
Oracle® AI Database
Developer's Guide to the Oracle Precompilers

26ai
G44321-01
October 2025

Oracle AI Database Developer's Guide to the Oracle Precompilers, 26ai

G44321-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

Primary Author: Jiji Thomas

Contributors: Denis Raphaely, Simon Watt, Radhakrishnan Hari, Nancy Ikeda, Ken Jacobs, Valarie Moore, Tim Smith,
Scott Urman, Arun Desai, Mallikharjun Vemana, Subhranshu Banerjee

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Intended Audience i

Structure i

Related Documents iii

Conventions iii

 Changes in This Release

Deprecated Feature i

1 Getting Acquainted

1.1 What Is an Oracle Precompiler? 1

1.1.1 Language Alternatives 2

1.2 Why Use an Oracle Precompiler? 3

1.3 Why Use SQL? 3

1.4 Why Use PL/SQL? 3

1.5 What Do the Oracle Precompilers Offer? 4

1.6 Do the Oracle Precompilers Meet Industry Standards? 5

1.6.1 Requirements 5

1.6.2 Compliance 6

1.6.3 FIPS Flagger 6

1.6.4 FIPS Option 6

1.6.5 Certification 6

2 Learning the Basics

2.1 Key Concepts of Embedded SQL Programming 1

2.1.1 Embedded SQL Statements 1

2.1.2 Executable versus Declarative Statements 2

2.1.3 Embedded SQL Syntax 3

2.1.4 Static versus Dynamic SQL Statements 4

2.1.5 Embedded PL/SQL Blocks 4

2.1.6 Host and Indicator Variables 4

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of xix

2.1.7 Oracle Datatypes 5

2.1.8 Arrays 5

2.1.9 Datatype Equivalencing 5

2.1.10 Private SQL Areas, Cursors, and Active Sets 5

2.1.11 Transactions 6

2.1.12 Errors and Warnings 6

2.2 Steps in Developing an Embedded SQL Application 6

2.3 A Sample Program 8

2.4 Sample Tables 9

2.4.1 Sample Data 9

3 Meeting Program Requirements

3.1 The Declare Section 1

3.1.1 An Example 2

3.2 INCLUDE Statements 2

3.3 The SQLCA 3

3.4 Oracle Datatypes 3

3.4.1 Internal Datatypes 4

3.4.2 CHAR 5

3.4.3 DATE 5

3.4.4 LONG 5

3.4.5 LONG RAW 6

3.4.6 MLSLABEL 6

3.4.7 NUMBER 6

3.4.8 RAW 7

3.4.9 ROWID 7

3.4.10 VARCHAR2 7

3.4.11 SQL Pseudocolumns and Functions 7

3.4.12 ROWLABEL Column 9

3.4.13 External Datatypes 9

3.4.14 CHAR 11

3.4.15 CHARF 11

3.4.16 CHARZ 11

3.4.17 DATE 11

3.4.18 DECIMAL 12

3.4.19 DISPLAY 12

3.4.20 FLOAT 12

3.4.21 INTEGER 12

3.4.22 LONG 12

3.4.23 LONG RAW 12

3.4.24 LONG VARCHAR 13

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of xix

3.4.25 LONG VARRAW 13

3.4.26 MLSLABEL 13

3.4.27 NUMBER 13

3.4.28 RAW 14

3.4.29 ROWID 14

3.4.30 STRING 14

3.4.31 UNSIGNED 15

3.4.32 VARCHAR 15

3.4.33 VARCHAR2 15

3.4.34 VARNUM 15

3.4.35 VARRAW 16

3.5 Datatype Conversion 16

3.5.1 DATE Values 18

3.5.2 RAW and LONG RAW Values 18

3.6 Declaring and Referencing Host Variables 18

3.6.1 Some Examples 19

3.6.2 VARCHAR Variables 19

3.6.3 Host Variable Guidelines 19

3.7 Declaring and Referencing Indicator Variables 20

3.7.1 INDICATOR Keyword 20

3.7.2 An Example 20

3.7.3 Indicator Variable Guidelines 21

3.8 Datatype Equivalencing 21

3.8.1 Why Equivalence Datatypes? 21

3.8.2 Host Variable Equivalencing 22

3.8.3 An Example 22

3.8.4 About Using the CHARF Datatype Specifier 24

3.8.5 Guidelines 24

3.9 Globalization Support 25

3.10 Multibyte Globalization Support Character Sets 26

3.10.1 Character Strings in Embedded SQL 26

3.10.2 Dynamic SQL 27

3.10.3 Embedded DDL 27

3.10.4 Multibyteultibyte Globalization Support Host Variables 27

3.10.5 Restrictions 27

3.10.6 Blank Padding 27

3.10.7 Indicator Variables 28

3.11 Concurrent Logons 28

3.11.1 Some Preliminaries 29

3.11.2 Default Databases and Connections 29

3.11.3 Explicit Logons 29

3.11.4 Single Explicit Logons 29

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of xix

3.11.5 Multiple Explicit Logons 32

3.11.6 Implicit Logons 33

3.11.7 Single Implicit Logons 33

3.11.8 Multiple Implicit Logons 34

3.12 Embedding OCI (Oracle Call Interface) Calls 34

3.12.1 About Setting Up the LDA 35

3.12.2 Remote and Multiple Connections 35

3.13 About Developing X/Open Applications 35

3.13.1 Oracle-Specific Issues 36

3.13.2 About Connecting to Oracle 36

3.13.3 Transaction Control 37

3.13.4 OCI Calls 37

3.13.5 Linking 37

4 Using Embedded SQL

4.1 About Using Host Variables 1

4.1.1 Output versus Input Host Variables 1

4.2 About Using Indicator Variables 2

4.2.1 Input Variables 2

4.2.2 Output Variables 2

4.2.3 Inserting Nulls 3

4.2.4 Handling Returned Nulls 3

4.2.5 Fetching Nulls 3

4.2.6 Testing for Nulls 4

4.2.7 Fetching Truncated Values 4

4.3 The Basic SQL Statements 4

4.3.1 Selecting Rows 5

4.3.2 Available Clauses 5

4.3.3 Inserting Rows 6

4.3.4 Using Subqueries 6

4.3.5 Updating Rows 6

4.3.6 Deleting Rows 7

4.3.7 Using the WHERE Clause 7

4.4 Cursors 7

4.4.1 Declaring a Cursor 7

4.4.2 Opening a Cursor 8

4.4.3 Fetching from a Cursor 9

4.4.4 Closing a Cursor 9

4.4.5 Using the CURRENT OF Clause 10

4.4.6 Restrictions 10

4.4.7 A Typical Sequence of Statements 10

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of xix

4.4.8 A Complete Example 11

4.5 Cursor Variables 12

4.5.1 About Declaring a Cursor Variable 12

4.5.2 Allocating a Cursor Variable 13

4.5.3 Opening a Cursor Variable 13

4.5.4 Fetching from a Cursor Variable 14

4.5.5 Closing a Cursor Variable 14

5 Using Embedded PL/SQL

5.1 Advantages of PL/SQL 1

5.1.1 Better Performance 1

5.1.2 Integration with Oracle 1

5.1.3 Cursor FOR Loops 2

5.1.4 Subprograms 2

5.1.5 Parameter Modes 2

5.1.6 Packages 3

5.1.7 PL/SQL Tables 3

5.1.8 User-defined Records 4

5.2 About Embedding PL/SQL Blocks 4

5.3 About Using Host Variables 5

5.3.1 An Example 5

5.3.2 A More Complex Example 6

5.3.3 VARCHAR Pseudotype 7

5.4 About Using Indicator Variables 8

5.4.1 Handling Nulls 8

5.4.2 Handling Truncated Values 9

5.5 About Using Host Arrays 9

5.5.1 ARRAYLEN Statement 11

5.6 About Using Cursors 11

5.6.1 An Alternative 12

5.7 Stored Subprograms 13

5.7.1 Creating Stored Subprograms 13

5.7.2 Calling a Stored Subprogram 14

5.7.3 Remote Access 16

5.7.4 Getting Information about Stored Subprograms 17

5.8 About Using Dynamic PL/SQL 17

5.8.1 Restriction 17

6 Running the Oracle Precompilers

6.1 The Precompiler Command 1

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of xix

6.2 What Occurs during Precompilation? 2

6.3 Precompiler Options 2

6.3.1 Default Values 3

6.3.2 Determining Current Values 3

6.3.3 Case Sensitivity 4

6.3.4 Configuration Files 4

6.4 Entering Options 5

6.4.1 On the Command Line 5

6.4.2 Inline 5

6.4.3 Advantages 5

6.4.4 Scope of EXEC ORACLE 5

6.4.5 From a Configuration File 6

6.4.6 Advantages 6

6.4.7 About Using Configuration Files 6

6.4.8 About Setting Option Values 7

6.5 Scope of Options 7

6.6 Quick Reference 7

6.7 About Using the Precompiler Options 10

6.7.1 ASACC 10

6.7.2 ASSUME_SQLCODE 11

6.7.3 AUTO_CONNECT 11

6.7.4 CHAR_MAP 12

6.7.5 CINCR 12

6.7.6 CLOSE_ON_COMMIT 13

6.7.7 CMAX 13

6.7.8 CMIN 14

6.7.9 CNOWAIT 14

6.7.10 CODE 14

6.7.11 COMMON_NAME 15

6.7.12 COMMON_PARSER 16

6.7.13 COMP_CHARSET 17

6.7.14 COMP_CHARSET 17

6.7.15 CONFIG 18

6.7.16 CPOOL 18

6.7.17 CPP_SUFFIX 19

6.7.18 CTIMEOUT 19

6.7.19 DB2_ARRAY 19

6.7.20 DBMS 20

6.7.21 DEF_SQLCODE 21

6.7.22 DEFINE 22

6.7.23 DURATION 22

6.7.24 DYNAMIC 23

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of xix

6.7.25 ERRORS 23

6.7.26 ERRTYPE 23

6.7.27 EVENTS 24

6.7.28 FIPS 24

6.7.29 FORMAT 25

6.7.30 Globalization Support_LOCAL 25

6.7.31 HEADER 26

6.7.32 HOLD_CURSOR 26

6.7.33 HOST 27

6.7.34 IMPLICIT_SVPT 27

6.7.35 INAME 28

6.7.36 INCLUDE 29

6.7.37 IRECLEN 29

6.7.38 INTYPE 30

6.7.39 LINES 30

6.7.40 LITDELIM 31

6.7.41 LNAME 31

6.7.42 LRECLEN 32

6.7.43 LTYPE 32

6.7.44 MAXLITERAL 32

6.7.45 MAXOPENCURSORS 33

6.7.46 MAX_ROW_INSERT 34

6.7.47 MODE 34

6.7.48 MULTISUBPROG 35

6.7.49 NATIVE_TYPES 36

6.7.50 NLS_CHAR 36

6.7.51 NLS_LOCAL 36

6.7.52 OBJECTS 37

6.7.53 ONAME 37

6.7.54 ORACA 38

6.7.55 ORECLEN 38

6.7.56 OUTLINE 38

6.7.57 OUTLNPREFIX 39

6.7.58 PAGELEN 40

6.7.59 PARSE 40

6.7.60 PREFETCH 41

6.7.61 RELEASE_CURSOR 41

6.7.62 RUNOUTLINE 42

6.7.63 SELECT_ERROR 42

6.7.64 SQLCHECK 43

6.7.65 STMT_CACHE 44

6.7.66 SQLCHECK 44

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of xix

6.7.67 THREADS 45

6.7.68 TYPE_CODE 46

6.7.69 UNSAFE_NULL 46

6.7.70 USERID 46

6.7.71 UTF16_CHARSET 47

6.7.72 VARCHAR 47

6.7.73 VERSION 48

6.7.74 XREF 48

6.8 Conditional Precompilations 49

6.8.1 An Example 49

6.8.2 Defining Symbols 50

6.9 Separate Precompilations 50

6.9.1 Guidelines 50

6.9.2 Restrictions 50

6.10 Compiling and Linking 51

6.10.1 System-Dependent 51

6.10.2 Multibyte Globalization Support Compatibility 51

7 Defining and Controlling Transactions

7.1 Some Terms You Should Know 1

7.2 How Transactions Guard Your Database 2

7.3 How to Begin and End Transactions 2

7.4 About Using the COMMIT Statement 3

7.5 About Using the ROLLBACK Statement 3

7.5.1 Statement-Level Rollbacks 4

7.6 About Using the SAVEPOINT Statement 4

7.7 About Using the RELEASE Option 6

7.8 About Using the SET TRANSACTION Statement 6

7.9 About Overriding Default Locking 7

7.9.1 About Using the FOR UPDATE OF Clause 7

7.9.2 Restrictions 7

7.9.3 About Using the LOCK TABLE Statement 7

7.10 About Fetching Across Commits 8

7.11 About Handling Distributed Transactions 8

7.12 Guidelines 9

7.12.1 About Designing Applications 9

7.12.2 About Obtaining Locks 9

7.12.3 About Using PL/SQL 9

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of xix

8 Error Handling and Diagnostics

8.1 The Need for Error Handling 1

8.2 Error Handling Alternatives 1

8.2.1 SQLCODE and SQLSTATE 2

8.2.2 SQLCA 2

8.2.3 ORACA 2

8.3 About Using Status Variables when MODE={ANSI|ANSI14} 2

8.3.1 Some Historical Information 3

8.3.2 Release 1.5 3

8.3.3 Release 1.6 3

8.3.4 Release 1.7 3

8.3.5 About Declaring Status Variables 4

8.3.6 Declaring SQLCODE 4

8.3.7 Declaring SQLSTATE 4

8.3.8 Status Variable Combinations 5

8.3.9 Status Variable Values 8

8.3.10 SQLCODE Values 8

8.3.11 SQLSTATE Values 9

8.4 About Using the SQL Communications Area 15

8.4.1 Declaring the SQLCA 15

8.4.2 About Declaring the SQLCA in Pro*COBOL 16

8.4.3 About Declaring the SQLCA in Pro*FORTRAN 16

8.4.4 What's in the SQLCA? 16

8.4.5 Key Components of Error Reporting 17

8.4.6 Status Codes 17

8.4.7 Warning Flags 17

8.4.8 Rows-Processed Count 17

8.4.9 Parse Error Offset 18

8.4.10 Error Message Text 18

8.4.11 SQLCA Structure 18

8.4.12 SQLCAID 18

8.4.13 SQLCABC 18

8.4.14 SQLCODE 18

8.4.15 SQLERRM 19

8.4.16 SQLERRP 19

8.4.17 SQLERRD 19

8.4.18 SQLWARN 20

8.4.19 SQLEXT 21

8.4.20 PL/SQL Considerations 21

8.4.21 Getting the Full Text of Error Messages 21

8.4.22 Using the WHENEVER Statement 22

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of xix

8.4.23 SQLWARNING 22

8.4.24 SQLERROR 22

8.4.25 NOT FOUND 23

8.4.26 CONTINUE 23

8.4.27 DO 23

8.4.28 GOTO 23

8.4.29 STOP 23

8.4.30 Some Examples 23

8.4.31 Scope 24

8.4.32 Guidelines 25

8.4.33 Getting the Text of SQL Statements 26

8.5 About Using the Oracle Communications Area 28

8.5.1 Declaring the ORACA 29

8.5.2 Enabling the ORACA 29

8.5.3 What's in the ORACA? 29

8.5.4 Choosing Run-time Options 30

8.5.5 ORACA Structure 30

8.5.6 ORACAID 30

8.5.7 ORACABC 30

8.5.8 ORACCHF 30

8.5.9 ORADBGF 31

8.5.10 ORAHCHF 31

8.5.11 ORASTXTF 31

8.5.12 Diagnostics 31

8.5.13 ORASTXT 31

8.5.14 ORASFNM 32

8.5.15 ORASLNR 32

8.5.16 Cursor Cache Statistics 32

8.5.17 ORAHOC 32

8.5.18 ORAMOC 32

8.5.19 ORACOC 32

8.5.20 ORANOR 32

8.5.21 ORANPR 33

8.5.22 ORANEX 33

8.5.23 An Example 33

9 Using Host Arrays

9.1 What Is a Host Array? 1

9.2 Why Use Arrays? 1

9.3 Declaring Host Arrays 2

9.3.1 Dimensioning Arrays 2

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page x of xix

9.3.2 Restrictions 2

9.4 About Using Arrays in SQL Statements 2

9.5 About Selecting into Arrays 2

9.5.1 Batch Fetches 3

9.5.2 Number of Rows Fetched 3

9.5.3 Restrictions 4

9.5.4 About Fetching Nulls 4

9.5.5 About Fetching Truncated Values 4

9.5.6 About Inserting with Arrays 5

9.5.7 About Updating with Arrays 5

9.5.8 About Deleting with Arrays 6

9.5.9 Restrictions 7

9.6 About Using Indicator Arrays 7

9.7 About Using the FOR Clause 7

9.7.1 Restrictions 8

9.7.2 In a SELECT Statement 8

9.7.3 With the CURRENT OF Clause 8

9.8 About Using the WHERE Clause 9

9.9 About Mimicking the CURRENT OF Clause 9

9.10 About Using SQLERRD(3) 10

10

Using Dynamic SQL

10.1 What Is Dynamic SQL? 1

10.2 Advantages and Disadvantages of Dynamic SQL 2

10.3 When to Use Dynamic SQL 2

10.4 Requirements for Dynamic SQL Statements 2

10.5 How Dynamic SQL Statements Are Processed 3

10.6 Methods for Using Dynamic SQL 3

10.6.1 Method 1 3

10.6.2 Method 2 4

10.6.3 Method 3 4

10.6.4 Method 4 4

10.6.5 Guidelines 4

10.6.6 Avoiding Common Errors 5

10.7 About Using Method 1 6

10.7.1 The EXECUTE IMMEDIATE Statement 6

10.7.2 An Example 6

10.8 About Using Method 2 7

10.8.1 The USING Clause 8

10.8.2 An Example 8

10.9 About Using Method 3 9

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xix

10.9.1 PREPARE 9

10.9.2 DECLARE 10

10.9.3 OPEN 10

10.9.4 FETCH 10

10.9.5 CLOSE 10

10.9.6 An Example 10

10.10 Using Method 4 11

10.10.1 Need for the SQLDA 12

10.10.2 The DESCRIBE Statement 12

10.10.3 What Is a SQLDA? 12

10.10.4 Implementing Method 4 13

10.11 About Using the DECLARE STATEMENT Statement 14

10.11.1 Usage of Host Arrays 14

10.12 About Using PL/SQL 14

10.12.1 With Method 1 15

10.12.2 With Method 2 15

10.12.3 With Method 3 15

10.12.4 With Method 4 15

10.12.5 Caution 16

11

Writing User Exits

11.1 What Is a User Exit? 1

11.2 Why Write a User Exit? 2

11.3 Developing a User Exit 3

11.4 Writing a User Exit 3

11.4.1 Requirements for Variables 3

11.4.2 The IAF GET Statement 4

11.4.3 The IAF PUT Statement 5

11.5 Calling a User Exit 5

11.6 Passing Parameters to a User Exit 5

11.7 Returning Values to a Form 6

11.7.1 The IAP Constants 6

11.7.2 Using the SQLIEM Function 6

11.7.3 Using WHENEVER 7

11.8 An Example 7

11.9 About Precompiling and Compiling a User Exit 7

11.10 About Using the GENXTB Utility 7

11.11 About Linking a User Exit into SQL*Forms 8

11.12 Guidelines for SQL*Forms User Exits 8

11.12.1 Naming the Exit 8

11.12.2 Connecting to Oracle 8

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xix

11.12.3 Issuing I/O Calls 9

11.12.4 Using Host Variables 9

11.12.5 Updating Tables 9

11.12.6 Issuing Commands 9

11.13 EXEC TOOLS Statements 9

11.13.1 EXEC TOOLS SET 10

11.13.2 EXEC TOOLS GET 10

11.13.3 EXEC TOOLS SET CONTEXT 11

11.13.4 EXEC TOOLS GET CONTEXT 11

11.13.5 EXEC TOOLS MESSAGE 12

A New Features

A.1 About Fetching NULLs without Using Indicator Variables A-1

A.1.1 About Using DBMS=V7 and MODE=ORACLE A-1

A.1.2 Related Error Messages A-1

A.2 Additional Array Insert/Select Syntax A-1

A.3 SQL99 Syntax Support A-2

A.4 About Fixing Execution Plans A-2

A.5 About Using Implicit Buffered Insert A-2

A.6 Dynamic SQL Statement Caching A-3

A.7 Scrollable Cursors A-6

A.8 Platform Endianness Support A-6

A.9 Flexible B Area Length A-6

B Oracle Reserved Words, Keywords, and Namespaces

B.1 Oracle Reserved Words B-1

B.2 Oracle Keywords B-2

B.3 PL/SQL Reserved Words B-3

B.4 Oracle Reserved Namespaces B-8

C Performance Tuning

C.1 What Causes Poor Performance? C-1

C.2 How Can Performance be Improved? C-2

C.3 Using Host Arrays C-2

C.4 Using Embedded PL/SQL C-2

C.5 Optimizing SQL Statements C-3

C.5.1 Optimizer Hints C-3

C.5.2 Giving Hints C-4

C.5.3 Trace Facility C-4

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiii of xix

C.6 About Using Indexes C-4

C.7 Taking Advantage of Row-Level Locking C-4

C.8 About Eliminating Unnecessary Parsing C-5

C.8.1 About Handling Explicit Cursors C-5

C.8.2 Cursor Control C-5

C.8.3 About Using the Cursor Management Options C-6

C.8.4 Private SQL Areas and Cursor Cache C-6

C.8.5 Resource Use C-7

C.8.6 Infrequent Execution C-7

C.8.7 Frequent Execution C-8

C.8.8 Parameter Interactions C-8

D Syntactic and Semantic Checking

D.1 What Is Syntactic and Semantic Checking? D-1

D.2 About Controlling the Type and Extent of Checking D-1

D.3 About Specifying SQLCHECK=SEMANTICS D-2

D.3.1 About Enabling a Semantic Check D-2

D.3.2 About Connecting to Oracle D-2

D.3.3 About Using DECLARE TABLE D-3

E Embedded SQL Commands and Directives

E.1 Summary of Precompiler Directives and Embedded SQL Commands E-2

E.2 About The Command Descriptions E-3

E.3 How to Read Syntax Diagrams E-3

E.3.1 Required Keywords and Parameters E-4

E.3.2 Optional Keywords and Parameters E-4

E.3.3 Syntax Loops E-5

E.3.4 Multi-part Diagrams E-5

E.3.5 Database Objects E-5

E.4 ALLOCATE (Executable Embedded SQL Extension) E-5

E.4.1 Allocate Purpose E-6

E.4.2 Allocate Prerequisites E-6

E.4.3 Allocate Syntax E-6

E.4.4 Allocate Keywords and Parameters E-6

E.4.5 Allocate Usage Notes E-6

E.4.6 Allocate Related Topics E-6

E.5 CLOSE (Executable Embedded SQL) E-6

E.5.1 CLOSE Purpose E-7

E.5.2 CLOSE Prerequisites E-7

E.5.3 CLOSE Syntax E-7

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiv of xix

E.5.4 CLOSE Keywords and Parameters E-7

E.5.5 CLOSE Usage Notes E-7

E.5.6 CLOSE Example E-7

E.5.7 CLOSE Related Topics E-7

E.6 COMMIT (Executable Embedded SQL) E-7

E.6.1 COMMIT Purpose E-7

E.6.2 COMMIT Prerequisites E-8

E.6.3 COMMIT Syntax E-8

E.6.4 COMMIT Keyword and Parameters E-8

E.6.5 COMMIT Usage Notes E-9

E.6.6 COMMIT Related Topics E-9

E.7 CONNECT (Executable Embedded SQL Extension) E-9

E.7.1 CONNECT Purpose E-9

E.7.2 CONNECT Prerequisites E-9

E.7.3 CONNECT Syntax E-9

E.7.4 CONNECT Keyword and Parameters E-10

E.7.5 CONNECT Usage Notes E-10

E.7.6 CONNECT Related Topics E-10

E.8 DECLARE CURSOR (Embedded SQL Directive) E-10

E.8.1 DECLARE CURSOR Purpose E-10

E.8.2 DECLARE CURSOR Prerequisites E-11

E.8.3 DECLARE CURSOR Syntax E-11

E.8.4 DECLARE CURSOR Keywords and Parameters E-11

E.8.5 DECLARE CURSOR Usage Notes E-11

E.8.6 DECLARE CURSOR Example E-12

E.8.7 DECLARE CURSOR Related Topics E-12

E.9 DECLARE DATABASE (Oracle Embedded SQL Directive) E-12

E.9.1 DECLARE DATABASE Purpose E-12

E.9.2 DECLARE DATABASE Prerequisites E-12

E.9.3 DECLARE DATABASE Syntax E-12

E.9.4 DECLARE DATABASE Keywords and Parameters E-12

E.9.5 DECLARE DATABASE Usage Notes E-12

E.9.6 DECLARE DATABASE Example E-13

E.9.7 DECLARE DATABASE Related Topics E-13

E.10 DECLARE STATEMENT (Embedded SQL Directive) E-13

E.10.1 DECLARE STATEMENT Purpose E-13

E.10.2 DECLARE STATEMENT Prerequisites E-13

E.10.3 DECLARE STATEMENT Syntax E-13

E.10.4 DECLARE STATEMENT Keywords and Parameters E-13

E.10.5 DECLARE STATEMENT Usage Notes E-14

E.10.6 DECLARE STATEMENT Example I E-14

E.10.7 DECLARE STATEMENT Example II E-14

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xv of xix

E.10.8 DECLARE STATEMENT Related Topics E-14

E.11 DECLARE TABLE (Oracle Embedded SQL Directive) E-14

E.11.1 DECLARE TABLE Purpose E-14

E.11.2 DECLARE TABLE Prerequisites E-14

E.11.3 DECLARE TABLE Syntax E-15

E.11.4 DECLARE TABLE Keywords and Parameters E-15

E.11.5 DECLARE TABLE Usage Notes E-15

E.11.6 DECLARE TABLE Example E-15

E.11.7 DECLARE TABLE Related Topics E-15

E.12 DELETE (Executable Embedded SQL) E-16

E.12.1 DELETE Purpose E-16

E.12.2 DELETE Prerequisites E-16

E.12.3 DELETE Syntax E-16

E.12.4 DELETE Keywords and Parameters E-16

E.12.5 DELETE Usage Notes E-17

E.12.6 DELETE Example E-18

E.12.7 DELETE Related Topics E-18

E.13 DESCRIBE (Executable Embedded SQL) E-18

E.13.1 DESCRIBE Purpose E-18

E.13.2 DESCRIBE Prerequisites E-18

E.13.3 DESCRIBE Syntax E-19

E.13.4 DESCRIBE Keywords and Parameters E-19

E.13.5 DESCRIBE Usage Notes E-19

E.13.6 DESCRIBE Example E-19

E.13.7 DESCRIBE Related Topics E-20

E.14 EXECUTE ... END-EXEC (Executable Embedded SQL Extension) E-20

E.14.1 EXECUTE ... END-EXEC Purpose E-20

E.14.2 EXECUTE ... END-EXEC Prerequisites E-20

E.14.3 EXECUTE ... END-EXEC Syntax E-20

E.14.4 EXECUTE ... END-EXEC Keywords and Parameters E-20

E.14.5 EXECUTE ... END-EXEC Usage Notes E-20

E.14.6 EXECUTE ... END-EXEC Example E-21

E.14.7 EXECUTE ... END-EXEC Related Topics E-21

E.15 EXECUTE (Executable Embedded SQL) E-21

E.15.1 EXECUTE Purpose E-21

E.15.2 EXECUTE Prerequisites E-21

E.15.3 EXECUTE Syntax E-21

E.15.4 EXECUTE Keywords and Parameters E-21

E.15.5 EXECUTE Usage Notes E-22

E.15.6 EXECUTE Example E-22

E.15.7 EXECUTE Related Topics E-22

E.16 EXECUTE IMMEDIATE (Executable Embedded SQL) E-22

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvi of xix

E.16.1 EXECUTE IMMEDIATE Purpose E-22

E.16.2 EXECUTE IMMEDIATE Prerequisites E-22

E.16.3 EXECUTE IMMEDIATE Syntax E-22

E.16.4 EXECUTE IMMEDIATE Keywords and Parameters E-22

E.16.5 EXECUTE IMMEDIATE Usage Notes E-23

E.16.6 EXECUTE IMMEDIATE Example E-23

E.16.7 EXECUTE IMMEDIATE Related Topics E-23

E.17 FETCH (Executable Embedded SQL) E-23

E.17.1 FETCH Purpose E-23

E.17.2 FETCH Prerequisites E-23

E.17.3 FETCH Syntax E-24

E.17.4 FETCH Keywords and Parameters E-24

E.17.5 FETCH Usage Notes E-24

E.17.6 FETCH Example E-25

E.17.7 FETCH Related Topics E-25

E.18 INSERT (Executable Embedded SQL) E-25

E.18.1 INSERT Purpose E-25

E.18.2 INSERT Prerequisites E-25

E.18.3 INSERT Syntax E-26

E.18.4 INSERT Keywords and Parameters E-26

E.18.5 INSERT Usage Notes E-27

E.18.6 INSERT Example I E-27

E.18.7 INSERT Example II E-27

E.18.8 INSERT Related Topics E-27

E.19 OPEN (Executable Embedded SQL) E-27

E.19.1 OPEN Purpose E-28

E.19.2 OPEN Prerequisites E-28

E.19.3 OPEN Syntax E-28

E.19.4 OPEN Keywords and Parameters E-28

E.19.5 OPEN Usage Notes E-28

E.19.6 OPEN Example E-29

E.19.7 OPEN Related Topics E-29

E.20 PREPARE (Executable Embedded SQL) E-29

E.20.1 PREPARE Purpose E-29

E.20.2 PREPARE Prerequisites E-29

E.20.3 PREPARE Syntax E-29

E.20.4 PREPARE Keywords and Parameters E-29

E.20.5 PREPARE Usage Notes E-30

E.20.6 PREPARE Example E-30

E.20.7 PREPARE Related Topics E-30

E.21 ROLLBACK (Executable Embedded SQL) E-30

E.21.1 ROLLBACK Purpose E-30

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvii of xix

E.21.2 ROLLBACK Prerequisites E-30

E.21.3 ROLLBACK Syntax E-30

E.21.4 ROLLBACK Keywords and Parameters E-31

E.21.5 ROLLBACK Usage Notes E-31

E.21.6 ROLLBACK Example I E-32

E.21.7 ROLLBACK Example II E-32

E.21.8 ROLLBACK Distributed Transactions E-32

E.21.9 ROLLBACK Example III E-32

E.21.10 ROLLBACK Related Topics E-32

E.22 SAVEPOINT (Executable Embedded SQL) E-32

E.22.1 SAVEPOINT Purpose E-32

E.22.2 SAVEPOINT Prerequisites E-32

E.22.3 SAVEPOINT Syntax E-33

E.22.4 SAVEPOINT Keywords and Parameters E-33

E.22.5 SAVEPOINT Usage Notes E-33

E.22.6 SAVEPOINT Related Topics E-33

E.23 SELECT (Executable Embedded SQL) E-33

E.23.1 SELECT Purpose E-33

E.23.2 SELECT Prerequisites E-33

E.23.3 SELECT Syntax E-34

E.23.4 SELECT Keywords and Parameters E-34

E.23.5 SELECT Usage Notes E-35

E.23.6 SELECT Example E-35

E.23.7 SELECT Related Topics E-35

E.24 UPDATE (Executable Embedded SQL) E-35

E.24.1 UPDATE Purpose E-35

E.24.2 UPDATE Prerequisites E-35

E.24.3 UPDATE Syntax E-36

E.24.4 UPDATE Keywords and Parameters E-36

E.24.5 UPDATE Usage Notes E-37

E.24.6 UPDATE Examples E-38

E.24.7 UPDATE Related Topics E-38

E.25 VAR (Oracle Embedded SQL Directive) E-38

E.25.1 VAR Purpose E-38

E.25.2 VAR Prerequisites E-38

E.25.3 VAR Syntax E-38

E.25.4 VAR Keywords and Parameters E-38

E.25.5 VAR Usage Notes E-39

E.25.6 VAR Example E-39

E.25.7 VAR Related Topics E-39

E.26 WHENEVER (Embedded SQL Directive) E-39

E.26.1 WHENEVER Purpose E-39

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xviii of xix

E.26.2 WHENEVER Prerequisites E-39

E.26.3 WHENEVER Syntax E-39

E.26.4 WHENEVER Keywords and Parameters E-40

E.26.5 WHENEVER Usage Notes E-40

E.26.6 WHENEVER Example E-40

E.26.7 WHENEVER Related Topics E-41

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xix of xix

List of Tables

2-1 Embedded SQL Statements 2

2-2 Executable SQL Statements and their Descriptions 2

3-1 Column and Pseudo Column Datatypes 4

3-2 Pseudo Column Datatypes 7

3-3 Parameterless Function Datatypes 8

3-4 External Datatypes 9

3-5 DATE Datatype Example 11

3-6 Conversion Between Internal and External Datatypes 17

3-7 External Datatype Parameters 23

3-8 Examples of VARNUM Values Returned 24

3-9 Globalization Support Parameters 25

5-1 Legal Conversions: PL/SQL Table Row and Host Array Elements 10

6-1 Precompiler Run Commands 1

6-2 System Configuration Files 4

6-3 Precompiler Options Quick Reference 7

6-4 Compatible DBMS and MODE Settings 20

6-5 Input File Extensions 28

8-1 SQLCODE Declarations 4

8-2 SQLSTATE Declarations 5

8-3 Status Variable Combinations - SQLCODE = NO 5

8-4 Status Variable Combinations - SQLCODE = YES 6

8-5 Predefined SQL92 Classes 9

8-6 Oracle Error Mapping to SQLSTATE Status 10

8-7 SQLGLS Parameter Datatypes 27

8-8 SQL Command Function Codes 27

9-1 Valid Host Arrays for SELECT INTO 4

9-2 Valid Host Arrays for UPDATE 6

10-1 Dynamic SQL Method Applicability 3

B-1 Oracle Reserved Namespaces B-8

C-1 HOLD_CURSOR RELEASE_CURSOR Interactions C-8

E-1 Summary of Embedded SQL Commands and Directives E-2

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xx of xix

Preface

This chapter contains the following:

• Intended Audience

• Documentation Accessibility

• Structure

• Related Documents

• Conventions

This manual is a comprehensive user's guide and reference to the Oracle Pro*COBOL and
Pro*FORTRAN Precompilers. It shows you step-by-step how to develop applications that use
the SQL to access and manipulate data. It explores underlying concepts to advanced
programming techniques using clear examples.

Intended Audience
Anyone developing new applications or converting existing applications to run in the Oracle
database environment will benefit from reading this guide. Written especially for developers,
this comprehensive treatment of the Oracle Precompilers will also be of value to systems
analysts, project managers, and others interested in embedded SQL applications.

To use this guide effectively, you need a working knowledge of the following subjects:

• Applications programming in a high-level language

• The SQL database language

• Oracle concepts and terminology

Structure
This guide contains eleven chapters and five appendixes. Chapters 1 and 2 give you your
bearings, then Chapters 3, 4, 5, and 6 lead you through the essentials of embedded SQL
programming. After reading these chapters, you will be able to write and run useful embedded
SQL applications. Chapters 7, 8, 9, 10, and 11 cover advanced topics. A brief summary of what
you will find in each chapter and appendix follows.

This sample manual contains one part, two chapters, and one appendixes. (Insert this chapter,
appendix, and parts as cross-references so that the links are apparent in HTML.)

Getting Acquainted

This chapter introduces you to the Oracle Precompilers. You look at their role in developing
application programs that manipulate Oracle data and find out what they allow your
applications to do.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of iii

Learning the Basics

This chapter explains how embedded SQL programs do their work. You examine the special
environment in which they operate, the impact of this environment on the design of your
applications, the key concepts of embedded SQL programming, and the steps you take in
developing an application.

Meeting Program Requirements

This chapter shows you how to meet embedded SQL program requirements. You learn the
embedded SQL commands that declare variables, declare communications areas, and
connect to an Oracle database. You also learn about the Oracle datatypes, Globalization
Support (Globalization Support), data conversion, and how to take advantage of datatype
equivalencing. In addition, this chapter shows you how to embed Oracle Call Interface (OCI)
calls in your program and how to develop X/Open applications.

 Using Embedded SQL

This chapter teaches you the essentials of embedded SQL programming. You learn how to use
host variables, indicator variables, cursors, cursor variables, and the fundamental SQL
commands that insert, update, select, and delete Oracle data.

Using Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL transaction
processing blocks in your program. You learn how to use PL/SQL with host variables, indicator
variables, cursors, stored subprograms, host arrays, and dynamic SQL.

Running the Oracle Precompilers

This chapter details the requirements for running an Oracle Precompiler. You learn what
happens during precompilation, how to issue the precompiler command, how to specify the
many useful precompiler options, how to do conditional and separate precompilations, and
how to embed OCI calls in your host program.

Defining and Controlling Transactions

This chapter describes transaction processing. You learn the basic techniques that safeguard
the consistency of your database.

Error Handling and Diagnostics

This chapter provides an in-depth discussion of error reporting and recovery. You learn how to
detect and handle errors using the status variable SQLSTATE, the SQLCA structure, and the
WHENEVER statement. You also learn how to diagnose problems using the ORACA.

Using Host Arrays

This chapter looks at using arrays to improve program performance. You learn how to
manipulate Oracle data using arrays, how to operate on all the elements of an array with a
single SQL statement, and how to limit the number of array elements processed.

Using Dynamic SQL

This chapter shows you how to take advantage of dynamic SQL. You are taught four methods--
from simple to complex--for writing flexible programs that, among other things, let users build
SQL statements interactively at run time.

Preface

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of iii

Writing User Exits

This chapter focuses on writing user exits for your SQL*Forms or Oracle Forms applications.
First, you learn the commands that allow a Forms application to interface with user exits. Then,
you learn how to write and link a Forms user exit.

New Features

This appendix highlights the improvements and new features introduced with Release 1.8 of
the Oracle Precompilers.

Oracle Reserved Words_ Keywords_ and Namespaces

This appendix lists words that have a special meaning to Oracle and namespaces that are
reserved for Oracle libraries.

Performance Tuning

This appendix gives you some simple, easy-to-apply methods for improving the performance of
your applications.

Syntactic and Semantic Checking

This appendix shows you how to use the SQLCHECK option to control the type and extent of
syntactic and semantic checking done on embedded SQL statements and PL/SQL blocks.

Embedded SQL Commands and Directives

This appendix contains descriptions of precompiler directives, embedded SQL commands, and
Oracle embedded SQL extensions. These commands are prefaced in your source code with
the keywords, EXEC SQL.

Related Documents
For more information on Developer's Guide to the Oracle Precompilers, refer to the Oracle
Technology Network (OTN):

http://www.oracle.com/technology/documentation/index.html

Conventions
The following conventions are also used in this manual:

Convention Meaning

. . . Vertical ellipsis points in an example mean that information not directly related
to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts of the
statement or command not directly related to the example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary, or in
both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or none.

Preface

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of iii

http://www.oracle.com/technology/documentation/index.html

Changes in This Release

This is a summary of important changes in Developer's Guide to the Oracle Precompilers.

Deprecated Feature
The following feature is deprecated in Oracle AI Database Developer's Guide to the Oracle
Precompilers for Oracle AI Database Release 26ai.

Deprecation of FIPS parameters

Starting with Oracle AI Database 26ai, several parameters associated with FIPS_140 are
deprecated.

FIPS_140 in FIPS.ORA can be used to enable FIPS for all features starting with Oracle AI
Database 26ai. The following FIPS parameters are deprecated:

• SQLNET.ORA: FIPS_140 to enable FIPS for native network encryption

• FIPS.ORA: SSLFIPS_140 to enable FIPS for TLS

• Initialization parameter: DBFIPS_140 to enable FIPS for TDE and DBMS_CRYPTO

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of i

1
Getting Acquainted

This chapter introduces you to the Oracle Precompilers. You look at their role in developing
application programs that manipulate Oracle data and find out what they allow your
applications to do. The following questions are answered:

• What Is an Oracle Precompiler?

• Why Use an Oracle Precompiler?

• Why Use SQL?

• Why Use PL/SQL?

• What Do the Oracle Precompilers Offer?

• Do the Oracle Precompilers Meet Industry Standards?

1.1 What Is an Oracle Precompiler?
An Oracle Precompiler is a programming tool that enables you to embed SQL statements in a
high-level host program. As Figure 1-1 shows, the precompiler accepts the host program as
input, translates the embedded SQL statements into standard Oracle run-time library calls, and
generates a source program that you can compile, link, and execute.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 7

Figure 1-1 Embedded SQL Program Development

Linker

Complier

Oracle

Precomplier

Editor

Exectable

Program

Object

Program

Source

Program

Host

Program

With all SQL statements replaced

by library calls

With embedded SQL statements

Oracle

Runtime

Library

(SQL LIB)

1.1.1 Language Alternatives
Two Oracle Precompilers are available (not on all systems); they support the following high-
level languages:

• C/C++

• COBOL

Meant for different application areas and reflecting different design philosophies, these
languages offer a broad range of programming solutions.

Chapter 1
What Is an Oracle Precompiler?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 7

Note

This guide is supplemented by companion books devoted to using precompilers with
C/C++ and COBOL.

Pro*FORTRAN and SQL*Module for Ada are in "maintenance mode," which means that
Version 1 of these products will not be enhanced with any additional features beyond those
included with Release 1.6. However, Oracle will continue to issue patch releases as bugs are
reported and corrected.

1.2 Why Use an Oracle Precompiler?
The Oracle Precompilers let you include the flexibility of SQL into your application programs.
You can use SQL in popular high-level languages such as C and COBOL. A convenient, easy
to use interface lets your application access Oracle directly.

Unlike many application development tools, the Oracle Precompilers let you create highly
customized applications. For example, you can create user interfaces that incorporate the
latest windowing and mouse technology. You can also create applications that run in the
background without the need for user interaction.

Furthermore, with the Oracle Precompilers you can fine-tune your applications. They allow
close monitoring of resource usage, SQL statement execution, and various run-time indicators.
With this information, you can adjust program parameters for maximum performance.

1.3 Why Use SQL?
If you want to access and manipulate Oracle data, you need SQL. Whether you use SQL
interactively or embedded in an application program depends on the job at hand. If the job
requires the procedural processing power of C or COBOL, or must be done on a regular basis,
use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and easy to
learn. Being nonprocedural, it lets you specify what you want done without specifying how to
do it. A few English-like statements make it easy to manipulate Oracle data one row or many
rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can

• CREATE, ALTER, and DROP database tables dynamically

• SELECT, INSERT, UPDATE, and DELETE rows of data

• COMMIT or ROLLBACK transactions

Before embedding SQL statements in an application program, you can test them interactively
using SQL*Plus. Usually, only minor changes are required to switch from interactive to
embedded SQL.

1.4 Why Use PL/SQL?
An extension to SQL, PL/SQL is a transaction processing language that supports procedural
constructs, variable declarations, and robust error handling. Within the same PL/SQL block,
you can use SQL and all the PL/SQL extensions.

Chapter 1
Why Use an Oracle Precompiler?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 7

The main advantage of embedded PL/SQL is better performance. Unlike SQL, PL/SQL
enables group SQL statements logically and send them to Oracle in a block rather than one by
one. This reduces network traffic and processing overhead.

For more information about PL/SQL including how to embed it in an application program, see
Running the Oracle Precompilers.

1.5 What Do the Oracle Precompilers Offer?
As Figure 1-2 shows, the Oracle Precompilers offer many features and benefits that help you
to develop effective, reliable applications.

Figure 1-2 Features and Benefits

Oracle

Precompilers

Runtime

OptionsUser Exists

Syntax and

Semantics

Checking

Datatype

Equivalencing

ANS HSO SQL

Conformance

Language

Alternatives

Event

Handling

Runtime

Diagnostics

Automatic

Datatype

Conversion

Away

Operations

Concurrent

Connects

Separate

Precompilation

Support for

PL/SQL

Dynamic

SQL

Highly

Customized

Applications
Separate

Precompilation

For example, the Oracle Precompilers allow you to

• program your application in any of six high-level languages

• confirm to the ANSI/ISO embedded SQL standard

• take advantage of dynamic SQL, an advanced programming technique that lets your
program accept or build any valid SQL statement at run time

• design and develop highly customized applications

• convert automatically between Oracle internal datatypes and high-level language
datatypes

• improve performance by embedding PL/SQL transaction processing blocks in your
application program

Chapter 1
What Do the Oracle Precompilers Offer?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 7

• specify useful precompiler options and change their values during precompilation

• use datatype equivalencing to control the way Oracle interprets input data and formats
output data

• precompile several program modules separately, then link them into one executable
program

• check the syntax and semantics of embedded SQL data manipulation statements and
PL/SQL blocks

• access Oracle databases on multiple nodes concurrently using SQL*Net

• use arrays as input and output program variables

• precompile sections of code conditionally so that your host program can run in different
environments

• interface with tools such as Oracle Forms and Oracle Reports through user exits written in
a high-level language

• handle errors and warnings with the ANSI-approved status variables SQLSTATE and
SQLCODE, and the SQL Communications Area (SQLCA) and WHENEVER statement

• use an enhanced set of diagnostics provided by the Oracle Communications Area
(ORACA)

To sum it up, the Oracle Precompilers are full-featured tools that support a professional
approach to embedded SQL programming.

1.6 Do the Oracle Precompilers Meet Industry Standards?
SQL has become the standard language for relational database management systems. This
section describes how the Oracle Precompilers conform to the latest SQL standards
established by the following organizations:

• American National Standards Institute (ANSI)

• International Standards Organization (ISO)

• U.S. National Institute of Standards and Technology (NIST)

Those organizations have adopted SQL as defined in the following publications:

• ANSI Document ANSI X3.135-1992, Database Language SQL

• International Standard ISO/IEC 9075:1992, Database Language SQL

• ANSI Document ANSI X3.168-1992, Database Language Embedded SQL

• NIST Federal Information Processing Standard FIPS PUB 127-2, Database Language
SQL

1.6.1 Requirements
ANSI X3.135-1992 (known informally as SQL92) specifies a "conforming SQL language" and,
to allow implementation in stages, defines three language levels:

• Full SQL

• Intermediate SQL (a subset of Full SQL)

• Entry SQL (a subset of Intermediate SQL)

A conforming SQL implementation must support at least Entry SQL.

Chapter 1
Do the Oracle Precompilers Meet Industry Standards?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 7

ANSI X3.168-1992 specifies the syntax and semantics for embedding SQL statements in
application programs written in a standard programming language such as COBOL,
FORTRAN, Pascal, or PL/I.

ISO/IEC 9075-1992 fully adopts the ANSI standards.

FIPS PUB 127-2, which applies to RDBMS software acquired for federal use, also adopts the
ANSI standards. In addition, it specifies minimum sizing parameters for database constructs
and requires a "FIPS Flagger" to identify ANSI extensions.

For copies of the ANSI standards, write to

American National Standards Institute 1430 Broadway New York, NY 10018, USA

For a copy of the ISO standard, write to the national standards office of any ISO participant.
For a copy of the NIST standard, write to

National Technical Information ServiceU.S. Department of Commerce Springfield, VA 22161,
USA

1.6.2 Compliance
The Oracle Precompilers comply 100% with the ANSI, ISO, and NIST standards. As required,
they support Entry SQL and provide a FIPS Flagger.

1.6.3 FIPS Flagger
According to FIPS PUB 127-1, "an implementation that provides additional facilities not
specified by this standard shall also provide an option to flag nonconforming SQL language or
conforming SQL language that may be processed in a nonconforming manner." To meet this
requirement, the Oracle Precompilers provide the FIPS Flagger, which flags ANSI extensions.
An extension is any SQL element that violates ANSI format or syntax rules, except privilege
enforcement rules. For a list of Oracle extensions to standard SQL, see the Oracle Database
SQL Language Reference.

You can use the FIPS Flagger to identify

• nonconforming SQL elements that might have to be modified if you move the application to
a conforming environment

• conforming SQL elements that might behave differently in another processing environment

Thus, the FIPS Flagger helps you develop portable applications.

1.6.4 FIPS Option
An option named FIPS governs the FIPS Flagger. To enable the FIPS Flagger, you specify
FIPS=YES inline or on the command line. For more information about the command-line option
FIPS, see "FIPS".

1.6.5 Certification
NIST tested the Oracle Precompilers for ANSI Entry SQL compliance using the SQL Test
Suite, which consists of nearly 300 test programs. Specifically, the programs tested for
conformance to the COBOL and FORTRAN embedded SQL standards. As a result, the Oracle
Precompilers were certified 100% ANSI-compliant.

For more information about the tests, write to:

Chapter 1
Do the Oracle Precompilers Meet Industry Standards?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 7

National Computer Systems Laboratory

Attn: Software Standards Testing Program

National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

Chapter 1
Do the Oracle Precompilers Meet Industry Standards?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 7

2
Learning the Basics

This chapter explains the following:

• Key Concepts of Embedded SQL Programming

• Steps in Developing an Embedded SQL Application

• A Sample Program

• Sample Tables

This chapter explains how embedded SQL programs function. You examine the special
environment in which they operate and the impact of this environment on the design of your
applications.

After covering the key concepts of embedded SQL programming and the steps you take in
developing an application, this chapter uses a simple program to illustrate the main points.

2.1 Key Concepts of Embedded SQL Programming
This section lays the conceptual foundation on which later chapters build. It discusses the
following topics:

• Embedded SQL Statements

• Executable versus Declarative Statements

• Embedded SQL Syntax

• Static versus Dynamic SQL Statements

• Embedded PL/SQL Blocks

• Host and Indicator Variables

• Oracle Datatypes

• Arrays

• Datatype Equivalencing

• Private SQL Areas_ Cursors_ and Active Sets

• Transactions

• Errors and Warnings

2.1.1 Embedded SQL Statements
The term embedded SQL refers to SQL statements placed within an application program.
Because the application program houses the SQL statements, it is called a host program, and
the language in which it is written is called the host language. For example, with the
Pro*COBOL Precompiler you can embed SQL statements in a COBOL host program.

For example, to manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE modifies rows,
DELETE removes unwanted rows, and SELECT retrieves rows that meet your search criteria.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 9

The Oracle Precompilers support all Oracle statements. For example, the powerful SET ROLE
statement lets you dynamically manage database privileges. A role is a named group of related
system and object privileges, related system or object privileges granted to users or other
roles. Role definitions are stored in the Oracle data dictionary. Your applications can use the
SET ROLE statement to enable and disable roles as needed.

Only SQL statements--not SQL*Plus statements--are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and report
formatting.)

2.1.2 Executable versus Declarative Statements
Embedded SQL includes all the interactive SQL statements plus others that allow you to
transfer data between Oracle and a host program. There are two types of embedded SQL
statements: executable and declarative.

Executable statements result in calls to the run-time library SQLLIB. You use them to connect to
Oracle, to define, query, and manipulate Oracle data, to control access to Oracle data, and to
process transactions. They can be placed wherever any other host-language executable
statements can be placed.

Declarative statements, however, do not result in calls to SQLLIB and do not operate on Oracle
data. You use them to declare Oracle objects, communications areas, and SQL variables. They
can be placed wherever host-language declarations can be placed.

Table 2-1 groups the various embedded SQL statements and Table 2-2 groups the various
executable SQL statements.

Table 2-1 Embedded SQL Statements

Declarative SQL Description

STATEMENT PURPOSE

ARRAYLEN* To use host arrays with PL/SQL

BEGIN DECLARE SECTION*
END DECLARE SECTION*

To declare host variables

DECLARE* To name Oracle objects

INCLUDE* To copy in files

TYPE* To equivalence datatypes

VAR* To equivalence variables

WHENEVER* To handle run-time errors

*Has no interactive counterpart

Table 2-2 Executable SQL Statements and their Descriptions

Executable SQL Descriptions

STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data

ALTER

ANALYZE

Chapter 2
Key Concepts of Embedded SQL Programming

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 9

Table 2-2 (Cont.) Executable SQL Statements and their Descriptions

Executable SQL Descriptions

AUDIT

COMMENT

CONNECT*

CREATE

DROP

GRANT

NOAUDIT

RENAME

REVOKE

TRUNCATE

CLOSE*

DELETE To query and manipulate Oracle data

EXPLAIN PLAN

FETCH*

INSERT

LOCK TABLE

OPEN*

SELECT

UPDATE

COMMIT To process transactions

ROLLBACK

SAVEPOINT

SET TRANSACTION

DESCRIBE* To use dynamic SQL

EXECUTE*

PREPARE*

ALTER SESSION To control sessions

SET ROLE

*Has no interactive counterpart

2.1.3 Embedded SQL Syntax
In your application program, you can freely intermix SQL statements with host-language
statements and use host-language variables in SQL statements. The only special requirement
for building SQL statements into your host program is that you begin them with the keywords
EXEC SQL and end them with the SQL statement terminator for your host language. The
precompiler translates all executable EXEC SQL statements into calls to the run-time library
SQLLIB.

Chapter 2
Key Concepts of Embedded SQL Programming

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 9

Most embedded SQL statements differ from their interactive counterparts only through the
adding of a new clause or the use of program variables. Compare the following interactive and
embedded ROLLBACK statements:

ROLLBACK WORK; -- interactive
EXEC SQL ROLLBACK WORK; -- embedded

For a summary of embedded SQL syntax, see the Oracle Database SQL Language
Reference.

2.1.4 Static versus Dynamic SQL Statements
Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and transaction before
run time. That is, you know which SQL commands will be issued, which database tables might
be changed, which columns will be updated, and so on.

However, some applications are required to accept and process any valid SQL statement at
run time. So, you might not know until then all the SQL commands, database tables, and
columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept or build
SQL statements at run time and take explicit control over datatype conversion.

2.1.5 Embedded PL/SQL Blocks
The Oracle Precompilers treat a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables to be
shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC SQL EXECUTE
and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely because
PL/SQL supports all SQL data manipulation and transaction processing commands. For more
information about PL/SQL, see Using Embedded PL/SQL.

2.1.6 Host and Indicator Variables
A host variable is a scalar or array variable declared in the host language and shared with
Oracle, meaning that both your program and Oracle can reference its value. Host variables are
the key to communication between Oracle and your program.

Your program uses input host variables to pass data to Oracle. Oracle uses output host
variables to pass data and status information to your program. The program assigns values to
input host variables; Oracle assigns values to output host variables.

Host variables can be used anywhere an expression can be used. But, in SQL statements,
host variables must be prefixed with a colon (:) to set them apart from Oracle objects.

You can associate any host variable with an optional indicator variable. An indicator variable is
an integer variable that "indicates" the value or condition of its host variable. You use indicator
variables to assign nulls to input host variables and to detect nulls or truncated values in output
host variables. A null is a missing, unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon and appended to its
associated host variable (unless, to improve readability, you precede the indicator variable with
the optional keyword INDICATOR).

Chapter 2
Key Concepts of Embedded SQL Programming

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 9

2.1.7 Oracle Datatypes
Typically, a host program inputs data to Oracle, and Oracle outputs data to the program. Oracle
stores input data in database tables and stores output data in program host variables. To store
a data item, Oracle must know its datatype, which specifies a storage format and valid range of
values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify how
Oracle stores data in database columns. Oracle also uses internal datatypes to represent
database pseudocolumns, which return specific data items but are not actual columns in a
table.

External datatypes specify how data is stored in host variables. When your host program
inputs data to Oracle, if necessary, Oracle converts between the external datatype of the input
host variable and the internal datatype of the database column. When Oracle outputs data to
your host program, if necessary, Oracle converts between the internal datatype of the database
column and the external datatype of the output host variable.

2.1.8 Arrays
The Oracle Precompilers let you define array host variables (called host arrays) and operate
on them with a single SQL statement. Using the array SELECT, FETCH, DELETE, INSERT, and
UPDATE statements, you can query and manipulate large volumes of data with ease.

2.1.9 Datatype Equivalencing
The Oracle Precompilers add flexibility to your applications by letting you equivalence
datatypes. That means you can customize the way Oracle interprets input data and formats
output data.

On a variable-by-variable basis, you can equivalence supported host language datatypes to
Oracle external datatypes.

2.1.10 Private SQL Areas, Cursors, and Active Sets
To process a SQL statement, Oracle opens a work area called a private SQL area. The private
SQL area stores information needed to execute the SQL statement. An identifier called a
cursor lets you name a SQL statement, access the information in its private SQL area, and, to
some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle implicitly
declares a cursor for all data definition and data manipulation statements, including SELECT
statements (queries) that return only one row. However, for queries that return more than one
row, to process beyond the first row, you must explicitly declare a cursor (or use host arrays).

The set of rows retrieved is called the active set; its size depends on how many rows meet the
query search condition. You use an explicit cursor to identify the row currently being
processed, which is called the current row.

Imagine the set of rows being returned to a terminal screen. A screen cursor can point to the
first row to be processed, then the next row, and so on. Similarly, an explicit cursor "points" to
the current row in the active set, allowing your program to process the rows one at a time.

Chapter 2
Key Concepts of Embedded SQL Programming

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 9

2.1.11 Transactions
A transaction is a series of logically related SQL statements (two UPDATEs that credit one bank
account and debit another, for example) that Oracle treats as a unit, so that all changes
brought about by the statements are made permanent or undone at the same time. The current
transaction consists of all data manipulation statements executed since the last data definition,
COMMIT, or ROLLBACK statement was executed.

To help ensure the consistency of your database, the Oracle Precompilers let you define
transactions by using the COMMIT, ROLLBACK, and SAVEPOINT statements. COMMIT makes
permanent any changes made during the current transaction. ROLLBACK ends the current
transaction and undoes any changes made since the transaction began. SAVEPOINT marks the
current point in a transaction; used with ROLLBACK, it undoes part of a transaction.

2.1.12 Errors and Warnings
When you execute an embedded SQL statement, it either succeeds or fails, and might result in
an error or warning. You need a way to handle these results. The Oracle Precompilers provide
four error handling mechanisms:

• SQLCODE status variable

• SQLSTATE status variable

• SQL Communications Area (SQLCA) and WHENEVER statement

• Oracle Communications Area (ORACA)

SQLCODE/SQLSTATE Status Variables

After executing a SQL statement, the Oracle Server returns a status code to a variable named
SQLCODE or SQLSTATE. The status code indicates whether the SQL statement executed
successfully or caused an error or warning condition.

SQLCA and WHENEVER Statement

The SQLCA is a data structure that defines program variables used by Oracle to pass run-time
status information to the program. With the SQLCA, you can take different actions based on
feedback from Oracle about work just attempted. For example, you can verify if a DELETE
statement succeeded and if so, how many rows were deleted.

With the WHENEVER statement, you can specify actions to be taken automatically when Oracle
detects an error or warning condition. These actions include continuing with the next
statement, calling a subroutine, branching to a labeled statement, or stopping.

ORACA

When more information is needed about run-time errors than the SQLCA provides, you can
use the ORACA. The ORACA is a data structure that handles Oracle communication. It
contains cursor statistics, information about the current SQL statement, option settings, and
system statistics.

2.2 Steps in Developing an Embedded SQL Application
Figure 2-1 walks you through the embedded SQL application development process.

Chapter 2
Steps in Developing an Embedded SQL Application

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 9

Figure 2-1 Application Development Process

Design

Code

Precompile

Errors?

Errors?

Errors?

Compile

Execute

Link

Stop

ResultsSteps

Specs

Linked

Program

Object

Program

Source

Program

Host

Program

yes

yes

yes

no

no

no

As you can see, precompiling results in a source file that can be compiled normally. Although
precompiling adds a step to the traditional development process, that step is well worth taking
because it lets you write very flexible applications.

Chapter 2
Steps in Developing an Embedded SQL Application

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 9

2.3 A Sample Program
A good way to get acquainted with embedded SQL is to look at a sample program example.

Handling errors with the WHENEVER statement, the following program connects to Oracle,
prompts the user for an employee number, queries the database for the employee's name,
salary, and commission, then displays the information and exits.

-- declare host and indicator variables
EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 emp_number INTEGER;
 emp_name CHARACTER(10);
 salary REAL;
 commission REAL;
 ind_comm SMALLINT; -- indicator variable
EXEC SQL END DECLARE SECTION;
-- copy in the SQL Communications Area
EXEC SQL INCLUDE SQLCA;
display 'Username? ';
read username;
display 'Password? ';
read password;
-- handle processing errors
EXEC SQL WHENEVER SQLERROR DO sql_error;
-- log on to Oracle
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';
display 'Employee number? ';
read emp_number;
-- query database for employee's name, salary, and commission
-- and assign values to host variables
EXEC SQL SELECT ENAME, SAL, COMM
 INTO :emp_name, :salary, :commission:ind_comm
 FROM EMP
 WHERE EMPNO = :emp_number;
display 'Employee Salary Commission';
display '-------- ------ ----------';
-- display employee's name, salary, and commission (if not null)
IF ind_comm = -1 THEN -- commission is null
 display emp_name, salary, 'Not applicable';
ELSE
 display emp_name, salary, commission;
ENDIF;
-- release resources and log off the database
EXEC SQL COMMIT WORK RELEASE;
display 'Have a good day';
exit program;
ROUTINE sql_error
BEGIN
 -- avoid an infinite loop if the rollback results in an error
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 -- release resources and log off the database
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Processing error';
 exit program with an error;
END sql_error;

Chapter 2
A Sample Program

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 9

2.4 Sample Tables
Most programming examples in this guide use two sample database tables: DEPT and EMP.
Their definitions follow:

CREATE TABLE DEPT
 (DEPTNO NUMBER(2),
 DNAME VARCHAR2(14),
 LOC VARCHAR2(13))
CREATE TABLE EMP
 (EMPNO NUMBER(4) primary key,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(2))

2.4.1 Sample Data
Respectively, the DEPT and EMP tables contain the following rows of data:

DEPTNO DNAME LOC
------- ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------- --------- ------ --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESPERSON 7698 20-FEB-81 1600 300 30
 7521 WARD SALESPERSON 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESPERSON 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESPERSON 7698 08-SEP-81 1500 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

Chapter 2
Sample Tables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 9

3
Meeting Program Requirements

This chapter explains the following:

• The Declare Section

• INCLUDE Statements

• The SQLCA

• Oracle Datatypes

• Datatype Conversion

• Declaring and Referencing Host Variables

• Declaring and Referencing Indicator Variables

• Datatype Equivalencing

• Globalization Support

• Multibyte Globalization Support Character Sets

• Concurrent Logons

• Embedding OCI (Oracle Call Interface) Calls

• About Developing X/Open Applications

Passing data between Oracle and your application program requires host variables, datatype
conversions, event handling, and access to Oracle. This chapter shows you how to meet these
requirements. You learn the embedded SQL commands that declare variables, declare
communication areas, and connect to an Oracle database. You also learn about the Oracle
datatypes, Globalization Support (Globalization Support), data conversion, and how to take
advantage of datatype equivalencing. The final two sections show you how to embed OCI calls
in your program and how to develop X/Open applications.

3.1 The Declare Section
You must declare all program variables to be used in SQL statements (that is, all host
variables) in the Declare Section. If you use an undeclared host variable in a SQL statement,
the precompiler issues an error message. For a complete listing of error messages see Oracle
Database Error Messages.

The Declare Section begins with the statement

EXEC SQL BEGIN DECLARE SECTION;

and ends with the statement

EXEC SQL END DECLARE SECTION;

In COBOL, the statement terminator is END-EXEC. In FORTRAN, it is a carriage return.

Between these two statements, only the following items are allowed:

• host-variable and indicator-variable declarations

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 37

• EXEC SQL DECLARE statements

• EXEC SQL INCLUDE statements

• EXEC SQL VAR statements

• EXEC ORACLE statements

• host-language comments

Multiple Declare Sections are allowed in each precompiled unit. Furthermore, a host program
can contain several independently precompiled units.

3.1.1 An Example
In the following example, you declare four host variables for use later in your program.

EXEC SQL BEGIN DECLARE SECTION;
 emp_number INTEGER;
 emp_name CHARACTER(10);
 salary REAL;
 commission REAL;
EXEC SQL END DECLARE SECTION;

For more information about declaring host variables, see "Declaring and Referencing Host
Variables".

3.2 INCLUDE Statements
The INCLUDE statement lets you copy files into your host program. It is similar to the COBOL
COPY command. An example follows:

-- copy in the SQLCA file
EXEC SQL INCLUDE SQLCA;

When you precompile your program, each EXEC SQL INCLUDE statement is replaced by a copy
of the file named in the statement.

You can include any file. If a file contains embedded SQL, you must include it because only
included files are precompiled. If you do not specify a file extension, the precompiler assumes
the default extension for source files, which is language-dependent (see your host-language
supplement to this Guide).

You can set a directory path for included files by specifying the precompiler option

INCLUDE=<path>

where path defaults to the current directory. (In this context, a directory is an index of file
locations.)

The precompiler searches first in the current directory, then in the directory specified by
INCLUDE, and finally in a directory for standard INCLUDE files. So, you need not specify a
directory path for standard files such as the SQLCA and ORACA. You must still use INCLUDE to
specify a directory path for nonstandard files unless they are stored in the current directory.

If your operating system is case-sensitive (like UNIX for example), be sure to specify the same
upper/lowercase filename under which the file is stored. The syntax for specifying a directory
path is system-specific. Check your system-specific Oracle manuals.

Chapter 3
INCLUDE Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 37

3.3 The SQLCA
The SQLCA is a data structure that provides for diagnostic checking and event handling. At run
time, the SQLCA holds status information passed to your program by Oracle. After executing a
SQL statement, Oracle sets SQLCA variables to indicate the outcome, as illustrated in
Figure 3-1.

Figure 3-1 Updating the SQLCA

SQL

Oracle7 Server

Error Codes

Warning Flag Settings

Number of Rows

Diagnostic Test

Host Program

SQL CA

Thus, you can verify if an INSERT, UPDATE, or DELETE statement succeeded and if so, how many
rows were affected. Or, if the statement failed, you can get more information about what
happened.

When MODE={ANSI13|ORACLE}, you must declare the SQLCA by hardcoding it or by copying it
into your program with the INCLUDE statement. "About Using the SQL Communications Area"
shows you how to declare and use the SQLCA.

3.4 Oracle Datatypes
Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify how
Oracle stores data in database columns. Oracle also uses internal datatypes to represent
database pseudocolumns. An external datatype specifies how data is stored in a host variable.

At precompile time, each host variable in the Declare Section is associated with an external
datatype code. At run time, the datatype code of every host variable used in a SQL statement
is passed to Oracle. Oracle uses the codes to convert between internal and external datatypes.

Chapter 3
The SQLCA

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 37

Note

You can override default datatype conversions by using dynamic SQL Method 4 or
datatype equivalencing. For information about dynamic SQL Method 4, see "Using
Method 4". For information about datatype equivalencing, see "Datatype
Equivalencing".

3.4.1 Internal Datatypes
Table 3-1 lists the internal datatypes that Oracle uses for database columns and
pseudocolumns.

Table 3-1 Column and Pseudo Column Datatypes

Name Code Description

CHAR 96 <= 255-byte, fixed-length string

DATE 12 7-byte, fixed-length date/time value

LONG 8 <= 2147483647-byte, variable-length string

LONG RAW 24 <= 2147483647-byte, variable-length binary data

MLSLABEL 105 <= 5-byte, variable-length binary label

NUMBER 2 fixed or floating point number

RAW 23 <= 255-byte, variable-length binary data

ROWID 11 fixed-length binary value

VARCHAR2 1 <= 2000-byte, variable-length string

These internal datatypes can be quite different from host-language datatypes. For example,
the NUMBER datatype was designed for portability, precision (no rounding error), and correct
collating. No host language has an equivalent datatype.

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

Brief descriptions of the internal datatypes follow. For more information, see Data Types.

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 37

3.4.2 CHAR
You use the CHAR datatype to store fixed-length character data. How the data is represented
internally depends on the database character set. The CHAR datatype takes an optional
parameter that lets you specify a maximum width up to 255 bytes. The syntax follows:

CHAR[(maximum_width)]

You cannot use a constant or variable to specify the maximum width; you must use an integer
literal. If you do not specify the maximum width, it defaults to 1. Remember, you specify the
maximum width of a CHAR(n) column in bytes, not characters. So, if a CHAR(n) column stores
multibyte (2-byte) characters, its maximum width is less than n/2 characters.

3.4.3 DATE
You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. The date
portion defaults to the first day of the current month; the time portion defaults to midnight.

Internally, DATEs are stored in a binary format. When converting a DATE column value to a
character string in your program, Oracle uses the default format mask for your session. If you
need other date/time information such as the date in Julian days, use the TO_CHAR function with
a format mask. Always convert DATE column values to and from character strings using
(external) character datatypes such as VARCHAR2 or STRING.

3.4.4 LONG

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

You use the LONG datatype to store variable-length character strings. LONG columns can store
text, arrays of characters, or even short documents. The LONG datatype is like the VARCHAR2
datatype, except the maximum width of a LONG column is 2147483647 bytes or two gigabytes.

You can use LONG columns in UPDATE, INSERT, and (most) SELECT statements, but not in
expressions, function calls, or SQL clauses such as WHERE, GROUP BY, and CONNECT BY. Only
one LONG column is allowed in each database table and that column cannot be indexed.

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 37

3.4.5 LONG RAW

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

You use the LONG RAW datatype to store variable-length binary data or byte strings. The
maximum width of a LONG RAW column is 2147483647 bytes or two gigabytes.

LONG RAW data is like LONG data, except that Oracle assumes nothing about the meaning of LONG
RAW data and does no character set conversions when you transmit LONG RAW data from one
system to another. The restrictions that apply to LONG data also apply to LONG RAW data.

3.4.6 MLSLABEL
You use the MLSLABEL datatype to store variable-length, binary operating system labels. Oracle
uses labels to control access to data.

You can use the MLSLABEL datatype to define a database column. You can insert any valid
operating system label into a column of type MLSLABEL. If the label is in text format, Oracle
converts it to a binary value automatically. The text string can be up to 255 bytes long.
However, the internal length of an MLSLABEL value is between 2 and 5 bytes.

You can also select values from a MLSLABEL column into a character variable. Oracle converts
the internal binary value to a VARCHAR2 value automatically.

3.4.7 NUMBER
You use the NUMBER datatype to store fixed or floating point numbers of virtually any size. You
can specify precision, which is the total number of digits, and scale, which determines where
rounding occurs.

The maximum precision of a NUMBER value is 38; the magnitude range is 1.0E-129 to 9.99E125.
Scale can range from -84 to 127. For example, a scale of -3 means the number is rounded to
the nearest thousand (3456 becomes 3000). A scale of 2 means the value is rounded to the
nearest hundredth (3.456 becomes 3.46).

When you specify precision and scale, Oracle does extra integrity checks before storing the
data. If a value exceeds the precision, Oracle issues an error message; if a value exceeds the
scale, Oracle rounds the value.

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 37

3.4.8 RAW
You use the RAW datatype to store binary data or byte strings (a sequence of graphics
characters, for example). RAW data is not interpreted by Oracle.

The RAW datatype takes a required parameter that lets you specify a maximum width up to 255
bytes. The syntax follows:

RAW(maximum_width)

You cannot use a constant or variable to specify the maximum width; you must use an integer
literal.

RAW data is like CHAR data, except that Oracle assumes nothing about the meaning of RAW data
and does no character set conversions (from 7-bit ASCII to EBCDIC Code Page 500 for
example) when you transmit RAW data from one system to another.

3.4.9 ROWID
Internally, every table in an Oracle database has a pseudocolumn named ROWID, which stores
binary values called rowids. ROWIDs uniquely identify rows and provide the fastest way to
access particular rows.

3.4.10 VARCHAR2
You use the VARCHAR2 datatype to store variable-length character strings. How the strings are
represented internally depends on the database character set, which might be 7-bit ASCII or
EBCDIC Code Page 500 for example.

The maximum width of a VARCHAR2 database column is 2000 bytes. To define a VARCHAR2
column, you use the syntax

VARCHAR2(maximum_width)

where maximum_width is an integer literal in the range 1 .. 2000.

You specify the maximum width of a VARCHAR2(n) column in bytes, not characters. So, if a
VARCHAR2(n) column stores multibyte (2-byte) characters, its maximum width is less than n/2
characters.

3.4.11 SQL Pseudocolumns and Functions
SQL recognizes the pseudocolumns in Table 3-2, which return specific data items:

Table 3-2 Pseudo Column Datatypes

Pseudocolumn Internal Datatype

CURRVAL NUMBER

LEVEL NUMBER

NEXTVAL NUMBER

ROWID ROWID

ROWLABEL MLSLABEL

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 37

Table 3-2 (Cont.) Pseudo Column Datatypes

Pseudocolumn Internal Datatype

ROWNUM NUMBER

Pseudocolumns are not actual columns in a table. However, pseudocolumns are treated like
columns, so their values must be SELECTed from a table. Sometimes it is convenient to select
pseudocolumn values from a dummy table.

In addition, SQL recognizes the parameterless functions in Table 3-3, which also return specific
data items.

Table 3-3 Parameterless Function Datatypes

Function Internal Datatype

SYSDATE DATE

UID NUMBER

USER VARCHAR2

You can refer to SQL pseudocolumns and functions in SELECT, INSERT, UPDATE, and DELETE
statements. In the following example, you use SYSDATE to compute the number of months since
an employee was hired:

EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE)
 INTO :months_of_service
 FROM EMP
 WHERE EMPNO = :emp_number;

Brief descriptions of the SQL pseudocolumns and functions follow. For details, see the Oracle
Database SQL Language Reference.

CURRVAL returns the current number in a specified sequence. Before you can reference
CURRVAL, you must use NEXTVAL to generate a sequence number.

LEVEL returns the level number of a node in a tree structure. The root is level 1, children of
the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all the rows of a table
into a tree structure. In an ORDER BY or GROUP BY clause, LEVEL segregates the data at each
level in the tree.

You specify the direction in which the query walks the tree (down from the root or up from the
branches) with the PRIOR operator. In the START WITH clause, you specify a condition that
identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a sequence, you
can use it to generate unique sequence numbers for transaction processing. In the following
example, you use the sequence named partno to assign part numbers:

EXEC SQL INSERT INTO PARTS
 VALUES (partno.NEXTVAL, :description, :quantity, :price);

If a transaction generates a sequence number, the sequence is incremented when you commit
or rollback the transaction. A reference to NEXTVAL stores the current sequence number in
CURRVAL.

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 37

ROWID returns a row address in hexadecimal.

ROWNUM returns a number indicating the sequence in which a row was selected from a table.
The first row selected has a ROWNUM of 1, the second row has a ROWNUM of 2, and so on. If a
SELECT statement includes an ORDER BY clause, ROWNUMs are assigned to the selected rows
before the sort is done.

You can use ROWNUM to limit the number of rows returned by a SELECT statement. Also, you can
use ROWNUM in an UPDATE statement to assign unique values to each row in a table. Using
ROWNUM in the WHERE clause does not stop the processing of a SELECT statement; it just limits the
number of rows retrieved. The only meaningful use of ROWNUM in a WHERE clause is

... WHERE ROWNUM < constant;

because the value of ROWNUM increases only when a row is retrieved. The following search
condition can never be met because the first four rows are not retrieved:

... WHERE ROWNUM = 5;

SYSDATE returns the current date and time. SYSDATE uses the time zone of either the
database host system or the database, depending on the setting of the TIME_AT_DBTIMEZONE
initialization parameter. See Oracle Database Reference: TIME_AT_DBTIMEZONE for more
information..

UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

3.4.12 ROWLABEL Column
SQL also recognizes the special column ROWLABEL, which Oracle creates for every database
table. Like other columns, ROWLABEL can be referenced in SQL statements. ROWLABEL returns
the operating system label for a row.

A common use of ROWLABEL is to filter query results. For example, the following statement
counts only those rows with a security level higher than "unclassified":

EXEC SQL SELECT COUNT(*) INTO :head_count FROM EMP
 WHERE ROWLABEL > 'UNCLASSIFIED';

3.4.13 External Datatypes
As Table 3-4 shows, the external datatypes include all the internal datatypes plus several
datatypes found in other supported host languages. For example, the STRING external datatype
refers to a C null-terminated string, and the DECIMAL datatype refers to COBOL packed
decimals. You use the datatype names in datatype equivalencing, and you use the datatype
codes in dynamic SQL Method 4.

Table 3-4 External Datatypes

Name Code Description

CHAR 1 96 <= 65535-byte, variable-length character string <=65535-byte, fixed-
length character string (see note 1)

CHARF 96 <= 65535-byte, fixed-length character string

CHARZ 97 <= 65535-byte, fixed-length, null-terminated string (see note 2)

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 37

Table 3-4 (Cont.) External Datatypes

Name Code Description

DATE 12 7-byte, fixed-length date/time value

DECIMAL 7 COBOL packed decimal

DISPLAY 91 COBOL numeric character string

FLOAT 4 4-byte or 8-byte floating-point number

INTEGER 3 2-byte or 4-byte signed integer

LONG 8 <= 2147483647-byte, fixed-length string

LONG RAW 24 <= 217483647-byte, fixed-length binary data (see note 3)

LONG VARCHAR 94 <= 217483643-byte, variable-length string (see note 3)

LONG VARRAW 95 <= 217483643-byte, variable-length binary data

MLSLABEL 106 2..5-byte, variable-length binary data

NUMBER 2 integer or floating-point number

RAW 23 <= 65535-byte, fixed-length binary data (see note 2)

ROWID 11 (typically) 13-byte, fixed-length binary value

STRING 5 <= 65535-byte, variable-length, null-terminated character string (see
note 2)

UNSIGNED 68 2-byte or 4-byte unsigned integer

VARCHAR 9 <= 65533-byte, variable-length character string (see note 3)

VARCHAR2 1 <= 65535-byte, variable-length character string (see note 2)

VARNUM 6 variable-length binary number

VARRAW 15 <= 65533-byte, variable-length binary data (see note 3)

Note

1. CHAR is datatype 1 when MODE={ORACLE|ANSI13|ANSI14} and datatype 96 when
MODE=ANSI.

2. Maximum size is 32767 (32K) on some platforms.

3. Do not include the n-byte length field in an EXEC SQL VAR statement.

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 37

3.4.14 CHAR
CHAR behavior depends on the settings of the options DBMS and MODE.

3.4.15 CHARF
When MODE=ANSI, Oracle assigns the CHAR datatype to all character host variables. You
use the CHAR datatype to store fixed-length character strings. On most platforms, the
maximum length of a CHAR value is 65535 (64K) bytes. See Table 6-4 for more information
about the relationship between the DBMS and MODE options.

On Input. Oracle reads the number of bytes specified for the input host variable, does not strip
trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle generates an
error. If the input value is all-blank, Oracle treats it like a character value.

On Output. Oracle returns the number of bytes specified for the output host variable, blank-
padding if necessary, then assigns the output value to the target host variable. If a null is
returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle truncates the
value before assigning it to the host variable. If an indicator variable is available, Oracle sets it
to the original length of the output value.

3.4.16 CHARZ
You use the CHARZ datatype to store fixed-length, null-terminated character strings. On most
platforms, the maximum length of a CHARZ value is 65,535 bytes. You should not need this
external type in Pro*COBOL or Pro*FORTRAN.

On input, the CHARZ and STRING datatypes work the same way. You must null-terminate the
input value. The null terminator serves only to delimit the string; it is not part of the data.

On output, the CHARZ and CHAR datatypes work the same way. Oracle appends a null terminator
to the output value, which is also blank-padded if necessary.

3.4.17 DATE
You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As Table 3-5
shows, the century, year, month, day, hour (in 24-hour format), minute, and second are stored
in that order from left to right.

Table 3-5 DATE Datatype Example

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example 17-OCT-1994 at
1:23:12 PM

119 194 10 17 14 24 13

The century and year bytes are in excess-100 notation. The hour, minute, and second are in
excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100. The epoch is
January 1, 4712 B.C.E. For this date, the century byte is 53 and the year byte is 88. The hour

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 37

byte ranges from 1 to 24. The minute and second bytes range from 1 to 60. The time defaults
to midnight (1, 1, 1).

3.4.18 DECIMAL
With Pro*COBOL, you use the DECIMAL datatype to store packed decimal numbers for
calculation. In COBOL, the host variable must be a signed COMP-3 field with an implied
decimal point. If significant digits are lost during data conversion, Oracle fills the host variable
with asterisks.

3.4.19 DISPLAY
With Pro*COBOL, you use the DISPLAY datatype to store numeric character data. The DISPLAY
datatype refers to a COBOL "DISPLAY SIGN LEADING SEPARATE" number, which typically
requires n + 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for PIC
S9(n)V9(d).

3.4.20 FLOAT
You use the FLOAT datatype to store numbers that have a fractional part or that exceed the
capacity of the INTEGER datatype. The number is represented using the floating-point format of
your computer and typically requires 4 or 8 bytes of storage. You must specify a length for
input and output host variables.

Oracle can represent numbers with greater precision than floating point implementations
because the internal format of Oracle numbers is decimal.

Note

In SQL statements, when comparing FLOAT values, use the SQL function ROUND
because FLOAT stores binary (not decimal) numbers; so, fractions do not convert
exactly.

3.4.21 INTEGER
You use the INTEGER datatype to store numbers that have no fractional part. An integer is a
signed, 2- or 4-byte binary number. The order of the bytes in a word is system-dependent. You
must specify a length for input and output host variables. On output, if the column value is a
floating point number, Oracle truncates the fractional part.

3.4.22 LONG
You use the LONG datatype to store fixed-length character strings. The LONG datatype is like the
VARCHAR2 datatype, except that the maximum length of a LONG value is 2147483647 bytes (two
gigabytes).

3.4.23 LONG RAW
You use the LONG RAW datatype to store fixed-length, binary data or byte strings. The maximum
length of a LONG RAW value is 2147483647 bytes (two gigabytes).

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 37

LONG RAW data is like LONG data, except that Oracle assumes nothing about the meaning of LONG
RAW data and does no character set conversions when you transmit LONG RAW data from one
system to another.

3.4.24 LONG VARCHAR
You use the LONG VARCHAR datatype to store variable-length character strings. LONG VARCHAR
variables have a 4-byte length field followed by a string field. The maximum length of the string
field is 2147483643 bytes. In an EXEC SQL VAR statement, do not include the 4-byte length
field.

3.4.25 LONG VARRAW
You use the LONG VARRAW datatype to store binary data or byte strings. LONG VARRAW variables
have a 4-byte length field followed by a data field. The maximum length of the data field is
2147483643 bytes. In an EXEC SQL VAR statement, do not include the 4-byte length field.

3.4.26 MLSLABEL
You use the MLSLABEL datatype to store variable-length, binary operating system labels. Oracle
uses labels to control access to data. You can use the MLSLABEL datatype to define a column.
You can insert any valid operating system label into a column of type MLSLABEL.

On Input. Oracle translates the input value into a binary label, which must be a valid operating
system label. If the label is invalid, Oracle issues an error message. If the label is valid, Oracle
stores it in the target database column.

On Output. Oracle converts the binary label to a character string, which can be of type CHAR,
CHARZ, STRING, VARCHAR, or VARCHAR2.

3.4.27 NUMBER
You use the NUMBER datatype to store fixed or floating point Oracle numbers. You can specify
precision and scale. The maximum precision of a NUMBER value is 38; the magnitude range is
1.0E-129 to 9.99E125. Scale can range from -84 to 127.

NUMBER values are stored in variable-length format, starting with an exponent byte and followed
by up to 20 mantissa bytes. The high-order bit of the exponent byte is a sign bit, which is set
for positive numbers. The low-order 7 bits represent the exponent, which is a base-100 digit
with an offset of 65.

Each mantissa byte is a base-100 digit in the range 1 .. 100. For positive numbers, 1 is added
to the digit. For negative numbers, the digit is subtracted from 101, and, unless there are 20
mantissa bytes, a byte containing 102 is appended to the data bytes. Each mantissa byte can
represent two decimal digits. The mantissa is normalized and leading zeros are not stored. You
can use up to 20 data bytes for the mantissa but only 19 are guaranteed accurate. The 19
bytes, each representing a base-100 digit, allow a maximum precision of 38 digits.

On output, the host variable contains the number as represented internally by Oracle. To
accommodate the largest possible number, the output host variable must be 21 bytes long.
Only the bytes used to represent the number are returned. Oracle does not blank-pad or null-
terminate the output value. If you need to know the length of the returned value, use the
VARNUM datatype instead. Normally, there is little reason to use this datatype.

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 37

3.4.28 RAW
You use the RAW datatype to store fixed-length binary data or byte strings. On most platforms,
the maximum length of a RAW value is 65535 bytes. RAW data is like CHAR data, except that
Oracle assumes nothing about the meaning of RAW data and does no character set conversions
when you transmit RAW data from one system to another.

3.4.29 ROWID
You use the ROWID datatype to store binary rowids in (typically 13-byte) fixed-length fields. The
field size is port-specific. So, check your system-specific Oracle manuals. You can use
VARCHAR2 host variables to store rowids in a readable format. When you select or fetch a rowid
into a VARCHAR2 host variable, Oracle converts the binary value to an 18-byte character string
and returns it in the format

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the first row
is 0), and FFFF is the database file. These numbers are hexadecimal. For example, the rowid

0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a rowid into a VARCHAR2 host variable, then compare the host variable to the
ROWID pseudocolumn in the WHERE clause of an UPDATE or DELETE statement. That way, you can
identify the latest row fetched by a cursor.

Note

If you need full portability or your application communicates with a non-Oracle
database through Transparent Gateway, specify a maximum length of 256 (not 18)
bytes when declaring the VARCHAR2 host variable. If your application communicates
with a non-Oracle data source through Oracle Open Gateway, specify a maximum
length of 256 bytes. Though you can assume nothing about its contents, the host
variable will behave normally in SQL statements.

3.4.30 STRING
The STRING datatype is like the VARCHAR2 datatype, except that a STRING value is always null-
terminated.

On Input. Oracle uses the specified length to limit the scan for a null terminator. If a null
terminator is not found, Oracle generates an error. If you do not specify a length, Oracle
assumes the maximum length, which is 65535 on most platforms.

The minimum length of a STRING value is 2 bytes. If the first character is a null terminator and
the specified length is 2, Oracle inserts a null unless the column is defined as NOT NULL. An all-
blank or nullterminated value is stored intact.

On Output. Oracle appends a null byte to the last character returned. If the string length
exceeds the specified length, Oracle truncates the output value and appends a null byte.

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 37

3.4.31 UNSIGNED
You use the UNSIGNED datatype to store unsigned integers. An unsigned integer is a binary
number of 2 or 4 bytes. The order of the bytes in a word is system-dependent. You must
specify a length for input and output host variables. On output, if the column value is a floating
point number, Oracle truncates the fractional part. You should not need this external type in
Pro*COBOL or Pro*FORTRAN.

3.4.32 VARCHAR
You use the VARCHAR datatype to store variable-length character strings. VARCHAR variables
have a 2-byte length field followed by a <= 65533-byte string field. However, for VARCHAR array
elements, the maximum length of the string field is 65530 bytes. When you specify the length
of a VARCHAR variable, be sure to include 2 bytes for the length field. For longer strings, use the
LONG VARCHAR datatype. In an EXEC SQL VAR statement, do not include the 2-byte length field.

3.4.33 VARCHAR2
When MODE=ORACLE, Oracle assigns the VARCHAR2 datatype to all character host variables. You
use the VARCHAR2 datatype to store variable-length character strings. On most platforms, the
maximum length of a VARCHAR2 value is 65535 bytes.

You specify the maximum length of a VARCHAR2(n) value in bytes, not characters. So, if a
VARCHAR2(n) variable stores multibyte characters, its maximum length is less than n characters.

On Input. Oracle reads the number of bytes specified for the input host variable, strips any
trailing blanks, then stores the input value in the target database column. Be careful. An
uninitialized host variable can contain nulls. So, always blank-pad a character input host
variable to its declared length. (COBOL PIC X(n) and FORTRAN CHARACTER*n variables do
this automatically.)

If the input value is longer than the defined width of the database column, Oracle generates an
error. If the input value is all-blank, Oracle treats it like a null.

Oracle can convert a character value to a NUMBER column value if the character value
represents a valid number. Otherwise, Oracle generates an error.

On Output. Oracle returns the number of bytes specified for the output host variable, blank-
padding if necessary, then assigns the output value to the target host variable. If a null is
returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle truncates the
value before assigning it to the host variable. If an indicator variable is available, Oracle sets it
to the original length of the output value.

Oracle can convert NUMBER column values to character values. The length of the character host
variable determines precision. If the host variable is too short for the number, scientific notation
is used. For example, if you select the column value abcdefg89 into a host variable of length 6,
Oracle returns the value "1.2E08" to the host variable.

3.4.34 VARNUM
The VARNUM datatype is like the NUMBER datatype, except that the first byte of a VARNUM variable
stores the length of the value. On input, you must set the first byte of the host variable to the
length of the value. On output, the host variable contains the length followed by the number as

Chapter 3
Oracle Datatypes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 37

represented internally by Oracle. To accommodate the largest possible number, the host
variable must be 22 bytes long. After selecting a column value into a VARNUM host variable, you
can check the first byte to get the length of the value.

3.4.35 VARRAW
You use the VARRAW datatype to store variable-length binary data or byte strings. The VARRAW
datatype is like the RAW datatype, except that VARRAW variables have a 2-byte length field
followed by a <=65533-byte data field. For longer strings, use the LONG VARRAW datatype. In an
EXEC SQL VAR statement, do not include the 2-byte length field. To get the length of a VARRAW
variable, simply refer to its length field.

3.5 Datatype Conversion
At precompile time, an external datatype is assigned to each host variable in the Declare
Section. For example, the precompiler assigns the INTEGER external datatype to integer host
variables. At run time, the datatype code of every host variable used in a SQL statement is
passed to Oracle. Oracle uses the codes to convert between internal and external datatypes.

Before assigning a selected column (or pseudocolumn) value to an output host variable, if
necessary, Oracle converts the internal datatype of the column to the datatype of the host
variable. Likewise, before assigning or comparing the value of an input host variable to a
database column, if necessary, Oracle converts the external datatype of the host variable to
the internal datatype of the column.

However, the datatype of the host variable must be compatible with that of the database
column. It is your responsibility to make sure that values are convertible. For example, if you
try to convert the string value "YESTERDAY" to a DATE column value, you get an error.

Conversions between internal and external datatypes follow the usual data conversion rules.
For instance, you can convert a CHAR value of "1234" to a 2-byte integer. But, you cannot
convert a CHAR value of "65543" (number too large) or "10F" (number not decimal) to a 2-byte
integer. Likewise, you cannot convert a string value that contains alphabetic characters to a
NUMBER value.

Number conversion follows the conventions specified by Globalization Support (Globalization
Support) parameters in the Oracle initialization file. For example, your system might be
configured to recognize a comma (,) instead of a period (.) as the decimal character.

Table 3-6 shows the supported conversions between internal and external datatypes.

Chapter 3
Datatype Conversion

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 37

Note

Legend:

• On input, host string must be in Oracle 'BBBBBBBB.RRRR.FFFF' format.

I = input only On output, column value is returned in same format.

O = output only

• On input, host string must be the default DATE character format.

I/O = input or output On output, column value is returned in same format

• On input, host string must be in hexadecimal format. On output, column value is
returned in same format.

• On output, column value must represent a valid number.

• On input, length must be less than or equal to 2000.

• On input, column value is stored in hexadecimal format. On output, column value
must be in hexadecimal format.

• On input, host string must be a valid operating system label in text format. On
output, column value is returned in same format.

• On input, host string must be a valid operating system label in raw format. On
output, column value is returned in same format.

Table 3-6 Conversion Between Internal and External Datatypes

External Internal
— CHAR

Interna
l —
DATE

Interna
l —
LONG

Internal —
LONG RAW

Internal —
MLSLABEL

Internal
—
NUMBER

Interna
l —
RAW

Internal
—
ROWID

Internal —
VARCHAR2

CHAR I/O I/O I/O I I/O I/O I/O I/O I/O

CHARF I/O I/O I/O I I/O I/O I/O I/O I/O

CHARZ I/O I/O I/O I I/O I/O I/O I/O I/O

DATE I/O I/O I I/O

DECIMAL I/O I I/O I/O

DISPLAY I/O I I/O I/O

FLOAT I/O I I/O I/O

INTEGER I/O I I/O I/O

LONG I/O I/O I/O I I/O I/O I/O I/O I/O

LONG RAW O I I/O I/O O

LONG VARCHAR I/O I/O I/O I I/O I/O I/O I/O I/O

LONG VARRAW I/O I I/O I/O I/O

MLSLABEL I/O I/O I/O I/O

NUMBER I/O I I/O I/O

RAW I/O I I/O I/O I/O

ROWID I I I/O I

STRING I/O I/O I/O I I/O I/O I/O I/O I/O

Chapter 3
Datatype Conversion

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 37

Table 3-6 (Cont.) Conversion Between Internal and External Datatypes

External Internal
— CHAR

Interna
l —
DATE

Interna
l —
LONG

Internal —
LONG RAW

Internal —
MLSLABEL

Internal
—
NUMBER

Interna
l —
RAW

Internal
—
ROWID

Internal —
VARCHAR2

UNSIGNED I/O I I/O I/O

VARCHAR I/O I/O I/O I I/O I/O I/O I/O I/O

VARCHAR2 I/O I/O I/O I I/O I/O I/O I/O I/O

VARNUM I/O I I/O I/O

VARRAW I/O I I/O I/O I/O

3.5.1 DATE Values
When you select a DATE column value into a character host variable, Oracle must convert the
internal binary value to an external character value. So, Oracle implicitly calls the SQL function
TO_CHAR, which returns a character string in the default date format. The default is set by the
Oracle initialization parameter Globalization Support_DATE_FORMAT. To get other information
such as the time or Julian date, you must explicitly call TO_CHAR with a format mask.

A conversion is also necessary when you insert a character host value into a DATE column.
Oracle implicitly calls the SQL function TO_DATE, which expects the default date format. To
insert dates in other formats, you must explicitly call TO_DATE with a format mask.

3.5.2 RAW and LONG RAW Values
When you select a RAW or LONG RAW column value into a character host variable, Oracle must
convert the internal binary value to an external character value. In this case, Oracle returns
each binary byte of RAW or LONG RAW data as a pair of characters. Each character represents the
hexadecimal equivalent of a nibble (half a byte). For example, Oracle returns the binary byte
11111111 as the pair of characters "FF". The SQL function RAWTOHEX performs the same
conversion.

A conversion is also necessary when you insert a character host value into a RAW or LONG RAW
column. Each pair of characters in the host variable must represent the hexadecimal
equivalent of a binary byte. If a character does not represent the hexadecimal value of a
nibble, Oracle issues the following error message:

ORA-01465: invalid hex number

3.6 Declaring and Referencing Host Variables
Every program variable used in a SQL statement must be declared as a host variable. You
declare a host variable in the Declare Section according to the rules of the host language.
Normal scoping rules apply. Host variable names can be any length, but only the first 31
characters are significant. For ANSI/ISO compliance, a host variable name must be <= 18
characters long, begin with a letter, and not contain consecutive or trailing underscores.

The external datatype of a host variable and the internal datatype of its source or target
database column need not be the same, but they must be compatible. Table 3-6 shows the
compatible datatypes between which Oracle converts automatically when necessary.

Chapter 3
Declaring and Referencing Host Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 37

The Oracle Precompilers support most built-in host language datatypes. For a list of supported
datatypes, see your host-language supplement. User-defined datatypes are not supported.
Datatype equivalencing is discussed in the next section.

Although references to a user-defined structure are not allowed, the Pro*COBOL Precompiler
lets you reference individual elements of the structure as if they were host variables. You can
use such references wherever host variables are allowed.

3.6.1 Some Examples
In the following example, you declare three host variables, then use a SELECT statement to
search the database for an employee number matching the value of host variable
emp_number. When a matching row is found, Oracle sets output host variables dept_number
and emp_name to the values of columns DEPTNO and ENAME in that row.

-- declare host variables
EXEC SQL BEGIN DECLARE SECTION;
 emp_number INTEGER;
 emp_name CHARACTER(10);
 dept_number INTEGER;
EXEC SQL END DECLARE SECTION;
...
display 'Employee number? ';
read emp_number;
EXEC SQL SELECT DEPTNO, ENAME INTO :dept_number, :emp_name
 FROM EMP
 WHERE EMPNO = :emp_number;

For more information about using host variables, see "About Using Host Variables".

3.6.2 VARCHAR Variables
You can use the VARCHAR pseudotype to declare variable-length character strings. (A
pseudotype is a datatype not native to your host language.) Recall that VARCHAR variables have
a 2-byte length field followed by a string field. For example, the Pro*COBOL Precompiler
expands the VARCHAR declaration

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 ENAME PIC X(20) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.

into the following COBOL group item with array and length members:

01 ENAME.
 05 ENAME-LEN PIC S9(4) COMP.
 05 ENAME-ARR PIC X(20).

To get the length of a VARCHAR, you simply refer to its length field. You need not use a string
function or character-counting algorithm.

For more information about VARCHARs, see your host-language supplement to this Guide.

3.6.3 Host Variable Guidelines
The following guidelines apply to declaring and referencing host variables. A host variable
must be

• declared explicitly in the Declare Section

Chapter 3
Declaring and Referencing Host Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 37

• prefixed with a colon (:) in SQL statements and PL/SQL blocks

• of a datatype supported by the host language

• of a datatype compatible with that of its source or target database column

A host variable must not be

• subscripted

• prefixed with a colon in host language statements

• used to identify a column, table, or other Oracle object

• used in data definition statements such as ALTER and CREATE

• an Oracle reserved word (refer to Oracle Reserved Words_ Keywords_ and Namespaces)

A host variable can be

• used anywhere an expression can be used in a SQL statement

• associated with an indicator variable

3.7 Declaring and Referencing Indicator Variables
You can associate every host variable with an optional indicator variable. An indicator variable
must be defined in the Declare Section as a 2-byte integer and, in SQL statements, must be
prefixed with a colon and must directly follows its host variable unless you use the keyword
INDICATOR.

3.7.1 INDICATOR Keyword
To improve readability, you can precede any indicator variable with the optional keyword
INDICATOR. You must still prefix the indicator variable with a colon. The correct syntax is

:<host_variable> INDICATOR :<indicator_variable>

which is equivalent to

:<host_variable>:<indicator_variable>

You can use both forms of expression in your host program.

3.7.2 An Example
Typically, you use indicator variables to assign nulls to input host variables and detect nulls or
truncated values in output host variables. In the example, you declare three host variables and
one indicator variable, then use a SELECT statement to search the database for an employee
number matching the value of host variable emp_number. When a matching row is found,
Oracle sets output host variables salary and commission to the values of columns SAL and
COMM in that row and stores a return code in indicator variable ind_comm. The next statement
uses ind_comm to select a course of action.

EXEC SQL BEGIN DECLARE SECTION;
 emp_number INTEGER;
 salary REAL;
 commission REAL;
 ind_comm SMALLINT; -- indicator variable
EXEC SQL END DECLARE SECTION;
 pay REAL; -- not used in a SQL statement
display 'Employee number? ';

Chapter 3
Declaring and Referencing Indicator Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 37

read emp_number;
EXEC SQL SELECT SAL, COMM
 INTO :salary, :commission:ind_comm
 FROM EMP
 WHERE EMPNO = :emp_number;
IF ind_comm = -1 THEN -- commission is null
 set pay = salary;
ELSE
 set pay = salary + commission;
ENDIF;

For more information, see "About Using Indicator Variables".

3.7.3 Indicator Variable Guidelines
The following guidelines apply to declaring and referencing indicator variables. An indicator
variable must be

• declared explicitly in the Declare Section as a 2-byte integer

• prefixed with a colon (:) in SQL statements

• appended to its host variable in SQL statements and PL/SQL blocks (unless preceded by
the keyword INDICATOR)

An indicator variable must not be

• prefixed with a colon in host language statements

• appended to its host variable in host language statements

• an Oracle reserved word

3.8 Datatype Equivalencing
Datatype equivalencing lets you customize the way Oracle interprets input data and the way
Oracle formats output data. On a variable-by- variable basis, you can equivalence supported
host language datatypes to the Oracle external datatypes.

3.8.1 Why Equivalence Datatypes?
Datatype equivalencing is useful in several ways. For example, suppose you want to use a
null-terminated host string in a COBOL program. You can declare a PIC X host variable, then
equivalence it to the external datatype STRING, which is always null-terminated.

You can use datatype equivalencing when you want Oracle to store but not interpret data. For
example, if you want to store an integer host array in a LONG RAW database column, you can
equivalence the host array to the external datatype LONG RAW.

Also, you can use datatype equivalencing to override default datatype conversions. Unless
Globalization Support parameters in the Oracle initialization file specify otherwise, if you select
a DATE column value into a character host variable, Oracle returns a 9-byte string formatted as
follows:

DD-MON-YY

However, if you equivalence the character host variable to the DATE external datatype, Oracle
returns a 7-byte value in the internal format.

Chapter 3
Datatype Equivalencing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 37

3.8.2 Host Variable Equivalencing
By default, the Oracle Precompilers assign a specific external datatype to every host variable.
(These default assignments are tabulated in your supplement to this Guide.) You can override
the default assignments by equivalencing host variables to Oracle external datatypes in the
Declare Section. This is called host variable equivalencing.

The syntax you use is:

EXEC SQL VAR <host_variable>
 IS <ext_type_name> [({<length> | <precision>,<scale>})];

where, host_variable is an input or output host variable (or host array) declared earlier in the
Declare Section. The VARCHAR and VARRAW external datatypes have a 2-byte length field
followed by an n-byte data field, where n lies in the range 1 .. 65533. So, if type_name is
VARCHAR or VARRAW, host_variable must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external datatypes have a 4-byte length field followed by
an n-byte data field, where n lies in the range 1 .. 2147483643. So, if type_name is LONG
VARCHAR or LONG VARRAW, host_variable must be at least 5 bytes long.

ext_type_name is the name of a valid external datatype such as RAW or STRING.

length is an integer literal specifying a valid length in bytes. The value of length must be large
enough to accommodate the external datatype.

When type_name is DECIMAL or DISPLAY, you must specify precision and scale instead of
length. When type_name is VARNUM, ROWID, or DATE, you cannot specify length because it is
predefined. For other external datatypes, length is optional. It defaults to the length of
host_variable.

When specifying length, if type_name is VARCHAR, VARRAW, LONG VARCHAR, or LONG VARRAW, use
the maximum length of the data field. The precompiler accounts for the length field. If
type_name is LONG VARCHAR or LONG VARRAW and the data field exceeds 65533 bytes, put "-1" in
the length field.

precision and scale are integer literals that represent, respectively, the number of significant
digits and the point at which rounding will occur. For example, a scale of 2 means the value is
rounded to the nearest hundredth (3.456 becomes 3.46); a scale of -3 means the number is
rounded to the nearest thousand (3456 becomes 3000).

You can specify a precision of 1 .. 99 and a scale of -84 .. 99. However, the maximum precision
and scale of a database column are 38 and 127, respectively. So, if precision exceeds 38, you
cannot insert the value of host_variable into a database column. However, if the scale of a
column value exceeds 99, you cannot select or fetch the value into host_variable.

Specify precision and scale only when type_name is DECIMAL or DISPLAY.

Table 3-7 shows which parameters to use with each external datatype.

3.8.3 An Example
Suppose you want to select employee names from the EMP table, then pass them to a routine
that expects null-terminated strings. You need not explicitly null-terminate the names. Simply
equivalence a host variable to the STRING external datatype, as follows:

EXEC SQL BEGIN DECLARE SECTION;
 ...

Chapter 3
Datatype Equivalencing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 37

 emp_name CHARACTER(11);
 EXEC SQL VAR emp_name IS STRING (11);
EXEC SQL END DECLARE SECTION;

The width of the ENAME column is 10 characters, so you allocate the new emp_name 11
characters to accommodate the null terminator. (Here, length is optional because it defaults to
the length of the host variable.) When you select a value from the ENAME column into
emp_name, Oracle null-terminates the value for you.

Table 3-7 External Datatype Parameters

External Datatype Length Precision Scale Default Length

CHAR optional n/a n/a declared length of
variable

CHARZ optional n/a n/a declared length of
variable

DATE n/a n/a n/a 7 bytes

DECIMAL n/a required required none

DISPLAY n/a required required none

FLOAT optional (4 or 8) n/a n/a declared length of
variable

INTEGER optional (1, 2, or 4) n/a n/a declared length of
variable

LONG optional n/a n/a declared length of
variable

LONG RAW optional n/a n/a declared length of
variable

LONG VARCHAR required (see note 1) n/a n/a none

LONG VARRAW required (see note 1) n/a n/a none

MLSLABEL required n/a n/a none

NUMBER n/a n/a n/a not available

STRING optional n/a n/a declared length of
variable

RAW optional n/a n/a declared length of
variable

ROWID n/a n/a n/a 13 bytes (see note 2)

UNSIGNED optional (1, 2, or 4) n/a n/a declared length of
variable

VARCHAR required n/a n/a none

VARCHAR2 optional n/a n/a declared length of
variable

VARNUM n/a n/a n/a 22 bytes

VARRAW optional n/a n/a none

Chapter 3
Datatype Equivalencing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 37

Note

1. If the data field exceeds 65,533 bytes, pass -1.

2. This length is typical but the default is port-specific.

3.8.4 About Using the CHARF Datatype Specifier
You can use the datatype specifier CHARF in VAR and TYPE statements to equivalence host-
language datatypes to the fixed-length ANSI datatype CHAR--regardless of the DBMS setting.

When MODE=ANSI, specifying the datatype CHAR in a TYPE statement equivalences the host-
language datatype to the fixed-length ANSI datatype CHAR (Oracle external datatype code 96).
However, when MODE=ORACLE, the host-language datatype is equivalenced to the variable-
length datatype VARCHAR2 (code 1), which might not be what you want.

However, you can always equivalence host-language datatypes to the fixed-length ANSI
datatype CHAR. Simply specify the datatype CHARF in the VAR statement. If you use CHARF, the
host-language datatype is equivalenced to the fixed-length ANSI datatype CHAR even when
MODE=ORACLE.

3.8.5 Guidelines
To input VARNUM or DATE values, you must use the Oracle internal format. Keep in mind that
Oracle uses the internal format to output VARNUM and DATE values.

After selecting a column value into a VARNUM host variable, you can check the first byte to get
the length of the value. Table 3-8 gives some examples of returned VARNUM values.

Table 3-8 Examples of VARNUM Values Returned

Decimal Value VARNUM Value
Length Byte

VARNUM Value
Exponent Byte

VARNUM Value
Mantissa Bytes

VARNUM Value
Terminator Byte

0 1 128 na na

5 2 193 6 na

-5 3 62 96 102

2767 3 194 28, 68 na

-2767 4 61 74, 34 102

100000 2 195 11 na

abcdefg 5 196 2, 24, 46, 68 na

Convert DATE values to a character format such as "DD-MON-YY" because, normally, that is
how your program outputs (displays for example) or inputs them.

If no Oracle external datatype suits your needs exactly, use a VARCHAR2-based or RAW-based
external datatype.

Chapter 3
Datatype Equivalencing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 37

3.9 Globalization Support
Although the widely-used 7- or 8-bit ASCII and EBCDIC character sets are adequate to
represent the Roman alphabet, some Asian languages, such as Japanese, contain thousands
of characters. These languages require 16 bits (two bytes) to represent each character. How
does Oracle deal with such dissimilar languages?

Oracle provides Globalization Support (Globalization Support), which lets you process single-
byte and multibyte character data and convert between character sets. It also lets your
applications run in different language environments. With Globalization Support, number and
date formats adapt automatically to the language conventions specified for a user session.
Thus, Globalization Support allows users around the world to interact with Oracle in their native
languages.

You control the operation of language-dependent features by specifying various Globalization
Support parameters. You can set default parameter values in the Oracle initialization file.
Table 3-9 shows what each Globalization Support parameter specifies.

Table 3-9 Globalization Support Parameters

Globalization Support Parameter Specifies ...

Globalization Support_LANGUAGE language-dependent conventions

Globalization Support_TERRITORY territory-dependent conventions

Globalization Support_DATE_FORMAT date format

Globalization Support_DATE_LANGUAGE language for day and month names

Globalization Support_NUMERIC_CHARACTERS decimal character and group separator

Globalization Support_CURRENCY local currency symbol

Globalization Support_ISO_CURRENCY ISO currency symbol

Globalization Support_SORT sort sequence

The main parameters are Globalization Support_LANGUAGE and Globalization
Support_TERRITORY. Globalization Support_LANGUAGE specifies the default values for
language-dependent features, which include

• language for Server messages

• language for day and month names

• sort sequence

Globalization Support_TERRITORY specifies the default values for territory-dependent
features, which include

• date format

• decimal character

• group separator

• local currency symbol

• ISO currency symbol

You can control the operation of language-dependent Globalization Support features for a user
session by specifying the parameter Globalization Support_LANG as follows:

Globalization Support_LANG = <language>_<territory>.<character set>

Chapter 3
Globalization Support

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 37

where language specifies the value of Globalization Support_LANGUAGE for the user session,
territory specifies the value of Globalization Support_TERRITORY, and character set specifies
the encoding scheme used for the terminal. An encoding scheme (usually called a character
set or code page) is a range of numeric codes that corresponds to the set of characters a
terminal can display. It also includes codes that control communication with the terminal.

You define Globalization Support_LANG as an environment variable (or the equivalent on your
system). For example, on UNIX using the C shell, you might define Globalization
Support_LANG as follows:

setenv Globalization Support_LANG French_France.WE8ISO8859P1

To change the values of Globalization Support parameters during a session, you use the ALTER
SESSION statement as follows:

ALTER SESSION SET <Globalization Support_parameter> = <value>

The Oracle Precompilers fully support all the Globalization Support features that allow your
applications to process multilingual data stored in an Oracle database. For example, you can
declare foreign-language character variables and pass them to string functions such as
INSTRB, LENGTHB, and SUBSTRB. These functions have the same syntax as the INSTR, LENGTH,
and SUBSTR functions, respectively, but operate on a each-byte basis rather than a in each-
character basis.

You can use the functions Globalization Support_INITCAP, Globalization Support_LOWER,
and Globalization Support_UPPER to handle special instances of case conversion. And, you
can use the function Globalization SupportSORT to specify WHERE-clause comparisons
based on linguistic rather than binary ordering. You can even pass Globalization Support
parameters to the TO_CHAR, TO_DATE, and TO_NUMBER functions.

3.10 Multibyte Globalization Support Character Sets
The Pro*COBOL Precompiler extends support for multibyte Globalization Support character
sets through

• recognition of multibyte character strings by the precompiler in embedded SQL statements.

• the ANSI standard COBOL PIC N datatype declaration clause, which instructs the
precompiler to interpret host character variables as strings of double-byte characters.

Oracle supports multibyte strings through the precompiler run-time library, SQLLIB.

3.10.1 Character Strings in Embedded SQL
A multibyte Globalization Support character string in an embedded SQL statement consists of
a character literal that identifies the string as a multibyte string, followed by the string enclosed
in single quotes.

For example, an embedded SQL statement like

EXEC SQL
 SELECT empno INTO :emp_num FROM emp
 WHERE ename=N'Kuroda'
 END-EXEC.

contains a multibyte character string, since the N character literal preceding the string "Kuroda"
identifies it as a multibyte string.

Chapter 3
Multibyte Globalization Support Character Sets

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 37

3.10.2 Dynamic SQL
Because dynamic SQL statements are not processed at precompile time, and Oracle does not
process multibyte Globalization Support strings itself, you cannot embed multibyte
Globalization Support strings in dynamic SQL statements.

3.10.3 Embedded DDL
Columns storing multibyte Globalization Support data cannot be used in embedded data
definition language (DDL) statements. This restriction cannot be enforced when precompiling,
so the use of extended column types, such as NCHAR, within embedded DDL statements
results in an execution error rather than a precompile error.

3.10.4 Multibyteultibyte Globalization Support Host Variables
The Pro*COBOL Precompiler uses the ANSI standard PIC N clause to declare host variables
for multibyte character data. Variables declared using the PIC N clause are recognized as
string variables of double-byte characters.

• Globalization Support_LOCAL

• VARCHAR

For more information about these options, see Running the Oracle Precompilers.

3.10.5 Restrictions
Tables Disallowed.

Host variables declared using the PIC N datatype must not be tables.

No Odd Byte Widths. Oracle CHAR columns should not be used to store multibyte
Globalization Support characters. A run-time error is generated if data with an odd number of
bytes is fetched from a single-byte column into a multibyte Globalization Support (PIC N) host
variable.

No Host Variable Equivalencing. multibyte Globalization Support character variables cannot
be equivalenced using an EXEC SQL VAR statement.

No Dynamic SQL. Dynamic SQL is not available for Globalization Support multibyte character
string host variables in Pro*COBOL.

3.10.6 Blank Padding
When a Pro*COBOL character variable is defined as a multibyte Globalization Support
variable, the following blank padding and blank stripping rules apply, depending on the external
datatype of the variable. See External Datatypes.

CHARF. This is the default character type when a multibyte character string is defined. Input
data is stripped of any trailing double-byte spaces. However, if a string consists only of double-
byte spaces, a single double-byte space is left in the buffer to act as a sentinel.

Output host variables are blank padded with double-byte spaces.

VARCHAR. On input, host variables are not stripped of trailing double-byte spaces. The length
component is assumed to be the length of the data in characters, not bytes.

Chapter 3
Multibyte Globalization Support Character Sets

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 37

On output, the host variable is not blank padded at all. The length of the buffer is set to the
length of the data in characters, not bytes.

STRING/LONG VARCHAR. These host variables are not supported for Globalization Support
data, since they can only be specified using dynamic SQL or datatype equivalencing, neither of
which is supported for Globalization Support data.

3.10.7 Indicator Variables
You can use indicator variables with multibyte Globalization Support character variables as use
you would with any other variable, except column length values are expressed in characters
instead of bytes. For a list of possible values, see "About Using Indicator Variables".

3.11 Concurrent Logons
The Oracle Precompilers support distributed processing through SQL*Net. Your application
can concurrently access any combination of local and remote databases or make multiple
connections to the same database. In Figure 3-2, an application program communicates with
one local and three remote Oracle databases. ORA2, ORA3, and ORA4 are simply logical
names used in CONNECT statements.

Figure 3-2 Connecting through SQL*Net

Application

Program
Local

Oracle

Database

Remote

Oracle

Database

ORA4

Remote

Oracle

Database

ORA3

Remote

Oracle

Database

ORA2

SQL Net

By eliminating the boundaries in a network between different machines and operating systems,
SQL*Net provides a distributed processing environment for Oracle tools. This section shows
you how the Oracle Precompilers support distributed processing through SQL*Net. You learn
how your application can

• access other databases directly or indirectly

• concurrently access any combination of local and remote databases

• make multiple connections to the same database

Chapter 3
Concurrent Logons

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 37

3.11.1 Some Preliminaries
The communicating points in a network are called nodes. SQL*Net lets you transmit
information (SQL statements, data, and status codes) over the network from one node to
another.

A protocol is a set of rules for accessing a network. The rules establish such things as
procedures for recovering after a failure and formats for transmitting data and checking errors.

The SQL*Net syntax for connecting to the default database in the local domain is simply to use
the service name for the database.

If the service name is not in the default (local) domain, you must use a global specification (all
domains specified). For example:

HR.XX.ORACLE.COM

3.11.2 Default Databases and Connections
Each node has a default database. If you specify a node but no database in your CONNECT
statement, you connect to the default database on the named local or remote node. If you
specify no database and no node, you connect to the default database on the current node.
Although it is unnecessary, you can specify the default database and current node in your
CONNECT statement.

A default connection is made using a CONNECT statement without an AT clause. The connection
can be to any default or nondefault database at any local or remote node. SQL statements
without an AT clause are executed against the default connection. Conversely, a nondefault
connection is made by a CONNECT statement that has an AT clause. A SQL statement with an
AT clause is executed against the nondefault connection.

All database names must be unique, but two or more database names can specify the same
connection. That is, you can have multiple connections to any database on any node.

3.11.3 Explicit Logons
Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT :userid IDENTIFIED BY :password

Or, you might use

EXEC SQL CONNECT :usr_pwd;

where usr_pwd contains username/password.

You can also log on automatically as shown. If you do not specify a database and node, you
are connected to the default database at the current node. If you want to connect to a different
database, you must explicitly identify that database.

With explicit logons, you connect to another database directly, giving the connection a name
that will be referenced in SQL statements. You can connect to several databases at the same
time and to the same database multiple times.

3.11.4 Single Explicit Logons
In the following example, you connect to a single nondefault database at a remote node:

Chapter 3
Concurrent Logons

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 37

Note

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide for
password management guidelines and other security recommendations.

-- Declare necessary host variables.
EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(10);
 password CHARACTER(10);
 db_string CHARACTER(20);
EXEC SQL END DECLARE SECTION;
set username = 'scott';
set password = 'tiger';
set db_string = 'd:newyork-nondef';
-- Assign a unique name to the database connection.
EXEC SQL DECLARE db_name DATABASE;
-- Connect to the nondefault database
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT db_name USING :db_string;

The identifiers in this example serve the following purposes:

• The host variables username and password identify a valid user.

• The host variable db_string contains the SQL*Net syntax for logging on to a nondefault
database at a remote node using the DECnet protocol.

• The undeclared identifier db_name names a nondefault connection; it is an identifier used
by Oracle, not a host or program variable.

The USING clause specifies the network, computer, and database to be associated with
db_name. Later, SQL statements using the AT clause (with db_name) are executed at the
database specified by db_string.

Alternatively, you can use a character host variable in the AT clause, as the following example
shows:

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(10);
 password CHARACTER(10);
 db_name CHARACTER(10);
 db_string CHARACTER(20);
EXEC SQL END DECLARE SECTION;
set username = 'scott';
set password = 'tiger';
set db_name = 'oracle1';
set db_string = 'd:newyork-nondef';
-- connect to the nondefault database
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT :db_name USING :db_string;
...

If db_name is a host variable, the DECLARE DATABASE statement is not needed. Only if
db_name is an undeclared identifier must you execute a DECLARE db_name DATABASE
statement before executing a CONNECT ... AT db_name statement.

Chapter 3
Concurrent Logons

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 37

SQL Operations. If granted the privilege, you can execute any SQL data manipulation
statement at the nondefault connection. For example, you might execute the following
sequence of statements:

EXEC SQL AT db_name SELECT ...
EXEC SQL AT db_name INSERT ...
EXEC SQL AT db_name UPDATE ...

In the next example, db_name is a host variable:

EXEC SQL AT :db_name DELETE ...

If db_name is a host variable, all database tables referenced by the SQL statement must be
defined in DECLARE TABLE statements.

Cursor Control. Cursor control statements such as OPEN, FETCH, and CLOSE are
exceptions--they never use an AT clause. If you want to associate a cursor with an explicitly
identified database, use the AT clause in the DECLARE CURSOR statement, as follows:

EXEC SQL AT :db_name DECLARE emp_cursor CURSOR FOR ...
EXEC SQL OPEN emp_cursor ...
EXEC SQL FETCH emp_cursor ...
EXEC SQL CLOSE emp_cursor;

If db_name is a host variable, its declaration must be within the scope of all SQL statements
that refer to the declared cursor. For example, if you open the cursor in one subprogram, then
fetch from it in another, you must declare db_name globally or pass it to each subprogram.

When opening, closing, or fetching from the cursor, you do not use the AT clause. The SQL
statements are executed at the database named in the AT clause of the DECLARE CURSOR
statement or at the default database if no AT clause is used in the cursor declaration.

The AT :host_variable clause enables change the connection associated with a cursor.
However, you cannot change the association while the cursor is open. Consider the following
example:

EXEC SQL AT :db_name DECLARE emp_cursor CURSOR FOR ...
set db_name = 'oracle1';
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH emp_cursor INTO ...
set db_name = 'oracle2';
EXEC SQL OPEN emp_cursor; -- illegal, cursor still open
EXEC SQL FETCH emp_cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute the second OPEN
statement. Separate cursors are not maintained for different connections; there is only one
emp_cursor, which must be closed before it can be reopened for another connection. To debug
the last example, simply close the cursor before reopening it, as follows:

EXEC SQL CLOSE emp_cursor; -- close cursor first
set db_name = 'oracle2';
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH emp_cursor INTO ...

Dynamic SQL. Dynamic SQL statements are similar to cursor control statements in that some
never use the AT clause. For dynamic SQL Method 1, you must use the AT clause if you want
to execute the statement at a nondefault connection. An example follows:

EXEC SQL AT :db_name EXECUTE IMMEDIATE :sql_stmt;

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT statement
if you want to execute the statement at a nondefault connection. All other dynamic SQL

Chapter 3
Concurrent Logons

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 37

statements such as PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE never use the AT
clause. The next example shows Method 2:

EXEC SQL AT :db_name DECLARE sql_stmt STATEMENT;
EXEC SQL PREPARE sql_stmt FROM :sql_string;
EXEC SQL EXECUTE sql_stmt;

The following example shows Method 3:

EXEC SQL AT :db_name DECLARE sql_stmt STATEMENT;
EXEC SQL PREPARE sql_stmt FROM :sql_string;
EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;
EXEC SQL OPEN emp_cursor ...
EXEC SQL FETCH emp_cursor INTO ...
EXEC SQL CLOSE emp_cursor;

You need not use the AT clause when connecting to a remote database unless you open two
or more connections simultaneously (in which case the AT clause is needed to identify the
active connection). To make the default connection to a remote database, use the following
syntax:

EXEC SQL CONNECT :username IDENTIFIED BY :password
 USING :db-string;

3.11.5 Multiple Explicit Logons
You can use the AT db_name clause for multiple explicit logons, just as you would for a single
explicit logon. In the following example, you connect to two nondefault databases concurrently:

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(10);
 password CHARACTER(10);
 db_string1 CHARACTER(20);
 db_string2 CHARACTER(20);
EXEC SQL END DECLARE SECTION;
...
set username = 'scott';
set password = 'tiger';
set db_string1 = 'New_York';
set db_string2 = 'Boston';
-- give each database connection a unique name
EXEC SQL DECLARE db_name1 DATABASE;
EXEC SQL DECLARE db_name2 DATABASE;
-- connect to the two nondefault databases
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT db_name1 USING :db_string1;
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT db_name2 USING :db_string2;

The undeclared identifiers db_name1 and db_name2 are used to name the default databases
at the two nondefault nodes so that later SQL statements can refer to the databases by name.

Alternatively, you can use a host variable in the AT clause, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(10);
 password CHARACTER(10);
 db_name CHARACTER(10);
 db_string CHARACTER(20);
EXEC SQL END DECLARE SECTION;
...
set username = 'scott';

Chapter 3
Concurrent Logons

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 37

set password = 'tiger';
FOR EACH nondefault database
 -- get next database name and SQL*Net string
 display 'Database Name? ';
 read db_name;
 display 'SQL*Net String? ';
 read db_string;
 -- connect to the nondefault database
 EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT :db_name USING :db_string;
ENDFOR;

You can also use this method to make multiple connections to the same database, as the
following example shows:

set username = 'scott';
set password = 'tiger';
set db_string = 'd:newyork-nondef';
FOR EACH nondefault database
 -- get next database name
 display 'Database Name? ';
 read db_name;
 -- connect to the nondefault database
 EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT :db_name USING :db_string;
ENDFOR;

You must use different database names for the connections, even if they use the same
SQL*Net string.

3.11.6 Implicit Logons
Implicit logons are supported through the Oracle distributed database option, which does not
require explicit logons. For example, a distributed query allows a single SELECT statement to
access data on one or more nondefault databases.

The distributed query facility depends on database links, which assign a name to a CONNECT
statement rather than to the connection itself. At run time, the embedded SELECT statement is
executed by the specified Oracle Server, which connects implicitly to the nondefault
database(s) to get the required data.

3.11.7 Single Implicit Logons
In the next example, you connect to a single nondefault database. First, your program
executes the following statement to define a database link (database links are usually
established interactively by the DBA or user):

EXEC SQL CREATE DATABASE LINK db_link
 CONNECT TO username IDENTIFIED BY password
 USING 'd:newyork-nondef';

Then, the program can query the nondefault EMP table using the database link, as follows:

EXEC SQL SELECT ENAME, JOB INTO :emp_name, :job_title
 FROM emp@db_link
 WHERE DEPTNO = :dept_number;

The database link is not related to the database name used in the AT clause of an embedded
SQL statement. It simply tells Oracle where the nondefault database is located, the path to it,

Chapter 3
Concurrent Logons

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 37

and the Oracle username and password to use. The database link is stored in the data
dictionary until it is explicitly dropped.

In our example, the default Oracle Server logs on to the nondefault database through SQL*Net
using the database link db_link. The query is submitted to the default server, but is "forwarded"
to the nondefault database for execution.

To make referencing the database link easier, you can create a synonym as follows (again, this
is usually done interactively):

EXEC SQL CREATE SYNONYM emp FOR emp@db_link;

Then, your program can query the nondefault EMP table, as follows:

EXEC SQL SELECT ENAME, JOB INTO :emp_name, :job_title
 FROM emp
 WHERE DEPTNO = :dept_number;

This provides location transparency for emp.

3.11.8 Multiple Implicit Logons
In the following example, you connect to two nondefault databases concurrently. First, you
execute the following sequence of statements to define two database links and create two
synonyms:

EXEC SQL CREATE DATABASE LINK db_link1
 CONNECT TO username1 IDENTIFIED BY password1
 USING 'd:newyork-nondef';
EXEC SQL CREATE DATABASE LINK db_link2
 CONNECT TO username2 IDENTIFIED BY password2
 USING 'd:chicago-nondef';
EXEC SQL CREATE SYNONYM emp FOR emp@db_link1;
EXEC SQL CREATE SYNONYM dept FOR dept@db_link2;

Then, your program can query the nondefault EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LOC
 FROM emp, dept
 WHERE emp.DEPTNO = dept.DEPTNO AND DEPTNO = :dept_number;

Oracle executes the query by performing a join between the nondefault EMP table at db_link1
and the nondefault DEPT table at db_link2.

3.12 Embedding OCI (Oracle Call Interface) Calls
The Oracle Precompilers let you embed OCI calls in your host program. Just take the following
steps:

1. Declare the OCI Logon Data Area (LDA) outside the Declare Section.

2. Connect to Oracle using the embedded SQL statement CONNECT, not the OCI call OLOG.

3. Call the Oracle run-time library routine SQLLDA to store the connect information in the LDA.

That way, the Oracle Precompiler and the OCI "know" that they are working together. However,
there is no sharing of Oracle cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the Oracle run-
time library manages connections and maintains the HDA for you.

Chapter 3
Embedding OCI (Oracle Call Interface) Calls

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 37

3.12.1 About Setting Up the LDA
You set up the LDA by issuing the OCI call

SQLLDA(lda);

where lda identifies the LDA data structure. The format of this call is language-dependent. If
the CONNECT statement fails, the lda_rc field in the lda is set to 1012 to indicate the error.

3.12.2 Remote and Multiple Connections
A call to SQLLDA sets up an LDA for the connection used by the most recently executed SQL
statement. To set up the different LDAs needed for additional connections, just call SQLLDA
with a different lda after each CONNECT. In the following example, you connect to two nondefault
databases concurrently:

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(10);
 password CHARACTER(10);
 db_string1 CHARACTER(20);
 db_string2 CHARACTER(20);
EXEC SQL END DECLARE SECTION;
lda1 INTEGER(32);
lda2 INTEGER(32);
set username = 'SCOTT';
set password = 'TIGER';
set db_string1 = 'D:NEWYORK-NONDEF1';
set db_string2 = 'D:CHICAGO-NONDEF2';
-- give each database connection a unique name
EXEC SQL DECLARE db_name1 DATABASE;
EXEC SQL DECLARE db_name2 DATABASE;
-- connect to first nondefault database
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT db_name1 USING :db_string1;
-- set up first LDA for OCI use
SQLLDA(lda1);
-- connect to second nondefault database
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT db_name2 USING :db_string2;
-- set up second LDA for OCI use
SQLLDA(lda2);

Remember, do not declare db_name1 and db_name2 in the Declare Section because they are
not host variables. You use them only to name the default databases at the two nondefault
nodes so that later SQL statements can refer to the databases by name.

3.13 About Developing X/Open Applications
X/Open applications run in a distributed transaction processing (DTP) environment. In an
abstract model, an X/Open application calls on resource managers (RMs) to provide a variety
of services. For example, a database resource manager provides access to data in a
database. Resource managers interact with a transaction manager (TM), which controls all
transactions for the application.

Figure 3-3 shows one way that components of the DTP model can interact to provide efficient
access to data in an Oracle database. The DTP model specifies the XA interface between
resource managers and the transaction manager. Oracle supplies an XA-compliant library,

Chapter 3
About Developing X/Open Applications

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 37

which you must link to your X/Open application. Also, you must specify the native interface
between your application program and the resource managers.

Figure 3-3 Hypothetical DTP Model

Transaction

Manager

Resource

Manager

Resource

Manager

Other

ResourcesOracle Server

Application Program

XA Interface

XA Interface

TX Interface

The DTP model that specifies how a transaction manager and resource managers interact with
an application program is described in the X/Open guide Distributed Transaction Processing
Reference Model and related publications, which you can obtain by writing to

X/Open Company Ltd.1010 El Camino Real, Suite 380Menlo Park, CA 94025

For instructions on using the XA interface, see your Transaction Processing (TP) Monitor
user's guide.

3.13.1 Oracle-Specific Issues
You can use the Oracle Precompilers to develop applications that comply with the X/Open
standards. However, you must meet the following requirements.

3.13.2 About Connecting to Oracle
The X/Open application does not establish and maintain connections to a database. Instead,
the transaction manager and the XA interface, which is supplied by Oracle, handle database
connections and disconnections transparently. So, normally an X/Open-compliant application
does not execute CONNECT statements.

Chapter 3
About Developing X/Open Applications

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 37

3.13.3 Transaction Control
The X/Open application must not execute statements such as COMMIT, ROLLBACK, SAVEPOINT,
and SET TRANSACTION that affect the state of global transactions. For example, the application
must not execute the COMMIT statement because the transaction manager handles commits.
Also, the application must not execute SQL data definition statements such as CREATE, ALTER,
and RENAME because they issue an implicit commit.

The application can execute an internal ROLLBACK statement if it detects an error that prevents
further SQL operations. However, this might change in later versions of the XA interface.

3.13.4 OCI Calls
If you want your X/Open application to issue OCI calls, you must use the run-time library
routine SQLLD2, which sets up an LDA for a specified connection established through the XA
interface. Note that OCOM, OCON, OCOF, ORLON, OLON, OLOG, and OLOGOF cannot be
issued by an X/Open application.

3.13.5 Linking
To get XA functionality, you must link the XA library to your X/Open application object modules.
For instructions, see your system-specific Oracle manuals.

Chapter 3
About Developing X/Open Applications

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 37

4
 Using Embedded SQL

This chapter contains the following:

• About Using Host Variables

• About Using Indicator Variables

• The Basic SQL Statements

• Cursors

• Cursor Variables

This chapter helps you to understand and apply the basic techniques of embedded SQL
programming. You learn how to use host variables, indicator variables, cursors, cursor
variables, and the fundamental SQL commands that insert, update, select, and delete Oracle
data.

4.1 About Using Host Variables
Oracle uses host variables to pass data and status information to your program; your program
uses host variables to pass data to Oracle.

4.1.1 Output versus Input Host Variables
Depending on how they are used, host variables are called output or input host variables. Host
variables in the INTO clause of a SELECT or FETCH statement are called output host variables
because they hold column values output by Oracle. Oracle assigns the column values to
corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host variables because your
program inputs their values to Oracle. For example, you use input host variables in the VALUES
clause of an INSERT statement and in the SET clause of an UPDATE statement. They are also
used in the WHERE, HAVING, and FOR clauses. In fact, input host variables can appear in a SQL
statement wherever a value or expression is allowed.

In an ORDER BY clause, you can use a host variable, but it is treated as a constant or literal, and
hence the contents of the host variable have no effect. For example, the SQL statement

EXEC SQL SELECT ename, empno INTO :name, :number
 FROM emp
 ORDER BY :ord;

appears to contain an input host variable, ord. However, the host variable in this case is treated
as a constant, and regardless of the value of ord, no ordering is done.

You cannot use input host variables to supply SQL keywords or the names of database
objects. Thus, you cannot use input host variables in data definition statements (sometimes
called DDL) such as ALTER, CREATE, and DROP. In the following example, the DROP TABLE
statement is invalid:

EXEC SQL BEGIN DECLARE SECTION;
 table_name CHARACTER(30);

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 14

EXEC SQL END DECLARE SECTION;
display 'Table name? ';
read table_name;
EXEC SQL DROP TABLE :table_name; -- host variable not allowed

Before Oracle executes a SQL statement containing input host variables, your program must
assign values to them. Consider the following example:

EXEC SQL BEGIN DECLARE SECTION;
 emp_number INTEGER;
 emp_name CHARACTER(20);
EXEC SQL END DECLARE SECTION;
-- get values for input host variables
display 'Employee number? ';
read emp_number;
display 'Employee name? ';
read emp_name;
EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
 VALUES (:emp_number, :emp_name);

Notice that the input host variables in the VALUES clause of the INSERT statement are prefixed
with colons.

4.2 About Using Indicator Variables
You can associate any host variable with an optional indicator variable. Each time the host
variable is used in a SQL statement, a result code is stored in its associated indicator variable.
Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign nulls to input host variables
and in the INTO clause to detect nulls or truncated values in output host variables.

4.2.1 Input Variables
For input host variables, the values your program can assign to an indicator variable have the
following meanings:

• -1: Oracle will assign a null to the column, ignoring the value of the host variable.

• >= 0: Oracle will assigns the value of the host variable to the column.

4.2.2 Output Variables
For output host variables, the values Oracle can assign to an indicator variable have the
following meanings:

• -2: Oracle assigned a truncated column value to the host variable, but could not assign the
original length of the column value to the indicator variable because the number was too
large.

• -1: The column value is null, so the value of the host variable is indeterminate.

• 0: Oracle assigned an intact column value to the host variable.

• > 0: Oracle assigned a truncated column value to the host variable, assigned the original
column length (expressed in characters, instead of bytes, for multibyte Globalization
Support host variables) to the indicator variable, and set SQLCODE in the SQLCA to zero.

Chapter 4
About Using Indicator Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 14

Remember, an indicator variable must be defined in the Declare Section as a 2-byte integer
and, in SQL statements, must be prefixed with a colon and appended to its host variable
(unless you use the keyword INDICATOR).

4.2.3 Inserting Nulls
You can use indicator variables to insert nulls. Before the insert, for each column you want to
be null, set the appropriate indicator variable to -1, as shown in the following example:

set ind_comm = -1;
EXEC SQL INSERT INTO EMP (EMPNO, COMM)
 VALUES (:emp_number, :commission:ind_comm);

The indicator variable ind_comm specifies that a null is to be stored in the COMM column.

You can hardcode the null instead, as follows:

EXEC SQL INSERT INTO EMP (EMPNO, COMM)
 VALUES (:emp_number, NULL);

While this is less flexible, it might be more readable.

Typically, you insert nulls conditionally, as the next example shows:

display 'Enter employee number or 0 if not available: ';
read emp_number;
IF emp_number = 0 THEN
 set ind_empnum = -1; ELSE
 set ind_empnum = 0;
ENDIF;
EXEC SQL INSERT INTO EMP (EMPNO, SAL)
 VALUES (:emp_number:ind_empnum, :salary);

4.2.4 Handling Returned Nulls
You can also use indicator variables to manipulate returned nulls, as the following example
shows:

EXEC SQL SELECT ENAME, SAL, COMM
 INTO :emp_name, :salary, :commission:ind_comm
 FROM EMP
 WHERE EMPNO = :emp_number;
IF ind_comm = -1 THEN
 set pay = salary; -- commission is null; ignore it
ELSE
 set pay = salary + commission;
ENDIF;

4.2.5 Fetching Nulls
When DBMS=NATIVE, V7, or V8, if you select or fetch nulls into a host variable that lacks an
indicator variable, Oracle issues the following error message:

ORA-01405: fetched column value is NULL

Chapter 4
About Using Indicator Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 14

4.2.6 Testing for Nulls
You can use indicator variables in the WHERE clause to test for nulls, as the following example
shows:

EXEC SQL SELECT ENAME, SAL
 INTO :emp_name, :salary
 FROM EMP
 WHERE :commission:ind_comm IS NULL ...

However, you cannot use a relational operator to compare nulls with each other or with other
values. For example, the following SELECT statement fails if the COMM column contains one or
more nulls:

EXEC SQL SELECT ENAME, SAL
 INTO :emp_name, :salary
 FROM EMP
 WHERE COMM = :commission:ind_comm;

The next example shows how to compare values for equality when some of them might be
nulls:

EXEC SQL SELECT ENAME, SAL
 INTO :emp_name, :salary
 FROM EMP
 WHERE (COMM = :commission) OR ((COMM IS NULL) AND
 (:commission:ind_comm IS NULL));

4.2.7 Fetching Truncated Values
If you select or fetch a truncated column value into a host variable that lacks an indicator
variable, no error is generated.

4.3 The Basic SQL Statements
Executable SQL statements let you query, manipulate, and control Oracle data and create,
define, and maintain Oracle objects such as tables, views, and indexes. This chapter focuses
on data manipulation statements (sometimes called DML) and cursor control statements. The
following SQL statements let you query and manipulate Oracle data:

• SELECT: Returns rows from one or more tables.

• INSERT: Adds new rows to a table.

• UPDATE: Modifies rows in a table.

• DELETE: Removes rows from a table.

When executing a data manipulation statement such as INSERT, UPDATE, or DELETE, your only
concern, besides setting the values of any input host variables, is whether the statement
succeeds or fails. To find out, you simply check the SQLCA. (Executing any SQL statement
sets the SQLCA variables.) You can check in the following two ways:

• Implicit checking with the WHENEVER statement

• Explicit checking of SQLCA variables

Chapter 4
The Basic SQL Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 14

Alternatively, when MODE={ANSI|ANSI14}, you can check the status variable SQLSTATE or
SQLCODE. For more information, see "About Using Status Variables when MODE={ANSI|
ANSI14}".

When executing a SELECT statement (query), however, you must also deal with the rows of
data it returns. Queries can be classified as follows:

• queries that return no rows (that is, merely check for existence)

• queries that return only one row

• queries that return more than one row

Queries that return more than one row require an explicitly declared cursor or cursor variable
(or the use of host arrays, which are discussed in Using Host Arrays). The following embedded
SQL statements let you define and control an explicit cursor:

• DECLARE: Names the cursor and associates it with a query.

• OPEN: Executes the query and identifies the active set.

• FETCH: Advances the cursor and retrieves each row in the active set, one by one.

• CLOSE: Disables the cursor (the active set becomes undefined).

In the following sections, first you learn how to code INSERT, UPDATE, DELETE, and single-row
SELECT statements. Then, you progress to multi-row SELECT statements.

4.3.1 Selecting Rows
Querying the database is a common SQL operation. To issue a query you use the SELECT
statement. In the following example, you query the EMP table:

EXEC SQL SELECT ENAME, JOB, SAL + 2000
 INTO :emp_name, :job_title, :salary
 FROM EMP
 WHERE EMPNO = :emp_number;

The column names and expressions following the keyword SELECT make up the select list. The
select list in our example contains three items. Under the conditions specified in the WHERE
clause (and following clauses, if present), Oracle returns column values to the host variables in
the INTO clause. The number of items in the select list should equal the number of host
variables in the INTO clause, so there is a place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last example
(in which EMPNO is a unique key). However, if a query can return more than one row, you must
fetch the rows using a cursor or select them into a host array.

If you write a query to return only one row but it might actually return several rows, the result
depends on how you specify the option SELECT_ERROR. When SELECT_ERROR=YES (the default),
Oracle issues the following error message if more than one row is returned:

ORA-01422: exact fetch returns more than requested number of rows

When SELECT_ERROR=NO, a row is returned and Oracle generates no error.

4.3.2 Available Clauses
You can use all of the following standard SQL clauses in your SELECT statements: INTO, FROM,
WHERE, CONNECT BY, START WITH, GROUP BY, HAVING, ORDER BY, and FOR UPDATE OF.

Chapter 4
The Basic SQL Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 14

4.3.3 Inserting Rows
You use the INSERT statement to add rows to a table or view. In the following example, you add
a row to the EMP table:

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, SAL, DEPTNO)
 VALUES (:emp_number, :emp_name, :salary, :dept_number);

Each column you specify in the column list must belong to the table named in the INTO clause.
The VALUES clause specifies the row of values to be inserted. The values can be those of
constants, host variables, SQL expressions, or pseudocolumns, such as USER and SYSDATE.

The number of values in the VALUES clause must equal the number of names in the column list.
However, you can omit the column list if the VALUES clause contains a value for each column in
the table in the same order they were defined by CREATE TABLE.

4.3.4 Using Subqueries
A subquery is a nested SELECT statement. Subqueries let you conduct multipart searches. They
can be used to

• supply values for comparison in the WHERE, HAVING, and START WITH clauses of SELECT,
UPDATE, and DELETE statements

• define the set of rows to be inserted by a CREATE TABLE or INSERT statement

• define values for the SET clause of an UPDATE statement

For example, to copy rows from one table to another, replace the VALUES clause in an INSERT
statement with a subquery, as follows:

EXEC SQL INSERT INTO EMP2 (EMPNO, ENAME, SAL, DEPTNO)
 SELECT EMPNO, ENAME, SAL, DEPTNO FROM EMP
 WHERE JOB = :job_title;

Notice how the INSERT statement uses the subquery to obtain intermediate results.

4.3.5 Updating Rows
You use the UPDATE statement to change the values of specified columns in a table or view. In
the following example, you update the SAL and COMM columns in the EMP table:

EXEC SQL UPDATE EMP
 SET SAL = :salary, COMM = :commission
 WHERE EMPNO = :emp_number;

You can use the optional WHERE clause to specify the conditions under which rows are updated.
See "Using the WHERE Clause".

The SET clause lists the names of one or more columns for which you must provide values. You
can use a subquery to provide the values, as the following example shows:

EXEC SQL UPDATE EMP
 SET SAL = (SELECT AVG(SAL)*1.1 FROM EMP WHERE DEPTNO = 20)
 WHERE EMPNO = :emp_number;

Chapter 4
The Basic SQL Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 14

4.3.6 Deleting Rows
You use the DELETE statement to remove rows from a table or view. In the following example,
you delete all employees in a given department from the EMP table:

EXEC SQL DELETE FROM EMP
 WHERE DEPTNO = :dept_number;

You can use the optional WHERE clause to specify the condition under which rows are deleted.

4.3.7 Using the WHERE Clause
You use the WHERE clause to select, update, or delete only those rows in a table or view that
meet your search condition. The WHERE-clause search condition is a Boolean expression, which
can include scalar host variables, host arrays (not in SELECT statements), and subqueries.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit the WHERE
clause in an UPDATE or DELETE statement, Oracle sets SQLWARN(5) in the SQLCA to 'W' to
warn that all rows were processed.

4.4 Cursors
When a query returns multiple rows, you can explicitly define a cursor to:

• Process beyond the first row returned by the query

• Keep track of which row is currently being processed

A cursor identifies the current row in the set of rows returned by the query. This allows your
program to process the rows one at a time. The following statements let you define and
manipulate a cursor:

• DECLARE

• OPEN

• FETCH

• CLOSE

First you use the DECLARE statement to name the cursor and associate it with a query.

The OPEN statement executes the query and identifies all the rows that meet the query search
condition. These rows form a set called the active set of the cursor. After opening the cursor,
you can use it to retrieve the rows returned by its associated query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use a FETCH
statement to retrieve the current row in the active set. You can execute FETCH repeatedly until
all rows have been retrieved.

When you complete fetching rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

4.4.1 Declaring a Cursor
You use the DECLARE statement to define a cursor by giving it a name and associating it with a
query, as the following example shows:

Chapter 4
Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 14

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, EMPNO, SAL
 FROM EMP
 WHERE DEPTNO = :dept_number;

The cursor name is an identifier used by the precompiler, not a host or program variable, and
should not be defined in the Declare Section. Therefore, cursor names cannot be passed from
one precompilation unit to another. Also, cursor names cannot be hyphenated. They can be
any length, but only the first 31 characters are significant. For ANSI compatibility, use cursor
names no longer than 18 characters.

The SELECT statement associated with the cursor cannot include an INTO clause. Rather, the
INTO clause and list of output host variables are part of the FETCH statement.

Because it is declarative, the DECLARE statement must physically (not just logically) precede all
other SQL statements referencing the cursor. That is, forward references to the cursor are not
allowed. In the following example, the OPEN statement is misplaced:

EXEC SQL OPEN emp_cursor; -- misplaced OPEN statement
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, EMPNO, SAL
 FROM EMP
 WHERE ENAME = :emp_name;

The cursor control statements must all occur within the same precompiled unit. For example,
you cannot declare a cursor in file A, then open it in file B.

Your host program can declare as many cursors as it needs. However, in a given file, every
DECLARE statement must be unique. That is, you cannot declare two cursors with the same
name in one precompilation unit, even across blocks or procedures, because the scope of a
cursor is global within a file. If you will be using many cursors, you might want to specify the
MAXOPENCURSORS option. For more information, see "MAXOPENCURSORS".

4.4.2 Opening a Cursor
Use the OPEN statement to execute the query and identify the active set. In the following
example, a cursor named emp_cursor is opened.

EXEC SQL OPEN emp_cursor;

OPEN positions the cursor just before the first row of the active set. It also zeroes the rows-
processed count kept by SQLERRD(3) in the SQLCA. However, none of the rows is actually
retrieved at this point. That will be done by the FETCH statement.

After you open a cursor, the query's input host variables are not reexamined until you reopen
the cursor. Thus, the active set does not change. To change the active set, you must reopen
the cursor.

Generally, you should close a cursor before reopening it. However, if you specify MODE=ORACLE
(the default), you need not close a cursor before reopening it. This can boost performance; for
details, see Performance Tuning

The amount of work done by OPEN depends on the values of three precompiler options:
HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS. For more information, see "About Using
the Precompiler Options".

Chapter 4
Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 14

4.4.3 Fetching from a Cursor
You use the FETCH statement to retrieve rows from the active set and specify the output host
variables that will contain the results. Recall that the SELECT statement associated with the
cursor cannot include an INTO clause. Rather, the INTO clause and list of output host variables
are part of the FETCH statement. In the following example, you fetch into three host variables:

EXEC SQL FETCH emp_cursor
 INTO :emp_name, :emp_number, :salary;

The cursor must have been previously declared and opened. The first time you execute FETCH,
the cursor moves from before the first row in the active set to the first row. This row becomes
the current row. Each subsequent execution of FETCH advances the cursor to the next row in
the active set, changing the current row. The cursor can only move forward in the active set. To
return to a row that has already been fetched, you must reopen the cursor, then begin again at
the first row of the active set.

If you want to change the active set, you must assign new values to the input host variables in
the query associated with the cursor, then reopen the cursor. When MODE={ANSI | ANSI14 |
ANSI13}, you must close the cursor before reopening it.

As the next example shows, you can fetch from the same cursor using different sets of output
host variables. However, corresponding host variables in the INTO clause of each FETCH
statement must have the same datatype.

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL FROM EMP WHERE DEPTNO = 20;
...
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND DO ...
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name1, :salary1;
 EXEC SQL FETCH emp_cursor INTO :emp_name2, :salary2;
 EXEC SQL FETCH emp_cursor INTO :emp_name3, :salary3;
 ...
ENDLOOP;

If the active set is empty or contains no more rows, FETCH returns the "no data found" Oracle
warning code to SQLCODE in the SQLCA (or when MODE=ANSI, to the status variable
SQLSTATE). The status of the output host variables is indeterminate. (In a typical program, the
WHENEVER NOT FOUND statement detects this error.) To reuse the cursor, you must reopen it.

4.4.4 Closing a Cursor
When finished fetching rows from the active set, you close the cursor to free the resources,
such as storage, acquired by opening the cursor. When a cursor is closed, parse locks are
released. What resources are freed depends on how you specify the options HOLD_CURSOR and
RELEASE_CURSOR. In the following example, you close the cursor named emp_cursor:

EXEC SQL CLOSE emp_cursor;

You cannot fetch from a closed cursor because its active set becomes undefined. If necessary,
you can reopen a cursor (with new values for the input host variables, for example).

When MODE={ANSI13|ORACLE}, issuing a commit or rollback closes cursors referenced in a
CURRENT OF clause. Other cursors are unaffected by a commit or rollback and if open, remain

Chapter 4
Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 14

open. However, when MODE={ANSI|ANSI14}, issuing a commit or rollback closes all explicit
cursors.

4.4.5 Using the CURRENT OF Clause
You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement to refer to the
latest row fetched from the named cursor. The cursor must be open and positioned on a row. If
no fetch has been done or if the cursor is not open, the CURRENT OF clause results in an error
and processes no rows.

The FOR UPDATE OF clause is optional when you declare a cursor that is referenced in the
CURRENT OF clause of an UPDATE or DELETE statement. The CURRENT OF clause signals the
precompiler to add a FOR UPDATE clause if necessary. For more information, see "About Using
the FOR UPDATE OF Clause".

In the following example, you use the CURRENT OF clause to refer to the latest row fetched from
a cursor named emp_cursor:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL FROM EMP WHERE JOB = 'CLERK'
 FOR UPDATE OF SAL;
...
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND DO ...
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 ...
 EXEC SQL UPDATE EMP SET SAL = :new_salary
 WHERE CURRENT OF emp_cursor;
ENDLOOP;

4.4.6 Restrictions
An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row locks. All rows are
locked at the open, not as they are fetched, and are released when you commit or rollback. If
you try to fetch from a FOR UPDATE cursor after a commit, Oracle generates the following error:

ORA-01002: fetch out of sequence

You cannot use host arrays with the CURRENT OF clause. For an alternative, see "About
Mimicking the CURRENT OF Clause". Also, you cannot reference multiple tables in an
associated FOR UPDATE OF clause, which means that you cannot do joins with the CURRENT OF
clause. Finally, you cannot use the CURRENT OF clause in dynamic SQL.

4.4.7 A Typical Sequence of Statements
The following example shows the typical sequence of cursor control statements in an
application program:

-- Define a cursor.
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, JOB FROM EMP
 WHERE EMPNO = :emp_number
 FOR UPDATE OF JOB;

-- Open the cursor and identify the active set.
EXEC SQL OPEN emp_cursor;
-- Exit if the last row was already fetched.

Chapter 4
Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 14

EXEC SQL WHENEVER NOT FOUND DO no_more;

-- Fetch and process data in a loop.
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name, :job_title;
 -- host-language statements that operate on the fetched data
 EXEC SQL UPDATE EMP
 SET JOB = :new_job_title
 WHERE CURRENT OF emp_cursor;
ENDLOOP;
...
ROUTINE no_more
BEGIN
-- Disable the cursor.
 EXEC SQL CLOSE emp_cursor;
 EXEC SQL COMMIT WORK RELEASE;
 exit program;
END no_more;

4.4.8 A Complete Example
The following program illustrates the use of a cursor and the FETCH statement. The program
prompts for a department number, then displays the names of all employees in that
department.

All fetches except the final one return a row and, if no errors were detected during the fetch, a
success status code. The final fetch fails and returns the "no data found" Oracle warning code
to SQLCODE in the SQLCA. The cumulative number of rows actually fetched is found in
SQLERRD(3) in the SQLCA.

-- declare host variables
EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 emp_name CHARACTER(10);
 dept_number INTEGER;
EXEC SQL END DECLARE SECTION;
-- copy in the SQL Communications Area
EXEC SQL INCLUDE SQLCA;

display 'Username? ';
read username;
display 'Password? ';
read password;

-- handle processing errors
EXEC SQL WHENEVER SQLERROR DO sql_error;

-- log on to Oracle
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';

-- declare a cursor
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME FROM EMP WHERE DEPTNO = :dept_number;

display 'Department number? ';
read dept_number;

-- open the cursor and identify the active set
EXEC SQL OPEN emp_cursor;

Chapter 4
Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 14

-- exit if the last row was already fetched
EXEC SQL WHENEVER NOT FOUND DO no_more;

display 'Employee Name';
display '-------------';

-- fetch and process data in a loop
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name; display emp_name;
ENDLOOP;
ROUTINE no_more
BEGIN
 EXEC SQL CLOSE emp_cursor;
 EXEC SQL COMMIT WORK RELEASE;
 display 'End of program';
 exit program;
END no_more;

ROUTINE sql_error
BEGIN
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Processing error';
 exit program with an error;
END sql_error;

4.5 Cursor Variables
This section gives a brief overview of cursor variables. For more information, see your host
language supplement and Cursor Variables.

When using static embedded SQL with the Pro*COBOL and Pro*FORTRAN Precompilers, you
can declare cursor variables. Like a cursor, a cursor variable points to the current row in the
active set of a multi-row query. Cursors differ from cursor variables the way constants differ
from variables. While a cursor is static, a cursor variable is dynamic, because it is not tied to a
specific query. You can open a cursor variable for any type-compatible query.

Also, you can assign new values to a cursor variable and pass it as a parameter to
subprograms, including subprograms stored in an Oracle database. This gives you a
convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you use four statements to
control a cursor variable:

• ALLOCATE

• OPEN ... FOR

• FETCH

• CLOSE

After you declare the cursor variable and allocate memory for it, you must pass it as an input
host variable (bind variable) to PL/SQL, OPEN it FOR a multi-row query on the server side,
FETCH from it on the client side, then CLOSE it on either side.

4.5.1 About Declaring a Cursor Variable
How you declare a cursor variable is dependent on your host language. For instructions about
declaring a cursor variable, see your host-language supplement.

Chapter 4
Cursor Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 14

4.5.2 Allocating a Cursor Variable
You use the ALLOCATE statement to allocate memory for the cursor variable. The syntax follows:

EXEC SQL ALLOCATE <cursor_variable>;

4.5.3 Opening a Cursor Variable
You use the OPEN ... FOR statement to associate a cursor variable with a multi-row query,
execute the query, and identify the active set. The syntax follows:

EXEC SQL OPEN <cursor_variable> FOR <select_statement>;

The SELECT statement can reference input host variables and PL/SQL variables, parameters,
and functions but cannot be FOR UPDATE. In the following example, you open a cursor variable
named emp_cv:

EXEC SQL OPEN emp_cv FOR SELECT * FROM EMP;

You must open a cursor variable on the server side. You do that by passing it as an input host
variable to an anonymous PL/SQL block. At run time, the block is sent to the Oracle Server for
execution. In the following example, you declare and initialize a cursor variable, then pass it to
a PL/SQL block, which opens the cursor variable:

EXEC SQL BEGIN DECLARE SECTION;
 ...
-- declare cursor variable
 emp_cur SQL_CURSOR;
EXEC SQL END DECLARE SECTION;

-- initialize cursor variable
EXEC SQL ALLOCATE :emp_cur;

EXEC SQL EXECUTE
 -- pass cursor variable to PL/SQL block
 BEGIN
 -- open cursor variable
 OPEN :emp_cur FOR SELECT * FROM EMP;
 END;
END-EXEC;

Generally, you pass a cursor variable to PL/SQL by calling a stored procedure that declares a
cursor variable as one of its formal parameters. For example, the following packaged
procedure opens a cursor variable named emp_cv:

CREATE PACKAGE emp_data AS
 -- define REF CURSOR type
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 -- declare formal paramter of that type
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp);
END emp_data;

CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS
 BEGIN
 -- open cursor variable
 OPEN emp_cv FOR SELECT * FROM emp;
 END open_emp_cv;
END emp_data;

Chapter 4
Cursor Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 14

You can call the procedure from any application, as follows:

EXEC SQL EXECUTE
 BEGIN
 emp_data.open_emp_cv(:emp_cur);
 END;
END-EXEC;

4.5.4 Fetching from a Cursor Variable
After opening a cursor variable for a multi-row query, you use the FETCH statement to retrieve
rows from the active set one at a time. The syntax follows:

EXEC SQL FETCH cursor_variable_name
 INTO {record_name | variable_name[, variable_name, ...]};

Each column value returned by the cursor variable is assigned to a corresponding field or
variable in the INTO clause, providing their datatypes are compatible.

The FETCH statement must be executed on the client side. In the following example, you fetch
rows into a host record named emp_rec:

-- exit loop when done fetching
EXEC SQL WHENEVER NOT FOUND DO no_more;
LOOP
 -- fetch row into record
 EXEC SQL FETCH :emp_cur INTO :emp_rec;
 -- process the data
ENDLOOP;

4.5.5 Closing a Cursor Variable
You use the CLOSE statement to close a cursor variable, at which point its active set becomes
undefined. The syntax follows:

EXEC SQL CLOSE cursor_variable_name;

The CLOSE statement can be executed on the client side or the server side. In the following
example, when the last row is processed, you close the cursor variable emp_cur:

-- close cursor variable
EXEC SQL CLOSE :emp_cur;

Chapter 4
Cursor Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 14

5
Using Embedded PL/SQL

This chapter contains the following sections:

• Advantages of PL/SQL

• About Embedding PL/SQL Blocks

• About Using Host Variables

• About Using Indicator Variables

• About Using Host Arrays

• About Using Cursors

• Stored Subprograms

• About Using Dynamic PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL transaction
processing blocks in your program.

5.1 Advantages of PL/SQL
This section looks at some of the features and benefits offered by PL/SQL, such as

• Better Performance

• Integration with Oracle

• Cursor FOR Loops

• Subprograms

• Parameter Modes

• Packages

• PL/SQL Tables

• User-defined Records

5.1.1 Better Performance
PL/SQL can help you reduce overhead, improve performance, and increase productivity. For
example, without PL/SQL, Oracle must process SQL statements one at a time. Each SQL
statement results in another call to the Server and consequently, a higher overhead. However,
with PL/SQL, you can send an entire block of SQL statements to the Server. This minimizes
communication between your application and Oracle.

5.1.2 Integration with Oracle
PL/SQL is tightly integrated with the Oracle Server. For example, most PL/SQL datatypes are
native to the Oracle data dictionary. Furthermore, you can use the %TYPE attribute to base
variable declarations on column definitions stored in the data dictionary, as the following
example shows:

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 17

job_title emp.job%TYPE;

That way, you need not know the exact datatype of the column. Furthermore, if a column
definition changes, the variable declaration changes accordingly and automatically. This
provides data independence, reduces maintenance costs, and allows programs to adapt as the
database changes.

5.1.3 Cursor FOR Loops
With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE statements to define and
manipulate a cursor. Instead, you can use a cursor FOR loop, which implicitly declares its loop
index as a record, opens the cursor associated with a given query, repeatedly fetches data
from the cursor into the record, then closes the cursor. An example follows:

DECLARE
 ...
BEGIN
 FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP
 IF emprec.comm / emprec.sal > 0.25 THEN ...
 ...
 END LOOP;
END;

Notice that you use dot notation to reference fields in the record.

5.1.4 Subprograms
PL/SQL has two types of subprograms called procedures and functions, which aid application
development by letting you isolate operations. Generally, you use a procedure to perform an
action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL language
to suit your needs. For example, if you need a procedure that creates a new department, just
write your own as follows:

PROCEDURE create_dept
 (new_dname IN CHAR(14),
 new_loc IN CHAR(13),
 new_deptno OUT NUMBER(2)) IS
BEGIN
 SELECT deptno_seq.NEXTVAL INTO new_deptno FROM dual;
 INSERT INTO dept VALUES (new_deptno, new_dname, new_loc);
END create_dept;

When called, this procedure accepts a new department name and location, selects the next
value in a department-number database sequence, inserts the new number, name, and
location into the dept table, then returns the new number to the caller.

You can store subprograms in the database (using CREATE FUNCTION and CREATE PROCEDURE)
that can be called from multiple applications without needing to be recompiled each time.

5.1.5 Parameter Modes
You use parameter modes to define the behavior of formal parameters. There are three
parameter modes: IN (the default), OUT, and IN OUT. An 7IN parameter lets you pass values to
the subprogram being called. An OUT parameter lets you return values to the caller of a
subprogram. An IN OUT parameter lets you pass initial values to the subprogram being called
and return updated values to the caller.

Chapter 5
Advantages of PL/SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 17

The datatype of each actual parameter must be convertible to the datatype of its corresponding
formal parameter. Table 3-6 shows the legal conversions between datatypes.

5.1.6 Packages
PL/SQL lets you bundle logically related types, program objects, and subprograms into a
package. Packages can be compiled and stored in an Oracle database, where their contents
can be shared by multiple applications.

Packages usually have two parts: a specification and a body. The specification is the interface
to your applications; it declares the types, constants, variables, exceptions, cursors, and
subprograms available for use. The body defines cursors and subprograms and so implements
the specification. In the following example, you "package" two employment procedures:

PACKAGE emp_actions IS -- package specification
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;
PACKAGE BODY emp_actions IS -- package body
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, ...);
 END hire_employee;
 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;

Only the declarations in the package specification are visible and accessible to applications.
Implementation details in the package body are hidden and inaccessible.

5.1.7 PL/SQL Tables
PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are called PL/SQL
tables, which are modelled as (but not the same as) database tables. PL/SQL tables have only
one column and use a primary key to give you array-like access to rows. The column can
belong to any scalar type (such as CHAR, DATE, or NUMBER), but the primary key must belong to
type BINARY_INTEGER.

You can declare PL/SQL table types in the declarative part of any block, procedure, function, or
package. In the following example, you declare a TABLE type called NumTabTyp:

DECLARE
 TYPE NumTabTyp IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;
 ...
BEGIN
 ...
END;

After you define type NumTabTyp, you can declare PL/SQL tables of that type, as the next
example shows:

num_tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary key value.
For example, you reference the ninth row in the PL/SQL table named num_tab as follows:

Chapter 5
Advantages of PL/SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 17

num_tab(9) ...

5.1.8 User-defined Records
You can use the %ROWTYPE attribute to declare a record that represents a row in a database
table or a row fetched by a cursor. However, you cannot specify the datatypes of fields in the
record or define fields of your own. The composite datatype RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have uniquely named
fields, which can belong to different datatypes. For example, suppose you have different kinds
of data about an employee such as name, salary, hire date, and so on. This data is dissimilar in
type but logically related. A record that contains such fields as the name, salary, and hire date
of an employee would let you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block, procedure,
function, or package. In the following example, you declare a RECORD type called DeptRecTyp:

DECLARE
 TYPE DeptRecTyp IS RECORD
 (deptno NUMBER(4) NOT NULL := 10, -- must initialize
 dname CHAR(9),
 loc CHAR(14));

Notice that the field declarations are like variable declarations. Each field has a unique name
and specific datatype. You can add the NOT NULL option to any field declaration and so prevent
the assigning of nulls to that field. However, you must initialize NOT NULL fields.

After you define type DeptRecTyp, you can declare records of that type, as the next example
shows:

dept_rec DeptRecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For example, you reference the
dname field in the dept_rec record as follows:

dept_rec.dname ...

5.2 About Embedding PL/SQL Blocks
The Oracle Precompilers treat a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in a host program that you can place a SQL statement.

To embed a PL/SQL block in your host program, simply bracket the PL/SQL block with the
keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQL EXECUTE
 DECLARE
 ...
 BEGIN
 ...
 END;
END-EXEC;

The keyword END-EXEC must be followed by the statement terminator for your host language.

When your program embeds PL/SQL blocks, you must specify the precompiler option
SQLCHECK=SEMANTICS because PL/SQL must be parsed by Oracle. To connect to Oracle, you

Chapter 5
About Embedding PL/SQL Blocks

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 17

must also specify the option USERID. For more information, see "About Using the Precompiler
Options".

5.3 About Using Host Variables
Host variables are the key to communication between a host language and a PL/SQL block.
Host variables can be shared with PL/SQL, meaning that PL/SQL can set and reference host
variables.

For example, you can prompt a user for information and use host variables to pass that
information to a PL/SQL block. Then, PL/SQL can access the database and use host variables
to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can be used
anywhere within the block wherever a PL/SQL variable is allowed. However, character host
variables cannot exceed 255 characters in length. Like host variables in a SQL statement, host
variables in a PL/SQL block must be prefixed with a colon. The colon sets host variables apart
from PL/SQL variables and database objects.

5.3.1 An Example
The following example illustrates the use of host variables with PL/SQL. The program prompts
the user for an employee number, then displays the job title, hire date, and salary of that
employee.

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 emp_number INTEGER;
 job_title CHARACTER(20);
 hire_date CHARACTER(9);
 salary REAL;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
display 'Username? ';
read username;
display 'Password? ';
read password;
EXEC SQL WHENEVER SQLERROR DO sql_error;
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';
LOOP
 display 'Employee Number (0 to end)? ';
 read emp_number;
 IF emp_number = 0 THEN
 EXEC SQL COMMIT WORK RELEASE;
 display 'Exiting program';
 exit program;
 ENDIF;
 ---------------- begin PL/SQL block -----------------
 EXEC SQL EXECUTE
 BEGIN
 SELECT job, hiredate, sal
 INTO :job_title, :hire_date, :salary
 FROM emp
 WHERE empno = :emp_number;
 END;
 END-EXEC;
 ---------------- end PL/SQL block -----------------

Chapter 5
About Using Host Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 17

 display 'Number Job Title Hire Date Salary';
 display '------------------------------------';
 display emp_number, job_title, hire_date, salary;
ENDLOOP;
...
ROUTINE sql_error
BEGIN
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Processing error';
 exit program with an error;
END sql_error;

Notice that the host variable emp_number is set before the PL/SQL block is entered, and the
host variables job_title, hire_date, and salary are set inside the block.

5.3.2 A More Complex Example
In the example, you prompt the user for a bank account number, transaction type, and
transaction amount, then debit or credit the account. If the account does not exist, you raise an
exception. When the transaction is complete, you display its status.

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 acct_num INTEGER;
 trans_type CHARACTER(1);
 trans_amt REAL;
 status CHARACTER(80);
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
display 'Username? ';
read username;
display 'Password? ';
read password;
EXEC SQL WHENEVER SQLERROR DO sql_error;
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';
LOOP
 display 'Account Number (0 to end)? ';
 read acct_num;
 IF acct_num = 0 THEN
 EXEC SQL COMMIT WORK RELEASE;
 display 'Exiting program';
 exit program;
 ENDIF;
 display 'Transaction Type - D)ebit or C)redit? '
 read trans_type;
 display 'Transaction Amount? '
 read trans_amt;
 --------------------- begin PL/SQL block -------------------
 EXEC SQL EXECUTE
 DECLARE
 old_bal NUMBER(9,2);
 err_msg CHAR(70);
 nonexistent EXCEPTION;
 BEGIN
 :trans_type := UPPER(:trans_type);
 IF :trans_type = 'C' THEN -- credit the account
 UPDATE accts SET bal = bal + :trans_amt
 WHERE acctid = :acct_num;

Chapter 5
About Using Host Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 17

 IF SQL%ROWCOUNT = 0 THEN -- no rows affected
 RAISE nonexistent;
 ELSE
 :status := 'Credit applied';
 END IF;
 ELSIF :trans_type = 'D' THEN -- debit the account
 SELECT bal INTO old_bal FROM accts
 WHERE acctid = :acct_num;
 IF old_bal >= :trans_amt THEN -- enough funds
 UPDATE accts SET bal = bal - :trans_amt
 WHERE acctid = :acct_num;
 :status := 'Debit applied';
 ELSE
 :status := 'Insufficient funds';
 END IF;
 ELSE
 :status := 'Invalid type: ' || :trans_type;
 END IF;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND OR nonexistent THEN
 :status := 'Nonexistent account';
 WHEN OTHERS THEN
 err_msg := SUBSTR(SQLERRM, 1, 70);
 :status := 'Error: ' || err_msg;
 END;
 END-EXEC;
 ------------------- end PL/SQL block -----------------------
 display 'Status: ', status;
ENDLOOP;
ROUTINE sql_error
BEGIN
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Processing error';
 exit program with an error;
END sql_error;

5.3.3 VARCHAR Pseudotype
Recall from Meeting Program Requirements that you can use the VARCHAR pseudotype to
declare variable-length character strings. If the VARCHAR is an input host variable, you must tell
Oracle what length to expect. So, set the length field to the actual length of the value stored in
the string field.

If the VARCHAR is an output host variable, Oracle automatically sets the length field. However, to
use a VARCHAR output host variable in your PL/SQL block, you must initialize the length field
before entering the block. So, set the length field to the declared (maximum) length of the
VARCHAR, as shown in the following example:

EXEC SQL BEGIN DECLARE SECTION;
 emp_number INTEGER;
 emp_name VARCHAR(10);
 salary REAL;
 ...
EXEC SQL END DECLARE SECTION;
...
set emp_name.len = 10; -- initialize length field
EXEC SQL EXECUTE
 BEGIN
 SELECT ename, sal INTO :emp_name, :salary

Chapter 5
About Using Host Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 17

 FROM emp
 WHERE empno = :emp_number;
 ...
 END;
END-EXEC;

5.4 About Using Indicator Variables
PL/SQL does not need indicator variables because it can manipulate nulls. For example, within
PL/SQL, you can use the IS NULL operator to test for nulls, as follows:

IF variable IS NULL THEN ...

You can use the assignment operator (:=) to assign nulls, as follows:

variable := NULL;

However, host languages need indicator variables because they cannot manipulate nulls.
Embedded PL/SQL meets this need by letting you use indicator variables to

• accept nulls input from a host program

• output nulls or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rules:

• You cannot refer to an indicator variable by itself; it must be appended to its associated
host variable.

• If you refer to a host variable with its indicator variable, you must always refer to it that way
in the same block.

In the following example, the indicator variable ind_comm appears with its host variable
commission in the SELECT statement, so it must appear that way in the IF statement:

EXEC SQL EXECUTE
 BEGIN
 SELECT ename, comm
 INTO :emp_name, :commission:ind_comm FROM emp
 WHERE empno = :emp_number;
 IF :commission:ind_comm IS NULL THEN ...
 ...
 END;
END-EXEC;

Notice that PL/SQL treats :commission:ind_comm like any other simple variable. Though you
cannot refer directly to an indicator variable inside a PL/SQL block, PL/SQL checks the value
of the indicator variable when entering the block and sets the value correctly when exiting the
block.

5.4.1 Handling Nulls
When entering a block, if an indicator variable has a value of -1, PL/SQL automatically assigns
a null to the host variable. When exiting the block, if a host variable is null, PL/SQL
automatically assigns a value of -1 to the indicator variable. In the next example, if handsel had
a value of -1 before the PL/SQL block was entered, the salary_missing exception is raised. An
exception is a named error condition.

EXEC SQL EXECUTE
 BEGIN
 IF :salary:ind_sal IS NULL THEN

Chapter 5
About Using Indicator Variables

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 17

 RAISE salary_missing;
 END IF;
 ...
 END;
END-EXEC;

5.4.2 Handling Truncated Values
PL/SQL does not raise an exception when a truncated string value is assigned to a host
variable. However, if you use an indicator variable, PL/SQL sets it to the original length of the
string. In the following example, the host program will be able to tell, by checking the value of
ind_name, if a truncated value was assigned to emp_name:

EXEC SQL EXECUTE
 DECLARE
 ...
 new_name CHAR(10);
 BEGIN
 ...
 :emp_name:ind_name := new_name;
 ...
 END;
END-EXEC;

5.5 About Using Host Arrays
You can pass input host arrays and indicator arrays to a PL/SQL block. They can be indexed
by a PL/SQL variable of type BINARY_INTEGER or by a host variable compatible with that type.
Normally, the entire host array is passed to PL/SQL, but you can use the ARRAYLEN statement
(discussed later) to specify a smaller array dimension.

Furthermore, you can use a subprogram call to assign all the values in a host array to rows in
a PL/SQL table. Given that the array subscript range is m .. n, the corresponding PL/SQL table
index range is always 1 .. (n - m + 1). For example, if the array subscript range is 5 .. 10, the
corresponding PL/SQL table index range is 1 .. (10 - 5 + 1) or 1 .. 6.

Note

The Oracle Precompilers do not check your usage of host arrays. For instance, no
index range checking is done.

In the example , you pass a host array named salary to a PL/SQL block, which uses the host
array in a function call. The function is named median because it finds the middle value in a
series of numbers. Its formal parameters include a PL/SQL table named num_tab. The function
call assigns all the values in the actual parameter salary to rows in the formal parameter
num_tab.

EXEC SQL BEGIN DECLARE SECTION;
 ...
 salary (100) REAL;
 median_salary REAL;
EXEC SQL END DECLARE SECTION;
-- populate the host array
EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL

Chapter 5
About Using Host Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 17

 INDEX BY BINARY_INTEGER;
 n BINARY_INTEGER;
 ...
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
 -- compute median
 END;
 BEGIN
 n := 100;
 :median_salary := median(:salary, n);
 ...
 END;
END-EXEC;

You can also use a subprogram call to assign all row values in a PL/SQL table to
corresponding elements in a host array.

Table 5-1 shows the legal conversions between row values in a PL/SQL table and elements in
a host array. For example, a host array of type LONG is compatible with a PL/SQL table of type
VARCHAR2, LONG, RAW, or LONG RAW. Notably, it is not compatible with a PL/SQL table of type
CHAR.

Table 5-1 Legal Conversions: PL/SQL Table Row and Host Array Elements

PL/SQL Table CHAR DATE LONG LONG RAW NUMBER RAW ROWID VARCHAR2

CHARF _/

CHARZ _/

DATE _/

DECIMAL _/

DISPLAY _/

FLOAT _/

INTEGER _/

LONG _/ _/

LONG VARCHAR _/ _/ _/ _/

LONG VARRAW _/ _/

NUMBER _/

RAW _/ _/

ROWID _/

STRING _/ _/ _/ _/

UNSIGNED _/

VARCHAR _/ _/ _/ _/

VARCHAR2 _/ _/ _/ _/

VARNUM _/

VARRAW _/ _/

Chapter 5
About Using Host Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 17

5.5.1 ARRAYLEN Statement
Suppose you must pass an input host array to a PL/SQL block for processing. By default,
when binding such a host array, the Oracle Precompilers use its declared dimension. However,
you might not want to process the entire array. In that case, you can use the ARRAYLEN
statement to specify a smaller array dimension. ARRAYLEN associates the host array with a host
variable, which stores the smaller dimension. The statement syntax is

EXEC SQL ARRAYLEN host_array (dimension);

where dimension is a 4-byte, integer host variable, not a literal or an expression.

The ARRAYLEN statement must appear in the Declare Section along with, but somewhere after,
the declarations of host_array and dimension. You cannot specify an offset into the host array.
However, you might be able to use host-language features for that purpose.

In the following example, you use ARRAYLEN to override the default dimension of a host array
named bonus:

EXEC SQL BEGIN DECLARE SECTION;
 bonus (100) REAL;
 my_dim INTEGER;
 EXEC SQL ARRAYLEN bonus (my_dim);
EXEC SQL END DECLARE SECTION;
-- populate the host array
...
set my_dim = 25; -- set smaller array dimension
EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 median_bonus REAL;
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
 -- compute median
 END;
 BEGIN
 median_bonus := median(:bonus, :my_dim);
 ...
 END;
END-EXEC;

Only 25 array elements are passed to the PL/SQL block because ARRAYLEN downsizes the host
array from 100 to 25 elements. As a result, when the PL/SQL block is sent to Oracle for
execution, a much smaller host array is sent along. This saves time and, in a networked
environment, reduces network traffic.

5.6 About Using Cursors
Every embedded SQL statement is assigned a cursor, either explicitly by you in a DECLARE
CURSOR statement or implicitly by the precompiler. Internally, the Oracle Precompilers maintain
a cache, called the cursor cache, to control the execution of embedded SQL statements. When
executed, every SQL statement is assigned an entry in the cursor cache. This entry is linked to
a private SQL area in your Program Global Area (PGA) within Oracle.

Various precompiler options, including MAXOPENCURSORS, HOLD_CURSOR, and RELEASE_CURSOR, let
you manage the cursor cache to improve performance. For example, RELEASE_CURSOR controls

Chapter 5
About Using Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 17

what happens to the link between the cursor cache and private SQL area. If you specify
RELEASE_CURSOR=YES, the link is removed after Oracle executes the SQL statement. This frees
memory allocated to the private SQL area and releases parse locks.

For purposes of cursor cache management, an embedded PL/SQL block is treated just like a
SQL statement. At run time, a cursor, called a parent cursor, is associated with the entire
PL/SQL block. A corresponding entry is made to the cursor cache, and this entry is linked to a
private SQL area in the PGA.

Each SQL statement inside the PL/SQL block also requires a private SQL area in the PGA. So,
PL/SQL manages a separate cache, called the child cursor cache, for these SQL statements.
Their cursors are called child cursors. Because PL/SQL manages the child cursor cache, you
do not have direct control over child cursors.

The maximum number of cursors your program can use simultaneously is set by the Oracle
initialization parameter OPEN_CURSORS.Figure 5-1 shows you how to calculate the maximum
number of cursors in use.

Figure 5-1 Maximum Cursors in Use

SQL statement cursors

PL/SQL parent cursors

PL/SQL child cursors

6 cursors for overhead

Sum of cursors in use

Must not exceed OPEN_CURSORS

+

If your program exceeds the limit imposed by OPEN_CURSORS, you get the following Oracle error:

ORA-01000: maximum open cursors exceeded

You can avoid this error by specifying the RELEASE_CURSOR=YES and HOLD_CURSOR=NO options. If
you do not want to precompile the entire program with RELEASE_CURSOR set to YES, simply reset
it to NO after each PL/SQL block, as follows:

EXEC ORACLE OPTION (RELEASE_CURSOR=YES);
-- first embedded PL/SQL block
 EXEC ORACLE OPTION (RELEASE_CURSOR=NO);
-- embedded SQL statements
 EXEC ORACLE OPTION (RELEASE_CURSOR=YES);
-- second embedded PL/SQL block
 EXEC ORACLE OPTION (RELEASE_CURSOR=NO);
-- embedded SQL statements

5.6.1 An Alternative
The MAXOPENCURSORS option specifies the initial size of the cursor cache. For example, when
MAXOPENCURSORS=10, the cursor cache can hold up to 10 entries. If a new cursor is needed,
there are no free cache entries, and HOLD_CURSOR=NO, the precompiler tries to reuse an entry. If
you specify a very low value for MAXOPENCURSORS, the precompiler is forced to reuse the parent
cursor more often. All the child cursors are released as soon as the parent cursor is reused.

Chapter 5
About Using Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 17

5.7 Stored Subprograms
Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) can be compiled
separately, stored in an Oracle database, and invoked. A subprogram explicitly created using
an Oracle tool such as SQL*Plus is called a stored subprogram. Once compiled and stored in
the data dictionary, it is a database object, which can be reexecuted without being recompiled.

When a subprogram within a PL/SQL block or stored subprogram is sent to Oracle by your
application, it is called an inline subprogram. Oracle compiles the inline subprogram and
caches it in the System Global Area (SGA), but does not store the source or object code in the
data dictionary.

Subprograms defined within a package are considered part of the package, and so are called
packaged subprograms. Stored subprograms not defined within a package are called
standalone subprograms.

5.7.1 Creating Stored Subprograms
You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE, and CREATE PACKAGE
in a host program, as the following example shows:

EXEC SQL CREATE
 FUNCTION sal_ok (salary REAL, title CHAR)
 RETURN BOOLEAN AS
 min_sal REAL;
 max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal
 FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND
 (salary <= max_sal);
 END sal_ok;
END-EXEC;

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement is a hybrid.
Like all other embedded CREATE statements, it begins with the keywords EXEC SQL (not EXEC
SQL EXECUTE). But, unlike other embedded CREATE statements, it ends with the PL/SQL
terminator END-EXEC.

In the example, you create a package that contains a procedure named get_employees, which
fetches a batch of rows from the emp table. The batch size is determined by the caller of the
procedure, which might be another stored subprogram or a client application program.

The procedure declares three PL/SQL tables as OUT formal parameters, then fetches a batch
of employee data into the PL/SQL tables. The matching actual parameters are host arrays.
When the procedure finishes, it automatically assigns all row values in the PL/SQL tables to
corresponding elements in the host arrays.

EXEC SQL CREATE OR REPLACE PACKAGE emp_actions AS
 TYPE CharArrayTyp IS TABLE OF VARCHAR2(10)
 INDEX BY BINARY_INTEGER;
 TYPE NumArrayTyp IS TABLE OF FLOAT
 INDEX BY BINARY_INTEGER;
 PROCEDURE get_employees(
 dept_number IN INTEGER,
 batch_size IN INTEGER,
 found IN OUT INTEGER,

Chapter 5
Stored Subprograms

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 17

 done_fetch OUT INTEGER,
 emp_name OUT CharArrayTyp,
 job-title OUT CharArrayTyp,
 salary OUT NumArrayTyp);
 END emp_actions;
END-EXEC;
EXEC SQL CREATE OR REPLACE PACKAGE BODY emp_actions AS
 CURSOR get_emp (dept_number IN INTEGER) IS
 SELECT ename, job, sal FROM emp
 WHERE deptno = dept_number;
 PROCEDURE get_employees(
 dept_number IN INTEGER,
 batch_size IN INTEGER,
 found IN OUT INTEGER,
 done_fetch OUT INTEGER,
 emp_name OUT CharArrayTyp,
 job_title OUT CharArrayTyp,
 salary OUT NumArrayTyp) IS
 BEGIN
 IF NOT get_emp%ISOPEN THEN
 OPEN get_emp(dept_number);
 END IF;
 done_fetch := 0;
 found := 0;
 FOR i IN 1..batch_size LOOP
 FETCH get_emp INTO emp_name(i),
 job_title(i), salary(i);
 IF get_emp%NOTFOUND THEN
 CLOSE get_emp;
 done_fetch := 1;
 EXIT;
 ELSE
 found := found + 1;
 END IF;
 END LOOP;
 END get_employees;
 END emp_actions;
END-EXEC;

You specify the REPLACE clause in the CREATE statement to redefine an existing package
without having to drop the package, re-create it, and regrant privileges on it. For the full syntax
of the CREATE statement see the Oracle Database SQL Language Reference.

If an embedded CREATE {FUNCTION|PROCEDURE|PACKAGE} statement fails, Oracle generates a
warning, not an error.

5.7.2 Calling a Stored Subprogram
To invoke (call) a stored subprogram from your host program, you must use an anonymous
PL/SQL block. In the following example, you call a standalone procedure named raise_salary:

EXEC SQL EXECUTE
 BEGIN
 raise_salary(:emp_id, :increase);
 END;
END-EXEC;

Notice that stored subprograms can take parameters. In this example, the actual parameters
emp_id and increase are host variables.

Chapter 5
Stored Subprograms

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 17

In the next example, the procedure raise_salary is stored in a package named emp_actions, so
you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
 BEGIN
 emp_actions.raise_salary(:emp_id, :increase);
 END;
END-EXEC;

An actual IN parameter can be a literal, host variable, host array, PL/SQL constant or variable,
PL/SQL table, PL/SQL user-defined record, subprogram call, or expression. However, an
actual OUT parameter cannot be a literal, subprogram call, or expression.

In the Pro*C example, three of the formal parameters are PL/SQL tables, and the
corresponding actual parameters are host arrays. The program calls the stored procedure
get_employees repeatedly, displaying each batch of employee data, until no more data is
found.

#include <stdio.h>
#include <string.h>
typedef char asciz;
EXEC SQL BEGIN DECLARE SECTION;
 /* Define type for null-terminated strings */
 EXEC SQL TYPE asciz IS STRING(20);
 asciz username[20];
 asciz password[20];
 int dept_no; /* which department to query */
 char emp_name[10][21];
 char job[10][21];
 float salary[10];
 int done_flag;
 int array_size;
 int num_ret; /* number of rows returned */
 int SQLCODE;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE sqlca;
int print_rows(); /* produces program output */
int sql_error(); /* handles NOLOGGING errors */
main()
{
 int i;
 /* Connect to Oracle. */
 strcpy(username, "SCOTT");
 strcpy(password, "TIGER");
 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 printf("\nConnected to Oracle as user: %s\n", username);
 printf("enter department number: ");
 scanf("%d", &dept_no);
 fflush(stdin);
 /* Set the array size. */
 array_size = 10;
 done_flag = 0;
 num_ret = 0;
 /* Array fetch loop - ends when done_flag is true. */
 for (;;)
 {
 EXEC SQL EXECUTE
 BEGIN emp_actions.get_employees
 (:dept_no, :array_size, :num_ret,
 :done_flag, :emp_name, :job, :salary);
 END;

Chapter 5
Stored Subprograms

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 17

 END-EXEC;
 print_rows(num_ret);
 if (done_flag)
 break;
 }
 /* Disconnect from the database. */
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}
print_rows(n)
int n;
{
 int i;
 if (n == 0)
 {
 printf("No rows retrieved.\n");
 return;
 }
 printf("\n\nGot %d row%c\n", n, n == 1 ? '\0' : 's');
 printf("%-20.20s%-20.20s%s\n", "Ename", "Job", "Salary");
 for (i = 0; i < n; i++)
 printf("%20.20s%20.20s%6.2f\n",
 emp_name[i], job[i], salary[i]);
}
sql_error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("\nOracle error detected:");
 printf("\n% .70s \n", sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

Remember, the datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Also, before a stored subprogram exits, all OUT formal
parameters must be assigned values. Otherwise, the values of corresponding actual
parameters are indeterminate.

5.7.3 Remote Access
PL/SQL lets you access remote databases through database links. Typically, database links
are established by your DBA and stored in the Oracle data dictionary. A database link tells
Oracle where the remote database is located, the path to it, and what Oracle username and
password to use. In the following example, you use the database link dallas to call the
raise_salary procedure:

EXEC SQL EXECUTE
 BEGIN
 raise_salary@dallas(:emp_id, :increase);
 END;
END-EXEC;

You can create synonyms to provide location transparency for remote subprograms, as the
following example shows:

CREATE PUBLIC SYNONYM raise_salary FOR raise_salary@dallas;

Chapter 5
Stored Subprograms

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 17

5.7.4 Getting Information about Stored Subprograms
In Meeting Program Requirements, you learned how to embed OCI calls in your host program.
After calling the library routine SQLLDA to set up the LDA, you can use the OCI call ODESSP to
get useful information about a stored subprogram. When you call ODESSP, you must pass it a
valid LDA and the name of the subprogram. For packaged subprograms, you must also pass
the name of the package. ODESSP returns information about each subprogram parameter such
as its datatype, size, position, and so on.

You can also use the procedure describe_procedure in package DBMS_DESCRIBE, which is
supplied with Oracle.

5.8 About Using Dynamic PL/SQL
Recall that the Oracle Precompilers treat an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block contains
no host variables, you can use dynamic SQL Method 1 to execute the PL/SQL string. Or, if the
block contains a known number of host variables, you can use dynamic SQL Method 2 to
prepare and execute the PL/SQL string. If the block contains an unknown number of host
variables, you must use dynamic SQL Method 4. For more information, refer to Using Dynamic
SQL.

5.8.1 Restriction
In dynamic SQL Method 4, a host array cannot be bound to a PL/SQL procedure with a
parameter of type TABLE.

Chapter 5
About Using Dynamic PL/SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 17

6
Running the Oracle Precompilers

This chapter contains the following:

• The Precompiler Command

• What Occurs during Precompilation?

• Precompiler Options

• Entering Options

• Scope of Options

• Quick Reference

• About Using the Precompiler Options

• Conditional Precompilations

• Separate Precompilations

• Compiling and Linking

This chapter details the requirements for running the Oracle Precompilers. You learn what
occurs during precompilation, how to issue the precompiler command, how to specify the many
useful precompiler options, and how to do conditional and separate precompilations.

6.1 The Precompiler Command
To run an Oracle Precompiler, you issue one of the language-specific commands shown in
Table 6-1.

Table 6-1 Precompiler Run Commands

Host Language Precompiler Command

COBOL procob

FORTRAN profor

The location of the precompiler differs from system to system. Typically, your system manager
or DBA defines environment variables, logicals, or aliases or uses other operating system-
specific means to make the precompiler executable accessible.

The INAME option specifies the source file to be precompiled. For example, the Pro*COBOL
command

procob INAME=test

precompiles the file test.pco in the current directory, since the precompiler assumes that the
filename extension is .pco. You need not use a file extension when specifying INAME unless
the extension is nonstandard.

Input and output filenames need not be accompanied by their respective option names, INAME
and ONAME. When the option names are not specified, the precompiler assumes that the first

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 51

filename specified on the command line is the input filename and that the second filename is
the output filename.

Thus, the Pro*FORTRAN command

profor MODE=ANSI myfile.pfo DBMS=V7 myfile.f

is equivalent to

profor MODE=ANSI INAME=myfile.pfo DBMS=V7 ONAME=myfile.f

Note

Option names and option values that do not name specific operating system objects,
such as filenames, are not case-sensitive. In the examples in this guide, option names
are written in upper case, and option values are usually in lowercase. Filenames,
including the name of the precompiler executable itself, always follow the case
conventions used by the operating system on which it is executed.

6.2 What Occurs during Precompilation?
During precompilation, an Oracle Precompiler generates host-language code that replaces the
SQL statements embedded in your host program. The generated code includes data structures
that contain the datatype, length, and address of each host variable, and other information
required by the Oracle run-time library, SQLLIB. The generated code also contains the calls to
SQLLIB routines that perform the embedded SQL operations.

The generated code also includes calls to the SQLLIB routines that perform embedded SQL
operations. Note that the precompiler does not generate calls to Oracle Call Interface (OCI)
routines.

The precompiler does not generate calls to Oracle Call Interface (OCI) routines.

The precompiler can issue warnings and error messages. These messages have the prefix
PCC-, and are described in Oracle Database Error Messages.

6.3 Precompiler Options
Many useful options are available at precompile time. They let you control how resources are
used, how errors are reported, how input and output are formatted, and how cursors are
managed. To specify a precompiler option, use the following syntax:

<option_name>=<value>

The value of an option is a string literal, which represents text or numeric values. For example,
for the option

... INAME=my_test

the value is a string literal that specifies a filename, but for the option

... MAXOPENCURSORS=20

the value is numeric.

Chapter 6
What Occurs during Precompilation?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 51

Some options take Boolean values, which you can represent with the strings YES or NO,
TRUE or FALSE, or with the integer literals 1 or 0, respectively. For example, the option

... SELECT_ERROR=YES

is equivalent to

... SELECT_ERROR=TRUE

or

... SELECT_ERROR=1

The option value is always separated from the option name by an equal sign, leave no
whitespace around the equal sign, because spaces delimit individual options. For example,
you might specify the option AUTO_CONNECT on the command line as follows:

... AUTO_CONNECT=YES

You can abbreviate the names of options if the abbreviation is unambiguous. For example, you
cannot use the abbreviation MAX because it might stand for MAXLITERAL or
MAXOPENCURSORS.

A handy reference to the precompiler options is available online. To see the online display,
enter the precompiler command with no arguments at your operating system prompt. The
display gives the name, syntax, default value, and purpose of each option. Options marked
with an asterisk (*) can be specified inline and on the command line.

6.3.1 Default Values
Many of the options have default values, which are determined by:

• A value built in to the precompiler

• A value set in the system configuration file

• A value set in a user configuration file

• A value set in an inline specification

For example, the option MAXOPENCURSORS specifies the maximum number of cached open
cursors. The built-in precompiler default value for this option is 10. However, if
MAXOPENCURSORS=32 is specified in the system configuration file, the default becomes 32.
The user configuration file could set it to yet another value, which then overrides the system
configuration value.

Then, if this option is set on the command line, the new command-line value takes
precedence. Finally, an inline specification takes precedence over all preceding defaults. For
more information, refer to Configuration Files".

6.3.2 Determining Current Values
You can interactively determine the current value for one or more options by using a question
mark on the command line. For example, if you issue the Pro*COBOL command

procob ?

the complete option set, along with current values, is displayed on your terminal. In this case,
the values are those built into the precompiler, overridden by any values in the system
configuration file. But if you issue the following command

Chapter 6
Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 51

procob CONFIG=my_config_file.cfg ?

and there is a file named my_config_file.cfg in the current directory, the options from the
my_config_file.cfg file are listed with the other default values. Values in the user configuration
file supply missing values, and they supersede values built into the precompiler or values
specified in the system configuration file.

You can also determine the current value of a single option by simply specifying the option
name followed by "=?" as in

procob MAXOPENCURSORS=?

Note

: With some operating systems, the "?" may need to be preceded by an "escape"
character, such as a back-slash (\). For example, instead of "procob ?," you might
need to use "procob \?" to list the Pro*COBOL option settings.

6.3.3 Case Sensitivity
In general, you can use either uppercase or lowercase for command-line option names and
values. However, if your operating system is case-sensitive, like UNIX, you must specify
filename values, including the name of the precompiler executable, using the correct
combination of upper and lowercase letters.

6.3.4 Configuration Files
A configuration file is a text file that contains precompiler options. Each record (line) in the file
contains one option, with its associated value or values. For example, a configuration file might
contain the lines

FIPS=YES
MODE=ANSI

to set defaults for the FIPS and MODE options.

There is a single system configuration file for each system. The name of the system
configuration file is precompiler-specific and is shown in Table 6-2.

Table 6-2 System Configuration Files

Precompiler Configuration File

Pro*COBOL pcbcfg.cfg

Pro*FORTRAN pccfor.cfg

The location of the file is operating system-specific. On most UNIX systems, the Pro*COBOL
configuration file is usually located in the $ORACLE_HOME/procob directory, and the
Pro*FORTRAN equivalent is in the $ORACLE_HOME/profor directory,
where $ORACLE_HOME is the environment variable for the database software.

Each precompiler user can have one or more user configuration files. The name of the
configuration file must be specified using the CONFIG command-line option. For more
information, refer to Determining Current Values.

Chapter 6
Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 51

Note

You cannot nest configuration files. CONFIG is not a valid option inside a configuration
file.

6.4 Entering Options
All the precompiler options can be entered on the command line or (except CONFIG) from a
configuration file. Many options can also be entered inline. During a given run, the precompiler
can accept options from all three sources.

6.4.1 On the Command Line
You enter precompiler options on the command line using the following syntax:

... [option_name=value] [option_name=value] ...

Separate each option with one or more spaces. For example, you might enter the following
options:

... ERRORS=no LTYPE=short

6.4.2 Inline
You enter options inline by coding EXEC ORACLE statements, using the following syntax:

EXEC ORACLE OPTION (option_name=value);

For example, you might code the following statement:

EXEC ORACLE OPTION (RELEASE_CURSOR=YES);

An option entered inline overrides the same option entered on the command line.

6.4.3 Advantages
The EXEC ORACLE feature is especially useful for changing option values during precompilation.
For example, you might want to change the HOLD_CURSOR and RELEASE_CURSOR values on a
statement-by-statement basis. Performance Tuning shows you how to use inline options to
optimize run-time performance.

Specifying options inline is also helpful if your operating system limits the number of characters
you can enter on the command line, and you can store inline options in configuration files,
which are discussed in the next section.

6.4.4 Scope of EXEC ORACLE
An EXEC ORACLE statement stays in effect until textually superseded by another EXEC
ORACLE statement specifying the same option. In the following example, HOLD_CURSOR=NO
stays in effect until superseded by HOLD_CURSOR=YES:

EXEC SQL BEGIN DECLARE SECTION;
 emp_name CHARACTER(20);
 emp_number INTEGER;

Chapter 6
Entering Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 51

 salary REAL;
 dept_number INTEGER;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL WHENEVER NOT FOUND GOTO no_more;
EXEC ORACLE OPTION (HOLD_CURSOR=NO);
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT EMPNO, DEPTNO FROM EMP;
EXEC SQL OPEN emp_cursor;
display 'Employee Number Dept';
display '--------------- ----';
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_number, :dept_number;
 display emp_number, dept_number;
ENDLOOP;
no_more:
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 LOOP
 display 'Employee number? ';
 read emp_number;
 IF emp_number = 0 THEN
 exit loop;
 EXEC ORACLE OPTION (HOLD_CURSOR=YES);
 EXEC SQL SELECT ENAME, SAL
 INTO :emp_name, :salary
 FROM EMP
 WHERE EMPNO = :emp_number;
 display 'Salary for ', emp_name, ' is ', salary;
 ENDLOOP;
...

6.4.5 From a Configuration File
The Oracle Precompilers can use a configuration file containing preset command-line options.
By default, a text file called the system configuration file is used. However, you can specify any
of several alternative files, called user configuration files, on the command line.

6.4.6 Advantages
Configuration files offer several advantages. The system configuration file lets you standardize
a set of options for all projects. User configuration files let you customize a set of options for
each project. With configuration files, you need not enter long strings of options on the
command line. Also, if your system limits the length of a command line, configuration files let
you specify more options than the command line can hold.

6.4.7 About Using Configuration Files
Each record (line) in a configuration file holds one command-line option. For example, a
configuration file might contain the following lines, which set defaults for the FIPS, MODE, and
SQLCHECK options:

FIPS=YES
MODE=ANSI
SQLCHECK=SEMANTICS

Each Oracle Precompiler can have its own system configuration file. The name and location of
the file are language- and system-specific. If the file is not found, you get a warning but the
precompiler continues processing.

Chapter 6
Entering Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 51

There is only one system configuration file for a given language, but you can create any
number of user configuration files. You use the new command-line option CONFIG to specify
the name and location of a particular user configuration file, as follows:

... CONFIG=<filename>

You cannot nest configuration files. Therefore, you cannot specify the CONFIG option in a
configuration file. Also, you cannot specify CONFIG inline.

6.4.8 About Setting Option Values
Many precompiler run-time options have built-in default values, which can be reset in a
configuration file or on the command line. Command-line settings override user configuration
file settings, which override system configuration file settings.

6.5 Scope of Options
A precompilation unit is a file containing host-language code and one or more embedded SQL
statements. The options specified for a given precompilation unit affect only that unit; they have
no effect on other units.

For example, if you specify HOLD_CURSOR=YES and RELEASE_CURSOR=YES for unit A but not unit
B, SQL statements in unit A run with these HOLD_CURSOR and RELEASE_CURSOR values, but SQL
statements in unit B run with the default values. However, the MAXOPENCURSORS setting
that is in effect when you connect to Oracle stays in effect for the life of that connection.

The scope of an inline option is positional, not logical. That is, an inline option affects SQL
statements that follow it in the source file, not in the flow of program logic. An option setting
stays in effect until the end-of-file unless you re-specify the option.

6.6 Quick Reference
Table 6-3 is a quick reference to the precompiler options. The options marked with an asterisk
can be entered inline.

Another handy reference is available online. To see the online display, just enter the
precompiler command without options at your operating system prompt. The display provides
the name, syntax, default value, and purpose of each option.

There are some platform-specific options. For example, on byte-swapped platforms that use
MicroFocus COBOL, the option COMP5 governs the use of certain COMPUTATIONAL items.
Check your system-specific Oracle manuals.

Table 6-3 Precompiler Options Quick Reference

Syntax Default Specifies ...

ASACC={YES|NO} NO carriage control for listing

ASSUME_SQLCODE={YES|NO} NO precompiler presumes that SQLCODE is declared

AUTO_CONNECT={YES|NO} NO automatic logon

CHAR_MAP={VARCHAR2 | CHARZ |
STRING | CHARF} *

CHARZ mapping of character arrays and strings

CHARSET_PICN={NCHAR_CHARSE
T | DB_CHARSET }

NCHAR_
CHARSET

the character set form used by PIC N variables

Chapter 6
Scope of Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 51

Table 6-3 (Cont.) Precompiler Options Quick Reference

Syntax Default Specifies ...

CHARSET_PICX={NCHAR_CHARSE
T | DB_CHARSET }

DB_CHAR
SET

the character set form used by PIC X variables

CINCR 1 CINCR value for connection pool. Allows the
application to set the next increment for physical
connections to be opened to the database, if the
current number of physical connections is less than
CMAX

CLOSE_ON_COMMIT={YES | NO} NO close all cursors on COMMIT

CMAX 100 specifies the maximum number of physical
connections that can be opened for the database

CMIN 2 specifies the minimum number of physical
connections in the connection pool.

CNOWAIT 0 (which
means not
set)

determines if the application must repeatedly try for
a physical connection when all other physical
connections in the pool are busy, and the total
number of physical connections has already
reached its maximum. CNOWAIT Value for
connection pool

CODE={ANSI_C | KR_C | CPP} KR_C type of C code to be generated

COMMON_NAME=block_name * name of FORTRAN COMMON blocks

COMMON_PARSER NO parse using Common SQL Front End

COMP5 YES generate COMP-5 rather than COMP variables

COMP_CHARSET={MULTI_BYTE |
SINGLE_BYTE}

MULTI_BY
TE

the character set type the C/C++ compiler
supports.

CONFIG=filename name of user configuration file

CPOOL NO support connection pooling. Based on this option,
the precompiler generates the appropriate code
that directs SQLLIB to enable or disable the
connection pool feature

CPP_SUFFIX=extension *none* override the default C++ filename extension

CTIMEOUT 0 physical connections that are idle for more than the
specified time (in seconds) are terminated to
maintain an optimum number of open physical
connections

DB2_ARRAY={YES |NO} NO support DB2 array insert/select syntax. Based on
this option, the precompiler activates the additional
array insert/select syntax

DBMS={NATIVE|V7|V8} NATIVE version-specific behavior of Oracle at precompile
time

DECLARE_SECTION NO if YES, DECLARE SECTION is required

DEF_SQLCODE={NO | YES} NO controls whether the Pro*C/C++ precompiler
generates #define's for SQLCODE

DEFINE=symbol * symbol used in conditional precompilation

DURATION={TRANSACTION |
SESSION}

TRANSAC
TION

set pin duration for objects in the cache

DYNAMIC={ANSI | ORACLE} ORACLE specify Oracle or ANSI SQL semantics.

Chapter 6
Quick Reference

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 51

Table 6-3 (Cont.) Precompiler Options Quick Reference

Syntax Default Specifies ...

END_OF_FETCH 1403 end-of-fetch SQLCODE value

ERRORS={YES|NO} * YES whether errors are sent to the terminal

ERRTYPE=filename *none* name of the list file for intype file errors

EVENTS NO support publish-subscribe event notifications

FILE_ID 0 unique numeric identifier for the generated COBOL
file

FIPS={YES|NO}* NO whether ANSI/ISO extensions are flagged

FORMAT={ANSI|TERMINAL} ANSI format of COBOL or FORTRAN input line

Globalization Support_LOCAL={YES|
NO}

YES blank-padding operations to be preformed by
SQLLIB

HEADER=extension *none* name of the listing file for intype file error
messages

HOLD_CURSOR={YES|NO}* NO how cursor cache handles SQL statements

HOST={COBOL|COB74} COBOL COBOL version of input file

IMPLICIT_SVPT NO implicit savepoint before buffered insert

[INAME=]filename name of input file

INCLUDE=path* directory path for INCLUDEd files

INTYPE=filename *none* name of the input file for type information

IRECLEN=integer 80 record length of input file

LINES={YES | NO} NO whether #line directives are generated

LITDELIM={APOST|QUOTE} * QUOTE delimiter for COBOL strings

LNAME=filename name of listing file

LRECLEN=integer 132 record length of listing file

LTYPE={LONG|SHORT|NONE} LONG type of listing

MAXLITERAL=integer * platform-
specific

maximum length of strings

MAXOPENCURSORS=integer * 10 maximum number of cursors cached

MAX_ROW_INSERT 0 maximum number of rows to buffer on insert

MODE={ORACLE|ANSI|ANSI14|
ANSI13}

ORACLE compliance with the ANSI/ISO SQL standard

MULTISUBPROG={YES|NO} YES whether FORTRAN COMMON blocks are
generated

NATIVE_TYPES NO support for native float/double

NESTED={YES | NO} YES if YES, nested programs are supported

NLS_CHAR=(var1, ..., varn) *none* specify multibyte character variables

NLS_LOCAL={YES | NO} NO if YES, use NCHAR semantics of previous
Pro*COBOL releases

OBJECTS={YES | NO} YES Support of object types

OUTLINE NO category in which Outlines are created

OUTLNPREFIX *none* outline name prefix

[ONAME=]filename name of output file

Chapter 6
Quick Reference

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 51

Table 6-3 (Cont.) Precompiler Options Quick Reference

Syntax Default Specifies ...

ORACA={YES|NO}* NO whether the ORACA is used

ORECLEN=integer 80 record length of output file

PAGELEN=integer 66 lines in each page in listing

PARSE={NONE | PARTIAL | FULL} FULL whether Pro*C/C++ parses (with a C parser) the.pc
source

PICN_ENDIAN BIG endianness in PIC N host variables

PICX CHARF datatype of PIC X COBOL variables.

PREFETCH=0..65535 1 speed up queries by pre-fetching a given number of
rows

RELEASE_CURSOR={YES|NO} * NO how cursor cache handles SQL statements

RUNOUTLINE NO create Outlines in the database

SELECT_ERROR={YES|NO}* YES how SELECT errors are handled

SQLCHECK={FULL|SYNTAX|
LIMITED|NONE}*

SYNTAX extent of syntactic and semantic checking

STMT_CACHE 0 size of statement cache

SYS_INCLUDE=pathname none directory where system header files, such as
iostream.h, are found

THREADS={YES | NO} NO indicates a shared server application

TYPE_CODE={ORACLE | ANSI} ORACLE use of Oracle or ANSI type codes for dynamic SQL

UNSAFE_NULL={YES|NO} NO disables the ORA-01405 message

USERID=username/password valid Oracle username and password

UTF16_CHARSET={NCHAR_CHARS
ET | DB_CHARSET}

NCHAR_
CHARSET

specify the character set form used by
UNICODE(UTF16)

VARCHAR={YES|NO} NO recognize implicit VARCHAR group items in
COBOL

VERSION={ANY | LATEST | RECENT}
*

RECENT Which version of an object is to be returned

XREF={YES|NO}* YES cross reference section in listing

6.7 About Using the Precompiler Options
This section is organized for easy reference. It lists the precompiler options alphabetically, and
for each option provides its purpose, syntax, and default value. Usage notes that help you
understand how the option works are also provided. Unless the usage notes say otherwise, the
option can be entered on the command line, inline, or from a configuration file.

6.7.1 ASACC
Purpose

Specifies whether the listing file follows the ASA convention of using the first column in each
line for carriage control.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 51

Syntax

ASACC={YES|NO}

Default

NO

Usage Notes

Cannot be entered inline.

6.7.2 ASSUME_SQLCODE
Purpose

Instructs the Oracle Precompiler to presume that SQLCODE is declared irrespective of
whether it is declared in the Declare Section or of the proper type. ASSUME_SQLCODE=YES
causes Releases 1.6 and later of the Oracle Precompilers to behave similarly to Release 1.5 in
this respect.

Syntax

ASSUME_SQLCODE={YES|NO}

Default

NO

Usage Notes

Cannot be entered inline.

When ASSUME_SQLCODE=NO, SQLCODE is recognized as a status variable if and only if at least one
of the following criteria is satisfied:

• It is declared in a Declare Section with exactly the right datatype.

• The precompiler finds no other status variable.

If the precompiler finds a SQLSTATE declaration (of exactly the right type of course) in a
Declare Section or finds an INCLUDE of the SQLCA, it will not presume SQLCODE is declared.

When ASSUME_SQLCODE=YES, and when SQLSTATE and SQLCA (Pro*FORTRAN only) are
declared as status variables, the precompiler presumes SQLCODE is declared whether it is
declared in a Declare Section or of the proper type. This causes Releases 1.6.7 and later to
behave like Release 1.5 in this regard.

6.7.3 AUTO_CONNECT
Purpose

Specifies whether your program connects automatically to the default user account.

Syntax

AUTO_CONNECT={YES|NO}

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 51

Default

NO

Usage Note

Cannot be entered inline.

When AUTO_CONNECT=YES, as soon as the precompiler encounters an executable SQL
statement, your program tries to log on to Oracle automatically with the userid

<prefix><username>

where prefix is the value of the Oracle initialization parameter OS_AUTHENT_PREFIX (the default
value is null) and username is your operating system user or task name. In this case, you
cannot override the default value for MAXOPENCURORS (10), even if you specify a different
value on the command line.

When AUTO_CONNECT=NO (the default), you must use the CONNECT statement to log on to Oracle.

6.7.4 CHAR_MAP
Purpose

Specifies the default mapping of C host variables of type char or char[n], and pointers to them,
into SQL.

Syntax

CHAR_MAP={VARCHAR2 | CHARZ | STRING | CHARF}

Default

CHARZ

Usage Note

In earlier releases, you had to declare char or char[n] host variables as CHAR, using the SQL
DECLARE statement. The external datatypes VARCHAR2 and CHARZ were the default
character mappings of Oracle Database version 7.

6.7.5 CINCR
Purpose

Allows the application to set the next increment for physical connections to be opened to the
database.

Syntax

CINCR = Range is 1 to (CMAX-CMIN).

Default

1

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 51

Usage Notes

Initially, all physical connections as specified through CMIN are opened to the server.
Subsequently, physical connections are opened only when necessary. Users should set CMIN
to the total number of planned or expected concurrent statements to be run by the application
to get optimum performance. The default value is set to 2.

6.7.6 CLOSE_ON_COMMIT
Purpose

Specifies whether to close cursors on a commit statement.

Syntax

CLOSE_ON_COMMIT={YES | NO}

Default

NO

Usage Notes

Can be used only on the command line or in a configuration file.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and CLOSE_ON_COMMIT=NO.
If the user specifies MODE=ANSI on the command line, then any cursors will be closed on
commit.

When CLOSE_ON_COMMIT=NO (when MODE=ORACLE), issuing a COMMIT or ROLLBACK
will close only cursors that are declared using the FOR UPDATE clause or are referenced in a
CURRENT OF clause. Other cursors that are not affected by the COMMIT or ROLLBACK
statement, remain open, if they are open already. However, when CLOSE_ON_COMMIT=YES
(when MODE=ANSI), issuing a COMMIT or ROLLBACK closes all cursors.

6.7.7 CMAX
Purpose

Specifies the maximum number of physical connections that can be opened for the database.

Syntax

CINCR = Range is 1 to 65535

Default

100

Usage Notes

CMAX value must be at least CMIN+CINCR.After this value is reached, more physical
connections cannot be opened.In a typical application, running 100 concurrent database
operations is more than sufficient. The user can set an appropriate value.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 51

6.7.8 CMIN
Purpose

Specifies the minimum number of physical connections that can be opened for the database.

Syntax

CINCR = Range is 1 to (CMAX-CINCR).

Default

2

Usage Notes

CMAX value must be at least CMIN+CINCR.After this value is reached, more physical
connections cannot be opened.In a typical application, running 100 concurrent database
operations is more than sufficient. The user can set an appropriate value.

6.7.9 CNOWAIT
Purpose

This attribute determines if the application must repeatedly try for a physical connection when
all other physical connections in the pool are busy, and the total number of physical
connections has already reached its maximum.

Syntax

CNOWAIT = Range is 1 to 65535.

Default

0 which means not set.

Usage Notes

If physical connections are not available and no more physical connections can be opened, an
error is thrown when this attribute is set. Otherwise, the call waits until it acquires another
connection. By default, CNOWAIT is not to be set so a thread will wait until it can acquire a free
connection, instead of returning an error.

6.7.10 CODE
Purpose

Specifies the format of C function prototypes generated by the Pro*C/C++ precompiler. (A
function prototype declares a function and the datatypes of its arguments.) The precompiler
generates function prototypes for SQL library routines, so that your C compiler can resolve
external references. The CODE option lets you control the prototyping.

Syntax

CODE={ANSI_C | KR_C | CPP}

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 51

Default

KR_C

Usage Notes

Can be entered on the command line, but not inline.

ANSI C standard X3.159-1989 provides for function prototyping. When CODE=ANSI_C,
Pro*C/C++ generates full function prototypes, which conform to the ANSI C standard. An
example follows:

extern void sqlora(long *, void *);

The precompiler can also generate other ANSI-approved constructs such as the const type
qualifier.

When CODE=KR_C (the default), the precompiler comments out the argument lists of
generated function prototypes, as shown here:

extern void sqlora(/*_ long *, void * _*/);

Specify CODE=KR_C if your C compiler is not compliant with the X3.159 standard.

When CODE=CPP, the precompiler generates C++ compatible code.

6.7.11 COMMON_NAME
Purpose

For Pro*FORTRAN only, the COMMON_NAME option specifies a prefix used to name internal
FORTRAN COMMON blocks. Your host program does not access the COMMON blocks directly. But,
they allow two or more program units in the same precompilation unit to contain SQL
statements.

Syntax

COMMON_NAME=blockname

Default

First five characters in name of input file

Usage Notes

The Pro*FORTRAN Precompiler uses a special program file called a block data subprogram to
establish COMMON blocks for all the SQL variables in an input file. The block data subprogram
defines two COMMON blocks -- one for CHARACTER variables, the other for non-
CHARACTER variables -- and uses DATA statements to initialize the variables.

The format of a block data subprogram follows:

BLOCK DATA <subprogram_name>
variable declarations
COMMON statements
DATA statements
END

Your host program does not access the COMMON blocks directly. But, they allow two or more
program files in the same precompilation file to contain SQL statements.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 51

To name the COMMON blocks, the precompiler uses the name of the input file and the suffixes C,
D, and I. At most, the first five characters of the filename are used. For example, if the name of
the input file is ACCTSPAY, the precompiler names the COMMON blocks ACCTSC, ACCTSD, and
ACCTSI.

The precompiler, however, can give COMMON blocks defined in different output files the same
name, as the following schematic shows:

ACCTSPAY.PFO ===> ACCTSC, ACCTSD, ACCTSI in ACCTSPAY.FOR
ACCTSREC.PFO ===> ACCTSC, ACCTSD, ACCTSI in ACCTSREC.FOR

If you were to link ACCTSPAY and ACCTSREC into an executable program, the linker would see
three, not six, COMMON blocks.

To solve the problem, you can rename the input files, or you can override the default COMMON
block names by specifying COMMON_NAME inline or on the command line as follows:

COMMON_NAME=<block_name>

where block_name is a legal COMMON block name. For example, if you specify
COMMON_NAME=PAY, the precompiler names its COMMON blocks PAYC and PAYI. At most, the first
five characters in block_name are used.

For example, if you specify COMMON_NAME=PAY, the precompiler names its COMMON blocks
PAYC and PAYI. At most, the first 5 characters in block_name are used.

If you specify COMMON_NAME inline, its EXEC ORACLE OPTION statement must precede the
FORTRAN PROGRAM, SUBROUTINE, or FUNCTION statement.

You might want to override the default COMMON block names if they conflict with your user-
defined COMMON block names. However, the preferred practice is to rename the user-defined
COMMON blocks.

COMMON_NAME is not needed if you specify MULTISUBPROG.

6.7.12 COMMON_PARSER
Purpose

Specifies that the SQL99 syntax for SELECT, INSERT, DELETE, UPDATE and body of the
cursor in a DECLARE CURSOR statement will be supported.

Syntax

COMMON_PARSER={YES | NO}

Default

NO

Usage Notes

Can be entered in the command line.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 51

6.7.13 COMP_CHARSET
Purpose

Indicates to the Pro*C/C++ Precompiler whether multibyte character sets are (or are not)
supported by the compiler to be used. It is intended for use by developers working in a
multibyte client-side environment (for example, when NLS_LANG is set to a multibyte
character set).

Syntax

COMP_CHARSET={MULTI_BYTE | SINGLE_BYTE}

Default

MULTI_BYTE

Usage Notes

Can be entered only on the command line.

With COMP_CHARSET=MULTI_BYTE (default), Pro*C/C++ generates C code that is to be
compiled by a compiler that supports multibyte character sets.

With COMP_CHARSET=SINGLE_BYTE, Pro*C/C++ generates C code for single-byte
compilers that addresses a complication that may arise from the ASCII equivalent of a
backslash (\) character in the second byte of a double-byte character in a multibyte string. In
this case, the backslash (\) character is "escaped" with another backslash character preceding
it.

Note

The need for this feature is common when developing in a Shift-JIS environment with
older C compilers.

This option has no effect when NLS_LANG is set to a single-byte character set.

6.7.14 COMP_CHARSET
Purpose

Indicates to the Pro*C/C++ Precompiler whether multibyte character sets are (or are not)
supported by the compiler to be used. It is intended for use by developers working in a
multibyte client-side environment (for example, when NLS_LANG is set to a multibyte
character set).

Syntax

COMP_CHARSET={MULTI_BYTE | SINGLE_BYTE}

Default

MULTI_BYTE

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 51

Usage Notes

Can be entered only on the command line.

With COMP_CHARSET=MULTI_BYTE (default), Pro*C/C++ generates C code that is to be
compiled by a compiler that supports multibyte character sets.

With COMP_CHARSET=SINGLE_BYTE, Pro*C/C++ generates C code for single-byte
compilers that addresses a complication that may arise from the ASCII equivalent of a
backslash (\) character in the second byte of a double-byte character in a multibyte string. In
this case, the backslash (\) character is "escaped" with another backslash character preceding
it.

Note

The need for this feature is common when developing in a Shift-JIS environment with
older C compilers.

This option has no effect when NLS_LANG is set to a single-byte character set.

6.7.15 CONFIG
Purpose

Specifies the name of a user configuration file.

Syntax

CONFIG=filename

Default

None

Usage Notes

Can be entered only on the command line.

The Oracle Precompilers can use a configuration file containing preset command-line options.
By default, a text file called the system configuration file is used. However, you can specify any
of several alternative files, called user configuration files.

You cannot nest configuration files. Therefore, you cannot specify the option CONFIG in a
configuration file.

6.7.16 CPOOL
Purpose

Based on this option, the precompiler generates the appropriate code that directs SQLLIB to
enable or disable the connection pool feature.

Syntax

CPOOL = {YES|NO}

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 51

Default

NO

Usage Notes

If this option is set to NO, other connection pooling options will be ignored by the precompiler.

6.7.17 CPP_SUFFIX
Purpose

The CPP_SUFFIX option provides the ability to specify the filename extension that the
precompiler appends to the C++ output file generated when the CODE=CPP option is
specified.

Syntax

CPP_SUFFIX=filename_extension

Default

System-specific.

Usage Notes

Most C compilers expect a default extension of ".c" for their input files. Different C++ compilers,
however, can expect different filename extensions. The CPP_SUFFIX option provides the
ability to specify the filename extension that the precompiler generates. The value of this
option is a string, without the quotes or the period. For example, CPP_SUFFIX=cc, or
CPP_SUFFIX=C.

6.7.18 CTIMEOUT
Purpose

Physical connections that are idle for more than the specified time (in seconds) are terminated
to maintain an optimum number of open physical connections

Syntax

CTIMEOUT = Range is 1 to 65535.

Default

0 which means not set.

Usage Notes

Physical connections will not be closed until the connection pool is terminated.Creating a new
physical connection will cost a round trip to the server.

6.7.19 DB2_ARRAY
Purpose

Based on this option, the precompiler activates the additional array insert/select syntax.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 51

Syntax

DB2_ARRAY={YES |NO}

Default

NO

Usage Notes

If this option is set to NO, the Oracle precompiler syntax is supported, otherwise the DB2
insert/select array syntax is supported.

6.7.20 DBMS
Purpose

Specifies whether Oracle follows the semantic and syntactic rules of Oracle9i, Oracle8i,
Oracle8, Oracle7, or the native version of Oracle (that is, the version to which your application
is connected).

Syntax

DBMS={NATIVE|V7|V8}

Default

NATIVE

Usage Notes

Cannot be entered inline.

Using the DBMS option, you can control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the native
version of Oracle.

When DBMS=V8, or DBMS=V7, Oracle follows the respective rules for Oracle9i (which remain
the same as for Oracle7, Oracle8, and Oracle8i).

Table 6-4 shows how the compatible DBMS and MODE settings interact. All other combinations
are incompatible or not recommended.

Table 6-4 Compatible DBMS and MODE Settings

Situation DBMS=V7/V8
MODE=ANSI

DBMS=V7/V8 MODE=ORACLE

"no data found" warning code +100 +1403

fetch nulls without using indicator
variables

error -1405 error -1405

fetch truncated values without using
indicator variables

no error but
SQLWARN(2) is set

no error but SQLWARN(2) is set

cursors closed by COMMIT or
ROLLBACK

all explicit CURRENT OF only

open an already OPENed cursor error -2117 no error

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 51

Table 6-4 (Cont.) Compatible DBMS and MODE Settings

Situation DBMS=V7/V8
MODE=ANSI

DBMS=V7/V8 MODE=ORACLE

close an already CLOSEd cursor error -2114 no error

SQL group function ignores nulls no warning no warning

when SQL group function in multirow
query is called

FETCH time FETCH time

declare SQLCA structure optional required

declare SQLCODE or SQLSTATE status
variable

required optional but Oracle ignores

default external datatype of character host
variables external datatype used for
CHAR in TYPE and VAR statements

CHARF VARCHAR2

default external datatype of string literals
in SQL statements

CHARF CHARF

default internal datatype of CHAR
variables in SQL statements

CHAR CHAR

default external datatype of CHAR
variables in PL/SQL blocks

CHARF CHARF

default external datatype of value function
USER returns

CHARF CHARF

external datatype code DESCRIBE
returns (dynamic SQL Method 4)

96 96

integrity constraints enabled enabled

PCTINCREASE for rollback segments not allowed not allowed

MAXEXTENTS storage parameters not allowed not allowed

6.7.21 DEF_SQLCODE
Purpose

Controls whether the Pro*C/C++ precompiler generates #define's for SQLCODE.

Syntax

DEF_SQLCODE={NO | YES}

Default

NO

Usage Notes

Can be used only on the command line or in a configuration file.

When DEF_SQLCODE=YES, the precompiler defines SQLCODE in the generated source
code as follows:

#define SQLCODE sqlca.sqlcode

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 51

You can then use SQLCODE to check the results of executable SQL statement. The
DEF_SQLCODE option is supplied for compliance with standards that require the use of
SQLCODE.

In addition, you must also include the SQLCA using one of the following entries in your source
code:

#include <sqlca.h>

or

EXEC SQL INCLUDE SQLCA;

If the SQLCA is not included, using this option causes a precompile time error.

6.7.22 DEFINE
Purpose

Specifies a user-defined symbol that is used to include or exclude portions of source code
during a conditional precompilation.

Syntax

DEFINE=symbol

Default

None

Usage Notes

If you enter DEFINE inline, the EXEC ORACLE statement takes the following form:

EXEC ORACLE DEFINE <symbol>;

6.7.23 DURATION
Purpose

Sets the pin duration used by subsequent EXEC SQL OBJECT CREATE and EXEC SQL
OBJECT DEREF statements. Objects in the cache are implicitly unpinned at the end of the
duration.

Syntax

DURATION={TRANSACTION | SESSION}

Default

TRANSACTION

Usage Notes

Can be entered inline by use of the EXEC ORACLE OPTION statement.

TRANSACTION means that objects are implicitly unpinned when the transaction completes.

SESSION means that objects are implicitly unpinned when the connection is terminated.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 51

6.7.24 DYNAMIC
Purpose

This micro option specifies the descriptor behavior in dynamic SQL Method 4. The setting of
MODE determines the setting of DYNAMIC.

Syntax

DYNAMIC={ORACLE | ANSI}

Default

ORACLE

Usage Notes

Cannot be entered inline by use of the EXEC ORACLE OPTION statement.

6.7.25 ERRORS
Purpose

Specifies whether precompiler error messages are sent to the terminal and listing file or only to
the listing file.

Syntax

ERRORS={YES|NO}

Default

YES

Usage Notes

When ERRORS=YES, error messages are sent to the terminal and listing file.

When ERRORS=NO, error messages are sent only to the listing file.

6.7.26 ERRTYPE
Purpose

Specifies an output file in which errors generated in processing type files are written. If omitted,
errors are output to the screen.

Syntax

ERRTYPE=filename

Default

None

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 51

Usage Notes

Only one error file will be produced. If multiple values are entered, the last one is used by the
precompiler.

6.7.27 EVENTS
Purpose

Specifies that the application is interested in registering for and receiving notifications.

Syntax

EVENTS={YES | NO}

Default

NO

Usage Notes

Can only be entered in the command line.

6.7.28 FIPS
Purpose

Specifies whether extensions to ANSI/ISO SQL are flagged (by the FIPS Flagger). An
extension is any SQL element that violates ANSI/ISO format or syntax rules, except privilege
enforcement rules.

Syntax

FIPS={YES|NO}

Default

NO

Usage Notes

When FIPS=YES, the FIPS Flagger issues warning (not error) messages if you use an Oracle
extension to the ANSI/ISO embedded SQL standard (SQL92) or use a SQL92 feature in a
nonconforming manner.

The following extensions to ANSI/ISO SQL are flagged at precompile time:

• Array interface including the FOR clause

• SQLCA, ORACA, and SQLDA data structures

• Dynamic SQL including the DESCRIBE statement

• Embedded PL/SQL blocks

• Automatic datatype conversion

• DATE, COMP-3 (Pro*COBOL only), NUMBER, RAW, LONG RAW, VARRAW, ROWID, and VARCHAR
datatypes

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 51

• ORACLE OPTION statement for specifying run-time options

• EXEC IAF and EXEC TOOLS statements in user exits

• CONNECT statement

• TYPE and VAR datatype equivalencing statements

• AT db_name clause

• DECLARE...DATABASE, ...STATEMENT, and ...TABLE statements

• SQLWARNING condition in WHENEVER statement

• DO and STOP actions in WHENEVER statement

• COMMENT and FORCE TRANSACTION clauses in COMMIT statement

• FORCE TRANSACTION and TO SAVEPOINT clauses in ROLLBACK statement

• RELEASE parameter in COMMIT and ROLLBACK statements

• Optional colon-prefixing of WHENEVER...DO labels and of host variables in the INTO clause

6.7.29 FORMAT
Purpose

Specifies the format of COBOL or FORTRAN input lines.

Syntax

FORMAT={ANSI|TERMINAL}

Default

ANSI

Usage Notes

Cannot be entered inline.

The format of input lines is system-dependent. Check your system-specific Oracle manuals.

When FORMAT=ANSI, the format of input lines conforms as much as possible to the current ANSI
standard.

6.7.30 Globalization Support_LOCAL
Purpose

For Pro*COBOL only, the Globalization Support_LOCAL option determines whether
Globalization Support character conversions are performed by the precompiler run-time library
or by the Oracle Server.

Syntax

Globalization Support_LOCAL={YES|NO}

Default

NO

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 51

Usage Notes

Cannot be entered inline.

When Globalization Support_LOCAL=YES, the run-time library (SQLLIB) locally performs
blank-padding and blank-stripping for host variables that have multibyte Globalization Support
datatypes.

When Globalization Support_LOCAL=NO, blank-padding and blank-stripping operations are not
performed locally for host variables that have multibyte Globalization Support datatypes.

Oracle does not perform any blank-padding or blank-stripping of Globalization Support
variables. When Globalization Support_LOCAL=NO, the Oracle Server returns an error upon
executing a SQL statement that uses multibyte Globalization Support data.

6.7.31 HEADER
Purpose

Permits precompiled header files. Specifies the file extension for precompiled header files.

Syntax

HEADER=extension

Default

NONE

Usage Notes

When precompiling a header file, this option is required and is used to specify the file
extension for the output file that is created by precompiling that header file.

When precompiling an ordinary Pro*C/C++ program this option is optional. When given, it
enables the use of the precompiled header mechanism during the precompilation of that
Pro*C/C++ program.

In both cases, this option also specifies the file extension to use when processing a #include
directive. If an #include file exists with the specified extension, Pro*C/C++ assumes the file is a
precompiled header file previously generated by Pro*C/C++. Pro*C/C++ will then instantiate
the data from that file rather than process the #include directive and precompile the included
header file.

This option is only allowed on the command line or in a configuration file. It is not allowed
inline. When using this option, specify the file extension only. Do not include any file
separators. For example, do not include a period '.' in the extension.

6.7.32 HOLD_CURSOR
Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the cursor
cache.

Syntax

HOLD_CURSOR={YES|NO}

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 51

Default

NO

Usage Notes

You can use HOLD_CURSOR to improve the performance of your program. For more information,
refer to Performance Tuning

When a SQL data manipulation statement is executed, its associated cursor is linked to an
entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle private SQL
area, which stores information needed to process the statement. HOLD_CURSOR controls what
happens to the link between the cursor and cursor cache.

When HOLD_CURSOR=NO, after Oracle executes the SQL statement and the cursor is closed, the
precompiler marks the link as reusable. The link is reused as soon as the cursor cache entry to
which it points is needed for another SQL statement. This frees memory allocated to the
private SQL area and releases parse locks.

When HOLD_CURSOR=YES and RELEASE_CURSOR=NO, the link is maintained; the precompiler does
not reuse it. This is useful for SQL statements that are executed often because it speeds up
subsequent executions. There is no need to reparse the statement or allocate memory for an
Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSOR before executing the SQL statement. For
inline use with explicit cursors, set HOLD_CURSOR before opening the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES and that HOLD_CURSOR=NO
overrides RELEASE_CURSOR=NO. For information showing how these two options interact, refer to
Table C-1.

6.7.33 HOST
Purpose

Specifies the host language to be used.

Syntax

HOST={COB74|COBOL}

Default

COBOL

Usage Notes

Cannot be entered inline.

COB74 refers to the 1974 version of ANSI-approved COBOL. COBOL refers to 1985 version.
Other values might be available on your platform.

6.7.34 IMPLICIT_SVPT
Purpose

Controls whether an implicit savepoint is taken before the start of a new batched insert.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 51

Syntax

implicit_svpt={YES|NO}

Default

NO

Usage Notes

If implict_svpt=yes, a savepoint is taken before the start of a new batch of rows. If an error
occurs on the insert, an implicit "rollback to savepoint" is executed. This option exists for DB/2
compatibility, the obvious downside being the extra round-trip.

If implict_svpt=no, there is no implicit savepoint taken. If an error occurs on the buffered insert,
then it is reported back to the application, but no rollback is executed.

6.7.35 INAME
Purpose

Specifies the name of the input file.

Syntax

INAME=filename

Default

None

Usage Notes

Cannot be entered inline.

When specifying the name of your input file on the command line, the keyword INAME is
optional. For example, in Pro*COBOL, you can specify myprog.pco instead of
INAME=myprog.pco.

The precompiler assumes the standard input file extension (refer to Table 6-5). So, you need
not use a file extension when specifying INAME unless the extension is nonstandard. For
example, in Pro*FORTRAN, you can specify myprog instead of myprog.pfo.

Table 6-5 Input File Extensions

Host Language Standard File Extension

COBOL pco

FORTRAN pfo

For Pro*COBOL only, if you use a nonstandard input file extension when specifying INAME, you
must also specify HOST.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 51

6.7.36 INCLUDE
Purpose

Specifies a directory path for EXEC SQL INCLUDE files. It only applies to operating systems
that use directories.

Syntax

INCLUDE=path

Default

Current directory

Usage Notes

Typically, you use INCLUDE to specify a directory path for the SQLCA and ORACA files. The
precompiler searches first in the current directory, then in the directory specified by INCLUDE,
and finally in a directory for standard INCLUDE files. Hence, you need not specify a directory
path for standard files such as the SQLCA and ORACA.

You must still use INCLUDE to specify a directory path for nonstandard files unless they are
stored in the current directory. You can specify more than one path on the command line, as
follows:

... INCLUDE=<path1> INCLUDE=<path2> ...

The precompiler searches first in the current directory, then in the directory named by path1,
then in the directory named by path2, and finally in the directory for standard INCLUDE files.

Remember, the precompiler searches for a file in the current directory first--even if you specify
a directory path. So, if the file you want to INCLUDE resides in another directory, make sure no
file with the same name resides in the current directory.

The syntax for specifying a directory path is system-specific. Follow the conventions of your
operating system.

6.7.37 IRECLEN
Purpose

Specifies the record length of the input file.

Syntax

IRECLEN=integer

Default

80

Usage Notes

Cannot be entered inline.

The value you specify for IRECLEN should not exceed the value of ORECLEN. The maximum
value allowed is system-dependent.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 51

6.7.38 INTYPE
Purpose

Specifies one or more OTT-generated type files (only needed if Object types are used in the
application).

Syntax

INTYPE=(file_1,file_2,...,file_n)

Default

None

Usage Notes

There will be one type file for each Object type in the Pro*C/C++ code.

6.7.39 LINES
Purpose

Specifies whether the Pro*C/C++ precompiler adds #line preprocessor directives to its output
file.

Syntax

LINES={YES | NO}

Default

NO

Usage Notes

Can be entered only on the command line.

The LINES option helps with debugging.

When LINES=YES, the Pro*C/C++ precompiler adds #line preprocessor directives to its output
file.

Normally, your C compiler increments its line count after each input line is processed. The
#line directives force the compiler to reset its input line counter so that lines of precompiler-
generated code are not counted. Moreover, when the name of the input file changes, the next
#line directive specifies the new filename.

The C compiler uses the line numbers and filenames to show the location of errors. Thus, error
messages issued by the C compiler always refer to your original source files, not the modified
(precompiled) source file. This also enables stepping through the original source code using
most debuggers.

When LINES=NO (the default), the precompiler adds no #line directives to its output file.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 51

Note

The Pro*C/C++ precompiler does not support the #line directive. You cannot directly
code #line directives in the precompiler source. But you can still use the LINES=
option to have the precompiler insert #line directives for you.

6.7.40 LITDELIM
Purpose

For Pro*COBOL only, the LITDELIM option specifies the delimiter for string constants and
literals.

Syntax

LITDELIM={APOST|QUOTE}

Default

QUOTE

Usage Notes

When LITDELIM=APOST, the precompiler uses apostrophes when generating COBOL code. If
you specify LITDELIM=QUOTE, quotation marks are used, as in

CALL "SQLROL" USING SQL-TMP0.

In SQL statements, you must use quotation marks to delimit identifiers containing special or
lowercase characters, as in

EXEC SQL CREATE TABLE "Emp2" END-EXEC.

but you must use apostrophes to delimit string constants, as in

EXEC SQL SELECT ENAME FROM EMP WHERE JOB = 'CLERK' END-EXEC.

Regardless of which delimiter is used in the Pro*COBOL source file, the precompiler generates
the delimiter specified by the LITDELIM value.

6.7.41 LNAME
Purpose

Specifies a nondefault name for the listing file.

Syntax

LNAME=filename

Default

input.LIS, where input is the base name of the input file.

Usage Notes

Cannot be entered inline.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 51

By default, the listing file is written to the current directory.

6.7.42 LRECLEN
Purpose

Specifies the record length of the listing file.

Syntax

LRECLEN=integer

Default

132

Usage Notes

Cannot be entered inline.

The value of LRECLEN can range from 80 through 255. If you specify a value the range, 80 is
used instead. If you specify a value earlier the range, 255 is used instead. LRECLEN should
exceed IRECLEN by at least 8 to allow for the insertion of line numbers.

6.7.43 LTYPE
Purpose

Specifies the listing type.

Syntax

LTYPE={LONG|SHORT|NONE}

Default

LONG

Usage Notes

Cannot be entered inline.

When LTYPE=LONG, input lines appear in the listing file. When LTYPE=SHORT, input lines do not
appear in the listing file. When LTYPE=NONE, no listing file is created.

6.7.44 MAXLITERAL
Purpose

Specifies the maximum length of string literals generated by the precompiler so that compiler
limits are not exceeded. For example, if your compiler cannot handle string literals longer than
132 characters, you can specify MAXLITERAL=132 on the command line.

Syntax

MAXLITERAL=integer

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 51

Default

The default is precompiler-specific as shown here:

Precompiler Default

Pro*COBOL 256

Pro*FORTRAN 1000

Usage Notes

The maximum value of MAXLITERAL is compiler-dependent. The default value is language-
dependent, but you might have to specify a lower value. For example, some COBOL compilers
cannot handle string literals longer than 132 characters, so you would specify
MAXLITERAL=132.

Strings that exceed the length specified by MAXLITERAL are divided during precompilation, then
recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value just once, and the EXEC
ORACLE statement must precede the first EXEC SQL statement. Otherwise, the precompiler
issues a warning message, ignores the extra or misplaced EXEC ORACLE statement, and
continues processing.

6.7.45 MAXOPENCURSORS
Purpose

Specifies the number of concurrently open cursors that the precompiler tries to keep cached.

Syntax

MAXOPENCURSORS=integer

Default

10

Usage Notes

You can use MAXOPENCURSORS to improve the performance of your program. For more
information, refer to Performance Tuning

When precompiling separately, use MAXOPENCURSORS as described in "Separate
Precompilations".

MAXOPENCURSORS specifies the initial size of the SQLLIB cursor cache. If a new cursor is
needed, and there are no free cache entries, Oracle tries to reuse an entry. Its success
depends on the values of HOLD_CURSOR and RELEASE_CURSOR, and, for explicit cursors,
on the status of the cursor itself. Oracle allocates an additional cache entry if it cannot find one
to reuse. If necessary, Oracle keeps allocating additional cache entries until it runs out of
memory or reaches the limit set by OPEN_CURSORS. To avoid a "maximum open cursors
exceeded" Oracle error, MAXOPENCURSORS must be lower than OPEN_CURSORS by at
least 6.

As your program's need for concurrently open cursors grows, you might want to re-specify
MAXOPENCURSORS to match the need. A value of 45 to 50 is not uncommon, but remember

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 51

that each cursor requires another private SQL area in the user process memory space. The
default value of 10 is adequate for most programs.

6.7.46 MAX_ROW_INSERT
Purpose

Controls the number of rows that need to be buffered before executing the INSERT statement.

Syntax

max_row_insert={number of rows to be buffered}

Default

0

Usage Notes

Any number greater than zero enables buffered insert feature and buffers that many rows
before executing the INSERT statement.

6.7.47 MODE
Purpose

Specifies whether your program observes Oracle practices or complies with the current ANSI
SQL standard.

Syntax

MODE={ANSI|ISO|ANSI14|ISO14|ANSI13|ISO13|ORACLE}

Default

ORACLE

Usage Notes

Cannot be entered inline.

The following pairs of MODE values are equivalent: ANSI and ISO, ANSI14 and ISO14, ANSI13
and ISO13.

When MODE=ORACLE (the default), your embedded SQL program observes Oracle practices.

When MODE={ANSI14|ANSI13}, your program complies closely with the current ANSI SQL
standard.

When MODE=ANSI, your program complies fully with the ANSI standard and the following
changes go into effect:

• CHAR column values, USER pseudocolumn values, character host values, and quoted
literals are treated like ANSI fixed-length character strings. And, ANSI-compliant blank-
padding semantics are used when you assign, compare, INSERT, UPDATE, SELECT, or FETCH
such values.

• Issuing a COMMIT or ROLLBACK closes all explicit cursors. (When MODE={ANSI13|ORACLE}, a
commit or rollback closes only cursors referenced in a CURRENT OF clause.)

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 51

• You cannot OPEN a cursor that is already open or CLOSE a cursor that is already closed.
(When MODE=ORACLE, you can reOPEN an open cursor to avoid reparsing.)

• The "no data found" Oracle warning code returned to SQLCODE becomes +100 instead of
+1403. The error message text does not change.

• No error message is issued if Oracle assigns a truncated column value to an output host
variable.

When MODE={ANSI|ANSI14}, a 4-byte integer variable named SQLCODE (SQLCOD in
FORTRAN) or a 5-byte character variable named SQLSTATE (SQLSTA in FORTRAN) must be
declared. For more information, refer to "Error Handling Alternatives".

Table 6-4 shows how the MODE and DBMS settings interact. Other combinations are
incompatible or are not recommended.

6.7.48 MULTISUBPROG
Purpose

For Pro*FORTRAN only, the MULTISUBPROG option specifies whether the Pro*FORTRAN
precompiler generates COMMON statements and BLOCK DATA subprograms.

Note

This option allows Pro*FORTRAN release 1.3 applications to migrate to later releases.
You can ignore the MUTISUBPROG option if you are not migrating Pro*FORTRAN
release 1.3 source code.

Syntax

MULTISUBPROG={YES|NO}

Default

YES

Usage Notes

Cannot be entered inline.

When MULTISUBPROG=YES, the precompiler generates COMMON statements and BLOCK DATA
subprograms. Your host program does not access the COMMON blocks directly, but it allows two
or more program units in the same precompilation unit to contain SQL statements.

However, the precompiler can give COMMON blocks defined in different output files the same
name. If you link the files into an executable program, you get a link-time or run-time error. To
solve this problem, you can rename the input files or override the default COMMON block
names by specifying the option COMMON_NAME. To avoid the problem, specify MULTISUBPROG=NO.

Specify MULTISUBPROG=NO if your Pro*FORTRAN source code has only a single subprogram in
each source file (this was the restriction in release 1.3). When MULTISUBPROG=NO, the
COMMON_BLOCK option is ignored and the precompiler generates no COMMON statements or BLOCK
DATA subprograms. Every program unit that contains executable SQL statements must have a
Declare Section. Otherwise, you get a precompilation error. For input files that contain more
than one embedded SQL program unit, the precompiler generates the same declarations in
each unit.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 51

6.7.49 NATIVE_TYPES
Purpose

Support for native float/double.

Syntax

NATIVE_TYPES = {YES|NO}

Default

NO

Usage Notes

The native float and native double datatypes represent the single-precision and double-
precision floating point values. They are represented natively, that is, in the host system's
floating point format.

6.7.50 NLS_CHAR
Purpose

Specifies which C host character variables are treated by the precompiler as multibyte
character variables.

Syntax

NLS_CHAR=varname or NLS_CHAR=(var_1,var_2,...,var_n)

Default

None.

Usage Notes

Can be entered only on the command line, or in a configuration file.

This option provides the ability to specify at precompile time a list of the names of one or more
host variables that the precompiler must treat as multibyte character variables. You can specify
only C char variables or Pro*C/C++ VARCHARs using this option.

If you specify in the option list a variable that is not declared in your program, then the
precompiler generates no error.

6.7.51 NLS_LOCAL
Purpose

Determines whether multibyte character set conversions are performed by the precompiler run-
time library, SQLLIB, or by the database server.

Syntax

NLS_LOCAL={NO | YES}

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 51

Default

NO

Usage Notes

When set to YES, local multibyte support is provided by Pro*C/C++ and the SQLLIB library.
The option NLS_CHAR must be used to indicate which C host variables are multibyte.

When set to NO, Pro*C/C++ will use the database server support for multibyte objects. Set
NLS_LOCAL to NO for all new applications.

Environment variable NLS_NCHAR must be set to a valid fixed-width National Character Set.
Variable-width National Character Sets are not supported.

Can be entered only on the command line, or in a configuration file.

6.7.52 OBJECTS
Purpose

Requests support for object types.

Syntax

OBJECTS={YES | NO}

Default

YES

Usage Notes

Can only be entered in the command line.

6.7.53 ONAME
Purpose

Specifies the name of the output file.

Syntax

ONAME=filename

Default

System-dependent

Usage Notes

Cannot be entered inline.

Use this option to specify the name of the output file, where the name differs from that of the
input file. For example, if you issue

procob INAME=my_test

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 51

the default output filename is my_test.cob. If you want the output filename to be
my_test_1.cob, issue the command

procob INAME=my_test ONAME=my_test_1.cob

Note that you should add the .cob extension to files specified using ONAME. There is no
default extension with the ONAME option.

Oracle recommends that you not let the output filename default, but rather name it explicitly
using ONAME.

6.7.54 ORACA
Purpose

Specifies whether a program can use the Oracle Communications Area (ORACA).

Syntax

ORACA={YES|NO}

Default

NO

Usage Notes

When ORACA=YES, you must place the INCLUDE ORACA statement in your program.

6.7.55 ORECLEN
Purpose

Specifies the record length of the output file.

Syntax

ORECLEN=integer

Default

80

Usage Notes

Cannot be entered inline.

The value you specify for ORECLEN should equal or exceed the value of IRECLEN. The
maximum value allowed is system-dependent.

6.7.56 OUTLINE
Purpose

Indicates that the outline SQL file must be generated for the SQL statements.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 51

Syntax

outline={yes | no | category_name}

Default

no

Usage Notes

The outline SQL file should be in the DEFAULT category if the value is yes and the generated
outline format is

DEFAULT_<filename>_<filetype>_<sequence_no>

If the category name is mentioned, then the SQL file should be generated in the category
mentioned. The generated outline format for this is

<category_name>_<filename>_<filetype>_<sequence_no>

The outline SQL file is not generated if the value is no.

Semantic check should be full when this option is turned on, which means option sqlcheck=full/
semantics. If sqlcheck=syntax/limited/none, then error will be generated.

6.7.57 OUTLNPREFIX
Purpose

Controls the generation of the outline names.

Syntax

outlnprefix={none | prefix_name}

Default

no

Usage Notes

If outlnprefix=prefix_name, then the outline format

<category_name>_<filename>_<filetype>

is replaced with <prefix_name> for the outline names.

If the length of the outline name exceeds 30 bytes, then this option is helpful for the user who
can just specify the prefix name.

If outlnprefix=none, then the outline names are generated by the system. The generated format
is

<category_name>_<filename>_<filetype>_<sequence_no>

Semantic check should be full when this option is turned on, which means option sqlcheck=full/
semantics. If sqlcheck=syntax/limited/none, or outline=false, or both, then an error will be
generated.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 51

6.7.58 PAGELEN
Purpose

Specifies the number of lines in each physical page of the listing file.

Syntax

PAGELEN=integer

Default

66

Usage Notes

Cannot be entered inline.

The maximum value allowed is system-dependent.

6.7.59 PARSE
Purpose

Specifies the way that the Pro*C/C++ precompiler parses the source file.

Syntax

PARSE={FULL | PARTIAL | NONE}

Default

FULL

Usage Notes

To generate C++ compatible code, the PARSE option must be either NONE or PARTIAL.

If PARSE=NONE or PARSE=PARTIAL, all host variables must be declared inside a Declare
Section.

The variable SQLCODE must also be declared inside a declare section, or it cannot be relied
on to detect errors. Check the default value of PARSE for your platform.

If PARSE=FULL, the C parser is used, and it does not understand C++ constructs, such as
classes, in your code.

With PARSE=FULL or PARSE=PARTIAL Pro*C/C++ fully supports C preprocessor directives,
such as #define, #ifdef, and so on. However, with PARSE=NONE conditional preprocessing is
supported by EXEC ORACLE statements.

Note

Some platforms have the default value of PARSE as other than FULL. See your
system-dependent documentation.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 51

6.7.60 PREFETCH
Purpose

Use this option to speed up queries by pre-fetching several rows.

Syntax

PREFETCH=integer

Default

1

Usage Notes

Can be used in a configuration file or on the command-line. The value of the integer is used for
execution of all queries using explicit cursors, subject to the rules of precedence.

When used inline it must placed before OPEN statements with explicit cursors. Then the
number of rows pre-fetched when that OPEN is done is determined by the last inline
PREFETCH option in effect.

The value range allowed is 0.. 65535.

6.7.61 RELEASE_CURSOR
Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the cursor
cache.

Syntax

RELEASE_CURSOR={YES|NO}

Default

NO

Usage Notes

You can use RELEASE_CURSOR to improve the performance of your program. For more
information, refer to Performance Tuning.

When a SQL data manipulation statement is executed, its associated cursor is linked to an
entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle private SQL
area, which stores information needed to process the statement. RELEASE_CURSOR controls
what happens to the link between the cursor cache and private SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the cursor is closed,
the precompiler immediately removes the link. This frees memory allocated to the private SQL
area and releases parse locks. To make sure that associated resources are freed when you
CLOSE a cursor, you must specify RELEASE_CURSOR=YES.

When RELEASE_CURSOR=NO and HOLD_CURSOR=YES, the link is maintained. The precompiler does
not reuse the link unless the number of open cursors exceeds the value of
MAXOPENCURSORS. This is useful for SQL statements that are executed often because it

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 51

speeds up subsequent executions. There is no need to reparse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before executing the SQL statement.
For inline use with explicit cursors, set RELEASE_CURSOR before opening the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES and that HOLD_CURSOR=NO overrides
RELEASE_CURSOR=NO. For information showing how these two options interact, refer to Table C-1

6.7.62 RUNOUTLINE
Purpose

Provides the developer with the option of executing "create outline" statements either by using
precompiler or by the developer manually at a later time.

Syntax

runoutline={yes | no}

Default

no

Usage Notes

If runoutline=yes, then the generated 'create outline' statements are executed by the
precompiler/translator at the end of a successful precompilation.

The outline option should be set to true or category_name when runoutline is used. Semantic
check should be full when this option is turned on, which means option sqlcheck=full/
semantics. If sqlcheck=syntax/limited/none, then error will be generated.

6.7.63 SELECT_ERROR
Purpose

Specifies whether your program generates an error when a single-row SELECT statement
returns more than one row or more rows than a host array can accommodate.

Syntax

SELECT_ERROR={YES|NO}

Default

YES

Usage Notes

When SELECT_ERROR=YES, an error is generated if a single-row select returns too many
rows or an array select returns more rows than the host array can accommodate.

When SELECT_ERROR=NO, no error is generated when a single-row select returns too many
rows or when an array select returns more rows than the host array can accommodate.

Whether you specify YES or NO, a random row is selected from the table. To ensure a specific
ordering of rows, use the ORDER BY clause in your SELECT statement. When
SELECT_ERROR=NO and you use ORDER BY, Oracle returns the first row, or the first n rows if you

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 51

are selecting into an array. When SELECT_ERROR=YES, whether you use ORDER BY, an error is
generated if too many rows are returned.

6.7.64 SQLCHECK
Purpose

Specifies the type and extent of syntactic and semantic checking.

Syntax

SQLCHECK={SEMANTICS|FULL|SYNTAX|LIMITED|NONE}

Default

SYNTAX

Usage Notes

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and LIMITED.

The Oracle Precompilers can help you debug a program by checking the syntax and semantics
of embedded SQL statements and PL/SQL blocks. Any errors found are reported at
precompile time.

You control the level of checking by entering the SQLCHECK option inline and on the
command line, inline and on the command line. However, the level of checking you specify
inline cannot be higher than the level you specify (or accept by default) on the command line.
For example, if you specify SQLCHECK=NONE on the command line, you cannot specify
SQLCHECK=SYNTAX inline.

If SQLCHECK=SYNTAX|SEMANTICS, the precompiler generates an error when PL/SQL reserved
words are used in SQL statements, even though the SQL statements are not themselves PL/
SQL. If a PL/SQL reserved word must be used as an identifier, you can enclose it in double-
quotes.

When SQLCHECK=SEMANTICS, the precompiler checks the syntax and semantics of

• Data manipulation statements such as INSERT and UPDATE

• PL/SQL blocks

However, the precompiler checks only the syntax of remote data manipulation statements
(those using the AT db_name clause).

The precompiler gets the information for a semantic check from embedded DECLARE TABLE
statements or, if you specify the option USERID, by connecting to Oracle and accessing the data
dictionary. You need not connect to Oracle if every table referenced in a data manipulation
statement or PL/SQL block is defined in a DECLARE TABLE statement.

If you connect to Oracle but some information cannot be found in the data dictionary, you must
use DECLARE TABLE statements to supply the missing information. During precompilation, a
DECLARE TABLE definition overrides a data dictionary definition if they conflict.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you embed PL/SQL blocks
in a host program, you must specify SQLCHECK=SEMANTICS and the option USERID.

When SQLCHECK=SYNTAX, the precompiler checks the syntax of

• Data manipulation statements

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 51

• PL/SQL blocks

No semantic checking is done. DECLARE TABLE statements are ignored and PL/SQL blocks are
not allowed. When checking data manipulation statements, the precompiler uses Oracle
database version 7 syntax rules, which are downwardly compatible. Specify SQLCHECK=SYNTAX
when migrating your precompiled programs.

When SQLCHECK=NONE, no syntactic or semantic checking is done. DECLARE TABLE
statements are ignored and PL/SQL blocks are not allowed. Specify SQLCHECK=NONE if your
program

• Contains non-Oracle SQL (for example, because it will connect to a non-Oracle server
through Open Gateway)

• References tables not yet created and lacks DECLARE TABLE statements for them

The following table summarizes the checking done by SQLCHECK. For more information
about syntactic and semantic checking, refer to Syntactic and Semantic Checking.

Statement SQLCHECK=S
EMANTIC —
Syntax

SQLCHECK=S
EMANTIC —
Semantic

SQLCHECK=S
YNTAX —
Syntax

SQLCHECK=S
YNTAX —
Semantic

SQLCHECK=N
ONE — Syntax

SQLCHECK=N
ONE —
Semantic

DML Y Y Y na na na

Remote DML Y na Y na na na

PL/SQL Y Y na na na na

6.7.65 STMT_CACHE
Purpose

Denotes the Statement cache size for the dynamic SQL statements.

Syntax

STMT_CACHE = Range is 0 to 65535

Default

0

Usage Notes

The stmt_cache option can be set to hold the anticipated number of distinct dynamic SQL
statements in the application.

6.7.66 SQLCHECK
Purpose

Specifies the type and extent of syntactic and semantic checking. By checking the syntax and
semantics of embedded SQL statements and PL/SQL blocks, the Pro*C/C++ Precompiler
helps you quickly find and fix coding mistakes. Rules of syntax specify how language elements
are sequenced to form valid statements. Thus, you can verify that keywords, object names,
operators, delimiters, and similar objects are placed correctly in your SQL statement.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 51

Syntax

SQLCHECK={SEMANTICS | FULL | SYNTAX}

Default

SYNTAX

Functionality

When

SQLCHECK=SYNTAX,

you will only check the syntax of the SQL statements by using the client side SQL interface.

When

SQLCHECK=SEMANTICS or FULL,

the SQL statements will be packaged/bundled into an IDL object by using a generic grammar
during parsing. The generic grammar does not understand the SQL syntax, it can only identify
the host variables, indicator variables, and the possible SQL identifiers. During the semantic
phase, the validity of the host and indicator variables will be checked in the same manner it is
currently done for SQL. The same will be done for semantics like the table names, column
names, and types.

Usage Notes

SEMANTICS is the same as FULL.

Can be entered inline or on the command line.

See Also

"What Is Syntactic and Semantic Checking?" on page D‐1 for complete details. (Pro*C
Developer's Guide)

6.7.67 THREADS
Purpose

When THREADS=YES, the precompiler searches for context declarations.

Syntax

THREADS={YES | NO}

Default

NO

Usage Notes

Cannot be entered inline.

This precompiler option is required for any program that requires multithreading support.

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 51

With THREADS=YES, the precompiler generates an error if no EXEC SQL CONTEXT USE
directive is encountered before the first context is visible and an executable SQL statement is
found.

6.7.68 TYPE_CODE
Purpose

This micro option specifies whether ANSI or Oracle datatype codes are used in dynamic SQL
Method 4. Its setting is the same as the setting of MODE option.

Syntax

TYPE_CODE={ORACLE | ANSI}

Default

ORACLE

Usage Notes

Cannot be entered inline.

6.7.69 UNSAFE_NULL
Purpose

Specifying UNSAFE_NULL=YES prevents generation of ORA-01405 messages when fetching NULLs
without using indicator variables.

Syntax

UNSAFE_NULL={YES|NO}

Default

NO

Usage Notes

Cannot be entered inline.

The UNSAFE_NULL=YES is allowed only when MODE=ORACLE and DBMS=V7.

The UNSAFE_NULL option has no effect on host variables in an embedded PL/SQL block. You
must use indicator variables to avoid ORA-01405 errors.

6.7.70 USERID
Purpose

Specifies an Oracle username and password.

Syntax

USERID=username/password

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 51

Default

None

Usage Notes

Cannot be entered inline.

Do not specify this option when using the automatic logon feature, which accepts your Oracle
username prefixed with the value of the Oracle initialization parameter OS_AUTHENT_PREFIX.

When SQLCHECK=SEMANTICS, if you want the precompiler to get needed information by
connecting to Oracle and accessing the data dictionary, you must also specify USERID.

6.7.71 UTF16_CHARSET
Purpose

Specify the character set form used by UNICODE(UTF16) variables.

Syntax

UTF16_CHARSET={NCHAR_CHARSET | DB_CHARSET}

Default

NCHAR_CHARSET

Usage Notes

Can be used only on the command line or in a configuration file, but not inline.

If UTF16_CHARSET=NCHAR_CHARSET (the default), the UNICODE(UTF16) bind / define
buffer is converted according to the server side National Character Set. There may be a
performance impact when the target column is CHAR.

If UTF16_CHAR=DB_CHARSET, the UNICODE(UTF16) bind / define buffer is converted
according to the database character set.

Warning

There may be data loss when the target column is NCHAR.

6.7.72 VARCHAR
Purpose

For Pro*COBOL only, the VARCHAR option instructs the precompiler to treat the COBOL group
item described in Introductionas a VARCHAR datatype.

Syntax

VARCHAR={YES|NO}

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 51

Default

NO

Usage Notes

Cannot be entered inline.

When VARCHAR=YES, the implicit group item described in Introduction is accepted as an Oracle
VARCHAR external datatype with a length field and a string field.

When VARCHAR=NO, the Pro*COBOL Precompiler does not accept the implicit group items as
VARCHAR external datatypes.

6.7.73 VERSION
Purpose

Determines which version of the object will be returned by the EXEC SQL OBJECT DEREF
statement.

Syntax

VERSION={RECENT | LATEST | ANY}

Default

RECENT

Usage Notes

Can be entered inline using the EXEC ORACLE OPTION statement.

RECENT means that if the object has been selected into the object cache in the current
transaction, then that object is returned. For transactions running in serializable mode, this
option has the same effect as LATEST without incurring as many network round trips. Most
applications should use RECENT.

LATEST means that if the object does not reside in the object cache, it is retrieved from the
database. If It does reside in the object cache, it is refreshed from the server. Use LATEST with
caution because it incurs the greatest number of network round trips. Use LATEST only when it
is imperative that the object cache is kept as coherent as possible with the server buffer cache

ANY means that if the object already resides in the object cache, return that object. If not,
retrieve the object from the server. ANY incurs the fewest network round trips. Use in
applications that access read-only objects or when a user will have exclusive access to the
objects.

6.7.74 XREF
Purpose

Specifies whether a cross-reference section is included in the listing file.

Syntax

XREF={YES|NO}

Chapter 6
About Using the Precompiler Options

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 51

Default

YES

Usage Notes

When XREF=YES, cross references are included for host variables, cursor names, and
statement names. The cross references show where each object is defined and referenced in
your program.

When XREF=NO, the cross-reference section is not included.

6.8 Conditional Precompilations
Conditional precompilation includes (or excludes) sections of code in your host program based
on certain conditions. For example, you might want to include one section of code when
precompiling under UNIX and another section when precompiling under VMS. Conditional
precompilation lets you write programs that can run in different environments.

Conditional sections of code are marked by statements that define the environment and
actions to take. You can code host-language statements and EXEC SQL statements in these
sections. The following statements let you exercise conditional control over precompilation:

EXEC ORACLE DEFINE symbol; -- define a symbol
EXEC ORACLE IFDEF symbol; -- if symbol is defined
EXEC ORACLE IFNDEF symbol; -- if symbol is not defined
EXEC ORACLE ELSE; -- otherwise
EXEC ORACLE ENDIF; -- end this control block

All EXEC ORACLE statements must be terminated with the statement terminator for your host
language. For example, in Pro*COBOL, a conditional statement must be terminated with "END-
EXEC." and in Pro*FORTRAN it must be terminated by a return character.

6.8.1 An Example
In the following example, the SELECT statement is precompiled only when the symbol site2 is
defined:

EXEC ORACLE IFDEF site2;
 EXEC SQL SELECT DNAME
 INTO :dept_name
 FROM DEPT
 WHERE DEPTNO = :dept_number;
EXEC ORACLE ENDIF;

Blocks of conditions can be nested as shown in the following example:

EXEC ORACLE IFDEF outer;
 EXEC ORACLE IFDEF inner;
 ...
 EXEC ORACLE ENDIF;
EXEC ORACLE ENDIF;

You can "comment out" host-language or embedded SQL code by placing it between IFDEF
and ENDIF and not defining the symbol.

Chapter 6
Conditional Precompilations

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 51

6.8.2 Defining Symbols
You can define a symbol in two ways. Either include the statement

EXEC ORACLE DEFINE symbol;

in your host program or define the symbol on the command line using the syntax

... INAME=filename ... DEFINE=symbol

where symbol is not case-sensitive.

Some port-specific symbols are predefined for you when the Oracle Precompilers are installed
on your system. For example, predefined operating system symbols include CMS, MVS, MS-
DOS, UNIX, and VMS.

6.9 Separate Precompilations
With the Oracle Precompilers, you can precompile several host program modules separately,
then link them into one executable program. This supports modular programming, which is
required when the functional components of a program are written and debugged by different
developers. The individual program modules need not be written in the same language.

6.9.1 Guidelines
The following guidelines will help you avoid some common problems.

Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence, cursor
operations cannot span precompilation units (files). That is, you cannot declare a cursor in one
file and open or fetch from it in another file. So, when doing a separate precompilation, make
sure all definitions and references to a given cursor are in one file.

Specifying MAXOPENCURSORS

When you precompile the program module that connects to Oracle, specify a value for
MAXOPENCURSORS that is high enough for any of the program modules. If you use it for
another program module, MAXOPENCURSORS is ignored. Only the value in effect for the
connect is used at run time.

Using a Single SQLCA

If you want to use just one SQLCA, you must declare it globally in one of the program modules.

6.9.2 Restrictions
All references to an explicit cursor must be in the same program file. You cannot perform
operations on a cursor that was DECLAREd in a different module. Refer to Using Embedded
SQL for more information about cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in the scope
of the local SQL statements.

Chapter 6
Separate Precompilations

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 51

6.10 Compiling and Linking
To get an executable program, you must compile the source file(s) produced by the
precompiler, then link the resulting object module with any modules needed from SQLLIB and
system-specific Oracle libraries. Also, if you are embedding OCI calls, make sure to link in the
OCI run-time library (OCILIB).

The linker resolves symbolic references in the object modules. If these references conflict, the
link fails. This can happen when you try to link third party software into a precompiled program.
Not all third-party software is compatible with Oracle, so you might have problems. Check with
Oracle Customer Services to see if the software is supported.

Compiling and linking are system-dependent. For instructions, see your system-specific Oracle
manuals.

For more information about OCI handle and descriptor attributes, see Handle and Descriptor
Attributes.

6.10.1 System-Dependent
Compiling and linking are system-dependent. For example, on some systems, you must turn
off compiler optimization when compiling a host language program. For instructions, refer to
your system-specific Oracle documentation.

6.10.2 Multibyte Globalization Support Compatibility
When using multibyte Globalization Support features, you must link your object files to the
current version of the SQLLIB run-time library. The multibyte Globalization Support features in
this release are supported by the SQLLIB run-time library and not by the Oracle Server. The
resulting application can then be executed with any release of the Oracle database.

Chapter 6
Compiling and Linking

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 51

7
Defining and Controlling Transactions

This chapter explains how to perform transaction processing. You learn the basic techniques
that safeguard the consistency of your database, including how to control whether changes to
Oracle data are made permanent or undone. The following topics are discussed:

• Some Terms You Should Know

• How Transactions Guard Your Database

• How to Begin and End Transactions

• About Using the COMMIT Statement

• About Using the ROLLBACK Statement

• About Using the SAVEPOINT Statement

• About Using the RELEASE Option

• About Using the SET TRANSACTION Statement

• About Overriding Default Locking

• About Fetching Across Commits

• About Handling Distributed Transactions

• Guidelines

7.1 Some Terms You Should Know
Before delving into the subject of transactions, you should know the terms defined in this
section.

The jobs or tasks that Oracle manages are called sessions. A user session is started when you
run an application program or a tool such as Oracle Forms and connect to Oracle. Oracle
allows user sessions to work "simultaneously" and share computer resources. To do this,
Oracle must control concurrency, which means many user accessing the same data. Without
adequate concurrency controls, there might be a loss of data integrity. That is, changes to data
or structures might be made incorrectly.

Oracle uses locks to control concurrent access to data. A lock gives you temporary ownership
of a database resource such as a table or row of data. Thus, data cannot be changed by other
users until you finish with it. You need never explicitly lock a resource, because default locking
mechanisms protect Oracle data and structures. However, you can request data locks on
tables or rows when it is to your advantage to override default locking. You can choose from
several modes of locking such as row share and exclusive.

A deadlock can occur when two or more users try to access the same database object. For
example, two users updating the same table might wait if each tries to update a row currently
locked by the other. Because each user is waiting for resources held by another user, neither
can continue until Oracle breaks the deadlock. Oracle signals an error to the participating
transaction that had completed the least amount of work, and the "deadlock detected while
waiting for resource" Oracle error code is returned to SQLCODE in the SQLCA.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 10

When a table is being queried by one user and updated by another at the same time, Oracle
generates a read-consistent view of the table's data for the query. That is, after a query begins
and as it proceeds, the data read by the query does not change. As update activity continues,
Oracle takes snapshots of the table's data and records changes in a rollback segment. Oracle
uses information in the rollback segment to build read-consistent query results and to undo
changes if necessary.

7.2 How Transactions Guard Your Database
Oracle is transaction oriented; that is, it uses transactions to ensure data integrity. A
transaction is a series of one or more logically related SQL statements you define to
accomplish some task. Oracle treats the series of SQL statements as a unit so that all the
changes brought about by the statements are either committed (made permanent) or rolled
back (undone) at the same time. If your application program fails in the middle of a transaction,
the database is automatically restored to its former (pre-transaction) state.

The subsequent sections show you how to define and control transactions. Specifically, you
learn how to

• Begin and end transactions

• Use the COMMIT statement to make transactions permanent

• Use the SAVEPOINT statement with the ROLLBACK TO statement to undo parts of transactions

• Use the ROLLBACK statement to undo whole transactions

• Specify the RELEASE option to free resources and log off the database

• Use the SET TRANSACTION statement to set read-only transactions

• Use the FOR UPDATE clause or LOCK TABLE statement to override default locking

For details about the SQL statements discussed in this chapter, see the Oracle Database SQL
Language Reference.

7.3 How to Begin and End Transactions
You begin a transaction with the first executable SQL statement (other than CONNECT) in your
program. When one transaction ends, the next executable SQL statement automatically begins
another transaction. Thus, every executable statement is part of a transaction. Because they
cannot be rolled back and need not be committed, declarative SQL statements are not
considered part of a transaction.

You end a transaction in one of the following ways:

• Code a COMMIT or ROLLBACK statement, with or without the RELEASE option. This explicitly
makes permanent or undoes changes to the database.

• Code a data definition statement (ALTER, CREATE, or GRANT, for example) that issues an
automatic commit before and after executing. This implicitly makes permanent changes to
the database.

A transaction also ends when there is a system failure or your user session stops unexpectedly
because of software problems, hardware problems, or a forced interruption. Oracle rolls back
the transaction.

If your program fails in the middle of a transaction, Oracle detects the error and rolls back the
transaction. If your operating system fails, Oracle restores the database to its former (pre-
transaction) state.

Chapter 7
How Transactions Guard Your Database

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 10

7.4 About Using the COMMIT Statement
You use the COMMIT statement to make changes to the database permanent. Until changes are
committed, other users cannot access the changed data; they see it as it was before your
transaction began. The COMMIT statement has no effect on the values of host variables or on
the flow of control in your program. Specifically, the COMMIT statement

• Makes permanent all changes made to the database during the current transaction

• Makes these changes visible to other users

• Erases all savepoints (refer to About Using the ROLLBACK Statement)

• Releases all row and table locks, but not parse locks

• Closes cursors referenced in a CURRENT OF clause or, when MODE={ANSI13|ORACLE},
closes all explicit cursors

• Ends the transaction

When MODE={ANSI13|ORACLE}, explicit cursors not referenced in a CURRENT OF clause remain
open across commits. This can boost performance. For an example, refer to "About Fetching
Across Commits".

Because they are part of normal processing, COMMIT statements should be placed inline, on the
main path through your program. Before your program terminates, it must explicitly commit
pending changes. Otherwise, Oracle rolls them back. In the following example, you commit
your transaction and disconnect from Oracle:

EXEC SQL COMMIT WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees all
Oracle resources (locks and cursors) held by your program and logs off the database.

You need not follow a data definition statement with a COMMIT statement because data
definition statements issue an automatic commit before and after executing. So, whether they
succeed or fail, the prior transaction is committed.

7.5 About Using the ROLLBACK Statement
You use the ROLLBACK statement to undo pending changes made to the database. For
example, if you make a mistake such as deleting the wrong row from a table, you can use
ROLLBACK to restore the original data. The ROLLBACK statement has no effect on the values of
host variables or on the flow of control in your program. Specifically, the ROLLBACK statement

• Undoes all changes made to the database during the current transaction

• Erases all savepoints

• Ends The Transaction

• Releases All Row And Table Locks, But Not Parse Locks

• Closes cursors referenced in a CURRENT OF clause or, when MODE={ANSI|ANSI14},
closes all explicit cursors

When MODE={ANSI13|ORACLE}, explicit cursors not referenced in a CURRENT OF clause remain
open across rollbacks.

Chapter 7
About Using the COMMIT Statement

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 10

Because they are part of exception processing, ROLLBACK statements should be placed in error
handling routines, off the main path through your program. In the following example, you roll
back your transaction and disconnect from Oracle:

EXEC SQL ROLLBACK WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees all resources
held by your program and logs off the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine that includes
a ROLLBACK statement, your program might enter an infinite loop if the rollback fails with an
error. You can avoid this by coding WHENEVER SQLERROR CONTINUE before the ROLLBACK
statement.

For example, consider the following:

EXEC SQL WHENEVER SQLERROR GOTO sql_error;
FOR EACH new employee
 display 'Employee number? ';
 read emp_number;
 display 'Employee name? ';
 read emp_name;
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
 VALUES (:emp_number, :emp_name);
ENDFOR;
...
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Processing error';
 exit program with an error;

Oracle rolls back transactions if your program terminates unusually.

7.5.1 Statement-Level Rollbacks
Before executing any SQL statement, Oracle marks an implicit savepoint (not available to you).
Then, if the statement fails, Oracle rolls it back automatically and returns the applicable error
code to SQLCODE in the SQLCA. For example, if an INSERT statement causes an error by
trying to insert a duplicate value in a unique index, the statement is rolled back.

Only work started by the failed SQL statement is lost; work done before that statement in the
current transaction is kept. Thus, if a data definition statement fails, the automatic commit that
precedes it is not undone.

Note that before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid database objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the statement
do not.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an error to
one of the participating transactions and rolls back the current statement in that transaction.

7.6 About Using the SAVEPOINT Statement
You use the SAVEPOINT statement to mark and name the current point in the processing of a
transaction. Each marked point is called a savepoint. For example, the following statement
marks a savepoint named start_delete:

Chapter 7
About Using the SAVEPOINT Statement

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 10

EXEC SQL SAVEPOINT start_delete;

Savepoints let you divide long transactions, giving you more control over complex procedures.
For example, if a transaction performs several functions, you can mark a savepoint before
each function. Then, if a function fails, you can easily restore the Oracle data to its former
state, recover, then reexecute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement and its TO
SAVEPOINT clause. The TO SAVEPOINT clause lets you roll back to an intermediate statement in
the current transaction, so you do not have to undo all your changes. Specifically, the ROLLBACK
TO SAVEPOINT statement

• Undoes changes made to the database since the specified savepoint was marked

• Erases all savepoints marked after the specified savepoint

• Releases all row and table locks acquired since the specified savepoint was marked

In the example, you access the table MAIL_LIST to insert new listings, update old listings, and
delete (a few) inactive listings. After the delete, you check SQLERRD(3) in the SQLCA for the
number of rows deleted. If the number is unexpectedly large, you roll back to the savepoint
start_delete, undoing just the delete.

FOR EACH new customer
 display 'Customer number? ';
 read cust_number;
 display 'Customer name? ';
 read cust_name;
EXEC SQL INSERT INTO MAIL_LIST (CUSTNO, CNAME, STAT)
 VALUES (:cust_number, :cust_name, 'ACTIVE');
ENDFOR;
FOR EACH revised status
 display 'Customer number? ';
 read cust_number;
 display 'New status? ';
 read new_status;
 EXEC SQL UPDATE MAIL_LIST
 SET STAT = :new_status WHERE CUSTNO = :cust_number;
ENDFOR;
-- mark savepoint
EXEC SQL SAVEPOINT start_delete;
EXEC SQL DELETE FROM MAIL_LIST WHERE STAT = 'INACTIVE';
IF sqlca.sqlerrd(3) < 25 THEN -- check number of rows deleted
 display 'Number of rows deleted is ', sqlca.sqlerrd(3);
ELSE
 display 'Undoing deletion of ', sqlca.sqlerrd(3), ' rows';
 EXEC SQL WHENEVER SQLERROR GOTO sql_error;
 EXEC SQL ROLLBACK TO SAVEPOINT start_delete;
ENDIF;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL COMMIT WORK RELEASE;
exit program;
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Processing error';
 exit program with an error;

Note that you cannot specify the RELEASE option in a ROLLBACK TO SAVEPOINT statement.

Rolling back to a savepoint erases any savepoints marked after that savepoint. The savepoint
to which you roll back, however, is not erased. For example, if you mark five savepoints, then

Chapter 7
About Using the SAVEPOINT Statement

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 10

roll back to the third, only the fourth and fifth are erased. A COMMIT or ROLLBACK statement
erases all savepoints.

By default, the number of active savepoints in each user session is limited to 5. An active
savepoint is one that you marked since the last commit or rollback. Your Database
Administrator (DBA) can raise the limit by increasing the value of the Oracle initialization
parameter SAVEPOINTS. If you give two savepoints the same name, the earlier savepoint is
erased.

7.7 About Using the RELEASE Option
Oracle rolls back changes automatically if your program terminates unusually. Unusual
termination occurs when your program does not explicitly commit or roll back work and
disconnect from Oracle using the RELEASE option.

Normal termination occurs when your program runs its course, closes open cursors, explicitly
commits or rolls back work, disconnects from Oracle, and returns control to the user. Your
program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COMMIT RELEASE;

or

EXEC SQL ROLLBACK RELEASE;

Otherwise, locks and cursors acquired by your user session are held after program termination
until Oracle recognizes that the user session is no longer active. This might cause other users
in a multiuser environment to wait longer than necessary for the locked resources.

7.8 About Using the SET TRANSACTION Statement
You use the SET TRANSACTION statement to begin a read-only or read/write transaction, or to
assign your current transaction to a specified rollback segment. A COMMIT, ROLLBACK, or data
definition statement ends a read-only transaction.

Because they allow "repeatable reads," read-only transactions are useful for running multiple
queries against one or more tables while other users update the same tables. During a read-
only transaction, all queries refer to the same snapshot of the database, providing a multitable,
multiquery, read-consistent view. Other users can continue to query or update data as usual.
An example of the SET TRANSACTION statement follows:

EXEC SQL SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first SQL statement in a read-only transaction
and can appear only once in a transaction. The READ ONLY parameter is required. Its use does
not affect other transactions. Only the SELECT (without FOR UPDATE), LOCK TABLE, SET ROLE,
ALTER SESSION, ALTER SYSTEM, COMMIT, and ROLLBACK statements are allowed in a read-only
transaction.

In the example, as a store manager, you check sales activity for the day, the past week, and
the past month by using a read-only transaction to generate a summary report. The report is
unaffected by other users updating the database during the transaction.

EXEC SQL SET TRANSACTION READ ONLY;
 EXEC SQL SELECT SUM(SALEAMT) INTO :daily FROM SALES
 WHERE SALEDATE = SYSDATE;
 EXEC SQL SELECT SUM(SALEAMT) INTO :weekly FROM SALES
 WHERE SALEDATE > SYSDATE - 7;

Chapter 7
About Using the RELEASE Option

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 10

 EXEC SQL SELECT SUM(SALEAMT) INTO :monthly FROM SALES
 WHERE SALEDATE > SYSDATE - 30;
 EXEC SQL COMMIT WORK;
-- simply ends the transaction since there are no changes
-- to make permanent
-- format and print report

7.9 About Overriding Default Locking
By default, Oracle implicitly (automatically) locks many data structures for you. However, you
can request specific data locks on rows or tables when it is to your advantage to override
default locking. Explicit locking lets you share or deny access to a table for the duration of a
transaction or ensure multitable and multiquery read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of a table to
make sure they do not change before an update or delete is executed. However, Oracle
automatically obtains row-level locks at update or delete time. So, use the FOR UPDATE OF
clause only if you want to lock the rows before the update or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

7.9.1 About Using the FOR UPDATE OF Clause
When you DECLARE a cursor that is referenced in the CURRENT OF clause of an UPDATE or DELETE
statement, you use the FOR UPDATE OF clause to acquire exclusive row locks. SELECT FOR
UPDATE OF identifies the rows that will be updated or deleted, then locks each row in the active
set. (All rows are locked at the open, not as they are fetched.) This is useful, for example,
when you want to base an update on the existing values in a row. You must make sure the row
is not changed by another user before your update.

The FOR UPDATE OF clause is optional. For instance, instead of

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20
 FOR UPDATE OF SAL;

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20;

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if necessary.
You use the CURRENT OF clause to refer to the latest row fetched from a cursor.

7.9.2 Restrictions
If you use the FOR UPDATE OF clause, you cannot reference multiple tables. Also, an explicit
FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row locks. Row locks are
released when you commit or rollback (except when you rollback to a savepoint). If you try to
fetch from a FOR UPDATE cursor after a commit, Oracle generates the following error:

ORA-01002: fetch out of sequence

7.9.3 About Using the LOCK TABLE Statement
You use the LOCK TABLE statement to lock one or more tables in a specified lock mode. For
example, the statement locks the EMP table in row share mode. Row share locks allow

Chapter 7
About Overriding Default Locking

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 10

concurrent access to a table; they prevent other users from locking the entire table for
exclusive use.

EXEC SQL LOCK TABLE EMP IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table. For example, many
users can acquire row share locks on a table at the same time, but only one user at a time can
acquire an exclusive lock. While one user has an exclusive lock on a table, no other users can
insert, update, or delete rows in that table. For more information about lock modes, see SQL
Processing for Application Developers.

The optional keyword NOWAIT tells Oracle not to wait for a table if it has been locked by
another user. Control is immediately returned to your program, so it can do other work before
trying again to acquire the lock. (You can check SQLCODE in the SQLCA to see if the table
lock failed.) If you omit NOWAIT, Oracle waits until the table is available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never acquires a table
lock. So, a query never blocks another query or an update, and an update never blocks a
query. Only if two different transactions try to update the same row will one transaction wait for
the other to complete. Table locks are released when your transaction issues a commit or
rollback.

7.10 About Fetching Across Commits
If you want to intermix commits and fetches, do not use the CURRENT OF clause. Instead, select
the rowid of each row, then use that value to identify the current row during the update or
delete. Consider the following example:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL, ROWID FROM EMP WHERE JOB = 'CLERK';
...
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary, :row_id;
 ...
 EXEC SQL UPDATE EMP SET SAL = :new_salary
 WHERE ROWID = :row_id;
 EXEC SQL COMMIT;
ENDLOOP;

Note

The fetched rows are not locked. So, you might get inconsistent results if another user
modifies a row after you read it but before you update or delete it.

7.11 About Handling Distributed Transactions
A distributed database is a single logical database comprising multiple physical databases at
different nodes. A distributed statement is any SQL statement that accesses a remote node
using a database link. A distributed transaction includes at least one distributed statement that
updates data at multiple nodes of a distributed database. If the update affects only one node,
the transaction is non-distributed.

Chapter 7
About Fetching Across Commits

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 10

When you issue a commit, changes to each database affected by the distributed transaction
are made permanent. If you issue a rollback instead, all the changes are undone. However, if a
network or computer fails during the commit or rollback, the state of the distributed transaction
might be unknown or in doubt. In such cases, if you have FORCE TRANSACTION system
privileges, you can manually commit or roll back the transaction at your local database by
using the FORCE clause. The transaction must be identified by a quoted literal containing the
transaction ID, which can be found in the data dictionary view DBA_2PC_PENDING. Some
examples follow:

EXEC SQL COMMIT FORCE '22.31.83';
...
EXEC SQL ROLLBACK FORCE '25.33.86';

FORCE commits or rolls back only the specified transaction and does not affect your current
transaction. Note that you cannot manually roll back in-doubt transactions to a savepoint.

The COMMENT clause in the COMMIT statement lets you specify a comment to be associated with
a distributed transaction. If ever the transaction is in doubt, Oracle stores the text specified by
COMMENT in the data dictionary view DBA_2PC_PENDING along with the transaction ID. The text
must be a quoted literal <= 50 characters in length. An example follows:

EXEC SQL COMMIT COMMENT 'In-doubt trans; notify Order Entry';

For more information about distributed transactions, see Transactions.

7.12 Guidelines
The following guidelines will help you avoid some common problems.

7.12.1 About Designing Applications
When designing your application, group logically related actions together in one transaction. A
well-designed transaction includes all the steps necessary to accomplish a given task -- no
more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL statements in a
transaction should change the data in a consistent way. For example, a transfer of funds
between two bank accounts should include a debit to one account and a credit to another. Both
updates should either succeed or fail together. An unrelated update, such as a new deposit to
one account, should not be included in the transaction.

7.12.2 About Obtaining Locks
If your application programs include SQL locking statements, make sure the Oracle users
requesting locks have the privileges needed to obtain the locks. Your DBA can lock any table.
Other users can lock tables they own or tables for which they have a privilege, such as ALTER,
SELECT, INSERT, UPDATE, or DELETE.

7.12.3 About Using PL/SQL
If a PL/SQL block is part of a transaction, commits and rollbacks inside the block affect the
whole transaction. In the following example, the rollback undoes changes made by the update
and the insert:

EXEC SQL INSERT INTO EMP ...
EXEC SQL EXECUTE

Chapter 7
Guidelines

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 10

 BEGIN UPDATE emp
...
 ...
 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK;
 END;
END-EXEC;
...

Chapter 7
Guidelines

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 10

8
Error Handling and Diagnostics

An application program must anticipate run-time errors and attempt to recover from them. This
chapter provides an in-depth discussion of error reporting and recovery. You learn how to
handle warnings and errors using the status variables SQLCODE, SQLSTATE, SQLCA (SQL
Communications Area), and the WHENEVER statement. You also learn how to diagnose problems
by using the status variable ORACA (Oracle Communications Area). The following topics are
discussed:

• The Need for Error Handling

• Error Handling Alternatives

• About Using Status Variables when MODE={ANSI|ANSI14}

• About Using the SQL Communications Area

• About Using the Oracle Communications Area

8.1 The Need for Error Handling
A significant part of every application program must be devoted to error handling. The main
benefit of error handling is that it allows your program to continue operating in the presence of
errors. Errors arise from design faults, coding mistakes, hardware failures, invalid user input,
and many other sources

You cannot anticipate all possible errors, but you can plan to handle certain kinds of errors
meaningful to your program. For the Oracle Precompilers, error handling means detecting and
recovering from SQL statement execution errors.

You can also prepare to handle warnings such as "value truncated" and status changes such
as "end of data." It is especially important to check for error and warning conditions after every
data manipulation statement, because an INSERT, UPDATE, or DELETE statement might fail
before processing all eligible rows in a table.

8.2 Error Handling Alternatives
The Oracle Precompilers provide four status variables that serve as error handling
mechanisms:

• SQLCODE (SQLCOD in Pro*FORTRAN)

• SQLSTATE (SQLSTA in Pro*FORTRAN)

• SQLCA (using the WHENEVER statement)

• ORACA

The MODE option (described) governs ANSI/ISO compliance. The availability of the
SQLCODE, SQLSTATE, and SQLCA variables depends on the MODE setting. You can declare
and use the ORACA variable regardless of the MODE setting. For more information, refer to
About Using the Oracle Communications Area .

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 34

When MODE={ORACLE|ANSI13}, you must declare the SQLCA status variable. SQLCODE and
SQLSTATE declarations are accepted (not recommended) but are not recognized as status
variables. For more information, refer to About Using the SQL Communications Area.

When MODE={ANSI|ANSI14}, you can use any one, two, or all three of the SQLCODE,
SQLSTATE, and SQLCA variables. To determine which variable (or variable combination) is
best for your application, refer to About Using Status Variables when MODE={ANSI|ANSI14}" .

8.2.1 SQLCODE and SQLSTATE
With Release 1.5 of the Oracle Precompilers, the SQLCODE status variable was introduced as
the SQL89 standard ANSI/ISO error reporting mechanism. The SQL92 standard listed
SQLCODE as a deprecated feature and defined a new status variable, SQLSTATE (introduced
with Release 1.6 of the Oracle Precompilers), as the preferred ANSI/ISO error reporting
mechanism.

SQLCODE stores error codes and the "not found" condition. It is retained only for compatibility
with SQL89 and is likely to be removed from future versions of the standard.

Unlike SQLCODE, SQLSTATE stores error and warning codes and uses a standardized coding
scheme. After executing a SQL statement, the Oracle server returns a status code to the
SQLSTATE variable currently in scope. The status code indicates whether a SQL statement
executed successfully or raised an exception (error or warning condition). To promote
interoperability (the ability of systems to exchange information easily), SQL92 predefines all
the common SQL exceptions.

8.2.2 SQLCA
The SQLCA is a record-like, host-language data structure. Oracle updates the SQLCA after
every executable SQL statement. (SQLCA values are undefined after a declarative statement.)
By checking Oracle return codes stored in the SQLCA, your program can determine the
outcome of a SQL statement. This can be done in two ways:

• Implicit checking with the WHENEVER statement

• Explicit checking of SQLCA variables

You can use WHENEVER statements, code explicit checks on SQLCA variables, or do both.
Generally, using WHENEVER statements is preferable because it is easier, more portable, and
ANSI-compliant.

8.2.3 ORACA
When more information is needed about run-time errors than the SQLCA provides, you can
use the ORACA, which contains cursor statistics, SQL statement data, option settings, and
system statistics.

The ORACA is optional and can be declared regardless of the MODE setting. For more
information about the ORACA status variable, refer to "About Using the Oracle
Communications Area.

8.3 About Using Status Variables when MODE={ANSI|ANSI14}
When MODE={ANSI|ANSI14}, you must declare at least one -- you may declare two or all three
-- of the following status variables:

• SQLCODE

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 34

• SQLSTATE

• SQLCA

In Pro*COBOL, you cannot declare SQLCODE if SQLCA is declared. Likewise, you cannot
declare SQLCA if SQLCODE is declared. The field in the SQLCA data structure that stores the
error code for Pro*COBOL is also called SQLCODE, so errors will occur if both status variables
are declared.

Your program can get the outcome of the most recent executable SQL statement by checking
SQLCODE and SQLSTATE, SQLCODE or SQLSTATE explicitly with your own code after
executable SQL and PL/SQL statements. Your program can also check SQLCA implicitly (with
the WHENEVER SQLERROR and WHENEVER SQLWARNING statements) or it can check the
SQLCA variables explicitly.

Note

When MODE={ORACLE|ANSI13}, you must declare the SQLCA status variable. For more
information, refer to About Using the SQL Communications Area".

8.3.1 Some Historical Information
The treatment of status variables and variable combinations by the Oracle Precompilers has
evolved beginning with Release 1.5.

8.3.2 Release 1.5
The Oracle Precompiler, Release 1.5, presumed there was a status variable SQLCODE
whether it was declared in a Declare Section; in fact, the precompiler never bothered to note
whether there was a declaration for SQLCODE or not -- it just presumed that the declaration
exists. SQLCA would be used as a status variable only if there was an INCLUDE of the SQLCA.

8.3.3 Release 1.6
Beginning with Oracle Precompilers, Release 1.6, the precompilers no longer presume that
there is a SQLCODE status variable and it is not required. The precompiler requires that at
least one of SQLCA, SQLCODE, or SQLSTATE be declared.

SQLCODE is recognized as a status variable if and only if at least one of the following criteria
is satisfied:

• It is declared in a Declare Section with exactly the correct datatype.

• The precompiler finds no other status variable.

If the precompiler finds a SQLSTATE declaration (of exactly the correct type of course) in a
Declare Section or finds an INCLUDE of the SQLCA, it will not presume SQLCODE is declared.

8.3.4 Release 1.7
Because Release 1.5 of the Oracle Precompilers allowed the SQLCODE variable to be
declared outside a Declare Section while declaring SQLCA at the same time, precompilers
Release 1.6 and greater are presented with a compatibility problem. A new option,
ASSUME_SQLCODE={YES|NO} (default NO), was added to fix this in Release 1.6.7 and is
documented as a new feature in Release 1.7.

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 34

When ASSUME_SQLCODE=YES, and when SQLSTATE or SQLCA (Pro*FORTRAN only) are
declared as status variables, the precompiler presumes SQLCODE is declared irrepsective of
whether it is declared in a Declare Section or of the proper type. This causes Releases 1.6.7
and later to act like Release 1.5 in this regard. For information about the precompiler option
ASSUME_SQLCODE, refer to "ASSUME_SQLCODE" .

8.3.5 About Declaring Status Variables
This section describes how to declare SQLCODE and SQLSTATE. For information about
declaring the SQLCA status variable, refer to "Declaring the SQLCA".

8.3.6 Declaring SQLCODE
SQLCODE (SQLCOD in Pro*FORTRAN) must be declared as a 4-byte integer variable either
inside or outside the Declare Section, as shown in Table 8-1.

Table 8-1 SQLCODE Declarations

Language SQLCODE Declaration

COBOL SQLCODE PIC S9(9) COMP.

FORTRAN INTEGER*4 SQLCOD

If declared outside the Declare Section, SQLCODE is recognized as a status variable only if
ASSUME_SQLCODE=YES. SQLCODE declarations are ignored when MODE={ORACLE|
ANSI13}.

Warning

In Pro*COBOL source files, donot declare SQLCODE if SQLCA is declared. Likewise,
donot declare SQLCA if SQLCODE is declared. The status variable declared by the
SQLCA structure is also called SQLCODE, so errors will occur if both error-reporting
mechanisms are used.

By using host languages that allow both local and global declarations, you can declare more
than one SQLCODE variable. Access to a local SQLCODE is limited by its scope within your
program. After every SQL operation, Oracle returns a status code to the SQLCODE currently
in scope. So, your program can learn the outcome of the most recent SQL operation by
checking SQLCODE explicitly, or implicitly with the WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular compilation unit, the
precompiler allocates an internal SQLCA for that unit. Your host program cannot access the
internal SQLCA. If you declare the SQLCA and SQLCODE (not supported in Pro*COBOL),
Oracle returns the same status code to both after every SQL operation.

8.3.7 Declaring SQLSTATE
SQLSTATE (SQLSTA in Pro*FORTRAN) must be declared as a five-character alphanumeric
string inside the Declare Section, as shown inTable 8-2. Declaring the SQLCA is optional.

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 34

Table 8-2 SQLSTATE Declarations

Language SQLSTATE Declaration

COBOL SQLSTATE PIC X(5).

FORTRAN CHARACTER*5 SQLSTA

When MODE={ORACLE|ANSI13}, declarations of the SQLSTATE variable are ignored.

8.3.8 Status Variable Combinations
When MODE={ANSI|ANSI14}, the behavior of the status variables depends on the following:

• Which variables are declared

• Declaration placement (inside or outside the Declare Section)

• ASSUME_SQLCODE setting

Table 8-3 and Table 8-4 describe the resulting behavior of each status variable combination
when ASSUME_SQLCODE=NO and when ASSUME_SQLCODE=YES, respectively.

Table 8-3 Status Variable Combinations - SQLCODE = NO

Declare Section (IN/OUT/ --) Behavior

SQLCODE SQLSTATE SQLCA

OUT -- -- SQLCODE is declared and is presumed to be a status
variable.

OUT -- OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCA is declared as a status
variable, and SQLCODE is declared but is not recognized as
a status variable.

OUT -- IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable
configuration is not supported.

OUT OUT -- SQLCODE is declared and is presumed to be a status
variable, and SQLSTATE is declared but is not recognized as
a status variable.

OUT OUT OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCA is declared as a status
variable, and SQLCODE and SQLSTATE are declared but
are not recognized as status variables.

OUT OUT IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable
configuration is not supported.

OUT IN -- SQLSTATE is declared as a status variable, and SQLCODE
is declared but is not recognized as a status variable.

OUT IN OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLSTATE and SQLCA are
declared as status variables, and SQLCODE is declared but
is not recognized as a status variable.

OUT IN IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable
configuration is not supported.

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 34

Table 8-3 (Cont.) Status Variable Combinations - SQLCODE = NO

Declare Section (IN/OUT/ --) Behavior

IN -- -- SQLCODE is declared as a status variable.

IN -- OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCODE and SQLCA are
declared as a status variables.

IN -- IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable
configuration is not supported.

IN OUT -- SQLCODE is declared as a status variable, and SQLSTATE
is declared but not as a status variable.

IN OUT OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCODE and SQLCA are
declared as a status variables, and SQLSTATE is declared
but is not recognized as a status variable.

IN OUT IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable
configuration is not supported.

IN IN -- SQLCODE and SQLSTATE are declared as a status
variables.

IN IN OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCODE, SQLSTATE, and
SQLCA are declared as a status variables.

IN IN IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable
configuration is not supported.

-- -- -- This status variable configuration is not supported.

-- -- OUT SQLCA is declared as a status variable.

-- -- IN In Pro*COBOL, SQLCA is declared as a status host variable.
In Pro*FORTRAN, this status variable configuration is not
supported.

-- OUT -- This status variable configuration is not supported.

-- OUT OUT SQLCA is declared as a status variable, and SQLSTATE is
declared but is not recognized as a status variable.

-- OUT IN In Pro*COBOL, SQLCA is declared as a status host variable,
and SQLSTATE is declared but is not recognized as a status
variable. In Pro*FORTRAN, this status variable configuration
is not supported.

-- IN -- SQLSTATE is declared as a status variable.

-- IN OUT SQLSTATE and SQLCA are declared as status variables.

-- IN IN In Pro*COBOL, SQLSTATE and SQLCA are declared as
status host variables. In Pro*FORTRAN, this status variable
configuration is not supported.

Table 8-4 Status Variable Combinations - SQLCODE = YES

Declare Section (IN/OUT/ --) Behavior

SQLCODE SQLSTATE SQLCA

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 34

Table 8-4 (Cont.) Status Variable Combinations - SQLCODE = YES

Declare Section (IN/OUT/ --) Behavior

OUT -- -- SQLCODE is declared and is presumed to be a status
variable.

OUT -- OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCA is declared as a status
variable, and SQLCODE is declared and is presumed to be a
status variable.

OUT -- IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable configuration
is not supported.

OUT OUT -- SQLCODE is declared and is presumed to be a status
variable, and SQLSTATE is declared but is not recognized as a
status variable.

OUT OUT OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCA is declared as a status
variable, SQLCODE is declared and is presumed to be a
status variable, and SQLSTATE is declared but is not
recognized as status variable.

OUT OUT IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable configuration
is not supported.

OUT IN -- SQLSTATE is declared as a status variable, and SQLCODE is
declared and is presumed to be a status variable.

OUT IN OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLSTATE and SQLCA are
declared as status variables, and SQLCODE is declared and is
presumed to be a status variable.

OUT IN IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable configuration
is not supported.

IN -- -- SQLCODE is declared as a status variable.

IN -- OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCODE and SQLCA are
declared as a status variables.

IN -- IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable configuration
is not supported.

IN OUT -- SQLCODE is declared as a status variable, and SQLSTATE is
declared but not as a status variable.

IN OUT OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCODE and SQLCA are
declared as a status variables, and SQLSTATE is declared but
is not recognized as a status variable.

IN OUT IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable configuration
is not supported.

IN IN -- SQLCODE and SQLSTATE are declared as a status variables.

IN IN OUT In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, SQLCODE, SQLSTATE, and
SQLCA are declared as a status variables.

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 34

Table 8-4 (Cont.) Status Variable Combinations - SQLCODE = YES

Declare Section (IN/OUT/ --) Behavior

IN IN IN In Pro*COBOL, this status variable configuration is not
supported. In Pro*FORTRAN, this status variable configuration
is not supported.

-- -- -- -- -- --
-- -- --

-- -- -- OUT
OUT OUT IN
IN IN

-- OUT
IN --
OUT IN
-- OUT
IN

These status variable configurations are not supported.
SQLCODE must be declared either inside or outside the
Declare Section when ASSUME_SQLCODE=YES.

8.3.9 Status Variable Values
This section describes the values for the SQLCODE and SQLSTATE status variables. For
information about the SQLCA status variable, refer to "Key Components of Error Reporting".

8.3.10 SQLCODE Values
After every SQL operation, Oracle returns a status code to the SQLCODE variable currently in
scope. The status code, which indicates the outcome of the SQL operation, can be any of the
following numbers:

0

Oracle executed the SQL statement without detecting an error or exception.

> 0

Oracle executed the statement but detected an exception. This occurs when Oracle cannot
find a row that meets the condition in your WHERE clause or when a SELECT INTO or FETCH
returns no rows.

When MODE={ANSI|ANSI14|ANSI13}, +100 is returned to SQLCODE after an INSERT of no
rows. This can happen when a subquery returns no rows to process.

< 0

Oracle did not execute the statement because of a database, system, network, or application
error. Such errors are irrecoverable. When they occur, the current transaction should, in most
cases, be rolled back. Negative return codes correspond to error codes listed in Oracle
Database Error Messages.

You can learn the outcome of the most recent SQL operation by checking SQLCODE explicitly
with your own code or implicitly with the WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular precompilation unit, the
precompiler allocates an internal SQLCA for that unit. Your host program cannot access the
internal SQLCA. If you declare the SQLCA and SQLCODE (Pro*FORTRAN only), Oracle
returns the same status code to both after every SQL operation.

Note

When MODE={ORACLE|ANSI13}, declarations of SQLCODE are ignored.

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 34

8.3.11 SQLSTATE Values
SQLSTATE status codes consist of a two-character class code followed by a three-character
subclass code. Aside from class code 00 (successful completion), the class code denotes a
category of exceptions. Aside from subclass code 000 (not applicable), the subclass code
denotes a specific exception within that category. For example, the SQLSTATE value `22012'
consists of class code 22 (data exception) and subclass code 012 (division by zero).

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin letter
(A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range A..H are
reserved for predefined conditions (those defined in SQL92). All other class codes are
reserved for implementation-defined conditions. Within predefined classes, subclass codes
that begin with a digit in the range 0..4 or a letter in the range A..H are reserved for predefined
subconditions. All other subclass codes are reserved for implementation-defined
subconditions. Figure 8-1 shows the coding scheme.

Figure 8-1 SQLSTATE Coding Scheme

I . . ZA . . H5 . . 9

I . . Z

A . . H

5 . . 9

0 . . 4

0 . . 4

First Character in Class Code

F
ir

s
t

C
h

a
r
a
c

te
r
 i
n

S
u

b
c
la

s
s
 C

o
d

e

Implementation-definedPredefined

Table 8-5 shows the classes predefined by SQL92.

Table 8-5 Predefined SQL92 Classes

Class Condition

00 successful completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 cardinality violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 34

Table 8-5 (Cont.) Predefined SQL92 Classes

Class Condition

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation

2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation

3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation

44 with check option violation

HZ remote database access

Note

The class code HZ is reserved for conditions defined in International Standard
ISO/IEC DIS 9579-2, Remote Database Access.

Table 8-6 shows how Oracle errors map to SQLSTATE status codes. In some cases, several
Oracle errors map to the status code. In other cases, no Oracle error maps to the status code
(so the last column is empty). Status codes in the range 60000 .. 99999 are implementation-
defined.

Table 8-6 Oracle Error Mapping to SQLSTATE Status

Code Condition Oracle Error

00000 successful completion ORA-00000

01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in set function

01004 string data - right truncation

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 34

Table 8-6 (Cont.) Oracle Error Mapping to SQLSTATE Status

Code Condition Oracle Error

01005 insufficient item descriptor areas SQL-02142

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero-bit padding

01009 search condition too long for info schema

0100A query expression too long for info schema

02000 no data ORA-01095 ORA-01403
ORA-0100

07000 dynamic SQL error SQL-02137 SQL-02139

07001 using clause does not match parameter specs

07002 using clause does not match target specs

07003 cursor specification cannot be executed

07004 using clause required for dynamic parameters

07005 prepared statement not a cursor specification

07006 restricted datatype attribute violation

07007 using clause required for result fields

07008 invalid descriptor count SQL-02126 SQL-02141

07009 invalid descriptor index SQL-02140

08000 connection exception

08001 SQL client unable to establish SQL connection

08002 connection name in use

08003 connection does not exist SQL-02121

08004 SQL server rejected SQL connection

08006 connection failure

08007 transaction resolution unknown

0A000 feature not supported ORA-03000 .. 03099

0A001 multiple server transactions

21000 cardinality violation ORA-01427 SQL-02112
ORA-01422

22000 data exception

22001 string data - right truncation ORA-01401 ORA-01406
ORA-12899

22002 null value - no indicator parameter ORA-01405 SQL-02124

22003 numeric value out of range ORA-01426 ORA-01438
ORA-01455 ORA-01457

22005 error in assignment

22007 invalid datetime format

22008 datetime field overflow ORA-01800 .. 01899

22009 invalid time zone displacement value

22011 substring error

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 34

Table 8-6 (Cont.) Oracle Error Mapping to SQLSTATE Status

Code Condition Oracle Error

22012 division by zero ORA-01476

22015 interval field overflow

22018 invalid character value for cast

22019 invalid escape character ORA-00911 ORA-01425

22021 character not in repertoire

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025 ORA-01488
ORA-04000 .. 04019

22024 unterminated C string ORA-01479 .. 01480

22025 invalid escape sequence ORA-01424

22026 string data - length mismatch

22027 trim error

23000 integrity constraint violation ORA-00001 ORA-01400
ORA-02290 .. 02299

24000 invalid cursor state ORA-01001 .. 01003
ORA-01410 ORA-06511
ORA-08006 SQL-02114
SQL-02117 SQL-02118
SQL-02122

25000 invalid transaction state

26000 invalid SQL statement name

27000 triggered data change violation

28000 invalid authorization specification

2A000 direct SQL syntax error or access rule violation

2B000 dependent privilege descriptors still exist

2C000 invalid character set name

2D000 invalid transaction termination

2E000 invalid connection name

33000 invalid SQL descriptor name SQL-02138

34000 invalid cursor name

35000 invalid condition number

37000 dynamic SQL syntax error or access rule violation

3C000 ambiguous cursor name

3D000 invalid catalog name

3F000 invalid schema name

40000 transaction rollback ORA-02091 .. 02092

40001 serialization failure

40002 integrity constraint violation

40003 statement completion unknown

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 34

Table 8-6 (Cont.) Oracle Error Mapping to SQLSTATE Status

Code Condition Oracle Error

42000 syntax error or access rule violation ORA-00022 ORA-00251
ORA-00900 .. 00999
ORA-01031
ORA-01490 .. 01493
ORA-01700 .. 01799
ORA-01900 .. 02099
ORA-02140 .. 02289
ORA-02420 .. 02424
ORA-02450 .. 02499
ORA-03276 .. 03299
ORA-04040 .. 04059
ORA-04070 .. 04099

44000 with check option violation ORA-01402

60000 system errors ORA-00370 .. 00429
ORA-00600 .. 00899
ORA-06430 .. 06449
ORA-07200 .. 07999
ORA-09700 .. 09999

61000 resource error ORA-00018 .. 00035
ORA-00050 .. 00068
ORA-02376 .. 02399
ORA-04020 .. 04039

62000 shared server and detached process errors ORA-00101 .. 00120
ORA-00440 .. 00569

63000 Oracle*XA and two-task interface errors ORA-00150 .. 00159
SQL-02128
ORA-02700 .. 02899
ORA-03100 .. 03199
ORA-06200 .. 06249
SQL-02128

64000 control file, database file, and redo file errors;
archival and media recovery errors

ORA-00200 .. 00369
ORA-01100 .. 01250

65000 PL/SQL errors ORA-06500 .. 06599

66000 SQL*Net driver errors ORA-06000 .. 06149
ORA-06250 .. 06429
ORA-06600 .. 06999
ORA-12100 .. 12299
ORA-12500 .. 12599

67000 licensing errors ORA-00430 .. 00439

69000 SQL*Connect errors ORA-00570 .. 00599
ORA-07000 .. 07199

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 34

Table 8-6 (Cont.) Oracle Error Mapping to SQLSTATE Status

Code Condition Oracle Error

72000 SQL execute phase errors ORA-01000 .. 01099
ORA-01400 .. 01489
ORA-01495 .. 01499
ORA-01500 .. 01699
ORA-02400 .. 02419
ORA-02425 .. 02449
ORA-04060 .. 04069
ORA-08000 .. 08190
ORA-12000 .. 12019
ORA-12300 .. 12499
ORA-12700 .. 21999

82100 out of memory (could not allocate) SQL-02100

82101 inconsistent cursor cache: unit cursor/global cursor
mismatch

SQL-02101

82102 inconsistent cursor cache: no global cursor entry SQL-02102

82103 inconsistent cursor cache: out of range cursor
cache reference

SQL-02103

82104 inconsistent host cache: no cursor cache available SQL-02104

82105 inconsistent cursor cache: global cursor not found SQL-02105

82106 inconsistent cursor cache: invalid Oracle cursor
number

SQL-02106

82107 program too old for run-time library SQL-02107

82108 invalid descriptor passed to run-time library SQL-02108

82109 inconsistent host cache: host reference is out of
range

SQL-02109

82110 inconsistent host cache: invalid host cache entry
type

SQL-02110

82111 heap consistency error SQL-02111

82112 unable to open message file SQL-02113

82113 code generation internal consistency failed SQL-02115

82114 reentrant code generator gave invalid context SQL-02116

82115 invalid hstdef argument SQL-02119

82116 first and second arguments to sqlrcn both null SQL-02120

82117 invalid OPEN or PREPARE for this connection

82118 application context not found SQL-02123

82119 connect error; can't get error text SQL-02125

82120 precompiler/SQLLIB version mismatch. SQL-02127

82121 FETCHed number of bytes is odd SQL-02129

82122 EXEC TOOLS interface is not available SQL-02130

82123 run-time context in use SQL-02131

82124 unable to allocate run-time context ORA-01422 SQL-02132

82125 unable to initialize process for use with threads SQL-02133

82126 invalid run-time context SQL-02134

Chapter 8
About Using Status Variables when MODE={ANSI|ANSI14}

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 34

Table 8-6 (Cont.) Oracle Error Mapping to SQLSTATE Status

Code Condition Oracle Error

90000 debug events ORA-10000 .. 10999

99999 catch all all others

HZ000 remote database access

8.4 About Using the SQL Communications Area
The SQL Communications area (SQLCA) is a record-like data structure. Its fields contain error,
warning, and status information updated by Oracle whenever a SQL statement is executed.
Thus, the SQLCA always reflects the outcome of the most recent SQL operation. To determine
the outcome, you can check variables in the SQLCA.

In host languages that allow both local and global declarations, your program can have more
than one SQLCA. For example, it might have one global SQLCA and several local ones.
Access to a local SQLCA is limited by its scope within the program. Oracle returns information
only to the "active" SQLCA.

Also note that, when your application uses SQL*Net to access a combination of local and
remote databases concurrently, all the databases write to one SQLCA. There is no different
SQLCA for each database. For more information, refer to "Concurrent Logons" .

When MODE={ORACLE|ANSI13}, the SQLCA is required; if the SQLCA is not declared, compile-
time errors will occur. The SQLCA is optional when MODE={ANSI|ANSI14}, but you cannot use
the WHENEVER SQLWARNING statement without declaring SQLCA. So, if you want to use the
WHENEVER SQLWARNING statement, you must declare the SQLCA.

If you declare SQLCODE instead of the SQLCA in a particular compilation unit, the
precompiler allocates an internal SQLCA for that unit. Your host program cannot access the
internal SQLCA. If you declare the SQLCA and SQLCODE (Pro*FORTRAN only), Oracle
returns the same status code to both after every SQL operation.

When MODE={ANSI|ANSI14}, you must declare either SQLSTATE (refer to SQLCODE and
SQLSTATE The SQLSTATE status variable supports the SQLSTATE status variable specified
by the SQL92 standard. You can use the SQLSTATE status variable with or without
SQLCODE. refer to Table 8-3 and Table 8-4for more information.

8.4.1 Declaring the SQLCA
To declare the SQLCA, simply include it (using an EXEC SQL INCLUDE statement) in your host-
language source file as follows:

* Include the Oracle Communications Area (ORACA).
 EXEC SQL INCLUDE ORACA
EXEC SQL INCLUDE SQLCA;

The SQLCA is used if and only if there is an INCLUDE of the SQLCA.

When you precompile your program, the INCLUDE SQLCA statement is replaced by several
variable declarations that allow Oracle to communicate with the program.

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 34

8.4.2 About Declaring the SQLCA in Pro*COBOL
In Pro*COBOL, it makes no difference whether the INCLUDE is inside or outside of a Declare
Section. For more information about declaring the SQLCA in Pro*COBOL, see Using the SQL
Communications Area.

8.4.3 About Declaring the SQLCA in Pro*FORTRAN
In Pro*FORTRAN, the SQLCA must be declared outside the Declare Section, because it is a
COMMON block. Furthermore, the SQLCA must come before the CONNECT statement and the
first executable FORTRAN statement.

You must declare the SQLCA in each subroutine and function that contains SQL statements.
Every time a SQL statement in one of the subroutines or functions is executed, Oracle updates
the SQLCA held in the COMMON block.

Ordinarily, only the order and datatypes of variables in a COMMON-list matter, not their names.
However, you cannot rename the SQLCA variables because the precompiler generates code
that refers to them. Thus, all declarations of the SQLCA must be identical. For more
information about declaring the SQLCA in Pro*FORTRAN, see Using the SQL
Communications Area.

8.4.4 What's in the SQLCA?
The SQLCA contains the following run-time information about the outcome of SQL statements:

• Oracle error codes

• Warning flags

• Event information

• Rows-processed count

• Diagnostics

Figure 8-2 shows all the variables in the SQLCA. To see the SQLCA structure and variable
names in a particular host language, refer to your supplement to this Guide.

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 34

Figure 8-2 SQLCA Variables

SQLCAID

SQLCABC

SQLCODE

SQLERRM

 SQLERRML

 SQLERRMC

SQLERRP

SQLERRD

 SQLERRD(1)

 SQLERRD(2)

 SQLERRD(3)

 SQLERRD(4)

 SQLERRD(5)

 SQLERRD(6)

SQLWARN

 SQLWARN(0)

 SQLWARN(1)

 SQLWARN(2)

 SQLWARN(3)

 SQLWARN(4)

 SQLWARN(5)

 SQLWARN(6)

 SQLWARN(7)

SQLEXT

Character string “SQLCA”

Length of SQLCA data structure in bytes

Oracle error message code

Subrecord for storing error message

Length of error message

Text of error message

Reserved for future use

Array of six integer status codes

Reserved for future use

Reserved for future use

Number of rows processed

Reserved for future use

Parse error offset

Reserved for future use

Array of eight warning flags

Another warning flag set

Character string truncated

No longer in use

SELECT list not equal to INTO list

DELETE or UPDATE without WHERE clause

Reserved for future use

No longer in use

No longer in use

Reserved for future use

8.4.5 Key Components of Error Reporting
Error reporting depends on variables in the SQLCA. This section highlights the key
components of error reporting. The next section takes a close look at the SQLCA.

8.4.6 Status Codes
Every executable SQL statement returns a status code to the SQLCA variable SQLCODE,
which you can check implicitly with the WHENEVER statement or explicitly with your own code.

Status codes can be zero, less than zero, or greater than zero. Refer to Declaring SQLCODE"
for complete SQLCODE descriptions.

8.4.7 Warning Flags
Warning flags are returned in the SQLCA variables SQLWARN(0) through SQLWARN(7),
which you can check implicitly or explicitly. These warning flags are useful for run-time
conditions not considered errors by Oracle.

8.4.8 Rows-Processed Count
The number of rows processed by the most recently executed SQL statement is returned in the
SQLCA variable SQLERRD(3), which you can check explicitly.

Speaking strictly, this variable is not for error reporting, but it can help you avoid mistakes. For
example, suppose you expect to delete about ten rows from a table. After the deletion, you
check SQLERRD(3) and find that 75 rows were processed. To be safe, you might want to roll
back the deletion and examine the search condition in your WHERE clause.

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 34

8.4.9 Parse Error Offset
Before executing a SQL statement, Oracle must parse it, that is, examine it to make sure it
follows syntax rules and refers to valid database objects. If Oracle finds an error, an offset is
stored in the SQLCA variable SQLERRD(5), which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse error begins. The first
character occupies position zero. For example, if the offset is 9, the parse error begins at the
tenth character.

By default, static SQL statements are checked for syntactic errors at precompile time. So,
SQLERRD(5) is most useful for debugging dynamic SQL statements, which your program
accepts or builds at run time.

Parse errors arise from missing, misplaced, or misspelled keywords, invalid options,
nonexistent tables, and the like. For example, the dynamic SQL statement

UPDATE EMP SET JIB = :job_title WHERE EMPNO = :emp_number

causes the parse error

ORA-00904: invalid column name

because the column name JOB is misspelled. The value of SQLERRD(5) is 15 because the
erroneous column name JIB begins at the sixteenth character.

If your SQL statement does not cause a parse error, Oracle sets SQLERRD(5) to zero. Oracle
also sets SQLERRD(5) to zero if a parse error begins at the first character (which occupies
position zero). So, check SQLERRD(5) only if SQLCODE is negative, which means that an
error has occurred.

8.4.10 Error Message Text
The error code and message for Oracle errors are available in the SQLCA variable
SQLERRMC. At most, the first 70 characters of text are stored. To get the full text of messages
longer than 70 characters, you use the SQLGLM function. Refer to "Getting the Full Text of
Error Messages".

8.4.11 SQLCA Structure
This section describes the structure of the SQLCA, its fields, and the values they can store.

8.4.12 SQLCAID
This string field is initialized to "SQLCA" to identify the SQL Communications Area.

8.4.13 SQLCABC
This integer field holds the length, in bytes, of the SQLCA structure.

8.4.14 SQLCODE
This integer field holds the status code of the most recently executed SQL statement. The
status code, which indicates the outcome of the SQL operation, can be any of the following
numbers:

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 34

0

Oracle executed the statement without detecting an error or exception.

> 0

Oracle executed the statement but detected an exception. This occurs when Oracle cannot
find a row that meets your WHERE-clause search condition or when a SELECT INTO or FETCH
returns no rows.

< 0

When MODE={ANSI|ANSI14|ANSI13}, +100 is returned to SQLCODE after an INSERT of no
rows. This can happen when a subquery returns no rows to process.

Oracle did not execute the statement because of a database, system, network, or application
error. Such errors are irrecoverable. When they occur, the current transaction should, in most
cases, be rolled back.

Negative return codes correspond to error codes listed in Oracle Database Error Messages.

8.4.15 SQLERRM
This subrecord contains the following two fields:

SQLERRML

This integer field holds the length of the message text stored in SQLERRMC.

SQLERRMC

This string field holds the message text for the error code stored in SQLCODE and can store
up to 70 characters. For the full text of messages longer than 70 characters, use the SQLGLM
function.

Verify SQLCODE is negative

before you reference SQLERRMC. If you reference SQLERRMC when SQLCODE is zero, you
get the message text associated with a prior SQL statement.

8.4.16 SQLERRP
This string field is reserved for future use.

8.4.17 SQLERRD
This array of binary integers has six elements. Descriptions of the fields in SQLERRD (called
SQLERD in FORTRAN) follow:

SQLERRD(1)

This field is reserved for future use.

SQLERRD(2)

This field is reserved for future use.

SQLERRD(3)

This field holds the number of rows processed by the most recently executed SQL statement.
However, if the SQL statement failed, the value of SQLERRD(3) is undefined, with one

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 34

exception. If the error occurred during an array operation, processing stops at the row that
caused the error, so SQLERRD(3) gives the number of rows processed successfully.

The rows-processed count is zeroed after an OPEN statement and incremented after a FETCH
statement. For the EXECUTE, INSERT, UPDATE, DELETE, and SELECT INTO statements, the count
reflects the number of rows processed successfully. The count does not include rows
processed by an update or delete cascade. For example, if 20 rows are deleted because they
meet WHERE-clause criteria, and 5 more rows are deleted because they now (after the
primary delete) violate column constraints, the count is 20 not 25.

SQLERRD(4)

This field is reserved for future use.

SQLERRD(5)

This field holds an offset that specifies the character position at which a parse error begins in
the most recently executed SQL statement. The first character occupies position zero.

SQLERRD(6)

This field is reserved for future use.

8.4.18 SQLWARN
This array of single characters has eight elements. They are used as warning flags. Oracle
sets a flag by assigning it a "W" (for warning) character value. The flags warn of exceptional
conditions.

For example, a warning flag is set when Oracle assigns a truncated column value to an output
host variable.

Also note that, while Figure 8-2 illustrates SQLWARN as an array, it is implemented in
Pro*COBOL as a group item with elementary PIC X items named SQLWARN0 through
SQLWARN7. The Pro*FORTRAN implementation is composed of the LOGICAL variables,
SQLWN0 through SQLWN7.

Descriptions of the fields in SQLWARN follow:

SQLWARN(0)

This flag is set if another warning flag is set.

SQLWARN(1)

This flag is set if a truncated column value was assigned to an output host variable. This
applies only to character data. Oracle truncates certain numeric data without setting a warning
or returning a negative SQLCODE value.

To find out if a column value was truncated and by how much, check the indicator variable
associated with the output host variable. The (positive) integer returned by an indicator variable
is the original length of the column value. You can increase the length of the host variable
accordingly.

SQLWARN(2)

This flag is set if one or more nulls were ignored in the evaluation of a SQL group function such
as AVG, COUNT, or MAX. This behavior is expected because, except for COUNT(*), all group
functions ignore nulls. If necessary, you can use the SQL function NVL to temporarily assign
values (zeros, for example) to the null column entries.

SQLWARN(3)

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 34

This flag is set if the number of columns in a query select list does not equal the number of
host variables in the INTO clause of the SELECT or FETCH statement. The number of items
returned is the lesser of the two.

SQLWARN(4)

This flag is set if every row in a table was processed by an UPDATE or DELETE statement without
a WHERE clause. An update or deletion is called unconditional if no search condition restricts
the number of rows processed. Such updates and deletions are unusual, so Oracle sets this
warning flag. That way, you can roll back the transaction if necessary

SQLWARN(5)

This flag is set when an EXEC SQL CREATE {PROCEDURE|FUNCTION|PACKAGE|
PACKAGE BODY} statement fails because of a PL/SQL compilation error.

SQLWARN(6)

This flag is no longer in use.

SQLWARN(7)

This flag is no longer in use.

8.4.19 SQLEXT
This string field is reserved for future use.

8.4.20 PL/SQL Considerations
When your precompiler program executes an embedded PL/SQL block, not all fields in the
SQLCA are set. For example, if the block fetches several rows, the rows-processed count,
SQLERRD(3), is set to 1, not the actual number of rows fetched. So, you should rely only on
the SQLCODE and SQLERRM fields in the SQLCA after executing a PL/SQL block.

8.4.21 Getting the Full Text of Error Messages
The SQLCA can accommodate error messages up to 70 characters long. To get the full text of
longer (or nested) error messages, you need the SQLGLM function. If connected to Oracle,
you can call SQLGLM using the syntax

SQLGLM(message_buffer, buffer_size, message_length);

where:

message_buffer

is the text buffer in which you want Oracle to store the error message (Oracle blank-pads to the
end of this buffer).

buffer_size

is an integer variable that specifies the maximum size of the buffer in bytes.

message_length

is an integer variable in which Oracle stores the actual length of the error message.

The maximum length of an Oracle error message is 512 characters including the error code,
nested messages, and message inserts such as table and column names. The maximum

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 34

length of an error message returned by SQLGLM depends on the value you specify for
buffer_size.

In the following example, you call SQLGLM to get an error message of up to 100 characters in
length:

-- declare variables for function call
msg_buffer CHARACTER(100);
buf_size INTEGER;
msg_length INTEGER;
set buf_size = 100;
EXEC SQL WHENEVER SQLERROR DO sql_error;
-- other statements
ROUTINE sql_error
BEGIN
 -- get full text of error message
 SQLGLM(msg_buffer, buf_size, msg_length);
 display contents of msg_buffer;
 exit program with an error
END sql_error;

Notice that SQLGLM is called only when a SQL error has occurred. Always make sure
SQLCODE is negative before calling SQLGLM. If you call SQLGLM when SQLCODE is zero,
you get the message text associated with a prior SQL statement.

8.4.22 Using the WHENEVER Statement
By default, precompiled programs ignore Oracle error and warning conditions and continue
processing if possible. To perform automatic condition checking and error handling, use the
WHENEVER statement.

With the WHENEVER statement, you can specify actions to be taken when Oracle detects an
error, warning condition, or "not found" condition. These actions include continuing with the
next statement, calling a routine, branching to a labeled statement, or stopping.

You code the WHENEVER statement by using the following syntax:

EXEC SQL WHENEVER <condition> <action>;

You can have Oracle automatically check the SQLCA for any of the following conditions.

8.4.23 SQLWARNING
SQLWARN(0) is set because Oracle returned a warning (one of the warning flags,
SQLWARN(1) through SQLWARN(7), is also set) or SQLCODE has a positive value other than
+1403. For example, SQLWARN(1) is set when Oracle assigns a truncated column value to an
output host variable.

Declaring the SQLCA is optional when MODE={ANSI|ANSI14}. To use WHENEVER
SQLWARNING, however, you must declare the SQLCA.

8.4.24 SQLERROR
SQLCODE has a negative value because Oracle returned an error.

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 34

8.4.25 NOT FOUND
SQLCODE has a value of +1403 (+100 when MODE={ANSI|ANSI14| ANSI13}), because Oracle
could not find a row that meets the search condition of a WHERE clause, or a SELECT INTO or
FETCH returned no rows. When MODE={ANSI|ANSI14|ANSI13}, +100 is returned to SQLCODE
after an INSERT of no rows.

When Oracle detects one of the preceding conditions, you can have your program take any of
the following actions.

8.4.26 CONTINUE
Your program continues to run with the next statement if possible. This is the default action,
equivalent to not using the WHENEVER statement. You can use it to "turn off" condition checking.

8.4.27 DO
Your program transfers control to an internal routine. When the end of the routine is reached,
control transfers to the statement that follows the failed SQL statement.

A routine is any functional program unit that can be invoked, such as a COBOL paragraph or
FORTRAN subroutine. In this context, separately compiled programs, such as COBOL subroutines,
are not routines.

The usual rules for entering and exiting a routine apply. However, passing parameters to the
routine is not allowed. Furthermore, the routine must not return a value.

The parameter routine_call is a host language invocation, as in

EXEC SQL -- COBOL
 WHENEVER <condition> DO PERFORM <paragraph_name> -- COBOL
END-EXEC. -- COBOL

or

EXEC SQL -- FORTRAN
 WHENEVER <condition> DO CALL <subroutine_name> -- FORTRAN

8.4.28 GOTO
Your program branches to a labeled statement.

8.4.29 STOP
Your program stops running and uncommitted work is rolled back.

Be careful. The STOP action displays no messages before logging off Oracle. In Pascal, the
STOP action is illegal because Pascal has no equivalent command.

8.4.30 Some Examples
If you want your program to

• go to close_cursor if a "no data found" condition occurs,

• continue with the next statement if a warning occurs, and

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 34

• go to error_handler if an error occurs

simply code the following WHENEVER statements before the first executable SQL statement:

EXEC SQL WHENEVER NOT FOUND GOTO close_cursor;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER SQLERROR GOTO error_handler;

The following Pro*C example uses WHENEVER...DO statements to handle specific errors:

EXEC SQL WHENEVER SQLERROR DO handle_insert_error;
EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:emp_number, :emp_name, :dept_number);
EXEC SQL WHENEVER SQLERROR DO handle_delete_error;
EXEC SQL DELETE FROM DEPT WHERE DEPTNO = :dept_number;
...
ROUTINE handle_insert_error;
 BEGIN
 IF sqlca.sqlcode = -1 THEN -- duplicate key value
 ...
 ELSEIF sqlca.sqlcode = -1401 THEN -- value too large
 ...
 ENDIF;
 ...
 END;
ROUTINE handle_delete_error;
 BEGIN
 IF sqlca.sqlerrd(3) = 0 THEN -- no rows deleted
 ...
 ELSE
 ...
 ENDIF;
 ...
 END;
...

Notice how the procedures check variables in the SQLCA to determine a course of action.

8.4.31 Scope
Because WHENEVER is a declarative statement, its scope is positional, not logical. It tests all
executable SQL statements that follow it in the source file, not in the flow of program logic.
Therefore, you should code the WHENEVER statement before the first executable SQL statement
you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER statement checking
for the same condition.

In the example , the first WHENEVER SQLERROR statement is superseded by a second, and so
applies only to the CONNECT statement. The second WHENEVER SQLERROR statement applies to
both the UPDATE and DROP statements, despite the flow of control from step1 to step3.

step1:
EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL CONNECT :username IDENTIFIED BY :password;
 ...
 GOTO step3;
step2:
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL UPDATE EMP SET SAL = SAL * 1.10;
 ...
step3:

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 34

 EXEC SQL DROP INDEX EMP_INDEX;
 ...

8.4.32 Guidelines
The following guidelines will help you avoid some common pitfalls.

Placing the Statements. In general, code a WHENEVER statement before the first executable
SQL statement in your program. This ensures that all ensuing errors are trapped because
WHENEVER statements stay in effect to the end of a file.

Handling End-of-Data Conditions. Your program should be prepared to handle an end-of-
data condition when using a cursor to fetch rows. If a FETCH returns no data, the program
should branch to a labeled section of code where a CLOSE command is issued, as follows:

SQL WHENEVER NOT FOUND GOTO no_more;
...
no_more:
 ...
 EXEC SQL CLOSE my_cursor;
 ...

Avoiding Infinite Loops. If a WHENEVER SQLERROR GOTO statement branches to an error
handling routine that includes an executable SQL statement, your program might enter an
infinite loop if the SQL statement fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the SQL statement, as shown in the following example:

EXEC SQL WHENEVER SQLERROR GOTO sql_error;
...
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 ...

Without the WHENEVER SQLERROR CONTINUE statement, a ROLLBACK error would invoke the
routine again, starting an infinite loop.

Careless use of WHENEVER can cause problems. For example, the following code enters an
infinite loop if the DELETE statement sets NOT FOUND because no rows meet the search
condition:

-- improper use of WHENEVER
...
EXEC SQL WHENEVER NOT FOUND GOTO no_more;
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 ...
ENDLOOP;
no_more:
 EXEC SQL DELETE FROM EMP WHERE EMPNO = :emp_number;
 ...

In the next example, you handle the NOT FOUND condition properly by resetting the GOTO target:

-- proper use of WHENEVER
...
EXEC SQL WHENEVER NOT FOUND GOTO no_more;
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 ...
ENDLOOP;

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 34

no_more:
 EXEC SQL WHENEVER NOT FOUND GOTO no_match;
 EXEC SQL DELETE FROM EMP WHERE EMPNO = :emp_number;
 ...
no_match:
 ...

Maintaining Addressability. With host languages that allow local and global identifiers, make
sure all SQL statements governed by a WHENEVER GOTO statement can branch to the GOTO label.
The following code results in a compile-time error because labelA in FUNC1 is not within the
scope of the INSERT statement in FUNC2:

FUNC1
 BEGIN
 EXEC SQL WHENEVER SQLERROR GOTO labelA;
 EXEC SQL DELETE FROM EMP WHERE DEPTNO = :dept_number;
 ...
 labelA:
 ...
 END;
FUNC2
 BEGIN
 EXEC SQL INSERT INTO EMP (JOB) VALUES (:job_title);
 ...
 END;

The label to which a WHENEVER GOTO statement branches must be in the same precompilation
file as the statement.

Returning after an Error. If your program must return after handling an error, use the DO
routine_call action. Alternatively, you can test the value of SQLCODE, as shown in the
following example:

EXEC SQL UPDATE EMP SET SAL = SAL * 1.10;
IF sqlca.sqlcode < 0 THEN
 -- handle error
EXEC SQL DROP INDEX EMP_INDEX;
...

Just make sure no WHENEVER GOTO or WHENEVER STOP statement is active.

8.4.33 Getting the Text of SQL Statements
In many precompiler applications, it is convenient to know the text of the statement being
processed, its length, and the SQL command (such as INSERT or SELECT) that it contains. This
is especially true for applications that use dynamic SQL.

The routine SQLGLS, which is part of the SQLLIB run-time library, returns the following
information:

• The text of the most recently parsed SQL statement

• The Length of the statement

• A Function code (refer to Table 8-8 for the SQL command used in the statement

You can call SQLGLS after issuing a static SQL statement. With dynamic SQL Method 1, you
can call SQLGLS after the SQL statement is executed. With dynamic SQL Method 2, 3, or 4,
you can call SQLGLS after the statement is prepared.

To call SQLGLS, you use the following syntax:

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 34

SQLGLS(SQLSTM, STMLEN, SQLFC)

Table 8-7 shows the host-language datatypes available for the parameters in the SQLGLS
argument list.

Table 8-7 SQLGLS Parameter Datatypes

Parameter Language Datatype

SQLSTM COBOL PIC X(n)

SQLSTM FORTRAN CHARACTER*n

STMLEN, SQLFC COBOL PIC S9(9) COMP

STMLEN, SQLFC FORTRAN INTEGER*4

All parameters must be passed by reference. This is usually the default parameter passing
convention; you need not take special action.

The parameter SQLSTM is a blank-padded (not null-terminated) character buffer that holds the
returned text of the SQL statement. Your program must statically declare the buffer or
dynamically allocate memory for it.

The length parameter STMLEN is a four-byte integer. Before calling SQLGLS, set this
parameter to the actual size (in bytes) of the SQLSTM buffer. When SQLGLS returns, the
SQLSTM buffer contains the SQL statement text blank padded to the length of the buffer.
STMLEN returns the actual number of bytes in the returned statement text, not counting the
blank padding. However, STMLEN returns a zero if an error occurred.

Some possible errors follow:

• No SQL statement was parsed.

• You passed an invalid parameter (for example, a negative length value).

• An internal exception occurred in SQLLIB.

The parameter SQLFC is a four-byte integer that returns the SQL function code for the SQL
command in the statement. Table 8-8 shows the function code for each SQL command.

SQLGLS does not return statements that contain the following commands:

• CONNECT

• COMMIT

• ROLLBACK

• RELEASE

• FETCH

There are no SQL function codes for these statements.

Table 8-8 SQL Command Function Codes

Code SQL Function Code SQL Function

01 CREATE TABLE 39 AUDIT

02 SET ROLE 40 NOAUDIT

03 INSERT 41 ALTER INDEX

04 SELECT 42 CREATE EXTERNAL DATABASE

Chapter 8
About Using the SQL Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 34

Table 8-8 (Cont.) SQL Command Function Codes

Code SQL Function Code SQL Function

05 UPDATE 43 DROP EXTERNAL DATABASE

06 DROP ROLE 44 CREATE DATABASE

07 DROP VIEW 45 ALTER DATABASE

08 DROP TABLE 46 CREATE ROLLBACK SEGMENT

09 DELETE 47 ALTER ROLLBACK SEGMENT

10 CREATE VIEW 48 DROP ROLLBACK SEGMENT

11 DROP USER 49 CREATE TABLESPACE

12 CREATE ROLE 50 ALTER TABLESPACE

13 CREATE SEQUENCE 51 DROP TABLESPACE

14 ALTER SEQUENCE 52 ALTER SESSION

15 (not used) 53 ALTER USER

16 DROP SEQUENCE 54 COMMIT

17 CREATE SCHEMA 55 ROLLBACK

18 CREATE CLUSTER 56 SAVEPOINT

19 CREATE USER 57 CREATE CONTROL FILE

20 CREATE INDEX 58 ALTER TRACING

21 DROP INDEX 59 CREATE TRIGGER

22 DROP CLUSTER 60 ALTER TRIGGER

23 VALIDATE INDEX 61 DROP TRIGGER

24 CREATE PROCEDURE 62 ANALYZE TABLE

25 ALTER PROCEDURE 63 ANALYZE INDEX

26 ALTER TABLE 64 ANALYZE CLUSTER

27 EXPLAIN 65 CREATE PROFILE

28 GRANT 66 DROP PROFILE

29 REVOKE 67 ALTER PROFILE

30 CREATE SYNONYM 68 DROP PROCEDURE

31 DROP SYNONYM 69 (not used)

32 ALTER SYSTEM SWITCH LOG 70 ALTER RESOURCE COST

33 SET TRANSACTION 71 CREATE SNAPSHOT LOG

34 PL/SQL EXECUTE 72 ALTER SNAPSHOT LOG

35 LOCK TABLE 73 DROP SNAPSHOT LOG

36 (not used) 74 CREATE SNAPSHOT

37 RENAME 75 ALTER SNAPSHOT

38 COMMENT 76 DROP SNAPSHOT

8.5 About Using the Oracle Communications Area
In the same way the SQLCA handles standard SQL communications; the Oracle
Communications Area (ORACA) handles Oracle communications. When you need more
information about run-time errors and status changes than the SQLCA provides, use the

Chapter 8
About Using the Oracle Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 34

ORACA. It contains an extended set of diagnostic tools. However, use of the ORACA is
optional because it adds to run-time overhead.

Besides helping you to diagnose problems, the ORACA lets you monitor your program's use of
Oracle resources such as the SQL Statement Executor and the cursor cache.

In host languages that allow local and global declarations, your program can have more than
one ORACA. For example, it might have one global ORACA and several local ones. Access to
a local ORACA is limited by its scope within the program. Oracle returns information only to the
"active" ORACA. The information is available only after a commit or rollback.

8.5.1 Declaring the ORACA
To declare the ORACA, simply include it (using an EXEC SQL INCLUDE statement) in your
host-language source file as follows:

* Include the Oracle Communications Area (ORACA).
 EXEC SQL INCLUDE ORACA

The ORACA must be declared outside the Declare Section.

When you precompile your program, the INCLUDE ORACA statement is replaced by several
program variable declarations. These declarations allow Oracle to communicate with your
program.

8.5.2 Enabling the ORACA
To enable the ORACA, you must specify the ORACA option, either on the command line with

ORACA=YES

or inline with

EXEC ORACLE OPTION (ORACA=YES);

Then, you must choose appropriate run-time options by setting flags in the ORACA.

8.5.3 What's in the ORACA?
The ORACA contains option settings, system statistics, and extended diagnostics such as

• SQL statement text (you can specify when to save the text)

• name of the file in which an error occurred

• location of the error in a file

• cursor cache errors and statistics

Figure 8-3 shows all the variables in the ORACA. To see the ORACA structure and variable
names in a particular host language, refer to your supplement to this Guide.

Chapter 8
About Using the Oracle Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 34

Figure 8-3 ORACA Variables

ORACAID

ORACABC

ORACCHF

ORADBGF

ORAHCHF

ORASTXTF

ORASTXT

 ORASTXTL

 ORASTXTC

ORASFNM

 ORASFNML

 ORASFNMC

ORASLNR

ORAHOC

ORAMOC

ORACOC

ORANOR

ORANPR

ORANEX

Character string “ORACA”

Length of ORACA data structure in bytes

Cursor cache consistency flag

Master debug flag

Heap consistency flag

Save SQL statement flag

Subrecord for storing SQL statement

Length of current SQL statement

Text of current SQL statement

Subrecord for storing filename

Length of filename

Name of file containing current SQL statement

Line in file at or near current SQL statement

Higest MAXOPENCURSORS requested

Maximum open cursors used

Current number of cursors used

Number of cursor cache reassignments

Number of SQL statement parses

Number of SQL statement executions

8.5.4 Choosing Run-time Options
The ORACA includes several option flags. Setting these flags by assigning them nonzero
values enables

• Save the text of SQL statements

• Enable DEBUG operations

• Check cursor cache consistency (the cursor cache is a continuously updated area of
memory used for cursor management)

• Check heap consistency (the heap is an area of memory reserved for dynamic variables)

• Gather cursor statistics

The descriptions will help you choose the options you need.

8.5.5 ORACA Structure
This section describes the structure of the ORACA, its fields, and the values they can store.

8.5.6 ORACAID
This string field is initialized to "ORACA" to identify the Oracle Communications Area.

8.5.7 ORACABC
This integer field holds the length, expressed in bytes, of the ORACA data structure.

8.5.8 ORACCHF
If the master DEBUG flag (ORADBGF) is set, this flag lets you check the cursor cache for
consistency before every cursor operation.

Chapter 8
About Using the Oracle Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 34

The Oracle run-time library does the consistency checking and might issue error messages,
which are listed in Oracle Database Error Messages. They are returned to the SQLCA just like
Oracle error messages.

This flag has the following settings:

• 0 — Disable cache consistency checking (the default).

• 1 — Enable cache consistency checking.

8.5.9 ORADBGF
This master flag lets you choose all the DEBUG options. It has the following settings:

• 0 — Disable all DEBUG operations (the default).

• 1 — Enable all DEBUG operations.

8.5.10 ORAHCHF
If the master DEBUG flag (ORADBGF) is set, this flag tells the Oracle run-time library to check
the heap for consistency every time the precompiler dynamically allocates or frees memory.
This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set, cannot be cleared;
subsequent change requests are ignored. It has the following settings:

• 0 — Disable heap consistency checking (the default).

• 1 — Enable heap consistency checking.

8.5.11 ORASTXTF
This flag lets you specify when the text of the current SQL statement is saved. It has the
following settings:

• 0 — Never save the SQL statement text (the default).

• 1 — Save the SQL statement text on SQLERROR only.

• 2 — Save the SQL statement text on SQLERROR or SQLWARNING.

• 3 — Always save the SQL statement text.

The SQL statement text is saved in the ORACA subrecord named ORASTXT.

8.5.12 Diagnostics
The ORACA provides an enhanced set of diagnostics; the following variables help you to
locate errors quickly.

8.5.13 ORASTXT
This subrecord helps you find faulty SQL statements. It lets you save the text of the last SQL
statement parsed by Oracle. It contains the following two fields:

ORASTXTL

This integer field holds the length of the current SQL statement.

Chapter 8
About Using the Oracle Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 34

ORASTXTC

This string field holds the text of the current SQL statement. At most, the first 70 characters of
text are saved.

Statements parsed by the precompiler, such as CONNECT, FETCH, and COMMIT, are not saved in
the ORACA.

8.5.14 ORASFNM
This subrecord identifies the file containing the current SQL statement and so helps you find
errors when multiple files are precompiled for one application. It contains the following two
fields:

ORASFNML

This integer field holds the length of the filename stored in ORASFNMC.

ORASFNMC

This string field holds the filename. At most, the first 70 characters are stored.

8.5.15 ORASLNR
This integer field identifies the line at (or near) which the current SQL statement can be found.

8.5.16 Cursor Cache Statistics
The variables let you gather cursor cache statistics. They are automatically set by every
COMMIT or ROLLBACK statement your program issues. Internally, there is a set of these variables
for each CONNECTed database. The current values in the ORACA pertain to the database
against which the last commit or rollback was executed.

8.5.17 ORAHOC
This integer field records the highest value to which MAXOPENCURSORS was set during program
execution.

8.5.18 ORAMOC
This integer field records the maximum number of open Oracle cursors required by your
program. This number can be higher than ORAHOC if MAXOPENCURSORS was set too low, which
forced the precompiler to extend the cursor cache.

8.5.19 ORACOC
This integer field records the current number of open Oracle cursors required by your program.

8.5.20 ORANOR
This integer field records the number of cursor cache reassignments required by your program.
This number shows the degree of "thrashing" in the cursor cache and should be kept as low as
possible.

Chapter 8
About Using the Oracle Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 34

8.5.21 ORANPR
This integer field records the number of SQL statement parses required by your program.

8.5.22 ORANEX
This integer field records the number of SQL statement executions required by your program.
The ratio of this number to the ORANPR number should be kept as high as possible. In other
words, avoid unnecessary reparsing. For help, refer to Performance Tuning.

8.5.23 An Example
The following program prompts for a department number, inserts the name and salary of each
employee in that department into one of two tables, then displays diagnostic information from
the ORACA:

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 emp_name INTEGER;
 dept_number INTEGER;
 salary REAL;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE ORACA;
display 'Username? ';
read username;
display 'Password? ';
read password;
EXEC SQL WHENEVER SQLERROR DO sql_error;
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';
EXEC ORACLE OPTION (ORACA=YES);
-- set flags in the ORACA
set oraca.oradbgf = 1; -- enable debug operations
set oraca.oracchf = 1; -- enable cursor cache consistency check
set oraca.orastxtf = 3; -- always save the SQL statement
display 'Department number? ';
read dept_number;
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL + NVL(COMM,0)
 FROM EMP
 WHERE DEPTNO = :dept_number;
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND DO no_more;
rLOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 IF salary < 2500 THEN
 EXEC SQL INSERT INTO PAY1 VALUES (:emp_name, :salary);
 ELSE
 EXEC SQL INSERT INTO PAY2 VALUES (:emp_name, :salary);
 ENDIF;
ENDLOOP;
ROUTINE no_more
BEGIN
 EXEC SQL CLOSE emp_cursor;
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL COMMIT WORK RELEASE;

Chapter 8
About Using the Oracle Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 34

 display 'Last SQL statement: ', oraca.orastxt.orastxtc;
 display '... at or near line number: ', oraca.oraslnr;
 display
 display ' Cursor Cache Statistics';
 display '---';
 display 'Maximum value of MAXOPENCURSORS ', oraca.orahoc;
 display 'Maximum open cursors required: ', oraca.oramoc;
 display 'Current number of open cursors: ', oraca.oracoc;
 display 'Number of cache reassignments: ', oraca.oranor;
 display 'Number of SQL statement parses: ', oraca.oranpr;
 display 'Number of SQL statement executions: ', oraca.oranex;
 exit program;
END no_more;
ROUTINE sql_error
BEGIN
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Last SQL statement: ', oraca.orastxt.orastxtc;
 display '... at or near line number: ', oraca.oraslnr;
 display
 display ' Cursor Cache Statistics';
 display '---';
 display 'Maximum value of MAXOPENCURSORS ', oraca.orahoc;
 display 'Maximum open cursors required: ', oraca.oramoc;
 display 'Current number of open cursors: ', oraca.oracoc;
 display 'Number of cache reassignments: ', oraca.oranor;
 display 'Number of SQL statement parses: ', oraca.oranpr;
 display 'Number of SQL statement executions: ', oraca.oranex;
 exit program with an error;
END sql_error;

Chapter 8
About Using the Oracle Communications Area

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 34

9
Using Host Arrays

This chapter describes the following:

• What Is a Host Array?

• Why Use Arrays?

• Declaring Host Arrays

• About Using Arrays in SQL Statements

• About Selecting into Arrays

• About Using Indicator Arrays

• About Using the FOR Clause

• About Using the WHERE Clause

• About Mimicking the CURRENT OF Clause

• About Using SQLERRD(3)

This chapter looks at using arrays to simplify coding and improve program performance. You
learn how to manipulate Oracle data using arrays, how to operate on all the elements of an
array with a single SQL statement, and how to limit the number of array elements processed.
The following questions are answered:

• What is a host array?

• Why use arrays?

• How are host arrays declared?

• How are arrays used in SQL statements?

9.1 What Is a Host Array?
An array is a collection of related data items, called elements, associated with a single variable
name. When declared as a host variable, the array is called a host array. Likewise, an indicator
variable declared as an array is called an indicator array. An indicator array can be associated
with any host array.

9.2 Why Use Arrays?
Arrays can ease programming and offer improved performance. When writing an application,
you are usually faced with the problem of storing and manipulating large collections of data.
Arrays simplify the task of naming and referencing the individual items in each collection.

Using arrays can boost the performance of your application. Arrays let you manipulate an
entire collection of data items with a single SQL statement. Thus, Oracle communication
overhead is reduced markedly, especially in a networked environment. For example, suppose
you want to insert information about 300 employees into the EMP table. Without arrays, your
program must do 300 individual INSERTs--one for each employee. With arrays, only one INSERT
need be done.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 11

9.3 Declaring Host Arrays
You declare host arrays in the Declare Section like simple host variables. You also dimension
(set the size of) host arrays in the Declare Section. In the following example, you declare three
host arrays and dimension them with 50 elements:

EXEC SQL BEGIN DECLARE SECTION;
 emp_name (50) CHARACTER(20);
 emp_number (50) INTEGER;
 salary (50) REAL;
EXEC SQL END DECLARE SECTION;

9.3.1 Dimensioning Arrays
The maximum dimension of a host array is 32,767 elements. If you use a host array that
exceeds the maximum, you get a "parameter out of range" run-time error. If you use multiple
host arrays in a single SQL statement, their dimensions should be the same. Otherwise, an
"array size mismatch" warning message is issued at precompile time. If you ignore this
warning, the precompiler uses the smallest dimension for the SQL operation.

9.3.2 Restrictions
You cannot declare host arrays of pointers. Also, host arrays that might be referenced in a SQL
statement are limited to one dimension. So, the two-dimensional array declared in the following
example is invalid:

EXEC SQL BEGIN DECLARE SECTION;
 hi_lo_scores (25, 25) INTEGER; -- not allowed
EXEC SQL END DECLARE SECTION;

9.4 About Using Arrays in SQL Statements
The Oracle Precompilers allow the use of host arrays in data manipulation statements. You can
use host arrays as input variables in the INSERT, UPDATE, and DELETE statements and as output
variables in the INTO clause of SELECT and FETCH statements.

Note that when MODE=ANSI14, array operations are not allowed. In other words, you can
reference host arrays in a SQL statement only when MODE={ANSI|ANSI13|ORACLE}.

The syntax used for host arrays and simple host variables is nearly the same. One difference is
the optional FOR clause, which lets you control array processing. Also, there are restrictions
on mixing host arrays and simple host variables in a SQL statement.

The following sections illustrate the use of host arrays in data manipulation statements.

9.5 About Selecting into Arrays
You can use host arrays as output variables in the SELECT statement. If you know the maximum
number of rows the select will return, simply dimension the host arrays with that number of
elements. In the following example, you select directly into three host arrays. Knowing the
select will return no more than 50 rows, you dimension the arrays with 50 elements:

EXEC SQL BEGIN DECLARE SECTION;
 emp_name (50) CHARACTER(20);
 emp_number (50) INTEGER;

Chapter 9
Declaring Host Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 11

 salary (50) REAL;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT ENAME, EMPNO, SAL
 INTO :emp_name, :emp_number, :salary
 FROM EMP
 WHERE SAL > 1000;

In this example, the SELECT statement returns up to 50 rows. If there are fewer than 50 eligible
rows or you want to retrieve only 50 rows, this method will suffice. However, if there are more
than 50 eligible rows, you cannot retrieve all of them this way. If you reexecute the SELECT
statement, it just returns the first 50 rows again, even if more are eligible. You must either
dimension a larger array or declare a cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the number of elements you dimensioned,
Oracle issues the error message

SQL-02112: SELECT...INTO returns too many rows

unless you specify SELECT_ERROR=NO. For more information about the option SELECT_ERROR,
refer to "SELECT_ERROR"

9.5.1 Batch Fetches
If you do not know the maximum number of rows a select will return, you can declare and open
a cursor_name fetch from it in "batches." Batch fetches within a loop let you retrieve a large
number of rows with ease. Each fetch returns the next batch of rows from the current active
set. In the following example, you fetch in 20-row batches:

EXEC SQL BEGIN DECLARE SECTION;
 emp_number (20) INTEGER;
 salary (20) REAL;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT EMPNO, SAL FROM EMP;
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND DO ...
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_number, :salary;
 -- process batch of rows
ENDLOOP;

9.5.2 Number of Rows Fetched
Each fetch returns, at most, the number of rows in the array dimension. Fewer rows are
returned in the following cases:

• The end of the active set is reached. The "no data found" Oracle warning code is returned
to SQLCODE in the SQLCA. For example, this happens if you fetch into an array of
dimension 100 but only 20 rows are returned.

• Fewer than a full batch of rows remain to be fetched. For example, this happens if you
fetch 70 rows into an array of dimension 20 because after the third fetch, only 10 rows
remain to be fetched.

• An error is detected while processing a row. The fetch fails and the applicable Oracle error
code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of SQLERRD in the
SQLCA, called SQLERRD(3) in this guide. This applies to each open cursor. In the following
example, notice how the status of each cursor is maintained separately:

Chapter 9
About Selecting into Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 11

EXEC SQL OPEN cursor1;
EXEC SQL OPEN cursor2;
EXEC SQL FETCH cursor1 INTO :array_of_20;
 -- now running total in SQLERRD(3) is 20
EXEC SQL FETCH cursor2 INTO :array_of_30;
 -- now running total in SQLERRD(3) is 30, not 50
EXEC SQL FETCH cursor1 INTO :array_of_20;
 -- now running total in SQLERRD(3) is 40 (20 + 20)
EXEC SQL FETCH cursor2 INTO :array_of_30;
 -- now running total in SQLERRD(3) is 60 (30 + 30)

9.5.3 Restrictions
Using host arrays in the WHERE clause of a SELECT statement is allowed only in a subquery. (For
example, refer to "About Using the WHERE Clause".) Also, you cannot mix simple host
variables with host arrays in the INTO clause of a SELECT or FETCH statement; if any of the host
variables is an array, all must be arrays. Table 9-1 shows which uses of host arrays are valid in
a SELECT INTO statement.

Table 9-1 Valid Host Arrays for SELECT INTO

INTO Clause WHERE Clause Valid?

array array no

scalar scalar yes

array scalar yes

scalar array no

9.5.4 About Fetching Nulls
If you select or fetch a null into a host array that lacks an indicator array, Oracle stops
processing, sets SQLERRD(3) to the number of rows processed, and issues the following error
message:

ORA-01405: fetched column value is NULL

To learn how to find nulls and truncated values, refer to "About Using Indicator Variables".

9.5.5 About Fetching Truncated Values
When DBMS=V7, if you select or fetch a truncated column value into a host array that lacks an
indicator array, Oracle stops processing, sets SQLERRD(3) to the number of rows processed,
and issues the following error message:

ORA-01406: fetched column value was truncated

You can check SQLERRD(3) for the number of rows processed before the truncation occurred.
The rows-processed count includes the row that caused the truncation error.

When MODE=ANSI, truncation is not considered an error, so Oracle continues processing.

Again, when doing array selects and fetches, always use indicator arrays. That way, if Oracle
assigns one or more truncated column values to an output host array, you can find the original
lengths of the column values in the associated indicator array.

Chapter 9
About Selecting into Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 11

9.5.6 About Inserting with Arrays
You can use host arrays as input variables in an INSERT statement. Just make sure your
program populates the arrays with data before executing the INSERT statement. If some
elements in the arrays are irrelevant, you can use the FOR clause to control the number of rows
inserted. Refer to About Using the FOR Clause.

An example of inserting with host arrays follows:

EXEC SQL BEGIN DECLARE SECTION;
 emp_name (50) CHARACTER(20);
 emp_number (50) INTEGER;
 salary (50) REAL;
EXEC SQL END DECLARE SECTION;
-- populate the host arrays
EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:emp_name, :emp_number, :salary);

The cumulative number of rows inserted can be found in SQLERRD(3).

Although functionally equivalent to the following statement, the INSERT statement in the last
example is much more efficient because it issues only one call to Oracle:

FOR i = 1 TO array_dimension
 EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:emp_name[i], :emp_number[i], :salary[i]);
ENDFOR;

In this imaginary example (imaginary because host variables cannot be subscripted in a SQL
statement), you use a FOR loop to access all array elements in sequential order.

Restrictions

You cannot use an array of pointers in the VALUES clause of an INSERT statement; all array
elements must be data items. Also, mixing simple host variables with host arrays in the
VALUES clause of an INSERT statement is not allowed; if any of the host variables is an array,
all must be arrays.

9.5.7 About Updating with Arrays
You can also use host arrays as input variables in an UPDATE statement, as the following
example shows:

EXEC SQL BEGIN DECLARE SECTION;
 emp_number (50) INTEGER;
 salary (50) REAL;
EXEC SQL END DECLARE SECTION;
-- populate the host arrays
EXEC SQL UPDATE EMP SET SAL = :salary WHERE EMPNO = :emp_number;

The cumulative number of rows updated can be found in SQLERRD(3). The number does not
include rows processed by an update cascade.

If some elements in the arrays are irrelevant, you can use the FOR clause to limit the number
of rows updated.

The last example showed a typical update using a unique key (emp_number). Each array
element qualified just one row for updating. In the following example, each array element
qualifies multiple rows:

Chapter 9
About Selecting into Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 11

EXEC SQL BEGIN DECLARE SECTION;
 job_title (10) CHARACTER(10);
 commission (50) REAL;
EXEC SQL END DECLARE SECTION;
-- populate the host arrays
EXEC SQL UPDATE EMP SET COMM = :commission WHERE JOB = :job_title;

Restrictions: Mixing simple host variables with host arrays in the SET or WHERE clause of an
UPDATE statement is not allowed. If any of the host variables is an array, all must be arrays.
Furthermore, if you use a host array in the SET clause, you must use one in the WHERE clause.
However, their dimensions and datatypes need not match.

You cannot use host arrays with the CURRENT OF clause in an UPDATE statement. For an
alternative, refer to About Mimicking the CURRENT OF Clause.

Table 9-2 shows which uses of host arrays are valid in an UPDATE statement:

Table 9-2 Valid Host Arrays for UPDATE

SET Clause WHERE Clause Valid?

array array yes

scalar scalar yes

array scalar no

scalar array no

9.5.8 About Deleting with Arrays
You can also use host arrays as input variables in a DELETE statement. It is like executing the
DELETE statement repeatedly using successive elements of the host array in the WHERE clause.
Thus, each execution might delete zero, one, or more rows from the table. An example of
deleting with host arrays follows:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 emp_number (50) INTEGER;
 EXEC SQL END DECLARE SECTION;
-- populate the host array
EXEC SQL DELETE FROM EMP WHERE EMPNO = :emp_number;

The cumulative number of rows deleted can be found in SQLERRD(3). That number does not
include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (emp_number). Each array
element qualified just one row for deletion. In the following example, each array element
qualifies multiple rows:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 job_title (10) CHARACTER(10);
EXEC SQL END DECLARE SECTION;
-- populate the host array
EXEC SQL DELETE FROM EMP WHERE JOB = :job_title;

Chapter 9
About Selecting into Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 11

9.5.9 Restrictions
Mixing simple host variables with host arrays in the WHERE clause of a DELETE statement is not
allowed; if any of the host variables is an array, all must be arrays. Also, you cannot use host
arrays with the CURRENT OF clause in a DELETE statement. For an alternative, refer to "About
Mimicking the CURRENT OF Clause".

9.6 About Using Indicator Arrays
You use indicator arrays to assign nulls to input host arrays and to detect null or truncated
values in output host arrays. The following example shows how to insert with indicator arrays:

EXEC SQL BEGIN DECLARE SECTION;
 emp_number (50) INTEGER;
 dept_number (50) INTEGER;
 commission (50) REAL;
 ind_comm (50) SMALLINT; -- indicator array
EXEC SQL END DECLARE SECTION;
-- populate the host arrays
-- populate the indicator array; to insert a null into
-- the COMM column, assign -1 to the appropriate element in
-- the indicator array
EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)
 VALUES (:emp_number, :dept_number, :commission:ind_comm);

The dimension of the indicator array cannot be smaller than the dimension of the host array.

9.7 About Using the FOR Clause
You can use the optional FOR clause to set the number of array elements processed by any of
the following SQL statements:

• DELETE

• EXECUTE

• FETCH

• INSERT

• OPEN

• UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements. With these
statements, you might not want to use the entire array. The FOR clause lets you limit the
elements used to just the number you need, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 emp_name (100) CHARACTER(20);
 salary (100) REAL;
 rows_to_insert INTEGER;
EXEC SQL END DECLARE SECTION;
-- populate the host arrays
set rows_to_insert = 25; -- set FOR-clause variable
EXEC SQL FOR :rows_to_insert -- will process only 25 rows
 INSERT INTO EMP (ENAME, SAL)
 VALUES (:emp_name, :salary);

Chapter 9
About Using Indicator Arrays

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 11

The FOR clause must use an integer host variable to count array elements. For example, the
following statement is illegal:

EXEC SQL FOR 25 -- illegal
 INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:emp_name, :emp_number, :salary);

The FOR-clause variable specifies the number of array elements to be processed. Make sure
the number does not exceed the smallest array dimension. Also, the number must be positive.
If it is negative or zero, no rows are processed.

9.7.1 Restrictions
Two restrictions keep FOR clause semantics clear.: You cannot use the FOR clause in a SELECT
statement or with the CURRENT OF clause.

9.7.2 In a SELECT Statement
If you use the FOR clause in a SELECT statement, you get the following error message:

PCC-E-0056: FOR clause not allowed on SELECT statement at ...

The FOR clause is not allowed in SELECT statements because its meaning is unclear. Does it
mean "execute this SELECT statement n times"? Or, does it mean "execute this SELECT
statement once, but return n rows"? The problem in the former case is that each execution
might return multiple rows. In the latter case, it is better to declare a cursor and use the FOR
clause in a FETCH statement, as follows:

EXEC SQL FOR :limit FETCH emp_cursor INTO ...

9.7.3 With the CURRENT OF Clause
You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer to the latest row
returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL FROM EMP WHERE EMPNO = :emp_number;
...
EXEC SQL OPEN emp_cursor;
...
EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
...
EXEC SQL UPDATE EMP SET SAL = :new_salary
 WHERE CURRENT OF emp_cursor;

However, you cannot use the FOR clause with the CURRENT OF clause. The following
statements are invalid because the only logical value of limit is 1 (you can only update or
delete the current row once):

EXEC SQL FOR :limit UPDATE EMP SET SAL = :new_salary
 WHERE CURRENT OF emp_cursor;
...
EXEC SQL FOR :limit DELETE FROM EMP
 WHERE CURRENT OF emp_cursor;

Chapter 9
About Using the FOR Clause

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 11

9.8 About Using the WHERE Clause
Oracle treats a SQL statement containing host arrays of dimension n like the same SQL
statement executed n times with n different scalar variables (the individual array elements).
The precompiler issues the following error message only when such treatment is ambiguous:

PCC-S-0055: Array <name> not allowed as bind variable at ...

For example, assuming the declarations

EXEC SQL BEGIN DECLARE SECTION;
 mgr_number (50) INTEGER;
 job_title (50) CHARACTER(20);
EXEC SQL END DECLARE SECTION;

it would be ambiguous if the statement

EXEC SQL SELECT MGR INTO :mgr_number FROM EMP
 WHERE JOB = :job_title;

were treated like the imaginary statement

FOR i = 1 TO 50
 SELECT MGR INTO :mgr_number[i] FROM EMP
 WHERE JOB = :job_title[i];
ENDFOR;

because multiple rows might meet the WHERE-clause search condition, but only one output
variable is available to receive data. Therefore, an error message is issued.

However, it would not be ambiguous if the statement

EXEC SQL UPDATE EMP SET MGR = :mgr_number
 WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE JOB = :job_title);

were treated like the imaginary statement

FOR i = 1 TO 50
 UPDATE EMP SET MGR = :mgr_number[i]
 WHERE EMPNO IN
 (SELECT EMPNO FROM EMP WHERE JOB = :job_title[i]);
ENDFOR;

because there is a mgr_number in the SET clause for each row matching job_title in the WHERE
clause, even if each job_title matches multiple rows. All rows matching each job_title can be
SET to the same mgr_number. So, no error message is issued.

9.9 About Mimicking the CURRENT OF Clause
You use the CURRENT OF cursor clause in a DELETE or UPDATE statement to refer to the latest
row fetched from the cursor. However, you cannot use CURRENT OF with host arrays. Instead,
select the ROWID of each row, then use that value to identify the current row during the update
or delete. An example follows:

EXEC SQL BEGIN DECLARE SECTION;
 emp_name (25) CHARACTER(20);
 job_title (25) CHARACTER(15);
 old_title (25) CHARACTER(15);
 row_id (25) CHARACTER(18);

Chapter 9
About Using the WHERE Clause

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 11

EXEC SQL END DECLARE SECTION;
...
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, JOB, ROWID FROM EMP;
...
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
...
LOOP
 EXEC SQL FETCH emp_cursor
 INTO :emp_name, :job_title, :row_id;
 ...
 EXEC SQL DELETE FROM EMP
 WHERE JOB = :old_title AND ROWID = :row_id;
 EXEC SQL COMMIT WORK;
ENDLOOP;

However, the fetched rows are not locked because no FOR UPDATE OF clause is used. So, you
might get inconsistent results if another user changes a row after you read it but before you
delete it.

9.10 About Using SQLERRD(3)
For INSERT, UPDATE, DELETE, and SELECT INTO statements, SQLERRD(3) records the number of
rows processed. For FETCH statements, it records the cumulative sum of rows processed.

When using host arrays with FETCH, to find the number of rows returned by the most recent
iteration, subtract the current value of SQLERRD(3) from its previous value (stored in another
variable). In the following example, you determine the number of rows returned by the most
recent fetch:

EXEC SQL BEGIN DECLARE SECTION;
 emp_number (100) INTEGER;
 emp_name (100) CHARACTER(20);
EXEC SQL END DECLARE SECTION;
...
 rows_to fetch INTEGER;
 rows_before INTEGER;
 rows_this_time INTEGER;
...
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT EMPNO, ENAME
 FROM EMP
 WHERE DEPTNO = 30;
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
...
-- initialize loop variables
set rows_to_fetch = 20; -- number of rows in each "batch"
set rows_before = 0; -- previous value of sqlerrd(3)
set rows_this_time = 20;
WHILE rows_this_time = rows_to_fetch
 LOOP
 EXEC SQL FOR :rows_to_fetch
 FETCH emp_cursor
 INTO :emp_number, :emp_name;
 set rows_this_time = sqlca.sqlerrd(3) - rows_before;
 set rows_before = sqlca.sqlerrd(3);
 ENDLOOP;
ENDWHILE;

Chapter 9
About Using SQLERRD(3)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 11

SQLERRD(3) is also useful when an error occurs during an array operation. Processing stops
at the row that caused the error, so SQLERRD(3) gives the number of rows processed
successfully.

Chapter 9
About Using SQLERRD(3)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 11

10
Using Dynamic SQL

This chapter describes the following sections:

• What Is Dynamic SQL?

• Advantages and Disadvantages of Dynamic SQL

• When to Use Dynamic SQL

• Requirements for Dynamic SQL Statements

• How Dynamic SQL Statements Are Processed

• Methods for Using Dynamic SQL

• About Using Method 1

• About Using Method 2

• About Using Method 3

• Using Method 4

• About Using the DECLARE STATEMENT Statement

• About Using PL/SQL

This chapter shows you how to use dynamic SQL, an advanced programming technique that
adds flexibility and functionality to your applications. After weighing the advantages and
disadvantages of dynamic SQL, you learn four methods from simple to complex for writing
programs that accept and process SQL statements "on the fly" at run time. You learn the
requirements and limitations of each method and how to choose the right method for a given
job.

10.1 What Is Dynamic SQL?
Most database applications do a specific job. For example, a simple program might prompt the
user for an employee number, then update rows in the EMP and DEPT tables. In this case, you
know the makeup of the UPDATE statement at precompile time. That is, you know which tables
might be changed, the constraints defined for each table and column, which columns might be
updated, and the datatype of each column.

However, some applications must accept (or build) and process a variety of SQL statements at
run time. For example, a general-purpose report writer must build different SELECT statements
for the various reports it generates. In this case, the statement's makeup is unknown until run
time. Such statements can, and probably will, change from execution to execution. They are
aptly called dynamic SQL statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your source
program. Instead, they are stored in character strings input to or built by the program at run
time. They can be entered interactively or read from a file.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 16

10.2 Advantages and Disadvantages of Dynamic SQL
Host programs that accept and process dynamically defined SQL statements are more
versatile than plain embedded SQL programs. Dynamic SQL statements can be built
interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be used in the
WHERE clause of a SELECT, UPDATE, or DELETE statement. A more complex program might allow
users to choose from menus listing SQL operations, table and view names, column names,
and so on. Thus, dynamic SQL lets you write highly flexible applications.

However, some dynamic queries require complex coding, the use of special data structures,
and more run-time processing. While you might not notice the added processing time, you
might find the coding difficult unless you fully understand dynamic SQL concepts and methods.

10.3 When to Use Dynamic SQL
In practice, static SQL will meet nearly all your programming needs. Use dynamic SQL only if
you need its open-ended flexibility. Its use is suggested when one or more of the following
items is unknown at precompile time:

• Text Of The Sql Statement (Commands, Clauses, And So On)

• The Number Of Host Variables

• The Datatypes Of Host Variables

• References To Database Objects Such As Columns, Indexes, Sequences, Tables,
Usernames, And Views

10.4 Requirements for Dynamic SQL Statements
To represent a dynamic SQL statement, a character string must contain the text of a valid SQL
statement, but not contain the EXEC SQL clause, host-language delimiters or statement
terminator, or any of the following embedded SQL commands:

• CLOSE

• DECLARE

• DESCRIBE

• EXECUTE

• FETCH

• INCLUDE

• OPEN

• PREPARE

• WHENEVER

In most cases, the character string can contain dummy host variables. They hold places in the
SQL statement for actual host variables. Because dummy host variables are just placeholders,
you do not declare them and can name them anything you like. For example, Oracle makes no
distinction between the following two strings:

Chapter 10
Advantages and Disadvantages of Dynamic SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 16

'DELETE FROM EMP WHERE MGR = :mgr_number AND JOB = :job_title'
'DELETE FROM EMP WHERE MGR = :m AND JOB = :j'

10.5 How Dynamic SQL Statements Are Processed
Typically, an application program prompts the user for the text of a SQL statement and the
values of host variables used in the statement. Then Oracle parses the SQL statement. That
is, Oracle examines the SQL statement to make sure it follows syntax rules and refers to valid
database objects. Parsing also involves checking database access rights, reserving needed
resources, and finding the optimal access path.

Next, Oracle binds the host variables to the SQL statement. That is, Oracle gets the addresses
of the host variables so that it can read or write their values.

Then Oracle executes the SQL statement. That is, Oracle does what the SQL statement
requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host variables.

10.6 Methods for Using Dynamic SQL
This section introduces four methods you can use to define dynamic SQL statements. It briefly
describes the capabilities and limitations of each method, then offers guidelines for choosing
the right method. Later sections describe how to use the methods. In addition, you can find
sample host-language programs in your supplement to this Guide.

The four methods are increasingly general. That is, Method 2 encompasses Method 1, Method
3 encompasses Methods 1 and 2, and so on. However, each method is most useful for
handling a certain kind of SQL statement, as Table 10-1 shows.

Table 10-1 Dynamic SQL Method Applicability

Method Kind of SQL Statement

1 nonquery without input host variables

2 nonquery with known number of input host variables

3 query with known number of select-list items and input host variables

4 query with unknown number of select-list items or input host variables

The term select-list item includes column names and expressions.

10.6.1 Method 1
This method lets your program accept or build a dynamic SQL statement, then immediately
execute it using the EXECUTE IMMEDIATE command. The SQL statement must not be a query
(SELECT statement) and must not contain any placeholders for input host variables. For
example, the following host strings qualify:

'DELETE FROM EMP WHERE DEPTNO = 20'
'GRANT SELECT ON EMP TO scott'

With Method 1, the SQL statement is parsed every time it is executed (unless you specify
HOLD_CURSOR=YES).

Chapter 10
How Dynamic SQL Statements Are Processed

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 16

10.6.2 Method 2
This method lets your program accept or build a dynamic SQL statement, then process it using
the PREPARE and EXECUTE commands .The SQL statement must not be a query. The number of
placeholders for input host variables and the datatypes of the input host variables must be
known at precompile time. For example, the following host strings fall into this category:

'INSERT INTO EMP (ENAME, JOB) VALUES (:emp_name, :job_title)'
'DELETE FROM EMP WHERE EMPNO = :emp_number'

With Method 2, the SQL statement is parsed just once (unless you specify
RELEASE_CURSOR=YES), but it can be executed many times with different values for the host
variables. SQL data definition statements such as CREATE are executed when they are
PREPAREd.

10.6.3 Method 3
This method lets your program accept or build a dynamic query, then process it using the
PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor commands. The
number of select-list items, the number of placeholders for input host variables, and the
datatypes of the input host variables must be known at precompile time. For example, the
following host strings qualify:

'SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'
'SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept_number'

10.6.4 Method 4
This method lets your program accept or build a dynamic SQL statement, then process it using
descriptors (discussed in "Using Method 4"). The number of select-list items, the number of
placeholders for input host variables, and the datatypes of the input host variables can be
unknown until run time. For example, the following host strings fall into this category:

'INSERT INTO EMP (<unknown>) VALUES (<unknown>)'
'SELECT <unknown> FROM EMP WHERE DEPTNO = 20'

Method 4 is required for dynamic SQL statements that contain an unknown number of select-
list items or input host variables.

10.6.5 Guidelines
With all four methods, you must store the dynamic SQL statement in a character string, which
must be a host variable or quoted literal. When you store the SQL statement in the string, omit
the keywords EXEC SQL and the statement terminator.

With Methods 2 and 3, the number of placeholders for input host variables and the datatypes
of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more difficult to
code. As a rule, use the simplest method you can. However, if a dynamic SQL statement is to
be executed repeatedly by Method 1, use Method 2 instead to avoid reparsing for each
execution.

Method 4 provides maximum flexibility, but requires complex coding and a full understanding of
dynamic SQL concepts. In general, use Method 4 only if you cannot use Methods 1, 2, or 3.
The decision logic in Figure 10-1 will help you choose the correct method.

Chapter 10
Methods for Using Dynamic SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 16

10.6.6 Avoiding Common Errors
If you use a character array to store the dynamic SQL statement, blank-pad the array before
storing the SQL statement. That way, you clear extraneous characters. This is especially
important when you reuse the array for different SQL statements. As a rule, always initialize (or
reinitialize) the host string before storing the SQL statement.

Do not null-terminate the host string. Oracle does not recognize the null terminator as an end-
of-string sentinel. Instead, Oracle treats it as part of the SQL statement.

If you use a VARCHAR variable to store the dynamic SQL statement, make sure the length of the
VARCHAR is set (or reset) correctly before you execute the PREPARE or EXECUTE IMMEDIATE
statement.

EXECUTE resets the SQLWARN warning flags in the SQLCA. So, to catch mistakes such as an
unconditional update (caused by omitting a WHERE clause), check the SQLWARN flags after
executing the PREPARE statement but before executing the EXECUTE statement.

Figure 10-1 Choosing the Right Method

Might its

select list contain

an unknown number of

items ?

Might it be a query ?

Might it contain input

host variables ?

Will it be executed

repeatedly ?

Might it

contain an unknown

number of input host

variables ?

Might it

contain an unknown

number of input host

variables ?

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

Method 4Method 3Method 2Method 1

Chapter 10
Methods for Using Dynamic SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 16

10.7 About Using Method 1
The simplest kind of dynamic SQL statement results only in "success" or "failure" and uses no
host variables. Some examples follow:

'DELETE FROM table_name WHERE column_name = constant'
'CREATE TABLE table_name ...'
'DROP INDEX index_name'
'UPDATE table_name SET column_name = constant'
'GRANT SELECT ON table_name TO username'
'REVOKE RESOURCE FROM username'

10.7.1 The EXECUTE IMMEDIATE Statement
Method 1 parses, then immediately executes the SQL statement using the EXECUTE IMMEDIATE
command. The command is followed by a character string (host variable or literal) containing
the SQL statement to be executed, which cannot be a query.

The syntax of the EXECUTE IMMEDIATE statement follows:

EXEC SQL EXECUTE IMMEDIATE { :host_string | string_literal };

In the following example, you use the host variable sql_stmt to store SQL statements input by
the user:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 sql_stmt CHARACTER(120);
EXEC SQL END DECLARE SECTION;
...
LOOP
 display 'Enter SQL statement: ';
 read sql_stmt;
 IF sql_stmt is empty THEN
 exit loop;
 ENDIF;
 -- sql_stmt now contains the text of a SQL statement
 EXEC SQL EXECUTE IMMEDIATE :sql_stmt;
ENDLOOP;

You can also use string literals, as the following example shows:

EXEC SQL EXECUTE IMMEDIATE 'REVOKE RESOURCE FROM MILLER';

Because EXECUTE IMMEDIATE parses the input SQL statement before every execution,
Method 1 is best for statements that are executed only once. Data definition statements usually
fall into this category.

10.7.2 An Example
The following program prompts the user for a search condition to be used in the WHERE clause
of an UPDATE statement, then executes the statement using Method 1:

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 update_stmt CHARACTER(120);
EXEC SQL END DECLARE SECTION;

Chapter 10
About Using Method 1

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 16

 search_cond CHARACTER(40);
EXEC SQL INCLUDE SQLCA;
display 'Username? ';
read username;
display 'Password? ';
read password;
EXEC SQL WHENEVER SQLERROR GOTO sql_error;
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';
set update_stmt = 'UPDATE EMP SET COMM = 500 WHERE ';
display 'Enter a search condition for the following statement:';
display update_stmt;
read search_cond;
concatenate update_stmt, search_cond;
EXEC SQL EXECUTE IMMEDIATE :update_stmt;
EXEC SQL COMMIT WORK RELEASE;
exit program;
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 display 'Processing error';
 exit program with an error;

10.8 About Using Method 2
What Method 1 does in one step, Method 2 does in two. The dynamic SQL statement, which
cannot be a query, is first PREPAREd (named and parsed), then executed.

With Method 2, the SQL statement can contain placeholders for input host variables and
indicator variables. You can PREPARE the SQL statement once, then EXECUTE it repeatedly using
different values of the host variables. Also, you need not rePREPARE the SQL statement after
a COMMIT or ROLLBACK (unless you log off and reconnect).

Note that you can use EXECUTE for nonqueries with Method 4.

The syntax of the PREPARE statement follows:

EXEC SQL PREPARE statement_name
 FROM { :host_string | string_literal };

PREPARE parses the SQL statement and gives it a name.

The statement_name is an identifier used by the precompiler, not a host or program variable,
and should not be declared in the Declare Section. It simply designates the PREPAREd
statement you want to EXECUTE.

The syntax of the EXECUTE statement is

EXEC SQL EXECUTE statement_name [USING host_variable_list];

where host_variable_list stands for the following syntax:

:host_variable1[:indicator1] [, host_variable2[:indicator2], ...]

EXECUTE executes the parsed SQL statement, using the values supplied for each input host
variable. In the following example, the input SQL statement contains the placeholder n:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 emp_number INTEGER;
 delete_stmt CHARACTER(120);

Chapter 10
About Using Method 2

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 16

EXEC SQL END DECLARE SECTION;
 search_cond CHARACTER(40);
...
set delete_stmt = 'DELETE FROM EMP WHERE EMPNO = :n AND ';
display 'Complete the following statement's search condition:';
display delete_stmt;
read search_cond;
concatenate delete_stmt, search_cond;
EXEC SQL PREPARE sql_stmt FROM :delete_stmt;
LOOP
 display 'Enter employee number: ';
 read emp_number;
 IF emp_number = 0 THEN
 exit loop;
 EXEC SQL EXECUTE sql_stmt USING :emp_number;
ENDLOOP;

With Method 2, you must know the datatypes of input host variables at precompile time. In the
last example, emp_number was declared as type INTEGER. It could also have been declared as
type CHARACTER or REAL, because Oracle supports all these datatype conversions to the NUMBER
datatype.

10.8.1 The USING Clause
When the SQL statement is EXECUTEd, input host variables in the USING clause replace
corresponding placeholders in the PREPAREd dynamic SQL statement.

Every placeholder in the PREPAREd dynamic SQL statement must correspond to a host
variable in the USING clause. So, if the same placeholder appears two or more times in the
PREPAREd statement, each appearance must correspond to a host variable in the USING clause.
If one of the host variables in the USING clause is an array, all must be arrays.

The names of the placeholders need not match the names of the host variables. However, the
order of the placeholders in the PREPAREd dynamic SQL statement must match the order of
corresponding host variables in the USING clause.

To specify nulls, you can associate indicator variables with host variables in the USING clause.
For more information, refer to "About Using Indicator Variables".

10.8.2 An Example
The following program prompts the user for a search condition to be used in the WHERE clause
of an UPDATE statement, then prepares and executes the statement using Method 2. Notice that
the SET clause of the UPDATE statement contains a placeholder (c).

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 sql_stmt CHARACTER(80);
 empno INTEGER VALUE 1234;
 deptno1 INTEGER VALUE 97;
 deptno2 INTEGER VALUE 99;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC ORACLE OPTION (ORACA=YES);
EXEC SQL WHENEVER SQLERROR GOTO sql_error;
display 'Username? ';
read username;
display 'Password? ';

Chapter 10
About Using Method 2

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 16

read password;
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';
set sql_stmt =
 'INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:v1, :v2)';
display "V1 = ", empno, "V2 = ", deptno1;
EXEC SQL PREPARE S FROM :sql_stmt;
EXEC SQL EXECUTE S USING :empno, :deptno1;
set empno = empno + 1;
display "V1 = ", empno, "V2 = ", deptno2;
EXEC SQL EXECUTE S USING :empno, :deptno2;
set sql_stmt =
 'DELETE FROM EMP WHERE DEPTNO = :v1 OR DEPTNO = :v2")';
display "V1 = ", deptno1, "V2 = ", deptno2;
EXEC SQL PREPARE S FROM :sql_stmt;
EXEC SQL EXECUTE S USING :deptno1, :deptno2;
EXEC SQL COMMIT WORK RELEASE;
exit program;
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 display 'Processing error';
 EXEC SQL ROLLBACK WORK RELEASE;
 exit program with an error;

10.9 About Using Method 3
Method 3 is similar to Method 2 but combines the PREPARE statement with the statements
needed to define and manipulate a cursor. This allows your program to accept and process
queries. In fact, if the dynamic SQL statement is a query, you must use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of placeholders
for input host variables must be known at precompile time. However, the names of database
objects such as tables and columns need not be specified until run time (they cannot duplicate
the names of host variables). Clauses that limit, group, and sort query results (such as WHERE,
GROUP BY, and ORDER BY) can also be specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

PREPARE statement_name FROM { :host_string | string_literal };
DECLARE cursor_name CURSOR FOR statement_name;
OPEN cursor_name [USING host_variable_list];
FETCH cursor_name INTO host_variable_list;
CLOSE cursor_name;

Now let us look at what each statement does.

10.9.1 PREPARE
PREPARE parses the dynamic SQL statement and gives it a name. In the following example,
PREPARE parses the query stored in the character string select_stmt and gives it the name
sql_stmt:

set select_stmt = 'SELECT MGR, JOB FROM EMP WHERE SAL < :salary';
EXEC SQL PREPARE sql_stmt FROM :select_stmt;

Commonly, the query WHERE clause is input from a terminal at run time or is generated by the
application.

The identifier sql_stmt is not a host or program variable, but must be unique. It designates a
particular dynamic SQL statement.

Chapter 10
About Using Method 3

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 16

10.9.2 DECLARE
DECLARE defines a cursor by giving it a name and associating it with a specific query. The
cursor declaration is local to its precompilation unit. Continuing our example, DECLARE defines a
cursor named emp_cursor and associates it with sql_stmt, as follows:

EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

The identifiers sql_stmt and emp_cursor are not host or program variables, but must be
unique. If you declare two cursors using the same statement name, the precompiler considers
the two cursor names synonymous. For example, if you execute the statements

EXEC SQL PREPARE sql_stmt FROM :select_stmt;
EXEC SQL DECLARE emp_cursor FOR sql_stmt;
EXEC SQL PREPARE sql_stmt FROM :delete_stmt;
EXEC SQL DECLARE dept_cursor FOR sql_stmt;

when you OPEN emp_cursor, you will process the dynamic SQL statement stored in
delete_stmt, not the one stored in select_stmt.

10.9.3 OPEN
OPEN allocates an Oracle cursor, binds input host variables, and executes the query, identifying
its active set. OPEN also positions the cursor on the first row in the active set and zeroes the
rows-processed count kept by the third element of SQLERRD in the SQLCA. Input host
variables in the USING clause replace corresponding placeholders in the PREPAREd dynamic
SQL statement.

In our example, OPEN allocates emp_cursor and assigns the host variable salary to the WHERE
clause, as follows:

EXEC SQL OPEN emp_cursor USING :salary;

10.9.4 FETCH
FETCH returns a row from the active set, assigns column values in the select list to
corresponding host variables in the INTO clause, and advances the cursor to the next row.
When no more rows are found, FETCH returns the "no data found" Oracle error code to
SQLCODE in the SQLCA.

In our example, FETCH returns a row from the active set and assigns the values of columns
MGR and JOB to host variables mgr_number and job_title, as follows:

EXEC SQL FETCH emp_cursor INTO :mgr_number, :job_title;

10.9.5 CLOSE
CLOSE disables the cursor. After you CLOSE a cursor, you can no longer FETCH from it. In our
example, the CLOSE statement disables emp_cursor, as follows:

EXEC SQL CLOSE emp_cursor;

10.9.6 An Example
The following program prompts the user for a search condition to be used in the WHERE clause
of a query, then prepares and executes the query using Method 3.

Chapter 10
About Using Method 3

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 16

EXEC SQL BEGIN DECLARE SECTION;
 username CHARACTER(20);
 password CHARACTER(20);
 dept_number INTEGER;
 emp_name CHARACTER(10);
 salary REAL;
 select_stmt CHARACTER(120);
EXEC SQL END DECLARE SECTION;
 search_cond CHARACTER(40);
EXEC SQL INCLUDE SQLCA;
display 'Username? ';
read username;
display 'Password? ';
read password;
EXEC SQL WHENEVER SQLERROR GOTO sql_error;
EXEC SQL CONNECT :username IDENTIFIED BY :password;
display 'Connected to Oracle';
set select_stmt = 'SELECT ENAME,SAL FROM EMP WHERE ';
display 'Enter a search condition for the following statement:';
display select_stmt;
read search_cond;
concatenate select_stmt, search_cond;
EXEC SQL PREPARE sql_stmt FROM :select_stmt;
EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO no_more;
display 'Employee Salary';
display '-------- ------';
LOOP
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 display emp_name, salary;
ENDLOOP;
no_more:
 EXEC SQL CLOSE emp_cursor;
 EXEC SQL COMMIT WORK RELEASE;
 exit program;
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 exit program with an error;

10.10 Using Method 4
The implementation of Method 4 is very language-dependent. Therefore, this section only
gives an overview. For details, see your host-language supplement.

There is a kind of dynamic SQL statement that your program cannot process using Method 3.
When the number of select-list items or placeholders for input host variables is unknown until
run time, your program must use a descriptor. A descriptor is an area of memory used by your
program and Oracle to hold a complete description of the variables in a dynamic SQL
statement.

Recall that for a multirow query, you FETCH selected column values INTO a list of declared
output host variables. If the select list is unknown, the host-variable list cannot be established
at precompile time by the INTO clause. For example, you know the following query returns two
column values:

SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept_number;

Chapter 10
Using Method 4

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 16

However, if you let the user define the select list, you might not know how many column values
the query will return.

10.10.1 Need for the SQLDA
To process this kind of dynamic query, your program must issue the DESCRIBE SELECT LIST
command and declare a data structure called the SQL Descriptor Area (SQLDA). Because it
holds descriptions of columns in the query select list, this structure is also called a select
descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of placeholders for input
host variables, the host-variable list cannot be established at precompile time by the USING
clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE BIND
VARIABLES command and declare another kind of SQLDA called a bind descriptor to hold
descriptions of the placeholders for the input host variables. (Input host variables are also
called bind variables.)

If your program has more than one active SQL statement (it might have OPENed two or more
cursors, for example), each statement must have its own SQLDA(s). However, non-concurrent
cursors can reuse SQLDAs. There is no set limit on the number of SQLDAs in a program.

10.10.2 The DESCRIBE Statement
DESCRIBE initializes a descriptor to hold descriptions of select-list items or input host
variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines each select-
list item in a PREPAREd dynamic query to determine its name, datatype, constraints, length,
scale, and precision. It then stores this information in the select descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement examines each
placeholder in a PREPAREd dynamic SQL statement to determine its name, length, and the
datatype of its associated input host variable. It then stores this information in the bind
descriptor for your use. For example, you might use placeholder names to prompt the user for
the values of input host variables.

10.10.3 What Is a SQLDA?
A SQLDA is a host-program data structure that holds descriptions of select-list items or input
host variables.

SQLDA variables are not defined in the Declare Section.

Though SQLDAs differ among host languages, a generic select SQLDA contains the following
information about a query select list:

• Maximum number of columns that can be described

• Actual number of columns found by describe

• Addresses of buffers to store column values

• Lengths of column values

• Datatypes of column values

• addresses of indicator-variable values

Chapter 10
Using Method 4

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 16

• Addresses of buffers to store column names

• Sizes of buffers to store column names

• Current lengths of column names

A generic bind SQLDA contains the following information about the input host variables in a
SQL statement:

• Maximum number of placeholders that can be described

• Actual number of placeholders found by describe

• Addresses of input host variables

• Lengths of input host variables

• Datatypes of input host variables

• Addresses of indicator variables

• Addresses of buffers to store placeholder names

• Sizes of buffers to store placeholder names

• Current lengths of placeholder names

• Addresses of buffers to store indicator-variable names

• Sizes of buffers to store indicator-variable names

• Current lengths of indicator-variable names

To see the SQLDA structure and variable names in a particular host language, refer to your
host-language supplement.

10.10.4 Implementing Method 4
With Method 4, you generally use the following sequence of embedded SQL statements:

EXEC SQL PREPARE statement_name
 FROM { :host_string | string_literal };
EXEC SQL DECLARE cursor_name CURSOR FOR statement_name;
EXEC SQL DESCRIBE BIND VARIABLES FOR statement_name
 INTO bind_descriptor_name;
EXEC SQL OPEN cursor_name
 [USING DESCRIPTOR bind_descriptor_name];
EXEC SQL DESCRIBE [SELECT LIST FOR] statement_name
 INTO select_descriptor_name;
EXEC SQL FETCH cursor_name
 USING DESCRIPTOR select_descriptor_name;
EXEC SQL CLOSE cursor_name;

Select and bind descriptors need not work in tandem. If the number of columns in a query
select list is known, but the number of placeholders for input host variables is unknown, you
can use the Method 4 OPEN statement with the following Method 3 FETCH statement:

EXEC SQL FETCH emp_cursor INTO host_variable_list;

Conversely, if the number of placeholders for input host variables is known, but the number of
columns in the select list is unknown, you can use the following Method 3 OPEN statement with
the Method 4 FETCH statement:

EXEC SQL OPEN cursor_name [USING host_variable_list];

Note that EXECUTE can be used for nonqueries with Method 4.

Chapter 10
Using Method 4

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 16

To learn how these statements allow your program to process dynamic SQL statements using
descriptors, see your host-language supplement.

10.11 About Using the DECLARE STATEMENT Statement
With Methods 2, 3, and 4, you might need to use the statement

EXEC SQL [AT db_name] DECLARE statement_name STATEMENT;

where db_name and statement_name are identifiers used by the precompiler, not host or
program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the statement can
be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and DESCRIBE. It is required if you want to
execute the dynamic SQL statement at a nondefault database. An example using Method 2
follows:

EXEC SQL AT remote_db DECLARE sql_stmt STATEMENT;
EXEC SQL PREPARE sql_stmt FROM :sql_string;
EXEC SQL EXECUTE sql_stmt;

In the example, remote_db tells Oracle where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE CURSOR statement
precedes the PREPARE statement, as shown in the following example:

EXEC SQL DECLARE sql_stmt STATEMENT;
EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;
EXEC SQL PREPARE sql_stmt FROM :sql_string;

The usual sequence of statements is

EXEC SQL PREPARE sql_stmt FROM :sql_string;
EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

10.11.1 Usage of Host Arrays
Usage of host arrays in static and dynamic SQL is similar. For example, to use input host
arrays with dynamic SQL Method 2, use the syntax

EXEC SQL EXECUTE statement_name USING host_array_list;

where host_array_list contains one or more host arrays. With Method 3, use the following
syntax:

OPEN cursor_name USING host_array_list;

To use output host arrays with Method 3, use the following syntax:

FETCH cursor_name INTO host_array_list;

With Method 4, you must use the optional FOR clause to tell Oracle the size of your input or
output host array. To learn how this is done, see your host-language supplement.

10.12 About Using PL/SQL
The Oracle Precompilers treat a PL/SQL block like a single SQL statement. So, like a SQL
statement, a PL/SQL block can be stored in a string host variable or literal. When you store the

Chapter 10
About Using the DECLARE STATEMENT Statement

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 16

PL/SQL block in the string, omit the keywords EXEC SQL EXECUTE, the keyword END-EXEC,
and the statement terminator.

However, there are two differences in the way the precompiler handles SQL and PL/SQL:

• The precompiler treats all PL/SQL host variables as input host variables whether they
serve as input or output host variables (or both) inside the PL/SQL block.

• You cannot FETCH from a PL/SQL block because it might contain any number of SQL
statements.

10.12.1 With Method 1
If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE the PL/SQL
string in the usual way.

10.12.2 With Method 2
If the PL/SQL block contains a known number of input and output host variables, you can use
Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual way.

You must put all host variables in the USING clause. When the PL/SQL string is EXECUTEd, host
variables in the USING clause replace corresponding placeholders in the PREPAREd string.
Though the precompiler treats all PL/SQL host variables as input host variables, values are
assigned correctly. Input (program) values are assigned to input host variables, and output
(column) values are assigned to output host variables.

Every placeholder in the PREPAREd PL/SQL string must correspond to a host variable in the
USING clause. So, if the same placeholder appears two or more times in the PREPAREd string,
each appearance must correspond to a host variable in the USING clause.

10.12.3 With Method 3
Methods 2 and 3 are the same except that Method 3 allows FETCHing. Since you cannot FETCH
from a PL/SQL block, use Method 2 instead.

10.12.4 With Method 4
If the PL/SQL block contains an unknown number of input or output host variables, you must
use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host variables.
Executing DESCRIBE BIND VARIABLES stores information about input and output host variables in
the bind descriptor. Because the precompiler treats all PL/SQL host variables as input host
variables, executing DESCRIBE SELECT LIST has no effect.

The use of bind descriptors with Method 4 is detailed in your host-language supplement.

Note

In dynamic SQL Method 4, a host array cannot be bound to a PL/SQL procedure with
a parameter of type "table."

Chapter 10
About Using PL/SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 16

10.12.5 Caution
Do not use ANSI-style comments (- - ...) in a PL/SQL block that will be processed dynamically
because end-of-line characters are ignored. As a result, ANSI-style comments extend to the
end of the block, not just to the end of a line. Instead, use C-style comments (/* ... */).

Chapter 10
About Using PL/SQL

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 16

11
Writing User Exits

This chapter contains the following:

• What Is a User Exit?

• Why Write a User Exit?

• Developing a User Exit

• Writing a User Exit

• Calling a User Exit

• Passing Parameters to a User Exit

• Returning Values to a Form

• An Example

• About Precompiling and Compiling a User Exit

• About Using the GENXTB Utility

• About Linking a User Exit into SQL*Forms

• Guidelines for SQL*Forms User Exits

• EXEC TOOLS Statements

This chapter focuses on writing user exits for your SQL*Forms and Oracle Forms applications.
First, you learn the EXEC IAF statements that allow a SQL*Forms application to interface with
user exits. Then, you learn how to write and link a SQL*Forms user exit. You also learn how to
use EXEC TOOLS statements with Oracle Forms. (SQL*Forms does not support EXEC
TOOLS.) That way, you can use EXEC IAF statements to enhance your existing applications
and EXEC TOOLS statements to build new applications. The following topics are covered:

• Common uses for user exits

• Writing a user exit

• Passing values between SQL*Forms and a user exit

• Implementing a user exit

• Calling a user exit

• Guidelines for SQL*Forms user exits

• Using EXEC TOOLS statements with Oracle Forms

This chapter is supplemental. For more information about user exits, see the SQL*Forms
Designer's Reference, the Oracle Forms Reference Manual, Vol. 2, and your system-specific
Oracle manuals.

11.1 What Is a User Exit?
A user exit is a host-language subroutine written by you and called by SQL*Forms to do
special-purpose processing. You can embed SQL commands and PL/SQL blocks in your user
exit, then precompile it as you would a host program.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 12

When called by a SQL*Forms trigger, the user exit runs, then returns a status code to
SQL*Forms (refer to Figure 11-1). Your user exit can display messages on the SQL*Forms
status line, get and put field values, manipulate Oracle data, do high-speed computations and
table lookups -- even log on to different databases.

Figure 11-1 SQL*Forms

Oracle7 Server

User Exit Values

Message

Status Code

Field

Message Line

Trigger

SQL *Forms

11.2 Why Write a User Exit?
SQL*Forms Version 3 enables use PL/SQL blocks in triggers. So, in most cases, instead of
calling a user exit, you can use the procedural power of PL/SQL. If the need arises, you can
call user exits from a PL/SQL block with the USER_EXIT function.

User exits are harder to write and implement than SQL, PL/SQL, or SQL*Forms commands.
So, you will probably use them only to do processing that is beyond the scope of SQL, PL/
SQL, and SQL*Forms. Some common uses follow:

• Operations more quickly or easily performed in third generation languages like C and
FORTRAN (for example, numeric integration)

• Controlling real time devices or processes (for example, issuing a sequence of instructions
to a printer or graphics device)

• Data manipulations that need extended procedural capabilities (for example, recursive
sorting)

• Special file I/O operations

Chapter 11
Why Write a User Exit?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 12

11.3 Developing a User Exit
This section outlines the way to develop a SQL*Forms user exit; later sections go into more
detail. For information about EXEC TOOLS statements, which are available with Oracle Forms,
see EXEC TOOLS Statements''

To incorporate a user exit into a form, you take the following steps:

1. Write the user exit in a supported host language.

2. Precompile the source code.

3. Compile the modified source code.

4. Use the GENXTB utility to create a database table, IAPXTB.

5. Use the GENXTB form in SQL*Forms to insert your user exit information into the database
table.

6. Use the GENXTB utility to read the information from the table and create an IAPXIT source
module. Then, compile the source module.

7. Create a new IAP (the SQL*Forms component that runs a form) by linking the standard IAP
object modules, your user exit object module, and the IAPXIT object module created in step 6.

8. In the form, define a trigger to call the user exit.

9. Instruct operators to use the new IAP when running the form. This is unnecessary if the new
IAP replaces the standard one. For details, refer to your system-specific Oracle manuals.

11.4 Writing a User Exit
You can use the following kinds of statements to write your SQL*Forms user exit:

• host-language

• EXEC SQL

• EXEC ORACLE

• EXEC IAF GET

• EXEC IAF PUT

This section focuses on the EXEC IAF GET and PUT statements, which let you pass values
between SQL*Forms and a user exit.

11.4.1 Requirements for Variables
The variables used in EXEC IAF statements must correspond to field names used in the form
definition. If a field reference is ambiguous because you did not specify a block name, you get
an error. An invalid or ambiguous reference to a form field generates an error.

Host variables must be named in the user exit Declare Section and must be prefixed with a
colon (:) in EXEC IAF statements.

Chapter 11
Developing a User Exit

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 12

Note

: Indicator variables are not allowed in EXEC IAF GET and PUT statements.

11.4.2 The IAF GET Statement
This statement allows your user exit to "get" values from fields on a form and assign them to
host variables. The user exit can then use the values in calculations, data manipulations,
updates, and so on. The syntax of the GET statement follows:

EXEC IAF GET field_name1, field_name2, ...
 INTO :host_variable1, :host_variable2, ...;

where field_name can be any of the following SQL*Forms variables:

• field

• block.field

• system variable

• global variable

• host variable (prefixed with a colon) containing the value of a field, block.field, system
variable, or global variable

If field_name is not qualified, it must be unique.

The following example shows how a user exit GETs a field value and assigns it to a host
variable:

EXEC IAF GET employee.job INTO :new_job;

All field values are character strings. If it can, GET converts a field value to the datatype of the
corresponding host variable. If an illegal or unsupported datatype conversion is attempted, an
error is generated.

In the last example, a constant is used to specify block.field. You can also use a host string to
specify block and field names, as follows:

set blkfld = 'employee.job';
EXEC IAF GET :blkfld INTO :new_job;

Unless the field is unique, the host string must contain the full block.field reference with
intervening period. For example, the following usage is invalid:

set blk = 'employee';
set fld = 'job';
EXEC IAF GET :blk.:fld INTO :new_job;

You can mix explicit and stored field names in a GET statement field list, but not in a single field
reference. For example, the following usage is invalid:

set fld = 'job';
EXEC IAF GET employee.:fld INTO :new_job;

Chapter 11
Writing a User Exit

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 12

11.4.3 The IAF PUT Statement
This statement allows your user exit to put the values of constants and host variables into
fields on a form. Thus, the user exit can display on the SQL*Forms screen any value or
message you like. The syntax of the PUT statement follows:

EXEC IAF PUT field_name1, field_name2, ...
 VALUES (:host_variable1, :host_variable2, ...);

where field_name can be any of the following SQL*Forms variables:

• field

• block.field

• system variable

• global variable

• host variable (prefixed with a colon) containing the value of a field, block.field, system
variable, or global variable

The following example shows how a user exit PUTs the values of a numeric constant, string
constant, and host variable into fields on a form:

EXEC IAF PUT employee.number, employee.name, employee.job
 VALUES (7934, 'MILLER', :new_job);

Like GET, PUT lets you use a host string to specify block and field names, as follows:

set blkfld = 'employee.job';
EXEC IAF PUT :blkfld VALUES (:new_job);

On character-mode terminals, a value PUT into a field is displayed when the user exit returns,
rather than when the assignment is made, provided the field is on the current display page. On
block-mode terminals, the value is displayed the next time a field is read from the device.

If a user exit changes the value of a field several times, only the last change takes effect.

11.5 Calling a User Exit
You call a user exit from a SQL*Forms trigger using a packaged procedure named USER_EXIT
(supplied with SQL*Forms). The syntax you use is

USER_EXIT(user_exit_string [, error_string]);

where user_exit_string contains the name of the user exit plus optional parameters and
error_string contains an error message issued by SQL*Forms if the user exit fails. For
example, the following trigger command calls a user exit named LOOKUP:

USER_EXIT('LOOKUP');

Notice that the user exit string is enclosed by single (not double) quotes.

11.6 Passing Parameters to a User Exit
When you call a user exit, SQL*Forms passes it the following parameters automatically:

• Command Line is the user exit string.

Chapter 11
Calling a User Exit

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 12

• Command Line Length is the length (in characters) of the user exit string.

• Error Message is the error string (failure message) if one is defined.

• Error Message Length is the length of the error string.

• In-Query is a Boolean value indicating whether the exit was called in normal or query
mode.

However, the user exit string enables pass additional parameters to the user exit. For example,
the following trigger command passes two parameters and an error message to the user exit
LOOKUP:

USER_EXIT('LOOKUP 2025 A', 'Lookup failed');

You can use this feature to pass field names to the user exit, as the following example shows:

USER_EXIT('CONCAT firstname, lastname, address');

However, it is up to the user exit, not SQL*Forms, to parse the user exit string.

11.7 Returning Values to a Form
When a user exit returns control to SQL*Forms, it must also return a code indicating whether it
succeeded, failed, or suffered an irrecoverable error. The return code is an integer constant
generated by precompiler (refer to this section: An Example). The three results have the
following meanings:

Success: The user exit encountered no errors. SQL*Forms proceeds to the success label or
the next step, unless the Reverse Return Code switch is set by the calling trigger step.

Failure: The user exit detected an error, such as an invalid value in a field. An optional
message passed by the exit appears on the message line at the bottom of the SQL*Forms
screen and on the Display Error screen. SQL*Forms responds as it does to a SQL statement
that affects no rows.

Irrecoverable error: The user exit detected a condition that makes further processing
impossible, such as an execution error in a SQL statement. An optional error message passed
by the exit appears on the SQL*Forms Display Error screen. SQL*Forms responds as it does
to an irrecoverable SQL error.

If a user exit changes the value of a field, then returns a failure or irrecoverable error code,
SQL*Forms does not discard the change. Nor does SQL*Forms discard changes when the
Reverse Return Code switch is set and a success code is returned.

11.7.1 The IAP Constants
The precompiler generates three symbolic constants for use as return codes. They are
prefixed with IAP. For example, the three constants might be IAPSUCC, IAPFAIL, and IAPFTL.

11.7.2 Using the SQLIEM Function
By calling the function SQLIEM, your user exit can specify an error message that SQL*Forms
will display on the message line if the trigger step fails or on the Display Error screen if the step
causes an irrecoverable error. The specified message replaces any message defined for the
step.

The syntax of the SQLIEM function call is

SQLIEM (error_message, message_length);

Chapter 11
Returning Values to a Form

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 12

where error_message and message_length are character and integer variables, respectively.
The Oracle Precompilers generate the appropriate external function declaration for you. You
pass both parameters by reference; that is, you pass their addresses, not their values.
SQLIEM is a SQL*Forms function; it cannot be called from other Oracle tools.

11.7.3 Using WHENEVER
You can use the WHENEVER statement in an exit to detect invalid datatype conversions
(SQLERROR), truncated values PUT into form fields (SQLWARNING), and queries that return
no rows (NOT FOUND).

11.8 An Example
The following example shows how a typical user exit is coded. Notice that, like a host program,
the user exit has a Declare Section and a SQLCA.

-- subroutine MYEXIT
EXEC SQL BEGIN DECLARE SECTION;
 field1 CHARACTER(20);
 field2 CHARACTER(20);
 value1 CHARACTER(20);
 value2 CHARACTER(20);
 result_val CHARACTER(20);
EXEC SQL END DECLARE SECTION;
 errmsg CHARACTER(80);
 errlen INTEGER;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO sqlerror;
-- get field values from form
EXEC IAF GET :field1, :field2 INTO :value1, :value2;
-- manipulate values to obtain result_val
-- put result_val into form field
EXEC IAF PUT result VALUES (:result_val);
return(IAPSUCC); -- trigger step succeeded
sqlerror:
 set errmsg = CONCAT('MYEXIT: ', sqlca.sqlerrm.sqlerrmc);
 set errlen = LENGTH(errmsg);
 sqliem(errmsg, errlen); -- pass error message to SQL*Forms
 return(IAPFAIL); -- trigger step failed

For a complete host-language example, see your host -language supplement.

11.9 About Precompiling and Compiling a User Exit
User exits are precompiled like standalone host programs. Refer to Running the Oracle
Precompilers

For instructions on compiling a user exit, see your system-specific Oracle manuals.

11.10 About Using the GENXTB Utility
The IAP program table IAPXTB in module IAPXIT contains an entry for each user exit linked
into IAP. IAPXTB tells IAP the name, location, and host language of each user exit. When you
add a new user exit to IAP, you must add a corresponding entry to IAPXTB.

IAPXTB is derived from a database table, also named IAPXTB. You can modify the database
table by running the GENXTB form on the operating system command line, as follows:

Chapter 11
An Example

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 12

RUNFORM GENXTB username/password

A form is displayed that enables you to enter the following information for each user exit you
define:

• exit name

• host-language code (COB, FOR, PAS, or PLI)

• date created

• date last modified

• comments

After modifying the IAPXTB database table, use the GENXTB utility to read the table and
create an Assembler or C source program that defines the module IAPXIT and the IAPXTB
program table it contains. The source language used depends on your operating system. The
syntax you use to run the GENXTB utility is

GENXTB username/password outfile

where outfile is the name you give the Assembler or source program that GENXTB creates.

11.11 About Linking a User Exit into SQL*Forms
Before running a form that calls a user exit, you must link the user exit into IAP. The user exit
can be linked into your standard version of IAP or into a special version for those forms that
call the exit.

To produce a new executable copy of IAP, link your user exit object module, the standard IAP
modules, the IAPXIT module, and any modules needed from the Oracle and host-language link
libraries. The details of linking are system-dependent, so check your system-specific Oracle
manuals.

11.12 Guidelines for SQL*Forms User Exits
The guidelines in this section will help you avoid some common pitfalls.

11.12.1 Naming the Exit
The name of your user exit cannot be an Oracle reserved word. Also avoid using names that
conflict with the names of SQL*Forms commands, function codes, and externally defined
names used by SQL*Forms.

SQL*Forms converts the name of a user exit to upper case before searching for the exit.
Therefore, the exit name must be in upper case in your source code if your host language is
case-sensitive.

The name of the user exit entry point in the source code becomes the name of the user exit
itself. The exit name must be a valid file name for your host language and operating system.

11.12.2 Connecting to Oracle
User exits communicate with Oracle through the connection made by SQL*Forms. However, a
user exit can establish additional connections to any database through SQL*Net. For more
information, refer to Concurrent Logons".

Chapter 11
About Linking a User Exit into SQL*Forms

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 12

11.12.3 Issuing I/O Calls
SQL*Forms I/O routines might conflict with host-language printer I/O routines. If they do, your
user exit will be unable to issue printer I/O calls. File I/O is supported but screen I/O is not.

11.12.4 Using Host Variables
Restrictions on the use of host variables in a standalone program also apply to user exits. Host
variables must be named in the user exit Declare Section and must be prefixed with a colon in
EXEC SQL and EXEC IAF statements. However, the use of host arrays is not allowed in EXEC
IAF statements.

11.12.5 Updating Tables
Generally, a user exit should not UPDATE database tables associated with a form. For example,
suppose an operator updates a record in the SQL*Forms work space, then a user exit UPDATEs
the corresponding row in the associated database table. When the transaction is COMMITted,
the record in the SQL*Forms work space is applied to the table, overwriting the user exit
UPDATE.

11.12.6 Issuing Commands
Avoid issuing a COMMIT or ROLLBACK command from your user exit because Oracle will commit
or roll back work begun by the SQL*Forms operator, not just work done by the user exit.
Instead, issue the COMMIT or ROLLBACK from the SQL*Forms trigger. This also applies to data
definition commands (such as ALTER and CREATE) because they issue an implicit COMMIT before
and after executing.

11.13 EXEC TOOLS Statements
EXEC TOOLS statements support the basic Oracle Toolset (Oracle Forms, Oracle Reports, and
Oracle Graphics) by providing a generic way to handle get, set, and exception callbacks from
user exits. The following discussion focuses on Oracle Forms but the same concepts apply to
Oracle Reports and Oracle Graphics.

Besides EXEC SQL, EXEC ORACLE, and host language statements, you can use the
following EXEC TOOLS statements to write an Oracle Forms user exit:

• SET

• GET

• SET CONTEXT

• GET CONTEXT

• MESSAGE

The EXEC TOOLS GET and SET statements replace the EXEC IAF GET and PUT statements used
with SQL*Forms. Unlike IAF GET and PUT, TOOLS GET and SET accept indicator variables. The
EXEC TOOLS MESSAGE statement replaces the message-handling function SQLIEM. The EXEC
TOOLS SET CONTEXT and GET CONTEXT statements are new and not available with SQL*Forms,
Version 3.

Chapter 11
EXEC TOOLS Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 12

Note

COBOL and FORTRAN do not have a pointer datatype, so you cannot use the SET
CONTEXT and GET CONTEXT statements in a Pro*COBOL or Pro*FORTRAN program.

11.13.1 EXEC TOOLS SET
The EXEC TOOLS SET statement passes values from your user exit to Oracle Forms.
Specifically, it assigns the values of host variables and constants to Oracle Forms variables
and items. The values are displayed after the user exit returns control to the form.

To code the EXEC TOOLS SET statement, you use the syntax

EXEC TOOLS SET form_variable[, ...]
 VALUES ({:host_variable[:indicator] | constant}[, ...]);

where form_variable is an Oracle Forms field, parameter, system variable, or global variable,
or a host variable (prefixed with a colon) containing the name of one of the foregoing items.

In the following Pro*C example, your user exit passes an employee name (with optional
indicator) to Oracle Forms:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 char ename[20];
 short ename_ind;
EXEC SQL END DECLARE SECTION;
...
strcpy(ename, "MILLER");
ename_ind = 0;
EXEC TOOLS SET emp.ename VALUES (:ename:ename_ind);

In this example, emp.ename is an Oracle Forms block.field.

11.13.2 EXEC TOOLS GET
The EXEC TOOLS GET statement passes values from Oracle Forms to your user exit.
Specifically, it assigns the values of Oracle Forms variables and items to host variables. As
soon as the values are passed, the user exit can use them for any purpose.

To code the EXEC TOOLS GET statement, you use the syntax

EXEC TOOLS GET form_variable[, ...]
 INTO :host_variable[:indicator][, ...];

where form_variable is an Oracle Forms field, parameter, system variable, or global variable,
or a host variable containing the name of one of the foregoing items.

In the following example, Oracle Forms passes an employee name from the block.field
emp.ename to your user exit:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 char ename[20];
EXEC SQL END DECLARE SECTION;
...
EXEC TOOLS GET emp.ename INTO :ename;

Chapter 11
EXEC TOOLS Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 12

11.13.3 EXEC TOOLS SET CONTEXT
The EXEC TOOLS SET CONTEXT statement lets you save context information from one user exit
call to another. SET CONTEXT names a host-language pointer variable that you can reference
later in an EXEC TOOLS GET CONTEXT statement. The pointer variable points to the block of
memory in which the context information is stored. With the SET CONTEXT statement, you need
not declare a global variable to hold the information.

To code the EXEC TOOLS SET CONTEXT statement, use the syntax

EXEC TOOLS SET CONTEXT :host_pointer_variable
 [IDENTIFIED] BY context_name;

where the optional keyword IDENTIFIED can be used to improve readability and context_name
is an undeclared identifier or a character host variable that names the context area.

In the following example, your user exit saves context information for later use:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 char context1[30];
EXEC SQL END DECLARE SECTION;
...
strcpy(context1, "This is context1");
EXEC TOOLS SET CONTEXT :context1 BY my_app1;

In this example, the context name my_app1 is an undeclared identifier. Note that in C, when a
char array is used as an argument, the array name is synonymous with a pointer to that array.

11.13.4 EXEC TOOLS GET CONTEXT
The EXEC TOOLS GET CONTEXT statement retrieves the value of a host-language pointer
variable into your user exit. The pointer variable points to a block of memory in which context
information is stored.

To code the EXEC TOOLS GET CONTEXT statement, use the syntax

EXEC TOOLS GET CONTEXT context_name INTO :host_pointer_variable;

where context_name is an undeclared identifier or a character host variable that names the
context area.

In the following Pro*C example, your user exit retrieves a pointer to context information saved
earlier:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 char *ctx_ptr;
EXEC SQL END DECLARE SECTION;
...
EXEC TOOLS GET CONTEXT my_app1 INTO :ctx_ptr;

In this example, the context name my_app1 is an undeclared identifier.

Chapter 11
EXEC TOOLS Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 12

11.13.5 EXEC TOOLS MESSAGE
The EXEC TOOLS MESSAGE statement passes a message from your user exit to Oracle Forms.
The message is displayed on the Oracle Forms message line after the user exit returns control
to the form.

To code the EXEC TOOLS MESSAGE statement, you use the syntax

EXEC TOOLS MESSAGE message_text [severity_code];

where message_text is a quoted string or a character host variable, and the optional
severity_code is an integer constant or host variable. The MESSAGE statement does not accept
indicator variables.

In the following Pro*C example, your user exit passes an error message and severity code to
Oracle Forms:

EXEC TOOLS MESSAGE 'Bad field name! Please reenter.' 15;

Chapter 11
EXEC TOOLS Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 12

A
New Features

This appendix looks at the improvements and new features offered by the Oracle Precompilers
Release 1.8. Designed to meet the practical needs of professional software developers, these
features will help you build effective, reliable applications.

A.1 About Fetching NULLs without Using Indicator Variables
With releases 1.5, 1.6, and 1.7 of the Oracle Precompilers, source files that FETCH data into
host variables without associated indicator variables return an ORA-01405 message at run time
if a NULL is returned to the host variable. With release 1.8, when you specify MODE=ORACLE and
DBMS=V7, you can disable the ORA-01405 message by also specifying UNSAFE_NULL=YES.

When developing applications for the Oracle Database, the preferred practice is to include
indicator variables for any host variable that might have a NULL returned to it. When migrating
applications from Oracle Version 6 to Oracle database version 7, however, the UNSAFE_NULL
option can significantly ease the process.

For more information, see "UNSAFE_NULL" and "About Using Indicator Variables".

A.1.1 About Using DBMS=V7 and MODE=ORACLE
Applications precompiled with MODE=ORACLE and DBMS=V7 return the ORA-01405 error at run time
if a NULL is returned to a host variable when there is no associated indicator variable. When
upgrading to Oracle database version 7 with these options specified, you will need to migrate
your applications in one of two ways:

• Modify your source code to include the necessary indicator variables

• Specify UNSAFE_NULL=YES on the command line

If you are upgrading to Oracle database version 7 and use DBMS=V7 when precompiling, or if
you intend to use new Oracle database version 7 features that are different from Oracle
Version 6, in most instances, the change requires minimal modification to your source files.
However, if your application may FETCH null values into host variables without associated
indicator variables, specify UNSAFE_NULL=YES to disable the ORA-01405 message and avoid
adding the relevant indicator variables to your source files.

A.1.2 Related Error Messages
For information about precompile time messages associated with the UNSAFE_NULL option, see
Oracle Database Error Messages.

A.2 Additional Array Insert/Select Syntax
The array INSERT and array SELECT syntax of the DB2 precompiler is now supported by the
Oracle precompiler. The optional ROWSET and ROWSET STARTING AT clauses are used in
the fetch-orientation (FIRST, PRIOR, NEXT, LAST, CURRENT, RELATIVE and ABSOLUTE).
For more information about the new INSERT/SELECT syntax, please refer the Pro*COBOL
Developer's Guide and Pro*C/C++ Developer's Guide.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-1 of A-6

A.3 SQL99 Syntax Support
The SQL standard enables the portability of SQL applications across all conforming software
products. Oracle features are compliant with the ANSI/ISO SQL99 standard, including ANSI
compliant joins. Pro*Cobol supports all SQL99 features that are supported by Oracle database,
which means that the SQL99 syntax for the SELECT, INSERT, DELETE, and UPDATE
statements and the body of the cursor in a DECLARE CURSOR statement are supported.

A.4 About Fixing Execution Plans
To fix execution plans for SQL's used in Pro*C/C++ or Pro*Cobol development environment,
you need to use the outline feature of Oracle at the time of precompiling. An outline is
implemented as a set of optimizer hints that are associated with the SQL statement. If you
enable the use of the outline for the statement, Oracle automatically considers the stored hints
and tries to generate an execution plan in accordance with those hints. In this way, you can
ensure that the performance is not affected when the modules are integrated or deployed into
different environments.

You can use the following SQL statements to create outlines in Pro*C/C++ and Pro*Cobol:

• SELECT

• DELETE

• UPDATE

• INSERT... SELECT

• CREATE TABLE... AS SELECT

If the outline option is set, then the precompiler generates two files, a SQL file and a LOG file
at the end of successful precompilation. Command line options outline and outlnprefix
control the generation of the outlines.Each generated outline name is unique. Because the file
names used in the application are unique, this information is used in generating the outline
name. In addition, the category name is also prefixed.

Note

Oracle allows only 30 bytes for the outline name. If you exceed the limit, the
precompiler will flag an error. You can restrict the length of the outline name by using
the outlnprefix option.

See Also

• Pro*COBOL Developer's Guide

• Pro*C/C++ Developer's Guide

A.5 About Using Implicit Buffered Insert
For improved performance, application developers can reference host arrays in their
embedded SQL statements. This provides a means to execute an array of SQL statements

Appendix A
SQL99 Syntax Support

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-2 of A-6

with a single round-trip to the database. Despite the significant performance improvements
afforded by array execution, some developers choose not to use this capability because it is
not ANSI standard. For example, an application written to exploit array execution in Oracle
cannot be precompiled using IBM's precompiler.

One workaround is to use buffered INSERT statements, which enable you to gain performance
benefits while retaining ANSI standard embedded SQL syntax.

The command line option "max_row_insert" controls the number of rows to be buffered before
executing the INSERT statement. By default it is zero and the feature is disabled. To enable
this feature, specify any number greater than zero.

See Also

For more information on using the implicit buffer insert feature, refer to:

• Pro*COBOL Developer's Guide

• Pro*C/C++ Developer's Guide

A.6 Dynamic SQL Statement Caching
Statement caching refers to the feature that provides and manages a cache of statements for
each session. In the server, it means that cursors are ready to be used without the statement
being parsed again. Statement caching can be enabled in the precompiler applications, which
will help in the performance improvement of all applications that rely on the dynamic SQL
statements. Performance improvement is achieved by removing the overhead of parsing the
dynamic statements on reuse.

You can obtain this performance improvement by using a new command line option,
stmt_cache (for the statement cache size), which will enable the statement caching of the
dynamic statements. By enabling the new option, the statement cache will be created at
session creation time. The caching is only applicable for the dynamic statements and the
cursor cache for the static statements co-exists with this feature.

The command line option stmt_cache can be given any value in the range of 0 to 65535.
Statement caching is disabled by default (value 0). The stmt_cache option can be set to hold
the anticipated number of distinct dynamic SQL statements in the application.

Example A-1 Using the stmt_cache Option

This example demonstrates the use of the stmt_cache option. In this program, you insert rows
into a table and select the inserted rows by using the cursor in the loop. When the stmt_cache
option is used to precompile this program, the performance increases compared to a normal
precompilation.

/*
 * stmtcache.pc
 *
 * NOTE:
 * When this program is used to measure the performance with and without
 * stmt_cache option, do the following changes in the program,
 * 1. Increase ROWSCNT to high value, say 10000.
 * 2. Remove all the print statements, usually which comsumes significant
 * portion of the total program execution time.
 *
 * HINT: In Linux, gettimeofday() can be used to measure time.

Appendix A
Dynamic SQL Statement Caching

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-3 of A-6

 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include <oraca.h>

#define ROWSCNT 10

char *username = "aaaaa";
char *password = "bbbbb";

/* Function prototypes */
void sql_error(char *msg);
void selectdata();
void insertdata();

int main()
{
 EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle error");

 /* Connect using the default schema aaaaa/bbbbb */
 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 /* core functions to insert and select the data */
 insertdata();
 selectdata();

/* Rollback pll the changes and disconnect from Oracle. */
 EXEC SQL ROLLBACK WORK RELEASE;

 exit(0);
}

/*Insert the data for ROWSCNT items into tpc2sc01 */
void insertdata()
{
 varchar dynstmt[80];
 int i;
 varchar ename[10];
 float comm;
 char *str;

 /* Allocates temporary buffer */
 str = (char *)malloc (11 * sizeof(char));

 strcpy ((char *)dynstmt.arr,
 "INSERT INTO bonus (ename, comm) VALUES (:ename, :comm)");
 dynstmt.len = strlen(dynstmt.arr);
 EXEC SQL PREPARE S FROM :dynstmt;

 printf ("Inserts %d rows into bonus table using dynamic SQL statement\n",
 ROWSCNT);
 for (i=1; i<=ROWSCNT; i++)
 {
 sprintf (str, "EMP_%05d",i);
 strcpy (ename.arr, str);
 comm = i;
 ename.len = strlen (ename.arr);
 EXEC SQL EXECUTE S USING :ename, :comm;
 }

Appendix A
Dynamic SQL Statement Caching

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-4 of A-6

 free(str);
}

/* Select the data using the cursor */
void selectdata()
{
 varchar dynstmt[80];
 varchar ename[10];
 float comm;
 int i;

 strcpy((char *)dynstmt.arr,
 "SELECT ename, comm FROM bonus WHERE comm = :v1");
 dynstmt.len = (unsigned short)strlen((char *)dynstmt.arr);

 printf ("Fetches the inserted rows using using dynamic SQL statement\n\n");
 printf (" ENAME COMMISSION\n\n");

 for (i=1; i<=ROWSCNT; i++)
 {
 /* Do the prepare in the loop so that the advantage of stmt_caching
 is visible*/
 EXEC SQL PREPARE S FROM :dynstmt;

 EXEC SQL DECLARE C CURSOR FOR S;
 EXEC SQL OPEN C USING :i;

 EXEC SQL WHENEVER NOT FOUND DO break;

 /* Loop until the NOT FOUND condition is detected. */
 for (;;)
 {
 EXEC SQL FETCH C INTO :ename, :comm;
 ename.arr[ename.len] = '\0';
 printf ("%10s %7.2f\n", ename.arr, comm);
 }
 /* Close the cursor so that the reparsing is not required for stmt_cache */
 EXEC SQL CLOSE C;
 }
}

void sql_error(char *msg)
{
 printf("\n%s", msg);
 sqlca.sqlerrm.sqlerrmc[sqlca.sqlerrm.sqlerrml] = '\0';
 oraca.orastxt.orastxtc[oraca.orastxt.orastxtl] = '\0';
 oraca.orasfnm.orasfnmc[oraca.orasfnm.orasfnml] = '\0';
 printf("\n%s\n", sqlca.sqlerrm.sqlerrmc);
 printf("in \"%s...\"\n", oraca.orastxt.orastxtc);
 printf("on line %d of %s.\n\n", oraca.oraslnr,
 oraca.orasfnm.orasfnmc);

 /* Disable ORACLE error checking to avoid an infinite loop
 * should another error occur within this routine.
 */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

 /* Release resources associated with the cursor. */
 EXEC SQL CLOSE C;

 /* Roll back any pending changes and disconnect from Oracle. */

Appendix A
Dynamic SQL Statement Caching

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-5 of A-6

 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

A.7 Scrollable Cursors
A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.When a cursor is executed, the results of the
query are placed into a a set of rows called the result set. The result set can be fetched either
sequentially or non-sequentially. Non-sequential result sets are called scrollable cursors. A
scrollable cursor enables users to access the rows of a database result set in a forward,
backward, and random manner. This scrollable cursor enables the program to fetch any row in
the result set. For more information about scrollable cursors, please see Scrollable Cursors.

A.8 Platform Endianness Support
Oracle stored unicode data (UTF16) is always in big-endian form. Currently, client applications
run on different platforms. Linux and Windows have little-endian representation and Solaris has
big-endian representation. When UTF16 data is inserted or selected, Pro*Cobol doesn't
convert endian form between server and the client. This leads to corrupted UTF16 (UCS2)
strings in the PIC N variable.

Platform endianness (Little-endian form for Linux and Windows, Big-endian form for Solaris) in
PIC N variables can be maintained using the command line option picn_endian.

New Command Line Option

picn_endian={BIG|OS}

If picn_endian=big, then PIC N variables are bound with character set ID AL16UTF16.

If picn_endian=os then PIC N variables are bound with character set ID UCS2.

The default value for this option is "big" to preserve the current behavior. This option is ignored
if NLS_NCHAR is not AL16UTF16.

Character set form for PIC N variables can be set by using the existing Pro*Cobol command
line option:

charset_picn={nchar_charset|db_charset}

A.9 Flexible B Area Length
The length of B Area for a Pro*Cobol program is limited to 72 when the format is set to ANSI.
Cobol compilers now can support B Area length up to 253. This provides a developer with the
flexibility to type a line that is longer than 72 columns. Pro*Cobol now supports B area length
up to 253 when a Pro*Cobol application is precompiled with the

FORMAT=VARIABLE

option.

Appendix A
Scrollable Cursors

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-6 of A-6

B
Oracle Reserved Words, Keywords, and
Namespaces

This appendix contains the following sections:

• Oracle Reserved Words

• Oracle Keywords

• PL/SQL Reserved Words

• Oracle Reserved Namespaces

This appendix lists words that have a special meaning to Oracle. Each word plays a specific
role in the context in which it appears. For example, in an INSERT statement, the reserved word
INTO introduces the tables to which rows will be added. But, in a FETCH or SELECT statement,
the reserved word INTO introduces the output host variables to which column values will be
assigned.

B.1 Oracle Reserved Words
The following words are reserved by Oracle. That is, they have a special meaning to Oracle
and so cannot be redefined. For this reason, you cannot use them to name database objects
such as columns, tables, or indexes.

Oracle Reserved
Words

Oracle Reserved
Words

Oracle Reserved
Words

Oracle Reserved
Words

ACCESS ELSE MODIFY START

ADD EXCLUSIVE NOAUDIT SELECT

ALL EXISTS NOCOMPRESS SESSION

ALTER FILE NOT SET

AND FLOAT NOTFOUND SHARE

ANY FOR NOWAIT SIZE

ARRAYLEN FROM NULL SMALLINT

AS GRANT NUMBER SQLBUF

ASC GROUP OF SUCCESSFUL

AUDIT HAVING OFFLINE SYNONYM

BETWEEN IDENTIFIED ON SYSDATE

BY IMMEDIATE ONLINE TABLE

CHAR IN OPTION THEN

CHECK INCREMENT OR TO

CLUSTER INDEX ORDER TRIGGER

COLUMN INITIAL PCTFREE UID

COMMENT INSERT PRIOR UNION

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-1 of B-8

Oracle Reserved
Words

Oracle Reserved
Words

Oracle Reserved
Words

Oracle Reserved
Words

COMPRESS INTEGER PRIVILEGES UNIQUE

CONNECT INTERSECT PUBLIC UPDATE

CREATE INTO RAW USER

CURRENT IS RENAME VALIDATE

DATE LEVEL RESOURCE VALUES

DECIMAL LIKE REVOKE VARCHAR

DEFAULT LOCK ROW VARCHAR2

DELETE LONG ROWID VIEW

DESC MAXEXTENTS ROWLABEL WHENEVER

DISTINCT MINUS ROWNUM WHERE

DROP MODE ROWS WITH

B.2 Oracle Keywords
The following words also have a special meaning to Oracle but are not reserved words and so
can be redefined. However, some might eventually become reserved words.

Oracle Keywords Oracle Keywords Oracle Keywords Oracle Keywords

ADMIN CURSOR FOUND MOUNT

AFTER CYCLE FUNCTION NEXT

ALLOCATE DATABASE GO NEW

ANALYZE DATAFILE GOTO NOARCHIVELOG

ARCHIVE DBA GROUPS NOCACHE

ARCHIVELOG DEC INCLUDING NOCYCLE

AUTHORIZATION DECLARE INDICATOR NOMAXVALUE

AVG DISABLE INITRANS NOMINVALUE

BACKUP DISMOUNT INSTANCE NONE

BEGIN DOUBLE INT NOORDER

BECOME DUMP KEY NORESETLOGS

BEFORE EACH LANGUAGE NORMAL

BLOCK ENABLE LAYER NOSORT

BODY END LINK NUMERIC

CACHE ESCAPE LISTS OFF

CANCEL EVENTS LOGFILE OLD

CASCADE EXCEPT MANAGE ONLY

CHANGE EXCEPTIONS MANUAL OPEN

CHARACTER EXEC MAX OPTIMAL

CHECKPOINT EXPLAIN MAXDATAFILES OWN

CLOSE EXECUTE MAXINSTANCES PACKAGE

COBOL EXTENT MAXLOGFILES PARALLEL

Appendix B
Oracle Keywords

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-2 of B-8

Oracle Keywords Oracle Keywords Oracle Keywords Oracle Keywords

COMMIT EXTERNALLY MAXLOGHISTORY PCTINCREASE

COMPILE FETCH MAXLOGMEMBERS PCTUSED

CONSTRAINT FLUSH MAXTRANS PLAN

CONSTRAINTS FREELIST MAXVALUE PLI

CONTENTS FREELISTS MIN PRECISION

CONTINUE FORCE MINEXTENTS PRIMARY

CONTROLFILE FOREIGN MINVALUE PRIVATE

COUNT FORTRAN MODULE PROCEDURE

PROFILE SAVEPOINT SQLSTATE TRACING

QUOTA SCHEMA STATEMENT_ID TRANSACTION

READ SCN STATISTICS TRIGGERS

REAL SECTION STOP TRUNCATE

RECOVER SEGMENT STORAGE UNDER

REFERENCES SEQUENCE SUM UNLIMITED

REFERENCING SHARED SWITCH UNTIL

RESETLOGS SNAPSHOT SYSTEM USE

RESTRICTED SOME TABLES USING

REUSE SORT TABLESPACE WHEN

ROLE SQL TEMPORARY WRITE

ROLES SQLCODE THREAD WORK

ROLLBACK SQLERROR TIME

B.3 PL/SQL Reserved Words
The following PL/SQL keywords may require special treatment when used in embedded SQL
statements.

• ABORT

• ACCEPT

• ACCESS

• ADD

• ALL

• ALTER

• AND

• ANY

• ARRAY

• ARRAYLEN

• AS

• ASC

• ASSERT

Appendix B
PL/SQL Reserved Words

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-3 of B-8

• ASSIGN

• AT

• AUTHORIZATION

• AVG

• BASE_TABLE

• BEGIN

• BETWEEN

• BINARY_INTEGER

• BODY

• BOOLEAN

• BY

• CASE

• CHAR_BASE

• CHAR

• CHECK

• CLOSE

• CLUSTER

• CLUSTERS

• COLAUTH

• COLUMNS

• COMMIT

• COMPRESS

• CONNECT

• CONSTANT

• COUNT

• CRASH

• CREATE

• CURRENT

• CURRVAL

• CURSOR

• DATA_BASE

• DATABASE

• DATE

• DBA

• DEBUGOFF

• DEBUGON

• DECLARE

• DEFAULT

Appendix B
PL/SQL Reserved Words

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-4 of B-8

• DEFINITION

• DELAY

• DELETE

• DELTA

• DESC

• DIGITS

• DISPOSE

• DISTINCT

• DO

• DROP

• ELSE

• ELSIF

• END

• ENTRY

• EXCEPTION_INIT

• EXCEPTION

• EXISTS

• EXIT

• FALSE

• FETCH

• FLOAT

• FOR

• FORM

• FROM

• FUNCTION

• GENERIC

• GOTO

• GRANT

• GROUP

• HAVING

• IDENTIFIED

• IF

• IN

• INDEX

• INDEXES

• INDICATOR

• INSERT

• INTEGER

Appendix B
PL/SQL Reserved Words

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-5 of B-8

• INTERSECT

• INTO

• IS

• LEVEL

• LIKE

• LIMITED

• LOOP

• MAX

• MIN

• MINUS

• MLSLABEL

• MOD

• MODE

• NATURAL

• NEW

• NEXTVAL

• NOCOMPRESS

• NOT

• NULL

• NUMBER_BASE

• NUMBER

• OF

• ON

• OPEN

• OPTION

• OR

• ORDER

• OTHERS

• OUT

• PACKAGE

• PARTITION

• PCTFREE

• POSITIVE

• PRAGMA

• PRIOR

• PRIVATE

• PROCEDURE

• PUBLIC

Appendix B
PL/SQL Reserved Words

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-6 of B-8

• RAISE

• RANGE

• REAL

• RECORD

• RELEASE

• REMR

• RENAME

• RESOURCE

• RETURN

• REVERSE

• REVOKE

• ROLLBACK

• ROWID

• ROWLABEL

• ROWNUM

• ROWTYPE

• RUN

• SAVEPOINT

• SCHEMA

• SEPARATE

• SET

• SIZE

• SMALLINT

• SELECT

• SPACE

• SQL

• SQLCODE

• SQLERRM

• START

• STATEMENT

• STDDEV

• SUBTYPE

• SUM

• TABAUTH

• TABLE

• TABLES

• TASK

• TERMINATE

Appendix B
PL/SQL Reserved Words

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-7 of B-8

• THEN

• TO

• TRUE

• TYPE

• UNION

• UNIQUE

• UPDATE

• USE

• VALUES

• VARCHAR

• VARCHAR2

• VARIANCE

• VIEW

• VIEWS

• WHEN

• WHERE

• WHILE

• WITH

• WORK

• XOR

B.4 Oracle Reserved Namespaces
Table B-1 contains a list of namespaces that are reserved by Oracle. The initial characters of
function names in Oracle libraries are restricted to the character strings in this list. Because of
potential name conflicts, use function names that do not begin with these characters.

For example, the SQL*Net Transparent Network Service functions all begin with the characters
"NS," so you need to avoid naming functions that begin with "NS."

Table B-1 Oracle Reserved Namespaces

Namespace Library

O OCI functions

S function names from SQLLIB and system-dependent libraries

XA external functions for XA applications only

GEN KP L NA NC ND NL NM NR
NS NT NZ TTC UPI

Internal functions

Appendix B
Oracle Reserved Namespaces

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-8 of B-8

C
Performance Tuning

This appendix contains the following sections:

• What Causes Poor Performance?

• How Can Performance be Improved?

• Using Host Arrays

• Using Embedded PL/SQL

• Optimizing SQL Statements

• About Using Indexes

• Taking Advantage of Row-Level Locking

• About Eliminating Unnecessary Parsing

This appendix shows you some simple, easy-to-apply methods for improving the performance
of your applications. Using these methods, you can often reduce processing time by 25% or
more.

C.1 What Causes Poor Performance?
One cause of poor performance is high Oracle communication overhead. Oracle must process
SQL statements one at a time. Thus, each statement results in another call to Oracle and
higher overhead. In a networked environment, SQL statements must be sent over the network,
adding to network traffic. Heavy network traffic can slow down your application significantly.

Another cause of poor performance is inefficient SQL statements. Because SQL is so flexible,
you can get the same result with two different statements, but one statement might be less
efficient. For example, the following two SELECT statements return the same rows (the name
and number of every department having at least one employee):

EXEC SQL SELECT DNAME, DEPTNO
 FROM DEPT
 WHERE DEPTNO IN (SELECT DEPTNO FROM EMP);
EXEC SQL SELECT DNAME, DEPTNO
 FROM DEPT
 WHERE EXISTS
 (SELECT DEPTNO FROM EMP WHERE DEPT.DEPTNO = EMP.DEPTNO);

However, the first statement is slower because it does a time-consuming full scan of the EMP
table for every department number in the DEPT table. Even if the DEPTNO column in EMP is
indexed, the index is not used because the subquery lacks a WHERE clause naming DEPTNO.

A third cause of poor performance is unnecessary parsing and binding. Recall that before
executing a SQL statement, Oracle must parse and bind it. Parsing means examining the SQL
statement to make sure it follows syntax rules and refers to valid database objects. Binding
means associating host variables in the SQL statement with their addresses so that Oracle can
read or write their values.

Many applications manage cursors poorly. This results in unnecessary parsing and binding,
which adds noticeably to processing overhead.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-1 of C-9

C.2 How Can Performance be Improved?
If you are unhappy with the performance of your precompiled programs, there are several
ways you can reduce overhead.

You can greatly reduce Oracle communication overhead, especially in networked
environments, by:

• Using host arrays

• Using embedded PL/SQL

You can reduce processing overhead --sometimes dramatically-- by:

• Optimizing SQL statements

• Using indexes

• Taking advantage of row-level locking

• Eliminating unnecessary parsing

C.3 Using Host Arrays
Host arrays can boost performance because they let you manipulate an entire collection of
data with a single SQL statement. For example, suppose you want to insert salaries for 300
employees into the EMP table. Without arrays your program must do 300 individual inserts--one
for each employee. With arrays, only one INSERT is necessary. Consider the following
statement:

EXEC SQL INSERT INTO EMP (SAL) VALUES (:salary);

If salary is a simple host variable, Oracle executes the INSERT statement once, inserting a
single row into the EMP table. In that row, the SAL column has the value of salary. To insert 300
rows this way, you must execute the INSERT statement 300 times.

However, if salary is a host array of size 300, Oracle inserts all 300 rows into the EMP table at
once. In each row, the SAL column has the value of an element in the salary array.

For more information, see Using Host Arrays

C.4 Using Embedded PL/SQL
As Figure C-1 shows, if your application is database-intensive, you can use control structures
to group SQL statements in a PL/SQL block, then send the entire block to Oracle. This can
drastically reduce communication between your application and Oracle.

Also, you can use PL/SQL subprograms to reduce calls from your application to Oracle. For
example, to execute ten individual SQL statements, ten calls are required, but to execute a
subprogram containing ten SQL statements, only one call is required.

Unlike anonymous blocks, PL/SQL subprograms can be compiled separately and stored in an
Oracle database. When called, they are passed to the PL/SQL engine immediately. Moreover,
only one copy of a subprogram need be loaded into memory for execution by multiple users.

Appendix C
How Can Performance be Improved?

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-2 of C-9

Figure C-1 PL/SQL Boosts Performance

PL/SQL Increases Performance

Especially in Network Environments

Application

Oracle7 with PL/SQL

and Stored

Procedures

Application Oracle7 with PL/SQL

Application Other DBMSs

SQL

SQL

SQL

SQL

SQL

IF ... THEN

 SQL

ELSE

 SQL

END IF

SQL

RCP

PL/SQL can also cooperate with Oracle application development tools such as Oracle Forms
and Oracle Reports. By adding procedural processing power to these tools, PL/SQL boosts
performance. Using PL/SQL, a tool can do any computation quickly and efficiently without
calling on Oracle. This saves time and reduces network traffic. For more information, see Using
Embedded PL/SQL and the Oracle Database PL/SQL Language Reference.

C.5 Optimizing SQL Statements
For every SQL statement, the Oracle optimizer generates an execution plan, which is a series
of steps that Oracle takes to execute the statement. These steps are determined by rules given
in the Oracle Database Advanced Application Developer's Guide. Following these rules will
help you write optimal SQL statements.

C.5.1 Optimizer Hints
For every SQL statement, the Oracle optimizer generates an execution plan, which is a series
of steps that Oracle takes to execute the statement. In some cases, you can suggest to Oracle
the way to optimize a SQL statement. These suggestions, called hints, let you influence
decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job. Some hints limit the scope of
information used to optimize a SQL statement, while others suggest overall strategies. You can
use hints to specify the:

• Optimization approach for a SQL statement

Appendix C
Optimizing SQL Statements

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-3 of C-9

• Access path for each referenced table

• Join order for a join

• Method used to join tables

C.5.2 Giving Hints
You give hints to the optimizer by placing them in a C-style comment immediately after the verb
in a SELECT, UPDATE, or DELETE statement. You can choose rule-based or cost-based
optimization. With cost-based optimization, hints help maximize throughput or response time.
In the following example, the ALL_ROWS hint helps maximize query throughput:

EXEC SQL SELECT /*+ ALL_ROWS (cost-based) */ EMPNO, ENAME, SAL
 INTO :emp_number, :emp_name, :salary -- host arrays
 FROM EMP
 WHERE DEPTNO = :dept_number;

The plus sign (+), which must immediately follow the comment opener, indicates that the
comment contains one or more hints. Notice that the comment can contain remarks and hints.

For more information about optimizer hints, see Performance and Scalability.

C.5.3 Trace Facility
You can use the SQL trace facility and the EXPLAIN PLAN statement to identify SQL statements
that might be slowing down your application. The trace facility generates statistics for every
SQL statement executed by Oracle. From these statistics, you can determine which
statements take the most time to process. Then, you can concentrate your tuning efforts on
those statements.

The EXPLAIN PLAN statement shows the execution plan for each SQL statement in your
application. You can use the execution plan to identify inefficient SQL statements.

C.6 About Using Indexes
Using rowids, an index associates each distinct value in a table column with the rows
containing that value. An index is created with the CREATE INDEX statement.

You can use indexes to boost the performance of queries that return less than 15% of the rows
in a table. A query that returns 15% or more of the rows in a table is executed faster by a full
scan, that is, by reading all rows sequentially. Any query that names an indexed column in its
WHERE clause can use the index. For guidelines that help you choose which columns to index,
see Performance and Scalability.

C.7 Taking Advantage of Row-Level Locking
By default, Oracle locks data at the row level rather than the table level. Row-level locking
allows multiple users to access different rows in the same table concurrently. The resulting
performance gain is significant.

You can specify table-level locking, but it lessens the effectiveness of the transaction
processing option. For more information about table locking, see "About Using the LOCK
TABLE Statement".

Appendix C
About Using Indexes

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-4 of C-9

Applications that do online transaction processing benefit most from row-level locking. If your
application relies on table-level locking, modify it to take advantage of row-level locking. In
general, avoid explicit table-level locking.

C.8 About Eliminating Unnecessary Parsing
Eliminating unnecessary parsing requires correct handling of cursors and selective use of the
following cursor management options:

• MAXOPENCURSORS

• HOLD_CURSOR

• RELEASE_CURSOR

These options affect implicit and explicit cursors, the cursor cache, and private SQL areas.

You can use the ORACA to get cursor cache statistics. See "About Using the Oracle
Communications Area".

C.8.1 About Handling Explicit Cursors
Recall that there are two types of cursors: implicit and explicit. Oracle implicitly declares a
cursor for all data definition and data manipulation statements. However, for queries that return
more than one row, you must explicitly declare a cursor (or use host arrays). You use the
DECLARE CURSOR statement to declare an explicit cursor. How you handle the opening and
closing of explicit cursors affects performance.

If you need to reevaluate the active set, simply reopen the cursor. The OPEN statement will use
any new host-variable values. You can save processing time if you do not close the cursor first.

To make performance tuning easier, the precompiler lets you reopen an already open cursor.
However, this is an Oracle extension to the ANSI/ISO embedded SQL standard. So, when
MODE=ANSI, you must close a cursor before reopening it.

Only CLOSE a cursor when you want to free the resources (memory and locks) acquired by
opening the cursor. For example, your program should close all cursors before exiting.

C.8.2 Cursor Control
In general, there are three ways to control an explicitly declared cursor:

• Use the DECLARE, OPEN, and CLOSE statements

• Use the PREPARE, DECLARE, OPEN, and CLOSE statements

• COMMIT closes the cursor when MODE=ANSI

With the first way, beware of unnecessary parsing. The OPEN statement does the parsing, but
only if the parsed statement is unavailable because the cursor was closed or never opened.
Your program should DECLARE the cursor, reopen it every time the value of a host variable
changes, and CLOSE it only when the SQL statement is no longer needed.

With the second way (dynamic SQL Methods 3 and 4), the PREPARE statement does the
parsing, and the parsed statement is available until a CLOSE statement is executed. Your
program should prepare the SQL statement and DECLARE the cursor, reopen the cursor every
time the value of a host variable changes, rePREPARE the SQL statement and reopen the
cursor if the SQL statement changes, and CLOSE the cursor only when the SQL statement is no
longer needed.

Appendix C
About Eliminating Unnecessary Parsing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-5 of C-9

When possible, avoid placing OPEN and CLOSE statements in a loop; this is a potential cause of
unnecessary reparsing of the SQL statement. In the next example, both the OPEN and CLOSE
statements are inside the outer while loop. When MODE=ANSI, the CLOSE statement must be
positioned as shown, because ANSI requires a cursor to be closed before being reopened.

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, sal from emp where sal > :salary and
 sal <= :salary + 1000;
salary = 0;
while (salary < 5000)
{
 EXEC SQL OPEN emp_cursor;
 while (SQLCODE==0)
 {
 EXEC SQL FETCH emp_cursor INTO
 ...
 }
 salary += 1000;
 EXEC SQL CLOSE emp_cursor;
}

With MODE=ORACLE, however, a CLOSE statement can execute without the cursor being opened.
By placing the CLOSE statement outside the outer while loop, you can avoid possible reparsing
at each iteration of the OPEN statement.

...
while (salary < 5000)
{
 EXEC SQL OPEN emp_cursor;
 while (sqlca.sqlcode==0)
 {
 EXEC SQL FETCH emp_cursor INTO
 ...
 }
 salary += 1000;
}
EXEC SQL CLOSE emp_cursor;

C.8.3 About Using the Cursor Management Options
A SQL statement need be parsed only once unless you change its makeup. For example, you
change the makeup of a query by adding a column to its select list or WHERE clause. The
HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS options give you some control over how
Oracle manages the parsing and reparsing of SQL statements. Declaring an explicit cursor
gives you maximum control over parsing.

C.8.4 Private SQL Areas and Cursor Cache
When a data manipulation statement is executed, its associated cursor is linked to an entry in
the cursor cache. The cursor cache is a continuously updated area of memory used for cursor
management. The cursor cache entry is in turn linked to a private SQL area.

The private SQL area, a work area created dynamically at run time by Oracle, contains the
parsed SQL statement, the addresses of host variables, and other information needed to
process the statement. An explicit cursor lets you name a SQL statement, access the
information in its private SQL area, and, to some extent, control its processing.

Figure C-2 represents the cursor cache after your program has done an insert and a delete.

Appendix C
About Eliminating Unnecessary Parsing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-6 of C-9

Figure C-2 Cursors Linked through the Cursor Cache

Cursor Cache

EXEC SQL INSERT ...

Cursor

.

.

.

EXEC SQL INSERT ...

Cursor

.

.

.

E(MAXOPENCURSORS)

E(2)

E(1)

Context Area

Context Area

C.8.5 Resource Use
The maximum number of open cursors in each user session is set by the Oracle initialization
parameter OPEN_CURSORS.

MAXOPENCURSORS specifies the initial size of the cursor cache. If a new cursor is needed and
there are no free cache entries, Oracle tries to reuse an entry. Its success depends on the
values of HOLD_CURSOR and RELEASE_CURSOR and, for explicit cursors, on the status of the
cursor itself.

If the value of MAXOPENCURSORS is less than the number of cache entries actually needed,
Oracle uses the first cache entry marked as reusable. For example, suppose the cache entry
E(1) for an INSERT statement is marked as reusable, and the number of cache entries already
equals MAXOPENCURSORS. If the program executes a new statement, cache entry E(1) and its
private SQL area might be reassigned to the new statement. To reexecute the INSERT
statement, Oracle would have to reparse it and reassign another cache entry.

Oracle allocates an additional cache entry if it cannot find one to reuse. For example, if
MAXOPENCURSORS=8 and all eight entries are active, a ninth is created. If necessary, Oracle
keeps allocating additional cache entries until it runs out of memory or reaches the limit set by
OPEN_CURSORS. This dynamic allocation adds to processing overhead.

Thus, specifying a low value for MAXOPENCURSORS saves memory but causes potentially
expensive dynamic allocations and deallocations of new cache entries. Specifying a high value
for MAXOPENCURSORS assures speedy execution but uses more memory.

C.8.6 Infrequent Execution
Sometimes, the link between an infrequently executed SQL statement and its private SQL area
should be temporary.

When HOLD_CURSOR=NO (the default), after Oracle executes the SQL statement and the cursor
is closed, the precompiler marks the link between the cursor and cursor cache as reusable.
The link is reused as soon as the cursor cache entry to which it points is needed for another
SQL statement. This frees memory allocated to the private SQL area and releases parse locks.
However, because a prepared cursor must remain active, its link is maintained even when
HOLD_CURSOR=NO.

Appendix C
About Eliminating Unnecessary Parsing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-7 of C-9

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the cursor is closed,
the private SQL area is automatically freed and the parsed statement lost. This might be
necessary if, for example, MAXOPENCURSORS is set low at your site to conserve memory.

If a data manipulation statement precedes a data definition statement and they reference the
same tables, specify RELEASE_CURSOR=YES for the data manipulation statement. This avoids a
conflict between the parse lock obtained by the data manipulation statement and the exclusive
lock required by the data definition statement.

When RELEASE_CURSOR=YES, the link between the private SQL area and the cache entry is
immediately removed and the private SQL area freed. Even if you specify HOLD_CURSOR=YES,
Oracle must still reallocate memory for a private SQL area and reparse the SQL statement
before executing it because RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

Nonetheless, when RELEASE_CURSOR=YES, the reparse might not require extra processing
because Oracle caches the parsed representations of SQL statements and PL/SQL blocks in
its Shared SQL Cache. Even if its cursor is closed, the parsed representation remains
available until it is aged out of the cache.

C.8.7 Frequent Execution
The links between a frequently executed SQL statement and its private SQL area should be
maintained, because the private SQL area contains all the information needed to execute the
statement. Maintaining access to this information makes subsequent execution of the
statement much faster.

When HOLD_CURSOR=YES, the link between the cursor and cursor cache is maintained after
Oracle executes the SQL statement. Thus, the parsed statement and allocated memory remain
available. This is useful for SQL statements that you want to keep active because it avoids
unnecessary reparsing.

When HOLD_CURSOR=YES and RELEASE_CURSOR=NO (the default), the link between the cache
entry and the private SQL area is maintained after Oracle executes the SQL statement and is
not reused unless the number of open cursors exceeds the value of MAXOPENCURSORS. This is
useful for SQL statements that are executed often because the parsed statement and allocated
memory remain available.

Using the defaults, HOLD_CURSOR=YES and RELEASE_CURSOR=NO, after executing a SQL
statement with an earlier Oracle version, its parsed representation remains available. With
Oracle database version 7, under similar conditions, the parsed representation remains
available only until it is aged out of the Shared SQL Cache. Normally, this is not a problem, but
you might get unexpected results if the definition of a referenced object changes before the
SQL statement is reparsed.

C.8.8 Parameter Interactions
Table C-1 shows how HOLD_CURSOR and RELEASE_CURSOR interact. Notice that HOLD_CURSOR=NO
overrides RELEASE_CURSOR=NO and that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

Table C-1 HOLD_CURSOR RELEASE_CURSOR Interactions

HOLD_CURSOR RELEASE_CURSOR Links are:

NO NO marked as reusable

YES NO maintained

NO YES removed immediately

Appendix C
About Eliminating Unnecessary Parsing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-8 of C-9

Table C-1 (Cont.) HOLD_CURSOR RELEASE_CURSOR Interactions

HOLD_CURSOR RELEASE_CURSOR Links are:

YES YES removed immediately

Appendix C
About Eliminating Unnecessary Parsing

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-9 of C-9

D
Syntactic and Semantic Checking

This appendix contains the following sections:

• What Is Syntactic and Semantic Checking?

• About Controlling the Type and Extent of Checking

• About Specifying SQLCHECK=SEMANTICS

By checking the syntax and semantics of embedded SQL statements and PL/SQL blocks, the
Oracle Precompilers help you quickly find and fix coding mistakes. This appendix shows you
how to use the SQLCHECK option to control the type and extent of checking.

D.1 What Is Syntactic and Semantic Checking?
Rules of syntax specify how language elements are sequenced to form valid statements. Thus,
syntactic checking verifies that keywords, object names, operators, delimiters, and so on are
placed correctly in your SQL statement. For example, the following embedded SQL statements
contain syntax errors:

-- misspelled keyword WHERE
EXEC SQL DELETE FROM EMP WERE DEPTNO = 20;
-- missing parentheses around column names COMM and SAL
EXEC SQL INSERT INTO EMP COMM, SAL VALUES (NULL, 1500);

Rules of semantics specify how valid external references are made. Thus, semantic checking
verifies that references to database objects and host variables are valid and that host-variable
datatypes are correct. For example, the following embedded SQL statements contain semantic
errors:

-- nonexistent table, EMPP
EXEC SQL DELETE FROM EMPP WHERE DEPTNO = 20;
-- undeclared host variable, emp_name
EXEC SQL SELECT * FROM EMP WHERE ENAME = :emp_name;

The rules of SQL syntax and semantics are defined in the Oracle Database SQL Language
Reference.

D.2 About Controlling the Type and Extent of Checking
You control the type and extent of checking by specifying the SQLCHECK option on the command
line. With SQLCHECK, the type of checking can be syntactic, semantic, or both. The extent of
checking can include data manipulation statements and PL/SQL blocks. However, SQLCHECK
cannot check dynamic SQL statements because they are not defined fully until run time.

You can specify the following values for SQLCHECK:

• SEMANTICS|FULL

• SYNTAX|LIMITED|NONE

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and LIMITED. The
default value is SYNTAX.

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-1 of D-3

D.3 About Specifying SQLCHECK=SEMANTICS
When SQLCHECK=SEMANTICS, the precompiler checks the syntax and semantics of:

• Data manipulation statements such as INSERT and UPDATE

• PL/SQL blocks

However, the precompiler checks only the syntax of remote data manipulation statements
(those using the AT db_name clause).

The precompiler gets the information for a semantic check from embedded DECLARE TABLE
statements or, if you specify the option USERID, by connecting to Oracle and accessing the data
dictionary. You need not connect to Oracle if every table referenced in a data manipulation
statement or PL/SQL block is defined in a DECLARE TABLE statement.

If you connect to Oracle but some information cannot be found in the data dictionary, then you
must use DECLARE TABLE statements to supply the missing information. A DECLARE TABLE
definition overrides a data dictionary definition if they conflict.

When checking data manipulation statements, the precompiler uses the Oracle database
version 7 set of syntax rules found in the Oracle Database SQL Language Reference but uses
a stricter set of semantic rules. As a result, existing applications written for earlier versions of
Oracle might not precompile successfully when SQLCHECK=SEMANTICS.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you embed PL/SQL blocks
in a host program, then you must specify SQLCHECK=SEMANTICS.

D.3.1 About Enabling a Semantic Check
When SQLCHECK=SEMANTICS, the precompiler can get information needed for a semantic check
in either of the following ways:

• Connect to Oracle and access the data dictionary

• Use embedded DECLARE TABLE statements

D.3.2 About Connecting to Oracle
To do a semantic check, the precompiler can connect to an Oracle database that maintains
definitions of tables and views referenced in your host program. After connecting to Oracle, the
precompiler accesses the data dictionary for needed information. The data dictionary stores
table and column names, table and column constraints, column lengths, column datatypes,
and so on.

If some of the needed information cannot be found in the data dictionary (because your
program refers to a table not yet created, for example), you must supply the missing
information using the DECLARE TABLE statement.

To connect to Oracle, specify the option USERID on the command line, using the syntax:

USERID=username

where username is a valid Oracle userid. You are prompted for the password. If, instead of a
username, you specify

USERID=/

Appendix D
About Specifying SQLCHECK=SEMANTICS

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-2 of D-3

the precompiler tries to connect to Oracle automatically with the userid

<prefix><username>

where prefix is the value of the Oracle initialization parameter OS_AUTHENT_PREFIX (the default
value is null) and username is your operating system user or task name.

If you try connecting to Oracle but cannot (for example, if the database is unavailable), the
precompiler stops processing and issues an error message. If you omit the option USERID, the
precompiler must get needed information from embedded DECLARE TABLE statements.

D.3.3 About Using DECLARE TABLE
The precompiler can do a semantic check without connecting to Oracle. To do the check, the
precompiler must get information about tables and views from embedded DECLARE TABLE
statements. Thus, every table referenced in a data manipulation statement or PL/SQL block
must be defined in a DECLARE TABLE statement.

The syntax of the DECLARE TABLE statement is:

EXEC SQL DECLARE table_name TABLE
 (col_name col_datatype [DEFAULT expr] [NULL|NOT NULL], ...);

where expr is any expression that can be used as a default column value in the CREATE TABLE
statement.

If you use DECLARE TABLE to define a database table that already exists, the precompiler uses
your definition, ignoring the one in the data dictionary.

Appendix D
About Specifying SQLCHECK=SEMANTICS

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-3 of D-3

E
Embedded SQL Commands and Directives

This appendix contains the following sections:

• Summary of Precompiler Directives and Embedded SQL Commands

• About The Command Descriptions

• How to Read Syntax Diagrams

• ALLOCATE (Executable Embedded SQL Extension)

• CLOSE (Executable Embedded SQL)

• COMMIT (Executable Embedded SQL)

• CONNECT (Executable Embedded SQL Extension)

• DECLARE CURSOR (Embedded SQL Directive)

• DECLARE DATABASE (Oracle Embedded SQL Directive)

• DECLARE STATEMENT (Embedded SQL Directive)

• DECLARE TABLE (Oracle Embedded SQL Directive)

• DELETE (Executable Embedded SQL)

• DESCRIBE (Executable Embedded SQL)

• EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

• EXECUTE (Executable Embedded SQL)

• EXECUTE IMMEDIATE (Executable Embedded SQL)

• FETCH (Executable Embedded SQL)

• INSERT (Executable Embedded SQL)

• OPEN (Executable Embedded SQL)

• PREPARE (Executable Embedded SQL)

• ROLLBACK (Executable Embedded SQL)

• SAVEPOINT (Executable Embedded SQL)

• SELECT (Executable Embedded SQL)

• UPDATE (Executable Embedded SQL)

• VAR (Oracle Embedded SQL Directive)

• WHENEVER (Embedded SQL Directive)

This appendix contains descriptions of both SQL92 embedded SQL commands and directives
and the Oracle embedded SQL extensions. These commands and directives are prefaced in
your source code with the keywords, EXEC SQL. Rather than trying to memorize all of the SQL
syntax, simply refer to this appendix, which includes the following:

• A summary of embedded SQL commands and directives

• A section about the command descriptions

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-1 of E-41

• How to read syntax diagrams

• An alphabetic listing of the commands and directives

E.1 Summary of Precompiler Directives and Embedded SQL
Commands

Embedded SQL commands place DDL, DML, and Transaction Control statements within a
procedural language program. Embedded SQL is supported by the Oracle Precompilers.
Table E-1 provides a functional summary of the embedded SQL commands and directives.

The Type column in Table E-1 is displayed in the format, source/type, where source is either
SQL92 standard SQL (S) or an Oracle extension (O) and type is either an executable (E)
statement or a directive (D).

Table E-1 Summary of Embedded SQL Commands and Directives

EXEC SQL Statement Type Purpose

ALLOCATE O/E To allocate memory for a cursor variable.

CLOSE S/E To disable a cursor, releasing the resources it holds.

COMMIT S/E To end the current transaction, making all database change
permanent (optionally frees resources and disconnects from the
database)

CONNECT O/E To log on to an Oracle instance.

DECLARE CURSOR S/D To declare a cursor, associating it with a query.

DECLARE DATABASE O/D To declare an identifier for a nondefault database to be accessed
in subsequent embedded SQL statements.

DECLARE
STATEMENT

S/D To assign a SQL variable name to a SQL statement.

DECLARE TABLE O/D To declare the table structure for semantic checking of embedded
SQL statements by the Oracle Precompiler.

DELETE S/E To remove rows from a table or from a view's base table.

DESCRIBE S/E To initialize a descriptor, a structure holding host variable
descriptions.

EXECUTE...END-EXEC O/E To execute an anonymous PL/SQL block.

EXECUTE S/E To execute a prepared dynamic SQL statement.

EXECUTE IMMEDIATE S/E To prepare and execute a SQL statement with no host variables.

FETCH S/E To retrieve rows selected by a query.

INSERT S/E To add rows to a table or to a view's base table.

OPEN S/E To execute the query associated with a cursor.

PREPARE S/E To parse a dynamic SQL statement.

ROLLBACK S/E To end the current transaction, discard all changes in the current
transaction, and release all locks (optionally release resources and
disconnect from the database).

SAVEPOINT S/E To identify a point in a transaction to which you can later roll back.

SELECT S/E To retrieve data from one or more tables, views, or snapshots,
assigning the selected values to host variables.

UPDATE S/E To change existing values in a table or in a view's base table.

Appendix E
Summary of Precompiler Directives and Embedded SQL Commands

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-2 of E-41

Table E-1 (Cont.) Summary of Embedded SQL Commands and Directives

EXEC SQL Statement Type Purpose

VAR O/D To override the default datatype and assign a specific Oracle
datatype to a host variable.

WHENEVER S/D To specify handling for error and warning conditions.

E.2 About The Command Descriptions
The directives, commands, and clauses appear alphabetically. The description of each
contains the following sections:

Heading Meaning

Purpose describes the basic uses of the command.

Prerequisites lists privileges you must have and steps that you must take before using the
command. Unless otherwise noted, most commands also require that the
database be open by your instance.

Syntax shows the keywords and parameters of the command.

Keywords and
Parameters

describes the purpose of each keyword and parameter.

Usage Notes discusses how and when to use the command.

Examples shows example statements of the command.

Related Topics lists related commands, clauses, and sections of this manual.

E.3 How to Read Syntax Diagrams
Easy-to-understand syntax diagrams are used to illustrate embedded SQL syntax. They are
line-and-arrow drawings that depict valid syntax. If you have never used them, do not worry.
This section tells you all you need to know.

After you understand the logical flow of a syntax diagram, it becomes a helpful guide. You can
verify or construct any embedded SQL statement by tracing through its syntax diagram.

Syntax diagrams use lines and arrows to show how commands, parameters, and other
language elements are sequenced to form statements. Trace each diagram from left to right, in
the direction shown by the arrows. The following symbols will guide you:

Marks the beginning of the diagram.

Marks the end of the diagram.

Shows that the diagram continues on a line below.

Shows that the diagram is continued from a line above.

Represents a loop.

Appendix E
About The Command Descriptions

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-3 of E-41

Commands and other keywords appear in uppercase. Parameters appear in lowercase.
Operators, delimiters, and terminators appear as usual. Following the conventions defined in
the Preface, a semicolon terminates statements.

If the syntax diagram has more than one path, you can choose any path to travel.

If you have the choice of more than one keyword, operator, or parameter, your options appear
in a vertical list. In the following example, you can travel down the vertical line as far as you
like, then continue along any horizontal line:

EXEC SQL WHENEVER

SQLWARNING

SQLERROR

NOT FOUND

According to the diagram, all of the following statements are valid:

EXEC SQL WHENEVER NOT FOUND ...
EXEC SQL WHENEVER SQLERROR ...
EXEC SQL WHENEVER SQLWARNING ...

E.3.1 Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of alternatives. Single
required keywords and parameters appear on the main path, that is, on the horizontal line you
are currently traveling. In the following example, cursor is a required parameter:

EXEC SQL CLOSE CURSOR ;

If there is a cursor named emp_cursor, then, according to the diagram, the following statement
is valid:

EXEC SQL CLOSE emp_cursor;

If any of the keywords or parameters in a vertical list appears on the main path, one of them is
required. That is, you must choose one of the keywords or parameters, but not necessarily the
one that appears on the main path. In the following example, you must choose one of the four
actions:

EXEC SQL ALLOCATE :cursor_variable

E.3.2 Optional Keywords and Parameters
If keywords and parameters appear in a vertical list the main path, they are optional. That is,
you need not choose one of them. In the following example, instead of traveling down a vertical
line, you can continue along the main path:

DO routine

STOP

GOTO lable

CONTINUE ;

Appendix E
How to Read Syntax Diagrams

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-4 of E-41

If there is a database named oracle2, then, according to the diagram, all of the following
statements are valid:

EXEC SQL ROLLBACK;
EXEC SQL ROLLBACK WORK;
EXEC SQL AT oracle2 ROLLBACK;

E.3.3 Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the following
example, column_name is inside a loop. So, after choosing one column name, you can go
back repeatedly to choose another.

EXEC SQL ROLLBACK

AT db_name WORK

If DEBIT, CREDIT, and BALANCE are column names, then, according to the diagram, all of the
following statements are valid:

EXEC SQL SELECT DEBIT INTO ...
EXEC SQL SELECT CREDIT, BALANCE INTO ...
EXEC SQL SELECT DEBIT, CREDIT, BALANCE INTO ...

E.3.4 Multi-part Diagrams
Read a multi-part diagram as if all the main paths were joined end-to-end. The following
example is a two-part diagram:

EXEC SQL SELECT column_name INTO

;

According to the diagram, the following statement is valid:

EXEC SQL PREPARE sql_statement FROM :sql_string;

E.3.5 Database Objects
The names of Oracle objects, such as tables and columns, must not exceed 30 characters in
length. The first character must be a letter, but the rest can be any combination of letters,
numerals, dollar signs ($), pound signs (#), and underscores (_).

However, if an Oracle identifier is enclosed by quotation marks ("), it can contain any
combination of legal characters, including spaces but excluding quotation marks.

Oracle identifiers are not case-sensitive except when enclosed by quotation marks.

E.4 ALLOCATE (Executable Embedded SQL Extension)

Appendix E
ALLOCATE (Executable Embedded SQL Extension)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-5 of E-41

E.4.1 Allocate Purpose
To allocate a cursor variable to be referenced in a PL/SQL block.

E.4.2 Allocate Prerequisites
A cursor variable of type SQL_CURSOR must be declared before allocating memory for the cursor
variable.

E.4.3 Allocate Syntax

EXEC SQL PREPARE statement_name

E.4.4 Allocate Keywords and Parameters
:cursor_variable

The cursor variable to be allocated.

E.4.5 Allocate Usage Notes
Whereas a cursor is static, a cursor variable is dynamic because it is not tied to a specific
query. You can open a cursor variable for any type-compatible query.

Example

This partial example illustrates the use of the ALLOCATE command in a Pro*C/C++ embedded
SQL program:

EXEC SQL BEGIN DECLARE SECTION;
 SQL_CURSOR emp_cv;
 struct{ ... } emp_rec;
EXEC SQL END DECLARE SECTION;
EXEC SQL ALLOCATE emp_cv;
EXEC SQL EXECUTE
 BEGIN
 OPEN :emp_cv FOR SELECT * FROM emp;
 END;
END-EXEC;
for (;;)
{ EXEC SQL FETCH :emp_cv INTO :emp_rec;
}

E.4.6 Allocate Related Topics
"CLOSE (Executable Embedded SQL)", "EXECUTE (Executable Embedded SQL)", and
"FETCH (Executable Embedded SQL)"

E.5 CLOSE (Executable Embedded SQL)

Appendix E
CLOSE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-6 of E-41

E.5.1 CLOSE Purpose
To disable a cursor, freeing the resources acquired by opening the cursor, and releasing parse
locks.

E.5.2 CLOSE Prerequisites
The cursor or cursor variable must be open and MODE=ANSI.

E.5.3 CLOSE Syntax

EXEC SQL CLOSE

:cursor_variable

cursor

E.5.4 CLOSE Keywords and Parameters
cursor

A cursor to be closed.

cursor_variable

A cursor variable to be closed.

E.5.5 CLOSE Usage Notes
Rows cannot be fetched from a closed cursor. A cursor need not be closed to be reopened.
The HOLD_CURSOR and RELEASE_CURSOR precompiler options alter the effect of the CLOSE
command. For information on these options, see Running the Oracle Precompilers.

E.5.6 CLOSE Example
This example illustrates the use of the CLOSE command:

EXEC SQL CLOSE emp_cursor;

E.5.7 CLOSE Related Topics
"DECLARE CURSOR (Embedded SQL Directive)", "OPEN (Executable Embedded SQL)", and
"PREPARE (Executable Embedded SQL)"

E.6 COMMIT (Executable Embedded SQL)

E.6.1 COMMIT Purpose
To end your current transaction, making permanent all its changes to the database and
optionally freeing all resources and disconnecting from the Oracle database.

Appendix E
COMMIT (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-7 of E-41

E.6.2 COMMIT Prerequisites
To commit your current transaction, no privileges are necessary.

To manually commit a distributed in-doubt transaction that you originally committed, you must
have FORCE TRANSACTION system privilege. To manually commit a distributed in-doubt
transaction that was originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

If you are using Oracle in DBMS MAC mode, you can only commit an in-doubt transaction if your
DBMS label matches the label the transaction's label and the creation label of the user who
originally committed the transaction or if you satisfy one of the following criteria:

• If the transaction's label or the user's creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges.

• If the transaction's label or the user's creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the transaction's label or the user's creation label is not comparable with your DBMS
label, you must have READUP, WRITEUP, and WRITEDOWN system privileges.

E.6.3 COMMIT Syntax

EXEC SQL COMMIT

AT

:host_variable

db_name

, integer

COMMENT ‘text’WORK

FORCE ‘text’

RELEASE

E.6.4 COMMIT Keyword and Parameters
AT

Identifies the database to which the COMMIT statement is issued. The database can be
identified by either:

• db_name is a database identifier declared in a previous DECLARE DATABASE statement.

• :host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, Oracle issues the statement to your default database.

WORK

Is supported only for compliance with standard SQL. The statements COMMIT and COMMIT WORK
are equivalent.

COMMENT

Specifies a comment to be associated with the current transaction. The 'text' is a quoted literal
of up to 50 characters that Oracle stores in the data dictionary view DBA_2PC_PENDING along
with the transaction ID if the transaction becomes in-doubt.

RELEASE

Appendix E
COMMIT (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-8 of E-41

Frees all resources and disconnects the application from the Oracle database.

FORCE

Manually commits an in-doubt distributed transaction. The transaction is identified by the 'text'
containing its local or global transaction ID. To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING. You can also use the optional integer to explicitly assign the
transaction a system change number (SCN). If you omit the integer, the transaction is
committed using the current SCN.

E.6.5 COMMIT Usage Notes
Always explicitly commit or rollback the last transaction in your program by using the COMMIT or
ROLLBACK command and the RELEASE option. Oracle automatically rolls back changes if the
program terminates unusually.

The COMMIT command has no effect on host variables or on the flow of control in the program.
For more information on this command, see Defining and Controlling Transactions.

Example

This example illustrates the use of the embedded SQL COMMIT command:

EXEC SQL AT sales_db COMMIT RELEASE;

E.6.6 COMMIT Related Topics
"ROLLBACK (Executable Embedded SQL)" and "SAVEPOINT (Executable Embedded SQL)"

E.7 CONNECT (Executable Embedded SQL Extension)

E.7.1 CONNECT Purpose
To log on to an Oracle database.

E.7.2 CONNECT Prerequisites
You must have CREATE SESSION system privilege in the specified database.

If you are using Oracle in DBMS MAC mode, your operating system label must dominate both
your creation label and the label at which you were granted CREATE SESSION system privilege.
Your operating system label must also fall between the operating system equivalents of DBHIGH
and DBLOW, inclusive.

If you are using Oracle in operating system MAC mode, your operating system label must match
the label of the database to which you are connecting.

E.7.3 CONNECT Syntax

EXEC SQL CONNECT

:user_password

:user IDENTIFIED BY :password

db_name

:host_variable

AT

USING :dbstring

Appendix E
CONNECT (Executable Embedded SQL Extension)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-9 of E-41

E.7.4 CONNECT Keyword and Parameters
:user :password

specifies your username and password separately.

:user_password

is a single host variable containing the Oracle username and password separated by a slash
(/).

To allow Oracle to verify your connection through your operating system, specify "/" as
the:user_password value.

AT

identifies the database to which the connection is made. The database can be identified by
either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

USING

specifies the SQL*Net database specification string used to connect to a nondefault database.
If you omit this clause, you are connected to your default database.

E.7.5 CONNECT Usage Notes
A program can have multiple connections, but can only connect once to your default database.
For more information on this command, see Meeting Program Requirements.

Example

The following example illustrate the use of CONNECT:

EXEC SQL CONNECT :username
 IDENTIFIED BY :password

You can also use this statement in which the value of :userid is the value of :username
and :password separated by a "/" such as 'AAAAA/BBBBB':

EXEC SQL CONNECT :userid

E.7.6 CONNECT Related Topics
"COMMIT (Executable Embedded SQL)", "DECLARE DATABASE (Oracle Embedded SQL
Directive)", and "ROLLBACK (Executable Embedded SQL)"

E.8 DECLARE CURSOR (Embedded SQL Directive)

E.8.1 DECLARE CURSOR Purpose
To declare a cursor, giving it a name and associating it with a SQL statement or a PL/SQL
block.

Appendix E
DECLARE CURSOR (Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-10 of E-41

E.8.2 DECLARE CURSOR Prerequisites
If you associate the cursor with an identifier for a SQL statement or PL/SQL block, you must
have declared this identifier in a previous DECLARE STATEMENT statement.

E.8.3 DECLARE CURSOR Syntax

block_name

statement_name

SELECT commandDECLARE cursor CURSOR FOR

EXEC SQL

:host_variable

AT db_name

E.8.4 DECLARE CURSOR Keywords and Parameters
AT

identifies the database on which the cursor is declared. The database can be identified by
either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, Oracle declares the cursor on your default database.

cursor

is the name of the cursor to be declared.

SELECT command

is a SELECT statement to be associated with the cursor. The following statement cannot contain
an INTO clause.

statement_name block_name

identifies a SQL statement or PL/SQL block to be associated with the cursor. The
statement_name or block_name must be previously declared in a DECLARE STATEMENT
statement.

E.8.5 DECLARE CURSOR Usage Notes
You must declare a cursor before referencing it in other embedded SQL statements. The scope
of a cursor declaration is global within its precompilation unit and the name of each cursor
must be unique in its scope. You cannot declare two cursors with the same name in a single
precompilation unit.

You can reference the cursor in the WHERE clause of an UPDATE or DELETE statement using the
CURRENT OF syntax, then the cursor has been opened with an OPEN statement and positioned
on a row with a FETCH statement. For more information on this command, see Meeting
Program Requirements.

Appendix E
DECLARE CURSOR (Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-11 of E-41

E.8.6 DECLARE CURSOR Example
This example illustrates the use of a DECLARE CURSOR statement:

EXEC SQL DECLARE emp_cursor CURSOR
 FOR SELECT ename, empno, job, sal
 FROM emp
 WHERE deptno = :deptno
 FOR UPDATE OF sal

E.8.7 DECLARE CURSOR Related Topics
"CLOSE (Executable Embedded SQL)", "DECLARE DATABASE (Oracle Embedded SQL
Directive)", "DECLARE STATEMENT (Embedded SQL Directive)", "DELETE (Executable
Embedded SQL)", "FETCH (Executable Embedded SQL)", "OPEN (Executable Embedded
SQL)", "PREPARE (Executable Embedded SQL)", "SELECT (Executable Embedded SQL)",
and "UPDATE (Executable Embedded SQL) "

E.9 DECLARE DATABASE (Oracle Embedded SQL Directive)

E.9.1 DECLARE DATABASE Purpose
To declare an identifier for a nondefault database to be accessed in subsequent embedded
SQL statements.

E.9.2 DECLARE DATABASE Prerequisites
You must have access to a username on the nondefault database.

E.9.3 DECLARE DATABASE Syntax

EXEC SQL DECLARE db_name DATABASE

E.9.4 DECLARE DATABASE Keywords and Parameters
db_name

is the identifier established for the nondefault database.

E.9.5 DECLARE DATABASE Usage Notes
You declare a db_name for a nondefault database so that other embedded SQL statements
can refer to that database using the AT clause. Before issuing a CONNECT statement with an AT
clause, you must declare a db_name for the nondefault database with a DECLARE DATABASE
statement.

For more information on this command, see Meeting Program Requirements.

Appendix E
DECLARE DATABASE (Oracle Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-12 of E-41

E.9.6 DECLARE DATABASE Example
This example illustrates the use of a DECLARE DATABASE directive:

EXEC SQL DECLARE oracle3 DATABASE

E.9.7 DECLARE DATABASE Related Topics
"COMMIT (Executable Embedded SQL)", "CONNECT (Executable Embedded SQL
Extension)", "DECLARE CURSOR (Embedded SQL Directive)", "DECLARE STATEMENT
(Embedded SQL Directive)", "DELETE (Executable Embedded SQL)", "EXECUTE (Executable
Embedded SQL)", "EXECUTE IMMEDIATE (Executable Embedded SQL)", "INSERT
(Executable Embedded SQL)", "SELECT (Executable Embedded SQL)", and "UPDATE
(Executable Embedded SQL) "

E.10 DECLARE STATEMENT (Embedded SQL Directive)

E.10.1 DECLARE STATEMENT Purpose
To declare an identifier for a SQL statement or PL/SQL block to be used in other embedded
SQL statements.

E.10.2 DECLARE STATEMENT Prerequisites
None.

E.10.3 DECLARE STATEMENT Syntax

block_name

STATEMENTstatement_nameDECLARE

EXEC SQL

:host_variable

AT db_name

E.10.4 DECLARE STATEMENT Keywords and Parameters
AT

identifies the database on which the SQL statement or PL/SQL block is declared. The
database can be identified by either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, Oracle declares the SQL statement or PL/SQL block on your default
database.

statement_name block_name

is the declared identifier for the statement.

Appendix E
DECLARE STATEMENT (Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-13 of E-41

E.10.5 DECLARE STATEMENT Usage Notes
You must declare an identifier for a SQL statement or PL/SQL block with a DECLARE STATEMENT
statement only if a DECLARE CURSOR statement referencing the identifier appears physically (not
logically) in the embedded SQL program before the PREPARE statement that parses the
statement or block and associates it with its identifier.

The scope of a statement declaration is global within its precompilation unit, like a cursor
declaration.For more information on this command, see Meeting Program Requirements and
Using Dynamic SQL.

E.10.6 DECLARE STATEMENT Example I
This example illustrates the use of the DECLARE STATEMENT statement:

EXEC SQL AT remote_db
 DECLARE my_statement STATEMENT
EXEC SQL PREPARE my_statement FROM :my_string
EXEC SQL EXECUTE my_statement

E.10.7 DECLARE STATEMENT Example II
In this example from a Pro*C/C++ embedded SQL program, the DECLARE STATEMENT statement
is required because the DECLARE CURSOR statement precedes the PREPARE statement:

EXEC SQL DECLARE my_statement STATEMENT;
EXEC SQL DECLARE emp_cursor CURSOR FOR my_statement;
EXEC SQL PREPARE my_statement FROM :my_string;
...

E.10.8 DECLARE STATEMENT Related Topics
"CLOSE (Executable Embedded SQL)", "DECLARE DATABASE (Oracle Embedded SQL
Directive)", "FETCH (Executable Embedded SQL)", "OPEN (Executable Embedded SQL)",
and "PREPARE (Executable Embedded SQL)"

E.11 DECLARE TABLE (Oracle Embedded SQL Directive)

E.11.1 DECLARE TABLE Purpose
To define the structure of a table or view, including each column's datatype, default value, and
NULL or NOT NULL specification for semantic checking by the Oracle Precompilers.

E.11.2 DECLARE TABLE Prerequisites
None.

Appendix E
DECLARE TABLE (Oracle Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-14 of E-41

E.11.3 DECLARE TABLE Syntax

EXEC SQL DECLARE table TABLE

(column datatype)

,

NOT NULL

WITH DEFAULT

NOT NULL

DEFAULT expr

NULL

E.11.4 DECLARE TABLE Keywords and Parameters
table

is the name of the declared table.

column

is a column of the table.

datatype

is the datatype of a column.

DEFAULT

specifies the default value of a column.

NULL

specifies that a column can contain nulls.

NOT NULL

specifies that a column cannot contain nulls.

WITH DEFAULT

is supported for compatibility with the IBM DB2 database.

E.11.5 DECLARE TABLE Usage Notes
For information on using this command, see Meeting Program Requirements.

E.11.6 DECLARE TABLE Example
The following statement declares the PARTS table with the PARTNO, BIN, and QTY columns:

EXEC SQL DECLARE parts TABLE
 (partno NUMBER NOT NULL,
 bin NUMBER,
 qty NUMBER)

E.11.7 DECLARE TABLE Related Topics
None.

Appendix E
DECLARE TABLE (Oracle Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-15 of E-41

E.12 DELETE (Executable Embedded SQL)

E.12.1 DELETE Purpose
To remove rows from a table or from a view's base table.

E.12.2 DELETE Prerequisites
For you to delete rows from a table, the table must be in your own schema or you must have
DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema containing the
view must have DELETE privilege on the base table. Also, if the view is in a schema other than
your own, you must be granted DELETE privilege on the view.

The DELETE ANY TABLE system privilege also enables delete rows from any table or any view's
base table.

If you are using Oracle in DBMS MAC mode, your DBMS label must dominate the creation label
of the table or view or you must meet one of the following criteria:

• If the creation label of the table or view is higher than your DBMS label, you must have
READUP and WRITEUP system privileges.

• If the creation label of your table or view is not comparable to your DBMS label, you must
have READUP, WRITEUP, and WRITEDOWN system privileges.

In addition, for each row to be deleted, your DBMS label must match the row's label or you
must meet one of the following criteria:

• If the row's label is higher than your DBMS label, you must have READUP and WRITEUP
system privileges.

• If the row's label is lower than your DBMS label, you must have WRITEDOWN system
privilege.

• If the row label is not comparable to your DBMS label, you must have READUP, WRITEUP,
and WRITEDOWN system privileges.

E.12.3 DELETE Syntax

alias@dblinkview

tableDELETE

EXEC SQL

schema

CURRENT OF cursor

WHERE condition

FROM

AT db_name FOR :host_integer

:host_variable

E.12.4 DELETE Keywords and Parameters
AT

Appendix E
DELETE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-16 of E-41

identifies the database to which the DELETE statement is issued. The database can be
identified by either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, the DELETE statement is issued to your default database.

FOR :host_integer

limits the number of times the statement is executed if the WHERE clause contains array host
variables. If you omit this clause, Oracle executes the statement once for each component of
the smallest array.

schema

is the schema containing the table or view. If you omit schema, Oracle assumes the table or
view is in your own schema.

table view

is the name of a table from which the rows are to be deleted. If you specify view, Oracle
deletes rows from the view's base table.

dblink

is the complete or partial name of a database link to a remote database where the table or
view is located. You can only delete rows from a remote table or view if you are using Oracle
with the distributed option.

If you omit dblink, Oracle assumes that the table or view is located on the local database.

alias

is an alias assigned to the table. Aliases are generally used in DELETE statements with
correlated queries.

WHERE

specifies which rows are deleted:

condition deletes only rows that satisfy the condition. This condition can contain host variables
and optional indicator variables.

CURRENT OF deletes only the row most recently fetched by the cursor. The cursor cannot be
associated with a SELECT statement that performs a join, unless its FOR UPDATE clause
specifically locks only one table.

If you omit this clause entirely, Oracle deletes all rows from the table or view.

E.12.5 DELETE Usage Notes
The host variables in the WHERE clause must be either all scalars or all arrays. If they are
scalars, Oracle executes the DELETE statement only once. If they are arrays, Oracle executes
the statement once for each set of array components. Each execution may delete zero, one, or
multiple rows.

Array host variables in the WHERE clause can have different sizes. In this case, the number of
times Oracle executes the statement is determined by the smaller of the following values:

• the size of the smallest array

Appendix E
DELETE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-17 of E-41

• the value of the :host_integer in the optional FOR clause

If no rows satisfy the condition, no rows are deleted and the SQLCODE returns a NOT_FOUND
condition.

The cumulative number of rows deleted is returned through the SQLCA. If the WHERE clause
contains array host variables, this value reflects the total number of rows deleted for all
components of the array processed by the DELETE statement.

If no rows satisfy the condition, Oracle returns an error through the SQLCODE of the SQLCA. If
you omit the WHERE clause, Oracle raises a warning flag in the fifth component of SQLWARN in the
SQLCA. For more information on this command and the SQLCA, see Error Handling and
Diagnostics.

You can use comments in a DELETE statement to pass instructions, or hints, to the Oracle
optimizer. The optimizer uses hints to choose an execution plan for the statement.

E.12.6 DELETE Example
This example illustrates the use of the DELETE statement within a Pro*C/C++ embedded SQL
program:

EXEC SQL DELETE FROM emp
 WHERE deptno = :deptno
 AND job = :job; ...
EXEC SQL DECLARE emp_cursor CURSOR
 FOR SELECT empno, comm
 FROM emp;
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH c1
 INTO :emp_number, :commission;
EXEC SQL DELETE FROM emp
 WHERE CURRENT OF emp_cursor;

E.12.7 DELETE Related Topics
"DECLARE DATABASE (Oracle Embedded SQL Directive)" and "DECLARE STATEMENT
(Embedded SQL Directive)"

E.13 DESCRIBE (Executable Embedded SQL)

E.13.1 DESCRIBE Purpose
To initialize a descriptor to hold descriptions of host variables for a dynamic SQL statement or
PL/SQL block.

E.13.2 DESCRIBE Prerequisites
You must have prepared the SQL statement or PL/SQL block in a previous embedded SQL
PREPARE statement.

Appendix E
DESCRIBE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-18 of E-41

E.13.3 DESCRIBE Syntax

statement_name

EXEC SQL DESCRIBE

block_name

SELECT LIST FOR

BIND VARIABLES FOR

INTO descriptor

E.13.4 DESCRIBE Keywords and Parameters
BIND VARIABLES

initializes the descriptor to hold information about the input variables for the SQL statement or
PL/SQL block.

SELECT LIST

initializes the descriptor to hold information about the select list of a SELECT statement.

The default is SELECT LIST FOR.

statement_name block_name

identifies a SQL statement or PL/SQL block previously prepared with a PREPARE statement.

descriptor

is the name of the descriptor to be initialized.

E.13.5 DESCRIBE Usage Notes
You must issue a DESCRIBE statement before manipulating the bind or select descriptor within
an embedded SQL program.

You cannot describe both input variables and output variables into the same descriptor.

The number of variables found by a DESCRIBE statement is the total number of placeholders in
the prepare SQL statement or PL/SQL block, rather than the total number of uniquely named
placeholders. For more information on this command, see Using Dynamic SQL.

E.13.6 DESCRIBE Example
This example illustrates the use of the DESCRIBE statement in a Pro*C embedded SQL
program:

EXEC SQL PREPARE my_statement FROM :my_string;
EXEC SQL DECLARE emp_cursor
 FOR SELECT empno, ename, sal, comm
 FROM emp
 WHERE deptno = :dept_number
EXEC SQL DESCRIBE BIND VARIABLES FOR my_statement
 INTO bind_descriptor;
EXEC SQL OPEN emp_cursor
 USING bind_descriptor;
EXEC SQL DESCRIBE SELECT LIST FOR my_statement
 INTO select_descriptor;

Appendix E
DESCRIBE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-19 of E-41

EXEC SQL FETCH emp_cursor
 INTO select_descriptor;

E.13.7 DESCRIBE Related Topics
"PREPARE (Executable Embedded SQL)"

E.14 EXECUTE ... END-EXEC (Executable Embedded SQL
Extension)

E.14.1 EXECUTE ... END-EXEC Purpose
To embed an anonymous PL/SQL block into an Oracle Precompiler program.

E.14.2 EXECUTE ... END-EXEC Prerequisites
None.

E.14.3 EXECUTE ... END-EXEC Syntax

EXECUTE pl/sql_block END-EXECEXEC SQL

AT

:host_variable

db_name

E.14.4 EXECUTE ... END-EXEC Keywords and Parameters
AT

identifies the database on which the PL/SQL block is executed. The database can be identified
by either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, the PL/SQL block is executed on your default database.

pl/sql_block

END-EXEC

must appear after the embedded PL/SQL block, regardless of which programming language
your Oracle Precompiler program uses. Of course, the keyword END-EXEC must be followed by
the embedded SQL statement terminator for the specific language.

E.14.5 EXECUTE ... END-EXEC Usage Notes
Since the Oracle Precompilers treat an embedded PL/SQL block like a single embedded SQL
statement, you can embed a PL/SQL block anywhere in an Oracle Precompiler program that
you can embed a SQL statement. For more information on embedding PL/SQL blocks in
Oracle Precompiler programs, see Using Embedded PL/SQL

Appendix E
EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-20 of E-41

E.14.6 EXECUTE ... END-EXEC Example
Placing this EXECUTE statement in an Oracle Precompiler program embeds a PL/SQL block in
the program:

EXEC SQL EXECUTE
 BEGIN
 SELECT ename, job, sal
 INTO :emp_name:ind_name, :job_title, :salary
 FROM emp
 WHERE empno = :emp_number;
 IF :emp_name:ind_name IS NULL
 THEN RAISE name_missing;
 END IF;
 END;
END-EXEC

E.14.7 EXECUTE ... END-EXEC Related Topics
"EXECUTE IMMEDIATE (Executable Embedded SQL)"

E.15 EXECUTE (Executable Embedded SQL)

E.15.1 EXECUTE Purpose
To execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block that has been previously
prepared with an embedded SQL PREPARE statement.

E.15.2 EXECUTE Prerequisites
You must first prepare the SQL statement or PL/SQL block with an embedded SQL PREPARE
statement.

E.15.3 EXECUTE Syntax

EXEC SQL EXECUTE statement_id

FOR :host_integer

USING :host_variable

,

:indicator_variable

INDICATOR

DESCRIPTOR descriptor

E.15.4 EXECUTE Keywords and Parameters
FOR :host_integer

limits the number of times the statement is executed when the USING clause contains array
host variables If you omit this clause, Oracle executes the statement once for each component
of the smallest array.

statement_id

Appendix E
EXECUTE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-21 of E-41

is a precompiler identifier associated with the SQL statement or PL/SQL block to be executed.
Use the embedded SQL PREPARE command to associate the precompiler identifier with the
statement or PL/SQL block.

USING

specifies a list of host variables with optional indicator variables that Oracle substitutes as input
variables into the statement to be executed. The host and indicator variables must be either all
scalars or all arrays.

E.15.5 EXECUTE Usage Notes
For more information on this command, see Using Dynamic SQL.

E.15.6 EXECUTE Example
This example illustrates the use of the EXECUTE statement in a Pro*C/C++ embedded SQL
program:

EXEC SQL PREPARE my_statement
 FROM :my_string;
EXEC SQL EXECUTE my_statement
 USING :my_var;

E.15.7 EXECUTE Related Topics
"DECLARE DATABASE (Oracle Embedded SQL Directive)" and "PREPARE (Executable
Embedded SQL)"

E.16 EXECUTE IMMEDIATE (Executable Embedded SQL)

E.16.1 EXECUTE IMMEDIATE Purpose
To prepare and execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block containing
no host variables.

E.16.2 EXECUTE IMMEDIATE Prerequisites
None.

E.16.3 EXECUTE IMMEDIATE Syntax

EXECUTE IMMEDIATE

EXEC SQL

AT

‘text’

:host_variable

:host_variable

db_name

E.16.4 EXECUTE IMMEDIATE Keywords and Parameters
AT

Appendix E
EXECUTE IMMEDIATE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-22 of E-41

identifies the database on which the SQL statement or PL/SQL block is executed. The
database can be identified by either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, the statement or block is executed on your default database.

:host_string

is a host variable whose value is the SQL statement or PL/SQL block to be executed.

text

is a quoted text literal containing the SQL statement or PL/SQL block to be executed.

The SQL statement can only be a DELETE, INSERT, or UPDATE statement.

E.16.5 EXECUTE IMMEDIATE Usage Notes
When you issue an EXECUTE IMMEDIATE statement, Oracle parses the specified SQL statement
or PL/SQL block, checking for errors, and executes it. If any errors are encountered, they are
returned in the SQLCODE component of the SQLCA.

For more information on this command, see Using Dynamic SQL.

E.16.6 EXECUTE IMMEDIATE Example
This example illustrates the use of the EXECUTE IMMEDIATE statement:

EXEC SQL EXECUTE IMMEDIATE 'DELETE FROM emp WHERE empno = 9460'

E.16.7 EXECUTE IMMEDIATE Related Topics
"EXECUTE (Executable Embedded SQL)" and "PREPARE (Executable Embedded SQL)"

E.17 FETCH (Executable Embedded SQL)

E.17.1 FETCH Purpose
To retrieve one or more rows returned by a query, assigning the select list values to host
variables.

E.17.2 FETCH Prerequisites
You must first open the cursor with an the OPEN statement.

Appendix E
FETCH (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-23 of E-41

E.17.3 FETCH Syntax

EXEC SQL FETCH

:cursor_variable

cursor

FOR :host_integer

INTO :host_variable

‘

:indicator_variable

INDICATOR

USING DESCRIPTOR descriptor

E.17.4 FETCH Keywords and Parameters
FOR :host_integer

limits the number of rows fetched if you are using array host variables. If you omit this clause,
Oracle fetches enough rows to fill the smallest array.

cursor

is a cursor that is declared by a DECLARE CURSOR statement. The FETCH statement returns one of
the rows selected by the query associated with the cursor.

:cursor_variable

is a cursor variable is allocated an ALLOCATE statement. The FETCH statement returns one of the
rows selected by the query associated with the cursor variable.

INTO

specifies a list of host variables and optional indicator variables into which data is fetched.
These host variables and indicator variables must be declared within the program.

USING

specifies the descriptor referenced in a previous DESCRIBE statement. Only use this clause with
dynamic embedded SQL, method 4. Also, the USING clause does not apply when a cursor
variable is used.

E.17.5 FETCH Usage Notes
The FETCH statement reads the rows of the active set and names the output variables which
contain the results. Indicator values are set to -1 if their associated host variable is null. The
first FETCH statement for a cursor also sorts the rows of the active set, if necessary.

The number of rows retrieved is specified by the size of the output host variables and the value
specified in the FOR clause. The host variables to receive the data must be either all scalars or
all arrays. If they are scalars, Oracle fetches only one row. If they are arrays, Oracle fetches
enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows Oracle fetches is
determined by the smaller of the following values:

• The size of the smallest array

• The value of the :host_integer in the optional FOR clause

Of course, the number of rows fetched can be further limited by the number of rows that
actually satisfy the query.

Appendix E
FETCH (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-24 of E-41

If a FETCH statement does not retrieve all rows returned by the query, the cursor is positioned
on the next returned row. When the last row returned by the query has been retrieved, the next
FETCH statement results in an error code returned in the SQLCODE element of the SQLCA.

Note that the FETCH command does not contain an AT clause. You must specify the database
accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you want to revisit
any of the previously fetched rows, you must reopen the cursor and fetch each row in turn. If
you want to change the active set, you must assign new values to the input host variables in
the cursor's query and reopen the cursor.

E.17.6 FETCH Example
This example illustrates the FETCH command in a pseudo-code embedded SQL program:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT job, sal FROM emp WHERE deptno = 30;
...
EXEC SQL WHENEVER NOT FOUND GOTO ...
LOOP
 EXEC SQL FETCH emp_cursor INTO :job_title1, :salary1;
 EXEC SQL FETCH emp_cursor INTO :job_title2, :salary2;
...
END LOOP;
...

E.17.7 FETCH Related Topics
"CLOSE (Executable Embedded SQL)", "DECLARE CURSOR (Embedded SQL Directive)",
"OPEN (Executable Embedded SQL)", and "PREPARE (Executable Embedded SQL)"

E.18 INSERT (Executable Embedded SQL)

E.18.1 INSERT Purpose
To add rows to a table or to a view's base table.

E.18.2 INSERT Prerequisites
For you to insert rows into a table, the table must be in your own schema or you must have
INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema containing the
view must have INSERT privilege on the base table. Also, if the view is in a schema other than
your own, you must have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also enables insert rows into any table or any view's
base table.

If you are using Oracle in DBMS MAC mode, your DBMS label must match the creation label of
the table or view:

• If the creation label of the table or view is higher than your DBMS label, you must have
WRITEUP system privileges.

Appendix E
INSERT (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-25 of E-41

• If the creation label of the table or view is lower than your DBMS label, you must have
WRITEDOWN system privilege.

• If the creation label of your table or view is not comparable to your DBMS label, you must
have WRITEUP and WRITEDOWN system privileges.

E.18.3 INSERT Syntax

INSERT INTO

EXEC SQL

AT db_name FOR :host_integer

:host_variable

table

schema view @dblink

VALUES (expr)

‘

‘

(subquery)

(column)

E.18.4 INSERT Keywords and Parameters
AT

identifies the database on which the INSERT statement is executed. The database can be
identified by either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name

If you omit this clause, the INSERT statement is executed on your default database.

FOR :host_integer

limits the number of times the statement is executed if the VALUES clause contains array host
variables. If you omit this clause, Oracle executes the statement once for each component in
the smallest array.

schema

is the schema containing the table or view. If you omit schema, Oracle assumes the table or
view is in your own schema.

table view

is the name of the table into which rows are to be inserted. If you specify view, Oracle inserts
rows into the view's base table.

dblink

is a complete or partial name of a database link to a remote database where the table or view
is located. You can only insert rows into a remote table or view if you are using Oracle with the
distributed option.

If you omit dblink, Oracle assumes that the table or view is on the local database.

column

is a column of the table or view. In the inserted row, each column in this list is assigned a value
from the VALUES clause or the query.

Appendix E
INSERT (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-26 of E-41

If you omit one of the table's columns from this list, the column's value for the inserted row is
the column's default value as specified when the table was created. If you omit the column list
altogether, the VALUES clause or query must specify values for all columns in the table.

VALUES

specifies a row of values to be inserted into the table or view. Note that the expressions can be
host variables with optional indicator variables. You must specify an expression in the VALUES
clause for each column in the column list.

subquery

is a subquery that returns rows that are inserted into the table. The select list of this subquery
must have the same number of columns as the column list of the INSERT statement.

E.18.5 INSERT Usage Notes
Any host variables that appear in the WHERE clause must be either all scalars or all arrays. If
they are scalars, Oracle executes the INSERT statement once. If they are arrays, Oracle
executes the INSERT statement once for each set of array components, inserting one row each
time.

Array host variables in the WHERE clause can have different sizes. In this case, the number of
times Oracle executes the statement is determined by the smaller of the following values:

• size of the smallest array

• the value of the :host_integer in the optional FOR clause.

For more information on this command, see Using Embedded SQL .

E.18.6 INSERT Example I
This example illustrates the use of the embedded SQL INSERT command:

EXEC SQL
 INSERT INTO emp (ename, empno, sal)
 VALUES (:ename, :empno, :sal);

E.18.7 INSERT Example II
This example shows an embedded SQL INSERT command with a subquery:

EXEC SQL
 INSERT INTO new_emp (ename, empno, sal)
 SELECT ename, empno, sal FROM emp
 WHERE deptno = :deptno;

E.18.8 INSERT Related Topics
"DECLARE DATABASE (Oracle Embedded SQL Directive)"

E.19 OPEN (Executable Embedded SQL)

Appendix E
OPEN (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-27 of E-41

E.19.1 OPEN Purpose
To open a cursor, evaluating the associated query and substituting the host variable names
supplied by the USING clause into the WHERE clause of the query.

E.19.2 OPEN Prerequisites
You must declare the cursor with a DECLARE CURSOR embedded SQL statement before opening
it.

E.19.3 OPEN Syntax

EXEC SQL OPEN cursor

USING :host_variable

‘

:indicator_variable

INDICATOR

DESCRIPTOR descriptor

E.19.4 OPEN Keywords and Parameters
cursor

is the cursor to be opened.

USING

specifies the host variables to be substituted into the WHERE clause of the associated query.

:host_variable specifies a host variable with an optional indicator variable to be substituted into
the statement associated with the cursor.

DESCRIPTOR

specifies a descriptor that describes the host variables to be substituted into the WHERE clause
of the associated query. The descriptor must be initialized in a previous DESCRIBE statement.

The substitution is based on position. The host variable names specified in this statement can
be different from the variable names in the associated query.

E.19.5 OPEN Usage Notes
The OPEN command defines the active set of rows and initializes the cursor just before the first
row of the active set. The values of the host variables at the time of the OPEN are substituted in
the statement. This command does not actually retrieve rows; rows are retrieved by the FETCH
command.

After you have opened a cursor, its input host variables are not reexamined until you reopen
the cursor. To change any input host variables and therefore the active set, you must reopen
the cursor.

All cursors in a program are in a closed state when the program is initiated or when they have
been explicitly closed using the CLOSE command.

Appendix E
OPEN (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-28 of E-41

You can reopen a cursor without first closing it. For more information on this command, see
 Using Embedded SQL .

E.19.6 OPEN Example
This example illustrates the use of the OPEN command in a Pro*C/C++ embedded SQL
program:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, empno, job, sal
 FROM emp
 WHERE deptno = :deptno;
EXEC SQL OPEN emp_cursor;

E.19.7 OPEN Related Topics
"CLOSE (Executable Embedded SQL)". "DECLARE CURSOR (Embedded SQL Directive)",
"FETCH (Executable Embedded SQL)", and "PREPARE (Executable Embedded SQL)"

E.20 PREPARE (Executable Embedded SQL)

E.20.1 PREPARE Purpose
To parse a SQL statement or PL/SQL block specified by a host variable and associate it with
an identifier.

E.20.2 PREPARE Prerequisites
None.

E.20.3 PREPARE Syntax

EXEC SQL PREPARE statement_id FROM :host_string

‘text’

E.20.4 PREPARE Keywords and Parameters
statement_id

is the identifier to be associated with the prepared SQL statement or PL/SQL block. If this
identifier was previously assigned to another statement or block, the prior assignment is
superseded.

:host_string

is a host variable whose value is the text of a SQL statement or PL/SQL block to be prepared.

text

is a string literal containing a SQL statement or PL/SQL block to be prepared.

Appendix E
PREPARE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-29 of E-41

E.20.5 PREPARE Usage Notes
Any variables that appear in the :host_string or text are placeholders. The actual host variable
names are assigned in the USING clause of the OPEN command (input host variables) or in the
INTO clause of the FETCH command (output host variables).

A SQL statement is prepared only once, but can be executed any number of times.

E.20.6 PREPARE Example
This example illustrates the use of a PREPARE statement in a Pro*C/C++ embedded SQL
program:

EXEC SQL PREPARE my_statement FROM :my_string;
EXEC SQL EXECUTE my_statement;

E.20.7 PREPARE Related Topics
"CLOSE (Executable Embedded SQL)", "DECLARE CURSOR (Embedded SQL Directive)",
"FETCH (Executable Embedded SQL)", and "OPEN (Executable Embedded SQL)"

E.21 ROLLBACK (Executable Embedded SQL)

E.21.1 ROLLBACK Purpose
To undo work done in the current transaction.

You can also use this command to manually undo the work done by an in-doubt distributed
transaction.

E.21.2 ROLLBACK Prerequisites
To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally committed, you
must have FORCE TRANSACTION system privilege. To manually roll back an in-doubt distributed
transaction originally committed by another user, you must have FORCE ANY TRANSACTION
system privilege.

E.21.3 ROLLBACK Syntax

ROLLBACK

EXEC SQL

AT db_name

:host_variable

RELEASE

TOWORK savepoint

SAVEPOINT

FORCE ‘text’

Appendix E
ROLLBACK (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-30 of E-41

E.21.4 ROLLBACK Keywords and Parameters
WORK

is optional and is provided for ANSI compatibility.

TO

rolls back the current transaction to the specified savepoint. If you omit this clause, the
ROLLBACK statement rolls back the entire transaction.

FORCE

manually rolls back an in-doubt distributed transaction. The transaction is identified by the text
containing its local or global transaction ID. To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING.

ROLLBACK statements with the FORCE clause are not supported in PL/SQL.

RELEASE

frees all resources and disconnects the application from the Oracle Server. The RELEASE
clause is not allowed with SAVEPOINT and FORCE clauses.

E.21.5 ROLLBACK Usage Notes
A transaction (or a logical unit of work) is a sequence of SQL statements that Oracle treats as
a single unit. A transaction begins with the first executable SQL statement after a COMMIT,
ROLLBACK or connection to the database. A transaction ends with a COMMIT statement, a
ROLLBACK statement, or disconnection (intentional or unintentional) from the database. Note
that Oracle issues an implicit COMMIT statement before and after processing any data definition
language statement.

Using the ROLLBACK command without the TO SAVEPOINT clause performs the following
operations:

• ends the transaction

• undoes all changes in the current transaction

• erases all savepoints in the transaction

• releases the transaction's locks

Using the ROLLBACK command with the TO SAVEPOINT clause performs the following operations:

• rolls back just the portion of the transaction after the savepoint.

• loses all savepoints created after that savepoint. Note that the named savepoint is
retained, so you can roll back to the same savepoint multiple times. Prior savepoints are
also retained.

• releases all table and row locks acquired since the savepoint. Note that other transactions
that have requested access to rows locked after the savepoint must continue to wait until
the transaction is committed or rolled back. Other transactions that have not already
requested the rows can request and access the rows immediately.

It is recommended that you explicitly end transactions in application programs using either a
COMMIT or ROLLBACK statement. If you do not explicitly commit the transaction and the program
terminates unusually, Oracle rolls back the last uncommitted transaction.

Appendix E
ROLLBACK (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-31 of E-41

E.21.6 ROLLBACK Example I
The following statement rolls back your entire current transaction:

EXEC SQL ROLLBACK;

E.21.7 ROLLBACK Example II
The following statement rolls back your current transaction to savepoint SP5:

EXEC SQL ROLLBACK TO SAVEPOINT sp5;

E.21.8 ROLLBACK Distributed Transactions
Oracle with the distributed option enables perform distributed transactions, or transactions that
modify data on multiple databases. To commit or roll back a distributed transaction, you need
only issue a COMMIT or ROLLBACK statement as you would any other transaction.

If there is a network failure during the commit process for a distributed transaction, the state of
the transaction may be unknown, or in-doubt. After consultation with the administrators of the
other databases involved in the transaction, you may decide to manually commit or roll back
the transaction on your local database. You can manually roll back the transaction on your
local database by issuing a ROLLBACK statement with the FORCE clause.

You cannot manually roll back an in-doubt transaction to a savepoint.

A ROLLBACK statement with a FORCE clause only rolls back the specified transaction. Such a
statement does not affect your current transaction.

E.21.9 ROLLBACK Example III
The following statement manually rolls back an in-doubt distributed transaction:

EXEC SQL
 ROLLBACK WORK
 FORCE '25.32.87';

E.21.10 ROLLBACK Related Topics
"COMMIT (Executable Embedded SQL)" and "SAVEPOINT (Executable Embedded SQL)"

E.22 SAVEPOINT (Executable Embedded SQL)

E.22.1 SAVEPOINT Purpose
To identify a point in a transaction to which you can later roll back.

E.22.2 SAVEPOINT Prerequisites
None.

Appendix E
SAVEPOINT (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-32 of E-41

E.22.3 SAVEPOINT Syntax

EXEC SQL SAVEPOINT savepoint

AT db_name

:host_variable

E.22.4 SAVEPOINT Keywords and Parameters
AT

identifies the database on which the savepoint is created. The database can be identified by
either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, the savepoint is created on your default database.

savepoint

is the name of the savepoint to be created.

E.22.5 SAVEPOINT Usage Notes
For more information on this command, see Defining and Controlling Transactions.

Example

This example illustrates the use of the embedded SQL SAVEPOINT command:

EXEC SQL SAVEPOINT save3;

E.22.6 SAVEPOINT Related Topics
"COMMIT (Executable Embedded SQL)" and "ROLLBACK (Executable Embedded SQL)"

E.23 SELECT (Executable Embedded SQL)

E.23.1 SELECT Purpose
To retrieve data from one or more tables, views, or snapshots, assigning the selected values to
host variables.

E.23.2 SELECT Prerequisites
For you to select data from a table or snapshot, the table or snapshot must be in your own
schema or you must have READ or SELECT privilege on the table or snapshot.

For you to select rows from the base tables of a view, the owner of the schema containing the
view must have READ or SELECT privilege on the base tables. Also, if the view is in a schema
other than your own, you must have READ or SELECT privilege on the view.

Appendix E
SELECT (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-33 of E-41

The READ ANY TABLE or SELECT ANY TABLE system privilege also enables select data from
any table or any snapshot or any view's base table.

If you are using Oracle in DBMS MAC mode, your DBMS label must dominate the creation label
of each queried table, view, or snapshot or you must have READUP system privileges.

The READ privilege cannot be used for SELECT ... FOR UPDATE operations.

E.23.3 SELECT Syntax

INTO

EXEC SQL SELECT select_list

AT dbname

:host_variable

:host_variable FROM table_list

:indicator_variable

INDICATOR

,

WHERE condition CONNECT BY condition

START WITH condition

GROUP BY expr

,

HAVING condition

FOR UPDATE

ORDER BY

MINUS

INTERSECT

UNION ALL

UNION SELECT command

expr

,

,

position

DESC

ASC

OF column

view

table

schema

snapshot

NOWAIT

E.23.4 SELECT Keywords and Parameters
AT

identifies the database to which the SELECT statement is issued. The database can be
identified by either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, the SELECT statement is issued to your default database.

Appendix E
SELECT (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-34 of E-41

select_list

identical to the non-embedded SELECT command except that a host variables can be used in
place of literals.

INTO

specifies output host variables and optional indicator variables to receive the data returned by
the SELECT statement. Note that these variables must be either all scalars or all arrays, but
arrays need not have the same size.

WHERE

restricts the rows returned to those for which the condition is TRUE. The condition can contain
host variables, but cannot contain indicator variables. These host variables can be either
scalars or arrays.

All other keywords and parameters are identical to the non-embedded SQL SELECT command.

E.23.5 SELECT Usage Notes
If no rows meet the WHERE clause condition, no rows are retrieved and Oracle returns an error
code through the SQLCODE component of the SQLCA.

You can use comments in a SELECT statement to pass instructions, or hints, to the Oracle
optimizer. The optimizer uses hints to choose an execution plan for the statement.

E.23.6 SELECT Example
This example illustrates the use of the embedded SQL SELECT command:

EXEC SQL SELECT ename, sal + 100, job
 INTO :ename, :sal, :job
 FROM emp
 WHERE empno = :empno

E.23.7 SELECT Related Topics
"DECLARE CURSOR (Embedded SQL Directive)", "DECLARE DATABASE (Oracle Embedded
SQL Directive)", "EXECUTE (Executable Embedded SQL)", "FETCH (Executable Embedded
SQL)", and "PREPARE (Executable Embedded SQL)"

E.24 UPDATE (Executable Embedded SQL)

E.24.1 UPDATE Purpose
To change existing values in a table or in a view's base table.

E.24.2 UPDATE Prerequisites
For you to update values in a table or snapshot, the table must be in your own schema or you
must have UPDATE privilege on the table.

Appendix E
UPDATE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-35 of E-41

For you to update values in the base table of a view, the owner of the schema containing the
view must have UPDATE privilege on the base table. Also, if the view is in a schema other than
your own, you must have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also enables update values in any table or any view's
base table.

If you are using Oracle in DBMS MAC mode, your DBMS label must match the creation label of
the table or view:

• If the creation label of the table or view is higher than your DBMS label, you must have
READUP and WRITEUP system privileges

• If the creation label of the table or view is lower than your DBMS label, you must have
WRITEDOWN system privilege.

• If the creation label of your table or view is not comparable to your DBMS label, you must
have READUP, WRITEUP, and WRITEDOWN system privileges.

E.24.3 UPDATE Syntax

EXEC SQL

SET

AT dbname

:host_variable

alias

column =

snapshot

@dblinkviewschema.

,
,

,

FOR :host_integer

UPDATE

table

(column) = (subquery_1)

expr

(subquery_2)

WHERE

CURRENT OF CURSOR

condition

E.24.4 UPDATE Keywords and Parameters
AT

identifies the database to which the UPDATE statement is issued. The database can be
identified by either:

db_name is a database identifier declared in a previous DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared db_name.

If you omit this clause, the UPDATE statement is issued to your default database.

FOR :host_integer

limits the number of times the UPDATE statement is executed if the SET and WHERE clauses
contain array host variables. If you omit this clause, Oracle executes the statement once for
each component of the smallest array.

schema

is the schema containing the table or view. If you omit schema, Oracle assumes the table or
view is in your own schema.

Appendix E
UPDATE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-36 of E-41

table view

is the name of the table to be updated. If you specify view, Oracle updates the view's base
table.

dblink

is a complete or partial name of a database link to a remote database where the table or view
is located. You can only use a database link to update a remote table or view if you are using
Oracle with the distributed option.

alias

is a name used to reference the table, view, or subquery elsewhere in the statement.

column

is the name of a column of the table or view that is to be updated. If you omit a column of the
table from the SET clause, that column's value remains unchanged.

expr

is the new value assigned to the corresponding column. This expression can contain host
variables and optional indicator variables.

subquery_1

is a subquery that returns new values that are assigned to the corresponding columns.

subquery_2

is a subquery that return a new value that is assigned to the corresponding column.

WHERE

specifies which rows of the table or view are updated:

condition updates only rows for which this condition is true. This condition can contain host
variables and optional indicator variables.

CURRENT OF updates only the row most recently fetched by the cursor. The cursor cannot be
associated with a SELECT statement that performs a join unless its FOR UPDATE clause explicitly
locks only one table.

If you omit this clause entirely, Oracle updates all rows of the table or view.

E.24.5 UPDATE Usage Notes
Host variables in the SET and WHERE clauses must be either all scalars or all arrays. If they are
scalars, Oracle executes the UPDATE statement only once. If they are arrays, Oracle executes
the statement once for each set of array components. Each execution may update zero, one,
or multiple rows.

Array host variables can have different sizes. In this case, the number of times Oracle
executes the statement is determined by the smaller of the following values:

• the size of the smallest array

• the value of the :host_integer in the optional FOR clause

The cumulative number of rows updated is returned through the third element of the SQLERRD
component of the SQLCA. When arrays are used as input host variables, this count reflects the
total number of updates for all components of the array processed in the UPDATE statement. If

Appendix E
UPDATE (Executable Embedded SQL)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-37 of E-41

no rows satisfy the condition, no rows are updated and Oracle returns an error message
through the SQLCODE element of the SQLCA. If you omit the WHERE clause, all rows are updated
and Oracle raises a warning flag in the fifth component of the SQLWARN element of the SQLCA.

You can use comments in an UPDATE statement to pass instructions, or hints, to the Oracle
optimizer. The optimizer uses hints to choose an execution plan for the statement.

For more information on this command, see Using Embedded SQL and Defining and
Controlling Transactions.

E.24.6 UPDATE Examples
The following examples illustrate the use of the embedded SQL UPDATE command:

EXEC SQL UPDATE emp
 SET sal = :sal, comm = :comm INDICATOR :comm_ind
 WHERE ename = :ename;

EXEC SQL UPDATE emp
 SET (sal, comm) =
 (SELECT AVG(sal)*1.1, AVG(comm)*1.1
 FROM emp)
 WHERE ename = 'JONES';

E.24.7 UPDATE Related Topics
"DECLARE DATABASE (Oracle Embedded SQL Directive)"

E.25 VAR (Oracle Embedded SQL Directive)

E.25.1 VAR Purpose
To perform host variable equivalencing, or to assign a specific Oracle external datatype to an
individual host variable, overriding the default datatype assignment.

E.25.2 VAR Prerequisites
The host variable must be previously declared in the Declare Section of the embedded SQL
program.

E.25.3 VAR Syntax

EXEC SQL VAR host_variable IS datatype

E.25.4 VAR Keywords and Parameters
host_variable

is the host variable to be assigned an Oracle external datatype.

datatype

Appendix E
VAR (Oracle Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-38 of E-41

is an Oracle external datatype recognized by the Oracle Precompilers (not an Oracle internal
datatype). The datatype may include a length, precision, or scale. This external datatype is
assigned to the host_variable. For a list of external datatypes, see Meeting Program
Requirements.

E.25.5 VAR Usage Notes
Host variable equivalencing is one kind of datatype equivalencing. Datatype equivalencing is
useful for any of the following purposes:

• to automatically null-terminate a character host variable

• to store program data as binary data in the database

• to override default datatype conversion

E.25.6 VAR Example
This example equivalences the host variable DEPT_NAME to

the datatype STRING and the host variable BUFFER to the datatype RAW(2000):

EXEC SQL BEGIN DECLARE SECTION;
 ...
 dept_name CHARACTER(15); -- default datatype is CHAR
 EXEC SQL VAR dept_name IS STRING; -- reset to STRING
 ...
 buffer CHARACTER(200); -- default datatype is CHAR
 EXEC SQL VAR buffer IS RAW(200); -- refer to RAW
 ...
EXEC SQL END DECLARE SECTION;

E.25.7 VAR Related Topics
None.

E.26 WHENEVER (Embedded SQL Directive)

E.26.1 WHENEVER Purpose
To specify the action to be taken when an error or warning results from executing an
embedded SQL program.

E.26.2 WHENEVER Prerequisites
None.

E.26.3 WHENEVER Syntax
The following syntax diagram shows how to construct a WHENEVER statement:

EXEC SQL WHENEVER

DO routine

STOP

GOTO label

SQLWARNING

SQLERROR

NOT FOUND CONTINUE

Appendix E
WHENEVER (Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-39 of E-41

E.26.4 WHENEVER Keywords and Parameters
NOT FOUND

identifies any exception condition that returns an error code of +1403 to SQLCODE (or a +100
code when MODE=ANSI).

SQLERROR

identifies a condition that results in a negative return code.

SQLWARNING

identifies a non-irrecoverable warning condition.

CONTINUE

indicates that the program should progress to the next statement.

GOTO

indicates that the program should branch to the statement named by label.

STOP

stops program execution.

DO

indicates that the program should call a host language routine. The syntax of routine depends
on your host language. See your language-specific Supplement to the Oracle Precompilers
Guide.

E.26.5 WHENEVER Usage Notes
The WHENEVER command allows your program to transfer control to an error handling routine in
the event an embedded SQL statement results in an error or warning.

The scope of a WHENEVER statement is positional, rather than logical. A WHENEVER statement
applies to all embedded SQL statements that textually follow it in the source file, not in the flow
of the program logic. A WHENEVER statement remains in effect until it is superseded by another
WHENEVER statement checking for the same condition.

For more information on this command, see Defining and Controlling Transactions. Do not
confuse the WHENEVER embedded SQL command with the WHENEVER SQL*Plus command.

E.26.6 WHENEVER Example
The following example illustrates the use of the WHENEVER command in a Pro*C/C++ embedded
SQL program:

EXEC SQL WHENEVER NOT FOUND CONTINUE;
...
EXEC SQL WHENEVER SQLERROR GOTO sql_error:
...
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

Appendix E
WHENEVER (Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-40 of E-41

E.26.7 WHENEVER Related Topics
None.

Appendix E
WHENEVER (Embedded SQL Directive)

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-41 of E-41

Index

A
active set, 7

changing, 8, 9
ALLOCATE command, E-5
allocating, cursors, E-6
ANSI/ISO SQL

compliance, 4
extensions, 24

application development process, 6
array, 1
array fetch, 3
array, elements, 2
array, operations, 5
ARRAYLEN statement, 11
ASACC option, 10
ASSUME SQLCODE option, 11
AT clause

CONNECT statement, 30
DECLARE CURSOR statement, 29
DECLARE STATEMENT statement, 31
EXECUTE IMMEDIATE statement, 31
of COMMITcommand, E-8
of DECLARE CURSOR command, E-8
of DECLARE STATEMENT command, E-14
of EXECUTE command, E-21
of EXECUTE IMMEDIATE command, E-23
of INSERTcommand, E-26
of SAVEPOINT command, E-33
of UPDATE command, E-36
restrictions, 31

AUTO_CONNECToption, 11
automatic logon, 29

B
batch fetch, 3

example, 3
number of rows returned, 3

bind descriptor, information in, 12
bind variable, 13, 12
binding, 3
blank padding, in multi-byte character strings, 27
block data subprogram, used by precompiler, 15

C
callback, user exit, 10
CHAR column, maximum width, 5
CHAR datatype

external, 11
internal, 5

CHAR_MAP precompiler option, 12
character strings, multi-byte, 26
CHARF data type specifier

using in TYPE statement, 24
using in VAR statement, 24

CHARF data type, external, 11
CHARZ data type, 11
chatracter sets, multi byte, 26
child cursor, 12
CINCR precompiler option, 12
CLOSE command, E-6

examples, E-7
CLOSE statement, 9, 14

example, 9
CLOSE_ON_COMMIT

precompiler option, 13
closing, cursors, E-7
CMAX precompiler option, 13
CMIN precompiler option, 14
CNOWAIT precompiler option, 14
code page, 26
CODE precompiler option, 14
column, ROWLABEL, 9
comment, 16
COMMENT clause, of COMMIT command, E-8
commit, 2

automatic, 2
explicit versus implicit, 2

COMMIT command, E-7
ending a transaction, E-7
examples, E-9

COMMIT statement, 3
effects, 3
example, 3
RELEASE option, 3
using PL/SQL block, 9
where to place, 3

commiting, transactions, E-8
COMMON NAME option, 15

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-1 of Index-13

COMMON_PARSER precompiler option, 16
communication over a network, 29
COMP_CHARSET precompiler option, 17
compilation, 51
compliance, ANSI/ISO, 5
concurency, 1
concurrent logons, 28
conditional precompilation, 49

defining symbols, 50
example, 49

CONFIG option, 7
CONFIG precompiler option, 18
configuration file

system versus user, 6
configuration files

advantages, 6
CONNECT statement

AT clause, 30
enabling a semantic check, D-2
USING clause, 30

connection
concurrent, 32
default versus non-default, 29
implicit, 33

CONTINUE action, 23
CONTINUE option, of WHENEVER statement,

E-40
conventions, iii
coventions

description, iii
CPOOL precompiler option, 18
CPP_SUFFIX precompiler option, 19
CPP_SUFFIX precompiler options, 19
CREATE PROCEDURE statement, 13
creating, savepoints, E-32
CTIMEOUT precompiler option, 19
CURRENT of cluase, 10

example, 10
restrictions, 10

current row, 5
CURRVAL psuedocolumn, 8
cursor, 7

allocating, E-5
association with query, 7
child, 11
closing, E-6
declaring, 7
effects on performance, C-5
explicit versus implicit, 5
naming, 8
parent, 11
reopening, 8, 9
restricted scope of, 50
restrictions, 50
using for multiple row query, 7
using more than one, 8

cursor cache, 11, 12, 30, E-6
gathering stastics about, 32

cursor chache
purpose, C-6

cursor varaible
opening, 13

cursor, scope, 8
cursors

fetching rows from, E-23
opening, E-27

D
data definition language, 1
data definition language (DDL)

description, 1
data integrity, 1
data manipulation language (DML), 4
data type

host-languages, 19
internal versus external, 5
user defined, 19

data type conversion, 16
between internal and external datatypes, 16

data type equivalencing, 21
advantages, 21
example, 22
guidelines, 24

database link
defining, 33
using in delete command, E-17
using in DELETE command, E-17
using in UPDATE command, E-37

database links
creating a synonym, 34

Date data type
converting, 18
default format, 18
default value, 5
external, 5
internal, 5
internal format, 5

DB2_ARRAY precompiler option, 19
DBMS option, 20
deadlock, 1

breaking, 4
DECIMAL data type, 12
declarartion

host array, 2
host variable, 19

declaration
cursor, 7
indicator variable, 20
of ORACA, 29
SQLCA, 4

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-2 of Index-13

declarative SQL statements
using in transactions, 2

Declarative SQL statements, 2
declare CURSOR command, E-10

examples, E-12
declare CURSOR statement, 31
declare DATABASE directive, E-12
declare section, 1

example, 2
using more than one, 2

DECLARE statement
example, 8
where to place, 8

declare STATEMENT command, E-13
example, E-14
scope of, E-14

DECLARE STATEMENT statement
AT clause, 31
example, 14
using in dynamic SQL, 10
when required, 14

DECLARE TABLE command, E-14
example, E-15

declare TABLE statement
need for with AT clause, 31

DECLARE TABLE statement
need for with AT clause, 29
using with the SQL CHECK option, D-3

DEF_SQLCODE precompiler option, 21
default connection, 29
default database, 29
default, setting of LITDELIM option, 31
DEFINE option, 22
definition, 5
delete cascaade, 20
DELETE command, E-16

embedded SQL examples, E-18
DELETE statement

using SQLERRD(3) filed, 10
WHERE clause, 7

DESCRIBE command, E-18
example, E-19

DESCRIBE statement, using in dynamic SQL
Method 4, 12

directory, 2
current, 2
path for INCLUDE files, 2

DISPLAY data type, 12
distributed procesing, 28
DO action, 23
DO option, of WHENEVER command, E-40
DTP model, 35
dummy host variables, 2
DURATION precompiler option, 23
dynamic PL/SQL, 14

dynamic SQL
advantages and disadvantages, 2
choosing the right method, 4
guidelines, 4
overview, 1
using PL/SQL, 14
when useful, 2

dynamic SQL Method 1
command, 6
dexcription, 6
example, 6
requirements, 6

dynamic SQL method 2
using the DECLARE STATEMENT Statement,

14
dynamic SQL Method 2

commands, 4
description, 7
example, 8
requirements, 7
using PL/SQL, 15

dynamic SQL method 3
using the DECLARE STATEMENT Statement,

14
dynamic SQL Method 3

compared to method 2, 9
description, 9
example, 10
requirements, 9
using PL/SQL, 15
using the CLOSE statement, 10
using the OPEN statement, 10
using the PREPARE statement, 9

dynamic SQL method 4
using the DECLARE STATEMENT Statement,

14
dynamic SQL Method 4

overview, 11
using descriptors, 11
using SQLDA, 12
using the DESCRIBE statement, 12
when needed, 11

dynamic SQL Method1
using EXECUTE IMMEDIATE, 6
using PL/SQL, 15

dynamic SQL Method4
using PL/SQL, 15

dynamic SQL statement, 1
binding of host variables, 3
how processed, 3
requirements, 2
using host arrays, 14
using placeholders, 2

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-3 of Index-13

E
embedded PL/SQL

advantages, 1
cursor for loops, 2
example, 5, 6
need for SQL check option, 4
packages, 3
PL/SQL table, 3
requirements, 4
subprograms, 2
user-defines record, 4
using %TYPE, 1
where allowed, 4

embedded SQL
ALLOCATE command, E-5
CLOSE command, E-6
COMMIT command, E-7
CONNECTcommand, E-9
DECLARE cursor command, E-10
DECLARE CURSORcommand, E-10
DECLARE DATABASE command, E-12
DECLARE STATEMENT command, E-13
DECLARE TABLE command, E-14
DELETE command, E-16
DESCRIBE command, E-18
EXECUTE command, E-21
EXECUTE IMMEDIATE command, E-22
EXECUTEcommand, E-20
FETCH command, E-23
INSERT command, E-25
mixing with host-language statement, 3
OPEN command, E-27, E-29
referencing indicator variables, 20
SAVEPOINT command, E-32
SELECT command, E-33
UPDATE command, E-35
VAR command, E-38
versus interactive SQL, 4
WHENEVER command, E-39

embedded SQL statement
referencing host-langauage varaibles, 19
syntax, 3

embedding PL/SQL blocks in Oracle 7
precompiler programs, E-20

EMP table, 9
encoding scheme, 25
equivalencing, data type, 21
error detection, error reporting, E-40
error handling

alternatives, 1
benefits, 1
error handling

using the SQLCODE status variable, 4
overview, 6
SQLCA versus WHENEVER statement, 2

error handling (continued)
SQLCODE status variable, 2
using SQLCA, 15
using the ORACA structure, 28
using the ROLLBACK statement, 4
using the SQLGLM function, 21, 26
using the WHENEVER statement, 22

error message
available in SQLCA, 18
maximum length, 21
using in error reporting, 18
using the SQLGLM function, 21

error reporting
key components, 17
using error messages, 17
using status codes, 17
using the parse error offset, 18
using the rows-processed count, 17
using warning flags, 17

errors options, 23
ERRTYPE

precompiler option, 23
exception, PL/SQL, 8
EXEC ORACLE DEFINE statement, 49
EXEC ORACLE ELSE statement, 49
EXEC ORACLE ENDIF statement, 49
EXEC ORACLE IFDEF statement, 49
EXEC ORACLE IFNDEF statement, 49
EXEC ORACLE statement

inline, 5
scope of, 5
syntax for, 5

EXEC SQL clause, 3
EXEC TOOLS statements, 9

GET, 10
MESSAGE, 12
SET, 10
SET CONTEXT, 11

executable SQL statement, 2, E-20
example, E-21

EXECUTE IMMEDIATE command, E-22
example, E-23

EXECUTE IMMEDIATE statement
AT clause, 31

EXECUTE statement, using in dynamic SQL
Method 2, 7

explicit logon, 29
multiple, 32
single, 29

external datatype, 9
CHAR, 11
CHARF, 11
CHARZ, 11
DATE, 11
DECIMAL, 12
DISPLAY, 12

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-4 of Index-13

external datatype (continued)
FLOAT, 12
INTEGER, 12
LONG, 12
LONG VARCHAR, 13
LONG VARRAW, 13
MLSLABEL, 13
NUMBER, 13
RAW, 14
ROWID, 14
STRING, 14
UNSIGNED, 15
VARCHAR, 15
VARCHAR2, 15
VARNUM, 15

F
features, new, A-1
FETCH command, E-23

examples, E-25
used after OPEN command, E-28

FETCH statement, 14
example, 14
using the SQERRD(3), 10

fetch, batch, 3
fetching, rows from cursors, E-23
FIPS option, 24
flag, warning, 17
FLOAT datatypes, 12
FOR clause, 7

example, 7
restrictions, 8
using with HOST arrays, 8

FORCE clause
of COMMIT command, E-9

FORMAT option, 25
forward reference, 8
full scan, C-4
function prototype

definition of, 14

G
GENXTB form, running, 7
globalizaton support, 25

multibyte charecter strings, 26
globalizaton support parameter

currency, 25
DATE FORMAT, 25
DATE LANGUAGE, 25
ISO CURRENCY, 25
LANGUAGE, 25
NUMERIC CHARACTERS, 25
SORT, 25
TERRITORY, 25

GOTO action, 23
GOTO optio, of WHENEVER command, E-40
guidelines

datatype equivalencing, 24
dynamic SQL, 4
host variable, 19
separate precompilation, 50
transactions, 9
user exit, 8
WHENEVER statement, 25

guielines
indicator variables, 21

H
HEADER precompiler option, 26
heap, 30
hint, optimizer, C-3
hints

in DELETE statements, E-18
in SELECTstatement, E-35
in UPDATEstatement, E-38

HOLD CURSOR option
of Oracle precompilers, E-7

HOLD_CURSOR precompiler option, 26
host array, 1

advantages, 1
declaring, 2
dimensions, 2
maximum size, 2
referencing, 2
restrictions, 4, 5
using dynamic SQL statement, 14
using in the DELETE statement, 6
using in the INSERT statement, 5
using in the SELECTstatement, 2
using in the UPDATE statement, 5
using in the WHERE clause, 9
using to improve performance, C-2
when not allowed, 2

host language, 1
host option, 27
host program, 1
host varaible

in OPEN command, E-28
multi-byte charecter strings, 27
undeclare, 1
using in EXEC TOOLS statement, 9
using in PL/SQL, 5

host variable, 1
assigning a value, 4
declaring, 18
dummy, 2
host variable equivalencing, E-38
in EXECUTE command, E-22
in OPEN command, E-28

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-5 of Index-13

host variable (continued)
output versus input, 1
overview, 4

host variables
using in user exit, 3
where allowed, 4

host-language datatype, 19

I
IAF GET statement

example, 4
specifying block and field names, 4
using user exit, 4

IAF PUT statement
example, 5
specifying block and filed names, 5
using user exit, 5

IAP, 8
implicit logon, 33
implicit logons

multiple, 34
single, 33

IMPLICIT_SVPT precompiler option, 27
in doubt transaction, 9
IN OUT parameter modes, 2
INAME option, 28

when a file extension is required, 1
INCLUDE file, 2
INCLUDE option, 29
INCLUDE statement, 2

using to declare the SQLCA, 15
index, using to improve performance, C-4
indiacator array, 1
indicator varaible, 2
indicator variable

guidelines, 21
referencing, 20

indicator variables
used to detetc truncated values, 2
used with multi-byte charecter strings, 28
using in PL/SQL, 8
using to handle nulls, 2, 3
using to test for nulls, 4

input host variable
restrictions, 1
where allowed, 1

INSERT command, E-25
embedded SQL examples, E-27

INSERT of no rows, 19
cause of, 8

INSERT statement
column list, 6
example, 6
INTO clause, 6

inserting, rows into tables and views, E-25

interface
native, 35
XA, 35

internal datatypes, 4
CHAR, 5
DATE, 5
definition, 3
LONG, 5
LONG RAW, 5
MLSLABEL, 6
NUMBER, 6
RAW, 7
ROWID, 7
VARCHAR2, 7

INTO clause
INSERT statement, 6
of FETCH command, E-24
of SELECT statement, E-35

INTYPE precompiler option, 30
IRECLEN option, 29

J
julian date, 5

K
keywords, B-2

L
language support, 2
LDA, 35
LEVEL pseudocolumn, 7
LINES precompiler option, 30
link, database, 33
linking, 51
LITDELIM option, 31

purpose, 31
LNAME option, 31
location transparency, 34
LOCK TABLE statement, 7

example, 8
using the NOWAIT parameter, 8

lock, released by ROLLBACK statement, E-31
locking, 1, 7

explicit versus implicit, 7
modes, 1
privileges needed, 9
using the FOR UPDATE of clause, 7
using the LOCK TABLE statement, 7

logon
concurrent, 28
explicit, 29

Logon Data Area (LDA), 34

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-6 of Index-13

LONG datatype
comapred with CHAR, 5
external, 12
internal, 5
restriction, 5

LONG RAW column, maximum width, 6
LONG RAW datatype

compared with LONG, 6
conversion, 18
external, 6
internal, 12

LONG VAR CHAR datatype, 13
LONG VARRAW datatype, 13
LRECLEN option, 32
LTYPE option, 32

M
MAX_ROW_INSERT precompiler option, 34
MAXLITERAL option, 32
MAXOPENCURSORS option, 33

using for separate precompilation, 50
what it affects, C-5

MLSLABEL data type, 6
MODE option, 34
mode, parameter, 2
monitor, transaction processing, 35
multi-byte character sets, 27
MULTISUBPROG option, 35

N
namespaces, reserved by Oracle, B-8
naming conventions

cursor, 8
SQL* Forms user exit, 8

naming of database objects, E-5
NATIVE

value of DBMS option, 19
native interface, 36
NATIVE_TYPES precompiler option, 36
network

communicating over, 29
protocol, 29
reducing network traffic, C-3

NEXTVAL, psuedocolumn, 8
nibble, 18
NIST, compliance, 5
NLS_CHAR precompiler option, 36
NLS_LOCAL precompiler option, 36
node, definition, 29
notation

convention, iii
NOWAIT

parameter, 8
using the LOCK TABLE statement, 8

null
definition, 4
detecting, 2
hardcode, 3
inserting, 3
restrictions, 4
retrieving, 3
testing for, 4

null-terminated string, 14
NUMBER data type

external, 13
internal, 6

O
OBJECTS precompiler option, 24, 37
OCI

declaring LDA, 34
embedding calls, 34

ONAME option, 37
OPEN command, E-27

examples, E-29
OPEN statement, 8

example, 8
using in dynamic SQL Method 3, 10

OPEN-FOR statement, 13
opening, cursors, E-27
optimizer hint, C-3
options, precompiler, 2
ORACA, 28

declaring, 29
enabling, 29
example, 33
fields, 30
gathering cursor cache statistics, 32
ORACABC field, 30
ORACAID field, 30
ORACCHF flag, 30
ORACOC field, 32
ORADBGF flag, 31
ORAHCHF flag, 31
ORAHOC field, 32
ORAMOC field, 32
ORANEX field, 33
ORANOR field, 32
ORANPR field, 33
ORASFNMC field, 32
ORASFNML field, 32
ORASLNR field, 32
ORASTXTC field, 32
ORASTXTF flag, 31
ORASTXTL field, 31
using more than one, 29

ORACA option, 38
ORACABC field, 30
ORACAID field, 30

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-7 of Index-13

ORACCHF flag, 30
Oracle Call Interface, 34
Oracle Communications Area, 28
Oracle datatypes, 5
Oracle Forms, using the EXEC TOOLS

statements, 9
Oracle identifier, how to form, E-5
Oracle indentifiers, how to form, E-5
Oracle keywords, B-2
Oracle namespaces, B-8
Oracle Precompilers

advantages, 3
function, 3
globalization support, 26
language support, 2
new features, A-1
running, 1
using PL/SQL, 4
using with OCI, 34

Oracle reserved words, B-1
Oracle Toolset, 9
ORACOC field, 32
ORADBGF flag, 31
ORAHCHF flag, 31
ORAHOC field, 32
ORAMOC field, 32
ORANEX field, 33
ORANOR field, 32
ORANPR field, 33
ORASFNMC field, 32
ORASFNML field, 32
ORASLNR field, 32
ORASTXTC field, 32
ORASTXTF flag, 31
ORASTXTL field, 31
ORECLEN option, 38
OUTLINE precompiler option, 38
OUTLNPREFIX precompiler option, 39
output host variable, 1

P
PAGELEN option, 40
parameter modes, 2
parent cursor, 11
parse, 3
PARSE

precompiler option, 40
parse error offset, 18
parsing dynamic statements, PREPARE

command, E-29
performance

improving, C-2
reasons for poor, C-1

PL/SQL, 3
advantages, 4

PL/SQL (continued)
and the SQLCA, 21
blocks, embedded in Oracle precompiler

programs, E-20
cursor FOR loop, 2
exception, 8
integrating with server, 1
package, 3
relationship with SQL, 3
reserved words, B-3
subprogram, 2
user-defined record, 4

PL/SQL table, 3
placeholder, duplicate, 7

naming, 8
using in dynamic SQL statements, 2

plan, execution, C-3
precision, 6
precompilation, 2

conditional, 49
separate, 50

precompilation unit, 7
precompiler, 1
precompiler command, 1

optional arguments of, 2
required arguments, 1

precompiler directives, EXEC SQL DECLARE
DATABASE, E-12

precompiler options
abbrevating name, 3
ASACC, 10
ASSUME_SQLCODE, 11
AUTO_CONNECT, 11
CHAR_MAP, 12
CINCR, 12
CLOSE_ON_COMMIT, 13
CMAX, 13
CMIN, 14
CNOWAIT, 14
CODE, 14
COMMON_NAME, 15
COMMON_PARSER, 16
COMP_CHARSET, 17
CONFIG, 7, 18
CPOOL, 18
CPP_SUFFIX, 19
CTIMEOUT, 19
DB2_ARRAY, 19
DBMS, 20
DEF_SQLCODE, 21
DEFINE, 22
displaying, 3, 7
DURATION, 23
entering from a configuration file, 6
entering inline, 5
entering on the command line, 5

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-8 of Index-13

precompiler options (continued)
ERRORS, 23
ERRTYPE, 23
FIPS, 24
FORMAT, 25
Globalization Support_LOCAL, 25
HEADER, 26
HOLD_CURSOR, 26
HOST, 27
IMPLICIT_SVPT, 27
INAME, 28
INCLUDE, 29
INTYPE, 30
IRECLEN, 29
LINES, 30
LITDELIM, 31
LNAME, 31
LRECLEN, 32
LTYPE, 32
MAX_ROW_INSERT, 34
MAXLITERAL, 32
MAXOPENCURSORS, 33
MODE, 34
MULTISUBPROG, 35
NATIVE_TYPES, 36
NLS_CHAR, 36
NLS_LOCAL, 36
OBJECTS, 24, 37
ONAME, 37
ORACA, 38
ORECLEN, 38
OUTLINE, 38
OUTLNPREFIX, 39
PAGELEN, 40
PARSE, 40
PREFETCH, 41
RELEASE_CURSOR, 41
respecifying, 7
RUNOUTLINE, 42
scope of, 7
SELECT_ERROR, 42
specifying, 5
SQLCHECK, 43, 44
STMT_CACHE, 44
syntax for, 5
THREADS, 45
TYPE_CODE, 46
UNSAFE_NULL, 46
USERID, 46
using, 10
VARCHAR, 47
VERSION, 48
XREF, 48

PREFETCH precompiler option, 41
PREPARE command, E-29

examples, E-30

PREPARE statement
using in dynamic SQL, 7, 9

private SQL area
association with cursors, 5
opening, 5
purpose, C-6

Program Global Area (PGA), 11
program termination, 6
programming language support, 2
pseudocolumn, 7

CURRVAL, 7
LEVEL, 7
NEXTVAL, 7
ROWID, 7
ROWNUM, 7
SYSDATE, 7
UID, 7
USER, 7

pseudotype, VARCHAR, 19

Q
query, 5

association with cursor, 7
multirow, 4
single-row versus multirow, 5

R
RAW column, maximum width, 7
RAW datatype

compared with CHAR, 7
converting, 18
external, 14
internal, 7
restrictions, 7

read consistency, 2
READ ONLY parameter, using in SET

TRANSACTION, 6
read-only transaction, 6

ending, 6
example, 6

record, user-defined, 4
reference

host array, 2
host variable, 18
indicator variable, 20

RELEASE option, 6
COMMIT statement, 3
omitting, 6
restrictions, 5
ROLLBACK statement, 4

RELEASE_CURSOR option, 41
of Oracle Precompilers, E-7
using to improve performance, C-8

remote database, declaration of, E-12

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-9 of Index-13

reserved words, B-1
PL/SQL, B-3

resource manager, 35
retrieving rows from a table, embedded SQL,

E-33
return code, 6
roll back

to a savepoint, E-32
to the same savepoint multiple times, E-31

rollabck
statement-level, 4

rollback
automatic, 4
purpose, 2

ROLLBACK command, E-30
ending a transaction, E-31
examples, E-32

rollback segment, 1
ROLLBACK statement

effects, 3
example, 4
RELEASE option, 4
TO SAVEPOINT clause, 5
using in a PL/SQL block, 9
using in error-handling routines, 4
where to place, 4

ROLLBACK Statement, 3
rolling back, transactions, E-30
row lock

acquiring with FOR UPDATE OF, 7
using to improve performance, C-4
when acquired, 7
when released, 7

ROWID datatype
external, 14
internal, 7

ROWID pseudocolumn, 7
using to mimic CURRENT OF, 8, 9

ROWLABEL column, 9
ROWNUM pseudocolumn, 7
rows

fetching from cursors, E-23
inserting into tables and views, E-25
updating, E-35

rows-processed count, 20
using in error reporting, 17

RUNOUTLINE precompiler option, 42

S
sample database table

DEPT table, 9
EMP table, 9

savepoint, 4
SAVEPOINT command, E-32

example, E-33

SAVEPOINT statement, 4
example, 4

savepoint, when erased, 5
SAVEPOINTS parameter, 6
savepoints, creating, E-32
scale, 6

definition of, 22
when negative, 22

scope
of DECLARE STATEMENT command, E-14
of precompiler options, 7
of the EXEC ORACLE statement, 5
WHENEVER statement, 24

search condition, 7
using in the WHERE clause, 7

SELECT command, E-33
embedded SQL examples, E-35

select descriptor, information in, 11
select list, 5
SELECT statement, 5

available clauses, 5
example, 5
INTO clause, 5
using host arrays, 2
using the SQLERRD(3) field, 10

SELECT_ERROR option, 42
semantic checking, D-1

enabling, D-2
using the SQLCHECK option, D-1

separate precompilation, 50
guidelines, 50
restrictions, 50

session, 1
sessions, beginning, E-9
SET clause, 6

using a subquery, 6
SET TRANSACTION statement, 6

example, 6
READ ONLY parameter, 6
restrictions, 6

snapshots, 1
SQL code, returned by SQLGLS function, 27
SQL Communications Area, 15
SQL Descriptor Area, 12
SQL standards conformance, 5
SQL statement

controlling transactions, 2
executable versus declarative, 2
optimizing to improve performance, C-3
static versus dynamic, 4
using to control a cursor, 5, 7
using to manipulate Oracle data, 4

SQL_CURSOR, E-6
SQL, summary of commands, E-2
SQL*Connect, using ROWID datatype, 14

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-10 of Index-13

SQL*Forms
Display Error screen, 6
IAP Constants, 6
returning values to, 6
Reverse Return Code switch, 6
user exit, 2

SQL*Net
concurrent logons, 28
connection syntax, 29
function of, 29
using to connect to Oracle, 28

SQL*Plus, 3
SQL92

conformance, 5
deprecated feature, 2
minimum requirement, 5

SQLCA, 3, 15
components set for a PL/SQL block, 21
declaring, 15
explicit versus implicit checking, 2
fields, 18
interaction with Oracle, 3
using in separate precompilations, 50
using more than one, 15
using with SQL*Net, 15

SQLCABC filed, 18
SQLCAID field, 18
SQLCHECK option, 43

restrictions, D-1
usage notes for, 45
using the DECLARE TABLE statement, D-2
using to check syntax, D-1

SQLCHECK precompiler option, 44
SQLCODE field, 18
SQLCODE status variable, 2
SQLCODE variable, interpreting values of, 8
SQLERRD, 19
SQLERRD(3) field, 10

purpose, 17
using with the FETCH statement, 10

SQLERRD(3) filed
using with batch fetch, 3

SQLERRD(5) field, 20
SQLERRMC field, 19
SQLERRML field, 19
SQLERROR condition, 22
SQLFC parameter, 27
SQLGLM function, 21

example, 22
SQLGLS function

parameters, 27
restrictions, 27
SQL codes returned by, 27
syntax, 26
using to obtain SQL text, 26

SQLIEM function
replacement for, 9
using in user exit, 6

SQLLDA routine, 35
SQLSTATE status variable, 1

class code, 9
coding scheme, 9
declaring, 5
error handling

SQLSTATE status variable, 3
interpreting values, 9
predefined status code and conditions, 10
subclass code, 9

SQLSTM parameter, 27
SQLWARN, 20
SQLWARN flags, 20
SQLWARNING condition, 22
statement-level rollback, 4

breaking deadlocks, 4
status code, 17
STMLEN parameter, 27
STMT_CACHE

precompiler option, 44
STOP action, 23
stored subprogram, 13

calling, 14
creating, 13
packaged versus standalone, 13
stored versus inline, C-2
using to improve performance, C-2

STRING datatype, 14
subprogram, PL/SQL, 2, 13
subquery, 6

example, 6
using in the SET clause, 6
using in the VALUES clause, 6

syntactic checking, D-1
syntax diagram

description of, E-3
how to read, E-3
how to use, E-3
symbols used in, E-3

syntax, embedded SQL, 3
SYSDATE function, 9
system failure, effect on transactions, 2
System Global Area (SGA), 13

T
table lock

acquiring with LOCK TABLE, 7
exclusive, 8
row share, 7
when released, 8

tables
inserting rows into, E-25

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-11 of Index-13

tables (continued)
updating rows in, E-35

THREADS
precompiler option, 45

TO SAVEPOINT clause, 5
restrictions, 5
using in ROLLBACK statement, 5

trace facility, using to improve performance, C-4
transaction, 2

subdividing with savepoints, 5
undoing, 3
undoing parts of, 5
when rolled back automatically, 2, 4

transaction processing
overview, 6
statements used, 6

transaction, contents, 6, 2
guidelines, 9
how to begin, 2
how to end, 2
in-doubt, 9
making permanent, 3

transaction, read-only, 6
transactions

committing, E-7
distributed, E-32
rolling back, E-30

truncated value, 9
detecting, 2

truncation error, when generated, 4
tuning, performance, C-1
TYPE statement, using the CHARF datatype

specifier, 24
TYPE_CODE

precompiler option, 46

U
UID function, 7
unconditional delete, 21
undo a transaction, E-30
UNSAFE_NULL option, 46, A-1
UNSIGNED datatype, 15
unusual termination, automatic rollback, E-9
update cascade, 20
UPDATE command, E-35

embedded SQL examples, E-38
UPDATE statement, 6

example, 6
SET clause, 6
using host arrays, 5
using SQLERRD(3), 10

updating, rows in tables and views, E-35
user exit, 1

calling from a SQL*Forms trigger, 5
common uses, 2

user exit (continued)
example, 7
guidelines, 8
linking into IAP, 8
meaning of codes returned by, 6
naming, 8
passing parameters, 5
requirements for variables, 3
running the GENXTB form, 7
statements allowed in, 3
steps in developing, 3
using EXEC IAF statements, 4
using EXEC TOOLS statements, 9
using the WHENEVER statement, 7

USER function, 7
user session, 1
user-defined datatype, 19
user-defined record, 4
USERID option, 46

using with the SQLCHECK option, D-2
USING clause

CONNECT statement, 30
using in the EXECUTE statement, 8
using indicator variables, 8

using dbstring, SQL*Net database id specification,
E-10

V
V7

value of DBMS option, 20
VALUES clause

INSERT statement, 6
using a subquery, 6

VAR command, E-38
examples, E-39

VAR statement, 22
parameters, 22
using the CHARF datatype specifier, 24

VARCHAR datatype, 15
VARCHAR pseudotype, 19, 7

maximum length, 19
using with PL/SQL, 7

VARCHAR, precompiler option, 47
VARCHAR2 column

maximum width, 7
VARCHAR2 datatype

external, 15
internal, 7

variable, 4
VARNUM datatype, 15

example of output value, 24
VARRAW, 16
VARRAW datatype, 16
VERSION precompiler option, 48

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-12 of Index-13

views
inserting rows into, E-25
updating rows in, E-35

W
warning flag, 17
when empty, 9
WHENEVER command, E-39

example, E-40
WHENEVER statement, 22

check SQLCA automatically, 22
CONTINUE action, 23
DO action, 23
examples, 23
GOTO action, 23
guidelines, 25
handling end-of-data conditions, 25
maintaining addressability, 25
NOT FOUND condition, 23
overview, 6

WHENEVER statement (continued)
scope, 24
SQLERROR condition, 22
SQLWARNING condition, 22
STOP action, 23
where to place, 25

WHERE clause, 7
search condition, 7
SELECT statement, 5
UPDATE statement, 6
using host arrays, 9

WHERE Clause
DELETE statement, 7

WORK option
of COMMIT command, E-8

X
X/Open application, 35
XA interface, 35
XREF option, 48

Index

Developer's Guide to the Oracle Precompilers
G44321-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-13 of Index-13

	Contents
	List of Tables
	Preface
	Intended Audience
	Structure
	Related Documents
	Conventions

	Changes in This Release
	Deprecated Feature

	1 Getting Acquainted
	1.1 What Is an Oracle Precompiler?
	1.1.1 Language Alternatives

	1.2 Why Use an Oracle Precompiler?
	1.3 Why Use SQL?
	1.4 Why Use PL/SQL?
	1.5 What Do the Oracle Precompilers Offer?
	1.6 Do the Oracle Precompilers Meet Industry Standards?
	1.6.1 Requirements
	1.6.2 Compliance
	1.6.3 FIPS Flagger
	1.6.4 FIPS Option
	1.6.5 Certification

	2 Learning the Basics
	2.1 Key Concepts of Embedded SQL Programming
	2.1.1 Embedded SQL Statements
	2.1.2 Executable versus Declarative Statements
	2.1.3 Embedded SQL Syntax
	2.1.4 Static versus Dynamic SQL Statements
	2.1.5 Embedded PL/SQL Blocks
	2.1.6 Host and Indicator Variables
	2.1.7 Oracle Datatypes
	2.1.8 Arrays
	2.1.9 Datatype Equivalencing
	2.1.10 Private SQL Areas, Cursors, and Active Sets
	2.1.11 Transactions
	2.1.12 Errors and Warnings

	2.2 Steps in Developing an Embedded SQL Application
	2.3 A Sample Program
	2.4 Sample Tables
	2.4.1 Sample Data

	3 Meeting Program Requirements
	3.1 The Declare Section
	3.1.1 An Example

	3.2 INCLUDE Statements
	3.3 The SQLCA
	3.4 Oracle Datatypes
	3.4.1 Internal Datatypes
	3.4.2 CHAR
	3.4.3 DATE
	3.4.4 LONG
	3.4.5 LONG RAW
	3.4.6 MLSLABEL
	3.4.7 NUMBER
	3.4.8 RAW
	3.4.9 ROWID
	3.4.10 VARCHAR2
	3.4.11 SQL Pseudocolumns and Functions
	3.4.12 ROWLABEL Column
	3.4.13 External Datatypes
	3.4.14 CHAR
	3.4.15 CHARF
	3.4.16 CHARZ
	3.4.17 DATE
	3.4.18 DECIMAL
	3.4.19 DISPLAY
	3.4.20 FLOAT
	3.4.21 INTEGER
	3.4.22 LONG
	3.4.23 LONG RAW
	3.4.24 LONG VARCHAR
	3.4.25 LONG VARRAW
	3.4.26 MLSLABEL
	3.4.27 NUMBER
	3.4.28 RAW
	3.4.29 ROWID
	3.4.30 STRING
	3.4.31 UNSIGNED
	3.4.32 VARCHAR
	3.4.33 VARCHAR2
	3.4.34 VARNUM
	3.4.35 VARRAW

	3.5 Datatype Conversion
	3.5.1 DATE Values
	3.5.2 RAW and LONG RAW Values

	3.6 Declaring and Referencing Host Variables
	3.6.1 Some Examples
	3.6.2 VARCHAR Variables
	3.6.3 Host Variable Guidelines

	3.7 Declaring and Referencing Indicator Variables
	3.7.1 INDICATOR Keyword
	3.7.2 An Example
	3.7.3 Indicator Variable Guidelines

	3.8 Datatype Equivalencing
	3.8.1 Why Equivalence Datatypes?
	3.8.2 Host Variable Equivalencing
	3.8.3 An Example
	3.8.4 About Using the CHARF Datatype Specifier
	3.8.5 Guidelines

	3.9 Globalization Support
	3.10 Multibyte Globalization Support Character Sets
	3.10.1 Character Strings in Embedded SQL
	3.10.2 Dynamic SQL
	3.10.3 Embedded DDL
	3.10.4 Multibyteultibyte Globalization Support Host Variables
	3.10.5 Restrictions
	3.10.6 Blank Padding
	3.10.7 Indicator Variables

	3.11 Concurrent Logons
	3.11.1 Some Preliminaries
	3.11.2 Default Databases and Connections
	3.11.3 Explicit Logons
	3.11.4 Single Explicit Logons
	3.11.5 Multiple Explicit Logons
	3.11.6 Implicit Logons
	3.11.7 Single Implicit Logons
	3.11.8 Multiple Implicit Logons

	3.12 Embedding OCI (Oracle Call Interface) Calls
	3.12.1 About Setting Up the LDA
	3.12.2 Remote and Multiple Connections

	3.13 About Developing X/Open Applications
	3.13.1 Oracle-Specific Issues
	3.13.2 About Connecting to Oracle
	3.13.3 Transaction Control
	3.13.4 OCI Calls
	3.13.5 Linking

	4 Using Embedded SQL
	4.1 About Using Host Variables
	4.1.1 Output versus Input Host Variables

	4.2 About Using Indicator Variables
	4.2.1 Input Variables
	4.2.2 Output Variables
	4.2.3 Inserting Nulls
	4.2.4 Handling Returned Nulls
	4.2.5 Fetching Nulls
	4.2.6 Testing for Nulls
	4.2.7 Fetching Truncated Values

	4.3 The Basic SQL Statements
	4.3.1 Selecting Rows
	4.3.2 Available Clauses
	4.3.3 Inserting Rows
	4.3.4 Using Subqueries
	4.3.5 Updating Rows
	4.3.6 Deleting Rows
	4.3.7 Using the WHERE Clause

	4.4 Cursors
	4.4.1 Declaring a Cursor
	4.4.2 Opening a Cursor
	4.4.3 Fetching from a Cursor
	4.4.4 Closing a Cursor
	4.4.5 Using the CURRENT OF Clause
	4.4.6 Restrictions
	4.4.7 A Typical Sequence of Statements
	4.4.8 A Complete Example

	4.5 Cursor Variables
	4.5.1 About Declaring a Cursor Variable
	4.5.2 Allocating a Cursor Variable
	4.5.3 Opening a Cursor Variable
	4.5.4 Fetching from a Cursor Variable
	4.5.5 Closing a Cursor Variable

	5 Using Embedded PL/SQL
	5.1 Advantages of PL/SQL
	5.1.1 Better Performance
	5.1.2 Integration with Oracle
	5.1.3 Cursor FOR Loops
	5.1.4 Subprograms
	5.1.5 Parameter Modes
	5.1.6 Packages
	5.1.7 PL/SQL Tables
	5.1.8 User-defined Records

	5.2 About Embedding PL/SQL Blocks
	5.3 About Using Host Variables
	5.3.1 An Example
	5.3.2 A More Complex Example
	5.3.3 VARCHAR Pseudotype

	5.4 About Using Indicator Variables
	5.4.1 Handling Nulls
	5.4.2 Handling Truncated Values

	5.5 About Using Host Arrays
	5.5.1 ARRAYLEN Statement

	5.6 About Using Cursors
	5.6.1 An Alternative

	5.7 Stored Subprograms
	5.7.1 Creating Stored Subprograms
	5.7.2 Calling a Stored Subprogram
	5.7.3 Remote Access
	5.7.4 Getting Information about Stored Subprograms

	5.8 About Using Dynamic PL/SQL
	5.8.1 Restriction

	6 Running the Oracle Precompilers
	6.1 The Precompiler Command
	6.2 What Occurs during Precompilation?
	6.3 Precompiler Options
	6.3.1 Default Values
	6.3.2 Determining Current Values
	6.3.3 Case Sensitivity
	6.3.4 Configuration Files

	6.4 Entering Options
	6.4.1 On the Command Line
	6.4.2 Inline
	6.4.3 Advantages
	6.4.4 Scope of EXEC ORACLE
	6.4.5 From a Configuration File
	6.4.6 Advantages
	6.4.7 About Using Configuration Files
	6.4.8 About Setting Option Values

	6.5 Scope of Options
	6.6 Quick Reference
	6.7 About Using the Precompiler Options
	6.7.1 ASACC
	6.7.2 ASSUME_SQLCODE
	6.7.3 AUTO_CONNECT
	6.7.4 CHAR_MAP
	6.7.5 CINCR
	6.7.6 CLOSE_ON_COMMIT
	6.7.7 CMAX
	6.7.8 CMIN
	6.7.9 CNOWAIT
	6.7.10 CODE
	6.7.11 COMMON_NAME
	6.7.12 COMMON_PARSER
	6.7.13 COMP_CHARSET
	6.7.14 COMP_CHARSET
	6.7.15 CONFIG
	6.7.16 CPOOL
	6.7.17 CPP_SUFFIX
	6.7.18 CTIMEOUT
	6.7.19 DB2_ARRAY
	6.7.20 DBMS
	6.7.21 DEF_SQLCODE
	6.7.22 DEFINE
	6.7.23 DURATION
	6.7.24 DYNAMIC
	6.7.25 ERRORS
	6.7.26 ERRTYPE
	6.7.27 EVENTS
	6.7.28 FIPS
	6.7.29 FORMAT
	6.7.30 Globalization Support_LOCAL
	6.7.31 HEADER
	6.7.32 HOLD_CURSOR
	6.7.33 HOST
	6.7.34 IMPLICIT_SVPT
	6.7.35 INAME
	6.7.36 INCLUDE
	6.7.37 IRECLEN
	6.7.38 INTYPE
	6.7.39 LINES
	6.7.40 LITDELIM
	6.7.41 LNAME
	6.7.42 LRECLEN
	6.7.43 LTYPE
	6.7.44 MAXLITERAL
	6.7.45 MAXOPENCURSORS
	6.7.46 MAX_ROW_INSERT
	6.7.47 MODE
	6.7.48 MULTISUBPROG
	6.7.49 NATIVE_TYPES
	6.7.50 NLS_CHAR
	6.7.51 NLS_LOCAL
	6.7.52 OBJECTS
	6.7.53 ONAME
	6.7.54 ORACA
	6.7.55 ORECLEN
	6.7.56 OUTLINE
	6.7.57 OUTLNPREFIX
	6.7.58 PAGELEN
	6.7.59 PARSE
	6.7.60 PREFETCH
	6.7.61 RELEASE_CURSOR
	6.7.62 RUNOUTLINE
	6.7.63 SELECT_ERROR
	6.7.64 SQLCHECK
	6.7.65 STMT_CACHE
	6.7.66 SQLCHECK
	6.7.67 THREADS
	6.7.68 TYPE_CODE
	6.7.69 UNSAFE_NULL
	6.7.70 USERID
	6.7.71 UTF16_CHARSET
	6.7.72 VARCHAR
	6.7.73 VERSION
	6.7.74 XREF

	6.8 Conditional Precompilations
	6.8.1 An Example
	6.8.2 Defining Symbols

	6.9 Separate Precompilations
	6.9.1 Guidelines
	6.9.2 Restrictions

	6.10 Compiling and Linking
	6.10.1 System-Dependent
	6.10.2 Multibyte Globalization Support Compatibility

	7 Defining and Controlling Transactions
	7.1 Some Terms You Should Know
	7.2 How Transactions Guard Your Database
	7.3 How to Begin and End Transactions
	7.4 About Using the COMMIT Statement
	7.5 About Using the ROLLBACK Statement
	7.5.1 Statement-Level Rollbacks

	7.6 About Using the SAVEPOINT Statement
	7.7 About Using the RELEASE Option
	7.8 About Using the SET TRANSACTION Statement
	7.9 About Overriding Default Locking
	7.9.1 About Using the FOR UPDATE OF Clause
	7.9.2 Restrictions
	7.9.3 About Using the LOCK TABLE Statement

	7.10 About Fetching Across Commits
	7.11 About Handling Distributed Transactions
	7.12 Guidelines
	7.12.1 About Designing Applications
	7.12.2 About Obtaining Locks
	7.12.3 About Using PL/SQL

	8 Error Handling and Diagnostics
	8.1 The Need for Error Handling
	8.2 Error Handling Alternatives
	8.2.1 SQLCODE and SQLSTATE
	8.2.2 SQLCA
	8.2.3 ORACA

	8.3 About Using Status Variables when MODE={ANSI|ANSI14}
	8.3.1 Some Historical Information
	8.3.2 Release 1.5
	8.3.3 Release 1.6
	8.3.4 Release 1.7
	8.3.5 About Declaring Status Variables
	8.3.6 Declaring SQLCODE
	8.3.7 Declaring SQLSTATE
	8.3.8 Status Variable Combinations
	8.3.9 Status Variable Values
	8.3.10 SQLCODE Values
	8.3.11 SQLSTATE Values

	8.4 About Using the SQL Communications Area
	8.4.1 Declaring the SQLCA
	8.4.2 About Declaring the SQLCA in Pro*COBOL
	8.4.3 About Declaring the SQLCA in Pro*FORTRAN
	8.4.4 What's in the SQLCA?
	8.4.5 Key Components of Error Reporting
	8.4.6 Status Codes
	8.4.7 Warning Flags
	8.4.8 Rows-Processed Count
	8.4.9 Parse Error Offset
	8.4.10 Error Message Text
	8.4.11 SQLCA Structure
	8.4.12 SQLCAID
	8.4.13 SQLCABC
	8.4.14 SQLCODE
	8.4.15 SQLERRM
	8.4.16 SQLERRP
	8.4.17 SQLERRD
	8.4.18 SQLWARN
	8.4.19 SQLEXT
	8.4.20 PL/SQL Considerations
	8.4.21 Getting the Full Text of Error Messages
	8.4.22 Using the WHENEVER Statement
	8.4.23 SQLWARNING
	8.4.24 SQLERROR
	8.4.25 NOT FOUND
	8.4.26 CONTINUE
	8.4.27 DO
	8.4.28 GOTO
	8.4.29 STOP
	8.4.30 Some Examples
	8.4.31 Scope
	8.4.32 Guidelines
	8.4.33 Getting the Text of SQL Statements

	8.5 About Using the Oracle Communications Area
	8.5.1 Declaring the ORACA
	8.5.2 Enabling the ORACA
	8.5.3 What's in the ORACA?
	8.5.4 Choosing Run-time Options
	8.5.5 ORACA Structure
	8.5.6 ORACAID
	8.5.7 ORACABC
	8.5.8 ORACCHF
	8.5.9 ORADBGF
	8.5.10 ORAHCHF
	8.5.11 ORASTXTF
	8.5.12 Diagnostics
	8.5.13 ORASTXT
	8.5.14 ORASFNM
	8.5.15 ORASLNR
	8.5.16 Cursor Cache Statistics
	8.5.17 ORAHOC
	8.5.18 ORAMOC
	8.5.19 ORACOC
	8.5.20 ORANOR
	8.5.21 ORANPR
	8.5.22 ORANEX
	8.5.23 An Example

	9 Using Host Arrays
	9.1 What Is a Host Array?
	9.2 Why Use Arrays?
	9.3 Declaring Host Arrays
	9.3.1 Dimensioning Arrays
	9.3.2 Restrictions

	9.4 About Using Arrays in SQL Statements
	9.5 About Selecting into Arrays
	9.5.1 Batch Fetches
	9.5.2 Number of Rows Fetched
	9.5.3 Restrictions
	9.5.4 About Fetching Nulls
	9.5.5 About Fetching Truncated Values
	9.5.6 About Inserting with Arrays
	9.5.7 About Updating with Arrays
	9.5.8 About Deleting with Arrays
	9.5.9 Restrictions

	9.6 About Using Indicator Arrays
	9.7 About Using the FOR Clause
	9.7.1 Restrictions
	9.7.2 In a SELECT Statement
	9.7.3 With the CURRENT OF Clause

	9.8 About Using the WHERE Clause
	9.9 About Mimicking the CURRENT OF Clause
	9.10 About Using SQLERRD(3)

	10 Using Dynamic SQL
	10.1 What Is Dynamic SQL?
	10.2 Advantages and Disadvantages of Dynamic SQL
	10.3 When to Use Dynamic SQL
	10.4 Requirements for Dynamic SQL Statements
	10.5 How Dynamic SQL Statements Are Processed
	10.6 Methods for Using Dynamic SQL
	10.6.1 Method 1
	10.6.2 Method 2
	10.6.3 Method 3
	10.6.4 Method 4
	10.6.5 Guidelines
	10.6.6 Avoiding Common Errors

	10.7 About Using Method 1
	10.7.1 The EXECUTE IMMEDIATE Statement
	10.7.2 An Example

	10.8 About Using Method 2
	10.8.1 The USING Clause
	10.8.2 An Example

	10.9 About Using Method 3
	10.9.1 PREPARE
	10.9.2 DECLARE
	10.9.3 OPEN
	10.9.4 FETCH
	10.9.5 CLOSE
	10.9.6 An Example

	10.10 Using Method 4
	10.10.1 Need for the SQLDA
	10.10.2 The DESCRIBE Statement
	10.10.3 What Is a SQLDA?
	10.10.4 Implementing Method 4

	10.11 About Using the DECLARE STATEMENT Statement
	10.11.1 Usage of Host Arrays

	10.12 About Using PL/SQL
	10.12.1 With Method 1
	10.12.2 With Method 2
	10.12.3 With Method 3
	10.12.4 With Method 4
	10.12.5 Caution

	11 Writing User Exits
	11.1 What Is a User Exit?
	11.2 Why Write a User Exit?
	11.3 Developing a User Exit
	11.4 Writing a User Exit
	11.4.1 Requirements for Variables
	11.4.2 The IAF GET Statement
	11.4.3 The IAF PUT Statement

	11.5 Calling a User Exit
	11.6 Passing Parameters to a User Exit
	11.7 Returning Values to a Form
	11.7.1 The IAP Constants
	11.7.2 Using the SQLIEM Function
	11.7.3 Using WHENEVER

	11.8 An Example
	11.9 About Precompiling and Compiling a User Exit
	11.10 About Using the GENXTB Utility
	11.11 About Linking a User Exit into SQL*Forms
	11.12 Guidelines for SQL*Forms User Exits
	11.12.1 Naming the Exit
	11.12.2 Connecting to Oracle
	11.12.3 Issuing I/O Calls
	11.12.4 Using Host Variables
	11.12.5 Updating Tables
	11.12.6 Issuing Commands

	11.13 EXEC TOOLS Statements
	11.13.1 EXEC TOOLS SET
	11.13.2 EXEC TOOLS GET
	11.13.3 EXEC TOOLS SET CONTEXT
	11.13.4 EXEC TOOLS GET CONTEXT
	11.13.5 EXEC TOOLS MESSAGE

	A New Features
	A.1 About Fetching NULLs without Using Indicator Variables
	A.1.1 About Using DBMS=V7 and MODE=ORACLE
	A.1.2 Related Error Messages

	A.2 Additional Array Insert/Select Syntax
	A.3 SQL99 Syntax Support
	A.4 About Fixing Execution Plans
	A.5 About Using Implicit Buffered Insert
	A.6 Dynamic SQL Statement Caching
	A.7 Scrollable Cursors
	A.8 Platform Endianness Support
	A.9 Flexible B Area Length

	B Oracle Reserved Words, Keywords, and Namespaces
	B.1 Oracle Reserved Words
	B.2 Oracle Keywords
	B.3 PL/SQL Reserved Words
	B.4 Oracle Reserved Namespaces

	C Performance Tuning
	C.1 What Causes Poor Performance?
	C.2 How Can Performance be Improved?
	C.3 Using Host Arrays
	C.4 Using Embedded PL/SQL
	C.5 Optimizing SQL Statements
	C.5.1 Optimizer Hints
	C.5.2 Giving Hints
	C.5.3 Trace Facility

	C.6 About Using Indexes
	C.7 Taking Advantage of Row-Level Locking
	C.8 About Eliminating Unnecessary Parsing
	C.8.1 About Handling Explicit Cursors
	C.8.2 Cursor Control
	C.8.3 About Using the Cursor Management Options
	C.8.4 Private SQL Areas and Cursor Cache
	C.8.5 Resource Use
	C.8.6 Infrequent Execution
	C.8.7 Frequent Execution
	C.8.8 Parameter Interactions

	D Syntactic and Semantic Checking
	D.1 What Is Syntactic and Semantic Checking?
	D.2 About Controlling the Type and Extent of Checking
	D.3 About Specifying SQLCHECK=SEMANTICS
	D.3.1 About Enabling a Semantic Check
	D.3.2 About Connecting to Oracle
	D.3.3 About Using DECLARE TABLE

	E Embedded SQL Commands and Directives
	E.1 Summary of Precompiler Directives and Embedded SQL Commands
	E.2 About The Command Descriptions
	E.3 How to Read Syntax Diagrams
	E.3.1 Required Keywords and Parameters
	E.3.2 Optional Keywords and Parameters
	E.3.3 Syntax Loops
	E.3.4 Multi-part Diagrams
	E.3.5 Database Objects

	E.4 ALLOCATE (Executable Embedded SQL Extension)
	E.4.1 Allocate Purpose
	E.4.2 Allocate Prerequisites
	E.4.3 Allocate Syntax
	E.4.4 Allocate Keywords and Parameters
	E.4.5 Allocate Usage Notes
	E.4.6 Allocate Related Topics

	E.5 CLOSE (Executable Embedded SQL)
	E.5.1 CLOSE Purpose
	E.5.2 CLOSE Prerequisites
	E.5.3 CLOSE Syntax
	E.5.4 CLOSE Keywords and Parameters
	E.5.5 CLOSE Usage Notes
	E.5.6 CLOSE Example
	E.5.7 CLOSE Related Topics

	E.6 COMMIT (Executable Embedded SQL)
	E.6.1 COMMIT Purpose
	E.6.2 COMMIT Prerequisites
	E.6.3 COMMIT Syntax
	E.6.4 COMMIT Keyword and Parameters
	E.6.5 COMMIT Usage Notes
	E.6.6 COMMIT Related Topics

	E.7 CONNECT (Executable Embedded SQL Extension)
	E.7.1 CONNECT Purpose
	E.7.2 CONNECT Prerequisites
	E.7.3 CONNECT Syntax
	E.7.4 CONNECT Keyword and Parameters
	E.7.5 CONNECT Usage Notes
	E.7.6 CONNECT Related Topics

	E.8 DECLARE CURSOR (Embedded SQL Directive)
	E.8.1 DECLARE CURSOR Purpose
	E.8.2 DECLARE CURSOR Prerequisites
	E.8.3 DECLARE CURSOR Syntax
	E.8.4 DECLARE CURSOR Keywords and Parameters
	E.8.5 DECLARE CURSOR Usage Notes
	E.8.6 DECLARE CURSOR Example
	E.8.7 DECLARE CURSOR Related Topics

	E.9 DECLARE DATABASE (Oracle Embedded SQL Directive)
	E.9.1 DECLARE DATABASE Purpose
	E.9.2 DECLARE DATABASE Prerequisites
	E.9.3 DECLARE DATABASE Syntax
	E.9.4 DECLARE DATABASE Keywords and Parameters
	E.9.5 DECLARE DATABASE Usage Notes
	E.9.6 DECLARE DATABASE Example
	E.9.7 DECLARE DATABASE Related Topics

	E.10 DECLARE STATEMENT (Embedded SQL Directive)
	E.10.1 DECLARE STATEMENT Purpose
	E.10.2 DECLARE STATEMENT Prerequisites
	E.10.3 DECLARE STATEMENT Syntax
	E.10.4 DECLARE STATEMENT Keywords and Parameters
	E.10.5 DECLARE STATEMENT Usage Notes
	E.10.6 DECLARE STATEMENT Example I
	E.10.7 DECLARE STATEMENT Example II
	E.10.8 DECLARE STATEMENT Related Topics

	E.11 DECLARE TABLE (Oracle Embedded SQL Directive)
	E.11.1 DECLARE TABLE Purpose
	E.11.2 DECLARE TABLE Prerequisites
	E.11.3 DECLARE TABLE Syntax
	E.11.4 DECLARE TABLE Keywords and Parameters
	E.11.5 DECLARE TABLE Usage Notes
	E.11.6 DECLARE TABLE Example
	E.11.7 DECLARE TABLE Related Topics

	E.12 DELETE (Executable Embedded SQL)
	E.12.1 DELETE Purpose
	E.12.2 DELETE Prerequisites
	E.12.3 DELETE Syntax
	E.12.4 DELETE Keywords and Parameters
	E.12.5 DELETE Usage Notes
	E.12.6 DELETE Example
	E.12.7 DELETE Related Topics

	E.13 DESCRIBE (Executable Embedded SQL)
	E.13.1 DESCRIBE Purpose
	E.13.2 DESCRIBE Prerequisites
	E.13.3 DESCRIBE Syntax
	E.13.4 DESCRIBE Keywords and Parameters
	E.13.5 DESCRIBE Usage Notes
	E.13.6 DESCRIBE Example
	E.13.7 DESCRIBE Related Topics

	E.14 EXECUTE ... END-EXEC (Executable Embedded SQL Extension)
	E.14.1 EXECUTE ... END-EXEC Purpose
	E.14.2 EXECUTE ... END-EXEC Prerequisites
	E.14.3 EXECUTE ... END-EXEC Syntax
	E.14.4 EXECUTE ... END-EXEC Keywords and Parameters
	E.14.5 EXECUTE ... END-EXEC Usage Notes
	E.14.6 EXECUTE ... END-EXEC Example
	E.14.7 EXECUTE ... END-EXEC Related Topics

	E.15 EXECUTE (Executable Embedded SQL)
	E.15.1 EXECUTE Purpose
	E.15.2 EXECUTE Prerequisites
	E.15.3 EXECUTE Syntax
	E.15.4 EXECUTE Keywords and Parameters
	E.15.5 EXECUTE Usage Notes
	E.15.6 EXECUTE Example
	E.15.7 EXECUTE Related Topics

	E.16 EXECUTE IMMEDIATE (Executable Embedded SQL)
	E.16.1 EXECUTE IMMEDIATE Purpose
	E.16.2 EXECUTE IMMEDIATE Prerequisites
	E.16.3 EXECUTE IMMEDIATE Syntax
	E.16.4 EXECUTE IMMEDIATE Keywords and Parameters
	E.16.5 EXECUTE IMMEDIATE Usage Notes
	E.16.6 EXECUTE IMMEDIATE Example
	E.16.7 EXECUTE IMMEDIATE Related Topics

	E.17 FETCH (Executable Embedded SQL)
	E.17.1 FETCH Purpose
	E.17.2 FETCH Prerequisites
	E.17.3 FETCH Syntax
	E.17.4 FETCH Keywords and Parameters
	E.17.5 FETCH Usage Notes
	E.17.6 FETCH Example
	E.17.7 FETCH Related Topics

	E.18 INSERT (Executable Embedded SQL)
	E.18.1 INSERT Purpose
	E.18.2 INSERT Prerequisites
	E.18.3 INSERT Syntax
	E.18.4 INSERT Keywords and Parameters
	E.18.5 INSERT Usage Notes
	E.18.6 INSERT Example I
	E.18.7 INSERT Example II
	E.18.8 INSERT Related Topics

	E.19 OPEN (Executable Embedded SQL)
	E.19.1 OPEN Purpose
	E.19.2 OPEN Prerequisites
	E.19.3 OPEN Syntax
	E.19.4 OPEN Keywords and Parameters
	E.19.5 OPEN Usage Notes
	E.19.6 OPEN Example
	E.19.7 OPEN Related Topics

	E.20 PREPARE (Executable Embedded SQL)
	E.20.1 PREPARE Purpose
	E.20.2 PREPARE Prerequisites
	E.20.3 PREPARE Syntax
	E.20.4 PREPARE Keywords and Parameters
	E.20.5 PREPARE Usage Notes
	E.20.6 PREPARE Example
	E.20.7 PREPARE Related Topics

	E.21 ROLLBACK (Executable Embedded SQL)
	E.21.1 ROLLBACK Purpose
	E.21.2 ROLLBACK Prerequisites
	E.21.3 ROLLBACK Syntax
	E.21.4 ROLLBACK Keywords and Parameters
	E.21.5 ROLLBACK Usage Notes
	E.21.6 ROLLBACK Example I
	E.21.7 ROLLBACK Example II
	E.21.8 ROLLBACK Distributed Transactions
	E.21.9 ROLLBACK Example III
	E.21.10 ROLLBACK Related Topics

	E.22 SAVEPOINT (Executable Embedded SQL)
	E.22.1 SAVEPOINT Purpose
	E.22.2 SAVEPOINT Prerequisites
	E.22.3 SAVEPOINT Syntax
	E.22.4 SAVEPOINT Keywords and Parameters
	E.22.5 SAVEPOINT Usage Notes
	E.22.6 SAVEPOINT Related Topics

	E.23 SELECT (Executable Embedded SQL)
	E.23.1 SELECT Purpose
	E.23.2 SELECT Prerequisites
	E.23.3 SELECT Syntax
	E.23.4 SELECT Keywords and Parameters
	E.23.5 SELECT Usage Notes
	E.23.6 SELECT Example
	E.23.7 SELECT Related Topics

	E.24 UPDATE (Executable Embedded SQL)
	E.24.1 UPDATE Purpose
	E.24.2 UPDATE Prerequisites
	E.24.3 UPDATE Syntax
	E.24.4 UPDATE Keywords and Parameters
	E.24.5 UPDATE Usage Notes
	E.24.6 UPDATE Examples
	E.24.7 UPDATE Related Topics

	E.25 VAR (Oracle Embedded SQL Directive)
	E.25.1 VAR Purpose
	E.25.2 VAR Prerequisites
	E.25.3 VAR Syntax
	E.25.4 VAR Keywords and Parameters
	E.25.5 VAR Usage Notes
	E.25.6 VAR Example
	E.25.7 VAR Related Topics

	E.26 WHENEVER (Embedded SQL Directive)
	E.26.1 WHENEVER Purpose
	E.26.2 WHENEVER Prerequisites
	E.26.3 WHENEVER Syntax
	E.26.4 WHENEVER Keywords and Parameters
	E.26.5 WHENEVER Usage Notes
	E.26.6 WHENEVER Example
	E.26.7 WHENEVER Related Topics

	Index

