Oracle® Al Database
Developer's Guide to the Oracle Precompilers

26ali
(G44321-01
October 2025

ORACLE"

Oracle Al Database Developer's Guide to the Oracle Precompilers, 26ai
G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

Primary Author: Jiji Thomas

Contributors: Denis Raphaely, Simon Watt, Radhakrishnan Hari, Nancy Ikeda, Ken Jacobs, Valarie Moore, Tim Smith,
Scott Urman, Arun Desai, Mallikharjun Vemana, Subhranshu Banerjee

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Intended Audience

Structure

Related Documents

Conventions

Changes in This Release

Deprecated Feature

1 Getting Acquainted

1.1 What Is an Oracle Precompiler? 1
1.1.1 Language Alternatives 2
1.2 Why Use an Oracle Precompiler? 3
1.3 Why Use SQL? 3
1.4 Why Use PL/SQL? 3
1.5 What Do the Oracle Precompilers Offer? 4
1.6 Do the Oracle Precompilers Meet Industry Standards? 5
1.6.1 Requirements 5
1.6.2 Compliance 6
1.6.3 FIPS Flagger 6
1.6.4 FIPS Option 6
1.6.5 Certification 6
2 Learning the Basics
2.1 Key Concepts of Embedded SQL Programming 1
2.1.1 Embedded SQL Statements 1
2.1.2 Executable versus Declarative Statements 2
2.1.3 Embedded SQL Syntax 3
2.1.4 Static versus Dynamic SQL Statements 4
2.1.5 Embedded PL/SQL Blocks 4
2.1.6 Host and Indicator Variables 4

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of xix

2.1.7 Oracle Datatypes
2.1.8 Arrays
2.1.9 Datatype Equivalencing
2.1.10 Private SQL Areas, Cursors, and Active Sets
2.1.11 Transactions
2.1.12 Errors and Warnings
2.2 Steps in Developing an Embedded SQL Application
2.3 A Sample Program
2.4 Sample Tables
2.4.1 Sample Data

© © 00 oo o o o1 g o1 O

3 Meeting Program Requirements

3.1 The Declare Section
3.1.1 An Example
3.2 INCLUDE Statements
3.3 The SQLCA
3.4 Oracle Datatypes
3.4.1 Internal Datatypes
3.4.2 CHAR
3.4.3 DATE
3.44 LONG
3.45 LONG RAW
3.4.6 MLSLABEL
3.4.7 NUMBER
3.4.8 RAW
349 ROWID
3.4.10 VARCHAR2
3.4.11 SQL Pseudocolumns and Functions
3.4.12 ROWLABEL Column
3.4.13 External Datatypes
3.4.14 CHAR
3.4.15 CHARF
3.4.16 CHARZ
3.4.17 DATE
3.4.18 DECIMAL
3.4.19 DISPLAY
3.4.20 FLOAT
3.4.21 INTEGER
3.4.22 LONG
3.4.23 LONG RAW
3.4.24 LONG VARCHAR

© © N N N N o oo oo g 0w NN Bk

B R R R R R R R R R R
W NDNMNMNNMNNDRRPRPRPR

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page ii of xix

3.4.25
3.4.26
3.4.27
3.4.28
3.4.29
3.4.30
3.4.31
3.4.32
3.4.33
3.4.34
3.4.35

LONG VARRAW
MLSLABEL
NUMBER
RAW
ROWID
STRING
UNSIGNED
VARCHAR
VARCHAR2
VARNUM
VARRAW

3.5 Datatype Conversion

351
3.5.2

DATE Values
RAW and LONG RAW Values

3.6 Declaring and Referencing Host Variables

3.6.1
3.6.2
3.6.3

Some Examples
VARCHAR Variables
Host Variable Guidelines

3.7 Declaring and Referencing Indicator Variables

3.7.1
3.7.2
3.7.3

INDICATOR Keyword
An Example
Indicator Variable Guidelines

3.8 Datatype Equivalencing

3.8.1
3.8.2
3.8.3
3.84
3.8.5

Why Equivalence Datatypes?

Host Variable Equivalencing

An Example

About Using the CHARF Datatype Specifier
Guidelines

3.9 Globalization Support

3.10 Multibyte Globalization Support Character Sets

3.10.1
3.10.2
3.10.3
3.10.4
3.10.5
3.10.6
3.10.7

Character Strings in Embedded SQL

Dynamic SQL

Embedded DDL

Multibyteultibyte Globalization Support Host Variables
Restrictions

Blank Padding

Indicator Variables

3.11 Concurrent Logons

3.11.1
3.11.2
3.11.3
3.11.4

Some Preliminaries

Default Databases and Connections
Explicit Logons

Single Explicit Logons

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

13
13
13
14
14
14
15
15
15
15
16
16
18
18
18
19
19
19
20
20
20
21
21
21
22
22
24
24
25
26
26
27
27
27
27
27
28
28
29
29
29
29

October 13, 2025
Page iii of xix

3.11.5 Multiple Explicit Logons 32
3.11.6 Implicit Logons 33
3.11.7 Single Implicit Logons 33
3.11.8 Multiple Implicit Logons 34
3.12 Embedding OCI (Oracle Call Interface) Calls 34
3.12.1 About Setting Up the LDA 35
3.12.2 Remote and Multiple Connections 35
3.13 About Developing X/Open Applications 35
3.13.1 Oracle-Specific Issues 36
3.13.2 About Connecting to Oracle 36
3.13.3 Transaction Control 37
3.13.4 OCI Calls 37
3.13.5 Linking 37

4 Using Embedded SQL

4.1 About Using Host Variables

4.1.1

4.2 About Using Indicator Variables

421
422
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

4.3 The Basic SQL Statements

43.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

4.4 Cursors

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

Output versus Input Host Variables

Input Variables

Output Variables

Inserting Nulls

Handling Returned Nulls
Fetching Nulls

Testing for Nulls

Fetching Truncated Values

Selecting Rows

Available Clauses
Inserting Rows

Using Subqueries
Updating Rows

Deleting Rows

Using the WHERE Clause

Declaring a Cursor
Opening a Cursor
Fetching from a Cursor

© © 0O N N N NOo oo o oD B OW W OWOWDNDNNMNDNDPEPR

Closing a Cursor

Using the CURRENT OF Clause 10
Restrictions 10
A Typical Sequence of Statements 10

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page iv of xix

448 A Complete Example 11

4.5 Cursor Variables 12
4.5.1 About Declaring a Cursor Variable 12
4.5.2 Allocating a Cursor Variable 13
4.5.3 Opening a Cursor Variable 13
4.5.4 Fetching from a Cursor Variable 14
45,5 Closing a Cursor Variable 14

5 Using Embedded PL/SQL

5.1 Advantages of PL/SQL 1
5.1.1 Better Performance 1
5.1.2 Integration with Oracle 1
5.1.3 Cursor FOR Loops 2
5.1.4 Subprograms 2
5.1.5 Parameter Modes 2
5.1.6 Packages 3
5.1.7 PL/SQL Tables 3
5.1.8 User-defined Records 4

5.2 About Embedding PL/SQL Blocks 4

5.3 About Using Host Variables 5
5.3.1 An Example 5
5.3.2 A More Complex Example 6
5.3.3 VARCHAR Pseudotype 7

5.4 About Using Indicator Variables 8
5.4.1 Handling Nulls 8
5.4.2 Handling Truncated Values 9

5.5 About Using Host Arrays 9
5.5.1 ARRAYLEN Statement 11

5.6 About Using Cursors 11
5.6.1 An Alternative 12

5.7 Stored Subprograms 13
5.7.1 Creating Stored Subprograms 13
5.7.2 Calling a Stored Subprogram 14
5.7.3 Remote Access 16
5.7.4 Getting Information about Stored Subprograms 17

5.8 About Using Dynamic PL/SQL 17
5.8.1 Restriction 17

6 Running the Oracle Precompilers
6.1 The Precompiler Command 1

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page v of xix

6.2 What Occurs during Precompilation?

6.3 Precompiler Options

6.3.1
6.3.2
6.3.3
6.3.4

Default Values

Determining Current Values
Case Sensitivity
Configuration Files

6.4 Entering Options

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8

On the Command Line

Inline

Advantages

Scope of EXEC ORACLE

From a Configuration File
Advantages

About Using Configuration Files
About Setting Option Values

6.5 Scope of Options
6.6 Quick Reference

6.7 About Using the Precompiler Options

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6.7.9
6.7.10
6.7.11
6.7.12
6.7.13
6.7.14
6.7.15
6.7.16
6.7.17
6.7.18
6.7.19
6.7.20
6.7.21
6.7.22
6.7.23
6.7.24

ASACC

ASSUME_SQLCODE

AUTO_CONNECT

CHAR_MAP

CINCR

CLOSE_ON_COMMIT

CMAX

CMIN

CNOWAIT
CODE
COMMON_NAME
COMMON_PARSER
COMP_CHARSET
COMP_CHARSET
CONFIG
CPOOL
CPP_SUFFIX
CTIMEOUT
DB2_ARRAY
DBMS
DEF_SQLCODE
DEFINE
DURATION
DYNAMIC

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

N NN o oo o oo 0o o1 oA W W NN

NN NNNRRRRRRRRRRRRP R R PR R B p B
W NNP O ®© © © 00 N~NOOTOM-ID_2DMWWDNNINIERERIRPROO

October 13, 2025
Page vi of xix

6.7.25 ERRORS 23

6.7.26 ERRTYPE 23
6.7.27 EVENTS 24
6.7.28 FIPS 24
6.7.29 FORMAT 25
6.7.30 Globalization Support LOCAL 25
6.7.31 HEADER 26
6.7.32 HOLD_CURSOR 26
6.7.33 HOST 27
6.7.34 IMPLICIT_SVPT 27
6.7.35 INAME 28
6.7.36 INCLUDE 29
6.7.37 IRECLEN 29
6.7.38 INTYPE 30
6.7.39 LINES 30
6.7.40 LITDELIM 31
6.7.41 LNAME 31
6.7.42 LRECLEN 32
6.7.43 LTYPE 32
6.7.44 MAXLITERAL 32
6.7.45 MAXOPENCURSORS 33
6.7.46 MAX_ROW_INSERT 34
6.7.47 MODE 34
6.7.48 MULTISUBPROG 35
6.7.49 NATIVE_TYPES 36
6.7.50 NLS_CHAR 36
6.7.51 NLS_LOCAL 36
6.7.52 OBJECTS 37
6.7.53 ONAME 37
6.7.54 ORACA 38
6.7.55 ORECLEN 38
6.7.56 OUTLINE 38
6.7.57 OUTLNPREFIX 39
6.7.58 PAGELEN 40
6.7.59 PARSE 40
6.7.60 PREFETCH 41
6.7.61 RELEASE_CURSOR 41
6.7.62 RUNOUTLINE 42
6.7.63 SELECT_ERROR 42
6.7.64 SQLCHECK 43
6.7.65 STMT_CACHE 44
6.7.66 SQLCHECK 44

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page vii of xix

6.7.67 THREADS 45

6.7.68 TYPE_CODE 46
6.7.69 UNSAFE_NULL 46
6.7.70 USERID 46
6.7.71 UTF16_CHARSET 47
6.7.72 VARCHAR 47
6.7.73 VERSION 48
6.7.74 XREF 48
6.8 Conditional Precompilations 49
6.8.1 An Example 49
6.8.2 Defining Symbols 50
6.9 Separate Precompilations 50
6.9.1 Guidelines 50
6.9.2 Restrictions 50
6.10 Compiling and Linking 51
6.10.1 System-Dependent 51
6.10.2 Multibyte Globalization Support Compatibility 51
7 Defining and Controlling Transactions

7.1 Some Terms You Should Know
7.2 How Transactions Guard Your Database
7.3 How to Begin and End Transactions
7.4 About Using the COMMIT Statement
7.5 About Using the ROLLBACK Statement
7.5.1 Statement-Level Rollbacks
7.6 About Using the SAVEPOINT Statement
7.7 About Using the RELEASE Option
7.8 About Using the SET TRANSACTION Statement
7.9 About Overriding Default Locking
7.9.1 About Using the FOR UPDATE OF Clause
7.9.2 Restrictions
7.9.3 About Using the LOCK TABLE Statement
7.10 About Fetching Across Commits
7.11 About Handling Distributed Transactions
7.12 Guidelines
7.12.1 About Designing Applications
7.12.2 About Obtaining Locks
7.12.3 About Using PL/SQL

© © © © 0 00 N N N NOoO OO PP W WDNNDN PP

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page viii of xix

8 Error Handling and Diagnostics

8.1 The Need for Error Handling 1
8.2 Error Handling Alternatives 1
8.2.1 SQLCODE and SQLSTATE 2
8.2.2 SQLCA 2
8.2.3 ORACA 2
8.3 About Using Status Variables when MODE={ANSI|ANSI14} 2
8.3.1 Some Historical Information 3
8.3.2 Release 1.5 3
8.3.3 Release 1.6 3
8.3.4 Release 1.7 3
8.3.5 About Declaring Status Variables 4
8.3.6 Declaring SQLCODE 4
8.3.7 Declaring SQLSTATE 4
8.3.8 Status Variable Combinations 5
8.3.9 Status Variable Values 8
8.3.10 SQLCODE Values 8
8.3.11 SQLSTATE Values 9
8.4 About Using the SQL Communications Area 15
8.4.1 Declaring the SQLCA 15
8.4.2 About Declaring the SQLCA in Pro*COBOL 16
8.4.3 About Declaring the SQLCA in Pro*FORTRAN 16
8.4.4 What's in the SQLCA? 16
8.4.5 Key Components of Error Reporting 17
8.4.6 Status Codes 17
8.4.7 Warning Flags 17
8.4.8 Rows-Processed Count 17
8.4.9 Parse Error Offset 18
8.4.10 Error Message Text 18
8.4.11 SQLCA Structure 18
8.4.12 SQLCAID 18
8.4.13 SQLCABC 18
8.4.14 SQLCODE 18
8.4.15 SQLERRM 19
8.4.16 SQLERRP 19
8.4.17 SQLERRD 19
8.4.18 SQLWARN 20
8.4.19 SQLEXT 21
8.4.20 PL/SQL Considerations 21
8.4.21 Getting the Full Text of Error Messages 21
8.4.22 Using the WHENEVER Statement 22

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page ix of xix

8.4.23 SQLWARNING 22
8.4.24 SQLERROR 22
8.4.25 NOT FOUND 23
8.4.26 CONTINUE 23
8.4.27 DO 23
8.4.28 GOTO 23
8.4.29 STOP 23
8.4.30 Some Examples 23
8.4.31 Scope 24
8.4.32 Guidelines 25
8.4.33 Getting the Text of SQL Statements 26
8.5 About Using the Oracle Communications Area 28
8.5.1 Declaring the ORACA 29
8.5.2 Enabling the ORACA 29
8.5.3 What's in the ORACA? 29
8.5.4 Choosing Run-time Options 30
8.5.5 ORACA Structure 30
8.5.6 ORACAID 30
8.5.7 ORACABC 30
8.5.8 ORACCHF 30
8.5.9 ORADBGF 31
8.5.10 ORAHCHF 31
8.5.11 ORASTXTF 31
8.5.12 Diagnostics 31
8.5.13 ORASTXT 31
8.5.14 ORASFNM 32
8.5.15 ORASLNR 32
8.5.16 Cursor Cache Statistics 32
8.5.17 ORAHOC 32
8.5.18 ORAMOC 32
8.5.19 ORACOC 32
8.5.20 ORANOR 32
8.5.21 ORANPR 33
8.5.22 ORANEX 33
8.5.23 An Example 33
o Using Host Arrays
9.1 What Is a Host Array? 1
9.2 Why Use Arrays? 1
9.3 Declaring Host Arrays 2
9.3.1 Dimensioning Arrays 2

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page x of xix

9.3.2 Restrictions
9.4 About Using Arrays in SQL Statements
9.5 About Selecting into Arrays
9.5.1 Batch Fetches
9.5.2 Number of Rows Fetched
9.5.3 Restrictions
9.5.4 About Fetching Nulls
9.5.5 About Fetching Truncated Values
9.5.6 About Inserting with Arrays
9.5.7 About Updating with Arrays
9.5.8 About Deleting with Arrays
9.5.9 Restrictions
9.6 About Using Indicator Arrays
9.7 About Using the FOR Clause
9.7.1 Restrictions
9.7.2 Ina SELECT Statement
9.7.3 With the CURRENT OF Clause
9.8 About Using the WHERE Clause
9.9 About Mimicking the CURRENT OF Clause

9.10

About Using SQLERRD(3)

10 Using Dynamic SQL

© © 0 00 0 N N N o o o A BB W W DNDNDNDNDN

=Y
o

10.1
10.2
10.3
10.4
10.5
10.6

What Is Dynamic SQL?

Advantages and Disadvantages of Dynamic SQL
When to Use Dynamic SQL

Requirements for Dynamic SQL Statements
How Dynamic SQL Statements Are Processed
Methods for Using Dynamic SQL

10.6.1 Method 1

10.6.2 Method 2

10.6.3 Method 3

10.6.4 Method 4

10.6.5 Guidelines

10.6.6 Avoiding Common Errors

10.7

About Using Method 1

10.7.1 The EXECUTE IMMEDIATE Statement
10.7.2 An Example

10.8

About Using Method 2

10.8.1 The USING Clause
10.8.2 An Example

10.9

About Using Method 3

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

© 00 00 N OO0 O O A B BB B W W WDNDNDDNPR

October 13, 2025
Page xi of xix

10.9.1 PREPARE 9

10.9.2 DECLARE 10
10.9.3 OPEN 10
10.9.4 FETCH 10
10.9.5 CLOSE 10
10.9.6 An Example 10
10.10 Using Method 4 11
10.10.1 Need for the SQLDA 12
10.10.2 The DESCRIBE Statement 12
10.10.3 What Is a SQLDA? 12
10.10.4 Implementing Method 4 13
10.11 About Using the DECLARE STATEMENT Statement 14
10.11.1 Usage of Host Arrays 14
10.12 About Using PL/SQL 14
10.12.1 With Method 1 15
10.12.2 With Method 2 15
10.12.3 With Method 3 15
10.12.4 With Method 4 15
10.12.5 Caution 16

11 Writing User Exits

11.1 What Is a User Exit?
11.2 Why Write a User Exit?
11.3 Developing a User Exit
11.4 Writing a User Exit
11.4.1 Requirements for Variables
11.4.2 The IAF GET Statement
11.4.3 The IAF PUT Statement
11.5 Calling a User Exit
11.6 Passing Parameters to a User Exit
11.7 Returning Values to a Form
11.7.1 The IAP Constants
11.7.2 Using the SQLIEM Function
11.7.3 Using WHENEVER
11.8 An Example
11.9 About Precompiling and Compiling a User Exit
11.10 About Using the GENXTB Utility
11.11 About Linking a User Exit into SQL*Forms
11.12 Guidelines for SQL*Forms User Exits
11.12.1 Naming the Exit
11.12.2 Connecting to Oracle

0 00 00 00 N N N N O oo oo g AW W W N P

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page xii of xix

11.12.3 Issuing I/O Calls 9
11.12.4 Using Host Variables 9
11.12.5 Updating Tables 9
11.12.6 Issuing Commands 9
11.13 EXEC TOOLS Statements 9
11.13.1 EXEC TOOLS SET 10
11.13.2 EXEC TOOLS GET 10
11.13.3 EXEC TOOLS SET CONTEXT 11
11.13.4 EXEC TOOLS GET CONTEXT 11
11.13.5 EXEC TOOLS MESSAGE 12
A New Features
A.1 About Fetching NULLs without Using Indicator Variables A-1
A.1.1 About Using DBMS=V7 and MODE=ORACLE A-1
A.1.2 Related Error Messages A-1
A.2 Additional Array Insert/Select Syntax A-1
A.3 SQL99 Syntax Support A-2
A.4 About Fixing Execution Plans A-2
A.5 About Using Implicit Buffered Insert A-2
A.6 Dynamic SQL Statement Caching A-3
A.7 Scrollable Cursors A-6
A.8 Platform Endianness Support A-6
A.9 Flexible B Area Length A-6
B Oracle Reserved Words, Keywords, and Namespaces
B.1 Oracle Reserved Words B-1
B.2 Oracle Keywords B-2
B.3 PL/SQL Reserved Words B-3
B.4 Oracle Reserved Namespaces B-8
C Performance Tuning
C.1 What Causes Poor Performance? C-1
C.2 How Can Performance be Improved? C-2
C.3 Using Host Arrays C-2
C.4 Using Embedded PL/SQL C-2
C.5 Optimizing SQL Statements C-3
C.5.1 Optimizer Hints C-3
C.5.2 Giving Hints C-4
C.5.3 Trace Facility C-4

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page xiii of xix

C.6 About Using Indexes Cc-4

C.7 Taking Advantage of Row-Level Locking Cc-4
C.8 About Eliminating Unnecessary Parsing C-5
C.8.1 About Handling Explicit Cursors C-5
C.8.2 Cursor Control C-5
C.8.3 About Using the Cursor Management Options C-6
C.8.4 Private SQL Areas and Cursor Cache C-6
C.8.5 Resource Use C-7
C.8.6 Infrequent Execution C-7
C.8.7 Frequent Execution C-8
C.8.8 Parameter Interactions C-8

D Syntactic and Semantic Checking

D.1 What Is Syntactic and Semantic Checking? D-1
D.2 About Controlling the Type and Extent of Checking D-1
D.3 About Specifying SQLCHECK=SEMANTICS D-2
D.3.1 About Enabling a Semantic Check D-2
D.3.2 About Connecting to Oracle D-2
D.3.3 About Using DECLARE TABLE D-3

= Embedded SQL Commands and Directives

E.1 Summary of Precompiler Directives and Embedded SQL Commands E-2
E.2 About The Command Descriptions E-3
E.3 How to Read Syntax Diagrams E-3
E.3.1 Required Keywords and Parameters E-4
E.3.2 Optional Keywords and Parameters E-4
E.3.3 Syntax Loops E-5
E.3.4 Multi-part Diagrams E-5
E.3.5 Database Objects E-5
E.4 ALLOCATE (Executable Embedded SQL Extension) E-5
E.4.1 Allocate Purpose E-6
E.4.2 Allocate Prerequisites E-6
E.4.3 Allocate Syntax E-6
E.4.4 Allocate Keywords and Parameters E-6
E.4.5 Allocate Usage Notes E-6
E.4.6 Allocate Related Topics E-6
E.5 CLOSE (Executable Embedded SQL) E-6
E.5.1 CLOSE Purpose E-7
E.5.2 CLOSE Prerequisites E-7
E.5.3 CLOSE Syntax E-7

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page xiv of xix

ES5.4
E.5.5
E.5.6
E.5.7

CLOSE Keywords and Parameters
CLOSE Usage Notes

CLOSE Example

CLOSE Related Topics

E.6 COMMIT (Executable Embedded SQL)

E.6.1
E.6.2
E.6.3
E.6.4
E.6.5
E.6.6

COMMIT Purpose

COMMIT Prerequisites

COMMIT Syntax

COMMIT Keyword and Parameters
COMMIT Usage Notes

COMMIT Related Topics

E.7 CONNECT (Executable Embedded SQL Extension)

E7.1
E.7.2
E.7.3
E.7.4
E.7.5
E.7.6

CONNECT Purpose

CONNECT Prerequisites

CONNECT Syntax

CONNECT Keyword and Parameters
CONNECT Usage Notes

CONNECT Related Topics

E.8 DECLARE CURSOR (Embedded SQL Directive)

E.8.1
E.8.2
E.8.3
E.8.4
E.8.5
E.8.6
E.8.7

DECLARE CURSOR Purpose

DECLARE CURSOR Prerequisites

DECLARE CURSOR Syntax

DECLARE CURSOR Keywords and Parameters
DECLARE CURSOR Usage Notes

DECLARE CURSOR Example

DECLARE CURSOR Related Topics

E.9 DECLARE DATABASE (Oracle Embedded SQL Directive)

E9.1
E.9.2
E.9.3
E.9.4
E.9.5
E.9.6
E.9.7

DECLARE DATABASE Purpose

DECLARE DATABASE Prerequisites

DECLARE DATABASE Syntax

DECLARE DATABASE Keywords and Parameters
DECLARE DATABASE Usage Notes

DECLARE DATABASE Example

DECLARE DATABASE Related Topics

E.10 DECLARE STATEMENT (Embedded SQL Directive)

E.10.1
E.10.2
E.10.3
E.10.4
E.10.5
E.10.6
E.10.7

DECLARE STATEMENT Purpose

DECLARE STATEMENT Prerequisites

DECLARE STATEMENT Syntax

DECLARE STATEMENT Keywords and Parameters
DECLARE STATEMENT Usage Notes

DECLARE STATEMENT Example |

DECLARE STATEMENT Example I

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

E-10
E-10
E-10
E-10
E-10
E-11
E-11
E-11
E-11
E-12
E-12
E-12
E-12
E-12
E-12
E-12
E-12
E-13
E-13
E-13
E-13
E-13
E-13
E-13
E-14
E-14
E-14

October 13, 2025
Page xv of xix

E.10.8

DECLARE STATEMENT Related Topics

E.11 DECLARE TABLE (Oracle Embedded SQL Directive)

E.11.1
E.11.2
E.11.3
E.11.4
E.11.5
E.11.6
E.11.7

DECLARE TABLE Purpose

DECLARE TABLE Prerequisites

DECLARE TABLE Syntax

DECLARE TABLE Keywords and Parameters
DECLARE TABLE Usage Notes

DECLARE TABLE Example

DECLARE TABLE Related Topics

E.12 DELETE (Executable Embedded SQL)

E.121
E.12.2
E.12.3
E.12.4
E.12.5
E.12.6
E.12.7

DELETE Purpose

DELETE Prerequisites

DELETE Syntax

DELETE Keywords and Parameters
DELETE Usage Notes

DELETE Example

DELETE Related Topics

E.13 DESCRIBE (Executable Embedded SQL)

E.13.1
E.13.2
E.13.3
E.13.4
E.135
E.13.6
E.13.7

DESCRIBE Purpose

DESCRIBE Prerequisites

DESCRIBE Syntax

DESCRIBE Keywords and Parameters
DESCRIBE Usage Notes

DESCRIBE Example

DESCRIBE Related Topics

E.14 EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

E.141
E.14.2
E.14.3
E.14.4
E.14.5
E.14.6
E.14.7

EXECUTE ... END-EXEC Purpose

EXECUTE ... END-EXEC Prerequisites

EXECUTE ... END-EXEC Syntax

EXECUTE ... END-EXEC Keywords and Parameters
EXECUTE ... END-EXEC Usage Notes

EXECUTE ... END-EXEC Example

EXECUTE ... END-EXEC Related Topics

E.15 EXECUTE (Executable Embedded SQL)

E.15.1
E.15.2
E.15.3
E.15.4
E.155
E.15.6
E.15.7

EXECUTE Purpose

EXECUTE Prerequisites

EXECUTE Syntax

EXECUTE Keywords and Parameters
EXECUTE Usage Notes

EXECUTE Example

EXECUTE Related Topics

E.16 EXECUTE IMMEDIATE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

E-14
E-14
E-14
E-14
E-15
E-15
E-15
E-15
E-15
E-16
E-16
E-16
E-16
E-16
E-17
E-18
E-18
E-18
E-18
E-18
E-19
E-19
E-19
E-19
E-20
E-20
E-20
E-20
E-20
E-20
E-20
E-21
E-21
E-21
E-21
E-21
E-21
E-21
E-22
E-22
E-22
E-22

October 13, 2025
Page xvi of xix

E.16.1
E.16.2
E.16.3
E.16.4
E.16.5
E.16.6
E.16.7

EXECUTE IMMEDIATE Purpose
EXECUTE IMMEDIATE Prerequisites
EXECUTE IMMEDIATE Syntax

EXECUTE IMMEDIATE Keywords and Parameters

EXECUTE IMMEDIATE Usage Notes
EXECUTE IMMEDIATE Example
EXECUTE IMMEDIATE Related Topics

E.17 FETCH (Executable Embedded SQL)

E.17.1
E.17.2
E.17.3
E.17.4
E.17.5
E.17.6
E.17.7

FETCH Purpose

FETCH Prerequisites

FETCH Syntax

FETCH Keywords and Parameters
FETCH Usage Notes

FETCH Example

FETCH Related Topics

E.18 INSERT (Executable Embedded SQL)

E.18.1
E.18.2
E.18.3
E.18.4
E.18.5
E.18.6
E.18.7
E.18.8

INSERT Purpose

INSERT Prerequisites

INSERT Syntax

INSERT Keywords and Parameters
INSERT Usage Notes

INSERT Example |

INSERT Example Il

INSERT Related Topics

E.19 OPEN (Executable Embedded SQL)

E.19.1
E.19.2
E.19.3
E.19.4
E.19.5
E.19.6
E.19.7

OPEN Purpose

OPEN Prerequisites

OPEN Syntax

OPEN Keywords and Parameters
OPEN Usage Notes

OPEN Example

OPEN Related Topics

E.20 PREPARE (Executable Embedded SQL)

E.20.1
E.20.2
E.20.3
E.20.4
E.20.5
E.20.6
E.20.7

PREPARE Purpose

PREPARE Prerequisites

PREPARE Syntax

PREPARE Keywords and Parameters
PREPARE Usage Notes

PREPARE Example

PREPARE Related Topics

E.21 ROLLBACK (Executable Embedded SQL)

E.21.1

ROLLBACK Purpose

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

E-22
E-22
E-22
E-22
E-23
E-23
E-23
E-23
E-23
E-23
E-24
E-24
E-24
E-25
E-25
E-25
E-25
E-25
E-26
E-26
E-27
E-27
E-27
E-27
E-27
E-28
E-28
E-28
E-28
E-28
E-29
E-29
E-29
E-29
E-29
E-29
E-29
E-30
E-30
E-30
E-30
E-30

October 13, 2025
Page xvii of xix

E.21.2
E.21.3
E.21.4
E.21.5
E.21.6
E.21.7
E.21.8
E.21.9

ROLLBACK Prerequisites

ROLLBACK Syntax

ROLLBACK Keywords and Parameters
ROLLBACK Usage Notes

ROLLBACK Example |

ROLLBACK Example Il

ROLLBACK Distributed Transactions
ROLLBACK Example IlI

E.21.10 ROLLBACK Related Topics
E.22 SAVEPOINT (Executable Embedded SQL)

E.22.1
E.22.2
E.22.3
E.22.4
E.22.5
E.22.6

SAVEPOINT Purpose

SAVEPOINT Prerequisites
SAVEPOINT Syntax

SAVEPOINT Keywords and Parameters
SAVEPOINT Usage Notes

SAVEPOINT Related Topics

E.23 SELECT (Executable Embedded SQL)

E.23.1
E.23.2
E.23.3
E.23.4
E.23.5
E.23.6
E.23.7

SELECT Purpose

SELECT Prerequisites

SELECT Syntax

SELECT Keywords and Parameters
SELECT Usage Notes

SELECT Example

SELECT Related Topics

E.24 UPDATE (Executable Embedded SQL)

E.24.1
E.24.2
E.24.3
E.24.4
E.24.5
E.24.6
E.24.7

UPDATE Purpose

UPDATE Prerequisites

UPDATE Syntax

UPDATE Keywords and Parameters
UPDATE Usage Notes

UPDATE Examples

UPDATE Related Topics

E.25 VAR (Oracle Embedded SQL Directive)

E.25.1
E.25.2
E.25.3
E.25.4
E.25.5
E.25.6
E.25.7

VAR Purpose

VAR Prerequisites

VAR Syntax

VAR Keywords and Parameters
VAR Usage Notes

VAR Example

VAR Related Topics

E.26 WHENEVER (Embedded SQL Directive)

E.26.1

WHENEVER Purpose

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

E-30
E-30
E-31
E-31
E-32
E-32
E-32
E-32
E-32
E-32
E-32
E-32
E-33
E-33
E-33
E-33
E-33
E-33
E-33
E-34
E-34
E-35
E-35
E-35
E-35
E-35
E-35
E-36
E-36
E-37
E-38
E-38
E-38
E-38
E-38
E-38
E-38
E-39
E-39
E-39
E-39
E-39

October 13, 2025
Page xviii of xix

E.26.2
E.26.3
E.26.4
E.26.5
E.26.6
E.26.7

Index

WHENEVER Prerequisites
WHENEVER Syntax

WHENEVER Keywords and Parameters
WHENEVER Usage Notes
WHENEVER Example

WHENEVER Related Topics

E-39
E-39
E-40
E-40
E-40
E-41

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xix of xix

List of Tables

2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
5-1
6-1
6-2
6-3
6-4
6-5
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
9-1
9-2
10-1
B-1
c-1
E-1

Embedded SQL Statements

Executable SQL Statements and their Descriptions

Column and Pseudo Column Datatypes

Pseudo Column Datatypes

Parameterless Function Datatypes

External Datatypes

DATE Datatype Example

Conversion Between Internal and External Datatypes

External Datatype Parameters

Examples of VARNUM Values Returned

Globalization Support Parameters

Legal Conversions: PL/SQL Table Row and Host Array Elements

Precompiler Run Commands

System Configuration Files

Precompiler Options Quick Reference

Compatible DBMS and MODE Settings

Input File Extensions

SQLCODE Declarations

SQLSTATE Declarations

Status Variable Combinations - SQLCODE = NO
Status Variable Combinations - SQLCODE = YES
Predefined SQL92 Classes

Oracle Error Mapping to SQLSTATE Status
SQLGLS Parameter Datatypes

SQL Command Function Codes
Valid Host Arrays for SELECT INTO
Valid Host Arrays for UPDATE
Dynamic SQL Method Applicability

Oracle Reserved Namespaces

HOLD_CURSOR RELEASE_CURSOR Interactions

Summary of Embedded SQL Commands and Directives

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

NN NN =N NN R e
w o I~ |\l |\l |O © o o o | |OO |O N e |O |01 |-l> |00 |\l |I—‘ © o N I~ NN

0
0

Q
o]

&
N

October 13, 2025
Page xx of xix

ORACLE

Preface

This chapter contains the following:

¢ Intended Audience

Documentation Accessibility

e Structure

¢ Related Documents

¢ Conventions

This manual is a comprehensive user's guide and reference to the Oracle Pro*COBOL and
Pro*FORTRAN Precompilers. It shows you step-by-step how to develop applications that use
the SQL to access and manipulate data. It explores underlying concepts to advanced
programming techniques using clear examples.

Intended Audience

Structure

Anyone developing new applications or converting existing applications to run in the Oracle
database environment will benefit from reading this guide. Written especially for developers,
this comprehensive treatment of the Oracle Precompilers will also be of value to systems
analysts, project managers, and others interested in embedded SQL applications.

To use this guide effectively, you need a working knowledge of the following subjects:
* Applications programming in a high-level language
e The SQL database language

e Oracle concepts and terminology

This guide contains eleven chapters and five appendixes. Chapters 1 and 2 give you your
bearings, then Chapters 3, 4, 5, and 6 lead you through the essentials of embedded SQL
programming. After reading these chapters, you will be able to write and run useful embedded
SQL applications. Chapters 7, 8, 9, 10, and 11 cover advanced topics. A brief summary of what
you will find in each chapter and appendix follows.

This sample manual contains one part, two chapters, and one appendixes. (Insert this chapter,
appendix, and parts as cross-references so that the links are apparent in HTML.)

Getting Acquainted

This chapter introduces you to the Oracle Precompilers. You look at their role in developing
application programs that manipulate Oracle data and find out what they allow your
applications to do.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page i of iii

ORACLE

Preface

Learning the Basics

This chapter explains how embedded SQL programs do their work. You examine the special
environment in which they operate, the impact of this environment on the design of your
applications, the key concepts of embedded SQL programming, and the steps you take in
developing an application.

Meeting Program Requirements

This chapter shows you how to meet embedded SQL program requirements. You learn the
embedded SQL commands that declare variables, declare communications areas, and
connect to an Oracle database. You also learn about the Oracle datatypes, Globalization
Support (Globalization Support), data conversion, and how to take advantage of datatype
equivalencing. In addition, this chapter shows you how to embed Oracle Call Interface (OCI)
calls in your program and how to develop X/Open applications.

Using Embedded SQL

This chapter teaches you the essentials of embedded SQL programming. You learn how to use
host variables, indicator variables, cursors, cursor variables, and the fundamental SQL
commands that insert, update, select, and delete Oracle data.

Using Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL transaction
processing blocks in your program. You learn how to use PL/SQL with host variables, indicator
variables, cursors, stored subprograms, host arrays, and dynamic SQL.

Running the Oracle Precompilers

This chapter details the requirements for running an Oracle Precompiler. You learn what
happens during precompilation, how to issue the precompiler command, how to specify the
many useful precompiler options, how to do conditional and separate precompilations, and
how to embed OCI calls in your host program.

Defining and Controlling Transactions

This chapter describes transaction processing. You learn the basic techniques that safeguard
the consistency of your database.

Error Handling and Diagnostics

This chapter provides an in-depth discussion of error reporting and recovery. You learn how to
detect and handle errors using the status variable SQLSTATE, the SQLCA structure, and the
WHENEVER statement. You also learn how to diagnose problems using the ORACA.

Using Host Arrays

This chapter looks at using arrays to improve program performance. You learn how to
manipulate Oracle data using arrays, how to operate on all the elements of an array with a
single SQL statement, and how to limit the number of array elements processed.

Using Dynamic SQL

This chapter shows you how to take advantage of dynamic SQL. You are taught four methods--
from simple to complex--for writing flexible programs that, among other things, let users build
SQL statements interactively at run time.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page ii of iii

ORACLE’

Preface

Writing User Exits

This chapter focuses on writing user exits for your SQL*Forms or Oracle Forms applications.
First, you learn the commands that allow a Forms application to interface with user exits. Then,
you learn how to write and link a Forms user exit.

New Features

This appendix highlights the improvements and new features introduced with Release 1.8 of
the Oracle Precompilers.

Oracle Reserved Words Keywords and Namespaces

This appendix lists words that have a special meaning to Oracle and hamespaces that are
reserved for Oracle libraries.

Performance Tuning

This appendix gives you some simple, easy-to-apply methods for improving the performance of
your applications.

Syntactic and Semantic Checking

This appendix shows you how to use the SQLCHECK option to control the type and extent of
syntactic and semantic checking done on embedded SQL statements and PL/SQL blocks.

Embedded SQL Commands and Directives

This appendix contains descriptions of precompiler directives, embedded SQL commands, and
Oracle embedded SQL extensions. These commands are prefaced in your source code with
the keywords, EXEC SQL.

Related Documents

For more information on Developer's Guide to the Oracle Precompilers, refer to the Oracle
Technology Network (OTN):

htt p: // www. or acl e. conml t echnol ogy/ docunent ati on/i ndex. ht m

Conventions

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not directly related
to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that parts of the
statement or command not directly related to the example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary, or in
both locations.

<> Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or none.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page iii of iii

http://www.oracle.com/technology/documentation/index.html

ORACLE

Changes in This Release

This is a summary of important changes in Developer's Guide to the Oracle Precompilers.

Deprecated Feature

The following feature is deprecated in Oracle Al Database Developer's Guide to the Oracle
Precompilers for Oracle Al Database Release 26ai.

Deprecation of FIPS parameters

Starting with Oracle Al Database 26ai, several parameters associated with FI PS_140 are
deprecated.

FI PS_140 in FI PS. ORA can be used to enable FlI PS for all features starting with Oracle Al
Database 26ai. The following FIPS parameters are deprecated:

* SQLNET.ORA: FI PS_140 to enable FIPS for native network encryption
* FIPS.ORA: SSLFI PS_140 to enable FIPS for TLS
e Initialization parameter: DBFI PS_140 to enable FIPS for TDE and DBMS_CRYPTO

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Pageiofi

Getting Acquainted

This chapter introduces you to the Oracle Precompilers. You look at their role in developing
application programs that manipulate Oracle data and find out what they allow your
applications to do. The following questions are answered:

What Is an Oracle Precompiler?

« Why Use an Oracle Precompiler?

e Why Use SQL?
e Why Use PL/SQL?

What Do the Oracle Precompilers Offer?

* Do the Oracle Precompilers Meet Industry Standards?

1.1 What Is an Oracle Precompiler?

An Oracle Precompiler is a programming tool that enables you to embed SQL statements in a
high-level host program. As Figure 1-1 shows, the precompiler accepts the host program as
input, translates the embedded SQL statements into standard Oracle run-time library calls, and
generates a source program that you can compile, link, and execute.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE’

Figure 1-1 Embedded SQL Program Development

Program

Oracle

Precomplier

Host With embedded SQL statements

1.1.1 Language Alternatives

Source With all SQL statements replaced
Program by library calls
Object
Program
Oracle
. Runtime
Linker < Library
(SQL LIB)
Exectable
Program

Chapter 1
What Is an Oracle Precompiler?

Two Oracle Precompilers are available (not on all systems); they support the following high-

level languages:

« C/C++
« COBOL

Meant for different application areas and reflecting different design philosophies, these

languages offer a broad range of programming solutions.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 7

ORACLE

Chapter 1
Why Use an Oracle Precompiler?

@® Note

This guide is supplemented by companion books devoted to using precompilers with
C/C++ and COBOL.

Pro*FORTRAN and SQL*Module for Ada are in "maintenance mode," which means that
Version 1 of these products will not be enhanced with any additional features beyond those
included with Release 1.6. However, Oracle will continue to issue patch releases as bugs are
reported and corrected.

1.2 Why Use an Oracle Precompiler?

The Oracle Precompilers let you include the flexibility of SQL into your application programs.
You can use SQL in popular high-level languages such as C and COBOL. A convenient, easy
to use interface lets your application access Oracle directly.

Unlike many application development tools, the Oracle Precompilers let you create highly
customized applications. For example, you can create user interfaces that incorporate the
latest windowing and mouse technology. You can also create applications that run in the
background without the need for user interaction.

Furthermore, with the Oracle Precompilers you can fine-tune your applications. They allow
close monitoring of resource usage, SQL statement execution, and various run-time indicators.
With this information, you can adjust program parameters for maximum performance.

1.3 Why Use SQL?

If you want to access and manipulate Oracle data, you need SQL. Whether you use SQL
interactively or embedded in an application program depends on the job at hand. If the job
requires the procedural processing power of C or COBOL, or must be done on a regular basis,
use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and easy to
learn. Being nonprocedural, it lets you specify what you want done without specifying how to
do it. A few English-like statements make it easy to manipulate Oracle data one row or many
rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can

e CREATE, ALTER, and DRCP database tables dynamically
e SELECT, | NSERT, UPDATE, and DELETE rows of data
e COW T or ROLLBACK transactions

Before embedding SQL statements in an application program, you can test them interactively
using SQL*Plus. Usually, only minor changes are required to switch from interactive to
embedded SQL.

1.4 Why Use PL/SQL?

An extension to SQL, PL/SQL is a transaction processing language that supports procedural
constructs, variable declarations, and robust error handling. Within the same PL/SQL block,
you can use SQL and all the PL/SQL extensions.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE’

Chapter 1

What Do the Oracle Precompilers Offer?

The main advantage of embedded PL/SQL is better performance. Unlike SQL, PL/SQL
enables group SQL statements logically and send them to Oracle in a block rather than one by
one. This reduces network traffic and processing overhead.

For more information about PL/SQL including how to embed it in an application program, see

Running the Oracle Precompilers.

1.5 What Do the Oracle Precompilers Offer?

As Figure 1-2 shows, the Oracle Precompilers offer many features and benefits that help you
to develop effective, reliable applications.

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

Figure 1-2 Features and Benefits

Runtime
Diagnostics

Separate
Precompilation

Separate
Precompilation

Concurrent
Connects

Away
Operations

Datatype
Equivalencing

Event | Language
Handling | Alternatives
Oracle

Precompilers

Syntax and
Semantics
Checking

User Exists

ANS HSO SQL
Conformance

Highly
Customized
Applications

Dynamic
SQL

Support for
PL/SQL

Automatic
Datatype
Conversion

Runtime
Options

For example, the Oracle Precompilers allow you to

e program your application in any of six high-level languages
e confirm to the ANSI/ISO embedded SQL standard

» take advantage of dynamic SQL, an advanced programming technique that lets your
program accept or build any valid SQL statement at run time

« design and develop highly customized applications

e convert automatically between Oracle internal datatypes and high-level language

datatypes

e improve performance by embedding PL/SQL transaction processing blocks in your
application program

October 13, 2025
Page 4 of 7

ORACLE

Chapter 1
Do the Oracle Precompilers Meet Industry Standards?

« specify useful precompiler options and change their values during precompilation

e use datatype equivalencing to control the way Oracle interprets input data and formats
output data

e precompile several program modules separately, then link them into one executable
program

» check the syntax and semantics of embedded SQL data manipulation statements and
PL/SQL blocks

* access Oracle databases on multiple nodes concurrently using SQL*Net
e use arrays as input and output program variables

e precompile sections of code conditionally so that your host program can run in different
environments

« interface with tools such as Oracle Forms and Oracle Reports through user exits written in
a high-level language

« handle errors and warnings with the ANSI-approved status variables SQLSTATE and
SQLCODE, and the SQL Communications Area (SQLCA) and WHENEVER statement

e use an enhanced set of diagnostics provided by the Oracle Communications Area
(ORACA)

To sum it up, the Oracle Precompilers are full-featured tools that support a professional
approach to embedded SQL programming.

1.6 Do the Oracle Precompilers Meet Industry Standards?

SQL has become the standard language for relational database management systems. This
section describes how the Oracle Precompilers conform to the latest SQL standards
established by the following organizations:

e American National Standards Institute (ANSI)
e International Standards Organization (ISO)
e U.S. National Institute of Standards and Technology (NIST)

Those organizations have adopted SQL as defined in the following publications:

* ANSI Document ANSI X3.135-1992, Database Language SQL
e International Standard ISO/IEC 9075:1992, Database Language SQL
e ANSI Document ANSI X3.168-1992, Database Language Embedded SQL

* NIST Federal Information Processing Standard FIPS PUB 127-2, Database Language
SQL

1.6.1 Requirements

ANSI X3.135-1992 (known informally as SQL92) specifies a "conforming SQL language" and,
to allow implementation in stages, defines three language levels:

e Full SQL
* Intermediate SQL (a subset of Full SQL)
* Entry SQL (a subset of Intermediate SQL)

A conforming SQL implementation must support at least Entry SQL.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE

Chapter 1
Do the Oracle Precompilers Meet Industry Standards?

ANSI X3.168-1992 specifies the syntax and semantics for embedding SQL statements in
application programs written in a standard programming language such as COBOL,
FORTRAN, Pascal, or PL/I.

ISO/IEC 9075-1992 fully adopts the ANSI standards.

FIPS PUB 127-2, which applies to RDBMS software acquired for federal use, also adopts the
ANSI standards. In addition, it specifies minimum sizing parameters for database constructs
and requires a "FIPS Flagger" to identify ANSI extensions.

For copies of the ANSI standards, write to
American National Standards Institute 1430 Broadway New York, NY 10018, USA

For a copy of the ISO standard, write to the national standards office of any ISO participant.
For a copy of the NIST standard, write to

National Technical Information ServiceU.S. Department of Commerce Springfield, VA 22161,
USA

1.6.2 Compliance

The Oracle Precompilers comply 100% with the ANSI, ISO, and NIST standards. As required,
they support Entry SQL and provide a FIPS Flagger.

1.6.3 FIPS Flagger

According to FIPS PUB 127-1, "an implementation that provides additional facilities not
specified by this standard shall also provide an option to flag nonconforming SQL language or
conforming SQL language that may be processed in a nonconforming manner.” To meet this
requirement, the Oracle Precompilers provide the FIPS Flagger, which flags ANSI extensions.
An extension is any SQL element that violates ANSI format or syntax rules, except privilege
enforcement rules. For a list of Oracle extensions to standard SQL, see the Oracle Database
SQL Language Reference.

You can use the FIPS Flagger to identify

e nonconforming SQL elements that might have to be modified if you move the application to
a conforming environment

e conforming SQL elements that might behave differently in another processing environment

Thus, the FIPS Flagger helps you develop portable applications.

1.6.4 FIPS Option

An option named FI PS governs the FIPS Flagger. To enable the FIPS Flagger, you specify
FI PS=YES inline or on the command line. For more information about the command-line option
FI PS, see "FIPS".

1.6.5 Certification

NIST tested the Oracle Precompilers for ANSI Entry SQL compliance using the SQL Test
Suite, which consists of nearly 300 test programs. Specifically, the programs tested for
conformance to the COBOL and FORTRAN embedded SQL standards. As a result, the Oracle
Precompilers were certified 100% ANSI-compliant.

For more information about the tests, write to:

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 1
Do the Oracle Precompilers Meet Industry Standards?
National Computer Systems Laboratory
Attn: Software Standards Testing Program
National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 7

Learning the Basics

This chapter explains the following:

» Key Concepts of Embedded SQL Programming

* Steps in Developing an Embedded SQL Application

e A Sample Program

e Sample Tables

This chapter explains how embedded SQL programs function. You examine the special
environment in which they operate and the impact of this environment on the design of your
applications.

After covering the key concepts of embedded SQL programming and the steps you take in
developing an application, this chapter uses a simple program to illustrate the main points.

2.1 Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build. It discusses the
following topics:

e Embedded SQL Statements

* Executable versus Declarative Statements
e Embedded SQL Syntax

e Static versus Dynamic SQL Statements
e Embedded PL/SQL Blocks

 Host and Indicator Variables

e Oracle Datatypes

* Arrays
» Datatype Equivalencing

* Private SOL Areas_ Cursors__and Active Sets

e Transactions

e Errors and Warnings

2.1.1 Embedded SQL Statements

The term embedded SQL refers to SQL statements placed within an application program.
Because the application program houses the SQL statements, it is called a host program, and
the language in which it is written is called the host language. For example, with the
Pro*COBOL Precompiler you can embed SQL statements in a COBOL host program.

For example, to manipulate and query Oracle data, you use the | NSERT, UPDATE, DELETE, and
SELECT statements. | NSERT adds rows of data to database tables, UPDATE modifies rows,
DELETE removes unwanted rows, and SELECT retrieves rows that meet your search criteria.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 9

ORACLE

Chapter 2
Key Concepts of Embedded SQL Programming

The Oracle Precompilers support all Oracle statements. For example, the powerful SET ROLE
statement lets you dynamically manage database privileges. A role is a named group of related
system and object privileges, related system or object privileges granted to users or other
roles. Role definitions are stored in the Oracle data dictionary. Your applications can use the
SET ROLE statement to enable and disable roles as needed.

Only SQL statements--not SQL*Plus statements--are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and report
formatting.)

2.1.2 Executable versus Declarative Statements

Embedded SQL includes all the interactive SQL statements plus others that allow you to
transfer data between Oracle and a host program. There are two types of embedded SQL
statements: executable and declarative.

Executable statements result in calls to the run-time library SQLLI B. You use them to connect to
Oracle, to define, query, and manipulate Oracle data, to control access to Oracle data, and to
process transactions. They can be placed wherever any other host-language executable
statements can be placed.

Declarative statements, however, do not result in calls to SQLLI B and do not operate on Oracle
data. You use them to declare Oracle objects, communications areas, and SQL variables. They
can be placed wherever host-language declarations can be placed.

Table 2-1 groups the various embedded SQL statements and Table 2-2 groups the various
executable SQL statements.

Table 2-1 Embedded SQL Statements
]

Declarative SQL Description
STATEMENT PURPOSE
ARRAYLEN* To use host arrays with PL/SQL

BEG N DECLARE SECTI ON* To declare host variables
END DECLARE SECTI ON*

DECLARE* To name Oracle objects

| NCLUDE* To copy in files

TYPE* To equivalence datatypes
VAR* To equivalence variables
VHENEVER* To handle run-time errors

*Has no interactive counterpart

Table 2-2 Executable SQL Statements and their Descriptions
|

Executable SQL Descriptions

STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data
ALTER

ANALYZE

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 9

ORACLE Chapter 2
Key Concepts of Embedded SQL Programming

Table 2-2 (Cont.) Executable SQL Statements and their Descriptions

__|
Executable SQL Descriptions

AUDI T

COMMVENT

CONNECT*

CREATE

DROP

GRANT

NOAUDI T

RENAVE

REVOKE

TRUNCATE

CLOSE*

DELETE To query and manipulate Oracle data
EXPLAI NPLAN

FETCH*

| NSERT

LOCK TABLE

OPEN*

SELECT

UPDATE

COWM T To process transactions
ROLLBACK

SAVEPQO NT

SET TRANSACTI ON

DESCRI BE* To use dynamic SQL
EXECUTE*

PREPARE*

ALTER SESSI ON To control sessions
SET ROLE

*Has no interactive counterpart

2.1.3 Embedded SQL Syntax

In your application program, you can freely intermix SQL statements with host-language
statements and use host-language variables in SQL statements. The only special requirement
for building SQL statements into your host program is that you begin them with the keywords
EXEC SQL and end them with the SQL statement terminator for your host language. The
precompiler translates all executable EXEC SQL statements into calls to the run-time library
SQLLIB.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 9

ORACLE

Chapter 2
Key Concepts of Embedded SQL Programming

Most embedded SQL statements differ from their interactive counterparts only through the
adding of a new clause or the use of program variables. Compare the following interactive and
embedded ROLLBACK statements:

ROLLBACK WORK; -- interactive
EXEC SQL ROLLBACK WORK; -- enbedded

For a summary of embedded SQL syntax, see the Oracle Database SQL Language
Reference.

2.1.4 Static versus Dynamic SQL Statements

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and transaction before
run time. That is, you know which SQL commands will be issued, which database tables might
be changed, which columns will be updated, and so on.

However, some applications are required to accept and process any valid SQL statement at
run time. So, you might not know until then all the SQL commands, database tables, and
columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept or build
SQL statements at run time and take explicit control over datatype conversion.

2.1.5 Embedded PL/SQL Blocks

The Oracle Precompilers treat a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables to be
shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC SQL EXECUTE
and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely because
PL/SQL supports all SQL data manipulation and transaction processing commands. For more
information about PL/SQL, see Using Embedded PL/SQL.

2.1.6 Host and Indicator Variables

A host variable is a scalar or array variable declared in the host language and shared with
Oracle, meaning that both your program and Oracle can reference its value. Host variables are
the key to communication between Oracle and your program.

Your program uses input host variables to pass data to Oracle. Oracle uses output host
variables to pass data and status information to your program. The program assigns values to
input host variables; Oracle assigns values to output host variables.

Host variables can be used anywhere an expression can be used. But, in SQL statements,
host variables must be prefixed with a colon (:) to set them apart from Oracle objects.

You can associate any host variable with an optional indicator variable. An indicator variable is
an integer variable that "indicates" the value or condition of its host variable. You use indicator

variables to assign nulls to input host variables and to detect nulls or truncated values in output
host variables. A null is a missing, unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon and appended to its
associated host variable (unless, to improve readability, you precede the indicator variable with
the optional keyword | NDI CATOR).

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 9

ORACLE Chapter 2
Key Concepts of Embedded SQL Programming

2.1.7 Oracle Datatypes

Typically, a host program inputs data to Oracle, and Oracle outputs data to the program. Oracle
stores input data in database tables and stores output data in program host variables. To store
a data item, Oracle must know its datatype, which specifies a storage format and valid range of
values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify how
Oracle stores data in database columns. Oracle also uses internal datatypes to represent
database pseudocolumns, which return specific data items but are not actual columns in a
table.

External datatypes specify how data is stored in host variables. When your host program
inputs data to Oracle, if necessary, Oracle converts between the external datatype of the input
host variable and the internal datatype of the database column. When Oracle outputs data to
your host program, if necessary, Oracle converts between the internal datatype of the database
column and the external datatype of the output host variable.

2.1.8 Arrays

The Oracle Precompilers let you define array host variables (called host arrays) and operate
on them with a single SQL statement. Using the array SELECT, FETCH, DELETE, | NSERT, and
UPDATE statements, you can query and manipulate large volumes of data with ease.

2.1.9 Datatype Equivalencing

The Oracle Precompilers add flexibility to your applications by letting you equivalence
datatypes. That means you can customize the way Oracle interprets input data and formats
output data.

On a variable-by-variable basis, you can equivalence supported host language datatypes to
Oracle external datatypes.

2.1.10 Private SQL Areas, Cursors, and Active Sets

To process a SQL statement, Oracle opens a work area called a private SQL area. The private
SQL area stores information needed to execute the SQL statement. An identifier called a
cursor lets you name a SQL statement, access the information in its private SQL area, and, to
some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle implicitly
declares a cursor for all data definition and data manipulation statements, including SELECT
statements (queries) that return only one row. However, for queries that return more than one
row, to process beyond the first row, you must explicitly declare a cursor (or use host arrays).

The set of rows retrieved is called the active set; its size depends on how many rows meet the
query search condition. You use an explicit cursor to identify the row currently being
processed, which is called the current row.

Imagine the set of rows being returned to a terminal screen. A screen cursor can point to the
first row to be processed, then the next row, and so on. Similarly, an explicit cursor "points" to
the current row in the active set, allowing your program to process the rows one at a time.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 9

ORACLE

Chapter 2
Steps in Developing an Embedded SQL Application

2.1.11 Transactions

A transaction is a series of logically related SQL statements (two UPDATEs that credit one bank
account and debit another, for example) that Oracle treats as a unit, so that all changes
brought about by the statements are made permanent or undone at the same time. The current
transaction consists of all data manipulation statements executed since the last data definition,
COW T, or ROLLBACK statement was executed.

To help ensure the consistency of your database, the Oracle Precompilers let you define
transactions by using the COMM T, ROLLBACK, and SAVEPQ NT statements. COW T makes
permanent any changes made during the current transaction. ROLLBACK ends the current
transaction and undoes any changes made since the transaction began. SAVEPO NT marks the
current point in a transaction; used with ROLLBACK, it undoes part of a transaction.

2.1.12 Errors and Warnings

2.2 Steps

When you execute an embedded SQL statement, it either succeeds or fails, and might result in
an error or warning. You need a way to handle these results. The Oracle Precompilers provide
four error handling mechanisms:

e SQLCODE status variable
e SQLSTATE status variable
e SQL Communications Area (SQLCA) and WHENEVER statement

e Oracle Communications Area (ORACA)

SQLCODE/SQLSTATE Status Variables

After executing a SQL statement, the Oracle Server returns a status code to a variable named
SQLCODE or SQLSTATE. The status code indicates whether the SQL statement executed
successfully or caused an error or warning condition.

SQLCA and WHENEVER Statement

The SQLCA is a data structure that defines program variables used by Oracle to pass run-time
status information to the program. With the SQLCA, you can take different actions based on
feedback from Oracle about work just attempted. For example, you can verify if a DELETE
statement succeeded and if so, how many rows were deleted.

With the WHENEVER statement, you can specify actions to be taken automatically when Oracle
detects an error or warning condition. These actions include continuing with the next
statement, calling a subroutine, branching to a labeled statement, or stopping.

ORACA

When more information is needed about run-time errors than the SQLCA provides, you can
use the ORACA. The ORACA is a data structure that handles Oracle communication. It
contains cursor statistics, information about the current SQL statement, option settings, and
system statistics.

In Developing an Embedded SQL Application

Figure 2-1 walks you through the embedded SQL application development process.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 9

ORACLE’

Figure 2-1 Application Development Process

Steps

Design

Precompile

Results

Execute

yes @
no

> Specs

N Host
Program

Source
Program

Object
Program

Linked
Program

Chapter 2
Steps in Developing an Embedded SQL Application

As you can see, precompiling results in a source file that can be compiled normally. Although
precompiling adds a step to the traditional development process, that step is well worth taking

because it lets you write very flexible applications.

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 9

ORACLE Chapter 2
A Sample Program

2.3 A Sample Program

A good way to get acquainted with embedded SQL is to look at a sample program example.

Handling errors with the WHENEVER statement, the following program connects to Oracle,
prompts the user for an employee number, queries the database for the employee's name,
salary, and commission, then displays the information and exits.

-- declare host and indicator variables

EXEC SQ. BEG N DECLARE SECTI ON,

user name CHARACTER(20);

passwor d CHARACTER(20);

enp_nunber | NTEGER,

enp_nanme CHARACTER(10);

sal ary REAL;

conmi ssi on REAL;

i nd_comm SMALLI NT; -- indicator variable

EXEC SQ. END DECLARE SECTI ON;
-- copy in the SQ Communications Area

EXEC SQ. | NCLUDE SQLCA;
di splay ' Username? ';
read usernane;
di splay ' Password? ';
read password;
-- handl e processing errors

EXEC SQL WHENEVER SQLERROR DO sql _error;
-- log on to Oracle

EXEC SQL CONNECT :username | DENTI FI ED BY : password;
di splay ' Connected to Oracle';
di spl ay ' Enpl oyee number? ';
read enp_nunber;
-- query database for enployee's nane, salary, and conmi ssion
-- and assign values to host variables

EXEC SQ. SELECT ENAME, SAL, COWM

I NTO : enp_name, :salary, :commission:ind_comm
FROM EMP

WHERE EMPNO = : enp_nunber;
di splay ' Enpl oyee Sal ary Commi ssion';
display "-------- ------ -o------- i
-- display enployee's nanme, salary, and commission (if not null)
IFind coom= -1 THEN -- comission is null

di splay enp_nane, salary, 'Not applicable';
ELSE

di splay enp_nane, salary, conm ssion;

ENDI F;
-- release resources and log off the database
EXEC SQ. COW T WORK RELEASE;
di splay 'Have a good day';
exit program

ROUTI NE sql _error

BEG N

-- avoid an infinite loop if the rollback results in an error
EXEC SQ. WHENEVER SQLERROR CONTI NUE;

-- release resources and log off the database
EXEC SQ. ROLLBACK WORK RELEASE;

display 'Processing error’;

exit programw th an error;

END sql _error;

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE’

2.4 Sample Tables

Chapter 2
Sample Tables

Most programming examples in this guide use two sample database tables: DEPT and EVP.

Their definitions follow:

CREATE TABLE DEPT
(DEPTNO NUMBER(2),
DNAME VARCHAR2(14),
LOC VARCHAR2(13))
CREATE TABLE EMP
(EMPNO NUMBER(4) primary key,
ENAME VARCHAR2(10),
JOB VARCHAR2(9),
MGR NUMBER(4) ,
HI REDATE DATE,
SAL NUMBER(7, 2),
COMM NUMBER(7, 2),
DEPTNO NUMBER(2))

2.4.1 Sample Data

Respectively, the DEPT and EMP tables contain the following rows of data:

DEPTNO DNAME LOC

10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS

30 SALES CH CAGO

40 OPERATI ONS BOSTON

EMPNO ENAME JOB MGR HI REDATE SAL COWM DEPTNO

7369 SM TH CLERK 7902 17-DEC-80 800 20

7499 ALLEN SALESPERSON 7698 20- FEB-81 1600 300 30
7521 WARD SALESPERSON 7698 22- FEB-81 1250 500 30

7566 JONES MANAGER 7839 02- APR-81 2975
7654 MARTI N SALESPERSON 7698 28- SEP-81
7698 BLAKE MANAGER 7839 01- MAY-81 2850
7782 CLARK MANAGER 7839 09- JUN-81 2450
7788 SCOTT ANALYST 7566 19- APR-87 3000
7839 KI NG PRESI DENT 17- NOV-81 5000 10
7844 TURNER SALESPERSON 7698 08- SEP-81

7876 ADAMS CLERK 7788 23- MAY-87 1100 20

7900 JAMES CLERK 7698 03-DEC-81 950 30

20
1250 1400 30
30
10
20

1500 30

7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 M LLER CLERK 7782 23-JAN-82 1300 10

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 9

Meeting Program Requirements

This chapter explains the following:
¢ The Declare Section

* INCLUDE Statements

e The SQLCA

* Qracle Datatypes

» Datatype Conversion

» Declaring and Referencing Host Variables

« Declaring and Referencing Indicator Variables

« Datatype Equivalencing

e Globalization Support

* Multibyte Globalization Support Character Sets

e Concurrent Logons
Embedding OCI (Oracle Call Interface) Calls

e About Developing X/Open Applications

Passing data between Oracle and your application program requires host variables, datatype
conversions, event handling, and access to Oracle. This chapter shows you how to meet these
requirements. You learn the embedded SQL commands that declare variables, declare
communication areas, and connect to an Oracle database. You also learn about the Oracle
datatypes, Globalization Support (Globalization Support), data conversion, and how to take
advantage of datatype equivalencing. The final two sections show you how to embed OCI calls
in your program and how to develop X/Open applications.

3.1 The Declare Section

You must declare all program variables to be used in SQL statements (that is, all host
variables) in the Declare Section. If you use an undeclared host variable in a SQL statement,
the precompiler issues an error message. For a complete listing of error messages see Oracle
Database Error Messages.

The Declare Section begins with the statement
EXEC SQL BEG N DECLARE SECTI ON;

and ends with the statement

EXEC SQ. END DECLARE SECTI ON,
In COBOL, the statement terminator is END- EXEC. In FORTRAN, it is a carriage return.

Between these two statements, only the following items are allowed:

¢ host-variable and indicator-variable declarations

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 37

ORACLE

Chapter 3
INCLUDE Statements

« EXEC SQL DECLARE statements
e EXEC SQL I NCLUDE statements
e EXEC SQL VAR statements

e EXEC ORACLE statements

e host-language comments

Multiple Declare Sections are allowed in each precompiled unit. Furthermore, a host program
can contain several independently precompiled units.

3.1.1 An Example

In the following example, you declare four host variables for use later in your program.

EXEC SQ. BEG N DECLARE SECTI ON,
enmp_nunber | NTEGER,

enp_nane CHARACTER(10);

sal ary REAL;

commi ssi on REAL;

EXEC SQ. END DECLARE SECTI ON;

For more information about declaring host variables, see "Declaring and Referencing Host
Variables".

3.2 INCLUDE Statements

The | NCLUDE statement lets you copy files into your host program. It is similar to the COBOL
COPY command. An example follows:

- copy in the SQLCA file
EXEC SQL | NCLUDE SQLCA

When you precompile your program, each EXEC SQL | NCLUDE statement is replaced by a copy
of the file named in the statement.

You can include any file. If a file contains embedded SQL, you must include it because only
included files are precompiled. If you do not specify a file extension, the precompiler assumes
the default extension for source files, which is language-dependent (see your host-language
supplement to this Guide).

You can set a directory path for included files by specifying the precompiler option

| NCLUDE=<pat h>

where path defaults to the current directory. (In this context, a directory is an index of file
locations.)

The precompiler searches first in the current directory, then in the directory specified by

| NCLUDE, and finally in a directory for standard | NCLUDE files. So, you need not specify a
directory path for standard files such as the SQLCA and ORACA. You must still use | NCLUDE to
specify a directory path for nonstandard files unless they are stored in the current directory.

If your operating system is case-sensitive (like UNIX for example), be sure to specify the same
upper/lowercase filename under which the file is stored. The syntax for specifying a directory
path is system-specific. Check your system-specific Oracle manuals.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 37

ORACLE Chapter 3
The SQLCA

3.3 The SQLCA

The SQLCA is a data structure that provides for diagnostic checking and event handling. At run
time, the SQLCA holds status information passed to your program by Oracle. After executing a
SQL statement, Oracle sets SQLCA variables to indicate the outcome, as illustrated in

Figure 3-1.

Figure 3-1 Updating the SQLCA

Host Program
SQL CA

| | Error Codes
D

| | Warning Flag Settings
D

| | Number of Rows
D

| | Diagnostic Test
D

SQL

Oracle7 Server

Thus, you can verify if an | NSERT, UPDATE, or DELETE statement succeeded and if so, how many
rows were affected. Or, if the statement failed, you can get more information about what
happened.

When MODE={ ANSI 13| ORACLE}, you must declare the SQLCA by hardcoding it or by copying it
into your program with the | NCLUDE statement. "About Using the SQL Communications Area"
shows you how to declare and use the SQLCA.

3.4 Oracle Datatypes

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify how
Oracle stores data in database columns. Oracle also uses internal datatypes to represent
database pseudocolumns. An external datatype specifies how data is stored in a host variable.

At precompile time, each host variable in the Declare Section is associated with an external
datatype code. At run time, the datatype code of every host variable used in a SQL statement
is passed to Oracle. Oracle uses the codes to convert between internal and external datatypes.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 37

ORACLE

®

Chapter 3
Oracle Datatypes

Note

You can override default datatype conversions by using dynamic SQL Method 4 or
datatype equivalencing. For information about dynamic SQL Method 4, see "Using
Method 4". For information about datatype equivalencing, see "Datatype

Equivalencing".

3.4.1 Internal Datatypes

Table 3-1 lists the internal datatypes that Oracle uses for database columns and
pseudocolumns.

Table 3-1 Column and Pseudo Column Datatypes

Name Code Description

CHAR 96 <= 255-byte, fixed-length string

DATE 12 7-byte, fixed-length date/time value

LONG 8 <= 2147483647-byte, variable-length string
LONG RAW 24 <= 2147483647-byte, variable-length binary data
MLSLABEL 105 <= 5-byte, variable-length binary label

NUVBER 2 fixed or floating point number

RAW 23 <= 255-byte, variable-length binary data

ROWN D 11 fixed-length binary value

VARCHAR2 1 <= 2000-byte, variable-length string

These internal datatypes can be quite different from host-language datatypes. For example,
the NUMBER datatype was designed for portability, precision (no rounding error), and correct
collating. No host language has an equivalent datatype.

®

Note

All forms of LONG data types (LONG, LONG RAW LONG VARCHAR, LONG VARRAW were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

Brief descriptions of the internal datatypes follow. For more information, see Data Types.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 37

ORACLE Chapter 3
Oracle Datatypes

3.4.2 CHAR

You use the CHAR datatype to store fixed-length character data. How the data is represented
internally depends on the database character set. The CHAR datatype takes an optional
parameter that lets you specify a maximum width up to 255 bytes. The syntax follows:

CHAR] (maxi num wi dt h)]

You cannot use a constant or variable to specify the maximum width; you must use an integer
literal. If you do not specify the maximum width, it defaults to 1. Remember, you specify the
maximum width of a CHAR(n) column in bytes, not characters. So, if a CHAR(n) column stores
multibyte (2-byte) characters, its maximum width is less than n/2 characters.

3.4.3 DATE

You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. The date
portion defaults to the first day of the current month; the time portion defaults to midnight.

Internally, DATEs are stored in a binary format. When converting a DATE column value to a
character string in your program, Oracle uses the default format mask for your session. If you
need other date/time information such as the date in Julian days, use the TO CHAR function with
a format mask. Always convert DATE column values to and from character strings using
(external) character datatypes such as VARCHAR? or STRI NG.

3.4.4 LONG

@® Note

All forms of LONG data types (LONG, LONG RAW LONG VARCHAR, LONG VARRAW were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

You use the LONG datatype to store variable-length character strings. LONG columns can store
text, arrays of characters, or even short documents. The LONG datatype is like the VARCHAR2
datatype, except the maximum width of a LONG column is 2147483647 bytes or two gigabytes.

You can use LONG columns in UPDATE, | NSERT, and (most) SELECT statements, but not in
expressions, function calls, or SQL clauses such as WHERE, GROUP BY, and CONNECT BY. Only
one LONG column is allowed in each database table and that column cannot be indexed.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 37

ORACLE Chapter 3
Oracle Datatypes

3.4.5 LONG RAW

@® Note

All forms of LONG data types (LONG, LONG RAW LONG VARCHAR, LONG VARRAW were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

You use the LONG RAWdatatype to store variable-length binary data or byte strings. The
maximum width of a LONG RAWcolumn is 2147483647 bytes or two gigabytes.

LONG RAWdata is like LONG data, except that Oracle assumes nothing about the meaning of LONG
RAWdata and does no character set conversions when you transmit LONG RAWdata from one
system to another. The restrictions that apply to LONG data also apply to LONG RAWdata.

3.4.6 MLSLABEL

You use the MLSLABEL datatype to store variable-length, binary operating system labels. Oracle
uses labels to control access to data.

You can use the ML.SLABEL datatype to define a database column. You can insert any valid
operating system label into a column of type M_SLABEL. If the label is in text format, Oracle
converts it to a binary value automatically. The text string can be up to 255 bytes long.
However, the internal length of an MLSLABEL value is between 2 and 5 bytes.

You can also select values from a MLSLABEL column into a character variable. Oracle converts
the internal binary value to a VARCHAR?2 value automatically.

3.4.7 NUMBER

You use the NUMBER datatype to store fixed or floating point numbers of virtually any size. You
can specify precision, which is the total number of digits, and scale, which determines where
rounding occurs.

The maximum precision of a NUMBER value is 38; the magnitude range is 1.0E-129 to 9.99E125.
Scale can range from -84 to 127. For example, a scale of -3 means the number is rounded to
the nearest thousand (3456 becomes 3000). A scale of 2 means the value is rounded to the
nearest hundredth (3.456 becomes 3.46).

When you specify precision and scale, Oracle does extra integrity checks before storing the
data. If a value exceeds the precision, Oracle issues an error message; if a value exceeds the
scale, Oracle rounds the value.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 37

ORACLE

3.4.8 RAW

Chapter 3
Oracle Datatypes

You use the RAWdatatype to store binary data or byte strings (a sequence of graphics
characters, for example). RAWdata is not interpreted by Oracle.

The RAWdatatype takes a required parameter that lets you specify a maximum width up to 255
bytes. The syntax follows:

RAW maxi mum wi dt h)

You cannot use a constant or variable to specify the maximum width; you must use an integer
literal.

RAWdata is like CHAR data, except that Oracle assumes nothing about the meaning of RAWdata
and does no character set conversions (from 7-bit ASCIl to EBCDIC Code Page 500 for
example) when you transmit RAWdata from one system to another.

3.4.9 ROWID

Internally, every table in an Oracle database has a pseudocolumn named RON D, which stores
binary values called rowids. RON Ds uniquely identify rows and provide the fastest way to
access particular rows.

3.4.10 VARCHAR2

You use the VARCHAR?2 datatype to store variable-length character strings. How the strings are
represented internally depends on the database character set, which might be 7-bit ASCII or
EBCDIC Code Page 500 for example.

The maximum width of a VARCHAR2 database column is 2000 bytes. To define a VARCHAR2
column, you use the syntax

VARCHAR2(maxi mum wi dt h)

where maximum_width is an integer literal in the range 1 .. 2000.

You specify the maximum width of a VARCHAR2(n) column in bytes, not characters. So, if a
VARCHAR2(n) column stores multibyte (2-byte) characters, its maximum width is less than n/2
characters.

3.4.11 SQL Pseudocolumns and Functions

SQL recognizes the pseudocolumns in Table 3-2, which return specific data items:

Table 3-2 Pseudo Column Datatypes
|

Pseudocolumn Internal Datatype
CURRVAL NUMBER

LEVEL NUMBER

NEXTVAL NUMBER

RON D RON D

ROALABEL M_SLABEL

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 37

ORACLE

Chapter 3
Oracle Datatypes

Table 3-2 (Cont.) Pseudo Column Datatypes

___|
Pseudocolumn Internal Datatype

ROANUM NUMBER

Pseudocolumns are not actual columns in a table. However, pseudocolumns are treated like
columns, so their values must be SELECTed from a table. Sometimes it is convenient to select
pseudocolumn values from a dummy table.

In addition, SQL recognizes the parameterless functions in Table 3-3, which also return specific
data items.

Table 3-3 Parameterless Function Datatypes

Function Internal Datatype
SYSDATE DATE

ub NUMBER

USER VARCHAR2

You can refer to SQL pseudocolumns and functions in SELECT, | NSERT, UPDATE, and DELETE
statements. In the following example, you use SYSDATE to compute the number of months since
an employee was hired:

EXEC SQ. SELECT MONTHS_BETWEEN(SYSDATE, HI REDATE)
I NTO : mont hs_of _service

FROM EMP

WHERE EMPNO = : enp_nunber;

Brief descriptions of the SQL pseudocolumns and functions follow. For details, see the Oracle
Database SQL Language Reference.

CURRVAL returns the current number in a specified sequence. Before you can reference
CURRVAL, you must use NEXTVAL to generate a sequence number.

LEVEL returns the level number of a node in a tree structure. The root is level 1, children of
the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all the rows of a table
into a tree structure. In an ORDER BY or GROUP BY clause, LEVEL segregates the data at each
level in the tree.

You specify the direction in which the query walks the tree (down from the root or up from the
branches) with the PRIOR operator. In the START W TH clause, you specify a condition that
identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a sequence, you
can use it to generate unigue sequence numbers for transaction processing. In the following
example, you use the sequence named partno to assign part numbers:

EXEC SQL | NSERT I NTO PARTS
VALUES (partno. NEXTVAL, :description, :quantity, :price);

If a transaction generates a sequence number, the sequence is incremented when you commit
or rollback the transaction. A reference to NEXTVAL stores the current sequence number in
CURRVAL.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 37

ORACLE

Chapter 3
Oracle Datatypes

ROWID returns a row address in hexadecimal.

ROWNUM returns a number indicating the sequence in which a row was selected from a table.
The first row selected has a ROWNUMof 1, the second row has a ROANUMof 2, and so on. If a
SELECT statement includes an ORDER BY clause, ROMUMs are assigned to the selected rows
before the sort is done.

You can use ROMNUMto limit the number of rows returned by a SELECT statement. Also, you can
use ROWNUMin an UPDATE statement to assign unique values to each row in a table. Using
ROMUMIn the WHERE clause does not stop the processing of a SELECT statement; it just limits the
number of rows retrieved. The only meaningful use of ROANUMin a WHERE clause is

. WHERE ROMNUM < const ant;

because the value of ROWNUMincreases only when a row is retrieved. The following search
condition can never be met because the first four rows are not retrieved:

. WHERE ROANUM = 5;

SYSDATE returns the current date and time. SYSDATE uses the time zone of either the
database host system or the database, depending on the setting of the TI ME_AT_DBTI MEZONE
initialization parameter. See Oracle Database Reference: TIME_AT_DBTIMEZONE for more
information..

UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

3.4.12 ROWLABEL Column

SQL also recognizes the special column ROALABEL, which Oracle creates for every database
table. Like other columns, ROALABEL can be referenced in SQL statements. ROALABEL returns
the operating system label for a row.

A common use of ROALABEL is to filter query results. For example, the following statement
counts only those rows with a security level higher than "unclassified":

EXEC SQL SELECT COUNT(*) I NTO : head_count FROM EMP
WHERE ROALABEL > ' UNCLASSI FI ED ;

3.4.13 External Datatypes

As Table 3-4 shows, the external datatypes include all the internal datatypes plus several
datatypes found in other supported host languages. For example, the STRI NG external datatype
refers to a C null-terminated string, and the DECI MAL datatype refers to COBOL packed
decimals. You use the datatype names in datatype equivalencing, and you use the datatype
codes in dynamic SQL Method 4.

Table 3-4 External Datatypes

Name Code Description

CHAR 196 <= 65535-byte, variable-length character string <=65535-byte, fixed-
length character string (see note 1)

CHARF 96 <= 65535-byte, fixed-length character string

CHARZ 97 <= 65535-byte, fixed-length, null-terminated string (see note 2)

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 9 of 37

ORACLE Chapter 3
Oracle Datatypes

Table 3-4 (Cont.) External Datatypes
]

Name Code Description
DATE 12 7-byte, fixed-length date/time value
DECI MAL 7 COBOL packed decimal
DI SPLAY 91 COBOL numeric character string
FLOAT 4 4-byte or 8-byte floating-point number
| NTEGER 3 2-byte or 4-byte signed integer
LONG 8 <= 2147483647-byte, fixed-length string
LONG RAW 24 <= 217483647-byte, fixed-length binary data (see note 3)
LONG VARCHAR 94 <= 217483643-byte, variable-length string (see note 3)
LONG VARRAW 95 <= 217483643-byte, variable-length binary data
M_SLABEL 106 2..5-byte, variable-length binary data
NUMBER 2 integer or floating-point number
RAW 23 <= 65535-byte, fixed-length binary data (see note 2)
RON D 11 (typically) 13-byte, fixed-length binary value
STRI NG 5 <= 65535-byte, variable-length, null-terminated character string (see
note 2)
UNSI GNED 68 2-byte or 4-byte unsigned integer
VARCHAR 9 <= 65533-byte, variable-length character string (see note 3)
VARCHAR2 1 <= 65535-byte, variable-length character string (see note 2)
VARNUM 6 variable-length binary number
VARRAW 15 <= 65533-byte, variable-length binary data (see note 3)
® Note
1. CHARis datatype 1 when MODE={ ORACLE| ANSI 13| ANSI 14} and datatype 96 when
MODE=ANSI .

2. Maximum size is 32767 (32K) on some platforms.
3. Do notinclude the n-byte length field in an EXEC SQL VAR statement.

@® Note

All forms of LONG data types (LONG, LONG RAW LONG VARCHAR, LONG VARRAW were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 10 of 37

ORACLE Chapter 3
Oracle Datatypes

3.4.14 CHAR

CHAR behavior depends on the settings of the options DBMS and MODE.

3.4.15 CHARF

When MODE=ANSI, Oracle assigns the CHAR datatype to all character host variables. You
use the CHAR datatype to store fixed-length character strings. On most platforms, the
maximum length of a CHAR value is 65535 (64K) bytes. See Table 6-4 for more information
about the relationship between the DBMS and MODE options.

On Input. Oracle reads the number of bytes specified for the input host variable, does not strip
trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle generates an
error. If the input value is all-blank, Oracle treats it like a character value.

On Output. Oracle returns the number of bytes specified for the output host variable, blank-
padding if necessary, then assigns the output value to the target host variable. If a null is
returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle truncates the
value before assigning it to the host variable. If an indicator variable is available, Oracle sets it
to the original length of the output value.

3.4.16 CHARZ

You use the CHARZ datatype to store fixed-length, null-terminated character strings. On most
platforms, the maximum length of a CHARZ value is 65,535 bytes. You should not need this
external type in Pro*COBOL or Pro*FORTRAN.

On input, the CHARZ and STRI NG datatypes work the same way. You must null-terminate the
input value. The null terminator serves only to delimit the string; it is not part of the data.

On output, the CHARZ and CHAR datatypes work the same way. Oracle appends a null terminator
to the output value, which is also blank-padded if necessary.

3.4.17 DATE

You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As Table 3-5
shows, the century, year, month, day, hour (in 24-hour format), minute, and second are stored
in that order from left to right.

Table 3-5 DATE Datatype Example

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example 17-OCT-1994 at 119 194 10 17 14 24 13
1:23:12 PM

The century and year bytes are in excess-100 notation. The hour, minute, and second are in
excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100. The epoch is
January 1, 4712 B.C.E. For this date, the century byte is 53 and the year byte is 88. The hour

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 37

ORACLE

Chapter 3
Oracle Datatypes

byte ranges from 1 to 24. The minute and second bytes range from 1 to 60. The time defaults
to midnight (1, 1, 1).

3.4.18 DECIMAL

With Pro*COBOL, you use the DECI MAL datatype to store packed decimal numbers for
calculation. In COBOL, the host variable must be a signed COMP-3 field with an implied
decimal point. If significant digits are lost during data conversion, Oracle fills the host variable
with asterisks.

3.4.19 DISPLAY

With Pro*COBOL, you use the DI SPLAY datatype to store numeric character data. The DI SPLAY
datatype refers to a COBOL "DISPLAY SIGN LEADING SEPARATE" number, which typically
requires n + 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for PIC
S9(n)VI(d).

3.4.20 FLOAT

You use the FLOAT datatype to store numbers that have a fractional part or that exceed the
capacity of the | NTEGER datatype. The number is represented using the floating-point format of
your computer and typically requires 4 or 8 bytes of storage. You must specify a length for
input and output host variables.

Oracle can represent numbers with greater precision than floating point implementations
because the internal format of Oracle numbers is decimal.

@ Note

In SQL statements, when comparing FLOAT values, use the SQL function ROUND
because FLOAT stores binary (not decimal) numbers; so, fractions do not convert
exactly.

3.4.21 INTEGER

You use the | NTEGER datatype to store numbers that have no fractional part. An integer is a
signed, 2- or 4-byte binary number. The order of the bytes in a word is system-dependent. You
must specify a length for input and output host variables. On output, if the column value is a
floating point number, Oracle truncates the fractional part.

3.4.22 LONG

You use the LONG datatype to store fixed-length character strings. The LONG datatype is like the
VARCHAR? datatype, except that the maximum length of a LONG value is 2147483647 bytes (two
gigabytes).

3.4.23 LONG RAW

You use the LONG RAWdatatype to store fixed-length, binary data or byte strings. The maximum
length of a LONG RAWvalue is 2147483647 bytes (two gigabytes).

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 12 of 37

ORACLE Chapter 3
Oracle Datatypes

LONG RAWdata is like LONG data, except that Oracle assumes nothing about the meaning of LONG
RAWdata and does no character set conversions when you transmit LONG RAWdata from one
system to another.

3.4.24 LONG VARCHAR

You use the LONG VARCHAR datatype to store variable-length character strings. LONG VARCHAR
variables have a 4-byte length field followed by a string field. The maximum length of the string
field is 2147483643 bytes. In an EXEC SQL VAR statement, do not include the 4-byte length
field.

3.4.25 LONG VARRAW

You use the LONG VARRAWdatatype to store binary data or byte strings. LONG VARRAWvariables
have a 4-byte length field followed by a data field. The maximum length of the data field is
2147483643 bytes. In an EXEC SQL VAR statement, do not include the 4-byte length field.

3.4.26 MLSLABEL

You use the MLSLABEL datatype to store variable-length, binary operating system labels. Oracle
uses labels to control access to data. You can use the MLSLABEL datatype to define a column.
You can insert any valid operating system label into a column of type M_SLABEL.

On Input. Oracle translates the input value into a binary label, which must be a valid operating
system label. If the label is invalid, Oracle issues an error message. If the label is valid, Oracle
stores it in the target database column.

On Output. Oracle converts the binary label to a character string, which can be of type CHAR,
CHARZ, STRI NG, VARCHAR, or VARCHAR?.

3.4.27 NUMBER

You use the NUMBER datatype to store fixed or floating point Oracle numbers. You can specify
precision and scale. The maximum precision of a NUMBER value is 38; the magnitude range is
1.0E-129 to 9.99E125. Scale can range from -84 to 127.

NUMBER values are stored in variable-length format, starting with an exponent byte and followed
by up to 20 mantissa bytes. The high-order bit of the exponent byte is a sign bit, which is set
for positive numbers. The low-order 7 bits represent the exponent, which is a base-100 digit
with an offset of 65.

Each mantissa byte is a base-100 digit in the range 1 .. 100. For positive numbers, 1 is added
to the digit. For negative numbers, the digit is subtracted from 101, and, unless there are 20
mantissa bytes, a byte containing 102 is appended to the data bytes. Each mantissa byte can
represent two decimal digits. The mantissa is normalized and leading zeros are not stored. You
can use up to 20 data bytes for the mantissa but only 19 are guaranteed accurate. The 19
bytes, each representing a base-100 digit, allow a maximum precision of 38 digits.

On output, the host variable contains the number as represented internally by Oracle. To
accommodate the largest possible number, the output host variable must be 21 bytes long.
Only the bytes used to represent the number are returned. Oracle does not blank-pad or null-
terminate the output value. If you need to know the length of the returned value, use the
VARNUMdatatype instead. Normally, there is little reason to use this datatype.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 13 of 37

ORACLE Chapter 3
Oracle Datatypes

3.4.28 RAW

You use the RAWdatatype to store fixed-length binary data or byte strings. On most platforms,
the maximum length of a RAWvalue is 65535 bytes. RAWdata is like CHAR data, except that
Oracle assumes nothing about the meaning of RAWdata and does no character set conversions
when you transmit RAW data from one system to another.

3.4.29 ROWID

You use the RON D datatype to store binary rowids in (typically 13-byte) fixed-length fields. The
field size is port-specific. So, check your system-specific Oracle manuals. You can use
VARCHAR2 host variables to store rowids in a readable format. When you select or fetch a rowid
into a VARCHAR? host variable, Oracle converts the binary value to an 18-byte character string
and returns it in the format

BBBBBBBB. RRRR. FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the first row
is 0), and FFFF is the database file. These numbers are hexadecimal. For example, the rowid

0000000E. 000A. 0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a rowid into a VARCHAR2 host variable, then compare the host variable to the
ROW D pseudocolumn in the WHERE clause of an UPDATE or DELETE statement. That way, you can
identify the latest row fetched by a cursor.

@ Note

If you need full portability or your application communicates with a non-Oracle
database through Transparent Gateway, specify a maximum length of 256 (not 18)
bytes when declaring the VARCHAR2 host variable. If your application communicates
with a non-Oracle data source through Oracle Open Gateway, specify a maximum
length of 256 bytes. Though you can assume nothing about its contents, the host
variable will behave normally in SQL statements.

3.4.30 STRING

The STRI NG datatype is like the VARCHAR2 datatype, except that a STRI NG value is always null-
terminated.

On Input. Oracle uses the specified length to limit the scan for a null terminator. If a null
terminator is not found, Oracle generates an error. If you do not specify a length, Oracle
assumes the maximum length, which is 65535 on most platforms.

The minimum length of a STRI NG value is 2 bytes. If the first character is a null terminator and
the specified length is 2, Oracle inserts a null unless the column is defined as NOT NULL. An all-
blank or nullterminated value is stored intact.

On Output. Oracle appends a null byte to the last character returned. If the string length
exceeds the specified length, Oracle truncates the output value and appends a null byte.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 14 of 37

ORACLE Chapter 3
Oracle Datatypes

3.4.31 UNSIGNED

You use the UNSI GNED datatype to store unsigned integers. An unsigned integer is a binary
number of 2 or 4 bytes. The order of the bytes in a word is system-dependent. You must
specify a length for input and output host variables. On output, if the column value is a floating
point number, Oracle truncates the fractional part. You should not need this external type in
Pro*COBOL or Pro*FORTRAN.

3.4.32 VARCHAR

You use the VARCHAR datatype to store variable-length character strings. VARCHAR variables
have a 2-byte length field followed by a <= 65533-byte string field. However, for VARCHAR array
elements, the maximum length of the string field is 65530 bytes. When you specify the length
of a VARCHAR variable, be sure to include 2 bytes for the length field. For longer strings, use the
LONG VARCHAR datatype. In an EXEC SQL VAR statement, do not include the 2-byte length field.

3.4.33 VARCHAR2

When MODE=CRACLE, Oracle assigns the VARCHAR2 datatype to all character host variables. You
use the VARCHAR2 datatype to store variable-length character strings. On most platforms, the
maximum length of a VARCHAR2 value is 65535 bytes.

You specify the maximum length of a VARCHAR2(n) value in bytes, not characters. So, if a
VARCHAR2 (n) variable stores multibyte characters, its maximum length is less than n characters.

On Input. Oracle reads the number of bytes specified for the input host variable, strips any
trailing blanks, then stores the input value in the target database column. Be careful. An
uninitialized host variable can contain nulls. So, always blank-pad a character input host
variable to its declared length. (COBOL PIC X(n) and FORTRAN CHARACTER*n variables do
this automatically.)

If the input value is longer than the defined width of the database column, Oracle generates an
error. If the input value is all-blank, Oracle treats it like a null.

Oracle can convert a character value to a NUMBER column value if the character value
represents a valid number. Otherwise, Oracle generates an error.

On Output. Oracle returns the number of bytes specified for the output host variable, blank-
padding if necessary, then assigns the output value to the target host variable. If a null is
returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle truncates the
value before assigning it to the host variable. If an indicator variable is available, Oracle sets it
to the original length of the output value.

Oracle can convert NUMBER column values to character values. The length of the character host
variable determines precision. If the host variable is too short for the number, scientific notation
is used. For example, if you select the column value abcdefg89 into a host variable of length 6,
Oracle returns the value "1.2E08" to the host variable.

3.4.34 VARNUM

The VARNUMdatatype is like the NUVBER datatype, except that the first byte of a VARNUMvariable
stores the length of the value. On input, you must set the first byte of the host variable to the
length of the value. On output, the host variable contains the length followed by the number as

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 15 of 37

ORACLE Chapter 3
Datatype Conversion

represented internally by Oracle. To accommodate the largest possible number, the host
variable must be 22 bytes long. After selecting a column value into a VARNUMhost variable, you
can check the first byte to get the length of the value.

3.4.35 VARRAW

You use the VARRAWdatatype to store variable-length binary data or byte strings. The VARRAW
datatype is like the RAW datatype, except that VARRAWvariables have a 2-byte length field
followed by a <=65533-byte data field. For longer strings, use the LONG VARRAWdatatype. In an
EXEC SQL VAR statement, do not include the 2-byte length field. To get the length of a VARRAW
variable, simply refer to its length field.

3.5 Datatype Conversion

At precompile time, an external datatype is assigned to each host variable in the Declare
Section. For example, the precompiler assigns the | NTEGER external datatype to integer host
variables. At run time, the datatype code of every host variable used in a SQL statement is
passed to Oracle. Oracle uses the codes to convert between internal and external datatypes.

Before assigning a selected column (or pseudocolumn) value to an output host variable, if
necessary, Oracle converts the internal datatype of the column to the datatype of the host
variable. Likewise, before assigning or comparing the value of an input host variable to a
database column, if necessary, Oracle converts the external datatype of the host variable to
the internal datatype of the column.

However, the datatype of the host variable must be compatible with that of the database
column. It is your responsibility to make sure that values are convertible. For example, if you
try to convert the string value "YESTERDAY" to a DATE column value, you get an error.

Conversions between internal and external datatypes follow the usual data conversion rules.
For instance, you can convert a CHAR value of "1234" to a 2-byte integer. But, you cannot
convert a CHAR value of "65543" (number too large) or "10F" (number not decimal) to a 2-byte
integer. Likewise, you cannot convert a string value that contains alphabetic characters to a
NUMBER value.

Number conversion follows the conventions specified by Globalization Support (Globalization
Support) parameters in the Oracle initialization file. For example, your system might be
configured to recognize a comma (,) instead of a period (.) as the decimal character.

Table 3-6 shows the supported conversions between internal and external datatypes.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 16 of 37

ORACLE

Chapter 3

Datatype Conversion

® Note
Legend:
* Oninput, host string must be in Oracle 'BBBBBBBB.RRRR.FFFF' format.
| = input only On output, column value is returned in same format.
O = output only
e Oninput, host string must be the default DATE character format.

I/0 = input or output On output, column value is returned in same format

e Oninput, host string must be in hexadecimal format. On output, column value is

returned in same format.
e On output, column value must represent a valid number.

* Oninput, length must be less than or equal to 2000.

e Oninput, column value is stored in hexadecimal format. On output, column value

must be in hexadecimal format.

e Oninput, host string must be a valid operating system label in text format. On

output, column value is returned in same format.

e Oninput, host string must be a valid operating system label in raw format. On

output, column value is returned in same format.

Table 3-6 Conversion Between Internal and External Datatypes

External Internal Interna Interna Internal — Internal — Internal Interna Internal Internal —

—CHAR I — l— LONGRAW ~ MLSLABEL — I — — VARCHAR2
DATE LONG NUMBER RAW RON D

CHAR I/O I/O I/O I I/O I/0 110 /0 110

CHARF I/O I/O Ie] I I/O I/0 1/0 1/0 110

CHARZ 110 I/0 1’0 I 1’0 110 110 1/0 110

DATE I/0 I/0 I 110

DECI MAL I} I I/0 110

DI SPLAY I/O I I/0 110

FLOAT 1’0 I I/0 1/0

| NTEGER 110 I 110 110

LONG I/10 I/0 I/0 I I/10 I/O 1/0 /0 1/0

LONG RAW 0] I I/0 110 @]

LONG VARCHAR I/0 I/O I/O I I/O I/0 1/0 1/0 110

LONG VARRAW 1’0 I 110 I/0 1/0

M_SLABEL 110 110 I/0 110

NUMBER I/0 I I/0 110

RAW I/O I I/0 110 110

RON D I I I/0 |

STRI NG 110 I/0 110 110 110 110 1/0 110

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025

Page 17 of 37

ORACLE Chapter 3
Declaring and Referencing Host Variables

Table 3-6 (Cont.) Conversion Between Internal and External Datatypes

External Internal Interna Interna Internal — Internal — Internal Interna Internal Internal —

—CHAR I — | — LONGRAW M.SLABEL — l— — VARCHAR2
DATE LONG NUMBER RAW ROW D

UNSI GNED /0 | /10 110

VARCHAR /0 /0 /0 I /0 /0 110 110 110

VARCHAR2 /0 /0 /0 I /0 /0 110 110 110

VARNUM /0 | /0 110

VARRAW /10 | /10 110 110

3.5.1 DATE Values

When you select a DATE column value into a character host variable, Oracle must convert the
internal binary value to an external character value. So, Oracle implicitly calls the SQL function
TO CHAR, which returns a character string in the default date format. The default is set by the
Oracle initialization parameter Globalization Support DATE FORMAT. To get other information
such as the time or Julian date, you must explicitly call TO_CHAR with a format mask.

A conversion is also necessary when you insert a character host value into a DATE column.
Oracle implicitly calls the SQL function TO_DATE, which expects the default date format. To
insert dates in other formats, you must explicitly call TO_DATE with a format mask.

3.5.2 RAW and LONG RAW Values

When you select a RAWor LONG RAWcolumn value into a character host variable, Oracle must
convert the internal binary value to an external character value. In this case, Oracle returns
each binary byte of RAWor LONG RAWdata as a pair of characters. Each character represents the
hexadecimal equivalent of a nibble (half a byte). For example, Oracle returns the binary byte
11111111 as the pair of characters "FF". The SQL function RAWICHEX performs the same
conversion.

A conversion is also necessary when you insert a character host value into a RAWor LONG RAW
column. Each pair of characters in the host variable must represent the hexadecimal
equivalent of a binary byte. If a character does not represent the hexadecimal value of a
nibble, Oracle issues the following error message:

ORA-01465: invalid hex nunber

3.6 Declaring and Referencing Host Variables

Every program variable used in a SQL statement must be declared as a host variable. You
declare a host variable in the Declare Section according to the rules of the host language.
Normal scoping rules apply. Host variable names can be any length, but only the first 31
characters are significant. For ANSI/ISO compliance, a host variable name must be <= 18
characters long, begin with a letter, and not contain consecutive or trailing underscores.

The external datatype of a host variable and the internal datatype of its source or target
database column need not be the same, but they must be compatible. Table 3-6 shows the
compatible datatypes between which Oracle converts automatically when necessary.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 18 of 37

ORACLE

Chapter 3
Declaring and Referencing Host Variables

The Oracle Precompilers support most built-in host language datatypes. For a list of supported
datatypes, see your host-language supplement. User-defined datatypes are not supported.
Datatype equivalencing is discussed in the next section.

Although references to a user-defined structure are not allowed, the Pro*COBOL Precompiler
lets you reference individual elements of the structure as if they were host variables. You can
use such references wherever host variables are allowed.

3.6.1 Some Examples

In the following example, you declare three host variables, then use a SELECT statement to
search the database for an employee number matching the value of host variable
emp_number. When a matching row is found, Oracle sets output host variables dept_number
and emp_name to the values of columns DEPTNO and ENAME in that row.

- declare host variables

EXEC SQL BEG N DECLARE SECTI ON;
enp_nunber | NTEGER,

enp_nane CHARACTER(10);

dept _nunber | NTECER;

EXEC SQL END DECLARE SECTI ON;

di spl ay ' Enpl oyee nunber? '

read enp_nunber;

EXEC SQL SELECT DEPTNO, ENAME I NTO : dept _nunber, :enp_name
FROM EMP

VWHERE EMPNO = : enp_nunber ;

For more information about using host variables, see "About Using Host Variables".

3.6.2 VARCHAR Variables

You can use the VARCHAR pseudotype to declare variable-length character strings. (A
pseudotype is a datatype not native to your host language.) Recall that VARCHAR variables have
a 2-byte length field followed by a string field. For example, the Pro*COBOL Precompiler
expands the VARCHAR declaration

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 ENAME PI C X(20) VARYI NG
EXEC SQL END DECLARE SECTI ON END- EXEC.

into the following COBOL group item with array and length members:

01 ENAME.
05 ENAME-LEN PI C S9(4) COWP.
05 ENAME- ARR PI C X(20).

To get the length of a VARCHAR, you simply refer to its length field. You need not use a string
function or character-counting algorithm.

For more information about VARCHARS, see your host-language supplement to this Guide.

3.6.3 Host Variable Guidelines

The following guidelines apply to declaring and referencing host variables. A host variable
must be

» declared explicitly in the Declare Section

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 19 of 37

ORACLE’

Chapter 3
Declaring and Referencing Indicator Variables

* prefixed with a colon () in SQL statements and PL/SQL blocks

« of a datatype supported by the host language

- of a datatype compatible with that of its source or target database column
A host variable must not be

e subscripted

« prefixed with a colon in host language statements

e used to identify a column, table, or other Oracle object

* used in data definition statements such as ALTER and CREATE

e an Oracle reserved word (refer to Oracle Reserved Words_ Keywords__and Namespaces)

A host variable can be

* used anywhere an expression can be used in a SQL statement

e associated with an indicator variable

3.7 Declaring and Referencing Indicator Variables

You can associate every host variable with an optional indicator variable. An indicator variable
must be defined in the Declare Section as a 2-byte integer and, in SQL statements, must be
prefixed with a colon and must directly follows its host variable unless you use the keyword

| NDI CATOR.

3.7.1 INDICATOR Keyword

To improve readability, you can precede any indicator variable with the optional keyword
| NDI CATOR. You must still prefix the indicator variable with a colon. The correct syntax is

: <host _vari abl e> | NDI CATOR : <i ndi cat or _vari abl e>

which is equivalent to

: <host _vari abl e>: <i ndi cat or _vari abl e>

You can use both forms of expression in your host program.

3.7.2 An Example

Typically, you use indicator variables to assign nulls to input host variables and detect nulls or
truncated values in output host variables. In the example, you declare three host variables and
one indicator variable, then use a SELECT statement to search the database for an employee
number matching the value of host variable emp_number. When a matching row is found,
Oracle sets output host variables salary and commission to the values of columns SAL and
COWIin that row and stores a return code in indicator variable ind_comm. The next statement
uses ind_comm to select a course of action.

EXEC SQL BEG N DECLARE SECTI ON;
enmp_nunber | NTEGER,

salary REAL;

comm ssi on REAL;

i nd_comm SMALLINT; -- indicator variable
EXEC SQL END DECLARE SECTI ON;

pay REAL; -- not used in a SQL statenent
di spl ay ' Enpl oyee number? ';

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 20 of 37

ORACLE

Chapter 3
Datatype Equivalencing

read enp_nunber;

EXEC SQ. SELECT SAL, COWM

I NTO :sal ary, :conm ssion:ind_comm

FROM EMP

WHERE EMPNO = : enp_nunber;

IFind_conm= -1 THEN -- conmission is null
set pay = salary;

ELSE

set pay = salary + commission;

ENDI F;

For more information, see "About Using Indicator Variables".

3.7.3 Indicator Variable Guidelines

The following guidelines apply to declaring and referencing indicator variables. An indicator
variable must be

« declared explicitly in the Declare Section as a 2-byte integer
- prefixed with a colon (:) in SQL statements

e appended to its host variable in SQL statements and PL/SQL blocks (unless preceded by
the keyword | NDI CATOR)

An indicator variable must not be
« prefixed with a colon in host language statements
e appended to its host variable in host language statements

e an Oracle reserved word

3.8 Datatype Equivalencing

Datatype equivalencing lets you customize the way Oracle interprets input data and the way
Oracle formats output data. On a variable-by- variable basis, you can equivalence supported
host language datatypes to the Oracle external datatypes.

3.8.1 Why Equivalence Datatypes?

Datatype equivalencing is useful in several ways. For example, suppose you want to use a
null-terminated host string in a COBOL program. You can declare a PIC X host variable, then
equivalence it to the external datatype STRI NG, which is always null-terminated.

You can use datatype equivalencing when you want Oracle to store but not interpret data. For
example, if you want to store an integer host array in a LONG RAWdatabase column, you can
equivalence the host array to the external datatype LONG RAW

Also, you can use datatype equivalencing to override default datatype conversions. Unless
Globalization Support parameters in the Oracle initialization file specify otherwise, if you select
a DATE column value into a character host variable, Oracle returns a 9-byte string formatted as
follows:

DD- MON- YY

However, if you equivalence the character host variable to the DATE external datatype, Oracle
returns a 7-byte value in the internal format.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 21 of 37

ORACLE Chapter 3
Datatype Equivalencing

3.8.2 Host Variable Equivalencing

By default, the Oracle Precompilers assign a specific external datatype to every host variable.
(These default assignments are tabulated in your supplement to this Guide.) You can override
the default assignments by equivalencing host variables to Oracle external datatypes in the
Declare Section. This is called host variable equivalencing.

The syntax you use is:

EXEC SQL VAR <host _vari abl e>
IS <ext_type_nanme> [({<length> | <precision> <scale>})];

where, host _vari abl e is an input or output host variable (or host array) declared earlier in the
Declare Section. The VARCHAR and VARRAWexternal datatypes have a 2-byte length field
followed by an n-byte data field, where n lies in the range 1 .. 65533. So, if type_name is
VARCHAR or VARRAW host_variable must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAWexternal datatypes have a 4-byte length field followed by
an n-byte data field, where n lies in the range 1 .. 2147483643. So, if type_name is LONG
VARCHAR or LONG VARRAW host_variable must be at least 5 bytes long.

ext _type_nane is the name of a valid external datatype such as RAWor STRI NG.

| engt h is an integer literal specifying a valid length in bytes. The value of length must be large
enough to accommodate the external datatype.

When type_name is DECI MAL or DI SPLAY, you must specify precision and scale instead of
length. When type_name is VARNUM, ROW D, or DATE, you cannot specify length because it is
predefined. For other external datatypes, length is optional. It defaults to the length of
host_variable.

When specifying length, if type_name is VARCHAR, VARRAW LONG VARCHAR, or LONG VARRAW use
the maximum length of the data field. The precompiler accounts for the length field. If
type_name is LONG VARCHAR or LONG VARRAWand the data field exceeds 65533 bytes, put "-1" in
the length field.

precision and scale are integer literals that represent, respectively, the number of significant
digits and the point at which rounding will occur. For example, a scale of 2 means the value is
rounded to the nearest hundredth (3.456 becomes 3.46); a scale of -3 means the number is
rounded to the nearest thousand (3456 becomes 3000).

You can specify a precision of 1 .. 99 and a scale of -84 .. 99. However, the maximum precision
and scale of a database column are 38 and 127, respectively. So, if precision exceeds 38, you
cannot insert the value of host_variable into a database column. However, if the scale of a
column value exceeds 99, you cannot select or fetch the value into host_variable.

Specify precision and scale only when type _name is DECI MAL or DI SPLAY.

Table 3-7 shows which parameters to use with each external datatype.

3.8.3 An Example

Suppose you want to select employee names from the EMP table, then pass them to a routine
that expects null-terminated strings. You need not explicitly null-terminate the names. Simply
equivalence a host variable to the STRI NG external datatype, as follows:

EXEC SQL BEG N DECLARE SECTI ON,

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 22 of 37

ORACLE

enp_nane CHARACTER(11);
EXEC SQL VAR enp_nane IS STRING (11);
EXEC SQL END DECLARE SECTI ON;

Chapter 3
Datatype Equivalencing

The width of the ENAME column is 10 characters, so you allocate the new emp_name 11
characters to accommodate the null terminator. (Here, length is optional because it defaults to
the length of the host variable.) When you select a value from the ENAVE column into
emp_name, Oracle null-terminates the value for you.

Table 3-7 External Datatype Parameters

External Datatype Length Precision Scale Default Length

CHAR optional n/a n/a declared length of
variable

CHARZ optional n/a n/a declared length of
variable

DATE n/a n/a n/a 7 bytes

DECI MAL n/a required required none

DI SPLAY n/a required required none

FLOAT optional (4 or 8) n/a n/a declared length of
variable

| NTEGER optional (1, 2, or 4) n/a n/a declared length of
variable

LONG optional n/a n/a declared length of
variable

LONG RAW optional n/a n/a declared length of
variable

LONG VARCHAR required (see note 1) n/a n/a none

LONG VARRAW required (see note 1) n/a n/a none

MLSLABEL required n/a n/a none

NUMBER n/a n/a n/a not available

STRI NG optional n/a n/a declared length of
variable

RAW optional n/a n/a declared length of
variable

RON D n/a n/a n/a 13 bytes (see note 2)

UNSI GNED optional (1, 2, or 4) n/a n/a declared length of
variable

VARCHAR required n/a n/a none

VARCHAR2 optional n/a n/a declared length of
variable

VARNUM n/a n/a n/a 22 bytes

VARRAW optional n/a n/a none

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 37

ORACLE Chapter 3
Datatype Equivalencing

@® Note

1. If the data field exceeds 65,533 bytes, pass -1.
2. This length is typical but the default is port-specific.

3.8.4 About Using the CHARF Datatype Specifier

You can use the datatype specifier CHARF in VAR and TYPE statements to equivalence host-
language datatypes to the fixed-length ANSI datatype CHAR--regardless of the DBMS setting.

When MODE=ANSI , specifying the datatype CHAR in a TYPE statement equivalences the host-
language datatype to the fixed-length ANSI datatype CHAR (Oracle external datatype code 96).
However, when MODE=ORACLE, the host-language datatype is equivalenced to the variable-
length datatype VARCHAR2 (code 1), which might not be what you want.

However, you can always equivalence host-language datatypes to the fixed-length ANSI
datatype CHAR. Simply specify the datatype CHARF in the VAR statement. If you use CHARF, the
host-language datatype is equivalenced to the fixed-length ANSI datatype CHAR even when
MODE=CRACLE.

3.8.5 Guidelines

To input VARNUMor DATE values, you must use the Oracle internal format. Keep in mind that
Oracle uses the internal format to output VARNUMand DATE values.

After selecting a column value into a VARNUMhost variable, you can check the first byte to get

the length of the value. Table 3-8 gives some examples of returned VARNUMvalues.

Table 3-8 Examples of VARNUM Values Returned

|
Decimal Value VARNUM Value VARNUM Value VARNUM Value VARNUM Value

Length Byte Exponent Byte Mantissa Bytes Terminator Byte
0 1 128 na na
5 2 193 6 na
-5 3 62 96 102
2767 3 194 28, 68 na
-2767 4 61 74, 34 102
100000 2 195 11 na
abcdefg 5 196 2,24, 46, 68 na

Convert DATE values to a character format such as "DD-MON-YY" because, normally, that is
how your program outputs (displays for example) or inputs them.

If no Oracle external datatype suits your needs exactly, use a VARCHAR2-based or RAWbased
external datatype.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 24 of 37

ORACLE Chapter 3
Globalization Support

3.9 Globalization Support

Although the widely-used 7- or 8-bit ASCIlI and EBCDIC character sets are adequate to
represent the Roman alphabet, some Asian languages, such as Japanese, contain thousands
of characters. These languages require 16 bits (two bytes) to represent each character. How
does Oracle deal with such dissimilar languages?

Oracle provides Globalization Support (Globalization Support), which lets you process single-
byte and multibyte character data and convert between character sets. It also lets your
applications run in different language environments. With Globalization Support, number and
date formats adapt automatically to the language conventions specified for a user session.
Thus, Globalization Support allows users around the world to interact with Oracle in their native
languages.

You control the operation of language-dependent features by specifying various Globalization
Support parameters. You can set default parameter values in the Oracle initialization file.
Table 3-9 shows what each Globalization Support parameter specifies.

Table 3-9 Globalization Support Parameters
]

Globalization Support Parameter Specifies ...

Globalization Support LANGUAGE language-dependent conventions
Globalization Support TERRITORY territory-dependent conventions
Globalization Support_ DATE_FORMAT date format

Globalization Support_ DATE_LANGUAGE language for day and month names
Globalization Support NUMERIC_CHARACTERS decimal character and group separator
Globalization Support_ CURRENCY local currency symbol

Globalization Support_ISO_CURRENCY ISO currency symbol

Globalization Support_ SORT sort sequence

The main parameters are Globalization Support LANGUAGE and Globalization
Support_TERRITORY. Globalization Support_ LANGUAGE specifies the default values for
language-dependent features, which include

e language for Server messages
e language for day and month names
e sort sequence

Globalization Support TERRITORY specifies the default values for territory-dependent
features, which include

e date format

e decimal character

e group separator

* local currency symbol
e ISO currency symbol

You can control the operation of language-dependent Globalization Support features for a user
session by specifying the parameter Globalization Support_LANG as follows:

d obal i zati on Support LANG = <l anguage>_<territory>. <character set>

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 25 of 37

ORACLE

Chapter 3
Multibyte Globalization Support Character Sets

where language specifies the value of Globalization Support LANGUAGE for the user session,
territory specifies the value of Globalization Support. TERRITORY, and character set specifies
the encoding scheme used for the terminal. An encoding scheme (usually called a character
set or code page) is a range of numeric codes that corresponds to the set of characters a
terminal can display. It also includes codes that control communication with the terminal.

You define Globalization Support_LANG as an environment variable (or the equivalent on your
system). For example, on UNIX using the C shell, you might define Globalization
Support_ LANG as follows:

setenv G obalization Support LANG French_France. WE8I SO8859P1

To change the values of Globalization Support parameters during a session, you use the ALTER
SESSI ON statement as follows:

ALTER SESSI ON SET <@ obal i zati on Support_paraneter> = <val ue>

The Oracle Precompilers fully support all the Globalization Support features that allow your
applications to process multilingual data stored in an Oracle database. For example, you can
declare foreign-language character variables and pass them to string functions such as

| NSTRB, LENGTHB, and SUBSTRB. These functions have the same syntax as the | NSTR, LENGTH,
and SUBSTR functions, respectively, but operate on a each-byte basis rather than a in each-
character basis.

You can use the functions Globalization Support_INITCAP, Globalization Support LOWER,
and Globalization Support_UPPER to handle special instances of case conversion. And, you
can use the function Globalization SupportSORT to specify WHERE-clause comparisons
based on linguistic rather than binary ordering. You can even pass Globalization Support
parameters to the TO CHAR, TO DATE, and TO_NUMBER functions.

3.10 Multibyte Globalization Support Character Sets

The Pro*COBOL Precompiler extends support for multibyte Globalization Support character
sets through

e recognition of multibyte character strings by the precompiler in embedded SQL statements.

e the ANSI standard COBOL PIC N datatype declaration clause, which instructs the
precompiler to interpret host character variables as strings of double-byte characters.

Oracle supports multibyte strings through the precompiler run-time library, SQLLIB.

3.10.1 Character Strings in Embedded SQL

A multibyte Globalization Support character string in an embedded SQL statement consists of
a character literal that identifies the string as a multibyte string, followed by the string enclosed
in single quotes.

For example, an embedded SQL statement like

EXEC SQL

SELECT enpno | NTO : enmp_num FROM enp
WHERE enanme=N Kur oda’

END- EXEC.

contains a multibyte character string, since the N character literal preceding the string "Kuroda"
identifies it as a multibyte string.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 26 of 37

ORACLE Chapter 3
Multibyte Globalization Support Character Sets

3.10.2 Dynamic SQL

Because dynamic SQL statements are not processed at precompile time, and Oracle does not
process multibyte Globalization Support strings itself, you cannot embed multibyte
Globalization Support strings in dynamic SQL statements.

3.10.3 Embedded DDL

Columns storing multibyte Globalization Support data cannot be used in embedded data
definition language (DDL) statements. This restriction cannot be enforced when precompiling,
so the use of extended column types, such as NCHAR, within embedded DDL statements
results in an execution error rather than a precompile error.

3.10.4 Multibyteultibyte Globalization Support Host Variables

The Pro*COBOL Precompiler uses the ANSI standard PIC N clause to declare host variables
for multibyte character data. Variables declared using the PIC N clause are recognized as
string variables of double-byte characters.

e Globalization Support LOCAL
¢ VARCHAR

For more information about these options, see Running the Oracle Precompilers.

3.10.5 Restrictions

Tables Disallowed.

Host variables declared using the PIC N datatype must not be tables.

No Odd Byte Widths. Oracle CHAR columns should not be used to store multibyte
Globalization Support characters. A run-time error is generated if data with an odd number of
bytes is fetched from a single-byte column into a multibyte Globalization Support (PIC N) host
variable.

No Host Variable Equivalencing. multibyte Globalization Support character variables cannot
be equivalenced using an EXEC SQL VAR statement.

No Dynamic SQL. Dynamic SQL is not available for Globalization Support multibyte character
string host variables in Pro*COBOL.

3.10.6 Blank Padding

When a Pro*COBOL character variable is defined as a multibyte Globalization Support
variable, the following blank padding and blank stripping rules apply, depending on the external
datatype of the variable. See External Datatypes.

CHAREF. This is the default character type when a multibyte character string is defined. Input
data is stripped of any trailing double-byte spaces. However, if a string consists only of double-
byte spaces, a single double-byte space is left in the buffer to act as a sentinel.

Output host variables are blank padded with double-byte spaces.

VARCHAR. On input, host variables are not stripped of trailing double-byte spaces. The length
component is assumed to be the length of the data in characters, not bytes.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 27 of 37

ORACLE Chapter 3
Concurrent Logons

On output, the host variable is not blank padded at all. The length of the buffer is set to the
length of the data in characters, not bytes.

STRING/LONG VARCHAR. These host variables are not supported for Globalization Support
data, since they can only be specified using dynamic SQL or datatype equivalencing, neither of
which is supported for Globalization Support data.

3.10.7 Indicator Variables

You can use indicator variables with multibyte Globalization Support character variables as use
you would with any other variable, except column length values are expressed in characters
instead of bytes. For a list of possible values, see "About Using Indicator Variables".

3.11 Concurrent Logons

The Oracle Precompilers support distributed processing through SQL*Net. Your application
can concurrently access any combination of local and remote databases or make multiple
connections to the same database. In Figure 3-2, an application program communicates with
one local and three remote Oracle databases. ORA2, ORA3, and ORA4 are simply logical
names used in CONNECT statements.

Figure 3-2 Connecting through SQL*Net

Application

Program Lo

Oracle
Database

Oracle

Database Database

Database

By eliminating the boundaries in a network between different machines and operating systems,
SQL*Net provides a distributed processing environment for Oracle tools. This section shows
you how the Oracle Precompilers support distributed processing through SQL*Net. You learn
how your application can

e access other databases directly or indirectly
e concurrently access any combination of local and remote databases

e make multiple connections to the same database

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 28 of 37

ORACLE Chapter 3
Concurrent Logons

3.11.1 Some Preliminaries

The communicating points in a network are called nodes. SQL*Net lets you transmit
information (SQL statements, data, and status codes) over the network from one node to
another.

A protocol is a set of rules for accessing a network. The rules establish such things as
procedures for recovering after a failure and formats for transmitting data and checking errors.

The SQL*Net syntax for connecting to the default database in the local domain is simply to use
the service name for the database.

If the service name is not in the default (local) domain, you must use a global specification (all
domains specified). For example:

HR. XX. ORACLE. COM

3.11.2 Default Databases and Connections

Each node has a default database. If you specify a node but no database in your CONNECT
statement, you connect to the default database on the named local or remote node. If you
specify no database and no node, you connect to the default database on the current node.
Although it is unnecessary, you can specify the default database and current node in your
CONNECT statement.

A default connection is made using a CONNECT statement without an AT clause. The connection
can be to any default or nondefault database at any local or remote node. SQL statements
without an AT clause are executed against the default connection. Conversely, a nondefault
connection is made by a CONNECT statement that has an AT clause. A SQL statement with an
AT clause is executed against the nondefault connection.

All database names must be unique, but two or more database names can specify the same
connection. That is, you can have multiple connections to any database on any node.

3.11.3 Explicit Logons

Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT :userid | DENTI FI ED BY : password

Or, you might use

EXEC SQ. CONNECT : usr_pwd;

where usr_pwd contains usernamelpassword.

You can also log on automatically as shown. If you do not specify a database and node, you
are connected to the default database at the current node. If you want to connect to a different
database, you must explicitly identify that database.

With explicit logons, you connect to another database directly, giving the connection a name
that will be referenced in SQL statements. You can connect to several databases at the same
time and to the same database multiple times.

3.11.4 Single Explicit Logons

In the following example, you connect to a single nondefault database at a remote node:

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 29 of 37

ORACLE

Chapter 3
Concurrent Logons

@® Note

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide for
password management guidelines and other security recommendations.

- Declare necessary host variabl es.

EXEC SQL BEG N DECLARE SECTI ON;

user name CHARACTER(10);

password CHARACTER(10);

db_string CHARACTER(20);

EXEC SQL END DECLARE SECTI ON

set usernane ‘scott';

set password = 'tiger';

set db_string = 'd:newyork-nondef';

- Assign a unique nane to the database connecti on.
EXEC SQL DECLARE db_nane DATABASE;

- Connect to the nondefault database

EXEC SQ. CONNECT : username | DENTI FI ED BY : password
AT db_nane USING :db_string;

The identifiers in this example serve the following purposes:

e The host variables username and password identify a valid user.

e The host variable db_string contains the SQL*Net syntax for logging on to a nondefault
database at a remote node using the DECnet protocol.

* The undeclared identifier db_name names a nondefault connection; it is an identifier used
by Oracle, not a host or program variable.

The USING clause specifies the network, computer, and database to be associated with
db_name. Later, SQL statements using the AT clause (with db_name) are executed at the
database specified by db_string.

Alternatively, you can use a character host variable in the AT clause, as the following example
shows:

EXEC SQL BEG N DECLARE SECTI ON;

user name CHARACTER(10);

passwor d CHARACTER(10);

db_name CHARACTER(10);

db_string CHARACTER(20);

EXEC SQL END DECLARE SECTI ON;
set username = 'scott';

set password = 'tiger';

set db_name = 'oraclel';

set db_string = 'd: newyork-nondef';

- connect to the nondefault database
EXEC SQL CONNECT : username | DENTI FI ED BY : password
AT :db_nanme USING :db_string;

If db_name is a host variable, the DECLARE DATABASE statement is not needed. Only if
db_name is an undeclared identifier must you execute a DECLARE db_name DATABASE
statement before executing a CONNECT ... AT db_name statement.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 30 of 37

ORACLE

Chapter 3
Concurrent Logons

SQL Operations. If granted the privilege, you can execute any SQL data manipulation
statement at the nondefault connection. For example, you might execute the following
sequence of statements:

EXEC SQL AT db_name SELECT ...
EXEC SQL AT db_name |NSERT ...
EXEC SQL AT db_name UPDATE ...

In the next example, db_name is a host variable:

EXEC SQ AT :db_nanme DELETE ...

If db_name is a host variable, all database tables referenced by the SQL statement must be
defined in DECLARE TABLE statements.

Cursor Control. Cursor control statements such as OPEN, FETCH, and CLOSE are
exceptions--they never use an AT clause. If you want to associate a cursor with an explicitly
identified database, use the AT clause in the DECLARE CURSOR statement, as follows:

EXEC SQL AT :db_name DECLARE enp_cursor CURSOR FOR ...
EXEC SQL OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor ...

EXEC SQL CLOSE enp_cursor;

If db_name is a host variable, its declaration must be within the scope of all SQL statements
that refer to the declared cursor. For example, if you open the cursor in one subprogram, then
fetch from it in another, you must declare db_name globally or pass it to each subprogram.

When opening, closing, or fetching from the cursor, you do not use the AT clause. The SQL
statements are executed at the database named in the AT clause of the DECLARE CURSOR
statement or at the default database if no AT clause is used in the cursor declaration.

The AT :host_variable clause enables change the connection associated with a cursor.
However, you cannot change the association while the cursor is open. Consider the following
example:

EXEC SQ. AT :db_nane DECLARE enp_cursor CURSOR FOR ...
set db_name = 'oraclel';

EXEC SQL OPEN enp_cursor;

EXEC SQL FETCH enp_cursor INTO ...

set db_name = 'oracle2';

EXEC SQ. OPEN enp_cursor; -- illegal, cursor still open
EXEC SQL FETCH enp_cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute the second OPEN
statement. Separate cursors are not maintained for different connections; there is only one
emp_cursor, which must be closed before it can be reopened for another connection. To debug
the last example, simply close the cursor before reopening it, as follows:

EXEC SQL CLOSE enp_cursor; -- close cursor first
set db_name = 'oracle2';

EXEC SQL OPEN enp_cursor;

EXEC SQL FETCH enp_cursor INTO ...

Dynamic SQL. Dynamic SQL statements are similar to cursor control statements in that some
never use the AT clause. For dynamic SQL Method 1, you must use the AT clause if you want
to execute the statement at a nondefault connection. An example follows:

EXEC SQL AT :db_name EXECUTE | MVEDI ATE :sql _stnt;

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT statement
if you want to execute the statement at a nondefault connection. All other dynamic SQL

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 31 of 37

ORACLE

Chapter 3
Concurrent Logons

statements such as PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE never use the AT
clause. The next example shows Method 2:

EXEC SQL AT :db_name DECLARE sql _stnmt STATEMENT;
EXEC SQL PREPARE sqgl _stnmt FROM :sql _string;
EXEC SQL EXECUTE sql _stnt;

The following example shows Method 3:

EXEC SQL AT :db_nanme DECLARE sql _stnt STATEMENT;
EXEC SQL PREPARE sql _stnt FROM :sgl _string;

EXEC SQL DECLARE enp_cursor CURSOR FOR sql _stnt;
EXEC SQL OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor INTO ...

EXEC SQL CLOSE enp_cursor;

You need not use the AT clause when connecting to a remote database unless you open two
or more connections simultaneously (in which case the AT clause is needed to identify the
active connection). To make the default connection to a remote database, use the following
syntax:

EXEC SQL CONNECT : username | DENTI FI ED BY : password
USI NG : db-string;

3.11.5 Multiple Explicit Logons

You can use the AT db_name clause for multiple explicit logons, just as you would for a single
explicit logon. In the following example, you connect to two nondefault databases concurrently:

EXEC SQL BEG N DECLARE SECTI ON;
user name CHARACTER(10);
passwor d CHARACTER(10);
db_stringl CHARACTER(20);
db_string2 CHARACTER(20);

EXEC SQL END DECLARE SECTI ON;

set username = 'scott';

set password = 'tiger';

set db_stringl = 'New_ York';

set db_string2 = 'Boston';

- give each database connection a unique nane
EXEC SQL DECLARE db_namel DATABASE;

EXEC SQL DECLARE db_name2 DATABASE;

- connect to the two nondefault databases

EXEC SQL CONNECT : username | DENTI FI ED BY : password
AT db_namel USING :db_stringl;

EXEC SQL CONNECT : username | DENTI FI ED BY : password
AT db_name2 USING :db_string2;

The undeclared identifiers db_namel and db_name2 are used to name the default databases
at the two nondefault nodes so that later SQL statements can refer to the databases by name.

Alternatively, you can use a host variable in the AT clause, as the following example shows:

EXEC SQL BEG N DECLARE SECTI ON;
user name CHARACTER(10);
passwor d CHARACTER(10);
db_name CHARACTER(10);
db_string CHARACTER(20);

EXEC SQL END DECLARE SECTI ON;

set username = 'scott';

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 32 of 37

ORACLE

Chapter 3
Concurrent Logons

set password = 'tiger';
FOR EACH nondefaul t dat abase

- get next database nane and SQL*Net string
di splay 'Database Nane? '

read db_nane;

display 'SQL*Net String? ';

read db_string;

- connect to the nondefault database

EXEC SQL CONNECT : username | DENTI FI ED BY : password
AT :db_nanme USING :db_string;
ENDFOR;

You can also use this method to make multiple connections to the same database, as the
following example shows:

set usernane ‘scott';

set password = 'tiger';

set db_string = 'd: newyork-nondef';
FOR EACH nondef aul t dat abase

- get next database nane
di spl ay ' Dat abase Nane? ';
read db_nane;

- connect to the nondefault database
EXEC SQL CONNECT : usernane | DENTI FI ED BY : password
AT :db_name USING :db_string;

ENDFCR;

You must use different database names for the connections, even if they use the same
SQL*Net string.

3.11.6 Implicit Logons

Implicit logons are supported through the Oracle distributed database option, which does not
require explicit logons. For example, a distributed query allows a single SELECT statement to
access data on one or more nondefault databases.

The distributed query facility depends on database links, which assign a name to a CONNECT
statement rather than to the connection itself. At run time, the embedded SELECT statement is
executed by the specified Oracle Server, which connects implicitly to the nondefault
database(s) to get the required data.

3.11.7 Single Implicit Logons

In the next example, you connect to a single nondefault database. First, your program
executes the following statement to define a database link (database links are usually
established interactively by the DBA or user):

EXEC SQL CREATE DATABASE LI NK db_Iink
CONNECT TO usernane | DENTI FI ED BY password
USI NG ' d: newyor k- nondef ' ;

Then, the program can query the nondefault EMP table using the database link, as follows:

EXEC SQL SELECT ENAME, JOB INTO :enp_nane, :job_title
FROM emp@b_1I i nk
WHERE DEPTNO = : dept _nunber;

The database link is not related to the database name used in the AT clause of an embedded
SQL statement. It simply tells Oracle where the nondefault database is located, the path to it,

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 33 of 37

ORACLE

Chapter 3
Embedding OCI (Oracle Call Interface) Calls

and the Oracle username and password to use. The database link is stored in the data
dictionary until it is explicitly dropped.

In our example, the default Oracle Server logs on to the nondefault database through SQL*Net
using the database link db_link. The query is submitted to the default server, but is "forwarded"
to the nondefault database for execution.

To make referencing the database link easier, you can create a synonym as follows (again, this
is usually done interactively):

EXEC SQL CREATE SYNONYM enp FOR enp@b_I i nk;

Then, your program can query the nondefault EMP table, as follows:

EXEC SQL SELECT ENAME, JOB INTO :enp_nane, :job_title
FROM enp
WHERE DEPTNO = : dept _nunber;

This provides location transparency for emp.

3.11.8 Multiple Implicit Logons

In the following example, you connect to two nondefault databases concurrently. First, you
execute the following sequence of statements to define two database links and create two
synonyms:

EXEC SQL CREATE DATABASE LINK db_linkl

CONNECT TO usernanel | DENTI FI ED BY passwordl
USI NG ' d: newyor k- nondef ' ;
EXEC SQL CREATE DATABASE LINK db_link2

CONNECT TO usernane2 | DENTI FI ED BY passwor d2
USI NG ' d: chi cago- nondef ' ;

EXEC SQL CREATE SYNONYM enp FOR enmp@lb_| i nk1;
EXEC SQL CREATE SYNONYM dept FOR dept @lb_I i nk2;

Then, your program can query the nondefault EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LCC
FROM enp, dept
WHERE enp. DEPTNO = dept . DEPTNO AND DEPTNO = : dept _nunber;

Oracle executes the query by performing a join between the nondefault EMP table at db_link1
and the nondefault DEPT table at db_link2.

3.12 Embedding OCI (Oracle Call Interface) Calls

The Oracle Precompilers let you embed OCI calls in your host program. Just take the following
steps:

1. Declare the OCI Logon Data Area (LDA) outside the Declare Section.
2. Connect to Oracle using the embedded SQL statement CONNECT, not the OCI call OLCG.
3. Call the Oracle run-time library routine SQLLDA to store the connect information in the LDA.

That way, the Oracle Precompiler and the OCI "know" that they are working together. However,
there is no sharing of Oracle cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the Oracle run-
time library manages connections and maintains the HDA for you.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 34 of 37

ORACLE Chapter 3
About Developing X/Open Applications

3.12.1 About Setting Up the LDA

You set up the LDA by issuing the OCI call
SQLLDA(I da) ;

where Ida identifies the LDA data structure. The format of this call is language-dependent. If
the CONNECT statement fails, the Ida_rc field in the Ida is set to 1012 to indicate the error.

3.12.2 Remote and Multiple Connections

A call to SQLLDA sets up an LDA for the connection used by the most recently executed SQL
statement. To set up the different LDAs needed for additional connections, just call SQLLDA
with a different Ida after each CONNECT. In the following example, you connect to two nondefault
databases concurrently:

EXEC SQL BEG N DECLARE SECTI ON,

user name CHARACTER(10);

passwor d CHARACTER(10);

db_stringl CHARACTER(20);

db_string2 CHARACTER(20);

EXEC SQL END DECLARE SECTI ON,;

| dal | NTEGER(32);

| da2 | NTEGER(32);
set usernane = ' SCOIT ;
set password = 'TICGER ;
set db_stringl = ' D: NEWYORK- NONDEF1' ;
set db_string2 = ' D: CH CAGO- NONDEF2' ;

- give each database connection a uni que nanme
EXEC SQL DECLARE db_namel DATABASE;

EXEC SQL DECLARE db_name2 DATABASE;

- connect to first nondefault database

EXEC SQL CONNECT : username | DENTI FI ED BY : password
AT db_namel USING :db_stringl,;

- set up first LDA for OCl use
SQLLDA(| dal);

- connect to second nondefault database

EXEC SQ.L CONNECT : username | DENTI FI ED BY : password
AT db_name2 USING :db_string2;

- set up second LDA for OCl use
SQLLDA(| da2);

Remember, do not declare db_namel and db_name?2 in the Declare Section because they are
not host variables. You use them only to name the default databases at the two nondefault
nodes so that later SQL statements can refer to the databases by name.

3.13 About Developing X/Open Applications

X/Open applications run in a distributed transaction processing (DTP) environment. In an
abstract model, an X/Open application calls on resource managers (RMs) to provide a variety
of services. For example, a database resource manager provides access to data in a
database. Resource managers interact with a transaction manager (TM), which controls all
transactions for the application.

Figure 3-3 shows one way that components of the DTP model can interact to provide efficient
access to data in an Oracle database. The DTP model specifies the XA interface between
resource managers and the transaction manager. Oracle supplies an XA-compliant library,

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 35 of 37

ORACLE’

Chapter 3
About Developing X/Open Applications

which you must link to your X/Open application. Also, you must specify the native interface

between your application program and the resource managers.

Figure 3-3 Hypothetical DTP Model

TX Interface

XA Interface

Application Program

Transaction
Manager

XA Interface

Resource
Manager

Resource

<

Oracle Server

” Manager

Other
Resources

The DTP model that specifies how a transaction manager and resource managers interact with
an application program is described in the X/Open guide Distributed Transaction Processing
Reference Model and related publications, which you can obtain by writing to

X/Open Company Ltd.1010 El Camino Real, Suite 380Menlo Park, CA 94025

For instructions on using the XA interface, see your Transaction Processing (TP) Monitor

user's guide.

3.13.1 Oracle-Specific Issues

You can use the Oracle Precompilers to develop applications that comply with the X/Open
standards. However, you must meet the following requirements.

3.13.2 About Connecting to Oracle

The X/Open application does not establish and maintain connections to a database. Instead,
the transaction manager and the XA interface, which is supplied by Oracle, handle database
connections and disconnections transparently. So, normally an X/Open-compliant application

does not execute CONNECT statements.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 37

ORACLE

Chapter 3
About Developing X/Open Applications

3.13.3 Transaction Control

The X/Open application must not execute statements such as COM T, ROLLBACK, SAVEPQO NT,
and SET TRANSACTI ON that affect the state of global transactions. For example, the application
must not execute the COW T statement because the transaction manager handles commits.
Also, the application must not execute SQL data definition statements such as CREATE, ALTER,
and RENAME because they issue an implicit commit.

The application can execute an internal ROLLBACK statement if it detects an error that prevents
further SQL operations. However, this might change in later versions of the XA interface.

3.13.4 OCI Calls

If you want your X/Open application to issue OCI calls, you must use the run-time library
routine SQLLD2, which sets up an LDA for a specified connection established through the XA
interface. Note that OCOM, OCON, OCOF, ORLON, OLON, OLOG, and OLOGOF cannot be
issued by an X/Open application.

3.13.5 Linking

To get XA functionality, you must link the XA library to your X/Open application object modules.
For instructions, see your system-specific Oracle manuals.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 37 of 37

Using Embedded SQL

This chapter contains the following:

e About Using Host Variables

e About Using Indicator Variables

e The Basic SQL Statements

e Cursors

e Cursor Variables

This chapter helps you to understand and apply the basic techniques of embedded SQL
programming. You learn how to use host variables, indicator variables, cursors, cursor
variables, and the fundamental SQL commands that insert, update, select, and delete Oracle
data.

4.1 About Using Host Variables

Oracle uses host variables to pass data and status information to your program; your program
uses host variables to pass data to Oracle.

4.1.1 Output versus Input Host Variables

Depending on how they are used, host variables are called output or input host variables. Host
variables in the | NTO clause of a SELECT or FETCH statement are called output host variables
because they hold column values output by Oracle. Oracle assigns the column values to
corresponding output host variables in the | NTO clause.

All other host variables in a SQL statement are called input host variables because your
program inputs their values to Oracle. For example, you use input host variables in the VALUES
clause of an | NSERT statement and in the SET clause of an UPDATE statement. They are also
used in the WHERE, HAVI NG, and FOR clauses. In fact, input host variables can appear in a SQL
statement wherever a value or expression is allowed.

In an ORDER BY clause, you can use a host variable, but it is treated as a constant or literal, and
hence the contents of the host variable have no effect. For example, the SQL statement

EXEC SQL SELECT enane, enpno I NTO :nane, :nunber
FROM enp
ORDER BY :ord;

appears to contain an input host variable, ord. However, the host variable in this case is treated
as a constant, and regardless of the value of ord, no ordering is done.

You cannot use input host variables to supply SQL keywords or the names of database
objects. Thus, you cannot use input host variables in data definition statements (sometimes
called DDL) such as ALTER, CREATE, and DRCP. In the following example, the DROP TABLE
statement is invalid:

EXEC SQL BEG N DECLARE SECTI ON;
tabl e_name CHARACTER(30);

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 14

ORACLE

Chapter 4
About Using Indicator Variables

EXEC SQL END DECLARE SECTI ON;

di splay ' Tabl e name? '

read tabl e_nane;

EXEC SQL DROP TABLE :table_nane; -- host variable not allowed

Before Oracle executes a SQL statement containing input host variables, your program must
assign values to them. Consider the following example:

EXEC SQL BEG N DECLARE SECTI ON;
enp_nunber | NTEGER,

enp_nanme CHARACTER(20);

EXEC SQL END DECLARE SECTI ON;

- get values for input host variables
di spl ay ' Enpl oyee number? ';

read enp_nunber;

di spl ay ' Enpl oyee nane? ';

read enp_nane;

EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME)
VALUES (:enp_number, :enp_nane);

Notice that the input host variables in the VALUES clause of the | NSERT statement are prefixed
with colons.

4.2 About Using Indicator Variables

You can associate any host variable with an optional indicator variable. Each time the host
variable is used in a SQL statement, a result code is stored in its associated indicator variable.
Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign nulls to input host variables
and in the | NTO clause to detect nulls or truncated values in output host variables.

4.2.1 Input Variables

For input host variables, the values your program can assign to an indicator variable have the
following meanings:

e -1: Oracle will assign a null to the column, ignoring the value of the host variable.

e >=0: Oracle will assigns the value of the host variable to the column.

4.2.2 Output Variables

For output host variables, the values Oracle can assign to an indicator variable have the
following meanings:

e -2: Oracle assigned a truncated column value to the host variable, but could not assign the
original length of the column value to the indicator variable because the number was too
large.

e -1: The column value is null, so the value of the host variable is indeterminate.
e 0: Oracle assigned an intact column value to the host variable.

e > 0: Oracle assigned a truncated column value to the host variable, assigned the original
column length (expressed in characters, instead of bytes, for multibyte Globalization
Support host variables) to the indicator variable, and set SQLCODE in the SQLCA to zero.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 14

ORACLE Chapter 4
About Using Indicator Variables

Remember, an indicator variable must be defined in the Declare Section as a 2-byte integer
and, in SQL statements, must be prefixed with a colon and appended to its host variable
(unless you use the keyword INDICATOR).

4.2.3 Inserting Nulls

You can use indicator variables to insert nulls. Before the insert, for each column you want to
be null, set the appropriate indicator variable to -1, as shown in the following example:

set ind_comm= -1,
EXEC SQL I NSERT I NTO EMP (EVMPNO, COWM)
VALUES (:enp_nunmber, :comm ssion:ind_com);

The indicator variable ind_comm specifies that a null is to be stored in the COMcolumn.
You can hardcode the null instead, as follows:

EXEC SQL | NSERT I NTO EMP (EMPNO, COWM)
VALUES (:enp_number, NULL);

While this is less flexible, it might be more readable.
Typically, you insert nulls conditionally, as the next example shows:

di splay 'Enter enployee nunber or O if not available: ';
read enp_nunber;

| F emp_nunber = 0 THEN

set ind_empnum = -1; ELSE

set ind_empnum = 0;

ENDI F;

EXEC SQL I NSERT I NTO EMP (EVMPNO, SAL)

VALUES (:enp_nunber:ind_enmpnum :salary);

4.2.4 Handling Returned Nulls

You can also use indicator variables to manipulate returned nulls, as the following example
shows:

EXEC SQ. SELECT ENAME, SAL, COWM

I NTO : enp_nane, :salary, :commission:ind_conm
FROM EMP

WHERE EMPNO = : enp_nunber ;
I F ind_comm= -1 THEN

set pay = salary; -- commission is null; ignore it
ELSE

set pay = salary + conmission;

ENDI F;

4.2.5 Fetching Nulls

When DBMS=NATIVE, V7, or V8, if you select or fetch nulls into a host variable that lacks an
indicator variable, Oracle issues the following error message:

ORA-01405: fetched colum value is NULL

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 14

ORACLE Chapter 4
The Basic SQL Statements

4.2.6 Testing for Nulls

You can use indicator variables in the WHERE clause to test for nulls, as the following example
shows:

EXEC SQL SELECT ENAME, SAL

I NTO : enp_nane, :salary

FROM EMP

WHERE : conmi ssion:ind_conm IS NULL ...

However, you cannot use a relational operator to compare nulls with each other or with other
values. For example, the following SELECT statement fails if the COMMcolumn contains one or
more nulls:

EXEC SQL SELECT ENAME, SAL

I NTO : enp_nane, :salary

FROM EMP

WHERE COWM = : commi ssi on: i nd_comm

The next example shows how to compare values for equality when some of them might be

nulls:

EXEC SQL SELECT ENAME, SAL

I NTO : enp_nane, :salary

FROM EMP

WHERE (COW = : commi ssion) OR ((COMM IS NULL) AND
(:comm ssion:ind_comm IS NULL));

4.2.7 Fetching Truncated Values

If you select or fetch a truncated column value into a host variable that lacks an indicator
variable, no error is generated.

4.3 The Basic SQL Statements

Executable SQL statements let you query, manipulate, and control Oracle data and create,
define, and maintain Oracle objects such as tables, views, and indexes. This chapter focuses
on data manipulation statements (sometimes called DML) and cursor control statements. The
following SQL statements let you query and manipulate Oracle data:

¢ SELECT: Returns rows from one or more tables.
e | NSERT: Adds new rows to a table.

* UPDATE: Modifies rows in a table.

* DELETE: Removes rows from a table.

When executing a data manipulation statement such as | NSERT, UPDATE, or DELETE, your only
concern, besides setting the values of any input host variables, is whether the statement
succeeds or fails. To find out, you simply check the SQLCA. (Executing any SQL statement
sets the SQLCA variables.) You can check in the following two ways:

* Implicit checking with the WHENEVER statement
« Explicit checking of SQLCA variables

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 14

ORACLE

Chapter 4
The Basic SQL Statements

Alternatively, when MODE={ ANSI | ANSI 14} , you can check the status variable SQLSTATE or
SQLCODE. For more information, see "About Using Status Variables when MODE={ANSI|

ANSI14}".

When executing a SELECT statement (query), however, you must also deal with the rows of
data it returns. Queries can be classified as follows:

e queries that return no rows (that is, merely check for existence)
e queries that return only one row
e queries that return more than one row

Queries that return more than one row require an explicitly declared cursor or cursor variable
(or the use of host arrays, which are discussed in Using Host Arrays). The following embedded
SQL statements let you define and control an explicit cursor:

« DECLARE: Names the cursor and associates it with a query.

e OPEN: Executes the query and identifies the active set.

e FETCH: Advances the cursor and retrieves each row in the active set, one by one.
e CLOSE: Disables the cursor (the active set becomes undefined).

In the following sections, first you learn how to code | NSERT, UPDATE, DELETE, and single-row
SELECT statements. Then, you progress to multi-row SELECT statements.

4.3.1 Selecting Rows

Querying the database is a common SQL operation. To issue a query you use the SELECT
statement. In the following example, you query the EMP table:

EXEC SQL SELECT ENAME, JOB, SAL + 2000
I NTO : enp_name, :job_title, :salary
FROM EMP
WHERE EMPNO = : enp_nunber;

The column names and expressions following the keyword SELECT make up the select list. The
select list in our example contains three items. Under the conditions specified in the WHERE
clause (and following clauses, if present), Oracle returns column values to the host variables in
the I NTO clause. The number of items in the select list should equal the number of host
variables in the | NTOclause, so there is a place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last example
(in which EMPNQOIis a unique key). However, if a query can return more than one row, you must
fetch the rows using a cursor or select them into a host array.

If you write a query to return only one row but it might actually return several rows, the result
depends on how you specify the option SELECT _ERROR. When SELECT ERROR=YES (the default),
Oracle issues the following error message if more than one row is returned:

ORA-01422: exact fetch returns nore than requested nunber of rows

When SELECT_ERRCR=NQO, a row is returned and Oracle generates no error.

4.3.2 Available Clauses

You can use all of the following standard SQL clauses in your SELECT statements: | NTO, FROM
VHERE, CONNECT BY, START W TH, GROUP BY, HAVI NG, ORDER BY, and FOR UPDATE CF.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 14

ORACLE Chapter 4
The Basic SQL Statements

4.3.3 Inserting Rows

You use the | NSERT statement to add rows to a table or view. In the following example, you add
a row to the EMP table:

EXEC SQL | NSERT I NTO EMP (EMPNO, ENAME, SAL, DEPTNO)
VALUES (:enp_nunber, :enp_nane, :salary, :dept_nunber);

Each column you specify in the column list must belong to the table named in the | NTO clause.
The VALUES clause specifies the row of values to be inserted. The values can be those of
constants, host variables, SQL expressions, or pseudocolumns, such as USER and SYSDATE.

The number of values in the VALUES clause must equal the number of names in the column list.
However, you can omit the column list if the VALUES clause contains a value for each column in
the table in the same order they were defined by CREATE TABLE.

4.3.4 Using Subqueries

A subquery is a nested SELECT statement. Subqueries let you conduct multipart searches. They
can be used to

e supply values for comparison in the WHERE, HAVI NG, and START W TH clauses of SELECT,
UPDATE, and DELETE statements

« define the set of rows to be inserted by a CREATE TABLE or | NSERT statement
« define values for the SET clause of an UPDATE statement

For example, to copy rows from one table to another, replace the VALUES clause in an | NSERT
statement with a subquery, as follows:

EXEC SQL | NSERT I NTO EMP2 (EMPNO, ENAME, SAL, DEPTNO
SELECT EMPNO, ENAME, SAL, DEPTNO FROM EMP
WHERE JOB = :job_title;

Notice how the | NSERT statement uses the subquery to obtain intermediate results.

4.3.5 Updating Rows

You use the UPDATE statement to change the values of specified columns in a table or view. In
the following example, you update the SAL and COMcolumns in the EMP table:

EXEC SQL UPDATE EMP
SET SAL = :salary, COW = :commission
WHERE EMPNO = : enp_nunber ;

You can use the optional WHERE clause to specify the conditions under which rows are updated.
See "Using the WHERE Clause".

The SET clause lists the names of one or more columns for which you must provide values. You
can use a subquery to provide the values, as the following example shows:

EXEC SQL UPDATE EMP
SET SAL = (SELECT AVG(SAL)*1.1 FROM EMP WHERE DEPTNO = 20)
WHERE EMPNO = : enp_nunber;

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 14

ORACLE Chapter 4
Cursors

4.3.6 Deleting Rows

You use the DELETE statement to remove rows from a table or view. In the following example,
you delete all employees in a given department from the EMP table:

EXEC SQL DELETE FROM EMP
WHERE DEPTNO = : dept _nunber;

You can use the optional WHERE clause to specify the condition under which rows are deleted.

4.3.7 Using the WHERE Clause

You use the WHERE clause to select, update, or delete only those rows in a table or view that
meet your search condition. The WHERE-clause search condition is a Boolean expression, which
can include scalar host variables, host arrays (not in SELECT statements), and subqueries.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit the WHERE
clause in an UPDATE or DELETE statement, Oracle sets SQLWARN(5) in the SQLCA to 'W' to
warn that all rows were processed.

4.4 Cursors

When a query returns multiple rows, you can explicitly define a cursor to:

* Process beyond the first row returned by the query
« Keep track of which row is currently being processed

A cursor identifies the current row in the set of rows returned by the query. This allows your
program to process the rows one at a time. The following statements let you define and
manipulate a cursor:

* DECLARE
« COPEN
 FETCH

« CLOSE

First you use the DECLARE statement to name the cursor and associate it with a query.

The OPEN statement executes the query and identifies all the rows that meet the query search
condition. These rows form a set called the active set of the cursor. After opening the cursor,
you can use it to retrieve the rows returned by its associated query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use a FETCH
statement to retrieve the current row in the active set. You can execute FETCH repeatedly until
all rows have been retrieved.

When you complete fetching rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

4.4.1 Declaring a Cursor

You use the DECLARE statement to define a cursor by giving it a name and associating it with a
query, as the following example shows:

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 14

ORACLE

Chapter 4
Cursors

EXEC SQ.L DECLARE enp_cursor CURSOR FOR
SELECT ENAME, EMPNO, SAL

FROM EMP

WHERE DEPTNO = : dept _nunber;

The cursor name is an identifier used by the precompiler, not a host or program variable, and
should not be defined in the Declare Section. Therefore, cursor names cannot be passed from
one precompilation unit to another. Also, cursor names cannot be hyphenated. They can be
any length, but only the first 31 characters are significant. For ANSI compatibility, use cursor
names no longer than 18 characters.

The SELECT statement associated with the cursor cannot include an | NTO clause. Rather, the
I NTO clause and list of output host variables are part of the FETCH statement.

Because it is declarative, the DECLARE statement must physically (not just logically) precede all
other SQL statements referencing the cursor. That is, forward references to the cursor are not
allowed. In the following example, the OPEN statement is misplaced:

EXEC SQL OPEN enp_cursor; -- nisplaced OPEN statenent
EXEC SQL DECLARE enp_cursor CURSCR FOR

SELECT ENAME, EMPNO, SAL

FROM EMP

WHERE ENAME = :enp_namne;

The cursor control statements must all occur within the same precompiled unit. For example,
you cannot declare a cursor in file A, then open it in file B.

Your host program can declare as many cursors as it needs. However, in a given file, every
DECLARE statement must be unique. That is, you cannot declare two cursors with the same
name in one precompilation unit, even across blocks or procedures, because the scope of a
cursor is global within a file. If you will be using many cursors, you might want to specify the
MAXOPENCURSORS option. For more information, see "MAXOPENCURSORS".

4.4.2 Opening a Cursor

Use the OPEN statement to execute the query and identify the active set. In the following
example, a cursor named emp_cursor is opened.

EXEC SQL OPEN enp_cursor;

OPEN positions the cursor just before the first row of the active set. It also zeroes the rows-
processed count kept by SQLERRD(3) in the SQLCA. However, none of the rows is actually
retrieved at this point. That will be done by the FETCH statement.

After you open a cursor, the query's input host variables are not reexamined until you reopen
the cursor. Thus, the active set does not change. To change the active set, you must reopen
the cursor.

Generally, you should close a cursor before reopening it. However, if you specify MODE=ORACLE
(the default), you need not close a cursor before reopening it. This can boost performance; for
details, see Performance Tuning

The amount of work done by OPEN depends on the values of three precompiler options:
HOLD CURSOR, RELEASE CURSOR, and MAXOPENCURSORS. For more information, see "About Using
the Precompiler Options".

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE

Chapter 4
Cursors

4.4.3 Fetching from a Cursor

You use the FETCH statement to retrieve rows from the active set and specify the output host
variables that will contain the results. Recall that the SELECT statement associated with the
cursor cannot include an | NTO clause. Rather, the | NTO clause and list of output host variables
are part of the FETCH statement. In the following example, you fetch into three host variables:

EXEC SQL FETCH enp_cur sor
I NTO : enp_nane, :enp_nunber, :salary;

The cursor must have been previously declared and opened. The first time you execute FETCH,
the cursor moves from before the first row in the active set to the first row. This row becomes
the current row. Each subsequent execution of FETCH advances the cursor to the next row in
the active set, changing the current row. The cursor can only move forward in the active set. To
return to a row that has already been fetched, you must reopen the cursor, then begin again at
the first row of the active set.

If you want to change the active set, you must assign new values to the input host variables in
the query associated with the cursor, then reopen the cursor. When MODE={ ANSI | ANS| 14 |
ANSI 13}, you must close the cursor before reopening it.

As the next example shows, you can fetch from the same cursor using different sets of output
host variables. However, corresponding host variables in the | NTO clause of each FETCH
statement must have the same datatype.

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT ENAME, SAL FROM EMP WHERE DEPTNO = 20;

EXEC SQL OPEN enp_cursor;

EXEC SQ. WHENEVER NOT FOUND DO ...

LooP

EXEC SQL FETCH enp_cursor |INTO :enp_nanel, :salaryl;
EXEC SQL FETCH enp_cursor |INTO :enp_nane2, :salary2;
EXEC SQL FETCH enp_cursor INTO :enp_name3, :salary3;

ENDL OOP;

If the active set is empty or contains no more rows, FETCH returns the "no data found" Oracle
warning code to SQLCODE in the SQLCA (or when MODE=ANSI, to the status variable
SQLSTATE). The status of the output host variables is indeterminate. (In a typical program, the
WHENEVER NOT FOUND statement detects this error.) To reuse the cursor, you must reopen it.

4.4.4 Closing a Cursor

When finished fetching rows from the active set, you close the cursor to free the resources,
such as storage, acquired by opening the cursor. When a cursor is closed, parse locks are
released. What resources are freed depends on how you specify the options HOLD_CURSCR and
RELEASE CURSCR. In the following example, you close the cursor named enp_cur sor :

EXEC SQL CLOSE enp_cursor;

You cannot fetch from a closed cursor because its active set becomes undefined. If necessary,
you can reopen a cursor (with new values for the input host variables, for example).

When MODE={ ANSI 13| ORACLE}, issuing a commit or rollback closes cursors referenced in a
CURRENT OF clause. Other cursors are unaffected by a commit or rollback and if open, remain

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 9 of 14

ORACLE Chapter 4
Cursors

open. However, when MODE={ ANSI | ANSI 14}, issuing a commit or rollback closes all explicit
cursors.

4.4.5 Using the CURRENT OF Clause

You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement to refer to the
latest row fetched from the named cursor. The cursor must be open and positioned on a row. If
no fetch has been done or if the cursor is not open, the CURRENT OF clause results in an error
and processes no rows.

The FOR UPDATE OF clause is optional when you declare a cursor that is referenced in the
CURRENT OF clause of an UPDATE or DELETE statement. The CURRENT COF clause signals the
precompiler to add a FOR UPDATE clause if necessary. For more information, see "About Using
the FOR UPDATE OF Clause".

In the following example, you use the CURRENT OF clause to refer to the latest row fetched from
a cursor named emp_cursor:

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT ENAME, SAL FROM EMP WHERE JOB = ' CLERK
FOR UPDATE OF SAL;

EXEC SQL OPEN enp_cursor;
EXEC SQ. WHENEVER NOT FOUND DO ...
LooP
EXEC SQ. FETCH enp_cursor |INTO :enp_nane, :salary;

EXEC SQL UPDATE EMP SET SAL = :new sal ary
WHERE CURRENT OF enp_cursor;
ENDL OCP;

4.4.6 Restrictions

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row locks. All rows are
locked at the open, not as they are fetched, and are released when you commit or rollback. If
you try to fetch from a FOR UPDATE cursor after a commit, Oracle generates the following error:

ORA-01002: fetch out of sequence

You cannot use host arrays with the CURRENT OF clause. For an alternative, see "About
Mimicking the CURRENT OF Clause". Also, you cannot reference multiple tables in an
associated FOR UPDATE OF clause, which means that you cannot do joins with the CURRENT OF
clause. Finally, you cannot use the CURRENT OF clause in dynamic SQL.

4.4.7 A Typical Sequence of Statements

The following example shows the typical sequence of cursor control statements in an
application program:

- Define a cursor.

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT ENAME, JOB FROM EMP

WHERE EMPNO = : enp_nunber

FOR UPDATE COF JCB;

-- Open the cursor and identify the active set.
EXEC SQL OPEN enp_cursor;
- Exit if the last row was already fetched.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 10 of 14

ORACLE

Chapter 4
Cursors

EXEC SQ. WHENEVER NOT FOUND DO no_nore;

-- Fetch and process data in a | oop.

LooP

EXEC SQL FETCH enp_cursor INTO :enp_nanme, :job_title;

-- host-1language statenents that operate on the fetched data
EXEC SQL UPDATE EMP

SET JOB = :new_job_ title

WHERE CURRENT OF enp_cursor;

ENDL OCP;

ROUTI NE no_nor e
BEG N
-- Disable the cursor.
EXEC SQL CLOSE enp_cursor;
EXEC SQ. COW T WORK RELEASE;
exit program
END no_nore;

4.4.8 A Complete Example

The following program illustrates the use of a cursor and the FETCH statement. The program
prompts for a department number, then displays the names of all employees in that
department.

All fetches except the final one return a row and, if no errors were detected during the fetch, a
success status code. The final fetch fails and returns the "no data found" Oracle warning code
to SQLCCDE in the SQLCA. The cumulative number of rows actually fetched is found in
SQLERRD(3) in the SQLCA.

-- declare host variables

EXEC SQL BEG N DECLARE SECTI ON;

user name CHARACTER(20);

password CHARACTER(20);

enp_nanme CHARACTER(10);

dept _nunber | NTECGER;

EXEC SQL END DECLARE SECTI ON;

-- copy in the SQ. Communications Area
EXEC SQL | NCLUDE SQLCA;

di splay 'Username? ';
read usernane;
di splay 'Password? ';
read password;

-- handl e processing errors
EXEC SQL WHENEVER SQLERROR DO sql _error;

-- log on to Oracle
EXEC SQL CONNECT :username | DENTI FI ED BY : password;
di splay 'Connected to Oracle';

-- declare a cursor
EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT ENAME FROM EMP WHERE DEPTNO = : dept _nunber;

di splay 'Department nunmber? ';
read dept_nunber;

-- open the cursor and identify the active set
EXEC SQL OPEN enp_cursor;

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 14

ORACLE

Chapter 4
Cursor Variables

- exit if the last row was already fetched
EXEC SQ. WHENEVER NOT FOUND DO no_nore;

di splay ' Enpl oyee Nane';
dl Spl ay e e aa o ! :

- fetch and process data in a | oop
LooP

EXEC SQL FETCH enp_cursor |NTO :enp_nane; display enp_nang;
ENDL OCP;

ROUTI NE no_nor e

BEG N

EXEC SQL CLOSE enp_cursor;

EXEC SQL COW T WORK RELEASE;
display 'End of progrant;

exit program

END no_nore;

ROUTI NE sql _error
BEG N

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
display 'Processing error';

exit programwth an error;
END sql _error;

4.5 Cursor Variables

This section gives a brief overview of cursor variables. For more information, see your host
language supplement and Cursor Variables.

When using static embedded SQL with the Pro*COBOL and Pro*FORTRAN Precompilers, you
can declare cursor variables. Like a cursor, a cursor variable points to the current row in the
active set of a multi-row query. Cursors differ from cursor variables the way constants differ
from variables. While a cursor is static, a cursor variable is dynamic, because it is not tied to a
specific query. You can open a cursor variable for any type-compatible query.

Also, you can assign new values to a cursor variable and pass it as a parameter to
subprograms, including subprograms stored in an Oracle database. This gives you a
convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you use four statements to
control a cursor variable:

* ALLOCATE
 OPEN... FOR
e FETCH

« CLCSE

After you declare the cursor variable and allocate memory for it, you must pass it as an input
host variable (bind variable) to PL/SQL, OPEN it FOR a multi-row query on the server side,
FETCH from it on the client side, then CLOSE it on either side.

4.5.1 About Declaring a Cursor Variable

How you declare a cursor variable is dependent on your host language. For instructions about
declaring a cursor variable, see your host-language supplement.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 12 of 14

ORACLE

Chapter 4
Cursor Variables

4.5.2 Allocating a Cursor Variable

You use the ALLOCATE statement to allocate memory for the cursor variable. The syntax follows:

EXEC SQL ALLQCATE <cursor _vari abl e>;

4.5.3 Opening a Cursor Variable

You use the OPEN ... FOR statement to associate a cursor variable with a multi-row query,
execute the query, and identify the active set. The syntax follows:

EXEC SQL OPEN <cursor_variabhl e> FOR <sel ect _st at enent >;

The SELECT statement can reference input host variables and PL/SQL variables, parameters,
and functions but cannot be FOR UPDATE. In the following example, you open a cursor variable
named emp_cv:

EXEC SQL OPEN enp_cv FOR SELECT * FROM EMP;

You must open a cursor variable on the server side. You do that by passing it as an input host
variable to an anonymous PL/SQL block. At run time, the block is sent to the Oracle Server for
execution. In the following example, you declare and initialize a cursor variable, then pass it to
a PL/SQL block, which opens the cursor variable:

EXEC SQL BEG N DECLARE SECTI ON,

-- declare cursor variable
enp_cur SQ._CURSOR;
EXEC SQ.L END DECLARE SECTI ON;

- initialize cursor variable
EXEC SQL ALLOCATE :enp_cur;

EXEC SQL EXECUTE

- pass cursor variable to PL/SQ bl ock
BEG N

- open cursor variable

OPEN :enmp_cur FOR SELECT * FROM EMP,
END;
END- EXEC,

Generally, you pass a cursor variable to PL/SQL by calling a stored procedure that declares a
cursor variable as one of its formal parameters. For example, the following packaged
procedure opens a cursor variable named emp_cv:

CREATE PACKACE enp_data AS
- define REF CURSOR type
TYPE EnpCur Typ |'S REF CURSOR RETURN enp%ROWTYPE;
- declare formal paranter of that type
PROCEDURE open_enp_cv (enp_cv IN OUT EmpCur Typ);
END enp_dat a;

CREATE PACKAGE BCDY enp_data AS
PROCEDURE open_enp_cv (enp_cv IN OUT EnmpCurTyp) IS
BEG N
- open cursor variable
OPEN enp_cv FOR SELECT * FROM enp;
END open_enp_cv;
END enp_dat a;

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 13 of 14

ORACLE Chapter 4
Cursor Variables

You can call the procedure from any application, as follows:

EXEC SQL EXECUTE
BEG N
enp_dat a. open_enp_cv(: enp_cur);
END;

END- EXEC;

4.5.4 Fetching from a Cursor Variable

After opening a cursor variable for a multi-row query, you use the FETCH statement to retrieve
rows from the active set one at a time. The syntax follows:

EXEC SQL FETCH cursor _variabl e_nane
INTO {record_nane | variable_nane[, variable_nanme, ...]};

Each column value returned by the cursor variable is assigned to a corresponding field or
variable in the | NTO clause, providing their datatypes are compatible.

The FETCH statement must be executed on the client side. In the following example, you fetch
rows into a host record named emp_rec:

- exit loop when done fetching
EXEC SQL WHENEVER NOT FOUND DO no_nore;
LooP
- fetch rowinto record
EXEC SQL FETCH :enp_cur INTO :enp_rec;
- process the data
ENDL OCP;

4.5.5 Closing a Cursor Variable

You use the CLOSE statement to close a cursor variable, at which point its active set becomes
undefined. The syntax follows:

EXEC SQL CLOSE cursor_vari abl e_nane;

The CLOSE statement can be executed on the client side or the server side. In the following
example, when the last row is processed, you close the cursor variable emp_cur:

- close cursor variable
EXEC SQL CLOSE : enp_cur;

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 14 of 14

Using Embedded PL/SQL

This chapter contains the following sections:

e Advantages of PL/SQL
e About Embedding PL/SQL Blocks

e About Using Host Variables

e About Using Indicator Variables

e About Using Host Arrays

e About Using Cursors

e Stored Subprograms
e About Using Dynamic PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL transaction
processing blocks in your program.

5.1 Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as

* Better Performance

e Integration with Oracle

e Cursor FOR Loops
e Subprograms

 Parameter Modes
» Packages
« PL/SQL Tables

 User-defined Records

5.1.1 Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase productivity. For
example, without PL/SQL, Oracle must process SQL statements one at a time. Each SQL
statement results in another call to the Server and consequently, a higher overhead. However,
with PL/SQL, you can send an entire block of SQL statements to the Server. This minimizes
communication between your application and Oracle.

5.1.2 Integration with Oracle

PL/SQL is tightly integrated with the Oracle Server. For example, most PL/SQL datatypes are
native to the Oracle data dictionary. Furthermore, you can use the % YPE attribute to base
variable declarations on column definitions stored in the data dictionary, as the following
example shows:

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 17

ORACLE

Chapter 5
Advantages of PL/SQL

job_title enp.job%YPE,

That way, you need not know the exact datatype of the column. Furthermore, if a column
definition changes, the variable declaration changes accordingly and automatically. This
provides data independence, reduces maintenance costs, and allows programs to adapt as the
database changes.

5.1.3 Cursor FOR Loops

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE statements to define and
manipulate a cursor. Instead, you can use a cursor FOR loop, which implicitly declares its loop
index as a record, opens the cursor associated with a given query, repeatedly fetches data
from the cursor into the record, then closes the cursor. An example follows:

DECLARE

BEG N

FOR enprec I N (SELECT enpno, sal, comm FROM enp) LOOP
| F enprec.comm/ enprec.sal > 0.25 THEN ...

END LOOP;
END,

Notice that you use dot notation to reference fields in the record.

5.1.4 Subprograms

PL/SQL has two types of subprograms called procedures and functions, which aid application
development by letting you isolate operations. Generally, you use a procedure to perform an
action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL language
to suit your needs. For example, if you need a procedure that creates a new department, just
write your own as follows:

PROCEDURE cr eat e_dept

(new_dnanme |N CHAR(14),

new_| oc I N CHAR(13),

new_deptno OUT NUMBER(2)) IS
BEG N

SELECT dept no_seq. NEXTVAL | NTO new_dept no FROM dual ;

I NSERT | NTO dept VALUES (new_deptno, new_dname, new_|oc);
END create_dept;

When called, this procedure accepts a new department name and location, selects the next
value in a department-number database sequence, inserts the new number, name, and
location into the dept table, then returns the new number to the caller.

You can store subprograms in the database (using CREATE FUNCTI ON and CREATE PROCEDURE)
that can be called from multiple applications without needing to be recompiled each time.

5.1.5 Parameter Modes

You use parameter modes to define the behavior of formal parameters. There are three
parameter modes: | N (the default), QUT, and | N QUT. An 71 N parameter lets you pass values to
the subprogram being called. An OUT parameter lets you return values to the caller of a
subprogram. An | N OUT parameter lets you pass initial values to the subprogram being called
and return updated values to the caller.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE Chapter 5
Advantages of PL/SQL

The datatype of each actual parameter must be convertible to the datatype of its corresponding
formal parameter. Table 3-6 shows the legal conversions between datatypes.

5.1.6 Packages

PL/SQL lets you bundle logically related types, program objects, and subprograms into a
package. Packages can be compiled and stored in an Oracle database, where their contents
can be shared by multiple applications.

Packages usually have two parts: a specification and a body. The specification is the interface
to your applications; it declares the types, constants, variables, exceptions, cursors, and
subprograms available for use. The body defines cursors and subprograms and so implements
the specification. In the following example, you "package" two employment procedures:

PACKACGE enp_actions IS -- package specification
PROCEDURE hi re_enpl oyee (enmpno NUMBER, ename CHAR ...);
PROCEDURE fire_enpl oyee (enp_id NUMBER);

END enp_act i ons;

PACKAGE BODY enp_actions IS -- package body
PROCEDURE hi re_enpl oyee (enpno NUMBER, enanme CHAR ...) IS
BEG N
I NSERT | NTO enp VALUES (enpno, ename, ...):

END hire_enpl oyee;
PROCEDURE fire_enpl oyee (enp_id NUMBER) IS
BEG N
DELETE FROM enp WHERE enpno = enp_i d;
END fire_enpl oyee;
END enp_act i ons;

Only the declarations in the package specification are visible and accessible to applications.
Implementation details in the package body are hidden and inaccessible.

5.1.7 PL/SQL Tables

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are called PL/SQL
tables, which are modelled as (but not the same as) database tables. PL/SQL tables have only
one column and use a primary key to give you array-like access to rows. The column can
belong to any scalar type (such as CHAR, DATE, or NUMBER), but the primary key must belong to
type Bl NARY_| NTECGER.

You can declare PL/SQL table types in the declarative part of any block, procedure, function, or
package. In the following example, you declare a TABLE type called NumTabTyp:

DECLARE
TYPE NunifabTyp |'S TABLE OF NUMBER
I NDEX BY BI NARY_I NTEGER;

BEGI N

END,

After you define type NumTabTyp, you can declare PL/SQL tables of that type, as the next
example shows:

num tab NunifabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary key value.
For example, you reference the ninth row in the PL/SQL table named num_tab as follows:

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 17

ORACLE Chapter 5
About Embedding PL/SQL Blocks

numtab(9) ...

5.1.8 User-defined Records

You can use the ¥ROMYPE attribute to declare a record that represents a row in a database
table or a row fetched by a cursor. However, you cannot specify the datatypes of fields in the
record or define fields of your own. The composite datatype RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have uniquely named
fields, which can belong to different datatypes. For example, suppose you have different kinds
of data about an employee such as name, salary, hire date, and so on. This data is dissimilar in
type but logically related. A record that contains such fields as the name, salary, and hire date
of an employee would let you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block, procedure,
function, or package. In the following example, you declare a RECORD type called DeptRecTyp:

DECLARE

TYPE Dept RecTyp | S RECORD

(deptno NUMBER(4) NOT NULL := 10, -- nust initialize
dname CHAR(9),

| oc CHAR(14));

Notice that the field declarations are like variable declarations. Each field has a unique name
and specific datatype. You can add the NOT NULL option to any field declaration and so prevent
the assigning of nulls to that field. However, you must initialize NOT NULL fields.

After you define type DeptRecTyp, you can declare records of that type, as the next example
shows:

dept _rec Dept RecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For example, you reference the
dname field in the dept_rec record as follows:

dept _rec.dnane ...

5.2 About Embedding PL/SQL Blocks

The Oracle Precompilers treat a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in a host program that you can place a SQL statement.

To embed a PL/SQL block in your host program, simply bracket the PL/SQL block with the
keywords EXEC SQL EXECUTE and END- EXEC as follows:

EXEC SQL EXECUTE
DECLARE

BEG N
END,
END- EXEC;

The keyword END- EXEC must be followed by the statement terminator for your host language.

When your program embeds PL/SQL blocks, you must specify the precompiler option
SQLCHECK=SEMANTI CS because PL/SQL must be parsed by Oracle. To connect to Oracle, you

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 17

ORACLE Chapter 5
About Using Host Variables

must also specify the option USERI D. For more information, see "About Using the Precompiler
Options".

5.3 About Using Host Variables

Host variables are the key to communication between a host language and a PL/SQL block.
Host variables can be shared with PL/SQL, meaning that PL/SQL can set and reference host
variables.

For example, you can prompt a user for information and use host variables to pass that
information to a PL/SQL block. Then, PL/SQL can access the database and use host variables
to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can be used
anywhere within the block wherever a PL/SQL variable is allowed. However, character host
variables cannot exceed 255 characters in length. Like host variables in a SQL statement, host
variables in a PL/SQL block must be prefixed with a colon. The colon sets host variables apart
from PL/SQL variables and database objects.

5.3.1 An Example

The following example illustrates the use of host variables with PL/SQL. The program prompts
the user for an employee number, then displays the job title, hire date, and salary of that
employee.

EXEC SQ. BEG N DECLARE SECTI ON,

user name CHARACTER(20);

passwor d CHARACTER(20);

enmp_nunber | NTEGER,

job_title CHARACTER(20);

hire_date CHARACTER(9);

sal ary REAL;

EXEC SQ. END DECLARE SECTI ON;

EXEC SQL | NCLUDE SQLCA;
di splay 'Username? ';
read usernane;
di splay 'Password? ';
read password;

EXEC SQL WHENEVER SQLERROR DO sql _error;
EXEC SQL CONNECT : username | DENTI FI ED BY : password;
di splay 'Connected to Oracle';

LooP

di splay ' Enpl oyee Nunber (0 to end)? ';
read enp_nunber;

| F enp_nunber = 0 THEN

EXEC SQL COWM T WORK RELEASE;

display 'Exiting progran ;

exit program

ENDI F;

---------------- begin PL/SQ block ---------nummmn--
EXEC SQ. EXECUTE

BEG N

SELECT job, hiredate, sal

INTO :job_title, :hire_date, :salary
FROM enp

WHERE enpno = :enp_nunber;

END;

END- EXEC;

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 17

ORACLE

display 'Nunber Job Title Hire Date Salary';
display "---------ccm e ;
display enmp_nunber, job_title, hire_date, salary;
ENDL OCP;

ROUTI NE sql _error
BEG N

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
display 'Processing error';

exit programwth an error;
END sql _error;

Chapter 5
About Using Host Variables

Notice that the host variable emp_number is set before the PL/SQL block is entered, and the

host variables job_title, hire_date, and salary are set inside the block.

5.3.2 A More Complex Example

In the example, you prompt the user for a bank account number, transaction type, and
transaction amount, then debit or credit the account. If the account does not exist, you raise an

exception. When the transaction is complete, you display its status.

EXEC SQ. BEG N DECLARE SECTI ON,

user name CHARACTER(20);

passwor d CHARACTER(20);

acct _num | NTEGER;

trans_type CHARACTER(1);

trans_anmt REAL;

stat us CHARACTER(80);
EXEC SQ. END DECLARE SECTI ON;
EXEC SQ. | NCLUDE SQLCA;
di splay ' Username? ';
read usernane;
di splay ' Password? ';
read password;

EXEC SQL WHENEVER SQLERROR DO sql _error;

EXEC SQL CONNECT :username | DENTI FI ED BY : password;
di splay 'Connected to Oracle';

LooP

di splay ' Account Number (O to end)? ';

read acct_num

| F acct_num= 0 THEN

EXEC SQ. COW T WORK RELEASE;

display 'Exiting program;

exit program

ENDI F;

di splay ' Transaction Type - D)ebit or Qredit? '
read trans_type;

di splay ' Transaction Anount? '

read trans_ant;

--------------------- begin PL/SQ block ------------mcmn---
EXEC SQ. EXECUTE

DECLARE

ol d_bal NUMBER(9, 2);

err_nmsg CHAR(70);

nonexi st ent EXCEPTI ON,

BEG N

itrans_type := UPPER(:trans_type);

IF :trans_type ="'C THEN -- credit the account
UPDATE accts SET bal = bal + :trans_ant

WHERE acctid = :acct_num

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 17

ORACLE

I F SQLYROWCOUNT = 0 THEN -- no rows affected
RAI SE nonexi stent;

ELSE

cstatus := "Credit applied';

END | F;

ELSIF :trans_type = 'D THEN -- debit the account
SELECT bal I NTO ol d_bal FROM accts

WHERE acctid = :acct_num

IF old_bal >= :trans_ant THEN -- enough funds
UPDATE accts SET bal = bal - :trans_ant
WHERE acctid = :acct_num

;status := 'Debit applied;

ELSE

:status := '"Insufficient funds';

END | F;

ELSE

;status := 'Invalid type: ' || :trans_type;
END | F;

COWMT;

EXCEPTI ON

VWHEN NO_DATA FOUND OR nonexi stent THEN
;status := ' Nonexistent account';

WHEN OTHERS THEN

err_nsg := SUBSTR(SQLERRM 1, 70);
:status := "Error: ' || err_nmsg;
END;

END- EXEC;

------------------- end PL/SQL block -----------ummmmmnnn-

display 'Status: ', status;
ENDL OCP;
ROUTI NE sql _error
BEG N

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
display 'Processing error';

exit programwth an error;

END sql _error;

5.3.3 VARCHAR Pseudotype

Recall from Meeting Program Requirements that you can use the VARCHAR pseudotype to
declare variable-length character strings. If the VARCHAR is an input host variable, you must tell
Oracle what length to expect. So, set the length field to the actual length of the value stored in

the string field.

Chapter 5
About Using Host Variables

If the VARCHAR is an output host variable, Oracle automatically sets the length field. However, to
use a VARCHAR output host variable in your PL/SQL block, you must initialize the length field
before entering the block. So, set the length field to the declared (maximum) length of the

VARCHAR, as shown in the following example:

EXEC SQL BEG N DECLARE SECTI ON;
enp_nunber | NTEGER,

enp_nane VARCHAR(10);

salary REAL;

EXEC SQL END DECLARE SECTI ON,

set enp_nane.len = 10; -- initialize length field
EXEC SQ. EXECUTE

BEG N

SELECT enane, sal INTO :enp_nane, :salary

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 17

ORACLE Chapter 5
About Using Indicator Variables

FROM enp
WHERE enpno = :enp_nunber;

END;
END- EXEC;

5.4 About Using Indicator Variables

PL/SQL does not need indicator variables because it can manipulate nulls. For example, within
PL/SQL, you can use the | S NULL operator to test for nulls, as follows:

IF variable IS NULL THEN ...

You can use the assignment operator (: =) to assign nulls, as follows:

variabl e := NULL;

However, host languages need indicator variables because they cannot manipulate nulls.
Embedded PL/SQL meets this need by letting you use indicator variables to

e accept nulls input from a host program
e output nulls or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rules:

e You cannot refer to an indicator variable by itself; it must be appended to its associated
host variable.

e If you refer to a host variable with its indicator variable, you must always refer to it that way
in the same block.

In the following example, the indicator variable ind_comm appears with its host variable
commission in the SELECT statement, so it must appear that way in the | F statement:

EXEC SQ.L EXECUTE

BEG N

SELECT enane, comm

I NTO : enp_name, :conm ssion:ind_conm FROM enp
WHERE enpno = :enp_nunber;

I F :commission:ind commI|S NULL THEN ...

END;
END- EXEC;

Notice that PL/SQL treats :commission:ind_comm like any other simple variable. Though you
cannot refer directly to an indicator variable inside a PL/SQL block, PL/SQL checks the value
of the indicator variable when entering the block and sets the value correctly when exiting the
block.

5.4.1 Handling Nulls

When entering a block, if an indicator variable has a value of - 1, PL/SQL automatically assigns
a null to the host variable. When exiting the block, if a host variable is null, PL/SQL
automatically assigns a value of -1 to the indicator variable. In the next example, if handsel had
a value of -1 before the PL/SQL block was entered, the salary_missing exception is raised. An
exception is a named error condition.

EXEC SQL EXECUTE
BEG N
IF :salary:ind_sal 1S NULL THEN

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE Chapter 5
About Using Host Arrays

RAI SE sal ary_ni ssi ng;
END | F;

END;
END- EXEC;

5.4.2 Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a host
variable. However, if you use an indicator variable, PL/SQL sets it to the original length of the
string. In the following example, the host program will be able to tell, by checking the value of
ind_name, if a truncated value was assigned to emp_name:

EXEC SQL EXECUTE
DECLARE

new_name CHAR(10);
BEG N

enp_nane: i nd_name := new_nane;

END;
END- EXEC;

5.5 About Using Host Arrays

You can pass input host arrays and indicator arrays to a PL/SQL block. They can be indexed
by a PL/SQL variable of type Bl NARY_| NTEGER or by a host variable compatible with that type.
Normally, the entire host array is passed to PL/SQL, but you can use the ARRAYLEN statement
(discussed later) to specify a smaller array dimension.

Furthermore, you can use a subprogram call to assign all the values in a host array to rows in
a PL/SQL table. Given that the array subscript range is m .. n, the corresponding PL/SQL table
index range is always 1 .. (n - m + 1). For example, if the array subscript range is 5 .. 10, the
corresponding PL/SQL table index rangeis1.. (10-5+1)or1 .. 6.

@ Note

The Oracle Precompilers do not check your usage of host arrays. For instance, no
index range checking is done.

In the example , you pass a host array named salary to a PL/SQL block, which uses the host
array in a function call. The function is named median because it finds the middle value in a
series of numbers. Its formal parameters include a PL/SQL table named num_tab. The function
call assigns all the values in the actual parameter salary to rows in the formal parameter
num_tab.

EXEC SQL BEG N DECLARE SECTI ON,

salary (100) REAL;

medi an_sal ary REAL;

EXEC SQL END DECLARE SECTI ON,

- popul ate the host array

EXEC SQL EXECUTE

DECLARE

TYPE NunifabTyp |'S TABLE OF REAL

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE

Chapter 5
About Using Host Arrays

I NDEX BY Bl NARY_| NTECER;
n Bl NARY_| NTEGER;

FUNCTI ON nedi an (num tab NunifabTyp, n | NTEGER)
RETURN REAL | S
BEG N
- conpute nedian
END;
BEG N
n := 100;
:nedian_salary := nedian(:salary, n);
END;
END- EXEC,

You can also use a subprogram call to assign all row values in a PL/SQL table to
corresponding elements in a host array.

Table 5-1 shows the legal conversions between row values in a PL/SQL table and elements in
a host array. For example, a host array of type LONGis compatible with a PL/SQL table of type
VARCHAR2, LONG, RAW or LONG RAW Notably, it is not compatible with a PL/SQL table of type
CHAR.

Table 5-1 Legal Conversions: PLISQL Table Row and Host Array Elements

]
PL/ISQL Table CHAR DATE LONG LONGRAW NUMBER RAW ROW D VARCHAR2

CHARF _/

CHARZ N,

DATE /

DECI MAL /

DI SPLAY /

FLOAT /

| NTEGER /

LONG / /

LONG VARCHAR / / / /
LONG VARRAW / /

NUMBER /

RAW / /

RON D /

STRING / / / /
UNSI GAED /

VARCHAR / / / /
VARCHAR? / / / /
VARNUM /

VARRAW / /

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 10 of 17

ORACLE Chapter 5
About Using Cursors

5.5.1 ARRAYLEN Statement

Suppose you must pass an input host array to a PL/SQL block for processing. By default,
when binding such a host array, the Oracle Precompilers use its declared dimension. However,
you might not want to process the entire array. In that case, you can use the ARRAYLEN
statement to specify a smaller array dimension. ARRAYLEN associates the host array with a host
variable, which stores the smaller dimension. The statement syntax is

EXEC SQ. ARRAYLEN host _array (dimension);

where dimension is a 4-byte, integer host variable, not a literal or an expression.

The ARRAYLEN statement must appear in the Declare Section along with, but somewhere after,
the declarations of host_array and dimension. You cannot specify an offset into the host array.
However, you might be able to use host-language features for that purpose.

In the following example, you use ARRAYLEN to override the default dimension of a host array
named bonus:

EXEC SQL BEG N DECLARE SECTI ON;
bonus (100) REAL;

my_di m | NTEGER;

EXEC SQL ARRAYLEN bonus (ny_dim;
EXEC SQL END DECLARE SECTI ON;

- popul ate the host array

set ny_dim= 25; -- set smaller array dinension
EXEC SQL EXECUTE
DECLARE

TYPE NunifabTyp |'S TABLE OF REAL

| NDEX BY BI NARY_| NTEGER,

medi an_bonus REAL;

FUNCTI ON nedi an (num_tab NunifabTyp, n | NTEGER)
RETURN REAL | S

BEG N

- conpute nedian

END;

BEG N

medi an_bonus : = medi an(: bonus, :ny_dim;

END;
END- EXEC;

Only 25 array elements are passed to the PL/SQL block because ARRAYLEN downsizes the host
array from 100 to 25 elements. As a result, when the PL/SQL block is sent to Oracle for
execution, a much smaller host array is sent along. This saves time and, in a networked
environment, reduces network traffic.

5.6 About Using Cursors

Every embedded SQL statement is assigned a cursor, either explicitly by you in a DECLARE
CURSOR statement or implicitly by the precompiler. Internally, the Oracle Precompilers maintain
a cache, called the cursor cache, to control the execution of embedded SQL statements. When
executed, every SQL statement is assigned an entry in the cursor cache. This entry is linked to
a private SQL area in your Program Global Area (PGA) within Oracle.

Various precompiler options, including MAXOPENCURSORS, HOLD CURSOR, and RELEASE_CURSCR, let
you manage the cursor cache to improve performance. For example, RELEASE CURSOR controls

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 17

ORACLE

Chapter 5
About Using Cursors

what happens to the link between the cursor cache and private SQL area. If you specify
RELEASE_CURSOR=YES, the link is removed after Oracle executes the SQL statement. This frees
memory allocated to the private SQL area and releases parse locks.

For purposes of cursor cache management, an embedded PL/SQL block is treated just like a
SQL statement. At run time, a cursor, called a parent cursor, is associated with the entire
PL/SQL block. A corresponding entry is made to the cursor cache, and this entry is linked to a
private SQL area in the PGA.

Each SQL statement inside the PL/SQL block also requires a private SQL area in the PGA. So,
PL/SQL manages a separate cache, called the child cursor cache, for these SQL statements.
Their cursors are called child cursors. Because PL/SQL manages the child cursor cache, you
do not have direct control over child cursors.

The maximum number of cursors your program can use simultaneously is set by the Oracle
initialization parameter OPEN_CURSORS.Figure 5-1 shows you how to calculate the maximum
number of cursors in use.

Figure 5-1 Maximum Cursors in Use

SQL statement cursors

PL/SQL parent cursors
PL/SQL child cursors

+ 6 cursors for overhead

Sum of cursors in use

Must not exceed OPEN_CURSORS

If your program exceeds the limit imposed by OPEN_CURSCRS, you get the following Oracle error:

ORA-01000: maxi mum open cursors exceeded

You can avoid this error by specifying the RELEASE CURSOR=YES and HOLD CURSOR=NO options. If
you do not want to precompile the entire program with RELEASE CURSOR set to YES, simply reset
it to NO after each PL/SQL block, as follows:

EXEC ORACLE OPTI ON (RELEASE_CURSOR=YES) ;
- first enmbedded PL/SQ bl ock

EXEC ORACLE OPTI ON (RELEASE_CURSCR=NO) ;
- enbedded SQ statenents

EXEC ORACLE OPTI ON (RELEASE_CURSOR=YES) ;
- second enbedded PL/SQL bl ock

EXEC ORACLE OPTI ON (RELEASE_CURSCR=NO) ;
- enbedded SQ statenents

5.6.1 An Alternative

The MAXOPENCURSCRS option specifies the initial size of the cursor cache. For example, when
MAXOPENCURSORS=10, the cursor cache can hold up to 10 entries. If a new cursor is needed,
there are no free cache entries, and HOLD_CURSOR=NO, the precompiler tries to reuse an entry. If
you specify a very low value for MAXOPENCURSCRS, the precompiler is forced to reuse the parent
cursor more often. All the child cursors are released as soon as the parent cursor is reused.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE Chapter 5
Stored Subprograms

5.7 Stored Subprograms

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) can be compiled
separately, stored in an Oracle database, and invoked. A subprogram explicitly created using

an Oracle tool such as SQL*Plus is called a stored subprogram. Once compiled and stored in
the data dictionary, it is a database object, which can be reexecuted without being recompiled.

When a subprogram within a PL/SQL block or stored subprogram is sent to Oracle by your
application, it is called an inline subprogram. Oracle compiles the inline subprogram and
caches it in the System Global Area (SGA), but does not store the source or object code in the
data dictionary.

Subprograms defined within a package are considered part of the package, and so are called
packaged subprograms. Stored subprograms not defined within a package are called
standalone subprograms.

5.7.1 Creating Stored Subprograms

You can embed the SQL statements CREATE FUNCTI ON, CREATE PROCEDURE, and CREATE PACKAGE
in a host program, as the following example shows:

EXEC SQL CREATE

FUNCTI ON sal _ok (salary REAL, title CHAR)
RETURN BOOLEAN AS

m n_sal REAL;

max_sal REAL;

BEG N

SELECT | osal, hisal INTO min_sal, nmax_sal
FROM sal s

WHERE job = title;

RETURN (salary >= nin_sal) AND

(salary <= max_sal);

END sal _ok;

END- EXEC;

Notice that the embedded CREATE { FUNCTI ON | PROCEDURE | PACKAGE} statement is a hybrid.
Like all other embedded CREATE statements, it begins with the keywords EXEC SQ. (not EXEC
SQ. EXECUTE). But, unlike other embedded CREATE statements, it ends with the PL/SQL
terminator END- EXEC.

In the example, you create a package that contains a procedure named get_employees, which
fetches a batch of rows from the emp table. The batch size is determined by the caller of the
procedure, which might be another stored subprogram or a client application program.

The procedure declares three PL/SQL tables as OUT formal parameters, then fetches a batch
of employee data into the PL/SQL tables. The matching actual parameters are host arrays.
When the procedure finishes, it automatically assigns all row values in the PL/SQL tables to
corresponding elements in the host arrays.

EXEC SQL CREATE OR REPLACE PACKAGE enp_actions AS
TYPE Char ArrayTyp |'S TABLE OF VARCHAR2(10)

I NDEX BY BI NARY_I NTEGER;

TYPE NumArrayTyp |'S TABLE OF FLOAT

I NDEX BY BI NARY_I NTEGER;

PROCEDURE get _enpl oyees(

dept _number | N | NTEGER

bat ch_size IN | NTEGER,

found IN QUT I NTEGER,

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE

Chapter 5
Stored Subprograms

done_fetch QUT | NTEGER
enp_nane QUT CharArrayTyp,
job-title QUT CharArrayTyp,
salary QUT NumArrayTyp);
END enp_acti ons;

END- EXEC,

EXEC SQL CREATE OR REPLACE PACKAGE BODY enp_actions AS
CURSCR get _enp (dept _nunber IN INTEGER) IS
SELECT enare, job, sal FROM enp
WHERE dept no = dept _nunber;
PROCEDURE get _enpl oyees(
dept _number | N | NTEGER
bat ch_size I N | NTEGER,
found IN QUT | NTECER,
done_fetch QUT | NTEGER
enp_nane QUT CharArrayTyp,
job_title QUT CharArrayTyp,
salary QUT NumArrayTyp) IS
BEG N
I F NOT get_enp% SOPEN THEN
OPEN get _enp(dept _nunber);

END | F;
done_fetch : = 0;
found : = 0;

FOR i IN 1..batch_size LOOP
FETCH get _enp | NTO enp_nane(i),
job_title(i), salary(i);

| F get _emp%NOTFOUND THEN
CLOSE get _enp;

done_fetch : = 1;

EXIT,

ELSE

found := found + 1;

END | F,

END LOOP;

END get _enpl oyees;

END enp_acti ons;
END- EXEC,

You specify the REPLACE clause in the CREATE statement to redefine an existing package
without having to drop the package, re-create it, and regrant privileges on it. For the full syntax
of the CREATE statement see the Oracle Database SQL Language Reference.

If an embedded CREATE { FUNCTI ON] PROCEDURE| PACKAGE} statement fails, Oracle generates a
warning, not an error.

5.7.2 Calling a Stored Subprogram

To invoke (call) a stored subprogram from your host program, you must use an anonymous
PL/SQL block. In the following example, you call a standalone procedure named raise_salary:.

EXEC SQL EXECUTE
BEG N
rai se_salary(:enp_id, :increase);
END;

END- EXEC;

Notice that stored subprograms can take parameters. In this example, the actual parameters
emp_id and increase are host variables.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 14 of 17

ORACLE

Chapter 5
Stored Subprograms

In the next example, the procedure raise_salary is stored in a package hamed emp_actions, so
you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEG N
enp_actions.raise_salary(:enp_id, :increase);
END;

END- EXEC;

An actual IN parameter can be a literal, host variable, host array, PL/SQL constant or variable,
PL/SQL table, PL/SQL user-defined record, subprogram call, or expression. However, an
actual OUT parameter cannot be a literal, subprogram call, or expression.

In the Pro*C example, three of the formal parameters are PL/SQL tables, and the
corresponding actual parameters are host arrays. The program calls the stored procedure
get_employees repeatedly, displaying each batch of employee data, until no more data is
found.

#i ncl ude <stdio. h>

#include <string. h>

typedef char asciz;

EXEC SQL BEG N DECLARE SECTI ON;

/* Define type for null-termnated strings */
EXEC SQL TYPE asciz 1S STRI NG 20);

asci z usernange[20];

asci z password[20];

int dept_no; /* which department to query */
char enp_nane[10][21];

char job[10][21];

float salary[10];

int done_flag;

int array_size;

int numret; /* number of rows returned */

i nt SQLCODE;

EXEC SQL END DECLARE SECTI ON;

EXEC SQL | NCLUDE sql ca;

int print_rows(); /* produces program output */
int sql _error(); /* handles NOLOGA NG errors */
mai n()

{. .

int i;

/* Connect to Oracle. */

strcpy(username, "SCOTT");

strcpy(password, "TICGER');

EXEC SQ. WHENEVER SQLERROR DO sql _error();
EXEC SQL CONNECT : username | DENTI FI ED BY : password;
printf("\nConnected to Oracle as user: %\n", usernane);
printf("enter department nunber: ");

scanf ("%", &dept_no);

fflush(stdin);

/* Set the array size. */

array_size = 10;

done_flag = 0;

numret = 0;

/* Array fetch loop - ends when done_flag is true. */
for (i3)

{

EXEC SQL EXECUTE

BEG N enp_acti ons. get _enpl oyees

(:dept_no, :array_size, :numret,

:done_flag, :enp_nane, :job, :salary);

END;

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE Chapter 5
Stored Subprograms

END- EXEC,

print_rows(numret);

if (done_flag)

br eak;

}

/* Disconnect fromthe database. */
EXEC SQL COW T WORK RELEASE;

exit(0);

}

print_rows(n)

int n;

{

int i;

if (n==0)

{

printf("No rows retrieved.\n");
return;

}
printf("\n\inGt % rowg\n", n, n==17?"'\0" : 's');
printf("% 20.20s% 20.20s%\n", "Enane", "Job", "Salary");

for (i =0; i <n; i++)
printf("%0.20s%20. 20s%. 2f\ n",
emp_nane[i], job[i], salary[i]);
sql _error()

{

EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\nOracle error detected:");
printf("\n%.70s \n", sqlca.sqlerrmsqlerrnc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

Remember, the datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Also, before a stored subprogram exits, all OUT formal
parameters must be assigned values. Otherwise, the values of corresponding actual
parameters are indeterminate.

5.7.3 Remote Access

PL/SQL lets you access remote databases through database links. Typically, database links
are established by your DBA and stored in the Oracle data dictionary. A database link tells
Oracle where the remote database is located, the path to it, and what Oracle username and
password to use. In the following example, you use the database link dallas to call the
raise_salary procedure:

EXEC SQL EXECUTE
BEG N
rai se_salary@al | as(:enp_id, :increase);
END;

END- EXEC;

You can create synonyms to provide location transparency for remote subprograms, as the
following example shows:

CREATE PUBLI C SYNONYM rai se_sal ary FOR rai se_sal ary@lal | as;

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 16 of 17

ORACLE Chapter 5
About Using Dynamic PL/SQL

5.7.4 Getting Information about Stored Subprograms

In Meeting Program Requirements, you learned how to embed OCI calls in your host program.
After calling the library routine SQLLDA to set up the LDA, you can use the OCI call ODESSP to
get useful information about a stored subprogram. When you call CDESSP, you must pass it a
valid LDA and the name of the subprogram. For packaged subprograms, you must also pass
the name of the package. ODESSP returns information about each subprogram parameter such
as its datatype, size, position, and so on.

You can also use the procedure describe_procedure in package DBMS_DESCRIBE, which is
supplied with Oracle.

5.8 About Using Dynamic PL/SQL

Recall that the Oracle Precompilers treat an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block contains
no host variables, you can use dynamic SQL Method 1 to execute the PL/SQL string. Or, if the
block contains a known number of host variables, you can use dynamic SQL Method 2 to
prepare and execute the PL/SQL string. If the block contains an unknown number of host
variables, you must use dynamic SQL Method 4. For more information, refer to Using Dynamic

SQL.
5.8.1 Restriction

In dynamic SQL Method 4, a host array cannot be bound to a PL/SQL procedure with a
parameter of type TABLE.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 17 of 17

Running the Oracle Precompilers

This chapter contains the following:

¢ The Precompiler Command

¢ What Occurs during Precompilation?

¢ Precompiler Options

¢ Entering Options

e Scope of Options

¢ Quick Reference

e About Using the Precompiler Options

¢ Conditional Precompilations

e Separate Precompilations

¢ Compiling and Linking

This chapter details the requirements for running the Oracle Precompilers. You learn what
occurs during precompilation, how to issue the precompiler command, how to specify the many
useful precompiler options, and how to do conditional and separate precompilations.

6.1 The Precompiler Command

To run an Oracle Precompiler, you issue one of the language-specific commands shown in
Table 6-1.

Table 6-1 Precompiler Run Commands

Host Language Precompiler Command
COBOL procob
FORTRAN pr of or

The location of the precompiler differs from system to system. Typically, your system manager
or DBA defines environment variables, logicals, or aliases or uses other operating system-
specific means to make the precompiler executable accessible.

The INAME option specifies the source file to be precompiled. For example, the ProxCOBOL
command

procob | NAME=t est

precompiles the file test.pco in the current directory, since the precompiler assumes that the
filename extension is .pco. You need not use a file extension when specifying INAME unless
the extension is nonstandard.

Input and output filenames need not be accompanied by their respective option names, INAME
and ONAME. When the option names are not specified, the precompiler assumes that the first

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 51

ORACLE

Chapter 6
What Occurs during Precompilation?

filename specified on the command line is the input filename and that the second filename is
the output filename.

Thus, the Pro*FORTRAN command
prof or MODE=ANSI nyfile.pfo DBVMS=V7 nyfile.f

is equivalent to

prof or MODE=ANSI | NAME=nyfile.pfo DBMS=V7 ONAME=nyfile.f

® Note

Option names and option values that do not name specific operating system objects,
such as filenames, are not case-sensitive. In the examples in this guide, option names
are written in upper case, and option values are usually in lowercase. Filenames,
including the name of the precompiler executable itself, always follow the case
conventions used by the operating system on which it is executed.

6.2 What Occurs during Precompilation?

During precompilation, an Oracle Precompiler generates host-language code that replaces the
SQL statements embedded in your host program. The generated code includes data structures
that contain the datatype, length, and address of each host variable, and other information
required by the Oracle run-time library, SQLLIB. The generated code also contains the calls to
SQLLIB routines that perform the embedded SQL operations.

The generated code also includes calls to the SQLLIB routines that perform embedded SQL
operations. Note that the precompiler does not generate calls to Oracle Call Interface (OCI)
routines.

The precompiler does not generate calls to Oracle Call Interface (OCI) routines.

The precompiler can issue warnings and error messages. These messages have the prefix
PCC-, and are described in Oracle Database Error Messages.

6.3 Precompiler Options

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

Many useful options are available at precompile time. They let you control how resources are
used, how errors are reported, how input and output are formatted, and how cursors are
managed. To specify a precompiler option, use the following syntax:

<opti on_nanme>=<val ue>

The value of an option is a string literal, which represents text or numeric values. For example,
for the option

| NAME=ny _t est

the value is a string literal that specifies a filename, but for the option

MAXOPENCURSCORS=20

the value is numeric.

October 13, 2025
Page 2 of 51

ORACLE

Chapter 6
Precompiler Options

Some options take Boolean values, which you can represent with the strings YES or NO,
TRUE or FALSE, or with the integer literals 1 or 0, respectively. For example, the option

. SELECT_ERROR=YES

is equivalent to

. SELECT_ERROR=TRUE

or

. SELECT_ERROR=1

The option value is always separated from the option name by an equal sign, leave no
whitespace around the equal sign, because spaces delimit individual options. For example,
you might specify the option AUTO_CONNECT on the command line as follows:

. AUTO_CONNECT=YES

You can abbreviate the names of options if the abbreviation is unambiguous. For example, you
cannot use the abbreviation MAX because it might stand for MAXLITERAL or
MAXOPENCURSORS.

A handy reference to the precompiler options is available online. To see the online display,
enter the precompiler command with no arguments at your operating system prompt. The
display gives the name, syntax, default value, and purpose of each option. Options marked
with an asterisk (*) can be specified inline and on the command line.

6.3.1 Default Values

Many of the options have default values, which are determined by:

e Avalue built in to the precompiler

e Avalue set in the system configuration file
e Avalue set in a user configuration file

e Avalue setin an inline specification

For example, the option MAXOPENCURSORS specifies the maximum number of cached open
cursors. The built-in precompiler default value for this option is 10. However, if
MAXOPENCURSORS=32 is specified in the system configuration file, the default becomes 32.
The user configuration file could set it to yet another value, which then overrides the system
configuration value.

Then, if this option is set on the command line, the new command-line value takes
precedence. Finally, an inline specification takes precedence over all preceding defaults. For
more information, refer to Configuration Files".

6.3.2 Determining Current Values

You can interactively determine the current value for one or more options by using a question
mark on the command line. For example, if you issue the Pro*xCOBOL command

procob ?

the complete option set, along with current values, is displayed on your terminal. In this case,
the values are those built into the precompiler, overridden by any values in the system
configuration file. But if you issue the following command

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 51

ORACLE

Chapter 6
Precompiler Options

procob CONFI G=ny_config_file.cfg ?

and there is a file named my_config_file.cfg in the current directory, the options from the
my_config_file.cfg file are listed with the other default values. Values in the user configuration
file supply missing values, and they supersede values built into the precompiler or values
specified in the system configuration file.

You can also determine the current value of a single option by simply specifying the option
name followed by "=?" as in

procob MAXOPENCURSORS=?

@ Note

: With some operating systems, the "?" may need to be preceded by an "escape”
character, such as a back-slash (\). For example, instead of "procob ?," you might
need to use "procob \?" to list the Pro*COBOL option settings.

6.3.3 Case Sensitivity

In general, you can use either uppercase or lowercase for command-line option names and
values. However, if your operating system is case-sensitive, like UNIX, you must specify
filename values, including the name of the precompiler executable, using the correct
combination of upper and lowercase letters.

6.3.4 Configuration Files

A configuration file is a text file that contains precompiler options. Each record (line) in the file
contains one option, with its associated value or values. For example, a configuration file might
contain the lines

FI PS=YES
MCDE=ANSI

to set defaults for the FI PS and MODE options.

There is a single system configuration file for each system. The name of the system
configuration file is precompiler-specific and is shown in Table 6-2.

Table 6-2 System Configuration Files
|

Precompiler Configuration File
Pro*COBOL pcbcfg. cfg
Pro*FORTRAN pccfor.cfg

The location of the file is operating system-specific. On most UNIX systems, the Pro*COBOL
configuration file is usually located in the $ORACLE_HOME/procob directory, and the
Pro*FORTRAN equivalent is in the $ORACLE_HOME/profor directory,

where $ORACLE_HOME is the environment variable for the database software.

Each precompiler user can have one or more user configuration files. The name of the
configuration file must be specified using the CONFI G command-line option. For more
information, refer to Determining Current Values.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 51

ORACLE Chapter 6
Entering Options

@® Note

You cannot nest configuration files. CONFIG is not a valid option inside a configuration
file.

6.4 Entering Options

All the precompiler options can be entered on the command line or (except CONFI G) from a
configuration file. Many options can also be entered inline. During a given run, the precompiler
can accept options from all three sources.

6.4.1 On the Command Line

You enter precompiler options on the command line using the following syntax:

... [option_name=val ue] [option_name=val ue] ...

Separate each option with one or more spaces. For example, you might enter the following
options:

. ERRORS=no LTYPE=short

6.4.2 Inline

You enter options inline by coding EXEC ORACLE statements, using the following syntax:

EXEC ORACLE OPTION (option_nane=val ue);

For example, you might code the following statement:

EXEC ORACLE OPTI ON (RELEASE_CURSCR=YES) ;

An option entered inline overrides the same option entered on the command line.

6.4.3 Advantages

The EXEC ORACLE feature is especially useful for changing option values during precompilation.
For example, you might want to change the HOLD_CURSOR and RELEASE CURSCOR values on a
statement-by-statement basis. Performance Tuning shows you how to use inline options to
optimize run-time performance.

Specifying options inline is also helpful if your operating system limits the number of characters
you can enter on the command line, and you can store inline options in configuration files,
which are discussed in the next section.

6.4.4 Scope of EXEC ORACLE

An EXEC ORACLE statement stays in effect until textually superseded by another EXEC
ORACLE statement specifying the same option. In the following example, HOLD_CURSOR=NO
stays in effect until superseded by HOLD CURSOR=YES:

EXEC SQL BEG N DECLARE SECTI ON;
enp_nane CHARACTER(20);
enp_nunber | NTEGER,

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 51

ORACLE

Chapter 6
Entering Options

sal ary REAL;
dept _nunber | NTECER;

EXEC SQ. END DECLARE SECTI ON;

EXEC SQL WHENEVER NOT FOUND GOTO no_nor e;
EXEC ORACLE OPTI ON (HOLD_CURSOR=NO) ;
EXEC SQ. DECLARE enp_cursor CURSOR FOR

SELECT EMPNO, DEPTNO FROM EMP;

EXEC SQL OPEN enp_cursor;

di spl ay ' Enpl oyee Nunmber Dept';
display "--------------- ---- "
LooP

EXEC SQL FETCH enp_cursor | NTO :enp_nunber, :dept_nunber;
di splay enmp_nunber, dept_nunber;

ENDL OCP;
no_nore:

EXEC SQL WHENEVER NOT FOUND CONTI NUE;
LooP

di splay ' Enpl oyee nunber? '

read enp_nunber;

| F enp_nunber = 0 THEN

exit |oop;

EXEC ORACLE OPTI ON (HOLD_CURSOR=YES) ;
EXEC SQL SELECT ENAME, SAL

I NTO : enp_nane, :salary

FROM EMP

WHERE EMPNO = : enp_nunber;

display 'Salary for ', enp_name, ' is ', salary;
ENDL OCP;

6.4.5 From a Configuration File

The Oracle Precompilers can use a configuration file containing preset command-line options.
By default, a text file called the system configuration file is used. However, you can specify any
of several alternative files, called user configuration files, on the command line.

6.4.6 Advantages

Configuration files offer several advantages. The system configuration file lets you standardize
a set of options for all projects. User configuration files let you customize a set of options for
each project. With configuration files, you need not enter long strings of options on the
command line. Also, if your system limits the length of a command line, configuration files let
you specify more options than the command line can hold.

6.4.7 About Using Configuration Files

Each record (line) in a configuration file holds one command-line option. For example, a
configuration file might contain the following lines, which set defaults for the FI PS, MODE, and
SQLCHECK options:

FI PS=YES
MODE=ANSI
SQLCHECK=SEMANTI CS

Each Oracle Precompiler can have its own system configuration file. The name and location of
the file are language- and system-specific. If the file is not found, you get a warning but the
precompiler continues processing.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 51

ORACLE

Chapter 6
Scope of Options

There is only one system configuration file for a given language, but you can create any
number of user configuration files. You use the new command-line option CONFIG to specify
the name and location of a particular user configuration file, as follows:

. CONFI G=<fi | ename>

You cannot nest configuration files. Therefore, you cannot specify the CONFI G option in a
configuration file. Also, you cannot specify CONFI Ginline.

6.4.8 About Setting Option Values

Many precompiler run-time options have built-in default values, which can be reset in a
configuration file or on the command line. Command-line settings override user configuration
file settings, which override system configuration file settings.

6.5 Scope of Options

A precompilation unit is a file containing host-language code and one or more embedded SQL
statements. The options specified for a given precompilation unit affect only that unit; they have
no effect on other units.

For example, if you specify HOLD _CURSOR=YES and RELEASE CURSOR=YES for unit A but not unit
B, SQL statements in unit A run with these HOLD_CURSOR and RELEASE CURSOR values, but SQL
statements in unit B run with the default values. However, the MAXOPENCURSORS setting
that is in effect when you connect to Oracle stays in effect for the life of that connection.

The scope of an inline option is positional, not logical. That is, an inline option affects SQL
statements that follow it in the source file, not in the flow of program logic. An option setting
stays in effect until the end-of-file unless you re-specify the option.

6.6 Quick Reference

Table 6-3 is a quick reference to the precompiler options. The options marked with an asterisk
can be entered inline.

Another handy reference is available online. To see the online display, just enter the
precompiler command without options at your operating system prompt. The display provides
the name, syntax, default value, and purpose of each option.

There are some platform-specific options. For example, on byte-swapped platforms that use
MicroFocus COBOL, the option COMPS5 governs the use of certain COMPUTATIONAL items.
Check your system-specific Oracle manuals.

Table 6-3 Precompiler Options Quick Reference
]

Syntax Default Specifies ...

ASACC={YES|NO} NO carriage control for listing
ASSUME_SQLCODE={YES|NO} NO precompiler presumes that SQLCODE is declared
AUTO_CONNECT={YES|NO} NO automatic logon

CHAR_MAP={VARCHAR2 | CHARZ | CHARZ mapping of character arrays and strings
STRING | CHARF} *

CHARSET_PICN={NCHAR_CHARSE NCHAR_ the character set form used by PIC N variables
T | DB_CHARSET } CHARSET

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 51

ORACLE

Chapter 6
Quick Reference

Table 6-3 (Cont.) Precompiler Options Quick Reference

Syntax Default Specifies ...

CHARSET_PICX={NCHAR_CHARSE DB_CHAR the character set form used by PIC X variables

T| DB_CHARSET } SET

CINCR 1 CINCR value for connection pool. Allows the
application to set the next increment for physical
connections to be opened to the database, if the
current number of physical connections is less than
CMAX

CLOSE_ON_COMMIT={YES | NO} NO close all cursors on COMMIT

CMAX 100 specifies the maximum number of physical
connections that can be opened for the database

CMIN 2 specifies the minimum number of physical
connections in the connection pool.

CNOWAIT 0 (which determines if the application must repeatedly try for

means not a physical connection when all other physical
set) connections in the pool are busy, and the total

number of physical connections has already
reached its maximum. CNOWAIT Value for
connection pool

CODE={ANSI_C | KR_C | CPP} KR_C type of C code to be generated

COMMON_NAME=block_name * name of FORTRAN COMMON blocks

COMMON_PARSER NO parse using Common SQL Front End

COMP5 YES generate COMP-5 rather than COMP variables

COMP_CHARSET={MULTI_BYTE | MULTI_BY the character set type the C/C++ compiler

SINGLE_BYTE} TE supports.

CONFIG=filename name of user configuration file

CPOOL NO support connection pooling. Based on this option,
the precompiler generates the appropriate code
that directs SQLLIB to enable or disable the
connection pool feature

CPP_SUFFIX=extension *none* override the default C++ filename extension

CTIMEOUT 0 physical connections that are idle for more than the
specified time (in seconds) are terminated to
maintain an optimum number of open physical
connections

DB2_ARRAY={YES |NO} NO support DB2 array insert/select syntax. Based on
this option, the precompiler activates the additional
array insert/select syntax

DBMS={NATIVE|V7|V8} NATIVE version-specific behavior of Oracle at precompile
time

DECLARE_SECTION NO if YES, DECLARE SECTION is required

DEF_SQLCODE={NO | YES} NO controls whether the Pro*C/C++ precompiler
generates #define's for SQLCODE

DEFINE=symbol * symbol used in conditional precompilation

DURATION={TRANSACTION | TRANSAC set pin duration for objects in the cache

SESSION} TION

DYNAMIC={ANSI | ORACLE} ORACLE specify Oracle or ANSI SQL semantics.

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 51

ORACLE

Chapter 6
Quick Reference

Table 6-3 (Cont.) Precompiler Options Quick Reference

Syntax Default Specifies ...
END_OF FETCH 1403 end-of-fetch SQLCODE value
ERRORS={YES|NO} * YES whether errors are sent to the terminal
ERRTYPE=filename *none* name of the list file for intype file errors
EVENTS NO support publish-subscribe event notifications
FILE_ID 0 unique numeric identifier for the generated COBOL
file
FIPS={YES|NO}* NO whether ANSI/ISO extensions are flagged
FORMAT={ANSI|TERMINAL} ANSI format of COBOL or FORTRAN input line
Globalization Support_ LOCAL={YES| YES blank-padding operations to be preformed by
NO} SQLLIB
HEADER=extension *none* name of the listing file for intype file error
messages
HOLD_CURSOR={YES|NO}* NO how cursor cache handles SQL statements
HOST={COBOL|COB74} COBOL COBOL version of input file
IMPLICIT_SVPT NO implicit savepoint before buffered insert
[INAME=]filename name of input file
INCLUDE=path* directory path for INCLUDEC files
INTYPE=filename *none* name of the input file for type information
IRECLEN=integer 80 record length of input file
LINES={YES | NO} NO whether #line directives are generated
LITDELIM={APOST|QUOTE} * QUOTE delimiter for COBOL strings
LNAME=filename name of listing file
LRECLEN=integer 132 record length of listing file
LTYPE={LONG|SHORT|NONE} LONG type of listing
MAXLITERAL=integer * platform- maximum length of strings
specific
MAXOPENCURSORS=integer * 10 maximum number of cursors cached
MAX_ROW_INSERT 0 maximum number of rows to buffer on insert
MODE={ORACLE|ANSI|ANSI14| ORACLE compliance with the ANSI/ISO SQL standard
ANSI13}
MULTISUBPROG={YES|NO} YES whether FORTRAN COMMON blocks are
generated
NATIVE_TYPES NO support for native float/double
NESTED={YES | NO} YES if YES, nested programs are supported
NLS_CHAR=(varl, ..., varn) *none* specify multibyte character variables
NLS_LOCAL={YES | NO} NO if YES, use NCHAR semantics of previous
Pro*COBOL releases
OBJECTS={YES | NO} YES Support of object types
OUTLINE NO category in which Outlines are created
OUTLNPREFIX *none* outline name prefix

[ONAME-=]filename

name of output file

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Table 6-3 (Cont.) Precompiler Options Quick Reference

Syntax Default Specifies ...
ORACA={YES|NO}* NO whether the ORACA is used
ORECLEN-=integer 80 record length of output file
PAGELEN-=integer 66 lines in each page in listing

PARSE={NONE | PARTIAL | FULL} FULL

PICN_ENDIAN BIG
PICX CHARF
PREFETCH=0..65535 1
RELEASE_CURSOR={YES|NO} * NO
RUNOUTLINE NO
SELECT_ERROR={YES|NO}* YES
SQLCHECK={FULL|SYNTAX]| SYNTAX
LIMITED|NONE}*

STMT_CACHE 0
SYS_INCLUDE=pathname none
THREADS={YES | NO} NO
TYPE_CODE={ORACLE | ANSI} ORACLE
UNSAFE_NULL={YES|NO} NO

USERID=username/password
UTF16_CHARSET={NCHAR_CHARS NCHAR_

ET | DB_CHARSET} CHARSET
VARCHAR={YES|NO} NO
VERSION={ANY | LATEST | RECENT} RECENT
*

XREF={YES|NO}* YES

whether Pro*C/C++ parses (with a C parser) the.pc
source

endianness in PIC N host variables
datatype of PIC X COBOL variables.

speed up queries by pre-fetching a given number of
rows

how cursor cache handles SQL statements
create Outlines in the database
how SELECT errors are handled

extent of syntactic and semantic checking

size of statement cache

directory where system header files, such as
iostream.h, are found

indicates a shared server application

use of Oracle or ANSI type codes for dynamic SQL
disables the ORA-01405 message

valid Oracle username and password

specify the character set form used by
UNICODE(UTF16)

recognize implicit VARCHAR group items in
COBOL

Which version of an object is to be returned

cross reference section in listing

6.7 About Using the Precompiler Options

This section is organized for easy reference. It lists the precompiler options alphabetically, and
for each option provides its purpose, syntax, and default value. Usage notes that help you
understand how the option works are also provided. Unless the usage notes say otherwise, the
option can be entered on the command line, inline, or from a configuration file.

6.7.1 ASACC

Purpose

Specifies whether the listing file follows the ASA convention of using the first column in each

line for carriage control.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Syntax
ASACCH{ YES| NG}
Default

NO

Usage Notes

Cannot be entered inline.

6.7.2 ASSUME_SQLCODE

Purpose

Instructs the Oracle Precompiler to presume that SQLCODE is declared irrespective of
whether it is declared in the Declare Section or of the proper type. ASSUME_SQLCODE=YES
causes Releases 1.6 and later of the Oracle Precompilers to behave similarly to Release 1.5 in
this respect.

Syntax

ASSUME_SQLCODE={ YES| NG}

Default
NO

Usage Notes
Cannot be entered inline.

When ASSUME_SQ.CODE=NO, SQLCCDE is recognized as a status variable if and only if at least one
of the following criteria is satisfied:

e ltis declared in a Declare Section with exactly the right datatype.
e The precompiler finds no other status variable.

If the precompiler finds a SQLSTATE declaration (of exactly the right type of course) in a
Declare Section or finds an | NCLUDE of the SQLCA, it will not presume SQLCODE is declared.

When ASSUME_SQ.CODE=YES, and when SQLSTATE and SQLCA (Pro*FORTRAN only) are
declared as status variables, the precompiler presumes SQLCODE is declared whether it is
declared in a Declare Section or of the proper type. This causes Releases 1.6.7 and later to
behave like Release 1.5 in this regard.

6.7.3 AUTO_CONNECT

Purpose

Specifies whether your program connects automatically to the default user account.

Syntax
AUTO_CONNECT={ YES| NC}

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Default
NO

Usage Note
Cannot be entered inline.

When AUTO_CONNECT=YES, as soon as the precompiler encounters an executable SQL
statement, your program tries to log on to Oracle automatically with the userid

<prefi x><user name>

where prefix is the value of the Oracle initialization parameter OS_AUTHENT_PREFI X (the default
value is null) and username is your operating system user or task name. In this case, you
cannot override the default value for MAXOPENCURORS (10), even if you specify a different
value on the command line.

When AUTO_CONNECT=NO (the default), you must use the CONNECT statement to log on to Oracle.

6.7.4 CHAR_MAP

Purpose

Specifies the default mapping of C host variables of type char or char[n], and pointers to them,
into SQL.

Syntax
CHAR_MAP={VARCHAR2 | CHARZ | STRING | CHARF}

Default

CHARZ

Usage Note

In earlier releases, you had to declare char or char[n] host variables as CHAR, using the SQL
DECLARE statement. The external datatypes VARCHAR2 and CHARZ were the default
character mappings of Oracle Database version 7.

6.7.5 CINCR

Purpose

Allows the application to set the next increment for physical connections to be opened to the
database.

Syntax
CINCR = Range is 1 to (CMAX-CMIN).

Default

1

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 12 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Usage Notes

Initially, all physical connections as specified through CMIN are opened to the server.
Subsequently, physical connections are opened only when necessary. Users should set CMIN
to the total number of planned or expected concurrent statements to be run by the application
to get optimum performance. The default value is set to 2.

6.7.6 CLOSE_ON_COMMIT

Purpose

Specifies whether to close cursors on a commit statement.

Syntax
CLOSE_ON_COMMIT={YES | NO}

Default
NO

Usage Notes
Can be used only on the command line or in a configuration file.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and CLOSE_ON_COMMIT=NO.
If the user specifies MODE=ANSI on the command line, then any cursors will be closed on
commit.

When CLOSE_ON_COMMIT=NO (when MODE=ORACLE), issuing a COMMIT or ROLLBACK
will close only cursors that are declared using the FOR UPDATE clause or are referenced in a
CURRENT OF clause. Other cursors that are not affected by the COMMIT or ROLLBACK
statement, remain open, if they are open already. However, when CLOSE_ON_COMMIT=YES
(when MODE=ANS]I), issuing a COMMIT or ROLLBACK closes all cursors.

6.7.7 CMAX

Purpose

Specifies the maximum number of physical connections that can be opened for the database.

Syntax
CINCR = Range is 1 to 65535

Default
100

Usage Notes

CMAX value must be at least CMIN+CINCR.After this value is reached, more physical
connections cannot be opened.In a typical application, running 100 concurrent database
operations is more than sufficient. The user can set an appropriate value.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 13 of 51

ORACLE Chapter 6
About Using the Precompiler Options

6.7.8 CMIN

Purpose

Specifies the minimum number of physical connections that can be opened for the database.

Syntax
CINCR = Range is 1 to (CMAX-CINCR).

Default
2

Usage Notes

CMAX value must be at least CMIN+CINCR.After this value is reached, more physical
connections cannot be opened.In a typical application, running 100 concurrent database
operations is more than sufficient. The user can set an appropriate value.

6.7.9 CNOWAIT

Purpose

This attribute determines if the application must repeatedly try for a physical connection when
all other physical connections in the pool are busy, and the total number of physical
connections has already reached its maximum.

Syntax
CNOWAIT = Range is 1 to 65535.

Default

0 which means not set.

Usage Notes

If physical connections are not available and no more physical connections can be opened, an
error is thrown when this attribute is set. Otherwise, the call waits until it acquires another
connection. By default, CNOWAIT is not to be set so a thread will wait until it can acquire a free
connection, instead of returning an error.

6.7.10 CODE

Purpose

Specifies the format of C function prototypes generated by the Pro*C/C++ precompiler. (A
function prototype declares a function and the datatypes of its arguments.) The precompiler
generates function prototypes for SQL library routines, so that your C compiler can resolve
external references. The CODE option lets you control the prototyping.

Syntax
CODE={ANSI_C | KR_C | CPP}

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 14 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Default

KR_C

Usage Notes
Can be entered on the command line, but not inline.

ANSI C standard X3.159-1989 provides for function prototyping. When CODE=ANSI_C,
Pro*C/C++ generates full function prototypes, which conform to the ANSI C standard. An
example follows:

extern void sqglora(long *, void *);

The precompiler can also generate other ANSI-approved constructs such as the const type
qualifier.

When CODE=KR_C (the default), the precompiler comments out the argument lists of
generated function prototypes, as shown here:

extern void sqlora(/*_long *, void * _*/);
Specify CODE=KR_C if your C compiler is not compliant with the X3.159 standard.

When CODE=CPP, the precompiler generates C++ compatible code.

6.7.11 COMMON_NAME

Purpose

For Pro*FORTRAN only, the COMMON_NAME option specifies a prefix used to name internal
FORTRAN COWON blocks. Your host program does not access the COWON blocks directly. But,
they allow two or more program units in the same precompilation unit to contain SQL
statements.

Syntax
COVMON_NANME=bI ocknare

Default

First five characters in name of input file

Usage Notes

The Pro*FORTRAN Precompiler uses a special program file called a block data subprogram to
establish COWON blocks for all the SQL variables in an input file. The block data subprogram
defines two COMMON blocks -- one for CHARACTER variables, the other for non-
CHARACTER variables -- and uses DATA statements to initialize the variables.

The format of a block data subprogram follows:

BLOCK DATA <subprogram name>
variabl e decl arations

COMVON st at enent s

DATA st atenents

END

Your host program does not access the COWON blocks directly. But, they allow two or more
program files in the same precompilation file to contain SQL statements.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 15 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

To name the COWON blocks, the precompiler uses the name of the input file and the suffixes C,
D, and I. At most, the first five characters of the filename are used. For example, if the name of
the input file is ACCTSPAY, the precompiler names the COMMON blocks ACCTSC, ACCTSD, and
ACCTSI .

The precompiler, however, can give COWON blocks defined in different output files the same
name, as the following schematic shows:

ACCTSPAY. PFO ===> ACCTSC, ACCTSD, ACCTSI in ACCTSPAY. FOR
ACCTSREC. PFO ===> ACCTSC, ACCTSD, ACCTSI in ACCTSREC. FOR

If you were to link ACCTSPAY and ACCTSREC into an executable program, the linker would see
three, not six, COMWON blocks.

To solve the problem, you can rename the input files, or you can override the default COMWON
block names by specifying COWON_NAME inline or on the command line as follows:

COMMON_NAME=<bl ock_nane>
where block_name is a legal COWON block name. For example, if you specify

COMMON_NAME=PAY, the precompiler names its COWON blocks PAYC and PAYI . At most, the first
five characters in block_name are used.

For example, if you specify COWON_NAME=PAY, the precompiler names its COMMON blocks
PAYC and PAYI . At most, the first 5 characters in block_name are used.

If you specify COMMON_NAME inline, its EXEC ORACLE OPTI ON statement must precede the
FORTRAN PROGRAM, SUBROUTI NE, or FUNCTI ON statement.

You might want to override the default COWON block names if they conflict with your user-
defined COWON block names. However, the preferred practice is to rename the user-defined
COWMON blocks.

COMMON_NAME is not needed if you specify MULTISUBPROG.

6.7.12 COMMON_PARSER

Purpose

Specifies that the SQL99 syntax for SELECT, INSERT, DELETE, UPDATE and body of the
cursor in a DECLARE CURSOR statement will be supported.

Syntax
COMMON_PARSER={YES | NO}

Default
NO

Usage Notes

Can be entered in the command line.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 16 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

6.7.13 COMP_CHARSET

Purpose

Indicates to the Pro*C/C++ Precompiler whether multibyte character sets are (or are not)
supported by the compiler to be used. It is intended for use by developers working in a
multibyte client-side environment (for example, when NLS_LANG is set to a multibyte
character set).

Syntax
COMP_CHARSET={MULTI_BYTE | SINGLE_BYTE}

Default

MULTI_BYTE

Usage Notes
Can be entered only on the command line.

With COMP_CHARSET=MULTI_BYTE (default), Pro*C/C++ generates C code that is to be
compiled by a compiler that supports multibyte character sets.

With COMP_CHARSET=SINGLE_BYTE, Pro*C/C++ generates C code for single-byte
compilers that addresses a complication that may arise from the ASCII equivalent of a
backslash (\) character in the second byte of a double-byte character in a multibyte string. In
this case, the backslash (\) character is "escaped" with another backslash character preceding
it.

@® Note

The need for this feature is common when developing in a Shift-JIS environment with
older C compilers.

This option has no effect when NLS_LANG is set to a single-byte character set.

6.7.14 COMP_CHARSET

Purpose

Indicates to the Pro*C/C++ Precompiler whether multibyte character sets are (or are not)
supported by the compiler to be used. It is intended for use by developers working in a
multibyte client-side environment (for example, when NLS_LANG is set to a multibyte
character set).

Syntax
COMP_CHARSET={MULTI_BYTE | SINGLE_BYTE}

Default

MULTI_BYTE

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 17 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Usage Notes
Can be entered only on the command line.

With COMP_CHARSET=MULTI_BYTE (default), Pro*C/C++ generates C code that is to be
compiled by a compiler that supports multibyte character sets.

With COMP_CHARSET=SINGLE_BYTE, Pro*C/C++ generates C code for single-byte
compilers that addresses a complication that may arise from the ASCII equivalent of a
backslash (\) character in the second byte of a double-byte character in a multibyte string. In
this case, the backslash (\) character is "escaped" with another backslash character preceding
it.

@® Note

The need for this feature is common when developing in a Shift-JIS environment with
older C compilers.

This option has no effect when NLS_LANG is set to a single-byte character set.

6.7.15 CONFIG

Purpose

Specifies the name of a user configuration file.

Syntax
CONFI G=fi | ename

Default
None

Usage Notes
Can be entered only on the command line.

The Oracle Precompilers can use a configuration file containing preset command-line options.
By default, a text file called the system configuration file is used. However, you can specify any
of several alternative files, called user configuration files.

You cannot nest configuration files. Therefore, you cannot specify the option CONFI Gin a
configuration file.

6.7.16 CPOOL

Purpose

Based on this option, the precompiler generates the appropriate code that directs SQLLIB to
enable or disable the connection pool feature.

Syntax
CPOOL ={YES|NO}

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 18 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Default

NO

Usage Notes

If this option is set to NO, other connection pooling options will be ignored by the precompiler.

6.7.17 CPP_SUFFIX

Purpose

The CPP_SUFFIX option provides the ability to specify the flename extension that the
precompiler appends to the C++ output file generated when the CODE=CPP option is
specified.

Syntax

CPP_SUFFIX=filename_extension

Default

System-specific.

Usage Notes

Most C compilers expect a default extension of ".c" for their input files. Different C++ compilers,
however, can expect different filename extensions. The CPP_SUFFIX option provides the
ability to specify the filename extension that the precompiler generates. The value of this
option is a string, without the quotes or the period. For example, CPP_SUFFIX=cc, or
CPP_SUFFIX=C.

6.7.18 CTIMEOUT

Purpose

Physical connections that are idle for more than the specified time (in seconds) are terminated
to maintain an optimum number of open physical connections

Syntax
CTIMEOUT = Range is 1 to 65535.
Default

0 which means not set.

Usage Notes

Physical connections will not be closed until the connection pool is terminated.Creating a new
physical connection will cost a round trip to the server.

6.7.19 DB2_ARRAY

Purpose

Based on this option, the precompiler activates the additional array insert/select syntax.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 19 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Syntax
DB2_ARRAY={YES |NO}
Default

NO

Usage Notes

If this option is set to NO, the Oracle precompiler syntax is supported, otherwise the DB2
insert/select array syntax is supported.

6.7.20 DBMS

Purpose

Specifies whether Oracle follows the semantic and syntactic rules of Oracle9i, Oracle8;,
Oracle8, Oracle7, or the native version of Oracle (that is, the version to which your application
is connected).

Syntax
DBMS={ NATI VE| V7| V8}

Default
NATI VE

Usage Notes
Cannot be entered inline.

Using the DBMS option, you can control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the native
version of Oracle.

When DBMS=V8, or DBMS=V7, Oracle follows the respective rules for Oracle9i (which remain
the same as for Oracle7, Oracle8, and Oracle8i).

Table 6-4 shows how the compatible DBMS and MODE settings interact. All other combinations
are incompatible or not recommended.

Table 6-4 Compatible DBMS and MODE Settings
]

Situation DBMS=V7/V8 DBMS=V7/Vv8 MODE=ORACLE
MODE=ANSI

"no data found" warning code +100 +1403

fetch nulls without using indicator error -1405 error -1405

variables

fetch truncated values without using no error but no error but SQLWARN(2) is set

indicator variables SQLWARN(2) is set

cursors closed by COMMIT or all explicit CURRENT OF only

ROLLBACK

open an already OPENed cursor error -2117 no error

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 20 of 51

ORACLE Chapter 6
About Using the Precompiler Options

Table 6-4 (Cont.) Compatible DBMS and MODE Settings
]

Situation DBMS=V7/V8 DBMS=V7/V8 MODE=ORACLE
MODE=ANSI

close an already CLOSEd cursor error -2114 no error

SQL group function ignores nulls no warning no warning

when SQL group function in multirow FETCH time FETCH time

query is called

declare SQLCA structure optional required

declare SQLCODE or SQLSTATE status required optional but Oracle ignores

variable

default external datatype of character host CHARF VARCHAR?2

variables external datatype used for
CHAR in TYPE and VAR statements

default external datatype of string literals CHARF CHARF

in SQL statements

default internal datatype of CHAR CHAR CHAR
variables in SQL statements

default external datatype of CHAR CHARF CHARF
variables in PL/SQL blocks

default external datatype of value function CHARF CHARF
USER returns

external datatype code DESCRIBE 96 96

returns (dynamic SQL Method 4)

integrity constraints enabled enabled
PCTINCREASE for rollback segments not allowed not allowed
MAXEXTENTS storage parameters not allowed not allowed
Purpose

Controls whether the Pro*C/C++ precompiler generates #define's for SQLCODE.

Syntax
DEF_SQLCODE={NO | YES}

Default
NO

Usage Notes
Can be used only on the command line or in a configuration file.

When DEF_SQLCODE=YES, the precompiler defines SQLCODE in the generated source
code as follows:

#define SQLCODE sql ca. sql code

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 21 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

You can then use SQLCODE to check the results of executable SQL statement. The
DEF_SQLCODE option is supplied for compliance with standards that require the use of
SQLCODE.

In addition, you must also include the SQLCA using one of the following entries in your source

code:

#incl ude <sql ca. h>

or

EXEC SQL | NCLUDE SQLCA:

If the SQLCA is not included, using this option causes a precompile time error.

6.7.22 DEFINE

Purpose

Specifies a user-defined symbol that is used to include or exclude portions of source code
during a conditional precompilation.

Syntax
DEFI NE=synbol

Default
None

Usage Notes
If you enter DEFI NE inline, the EXEC ORACLE statement takes the following form:
EXEC ORACLE DEFI NE <synbol >;

6.7.23 DURATION

Purpose

Sets the pin duration used by subsequent EXEC SQL OBJECT CREATE and EXEC SQL
OBJECT DEREF statements. Objects in the cache are implicitly unpinned at the end of the
duration.

Syntax
DURATION={TRANSACTION | SESSION}

Default
TRANSACTION

Usage Notes
Can be entered inline by use of the EXEC ORACLE OPTION statement.
TRANSACTION means that objects are implicitly unpinned when the transaction completes.

SESSION means that objects are implicitly unpinned when the connection is terminated.

Developer's Guide to the Oracle Precompilers

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 51

ORACLE Chapter 6
About Using the Precompiler Options

6.7.24 DYNAMIC

Purpose

This micro option specifies the descriptor behavior in dynamic SQL Method 4. The setting of
MODE determines the setting of DYNAMIC.

Syntax
DYNAMIC={ORACLE | ANSI}

Default
ORACLE

Usage Notes

Cannot be entered inline by use of the EXEC ORACLE OPTION statement.

6.7.25 ERRORS

Purpose

Specifies whether precompiler error messages are sent to the terminal and listing file or only to
the listing file.

Syntax

ERRORS={ YES| NG}
Default

YES

Usage Notes
When ERRORS=YES, error messages are sent to the terminal and listing file.

When ERRORS=NO, error messages are sent only to the listing file.

6.7.26 ERRTYPE

Purpose

Specifies an output file in which errors generated in processing type files are written. If omitted,
errors are output to the screen.

Syntax

ERRTYPE=filename

Default

None

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 23 of 51

ORACLE Chapter 6
About Using the Precompiler Options

Usage Notes

Only one error file will be produced. If multiple values are entered, the last one is used by the
precompiler.

6.7.27 EVENTS

Purpose

Specifies that the application is interested in registering for and receiving notifications.

Syntax
EVENTS={YES | NO}

Default
NO

Usage Notes

Can only be entered in the command line.

6.7.28 FIPS

Purpose

Specifies whether extensions to ANSI/ISO SQL are flagged (by the FIPS Flagger). An
extension is any SQL element that violates ANSI/ISO format or syntax rules, except privilege
enforcement rules.

Syntax

FI PS={ YES| NO}

Default
NO

Usage Notes

When FI PS=YES, the FI PS Flagger issues warning (not error) messages if you use an Oracle
extension to the ANSI/ISO embedded SQL standard (SQL92) or use a SQL92 feature in a
nonconforming manner.

The following extensions to ANSI/ISO SQL are flagged at precompile time:

e Array interface including the FOR clause

e SQLCA, ORACA, and SQLDA data structures

e Dynamic SQL including the DESCRI BE statement
Embedded PL/SQL blocks

* Automatic datatype conversion

* DATE, COMP-3 (Pro*COBOL only), NUMBER, RAW LONG RAW VARRAW RO D, and VARCHAR
datatypes

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 24 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

« ORACLE OPTION statement for specifying run-time options

* EXEC IAF and EXEC TOOLS statements in user exits

* CONNECT statement

e TYPE and VAR datatype equivalencing statements

e AT db_name clause

e DECLARE...DATABASE, ...STATEMENT, and ...TABLE statements

« SQLWARNING condition in WHENEVER statement

* DOand STOP actions in WHENEVER statement

e COWMENT and FORCE TRANSACTI ON clauses in COW T statement

* FORCE TRANSACTI ON and TO SAVEPQO NT clauses in ROLLBACK statement
e RELEASE parameter in COW T and ROLLBACK statements

e Optional colon-prefixing of WHENEVER...DO labels and of host variables in the | NTO clause

6.7.29 FORMAT

Purpose

Specifies the format of COBOL or FORTRAN input lines.

Syntax
FORMAT={ ANSI | TERM NAL}

Default
ANS|

Usage Notes
Cannot be entered inline.
The format of input lines is system-dependent. Check your system-specific Oracle manuals.

When FORMAT=ANSI , the format of input lines conforms as much as possible to the current ANSI
standard.

6.7.30 Globalization Support_LOCAL

Purpose

For Pro*COBOL only, the Globalization Support_ LOCAL option determines whether
Globalization Support character conversions are performed by the precompiler run-time library
or by the Oracle Server.

Syntax
G obal i zation Support_LOCAL={ YES| NG

Default
NO

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 25 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Usage Notes
Cannot be entered inline.

When @ obal i zation Support LOCAL=YES, the run-time library (SQLLIB) locally performs
blank-padding and blank-stripping for host variables that have multibyte Globalization Support
datatypes.

When Globalization Support LOCAL=NO, blank-padding and blank-stripping operations are not
performed locally for host variables that have multibyte Globalization Support datatypes.

Oracle does not perform any blank-padding or blank-stripping of Globalization Support
variables. When Globalization Support_LOCAL=NO, the Oracle Server returns an error upon
executing a SQL statement that uses multibyte Globalization Support data.

6.7.31 HEADER

Purpose

Permits precompiled header files. Specifies the file extension for precompiled header files.

Syntax
HEADER=extension

Default

NONE

Usage Notes

When precompiling a header file, this option is required and is used to specify the file
extension for the output file that is created by precompiling that header file.

When precompiling an ordinary Pro*C/C++ program this option is optional. When given, it
enables the use of the precompiled header mechanism during the precompilation of that
Pro*C/C++ program.

In both cases, this option also specifies the file extension to use when processing a #include
directive. If an #include file exists with the specified extension, Pro*C/C++ assumes the file is a
precompiled header file previously generated by Pro*C/C++. Pro*C/C++ will then instantiate
the data from that file rather than process the #include directive and precompile the included
header file.

This option is only allowed on the command line or in a configuration file. It is not allowed
inline. When using this option, specify the file extension only. Do not include any file
separators. For example, do not include a period "." in the extension.

6.7.32 HOLD_CURSOR

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the cursor
cache.

Syntax
HOLD_CURSOR={ YES| NG

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 26 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Default
NO

Usage Notes

You can use HOLD_CURSOR to improve the performance of your program. For more information,
refer to Performance Tuning

When a SQL data manipulation statement is executed, its associated cursor is linked to an
entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle private SQL
area, which stores information needed to process the statement. HOLD_CURSCR controls what
happens to the link between the cursor and cursor cache.

When HOLD_CURSOR=NQ, after Oracle executes the SQL statement and the cursor is closed, the
precompiler marks the link as reusable. The link is reused as soon as the cursor cache entry to
which it points is needed for another SQL statement. This frees memory allocated to the
private SQL area and releases parse locks.

When HOLD CURSOR=YES and RELEASE CURSOR=NQ, the link is maintained; the precompiler does
not reuse it. This is useful for SQL statements that are executed often because it speeds up
subsequent executions. There is no need to reparse the statement or allocate memory for an
Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSCR before executing the SQL statement. For
inline use with explicit cursors, set HOLD_CURSOR before opening the cursor.

Note that RELEASE CURSOR=YES overrides HOLD_CURSOR=YES and that HOLD CURSOR=NO
overrides RELEASE CURSOR=NOQ. For information showing how these two options interact, refer to
Table C-1.

6.7.33 HOST

Purpose

Specifies the host language to be used.

Syntax
HOST={ COB74| COBCL}

Default
COBOL

Usage Notes
Cannot be entered inline.

COB74 refers to the 1974 version of ANSI-approved COBOL. COBOL refers to 1985 version.
Other values might be available on your platform.

6.7.34 IMPLICIT_SVPT

Purpose

Controls whether an implicit savepoint is taken before the start of a new batched insert.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 27 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Syntax
implicit_svpt={YES|NO}

Default

NO

Usage Notes

If implict_svpt=yes, a savepoint is taken before the start of a new batch of rows. If an error
occurs on the insert, an implicit "rollback to savepoint" is executed. This option exists for DB/2
compatibility, the obvious downside being the extra round-trip.

If implict_svpt=no, there is no implicit savepoint taken. If an error occurs on the buffered insert,
then it is reported back to the application, but no rollback is executed.

6.7.35 INAME

Purpose

Specifies the name of the input file.

Syntax
| NAME=f i | ename

Default

None

Usage Notes
Cannot be entered inline.

When specifying the name of your input file on the command line, the keyword INAME is
optional. For example, in Pro*COBOL, you can specify myprog.pco instead of
| NAME=nypr og. pco.

The precompiler assumes the standard input file extension (refer to Table 6-5). So, you need
not use a file extension when specifying INAME unless the extension is nonstandard. For
example, in Pro*FORTRAN, you can specify myprog instead of myprog.pfo.

Table 6-5 Input File Extensions
]

Host Language Standard File Extension
COBOL pco
FORTRAN pfo

For Pro*COBOL only, if you use a nonstandard input file extension when specifying | NAVE, you
must also specify HOST.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 28 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

6.7.36 INCLUDE

Purpose

Specifies a directory path for EXEC SQL INCLUDE files. It only applies to operating systems
that use directories.

Syntax
| NCLUDE=pat h

Default

Current directory

Usage Notes

Typically, you use | NCLUDE to specify a directory path for the SQLCA and ORACA files. The
precompiler searches first in the current directory, then in the directory specified by | NCLUDE,
and finally in a directory for standard | NCLUDE files. Hence, you need not specify a directory
path for standard files such as the SQLCA and ORACA.

You must still use | NCLUDE to specify a directory path for nonstandard files unless they are
stored in the current directory. You can specify more than one path on the command line, as
follows:

. | NCLUDE=<pat h1> | NCLUDE=<pat h2> ...

The precompiler searches first in the current directory, then in the directory named by path1,
then in the directory named by path2, and finally in the directory for standard | NCLUDE files.

Remember, the precompiler searches for a file in the current directory first--even if you specify
a directory path. So, if the file you want to | NCLUDE resides in another directory, make sure no
file with the same name resides in the current directory.

The syntax for specifying a directory path is system-specific. Follow the conventions of your
operating system.

6.7.37 IRECLEN

Purpose

Specifies the record length of the input file.

Syntax
| RECLEN=i nt eger

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for IRECLEN should not exceed the value of ORECLEN. The maximum
value allowed is system-dependent.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 29 of 51

ORACLE Chapter 6
About Using the Precompiler Options

6.7.38 INTYPE

Purpose

Specifies one or more OTT-generated type files (only needed if Object types are used in the
application).

Syntax
INTYPE=(file_1,file_2,...,file_n)

Default

None

Usage Notes

There will be one type file for each Object type in the Pro*C/C++ code.

6.7.39 LINES

Purpose

Specifies whether the Pro*C/C++ precompiler adds #line preprocessor directives to its output
file.

Syntax
LINES={YES | NO}

Default
NO

Usage Notes
Can be entered only on the command line.
The LINES option helps with debugging.

When LINES=YES, the Pro*C/C++ precompiler adds #line preprocessor directives to its output
file.

Normally, your C compiler increments its line count after each input line is processed. The
#line directives force the compiler to reset its input line counter so that lines of precompiler-
generated code are not counted. Moreover, when the name of the input file changes, the next
#line directive specifies the new filename.

The C compiler uses the line numbers and filenames to show the location of errors. Thus, error
messages issued by the C compiler always refer to your original source files, not the modified
(precompiled) source file. This also enables stepping through the original source code using
most debuggers.

When LINES=NO (the default), the precompiler adds no #line directives to its output file.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 30 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

@® Note

The Pro*C/C++ precompiler does not support the #line directive. You cannot directly
code #line directives in the precompiler source. But you can still use the LINES=
option to have the precompiler insert #line directives for you.

6.7.40 LITDELIM

Purpose

For Pro*COBOL only, the LITDELIM option specifies the delimiter for string constants and
literals.

Syntax
LI TDELI M={ APOST| QUOTE}

Default
QUOTE
Usage Notes

When LI TDELI M=APCST, the precompiler uses apostrophes when generating COBOL code. If
you specify LI TDELI M=QUOTE, quotation marks are used, as in

CALL "SQLROL" USI NG SQL- TMPO.

In SQL statements, you must use quotation marks to delimit identifiers containing special or
lowercase characters, as in

EXEC SQL CREATE TABLE "Enp2" END- EXEC.

but you must use apostrophes to delimit string constants, as in

EXEC SQ. SELECT ENAME FROM EMP WHERE JOB = ' CLERK' END- EXEC.

Regardless of which delimiter is used in the ProxCOBOL source file, the precompiler generates
the delimiter specified by the LITDELIM value.

6.7.41 LNAME

Purpose

Specifies a nondefault name for the listing file.

Syntax
LNAME=f i | ename
Default

input.LIS, where input is the base name of the input file.

Usage Notes

Cannot be entered inline.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 31 of 51

ORACLE Chapter 6
About Using the Precompiler Options

By default, the listing file is written to the current directory.

6.7.42 LRECLEN

Purpose

Specifies the record length of the listing file.

Syntax
LRECLEN=i nt eger

Default
132

Usage Notes
Cannot be entered inline.

The value of LRECLEN can range from 80 through 255. If you specify a value the range, 80 is
used instead. If you specify a value earlier the range, 255 is used instead. LRECLEN should
exceed IRECLEN by at least 8 to allow for the insertion of line numbers.

6.7.43 LTYPE

Purpose

Specifies the listing type.

Syntax
LTYPE={ LONG SHORT| NONE}

Default
LONG

Usage Notes
Cannot be entered inline.

When LTYPE=LONG, input lines appear in the listing file. When LTYPE=SHCRT, input lines do not
appear in the listing file. When LTYPE=NONE, no listing file is created.

6.7.44 MAXLITERAL

Purpose

Specifies the maximum length of string literals generated by the precompiler so that compiler
limits are not exceeded. For example, if your compiler cannot handle string literals longer than
132 characters, you can specify MAXLITERAL=132 on the command line.

Syntax
MAXLI TERAL=i nt eger

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 32 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Default

The default is precompiler-specific as shown here:

Precompiler Default
Pro*COBOL 256
Pro*FORTRAN 1000

Usage Notes

The maximum value of MAXLI TERAL is compiler-dependent. The default value is language-
dependent, but you might have to specify a lower value. For example, some COBOL compilers
cannot handle string literals longer than 132 characters, so you would specify

MAXLI TERAL=132.

Strings that exceed the length specified by MAXLI TERAL are divided during precompilation, then
recombined (concatenated) at run time.

You can enter MAXLI TERAL inline but your program can set its value just once, and the EXEC
ORACLE statement must precede the first EXEC SQL statement. Otherwise, the precompiler
issues a warning message, ignores the extra or misplaced EXEC ORACLE statement, and
continues processing.

6.7.45 MAXOPENCURSORS

Purpose

Specifies the number of concurrently open cursors that the precompiler tries to keep cached.

Syntax
MAXOPENCURSORS=i nt eger

Default

10

Usage Notes

You can use MAXOPENCURSORS to improve the performance of your program. For more
information, refer to Performance Tuning

When precompiling separately, use MAXOPENCURSORS as described in "Separate
Precompilations”.

MAXOPENCURSORS specifies the initial size of the SQLLIB cursor cache. If a new cursor is
needed, and there are no free cache entries, Oracle tries to reuse an entry. Its success
depends on the values of HOLD_CURSOR and RELEASE_CURSOR, and, for explicit cursors,
on the status of the cursor itself. Oracle allocates an additional cache entry if it cannot find one
to reuse. If necessary, Oracle keeps allocating additional cache entries until it runs out of
memory or reaches the limit set by OPEN_CURSORS. To avoid a "maximum open cursors
exceeded" Oracle error, MAXOPENCURSORS must be lower than OPEN_CURSORS by at
least 6.

As your program's need for concurrently open cursors grows, you might want to re-specify
MAXOPENCURSORS to match the need. A value of 45 to 50 is not uncommon, but remember

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 33 of 51

ORACLE Chapter 6
About Using the Precompiler Options

that each cursor requires another private SQL area in the user process memory space. The
default value of 10 is adequate for most programs.

6.7.46 MAX_ROW_INSERT

Purpose

Controls the number of rows that need to be buffered before executing the INSERT statement.

Syntax

max_row_insert={number of rows to be buffered}

Default
0

Usage Notes

Any number greater than zero enables buffered insert feature and buffers that many rows
before executing the INSERT statement.

6.7.47 MODE

Purpose

Specifies whether your program observes Oracle practices or complies with the current ANSI
SQL standard.

Syntax
MODE={ ANSI | | SO ANSI 14| | SOL4| ANSI 13| | SOL3| ORACLE}

Default
ORACLE

Usage Notes
Cannot be entered inline.

The following pairs of MODE values are equivalent: ANSI and 1SO, ANSI14 and ISO14, ANSI13
and 1ISO13.

When MODE=CRACLE (the default), your embedded SQL program observes Oracle practices.

When MODE={ ANSI 14| ANSI 13}, your program complies closely with the current ANSI SQL
standard.

When MODE=ANSI, your program complies fully with the ANSI standard and the following
changes go into effect:

e CHAR column values, USER pseudocolumn values, character host values, and quoted
literals are treated like ANSI fixed-length character strings. And, ANSI-compliant blank-
padding semantics are used when you assign, compare, | NSERT, UPDATE, SELECT, or FETCH
such values.

e Issuing a COW T or ROLLBACK closes all explicit cursors. (When MODE={ ANSI 13| ORACLE}, a
commit or rollback closes only cursors referenced in a CURRENT OF clause.)

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 34 of 51

ORACLE Chapter 6
About Using the Precompiler Options

* You cannot OPEN a cursor that is already open or CLOSE a cursor that is already closed.
(When MODE=CRACLE, you can reOPEN an open cursor to avoid reparsing.)

e The "no data found" Oracle warning code returned to SQLCODE becomes +100 instead of
+1403. The error message text does not change.

* No error message is issued if Oracle assigns a truncated column value to an output host
variable.

When MODE={ ANSI | ANSI 14}, a 4-byte integer variable named SQLCODE (SQLCOD in
FORTRAN) or a 5-byte character variable named SQLSTATE (SQLSTA in FORTRAN) must be
declared. For more information, refer to "Error Handling Alternatives".

Table 6-4 shows how the MODE and DBMS settings interact. Other combinations are
incompatible or are not recommended.

6.7.48 MULTISUBPROG

Purpose

For Pro*FORTRAN only, the MULTISUBPROG option specifies whether the Pro*FORTRAN
precompiler generates COWON statements and BLOCK DATA subprograms.

@® Note

This option allows Pro*FORTRAN release 1.3 applications to migrate to later releases.
You can ignore the MUTISUBPROG option if you are not migrating Pro*FORTRAN
release 1.3 source code.

Syntax
MULTI SUBPROG={ YES| NG}

Default
YES

Usage Notes
Cannot be entered inline.

When MULTI SUBPROG=YES, the precompiler generates COWDON statements and BLOCK DATA
subprograms. Your host program does not access the COWON blocks directly, but it allows two
or more program units in the same precompilation unit to contain SQL statements.

However, the precompiler can give COWON blocks defined in different output files the same
name. If you link the files into an executable program, you get a link-time or run-time error. To
solve this problem, you can rename the input files or override the default COMMON block
names by specifying the option COMMON_NAME. To avoid the problem, specify MULTI SUBPROG=NO.

Specify MULTI SUBPROG=NO if your Pro*FORTRAN source code has only a single subprogram in
each source file (this was the restriction in release 1.3). When MULTI SUBPROG=NQ, the
COMMON_BLOCK option is ignored and the precompiler generates no COMON statements or BLOCK
DATA subprograms. Every program unit that contains executable SQL statements must have a
Declare Section. Otherwise, you get a precompilation error. For input files that contain more
than one embedded SQL program unit, the precompiler generates the same declarations in
each unit.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 35 of 51

ORACLE Chapter 6
About Using the Precompiler Options

6.7.49 NATIVE_TYPES

Purpose

Support for native float/double.

Syntax
NATIVE_TYPES = {YES|NO}

Default
NO

Usage Notes

The native float and native double datatypes represent the single-precision and double-
precision floating point values. They are represented natively, that is, in the host system's
floating point format.

6.7.50 NLS_CHAR

Purpose

Specifies which C host character variables are treated by the precompiler as multibyte
character variables.

Syntax
NLS CHAR=varname or NLS_CHAR=(var_1,var_2,...,var_n)

Default

None.

Usage Notes
Can be entered only on the command line, or in a configuration file.

This option provides the ability to specify at precompile time a list of the names of one or more
host variables that the precompiler must treat as multibyte character variables. You can specify
only C char variables or Pro*C/C++ VARCHARS using this option.

If you specify in the option list a variable that is not declared in your program, then the
precompiler generates no error.

6.7.51 NLS_LOCAL

Purpose

Determines whether multibyte character set conversions are performed by the precompiler run-
time library, SQLLIB, or by the database server.

Syntax
NLS_LOCAL={NO | YES}

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 36 of 51

ORACLE Chapter 6
About Using the Precompiler Options

Default

NO

Usage Notes

When set to YES, local multibyte support is provided by Pro*C/C++ and the SQLLIB library.
The option NLS_CHAR must be used to indicate which C host variables are multibyte.

When set to NO, Pro*C/C++ will use the database server support for multibyte objects. Set
NLS LOCAL to NO for all new applications.

Environment variable NLS_NCHAR must be set to a valid fixed-width National Character Set.
Variable-width National Character Sets are not supported.

Can be entered only on the command line, or in a configuration file.

6.7.52 OBJECTS

Purpose

Requests support for object types.

Syntax
OBJECTS={YES | NO}

Default
YES

Usage Notes

Can only be entered in the command line.

6.7.53 ONAME

Purpose

Specifies the name of the output file.

Syntax
ONAME=f i | ename

Default

Syst em dependent

Usage Notes
Cannot be entered inline.

Use this option to specify the name of the output file, where the name differs from that of the
input file. For example, if you issue

procob | NAME=ny _t est

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 37 of 51

ORACLE Chapter 6
About Using the Precompiler Options

the default output filename is my_test.cob. If you want the output filename to be
my_test_1.cob, issue the command

procob | NAME=ny_t est ONAME=ny_test 1. cob

Note that you should add the .cob extension to files specified using ONAME. There is no
default extension with the ONAME option.

Oracle recommends that you not let the output filename default, but rather name it explicitly
using ONAME.

6.7.54 ORACA

Purpose

Specifies whether a program can use the Oracle Communications Area (ORACA).
Syntax

ORACA={ YES| NO}

Default

NO

Usage Notes

When ORACA=YES, you must place the | NCLUDE ORACA statement in your program.

6.7.55 ORECLEN

Purpose

Specifies the record length of the output file.

Syntax
ORECLEN=i nt eger

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for ORECLEN should equal or exceed the value of IRECLEN. The
maximum value allowed is system-dependent.

6.7.56 OUTLINE

Purpose

Indicates that the outline SQL file must be generated for the SQL statements.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 38 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Syntax

outline={yes | no | category_name}

Default

no

Usage Notes

The outline SQL file should be in the DEFAULT category if the value is yes and the generated
outline format is

DEFAULT <filenane>_<fil etype> <sequence_no>

If the category name is mentioned, then the SQL file should be generated in the category
mentioned. The generated outline format for this is

<cat egory_nane>_<fil ename>_<fil et ype>_<sequence_no>
The outline SQL file is not generated if the value is no.

Semantic check should be full when this option is turned on, which means option sqlcheck=full/
semantics. If sglcheck=syntax/limited/none, then error will be generated.

6.7.57 OUTLNPREFIX

Purpose

Controls the generation of the outline names.

Syntax

outlnprefix={none | prefix_name}

Default

no

Usage Notes
If outinprefix=prefix_name, then the outline format

<category_nanme>_<fil ename> _<fil etype>

is replaced with <pr efi x_nane> for the outline names.

If the length of the outline name exceeds 30 bytes, then this option is helpful for the user who
can just specify the prefix name.

If outlnprefix=none, then the outline names are generated by the system. The generated format
is

<category_nane>_<fil ename>_<fil etype>_<sequence_no>

Semantic check should be full when this option is turned on, which means option sglcheck=full/
semantics. If sglcheck=syntax/limited/none, or outline=false, or both, then an error will be
generated.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 39 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

6.7.58 PAGELEN

Purpose

Specifies the number of lines in each physical page of the listing file.

Syntax
PAGELEN=i nt eger

Default
66

Usage Notes
Cannot be entered inline.

The maximum value allowed is system-dependent.

6.7.59 PARSE

Purpose

Specifies the way that the Pro*C/C++ precompiler parses the source file.

Syntax
PARSE={FULL | PARTIAL | NONE}

Default
FULL

Usage Notes
To generate C++ compatible code, the PARSE option must be either NONE or PARTIAL.

If PARSE=NONE or PARSE=PARTIAL, all host variables must be declared inside a Declare
Section.

The variable SQLCODE must also be declared inside a declare section, or it cannot be relied
on to detect errors. Check the default value of PARSE for your platform.

If PARSE=FULL, the C parser is used, and it does not understand C++ constructs, such as
classes, in your code.

With PARSE=FULL or PARSE=PARTIAL Pro*C/C++ fully supports C preprocessor directives,
such as #define, #ifdef, and so on. However, with PARSE=NONE conditional preprocessing is
supported by EXEC ORACLE statements.

@® Note

Some platforms have the default value of PARSE as other than FULL. See your
system-dependent documentation.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 40 of 51

ORACLE Chapter 6
About Using the Precompiler Options

6.7.60 PREFETCH

Purpose

Use this option to speed up queries by pre-fetching several rows.

Syntax
PREFETCH=integer

Default
1

Usage Notes

Can be used in a configuration file or on the command-line. The value of the integer is used for
execution of all queries using explicit cursors, subject to the rules of precedence.

When used inline it must placed before OPEN statements with explicit cursors. Then the
number of rows pre-fetched when that OPEN is done is determined by the last inline
PREFETCH option in effect.

The value range allowed is 0.. 65535.

6.7.61 RELEASE_CURSOR

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the cursor
cache.

Syntax
RELEASE_CURSOR={ YES| NG}

Default
NO

Usage Notes

You can use RELEASE_CURSOR to improve the performance of your program. For more
information, refer to Performance Tuning.

When a SQL data manipulation statement is executed, its associated cursor is linked to an
entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle private SQL
area, which stores information needed to process the statement. RELEASE_CURSOR controls
what happens to the link between the cursor cache and private SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the cursor is closed,
the precompiler immediately removes the link. This frees memory allocated to the private SQL
area and releases parse locks. To make sure that associated resources are freed when you
CLOSE a cursor, you must specify RELEASE CURSOR=YES.

When RELEASE _CURSOR=NO and HOLD CURSOR=YES, the link is maintained. The precompiler does
not reuse the link unless the number of open cursors exceeds the value of
MAXOPENCURSORS. This is useful for SQL statements that are executed often because it

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 41 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

speeds up subsequent executions. There is ho need to reparse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE CURSOR before executing the SQL statement.
For inline use with explicit cursors, set RELEASE_CURSOR before opening the cursor.

Note that RELEASE CURSOR=YES overrides HOLD CURSOR=YES and that HOLD CURSOR=NO overrides
RELEASE CURSOR=NOQ. For information showing how these two options interact, refer to Table C-1

6.7.62 RUNOUTLINE

Purpose

Provides the developer with the option of executing "create outline" statements either by using
precompiler or by the developer manually at a later time.

Syntax

runoutline={yes | no}

Default

no

Usage Notes

If runoutline=yes, then the generated 'create outline' statements are executed by the
precompiler/translator at the end of a successful precompilation.

The outline option should be set to true or category _name when runoutline is used. Semantic
check should be full when this option is turned on, which means option sqglcheck=full/
semantics. If sglcheck=syntax/limited/none, then error will be generated.

6.7.63 SELECT_ERROR

Purpose

Specifies whether your program generates an error when a single-row SELECT statement
returns more than one row or more rows than a host array can accommodate.

Syntax
SELECT_ERROR={ YES| NG}

Default

YES

Usage Notes

When SELECT_ERROR=YES, an error is generated if a single-row select returns too many
rows or an array select returns more rows than the host array can accommodate.

When SELECT_ERROR=NO, no error is generated when a single-row select returns too many
rows or when an array select returns more rows than the host array can accommodate.

Whether you specify YES or NO, a random row is selected from the table. To ensure a specific
ordering of rows, use the ORDER BY clause in your SELECT statement. When
SELECT_ERROR=NO and you use ORDER BY, Oracle returns the first row, or the first n rows if you

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 42 of 51

ORACLE Chapter 6
About Using the Precompiler Options

are selecting into an array. When SELECT ERROR=YES, whether you use ORDER BY, an error is
generated if too many rows are returned.

6.7.64 SQLCHECK

Purpose

Specifies the type and extent of syntactic and semantic checking.

Syntax
SQLCHECK={ SEMANTI CS| FULL| SYNTAX| LI M TED| NONE}

Default

SYNTAX

Usage Notes
The values SEMANTI CS and FULL are equivalent, as are the values SYNTAX and LI M TED.

The Oracle Precompilers can help you debug a program by checking the syntax and semantics
of embedded SQL statements and PL/SQL blocks. Any errors found are reported at
precompile time.

You control the level of checking by entering the SQLCHECK option inline and on the
command line, inline and on the command line. However, the level of checking you specify
inline cannot be higher than the level you specify (or accept by default) on the command line.
For example, if you specify SQLCHECK=NONE on the command line, you cannot specify
SQLCHECK=SYNTAX inline.

If SQLCHECK=SYNTAX| SEMANTI CS, the precompiler generates an error when PL/SQL reserved
words are used in SQL statements, even though the SQL statements are not themselves PL/
SQL. If a PL/SQL reserved word must be used as an identifier, you can enclose it in double-
quotes.

When SQLCHECK=SEMANTI CS, the precompiler checks the syntax and semantics of

e Data manipulation statements such as | NSERT and UPDATE
e PL/SQL blocks

However, the precompiler checks only the syntax of remote data manipulation statements
(those using the AT db_name clause).

The precompiler gets the information for a semantic check from embedded DECLARE TABLE
statements or, if you specify the option USERI D, by connecting to Oracle and accessing the data
dictionary. You need not connect to Oracle if every table referenced in a data manipulation
statement or PL/SQL block is defined in a DECLARE TABLE statement.

If you connect to Oracle but some information cannot be found in the data dictionary, you must
use DECLARE TABLE statements to supply the missing information. During precompilation, a
DECLARE TABLE definition overrides a data dictionary definition if they conflict.

Specify SQLCHECK=SEMANTI CS when precompiling new programs. If you embed PL/SQL blocks
in a host program, you must specify SQLCHECK=SEMANTI CS and the option USERI D.

When SQLCHECK=SYNTAX, the precompiler checks the syntax of

* Data manipulation statements

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 43 of 51

ORACLE Chapter 6
About Using the Precompiler Options

e PL/SQL blocks

No semantic checking is done. DECLARE TABLE statements are ignored and PL/SQL blocks are
not allowed. When checking data manipulation statements, the precompiler uses Oracle
database version 7 syntax rules, which are downwardly compatible. Specify SQLCHECK=SYNTAX
when migrating your precompiled programs.

When SQLCHECK=NONE, no syntactic or semantic checking is done. DECLARE TABLE
statements are ignored and PL/SQL blocks are not allowed. Specify SQLCHECK=NONE if your
program

» Contains non-Oracle SQL (for example, because it will connect to a non-Oracle server
through Open Gateway)

» References tables not yet created and lacks DECLARE TABLE statements for them

The following table summarizes the checking done by SQLCHECK. For more information
about syntactic and semantic checking, refer to Syntactic and Semantic Checking.

Statement SQLCHECK=S SQLCHECK=S SQLCHECK=S SQLCHECK=S SQLCHECK=N SQLCHECK=N
EMANTIC — EMANTIC — YNTAX — YNTAX — ONE — Syntax ONE —
Syntax Semantic Syntax Semantic Semantic
DML Y Y Y na na na
Remote DML Y na Y na na na
PL/SQL Y Y na na na na
Purpose

Denotes the Statement cache size for the dynamic SQL statements.

Syntax
STMT_CACHE = Range is 0 to 65535

Default
0

Usage Notes

The stmt_cache option can be set to hold the anticipated number of distinct dynamic SQL
statements in the application.

6.7.66 SQLCHECK

Purpose

Specifies the type and extent of syntactic and semantic checking. By checking the syntax and
semantics of embedded SQL statements and PL/SQL blocks, the Pro*C/C++ Precompiler
helps you quickly find and fix coding mistakes. Rules of syntax specify how language elements
are sequenced to form valid statements. Thus, you can verify that keywords, object names,
operators, delimiters, and similar objects are placed correctly in your SQL statement.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 44 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Syntax
SQLCHECK={SEMANTICS | FULL | SYNTAX}

Default

SYNTAX

Functionality

When

SQLCHECK=SYNTAX,

you will only check the syntax of the SQL statements by using the client side SQL interface.
When

SQLCHECK=SENMANTI CS or FULL,

the SQL statements will be packaged/bundled into an IDL object by using a generic grammar
during parsing. The generic grammar does not understand the SQL syntax, it can only identify
the host variables, indicator variables, and the possible SQL identifiers. During the semantic
phase, the validity of the host and indicator variables will be checked in the same manner it is
currently done for SQL. The same will be done for semantics like the table names, column
names, and types.

Usage Notes
SEMANTICS is the same as FULL.

Can be entered inline or on the command line.

@ See Also

"What Is Syntactic and Semantic Checking?" on page D-1 for complete details. (Pro*C
Developer's Guide)

6.7.6/ THREADS

Purpose

When THREADS=YES, the precompiler searches for context declarations.

Syntax
THREADS={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

This precompiler option is required for any program that requires multithreading support.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 45 of 51

ORACLE Chapter 6
About Using the Precompiler Options

With THREADS=YES, the precompiler generates an error if no EXEC SQL CONTEXT USE
directive is encountered before the first context is visible and an executable SQL statement is
found.

6.7.68 TYPE_CODE

Purpose

This micro option specifies whether ANSI or Oracle datatype codes are used in dynamic SQL
Method 4. Its setting is the same as the setting of MODE option.

Syntax
TYPE_CODE={ORACLE | ANSI}

Default
ORACLE

Usage Notes

Cannot be entered inline.

6.7.69 UNSAFE_NULL

Purpose

Specifying UNSAFE_NULL=YES prevents generation of ORA- 01405 messages when fetching NULLs
without using indicator variables.

Syntax
UNSAFE_NULL={ YES| NG}

Default
NO

Usage Notes
Cannot be entered inline.
The UNSAFE_NULL=YES is allowed only when MODE=ORACLE and DBMS=V7.

The UNSAFE_NULL option has no effect on host variables in an embedded PL/SQL block. You
must use indicator variables to avoid ORA- 01405 errors.

6.7.70 USERID

Purpose

Specifies an Oracle username and password.

Syntax

USERI D=user nane/ passwor d

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 46 of 51

ORACLE’

Chapter 6
About Using the Precompiler Options

Default

None

Usage Notes
Cannot be entered inline.

Do not specify this option when using the automatic logon feature, which accepts your Oracle
username prefixed with the value of the Oracle initialization parameter OS_AUTHENT_PREFI X.

When SQLCHECK=SEMANTI CS, if you want the precompiler to get needed information by
connecting to Oracle and accessing the data dictionary, you must also specify USERID.

6.7.71 UTF16_CHARSET

Purpose

Specify the character set form used by UNICODE(UTF16) variables.

Syntax
UTF16_CHARSET={ NCHAR_CHARSET | DB_CHARSET}

Default

NCHAR_CHARSET

Usage Notes
Can be used only on the command line or in a configuration file, but not inline.

If UTF16_CHARSET=NCHAR_CHARSET (the default), the UNICODE(UTF16) bind / define
buffer is converted according to the server side National Character Set. There may be a
performance impact when the target column is CHAR.

If UTF16_CHAR=DB_CHARSET, the UNICODE(UTF16) bind / define buffer is converted
according to the database character set.

A\ Warning

There may be data loss when the target column is NCHAR.

6.7.72 VARCHAR

Purpose

For Pro*COBOL only, the VARCHAR option instructs the precompiler to treat the COBOL group
item described in Introductionas a VARCHAR datatype.

Syntax
VARCHAR={ YES| NGO

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 47 of 51

ORACLE

Chapter 6
About Using the Precompiler Options

Default
NO

Usage Notes
Cannot be entered inline.

When VARCHAR=YES, the implicit group item described in Introduction is accepted as an Oracle
VARCHAR external datatype with a length field and a string field.

When VARCHAR=NQ, the Pro*COBOL Precompiler does not accept the implicit group items as
VARCHAR external datatypes.

6.7.73 VERSION

Purpose

Determines which version of the object will be returned by the EXEC SQL OBJECT DEREF
statement.

Syntax
VERSION={RECENT | LATEST | ANY}

Default
RECENT

Usage Notes
Can be entered inline using the EXEC ORACLE OPTION statement.

RECENT means that if the object has been selected into the object cache in the current
transaction, then that object is returned. For transactions running in serializable mode, this
option has the same effect as LATEST without incurring as many network round trips. Most
applications should use RECENT.

LATEST means that if the object does not reside in the object cache, it is retrieved from the
database. If It does reside in the object cache, it is refreshed from the server. Use LATEST with
caution because it incurs the greatest number of network round trips. Use LATEST only when it
is imperative that the object cache is kept as coherent as possible with the server buffer cache

ANY means that if the object already resides in the object cache, return that object. If not,
retrieve the object from the server. ANY incurs the fewest network round trips. Use in
applications that access read-only objects or when a user will have exclusive access to the
objects.

6.7.74 XREF

Purpose

Specifies whether a cross-reference section is included in the listing file.

Syntax
XREF={ YES| NO}

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 48 of 51

ORACLE

Chapter 6
Conditional Precompilations

Default

YES

Usage Notes

When XREF=YES, cross references are included for host variables, cursor names, and
statement names. The cross references show where each object is defined and referenced in
your program.

When XREF=NQO, the cross-reference section is not included.

6.8 Conditional Precompilations

Conditional precompilation includes (or excludes) sections of code in your host program based
on certain conditions. For example, you might want to include one section of code when
precompiling under UNIX and another section when precompiling under VMS. Conditional
precompilation lets you write programs that can run in different environments.

Conditional sections of code are marked by statements that define the environment and
actions to take. You can code host-language statements and EXEC SQL statements in these
sections. The following statements let you exercise conditional control over precompilation:

EXEC ORACLE DEFI NE synbol ; -- define a synbol
EXEC ORACLE | FDEF synbol; -- if synbol is defined
EXEC ORACLE | FNDEF synbol ; -- if synbol is not defined

EXEC ORACLE ELSE; -- otherw se
EXEC ORACLE ENDIF; -- end this control block

All EXEC ORACLE statements must be terminated with the statement terminator for your host
language. For example, in Pro*COBOL, a conditional statement must be terminated with "END-
EXEC." and in Pro*FORTRAN it must be terminated by a return character.

6.8.1 An Example

In the following example, the SELECT statement is precompiled only when the symbol site2 is
defined:

EXEC ORACLE | FDEF site2;

EXEC SQL SELECT DNAME

I NTO : dept _nane

FROM DEPT

WHERE DEPTNO = : dept _nunber;
EXEC ORACLE ENDI F;

Blocks of conditions can be nested as shown in the following example:

EXEC ORACLE | FDEF outer;
EXEC ORACLE | FDEF i nner;

EXEC ORACLE ENDI F;
EXEC ORACLE ENDI F;

You can "comment out" host-language or embedded SQL code by placing it between IFDEF
and ENDIF and not defining the symbol.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 49 of 51

ORACLE Chapter 6
Separate Precompilations

6.8.2 Defining Symbols

You can define a symbol in two ways. Either include the statement

EXEC ORACLE DEFI NE synbol ;

in your host program or define the symbol on the command line using the syntax
. INAME=fi | ename ... DEFI NE=synbol
where symbol is not case-sensitive.

Some port-specific symbols are predefined for you when the Oracle Precompilers are installed
on your system. For example, predefined operating system symbols include CMS, MVS, MS-
DOS, UNIX, and VMS.

6.9 Separate Precompilations

With the Oracle Precompilers, you can precompile several host program modules separately,
then link them into one executable program. This supports modular programming, which is
required when the functional components of a program are written and debugged by different
developers. The individual program modules need not be written in the same language.

6.9.1 Guidelines

The following guidelines will help you avoid some common problems.

Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence, cursor
operations cannot span precompilation units (files). That is, you cannot declare a cursor in one
file and open or fetch from it in another file. So, when doing a separate precompilation, make
sure all definitions and references to a given cursor are in one file.

Specifying MAXOPENCURSORS

When you precompile the program module that connects to Oracle, specify a value for
MAXOPENCURSORS that is high enough for any of the program modules. If you use it for
another program module, MAXOPENCURSORS is ignored. Only the value in effect for the
connect is used at run time.

Using a Single SQLCA

If you want to use just one SQLCA, you must declare it globally in one of the program modules.

6.9.2 Restrictions

All references to an explicit cursor must be in the same program file. You cannot perform
operations on a cursor that was DECLAREd in a different module. Refer to _Using Embedded
SQL for more information about cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in the scope
of the local SQL statements.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 50 of 51

ORACLE Chapter 6
Compiling and Linking

6.10 Compiling and Linking

To get an executable program, you must compile the source file(s) produced by the
precompiler, then link the resulting object module with any modules needed from SQLLIB and

system-specific Oracle libraries. Also, if you are embedding OCI calls, make sure to link in the
OCI run-time library (OCILIB).

The linker resolves symbolic references in the object modules. If these references conflict, the
link fails. This can happen when you try to link third party software into a precompiled program.
Not all third-party software is compatible with Oracle, so you might have problems. Check with
Oracle Customer Services to see if the software is supported.

Compiling and linking are system-dependent. For instructions, see your system-specific Oracle
manuals.

For more information about OCI handle and descriptor attributes, see Handle and Descriptor
Attributes.

6.10.1 System-Dependent

Compiling and linking are system-dependent. For example, on some systems, you must turn
off compiler optimization when compiling a host language program. For instructions, refer to
your system-specific Oracle documentation.

6.10.2 Multibyte Globalization Support Compatibility

When using multibyte Globalization Support features, you must link your object files to the
current version of the SQLLIB run-time library. The multibyte Globalization Support features in
this release are supported by the SQLLIB run-time library and not by the Oracle Server. The
resulting application can then be executed with any release of the Oracle database.

Developer's Guide to the Oracle Precompilers

G44321-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 51 of 51

Defining and Controlling Transactions

This chapter explains how to perform transaction processing. You learn the basic techniques
that safeguard the consistency of your database, including how to control whether changes to
Oracle data are made permanent or undone. The following topics are discussed:

« Some Terms You Should Know

 How Transactions Guard Your Database

* How to Begin and End Transactions

* About Using the COMMIT Statement

* About Using the ROLLBACK Statement

* About Using the SAVEPOINT Statement

* About Using the RELEASE Option

¢ About Using the SET TRANSACTION Statement

e About Overriding Default Locking

e About Fetching Across Commits

« About Handling Distributed Transactions

e Guidelines

7.1 Some Terms You Should Know

Before delving into the subject of transactions, you should know the terms defined in this
section.

The jobs or tasks that Oracle manages are called sessions. A user session is started when you
run an application program or a tool such as Oracle Forms and connect to Oracle. Oracle
allows user sessions to work "simultaneously” and share computer resources. To do this,
Oracle must control concurrency, which means many user accessing the same data. Without
adequate concurrency controls, there might be a loss of data integrity. That is, changes to data
or structures might be made incorrectly.

Oracle uses locks to control concurrent access to data. A lock gives you temporary ownership
of a database resource such as a table or row of data. Thus, data cannot be changed by other
users until you finish with it. You need never explicitly lock a resource, because default locking
mechanisms protect Oracle data and structures. However, you can request data locks on
tables or rows when it is to your advantage to override default locking. You can choose from
several modes of locking such as row share and exclusive.

A deadlock can occur when two or more users try to access the same database object. For
example, two users updating the same table might wait if each tries to update a row currently
locked by the other. Because each user is waiting for resources held by another user, neither
can continue until Oracle breaks the deadlock. Oracle signals an error to the participating
transaction that had completed the least amount of work, and the "deadlock detected while
waiting for resource” Oracle error code is returned to SQLCODE in the SQLCA.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE

Chapter 7
How Transactions Guard Your Database

When a table is being queried by one user and updated by another at the same time, Oracle
generates a read-consistent view of the table's data for the query. That is, after a query begins
and as it proceeds, the data read by the query does not change. As update activity continues,
Oracle takes snapshots of the table's data and records changes in a rollback segment. Oracle
uses information in the rollback segment to build read-consistent query results and to undo
changes if necessary.

7.2 How Transactions Guard Your Database

Oracle is transaction oriented; that is, it uses transactions to ensure data integrity. A
transaction is a series of one or more logically related SQL statements you define to
accomplish some task. Oracle treats the series of SQL statements as a unit so that all the
changes brought about by the statements are either committed (made permanent) or rolled
back (undone) at the same time. If your application program fails in the middle of a transaction,
the database is automatically restored to its former (pre-transaction) state.

The subsequent sections show you how to define and control transactions. Specifically, you
learn how to

* Begin and end transactions

e Use the COW T statement to make transactions permanent

e Use the SAVEPO NT statement with the ROLLBACK TO statement to undo parts of transactions
* Use the ROLLBACK statement to undo whole transactions

e Specify the RELEASE option to free resources and log off the database

« Use the SET TRANSACTI ON statement to set read-only transactions

e Use the FOR UPDATE clause or LOCK TABLE statement to override default locking

For details about the SQL statements discussed in this chapter, see the Oracle Database SQL
Language Reference.

7.3 How to Begin and End Transactions

You begin a transaction with the first executable SQL statement (other than CONNECT) in your
program. When one transaction ends, the next executable SQL statement automatically begins
another transaction. Thus, every executable statement is part of a transaction. Because they
cannot be rolled back and need not be committed, declarative SQL statements are not
considered part of a transaction.

You end a transaction in one of the following ways:

e Code a COWM T or ROLLBACK statement, with or without the RELEASE option. This explicitly
makes permanent or undoes changes to the database.

* Code a data definition statement (ALTER, CREATE, or GRANT, for example) that issues an
automatic commit before and after executing. This implicitly makes permanent changes to
the database.

A transaction also ends when there is a system failure or your user session stops unexpectedly
because of software problems, hardware problems, or a forced interruption. Oracle rolls back
the transaction.

If your program fails in the middle of a transaction, Oracle detects the error and rolls back the
transaction. If your operating system fails, Oracle restores the database to its former (pre-
transaction) state.

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE Chapter 7
About Using the COMMIT Statement

7.4 About Using the COMMIT Statement

You use the COW T statement to make changes to the database permanent. Until changes are
committed, other users cannot access the changed data; they see it as it was before your
transaction began. The COM T statement has no effect on the values of host variables or on
the flow of control in your program. Specifically, the COM T statement

* Makes permanent all changes made to the database during the current transaction
* Makes these changes visible to other users

* Erases all savepoints (refer to About Using the ROLLBACK Statement)

* Releases all row and table locks, but not parse locks

e Closes cursors referenced in a CURRENT OF clause or, when MODE={ ANSI 13| ORACLE},
closes all explicit cursors

¢ Ends the transaction

When MODE={ ANSI 13| ORACLE}, explicit cursors not referenced in a CURRENT OF clause remain
open across commits. This can boost performance. For an example, refer to "About Fetching
Across Commits".

Because they are part of normal processing, COM T statements should be placed inline, on the
main path through your program. Before your program terminates, it must explicitly commit
pending changes. Otherwise, Oracle rolls them back. In the following example, you commit
your transaction and disconnect from Oracle:

EXEC SQL COWM T WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees all
Oracle resources (locks and cursors) held by your program and logs off the database.

You need not follow a data definition statement with a COMMIT statement because data
definition statements issue an automatic commit before and after executing. So, whether they
succeed or fail, the prior transaction is committed.

7.5 About Using the ROLLBACK Statement

You use the ROLLBACK statement to undo pending changes made to the database. For
example, if you make a mistake such as deleting the wrong row from a table, you can use
ROLLBACK to restore the original data. The ROLLBACK statement has no effect on the values of
host variables or on the flow of control in your program. Specifically, the ROLLBACK statement
* Undoes all changes made to the database during the current transaction

» Erases all savepoints

e Ends The Transaction

* Releases All Row And Table Locks, But Not Parse Locks

* Closes cursors referenced in a CURRENT OF clause or, when MODE={ ANSI | ANSI 14},
closes all explicit cursors

When MODE={ ANSI 13| ORACLE}, explicit cursors not referenced in a CURRENT OF clause remain
open across rollbacks.

Developer's Guide to the Oracle Precompilers
G44321-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE

Chapter 7
About Using the SAVEPOINT Statement

Because they are part of exception processing, ROLLBACK statements should be placed in error
handling routines, off the main path through your program. In the following example, you roll
back your transaction and disconnect from Oracle:

EXEC SQL ROLLBACK WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees all resources
held by your program and logs off the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine that includes
a ROLLBACK statement, your program might enter an infinite loop if the rollback fails with an
error. You can avoid this by coding WHENEVER SQLERROR CONTI NUE before the ROLLBACK
statement.

For example, consider the following:

EXEC SQL WHENEVER SQLERROR GOTO sql _error;
FOR EACH new enpl oyee

di splay ' Enpl oyee nunber? ';

read enp_nunber;

di splay ' Enpl oyee nane? ';

read enp_nane;

EXEC SQ. | NSERT I NTO EMP (EMPNO, ENAME)

VALUES (:enp_number, :enp_nane);

ENDFCR;

sql _error:
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
display 'Processing error’;
exit programwth an error;

Oracle rolls back transactions if your program terminates unusually.

7.5.1 Statement-Level Rollbacks

Before executing any SQL statement, Oracle marks an implicit savepoint (not available to you).
Then, if the statement fails, Oracle rolls it back automatically and returns the applicable error
code to SQLCODE in the SQLCA. For example, if an INSERT statement causes an error by
trying to insert a duplicate value in a unique index, the statement is rolled back.

Only work started by the failed SQL statement is lost; work done before that statement in the
current transaction is kept. Thus, if a data definition statement fails, the automatic commit that
precedes it is not undone.

Note that before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid database objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the statement
do not.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an error to
one of the participating transactions and rolls back the current statement in that transaction.

7.6 About Using the SAVEPOINT Statement

You use the SAVEPQO NT statement to mark and name the current point in the processing of a
transaction. Each marked point is called a savepoint. For example, the following statement
marks a savepoint named start_delete:

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE

Chapter 7
About Using the SAVEPOINT Statement

EXEC SQL SAVEPO NT start _del ete;

Savepoints let you divide long transactions, giving you more control over complex procedures.
For example, if a transaction performs several functions, you can mark a savepoint before
each function. Then, if a function fails, you can easily restore the Oracle data to its former
state, recover, then reexecute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement and its TO
SAVEPQ NT clause. The TO SAVEPQO NT clause lets you roll back to an intermediate statement in
the current transaction, so you do not have to undo all your changes. Specifically, the ROLLBACK
TO SAVEPQO NT statement

* Undoes changes made to the database since the specified savepoint was marked
« Erases all savepoints marked after the specified savepoint
* Releases all row and table locks acquired since the specified savepoint was marked

In the example, you access the table MAI L_LI ST to insert new listings, update old listings, and
delete (a few) inactive listings. After the delete, you check SQLERRD(3) in the SQLCA for the
number of rows deleted. If the number is unexpectedly large, you roll back to the savepoint
start_delete, undoing just the delete.

FOR EACH new cust omer

di splay ' Custoner nunber? '

read cust_nunber;

di splay ' Custoner nane? '

read cust_nane;

EXEC SQL | NSERT | NTO MAIL_LI ST (CUSTNO, CNAME, STAT)
VALUES (:cust_nunber, :cust_nane, 'ACTIVE);

ENDFOR;

FOR EACH revi sed status

di splay ' Custoner nunber? '

read cust_nunber;

display 'New status? '

read new st at us;

EXEC SQL UPDATE MAIL_LI ST

SET STAT = :new_status WHERE CUSTNO = : cust _nunber;
ENDFOR;

- mark savepoi nt

EXEC SQL SAVEPO NT start _del ete;

EXEC SQL DELETE FROM MAI L_LI ST WHERE STAT = ' | NACTI VE';
I F sglca.sqglerrd(3) < 25 THEN -- check nunber of rows del eted
di splay 'Number of rows deleted is ', sqglca.sqlerrd(3);
ELSE

di splay 'Undoing deletion of ', sqglca.sqlerrd(3), ' rows';
EXEC SQ. WHENEVER SQLERROR GOTO sql _error;

EXEC SQL ROLLBACK TO SAVEPQO NT start_del ete;

ENDI F;

EXEC SQL WHENEVER SQLERROR CONTI NUE;

EXEC SQL COW T WORK RELEASE;

exit program
sql _error:

EXEC SQL WHENEVER SQLERROR CONTI NUE;

EXEC SQL ROLLBACK WORK RELEASE;

display 'Processing error';

exit programwth an error;

Note that you cannot specify the RELEASE option in a ROLLBACK TO SAVEPO NT statement.

Rolling back to a savepoint erases any savepoints marked after that savepoint. The savepoint
to which you roll back, however, is not erased. For example, if you mark five savepoints, then

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Chapter 7
About Using the RELEASE Option

roll back to the third, only the fourth and fifth are erased. A COW T or ROLLBACK statement
erases all savepoints.

By default, the number of active savepoints in each user session is limited to 5. An active
savepoint is one that you marked since the last commit or rollback. Your Database
Administrator (DBA) can raise the limit by increasing the value of the Oracle initialization
parameter SAVEPQ NTS. If you give two savepoints the same name, the earlier savepoint is
erased.

7.7 About Using the RELEASE Option

Oracle rolls back changes automatically if your program terminates unusually. Unusual
termination occurs when your program does not explicitly commit or roll back work and
disconnect from Oracle using the RELEASE option.

Normal termination occurs when your program runs its course, closes open cursors, explicitly
commits or rolls back work, disconnects from Oracle, and returns control to the user. Your
program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COW T RELEASE;

or
EXEC SQL ROLLBACK RELEASE;
Otherwise, locks and cursors acquired by your user session are held after program termination

until Oracle recognizes that the user session is no longer active. This might cause other users
in a multiuser environment to wait longer than necessary for the locked resources.

7.8 About Using the SET TRANSACTION Statement

You use the SET TRANSACTI ON statement to begin a read-only or read/write transaction, or to
assign your current transaction to a specified rollback segment. A COW T, ROLLBACK, or data
definition statement ends a read-only transaction.

Because they allow "repeatable reads," read-only transactions are useful for running multiple
gueries against one or more tables while other users update the same tables. During a read-
only transaction, all queries refer to the same snapshot of the database, providing a multitable,
multiquery, read-consistent view. Other users can continue to query or update data as usual.
An example of the SET TRANSACTI ON statement follows:

EXEC SQL SET TRANSACTI ON READ ONLY;

The SET TRANSACTI ON statement must be the first SQL statement in a read-only transaction
and can appear only once in a transaction. The READ ONLY parameter is required. Its use does
not affect other transactions. Only the SELECT (without FOR UPDATE), LOCK TABLE, SET RCLE,
ALTER SESSI ON, ALTER SYSTEM COW T, and ROLLBACK statements are allowed in a read-only
transaction.

In the example, as a store manager, you check sales activity for the day, the past week, and
the past month by using a read-only transaction to generate a summary report. The report is
unaffected by other users updating the database during the transaction.

EXEC SQL SET TRANSACTI ON READ ONLY:

EXEC SQL SELECT SUM SALEAMT) [NTO :daily FROM SALES
WHERE SALEDATE = SYSDATE;

EXEC SQL SELECT SUM SALEAMT) |NTO :weekly FROM SALES
WHERE SALEDATE > SYSDATE - 7:

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE

Chapter 7
About Overriding Default Locking

EXEC SQL SELECT SUM SALEAMT) | NTO :nonthly FROM SALES
WHERE SALEDATE > SYSDATE - 30;

EXEC SQL COW T WORK;

- sinply ends the transaction since there are no changes
- to make permanent

- format and print report

7.9 About Overriding Default Locking

By default, Oracle implicitly (automatically) locks many data structures for you. However, you
can request specific data locks on rows or tables when it is to your advantage to override
default locking. Explicit locking lets you share or deny access to a table for the duration of a
transaction or ensure multitable and multiquery read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of a table to
make sure they do not change before an update or delete is executed. However, Oracle
automatically obtains row-level locks at update or delete time. So, use the FOR UPDATE OF
clause only if you want to lock the rows before the update or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

7.9.1 About Using the FOR UPDATE OF Clause

When you DECLARE a cursor that is referenced in the CURRENT OF clause of an UPDATE or DELETE
statement, you use the FOR UPDATE OF clause to acquire exclusive row locks. SELECT FOR
UPDATE COF identifies the rows that will be updated or deleted, then locks each row in the active
set. (All rows are locked at the open, not as they are fetched.) This is useful, for example,
when you want to base an update on the existing values in a row. You must make sure the row
is not changed by another user before your update.

The FOR UPDATE OF clause is optional. For instance, instead of

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20
FOR UPDATE OF SAL;

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20;

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if necessary.
You use the CURRENT OF clause to refer to the latest row fetched from a cursor.

7.9.2 Restrictions

If you use the FOR UPDATE OF clause, you cannot reference multiple tables. Also, an explicit
FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row locks. Row locks are
released when you commit or rollback (except when you rollback to a savepoint). If you try to
fetch from a FOR UPDATE cursor after a commit, Oracle generates the following error:

ORA-01002: fetch out of sequence

7.9.3 About Using the LOCK TABLE Statement

You use the LOCK TABLE statement to lock one or more tables in a specified lock mode. For
example, the statement locks the EMP table in row share mode. Row share locks allow

Developer's Guide to the Oracle Precompilers

G44321-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE

Chapter 7
About Fetching Across Commits

concurrent access to a table; they prevent other users from locking the entire table for
exclusive use.

EXEC SQL LOCK TABLE EMP IN ROW SHARE MODE NOWAI T,

The lock mode determines what other locks can be placed on the table. For example, many
users can acquire row share locks on a table at the same time, but only one user at a time can
acquire an exclusive lock. While one user has an exclusive lock on a table, no other users can
insert, update, or delete rows in that table. For more information about lock modes, see SQL
Processing for Application Developers.

The optional keyword NOWAIT tells Oracle not to wait for a table if it has been locked by
another user. Control is immediately returned to your program, so it can do other work before
trying again to acquire the lock. (You can check SQLCODE in the SQLCA to see if the table
lock failed.) If you omit NOMI T, Oracle waits until the table is available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never acquires a table
lock. So, a query never blocks another query or an update, and an update never blocks a
query. Only if two different transactions try to update the same row will one transaction wait for
the