ('weblogic', 'weblogic', 't3://localhost:7001")
edit ()

startEdit ()

cd('SecurityConfiguration')

cd('mydomain')

set ('EnforceValidBasicAuthCredentials', 'false')

save ()

activate ()

disconnect ()

exit ()

Note:

WebLogic Server must be restarted for the new settings to take effect.

In the preceding example:

* weblogic is the WebLogic user having administrative privileges
* weblogic is the password

* mydomain is the domain

e The AdminServer is running on the localhost and on port 7001
Related Topics

* WebLogic Server Command Reference

Verifying the State and Health of ords and i

ORACLE

In the Summary of Deployments, select the Control tab and verify that both the ords
and i State are Active and the Health status is OK.

1-40

https://docs.oracle.com/cd/E13222_01/wls/docs81/admin_ref/weblogicServer.html

Chapter 1
Deploying Oracle REST Data Services

If ords and/or i are not Active, then enable them. In the Deployments table, select the check
box next to ords and/or i. Click Start and select Servicing all requests to make them active.

Apache Tomcat

This section describes how to deploy Oracle REST Data Services on Apache Tomcat.

Topics:
e About Apache Tomcat
» Configuring Oracle Application Express Images

» Deploying ORDS on Apache Tomcat

About Apache Tomcat

Tip:

This section assumes that you have completed the installation process and are
familiar with Apache Tomcat. If you are unfamiliar with domains, servers,
applications, security, users and roles, see your Apache Tomcat documentation.

You can download Apache Tomcat from:

¢ See Also:

Tomcat 8 Software Downloads

Configuring Oracle Application Express Images

If you are using Oracle Application Express, you must create a web archive to reference the
Oracle Application Express, image files. However, if you are not using Oracle Application
Express, you may skip the rest of this section about configuring Oracle Application Express
images.

To configure Oracle Application Express Images on Apache Tomcat:

e Copy the contents of the <apex directory>/images folder to <Tomcat directory>/
webapps/1i/.

Where:

— <apex directory> is the directory location of the Oracle Application Express
distribution.

— <Tomcat directory>is the folder where Apache Tomcat is installed.

ORACLE 1-41

Chapter 1
Deploying Oracle REST Data Services

Deploying ORDS on Apache Tomcat

Y Tip:

The Oracle REST Data Services file ords.war must be available before you
start this task.

To deploy ORDS on Apache Tomcat:

1. Move the ords.war file into the webapps folder where Apache Tomcat is installed.

' Tip:

Apache Tomcat determines the context root from the file name of a WAR
archive. If you need to keep backward compatibility, so that URLs are of
the form http.//server/apex/... rather than http.//server/ords/..., then you
must rename ords.war t0 apex.war before moving it into to the webapps
folder.

2. Access Oracle Application Express by typing the following URL in your web
browser:

http://<hostname>:<port>/ords/

Where:

* <hostname> is the name of the server where Apache Tomcat is running.

* <port>is the port number configured for Apache Tomcat application server.
Related Topics

» Downloading, Configuring, and Installing and Oracle REST Data Services

e Configuring Oracle Application Express Images

Oracle Cloud Infrastructure

ORACLE

As a cloud user, you can deploy Oracle REST Data Services with high availability on
Oracle Cloud Infrastructure.

Topics:
e About Oracle Cloud Infrastructure (OCI)

e Configuring ORDS for High Availability on Oracle Cloud Infrastructure

e Advantages of Deploying ORDS with High Availability on Oracle Cloud
Infrastructure

1-42

Chapter 1
Deploying Oracle REST Data Services

¢ See Also:

Reference Architecture: Deploying ORDS with High Availability

About Oracle Cloud Infrastructure

Oracle Cloud Infrastructure (OCI) is a set of complementary cloud services that enable you to
build and run a wide range of applications and services in a highly available hosted
environment. Oracle Cloud Infrastructure offers high-performance compute capabilities (as
physical hardware instances) and storage capacity in a flexible overlay virtual network that is
securely accessible from your on-premises network.

Configuring ORDS for High Availability on Oracle Cloud Infrastructure

You can choose to use the following configurations for high availability of ORDS on Oracle
Cloud Infrastructure. Your requirements might differ from the configurations described in this
section.

* When you create a VCN, determine the number of CIDR blocks required and the size of
each block based on the number of resources that you plan to attach to subnets in the
VCN. When you design the subnets, consider your traffic flow and security requirements.

* Use Oracle Cloud Guard to proactively monitor and maintain the security of your
resources in Oracle Cloud Infrastructure.

» For production applications, the Oracle database instance should be adhering to Oracle
Maximum Availability Architecture (MAA) deployment model in OCI.

* When using RAC with the Oracle Database, ensure that the database connection
information used by ORDS is pointing to the SCAN listener and not an individual node.

* You can create load balancers with upper and lower bounds to help scale based on the
number of requests coming in. It can be as small as 10mbps up to 8000mbps.

Advantages of Deploying ORDS with High Availability on Oracle Cloud Infrastructure

ORACLE

Following are the advantages of deploying ORDS on Oracle Cloud Infrastructure:

e Compute, load balancers, and Database Cloud Instances can all scale to handle
increased load. Additional instances can be quickly created and added to the Load
Balancer configuration with the compute or ORDS tier. For Exadata Cloud Service, the
X8M platform can not only scale CPU, but also the nodes can be added to the RAC
cluster to add additional computing power.

« Ensure that your subnet and NSG ingress/egress uses very granular rules. To get access
to a compute or database tier, use Bastion as a Service, this ensures that only authorized
users can access these instances and is also a much more secure method than exposing
SSH ports to the public internet.

» For database deployments, adhere to the Oracle Maximum Availability Architecture
(MAA) guide.

e Auto-scaling and scaling in general for each compute and database tier helps control
costs and you need to pay only for what is being used with no excess or wasted CPU,
memory, or instances. Using a flexible load balancer can also control costs.

1-43

Chapter 1
Monitoring ORDS

Monitoring ORDS

Standard Java runtime environment diagnostic and monitoring tools are used to gain
an insight on the health of an ORDS instance running in Apache Tomcat, WebLogic
Server, or a standalone mode. These tools track the memory and CPU usage, stuck
threads, and other resources. ORDS provides additional insight through the ORDS
instance API. The metrics available through the instance API makes it possible to
check the status (valid or invalid) of the database pools and to gauge how the pools
are being used. This helps in determining the actual load on the system and inform
configuration changes in the future.

Topics:
* Enabling the ORDS Instance API
* Authorization for Using the ORDS Instance API

e API Document

* Using the Instance API

Enabling the ORDS Instance API

This section explains how to enable the ORDS instance API.

To enable the ORDS instance API:

1. Setthe instance.api.enabled property to true.java -jar ords.war set-
property instance.api.enabled true

2. Restart ORDS.

Authorization for Using the ORDS Instance API

The System Administrator role is required to use the ORDS instance API. For
production environments, it is recommended that a user with this role is configured
through the mid-tier.

API Document

An OpenAPI description of the ORDS instance API services is available at http://
<server>/ords/ /instance-api/stable/metadata-catalog/openapi.json.

Using the Instance API

The ORDS instance API service neither provides access to the database nor does it
require the client to specify a database user for authentication. However, the ORDS
instance returns information on the database pools. The instance API can be used as
a basic health check service. To get a summary of the number of valid and invalid
database pools, send a GET request to /ords/ /instance-api/stable/status. For
example: curl --user sysadmin:oracle http://<server>/ords/ /instance-api/
stable/status. This service returns a count of valid and invalid pools. It also returns
links to additional information with more details on the database pools cache.

ORACLE 1-44

Chapter 1
Upgrading Oracle REST Data Services

ORDS can be deployed as a single instance or in a cluster. In a cluster, you must address
each instance directly to get the specific information about that specific instance as the
database pool statistics for one instance may differ from the other instance. However, if the
load balancer routes to each instance in a round robin basis (as recommended), then every
instance will have similar pool statistics.

Upgrading Oracle REST Data Services

If you want to upgrade to a new release of Oracle REST Data Services, you must do the
following:

ORACLE

1.

Stop the Oracle REST Data Services instance.

e If you are running Oracle REST Data Services on your application server (such as
Oracle WebLogic Server, or Apache Tomcat), stop Oracle REST Data Services.

* If you are running Oracle REST Data Services in standalone mode, refer to section,
Stopping the Server in Standalone Mode.

Go to the folder where you unzipped the new Oracle REST Data Services release
distribution.

Enter the following on the command line:

java -jar ords.war install advanced

or
java -jar ords.war

When prompted for the configuration folder, use the configuration folder where the Oracle
REST Data Services configuration files are stored. (The configuration location will be
stored in the ords.war file.)

* If you specified an existing Oracle REST Data Services configuration folder that
contains the configuration files, Oracle REST Data Services will attempt to connect to
each database defined in the configuration folder and check the installed version.

* If you specified an Oracle REST Data Services configuration folder that does not
exist, you will be prompted for the database connection information, the
ORDS_PUBLIC_USER credentials, and additional configuration information. Oracle
REST Data Services will attempt to connect to this database and check the installed
version.

When Oracle REST Data Services checks the installed version, it does the following,
depending on whether an earlier 3.0.n version is already installed in the database.

If the installed version is an earlier 3.0.n version of Oracle REST Data Services, you are
prompted for the username and password (user with ORDS Installer privileges or SYS
AS SYSDBA) to enable Oracle REST Data Services to apply the in-place upgrade. The
in-place upgrade will modify the existing installation to add the updated schema objects
and packages. The existing metadata stored in the Oracle REST Data Services schema
will remain intact.

If Oracle REST Data Services is not already installed in the database (or if you are
upgrading from Release 2.0.n), you are prompted for the username and password (user
with ORDS Installer privileges or SYS AS SYSDBA) to enable Oracle REST Data

1-45

Chapter 1
Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST Data Services

Services to perform the installation, and you will also be prompted for the default
and temporary tablespaces for the ORDS METADATA schema and
ORDS_PUBLIC USER.

When the upgrade or installation completes, you can re-deploy the ords.war file to
your application server or start Oracle REST Data Services in standalone mode.

Related Topics
* Troubleshooting Oracle REST Data Services

* Stopping the Server in Standalone Mode

Using a Bequeath Connection to Install, Upgrade, Validate,
or Uninstall Oracle REST Data Services

You can use the bequeath connection to install, upgrade, validate, or uninstall Oracle
REST Data Services. The installer will not prompt you for the SYS username and
password for the operation

In the parameter file, add the property: bequeath.connect=true

Using a bequeath connection for installing, validating, or uninstalling Oracle REST
Data Services is supported on Linux and Windows systems for Oracle Database
Release 12, but only on Linux systems for Oracle Database Release 11.

The command used must be run by an operating system user that is a member of the
DBA group. Example of installing Oracle REST Data Services:

java -jar ords.war

Bequeath Connection Using Linux

On a Linux system, you must set the following environment variables to use the
bequeath connection:

- ORACLE_HOME
- ORACLE_SID
- LD_LIBRARY_PATH (to point to ORACLE_HOME/11ib)

For Oracle Database Release 11 (but not for Release 12), you must specify the option
-DuseOracleHome=true. Examples of installing Oracle REST Data Services on a Linux
system:

* For Oracle Database Release 11: java -DuseOracleHome=true -jar ords.war

e For Oracle Database Release 12: java -jar ords.war

Authorizing Oracle REST Data Services to Access Oracle
Data Guard Protected Users

To access the database schema objects that are protected by an Oracle Data Vault
Realm, it is necessary to grant a proxy user authorization to the Oracle REST Data
Services Public User.

ORACLE 1-46

Chapter 1
Authorizing Oracle REST Data Services to Access Oracle Data Guard Protected Users

The following example authorizes the Oracle REST Data Services Public User,
ORDS_PUBLIC_USER to proxy the database HR user:

begin
DBMS MACADM.AUTHORIZE PROXY USER('ORDS PUBLIC USER', 'HR');
end;

/

ORACLE 1-47

Configuring Oracle REST Data Services
(Advanced)

This section explains how to configure Oracle REST Data Services for connecting to multiple
databases for routing requests, and it refers to other documentation sources for other
configuration information.

" Note:

Oracle REST Data Services must be restarted after making configuration changes.
See your application server documentation for information on how to restart
applications.

Topics:

Configuring Multiple Databases
Support for Oracle RAC Fast Connection Failover

Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel
Settings

Configuring REST-Enabled SQL Service Settings

Configuring the Maximum Number of Rows Returned from a Query
Configuring ICAP Server Integration for Virus Scan

Configuring ORDS with Kerberos Setup

Configuring the Custom Error Pages

Configuring ORDS Metadata Cache

Developing RESTful Services for Use with Oracle REST Data Services

Configuring Multiple Databases

Oracle REST Data Services supports the ability to connect to more than one database. This
section describes different strategies for routing requests to the appropriate database.

ORACLE

Topics:

About the Request URL

Configuring Additional Databases

Routing Based on the Request Path Prefix
Routing Based on the Request URL Prefix

2-1

Chapter 2
Configuring Multiple Databases

About the Request URL

Oracle REST Data Services supports a number of different strategies for routing
requests to the appropriate database. All of these strategies rely on examining the
request URL and choosing the database based on some kind of match against the
URL. It is useful to recap the pertinent portions of a request URL. Consider the
following URL:

https://www.example.com/ords/sales/f?p=1:1

This URL consists of the following sections:
e Protocol: https

¢ Host Name: www.example.com

* Context Root: /ords

The context root is the location at which Oracle REST Data Services is deployed
on the application server.

* Request Path: /sales/f?p=1.1
This is the portion of the request URL relative to the context root.

For different applications, it may be important to route requests based on certain
prefixes in the request path or certain prefixes in the full request URL.

There are two steps to configuring multiple databases:

1. Configuring the database connection information

2. Configuring which requests are routed to which database

Configuring Additional Databases

ORACLE

When you first configure Oracle REST Data Services, you configure a default
database connection named: apex. You can create additional database connections
using the setup command.

Tip:
To see full help for the setup command type:

java -jar ords.war help setup

To create a database connection type the following:

java -jar ords.war setup --database <database name>

Where:

° <database name>is the name you want to give the database connection.

You are prompted to enter the information required to configure the database. After
you have configured the additional databases, define the rules for how requests are
routed to the appropriate database.

2-2

Chapter 2
Configuring Multiple Databases

Related Topics

* Downloading, Configuring, and Installing and Oracle REST Data Services
* Routing Based on the Request Path Prefix

* Routing Based on the Request URL Prefix

Routing Based on the Request Path Prefix

You create request routing rules using the map-url command.

/ Tip:

To see full help for the map-url command type:

java -jar ords.war help map-url

If you want to route requests based just on matching a prefix in the request path portion of
the URL, use the map-url command as follows:

java -jar ords.war map-url --type base-path --workspace-id <workspace name> <path
prefix> <database name>

Where:

e <workspace name> is the name of the Oracle Application Express workspace where
RESTful services for this connection are defined. This may be omitted if RESTful
Services are not being used.

* <path prefix>is the prefix that must occur at the start of the request path.

* <database name> is the name of the database connection configured in the previous
step.

Related Topics

» Configuring Additional Databases

Example of Routing Based on the Request Path Prefix

ORACLE

Assuming Oracle REST Data Services is deployed on a system named example.com at the
context path /ords, then create the following rule:

java -jar ords.war map-url --type base-path --workspace-id sales rest /sales sales_db

This rule means that any requests matching https://example.com/ords/sales/... are
routed to the sales db database connection. The sales rest workspace defined within the
sales_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://example.com/ords/sales/f?p=1:1

https://example.com/ords/sales/leads/
https://www.example.com/ords/sales/forecasting.report?month=jan (If www.example.com
resolves to the same system as example.com.)

The previous rule does not match of any of the following requests:

2-3

Chapter 2
Support for Oracle RAC Fast Connection Failover

http://example.com/ords/sales/f?p=1:1 (The protocol is wrong.)
https://example.com:8080/ords/sales/f?p=1:1 (The port is wrong: 443 is default
for https, but don't specify if using default.)
https://example.com/ords/f?p=1:1 (Missing the /sales prefix.)
https://example.com/pls/sales/leads/ (The context path is wrong.)

Routing Based on the Request URL Prefix

If you want to route requests based on a match of the request URL prefix, use the
map-url command as follows:

java -jar ords.war map-url --type base-url --workspace-id <workspace name> <url
prefix> <database name>

Where:

* <workspace name> is the name of the Oracle Application Express workspace
where RESTful services for this connection are defined. This may be omitted if
RESTful Services are not being used.

e <url prefix>is the prefix with which the request URL must start.

* <database name> is the name of the database connection.

Example of Routing Based on the Request URL Prefix

Assuming Oracle REST Data Services is deployed on a system named example.com
at the context path /ords, then create the following rule:

java -jar ords.war map-url --type base-url --workspace-id sales_rest https://
example.com/ords/sales sales_db

This rule means that any requests matching https://example.com/ords/sales/. ..
are routed to the sales_db database connection. The sales rest workspace defined
within the sales_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://example.com/ords/sales/f?p=1:1
https://example.com/ords/sales/leads/
https://example.com/ords/sales/forecasting.report?month=jan

The previous rule does not match of any of the following requests:

http://example.com/ords/sales/f?p=1:1 (The protocol is wrong.)
https://example.com:8080/ords/sales/f?p=1:1 (The port is wrong: 443 is default
for https, but don't specify if using default.)
https://example.com/ords/f?p=1:1 (Missing the /sales segment of the base URL.)
https://example.com/pls/sales/leads/ (The context path is wrong.)
https://www.example.com/ords/sales/forecasting.report?month=jan (The host name
is wrong.)

Support for Oracle RAC Fast Connection Failover

Oracle REST Data Services support the Fast Connection Failover (FCF) feature of
Oracle Real Application Clusters (Oracle RAC).

ORACLE 2.4

Chapter 2
Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel Settings

Oracle REST Data Services runs with the Universal Connection Pool (UCP) in all the
Application Server environments that it supports, such as WebLogic, Tomcat. UCP in turn
supports Fast Connection Failover . To enable FCF, Oracle Notification Service (ONS) must
to be enabled. To enable ONS, add entries to the list of properties in the Oracle REST Data
Services defaults.xml configuration file as shown in the following code snippet:

<entry key="jdbc.enableONS">true</entry>
<entry key= "jdbc.ONSConfig">nodes=racnodel:4200, racnode2:4200\nwalletfile=/
oraclell/onswalletfile</entry>

ONS is the messaging facility used to send the Fast Application Notification (FAN) events.
When ONS is enabled, Oracle REST Data Services automatically enables FCF. To Enable
specific FCF capabilities such as fail over or other advanced FCF capabilities such as load
balancing, you need to add entries in the configuration file for the custom connection as
shown in the following code snippet:

<entry key="db.connectionType">customurl</entry>
<entry key="db.customURL">jdbc:oracle:thin:@ (DESCRIPTION= (FAILOVER=0ON)
(ADDRESS LIST=

(LOAD BALANCE=ON) (ADDRESS=(PROTOCOL=TCP) (HOST=prod scan.example.com)
(PORT=1521)))

(CONNECT DATA=(SERVICE NAME=ISPRD))) | </entry>

After updating the defaults.xml configuration file, Oracle REST Data Services need to be
restarted for the changes to take effect.

UCP supports Fast Connection Failover. FCF listens and responds to FAN events to deal
with the following two scenarios:

* Unplanned outages: When RAC detects an instance failure, it generates a FAN Down
event which FCF picks up. FCF then terminates all connections to the failed instance
and directs all future requests to the surviving RAC instances.

* Planned outages: For instance, when a Database Administrator (DBA) wants to
gracefully shut down a RAC instance for performing some maintenance activity. The
instance shutdown generates a FAN Planned Down event which FCF picks up. FCF then
directs all new requests to other RAC instances and drains or allows currently active
transactions to complete.

" Note:

Long running transactions may need to be terminated forcefully.

Configuring Security, Caching, Pre- and Post Processing,
Environment, and Excel Settings

To configure security, caching, pre- and post- processing, environment, and Excel settings,
see Using SQL Developer Oracle REST Data Services Administration (Optional).

ORACLE 2-5

Chapter 2
Configuring REST-Enabled SQL Service Settings

Configuring REST-Enabled SQL Service Settings

This section explains how to configure the REST- Enabled SQL service.

" Note:

Enabling the REST- Enabled SQL service enables authentication against the
Oracle REST Data Service enabled database schemas. This makes the
database schemas accessible over HTTPS, using the database password.
Oracle highly recommends that you provide strong secure database
passwords

REST- Enabled SQL service is a feature of Oracle REST Data Service. By default, the
REST Enabled SQL service is turned off. To enable the REST- Enabled SQL service
and the REST- Enabled SQL Export service, perform the following steps:

1.

3.
4,

Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the defaults.xnml file and add: <entry
key="restEnabledSqgl.active">true</entry>.

Save the file.

Restart Oracle REST Data Services.

Configuring the Maximum Number of Rows Returned from a

Query

ORACLE

To configure maximum number of rows returned from a query, perform the following

steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Openthe defaults.xml file and update the value of the
misc.pagination.maxRows parameter:<entry
key="misc.pagination.maxRows”>1500</entry>

¢ Note:
The default value for misc.pagination.maxRows is 500.

3. Save thefile.

4. Restart Oracle REST Data Services.

2-6

Chapter 2
Configuring ICAP Server Integration for Virus Scan

Configuring ICAP Server Integration for Virus Scan

This section explains how to configure ORDS to integrate with ICAP server for virus scan.

ORDS PL/SQL gateway supports the offloading of virus scanning responsibilities to an
Internet Content Adaptation Protocol (ICAP) compliant virus scan server when the files are
uploaded. The hostname and port of the virus scan server is specified in the icap.server,
icap.port, and icap.secure.port global configuration properties.

APEX uses ORDS PL/SQL gateway. Once configured, this ICAP integration is also applied to
file uploads in APEX.

To configure ORDS to integrate with ICAP server, perform the following steps:
1. Locate the folder where the Oracle REST Data Services configuration file is stored.
2. Openthe defaults.xnl file and add:
<entry key="icap.port">1234</entry>
<entry key="icap.server">name or ip</entry>
3. Save the file.

Restart Oracle REST Data Services.

ICAP server must support the following requirements:
* ICAP version 1.0

e Antivirus service named AVSCAN

* Antivirus service that supports action=SCAN

* Previews of at least 4 bytes

* Return header named X-Infection

Once configured, when a file is uploaded through PL/SQL Gateway, ORDS makes a request
similar to the following:

RESPMOD icap://<icap_ server>:<icap port>/AVSCAN?action=SCAN ICAP/1.0
Host: <icap_ server>:<icap port>

Preview: 4

Allow: 204

Encapsulated: reg-hdr=0 res-hdr=153 res-body=200

Configuring ORDS with Kerberos Setup

ORACLE

This section explains how ORDS can be configured to reference a Kerberos file-based ticket
cache and make a connection to an Oracle Database Kerberos authenticated user with the
ORDS Runtime Privilege.

To configure ORDS with Kerberos setup, perform the following steps:
1. Create a new user using external authentication
2. Set up the environment variables

3. Provide a valid ticket

2-7

Chapter 2
Configuring ORDS with Kerberos Setup

4. Add ORDS pool settings

1. Create a New User using External Authentication

Create a new Oracle Database user using external authentication (Kerberos) and
provision the user as an ORDS runtime user.

CREATE USER ORDS PUBLIC KRBUSER IDENTIFIED EXTERNALLY AS
'<kerberos principal name>';
GRANT CONNECT TO "ORDS_ PUBLIC KRBUSER";
BEGIN
ORDS_ADMIN.PROVISION RUNTIME ROLE (

p user => 'ORDS PUBLIC KRBUSER',

p_proxy enabled schemas => TRUE);
END;

2. Set up the Environment Variables

¢ Note:

Ensure that you have a Kerberos configuration file krb5.conf and a file-
based ticket cache

Set up the following environment variables:

export KRB5 CONFIG=<path to krb5.conf>
export KRBS5CCNAME=<path to credential cache>
3. Provide a Valid Ticket

Provide a valid ticket in the ticket cache to get authenticated when connecting to
the Oracle Database.
kinit <principal>

4. Add ORDS Pool Settings
Add the following pool settings to the pool.xml file using the ticket in the ticket
cache:

<entry key="oracle.net.authentication services">(KERBEROS5)</entry>
<entry key="oracle.net.kerberos5 mutual authentication">true</entry>

Run the following command when ORDS is starting up:
-Djava.security.krb5.conf="<path to krb5.conf>"

For example, to run ORDS in standalone mode with Kerberos, execute the
following command:

java -Djava.security.krb5.conf=$KRB5 CONFIG -jar ords.war

ORACLE 2-8

Chapter 2
Configuring the Custom Error Pages

Configuring ORDS with Kerberos Setup Using Command-line Interface

This section explains how to configure ORDS with Kerberos setup. ORDS can be configured
to reference a Kerberos file-based ticket cache and make a connection to an Oracle
Database Kerberos authenticated user through command-line interface.

Use the following commands to configure ORDS with Kerberos setup:

java -jar ords.war configdir

configkrb

java -jar ords.war

setup

java -jar ords.war set-property --conf apex pu
oracle.net.authentication services " (KERBEROS5)"
java -jar ords.war set-property --conf apex pu
oracle.net.kerberos5 mutual authentication true
export KRB5 CONFIG=<path to krb5.conf>

export KRB5CCNAME=<path to credential cache>
kinit <principal>

Configuring the Custom Error Pages

ORACLE

This section explains how to configure a custom error page instead of the error page
generated by Oracle REST Data Services.

To configure a custom error page, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Openthe defaults.xml file and update the value of the error.externalPath parameter:
<entry key="error.externalPath">/path/to/error/pages/folder/</entry>
Where:

* /path/to/error/pages/folder is the path to a folder containing files that define the
error pages. The files are stored in {status}.html format.

Where, {status} is the HTTP status code for which you want to create a custom
error page.

3. Save the file.
4. Restart Oracle REST Data Services.

Example 2-1 Configuring custom error page for “HTTP 404” status code

To configure a custom error page for the “HTTP 404 — Not Found” status, perform the
following steps:

1. Create a file named 404 .html.
2. Saveitunder /usr/local/share/ords/error-pages/ folder.

3. Configure the error.externalPath parameter to point to /usr/local/share/ords/
errro-pages/ folder.

4. Save the file.

2-9

Chapter 2
Configuring ORDS Metadata Cache

5. Restart Oracle REST Data Services.

Configuring ORDS Metadata Cache

This section explains how to configure the ORDS Metadata Cache.

As the number of REST services grow, the overhead of querying the database for
corresponding metadata can have a negative impact on the overall service
performance and throughput. Overtime, the queries for ORDS METADATA views take
longer time to complete. These queries are executed for every request. The ORDS
metadata cache can help improve the overall response time for REST services when
the number of services grow to an extent that querying the ORDS_METADATA views for
every request becomes expensive. The ORDS metadata cache can temporarily hold a
copy of privilege and module metadata in memory to reduce the number of database
gueries performed when a REST service request is received. The cache is disabled by
default so that the changes made to the metadata are applied immediately for any
subsequent request.

Table 2-1 Configuration Properties for ORDS Metadata Cache
|

Property Data Type Default Value Description

cache.metadata.en Boolean false Specifies a setting to

abled enable or disable
metadata caching.

cache.metadata.ti Duration 30s Specifies a setting

meout that determines for
how long the

metadata record
remains in the cache.
Longer the duration,
it takes longer to view
the applied changes.

Developing RESTful Services for Use with Oracle REST
Data Services

For more information on how to develop RESTful Services for use with Oracle REST
Data Services, see Developing Oracle REST Data Services Applications.

Managing ORDS Administrator Privilege

Access to the ORDS ADMIN PL/SQL package is provisioned through the
ORDS_ADMINISTRATOR ROLE. This role can be provisioned through the ORDS ADMIN
package to create additional ORDS administrators.

Provisioning ORDS_ADMINISTRATOR_ROLE to a User

This section describes how to provision ORDS_ADMINISTRATOR ROLE role to a user.

ORACLE 2-10

Chapter 2
Managing ORDS Runtime Privilege

You can provision ORDS ADMINISTRATOR ROLE role to a user by using either the database
GRANT command or through the ORDS_ADMIN.PROVISION ADMIN ROLE PL/SQL method (as an
ORDS Administrator).

Example 2-2 Using Grant command

GRANT ORDS ADMINISTRATOR ROLE TO HR ADMIN;

Example 2-3 Using ORDS_ADMIN package method

BEGIN
ORDS ADMIN.PROVISION ADMIN ROLE (
p_user => 'HR ADMIN');
END;
/

Unprovisioning ORDS_ADMINISTRATOR_ROLE from a User

This section describes how to unprovision ORDS_ADMINISTRATOR ROLE from a user.

As an ORDS administrator, you can unprovision ORDS ADMINISTRATOR ROLE from a user by
either using the database REVOKE command or through the ORDS ADMIN.UNPROVISION ROLES
PL/SQL method.

Example 2-4 Using REVOKE command

REVOKE ORDS ADMINSTRATOR ROLE FROM HR ADMIN;

Example 2-5 Using ORDS_ADMIN package method

BEGIN
ORDS_ADMIN.UNPROVISION ROLES (
p_user => 'HR ADMIN',
p_administrator role => TRUE);
END;
/

Managing ORDS Runtime Privilege

ORACLE

The ORDS_RUNTIME ROLE database role allows a user to act as a runtime user. A runtime user
can manage and configure the runtime connection resources required by an ORDS service
instance. The ORDS_PUBLIC USER is one such database user. When additional runtime users
are provisioned, it is possible to configure discrete ORDS service instances with different
destination addresses and connection pools but hosted on the same Oracle database
container.

It is recommended not to re-use a runtime user for any other purpose as it accumulates the
grants necessary to proxy to other users. A runtime user only requires the CREATE SESSION
privilege in addition to the ORDS_RUNTIME ROLE role.

2-11

Chapter 2
Managing ORDS Runtime Privilege

Provisioning ORDS _RUNTIME_ROLE to a User

This section describes how to provision ORDS_RUNTIME ROLE role to a user.

As an ORDS administrator, you can provision ORDS RUNTIME ROLE role to a user by
using either the database GRANT command or through the
ORDS_ADMIN.PROVISION ADMIN ROLE PL/SQL method.

Example 2-6 Using Grant command

GRANT ORDS_RUNTIME ROLE TO ORDS PUBLIC USER 2;

Example 2-7 Using ORDS_ADMIN package method

BEGIN
ORDS_ADMIN.PROVISION RUNTIME ROLE (
p_user => 'ORDS PUBLIC USER 2');
END;
/

Unprovisioning ORDS _RUNTIME_ROLE from a User

ORACLE

This section describes how to unprovision the ORDS_RUNTIME ROLE role from a user

As an administrator, you can unprovision the ORDS RUNTIME ROLE from a user, by either
using the database REVOKE command or through the ORDS_ADMIN.UNPROVISION ROLES
PL/SQL method.

Example 2-8 Using REVOKE command

REVOKE ORDS_RUNTIME ROLE FROM ORDS RUNTIME USER 2;

Example 2-9 Using ORDS_ADMIN package method

BEGIN
ORDSiADMIN.UNPROVISIONiROLES(
p user => 'ORDS_RUNTIME USER 2',
p_runtime role => TRUE);
END;
/

2-12

Installing and Configuring Customer Managed
ORDS on Autonomous Database

This section explains how to install and configure Customer Managed Oracle REST Data
Services (ORDS) on Autonomous Database.

Topics:

e About Customer Managed Oracle REST Data Services on Autonomous Database
* Downloading Wallet and Verifying Connection to Autonomous Database

* Creating Customer Managed Oracle REST Data Services User

* Downloading and Configuring Oracle REST Data Services
* Preparing and Starting ORDS

About Customer Managed Oracle REST Data Services on
Autonomous Database

ORACLE

When you provision an Autonomous Database instance, by default Oracle REST Data
Services (ORDS) is preconfigured and available for the instance. With the default ORDS,
Oracle performs any required configuration, patching, and maintenance. Additionally, you can
also configure Autonomous Database to use ORDS running in a customer managed
environment.

When you use the default ORDS on Autonomous Database, you cannot modify any of the
ORDS configuration options. For example, with the default configuration, the JDBC
connection pools have a maximum of 100 connections and the connections for ORDS are
preconfigured to use the Low database service. Use a customer managed environment if you
want manual control of the configuration and management of Oracle REST Data Services.
For example, use this option when your applications require larger connection pools or if you
need more control over the ORDS configuration options.

When ORDS runs in a customer managed environment, you are responsible for
configuration, patching, and maintenance of ORDS in the customer managed environment.
After you configure Autonomous Database to use your customer managed ORDS in addition
to the existing autonomously managed ORDS, you can route ORDS HTTPS traffic through
your environment. The default Autonomous Database web server and ORDS are still running
and ORDS traffic goes to the ORDS running in the customer managed environment. This
provides an additional and alternative HTTPS solution for Autonomous Database.

Installing and configuring a customer managed environment for ORDS allows you to run
ORDS with configuration options that are not possible using the default Oracle managed
ORDS available with Autonomous Database.

Installing and configuring a customer managed environment for ORDS is only supported with
Autonomous Database on Shared Exadata Infrastructure.

3-1

Chapter 3
Downloading Wallet and Verifying Connection to Autonomous Database

< Note:

e Oracle REST Data Services 19.4.6 or higher is required to use a
customer managed environment for ORDS with Autonomous Database.

* Installing and configuring a customer managed environment for ORDS is
only supported with Autonomous Database on Shared Exadata
Infrastructure.

Downloading Wallet and Verifying Connection to
Autonomous Database

ORACLE

You need to configure ORDS to connect to the Autonomous Database. With Oracle
REST Data Services (ORDS) running in a customer managed environment, you need
to obtain the Autonomous Database wallet on the system that runs the customer
managed ORDS. Perform the following steps to download the wallet and verify the
connection to the Autonomous Database:

1. Download the wallet for the Autonomous Database instance. Alternatively you can
use the OCI CLI to generate the wallet. See generate-wallet for information on
using the CLI.

2. Verify that you can connect from the customer managed environment where you
are installing and configuring ORDS to your Autonomous Database. For example,
using sQLcl and the wallet you download in Step 1, verify the connection as
follows:

a. Connect with SQLcl.

¢ See Also:

e Connect with Oracle SQLcl Cloud Connection for Autonomous
Data Warehouse environment.

e Connect with Oracle SQLcl Cloud Connection for Autonomous
Transaction Processing environment.

b. View the database services and connect to your Autonomous Database from
the customer managed environment.

SQL> show tns
TNS_ADMIN set to: /var/folders/4r/path/T/oracle cloud config path

Available TNS Entries

dbname high
dbname low
dbname medium

3-2

https://docs.cloud.oracle.com/en-us/iaas/tools/oci-cli/2.10.12/oci_cli_docs/cmdref/db/autonomous-database/generate-wallet.html

Chapter 3
Creating Customer Managed Oracle REST Data Services User

SQL> conn admin@dbname low
PaSSWOId? (**********?) kkhkkkhkkhkkhkkkkkkkkk k%%

Connected.
SQL>

Creating Customer Managed Oracle REST Data Services User

To use Autonomous Database with Oracle REST Data Services (ORDS) running in a
customer managed environment on your Autonomous Database, you must create a user,
grant privileges to the user, and run the procedure ORDS_ADMIN.PROVISION RUNTIME ROLE.

ORACLE

Perform the following steps to create a user for the ORDS JDBC Connection Pool and
prepare the Autonomous Database instance for using Oracle REST Data Services in a
customer managed environment:

1
2.

Connect to your Autonomous Database as the ADMIN user.
Create a new database user and grant the required privileges as follows:

CREATE USER "ORDS PUBLIC USER2" IDENTIFIED BY "password";
GRANT "CONNECT" TO "ORDS PUBLIC USER2";

ORDS_PUBLIC USER2 is the recommended database user name although you can choose
a different database user name. If you choose a different user name, then all the steps
need to use the user name you choose.

Grant the ORDS runtime role to the new database user so that it can act as an ORDS
runtime user.

BEGIN
ORDS_ADMIN.PROVISION RUNTIME ROLE (
p_user => 'ORDS PUBLIC USER2',
p_proxy enabled schemas => TRUE);
END;

Following are the parameters:
* p user: The name of the user to be configured.

* p proxy enabled schemas: When set to true, proxy grants are added for any REST
enabled schemas.

3-3

Chapter 3
Downloading and Configuring Oracle REST Data Services

< Note:

It is highly recommended not to skip the following steps. If you skip these
steps, then ORDS will run APEX, OWA, PL/SQL gateway requests
directly as the runtime user and warnings similar to the following will be
logged for each request:

WARNING Running PL/SQL Gateway directly as

ORDS_PUBLIC USER is not advised in multi-user
environments. Use proxied mode

instead.

Create a new user for PL/SQL Gateway, OWA, and APEX and allow connections
through the runtime user created in step 2:

CREATE USER "ORDS_ PLSQL GATEWAY2" IDENTIFIED BY "password";
GRANT "CONNECT" TO "ORDS_PLSQL GATEWAY2";

ALTER USER ORDS_PLSQL GATEWAY2 GRANT CONNECT THROUGH
ORDS_PUBLIC_USER2;

The new user name ORDS_PLSQL GATEWAY2 is the recommended user name. If you
choose a different user name, then specify that user name in all the steps.

Configure the new ORDS runtime user to use the new gateway user.

BEGIN
ORDS_ADMIN.CONFIG PLSQL GATEWAY (
p _runtime user => 'ORDS PUBLIC USERZ', /* when
using this user */
p plsgl gateway user => 'ORDS PLSQL GATEWAY2' /* run OWA
things as this user */
)
END;
/

Downloading and Configuring Oracle REST Data Services

ORACLE

To use Autonomous Database with Oracle REST Data Services (ORDS) running in a
customer managed environment you need to install ORDS.

" Note:

Oracle REST Data Services 19.4.6 or higher is required for a customer
managed environment with Autonomous Database.

Depending on where you install Oracle REST Data Services for your customer
managed environment, do the following:

3-4

Chapter 3
Downloading and Configuring Oracle REST Data Services

» If your customer managed environment for Oracle REST Data Services runs in Oracle
Cloud Infrastructure, then use an Oracle YUM repository and perform a YUM install of
ORDS.

» If your customer managed environment for Oracle REST Data Services runs in some
other environment, then download ORDS from the Oracle REST Data Services
Download page. See Introduction to Oracle REST Data Services for more information.

1. Inthe location where ORDS is installed, create an ORDS configuration folder (this
creates a folder and sets up the ORDS configuration environment and settings). For
example:

java -jar ords.war configdir ./ORDSConfig 2

On Oracle Cloud Infrastructure with Linux with a YUM repository the ORDS configuration
folderis: /opt/oracle/ords/config.

2. Edit the ORDS configuration file created in the preceding step . /ords/conf/
apex_pu.xml to add or update the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="db.username">ORDS PUBLIC USER2</entry>

<entry key="db.password">!password</entry>

<entry key="db.wallet.zip.service">dbname low</entry>

<entry key="db.wallet.zip.path">path/to/wallet.zip</entry>
</properties>

Notes:

* The extra"!" in front of the password causes the password to be encrypted the next
time the ORDS service starts.

e Thedb.wallet.zip.path entry contains the path to the wallet archive that was
created in the preceding step. See Downloading Wallet and Verifying Connection to
Autonomous Database.

* The db.username, specified as ORDS_PUBLIC_USER?2 is the database username
you previously defined. See Creating Customer Managed Oracle REST Data
Services User for more information.

3. Edit./ords/defaults.xml as required for your ORDS installation. See Understanding
Configurable Parameters for more information.

4. Ensure the plsqgl gateway is enabled for APEX support:

<entry key="plsql.gateway.enabled">true</entry>

If you want use ORDS with APEX, then you need to enable the PL/SQL gateway in
ORDS.

ORACLE 3-5

https://www.oracle.com/database/technologies/appdev/rest-data-services-downloads.html
https://www.oracle.com/database/technologies/appdev/rest-data-services-downloads.html

Chapter 3
Preparing and Starting ORDS

Preparing and Starting ORDS

To use customer managed Oracle REST Data Services (ORDS) on Autonomous
Database, on the system where ORDS runs, you need to perform additional
configuration steps and then start ORDS.

For ORDS running with APEX, perform all the steps starting from Step 1. For ORDS
running without APEX, perform the steps starting from Step 3.

1. Inthe location where ORDS is installed, install the APEX images.

unzip apex 19version.zip

< Note:

To use your customer managed ORDS environment for APEX, you must
download the APEX images of the APEX release that is currently
deployed in your Oracle Autonomous Database. When Oracle
announces the next APEX upgrade, you must pre-deploy the images
from the upgraded APEX release or defer the APEX upgrade to avoid
any service interruption. You can download the APEX images from the
Oracle APEX downloads page.

¢ See Also:

e APEX Apply Defer Updates
* Oracle APEX Downloads

2. Edit the standalone properties to add or edit the static images property:
standalone.static.path=/path/to/apex/images

3. Create a wallet_cache folder, so that ORDS stores the Autonomous Database
wallet on this folder and uses it while connecting to JDBC. For example:

mkdir wallet cache

4. Start ORDS.

» If your customer managed environment for Oracle REST Data Services runs in
Oracle Cloud Infrastructure, then start the ORDS service as follows:

/opt/oracle/ords start

ORACLE 3-6

ORACLE

Chapter 3
Preparing and Starting ORDS

If your customer managed environment for Oracle REST Data Services runs in the
directory where ORDS is installed, then start the ORDS service as follows:

java -Duser.timezone=UTC -jar ords.war standalone --apex-images
images --port 8088

3-7

Using the Multitenant Architecture with Oracle
REST Data Services

This section outlines installing, configuring, upgrading and uninstalling Oracle REST Data
Services in a multitenant container database.

e Setting Up ORDS in a CDB Environment
* Setting Up ORDS in an Application Container

Setting Up ORDS in a CDB Environment

This section describes how to setup Oracle REST Data Services (ORDS) into a multitenant

ORACLE

container database (CDB) environment.

Oracle Database 12c Release 1 (12.1) introduced the multitenant architecture. This database

architecture has a multitenant container database (CDB) that includes a root container,
CDBSROOT, a seed database, PDBSSEED, and multiple pluggable databases (PDBs). A PDB
appears to users and applications as if it were a non-CDB. Each PDB is equivalent to a
separate database instance in Oracle Database Release 11g.

The root container, CDBSROOT, holds common objects that are accessible to every PDB
utilizing metadata links or object links. The seed database, PDBSSEED, is used when you
create a new PDB to seed the new pluggable database. The key benefit of the Oracle
Database 12c¢ multitenant architecture is that the database resources, such as CPU and
memory, can be shared across all of the PDBs. This architecture also enables many
databases to be treated as one for tasks such as upgrades or patches, and backups.

The installation process when you have multiple releases is described in the following
section:

» Installation Enabling Multiple Releases

Note:

If you want to install directly into a PDB (not connected to Root during installation),
see Advanced Installation Using Command-Line Prompts for more information.

Preinstallation Tasks for Oracle REST Data Services CDB Installation

» Ensure that the PDBs are open (not mounted/closed) in read/write mode (except for
PDBS$SEED, which remains in read-only mode). For more information, see Oracle
Multitenant Administrator’s Guide

» Ensure that the default and temporary tablespaces to be used by the ORDS METADATA

schema and the ORDS_PUBLIC USER user exist and that you know the tablespace names.

The installation procedure creates those users, but it does not create the tablespaces.

4-1

Chapter 4
Setting Up ORDS in a CDB Environment

< Note:

ORDS_METADATA and ORDS_PUBLIC USER are installed in the seed container,
and the default and temporary tablespaces exist in PDBSSEED. If these
tablespaces do not already exist, then you must create the tablespaces in
PDBSSEED. For more information, see Oracle Multitenant Administrator’s
Guide

Installation Enabling Multiple Releases

This section describes the installation process when you have multiple releases of
Oracle REST Data Services and patch sets in the PDBs in a multitenant environment.

When Oracle REST Data Services is installed into a CDB, the proxy user, Oracle
REST Data Services public user (ORDS_PUBLIC USER) is installed in the root container
and is a common user. The ORDS METADATA schema is a local user that contains the
metadata for Oracle REST Data Services. Both the ORDS METADATA schema and the
ORDS_PUBLIC USER are installed in the seed container (PDBS$SEED) and all of the
pluggable databases.

Since the ORDS METADATA is installed as a local user, this provides you the flexibility of
installing multiple Oracle REST Data Services releases in the pluggable databases.

Command Line Installation

You must provide the sYS AS SYSDBA credentials in the Root (CDBSROOT) container to
perform the installation.

Advanced Installation

ORACLE

This section describes the advanced installation prompts for installing Oracle REST
Data Services into a CDB to enable multiple Oracle REST Data Services releases.

To install Oracle REST Data Services into a CDB to enable multiple Oracle REST Data
Services releases, perform the following steps:

1. Navigate to the folder where you unzipped the Oracle REST Data Services
installation Kkit.

2. Enter the following command:
java -jar ords.war install advanced
3. When prompted, enter the database connection information for your CDB.
Enter the name of the database server[localhost]:
Enter the database listen port [1521]:
Enter 1 to specify the database service name, or 2 to specify the

database SID [1]:
Enter the database service name: (for example, cdb.example.com)

4-2

Chapter 4
Setting Up ORDS in a CDB Environment

4. Verify the Oracle REST Data Services installation.

Enter 1 if you want to verify/install Oracle REST Data Services schema or
2 to skip this step [1]:

5. Accept or enter 1 (the default) to install Oracle REST Data Services into the CDB and all
of its PDBs.

Enter the database password for ORDS PUBLIC USER:

Confirm password:

Requires to login with administrator privileges to verify Oracle REST
Data Services schema.

Enter the administrator username: SYS
Enter the database password for SYS AS SYSDBA:
Confirm password:

Retrieving information....

Your database connection is to a CDB. ORDS common user ORDS PUBLIC USER
will be

created in the CDB. ORDS schema will be installed in the PDBs.

Root CDBSROOT - create ORDS common user

PDB PDBSSEED - install ORDS 18.2.0.<JulianDay.Time> (mode is READ ONLY,
open for

READ/WRITE)

PDB PDBNamel - install ORDS 18.2.0.<JulianDay.Time>

PDB PDBNameZ - install ORDS 18.2.0.<JulianDay.Time>

Enter 1 if you want to install ORDS or 2 to skip this step [1]:

6. Press enter to continue with the installation.

7. When prompted, enter additional information as needed. See Advanced Installation
Using Command-Line Prompts for more information.

< Note:

To use the pluggable mapping feature, see Making All PDBs Addressable by Oracle
REST Data Services (Pluggable Mapping) for more information.

Silent Installation

Silent installation reads the properties from the Oracle REST Data Services parameter file.

To perform a silent installation, enter the following command:

java -jar ords.war install simple
java -jar ords.war

ORACLE' 4.3

Chapter 4
Setting Up ORDS in an Application Container

Related Topics

* Advanced Installation Using Command-Line Prompts

Upgrading Oracle REST Data Services in a CDB Environment

When you use a new release of Oracle REST Data Services, upgrading its schema in
the CDB and its pluggable databases (PDBs) will occur automatically when you
perform a simple or advanced installation.

For example:

java -jar ords.war

If Oracle REST Data Services is already installed or upgraded, a message displays
the Oracle REST Data Services schema version, and you will not be prompted for
information.

Migrating Oracle REST Data Services in the CDB to Enable Multiple Releases

This section describes how to migrate Oracle REST Data Services in the CDB to
enable multiple releases.

Starting with release 18.2.0 and later, if you have an Oracle REST Data Services
schema and ORDS_METADATA that is installed in the CDBSROOT container, then during
upgrade it will migrate the common ORDS_METADATA schema to your PDBs as a local
schema. Oracle database 12.1.0.2 and later releases support this change.

Making All PDBs Addressable by Oracle REST Data Services

This section describes how to make all application PDBs in a CDB addressable by
ORDS. This step is required for starting ORDS from the CDB.

For more information refer to Making All PDBs Addressable by Oracle REST Data
Services (Pluggable Mapping)

Uninstalling Oracle REST Data Services in a CDB Environment

To uninstall Oracle REST Data Services from a CDB, use the uninstall command.
For example:

java -jar ords.war uninstall

Oracle REST Data Services will be removed from the CDB and its pluggable
databases (PDBSs).

Related Topics

* If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

Setting Up ORDS in an Application Container

This section describes how to setup Oracle REST Data Services in an application
container.

ORACLE 4-4

Chapter 4
Setting Up ORDS in an Application Container

Starting with ORDS release 20.2.1, Oracle REST Data Services can be installed or upgraded
into an application container using the ORDS SQL scripts provided in the
ords.version.number.zip file.

An application container consists of an application root where the application is defined and
one or more PDBs that share the metadata about the application from the application root.
You can have multiple application containers within a CDB and each container can have
different versions of Oracle REST Data Services. Installing or upgrading Oracle REST Data
Services in an application container is done against the application root container. When an
application PDB wants to use the upgraded version, it must synchronize with the application
root. Oracle REST Data Services continues to run in the application PDB with the existing
version until the application PDB synchronizes with the application root.

Topics:

e Prerequisites for Creating ORDS in an Application Container

e Installing ORDS in the Application Root Container

e Creating an Application Seed

e Creating an Application PDB from the Application Seed

e ORDS Configuration Files Setup

* Running ORDS

e Validating ORDS in the Application Root Container

e Upgrading ORDS in the Application Container

e Uninstalling ORDS from the Application Container

e Verifying ORDS in the Application Container

Prerequisites for Creating ORDS in an Application Container

This section describes the prerequisites for installing ORDS in an application container.
Following prerequisites must be met before you install ORDS in an application container:
* Download ORDS version 20.2.1 or later from Oracle REST Data Services Downloads.
» Extract the ORDS SQL scripts.

* To obtain the ORDS SQL scripts, execute the following commands:

unzip ords.version.number.zip ords.war

unzip ords.war 'WEB-INF/lib/ords-installer-*.jar'
unzip 'WEB-INF/lib/ords-installer-*.jar' 'db/*'
mv db scripts

The ORDS SQL scripts are located in the scripts folder. The scripts folder contains the

subdirectories for the install, upgrade, validate, and uninstall SQL scripts. You can run these
SQL scripts using SQLcl, SQL*Plus, or SQL Developer.

ORACLE 4.5

Chapter 4
Setting Up ORDS in an Application Container

Creating an Application Root Container

This section describes how to create an application root container.
To create an application root container:
1. Ensure that the current container is in CDBSROOT.

2. Use the AS APPLICATION CONTAINER clause of the CREATE PLUGGABLE
DATABASE statement to create an application container.

3. Open the application container.
Example:

CREATE PLUGGABLE DATABASE ords app rootl AS APPLICATION CONTAINER ADMIN
USER admin IDENTIFIED BY <admin password>

FILE NAME CONVERT=('pdbseed', 'ords app rootl');

ALTER PLUGGABLE DATABASE ords app rootl OPEN;

" Note:

ords_app rootl and the admin user in the preceding example can be any
valid Oracle identifier.

If Oracle managed files is enabled in the CDB or the

PDB FILE NAME CONVERT initialization parameter is set, then omit the

FILE NAME CONVERT clause.

The ORDS users, namely ORDS_PUBLIC USER and ORDS_METADATA, must not
exist in the seed (for example, pdbseed) or cloned pdb.

" See Also:

Creating an Application Container

Installing ORDS in the Application Root Container

ORACLE

This section describes how to install ORDS in the application root container.
To install ORDS in the application root container, perform the following steps:
1. Connect to the application root container.

2. Run /path/to/scripts/install/core/ords _app con install.sql command
using the following parameters:

* Log folder (must include the forward slash at the end)
» Default tablespace for ORDS schema
e Temporary tablespace for ORDS schema

» Default tablespace for ORDS proxy user

4-6

Chapter 4
Setting Up ORDS in an Application Container

* Temporary tablespace for ORDS proxy user
* ORDS proxy user password
e Scripts path (requires the fully qualified path to the ORDS scripts)

Note:

The tablespaces must already exist in the database.

ALTER SESSION SET CONTAINER = ords app rootl;

@/path/to/scripts/install/core/ords _app con install.sqgl /path/to/logs/
SYSAUX TEMP SYSAUX TEMP P033w0Or6! /path/to/scripts

Where:

The ords_app_con_install.sqgl creates an application named ORDS and assigns the
application version to the ORDS product version. The product version format is
Year.Quarter.Patch.rJulianDay24HRMM (for example, 20.2.1.r2121800).

The preceding script installs ORDS and creates the following:
* The ORDS schema, ORDS METADATA
* The ORDS proxy user, ORDS_PUBLIC USER and

* The related database objects in the application container

" See Also:

Verifying ORDS in the Application Container

Creating an Application Seed

ORACLE

This section describes how to create an application seed.

An application seed is used to provision application PDBs with the application root's
applications pre-installed.

To create an application seed:
1. Ensure that the current container is in the CDBSROOT.
2. Alter session and set container to the application root.

3. Use the AS SEED clause of the CREATE PLUGGABLE DATABASE statement to create an
application seed.

4. Sync the ORDS application with the application seed.
5. Compile invalid objects.

6. Open the application seed in a read only mode.

4-7

Chapter 4
Setting Up ORDS in an Application Container

< Note:

ords_app_rootl and the admin user in the following example can be any
valid Oracle identifier.

If Oracle managed files is enabled in the CDB or the

PDB FILE NAME CONVERT initialization parameter is set, then omit the
FILE NAME CONVERT clause.

ALTER SESSION SET CONTAINER = ords app rootl;
CREATE PLUGGABLE DATABASE AS SEED ADMIN USER admin IDENTIFIED BY
<admin password>
FILE NAME CONVERT=('pdbseed', 'ords app rootl seed');
ALTER PLUGGABLE DATABASE ords app rootl$seed open;
ALTER SESSION SET CONTAINER = ords_app_rootl$seed;
ALTER PLUGGABLE DATABASE application ORDS sync;
begin
sys.dbms utility.compile schema ('ORDS METADATA', FALSE);
end;

/
ALTER PLUGGABLE DATABASE ords app rootl$seed close immediate;
ALTER PLUGGABLE DATABASE ords app rootl$seed open read only;

¢ See Also:

Creating an Application Container

Creating an Application PDB from the Application Seed

This section describes how to create an application PDB that is seeded from the
application seed

An application PDB is created by issuing the CREATE PLUGGABLE DATABASE Statement
from the application root.

To create an application PDB from the application seed:
1. Ensure that the current container is in CDBSROOT.
2. Alter session and set the container to the application root.

3. Use the CREATE PLUGGABLE DATABASE command to create a PDB from the
application seed.

ORACLE 4-8

Chapter 4
Setting Up ORDS in an Application Container

< Note:

ords_app_pdbl and the admin user in the following example can be any valid Oracle
identifier.

If Oracle managed files is enabled in the CDB or the PDB_FILE NAME CONVERT
initialization parameter is set, then omit the FILE_NAME CONVERT clause.

ALTER SESSION SET CONTAINER=ords app rootl;

CREATE PLUGGABLE DATABASE ords app pdbl ADMIN USER admin IDENTIFIED BY
<admin password>

FILE NAME CONVERT=('ords app rootl seed', 'ords app pdbl');

ALTER PLUGGABLE DATABASE ords app pdbl OPEN;

ALTER SESSION SET CONTAINER = ords app pdbl;

select app name, app version, app status from dba applications where
app name = 'ORDS';

APP_NAME APP_VERSION APP_STATUS
ORDS 20.2.1.r2121800 NORMAL
¢ See Also:

Creating an Application Container

ORDS Configuration Files Setup

This section describes how to setup the ORDS configuration files:

Topics:

e Specifying the ORDS Configuration Folder

e Creating the ORDS Configuration Files for the Application Root Container

e Making all Application PDBs in an Application Root Container Addressable by ORDS

Specifying the ORDS Configuration Folder

This section describes how to specify the ORDS configuration folder.

The configuration folder contains the ORDS configuration files. If the configuration folder is
undefined, then you are prompted for the configuration folder when you execute the setup
command.

To specify the location for your ORDS configuration files, use the following command:

java -jar ords.war configdir /path/to/config

ORACLE' 4.9

Chapter 4
Setting Up ORDS in an Application Container

Creating the ORDS Configuration Files for the Application Root Container

This section describes how to create the ORDS configuration files for the application
root container.

To create the ORDS configuration files for the application root container, execute the
following setup command to create the configuration files:

java -jar ords.war setup --configOnly

Where, the --configOnly option must be specified to create the configuration files.
When prompted for the service name, specify the application root servicename.

Example 4-1 Configuring ORDS for Application Express
java -jar ords.war setup --configOnly

Specify the database connection type to use.

Enter number for [1] Basic [2] TNS [3] Custom URL [1]:

Enter the name of the database server [localhost]:

Enter the database listen port [1521]:

Enter 1 to specify the database service name, or 2 to specify the
database SID [1]:

Enter the database service name: ords app rootl

Enter the database password for ORDS PUBLIC USER:

Confirm password:

Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.

If using Oracle Application Express or migrating from mod plsql
then you must enter 1 [1]:

Enter the PL/SQL Gateway database user name [APEX PUBLIC USER]:

Enter the database password for APEX PUBLIC USER:

Confirm password:

Enter 1 to specify passwords for Application Express RESTful
Services database users (APEX LISTENER, APEX REST PUBLIC USER) or 2 to
skip this step [1]:

Enter the database password for APEX LISTENER:

Confirm password:

Enter the database password for APEX REST PUBLIC USER:

Confirm password:

Enter a number to select a feature to enable:

[1] SQL Developer Web (Enables all features)
[2] REST Enabled SQL
[3] Database API
[4] REST Enabled SQL and Database API
[5] None
Choose [1]:

Example 4-2 Configuring ORDS only

java -jar ords.war setup --configOnly

Specify the database connection type to use.
Enter number for [1] Basic [2] TNS [3] Custom URL [1]:

ORACLE 4-10

Chapter 4
Setting Up ORDS in an Application Container

Enter the name of the database server [localhost]:
Enter the database listen port [1521]:
Enter 1 to specify the database service name, or 2 to specify the
database SID [1]:
Enter the database service name: ords app rootl
Enter the database password for ORDS PUBLIC USER:
Confirm password:
Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.
If using Oracle Application Express or migrating from mod plsgl then you
must enter 1 [1]:2
Enter a number to select a feature to enable:
] SQL Developer Web (Enables all features)
[2] REST Enabled SQL
]
]

[3] Database API
[4] REST Enabled SQL and Database API
[5] None

Choose [1]:

Making all Application PDBs in an Application Root Container Addressable by ORDS

This section describes how to make all application PDBs in an application root container
addressable by ORDS. This step is required for starting ORDS from the application root
container.

For more information refer to Making All PDBs Addressable by Oracle REST Data Services
(Pluggable Mapping).

Running ORDS

ORACLE

This section lists the different methods you can use to run ORDS after installing ORDS in the
application container.

Once you install ORDS in the application container and create the ORDS configuration files,
run ORDS using one of the following methods:

* Standalone Mode
* Deploy on Oracle WebLogic Server

* Deploy Oracle REST Data Services on Apache Tomcat

" See Also:

e Starting in Standalone Mode
e Oracle WebLogic Server

e Apache Tomcat

4-11

Chapter 4
Setting Up ORDS in an Application Container

Validating ORDS in the Application Root Container

This section describes how to validate ORDS in the application root container.

You can validate an application in an application container. These operations are
performed in the application root. The application container propagates the application
changes to the application PDBs when the application PDBs synchronize with the
application in the application root. The ords_app con validate.sqgl script repairs the
Oracle REST Data Services schema and verifies if the ORDS schema is valid.

To repair ORDS in the application root:
1. In SQLcl or SQL*Plus, connect to the application root.

2. Run /path/to/scripts/validate/core/ords app con validate.sql with the
following parameters:

* Log folder (must include the forward slash at the end)

» Scripts path (requires the fully qualified path to the ORDS scripts)
ALTER SESSION SET CONTAINER = ords_app rootl;

@/path/to/scripts/validate/core/ords app con validate.sql /path/to/
logs/ /path/to/scripts

The ords_app_con validate.sql sets the application version to the ORDS product
version with suffix " v_.YYMMDD24HRMISS".

For example:
Year.Quarter.Patch.rjulianDay24MI_v_YYMMDD24HRMISS
20.2.0.r1801800_v_200705160015

To synchronize the ORDS application in an application PDB with the latest changes in
the application root:

1. In SQLcl or SQL*Plus, ensure that the current container is the application PDB

2. Runthe ALTER PLUGGABLE DATABASE APPLICATION statement specifying the ORDS
application with the SYNC clause.

For example:
ALTER SESSION SET CONTAINER = ords app pdbl;

ALTER PLUGGABLE DATABASE APPLICATION ORDS SYNC;

ORACLE 4-12

Chapter 4
Setting Up ORDS in an Application Container

< Note:

When you install ORDS, it attempts to find the Oracle Application Express (APEX)
schema and creates a view. This view joins the relevant tables in the APEX schema
to the tables in the Oracle REST Data Services schema. If you install Oracle REST
Data Services before APEX, then Oracle REST Data Services cannot find the
APEX schema and it creates a stub view in place of the missing APEX tables.

Oracle highly recommends that you install Oracle REST Data Services after APEX
to ensure that the APEX objects that Oracle REST Data Services needs to query
are present.

If you install Oracle REST Data Services before APEX, then use the
ords_app con validate.sql script to force Oracle REST Data Services to
reconstruct the queries against the APEX schema.

Upgrading ORDS in the Application Container

This section describes how to upgrade ORDS in the application container.

You can upgrade an application in an application container. These operations are performed
in the application root. The application container propagates the application changes to the
application PDBs when the application PDBs synchronize with the application in the
application root.

Prerequisites:
* ORDS must already be installed in the application container.

» Upgrading ORDS from an earlier release to a new release (for example, ORDS release
20.2.x.x to 20.3.x.X).

To upgrade ORDS in the application root:
1. In SQLcl or SQL*Plus, connect to the application root.

2. Run /path/to/scripts/upgrade/ords app con upgrade.sql with the following
parameters:

* Log folder (must include the forward slash at the end)

e Scripts path (requires the fully qualified path to the ORDS scripts)

¢ Note:

The ords_app con upgrade.sqgl script upgrades ORDS in the application root
container to the release that you are using. For example, if the ORDS
application version is 20.2.1.r2121800, and the ORDS upgrade script is
20.3.0.r2601900, then the script upgrades ORDS to release 20.3.0.r2601900 in
the application root container.

To synchronize the ORDS application in an application PDB with the upgrade changes in the
application root:

1. In SQLcl or SQL*Plus, ensure that the current container is the application PDB.

ORACLE 4-13

Chapter 4
Setting Up ORDS in an Application Container

2. Runthe ALTER PLUGGABLE DATABASE APPLICATION statement specifying the ORDS
application with the SYNC clause.

ALTER SESSION SET CONTAINER = ords_app pdbl;

ALTER PLUGGABLE DATABASE APPLICATION ORDS SYNC;

¢ See Also:

Verifying ORDS in the Application Container

Uninstalling ORDS from the Application Container

ORACLE

This section describes how to uninstall ORDS from the application container.

You can uninstall an application from an application container. These operations are
performed in the application root. The application container propagates the application
changes to the application PDBs when the application PDBs synchronize with the
application in the application root.

To uninstall ORDS from the application root:
1. In SQLcl or SQL*Plus, connect to the application root.

2. Run /path/to/scripts/uninstall/core/ords app con uninstall.sgl with the
following parameters:

* Log folder (must include the forward slash at the end)
e Scripts path (requires the fully qualified path to the ORDS scripts)

ALTER SESSION SET CONTAINER = ords app rootl;

@/path/to/scripts/uninstall/core/ords app con uninstall.sqgl /path/to/
logs/ /path/to/scripts

To synchronize the application PDB to uninstall the ORDS application:
1. In SQLcl or SQL*Plus, ensure that the current container is the application PDB.

2. Runthe ALTER PLUGGABLE DATABASE APPLICATION statement specifying the ORDS
application with the SYNC clause.

For example:
ALTER SESSION SET CONTAINER = ords app pdbl;

ALTER PLUGGABLE DATABASE APPLICATION ORDS SYNC;

¢ See Also:
Verifying ORDS in the Application Container

4-14

Chapter 4
Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)

Verifying ORDS in the Application Container

This section describes how to verify ORDS in the application container.

To verify the ORDS for install, upgrade, validate, and uninstall in the application container:

Manually inspect the following log files for any errors:
— Install - ordsinstall <timestamp>.log

— Upgrade - ordsupgrade <timestamp>.log

— Validate - ordsvalidate <timestamp>.log

— Uninstall - ordsuninstall <timestamp>.log

Query dba applications to verify if the ORDS application exists and its application
version is the same as the ORDS product version.

SQL> select app name, app_version, app_status from dba applications where
app_name = 'ORDS';

APP NAME APP _VERSION APP STATUS

ORDS 20.2.1.r2121800 NORMAL

Query dba_app errors to check for any errors:
SQL> select app name, app statement, errornum, errormsg from dba app errors
where app name = 'ORDS';

no rows selected

If you are uninstalling ORDS from the application container, the APP_STATUS contains the
value UNINSTALLED.

Making All PDBs Addressable by Oracle REST Data Services
(Pluggable Mapping)

Pluggable mapping refers to the ability to make all PDBs in a CDB root or in an application
root container addressable by Oracle REST Data Services. To use this feature, follow the
instructions described in this topic.

ORACLE

If the Oracle REST Data Services configuration file includes the db.serviceNameSuffix
parameter, this indicates that the Oracle REST Data Services pool points to a CDB root or an
application root, and that the PDBs connected to that CDB root or an application root should
be made addressable by Oracle REST Data Services.

The value of the db.serviceNameSuffix parameter must match the value of the DB DOMAIN
database initialization parameter, and it must start with a period (.). To set the value of the
db.serviceNameSuffix parameter

1
2.

In SQLcl or SQL*Plus, connect to the root as a user with SYSDBA privileges.
Check the value of the DB DOMAIN database initialization parameter.
SQL> show parameter DB DOMAIN

Exit SQLcl or SQL*Plus.

4-15

ORACLE

Chapter 4
Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)

SQL> exit

If the DB DOMAIN value is not empty, then on the command line, enter the
command to create the key and value for the db.serviceNameSuffix parameter
and its DB_DOMAIN. This will be used to add this entry to the Oracle REST Data
Services configuration file.

echo db.serviceNameSuffix=.value-of-DB DOMAIN > snsuffix.properties

For example, if DB DOMAIN is set to example.com, enter the following:
echo db.serviceNameSuffix=.example.com > snsuffix.properties

If the db.serviceNameSuffix parameter value is not defined, enter a command in
the following format to add an entry to the configuration file:

java -jar ords.war set-properties --conf pool-name snsuffix.properties

Where pool-name is one of the following:
* poolName for a PL/SQL Gateway configuration

* poolName pu for an Oracle REST Data Services RESTful Services
configuration

* poolName rt for an Application Express RESTful Services configuration

Example 1: You want to make PDBs in a CDB root or an application root
addressable globally. Specify defaults by entering the following command:

java -jar ords.war set-properties --conf defaults snsuffix.properties

Note:

The approach shown in Example 1 (setting the property for all pools
through the defaults.xml file) is best for most use cases.

Example 2: You want to make PDBs in a CDB root or an application root
addressable for your PL/SQL Gateway, and your pool name is apex. Enter the
following command:

java -jar ords.war set-properties --conf apex snsuffix.properties

For example, if the database pointed to by apex has a DB DOMAIN value of
example.com and contains the two PDBs pdbl.example.com and
pdb2.example.com, the first PDB will be mapped to URLs whose path starts with /
ords/pdbl/, and the second PDB will be mapped to URLs whose path starts

with /ords/pdb2/.

Example 3: You want to make PDBs in a CDB root or an application root
addressable for your Oracle REST Data Services RESTful Services, and your pool
name is apex pu. Enter the following command:

java -jar ords.war set-properties --conf apex pu snsuffix.properties

Example 4: You want to make PDBs in a CDB root or an application root
addressable for your Application Express RESTful Services and your pool name is
apex_rt. Enter the following command:

4-16

Chapter 4
Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)

java -jar ords.war set-properties --conf apex rt snsuffix.properties

Related Topics

* About the Oracle REST Data Services Configuration Files

ORACLE 4-17

Developing Oracle REST Data Services
Applications

ORACLE

This section explains how to develop applications that use Oracle REST Data Services. It
includes guidance and examples.

4

Note:

If you want to get started quickly, you can try the tutorial in Oracle REST Data
Services Quick Start Guide. However, you should then return to this chapter to
understand the main concepts and techniques.

Note:

Ensure that you have installed and configured both Oracle Application Express 4.2
or later, and Oracle REST Data Services 3.0 or later, before attempting to follow any
of the tutorials and examples.

To use the Oracle REST API for JSON Data Persistence, you must first install the
Oracle REST API. See "Oracle REST API Installation" in Oracle REST Data
Services SODA for REST Developer's Guide.

It is assumed that you are familiar with Oracle Application Express. If you are new
to Oracle Application Express, see the Oracle Application Express documentation.

Topics:

Introduction to Relevant Software

Getting Started with RESTful Services
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Filtering in Queries

Configuring Secure Access to RESTful Services

About Oracle REST Data Services User Roles

Authenticating Against WebLogic Server User Repositories

Integrating with Existing Group/Role Models
Using the Oracle REST Data Services PL/SQL API

You may also want to review Creating an Image Gallery , a supplementary extended example
that uses Oracle Application Express to build an application.

5-1

Chapter 5
Introduction to Relevant Software

Introduction to Relevant Software

This section explains some key relevant software for developing applications that use
Oracle REST Data Services.

Topics:

* About Oracle Application Express

e About RESTful Web Services

Related Topics
e About Oracle REST Data Services

About Oracle Application Express

Oracle Application Express is a declarative, rapid web application development tool for
the Oracle database. It is a fully supported, no cost option available with all editions of
the Oracle database. Using only a web browser, you can develop and deploy
professional applications that are both fast and secure.

About RESTful Web Services

Representational State Transfer (REST) is a style of software architecture for
distributed hypermedia systems such as the World Wide Web. An API is described as
RESTful when it conforms to the tenets of REST. Although a full discussion of REST is
outside the scope of this document, a RESTful API has the following characteristics:

» Data is modelled as a set of resources. Resources are identified by URIs.

* A small, uniform set of operations are used to manipulate resources (for example,
PUT, POST, GET, DELETE).

* Aresource can have multiple representations (for example, a blog might have an
HTML representation and an RSS representation).

* Services are stateless and since it is likely that the client will want to access
related resources, these should be identified in the representation returned,
typically by providing hypertext links.

Release 4.2 of Oracle Application Express leverages the capabilities of Oracle REST
Data Services to provide developers with an easy to use graphical user interface for
defining and testing RESTful Web Services.

Getting Started with RESTful Services

This section introduces RESTful Services, and provides guidelines and examples for
developing applications that use RESTful Services.

Topics:
* RESTful Services Terminology
» About Request Path Syntax Requirements

* "Getting Started" Documents Included in Installation

ORACLE 5-2

Chapter 5
Getting Started with RESTful Services

About cURL and Testing RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Manually Creating RESTful Services Using SQL and PL/SQL

About Working with Dates Using Oracle REST Data Services

Related Topics

Developing Oracle REST Data Services Applications

RESTful Services Terminology

This section introduces some common terms that are used throughout this document:

RESTful service: An HTTP web service that conforms to the tenets of the RESTful
architectural style.

Resource module: An organizational unit that is used to group related resource
templates.

Resource template: An individual RESTful service that is able to service requests for
some set of URIs (Universal Resource Identifiers). The set of URIs is defined by the URI
Pattern of the Resource Template

URI pattern: A pattern for the resource template. Can be either a route pattern or a URI
template, although you are encouraged to use route patterns.

Route pattern: A pattern that focuses on decomposing the path portion of a URI into its
component parts. For example, a pattern of /:object/:1d? will match /emp/101
(matches a request for the item in the emp resource with id of 101) and will also

match /emp/ (matches a request for the emp resource, because the :id parameter is
annotated with the ? modifier, which indicates that the id parameter is optional).

For a detailed explanation of route patterns, see docs\javadoc\plugin-api\route-
patterns.html, under <sqldeveloper-install>\ords and under the location (if any)
where you manually installed Oracle REST Data Services.

URI template: A simple grammar that defines the specific patterns of URIs that a given
resource template can handle. For example, the pattern employees/{id} will match any
URI whose path begins with employees/, such as employees/2560.

Resource handler: Provides the logic required to service a specific HTTP method for a
specific resource template. For example, the logic of the GET HTTP method for the
preceding resource template might be:

select empno, ename, dept from emp where empno = :id

HTTP operation: HTTP (HyperText Transport Protocol) defines standard methods that
can be performed on resources: GET (retrieve the resource contents), POST (Store a new
resource), PUT (update an existing resource), and DELETE (remove a resource).

Related Topics

About RESTful Web Services

About Request Path Syntax Requirements

To prevent path-based attacks, Oracle REST Data Services performs a number of validation
checks on the syntax of the path element of each request URL.

ORACLE

5-3

Chapter 5
Getting Started with RESTful Services

Each path must conform to the following rules:

* Is not empty or whitespace-only

» Does not contain any of the following characters: ?, #, ;, %

* Does not contain the null character (\u0000)

» Does not contain characters in the range: \u0001-\u0031

* Does not end with white space or a period (.)

» Does not contain double forward slash (//) or double back slash(\\)

» Does not contain two or more periods in sequence (.., ..., and so on)
» Total length is {@value #MAX_PATH_LENGTH]} characters or less

» Does not match any of the following names (case insensitive), with or without file
extensions: CON, PRN, AUX, CLOCKS$, NUL, COM0, COM1, COM2, COM3,
COM4, COM5, COM6, COM7, COM8, COM9, LPTO, LPTL1, LPT2, LPT3, LPT4,
LPT5, LPT6, LPT7, LPT8, LPT9

If you intend to auto-REST enable objects, then avoid object names that do not comply
with these requirements. For example, do not create a table named #EMPS. If you do
want to auto-REST enable objects that have non-compliant names, then you must use
an alias that complies with the requirements.

These requirements are applied to the URL decoded form of the URL, to prevent
attempted circumvention of percent encodings.

"Getting Started" Documents Included in Installation

When you install Oracle REST Data Services, an examples folder is created with
subfolders and files that you may find helpful. The installation folder hierarchy includes
this:

ords
conf
docs
examples
soda
getting-started

In this hierarchy:

* examples\soda: Contains sample JSON documents used in some examples
included in Oracle REST Data Services SODA for REST Developer's Guide.

e examples\getting-started: Double-click index.html for a short document about
how to get started developing RESTful Services using Oracle REST Data
Services. This document focuses on using SQL Developer to get started. (SQL
Developer is the primary tool for managing Oracle REST Data Services. For
example, the ability to auto-enable REST support for schemas and tables is
available only in SQL Developer.)

ORACLE 5-4

Chapter 5
Getting Started with RESTful Services

About cURL and Testing RESTful Services

Other sections show the testing of RESTful Services using a web browser. However, another
useful way to test RESTful Services is using the command line tool named cURL.

This powerful tool is available for most platforms, and enables you to see and control what
data is being sent to and received from a RESTful service.

curl -1 https://server:port/ords/workspace/hr/employees/7369

This example produces a response like the following:

HTTP/1.1 200 OK

Server: Oracle-REST-Data-Services/2.0.6.78.05.25
ETag: "..."

Content-Type: application/json
Transfer-Encoding: chunked

Date: Thu, 28 Mar 2014 16:49:34 GMT

{
"empno":7369,
"ename":"SMITH",
"job": "CLERK",
"mgr":7902,
"hiredate":"1980-12-17T08:00:00z",
"sal":800,
"deptno":20
}

The -1 option tells cURL to display the HTTP headers returned by the server.

Related Topics
e Exploring the Sample RESTful Services in Application Express (Tutorial)

" See Also:

curl - command line tool and library
The example in this section uses cURL with the services mentioned in Exploring the
Sample RESTful Services in Application Express (Tutorial)

Automatic Enabling of Schema Objects for REST Access (AutoREST)

ORACLE

If Oracle REST Data Services has been installed on the system associated with a database
connection, you can use the AutoREST feature to conveniently enable or disable Oracle
REST Data Services access for specified tables and views in the schema associated with
that database connection. Enabling REST access to a table, view or PL/SQL function,
procedure or package allows it to be accessed through RESTful services.

AutoREST is a quick and easy way to expose database tables as REST resources. You
sacrifice some flexibility and customizability to gain ease of effort. AutoRest lets you quickly
expose data but (metaphorically) keeps you on a set of guide rails. For example, you cannot
customize the output formats or the input formats, or do extra validation.

5-5

Chapter 5
Getting Started with RESTful Services

On the other hand, manually created resource modules require you to specify the SQL
and PL/SQL to support the REST resources. Using resource modules requires more
effort, but offers more flexibility; for example, you can customize what fields are
included, do joins across multiple tables, and validate the incoming data using PL/
SQL.

So, as an application developer you must make a choice: use the "guide rails" of
AutoREST, or create a resource module to do exactly what you need. If you choose
AutoREST, you can just enable a table (or set of tables) within a schema.

Note that enabling a schema is not equivalent to enabling all tables and views in the
schema. It just means making Oracle REST Data Services aware that the schema
exists and that it may have zero or more resources to expose to HTTP. Those
resources may be AutoREST resources or resource module resources.

You can automatically enable Oracle REST Data Services queries to access individual
database schema objects (tables, views, and PL/SQL) by using a convenient wizard in
Oracle SQL Developer. (Note that this feature is only available for Oracle REST Data
Services- enabled schemas, not for Oracle Application Express workspaces.)

To enable Oracle REST Data Services access to one or more specified tables or
views, you must do the following in SQL Developer:

1. Enable the schema (the one associated with the connection) for REST access.

Schema level: To enable Oracle REST Data Services access to selected objects
(that you specify in the next step) in the schema associated with a connection,
right-click its name in the Connections navigator and select REST Services, then
Enable REST Services.

(To drop support for Oracle REST Data Services access to objects in the schema
associated with a connection, right-click its name in the Connections navigator and
select REST Services, then Drop REST Services.)

2. Individually enable REST access for the desired objects.

Table or view level: To enable Oracle REST Data Services access to a specified
table or view, right-click its name in the Connections navigator and select Enable
REST Services.

For detailed usage information, click the Help button in the wizard or dialog box in
SQL Developer.

Examples: Accessing Objects Using RESTful Services

This section provides examples of using Oracle REST Data Services queries and
other operations against tables and views after you have REST-enabled them.

You can automatically expose table and view objects as RESTful services using SQL
Developer. This topic provides examples of accessing these RESTful services.

ORACLE 5-6

Chapter 5
Getting Started with RESTful Services

Tip:

Although these examples illustrate the URL patterns used to access these
resources, clients should avoid hard coding knowledge of the structure of these
URLs; instead clients should follow the hyperlinks in the resources to navigate
between resources. The structure of the URL patterns may evolve and change in
future releases.

This topic provides examples of accessing objects using RESTful Services.
* Get Schema Metadata

* Get Object Metadata

* Get Object Data

* Get Table Data Using Paging

* Get Table Data Using Query

* Get Table Row Using Primary Key
* Insert Table Row

* Update/Insert Table Row

* Delete Using Filter

* Post by Batch Load

Get Schema Metadata

ORACLE

This example retrieves a list of resources available through the specified schema alias. It
shows RESTful services that are created by automatically enabling a table or view, along with
RESTful Services that are created by resource modules.

This example retrieves a list of resources available through the specified schema alias.
Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/

Result:
{
"items": [
{
"name": "EMP",
"links": [
{
"rel": "describes",

"href": "http://localhost:8080/ords/ordstest/emp/"

"rel": "canonical",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/",
"mediaType": "application/json"

5-7

Chapter 5
Getting Started with RESTful Services

"name": "oracle.examples.hello",
"links": [
{

"rel": "describes",

"href": "http://localhost:8080/ords/ordstest/examples/hello/"
b
{

"rel": "canonical",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/
hello/",

"mediaType": "application/json"

}

I

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 2,
"links": [
{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/"
}’
{

"rel": "first",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/"

The list of resources includes:

Resources representing tables or views that have been REST enabled.

Resources defined by resource modules. Note that only resources having a
concrete path (that is, not containing any parameters) will be shown. For example,
a resource with a path of /module/some/path/ will be shown, but a resource with a
path of /module/some/:parameter/ will not be shown.

Each available resource has two hyperlinks:

The link with relation describes points to the actual resource.

The link with relation canonical describes the resource.

Get Object Metadata

This example retrieves the metadata (which describes the object) of an individual
object. The location of the metadata is indicated by the canonical link relation.

ORACLE

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/
<ObjectAlias>/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/emp/

Result:

{
"name": "EMP",
"primarykey": [

"empno"

5-8

I

"members": [
{
"name": "empno",
"type": "NUMBER"
}I
{
"name": "ename",
"type": "VARCHAR2"
}I
{
"name": "job",
"type": "VARCHAR2"
}I
{
"name": "mgr",
"type": "NUMBER"
}I
{
"name": "hiredate",
"type": "DATE"
}I
{
"name": "sal",
"type": "NUMBER"
}I
{
"name": "comm",
"type": "NUMBER"
}I
{
"name": "deptno",
"type": "NUMBER"
}
}I
"links": [
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/",
"mediaType": "application/json"
}I
{
"rel": "canonical",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

"rel":

"href":

Get Object Data

This example retrieves the data in the object. Each row in the object corresponds to a JSON
object embedded within the JSON array

ORACLE

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/

Chapter 5

Getting Started with RESTful Services

"describes",
"http://localhost:8080/ords/ordstest/emp/"

Example: GET http://localhost:8080/ords/ordstest/emp/

5-9

ORACLE

Chapter 5

Getting Started with RESTful Services

Result:

{

"items": [

]

{

"empno": 7499,
"ename": "ALLEN",
"job": "SALESMAN",

"mgr": 7698,
"hiredate": "1981-02-20T00:00:00Z",
"sal": 1600,
"comm": 300,
"deptno": 30,
"links": [
{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7499"

"empno": 7934,
"ename": "MILLER",
"job": "CLERK",
"mgr": 7782,
"hiredate": "1982-01-23T00:00:00Z2",
"sal": 1300,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"
}
]

}

r
"hasMore": false,
"limit": 25,
"offset": 0,
"count": 13,
"links": [

{

"rel": "self",

]
}

"href": "http://localhost:8080/ords/ordstest/emp/"
}l

{

"rel": "edit",

"href": "http://localhost:8080/ords/ordstest/emp/"
}l

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

}l

{

"rel": "first",

"href": "http://localhost:8080/ords/ordstest/emp/"
}

5-10

Chapter 5
Getting Started with RESTful Services

Get Table Data Using Paging

This example specifies the offset and 1imit parameters to control paging of result data.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
offset=<0ffset>&limit=<Limit>

Example: GET http://localhost:8080/ords/ordstest/emp/?0ffset=10&limit=5

Result:
{
"items": [
{
"empno": 7900,
"ename": "JAMES",
"job": "CLERK",
"mgr": 7698,
"hiredate": "1981-12-03T00:00:002",
"sal": 950,
"comm": null,
"deptno": 30,
"links": [
{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7900"

"empno":
"ename":

"job":
"mgrn:

"hiredate":

"sal":

"comm":
"deptno":

7934,
"MILLER",
"CLERK",
7782,
"1982-01-23T00:00:002",
1300,
null,
10,

"links": [

{

"rel":

"self",

"href": "http://localhost:8080/ords/ordstest/emp/7934"

}
]
}
1 r

"hasMore":

"limit":

"offset":

"count":
"links":
{

"rel":

"href":

b
{

"rel":

"href":

b

ORACLE

false,
5’
10,
3’
[

"self",
"http://localhost:8080/ords/ordstest/emp/"

"edit",
"http://localhost:8080/ords/ordstest/emp/"

5-11

Chapter 5
Getting Started with RESTful Services

{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
}l
{
"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp/?1limit=5"
}l
{
"rel": "prev",
"href": "http://localhost:8080/ords/ordstest/emp/?0ffset=5&1imit=5"
}
]
}

Get Table Data Using Query

ORACLE

This example specifies a filter clause to restrict objects returned.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: GET http://localhost:8080/ords/ordstest/emp/?g={"deptno":

{"S1te":20}}
Result:

{

"items": [

{

"empno": 7566,
"ename": "JONES",
"job": "MANAGER",

"mgr": 7839,
"hiredate": "1981-04-01T23:00:00Z",
"sal": 2975,
"comm": null,
"deptno": 20,
"links": [
{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7566"

"empno": 7934,
"ename": "MILLER",
"job": "CLERK",
"mgr": 7782,
"hiredate": "1982-01-23T00:00:00Z",
"sal": 1300,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"
}
1

5-12

Chapter 5
Getting Started with RESTful Services

}
1,

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 7,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/?
q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}l

{

"rel": "edit",

"href": "http://localhost:8080/ords/ordstest/emp/?
q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}l

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

}l

{

"rel": "first",

"href": "http://localhost:8080/ords/ordstest/emp/?
q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}

]

}

Get Table Row Using Primary Key
This example retrieves an object by specifying its identifying key values.
Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/<KeyValues>
Where <kKeyValues> is a comma-separated list of key values (in key order).
Example: GET http://localhost:8080/ords/ordstest/emp/7839

Result:

{
"empno": 7839,
"ename": "KING",
"job": "PRESIDENT",
"mgr": null,
"hiredate™: "1981-11-17T00:00:00Z",
"sal": 5000,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7839"
}l
{
"rel": "edit",
"href": "http://localhost:8080/ords/ordstest/emp/7839"
}l
{

"rel": "describedby",

ORACLE' 5.13

Chapter 5
Getting Started with RESTful Services

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}l
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
]
}

Insert Table Row

ORACLE

This example inserts data into the object. The body data supplied with the request is a
JSON object containing the data to be inserted.

If the object has a primary key, then there must be an insert trigger on the object that
populates the primary key fields. If the table does not have a primary key, then the
ROWID of the row will be used as the item's identifier.

If the object lacks a trigger to assign primary key values, then the PUT operation
described in next section,Update/lnsert Table Row should be used instead.

Pattern: POST http://<HOST>:<PORT>/ords/<SchemalAlias>/<ObjectAlias>/

Example:

curl -1 -H "Content-Type: application/json" -X POST -d "{ \"empno\" :7,
\"ename\": \"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/
ords/ordstest/emp/

Content-Type: application/json
{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:

{

"empno": 7,
"ename": "JBOND",
"job": "SPY",
"mgr": null,
"hiredate": null,
"sal": null,
"comm": null,

"deptno": 11,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7"
}l

{

"rel": "edit",

"href": "http://localhost:8080/ords/ordstest/emp/7"
}l

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}l

{

"rel": "collection",

"href": "http://localhost:8080/ords/ordstest/emp/"
}

5-14

Chapter 5
Getting Started with RESTful Services

Update/Insert Table Row

This example inserts or updates (sometimes called an "upsert") data in the object. The body
data supplied with the request is a JSON object containing the data to be inserted or
updated.

Pattern: PUT http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/<KeyValues>

Example:

curl -1 -H "Content-Type: application/json" -X PUT -d "{ \"empno\" :7, \"ename\":
\"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/
ordstest/emp/7

Content-Type: application/json

{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:

{

"empno": 7,
"ename": "JBOND",
lljobll: llSPYII,

"mgr": null,
"hiredate": null,
"sal": null,
"comm": null,

"deptno": 11,
"links": [

{

Ilrelll: "Self",

"href": "http://localhost:8080/ords/ordstest/emp/7"
}l
{
"rel": "edit",
"href": "http://localhost:8080/ords/ordstest/emp/7"
}l
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}l
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
]
}

Delete Using Filter

ORACLE

This example deletes object data specified by a filter clause.

Pattern: DELETE http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: curl -i -X DELETE "http://localhost:8080/ords/ordstest/emp/?
g={"deptno":11}"

5-15

Result:

{

"itemsDeleted":

}

Post by Batch Load

This example inserts object data using the batch load feature. The body data supplied
with the request is a CSV file. The behavior of the batch operation can be controlled
using the optional query parameters, which are described in Table 5-1.

ORACLE

Chapter 5
Getting Started with RESTful Services

1

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
batchload?<Parameters>

Parameters:

Table 5-1 Parameters for batchload

Parameter

Description

batchesPerCommit

batchRows

dateFormat

delimiter

enclosures

errors

errorsMax

lineEnd

lineMax

locale
responseEncoding

responseFormat

Sets the frequency for commits. Optional commit points can be set after
a batch is sent to the database. The default is every 10 batches. 0
indicates commit deferred to the end of the load. Type: Integer.

Sets the number of rows in each batch to send to the database. The
default is 50 rows per batch. Type: Integer.

Sets the format mask for the date data type. This format is used when
converting input data to columns of type date. Type: String.

Sets the field delimiter for the fields in the file. The default is the comma

()
embeddedRightDouble

Sets the user option used to limit the number of errors. If the number of
errors exceeds the value specified for errorsMax (the service option)
or by errors (the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be allowed
(up to errorsMax value), specify UNLIMITED (-1) .

A service option used to limit the number of errors allowed by users. It
intended as an option for the service provider and not to be exposed as
a user option. If the number of errors exceeds the value specified for
errorsMax (the service option) or by errors (the user option), then
the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be
allowed, specify UNLIMITED (-1).

Sets the line end (terminator). If the file contains standard line end
characters (\r. \r\n or \n), then 1ineEnd does not need to be specified.

Sets a maximum line length for identifying lines/rows in the data stream.
A lineMax value will prevent reading an entire stream as a single line
when the incorrect 1ineEnd character is being used. The default is
unlimited.

Sets the locale.
Sets the encoding for the response stream.

Sets the format for response stream. This format determines how
messages and bad data will be formatted. Valid values: RAW, SQL.

5-16

Chapter 5
Getting Started with RESTful Services

Table 5-1 (Cont.) Parameters for batchload

__|
Parameter Description

timestampFormat Sets the format mask for the time stamp data type. This format is used
when converting input data to columns of type time stamp.

timestampTZFormat Sets the format mask for the time stamp time zone data type. This
format is used when converting input data to columns of type time
stamp time zone.

truncate Indicates if and/or how table data rows should be deleted before the
load. False (the default) does not delete table data before the load;
True causes table data to be deleted with the DELETE SQL statement;
Truncate causes table data to be deleted with the TRUNCATE SQL
statement.

Example:

POST http://localhost:8080/ords/ordstest/emp/batchload?batchRows=25
Content-Type: text/csv

empno, ename, job, mgr, hiredate, sal, comm, deptno
0,M,SPY MAST,,2005-05-01 11:00:01,4000,,11
7,J.BOND, SPY,0,2005-05-01 11:00:01,2000,,11
9,R.Cooper, SOFTWARE, 0,2005-05-01 11:00:01,10000,,11
26,Max,DENTIST,0,2005-05-01 11:00:01,5000,,11

Result:

#INFO Number of rows processed: 4

#INFO Number of rows in error: 0

#INFO Elapsed time: 00:00:03.939 - (3,939 ms) 0 - SUCCESS: Load processed without
errors

Filtering in Queries

This section describes and provides examples of filtering in queries against REST-enabled
tables and views.

Filtering is the process of limiting a collection resource by using a per-request dynamic filter
definition across multiple page resources, where each page contains a subset of items found
in the complete collection. Filtering enables efficient traversal of large collections.

To filter in a query, include the parameter g=FilterObject, where FilterObject is a JSON object
that represents the custom selection and sorting to be applied to the resource. For example,
assume the following resource:

https://example.com/ords/scott/emp/
The following query includes a filter that restricts the ENAME column to "JOHN";

https://example.com/ords/scott/emp/?q={"ENAME" : "JOHN" }

FilterObject Grammar

The FilterObject must be a JSON object that complies with the following syntax:

FilterObject { orderby , asof, wmembers }

ORACLE 5-17

Chapter 5
Getting Started with RESTful Services

The orderby, asof, and wmembers attributes are optional, and their definitions are as
follows:

orderby
"Sorderby": {orderByMembers}

orderByMembers
orderByProperty
orderByProperty , orderByMembers

orderByProperty
columnName : sortingValue

sortingValue
"ASC"
"DESC"
n _l n
" l "
-1
1

asof
"$asof": date
"Sasof": "datechars"
"$asof": scn
"Sasof": +int

wmembers
wpair
wpair , wmembers

wpair
columnProperty
complexOperatorProperty

columnProperty

columnName : string

columnName : number

columnName : date

columnName : simpleOperatorObject
columnName : complexOperatorObject

columnName : [complexValues]
columnName
"\p{Alpha} [[\p{Alpha}]] ([[\p{Alnum}]#$_])*S$"

complexOperatorProperty
complexKey : [complexValues]
complexKey : simpleOperatorObject

complexKey
"$and"
"$Or"

complexValues
complexValue , complexValues

complexValue
simpleOperatorObject
complexOperatorObject
columnObject

ORACLE 5-18

Chapter 5
Getting Started with RESTful Services

columnObject
{columnProperty}

simpleOperatorObject
{simpleOperatorProperty}

complexOperatorObject
{complexOperatorProperty}

simpleOperatorProperty

"Seq" : string | number | date
"Sne" : string | number | date
"S1t" : number | date

"Slte" : number | date
"Sgt" : number | date
"Sgte" : number | date
"Sinstr" : string
"Sninstr" : string
"$like" : string

"Snull" : null

"Snotnull" : null
"Sbetween" : betweenValue

betweenValue
[null , betweenNotNull]
[betweenNotNull , null]
[betweenRegular , betweenRegular]

betweenNotNull
number
date

betweenReqular
string
number
date

Data type definitions include the following:

string
JSONString
number
JSONNumber
date
{"Sdate":"datechars"}
scn
{"Sscn": +int}

Where:

datechars is an RFC3339 date format in UTC (Z)

JSONString
nn
" chars "
chars
char
char chars
char

ORACLE 5-19

Examples: FilterObject Specifications

ORACLE

Chapter 5
Getting Started with RESTful Services

any-Unicode-character except-"-or-\-or-control-character

\ll
\\
\/
\b
\f
\n
\r
\t

\u four-hex-digits

JSONNumber

int

int frac

int exp

int frac exp
int

digit

digitl-9 digits

- digit

- digitl-9 digits
frac

. digits
exp

e digits
digits

digit

digit digits

The FilterObject must be encoded according to Section 2.1 of RFC3986.

The following are examples of operators in FilterObject specifications.

ORDER BY property ($orderby)

Order by with literals

{

"Sorderby": {"SALARY":

}

Order by with numbers

{

"Sorderby": {"SALARY":

}

ASOF property ($asof)

With SCN (Implicit)

"ASC" , "ENAME" : "DESC" }

-1, "ENAME":

1}

5-20

ORACLE

{
"Sasof": 1273919
}
With SCN (Explicit)
{
"Sasof": {"$scn": "1273919"}
}
With Date (Implicit)
{
"Sasof": "2014-06-30T00:00:002"
}
With Date (Explicit)
{

"Sasof": {"$date": "2014-06-30T00:00:00Z"}
}

EQUALS operator ($eq)
(Implicit and explicit equality supported.
Implicit (Support String and Dates too)

{
"SALARY": 1000

}
Explicit
{
"SALARY": {"S$eq": 1000}
}
Strings
{
"ENAME": {"Seq":"SMITH"}
}

Dates

"HIREDATE": {"$date": "1981-11-17T08:00:00Z"}

NOT EQUALS operator ($ne)
Number
{

"SALARY": {"$ne": 1000}
}

Chapter 5
Getting Started with RESTful Services

5-21

ORACLE

Chapter 5
Getting Started with RESTful Services

String
{

"ENAME": {"$ne":"SMITH"}
}

Dates

"HIREDATE": {"$ne": {"S$date":"1981-11-17T08:00:00Z2"}}

LESS THAN operator ($1t)
(Supports dates and numbers only)
Numbers
"SALARY": {"$1t": 10000}
Dates
"SALARY": {"S$lt": {"$date":"1999-12-17T08:00:00Z"}}

}

LESS THAN OR EQUALS operator ($lte)
(Supports dates and numbers only)
Numbers
"SALARY": {"$lte": 10000}
Dates
"HIREDATE": {"S$lte": {"$date":"1999-12-17T08:00:00Z2"}}

}

GREATER THAN operator ($gt)
(Supports dates and numbers only)
Numbers

"SALARY": {"Sgt": 10000}

Dates

"SALARY": {"Sgt": {"S$date":"1999-12-17T08:00:00Z"}}

GREATER THAN OR EQUALS operator ($gte)
(Supports dates and numbers only)

5-22

Chapter 5
Getting Started with RESTful Services

Numbers
"SALARY": {"S$Sgte": 10000}
Dates

"HIREDATE": {"S$gte": {"$date":"1999-12-17T08:00:00Z2"}}

In string operator ($instr)
(Supports strings only)

{
"ENAME": {"$instr":"MC"}

Not in string operator ($ninstr)
(Supports strings only)

{
"ENAME": {"Sninstr":"MC"}

LIKE operator ($like)
(Supports strings. Eescape character not supported to try to match expressions with _

o)

or % characters.)

"ENAME": {"$like":"AX%"}

BETWEEN operator ($between)
(Supports string, dates, and numbers)

Numbers
"SALARY": {"Sbetween": [1000,2000]}
Dates

"SALARY": {"Sbetween": [{"S$date":"1989-12-17T08:00:00Z2"},
{"Sdate":"1999-12-17T08:00:00Z"}]}
}

Strings

{
"ENAME" : {"$between": ["A","C"]}

ORACLE' 5.3

ORACLE

Null Ranges ($lte equivalent)
(Supported by numbers and dates only)

{
"SALARY": {"Sbetween": [null,2000]}
}

Null Ranges ($gte equivalent)
(Supported by numbers and dates only)

{
"SALARY": {"Sbetween": [1000,null]}

NULL operator ($null)
{
"ENAME": {"S$null": null}
}
NOT NULL operator ($notnull)

{
"ENAME": {"$notnull": null}

AND operator ($and)

(Supports all operators, including $and and $or)

Column context delegation

Chapter 5
Getting Started with RESTful Services

(Operators inside $and will use the closest context defined in the JSON tree.)

{

"SALARY": {"Sand": [{"S$gt": 1000}, {"$1t":4000}]}

Column context override

(Example: salary greater than 1000 and name like S%)

{

"SALARY": {"Sand": [{"S$gt": 1000}, {"ENAME":

Implicit and in columns

"SALARY": [{"S$Sgt": 1000}, {"$1t":4000}]

High order AND

{"$like":"S%"}} } }

(All first columns and or high order operators -- $and and $ors -- defined at
the first level of the JSON will be joined and an implicit AND)
(Example: Salary greater than 1000 and name starts with S or T)

{
"SALARY": {"$gt": 1000},

"ENAME" : {"$or": [{"$like":"S%"}, {"$like":"T%"}}}

5-24

Auto PL/SQL

ORACLE

Chapter 5
Getting Started with RESTful Services

}

Invalid expression (operators $1lt and $gt lack column context)

{
"Sand": [{"$1t": 5000}, {"Sgt": 1000}]
}

Valid alternatives for the previous invalid expression

{
"$and": [{"SALARY": {"$1t": 5000}}, {"SALARY": {"$gt": 1000}}]
}

"SALARY": [{"$1t": 5000}, {"Sgt": 1000}]

"SALARY": {"Sand": [{"$1t": 5000}, {"Sgt": 1000}]}

OR operator (S$or)
(Supports all operators including $and and $or)

Column context delegation
(Operators inside S$or will use the closest context defined in the JSON tree)

{
"ENAME" : {"$or": [{"$eq":"SMITH"}, {"$eq":"KING"H }
}

Column context override
(Example: name starts with S or salary greater than 1000)

{
"SALARY": {"Sor": [{"Sgt": 1000}, {"ENAME": {"$like":"S%"}}] }
}

This section explains how PL/SQL is made available through HTTP(S) for Remote Procedure
call (RPC).

The auto PL/SQL feature uses a standard to provide consistent encoding and data transfer in
a stateless web service environment. Using this feature, you can enable Oracle Database
stored PL/SQL functions and procedures at package level through Oracle REST Data
Services, similar to how you enable the views and tables.

Auto Enabling PL/SQL Subprograms

Oracle REST Data Services supports auto enabling of the following PL/SQL objects, based
on their catalog object identifier:

e PL/SQL Procedure
e PL/SQL Function
e PL/SQL Package

5-25

Chapter 5
Getting Started with RESTful Services

The functions, and procedures within the PL/SQL package cannot be individually
enabled as they are named objects within a PL/SQL package object. Therefore, the
granularity level enables the objects at the package level. This granularity level
enables to expose all of its public functions and procedures.

If you want to only enable a subset of functions and procedures, then you must create
a separate delegate package and enable it to expose only that subset of functions and
procedures.

" Note:

Overloaded package functions and procedures are not supported.

Method and Content Type Supported for Auto Enabling PL/SQL Objects

This section discusses the method and content-type supported by this feature.

The auto enabling of the PL/SQL Objects feature supports POST as the HTTP
method. In POST method, input parameters are encoded in the payload and output
parameters are decoded from the response.

¢ Note:

The standard data CRUD to HTTP method mappings are not applicable as
this feature provides an RPC-style interaction.

The content-type supported is application/json.

Auto-Enabling the PL/SQL Objects

This section explains how to auto-enable the PL/SQL objects through Oracle REST
Data Services.

You can enable the PL/SQL objects in one of the following ways:
* Auto-Enabling Using the PL/SQL API
* Auto-Enabling the PL/SQL Objects Using SQL Developer

Auto-Enabling Using the PL/SQL API

ORACLE

You can enable a PL/SQL object using the Oracle REST Data Services PL/SQL API.

To enable the PL/SQL package, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEGIN
ords.enable object (
p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY PKG',
p object type => 'PACKAGE',

5-26

Chapter 5
Getting Started with RESTful Services

p object alias => 'my pkg',
p_auto _rest auth => FALSE);
commit;

END;

/

Example 5-1 Enabling the PL/SQL Function

To enable the PL/SQL function, use the Oracle REST Data Services PL/SQL API as shown in
following sample code snippet:

BEGIN

ords.enable object (
p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY FUNC',
p_object type => 'FUNCTION',
p_object alias => 'my func',
p_auto_rest auth => FALSE);

commit;
END;
/

Example 5-2 Enabling the PL/SQL Procedure

To enable the PL/SQL procedure, use the Oracle REST Data Services PL/SQL API as shown
in following sample code snippet:

BEGIN

ords.enable object (
p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY PROC',
p_object type => 'PROCEDURE',
p object alias => 'my proc',
p_auto rest auth => FALSE);

commit;
END;

Auto-Enabling the PL/SQL Objects Using SQL Developer

This section describes how to enable the PL/SQL objects using SQL Developer 4.2 and
above.

To enable the PL/SQL objects (for example, package) using SQL Developer, perform the
following steps:

ORACLE 5-27

ORACLE"

1.

2.

< Note:

You can now enable, packages, functions and procedures. However, the
granularity of enabling is either at the whole package level, standalone

Chapter 5

Getting Started with RESTful Services

function level, or at the standalone procedure level.

In SQL Developer, right-click on a package as shown in the following figure:

Figure 5-1 Selecting the Enable REST Service Option

=i Packages
%@ re [dit.
{866 EditBody..
PeE
1:‘ GE Export...
Lo ﬂJ sl & Debug.. Cal+ShifF10
REGT Development Compile CUErd
Compile for Debug Carl+Shift-F8
m v " -
& € B> Run.. Cal-F 10
[REST Data Services
Compare With ¥
Crder Members By ¥
Dreg Package...
Grant...
Revoke..
Uni Teat Save Package Spec and Body...
ﬂ Lirit Tests Enable REST Service...
L Mot connected Use as Template...

Z

Wynchronize Specficgtion and Body..

Code Qutline

Quick DOL

]

Select Enable RESTful Services to display the following wizard page:

5-28

Chapter 5
Getting Started with RESTful Services

Figure 5-2 Auto Enabling the PL/ISQL Package Object

(3 RESTFul Services Wizard - Step 1 of 2 []
Specify Details
1
= Specify Details
.i, RESTHl Sunmary
Enable ohect [}
iject aias registry_phg
Autiwrizaton reguired [|
Help Mext > Brish Canced

* Enable object: Enable this option (that is, enable REST access for the package).
* Object alias: Accept registry pkg for the object alias.
* Authorization required: For simplicity, disable this option.

* On the RESTful Summary page of the wizard, click Finish.

Generating the PL/SQL Endpoints

ORACLE

HTTP endpoints are generated dynamically per request for the enabled database objects.
Oracle REST Data Services uses the connected database catalog to generate the endpoints
using a query.

The following rules apply for all the database objects for generating the HTTP endpoints:

e All names are converted to lowercase

* An endpoint is generated if it is not already allocated

Stored Procedure and Function Endpoints

The function or procedure name is generated into the URL in the same way as tables and
views in the same namesspace.

Example 5-3 Generating an Endpoint for the Stored Procedure

CREATE OR REPLACE PROCEDURE MY SCHEMA.MY PROC IS
BEGIN

5-29

Chapter 5
Getting Started with RESTful Services

NULL;
END;

Following endpoint is generated:

http://localhost:8080/ords/my schema/my proc/

Example 5-4 Package Procedure and Function Endpoints

The package, function, and procedure endpoints are generated with package name as
a parent. Endpoints for functions and procedures that are not overloaded or where the
lowercase name is not already in use are generated.

If you have a package, MY_PKG as defined in the following code snippet:

CREATE OR REPLACE PACKAGE MY SCHEMA.MY PKG AS
PROCEDURE MY PROC;
FUNCTION MY FUNC RETURN VARCHARZ;
PROCEDURE MY PROCZ;
PROCEDURE "my proc2";
PROCEDURE MY PROC3(P1 IN VARCHAR);
PROCEDURE MY PROC3 (P2 IN NUMBER);
END MY PKG;

Then the following endpoints are generated:

http://localhost:8080/ords/my schema/my pkg/MY PROC
http://localhost:8080/ords/my schema/my pkg/MY FUNC

< Note:

Endpoints for the procedure my proc2 is not generated because its name is
not unigue when the name is converted to lowercase, and endpoints for the
procedure my proc3 is not generated because it is overloaded.

Resource Input Payload

The input payload is a JSON document with values adhering to the REST standard.

The payload should contain a name/value pair for each IN or IN OUT parameter as
shown in the following code snippet:

"pl" : "abC",
"p2m: 123,
"p3": null

}

ORACLE 5-30

Chapter 5
Getting Started with RESTful Services

< Note:

Where there are no IN or IN OUT parameters, an empty JSON body is required as
shown in the following code snippet:

{

}

Oracle REST Data Services uses the database catalog metadata to unmarshal the JSON

payload into Oracle database types, which is ready to be passed to the database through
JDBC.

Resource Payload Response

When the PL/SQL object is executed successfully, it returns a JISON body.

The JSON body returned, contains all OUT and IN OUT output parameter values. Oracle
REST Data Services uses the database catalog metadata to marshal the execution of the
result back into JSON as shown in the following code snippet:

{
"p3" : "abcl23",
llp4|| . 1

}

Where there are no OUT or IN OUT parameters, an empty JSON body is returned as shown
in the following code snippet:

{

}

Function Return Value

The return value of functions do not have an associated name.

As the return value of functions do not have an associated name, the name "~ret" is used as
shown in the following code snippet:

{
"~ret" : "abcl23"
}

Manually Creating RESTful Services Using SQL and PL/SQL

This section describes how to manually create RESTful Services using SQL and PL/SQL and

shows how to use a JSON document to pass parameters to a stored procedure in the body of
a REST request.

ORACLE 5-31

Chapter 5
Getting Started with RESTful Services

This section includes the following topics:
* About Oracle REST Data Services Mechanisms for Passing Parameters

* Using SQL/JSON Database Functions

About Oracle REST Data Services Mechanisms for Passing Parameters

This section describes the main mechanisms that Oracle REST Data Services
supports for passing parameters using REST HTTP to handlers that are written by the
developer:

e Using JSON to Pass Parameters

You can use JSON in the body of REST requests, such as the POST or PUT
method, where each parameter is a JSON name/value pair.

» Using Route Patterns to Pass Parameters

You can use route patterns for required parameters in the URI to specify
parameters for REST requests such as the GET method, which does not have a
body, and in other special cases.

e Using Query Strings for Optional Parameters

You can use query strings for optional parameters in the URI to specify parameters
for REST requests, such as the GET method, which does not have a body, and in
other special cases.

Prerequisite Setup Tasks To Be Completed Before Performing Tasks for Passing
Parameters

This prerequisite setup information assumes you have completed steps 1 and 2 in
Getting Started with RESTful Services section, where you have REST-enabled the
ordstest schema and emp database table (Step 1) and created and tested the
RESTful service from a SQL query (Step 2). You must complete these two steps
before performing the tasks about passing parameters described in the subsections
that follow.

Related Topics
* Getting Started with RESTful Services

Using JSON to Pass Parameters

This section shows how to use a JSON document to pass parameters to a stored
procedure in the body of a REST request, such as poST or PUT method, where each
parameter is a name/value pair. This operation performs an update on a record, which
in turn returns the change to the record as an OUT parameter.

Perform the following steps:

ORACLE 5-32

Chapter 5
Getting Started with RESTful Services

1. | ' Note:

The following stored procedure performs an update on an existing record in the
emp table to promote an employee by changing any or all of the following: job,
salary, commission, department number, and manager. The stored procedure
returns the salary change as an OUT parameter.

create or replace procedure promote (1 empno IN number, 1 job
IN varchar2,
1 mgr IN number, 1 sal IN number, 1 comm IN number,
1 deptno IN number,
1 salarychange OUT number)
is
oldsalary number;
begin
select nvl(e.sal, 0)into oldsalary FROM emp e
where e.empno = 1 empno;
update emp e set
e.job = nvl(l job, e.job),
.mgr nvl(l mgr, e.mgr),
.sal nvl(l sal, e.sal),
.comm = nvl(l comm, e.comm),
.deptno = nvl(l deptno, e.deptno)
where e.empno = 1 empno;
1 salarychange := nvl(l sal, oldsalary) - oldsalary;
end;

® ® ® D

As a privileged ordstest user, connect to the ordstest schema and create the promote
stored procedure.

2. Perform the following steps to setup a handler for a PUT request on the emp resource to
pass parameters in the body of the PUT method in a JSON document to the promote
stored procedure.

a. Using Oracle SQL Developer, in the REST Development section, right click on the
emp template and select Add Handler for the PUT method.

b. Inthe Create Resource Handler dialog, click the green plus symbol to add the
MIME type application/json and then click Apply to send it a JSON document in
the body of the PUT method.

c. Using the SQL Worksheet, add the following anonymous PL/SQL block: begin
promote
(:1 empno, :1 job, :1 mgr, :1 sal, :1 comm, :1 deptno, :1 salarychange);
end; as shown in the following figure.

ORACLE 5-33

Chapter 5
Getting Started with RESTful Services

Figure 5-3 Adding an Anonymous PL/SQL Block to the Handler for the
PUT Method

Connections

F-RY B Parameters | Details
5 @ oroaest Jriv-na B &@¢aua 8 -
- [Tables (Filtered)
o-E e Worksheet | Query Buider

-H EMPNO ‘begin |
il ENAME E promote (:1_empno, :1_job, :].ngr, :1 _sal, :1_comm, :1_deptno, :1_salarychange);
L@ | | e

e) » :

Reports. x| [=]

Al Reports

F- (2 Analytic View Reports
-2 Data Dictionary Reports
-2~ Data Modeler Reports
B [E OLAP Reports

[+~ TimesTen Reports
-2 User Defined Reports

REST Development x| =

BB« @

d. Click the Parameters tab to set the Bind Parameter as 1 _salarychange , the
Access Method as an oUT parameter, the Source Type as RESPONSE, and
Data Type as INTEGER as shown in the following figure. This is the promote
procedure’s output which is an integer value equal to the change in salary in a
JSON name/value format.

Figure 5-4 Setting the Bind Parameter |_salarychange to Pass for the
PUT Method

Connections

e -BT D SQLWorksheet | Parameters | Detals
- (@ ordstest REAE T
Tables (Filter:
8 ? = E"(,H =d) Mame Bind Parameter Access Method Source Type Data Type
3) salarychange |_salarychange ouT RESPONSE INTEGER
[e) »
Reports =]
All Reports

& (E Analytic View Reports
- (Z Data Dictionary Reports
& (Z Data Modeler Reports
E- (2 OLAP Reports

[(Z TimesTen Reports

[[E> User Defined Reports

REST Development x| [=]
BB« @

&-1] femp/ =

]

ORACLE" 5-34

Chapter 5
Getting Started with RESTful Services

e. Click the Details tab to get the URL to call as shown in the Examples section of the
following figure. Copy this URL to your clipboard.

Figure 5-5 Obtaining the URL to Call from the Details Tab

503 Oracle SQL Developer : PUT/emp/ EI@

File Edit View MNavigate Run Team JTools Window Help

Godag 98 Q0 O~ & @

Connections ...om = EMp ordstest a GET empj:joby:deptno &l PUT femp/ (2] bl
EF - Gﬂ h 4 % S0L Warksheet |Parameters Details
E}a ordstest o

Er @ Tables (Filtered)
| e-Eewe
H ’) EMEND Method Handler
- F ENAME Method: PUT
. 108
Source Type: PL/SQL
Reports
fﬁ All Reparts EF x
SIS Analth \f’lew Reports MIME Types
[Data Dictionary Reports applicationfison
-[E Data Modeler Reports
+[[Z- OLAP Reports
{2 TimesTen Reports
-[E User Defined Reports

REST Development Examples
B« @ URI Module: ftest
=1 fempf

a GET URI Pattern: femp/
e = I ds/ord

E‘D Tl e | ittp: {flocalhost: 8008 jords ordstest ftest/femp/
L&) GET

G-[gd) Privileges

f. Right click on the test module to upload the module. Do not forget this step.

3. To test the RESTful service, execute the following cURL command in the command
prompt:curl -i -H "Content-Type: application/json" -X PUT -d "{ \"1 empno\"
7499, \"1 sal\" : 9999, \"1 job\" : \"Director\", \"1 comm\" : 300}

Note:

You can also use any REST client available to test the RESTful service.

The cURL command returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json Transfer-Encoding: chunked
{"salarychange":8399}

4. In SQL Developer SQL Worksheet, perform the following SELECT statement on the emp

table: SELECT * from emp to see that the PUT method was executed, then select the Data
tab to display the records for the EMP table.

ORACLE' 5.35

Chapter 5
Getting Started with RESTful Services

Figure 5-6 Displaying the Results from a SQL Query to Confirm the
Execution of the PUT Method

£ Oracle SQL Developer : Table ORDSTEST EMP@ordstest = e =
File Edit View Mavigate Run Team Tools Window Help
DEG 9@ Q9 O~ @
Connections om EEEMP | (B ordstest =] GET empjsiobf:deptno il PUT femp/ Tk *
@ - @(ﬂ A 4 % Columns |Data Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details |P|III|
. =
E}a ordstest adHE XS R | st Filter:| V|v Actions...
@'"@%"ES LAesd) fiempo [fhEnamE[f308 [{mer |{} HREDATE |4} saL [comm |f DEPTG |
- [EH EMP
EHE 1 7360 SMITH CLERK 7902 17-DEC-80 800 (null) 20
[EMPNO
2 7499 ALIEN Director 7698 20-FEB-31 9999 300 30
3 7521 WARD SALESMAN 7698 22-FEB-E1 1250 500 30
4 7566 JONES ~ MLNAGER 7839 02-APR-81 2975 (null) 20
Reports 5 7654 MARTIN SALESMAN 7698 28-SEF-81 1250 1400 30
[All Reports 6 7698 BLAKE ~ MLNAGER 7839 01-MAY-81 2850 (null) 30
[[Analytic View Reparts 7 7782 CLARK MANAGER 7839 09-JUN-81 2450 (null) 10
G- (2 Data Dictionary Reports 8 7788 SCOTT ANALYST 7566 19-APR-87 3000 (mull) 20
-[E Data Modeler Reports
(2 Data Modeler Repor 9 7839KING PRESIDENT (null) 17-NOV-81 5000 (null) 10
[+ OLAP Reports
. Py P
{&-(Z> TmesTen Reports 10 7844 TURNER SALESMAN 7698 08-SEF-81 1500 0 30
(2 User Defined Reports 11 7876 ADRMS CLEEK 7788 23-MAY-87 1100 (null) 20
12 7900 JAMES CLEEK 7693 03-DEC-81 950 (null) 30
REST Development 13 7902 FORD ANALYST 7566 03-DEC-81 3000 (null) 20
- ' 14 7934 MILLER CLERK 7782 23-JBN-82 1300 (null) 10
B« @
Bu Jemp]
, E GET
b, Q PUT
E}T__l emp/:job/:deptr
: £ E GET
% Privileges

< Note:

e All parameters are optional. If you leave out a name/value pair for a
parameter in your JSON document, the parameter is set to NULL.

e The name/value pairs can be arranged in any order in the JSON
document. JSON allows much flexibility in this regard in the JSON
document.

e Only one level of JSON is supported. You can not have nested JSON
objects or arrays.

Using Route Patterns to Pass Parameters

ORACLE

This section describes how to use route patterns in the URI to specify parameters for
REST requests, such as with the GET method, which does not have a body.

First create a GET method handler for a query on the emp table that has many bind
variables. These steps use a route pattern to specify the parameter values that are
required.

Perform the following steps to use a route pattern to send a GET method with some
required parameter values:

5-36

ORACLE

Chapter 5
Getting Started with RESTful Services

In SQL Developer, right click on the test module and select Add Template to create a
new template that calls emp; however, in this case the template definition includes a route
pattern for the parameters or bind variables that is included in the URI rather than in the
body of the method. To define the required parameters, use a route pattern by specifying
a /: before the job and deptno parameters. For example, for the URI pattern, enter:
emp/:job/:deptno as shown in the following figure.

Figure 5-7 Creating a Template Definition to Include a Route Pattern for Some
Parameters or Bind Variables

B Edit Resource Template | |

Universal Resource Identifier

LIRI Pattern: |empf:jnhf:deptru:n |

Example: http: ffmyhost: 8030 fords /myschema/test/emp/:job/:deptno

Priority: 73} 1

Low MEDIUM HIGH

HTTP Entity Tag
ETag: |Secure Hash *

Generate the version id using secure hashing which uniguely identifies the
resource version.

Help Apply Cancel

L ")

Click Next to go to REST Data Services — Step 2 of 3, and click Next to go to REST
Data Services — Step 3 of 3, then click Finish to complete the template.

Right click on the emp/:job/:deptno template and select Add Handler for the GET
method.

Right click on the GET method to open the handler.

Add the following query to the SQL Worksheet: select * from emp e where e.job
= :job and e.deptno = :deptno and e.mgr = NVL (:mgr, e.mgr) and e.sal = NVL
(:sal, e.sal); as also shown in the following figure.

5-37

Chapter 5
Getting Started with RESTful Services

Figure 5-8 Adding a SQL Query to the Handler

Farameters | Details

bEO-DR B0 &8s B

Worksheet Query Buider

EE select * from emp e where L]
; e.jok = ijob and

e.deptno = :deptno and

e.mgr = NWL {(:mJr, e.mgr) and

e.3al = NWL (:3al, e.3al);

6. Click the Details tab to get the URL to call. Copy this URL to your clipboard.

7. Right click on the test module to upload the module. Do not forget this step.

8. Test the REST endpoint. In a web browser enter the URL:http://
localhost:8080/ords/ordstest/test/emp/SALESMAN/30 as shown in the
following figure.

ORACLE" 5-38

Chapter 5
Getting Started with RESTful Services

Figure 5-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method
with Some Required Parameter Values

€)G

{
r items:
*{

1.

COracle |£h Maost Visited

[

empno: T321,
ename: "WARD",
job: "SRLESMRN",
mgr: Te9E,

hiredate: "1981-02-21T1E:

sal: 1250,
comm: 500,
deptno: 30

empno: Ta5d,

ename: "MLETIN",

job: "SALESMEN",

mgr: 7695,

hiredate: "1981-09-27
sal: 1250,

comm: 1400,

deptno: 20

empno: (544,
enams: "TURNER",
job: "SALESMLN",
mgr: TeOE,

hiredate: "1881-08-07T1E:

sal: 1500,
comm: O,
deptno: 30

hasMore: fals=se,

limit:

off=set:

count:

25,
-

o

3,

m

1

localhost:8080/ ords/ordstest/test/emp/SALESMAN/30

(>

=]
=
=
1

Lad
=
=
=
[}

Lad
=
=
=
85}

The query returns 3 records for the salesmen named Ward, Martin, and Turner.

ORACLE

5-39

Chapter 5
Getting Started with RESTful Services

¢ See Also:

To learn more about Route Patterns see this document in the Oracle REST
Data Services distribution at docs/javadoc/plugin-api/route-
patterns.html and this document Oracle REST Data Services Route
Patterns

Using Query Strings for Optional Parameters

ORACLE

This section describes how to use query strings in the URI to specify parameters for
REST requests like the GET method, which does not have a body. You can use query
strings for any of the other optional bind variables in the query as you choose.

The syntax for using query strings is: ?parml=valuel&parm2=value? ..
&parmN=valueN.

For example, to further filter the query: http://localhost:8080/0ords/ordstest/
test/emp/SALESMAN/30, to use a query string to send a GET method with some
parameter name/value pairs, select employees whose mgr (manager) is 7698 and
whose sal (salary) is 1500 by appending the query string ?mgr=7698&sa1=1500 to the
URL as follows: http://localhost:8080/ords/ordstest/test/emp/SALESMAN/30?
mgr=7698&sal1=1500.

To test the endpoint, in a web browser enter the following URL: http://localhost:8080/
ords/ordstest/test/emp/SALESMAN/30?mgr=7698&sal=1500 as shown in the following
figure:

5-40

https://blog.cdivilly.com/2015/03/10/route-patterns/
https://blog.cdivilly.com/2015/03/10/route-patterns/

ORACLE

Chapter 5
Getting Started with RESTful Services

Figure 5-10 Using Browser to Show the Results of Using a Query String to Send a

GET Method with Some Parameter Name/Value Pairs

(&) localhost:8080/ ords/ ordstest/test/emp/SALESMAN/307mgr=7698 82sal=1500

Oracle| |2) Most Visited

{
T items: [
v {
empno: 7844,

ename: "TUERNER",
job: "SALESMEN",
mgr: Te9E,

hiredate: "18981-08-07T1E8:3

=al: 1500,
comm: O,
deptno: 30
}
1,
hasMore: false,
limit: 25,
offset: O,
count: 1,
* links: [
v {

rel: "self",

href: http://localhost:

10/ ords/ordstest/test/enp/ SALESMAN,/ 30 mgr=7698&5a1=1500

rel: "descrikedby",

href: http://localhost:B080/ords/ordstest/metadata—catalog/test/enp/SALESMAN/ iten

rel: "first",

href: http://localhost:B0B0/ords/ordstest/test/enp/SALESMAN/ 30 mgr=7698&5al=1500

The query returns one record for the salesman named Turner in department 30 who has a

salary of 1500 and whose manager is 7698.

Note the following points:

e ltis a good idea to URL encode your parameter values. This may not always be required;
however, it is the safe thing to do. This prevents the Internet from transforming
something, for example, such as a special character in to some other character that may
cause a failure. Your REST client may provide this capability or you can search the
Internet for the phrase url encoder to find tools that can do this for you.

* Never put a backslash at the end of your parameter list in the URI; otherwise, you may

geta 404 Not Found error.

¢ See Also:

e Lab 4 of the ORDS Oracle By Example (OBE)

- Database Application Development Virtual Image

5-41

https://apexapps.oracle.com/pls/apex/f?p=44785:24:113172122269057:ADD_BOOKMARK:::P24_CONTENT_ID:13282
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

Chapter 5
Getting Started with RESTful Services

Using SQL/JSON Database Functions

This section describes how to use the SQL/JSON database functions available in
Oracle Database 21c to map the nested JSON objects to and from the hierarchical
relational tables.

This section includes the following topics:

* Inserting Nested JSON Obijects into Relational Tables

* Generating Nested JSON Objects from Hierachical Relational Data

Inserting Nested JSON Objects into Relational Tables

This section explains how to insert JSON objects with nested arrays into multiple,
hierarchical relational tables.

The two key technologies used to implement this functionality are as follows:

* The :body bind variable that Oracle REST Data Services provides to deliver JSON
and other content in the body of POST and other REST calls into PL/SQL REST
handlers

e JSON_TABLE and other SQL/JSON operators provided in Oracle Database 21c

Some of the advantages of using these technologies for inserting data into relational
tables are as follows:

* Requirements for implementing this functionality are very minimal. For example,
installation of JSON parser software is not required

* You can use simple, declarative code that is easy to write and understand when
the JSON to relational mapping is simple

* Powerful and sophisticated capabilities to handle more complex mappings. This
includes:

— Mechanisms for mapping NULLS and boolean values

— Sophisticated mechanisms for handling JSON. JSON evolves over time.
Hence, the mapping code must be able to handle both the older and newer
versions of the JSON documents.

For example, simple scalar values may evolve to become JSON objects
containing multiple scalars or nested arrays of scalar values or objects. SQL/
JSON operators that return the scalar value can continue to work even when
the simple scalar is embedded within these more elaborate structures. A
special mechanism, called the Ordinality Column, can be used to determine
the structure from where the value was derived.

" See Also:

e JSON in the Oracle Database Technology
e Ordinality Column

ORACLE 5-42

Chapter 5
Getting Started with RESTful Services

Usage of the :body Bind Variable
This section provides some useful tips for using the :body bind variable.

Some of the useful tips for using the :body bind variable are as follows:

e The :body bind variable can be accessed, or de-referenced, only once. Subsequent
accesses return a NULL value. So, you must first assign the :body bind variable to the
local L PO variable before using it in the two JSON_Table operations.

e The :body bind variable is a BLOB datatype and you can assign it only to a BLOB
variable.

" Note:

Since L PO is a BLOB variable, you must use the FORMAT JSON phrase after the
expression in the JSON_TABLE function. section for more information.

The :body bind variable can be used with other types of data such as image data.

¢ See Also:

* Creating an Image Gallery for a working example of using :body bind variable
with image data .

« Database SQL Language Reference

Example of JSON Purchase Order with Nested Lineltems

This section shows an example that takes the JSON Purchase Order with Nested Lineltems
and inserts it into a row of the PurchaseOrder table and rows of the Lineltem table.

Example 5-5 Nested JSON Purchase Order with Nested Lineltems

{"PONumber" . 1608,
"Requestor" : "Alexis Bull",
"CostCenter" . "A50",
"Address" : {"street" : "200 Sporting Green",
"city" : "South San Francisco",
"state" . "CA",
"zipCode" : 99236,
"country" : "United States of America"},
"LineItems" : [{"ItemNumber" : 1,
"Part" : {"Description” : "One Magic
Christmas",
"UnitPrice" : 19.95,
"UPCCode" : 1313109289},
"Quantity" : 9.0},
{"ItemNumber" : 2,
"Part" : {"Description" : "Lethal Weapon",
"UnitPrice" : 19.95,

ORACLE 5-43

Chapter 5
Getting Started with RESTful Services

"UPCCode" : 8539162892},
"Quantity" : 5.0}

Table Definitions for PurchaseOrder and Lineltems Tables

This section provides definitions for the PurchaseOrder and Lineltem tables.

The definitions for the PurchaseOrder and the Lineltems tables are as follows:

CREATE TABLE PurchaseOrder (
PONo NUMBER (5),
Requestor VARCHAR2 (50),
CostCenter VARCHARZ (5),
AddressStreet VARCHAR2 (50),
AddressCity VARCHAR2 (50),
AddressState VARCHARZ (2),
AddressZip VARCHAR2 (10),
AddressCountry VARCHAR2 (50),
PRIMARY KEY (PONo));

CREATE TABLE LineItem (
PONo NUMBER (5),
ItemNumber NUMBER (10),
PartDescription VARCHAR2 (50),
PartUnitPrice NUMBER (10),
PartUPCCODE NUMBER (10),
Quantity NUMBER (10),
PRIMARY KEY (PONo, ItemNumber));

PL/SQL Handler Code for a POST Request

ORACLE

This section gives an example PL/SQL handler code for a POST request. The handler
code is used to insert a purchase order into a row of the PurchaseOrder table and
rows of the Lineltem table.

Example 5-6 PL/SQL Handler Code Used for a POST Request

Declare

L PO BLOB;
Begin

L PO := :body;

INSERT INTO PurchaseOrder
SELECT * FROM json_table(L_PO FORMAT JSON, 'S'

COLUMNS (
PONo Number PATH 'S$.PONumber',
Requestor VARCHAR2 PATH 'S$.Requestor',
CostCenter VARCHAR2 PATH '$.CostCenter',
AddressStreet VARCHAR2 PATH '$.Address.street',
AddressCity VARCHAR2 PATH 'S$S.Address.city',
AddressState VARCHAR2 PATH '$.Address.state',
AddressZip VARCHAR2 PATH 'S$.Address.zipCode',

AddressCountry VARCHAR2 PATH '$.Address.country'));

5-44

Chapter 5
Getting Started with RESTful Services

INSERT INTO LineItem
SELECT * FROM json_table(L PO FORMAT JSON, 'S’

COLUMNS (
PONo Number PATH '$.PONumber',
NESTED PATH 'S.Lineltems[*]'
COLUMNS (
ItemNumber Number PATH '$.ItemNumber',
PartDescription VARCHAR2 PATH '$.Part.Description',
PartUnitPrice Number PATH 'S$.Part.UnitPrice',
PartUPCCode Number PATH '$.Part.UPCCode',
Quantity Number PATH '$.Quantity')));
commit;
end;

Creating the REST API Service to Invoke the Handler

This section explains how to create the REST API service to invoke the handler, using the
Oracle REST Data Services.

To setup the REST API service, a URI is defined to identify the resource the REST calls will
be operating on. The URI is also used by Oracle REST Data Services to route the REST
HTTP calls to specific handlers. The general format for the URI is as follows:

<server>:<port>/ords/<schema>/<module>/<template>/<parameters>

Here, <server>:<port> is where the Oracle REST Data Service is installed. For testing
purposes, you can use demo and test in place of module and template respectively in the
URI. Modules are used to group together related templates that define the resources the
REST API will be operating upon.

To create the REST API service, use one of the following methods:

e Use the Oracle REST Data Services PL/SQL API to define the REST service and a
handler for the POST insert. Then connect to the jsontable schema on the database
server that contains the PurchaseOrder and Lineltem tables.

< Note:

JSON_TABLE and other SQL/JSON operators use single quote so these must
be escaped. For example, every single quote (') must be replaced with double
quotes ().

* Use the Oracle REST Data Services, REST Development pane in SQL Developer to
define the REST service.

ORACLE 5-45

Chapter 5

Getting Started with RESTful Services

Defining the REST Service and Handler using PL/SQL API

ORACLE

This section shows how to define the REST Service and Handler for the POST insert
using the Oracle REST Data Services PL/SQL API.

You can alternatively use the Oracle REST Data Services REST development pane in
SQL Developer to create the modules, templates and handlers.

BEGIN

ORDS.ENABLE SCHEMA (

p_enabled
p_schema
p_url mapping type

p_url mapping pattern =>

p_auto rest auth

ORDS.DEFINE MODULE (

p_module name =>
p_base path =>
p_items per page =>
p_status =>
p_comments =>
ORDS.DEFINE TEMPLATE (
p_module name =>
p_pattern =>
p_priority =>
p_etag type =>
p_etag query =>
p_comments =>
ORDS.DEFINE HANDLER (
p_module name =>
p_pattern =>
p_method =>
p_source type =>

p_items per page =>

p mimes allowed =>
p_comments =>
p _source =>
declare
L PO BLOB := :body;
begin

INSERT INTO PurchaseOrder

SELECT * FROM json table(L PO FORMAT JSON,

COLUMNS (
PONo
Requestor
CostCenter
AddressStreet
AddressCity
AddressState
AddressZzip
AddressCountry

=>
=>
=>

TRUE,

=> FALSE) ;

'demo',
'/demo/ ",
25,
'PUBLISHED',
NULL) ;

'demo',
'test',
0,
"HASH',
NULL,
NULL) ;

'demo',

'test',

"POST',

'plsgl/block’,
0,

NULL,

Number
VARCHAR?2
VARCHAR?2
VARCHAR?2
VARCHAR?2
VARCHAR?2
VARCHAR?2
VARCHAR2

"ORDSTEST',
'"BASE PATH',
'ordstest',

lls"

PATH ''$.PONumber'',

PATH ''$.Requestor'',
PATH ''$.CostCenter'',
PATH ''$.Address.street'',
PATH ''$.Address.city'',
PATH ''$.Address.state'',

PATH ''$.Address.zipCode'',

PATH ''$.Address.country''));

5-46

Chapter 5
Getting Started with RESTful Services

INSERT INTO LineItem
SELECT * FROM json table(L PO FORMAT JSON, ''S$''

COLUMNS (
PONo Number PATH ''$.PONumber'',
NESTED PATH ''$.Lineltems[*]"'
COLUMNS (
ItemNumber Number PATH ''$.ItemNumber'',
PartDescription VARCHAR2 PATH ''$.Part.Description'’,
PartUnitPrice Number PATH ''$.Part.UnitPrice'’,
PartUPCCode Number PATH ''$.Part.UPCCode'',
Quantity Number PATH ''$.Quantity''")));
commit;
end; "'
)
COMMIT;
END;

Related Topics
* Using the Oracle REST Data Services PL/SQL API
» About Oracle REST Data Services Mechanisms for Passing Parameters

* Oracle REST Data Services PL/SQL Package Reference

Generating Nested JSON Objects from Hierachical Relational Data

ORACLE

This section explains how to query the relational tables in hierarchical (parent/child)
relationships and return the data in a nested JSON format using the Oracle REST Data
Services.

The two key technologies used to implement this functionality are as follows:

e The new SQL/JSON functions available with Oracle Database 21c. You can use
json_objects for generating JSON objects from the relational tables, and
json_arrayagg, for generating nested JSON arrays from nested (child) relational tables.

* The Oracle REST Data Services media source type used for enabling the REST service
handler to execute a SQL query that in turn returns the following types of data:

— The HTTP Content-Type of the data, which in this case is applicationl/json
— The JSON data returned by the json object

Some of the advantages of using this approach are as follows:

* Requirements for implementing this functionality is very minimal. For example, installation
of JSON parser software is not required.

« Simple, declarative coding which is easy to write and understand which makes the JSON
objects to relational tables mapping simple.

» Powerful and sophisticated capabilities to handle more complex mappings. This includes
mechanisms for mapping NULLS and boolean values.

For example, a NULL in the Oracle Database can be converted to either the absence of
the JSON element or to a JSON NULL value. The Oracle Database does not store

5-47

Chapter 5
Getting Started with RESTful Services

Boolean types but the SQL/JSON functions allow string or numeric values in the
database to be mapped to Boolean TRUE or FALSE values.

Bypassing JSON Generation for Relational Data

ORACLE

This section describes and provides solutions for handling responses that are already
in a JSON format.

ORDS auto-formats your SQL or PL/SQL results and response to a JSON format
before returning to your application. However, in some cases, the complete response
body or part of it is already in a JSON format. Following are two such use cases:

Use Case 1: When the response is already in a JSON format

Following figure shows an example where the complete response is already in a JSON
format:

Figure 5-11 Complete Response Body in JSON Format

Columns |Data| Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependendes | Details | Partitions | Indexes |SQL
LRAEBXE B sot. [Fiter:
1D |{; DATE_LOADED J50N_DOC
1 111-SEP-17 01.24.32.000000000 PM AMERICA/NEW_YORK| | &0 Edit Value

===

Change...

Line Terminator: [Platform Default |
Value:
{
“statementId™ 1,
“statementType™ “query”,
“statementPos™ {
“startline™ 1,
"endLine™: 2

b
“statementText™: “select * from hr.departments”,
“response™: [,
‘result™ 0,
‘resultSet™ {
“‘metadata” [

Columns |Data |Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details |

“columnName™; "DEPARTMENT _ID",
“jsonColumnName®: “department_id",
“columnTypeName™: NUMBER",
“predsion”: 4,

You must adjust your GET query text to include "application/json" before including the
JSON itself as shown in the following example GET query:

Select 'application/json',
upper (json_doc)
from json play

The Media resource in this case is application/json and the browser handles it similar
to a BLOB or a PDF.

5-48

Chapter 5
Getting Started with RESTful Services

Use Case 2: One or more columns of the response is already in a JSON format.

If one or more columns are in a JSON format, then such columns in the source query need to
be aliased to indicate that the attribute must not be converted to a JSON format.

For example:

Select id,
jsons "{}jsons"
from table with json

The alias text is used to name the nested JSON document attribute.

" See Also:
ORDS: Returning Raw {JSON}

Example to Generate Nested JSON Objects from the Hierachical Relational Tables

This section describes how to query or GET the data we inserted into the PurchaseOrder and
Lineltem relational tables in the form of nested JSON purchase order.

Example 5-7 GET Handler Code using Oracle REST Data Services Query on
Relational Tables for Generating a Nested JSON object

SELECT 'application/json', json object ('PONumber' VALUE po.PONo,
'Requestor' VALUE po.Requestor,
'CostCenter' VALUE po.CostCenter,
'Address' VALUE
json_object('street' VALUE po.AddressStreet,
'city' VALUE po.AddressCity,
'state' VALUE po.AddressState,
'zipCode' VALUE po.AddressZip,
'country' VALUE po.AddressCountry),
'LineItems' VALUE (select json_arrayagg (
json_object ('ItemNumber' VALUE li.ItemNumber,
'Part' VALUE
json object ('Description' VALUE li.PartDescription,
'UnitPrice' VALUE 1li.PartUnitPrice,
'UPCCode' VALUE 1li.PartUPCCODE),
'Quantity' VALUE 1li.Quantity))
FROM LinelItem 1i WHERE po.PONo = 1i.PONo))
FROM PurchaseOrder po
WHERE po.PONo = :id

PL/SQL API Calls for Defining Template and GET Handler

This section provides an example of Oracle REST Data Services PL/SQL API call for creating
a new template in the module created.

ORACLE 5-49

Chapter 5
Getting Started with RESTful Services

Example 5-8 PL/SQL API Call for Creating a New test/:id Template and GET
Handler in the demo Module

Begin

ords.define template (

p _module name => 'demo',
p_pattern => 'test/:id');

ords.define handler (

p _module name => 'demo',

p_pattern => 'test/:id',

p _method => 'GET',

p_source type => ords.source type media,
p_source => '

SELECT ''application/json'', json object(''PONumber'' VALUE po.PONo,
''"Requestor'' VALUE po.Requestor,
''"CostCenter'' VALUE po.CostCenter,
''Address'' VALUE
json_object (''street'' VALUE po.AddressStreet,
''city'' VALUE po.AddressCity,
''"state'' VALUE po.AddressState,
''zipCode'' VALUE po.AddressZip,
''"country'' VALUE po.AddressCountry),
'Lineltems'' VALUE (select json arrayagg (
json_object (''ItemNumber'' VALUE li.ItemNumber,
'""Part'' VALUE
json_object (''Description'' VALUE

1li.PartDescription,

''UnitPrice'' VALUE
li.PartUnitPrice,

''UPCCode'' VALUE 1i.PartUPCCODE),
'"'"Quantity'' VALUE li.Quantity))
FROM Lineltem 1i WHERE po.PONo = 1i.PONo))
FROM PurchaseOrder po
WHERE po.PONo = :id '
)i

Commit;
End;

Testing the RESTful Services

This section shows how to test the POST and GET RESTful Services to access the
Oracle database and get the results in a JSON format.

This section includes the following topics:

e Insertion of JSON Object into the Database
e Generating JSON Object from the Database

Insertion of JSON Object into the Database

This section shows how to test insertion of JSON purchase order into the database.

ORACLE 5-50

Chapter 5
Getting Started with RESTful Services

URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAlias>/<module>/<template>
Example:

Method: POST

URI Pattern: http://localhost:8080/ords/ordstest/demo/test/

To test the RESTful service, create a file such as pol.json with the following data for
PONumber 1608 :

{"PONumber" : 1608,
"Requestor" : "Alexis Bull",
"CostCenter" . "A50",
"Address" : {"street" : "200 Sporting Green",
"city" : "South San Francisco",
"state" : "CA",
"zipCode" : 99236,
"country" : "United States of America"},
"LineItems" : [{"ItemNumber" : 1,
"Part" : {"Description" : "One Magic
Christmas",
"UnitPrice" . 19.95,
"UPCCode" : 1313109289},
"Quantity" : 9.0},
{"ItemNumber" : 2,
"Part" : {"Description" :
"Lethal Weapon",
"UnitPrice"
19.95,
"UPCCode"
8539162892},
"Quantity" : 5.031}1

Then, execute the following cURL command in the command prompt:

curl -i -H "Content-Type: application/json" -X POST -d @pol.json "http://
localhost:8080/ords/ordstest/demo/test/"

The cURL command returns the following response:

HTTP/1.1 200 OK
Transfer-Encoding: chunked

Generating JSON Object from the Database

ORACLE

This section shows the results of a GET method to fetch the JSON object from the database..

Method: GET

URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAlias>/<module>/<template>/
<parameters>

Example:

To test the RESTful service, in a web browser, enter the URL http://localhost:8080 /ords/
ordstest/demo/test/1608 as shown in the following figure:

5-51

Chapter 5
Getting Started with RESTful Services

Figure 5-12 Generating Nested JSON Objects

@ http://localhost:8080/ords/.. ® | +

6 localhost:8080,ords/ordstest/demao,/test/1608 &
Oracle |2 Most Visited
PONumber: 1608,

Requestor: "Rlexis Bull",
CostCenter: "LS0",

v Address: |
street: "200 Sporting Green",
city: "South San Francisco",

state: "CL",
zipCode: "90236",
country: "United States of Emerica"
b
* LineItems: [
"
ItemNumber: 1,
v Part: {
Description: "One Magic Christmas",
UnitPrice: 20,
UPCCode: 1313109289
I
Quantity: 9

ItemNumber: 2,
v Part: {
Description: "Lethal Weapon",
UnitPrice: 20,
UPCCode: E538162832
i
Quantity: 5

ItemNumber: 1,
v Part: {
Description: "One Magic Christmas",
UnitPrice: 20,
UPCCode: 13131092889
i
Quantity: 9

About Working with Dates Using Oracle REST Data Services

ORACLE

Oracle REST Data Services enables developers to create REST interfaces to Oracle
Database, Oracle Database 12c JSON Document Store as quickly and easily as
possible. When working with Oracle Database, developers can use the AutoREST
feature for tables or write custom modules using SQL and PL/SQL routines for more
complex operations.

Oracle REST Data Services uses the RFC3339 standard for encoding dates in strings.
Typically, the date format used is dd-mmm-yyyy, for example, 15-Jan-2017. Oracle
REST Data Services automatically converts JSON strings in the specified format to
Oracle date data types when performing operations such as inserting or updating
values in Oracle Database. When converting back to JSON strings, Oracle REST Data
Services automatically converts Oracle date data types to the string format.

" Note:

Oracle Database supports a date data type while JSON does not support a
date data type.

5-52

Chapter 5
Getting Started with RESTful Services

This section includes the following topics:

e About Datetime Handling with Oracle REST Data Services
e About Setting the Time Zone

About Datetime Handling with Oracle REST Data Services

As data arrives from a REST request, Oracle REST Data Services may parse 1ISO 8601
strings and convert them to the TIMESTAMP data type in Oracle Database. This occurs with
AutoREST (P0osST and PUT) as well as with bind variables in custom modules. Remember that
TIMESTAMP does not support time zone related components, so the DATETIME value is set to
the time zone Oracle REST Data Services uses during the conversion process.

When constructing responses to REST requests, Oracle REST Data Services converts
DATETIME values in Oracle Database to ISO 8601 strings in Zulu. This occurs with AutoREST
(GET) and in custom modules that are mapped to SQL queries (GET). In the case of DATE and
TIMESTAMP data types, which do not have time zone related components, the time zone is
assumed to be that in which Oracle REST Data Services is running and the conversion to
Zulu is made from there.

Here are some general recommendations when working with Oracle REST Data Services for
REST (that is, not APEX):

» Ensure that Oracle REST Data Services uses the appropriate time zone as per the data
in the database (for example, the time zone you want dates going into the database).

* Do not alter NLS settings (that is, the time_zone) mid-stream.

Note that while ISO 8601 strings are mentioned, Oracle REST Data Services actually
supports strings. RFC3339 strings are a conformant subset of ISO 8601 strings. The default
format returned by JSON.stringify (date) iS supported.

WARNING:

It is important to keep the time zone that Oracle REST Data Services uses in sync
with the session time zone to prevent issues with implicit data conversion to
TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE. Oracle REST
Data Services does this automatically by default but developers can change the
session time zone with an ALTER SESSION statement.

¢ See Aslo:

rfc3339_date_time_format

About Setting the Time Zone

ORACLE

When Oracle REST Data Services is started, the JVM it runs in obtains and caches the time
zone Oracle REST Data Services uses for various time zone conversions. By default, the
time zone is obtained from the operating system (OS), so an easy way to change the time
zone Oracle REST Data Services uses is to change the time zone of the OS and then restart

5-53

https://xml2rfc.tools.ietf.org/public/rfc/html/rfc3339.html#anchor14

Chapter 5
Getting Started with RESTful Services

Oracle REST Data Services or the application server on which it is running. Of course,
the instructions for changing the time zone vary by the operating system.

If for any reason you do not want to use the same time zone as the OS, it is possible
to override the default using the Java environment variable Duser.timezone. Exactly
how that variable is set depends on whether you are running in standalone mode or in
a Java application server. The following topics show some examples.

Standalone Mode

When running Oracle REST Data Services in standalone mode, it is possible to set
Java environment variables by specifying them as command line options before the -
jar option.

Example 5-9 Setting the Duser.timezone Java Environment Variable in
Standalone Mode

The following code example shows how to set the timezone in standalone mode on
the command line.

$ java -Duser.timezone=America/New York -jar ords.war standalone

Java Application Server — Tomcat 8

In a Java application server, Tomcat 8, and possibly earlier and later versions too, it is
possible to set the time zone using the environment variable CATALINA OPTS. The
recommended way to do this is not to modify the CATALINA BASE/bin/catalina.sh
directly, but instead to set environment variables by creating a script named setenv.sh
in CATALINA BASE/bin.

Example 5-10 Setting the Duser.timezone Java Environment Variable in a Java
Application Server

The following code example shows the contents of the setenv. sh script for setting the
timezone in a Java Application server — Tomcat 8.

CATALINA TIMEZONE="-Duser.timezone=America/New York"
CATALINA OPTS="$CATALINA OPTS $SCATALINA TIMEZONE

Exploring the Sample RESTful Services in Application Express (Tutorial)

ORACLE

Oracle highly recommends to develop Oracle REST Data Services application using
SQL Developer because it supports the most recent Oracle REST Data Services
releases, that is, 3.0.X. Application Express provides a tutorial that is useful for
learning some basic concepts of REST and Oracle REST Data Services. However, the
tutorial uses the earlier Oracle REST Data Services releases, that is, 2.0.X. Following
are some of the useful tips discussed on how to use the tutorial:

If your Application Express instance is configured to automatically add the sample
application and sample database objects to workspaces, then a sample resource
module named: oracle.example.hr Will be visible in the list of Resource Modules. If
that resource module is not listed, then you can click the Reset Sample Data task on
the right side of the RESTful Services Page to create the sample resource module.

1. Clickon oracle.example.hr to view the Resource Templates and Resource
Handlers defined within the module. Note how the module has a URI prefix with

5-54

ORACLE

Chapter 5
Getting Started with RESTful Services

the value: hr/. This means that all URIs serviced by this module will start with the
characters hr/.

Click on the resource template named employees/{id}. Note how the template has a
URI Template with the value: employees/{id}. This means that all URIs starting with hr/
employees/ will be serviced by this Resource Template.

The HTTP methods supported by a resource template are listed under the resource
template. In this case, the only supported method is the GET method.

Click on the GET Resource Handler for hr/employees/{id} to view its configuration.

The Source Type for this handler is Query One Row. This means that the resource is
expected to be mapped to a single row in the query result set. The Source for this
handler is:

select * from emp

where empno = :id

Assuming that the empno column is unique, the query should only produce a single result
(or no result at all if no match is found for :id). To try it out, press the Test button. The
following error message should be displayed:

400 - Bad Request - Request path contains unbound parameters: id
If you look at the URI displayed in the browser, it will look something like this:

https://server:port/ords/workspace/hr/employees/{id}

where:
e server is the DNS name of the server where Oracle Application Express is deployed
* port is the port the server is listening on

* workspace is the name of the Oracle Application Express workspace you are logged
into

Note the final part of the URI: hr/employees/{id}. The error message says that this is
not a valid URI, the problem is that you did not substitute in a concrete value for the
parameter named {id}. To fix that, press the browser Back button, then click Set Bind
Variables.

For the bind variable named :id, enter the value 7369, and press Test.

A new browser window appears displaying the following JSON (JavaScript Object
Notation):

{
"empno":7369,
"ename":"SMITH",
"job":"CLERK",
"mgr":7902,
"hiredate":"1980-12-17T08:00:00Z",
"sal":800,
"deptno":20
}

Note also the URI displayed in the browser for this resource:

https://server:port/ords/workspace/hr/employees/7369

5-55

Chapter 5
Getting Started with RESTful Services

The {id} URI Template parameter is bound to the SQL :id bind variable, and in
this case it has been given the concrete value of 7369, so the query executed by
the RESTful Service becomes:

select * from emp
where empno = 7369

The results of this query are then rendered as JSON as shown above.

Tip:

Reading JSON can be difficult. To make it easier to read, install a
browser extension that pretty prints the JSON. For example, Mozilla
Firefox and Google Chrome both have extensions:

¢ JSONView
¢ JSON Formatter

Now see what happens when you enter the URI of a resource that does not exist.

5. On the Set Bind Variables page, change the value of :id from 7369to 1111, and
press Test.

As before, a new window pops up, but instead of displaying a JSON resource, it
displays an error message reading:

404 - Not Found

This is the expected behavior of this handler; when a value is bound to :id that
does not exist in the emp table, the query produces no results and consequently
the standard HTTP Status Code of 404 - Not Found is returned.

So, you have a service that will provide information about individual employees, if
you know the ID of an employee, but how do you discover the set of valid
employee ids?

6. Press Cancel to return to the previous page displaying the contents of the
Resource Module.

7. Click on the template named employees/.

The following steps look at the resource it generates, and later text will help you
understand its logic.

8. Click on the GET handler beneath employees/, and click Test.

A resource similar to the following is displayed (If you haven't already done so,
now would be a good time to install a JSON viewer extension in your browser to
make it easier to view the output):

{
"next":
{"$ref":
"https://server:port/ords/workspace/hr/employees/?page=1"},
"items": [
{
"uri":
{"$ref":
"https://server:port/ords/workspace/hr/employees/7369"},

ORACLE 5-56

Chapter 5
Getting Started with RESTful Services

"empno": 7369,
"ename": "SMITH"
}l

{

"uri":

{"$ref" .
"https://server:port/ords/workspace/hr/employees/7499"},
"empno": 7499,

"ename": "ALLEN"
b

{

"uri":
{"Sref":
"https://server:port/ords/workspace/hr/employees/7782"},

"empno": 7782,
"ename": "CLARK"

}

]
}

This JISON document contains a number of things worth noting:

e The first element in the document is named next and is a URI pointing to the next
page of results. (An explanation of how paginated results are supported appears in
later steps)

* The second element is named items and contains a number of child elements. Each
child element corresponds to a row in the result set generated by the query.

» The first element of each child element is named uri and contains a URI pointing to
the service that provides details of each employee. Note how the latter part of the
URI matches the URI Template: employees/{id}. In other words, if a client accesses
any of these URIs, the request will be serviced by the employees/{id} RESTful
service previously discussed.

So, this service addresses the problem of identifying valid employee IDs by generating a
resource that lists all valid employee resources. The key thing to realize here is that it
does not do this by just listing the ID value by itself and expecting the client to be able to
take the ID and combine it with prior knowledge of the employees/{id} service to
produce an employee URI; instead, it lists the URIs of each employee.

Because the list of valid employees may be large, the service also breaks the list into
smaller pages, and again uses a URI to tell the client where to find the next page in the
results.

To see at how this service is implemented, continue with the next steps.
9. Press the Back button in your browser to return to the GET handler definition.

Note the Source Type is Query, this is the default Source Type, and indicates that the
resource can contain zero or more results. The Pagination Size is 7, which means that
there will be seven items on each page of the results. Finally, the Source for the handler
looks like this:

select empno "$uri", empno, ename from (
select emp.*,
row number () over (order by empno) rn
from emp
) tmp
where

ORACLE 5-57

ORACLE

10.

11.

Chapter 5
Getting Started with RESTful Services

rn between :row offset and :row count

In this query:

The first line states that you want to return three columns. The first column is
the employee id: empno, but aliased to a column name of Suri (to be explained
later), the second column is again the employee ID, and the third column is the
employee name, ename.

Columns in result sets whose first character is $ (dollar sign) are given special
treatment. They are assumed to denote columns that must be transformed into
URIs, and these are called Hyperlink Columns. Thus, naming columns with a
leading s is a way to generate hyperlinks in resources.

When a Hyperlink Column is encountered, its value is prepended with the URI
of the resource in which the column is being rendered, to produce a new URI.
For example, recall that the URI of this service is https://server:port/ords/
workspace/hr/employees/. If the value of empno in the first row produced by
the this service's query is 7369, then the value of Suri becomes: https://
server:port/ords/workspace/hr/employees/7369.

JSON does not have a URI data type, so a convention is needed to make it
clear to clients that a particular value represents a URI. Oracle REST Data
Services uses the JSON Reference proposal, which states that any JSON
object containing a member named sref, and whose value is a string, is a
URI. Thus, the column: $uri and its value: https://server:port/ords/
workspace/hr/employees/7369 is transformed to the following JSON object:

{"uri":
{"Sref":
"https://server:port/ords/workspace/hr/employees/7369"
}
}

The inner query uses the row number () analytical function to count the
number of rows in the result set, and the outer WHERE clause constrains the
result set to only return rows falling within the desired page of results. Oracle
REST Data Services defines two implicit bind parameters, :row offset

and :row_count, that always contain the indicies of the first and last rows that
should be returned in a given page's results.

For example, if the current page is the first page and the pagination size is 7,
then the value of :row offset will be 1 and the value of : row count will be 7.

To see a simpler way to do both hyperlinks and paged results, continue with the
following steps.

Click on the GET handler of the employeesfeed/ resource template.

Note that the Source Type of this handler is Feed and Pagination Size is 25.
Change the pagination size to 7, and click Apply Changes.

The Source of the handler is just the following:

select empno, ename from emp

order by deptno, ename

5-58

Chapter 5
Configuring Secure Access to RESTful Services

As you can see, the query is much simpler than the previous example; however, if you
click Test, you will see a result that is very similar to the result produced by the previous
example.

* The Feed Source Type is an enhanced version of the Query Source Type that
automatically assumes the first column in a result set should be turned into a
hyperlink, eliminating the need to alias columns with a name starting with $. In this
example, the empno column is automatically transformed into a hyperlink by the Feed
Source Type.

e This example demonstrates the ability of Oracle REST Data Services to automatically
paginate result sets if a Pagination Size of greater than zero is defined, and the query
does not explicitly dereference the :row offset or :row_count bind parameters.
Because both these conditions hold true for this example, Oracle REST Data
Services enhances the query, wrapping it in clauses to count and constrain the
number and offset of rows returned. Note that this ability to automatically paginate
results also applies to the Query Source Type.

¢ See Also:

JSON Reference

Configuring Secure Access to RESTful Services

This section describes how to configure secure access to RESTful Services

RESTful APIs consist of resources, each resource having a unique URI. A set of resources
can be protected by a privilege. A privilege defines the set of roles, at least one of which an
authenticated user must possess to access a resource protected by a privilege.

Configuring a resource to be protected by a particular privilege requires creating a privilege
mapping. A privilege mapping defines a set of patterns that identifies the resources that a
privilege protects.

Topics:

* Authentication

* About Privileges for Accessing Resources

* About Users and Roles for Accessing Resources

* About the File-Based User Repository

» Tutorial: Protecting and Accessing Resources

Authentication

ORACLE

Users can be authenticated through first party cookie-based authentication or third party
OAuth 2.0-based authentication

Topics:
» First Party Cookie-Based Authentication

e Third Party OAuth 2.0-Based Authentication

5-59

Chapter 5
Configuring Secure Access to RESTful Services

First Party Cookie-Based Authentication

A first party is the author of a RESTful API. A first party application is a web application
deployed on the same web origin as the RESTful API. A first party application is able
to authenticate and authorize itself to the RESTful API using the same cookie session
that the web application is using. The first party application has full access to the
RESTful API.

Third Party OAuth 2.0-Based Authentication

A third party is any party other than the author of a RESTful API. A third party
application cannot be trusted in the same way as a first party application; therefore,
there must be a mediated means to selectively grant the third party application limited
access to the RESTful API.

The OAuth 2.0 protocol defines flows to provide conditional and limited access to a
RESTful APL. In short, the third party application must first be registered with the first
party, and then the first party (or an end user of the first party RESTful service)
approves the third party application for limited access to the RESTful API, by issuing
the third party application a short-lived access token.

¢ See Also:

The OAuth 2.0 Authorization Framework

Two-Legged and Three-Legged OAuth Flows
Some flows in OAuth are defined as two-legged and others as three-legged.

Two-legged OAuth flows involve two parties: the party calling the RESTful API (the
third party application), and the party providing the RESTful API. Two-legged flows are
used in server to server interactions where an end user does not need to approve
access to the RESTful API. In OAuth 2.0 this flow is called the client credentials flow. It
is most typically used in business to business scenarios.

Three-legged OAuth flows involve three parties: the party calling the RESTful API,
the party providing the RESTful API, and an end user party that owns or manages the
data to which the RESTful API provides access. Three-legged flows are used in client
to server interactions where an end user must approve access to the RESTful API. In
OAuth 2.0 the authorization code flow and the implicit flow are three-legged flows.
These flows are typically used in business to consumer scenarios.

For resources protected by three-legged flows, when an OAuth client is registering
with a RESTful API, it can safely indicate the protected resources that it requires
access to, and the end user has the final approval decision about whether to grant the
client access. However for resources protected by two-legged flows, the owner of the
RESTful API must approve which resources each client is authorized to access.

About Privileges for Accessing Resources

A privilege for accessing resources consists of the following data:

e Name: The unique identifier for the Privilege. This value is required.

ORACLE 5-60

Chapter 5
Configuring Secure Access to RESTful Services

* Label: The name of the privilege presented to an end user when the user is being asked
to approve access to a privilege when using OAuth. This value is required if the privilege
is used with a three-legged OAuth flow.

» Description: A description of the purpose of the privilege. It is also presented to the end
user when the user is being asked to approve access to a privilege. This value is required
if the privilege is used with a three-legged OAuth flow.

* Roles: A set of role names associated with the privilege. An authenticated party must
have at least one of the specified roles in order to be authorised to access resources
protected by the privilege. A value is required, although it may be an empty set, which
indicates that a user must be authenticated but that no specific role is required to access
the privilege.

For two-legged OAuth flows, the third party application (called a client in OAuth terminology)
must possess at least one of the required roles.

For three-legged OAuth flows, the end user that approves the access request from the third
party application must possess at least one of the required roles.

Related Topics
e Two-Legged and Three-Legged OAuth Flows

About Users and Roles for Accessing Resources

A privilege enumerates a set of roles, and users can possess roles. but where are these
Roles defined? What about the users that possess these roles? Where are they defined?

A privilege enumerates a set of roles, and users can possess roles. Oracle REST Data
Services delegates the task of user management to the application server on which Oracle
REST Data Services is deployed. Oracle REST Data Services is able to authenticate users
defined and managed by the application server and to identify the roles and groups to which
the authenticated user belongs. It is the responsibility of the party deploying Oracle REST
Data Services on an application server to also configure the user repository on the
application server.

Because an application server can be configured in many ways to define a user repository or
integrate with an existing user repository, this document cannot describe how to configure a
user repository in an application server. See the application server documentation for detailed
information.

About the File-Based User Repository

ORACLE

Oracle REST Data Services provides a a simple file-based user repository mechanism.
However, this user repository is only intended for the purposes of demonstration and testing,
and is not supported for production use.

See the command-line help for the user command for more information on how to create a
user in this repository:

java -jar ords.war help user

Format:

java -jar ords.war user <user> <roles>

Arguments:

5-61

Chapter 5
Configuring Secure Access to RESTful Services

e <user>isthe user ID of the user.
* <roles> is the list of roles (zero or more) that the user has.

Related Topics

e Tutorial: Protecting and Accessing Resources

Tutorial: Protecting and Accessing Resources

This tutorial demonstrates creating a privilege to protect a set of resources, and
accessing the protected resource with the following OAuth features:

e Client credentials
e Authorization code
* Implicit flow

It also demonstrates access the resource using first-party cookie-based authentication.

Topics:
* OAuth Flows and When to Use Each
e Assumptions for This Tutorial

e Steps for This Tutorial

OAuth Flows and When to Use Each

ORACLE

This topic explains when to use various OAuth flow features.

Use first party cookie-based authentication when accessing a RESTful API from a web
application hosted on the same origin as the RESTful API.

Use the authorization code flow when you need to permit third party web applications
to access a RESTful API and the third party application has its own web server where
it can keep its client credentials secure. This is the typical situation for most web
applications, and it provides the most security and best user experience, because the
third party application can use refresh tokens to extend the life of a user session
without having to prompt the user to reauthorize the application.

Use the implicit flow when the third party application does not have a web server
where it can keep its credentials secure. This flow is useful for third party single-page-
based applications. Because refresh tokens cannot be issued in the Implicit flow, the
user will be prompted more frequently to authorize the application.

Native mobile or desktop applications should use the authorization code or implicit
flows. They will need to display the sign in and authorization prompts in a web browser
view, and capture the access token from the web browser view at the end of the
authorization process.

Use the client credentials flow when you need to give a third party application direct
access to a RESTful API without requiring a user to approve access to the data
managed by the RESTful API. The third party application must be a server-based
application that can keep its credentials secret. The client credentials flow must not be
used with a native application, because the client credentials can always be
discovered in the native executable.

5-62

Chapter 5
Configuring Secure Access to RESTful Services

Assumptions for This Tutorial

This tutorial assumes the following:

Oracle REST Data Services is deployed at the following URL: https://example.com/
ords/

A database schema named ORDSTEST has been enabled for use with Oracle REST
Data Services, and its RESTful APIs are exposed under: https://example.com/ords/
ordstest/

The ORDSTEST schema contains a database table named EMP, which was created as
follows:

create table emp (

empno number (4,0),

ename varchar2 (10 byte),
job varchar2 (9 byte),
mgr number (4,0),
hiredate date,

sal number (7,2),

comm number (7,2),

deptno number (2,0),
constraint pk emp primary key (empno)

)

The resources to be protected are located under: https://example.com/ords/ordstest/
examples/employees/

Steps for This Tutorial

ORACLE

Follow these steps to protect and access a set of resources.

1.

Enable the schema. Connect to the ORDSTEST schema and execute the following
PL/SQL statements;

begin
ords.enable schema;
commit;

end;

Create a resource. Connect to the ORDSTEST schema and execute the following
PL/SQL statements:

begin
ords.create_service(
p module name => 'examples.employees' ,
p_base path => '/examples/employees/",
p pattern => '.',
p_items per page => 7,
p_source => 'select * from emp order by empno desc');
commit;
end;

The preceding code creates the /examples/employees/ resource, which you will protect
with a privilege in a later step.
You can verify the resource by executing following cURL command:

curl -1 https://example.com/ords/ordstest/examples/employees/

5-63

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

The result should be similar to the following (edited for readability):

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{"empno":7934, "ename" : "MILLER", "job" : "CLERK", "mgr":7782, "hiredate":"1982-01-2
3T00:00:002","sal":1300,"comm":null, "deptno":10},

] 14
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/
employees/?0ffset=7"}
]
}

Create a privilege. While connected to the ORDSTEST schema, execute the
following PL/SQL statements:

begin
ords.create role('HR Administrator');

ords.create privilege (
p_name => 'example.employees',
p_role name => 'HR Administrator',
p label => 'Employee Data',
p description => 'Provide access to employee HR data');
commit;
end;

The preceding code creates a role and a privilege, which belong to the
ORDSTEST schema.

* The role name must be unique and must contain printable characters only.

* The privilege name must be unique and must conform to the syntax specified
by the OAuth 2.0 specification, section 3.3 for scope names.

* Because you will want to use this privilege with the three-legged authorization
code and implicit flows, you must provide a label and a description for the
privilege. The label and description are presented to the end user during the
approval phase of three-legged flows.

* The values should be plain text identifying the name and purpose of the
privilege.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGES view.

5-64

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

select id,name from user ords privileges where name = 'example.employees';

The result should be similar to the following:

ID
NAME

10260 example.employees
The ID value will vary from database to database, but the NAME value should be as
shown.

Associate the privilege with resources. While connected to the ORDSTEST schema,
execute the following PL/SQL statements:

begin
ords.create privilege mapping (
p _privilege name => 'example.employees',
p_pattern => '/examples/employees/*');
commit;
end;

The preceding code associates the example.employees privilege with the resource
pattern /examples/employees/.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGE_MAPPINGS view.

select privilege id, name, pattern from user ords privilege mappings;

The result should be similar to the following:

PRIVILEGE ID NAME PATTERN

10260 example.employees /examples/employees/*

The PRIVILEGE_ID value will vary from database to database, but the NAME and
PATTERN values should be as shown.

You can confirm that the /examples/employees/ resource is now protected by the
example.employees privilege by executing the following cURL command:

curl -1 https://example.com/ords/ordstest/examples/employees/

The result should be similar to the following (reformatted for readability):

HTTP/1.1 401 Unauthorized
Content-Type: text/html
Transfer-Encoding: chunked

<!DOCTYPE html>
<html>

</html>
You can confirm that the protected resource can be accessed through first party
authentication, as follows.

5-65

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

a. Create an end user. Create a test user with the HR Administrator role,
required to access the examples.employees privilege using the file-based user
repository. Execute the following command at a command prompt

java -jar ords.war user "hr admin" "HR Administrator"

When prompted for the password, enter and confirm it.
b. Sign in as the end user. Enter the following URL in a web browser:

https://example.com/ords/ordstest/examples/employees/

On the page indicating that access is denied, click the link to sign in.
Enter the credentials registered for the HR_ADMIN user, and click Sign In.

Confirm that the page redirects to https://example.com/ords/ordstest/
examples/employees/ and that the JSON document is displayed.

Register the OAuth client. While connected to the ORDSTEST schema, execute
the following PL/SQL statements:

begin
oauth.create client(
p_name => 'Client Credentials Example',
p_grant type => 'client credentials',
p_privilege names => 'example.employees',
p_support email => 'support@example.com');
commit;
end;

The preceding code registers a client named Client Credentials Example, to
access the examples.employees privilege using the client credentials OAuth flow.

You can verify that the client was registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select client id,client secret from user ords clients where name = 'Client
Credentials Example';

The result should be similar to the following:

CLIENT ID CLIENT SECRET

o _CZBVKEMN23tTB-IddQsQ. . 4BJXceufbmTki-vru¥YNLIqg..

The CLIENT_ID and CLIENT_SECRET values represent the secret credentials for
the OAuth client. These values must be noted and kept secure. You can think of
them as the userid and password for the client application.

Grant the OAuth client a required role. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
oauth.grant client role(
'Client Credentials Example',
'"HR Administrator');
commit;
end;

The preceding code registers a client named Client Credentials Example, to
access the examples.employees privilege using the client credentials OAuth flow.

5-66

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

You can verify that the client was granted the role by executing the following SQL
statement:

select * from user ords client roles where client name = 'Client Credentials
Example';

The result should be similar to the following:

CLIENT ID CLIENT NAME ROLE_ID ROLE_NAME

10286 Client Credentials Example 10222 HR Administrator
Obtain an OAuth access token using client credentials.

The OAuth protocol specifies the HTTP request that must be used to create an access
token using the client credentials flow[rfc6749-4.4.].

The request must be made to a well known URL, called the token endpoint. For Oracle
REST Data Services the path of the token endpoint is always oauth/token, relative to the
root path of the schema being accessed. The token endpoint for this example is:

https://example.com/ords/ordstest/oauth/token

Execute the following cURL command:

curl -i --user clientId:clientSecret --data "grant type=client credentials"
https://example.com/ords/ordstest/oauth/token

In the preceding command, replace clientId with the CLIENT_ID value in
USER_ORDS_CLIENTS for Client Credentials Example, and replace clientSecret
with the CLIENT_SECRET value shown in USER_ORDS_CLIENTS for Client
Credentials Example. The output should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{

"access token": "2YotnFZFEjrlzCsicMWpAA",
"token type": "bearer",

"expires in":3600

}

In the preceding output, the access token is of type bearer, and the value is specified by
the access_token field. This value will be different for every request. The expires in
value indicates the number of seconds until the access token expires; in this case the
token will expire in one hour (3600 seconds).

Access a protected resource using the access token. Execute the following cURL
command:

curl -1 -H"Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the access token field
shown in the preceding step. The output should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

5-67

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

{"empno":7934, "ename" : "MILLER", "job" : "CLERK", "mgr":7782, "hiredate":"1982-01-2
3T00:00:002","sal":1300,"comm":null, "deptno":10},

] 4
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
{"rel":"first", "href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/
employees/?0ffset=7"}
]
}

Register the client for authorization code. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
oauth.create client(
p_name => 'Authorization Code Example',
p_grant type => 'authorization code',
p_owner => 'Example Inc.',
p_description => 'Sample for demonstrating Authorization Code Flow',
p _redirect uri => 'http://example.org/auth/code/example/',
p_support email => 'support@example.org',
p_support uri => 'http://example.org/support',
p_privilege names => 'example.employees'
)
commit;
end;

The preceding code registers a client named Authorization Code Example, tO
access the examples.employees privilege using the authorization code OAuth flow.
For an actual application, a URI must be provided to redirect back to with the
authorization code, and a valid support email address must be supplied; however,
this example uses fictitious data and the sample example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client id, client secret from user ords clients where name =
'Authorization Code Example';

The result should be similar to the following:

ID CLIENT ID CLIENT SECRET

10060 IGHso04BRgrBC3Jwg0Vx YQ.. GefAsWv8FJAMSB30Eg61Kw. .

To grant access to the privilege, an end user must approve access. The
CLIENT_ID and CLIENT_SECRET values represent the secret credentials for the
OAuth client. These values must be noted and kept secure. You can think of them
as the userid and password for the client application.

5-68

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

10. Obtain an OAuth access token using an authorization code. This major step involves
several substeps. (You must have already created the HR_ADMIN end user in a previous
step.)

a.

Obtain an OAuth authorization code.

The end user must be prompted (via a web page) to sign in and approve access to
the third party application. The third party application initiates this process by
directing the user to the OAuth Authorization Endpoint. For Oracle REST Data
Services, the path of the authorization endpoint is always oauth/auth, relative to the
root path of the schema being accessed. The token endpoint for this example is:

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include
certain parameters in the query string:

The response_type parameter must have a value of code.

The client id parameter must contain the value of the applications client identifier.
This is the client id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value serves
two purposes: it provides a way for the client application to uniquely identify each
authorization request (and therefore associate any application specific state with the
value; think of the value as the application's own session identifier); and it provides a
means for the client application to protect against Cross Site Request Forgery
(CSREF) attacks. The state value will be returned in the redirect URI at the end of the
authorization process. The client must confirm that the value belongs to an
authorization request initiated by the application. If the client cannot validate the state
value, then it should assume that the authorization request was initiated by an
attacker and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response type=code&client id=cliendIdé&state=uniqueRandomValue

In the preceding URI, replace clientId with the value of the CLIENT_ID column that
was noted previously, and replace uniqueRandromValue with a unique unguessable
value. The client application must remember this value and verify it against the state
parameter returned as part of the redirect at the end of the authorization flow.

If the client id is recognized, then a sign in prompt is displayed. Enter the
credentials of the HR_ADMIN end user, and click Sign In; and on the next page click
Approve to cause a redirect to redirect URI specified when the client was registered.
The redirect URI will include the authorization code in the query string portion of the
URL. It will also include the same state parameter value that the client provided at
the start of the flow. The redirect URI will look like the following:

http://example.org/auth/code/example/?
code=D5doeTSIDghbxWiWkP19UpA. . &state=uniqueRandomValue

The client application must verify the value of the state parameter and then note the
value of the code parameter, which will be used in to obtain an access token.
Obtain an OAuth access token.

After the third party application has an authorization code, it must exchange it for an
access token. The third party application's server must make a HTTPS request to the

5-69

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

Token Endpoint. You can mimic the server making this request by using a
cURL command as in the following example:

curl --user clientId:clientSecret --data
"grant_type=authorization code&code=authorizationCode" https://
example.com/ords/ordstest/oauth/token

In the preceding command, replace clientId with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS for Authorization Code Example, replace
clientSecret with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTS for Authorization Code Example, and replace
authorizationCode with the value of the authorization code noted in a
previous step (the value of the code parameter).

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
"access token": "psIGSSEXSBQyibOhozNEdw..",
"token type": "bearer",
"expires in":3600,
"refresh token": "aRMg7AdWPuDvnieHucfV3g.."
}

In the preceding result, the access token is specified by the access token
field, and a refresh token is specified by the refresh token field. This refresh
token value can be used to extend the user session without requiring the user
to reauthorize the third party application.

Access a protected resource using the access token.

After the third party application has obtained an OAuth access token, it can
use that access token to access the protected /examples/employees/
resource:

curl -1 -H"Authorization: Bearer accessToken" https://example.com/ords/
ordstest/examples/employees/

In the preceding command, accessToken with the value of the access token
field shown in a previous step.

The result should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{"empno":7934, "ename" : "MILLER", "job" :"CLERK", "mgr":7782, "hiredate":"1982-
01-23T00:00:002","sal":1300,"comm":null, "deptno":10},

] r
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":

5-70

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

[
{"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/
employees/?0ffset=7"}
]
}

Extend the session using a refresh token.

At any time, the third party application can use the refresh token value to generate a
new access token with a new lifetime. This enables the third party application to
extend the user session at will. To do this, the third party application's server must
make an HTTPS request to the Token Endpoint. You can mimic the server making
this request by using a cURL command as in the following example:

curl --user clientId:clientSecret --data
“grant_type=refresh tokens&refresh token=refreshToken" https://example.com/ords/
ordstest/oauth/token

In the preceding command, replace clientId with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS for Client Credentials Client, replace
clientSecret with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTS for Client Credentials Client, and replace
refreshToken with the value of refresh token obtained in a previous step.

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{

"access _token": "psIGSSEXSBQyibOhozNEdw..",
"token type": "bearer",

"refresh token": "aRMg7AdWPuDvnieHucfV3g..",
"expires in": 3600

}

In the preceding result, the access token is specified by the access_token field, a
new refresh token is specified by the refresh token field. This refresh token value
can be used to extend the user session without requiring the user to reauthorize the
third party application. (Note that the previous access token and refresh token are
now invalid; the new values must be used instead.)

11. Register the client for implicit flow. While connected to the ORDSTEST schema,
execute the following PL/SQL statements:

begin
oauth.create client (

p_name => 'Implicit Example',

p_grant type => 'implicit',

p_owner => 'Example Inc.',

p_description => 'Sample for demonstrating Implicit Flow',
p redirect uri => 'http://example.org/implicit/example/',
p_support email => 'support@example.org',

p_support uri => 'http://example.org/support',

p_privilege names => 'example.employees'

5-71

ORACLE

12.

Chapter 5
Configuring Secure Access to RESTful Services

);
commit;
end;

The preceding code registers a client named Implicit Example to access the
examples.employees privilege using the implicit OAuth flow. For an actual
application, a URI must be provided to redirect back to with the authorization code,
and a valid support email address must be supplied; however, this example uses
fictitious data and the sample example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client id, client secret from user ords clients where name =
'Implicit Example';

The result should be similar to the following:

ID CLIENT ID CLIENT SECRET

10062 7Qz--bNJpFpv8gsfNQpSI1A. .

To grant access to the privilege, an end user must approve access.

Obtain an OAuth access token using implicit flow. (You must have already
created the HR_ADMIN end user in a previous step.)

The end user must be prompted (via a web page) to sign in and approve access to
the third party application. The third party application initiates this process by
directing the user to the OAuth Authorization Endpoint. For Oracle REST Data
Services, the path of the authorization endpoint is always oauth/auth, relative to
the root path of the schema being accessed. The token endpoint for this example
is:

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include
certain parameters in the query string:

The response_type parameter must have a value of token.

The client id parameter must contain the value of the applications client
identifier. This is the client id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value serves
two purposes: it provides a way for the client application to uniquely identify each
authorization request (and therefore associate any application specific state with
the value; think of the value as the application's own session identifier); and it
provides a means for the client application to protect against Cross Site Request
Forgery (CSRF) attacks. The state value will be returned in the redirect URI at the
end of the authorization process. The client must confirm that the value belongs to
an authorization request initiated by the application. If the client cannot validate the
state value, then it should assume that the authorization request was initiated by
an attacker and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response_type=token&client id=cliendIdé&state=uniqueRandomValue

5-72

ORACLE

13.

Chapter 5
Configuring Secure Access to RESTful Services

In the preceding URI, replace clientId with the value of the CLIENT_ID column that was
noted previously, and replace uniqueRandromValue with a unique unguessable value.
The client application must remember this value and verify it against the state parameter
returned as part of the redirect at the end of the authorization flow.

If the client id is recognized, then a sign in prompt is displayed. Enter the credentials of
the HR_ADMIN end user, and click Sign In; and on the next page click Approve to cause
a redirect to redirect URI specified when the client was registered. The redirect URI will
include the access token in the query string portion of the URI. It will also include the
same state parameter value that the client provided at the start of the flow. The redirect
URI will look like the following:

http://example.org/auth/code/example/
#access token=D5doeTSIDgbxWiWkP19UpA. . &type=bearer&expires in=3600&state=uniqueRand
omValue

The client application must verify the value of the state parameter and then note the
value of the access token.

Access a protected resource using an access token. Execute the following cURL
command:

curl -i -H "Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the access token field
shown in the preceding step. The output should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{"empno":7934, "ename" : "MILLER", "job" : "CLERK", "mgr":7782, "hiredate":"1982-01-23T00:0
0:002","sal":1300, "comm":null, "deptno":10},

] r
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self", "href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
{"rel":"first", "href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
]
}

Related Topics

Using the Oracle REST Data Services PL/SQL API

5-73

Chapter 5
About Oracle REST Data Services User Roles

About Oracle REST Data Services User Roles

Oracle REST Data Services defines a small number of predefined user roles:

e RESTful Services - This is the default role associated with a protected RESTful
service.

e OAuth2 Client Developer - Users who want to register OAuth 2.0 applications
must have this role.

e oracle.dbtools.autorest.any.schema - Users who want to access all AUtoREST
services.

* SQL Developer - Users who want to use Oracle SQL Developer to develop
RESTful services must have this role.

° SODA Developer - This is the default role that is required to access the SODA
REST API. For more information about this role, see Oracle REST Data Services
SODA for REST Developer's Guide.

* Listener Administrator - Users who want to administrate an Oracle REST Data
Services instance through Oracle SQL Developer must have this role. Typically,
only users created through the java -jar ords.war user command will have this
role.

Because the Listener Administrator role enables a user to configure an Oracle
REST Data Services instance, and therefore has the capability to affect all
Application Express workspaces served through that instance, Application Express
users are not permitted to acquire the Listener Administrator role.

Topics:

* About Oracle Application Express Users and Oracle REST Data Services Roles

e Controlling RESTful Service Access with Roles

About Oracle Application Express Users and Oracle REST Data
Services Roles

ORACLE

By default, Oracle Application Express users do not have any of the Oracle REST
Data Services predefined user roles. This means that, by default, Application Express
users cannot:

* Invoke protected RESTful Services
* Register OAuth 2.0 applications
e Use Oracle SQL Developer to develop RESTful services.

This applies to all Application Express users, including Application Express developers
and administrators. It is therefore important to remember to follow the steps below to
add Application Express users to the appropriate user groups, so that they can
successfully perform the above actions.

Topics:

* Granting Application Express Users Oracle REST Data Services Roles

5-74

Chapter 5
About Oracle REST Data Services User Roles

» Automatically Granting Application Express Users Oracle REST Data Services Roles

Granting Application Express Users Oracle REST Data Services Roles

To give an Application Express User any of the roles above, the user must be added to the
equivalent Application Express user group. For example, to give the RESTEASY ADMIN user the
RESTful Services role, follow these steps:

1. Log in to the RESTEASY workspace as a RESTEASY ADMIN.
2. Navigate to Administration and then Manage Users and Groups.
3. Click the Edit icon to the left of the RESTEASY ADMIN user.
4. For User Groups, select RESTful Services.
5

Click Apply Changes.

Automatically Granting Application Express Users Oracle REST Data Services

Roles

ORACLE

Adding Application Express users to the appropriate user groups can be an easily overlooked
step, or can become a repetitive task if there are many users to be managed.

To address these issues, you can configure Oracle REST Data Services to automatically
grant Application Express users a predefined set of RESTful Service roles by modifying the
defaults.xml configuration file.

In that file, Oracle REST Data Services defines three property settings to configure roles:

° apex.security.user.roles - A comma separated list of roles to grant ordinary users,
that is, users who are not developers or administrators.

e apex.security.developer.roles - A comma separated list of roles to grant users who
have the Developer account privilege. Developers also inherit any roles defined by the
apex.security.user.roles setting.

° apex.security.administrator.roles - A comma separated list of roles to grant users
who have the Administrator account privilege. Administrators also inherit any roles
defined by the apex.security.user.roles and apex.security.developer.roles
settings.

For example, to automatically give all users the RESTful Services privilege and all
developers and administrators the 0OAuth2 Client Developer and SQL Developer roles, add
the following to the defaults.xml configuration file:

<!-- Grant all Application Express Users the ability
to invoke protected RESTful Services -->

<entry key="apex.security.user.roles">RESTful Services</entry>

<!-- Grant Application Express Developers and Administrators the ability
to register OAuth 2.0 applications and use Oracle SQL Developer
to define RESTful Services -->

<entry key="apex.security.developer.roles">

OAuth2 Client Developer, SQL Developer</entry>

Oracle REST Data Services must be restarted after you make any changes to the
defaults.xml configuration file.

5-75

Chapter 5
About Oracle REST Data Services User Roles

Controlling RESTful Service Access with Roles

The built-in RESTful Service role is a useful default for identifying users permitted to
access protected RESTful services.

However, it will often also be necessary to define finer-grained roles to limit the set of
users who may access a specific RESTful service.

Topics:
e About Defining RESTful Service Roles
e Associating Roles with RESTful Privileges

About Defining RESTful Service Roles

A RESTful Service role is an Application Express user group. To create a user group
to control access to the Gallery RESTful Service, follow these steps. (

Log in to the RESTEASY workspace as a workspace administrator.
Navigate to Administration and then Manage Users and Groups.
Click the Groups tab.

Click Create User Group.

For Name, enter Gallery Users.

@ o & w N P

Click Create Group.

Associating Roles with RESTful Privileges

ORACLE

After a user group has been created, it can be associated with a RESTful privilege. To
associate the Gallery Users role with the example.gallery privilege, follow these
steps.

1. Navigate to SQL Workshop and then RESTful Services.
2. In the Tasks section, click RESTful Service Privileges.
3. Click Gallery Access.

4. For Assigned Groups, select Gallery Users.

5. Click Apply Changes.

With these changes, users must have the Gallery Users role to be able to access the
Gallery RESTful service.

" See Also:

The steps here use the image gallery application in Creating an Image
Gallery as an example.

5-76

Chapter 5
Authenticating Against WebLogic Server User Repositories

Authenticating Against WebLogic Server User Repositories

Oracle REST Data Services can use APIs provided by WebLogic Server to verify credentials
(username and password) and to retrieve the set of groups and roles that the user is a
member of.

This section walks through creating a user in the built-in user repositories provided by
WebLogic Server, and verifying the ability to authenticate against that user.

This document does not describe how to integrate WebLogic Server with the many popular
user repository systems such as LDAP repositories, but Oracle REST Data Services can
authenticate against such repositories after WebLogic Server has been correctly configured.
See your application server documentation for more information on what user repositories are
supported by the application server and how to configure access to these repositories.

Topics:

e Authenticating Against WebLogic Server

Authenticating Against WebLogic Server

Authenticating a user against WebLogic Server involves the following major steps:

1. Creating a WebLogic Server User
2. Verifying the WebLogic Server User

Creating a WebLogic Server User

ORACLE

To create a sample WebLogic Server user, follow these steps:

1. Start WebLogic Server if it is not already running

2. Access the WebLogic Server Administration Console (typically http://server:7001/
console), enter your credentials.

3. Inthe navigation tree on the left, click the Security Realms node

4. If a security realm already exists, go to the next step. If a security realm does not exist,
create one as follows:

a. Click New.
b. For Name, enter Test-Realm, then click OK.
c. Click Test-Realm.
d. Click the Providers tab.
e. Click New, and enter the following information:
Name: test-authenticator
Type: DefaultAuthenticator
f. Restart WebLogic Server if you are warned that a restart is necessary.
g. Click Test-Realm.
5. Click the Users and Groups tab.

5-77

Chapter 5
Integrating with Existing Group/Role Models

6. Click New, and enter the following information:
* Name: 3rdparty dev2
» Password: Enter and confirm the desired password for this user.
7. Click OK.
8. Click the Groups tab.
9. Click New., and enter the following information:
* Name: OAuth2 Client Developer (case sensitive)
10. Click OK.
11. Click the Users tab.
12. Click the 3rdparty_dev2 user.
13. Click the Groups tab.
14. In the Chosen list, add OAuth2 Client Developer .
15. Click Save.

You have created a user named 3rdparty dev2 and made it a member of a group
named OAuth2 Client Developer. This means the user will acquire the 0OAuth?2
Client Developer role, and therefore will be authorized to register OAuth 2.0
applications.

Now verify that the user can be successfully authenticated.

Verifying the WebLogic Server User

To verify that the WebLogic Server user created can be successfully authenticated,
follow these steps:

1. Inyour browser, go to a URI in the following format:
https://server:port/ords/resteasy/ui/oauth2/clients/
2. Enter the credentials of the 3rdparty dev2 user, and click Sign In.

The OAuth 2.0 Client Registration page should be displayed, with no applications
listed. If this page is displayed, you have verified that authentication against the
WebLogic Server user repository is working.

However, if the sign-on prompt is displayed again with the message User is not
authorized to access resource, then you made mistake (probably misspelling the
Group List value).

Integrating with Existing Group/Role Models

ORACLE

The examples in other sections demonstrate configuring the built-in user repositories
of WebLogic Server. In these situations you have full control over how user groups are
named. If a user is a member of a group with the exact same (case sensitive) name as
a role, then the user is considered to have that role.

However, when integrating with existing user repositories, RESTful service developers
will often not have any control over the naming and organization of user groups in the
user repository. In these situations a mechanism is needed to map from existing

5-78

Chapter 5
Integrating with Existing Group/Role Models

"physical" user groups defined in the user repository to the "logical" roles defined by Oracle
REST Data Services and/or RESTful Services.

In Oracle REST Data Services, this group to role mapping is performed by configuring a
configuration file named role-mapping.xml.

Topics:

e About role-mapping.xml

AbOUt role-mapping.xml

role-mapping.xml is a Java XML Properties file where each property key defines a pattern
that matches against a set of user groups, and each property value identifies the roles that
the matched user group should be mapped to. It must be located in the same folder as the
defaults.xml configuration file. The file must be manually created and edited.

Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="webdevs">RESTful Services</entry>

</properties>

This role mapping is straightforward, stating that any user who is a member of a group
named: webdevs is given the role RESTful Services, meaning that all members of the
webdevs group can invoke RESTful Services.

A mapping can apply more than one role to a group. For example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="webdevs">RESTful Services, SQL Developer</entry>
</properties>

This rule gives members of the webdevs group both the RESTful Services and SQL
Developer roles.

Topics:

» Parameterizing Mapping Rules

» Dereferencing Parameters

* Indirect Mappings

Parameterizing Mapping Rules

ORACLE

Having to explicitly map from each group to each role may not be scalable if the number of
groups or roles is large. To address this concern, you can parameterize rules. Consider this
example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="{prefix}.webdevs">RESTful Services</entry>

</properties>

5-79

Chapter 5
Integrating with Existing Group/Role Models

This example says that any group name that ends with .webdevs will be mapped to the
RESTful Services role. For example, a group hamed: HQ.webdevs would match this
rule, as would a group named: EAST.webdevs.

The syntax for specifying parameters in rules is the same as that used for URI
Templates; the parameter name is delimited by curly braces ({}).

Dereferencing Parameters

Any parameter defined in the group rule can also be dereferenced in the role rule.
Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="cn={userid},ou={group},dc=MyDomain, dc=com">{group}</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name
to a role. It says that the organizational unit name maps directly to a role with same
name. Note that it refers to a {userid} parameter but never actually uses it; in effect, it
uses {userid} as a wildcard flag.

For example, the distinguished name cn=jsmith, ou=Developers, dc=MyDomain, dc=com
will be mapped to the logical role named Developers.

Indirect Mappings

ORACLE

To accomplish the desired role mapping, it may sometimes be necessary to apply
multiple intermediate rules. Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="cn={userid},ou={group},dc=example, dc=com">{group}</entry>
<entry key="{prefix},ou={group},dc=acquired,dc=com">{group}</entry>
<entry key="Developers">RESTful Services, SQL Developer</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name
to some roles. Complicating matters is the fact that users can come from two different
organizations, resulting in differing distinguishing name patterns.

e Users from example.com always have a single common name (CN) identifying
their user id, followed by the organizational unit (OU) and the domain name (DC).
For example: cn=jsmith, ou=Developers, dc=example, dc=com.

e Users from acquired.com have varying numbers of common name (CN) prefixes,
but the organizational unit is the field you are interested in. For example:
cn=ProductDev, cn=abell, ou=Engineering, dc=acquired, dc=com.

e Both organizations identify software engineers with ou=Developers.

You want to map engineers in both organizations to the RESTful Services and SQL
Developer roles.

* The first rule maps engineers in the example.com organization to the intermediate
Developers role.

5-80

Chapter 5
Integrating Oracle REST Data Services and WebLogic Server

* The second rule maps engineers in the acquired. com organization to the intermediate
Developers role.

e The final rule maps from the intermediate Developers role to the RESTful Services and
SQL Developer roles.

Integrating Oracle REST Data Services and WebLogic Server

Oracle REST Data Services (ORDS) recommends that for complex or enterprise user identity
integrations, customers can leverage the capabilities of WebLogic server. WebLogic server
has a rich and diverse set of capabilities to integrate with existing enterprise identity
solutions. When Oracle REST Data Services is deployed on the WebLogic server, it can
leverage the capabilities of WebLogic server to get secure access to ORDS based RESTful
Services.

Once ORDS is configured to work with WebLogic server, the WebLogic server can provide
the authenticated user identity and roles. Based on the memberships of the user role, ORDS
authorizes access to the protected RESTful Services.

Configuring ORDS to Integrate with WebLogic Server

ORACLE

This section explains how to configure ORDS to work with WebLogic server.

To configure ORDS to work with WebLogic server, run the following command to prepare the
ords.war file to integrate with WebLogic server:

java -jar ords.war oam-config
Run the following command to get help on the cam-config command:

java -jar ords.war help oam-config

Using the oam-config Command

The cam-config command re-configures the web.xml deployment descriptor in the ords.war
file that helps the WebLogic server to pass any established user identity to ORDS.

After executing the preceding command, the ords.war file must be re-deployed to the
WebLogic server.

Determining the Identity and Roles of the User

ORDS uses APIs provided by WebLogic server to retrieve the WLSUser and WLSGroup for
the established user identity.

ORDS treats the WLSGroup to be equivalent to the role that the user possesses. For
example, if a user or users belongs to a WLSGroup named "Sales Assistant", then ORDS
considers such user to have a role named "Sales Assistant".

Retrieving the Authenticated User Information

The user visits the single sign-on login form and obtains a cookie or an access token that
asserts the identity and roles. The cookie or the token is then passed to the WebLogic server.
The WebLogic server is configured to validate the cookie or token and then map it to a
specific user to determine what roles the user possesses. The WebLogic Server performs this
operation before passing the request to ORDS. Once ORDS receives the request, it calls the
APIs provided by WebLogic server to retrieve the WLSUser and WLSGroup to retrieve the
information of the user identity and roles from the WebLogic server.

5-81

Using the

Chapter 5
Using the Oracle REST Data Services PL/SQL API

Related Topics

* Oracle WebLogic APIs

* API to retrieve the WLSUser
e API to retrieve the WLSGroup

Oracle REST Data Services PL/SQL API

Oracle REST Data Services has a PL/SQL API (application programming interface)
that you can use as an alternative to the SQL Developer graphical interface for many
operations. The available subprograms are included in the following PL/SQL
packages:

» Oracle REST Data Services, documented in Oracle REST Data Services PL/SQL
Package Reference

OAUTH, documented in OAUTH PL/SQL Package Reference
To use the Oracle REST Data Services PL/SQL API, you must first:

e Install Oracle REST Data Services in the database that you will use to develop
RESTful services.

* Enable one or more database schemas for REST access.

Topics:
e Creating a RESTful Service Using the PL/SQL API
e Testing the RESTful Service

Related Topics
* Automatic Enabling of Schema Objects for REST Access (AutoREST)

Creating a RESTful Service Using the PL/SQL API

ORACLE

You can create a RESTful service by connecting to a REST-enabled schema and
using the ORDS.CREATE_SERVICE procedure.

The following example creates a simple "Hello-World"-type service:
begin

ords.create service(
p module name => 'examples.routes' ,

p base path => '/examples/routes/',
p_pattern => 'greeting/:name',
p_source => 'select ''Hello '' || :name || '' from '' ||
nvl (:whom, sys _context (''USERENV'',''CURRENT USER'')) "greeting" from dual');
commit;
end;
/

The preceding example does the following:

» Creates a resource module named examples.routes.

* Sets the base path (also known as the URI prefix) of the module to /examples/
routes/.

5-82

unilink:Oracle_WebLogic_APIs
unilink:retrieve_WLSUser_API
unilink:retrieve_WLSGroup_API

Chapter 5
Using the Oracle REST Data Services PL/SQL API

* Creates a resource template in the module, with the route pattern greeting/:nane.
» Creates a GET handler and sets its source as a SQL query that forms a short greeting:

— GET is the default value for the p_method parameter, and it is used here because that
parameter was omitted in this example.

— COLLECTION FEED is the default value for the p_method parameter, and it is used here
because that parameter was omitted in this example

e An optional parameter named whon is specified.

Related Topics
* ORDS.CREATE_SERVICE

Testing the RESTful Service

ORACLE

To test the RESTful service that you created, start Oracle REST Data Services if it is not
already started:

java -jar ords.war

Enter the URI of the service in a browser. The following example displays a "Hello" greeting
to Joe, by default from the current user because no whom parameter is specified.:

http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe

In this example:

e Oracle REST Data Services is running on localhost and listening on port 8080.
* Oracle REST Data Services is deployed at the context-path /ords.
* The RESTful service was created by a database schema named ordstest.

* Because the URL does not include the optional whom parameter, the :whom bind
parameter is bound to the null value, which causes the query to use the value of the
current database user (sys_context (' '"USERENV'', ' 'CURRENT USER'')) instead.

If you have a JSON viewing extension installed in your browser, you will see a result like the
following:

{
"items": [
{
"greeting": "Hello Joe from ORDSTEST"
}
} r

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 1,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"

b

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/
greeting/"

}7

5-83

Chapter 5
Oracle REST Data Services Database Authentication

{
"rel": "first",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
}
]
}

The next example is like the preceding one, except the optional parameter whom is
specified to indicate that the greeting is from Jane.

http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe?whom=Jane

This time, the result will look like the following:

{
"items": [
{
"greeting": "Hello Joe from Jane"
}
} r

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 1,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"

}l
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/
greeting/"
}l
{
"rel": "first",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
}
]
}

Notice that in this result, what follows "from" is Jane and not ORDSTEST, because
the :whom bind parameter was bound to the Jane value.

Oracle REST Data Services Database Authentication

This section describes how to use the database authentication feature to provide basic
authentication for PL/SQL gateway calls.

Database authentication feature is similar to dynamic basic authentication provided by
mod-plsql where the user is prompted for the database credentials to authenticate and
authorize access to PL/SQL stored procedures.

Installing Sample Database Scripts

This section describes how to install the sample database scripts.

The unzipped Oracle REST Data Services installation kit contains the sample
database scripts that create a basic demo scenario for the database authentication.

ORACLE 5-84

Chapter 5
Oracle REST Data Services Database Authentication

The following code snippet shows how to install the sample database schema:

db auth $ cd sql/
sql $ sgl sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

PaSSWOrd? (**********?) *kkkkk*k
Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

SQL> @install <chosen-password>

Note:

e You need to adjust the SQLcl connect string and the user credentials to suit
your environment. For this demo scenario, SQLcl connects to the database with
service name orcl

* <chosen-password> is the password you assigned to EXAMPLE USER1 and
EXAMPLE USER2 database users. Make a note of this password value for later
reference.

The sample database schema creates the following database users:

* SAMPLE_PLSQL_APP: A database schema where the protected SAMPLE PROC will be
installed.

¢ EXAMPLE_USER1.: A database user granted with execute privilege on
SAMPLE PLSQL APP.SAMPLE PROC procedure.

« EXAMPLE_USER2: A second database user granted with execute privilege on
SAMPLE PLSQL APP.SAMPLE PROC procedure.

Enabling the Database Authentication

ORACLE

This section describes how to enable the database authentication feature.
To enable the database authentication feature, do one of the following:

» For fresh installation of Oracle REST Data Services, update the /u01/ords/params/
ords_params properties file with the following entry:

jdbc.auth.enabled=true

e For existing Oracle REST Data Services installation, run the following commands:

cd /u0l/ords
$JAVA HOME/bin/java -jar ords.war set-property jdbc.auth.enabled true

5-85

Chapter 5
Oracle REST Data Services Database Authentication

This setting is applicable to PL/SQL gateway pools (for example, apex.xml), it does
not apply to other pool types such as the ORDS_PUBLIC USER pool (for example,
apex_pu.xml).

Note:

The jdbc.auth.enabled setting can be configured per database pool.
Alternatively, it can be configured in defaults.xnl file so that it is enabled for
all pools.

Example 5-11 Setting Enabled for all Pools

This example code snippet shows how jdbc.auth.enabled setting is enabled for all
pools.

ords $ java -jar ords.war set-property jdbc.auth.enabled true
Mar 23, 2018 2:23:49 PM oracle.dbtools.rt.config.setup.SetProperty

execute
INFO: Modified: /tmp/cd/ords/defaults.xml, setting: jdbc.auth.enabled
= true

After you update the configuration settings, restart the Oracle REST Data Services for
the changes to take effect.

Configuring the Request Validation Function

This section describes how to temporarily disable the request validation function.

If you want to invoke only a whitelisted set of stored procedures in the database
through the PL/SQL gateway, then you must configure Oracle REST Data Services to
use a request validation function (especially when you are using Oracle Application
Express).

The demo sample procedure used for testing the database authentication feature is
not whitelisted, so you must temporarily disable the request validation function.

To disable the request validation function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the defaults.xml file.
Look for security.requestValidationFunction entry and remove it from the file.

Save the file.

a r w DN

Restart Oracle REST Data Services, if it is already running.

ORACLE 5-86

Chapter 5
Overview of Pre-hook Functions

< Note:

In production environment, you must use a custom request validation function that
whitelists the stored procedures you want to access for your application

Testing the Database Authenticated User

This section describes how to test if the database user is authenticated.

Assuming that Oracle REST Data Service is running in a standalone mode on local host and
on port 8080, access the following URL in your web browser:

http://localhost:8080/ords/sample plsgl app.sample proc

The browser prompts you to enter credentials. Enter example userl for user name and enter
the password value you noted while installing the sample schema.

The browser displays 'Hello EXAMPLE_USER1!" to demonstrate that the database user was
authenticated and the identity of the user was propagated to the database through the OWA
CGl variable named REMOTE USER..

Uninstalling the Sample Database Schema

To uninstall the database schema, run the commands as shown in the following code snippet:

db auth $ cd sql/
sqgl $ sgl sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

PaSSWOrd? (***k*k‘k‘k****?) *kkk kK

Connected to:

Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production
SQL> @uninstall

Overview of Pre-hook Functions

ORACLE

This section explains how to use PL/SQL based pre-hook functions that are invoked prior to
an Oracle REST Data Services (ORDS) based REST call.

A pre-hook function is typically used to implement application logic that needs to be applied
across all REST endpoints of an application. For example a pre-hook enables the following
functionality:

e Configure application specific database session state: Configure the session to
support a VPD policy.

e Custom authentication and authorization: As the pre-hook is invoked prior to
dispatching the REST service, it is used to inspect the request headers and determine
the user who is making the request, and also find if that user is authorized to make the
request.

5-87

Chapter 5
Overview of Pre-hook Functions

* Auditing or metrics gathering: To track information regarding the REST APIs
invoked.

Topics:

* Configuring the Pre-hook Function

» Using a Pre-hook Function

* Processing of a Request

* ldentity Assertion of a User

» Aborting Processing of a Request

» Ensuring Pre-hook is Executable

» Exceptions Handling by Pre-hook Function
* Pre-hook Function Efficiency

* Pre-Hook Examples

Configuring the Pre-hook Function

This section describes how to configure a pre-hook function.

The pre-hook function is configured using procedure.rest.preHook setting. The value
of this setting must be the name of a stored PL/SQL function.

Using a Pre-hook Function

This section explains how the pre-hook function is used.

A pre-hook must be a PL/SQL function with no arguments and must return a BOOLEAN
value. The function must be executable by the database user to whom the request is
mapped. For example, if the request is mapped to an ORDS enabled schema, then
that schema must be granted the execute privilege on the pre-hook function (or to
PUBLIC).

If the function returns true, then it indicates that the normal processing of the request
must continue. If the function returns false, then it indicates that further processing of
the request must be aborted.

ORDS invokes a pre-hook function in an OWA (Oracle Web Agent) that is a PL/SQL
Gateway Toolkit environment. This means that the function can introspect the request
headers and the OWA CGI environment variables, and use that information to drive its
logic. The function can also use the OWA PL/SQL APIs to generate a response for the
request (for example, in a case where the pre-hook function needs to abort further
processing of the request, and provide its own response).

Processing of a Request

ORACLE

The pre-hook function must return true if it determines that the processing of a
request must continue. In such cases, any OWA response produced by the pre-hook
function is ignored (except for cases as detailed in the section Identity Assertion of a
User), and the REST service is invoked as usual.

5-88

Chapter 5
Overview of Pre-hook Functions

|dentity Assertion of a User

This section describes how pre-hook function can make assertions about the identity of the
user.

When continuing processing, a pre-hook can make assertions about the identity and the roles
assigned to the user who is making the request. This information is used in the processing of
the REST service. A pre-hook function can determine this by setting one or both of the
following OWA response headers.

e X-ORDS-HOOK-USER: Identifies the user making the request, the value is bound to
the :current user implicit parameter and the REMOTE IDENT OWA CGI environment
variable.

* X-ORDS-HOOK-ROLES: Identifies the roles assigned to the user. This information is used to
determine the authorization of the user to access the REST service. If this header is
present then X-ORDS-HOOK-USER must also be present.

" Note:

X-ORDS-HOOK-USER and X-ORDS-HOOK-ROLES headers are not included in the
response of the REST service. These headers are only used internally by ORDS to
propagate the user identity and roles.

Using these response headers, a pre-hook can integrate with the role based access
control model of ORDS. This enables the application developer to build rich
integrations with third party authentication and access control systems.

Aborting Processing of a Request

This section explains how the pre-hook function aborts the processing of a request.

If a pre-hook determines that the processing of the REST service should not continue, then
the function must return false value. This value indicates to ORDS that further processing of
the request must not be attempted.

If the pre-hook does not produce any OWA output, then ORDS generates a 403 Forbidden
error response page. If the pre-hook produces any OWA response, then ORDS returns the
OWA output as the response. This enables the pre-hook function to customize the response
that client receives when processing of the REST service is aborted.

Ensuring Pre-hook is Executable

ORACLE

If a schema cannot invoke a pre-hook function, then ORDS generates a 503 Service
Unavailable response for any request against that schema. Since a pre-hook has been
configured, it would not be safe for ORDS to continue processing the request without
invoking the pre-hook function. It is very important that the pre-hook function is executable by
all ORDS enabled schemas. If the pre-hook function is not executable, then the REST
services defined in those schemas will not be available.

5-89

Chapter 5
Overview of Pre-hook Functions

Exceptions Handling by Pre-hook Function

When a pre-hook raises an error condition, for example, when a run-time error occurs,
a NO DATA FOUND exception is raised. In such cases, ORDS cannot proceed with
processing of the REST service as it would not be secure. ORDS inteprets any
exception raised by the pre-hook function as a signal that the request is forbidden and
generates a 403 Forbidden response, and does not proceed with invoking the REST
service. Therefore, if the pre-hook raises an unexpected exception, it forbids access to
that REST service. It is highly recommended that all pre-hook functions must have a
robust exception handling block so that any unexpected error conditions are handled
appropriately and do not make REST Services unavailable.

Pre-hook Function Efficiency

A pre-hook function is invoked for every REST service call. Therefore, the pre-hook
function must be designed to be efficient. If a pre-hook function is inefficient, then it
has a negative effect on the performance of the REST service call. Invoking the pre-
hook involves at least one additional database round trip. It is critical that the ORDS
instance and the database are located close together so that the round-trip latency
overhead is minimized.

Pre-Hook Examples

This section provides some sample PL/SQL functions that demonstrate different ways
in which the pre-hook functionality can be leveraged.

Source code for the examples provided in the following sections is included in the
unzipped Oracle REST Data Services distribution archive examples/pre hook/sql
sub-folder.

Installing the Examples

ORACLE

This section describes how to install the pre-hook examples.

To install the pre-hook examples, execute examples/pre hook/sql/install.sql

script. The following code snippet shows how to install the examples using Oracle
SQLcl command line interface:

pre hook $ cd examples/pre hook/sql/
sql $ sgl sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) * kK KKKk
Connected to:

Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @install <chosen-password>

5-90

Chapter 5
Overview of Pre-hook Functions

* You need to adjust the SQLcl connect string and the user credentials to suit your
environment. For these demo scenarios, SQLcl connects to the database with service
name orcl.

* <chosen-password> is the password you assigned to the PRE_HOOK TEST database user.
Make a note of this password value for later reference.

* The examples/pre hook/sql/install.sql command creates the following two
databases schemas:

— The PRE HOOK DEFNS schema where the pre-hook function is defined along with a
database table named custom auth users, where user identities are stored. This
table is populated with a single user joe.bloggs@example.com, Whose password is
the value assigned for <chosen-password>.

— The PRE_HOOK TESTS schema where ORDS based REST services that are used to
demonstrate the pre-hooks are defined.

Example: Denying all Access
The simplest pre-hook is one that unilaterally denies access to any REST Service.
To deny access to any REST service, the function must always return false as shown in the

following code snippet:

create or replace function deny all hook return boolean as
begin
return false;
end;
/

grant execute on deny all hook to public;
Where:

* The deny all hook pre-hook function always returns false value.

e Execute privilege is granted to all users. So, any ORDS enabled schema can invoke this
function

Configuring ORDS
To enable deny all hook pre-hook function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Openthe defaults.xnl file and add:
<entry key="procedure.rest.preHook">pre hook defns.deny all hook</entry>

3. Save the file.

4, Restart Oracle REST Data Services.

ORACLE 5-91

Chapter 5
Overview of Pre-hook Functions

Try it out

The install script creates an ORDS enabled schema and a REST service which can be
accessed at the following URL (assuming ORDS is deployed on localhost and
listening on port 8080) :

http://localhost:8080/ords/pre hook tests/prehooks/user

Access the URL in a browser. You should get a response similar to the following:

403 Forbidden

This demonstrates that the deny all hook pre-hook function was invoked and it
prevented the access to the REST service by returning a false value.

Example: Allowing All Access

ORACLE

Modify the source code of the deny all hook pre-hook function to allow access to all
REST service requests as shown in the following code snippet:

create or replace function deny all hook return boolean as
begin

return true;
end;

/
Try it out
Access the following test URL in a browser:

http://localhost:8080/ords/pre hook tests/prehooks/user

The response should include JSON similar to the following code snippet:

{

"authenticated user": "no user authenticated"

}

Note:

The REST service executes because the pre-hook function authorized it.

Related Topics

e ldentity Assertion of a User
This section describes how pre-hook function can make assertions about the
identity of the user.

5-92

Chapter 5
Overview of Pre-hook Functions

Example: Asserting User Identity

ORACLE

The following code snippet demonstrates how the pre-hook function makes assertions about
the user identity and the roles they possess:

create or replace function identity hook return boolean as
begin
if custom auth api.authenticate owa then
custom auth api.assert identity;
return true;
end if;
custom auth api.prompt for basic credentials('Test Custom Realm');
return false;
end;

The pre-hook delegates the task of authenticating the user to the

custom auth api.authenticate owa function. If the function indicates that the user is
authenticated, then it invokes the custom auth api.assert identity procedure to
propagate the user identity and roles to ORDS.

Configuring ORDS

To enable pre-hook function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Openthe defaults.xml file and add:
<entry key="procedure.rest.preHook">pre hook defns.identity hook</entry></
entry>

3. Save the file.

4, Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service that can be
accessed at the following URL (assuming ORDS is deployed on localhost and listening on
port 8080):

http://localhost:8080/ords/pre hook tests/prehooks/user

In a web browser access the preceding URL.

< Note:

The first time you access the URL, the browser will prompt you to enter your
credentials. Enter the user name as joe.bloggs@example.com and for the
password, use the value you assigned for <chosen-password> when you executed
the install script. Click the link to sign in.

5-93

Chapter 5
Generating Hyperlinks

In response a JSON document is displayed with the JSON object in it.

{"authenticated user":"joe.bloggs€example.com"}

Uninstalling the Examples

This section explains how to uninstall the examples.

The following code snippet shows how to uninstall the examples:

pre hook $ cd sql/
sql $ sgl sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) * kK k kK

Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @uninstall

Generating Hyperlinks

Oracle REST Data Services (ORDS) provides a mechanism to transform relational
result sets into JSON representations, and provides hyperlinks that automatically
paginates the result set to allow navigation between the pages of the result set.

For many use cases, it is required to treat certain columns in the result set as
hyperlinks. ORDS provides the following simple yet powerful mechanisms for adding
hyperlinks to REST resources:

* Primary Key Hyperlinks: A column with the reserved alias $. id identifies the
primary key column of a single row in the result set. Such column values are used
to form a hyperlink that points to a child resource of the current resource that
provides specific details about that particular row in the result set.

* Arbitrary Hyperlinks: A column whose alias starts with the reserved character $
is treated as a hyperlink. The subsequent characters in the column alias indicates
the link relation type.

Primary Key Hyperlinks

ORACLE

This section describes how to add primary key hyperlinks.

Typically, when you are modelling a REST API, you need to model the Resource
Collection Pattern that enumerates the hyperlinks to the other resources.

In a simple use case, a query is against a single table that contains a single column
with primary key that is used to identify each row. The collection resource provides
summary information of each row, and provides a self link for each row. The self link

5-94

ORACLE

Chapter 5
Generating Hyperlinks

points to the resource that provides more detailed information about the row. For example, if
we use the EMP table, we can define a service as shown in the following code snippet:

begin
ords.define service(
p_module name => 'links.example',
p_base path => 'emp-collection/',
p_pattern => '.',
p_source => 'select empno "$.id", empno id, ename employee name from
emp order by empno ename';
commit;
end;

Where:

* Thereserved value '." is used for the p_pattern value. This indicates the path of the
resource template in the base path of the resource module, emp-collection/ in this
example.

e The EMPNO column is aliased as $.1id, to produce a hyperlink.

Following code snippet shows the output produced after invoking the preceding service:

"items": [{
"id": 7369,
"employee name": "SMITH",
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7369"

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 14,
"links": [{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp-collection/"
b A

"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/"

boo o

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
}H

Observe that the value of EMPNO column is concatenated with the URL of the service to
produce a new hyperlink with relation self. The value is not simply concatenated, it is
resolved using the algorithm specified in RFC3986. Therefore, Oracle REST Data Services

5-95

Chapter 5
Generating Hyperlinks

(ORDS) can take the value of the column, and apply the resolution algorithm to
produce a new absolute URL.

¢ See Also:
Section 5 of rfc3986

If you attempt to navigate to this URL, it results in a 404 HTTP status because a
resource handler for that endpoint has not yet been defined. The following code
snippet shows a sample resource handler:

begin
ords.define template(
p_module name => 'links.example',
p_pattern => ':id'");
ords.define handler(
p_module name => 'links.example',
p_pattern => ':id',
p_source type => ords.source type collection item,
p_source => 'select emp.empno "$.id", emp.* from emp
where empno = :id');
commit;
end;

Composite Primary Keys

This section describes the support for composite primary keys.

If multiple columns in a query form the primary key of a row, then each of those
columns must be aliased by $.id. ORDS combines such values to form the relative
path of the item URL.

Related Topics

* Route Patterns Specification

Arbitrary Hyperlinks

This section describes how to create hyperlinks to point to a resource one level up in
the heirarchy.

Rich hypermedia documents have many different hyperlinks. ORDS provides a
mechanism to turn any column value into a hyperlink. Any column whose alias starts
with the s character is treated as a hyperlink. The following example code snippet
shows how an employee resource can provide a hyperlink to their manager:

begin
ords.define handler(
p_module name => 'links.example',
p_pattern => ':id',
p_source type => ords.source type collection item,

ORACLE 5-96

unilink:ORDS_Java_API_Ref

ORACLE

Chapter 5
Generating Hyperlinks

p_source => 'select emp.empno "$.id", emp.*, emp.mgr
"Srelated" from emp where empno = :id');commit;end;

ORDS treats the column named $related to a hyperlink and the column value is treated as a
path relative to the containing base URI of the resource. Similar to how $.1d column value is
transformed into an absolute URI by applying the algorithm specified in RFC 3986.

¢ See Also:
Section 5.2 of rfc3986.

The following example code snippet shows the updated employee resource:

"empno": 7369,
"ename": "SMITH",
"job": "CLERK",
"mgr": 7902,
"hiredate": "1980-12-17T00:00:002Z",
"sal": 800,
"comm": null,
"deptno": 20,
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7369"
b A
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/item"
b A
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
b A
"rel": "related",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7902"

}]

Note that the new related link points to the manager resource of the employee. The
manager resource in turn has a related link that points to their manager, and so on up the
management chain until you reach employee number 7839 who is the president of the
company and whose mgr column is null. If the column value is null, then ORDS will not
create a hyperlink.

"empno": 7839,

"ename": "KING",

"job": "PRESIDENT",

"mgr": null,

"hiredate": "1981-11-17T00:00:00z",
"sal": 5000,

5-97

Chapter 5
Generating Hyperlinks

"comm": null,

"deptno": 10,
"links": [{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp-collection/
7839"

oo Ao
"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/
emp-collection/item"

b A

"rel": "collection",

"href": "http://localhost:8080/ords/ordstest/emp-collection/"
}

About the related Link Relation

This section explains the use of existing registered link relation types instead of
extension link relation types.

As per RFC 8288 Section 2.1.2, any extension link relation must be an URI and not a
simple value. This means that a link relation such as manager is not a legal link relation
according to the specification. A custom link relation type will reduce interoperability. If
your application uses a non-registered link relation type, then only a few clients will be
able to understand the custom link relation type. Conversely, if you use registered link
relation types, then more clients can navigate to your link relations. Oracle
recommends using existing registered link relation types instead of extension link
relation types.

Related Topics
» rfc8288

URL Resolution

This section describes how ORDS resolves column values using URI resolution
algorithm.

Related Topics
o rfc3986

Child Paths

This section describes how to use the relative paths to refer to the child resources.

Following code snippet shows the use of relative paths to refer to child resources:

select'child/resource'"$Srelated" from dual

ORACLE 5-98

unilink:rfc8288
unilink:rfc3986

Chapter 5
Generating Hyperlinks

Assuming that the base URL of the containing resource is https://example.com/ords/
some schema_alias/some/resource, then the link is as shown in the following code snippet:

{

"rel": "related",
"href": "https://example.com/ords/some schema alias/some/child/resource"

}

Ancestor Paths

Absolute URLs

ORACLE

This section provides examples to show how ORDS lets you use ../ and ./ syntax to refer to
parent paths of the current resource.

Following is an example code snippet:

select'../""Sup", './'"$self" from dual

Assuming the base URL of the containing resource is https://example.com/ords/

some_schema alias/some/collection/, then the links will be as shown in the following code
snippet:

{

"rel": "up",

"href": "https://example.com/ords/some schema alias/some/"

}I

{

"rel": "self",

"href": "https://example.com/ords/some schema alias/some/collection/"

}

This section provides examples for the absolute paths.

A hyperlink value can be an absolute path or a fully qualified URL as shown in the following
code snippet:

select'/cool/stuff'"Srelated", 'https://oracle.com/rest'"S$related" from dual

Assuming the base URL of the containing resource is, https://example.com/ords/

some schema_alias/some/collection/ the links will be as shown in the following code
snippet:

{

"rel": "related",

"href": "https://example.com/cool/stuff"
}I

{

"rel": "related",

"href": "https://oracle.com/rest"

}

5-99

Chapter 5
Generating Hyperlinks

You can have multiple links for the same link relation.

Context Root Relative Paths

Dynamic Paths

ORACLE

This section provides example for the context root relative path.

The context root relative path is the URL of the root resource of an ORDS enabled
schema.

The following code snippet shows the context root path for the example discussed in
the preceding sections:

https://example.com/ords/some schema alias/

ORDS provides the following syntax to express the resource paths relative to the URL:

select'”/another/collection/""Srelated"from dual

Assuming the base URL of the containing resource is https://example.com/ords/
some schema alias/some/collection/, the link is as shown in the following code
shippet:

{

"rel": "related",
"href": "https://example.com/ords/some schema alias/another/
collection"

}

Any path starting with ~/1 is resolved relative to the context root path.

This section describes how you can have dynamic values for the hyperlinks.

Examples provided in the preceding sections use literal values for the hyperlinks. The
hyperlink value can be completely dynamic, formed from any value that is a string (or
can be automatically converted to a string). For example, instead of pointing directly to
the employee resource, for managers only, you can point to a more specialized
resource that can show additional information such as the total number of reports. The
GET handler can be red