
Oracle® AI Database
Get Started with Database Development

26ai
G43103-01
October 2025

Oracle AI Database Get Started with Database Development, 26ai

G43103-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Chuck Murray

Contributors: Richard Butner, Eric Belden, Bjorn Engsig, Nancy Greenberg, Pat Huey, Christopher Jones, Sharon
Kennedy, Thomas Kyte, Simon Law, Bryn Llewellen, Sheila Moore

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 Introduction to Get Started with Oracle AI Database Development

About This Document 1

About Oracle AI Database 2

About Schema Objects 2

About Oracle AI Database Access 3

About SQL*Plus 3

About SQL Developer 4

About Structured Query Language (SQL) 4

About Procedural Language/SQL (PL/SQL) 5

About Other Client Programs, Languages, and Development Tools 5

About Sample Schema HR 9

2 Connecting to Oracle AI Database and Exploring It

Connecting to Oracle AI Database from SQL*Plus 1

Connecting to Oracle AI Database from SQL Developer 2

Connecting to Oracle AI Database as User HR 4

Unlocking the HR Account 4

Connecting to Oracle AI Database as User HR from SQL*Plus 5

Connecting to Oracle AI Database as User HR from SQL Developer 5

Exploring Oracle AI Database with SQL*Plus 6

Viewing HR Schema Objects with SQL*Plus 6

Viewing EMPLOYEES Table Properties and Data with SQL*Plus 7

Exploring Oracle AI Database with SQL Developer 9

Tutorial: Viewing HR Schema Objects with SQL Developer 9

Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer 10

Selecting Table Data 11

About Queries 11

Running Queries in SQL Developer 12

Tutorial: Selecting All Columns of a Table 12

Tutorial: Selecting Specific Columns of a Table 13

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of viii

Displaying Selected Columns Under New Headings 14

Selecting Data that Satisfies Specified Conditions 15

Sorting Selected Data 16

Selecting Data from Multiple Tables 18

Using Operators and Functions in Queries 19

Using Arithmetic Operators in Queries 20

Using Numeric Functions in Queries 20

Using the Concatenation Operator in Queries 21

Using Character Functions in Queries 22

Using Datetime Functions in Queries 22

Using Conversion Functions in Queries 24

Using Aggregate Functions in Queries 25

Using NULL-Related Functions in Queries 27

Using CASE Expressions in Queries 29

Using the DECODE Function in Queries 30

3 About DML Statements and Transactions

About Data Manipulation Language (DML) Statements 1

About the INSERT Statement 1

About the UPDATE Statement 4

About the DELETE Statement 5

About Transaction Control Statements 5

Committing Transactions 6

Rolling Back Transactions 8

Setting Savepoints in Transactions 9

4 Creating and Managing Schema Objects

About Data Definition Language (DDL) Statements 1

Creating and Managing Tables 1

About SQL Data Types 2

Creating Tables 2

Tutorial: Creating a Table with the Create Table Tool 3

Creating Tables with the CREATE TABLE Statement 3

Ensuring Data Integrity in Tables 4

About Constraints 5

Tutorial: Adding Constraints to Existing Tables 6

Tutorial: Adding Rows to Tables with the Insert Row Tool 9

Tutorial: Changing Data in Tables in the Data Pane 11

Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool 12

Managing Indexes 12

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of viii

Tutorial: Adding an Index with the Create Index Tool 13

Tutorial: Changing an Index with the Edit Index Tool 14

Tutorial: Dropping an Index 14

Dropping Tables 15

Creating and Managing Views 16

Creating Views 16

Tutorial: Creating a View with the Create View Tool 16

Creating Views with the CREATE VIEW Statement 17

Changing Queries in Views 17

Tutorial: Changing View Names with the Rename Tool 18

Dropping a View 18

Creating and Managing Data Use Case Domains 19

Creating Use Case Domains 19

Dropping Use Case Domains 19

Creating and Managing Schema Annotations 20

Creating Annotations 20

Listing Annotations 21

Modifying Annotations 22

Creating and Managing Sequences 22

Tutorial: Creating a Sequence 23

Dropping Sequences 24

Creating and Managing Synonyms 24

Creating Synonyms 25

Dropping Synonyms 25

5 Developing Stored Subprograms and Packages

About Stored Subprograms 1

About Packages 1

About PL/SQL Identifiers 2

About PL/SQL Data Types 3

Creating and Managing Standalone Subprograms 4

About Subprogram Structure 4

Tutorial: Creating a Standalone Procedure 5

Tutorial: Creating a Standalone Function 7

Changing Standalone Subprograms 8

Tutorial: Testing a Standalone Function 9

Dropping Standalone Subprograms 10

Creating and Managing Packages 10

About Package Structure 11

Tutorial: Creating a Package Specification 11

Tutorial: Changing a Package Specification 12

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of viii

Tutorial: Creating a Package Body 13

Dropping a Package 14

Declaring and Assigning Values to Variables and Constants 15

Tutorial: Declaring Variables and Constants in a Subprogram 15

Ensuring that Variables, Constants, and Parameters Have Correct Data Types 16

Tutorial: Changing Declarations to Use the %TYPE Attribute 17

Assigning Values to Variables 19

Assigning Values to Variables with the Assignment Operator 19

Assigning Values to Variables with the SELECT INTO Statement 20

Controlling Program Flow 21

About Control Statements 21

Using the IF Statement 22

Using the CASE Statement 23

Using the FOR LOOP Statement 24

Using the WHILE LOOP Statement 25

Using the Basic LOOP and EXIT WHEN Statements 27

Using Records and Cursors 28

About Records 29

Tutorial: Declaring a RECORD Type 30

Tutorial: Creating and Invoking a Subprogram with a Record Parameter 30

About Cursors 32

Using a Declared Cursor to Retrieve Result Set Rows One at a Time 34

Tutorial: Using a Declared Cursor to Retrieve Result Set Rows One at a Time 35

About Cursor Variables 36

Using a Cursor Variable to Retrieve Result Set Rows One at a Time 36

Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time 37

Using Associative Arrays 40

About Collections 40

About Associative Arrays 41

Declaring Associative Arrays 42

Populating Associative Arrays 43

Traversing Dense Associative Arrays 44

Traversing Sparse Associative Arrays 45

Handling Exceptions (Runtime Errors) 46

About Exceptions and Exception Handlers 46

When to Use Exception Handlers 47

Handling Predefined Exceptions 48

Declaring and Handling User-Defined Exceptions 49

6 Using Triggers

About Triggers 1

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of viii

Creating Triggers 2

About OLD and NEW Pseudorecords 3

Tutorial: Creating a Trigger that Logs Table Changes 3

Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is Inserted 4

Creating an INSTEAD OF Trigger 5

Tutorial: Creating Triggers that Log LOGON and LOGOFF Events 6

Changing Triggers 7

Disabling and Enabling Triggers 7

Disabling or Enabling a Single Trigger 8

Disabling or Enabling All Triggers on a Single Table 8

About Trigger Compilation and Dependencies 8

Dropping Triggers 9

7 Working in a Global Environment

About Globalization Support Features 1

About Language Support 1

About Territory Support 2

About Date and Time Formats 2

About Calendar Formats 3

About Numeric and Monetary Formats 4

About Linguistic Sorting and String Searching 4

About Length Semantics 5

About Unicode and SQL National Character Data Types 5

About Initial NLS Parameter Values 6

Viewing NLS Parameter Values 7

Changing NLS Parameter Values 7

Changing NLS Parameter Values for All SQL Developer Connections 8

Changing NLS Parameter Values for the Current SQL Function Invocation 9

About Individual NLS Parameters 10

About Locale and the NLS_LANG Parameter 10

About the NLS_LANGUAGE Parameter 11

About the NLS_TERRITORY Parameter 12

About the NLS_DATE_FORMAT Parameter 14

About the NLS_DATE_LANGUAGE Parameter 16

About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters 17

About the NLS_CALENDAR Parameter 18

About the NLS_NUMERIC_CHARACTERS Parameter 19

About the NLS_CURRENCY Parameter 20

About the NLS_ISO_CURRENCY Parameter 21

About the NLS_DUAL_CURRENCY Parameter 23

About the NLS_SORT Parameter 23

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of viii

About the NLS_COMP Parameter 25

About the NLS_LENGTH_SEMANTICS Parameter 26

Using Unicode in Globalized Applications 27

Representing Unicode String Literals in SQL and PL/SQL 28

Avoiding Data Loss During Character-Set Conversion 28

8 Building Effective Applications

Building Scalable Applications 1

About Scalable Applications 1

Using Bind Variables to Improve Scalability 1

Using PL/SQL to Improve Scalability 4

How PL/SQL Minimizes Parsing 4

About the EXECUTE IMMEDIATE Statement 4

About OPEN FOR Statements 4

About the DBMS_SQL Package 5

About Bulk SQL 5

About Concurrency and Scalability 7

About Sequences and Concurrency 8

About Latches and Concurrency 8

About Nonblocking Reads and Writes and Concurrency 9

About Shared SQL and Concurrency 9

Limiting the Number of Concurrent Sessions 9

Comparing Programming Techniques with Runstats 10

About Runstats 10

Setting Up Runstats 10

Using Runstats 13

Real-World Performance and Data Processing Techniques 13

About Iterative Data Processing 14

About Set-Based Processing 17

Recommended Programming Practices 18

Use Instrumentation Packages 18

Statistics Gathering and Application Tracing 19

Use Existing Functionality 19

Cover Database Tables with Editioning Views 21

Recommended Security Practices 22

9 Developing a Simple Oracle AI Database Application

About the Application 1

Purpose of the Application 1

Structure of the Application 1

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of viii

Schema Objects of the Application 1

Schemas for the Application 2

Naming Conventions in the Application 3

Creating the Schemas for the Application 4

Granting Privileges to the Schemas 5

Granting Privileges to the app_data Schema 5

Granting Privileges to the app_code Schema 6

Granting Privileges to the app_admin Schema 6

Granting Privileges to the app_user and app_admin_user Schemas 6

Creating the Schema Objects and Loading the Data 7

Creating the Tables 7

Creating the Editioning Views 9

Creating the Triggers 10

Creating the Trigger to Enforce the First Business Rule 10

Creating the Trigger to Enforce the Second Business Rule 11

Creating the Sequences 13

Loading the Data 13

Adding the Foreign Key Constraint 15

Granting Privileges on the Schema Objects to Users 16

Creating the employees_pkg Package 16

Creating the Package Specification for employees_pkg 17

Creating the Package Body for employees_pkg 18

Tutorial: Showing How the employees_pkg Subprograms Work 20

Granting the EXECUTE Privilege to app_user and app_admin_user 23

Tutorial: Invoking get_job_history as app_user or app_admin_user 23

Creating the admin_pkg Package 24

Creating the Package Specification for admin_pkg 24

Creating the Package Body for admin_pkg 25

Tutorial: Showing How the admin_pkg Subprograms Work 27

Granting the EXECUTE Privilege to app_admin_user 28

Tutorial: Invoking add_department as app_admin_user 29

10

Deploying an Oracle AI Database Application

About Development and Deployment Environments 1

About Installation Scripts 1

About DDL Statements and Schema Object Dependencies 1

About INSERT Statements and Constraints 2

Creating Installation Scripts 3

Creating Installation Scripts with the Cart 3

Creating an Installation Script with the Database Export Wizard 4

Editing Installation Scripts that Create Sequences 6

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of viii

Editing Installation Scripts that Create Triggers 6

Creating Installation Scripts for the Sample Application 7

Creating Installation Script schemas.sql 7

Creating Installation Script objects.sql 8

Creating Installation Script employees.sql 12

Creating Installation Script admin.sql 15

Creating Primary Installation Script create_app.sql 17

Deploying the Sample Application 17

Checking the Validity of an Installation 18

Archiving the Installation Scripts 19

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of viii

List of Tables

5-1 Cursor Attribute Values 33

7-1 Initial Values of NLS Parameters in SQL Developer 6

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of viii

About This Content

This guide explains basic concepts behind application development with Oracle AI Database.

Audience

This guide is intended for anyone who wants to learn about Oracle AI Database application
development, and is primarily an introduction to application development for developers who
are new to Oracle AI Database.

This document assumes that you have a general understanding of relational database
concepts and an understanding of the operating system environment that you will use to
develop applications with the database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

When you are comfortable with the concepts and tasks in Get Started with Oracle AI Database
Development, consult these other database development guides.

• Oracle Application Express App Builder User's Guide

• Oracle AI Database Get Started with Java Development

For more information, see these Oracle resources:

• Oracle AI Database Concepts

• Oracle AI Database Development Guide

• Oracle AI Database SQL Language Reference

• Oracle AI Database PL/SQL Language Reference

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

About This Content

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii

1
Introduction to Get Started with Oracle AI
Database Development

An Oracle AI Database developer is responsible for creating or maintaining the database
components of an application that uses the Oracle technology stack. Database developers
either develop applications or convert existing applications to run in the Oracle AI Database
environment.

See Also

Oracle AI Database Concepts for more information about the duties of database
developers

About This Document
This document is the entry into the Oracle AI Database documentation set for application
developers.

This document does the following:

• Explains the basic concepts behind development with Oracle AI Database

• Shows, with tutorials and examples, how to use basic features of SQL and PL/SQL

• Provides references to detailed information about subjects that it introduces

• Shows how to develop and deploy a simple Oracle AI Database application

Introduction to Get Started with Oracle AI Database Development (this chapter) describes the
reader for whom this document is intended, outlines the organization of this document,
introduces important Oracle AI Database concepts, and describes the sample schema used in
the tutorials and examples in this document.

Connecting to Oracle AI Database and Exploring It explains how to connect to Oracle AI
Database, how to view schema objects and the properties and data of database tables, and
how to use queries to retrieve data from a table.

About DML Statements and Transactions introduces data manipulation language (DML)
statements and transactions. DML statements add, change, and delete table data. A
transaction is a sequence of one or more SQL statements that the database treats as a unit:
either all of the statements are performed, or none of them are.

Creating and Managing Schema Objects introduces data definition language (DDL)
statements, which create, change, and drop schema objects.

Developing Stored Subprograms and Packages introduces stored subprograms and packages,
which can be used as building blocks for many different database applications.

Using Triggers introduces triggers, which are stored PL/SQL units that automatically run ("fire")
in response to specified events.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 9

Working in a Global Environment introduces globalization support—National Language
Support (NLS) parameters and Unicode-related features of SQL and PL/SQL.

Building Effective Applications explains how to build scalable applications and use
recommended programming and security practices.

Developing a Simple Oracle AI Database Application shows how to develop a simple Oracle AI
Database application.

Deploying an Oracle AI Database Application explains how to deploy an Oracle AI Database
application—that is, how to install it in one or more environments where other users can run it
—using the application developed in Developing a Simple Oracle AI Database Application as
an example.

About Oracle AI Database
Oracle AI Database groups related information into logical structures called schemas. The
logical structures contain schema objects.

When you connect to the database by providing your user name and password, you specify
the schema and indicate that you are its owner. In Oracle AI Database, the user name and the
name of the schema to which the user connects are the same.

About Schema Objects
Every object in an Oracle AI Database belongs to only one schema, and has a unique name
with that schema.

Some of the objects that schemas can contain are:

• Tables

Tables are the basic units of data storage in Oracle AI Database. Tables hold all user-
accessible data. Each table contains rows that represent individual data records. Rows
are composed of columns that represent the fields of the records.

• Indexes

Indexes are optional objects that can improve the performance of data retrieval from
tables. Indexes are created on one or more columns of a table, and are automatically
maintained in the database.

• Views

You can create a view that combines information from several different tables into a single
presentation. A view can rely on information from both tables and other views.

• Sequences

When all records of a table must be distinct, you can use a sequence to generate a serial
list of unique integers for numeric columns, each of which represents the ID of one record.

• Synonyms

Synonyms are aliases for schema objects. You can use synonyms for security and
convenience; for example, to hide the ownership of an object or to simplify SQL
statements.

• Stored subprograms

Chapter 1
About Oracle AI Database

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 9

Stored subprograms (also called schema-level subprograms) are procedures and
functions that are stored in the database. They can be invoked from client applications that
access the database.

Triggers are stored subprograms that are automatically run by the database when
specified events occur in a particular table or view. Triggers can restrict access to specific
data and perform logging.

• Packages

A package is a group of related subprograms, along with the explicit cursors and variables
they use, stored in the database as a unit, for continued use. Like stored subprograms,
package subprograms can be invoked from client applications that access the database.

Typically, the objects that an application uses belong to the same schema.

See Also

• Oracle AI Database Concepts for a comprehensive introduction to schema objects

• Creating and Managing Tables

• Managing Indexes

• Creating and Managing Views

• Creating and Managing Sequences

• Creating and Managing Synonyms

• Developing Stored Subprograms and Packages

• Using Triggers

About Oracle AI Database Access
You can access Oracle AI Database only through a client program, such as SQL*Plus or SQL
Developer.

The client program's interface to Oracle AI Database is Structured Query Language (SQL).
Oracle provides an extension to SQL called Procedural Language/SQL (PL/SQL).

About SQL*Plus
SQL*Plus (pronounced sequel plus) is an interactive and batch query tool that is installed with
every Oracle AI Database installation. It has a command-line user interface that acts as the
client when connecting to the database.

SQL*Plus has its own commands and environment. In the SQL*Plus environment, you can
enter and run SQL*Plus commands, SQL statements, PL/SQL statements, and operating
system commands to perform tasks such as:

• Formatting, performing calculations on, storing, and printing query results

• Examining tables and object definitions

• Developing and running batch scripts

• Performing database administration

Chapter 1
About Oracle AI Database

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 9

You can use SQL*Plus to generate reports interactively, to generate reports as batch
processes, and to output the results to text file, to screen, or to HTML file for browsing on the
Internet. You can generate reports dynamically using the HTML output facility.

You can use SQL*Plus in SQL Developer. For details, see Oracle SQL Developer User's
Guide.

See Also

• "Connecting to Oracle AI Database from SQL*Plus"

• SQL*Plus User's Guide and Reference for information about SQL*Plus

About SQL Developer
SQL Developer (pronounced sequel developer) is a graphical user interface for Oracle AI
Database, that is available in the default installation of the database and by free download from
the Oracle Technology Network.

SQL Developer serves as a modern integrated development environment (IDE) for SQL and
PL/SQL, and provides a graphical interface for managing database objects. You can also
create reports, design data models, migrate third-party databases to Oracle, REST-enable
tables and views, and deploy and manage Oracle REST Data Services. The SQL Worksheet
allows you to enter and run SQL statements, PL/SQL statements, and SQL*Plus commands
and scripts.

Note

SQL Developer often offers several ways to do a task, but this document does not
explain every possible way.

See Also

• "Connecting to Oracle AI Database from SQL Developer"

• Oracle SQL Developer User's Guide for information about SQL Developer

About Structured Query Language (SQL)
Structured Query Language (SQL) (pronounced sequel) is the set-based, high-level
computer language which all programs and users use to access data in Oracle AI Database.

SQL is a declarative, or nonprocedural, language; that is, it describes what to do, but not how.
You specify the desired result set (for example, the names of current employees), but not how
to get it.

Chapter 1
About Oracle AI Database

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 9

See Also

• Oracle AI Database Concepts for a complete overview of SQL

• Oracle AI Database SQL Language Reference for complete information about
SQL

About Procedural Language/SQL (PL/SQL)
Procedural Language/SQL (PL/SQL) (pronounced P L sequel) is a native Oracle AI
Database extension to SQL. It bridges the gap between declarative and imperative program
control by adding procedural elements, such as conditional control and loops.

In PL/SQL, you can declare constants and variables, procedures and functions, types and
variables of those types, and triggers. You can handle exceptions (runtime errors). You can
create PL/SQL units—procedures, functions, packages, types, and triggers—that are stored in
the database for reuse by applications that use any of the Oracle AI Database programmatic
interfaces.

The basic unit of a PL/SQL source program is the block, which groups related declarations and
statements. A block has an optional declarative part, a required executable part, and an
optional exception-handling part.

See Also

• Oracle AI Database Concepts for a complete overview of PL/SQL

• Oracle AI Database PL/SQL Language Reference for complete information about
PL/SQL

About Other Client Programs, Languages, and Development Tools
Several other client programs, languages, and tools are available.

Note

Some of the products on the preceding list do not ship with Oracle AI Database and
must be downloaded separately.

See Also

• Oracle AI Database Concepts for more information about tools for database
developers

• Oracle AI Database Development Guide for information about choosing a
programming environment

Chapter 1
About Oracle AI Database

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 9

Oracle Application Express
Oracle Application Express is an application development and deployment tool that enables
you to quickly create secure and scalable web applications even if you have limited previous
programming experience. The embedded Application Builder tool assembles an HTML
interface or a complete application that uses schema objects, such as tables or stored
procedures, into a collection of pages that are linked through tabs, buttons, or hypertext links.

See Also

Oracle Application Express App Builder User's Guide for more information about
Oracle Application Express

Oracle Java Database Connectivity (JDBC)
Oracle Java Database Connectivity (JDBC) is an API that enables Java to send SQL
statements to an object-relational database, such as Oracle AI Database. Oracle AI Database
JDBC provides complete support for the JDBC 3.0 and JDBC RowSet (JSR-114) standards,
advanced connection caching for both XA and non-XA connections, exposure of SQL and
PL/SQL data types to Java, and fast SQL data access.

See Also

For more information about JDBC:

• Oracle AI Database Concepts

• Oracle AI Database Development Guide

• Oracle AI Database Get Started with Java Development

Hypertext Preprocessor (PHP)
The Hypertext Preprocessor (PHP) is a powerful interpreted server-side scripting language for
quick web application development. PHP is an open source language that is distributed under
a BSD-style license. PHP is designed for embedding database access requests directly into
HTML pages.

Oracle Call Interface (OCI)
Oracle Call Interface (OCI) is the native C language API for accessing Oracle AI Database
directly from C applications.

The OCI Software Development Kit is installed as part of the Oracle Instant Client, which
enables you to run applications without installing the standard Oracle client or having an
ORACLE_HOME. Your applications work without change, using significantly less disk space.

Chapter 1
About Oracle AI Database

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 9

See Also

• Oracle AI Database Development Guide for more information about OCI

• Oracle Call Interface Programmer's Guide for complete information about OCI

Oracle C++ Call Interface (OCCI)
Oracle C++ Call Interface (OCCI) is the native C++ language API for accessing Oracle AI
Database directly from C++ applications. Like OCI, OCCI supports both relational and object-
oriented programming paradigms.

The OCCI Software Development Kit is also installed as part of the Oracle Instant Client, which
enables you to run applications without installing the standard Oracle client or having an
ORACLE_HOME. Your applications work without change, using significantly less disk space.

See Also

• Oracle AI Database Development Guide for more information about OCCI

• Oracle C++ Call Interface Programmer's Guide for complete information about
OCCI

Open Database Connectivity (ODBC)
Open Database Connectivity (ODBC) is a set of database access APIs that connect to the
database, prepare, and then run SQL statements on the database. An application that uses an
ODBC driver can access nonuniform data sources, such as spreadsheets and comma-
delimited files.

The Oracle ODBC driver conforms to ODBC 3.51 specifications. It supports all core APIs and a
subset of Level 1 and Level 2 functions. Microsoft supplies the Driver manager component for
the Windows platform.

Like OCI, OCCI, and JDBC, ODBC is part of the Oracle Instant Client installation.

See Also

• Oracle AI Database Concepts

• Oracle Services for Microsoft Transaction Server Developer's Guide for Microsoft
Windows for information about using the Oracle ODBC driver with Windows

Pro*C/C++ Precompiler
The Pro*C/C++ precompiler lets you embed SQL statements in a C or C++ source file. The
precompiler accepts the source program as input, translates the embedded SQL statements
into standard Oracle runtime library calls, and generates a modified source program that you
can compile, link, and run.

Chapter 1
About Oracle AI Database

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 9

See Also

• Oracle AI Database Concepts for more information about Oracle precompilers

• Oracle AI Database Development Guide for more information about the Pro*C/C+
+ precompiler

• Pro*C/C++ Programmer's Guide for complete information about the Pro*C/C++
precompiler

Pro*COBOL Precompiler
The Pro*COBOL precompiler lets you embed SQL statements in a COBOL source file. The
precompiler accepts the source program as input, translates the embedded SQL statements
into standard Oracle runtime library calls, and generates a modified source program that you
can compile, link, and run.

See Also

• Oracle AI Database Concepts for more information about Oracle precompilers

• Oracle AI Database Development Guide for more information about the
Pro*COBOL precompiler

• Pro*COBOL Programmer's Guide for complete information about the Pro*COBOL
precompiler

Microsoft .NET Framework
The Microsoft .NET Framework is a multilanguage environment for building, deploying, and
running applications and XML web services.

The main components of the Microsoft .NET Framework are:

• Common Language Runtime (CLR)

The Common Language Runtime (CLR) is a language-neutral development and runtime
environment that provides services that help manage running applications.

• Framework Class Libraries (FCL)

The Framework Class Libraries (FCL) provide a consistent, object-oriented library of
prepackaged functionality.

Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for .NET (ODP.NET) provides fast and efficient ADO.NET data access
from .NET applications to Oracle AI Database. ODP.NET allows developers to take advantage
of advanced database functionality including SecureFiles, XML DB, and Advanced Queuing.

Oracle Developer Tools for Visual Studio (ODT)

Oracle Developer Tools for Visual Studio (ODT) is a set of application tools that integrate with
the Visual Studio environment. These tools provide graphic user interface access to Oracle
functionality, enable the user to perform a wide range of application development tasks, and
improve development productivity and ease of use. Oracle Developer Tools supports the

Chapter 1
About Oracle AI Database

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 9

programming and implementation of .NET stored procedures using Visual Basic, C#, and
other .NET languages.

Oracle Providers for ASP.NET

Oracle Providers for ASP.NET offer ASP.NET developers an easy way to store state common
to web applications within Oracle AI Database. These providers are modeled on existing
Microsoft ASP.NET providers, sharing similar schema and programming interfaces to
provide .NET developers a familiar interface. Oracle supports the Membership, Profile, Role,
and other providers.

See Also

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Oracle AI Database Development Guide

Oracle Provider for OLE DB (OraOLEDB)
Oracle Provider for OLE DB (OraOLEDB) is an open standard data access methodology that
uses a set of Component Object Model (COM) interfaces for accessing and manipulating
different types of data. These interfaces are available from various database providers.

See Also

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows for more
information about OraOLEDB

About Sample Schema HR
The HR sample schema can be installed with Oracle AI Database. This schema contains
information about employees—departments, locations, work histories, and related information.
Like all schemas, HR has tables, views, indexes, procedures, functions, and other attributes.
The examples and tutorials in this document use the schema.

See Also

• Oracle AI Database Sample Schemas for a complete description of the HR
schema

• "Connecting to Oracle AI Database as User HR" for instructions for connecting to
the database as the user HR

Chapter 1
About Sample Schema HR

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 9

2
Connecting to Oracle AI Database and
Exploring It

You can connect to Oracle AI Database only through a client program, such as SQL*Plus or
SQL Developer. When connected to the database, you can view schema objects, view the
properties and data of database tables, and use queries to retrieve data from database tables.

After connecting to Oracle AI Database through a client program, you enter and run commands
in that client program. For details, see the documentation for your client program.

Connecting to Oracle AI Database from SQL*Plus
SQL*Plus is a client program from which you can access Oracle AI Database. This topic shows
how to start SQL*Plus and connect to Oracle AI Database.

Note

For steps 3 and 4 of the following procedure, you need a user name and password.

To connect to Oracle AI Database from SQL*Plus:

1. If you are on a Windows system, display a Windows command prompt.

2. At the command prompt, type sqlplus and then press the key Enter.

3. At the user name prompt, type your user name and then press the key Enter.

4. At the password prompt, type your password and then press the key Enter.

Note

For security, your password is not visible on your screen.

The system connects you to an Oracle AI Database instance.

You are in the SQL*Plus environment. At the SQL> prompt, you can enter and run
SQL*Plus commands, SQL statements, PL/SQL statements, and operating system
commands.

To exit SQL*Plus, type exit and press the key Enter.

Note

Exiting SQL*Plus ends the SQL*Plus session, but does not shut down the
database instance.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 31

Example 2-1 starts SQL*Plus, connects to Oracle AI Database, runs a SQL SELECT
statement, and exits SQL*Plus. User input is bold.

Example 2-1 Connecting to Oracle Database 12c from SQL*Plus

> sqlplus
SQL*Plus: Release 12.1.0.1.0 Production on Thu Dec 27 07:43:41 2012

Copyright (c) 1982, 2012, Oracle. All rights reserved.

Enter user-name: your_user_name
Enter password: your_password

Connected to:
Oracle Database 12c Enterprise Edition Release - 12.1.0.1.0 64bit Production

SQL> select count(*) from employees;

 COUNT(*)

 107

SQL> exit

Disconnected from Oracle Database 12c Enterprise Edition Release - 12.1.0.1.0 64bit Production
>

See Also

• "Connecting to Oracle AI Database as User HR from SQL*Plus"

• "About SQL*Plus" for a brief description of SQL*Plus

• SQL*Plus User's Guide and Reference for more information about starting
SQL*Plus and connecting to the database

Connecting to Oracle AI Database from SQL Developer
SQL Developer is a client program with which you can access Oracle AI Database.

You are encouraged to use the currently available release of SQL Developer, which you can
download from:

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/

This section assumes that SQL Developer is installed on your system, and shows how to start
it and connect to Oracle AI Database. If SQL Developer is not installed on your system, then
see Oracle SQL Developer User's Guide for installation instructions.

Chapter 2
Connecting to Oracle AI Database from SQL Developer

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 31

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/

Note

For the following procedure:

• If you're using a SQL Developer kit that does not include the JDK, then the first
time you start SQL Developer on your system, you must provide the path to the
Java Development Kit.

• When prompted, you need to enter a user name and password.

To connect to Oracle AI Database from SQL Developer:

1. Start SQL Developer.

For instructions, see Oracle SQL Developer User's Guide.

If this is the first time you have started SQL Developer on your system, you are prompted
to enter the path to the Java Development Kit (JDK) installation (for example, C:\Program
Files\Java\jdk1.8.0_65). Either type the path after the prompt or browse to it, and then
press the key Enter.

2. In the Connections frame, click the icon New Connection.

3. In the New/Select Database Connection window:

a. Type the appropriate values in the fields Connection Name, Username, and Password.

For security, the password characters that you type appear as asterisks.

Near the Password field is the check box Save Password. By default, it is deselected.
Oracle recommends accepting the default.

b. If the Oracle pane is not showing, click the tab Oracle.

c. In the Oracle pane, accept the default values.

(The default values are: Connection Type, Basic; Role, default, Hostname, localhost;
Port, 1521; SID option, selected; SID field, xe.)

d. Click the button Test.

The connection is tested. If the connection succeeds, the Status indicator changes
from blank to Success.

e. If the test succeeded, click the button Connect.

The New/Select Database Connection window closes. The Connections frame shows
the connection whose name you entered in the Connection Name field in step 3.

You are in the SQL Developer environment.

To exit SQL Developer, select Exit from the File menu.

Note

Exiting SQL Developer ends the SQL Developer session, but does not shut down the
Oracle AI Database instance. The next time you start SQL Developer, the connection
you created using the preceding procedure still exists. SQL Developer prompts you for
the password that you supplied in step 3 (unless you selected the check box Save
Password).

Chapter 2
Connecting to Oracle AI Database from SQL Developer

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 31

See Also

• "Connecting to Oracle AI Database as User HR from SQL Developer"

• "About SQL Developer" for a brief description of SQL Developer

• Oracle SQL Developer User's Guide for more information about using SQL
Developer to create connections to Oracle AI Database

Connecting to Oracle AI Database as User HR
To complete the tutorials and examples in this document, you must install the hr sample
schema and connect to Oracle AI Database as the user HR.

The user HR owns the hr sample schema that the examples and tutorials in this document use.

See Also

• Installing the Sample Schemas in Database Sample Schemas for information
about how to install the hr schema

Unlocking the HR Account
You must unlock the HR account and reset its password before you can connect to the
database as the user HR.

By default, when the HR schema is installed, the HR account is locked and its password is
expired.

Note

For the following procedure, you need the name and password of a user who has the
ALTER USERsystem privilege.

To unlock the HR account and reset its password:

1. Using SQL*Plus, connect to the database as a user with the ALTER USER system
privilege.

2. At the SQL> prompt, unlock the HR account and reset its password:

Caution

Choose a secure password. For guidelines for secure passwords, see Oracle AI
Database Security Guide.

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

The system responds:

Chapter 2
Connecting to Oracle AI Database as User HR

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 31

User altered.

The HR account is unlocked and its password is password.

Now you can connect to the database as user HR with the password password.

See Also

• Oracle SQL Developer User's Guide for information about accessing SQL*Plus
within SQL Developer

Connecting to Oracle AI Database as User HR from SQL*Plus
You can use SQL*Plus to connect to Oracle AI Database as the HR user.

Note

If the HR account is locked, see "Unlocking the HR Account" and then return to this
section.

To connect to Oracle AI Database as user HR from SQL*Plus:

Note

For this task, you need the password for the HR account.

1. If you are connected to the database, close your current connection.

2. Follow the directions in "Connecting to Oracle AI Database from SQL*Plus", entering the
user name HR at step 3 and the password for the HR account at step 4.

You are now connected to Oracle AI Database as the user HR.

See Also

SQL*Plus User's Guide and Reference for an example of using SQL*Plus to create an
HR connection

Connecting to Oracle AI Database as User HR from SQL Developer
You can use SQL Developer to connect to Oracle AI Database as the HR user.

Chapter 2
Connecting to Oracle AI Database as User HR

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 31

Note

If the HR account is locked, see "Unlocking the HR Account" and then return to this
section.

To connect to Oracle AI Database as user HR from SQL Developer:

Note

For this task, you need the password for the HR account.

Follow the directions in "Connecting to Oracle AI Database from SQL Developer", entering the
following values at steps 3:

• For Connection Name, enter hr_conn.

(You can enter a different name, but the tutorials in this document assume that you named
the connection hr_conn.)

• For Username, enter HR.

• For Password, enter the password for the HR account.

You are now connected to the database as the user HR.

Exploring Oracle AI Database with SQL*Plus
If the hr sample schema is installed and you are connected to Oracle AI Database from
SQL*Plus as the user HR, you can view HR schema objects and the properties of the
EMPLOYEES table.

Note

If you are not connected to the database as user HR from SQL*Plus, see "Connecting
to Oracle AI Database as User HR from SQL*Plus" and then return to this section.

Viewing HR Schema Objects with SQL*Plus
With SQL*Plus, you can view the objects that belong to the HR schema by querying the static
data dictionary view USER_OBJECTS.

Example 2-2 shows how to view the names and data types of the objects that belong to the HR
schema.

Example 2-2 Viewing HR Schema Objects with SQL*Plus

COLUMN OBJECT_NAME FORMAT A25
COLUMN OBJECT_TYPE FORMAT A25

SELECT OBJECT_NAME, OBJECT_TYPE FROM USER_OBJECTS
ORDER BY OBJECT_TYPE, OBJECT_NAME;

Chapter 2
Exploring Oracle AI Database with SQL*Plus

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 31

Result is similar to:

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------------
COUNTRY_C_ID_PK INDEX
DEPT_ID_PK INDEX
DEPT_LOCATION_IX INDEX
EMP_DEPARTMENT_IX INDEX
EMP_EMAIL_UK INDEX
EMP_EMP_ID_PK INDEX
EMP_JOB_IX INDEX
EMP_MANAGER_IX INDEX
EMP_NAME_IX INDEX
JHIST_DEPARTMENT_IX INDEX
JHIST_EMPLOYEE_IX INDEX
JHIST_EMP_ID_ST_DATE_PK INDEX
JHIST_JOB_IX INDEX
JOB_ID_PK INDEX
LOC_CITY_IX INDEX
LOC_COUNTRY_IX INDEX
LOC_ID_PK INDEX
LOC_STATE_PROVINCE_IX INDEX
REG_ID_PK INDEX
ADD_JOB_HISTORY PROCEDURE
SECURE_DML PROCEDURE
DEPARTMENTS_SEQ SEQUENCE
EMPLOYEES_SEQ SEQUENCE
LOCATIONS_SEQ SEQUENCE
COUNTRIES TABLE
DEPARTMENTS TABLE
EMPLOYEES TABLE
JOBS TABLE
JOB_HISTORY TABLE
LOCATIONS TABLE
REGIONS TABLE
SECURE_EMPLOYEES TRIGGER
UPDATE_JOB_HISTORY TRIGGER
EMP_DETAILS_VIEW VIEW

34 rows selected.

See Also

• Oracle AI Database Reference for information about USER_OBJECTS

• "Selecting Table Data" for information about using queries to view table data

• "About Sample Schema HR" for general information about the schema HR

Viewing EMPLOYEES Table Properties and Data with SQL*Plus
You can a SQL*Plus command, the SQL SELECTstatement, and static data dictionary views to
view the properties and data of the HR.EMPLOYEES table.

You can use the SQL*Plus command DESCRIBE to view the properties of the columns of the
EMPLOYEES table in the HR schema and the SQL statement SELECT to view the data. To
view other properties of the table, use static data dictionary views (for example,
USER_CONSTRAINTS, USER_INDEXES, and USER_TRIGGERS).

Chapter 2
Exploring Oracle AI Database with SQL*Plus

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 31

Example 2-3 shows how to view the properties of the EMPLOYEES table in the HR schema.

Example 2-3 Viewing EMPLOYEES Table Properties with SQL*Plus

DESCRIBE EMPLOYEES

Result:

 Name Null? Type
 --- -------- -------------

 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

Example 2-4 shows how to view some data in the EMPLOYEES table in the HR schema.

Example 2-4 Viewing EMPLOYEES Table Data with SQL*Plus

COLUMN FIRST_NAME FORMAT A20
COLUMN LAST_NAME FORMAT A25
COLUMN PHONE_NUMBER FORMAT A20

SELECT LAST_NAME, FIRST_NAME, PHONE_NUMBER FROM EMPLOYEES
ORDER BY LAST_NAME;

Result is similar to:

LAST_NAME FIRST_NAME PHONE_NUMBER
------------------------- -------------------- --------------------
Abel Ellen 011.44.1644.429267
Ande Sundar 011.44.1346.629268
Atkinson Mozhe 650.124.6234
Austin David 590.423.4569
Baer Hermann 515.123.8888
Baida Shelli 515.127.4563
Banda Amit 011.44.1346.729268
Bates Elizabeth 011.44.1343.529268
...
Urman Jose Manuel 515.124.4469
Vargas Peter 650.121.2004
Vishney Clara 011.44.1346.129268
Vollman Shanta 650.123.4234
Walsh Alana 650.507.9811
Weiss Matthew 650.123.1234
Whalen Jennifer 515.123.4444
Zlotkey Eleni 011.44.1344.429018

107 rows selected.

Chapter 2
Exploring Oracle AI Database with SQL*Plus

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 31

See Also

• SQL*Plus User's Guide and Reference for information about DESCRIBE

• "Selecting Table Data" for information about using queries to view table data

• Oracle AI Database Reference for information about static data dictionary views

Exploring Oracle AI Database with SQL Developer
If the hr sample schema is installed and you are connected to the database from SQL
Developer as the user HR, you can view HR schema objects and the properties of the
EMPLOYEES table.

Tutorial: Viewing HR Schema Objects with SQL Developer
This tutorial shows how to use SQL Developer to view the objects that belong to the HR
schema—that is, how to browse the HR schema.

Note

If you are not connected to the database as user HR from SQL Developer, see
"Connecting to Oracle AI Database as User HR from SQL Developer" and then return
to this tutorial.

To browse the HR schema:

1. In the Connections frame, to the left of the hr_conn icon, click the plus sign (+).

If you are not connected to the database, the Connection Information window opens. If you
are connected to the database, the hr_conn information expands (see the information that
follows "Click OK" in step 2).

2. If the Connection Information window opens:

a. In the User Name field, enter hr.

b. In the Password field, enter the password for the user HR.

c. Click OK.

The hr_conn information expands: The plus sign becomes a minus sign (-), and under the
hr_conn icon, a list of schema object types appears—Tables, Views, Indexes, and so on.
(If you click the minus sign, the hr_conn information collapses: The minus sign becomes a
plus sign, and the list disappears.)

See Also

• Oracle SQL Developer User's Guide for more information about the SQL
Developer user interface

• "About Sample Schema HR" for general information about schema HR

Chapter 2
Exploring Oracle AI Database with SQL Developer

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 31

Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL
Developer

This tutorial shows how to use SQL Developer to view the properties and data of the
EMPLOYEES table in the HR schema.

Note

If you are not browsing the HR schema, see "Tutorial: Viewing HR Schema Objects
with SQL Developer" and then return to this tutorial.

To view the properties and data of the EMPLOYEES table:

1. In the Connections frame, expand Tables.

Under Tables, a list of the tables in the HR schema appears.

2. Select the table EMPLOYEES.

In the right frame of the Oracle SQL Developer window, in the Columns pane, a list of all
columns of this table appears. To the right of each column are its properties—name, data
type, and so on. (To see all column properties, move the horizontal scroll bar to the right.)

3. In the right frame, click the tab Data.

The Data pane appears, showing a numbered list of all records in this table. (To see more
records, move the vertical scroll bar down. To see more columns of the records, move the
horizontal scroll bar to the right.)

4. In the right frame, click the tab Constraints.

The Constraints pane appears, showing a list of all constraints on this table. To the right of
each constraint are its properties—name, type, search condition, and so on. (To see all
constraint properties, move the horizontal scroll bar to the right.)

5. Explore the other properties by clicking on the appropriate tabs.

To see the SQL statement for creating the EMPLOYEES table, click the SQL tab. The SQL
statement appears in a pane named EMPLOYEES. To close this pane, click the x to the
right of the name EMPLOYEES.

See Also

Oracle SQL Developer User's Guide for more information about the SQL Developer
user interface

Chapter 2
Exploring Oracle AI Database with SQL Developer

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 31

Selecting Table Data

Note

To do the tutorials and examples in this section, the hr sample schema must be
installed and you must be connected to the database as the user HR from SQL
Developer. For instructions, see "Connecting to Oracle AI Database as User HR from
SQL Developer".

About Queries
A query, or SQL SELECT statement, selects data from one or more tables or views.

The simplest form of query has this syntax:

SELECT select_list FROM source_list

The select_list specifies the columns from which the data is to be selected, and the source_list
specifies the tables or views that have these columns.

A query nested within another SQL statement is called a subquery.

In the SQL*Plus environment, you can enter a query (or any other SQL statement) after the
SQL> prompt.

In the SQL Developer environment, you can enter a query (or any other SQL statement) in the
Worksheet.

Note

When the result of a query is displayed, records can be in any order, unless you
specify their order with the ORDER BY clause. For more information, see "Sorting
Selected Data".

See Also

• Oracle AI Database SQL Language Reference for more information about queries
and subqueries

• Oracle AI Database SQL Language Reference for more information about the
SELECT statement

• SQL*Plus User's Guide and Reference for more information about the SQL*Plus
command line interface

• Oracle SQL Developer User's Guide for information about using the Worksheet in
SQL Developer

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 31

Running Queries in SQL Developer
This section explains how to run queries in SQL Developer, using the Worksheet.

Note

The Worksheet is not limited to queries; you can use it to run any SQL statement.

To run queries in SQL Developer:

1. If the right frame of SQL Developer shows the hr_conn pane:

a. If the Worksheet subpane does not show, click the tab Worksheet.

b. Go to step 4.

2. Click the icon SQL Worksheet.

3. If the Select Connection window opens:

a. If the Connection field does not have the value hr_conn, select that value from the
menu.

b. Click OK.

A pane appears with a tab labeled hr_conn and two subpanes, Worksheet and Query
Builder. In the Worksheet, you can enter a SQL statement.

4. In the Worksheet, type a query (a SELECT statement).

5. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing the query
result.

6. Under the hr_conn tab, click the icon Clear.

The query disappears, and you can enter another SQL statement in the Worksheet. When
you run another SQL statement, its result appears in the Query Result pane, replacing the
result of the previously run SQL statement.

See Also

Oracle SQL Developer User's Guide for information about using the Worksheet in SQL
Developer

Tutorial: Selecting All Columns of a Table
This tutorial shows how to select all columns of the EMPLOYEES table.

To select all columns of the EMPLOYEES Table:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon SQL Worksheet,
as in "Running Queries in SQL Developer".

2. In the Worksheet, enter this query:

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 31

SELECT * FROM EMPLOYEES;

3. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing all
columns of the EMPLOYEES table.

Caution

Be very careful about using SELECT * on tables with columns that store sensitive
data, such as passwords or credit card information.

See Also

"Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer" for
information about another way to view table data with SQL Developer

Tutorial: Selecting Specific Columns of a Table
This tutorial shows how to select only the columns FIRST_NAME, LAST_NAME, and
DEPARTMENT_ID of the EMPLOYEES table.

To select only FIRST_NAME, LAST_NAME, and DEPARTMENT_ID:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon SQL Worksheet,
as in "Running Queries in SQL Developer".

2. If the Worksheet pane contains a query, clear the query by clicking the icon Clear.

3. In the Worksheet, enter this query:

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID FROM EMPLOYEES;

4. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing the
results of the query, which are similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Donald OConnell 50
Douglas Grant 50
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20
Susan Mavris 40
Hermann Baer 70
Shelley Higgins 110
William Gietz 110
Steven King 90
Neena Kochhar 90

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Lex De Haan 90
...
Kevin Feeney 50

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 31

107 rows selected.

Displaying Selected Columns Under New Headings
In displayed query results, default column headings are column names. To display a column
under a new heading, specify the new heading (alias) immediately after the column name. The
alias renames the column for the duration of the query, but does not change its name in the
database.

The query in Example 2-5 selects the same columns as the query in "Tutorial: Selecting
Specific Columns of a Table", but it also specifies aliases for them. Because the aliases are not
enclosed in double quotation marks, they are displayed in uppercase letters.

If you enclose column aliases in double quotation marks, case is preserved, and the aliases
can include spaces, as in Example 2-6.

See Also

Oracle AI Database SQL Language Reference for more information about the
SELECT statement, including the column alias (c_alias)

Example 2-5 Displaying Selected Columns Under New Headings

SELECT FIRST_NAME First, LAST_NAME last, DEPARTMENT_ID DepT
FROM EMPLOYEES;

Result is similar to:

FIRST LAST DEPT
-------------------- ------------------------- ----------
Donald OConnell 50
Douglas Grant 50
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20
Susan Mavris 40
Hermann Baer 70
Shelley Higgins 110
William Gietz 110
Steven King 90
Neena Kochhar 90

FIRST LAST DEPT
-------------------- ------------------------- ----------
Lex De Haan 90
...
Kevin Feeney 50

107 rows selected.

Example 2-6 Preserving Case and Including Spaces in Column Aliases

SELECT FIRST_NAME "Given Name", LAST_NAME "Family Name"
FROM EMPLOYEES;

Result is similar to:

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 31

Given Name Family Name
-------------------- -------------------------
Donald OConnell
Douglas Grant
Jennifer Whalen
Michael Hartstein
Pat Fay
Susan Mavris
Hermann Baer
Shelley Higgins
William Gietz
Steven King
Neena Kochhar

Given Name Family Name
-------------------- -------------------------
Lex De Haan
...
Kevin Feeney

107 rows selected.

Selecting Data that Satisfies Specified Conditions
To select only data that matches a specified condition, include the WHERE clause in the
SELECT statement.

The condition in the WHERE clause can be any SQL condition (for information about SQL
conditions, see Oracle AI Database SQL Language Reference).

The query in Example 2-7 selects data only for employees in department 90.

To select data only for employees in departments 100, 110, and 120, use this WHERE clause:

WHERE DEPARTMENT_ID IN (100, 110, 120);

The query in Example 2-8 selects data only for employees whose last names start with "Ma".

To select data only for employees whose last names include "ma", use this WHERE clause:

WHERE LAST_NAME LIKE '%ma%';

The query in Example 2-9 tests for two conditions—whether the salary is at least 11000, and
whether the commission percentage is not null.

See Also

• Oracle AI Database SQL Language Reference for more information about the
SELECT statement, including the WHERE clause

• Oracle AI Database SQL Language Reference for more information about SQL
conditions

Example 2-7 Selecting Data from One Department

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90;

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 31

Result is similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Steven King 90
Neena Kochhar 90
Lex De Haan 90

3 rows selected.

Example 2-8 Selecting Data for Last Names that Start with the Same Substring

SELECT FIRST_NAME, LAST_NAME
FROM EMPLOYEES
WHERE LAST_NAME LIKE 'Ma%';

Result is similar to:

FIRST_NAME LAST_NAME
-------------------- -------------------------
Jason Mallin
Steven Markle
James Marlow
Mattea Marvins
Randall Matos
Susan Mavris

6 rows selected.

Example 2-9 Selecting Data that Satisfies Two Conditions

SELECT FIRST_NAME, LAST_NAME, SALARY, COMMISSION_PCT "%"
FROM EMPLOYEES
WHERE (SALARY >= 11000) AND (COMMISSION_PCT IS NOT NULL);

Result is similar to:

FIRST_NAME LAST_NAME SALARY %
-------------------- ------------------------- ---------- ----------
John Russell 14000 .4
Karen Partners 13500 .3
Alberto Errazuriz 12000 .3
Gerald Cambrault 11000 .3
Lisa Ozer 11500 .25
Ellen Abel 11000 .3

6 rows selected.

Sorting Selected Data
When query results are displayed, records can be in any order, unless you specify their order
with the ORDER BY clause.

The query results in Example 2-10 are sorted by LAST_NAME, in ascending order (the default).

Alternatively, in SQL Developer, you can omit the ORDER BY clause and double-click the
name of the column to sort.

The sort criterion need not be included in the select list, as Example 2-11 shows.

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 31

See Also

Oracle AI Database SQL Language Reference for more information about the
SELECT statement, including the ORDER BY clause

Example 2-10 Sorting Selected Data by LAST_NAME

SELECT FIRST_NAME, LAST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Ellen Abel 11-MAY-04
Sundar Ande 24-MAR-08
Mozhe Atkinson 30-OCT-05
David Austin 25-JUN-05
Hermann Baer 07-JUN-02
Shelli Baida 24-DEC-05
Amit Banda 21-APR-08
Elizabeth Bates 24-MAR-07
...
FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Jose Manuel Urman 07-MAR-06
Peter Vargas 09-JUL-06
Clara Vishney 11-NOV-05
Shanta Vollman 10-OCT-05
Alana Walsh 24-APR-06
Matthew Weiss 18-JUL-04
Jennifer Whalen 17-SEP-03
Eleni Zlotkey 29-JAN-08

107 rows selected

Example 2-11 Sorting Selected Data by an Unselected Column

SELECT FIRST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME HIRE_DATE
-------------------- ---------
Ellen 11-MAY-04
Sundar 24-MAR-08
Mozhe 30-OCT-05
David 25-JUN-05
Hermann 07-JUN-02
Shelli 24-DEC-05
Amit 21-APR-08
Elizabeth 24-MAR-07
...
FIRST_NAME HIRE_DATE
-------------------- ---------
Jose Manuel 07-MAR-06
Peter 09-JUL-06

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 31

Clara 11-NOV-05
Shanta 10-OCT-05
Alana 24-APR-06
Matthew 18-JUL-04
Jennifer 17-SEP-03
Eleni 29-JAN-08

107 rows selected.

Selecting Data from Multiple Tables
To select data from multiple tables, you use a query that is called a join. The tables in a join
must share at least one column name.

Suppose that you want to select the FIRST_NAME, LAST_NAME, and DEPARTMENT_NAME
of every employee. FIRST_NAME and LAST_NAME are in the EMPLOYEES table, and
DEPARTMENT_NAME is in the DEPARTMENTS table. Both tables have DEPARTMENT_ID.
You can use the query in Example 2-12.

Table-name qualifiers are optional for column names that appear in only one table of a join, but
are required for column names that appear in both tables. The following query is equivalent to
the query in Example 2-12:

SELECT FIRST_NAME "First",
LAST_NAME "Last",
DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
ORDER BY DEPARTMENT_NAME, LAST_NAME;

To make queries that use qualified column names more readable, use table aliases, as in the
following example:

SELECT FIRST_NAME "First",
LAST_NAME "Last",
DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES e, DEPARTMENTS d
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID
ORDER BY d.DEPARTMENT_NAME, e.LAST_NAME;

Although you create the aliases in the FROM clause, you can use them earlier in the query, as
in the following example:

SELECT e.FIRST_NAME "First",
e.LAST_NAME "Last",
d.DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES e, DEPARTMENTS d
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID
ORDER BY d.DEPARTMENT_NAME, e.LAST_NAME;

See Also

Oracle AI Database SQL Language Reference for more information about joins

Example 2-12 Selecting Data from Two Tables (Joining Two Tables)

SELECT EMPLOYEES.FIRST_NAME "First",
EMPLOYEES.LAST_NAME "Last",

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 31

DEPARTMENTS.DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
ORDER BY DEPARTMENTS.DEPARTMENT_NAME, EMPLOYEES.LAST_NAME;

Result:

First Last Dept. Name
-------------------- ------------------------- ------------------------------
William Gietz Accounting
Shelley Higgins Accounting
Jennifer Whalen Administration
Lex De Haan Executive
Steven King Executive
Neena Kochhar Executive
John Chen Finance
...
Jose Manuel Urman Finance
Susan Mavris Human Resources
David Austin IT
...
Valli Pataballa IT
Pat Fay Marketing
Michael Hartstein Marketing
Hermann Baer Public Relations
Shelli Baida Purchasing
...
Sigal Tobias Purchasing
Ellen Abel Sales
...
Eleni Zlotkey Sales
Mozhe Atkinson Shipping
...
Matthew Weiss Shipping

106 rows selected.

Using Operators and Functions in Queries
The select_list of a query can include SQL expressions, which can include SQL operators and
SQL functions. These operators and functions can have table data as operands and
arguments. The SQL expressions are evaluated, and their values appear in the results of the
query.

See Also

• Oracle AI Database SQL Language Reference for more information about SQL
operators

• Oracle AI Database SQL Language Reference for more information about SQL
functions

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 31

Using Arithmetic Operators in Queries
The basic arithmetic operators—+ (addition), - (subtraction), * (multiplication), and / (division)—
operate on column values.

The query in Example 2-13 displays LAST_NAME, SALARY (monthly pay), and annual pay for
each employee in department 90, in descending order of SALARY.

Example 2-13 Using an Arithmetic Expression in a Query

SELECT LAST_NAME,
SALARY "Monthly Pay",
SALARY * 12 "Annual Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90
ORDER BY SALARY DESC;

Result:

LAST_NAME Monthly Pay Annual Pay
------------------------- ----------- ----------
King 24000 288000
De Haan 17000 204000
Kochhar 17000 204000

Using Numeric Functions in Queries
Numeric functions accept numeric input and return numeric values. Each numeric function
returns a single value for each row that is evaluated.

The numeric functions that SQL supports are listed and described in Oracle AI Database SQL
Language Reference.

The query in Example 2-14 uses the numeric function ROUND to display the daily pay of each
employee in department 100, rounded to the nearest cent.

The query in Example 2-15 uses the numeric function TRUNC to display the daily pay of each
employee in department 100, truncated to the nearest dollar.

See Also

Oracle AI Database SQL Language Reference for more information about SQL
numeric functions

Example 2-14 Rounding Numeric Data

SELECT LAST_NAME,
ROUND (((SALARY * 12)/365), 2) "Daily Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME Daily Pay
------------------------- ----------
Chen 269.59

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 31

Faviet 295.89
Greenberg 394.52
Popp 226.85
Sciarra 253.15
Urman 256.44

6 rows selected.

Example 2-15 Truncating Numeric Data

SELECT LAST_NAME,
TRUNC ((SALARY * 12)/365) "Daily Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME Daily Pay
------------------------- ----------
Chen 269
Faviet 295
Greenberg 394
Popp 226
Sciarra 253
Urman 256

6 rows selected.

Using the Concatenation Operator in Queries
The concatenation operator (||) combines two strings into one string, by appending the
second string to the first. For example, 'a'||'b'='ab'. You can use this operator to combine
information from two columns or expressions in the same column of a query result.

The query in Example 2-16 concatenates the first name, a space, and the last name of each
selected employee.

See Also

Oracle AI Database SQL Language Reference for more information about the
concatenation operator

Example 2-16 Concatenating Character Data

SELECT FIRST_NAME || ' ' || LAST_NAME "Name"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

Name
--
John Chen
Daniel Faviet
Nancy Greenberg
Luis Popp
Ismael Sciarra

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 31

Jose Manuel Urman

6 rows selected.

Using Character Functions in Queries
Character functions accept character input. Most return character values, but some return
numeric values. Each character function returns a single value for each row that is evaluated.

The character functions that SQL supports are listed and described in Oracle AI Database SQL
Language Reference.

The functions UPPER, INITCAP, and LOWER display their character arguments in uppercase,
initial capital, and lowercase, respectively.

The query in Example 2-17 displays LAST_NAME in uppercase, FIRST_NAME with the first
character in uppercase and all others in lowercase, and EMAIL in lowercase.

See Also

Oracle AI Database SQL Language Reference for more information about SQL
character functions

Example 2-17 Changing the Case of Character Data

SELECT UPPER(LAST_NAME) "Last",
INITCAP(FIRST_NAME) "First",
LOWER(EMAIL) "E-Mail"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY EMAIL;

Result:

Last First E-Mail
------------------------- -------------------- -------------------------
FAVIET Daniel dfaviet
SCIARRA Ismael isciarra
CHEN John jchen
URMAN Jose Manuel jmurman
POPP Luis lpopp
GREENBERG Nancy ngreenbe

6 rows selected.

Using Datetime Functions in Queries
Datetime functions operate on DATE, time stamp, and interval values. Each datetime function
returns a single value for each row that is evaluated.

The datetime functions that SQL supports are listed and described in Oracle AI Database SQL
Language Reference.

For each DATE and time stamp value, Oracle AI Database stores this information:

• Year

• Month

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 31

• Date

• Hour

• Minute

• Second

For each time stamp value, the database also stores the fractional part of the second,
whose precision you can specify. To store the time zone also, use the data type
TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE.

For more information about the DATE data type, see Oracle AI Database SQL Language
Reference.

For more information about the TIMESTAMP data type, see Oracle AI Database SQL
Language Reference.

For information about the other time stamp data types and the interval data types, see Oracle
AI Database SQL Language Reference.

The query in Example 2-18 uses the EXTRACT and SYSDATE functions to show how many
years each employee in department 100 has been employed. The SYSDATE function returns
the current date of the system clock as a DATE value. For more information about the
SYSDATE function, see Oracle AI Database SQL Language Reference. For information about
the EXTRACT function, see Oracle AI Database SQL Language Reference.

The query in Example 2-19 uses the SYSTIMESTAMP function to display the current system
date and time. The SYSTIMESTAMP function returns a TIMESTAMP value. For information
about the SYSTIMESTAMP function, see Oracle AI Database SQL Language Reference.

The table in the FROM clause of the query, DUAL, is a one-row table that the database creates
automatically along with the data dictionary. Select from DUAL when you want to compute a
constant expression with the SELECT statement. Because DUAL has only one row, the
constant is returned only once. For more information about selecting from DUAL, see Oracle AI
Database SQL Language Reference.

See Also

Oracle AI Database SQL Language Reference for more information about SQL
datetime functions

Example 2-18 Displaying the Number of Years Between Dates

SELECT LAST_NAME,
(EXTRACT(YEAR FROM SYSDATE) - EXTRACT(YEAR FROM HIRE_DATE)) "Years Employed"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY "Years Employed";

Result:

LAST_NAME Years Employed
------------------------- --------------
Popp 5
Urman 6
Chen 7
Sciarra 7
Greenberg 10
Faviet 10

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 31

6 rows selected.

Example 2-19 Displaying System Date and Time

SELECT EXTRACT(HOUR FROM SYSTIMESTAMP) || ':' ||
EXTRACT(MINUTE FROM SYSTIMESTAMP) || ':' ||
ROUND(EXTRACT(SECOND FROM SYSTIMESTAMP), 0) || ', ' ||
EXTRACT(MONTH FROM SYSTIMESTAMP) || '/' ||
EXTRACT(DAY FROM SYSTIMESTAMP) || '/' ||
EXTRACT(YEAR FROM SYSTIMESTAMP) "System Time and Date"
FROM DUAL;

Results depend on current SYSTIMESTAMP value, but have this format:

System Time and Date

18:17:53, 12/27/2012

Using Conversion Functions in Queries
Conversion functions convert one data type to another.

The conversion functions that SQL supports are listed and described in Oracle AI Database
SQL Language Reference.

The query in Example 2-20 uses the TO_CHAR function to convert HIRE_DATE values (which
are of type DATE) to character values that have the format FMMonth DD YYYY . FM removes
leading and trailing blanks from the month name. FMMonth DD YYYY is an example of a
datetime format model. For information about datetime format models, see Oracle AI
Database SQL Language Reference.

The query in Example 2-21 uses the TO_NUMBER function to convert POSTAL_CODE values
(which are of type VARCHAR2) to values of type NUMBER, which it uses in calculations.

See Also

• Oracle AI Database SQL Language Reference for more information about SQL
conversion functions

• "About the NLS_DATE_FORMAT Parameter"

Example 2-20 Converting Dates to Characters Using a Format Template

SELECT LAST_NAME,
HIRE_DATE,
TO_CHAR(HIRE_DATE, 'FMMonth DD YYYY') "Date Started"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME HIRE_DATE Date Started
------------------------- --------- -----------------
Chen 28-SEP-05 September 28 2005
Faviet 16-AUG-02 August 16 2002
Greenberg 17-AUG-02 August 17 2002
Popp 07-DEC-07 December 7 2007

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 31

Sciarra 30-SEP-05 September 30 2005
Urman 07-MAR-06 March 7 2006

6 rows selected.

Example 2-21 Converting Characters to Numbers

SELECT CITY,
POSTAL_CODE "Old Code",
TO_NUMBER(POSTAL_CODE) + 1 "New Code"
FROM LOCATIONS
WHERE COUNTRY_ID = 'US'
ORDER BY POSTAL_CODE;

Result:

CITY Old Code New Code
------------------------------ ------------ ----------
Southlake 26192 26193
South Brunswick 50090 50091
Seattle 98199 98200
South San Francisco 99236 99237

4 rows selected.

Using Aggregate Functions in Queries
An aggregate function takes a group of rows and returns a single result row. The group of rows
can be an entire table or view.

The aggregate functions that SQL supports are listed and described in Oracle AI Database
SQL Language Reference.

Aggregate functions are especially powerful when used with the GROUP BY clause, which
groups query results by one or more columns, with a result for each group.

The query in Example 2-22 uses the COUNT function and the GROUP BY clause to show how
many people report to each manager. The wildcard character, *, represents an entire record.

Example 2-22 shows that one employee does not report to a manager. The following query
selects the first name, last name, and job title of that employee:

COLUMN FIRST_NAME FORMAT A10;
COLUMN LAST_NAME FORMAT A10;
COLUMN JOB_TITLE FORMAT A10;

SELECT e.FIRST_NAME,
e.LAST_NAME,
j.JOB_TITLE
FROM EMPLOYEES e, JOBS j
WHERE e.JOB_ID = j.JOB_ID
AND MANAGER_ID IS NULL;

Result:

FIRST_NAME LAST_NAME JOB_TITLE
---------- ---------- ----------
Steven King President

To have the query return only rows where aggregate values meet specified conditions, use an
aggregate function in the HAVING clause of the query.

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 31

The query in Example 2-23 shows how much each department spends annually on salaries,
but only for departments for which that amount exceeds $1,000,000.

The query in Example 2-24 uses several aggregate functions to show statistics for the salaries
of each JOB_ID.

See Also

Oracle AI Database SQL Language Reference for more information about SQL
aggregate functions

Example 2-22 Counting the Number of Rows in Each Group

SELECT MANAGER_ID "Manager",
COUNT(*) "Number of Reports"
FROM EMPLOYEES
GROUP BY MANAGER_ID
ORDER BY MANAGER_ID;

Result:

 Manager Number of Reports
---------- -----------------
 100 14
 101 5
 102 1
 103 4
 108 5
 114 5
 120 8
 121 8
 122 8
 123 8
 124 8
 145 6
 146 6
 147 6
 148 6
 149 6
 201 1
 205 1
 1

19 rows selected.

Example 2-23 Limiting Aggregate Functions to Rows that Satisfy a Condition

SELECT DEPARTMENT_ID "Department",
SUM(SALARY*12) "All Salaries"
FROM EMPLOYEES
HAVING SUM(SALARY * 12) >= 1000000
GROUP BY DEPARTMENT_ID;

Result:

Department All Salaries
---------- ------------
 50 1876800
 80 3654000

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 31

Example 2-24 Using Aggregate Functions for Statistical Information

SELECT JOB_ID,
COUNT(*) "#",
MIN(SALARY) "Minimum",
ROUND(AVG(SALARY), 0) "Average",
MEDIAN(SALARY) "Median",
MAX(SALARY) "Maximum",
ROUND(STDDEV(SALARY)) "Std Dev"
FROM EMPLOYEES
GROUP BY JOB_ID
ORDER BY JOB_ID;

Result:

JOB_ID # Minimum Average Median Maximum Std Dev
---------- ---------- ---------- ---------- ---------- ---------- ----------
AC_ACCOUNT 1 8300 8300 8300 8300 0
AC_MGR 1 12008 12008 12008 12008 0
AD_ASST 1 4400 4400 4400 4400 0
AD_PRES 1 24000 24000 24000 24000 0
AD_VP 2 17000 17000 17000 17000 0
FI_ACCOUNT 5 6900 7920 7800 9000 766
FI_MGR 1 12008 12008 12008 12008 0
HR_REP 1 6500 6500 6500 6500 0
IT_PROG 5 4200 5760 4800 9000 1926
MK_MAN 1 13000 13000 13000 13000 0
MK_REP 1 6000 6000 6000 6000 0
PR_REP 1 10000 10000 10000 10000 0
PU_CLERK 5 2500 2780 2800 3100 239
PU_MAN 1 11000 11000 11000 11000 0
SA_MAN 5 10500 12200 12000 14000 1525
SA_REP 30 6100 8350 8200 11500 1524
SH_CLERK 20 2500 3215 3100 4200 548
ST_CLERK 20 2100 2785 2700 3600 453
ST_MAN 5 5800 7280 7900 8200 1066

19 rows selected.

Using NULL-Related Functions in Queries
The NULL-related functions facilitate the handling of NULL values.

The NULL-related functions that SQL supports are listed and described in Oracle AI Database
SQL Language Reference.

The query in Example 2-25 returns the last name and commission of the employees whose
last names begin with 'B'. If an employee receives no commission (that is, if
COMMISSION_PCT is NULL), the NVL function substitutes "Not Applicable" for NULL.

The query in Example 2-26 returns the last name, salary, and income of the employees whose
last names begin with 'B', using the NVL2 function: If COMMISSION_PCT is not NULL, the
income is the salary plus the commission; if COMMISSION_PCT is NULL, income is only the
salary.

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 31

See Also

• Oracle AI Database SQL Language Reference for more information about the NVL
function

• Oracle AI Database SQL Language Reference for more information about the
NVL2 function

Example 2-25 Substituting a String for a NULL Value

SELECT LAST_NAME,
NVL(TO_CHAR(COMMISSION_PCT), 'Not Applicable') "COMMISSION"
FROM EMPLOYEES
WHERE LAST_NAME LIKE 'B%'
ORDER BY LAST_NAME;

Result:

LAST_NAME COMMISSION
------------------------- --
Baer Not Applicable
Baida Not Applicable
Banda .1
Bates .15
Bell Not Applicable
Bernstein .25
Bissot Not Applicable
Bloom .2
Bull Not Applicable

9 rows selected.

Example 2-26 Specifying Different Expressions for NULL and Not NULL Values

SELECT LAST_NAME, SALARY,
NVL2(COMMISSION_PCT, SALARY + (SALARY * COMMISSION_PCT), SALARY) INCOME
FROM EMPLOYEES WHERE LAST_NAME LIKE 'B%'
ORDER BY LAST_NAME;

Result:

LAST_NAME SALARY INCOME
------------------------- ---------- ----------
Baer 10000 10000
Baida 2900 2900
Banda 6200 6820
Bates 7300 8395
Bell 4000 4000
Bernstein 9500 11875
Bissot 3300 3300
Bloom 10000 12000
Bull 4100 4100

9 rows selected.

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 31

Using CASE Expressions in Queries
A CASE expression lets you use IF ... THEN ... ELSE logic in SQL statements without invoking
subprograms. There are two kinds of CASE expressions, simple and searched.

The query in Example 2-27 uses a simple CASE expression to show the country name for
each country code.

The query in Example 2-28 uses a searched CASE expression to show proposed salary
increases (15%, 10%, 5%, or 0%), based on date ranges associated with length of service.

See Also

• Oracle AI Database SQL Language Reference for more information about CASE
expressions

• Oracle AI Database PL/SQL Language Reference for more information about
CASE expressions

• "Using the DECODE Function in Queries"

• "Using the CASE Statement"

Example 2-27 Using a Simple CASE Expression in a Query

SELECT UNIQUE COUNTRY_ID ID,
 CASE COUNTRY_ID
 WHEN 'AU' THEN 'Australia'
 WHEN 'BR' THEN 'Brazil'
 WHEN 'CA' THEN 'Canada'
 WHEN 'CH' THEN 'Switzerland'
 WHEN 'CN' THEN 'China'
 WHEN 'DE' THEN 'Germany'
 WHEN 'IN' THEN 'India'
 WHEN 'IT' THEN 'Italy'
 WHEN 'JP' THEN 'Japan'
 WHEN 'MX' THEN 'Mexico'
 WHEN 'NL' THEN 'Netherlands'
 WHEN 'SG' THEN 'Singapore'
 WHEN 'UK' THEN 'United Kingdom'
 WHEN 'US' THEN 'United States'
 ELSE 'Unknown'
 END COUNTRY
FROM LOCATIONS
ORDER BY COUNTRY_ID;

Result:

ID COUNTRY
-- --------------
AU Australia
BR Brazil
CA Canada
CH Switzerland
CN China
DE Germany
IN India
IT Italy
JP Japan

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 31

MX Mexico
NL Netherlands
SG Singapore
UK United Kingdom
US United States

14 rows selected.

Example 2-28 Using a Searched CASE Expression in a Query

SELECT LAST_NAME "Name",
HIRE_DATE "Started",
SALARY "Salary",
CASE
 WHEN HIRE_DATE < TO_DATE('01-Jan-03', 'dd-mon-yy')
 THEN TRUNC(SALARY*1.15, 0)
 WHEN HIRE_DATE >= TO_DATE('01-Jan-03', 'dd-mon-yy') AND
 HIRE_DATE < TO_DATE('01-Jan-06', 'dd-mon-yy')
 THEN TRUNC(SALARY*1.10, 0)
 WHEN HIRE_DATE >= TO_DATE('01-Jan-06', 'dd-mon-yy') AND
 HIRE_DATE < TO_DATE('01-Jan-07', 'dd-mon-yy')
 THEN TRUNC(SALARY*1.05, 0)
 ELSE SALARY
END "Proposed Salary"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY HIRE_DATE;

Result:

Name Started Salary Proposed Salary
------------------------- --------- ---------- ---------------
Faviet 16-AUG-02 9000 10350
Greenberg 17-AUG-02 12008 13809
Chen 28-SEP-05 8200 9020
Sciarra 30-SEP-05 7700 8470
Urman 07-MAR-06 7800 8190
Popp 07-DEC-07 6900 6900

6 rows selected.

Using the DECODE Function in Queries
The DECODE function compares an expression to several search values. Whenever the value
of the expression matches a search value, DECODE returns the result associated with that
search value. If DECODE finds no match, then it returns the default value (if specified) or
NULL (if no default value is specified).

The query in Example 2-29 uses the DECODE function to show proposed salary increases for
three different jobs. The expression is JOB_ID; the search values are 'PU_CLERK',
'SH_CLERK', and 'ST_CLERK'; and the default is SALARY.

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 31

Note

The arguments of the DECODE function can be any of the SQL numeric or character
types. Oracle automatically converts the expression and each search value to the data
type of the first search value before comparing. Oracle automatically converts the
return value to the same data type as the first result. If the first result has the data type
CHAR or if the first result is NULL, then Oracle converts the return value to the data
type VARCHAR2.

See Also

• Oracle AI Database SQL Language Reference for information about the DECODE
function

• "Using CASE Expressions in Queries"

Example 2-29 Using the DECODE Function in a Query

SELECT LAST_NAME, JOB_ID, SALARY,
DECODE(JOB_ID,
 'PU_CLERK', SALARY * 1.10,
 'SH_CLERK', SALARY * 1.15,
 'ST_CLERK', SALARY * 1.20,
 SALARY) "Proposed Salary"
FROM EMPLOYEES
WHERE JOB_ID LIKE '%_CLERK'
AND LAST_NAME < 'E'
ORDER BY LAST_NAME;

Result:

LAST_NAME JOB_ID SALARY Proposed Salary
------------------------- ---------- ---------- ---------------
Atkinson ST_CLERK 2800 3360
Baida PU_CLERK 2900 3190
Bell SH_CLERK 4000 4600
Bissot ST_CLERK 3300 3960
Bull SH_CLERK 4100 4715
Cabrio SH_CLERK 3000 3450
Chung SH_CLERK 3800 4370
Colmenares PU_CLERK 2500 2750
Davies ST_CLERK 3100 3720
Dellinger SH_CLERK 3400 3910
Dilly SH_CLERK 3600 4140

11 rows selected.

Chapter 2
Selecting Table Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 31

3
About DML Statements and Transactions

Data manipulation language (DML) statements add, change, and delete database table
data. A transaction is a sequence of one or more SQL statements that Oracle AI Database
treats as a unit: either all of the statements are performed, or none of them are.

About Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements access and manipulate data in existing
tables.

In the SQL*Plus environment, you can enter a DML statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DML statement in the Worksheet.
Alternatively, you can use the SQL Developer Connections frame and tools to access and
manipulate data.

To see the effect of a DML statement in SQL Developer, you might have to select the schema
object type of the changed object in the Connections frame and then click the Refresh icon.

The effect of a DML statement is not permanent until you commit the transaction that includes
it. A transaction is a sequence of SQL statements that Oracle AI Database treats as a unit (it
can be a single DML statement). Until a transaction is committed, it can be rolled back
(undone). For more information about transactions, see "About Transaction Control
Statements".

See Also

Oracle AI Database SQL Language Reference for more information about DML
statements

About the INSERT Statement
The INSERT statement inserts rows into an existing table.

The simplest recommended form of the INSERT statement has this syntax:

INSERT INTO table_name (list_of_columns)
VALUES (list_of_values);

Every column in list_of_columns must have a valid value in the corresponding position in
list_of_values. Therefore, before you insert a row into a table, you must know what columns
the table has, and what their valid values are. To get this information using SQL Developer, see
"Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer". To get this
information using SQL*Plus, use the DESCRIBE statement. For example:

DESCRIBE EMPLOYEES;

Result:

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 13

 Name Null? Type
 --- -------- ------------

 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

The INSERT statement in Example 3-1 inserts a row into the EMPLOYEES table for an
employee for which all column values are known.

You need not know all column values to insert a row into a table, but you must know the values
of all NOT NULL columns. If you do not know the value of a column that can be NULL, you can
omit that column from list_of_columns. Its value defaults to NULL.

The INSERT statement in Example 3-2 inserts a row into the EMPLOYEES table for an
employee for which all column values are known except SALARY. For now, SALARY can have
the value NULL. When you know the salary, you can change it with the UPDATE statement
(see Example 3-4).

The INSERT statement in Example 3-3 tries to insert a row into the EMPLOYEES table for an
employee for which LAST_NAME is not known.

Example 3-1 Using the INSERT Statement When All Information Is Available

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 SALARY,
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 10, -- EMPLOYEE_ID
 'George', -- FIRST_NAME
 'Gordon', -- LAST_NAME
 'GGORDON', -- EMAIL
 '650.506.2222', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 9000, -- SALARY
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Result:

1 row created.

Chapter 3
About Data Manipulation Language (DML) Statements

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 13

Example 3-2 Using the INSERT Statement When Not All Information Is Available

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID, -- Omit SALARY; its value defaults to NULL.
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 20, -- EMPLOYEE_ID
 'John', -- FIRST_NAME
 'Keats', -- LAST_NAME
 'JKEATS', -- EMAIL
 '650.506.3333', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Result:

1 row created.

Example 3-3 Using the INSERT Statement Incorrectly

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME, -- Omit LAST_NAME (error)
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 20, -- EMPLOYEE_ID
 'John', -- FIRST_NAME
 'JOHN', -- EMAIL
 '650.506.3333', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Result:

ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."LAST_NAME")

Chapter 3
About Data Manipulation Language (DML) Statements

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 13

See Also

• Oracle AI Database SQL Language Reference for information about the INSERT
statement

• Oracle AI Database SQL Language Reference for information about data types

• "Tutorial: Adding Rows to Tables with the Insert Row Tool"

About the UPDATE Statement
The UPDATE statement updates (changes the values of) a set of existing table rows.

A simple form of the UPDATE statement has this syntax:

UPDATE table_name
SET column_name = value [, column_name = value]...
[WHERE condition];

Each value must be valid for its column_name. If you include the WHERE clause, the
statement updates column values only in rows that satisfy condition.

The UPDATE statement in Example 3-4 updates the value of the SALARY column in the row
that was inserted into the EMPLOYEES table in Example 3-2, before the salary of the
employee was known.

The UPDATE statement in Example 3-5 updates the commission percentage for every
employee in department 80.

Example 3-4 Using the UPDATE Statement to Add Data

UPDATE EMPLOYEES
SET SALARY = 8500
WHERE LAST_NAME = 'Keats';

Result:

1 row updated.

Example 3-5 Using the UPDATE Statement to Update Multiple Rows

UPDATE EMPLOYEES
SET COMMISSION_PCT = COMMISSION_PCT + 0.05
WHERE DEPARTMENT_ID = 80;

Result:

34 rows updated.

See Also

• Oracle AI Database SQL Language Reference for information about the UPDATE
statement

• Oracle AI Database SQL Language Reference for information about data types

• "Tutorial: Changing Data in Tables in the Data Pane"

Chapter 3
About Data Manipulation Language (DML) Statements

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 13

About the DELETE Statement
The DELETE statement deletes rows from a table.

A simple form of the DELETE statement has this syntax:

DELETE FROM table_name [WHERE condition];

If you include the WHERE clause, the statement deletes only rows that satisfy condition. If you
omit the WHERE clause, the statement deletes all rows from the table, but the empty table still
exists. To delete a table, use the DROP TABLE statement.

The DELETE statement in Example 3-6 deletes the rows inserted in Example 3-1 and
Example 3-2.

Example 3-6 Using the DELETE Statement

DELETE FROM EMPLOYEES
WHERE HIRE_DATE = TO_DATE('01-JAN-07', 'dd-mon-yy');

Result:

2 rows deleted.

See Also

• Oracle AI Database SQL Language Reference for information about the DELETE
statement

• Oracle AI Database SQL Language Reference for information about the DROP
TABLE statement

• "Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool"

About Transaction Control Statements
A transaction is a sequence of one or more SQL statements that Oracle AI Database treats
as a unit: either all of the statements are performed, or none of them are. You need
transactions to model business processes that require that several operations be performed as
a unit.

For example, when a manager leaves the company, a row must be inserted into the
JOB_HISTORY table to show when the manager left, and for every employee who reports to
that manager, the value of MANAGER_ID must be updated in the EMPLOYEES table. To
model this process in an application, you must group the INSERT and UPDATE statements
into a single transaction.

The basic transaction control statements are:

• SAVEPOINT, which marks a savepoint in a transaction—a point to which you can later roll
back. Savepoints are optional, and a transaction can have multiple savepoints.

• COMMIT, which ends the current transaction, makes its changes permanent, erases its
savepoints, and releases its locks.

• ROLLBACK, which rolls back (undoes) either the entire current transaction or only the
changes made after the specified savepoint.

Chapter 3
About Transaction Control Statements

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 13

In the SQL*Plus environment, you can enter a transaction control statement after the SQL>
prompt.

In the SQL Developer environment, you can enter a transaction control statement in the
Worksheet. SQL Developer also has Commit Changes and Rollback Changes icons, which are
explained in "Committing Transactions" and "Rolling Back Transactions".

Caution

If you do not explicitly commit a transaction, and the program terminates abnormally,
then the database automatically rolls back the last uncommitted transaction.

Oracle recommends that you explicitly end transactions in application programs, by
either committing them or rolling them back.

See Also

• Oracle AI Database Concepts for more information about transaction management

• Oracle AI Database SQL Language Reference for more information about
transaction control statements

Committing Transactions
Committing a transaction makes its changes permanent, erases its savepoints, and releases
its locks.

To explicitly commit a transaction, use either the COMMIT statement or (in the SQL Developer
environment) the Commit Changes icon.

Note

Oracle AI Database issues an implicit COMMIT statement before and after any data
definition language (DDL) statement. For information about DDL statements, see
"About Data Definition Language (DDL) Statements".

Before you commit a transaction:

• Your changes are visible to you, but not to other users of the database instance.

• Your changes are not final—you can undo them with a ROLLBACK statement.

After you commit a transaction:

• Your changes are visible to other users, and to their statements that run after you commit
your transaction.

• Your changes are final—you cannot undo them with a ROLLBACK statement.

Example 3-7 adds one row to the REGIONS table (a very simple transaction), checks the
result, and then commits the transaction.

Chapter 3
Committing Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 13

Example 3-7 Committing a Transaction

Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa

4 rows selected.

Transaction (add row to table):

INSERT INTO regions (region_id, region_name) VALUES (5, 'Africa');

Result:

1 row created.

Check that row was added:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

Commit transaction:

COMMIT;

Result:

Commit complete.

See Also

Oracle AI Database SQL Language Reference for information about the COMMIT
statement

Chapter 3
Committing Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 13

Rolling Back Transactions
Rolling back a transaction undoes its changes. You can roll back the entire current transaction,
or you can roll it back only to a specified savepoint.

To roll back the current transaction only to a specified savepoint, you must use the ROLLBACK
statement with the TO SAVEPOINT clause.

To roll back the entire current transaction, use either the ROLLBACK statement without the TO
SAVEPOINT clause, or (in the SQL Developer environment) the Rollback Changes icon.

Rolling back the entire current transaction:

• Ends the transaction

• Reverses all of its changes

• Erases all of its savepoints

• Releases any transaction locks

Rolling back the current transaction only to the specified savepoint:

• Does not end the transaction

• Reverses only the changes made after the specified savepoint

• Erases only the savepoints set after the specified savepoint (excluding the specified
savepoint itself)

• Releases all table and row locks acquired after the specified savepoint

Other transactions that have requested access to rows locked after the specified savepoint
must continue to wait until the transaction is either committed or rolled back. Other
transactions that have not requested the rows can request and access the rows
immediately.

To see the effect of a rollback in SQL Developer, you might have to click the Refresh icon.

As a result of Example 3-7, the REGIONS table has a region called 'Middle East and Africa' and
a region called 'Africa'. Example 3-8 corrects this problem (a very simple transaction) and
checks the change, but then rolls back the transaction and checks the rollback.

Example 3-8 Rolling Back an Entire Transaction

Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

Transaction (change table):

Chapter 3
Rolling Back Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 13

UPDATE REGIONS
SET REGION_NAME = 'Middle East'
WHERE REGION_NAME = 'Middle East and Africa';

Result:

1 row updated.

Check change:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Roll back transaction:

ROLLBACK;

Result:

Rollback complete.

Check rollback:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

See Also

Oracle AI Database SQL Language Reference for information about the ROLLBACK
statement

Setting Savepoints in Transactions
The SAVEPOINT statement marks a savepoint in a transaction—a point to which you can
later roll back. Savepoints are optional, and a transaction can have multiple savepoints.

Chapter 3
Setting Savepoints in Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 13

Example 3-9 does a transaction that includes several DML statements and several savepoints,
and then rolls back the transaction to one savepoint, undoing only the changes made after that
savepoint.

Example 3-9 Rolling Back a Transaction to a Savepoint

Check REGIONS table before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

Check countries in region 4 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 4
Israel IL 4
Kuwait KW 4
Nigeria NG 4
Zambia ZM 4
Zimbabwe ZW 4

6 rows selected.

Check countries in region 5 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

no rows selected

Transaction, with several savepoints:

UPDATE REGIONS
SET REGION_NAME = 'Middle East'
WHERE REGION_NAME = 'Middle East and Africa';

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'ZM';

Chapter 3
Setting Savepoints in Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 13

SAVEPOINT zambia;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'NG';
SAVEPOINT nigeria;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'ZW';
SAVEPOINT zimbabwe;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'EG';
SAVEPOINT egypt;

Check REGIONS table after transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Check countries in region 4 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Israel IL 4
Kuwait KW 4

2 rows selected.

Check countries in region 5 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 5
Nigeria NG 5

Chapter 3
Setting Savepoints in Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 13

Zambia ZM 5
Zimbabwe ZW 5

4 rows selected.

ROLLBACK TO SAVEPOINT nigeria;

Check REGIONS table after rollback:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Check countries in region 4 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 4
Israel IL 4
Kuwait KW 4
Zimbabwe ZW 4

4 rows selected.

Check countries in region 5 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Nigeria NG 5
Zambia ZM 5

2 rows selected.

Chapter 3
Setting Savepoints in Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 13

See Also

Oracle AI Database SQL Language Reference for information about the SAVEPOINT
statement

Chapter 3
Setting Savepoints in Transactions

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 13

4
Creating and Managing Schema Objects

To create, change, and drop schema objects, you use data definition language (DDL)
statements.

About Data Definition Language (DDL) Statements
Data definition language (DDL) statements create, change, and drop schema objects.
Before and after a DDL statement, the database issues an implicit COMMIT statement;
therefore, you cannot roll back a DDL statement.

Note

When creating schema objects, you must observe the schema object naming rules in
Oracle AI Database SQL Language Reference.

In the SQL*Plus environment, you can enter a DDL statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DDL statement in the Worksheet.
Alternatively, you can use SQL Developer tools to create, change, and drop objects.

Some DDL statements that create schema objects have an optional OR REPLACE clause,
which allows a statement to replace an existing schema object with another that has the same
name and type. When SQL Developer generates code for one of these statements, it always
includes the OR REPLACE clause.

To see the effect of a DDL statement in SQL Developer, you might have to select the schema
object type of the newly created object in the Connections frame and then click the Refresh
icon.

See Also

• Oracle AI Database SQL Language Reference for more information about DDL
statements

• "Committing Transactions"

Creating and Managing Tables
Tables are the basic units of data storage in Oracle AI Database. Tables hold all user-
accessible data. Each table contains rows that represent individual data records. Rows are
composed of columns that represent the fields of the records.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 26

Note

To complete the tutorials in this document, the hr sample schema must be installed
and you must be connected to the database as the user HR from SQL Developer.

See Also

• "Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer"

• Oracle AI Database Concepts for general information about tables

About SQL Data Types
When you create a table, you must specify the SQL data type for each column, which
determines what values the column can contain.

For example, a column of type DATE can contain the value '01-MAY-05', but it cannot contain
the numeric value 2 or the character value 'shoe'. SQL data types fall into two categories: built-
in and user-defined. (PL/SQL has additional data types—see "About PL/SQL Data Types".)

See Also

• Oracle AI Database SQL Language Reference for a summary of built-in SQL data
types

• Oracle AI Database Concepts for introductions to each of the built-in SQL data
types

• Oracle AI Database SQL Language Reference for more information about user-
defined data types

• "About PL/SQL Data Types"

Creating Tables
To create tables, use either the SQL Developer tool Create Table or the DDL statement
CREATE TABLE.

This section shows how to use both of these ways to create these tables, which will contain
data about employee evaluations:

• PERFORMANCE_PARTS, which contains the categories of employee performance that
are evaluated and their relative weights

• EVALUATIONS, which contains employee information, evaluation date, job, manager, and
department

• SCORES, which contains the scores assigned to each performance category for each
evaluation

These tables appear in many tutorials and examples in this document.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 26

Tutorial: Creating a Table with the Create Table Tool
This tutorial shows how to create the PERFORMANCE_PARTS table using the SQL Developer tool
Create Table.

To create the PERFORMANCE_PARTS table using the Create Table tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Tables.

3. In the list of choices, click New Table.

The Create Table window opens, with default values for a new table, which has only one
row.

4. For Schema, accept the default value, HR.

5. For Name, enter PERFORMANCE_PARTS.

6. In the default row:

• For PK (primary key), accept the default option, deselected.

• For Column Name, enter PERFORMANCE_ID.

• For Type, accept the default value, VARCHAR2.

• For Size, enter 2.

• For Not Null, accept the default option, deselected.

7. Click Add Column.

8. For Column Name, enter NAME.

9. For Type, accept the default value, VARCHAR2.

10. For Size, enter 80.

11. Click Add Column.

12. For Column Name, enter WEIGHT.

13. For Type, select NUMBER from the menu.

14. Click OK.

The table PERFORMANCE_PARTS is created. Its name appears under Tables in the
Connections frame.

To see the CREATE TABLE statement for creating this table, select PERFORMANCE_PARTS
and click the tab SQL.

Creating Tables with the CREATE TABLE Statement
This section shows how to use the CREATE TABLE statement to create the EVALUATIONS
and SCORES tables.

The CREATE TABLE statement in Example 4-1 creates the EVALUATIONS table.

The CREATE TABLE statement in Example 4-2 creates the SCORES table.

In SQL Developer, in the Connections frame, if you expand Tables, you can see the tables
EVALUATIONS and SCORES.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 26

Example 4-1 Creating the EVALUATIONS Table with CREATE TABLE

CREATE TABLE EVALUATIONS (
 EVALUATION_ID NUMBER(8,0),
 EMPLOYEE_ID NUMBER(6,0),
 EVALUATION_DATE DATE,
 JOB_ID VARCHAR2(10),
 MANAGER_ID NUMBER(6,0),
 DEPARTMENT_ID NUMBER(4,0),
 TOTAL_SCORE NUMBER(3,0)
);

Result:

Table created.

Example 4-2 Creating the SCORES Table with CREATE TABLE

CREATE TABLE SCORES (
 EVALUATION_ID NUMBER(8,0),
 PERFORMANCE_ID VARCHAR2(2),
 SCORE NUMBER(1,0)
);

Result:

Table created.

See Also

Oracle AI Database SQL Language Reference for information about the CREATE
TABLE statement

Ensuring Data Integrity in Tables
To ensure that the data in your tables satisfies the business rules that your application models,
you can use constraints, application logic, or both.

Tip

Wherever possible, use constraints instead of application logic. Oracle AI Database
checks that all data obeys constraints much faster than application logic can.

See Also

• Oracle AI Database Concepts for additional general information about data
integrity

• Oracle AI Database SQL Language Reference for syntactic information about
constraints

• Oracle AI Database Development Guide for information about enabling and
disabling constraints

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 26

About Constraints
Constraints restrict the values that columns can have. Trying to change the data in a way that
violates a constraint causes an error and rolls back the change. Trying to add a constraint to a
populated table causes an error if existing data violates the constraint.

Constraints can be enabled and disabled. By default, they are created in the enabled state.

The constraint types are:

• Not Null, which prevents a value from being null

In the EMPLOYEES table, the column LAST_NAME has the NOT NULL constraint, which
enforces the business rule that every employee must have a last name.

• Unique, which prevents multiple rows from having the same value in the same column or
combination of columns, but allows some values to be null

In the EMPLOYEES table, the column EMAIL has the UNIQUE constraint, which enforces
the business rule that an employee can have no email address, but cannot have the same
email address as another employee.

• Primary Key, which is a combination of NOT NULL and UNIQUE

In the EMPLOYEES table, the column EMPLOYEE_ID has the PRIMARY KEY constraint,
which enforces the business rule that every employee must have a unique employee
identification number.

• Foreign Key, which requires values in one table to match values in another table

In the EMPLOYEES table, the column JOB_ID has a FOREIGN KEY constraint that
references the JOBS table, which enforces the business rule that an employee cannot
have a JOB_ID that is not in the JOBS table.

• Check, which requires that a value satisfy a specified condition

The EMPLOYEES table does not have CHECK constraints. However, suppose that
EMPLOYEES needs a new column, EMPLOYEE_AGE, and that every employee must be
at least 18. The constraint CHECK (EMPLOYEE_AGE >= 18) enforces the business rule.

Tip

Use check constraints only when other constraint types cannot provide the
necessary checking.

• REF, which further describes the relationship between a REF column and the object that it
references

A REF column references an object in another object type or in a relational table.

For information about REF constraints, see Oracle AI Database Concepts.

See Also

• Oracle AI Database SQL Language Reference for syntactic information about
constraints

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 26

Tutorial: Adding Constraints to Existing Tables
This tutorial shows how to add constraints to existing tables using both SQL Developer tools
and the ALTER TABLE statement.

To add constraints to existing tables, use either SQL Developer tools or the DDL statement
ALTER TABLE. This topic shows how to use both of these ways to add constraints to the
tables created in "Creating Tables".

This tutorial has several procedures. The first procedure uses the Edit Table tool to add a Not
Null constraint to the NAMES column of the PERFORMANCE_PARTS table. The remaining procedures
show how to use other tools to add constraints; however, you could add the same constraints
using the Edit Table tool.

Note

After any step of the tutorial, you can view the constraints that a table has:

1. In the Connections frame, select the name of the table.

2. In the right frame, click the tab Constraints.

For more information about viewing table properties and data, see "Tutorial: Viewing
EMPLOYEES Table Properties and Data with SQL Developer".

To add a Not Null constraint using the Edit Table tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click PERFORMANCE_PARTS.

4. In the list of choices, click Edit.

5. In the Edit Table window, click the column NAME.

6. Select the property Not Null.

7. Click OK.

The Not Null constraint is added to the NAME column of the PERFORMANCE_PARTS table.

The following procedure uses the ALTER TABLE statement to add a Not Null constraint to the
WEIGHT column of the PERFORMANCE_PARTS table.

To add a Not Null constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE PERFORMANCE_PARTS
MODIFY WEIGHT NOT NULL;

3. Click the icon Run Statement.

The statement runs, adding the Not Null constraint to the WEIGHT column of the
PERFORMANCE_PARTS table.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 26

The following procedure uses the Add Unique tool to add a Unique constraint to the SCORES
table.

To add a Unique constraint using the Add Unique tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click SCORES.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Unique.

6. In the Add Unique window:

a. For Constraint Name, enter SCORES_EVAL_PERF_UNIQUE.

b. For Column 1, select EVALUATION_ID from the menu.

c. For Column 2, select PERFORMANCE_ID from the menu.

d. Click Apply.

7. In the Confirmation window, click OK.

A unique constraint named SCORES_EVAL_PERF_UNIQUE is added to the SCORES table.

The following procedure uses the Add Primary Key tool to add a Primary Key constraint to the
PERFORMANCE_ID column of the PERFORMANCE_PARTS table.

To add a Primary Key constraint using the Add Primary Key tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click PERFORMANCE_PARTS.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Primary Key.

6. In the Add Primary Key window:

a. For Primary Key Name, enter PERF_PERF_ID_PK.

b. For Column 1, select PERFORMANCE_ID from the menu.

c. Click Apply.

7. In the Confirmation window, click OK.

A primary key constraint named PERF_PERF_ID_PK is added to the PERFORMANCE_ID column
of the PERFORMANCE_PARTS table.

The following procedure uses the ALTER TABLE statement to add a Primary Key constraint to
the EVALUATION_ID column of the EVALUATIONS table.

To add a Primary Key constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EVAL_ID_PK PRIMARY KEY (EVALUATION_ID);

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 26

3. Click the icon Run Statement.

The statement runs, adding the Primary Key constraint to the EVALUATION_ID column of the
EVALUATIONS table.

The following procedure uses the Add Foreign Key tool to add two Foreign Key constraints to
the SCORES table.

To add two Foreign Key constraints using the Add Foreign Key tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click SCORES.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Foreign Key.

6. In the Add Foreign Key window:

a. For Constraint Name, enter SCORES_EVAL_FK.

b. For Column Name, select EVALUATION_ID from the menu.

c. For References Table Name, select EVALUATIONS from the menu.

d. For Referencing Column, select EVALUATION_ID from the menu.

e. Click Apply.

7. In the Confirmation window, click OK.

A foreign key constraint named SCORES_EVAL_FK is added to the EVALUTION_ID column of
the SCORES table, referencing the EVALUTION_ID column of the EVALUATIONS table.

The following steps add another foreign key constraint to the SCORES table.

8. In the list of tables, right-click SCORES.

9. In the list of tables, select Constraint.

10. In the list of choices, click Add Foreign Key.

The Add Foreign Key window opens.

11. In the Add Foreign Key window:

a. For Constraint Name, enter SCORES_PERF_FK.

b. For Column Name, select PERFORMANCE_ID from the menu.

c. For Reference Table Name, select PERFORMANCE_PARTS from the menu.

d. For Referencing Column, select PERFORMANCE_ID from the menu.

e. Click Apply.

12. In the Confirmation window, click OK.

A foreign key constraint named SCORES_PERF_FK is added to the EVALUTION_ID column of
the SCORES table, referencing the EVALUTION_ID column of the EVALUATIONS table.

The following procedure uses the ALTER TABLE statement to add a Foreign Key constraint to
the EMPLOYEE_ID column of the EVALUATIONS table, referencing the EMPLOYEE_ID column of the
EMPLOYEES table.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 26

To add a Foreign Key constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EMP_ID_FK FOREIGN KEY (EMPLOYEE_ID)
REFERENCES EMPLOYEES (EMPLOYEE_ID);

3. Click the icon Run Statement.

The statement runs, adding the Foreign Key constraint to the EMPLOYEE_ID column of the
EVALUATIONS table, referencing the EMPLOYEE_ID column of the EMPLOYEES table.

The following procedure uses the Add Check tool to add a Check constraint to the SCORES
table.

To add a Check constraint using the Add Check tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click SCORES.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Check.

6. In the Add Check window:

a. For Constraint Name, enter SCORE_VALID.

b. For Check Condition, enter score >= 0 and score <+ 9.

c. For Status, accept the default, ENABLE.

d. Click Apply.

7. In the Confirmation window, click OK.

A Check constraint named SCORE_VALID is added to the SCORES table.

See Also

• Oracle AI Database SQL Language Reference for more information about the
ALTER TABLE statement

• Oracle AI Database SQL Language Reference for information about adding
constraints to a table when you create it with the CREATE TABLE statement

Tutorial: Adding Rows to Tables with the Insert Row Tool
This tutorial shows how to use the Insert Row tool to add six populated rows to the
PERFORMANCE_PARTS table.

To add rows to the PERFORMANCE_PARTS table using the Insert Row tool:

1. In the Connections frame, expand hr_conn.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 26

2. In the list of schema object types, expand Tables.

3. In the list of tables, select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

The Data pane appears, showing the names of the columns of the
PERFORMANCE_PARTS table and no rows.

5. In the Data pane, click the icon Insert Row.

A new row appears, with empty columns. A green border around the row number indicates
that the insertion has not been committed.

6. Click the cell under the column heading PERFORMANCE_ID.

7. Type the value of PERFORMANCE_ID: WM

8. Either press the key Tab or click the cell under the column heading NAME.

9. Type the value of NAME: Workload Management

10. Either press the key Tab or click the cell under the column heading WEIGHT.

11. Type the value of WEIGHT: 0.2

12. Press the key Enter.

13. Add and populate a second row by repeating steps 5 through 12 with these values:

• For PERFORMANCE_ID, type BR.

• For NAME, type Building Relationships.

• For WEIGHT, type 0.2.

14. Add and populate a third row by repeating steps 5 through 12 with these values:

• For PERFORMANCE_ID, type CF.

• For NAME, type Customer Focus.

• For WEIGHT, type 0.2.

15. Add and populate a fourth row by repeating steps 5 through 12 with these values:

• For PERFORMANCE_ID, type CM.

• For NAME, type Communication.

• For WEIGHT, type 0.2.

16. Add and populate a fifth row by repeating steps 5 through 12 with these values:

• For PERFORMANCE_ID, type TW.

• For NAME, type Teamwork.

• For WEIGHT, type 0.2.

17. Add and populate a sixth row by repeating steps 5 through 12, using these values:

• For PERFORMANCE_ID, type RO.

• For NAME, type Results Orientation.

• For WEIGHT, type 0.2.

18. Click the icon Commit Changes.

The green borders around the row numbers disappear.

Under the Data pane is the label Messages - Log.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 26

19. Check the Messages - Log pane for the message Commit Successful.

20. In the Data Pane, check the new rows.

See Also

"About the INSERT Statement"

Tutorial: Changing Data in Tables in the Data Pane
This tutorial shows how to change three of the WEIGHT values in the
PERFORMANCE_PARTS table in the Data pane.

The PERFORMANCE_PARTS table was populated in "Tutorial: Adding Rows to Tables with
the Insert Row Tool".

To change data in the PERFORMANCE_PARTS table using the Data pane:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

5. In the Data Pane, in the row where NAME is "Workload Management":

a. Click the WEIGHT value.

b. Enter the value 0.3.

c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change has not
been committed.

6. In the row where NAME is "Building Relationships":

a. Click the WEIGHT value.

b. Enter the value 0.15.

c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change has not
been committed.

7. In the row where NAME is "Customer Focus" :

a. Click the WEIGHT value.

b. Enter the value 0.15.

c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change has not
been committed.

8. Click the icon Commit Changes.

The asterisks to the left of the row numbers disappear.

9. Under the Data pane, check the Messages - Log pane for the message Commit
Successful.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 26

10. In the Data Pane, check the new data.

See Also

"About the UPDATE Statement"

Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool
This tutorial shows how to use the Delete Selected Row(s) tool to delete a row from the
PERFORMANCE_PARTS table.

The PERFORMANCE_PARTS table was populated in "Tutorial: Adding Rows to Tables with
the Insert Row Tool").

To delete row from PERFORMANCE_PARTS using Delete Selected Row(s) tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

5. In the Data pane, click the row where NAME is "Results Orientation".

6. Click the icon Delete Selected Row(s).

A red border appears around the row number to indicate that the deletion has not been
committed.

7. Click the icon Commit Changes.

The row is deleted.

8. Under the Data pane, check the Messages - Log pane for the message Commit
Successful.

Note

If you delete every row of a table, the empty table still exists. To delete a table, see
"Dropping Tables".

See Also

"About the DELETE Statement"

Managing Indexes
You can create indexes on one or more columns of a table to speed SQL statement execution
on that table. When properly used, indexes are the primary means of reducing disk input/
output (I/O).

When you define a primary key on a table:

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 26

• If an existing index starts with the primary key columns, then Oracle AI Database uses that
existing index for the primary key. The existing index need not be unique.

For example, if you define the primary key (A, B), the database uses the existing index (A,
B, C).

• If no existing index starts with the primary key columns and the constraint is immediate, the
database creates a unique index on the primary key.

• If no existing index starts with the primary key columns and the constraint is deferrable, the
database creates a non-unique index on the primary key.

For example, in "Tutorial: Adding Constraints to Existing Tables", you added a Primary Key
constraint to the EVALUATION_ID column of the EVALUATIONS table. Therefore, if you select
the EVALUATIONS table in the SQL Developer Connections frame and click the Indexes tab,
the Indexes pane shows a unique index on the EVALUATION_ID column.

See Also

For more information about indexes:

• Oracle AI Database Concepts

• Oracle AI Database Development Guide

Tutorial: Adding an Index with the Create Index Tool
This tutorial shows how to use the Create Index tool to add an index to the EVALUATIONS
table.

The EVALUATIONS table was created in Example 4-1.

To create an index, use either the SQL Developer tool Create Index or the DDL statement
CREATE INDEX. The equivalent DDL statement is:

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID ASC) NOPARALLEL;

To add an index to the EVALUATIONS table using the Create Index tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click EVALUATIONS.

4. In the list of choices, select Index.

5. In the list of choices, select Create Index.

6. In the Create Index window:

a. For Schema, accept the default, HR.

b. For Name, type EVAL_JOB_IX.

c. If the Definition pane does not show, select the tab Definition.

d. In the Definition pane, for Index Type, select Unique from the menu.

e. Click the icon Add Expression.

The Expression EMPLOYEE_ID with Order <Not Specified> appears.

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 26

f. Over EMPLOYEE_ID, type JOB_ID.

g. For Order, select ASC (ascending) from the menu.

h. Click OK.

Now the EVALUATIONS table has an index named EVAL_JOB_IX on the column
JOB_ID.

See Also

Oracle AI Database SQL Language Reference for information about the CREATE
INDEXstatement

Tutorial: Changing an Index with the Edit Index Tool
This tutorial shows how to use the Edit Index tool to reverse the sort order of the index
EVAL_JOB_IX.

To change an index, use either the SQL Developer tool Edit Index or the DDL statements
DROP INDEX and CREATE INDEX.

The equivalent DDL statements are:

DROP INDEX EVAL_JOB_ID;

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID DESC) NOPARALLEL;

To reverse the sort order of the index EVAL_JOB_IX using the Edit Index tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Indexes.

3. In the list of indexes, right-click EVAL_JOB_IX.

4. In the list of choices, click Edit.

5. In the Edit Index window, change Order to DESC.

6. Click OK.

7. In the Confirm Replace window, click either Yes or No.

See Also

Oracle AI Database SQL Language Reference for information about the ALTER
INDEX statement

Tutorial: Dropping an Index
This tutorial shows how to use the Connections frame and Drop tool to drop the index
EVAL_JOB_IX.

To drop an index, use either the SQL Developer Connections frame and Drop tool or the DDL
statement DROP INDEX. The equivalent DDL statement is:

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 26

DROP INDEX EVAL_JOB_ID;

To drop the index EVAL_JOB_IX:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Indexes.

3. In the list of indexes, right-click EVAL_JOB_IX.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also

Oracle AI Database SQL Language Reference for information about the DROP INDEX
statement

Dropping Tables
To drop a table, use either the SQL Developer Connections frame and Drop tool, or the DDL
statement DROP TABLE.

Caution

Do not drop any tables that you created in "Creating Tables"—you need them for later
tutorials. If you want to practice dropping tables, create simple ones and then drop
them.

To drop a table using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click the name of the table to drop.

4. In the list of choices, select Table.

5. In the list of choices, click Drop.

6. In the Drop window, click Apply.

7. In the Confirmation window, click OK.

See Also

Oracle AI Database SQL Language Reference for information about the statement
DROP TABLE

Chapter 4
Creating and Managing Tables

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 26

Creating and Managing Views
A view presents a query result as a table. In most places that you can use a table, you can use
a view. Views are useful when you need frequent access to information that is stored in several
different tables.

See Also

• "Selecting Table Data" for information about queries

• Oracle AI Database Concepts for additional general information about views

Creating Views
To create views, use either the SQL Developer tool Create View or the DDL statement
CREATE VIEW.

This topic shows how to use both of these ways to create these views:

• SALESFORCE, which contains the names and salaries of the employees in the Sales
department

• EMP_LOCATIONS, which contains the names and locations of all employees

This view is used in "Creating an INSTEAD OF Trigger".

See Also

• Oracle AI Database SQL Language Reference for more information about the
statement CREATE VIEW

Tutorial: Creating a View with the Create View Tool
This tutorial shows how to create the SALESFORCE view using the Create View tool.

To create the SALESFORCE view using the Create View tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Views.

3. In the list of choices, click New View.

The Create View window opens, with default values for a new view.

4. For Schema, accept the default value, HR.

5. For Name, enter SALESFORCE.

6. If the SQL Query pane does not show, click the tab SQL Query.

7. In the SQL Query pane, in the SQL Query field:

• After SELECT, type:

FIRST_NAME || ' ' || LAST_NAME "Name", SALARY*12 "Annual Salary"

Chapter 4
Creating and Managing Views

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 26

• After FROM, type:

EMPLOYEES WHERE DEPARTMENT_ID = 80

8. Click Check Syntax.

9. Under Syntax Results, if the message is not No errors found in SQL, then return to
step 7 and correct the syntax errors in the query.

10. Click OK.

The view SALESFORCE is created. To see it, expand Views in the Connections frame.

To see the CREATE VIEW statement for creating this view, select its name and click the
tab SQL.

Creating Views with the CREATE VIEW Statement
This example shows how to use the CREATE VIEW statement to create the
EMP_LOCATIONS view, which joins four tables.

The CREATE VIEW statement in Example 4-3 creates the EMP_LOCATIONS view, which joins
four tables. (For information about joins, see "Selecting Data from Multiple Tables".)

Example 4-3 Creating the EMP_LOCATIONS View with CREATE VIEW

CREATE VIEW EMP_LOCATIONS AS
SELECT e.EMPLOYEE_ID,
 e.LAST_NAME || ', ' || e.FIRST_NAME NAME,
 d.DEPARTMENT_NAME DEPARTMENT,
 l.CITY CITY,
 c.COUNTRY_NAME COUNTRY
FROM EMPLOYEES e, DEPARTMENTS d, LOCATIONS l, COUNTRIES c
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID AND
 d.LOCATION_ID = l.LOCATION_ID AND
 l.COUNTRY_ID = c.COUNTRY_ID
ORDER BY LAST_NAME;

Result:

View EMP_LOCATIONS created.

See Also

Oracle AI Database SQL Language Reference for information about the CREATE
VIEW statement

Changing Queries in Views
To change the query in a view, use the DDL statement CREATE VIEW with the OR REPLACE
clause.

The CREATE OR REPLACE VIEW statement in Example 4-4 changes the query in the
SALESFORCE view.

Example 4-4 Changing the Query in the SALESFORCE View

CREATE OR REPLACE VIEW SALESFORCE AS
 SELECT FIRST_NAME || ' ' || LAST_NAME "Name",
 SALARY*12 "Annual Salary"

Chapter 4
Creating and Managing Views

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 26

 FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 80 OR DEPARTMENT_ID = 20;

Result:

View SALESFORCE created.

See Also

Oracle AI Database SQL Language Reference for information about the CREATE
VIEW with the OR REPLACE clause

Tutorial: Changing View Names with the Rename Tool
This tutorial shows how to use the Rename tool to change the name of the SALESFORCE
view.

To change the name of a view, use either the SQL Developer tool Rename or the RENAME
statement. The equivalent DDL statement is:

RENAME SALESFORCE to SALES_MARKETING;

To change the SALESFORCE view using the Rename tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Views.

3. In the list of views, right-click SALESFORCE.

4. In the list of choices, select Rename.

5. In the Rename window, in the New View Name field, type SALES_MARKETING.

6. Click Apply.

7. In the Confirmation window, click OK.

See Also

Oracle AI Database SQL Language Reference for information about the RENAME
statement

Dropping a View
To drop a view, use either the SQL Developer Connections frame and Drop tool or the DDL
statement DROP VIEW.

The following tutorial shows how to use the Connections frame and Drop tool to drop the view
SALES_MARKETING (changed in "Tutorial: Changing View Names with the Rename Tool").
The equivalent DDL statement is:

DROP VIEW SALES_MARKETING;

To drop the view SALES_MARKETING using the Drop tool:

1. In the Connections frame, expand hr_conn.

Chapter 4
Creating and Managing Views

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 26

2. In the a list of schema object types, expand Views.

3. In the a list of views, right-click SALES_MARKETING.

4. In the a list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also

Oracle AI Database SQL Language Reference for information about the DROP VIEW
statement

Creating and Managing Data Use Case Domains
Data use case domains are lightweight data type modifiers that encapsulate a set of optional
properties and constraints, allowing for the modeling of real-world information such as credit
card numbers, email addresses, dates of birth, postal codes, and so on. You can use data use
case domains to define how you intend to use the data centrally and share the data with other
applications.

See Also

Oracle AI Database Concepts for additional general information about use case
domains

Creating Use Case Domains
To create a use case domain, use the DDL statement CREATE DOMAIN.

The following statement creates the email domain.

CREATE DOMAIN email AS VARCHAR2(30)
CONSTRAINT EMAIL_C CHECK (REGEXP_LIKE (email, '^(\S+)\@(\S+)\.(\S+)$'))
DISPLAY '---' || SUBSTR(email, INSTR(email, '@') + 1);

See Also

Oracle AI Database SQL Language Reference for information about the CREATE
DOMAIN statement

Dropping Use Case Domains
To drop a use case domain, use the DDL statement DROP DOMAIN.

Chapter 4
Creating and Managing Data Use Case Domains

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 26

1. The following statement drops the email domain.

DROP DOMAIN email;

The DROP DOMAIN command does not allow you to drop a domain if that domain is
associated with any column on any table.

You can use the DROP DOMAIN ... FORCE command to disassociate the domain from all
columns and drop the domain. Use the FORCE option with caution, because you will lose
all domain-specified knowledge on all columns that have been associated with the domain.

2. The following statement drops the email domain and disassociates the domain from all of
its dependent columns.

DROP DOMAIN email FORCE

See Also

Oracle AI Database SQL Language Reference for information about the DROP
DOMAIN statement

Creating and Managing Schema Annotations
Schema annotations are free-form text fields that contain extended or custom properties of
database objects such as tables, views, columns, indexes, and data use case domains.
Annotations are a lightweight declarative facility to centrally register usage properties for
database schema objects. They can be thought of as lightweight standardized markup for
database metadata, for use by applications to register and process extended and custom
usage properties.

See Also

Oracle AI Database Concepts for additional general information about annotations

Creating Annotations
Annotations are properties of schema objects, and can be specified in the CREATE statement
for the object.

1. The following statement creates a new table with annotations for the table itself and the
underlying columns.

CREATE TABLE employees
(
 id NUMBER(5) PRIMARY KEY ANNOTATIONS (Identity, Display 'Employee
Name'),
 ename VARCHAR2(50) ANNOTATIONS(Display 'Employee Name'),
 salary NUMBER ANNOTATION(Display 'Employee Name', Confidential)
) ANNOTATIONS (Display 'Employee Table');

Chapter 4
Creating and Managing Schema Annotations

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 26

2. The following statement includes an annotation in the creation of the dept_codes
application usage domain in the hr schema.

CREATE DOMAIN dept_codes AS NUMBER(3)
 CONSTRAINT dept_chk CHECK (dept_codes > 99 AND dept_codes != 200)
 ANNOTATIONS (Title 'Domain Annotation);

See Also

Oracle AI Database Development Guide for information about DDL statements for
annotations

Listing Annotations
You can use dictionary views to get the list of annotations that are used for specific objects.

The following dictionary views are defined for annotations and annotation usage.

• ALL_ANNOTATION_VALUES, DBA_ANNOTATION_VALUES,
USER_ANNOTATION_VALUES

• ALL_ANNOTATIONS, DBA_ANNOTATIONS, USER_ANNOTATIONS

• ALL_ANNOTATIONS_USAGE, DBA_ANNOTATIONS_USAGE,
USER_ANNOTATIONS_USAGE

The ALL_* views include all annotations for objects owned by the user, all annotations for
objects owned by other users where the user has the ALTER privilege, and all annotations for
objects where the user has system privileges for that object type. The DBA_* views include all
annotations for all objects in the database. The USER_* views include all annotations for
objects owned by the user.

• The following statement gets the table-level annotations for the EMPLOYEE table:

SELECT * from USER_ANNOTATIONS_USAGE WHERE Object_Name = 'EMPLOYEE' AND
Object_Type = 'TABLE' AND Column_Name IS NULL;

• The following statement gets the column-level annotations for the EMPLOYEE table:

SELECT * from USER_ANNOTATIONS_USAGE WHERE Object_Name = 'EMPLOYEE' AND
Object_Type = 'TABLE' AND Column_Name IS NOT NULL;

• The following statement gets the column-level annotations for the EMPLOYEE table as a
single JSON collection per column:

SELECT U.Column_Name, JSON_ARRAYAGG(JSON_OBJECT(U.Annotation_Name,
U.Annotation_Value)) FROM USER_ANNOTATIONS_USAGE U
WHERE Object_Name = 'EMPLOYEE' AND Object_Type = 'TABLE' AND
Column_Name IS NOT NULL GROUP BY Column_Name;

Chapter 4
Creating and Managing Schema Annotations

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 26

See Also

Oracle AI Database Reference for information about the dictionary views for
annotations.

Modifying Annotations
To modify an annotation, use the ALTER statement for the annotated schema object.

1. The following statement adds an additional annotation Department with the value HR to the
employees table.

ALTER TABLE employees ANNOTATIONS (ADD Department 'HR');

2. The following statement drops the annotation Title and adds a new annotation Name with
the value Domain to the dept_code domain.

ALTER DOMAIN dept_codes ANNOTATIONS(DROP Title, ADD Name ‘Domain’);

See Also

Oracle AI Database Development Guide for information about DDL statements for
annotations

Creating and Managing Sequences
Sequences are schema objects from which you can generate unique sequential values, which
are very useful when you need unique primary keys. Sequences are used through the
pseudocolumns CURRVAL and NEXTVAL, which return the current and next values of the
sequence, respectively.

After creating a sequence, you must initialize it by using NEXTVAL to get its first value. Only
after you initialize a sequence does CURRVAL return its current value.

The HR schema has three sequences: DEPARTMENTS_SEQUENCE,
EMPLOYEES_SEQUENCE, and LOCATIONS_SEQUENCE.

Tip

When you plan to use a sequence to populate the primary key of a table, give the
sequence a name that reflects this purpose. (This topic uses the naming convention
TABLE_NAME_SEQUENCE.)

Chapter 4
Creating and Managing Sequences

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 26

See Also

• Oracle AI Database Concepts for an overview of sequences

• Oracle AI Database SQL Language Reference for more information about the
CURRVAL and NEXTVAL pseudocolumns

• Oracle AI Database Administrator's Guide for information about managing
sequences

• "Editing Installation Scripts that Create Sequences"

• "About Sequences and Concurrency"

Tutorial: Creating a Sequence
This tutorial shows how to use the Create Database Sequence tool to create a sequence to
use to generate primary keys for the EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

To create a sequence, use either the SQL Developer tool Create Sequence or the DDL
statement CREATE SEQUENCE. The equivalent DDL statement is:

CREATE SEQUENCE evaluations_sequence
INCREMENT BY 1
START WITH 1 ORDER;

To create EVALUATIONS_SEQUENCE using the Create Database Sequence tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Sequences.

3. In the list of choices, click New Sequence.

4. In the Create Sequence window, in the Name field, type EVALUATIONS_SEQUENCE over
the default value "SEQUENCE1".

5. If the Properties pane does not show, click the tab Properties.

6. In the Properties pane:

a. In the field Increment, type 1.

b. In the field Start with, type 1.

c. For the remaining fields, accept the default values.

d. Click OK.

The sequence EVALUATIONS_SEQUENCE is created. Its name appears under
Sequences in the Connections frame.

Chapter 4
Creating and Managing Sequences

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 26

See Also

• Oracle AI Database SQL Language Reference for information about the CREATE
SEQUENCE statement

• "Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is
Inserted" to learn how to create a trigger that inserts the primary keys created by
EVALUATIONS_SEQUENCE into the EVALUATIONS table

Dropping Sequences
To drop a sequence, use either the SQL Developer Connections frame and Drop tool, or the
DDL statement DROP SEQUENCE.

This statement drops the sequence EVALUATIONS_SEQUENCE:

DROP SEQUENCE EVALUATIONS_SEQUENCE;

Caution

Do not drop the sequence EVALUATIONS_SEQUENCE—you need it for Example 5-3. If
you want to practice dropping sequences, create others and then drop them.

To drop a sequence using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Sequences.

3. In the list of sequences, right-click the name of the sequence to drop.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also

Oracle AI Database SQL Language Reference for information about the DROP
SEQUENCE statement

Creating and Managing Synonyms
A synonym is an alias for another schema object. Some reasons to use synonyms are security
(for example, to hide the owner and location of an object) and convenience.

Examples of convenience are:

• Using a short synonym, such as SALES, for a long object name, such as
ACME_CO.SALES_DATA

Chapter 4
Creating and Managing Synonyms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 26

• Using a synonym for a renamed object, instead of changing that object name throughout
the applications that use it

For example, if your application uses a table named DEPARTMENTS, and its name changes
to DIVISIONS, you can create a DEPARTMENTS synonym for that table and continue to
reference it by its original name.

See Also

Oracle AI Database Concepts for additional general information about synonyms

Creating Synonyms
To create a synonym, use either the SQL Developer tool Create Database Synonym or the
DDL statement CREATE SYNONYM .

The following tutorial shows how to use the Create Database Synonym tool to create the
synonym EMP for the EMPLOYEES table. The equivalent DDL statement is:

CREATE SYNONYM EMPL FOR EMPLOYEES;

To create the synonym EMP using the Create Database Synonym tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Synonyms.

3. In the list of choices, click New Synonym.

4. In the New Synonym window:

a. In the Synonym Name field, type EMPL.

b. In the Object Owner field, select HR from the menu.

c. In the Object Name field, select EMPLOYEES from the menu.

The synonym refers to a specific schema object; in this case, the table EMPLOYEES.

d. Click Apply.

5. In the Confirmation window, click OK.

The synonym EMPL is created. To see it, expand Synonyms in the Connections frame.
You can now use EMPL instead of EMPLOYEES.

See Also

Oracle AI Database SQL Language Reference for information about the CREATE
SYNONYM statement

Dropping Synonyms
To drop a synonym, use either the SQL Developer Connections frame and Drop tool, or the
DDL statement DROP SYNONYM.

This statement drops the synonym EMP:

Chapter 4
Creating and Managing Synonyms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 26

DROP SYNONYM EMP;

To drop a synonym using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Synonyms.

3. In the list of synonyms, right-click the name of the synonym to drop.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also

Oracle AI Database SQL Language Reference for information about the DROP
SYNONYM statement

Chapter 4
Creating and Managing Synonyms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 26

5
Developing Stored Subprograms and
Packages

Stored subprograms and packages can be used as building blocks for many different database
applications.

About Stored Subprograms
A stored subprogram is a subprogram that is stored in the database. Because they are
stored in the database, stored programs can be used as building blocks for many different
database applications.

A subprogram is a PL/SQL unit that consists of SQL and PL/SQL statements that solve a
specific problem or perform a set of related tasks. A subprogram can have parameters, whose
values are supplied by the invoker. A subprogram can be either a procedure or a function.
Typically, you use a procedure to perform an action and a function to compute and return a
value.

Because stored subprograms are stored in the database, stored programs can be used as
building blocks for many different database applications. A subprogram that is declared within
another subprogram, or within an anonymous block, is called a nested subprogram or local
subprogram. It cannot be invoked from outside the subprogram or block in which it is
declared. An anonymous block is a block that is not stored in the database.

There are two kinds of stored subprograms:

• Standalone subprogram, which is created at schema level

• Package subprogram, which is created inside a package

Standalone subprograms are useful for testing pieces of program logic, but when you are sure
that they work as intended, Oracle recommends that you put them into packages.

See Also

• Oracle AI Database Concepts for general information about stored subprograms

• Oracle AI Database PL/SQL Language Reference for complete information about
PL/SQL subprograms

About Packages
A package is a PL/SQL unit that consists of related subprograms and the declared cursors
and variables that they use. Oracle recommends that you put your subprograms into
packages.

Some reasons that Oracle recommends that you put your subprograms into packages are:

• Packages allow you to hide implementation details from client programs.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 50

Hiding implementation details from client programs is a widely accepted best practice.
Many Oracle customers follow this practice strictly, allowing client programs to access the
database only by invoking PL/SQL subprograms. Some customers allow client programs to
use SELECT statements to retrieve information from database tables, but require them to
invoke PL/SQL subprograms for all business functions that change the database.

• Package subprograms must be qualified with package names when invoked from outside
the package, which ensures that their names will always work when invoked from outside
the package.

For example, suppose that you developed a schema-level procedure named CONTINUE
before Oracle Database 11g . Oracle Database 11g introduced the CONTINUE statement.
Therefore, if you ported your code to Oracle Database 11g , it would no longer compile.
However, if you had developed your procedure inside a package, your code would refer to
the procedure as package_name.CONTINUE, so the code would still compile.

Note

Oracle AI Database supplies many PL/SQL packages to extend database functionality
and provide PL/SQL access to SQL features. You can use the supplied packages
when creating your applications or for ideas in creating your own stored procedures.
For information about these packages, see Oracle AI Database PL/SQL Packages
and Types Reference.

See Also

• Oracle AI Database Concepts for general information about packages

• Oracle AI Database PL/SQL Language Reference for more reasons to use
packages

• Oracle AI Database PL/SQL Language Reference for complete information about
PL/SQL packages

• Oracle AI Database PL/SQL Packages and Types Reference for complete
information about the PL/SQL packages that Oracle provides

About PL/SQL Identifiers
Every PL/SQL subprogram, package, parameter, variable, constant, exception, and declared
cursor has a name, which is a PL/SQL identifier.

The minimum length of an identifier is one character; the maximum length is 30 characters.
The first character must be a letter, but each later character can be either a letter, numeral,
dollar sign ($), underscore (_), or number sign (#). For example, these are acceptable
identifiers:

X
t2
phone#
credit_limit
LastName
oracle$number
money$$$tree

Chapter 5
About PL/SQL Identifiers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 50

SN##
try_again_

PL/SQL is not case-sensitive for identifiers. For example, PL/SQL considers these to be the
same:

lastname
LastName
LASTNAME

You cannot use a PL/SQL reserved word as an identifier. You can use a PL/SQL keyword as
an identifier, but it is not recommended. For lists of PL/SQL reserved words and keywords, see
Oracle AI Database PL/SQL Language Reference.

See Also

• Oracle AI Database PL/SQL Language Reference for additional general
information about PL/SQL identifiers

• Oracle AI Database PL/SQL Language Reference for additional information about
PL/SQL naming conventions

• Oracle AI Database PL/SQL Language Reference for information about the scope
and visibility of PL/SQL identifiers

• Oracle AI Database PL/SQL Language Reference for information how to collect
data on PL/SQL identifiers

• Oracle AI Database PL/SQL Language Reference for information about how
PL/SQL resolves identifier names

About PL/SQL Data Types
Every PL/SQL constant, variable, subprogram parameter, and function return value has a data
type that determines its storage format, constraints, valid range of values, and operations that
can be performed on it.

A PL/SQL data type is either a SQL data type (such as VARCHAR2, NUMBER, or DATE) or a
PL/SQL-only data type. The latter include BOOLEAN, RECORD, REF CURSOR, and many
predefined subtypes. PL/SQL also lets you define your own subtypes.

A subtype is a subset of another data type, which is called its base type. A subtype has the
same valid operations as its base type, but only a subset of its valid values. Subtypes can
increase reliability, provide compatibility with ANSI/ISO types, and improve readability by
indicating the intended use of constants and variables.

The predefined numeric subtype PLS_INTEGER is especially useful, because its operations
use hardware arithmetic, rather than the library arithmetic that its base type uses.

You cannot use PL/SQL-only data types at schema level (that is, in tables or standalone
subprograms). Therefore, to use these data types in a stored subprogram, you must put them
in a package.

Chapter 5
About PL/SQL Data Types

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 50

See Also

• Oracle AI Database PL/SQL Language Reference for general information about
PL/SQL data types

• Oracle AI Database PL/SQL Language Reference for information about the
PLS_INTEGER data type

• "About SQL Data Types"

Creating and Managing Standalone Subprograms
You can create and manage standalone PL/SQL subprograms.

Note

To do the tutorials in this document, the hr sample schema must be installed and you
must be connected to Oracle AI Database as the user HR from SQL Developer.

About Subprogram Structure
A subprogram follows PL/SQL block structure.

A subprogram has the following structure:

• Declarative part (optional)

The declarative part contains declarations of types, constants, variables, exceptions,
declared cursors, and nested subprograms. These items are local to the subprogram and
cease to exist when the subprogram completes execution.

• Executable part (required)

The executable part contains statements that assign values, control execution, and
manipulate data.

• Exception-handling part (optional)

The exception-handling part contains code that handles exceptions (runtime errors).

Comments can appear anywhere in PL/SQL code. The PL/SQL compiler ignores them.
Adding comments to your program promotes readability and aids understanding. A single-line
comment starts with a double hyphen (--) and extends to the end of the line. A multiline
comment starts with a slash and asterisk (/*) and ends with an asterisk and a slash (*/).

The structure of a procedure is:

 PROCEDURE name [(parameter_list)]
 { IS | AS }
 [declarative_part]
 BEGIN -- executable part begins
 statement; [statement;]...
 [EXCEPTION -- executable part ends, exception-handling part begins]
 exception_handler; [exception_handler;]...]
 END; /* exception-handling part ends if it exists;
 otherwise, executable part ends */

Chapter 5
Creating and Managing Standalone Subprograms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 50

The structure of a function is like that of a procedure, except that it includes a RETURN clause
and at least one RETURN statement (and some optional clauses that are beyond the scope of
this document):

 FUNCTION name [(parameter_list)] RETURN data_type [clauses]
 { IS | AS }
 [declarative_part]
 BEGIN -- executable part begins
 -- at least one statement must be a RETURN statement
 statement; [statement;]...
 [EXCEPTION -- executable part ends, exception-handling part begins]
 exception_handler; [exception_handler;]...]
 END; /* exception-handling part ends if it exists;
 otherwise, executable part ends */

The code that begins with PROCEDURE or FUNCTION and ends before IS or AS is the
subprogram signature. The declarative, executable, and exception-handling parts comprise
the subprogram body. The syntax of exception-handler is in "About Exceptions and Exception
Handlers".

See Also

Oracle AI Database PL/SQL Language Reference for more information about
subprogram parts

Tutorial: Creating a Standalone Procedure
This tutorial shows how to use the Create Procedure tool to create a standalone procedure
named ADD_EVALUATION that adds a row to the EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

To create a standalone procedure, use either the SQL Developer tool Create Procedure or the
DDL statement CREATE PROCEDURE.

To create a standalone procedure using Create Procedure tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Procedures.

3. In the list of choices, click New Procedure.

The Create Procedure window opens.

4. For Schema, accept the default value, HR.

5. For Name, change PROCEDURE1 to ADD_EVALUATION.

6. Click the icon Add Parameter.

A row appears under the column headings. Its fields have these default values: Name,
PARAM1; Mode, IN; No Copy, deselected; Data Type, VARCHAR2; Default Value, empty.

7. For Name, change PARAM1 to EVALUATION_ID.

8. For Mode, accept the default value, IN.

9. For Data Type, select NUMBER from the menu.

10. Leave Default Value empty.

Chapter 5
Creating and Managing Standalone Subprograms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 50

11. Add a second parameter by repeating steps 6 through 10 with the Name EMPLOYEE_ID
and the Data Type NUMBER.

12. Add a third parameter by repeating steps 6 through 10 with the Name EVALUATION_DATE
and the Data Type DATE.

13. Add a fourth parameter by repeating steps 6 through 10 with the Name JOB_ID and the
Data Type VARCHAR2.

14. Add a fifth parameter by repeating steps 6 through 10 with the Name MANAGER_ID and the
Data Type NUMBER.

15. Add a sixth parameter by repeating steps 6 through 10 with the Name DEPARTMENT_ID
and the Data Type NUMBER.

16. Add a seventh parameter by repeating steps 6 through 10 with the Name TOTAL_SCORE
and the Data Type NUMBER.

17. Click OK.

CREATE OR REPLACE PROCEDURE ADD_EVALUATION
(
 EVALUATION_ID IN NUMBER
, EMPLOYEE_ID IN NUMBER
, EVALUATION_DATE IN DATE
, JOB_ID IN VARCHAR2
, MANAGER_ID IN NUMBER
, DEPARTMENT_ID IN NUMBER
, TOTAL_SCORE IN NUMBER
) AS
BEGIN
 NULL;
END ADD_EVALUATION;

The title of the ADD_EVALUATION pane is in italic font, indicating that the procedure is not
yet saved in the database.

Because the execution part of the procedure contains only the NULL statement, the
procedure does nothing.

18. Replace the NULL statement with this statement:

INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
VALUES (
 ADD_EVALUATION.evaluation_id,
 ADD_EVALUATION.employee_id,
 ADD_EVALUATION.evaluation_date,
 ADD_EVALUATION.job_id,
 ADD_EVALUATION.manager_id,
 ADD_EVALUATION.department_id,
 ADD_EVALUATION.total_score
);

(Qualifying the parameter names with the procedure name ensures that they are not
confused with the columns that have the same names.)

Chapter 5
Creating and Managing Standalone Subprograms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 50

19. From the File menu, select Save.

The database compiles the procedure and saves it. The title of the ADD_EVALUATION
pane is no longer in italic font. The Message - Log pane has the message Compiled.

See Also

• "About Data Definition Language (DDL) Statements" for general information that
applies to the CREATE PROCEDURE statement

• Oracle AI Database PL/SQL Language Reference for information about the
CREATE PROCEDURE statement

Tutorial: Creating a Standalone Function
This tutorial shows how to use the Create Function tool to create a standalone function named
CALCULATE_SCORE that has three parameters and returns a value of type NUMBER.

To create a standalone function, use either the SQL Developer tool Create Function or the DDL
statement CREATE FUNCTION.

To create a standalone function using Create Function tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Functions.

3. In the list of choices, click New Function.

The Create Function window opens.

4. For Schema, accept the default value, HR.

5. For Name, change FUNCTION1 to CALCULATE_SCORE.

6. For Return Type, select NUMBER from the menu.

7. Click the icon Add Parameter.

A row appears under the column headings. Its fields have these default values: Name,
PARAM1; Mode, IN; No Copy, deselected; Data Type, VARCHAR2; Default Value, empty.

8. For Name, change PARAM1 to cat.

9. For Mode, accept the default value, IN.

10. For Data Type, accept the default, VARCHAR2.

11. Leave Default Value empty.

12. Add a second parameter by repeating steps 7 through 11 with the Name score and the
Data Type NUMBER.

13. Add a third parameter by repeating steps 7 through 11 with the Name weight and the
Data Type NUMBER.

14. Click OK.

The CALCULATE_SCORE pane opens, showing the CREATE FUNCTION statement that
created the function:

CREATE OR REPLACE FUNCTION CALCULATE_SCORE
(
 CAT IN VARCHAR2

Chapter 5
Creating and Managing Standalone Subprograms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 50

, SCORE IN NUMBER
, WEIGHT IN NUMBER
) RETURN NUMBER AS
BEGIN
 RETURN NULL;
END CALCULATE_SCORE;

The title of the CALCULATE_SCORE pane is in italic font, indicating that the function is not
yet saved in the database.

Because the only statement in the execution part of the function is the statement RETURN
NULL, the function does nothing.

15. Replace NULL with score * weight.

16. From the File menu, select Save.

The database compiles the function and saves it. The title of the CALCULATE_SCORE
pane is no longer in italic font. The Message - Log pane has the message Compiled.

See Also

• "About Data Definition Language (DDL) Statements" for general information that
applies to the CREATE FUNCTION statement

• Oracle AI Database PL/SQL Language Reference for information about the
CREATE FUNCTION statement

Changing Standalone Subprograms
To change a standalone subprogram, use either the SQL Developer tool Edit or the DDL
statement ALTER PROCEDURE or ALTER FUNCTION.

To change a standalone subprogram using the Edit tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand either Functions or Procedures.

A list of functions or procedures appears.

3. Click the function or procedure to change.

To the right of the Connections frame, a frame appears. Its top tab has the name of the
subprogram to change. The Code pane shows the code that created the subprogram.

The Code pane is in write mode. (Clicking the pencil icon switches the mode from write
mode to read only, or the reverse.)

4. In the Code pane, change the code.

The title of the pane changes to italic font, indicating that the change is not yet saved in the
database.

5. From the File menu, select Save.

The database compiles the subprogram and saves it. The title of the pane is no longer in
italic font. The Message - Log pane has the message Compiled.

Chapter 5
Creating and Managing Standalone Subprograms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 50

See Also

• "About Data Definition Language (DDL) Statements" for general information that
applies to the ALTER PROCEDURE and ALTER FUNCTION statements

• Oracle AI Database PL/SQL Language Reference for information about the
ALTER PROCEDURE statement

• Oracle AI Database PL/SQL Language Reference for information about the
ALTER FUNCTION statement

Tutorial: Testing a Standalone Function
This tutorial shows how to use the SQL Developer tool Run to test the standalone function
CALCULATE_SCORE.

To test the CALCULATE_SCORE function using the Run tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Functions.

3. In the list of functions, right-click CALCULATE_SCORE.

4. In the list of choices, click Run.

The Run PL/SQL window opens. Its PL/SQL Block frame includes this code:

v_Return := CALCULATE_SCORE (
 CAT => CAT,
 SCORE => SCORE,
 WEIGHT => WEIGHT
);

5. Change the values of SCORE and WEIGHT to 8 and 0.2, respectively:

v_Return := CALCULATE_SCORE (
 CAT => CAT,
 SCORE => 8,
 WEIGHT => 0.2
);

6. Click OK.

Under the Code pane, the Running window opens, showing this result:

Connecting to the database hr_conn.
Process exited.
Disconnecting from the database hr_conn.

To the right of the tab Running is the tab Output Variables.

7. Click the tab Output Variables.

Two frames appear, Variable and Value, which contain the values <Return Value> and 1.6,
respectively.

Chapter 5
Creating and Managing Standalone Subprograms

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 50

See Also

Oracle SQL Developer User's Guide for information about using SQL Developer to run
and debug procedures and functions

Dropping Standalone Subprograms
To drop a standalone subprogram, use either the SQL Developer Connections frame and Drop
tool, or the DDL statement DROP PROCEDURE or DROP FUNCTION.

Caution

Do not drop the procedure ADD_EVALUATION or the function CALCULATE_SCORE—you
need them for later tutorials. If you want to practice dropping subprograms, create
simple ones and then drop them.

To drop a standalone subprogram using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand either Functions or Procedures.

3. In the list of functions or procedures, right-click the name of the function or procedure to
drop.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also

• "About Data Definition Language (DDL) Statements" for general information that
applies to the DROP PROCEDURE and DROP FUNCTION statements

• Oracle AI Database SQL Language Reference for information about the DROP
PROCEDURE statement

• Oracle AI Database SQL Language Reference for information about the DROP
FUNCTION statement

Creating and Managing Packages
You can create and manage PL/SQL packages.

See Also

"Tutorial: Declaring Variables and Constants in a Subprogram", which shows how to
change a package body

Chapter 5
Creating and Managing Packages

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 50

About Package Structure
A package always has a specification, and usually has a body. The specification defines the
package itself, and is an application program interface (API). The body defines the queries for
the declared cursors, and the code for the subprograms, that are declared in the package
specification.

The package specification defines the package, declaring the types, variables, constants,
exceptions, declared cursors, and subprograms that can be referenced from outside the
package. A package specification is an application program interface (API): It has all the
information that client programs need to invoke its subprograms, but no information about their
implementation.

The package body defines the queries for the declared cursors, and the code for the
subprograms, that are declared in the package specification (therefore, a package with neither
declared cursors nor subprograms does not need a body). The package body can also define
local subprograms, which are not declared in the specification and can be invoked only by
other subprograms in the package. Package body contents are hidden from client programs.
You can change the package body without invalidating the applications that call the package.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about the
package specification

• Oracle AI Database PL/SQL Language Reference for more information about the
package body

Tutorial: Creating a Package Specification
This tutorial shows how to use the Create Package tool to create a specification for a package
named EMP_EVAL, which appears in many tutorials and examples in this document.

To create a package specification, use either the SQL Developer tool Create Package or the
DDL statement CREATE PACKAGE.

To create a package specification using Create Package tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Packages.

3. In the list of choices, click New Package.

The Create Package window opens. The field Schema has the value HR, the field Name
has the default value PACKAGE1, and the check box Add New Source In Lowercase is
deselected.

4. For Schema, accept the default value, HR.

5. For Name, change the value PACKAGE1 to EMP_EVAL.

6. Click OK.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

Chapter 5
Creating and Managing Packages

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 50

CREATE OR REPLACE PACKAGE emp_eval AS

 /* TODO enter package declarations (types, exceptions, methods etc) here */

END emp_eval;

The title of the pane is in italic font, indicating that the package is not saved to the
database.

7. (Optional) In the CREATE PACKAGE statement, replace the comment with declarations.

If you do not do this step now, you can do it later, as in "Tutorial: Changing a Package
Specification".

8. From the File menu, select Save.

The database compiles the package and saves it. The title of the EMP_EVAL pane is no
longer in italic font.

See Also

Oracle AI Database PL/SQL Language Reference for information about the CREATE
PACKAGE statement (for the package specification)

Tutorial: Changing a Package Specification
This tutorial shows how to use the Edit tool to change the specification for the EMP_EVAL
package, which appears in many tutorials and examples in this document. Specifically, the
tutorial shows how to add declarations for a procedure, EVAL_DEPARTMENT, and a function,
CALCULATE_SCORE.

To change a package specification, use either the SQL Developer tool Edit or the DDL
statement CREATE PACKAGE with the OR REPLACE clause.

To change EMP_EVAL package specification using the Edit tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, right-click EMP_EVAL.

4. In the list of choices, click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE emp_eval AS

 /* TODO enter package declarations (types, exceptions, methods etc) here */

END emp_eval;

The title of the pane is not in italic font, indicating that the package is saved in the
database.

5. In the EMP_EVAL pane, replace the comment with this code:

PROCEDURE eval_department (dept_id IN NUMBER);

FUNCTION calculate_score (evaluation_id IN NUMBER

Chapter 5
Creating and Managing Packages

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 50

 , performance_id IN NUMBER)
 RETURN NUMBER;

The title of the EMP_EVAL pane changes to italic font, indicating that the changes have
not been saved to the database.

6. Click the icon Compile.

The changed package specification compiles and is saved to the database. The title of the
EMP_EVAL pane is no longer in italic font.

See Also

Oracle AI Database PL/SQL Language Reference for information about the CREATE
PACKAGE statement with the OR REPLACE clause

Tutorial: Creating a Package Body
This tutorial shows how to use the Create Body tool to create a body for the EMP_EVAL
package, which appears in many examples and tutorials in this document.

To create a package body, use either the SQL Developer tool Create Body or the DDL
statement CREATE PACKAGE BODY.

To create a body for the package EMP_EVAL using the Create Body tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, right-click EMP_EVAL.

4. In the list of choices, click Create Body.

The EMP_EVAL Body pane appears, showing the automatically generated code for the
package body:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 PROCEDURE eval_department(dept_id IN NUMBER) AS
 BEGIN
 -- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

END EMP_EVAL;

The title of the pane is in italic font, indicating that the code is not saved in the database.

5. (Optional) In the CREATE PACKAGE BODY statement:

• Replace the comments with executable statements.

Chapter 5
Creating and Managing Packages

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 50

• (Optional) In the executable part of the procedure, either delete NULL or replace it with
an executable statement.

• (Optional) In the executable part of the function, either replace NULL with another
expression.

If you do not do this step now, you can do it later, as in "Tutorial: Declaring Variables and
Constants in a Subprogram".

6. Click the icon Compile.

The changed package body compiles and is saved to the database. The title of the
EMP_EVAL Body pane is no longer in italic font.

See Also

Oracle AI Database PL/SQL Language Reference for information about the CREATE
PACKAGE BODY statement (for the package body)

Dropping a Package
To drop a package (both specification and body), use either the SQL Developer Connections
frame and Drop tool, or the DDL statement DROP PACKAGE.

Caution

Do not drop the package EMP_EVAL—you need it for later tutorials. If you want to
practice dropping packages, create simple ones and then drop them.

To drop a package using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

A list of packages appears.

3. In the list of packages, right-click the name of the package to drop.

4. In the list of choices, click Drop Package.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also

Oracle AI Database PL/SQL Language Reference for information about the DROP
PACKAGE statement

Chapter 5
Creating and Managing Packages

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 50

Declaring and Assigning Values to Variables and Constants
A variable or constant declared in a package specification is available to any program that has
access to the package. A variable or constant declared in a package body or subprogram is
local to that package or subprogram. When declaring a constant, you must assign it an initial
value.

One significant advantage that PL/SQL has over SQL is that PL/SQL lets you declare and use
variables and constants.

A variable or constant declared in a package specification is available to any program that has
access to the package. A variable or constant declared in a package body or subprogram is
local to that package or subprogram.

A variable holds a value of a particular data type. Your program can change the value at
runtime. A constant holds a value that cannot be changed.

A variable or constant can have any PL/SQL data type. When declaring a variable, you can
assign it an initial value; if you do not, its initial value is NULL. When declaring a constant, you
must assign it an initial value. To assign an initial value to a variable or constant, use the
assignment operator (:=).

Tip

Declare all values that do not change as constants. This practice optimizes your
compiled code and makes your source code easier to maintain.

See Also

Oracle AI Database PL/SQL Language Reference for general information about
variables and constants

Tutorial: Declaring Variables and Constants in a Subprogram
This tutorial shows how to use the SQL Developer tool Edit to declare variables and constants
in the EMP_EVAL.CALCULATE_SCORE function. (This tutorial is also an example of changing
a package body.)

The EMP_EVAL.CALCULATE_SCORE function is specified in "Tutorial: Creating a Package
Specification").

To declare variables and constants in CALCULATE_SCORE function:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, expand EMP_EVAL.

4. In the list of choices, right-click EMP_EVAL Body.

A list of choices appears.

5. In the list of choices, click Edit.

Chapter 5
Declaring and Assigning Values to Variables and Constants

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 50

The EMP_EVAL Body pane appears, showing the code for the package body:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 PROCEDURE eval_department (dept_id IN NUMBER) AS

 BEGIN
 -- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

END EMP_EVAL;

6. Between RETURN NUMBER AS and BEGIN, add these variable and constant declarations:

n_score NUMBER(1,0); -- variable
n_weight NUMBER; -- variable
max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1

The title of the EMP_EVAL Bodypane changes to italic font, indicating that the code is not
saved in the database.

7. From the File menu, select Save.

The database compiles and saves the changed package body. The title of the EMP_EVAL
Body pane is no longer in italic font.

See Also

• Oracle AI Database PL/SQL Language Reference for general information about
declaring variables and constants

• "Assigning Values to Variables with the Assignment Operator"

Ensuring that Variables, Constants, and Parameters Have Correct Data
Types

Ensure that variables, constants, and parameters have the correct data types by declaring
them with the %TYPE attribute.

After "Tutorial: Declaring Variables and Constants in a Subprogram", the code for the
EMP_EVAL.CALCULATE_SCORE function is:

FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 n_score NUMBER(1,0); -- variable
 n_weight NUMBER; -- variable

Chapter 5
Declaring and Assigning Values to Variables and Constants

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 50

 max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
 max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

The variables, constants, and parameters of the function represent values from the tables
SCORES and PERFORMANCE_PARTS (created in "Creating Tables"):

• Variable n_score will hold a value from the column SCORE.SCORES and constant
max_score will be compared to such values.

• Variable n_weight will hold a value from the column PERFORMANCE_PARTS.WEIGHT
and constant max_weight will be compared to such values.

• Parameter evaluation_id will hold a value from the column SCORE.EVALUATION_ID.

• Parameter performance_id will hold a value from the column
SCORE.PERFORMANCE_ID.

Therefore, each variable, constant, and parameter has the same data type as its
corresponding column.

If the data types of the columns change, you want the data types of the variables, constants,
and parameters to change to the same data types; otherwise, the CALCULATE_SCORE
function is invalidated.

To ensure that the data types of the variables, constants, and parameters always match those
of the columns, declare them with the %TYPE attribute. The %TYPE attribute supplies the data
type of a table column or another variable, ensuring the correct data type assignment.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about the
%TYPE attribute

• Oracle AI Database PL/SQL Language Reference for the syntax of the %TYPE
attribute

Tutorial: Changing Declarations to Use the %TYPE Attribute
This tutorial shows how to use the SQL Developer tool Edit to change the declarations of the
variables, constants, and formal parameters of the EMP_EVAL.CALCULATE_SCORE function
to use the %TYPE attribute.

The EMP_EVAL.CALCULATE_SCORE function is shown in "Tutorial: Declaring Variables and
Constants in a Subprogram".

To change the declarations in CALCULATE_SCORE to use %TYPE:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, expand EMP_EVAL.

4. In the list of choices, right-click EMP_EVAL Body.

5. In the list of choices, click Edit.

Chapter 5
Declaring and Assigning Values to Variables and Constants

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 50

The EMP_EVAL Bodypane appears, showing the code for the package body:

CREATE OR REPLACE
PACKAGE BODY emp_eval AS

 PROCEDURE eval_department (dept_id IN NUMBER) AS
 BEGIN
 -- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 n_score NUMBER(1,0); -- variable
 n_weight NUMBER; -- variable
 max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
 max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

END emp_eval;

6. In the code for the function, make the changes shown in bold font:

 FUNCTION calculate_score (evaluation_id IN SCORES.EVALUATION_ID%TYPE
 , performance_id IN SCORES.PERFORMANCE_ID%TYPE)
 RETURN NUMBER AS
 n_score SCORES.SCORE%TYPE;
 n_weight PERFORMANCE_PARTS.WEIGHT%TYPE;
 max_score CONSTANT SCORES.SCORE%TYPE := 9;
 max_weight CONSTANT PERFORMANCE_PARTS.WEIGHT%TYPE := 1;

7. Right-click EMP_EVAL.

8. In the list of choices, click Edit.

The EMP_EVAL paneopens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER);
FUNCTION calculate_score(evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

END EMP_EVAL;

9. In the code for the function, make the changes shown in bold font:

FUNCTION calculate_score(evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)

10. Right-click EMP_EVAL.

11. In the list of choices, click Compile.

12. Right-click EMP_EVAL Body.

13. In the list of choices, click Compile.

Chapter 5
Declaring and Assigning Values to Variables and Constants

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 50

Assigning Values to Variables
You can assign a value to a variable in these ways:

• Use the assignment operator to assign it the value of an expression.

• Use the SELECT INTO or FETCH statement to assign it a value from a table.

• Pass it to a subprogram as an OUT or IN OUT parameter, and then assign the value inside
the subprogram.

• Bind the variable to a value.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about
assigning values to variables

• Oracle AI Database Get Started with Java Development for information about
binding variables

Assigning Values to Variables with the Assignment Operator
With the assignment operator (:=), you can assign the value of an expression to a variable in
either the declarative or executable part of a subprogram.

In the declarative part of a subprogram, you can assign an initial value to a variable when you
declare it. The syntax is:

variable_name data_type := expression;

In the executable part of a subprogram, you can assign a value to a variable with an
assignment statement. The syntax is:

variable_name := expression;

Example 5-1 shows, in bold font, the changes to make to the
EMP_EVAL.CALCULATE_SCORE function to add a variable, running_total, and use it as the
return value of the function. The assignment operator appears in both the declarative and
executable parts of the function. (The data type of running_total must be NUMBER, rather than
SCORES.SCORE%TYPE or PERFORMANCE_PARTS.WEIGHT%TYPE, because it holds the
product of two NUMBER values with different precisions and scales.)

See Also

• Oracle AI Database PL/SQL Language Reference for variable declaration syntax

• Oracle AI Database PL/SQL Language Reference for assignment statement
syntax

Example 5-1 Assigning Values to a Variable with Assignment Operator

FUNCTION calculate_score(evaluation_id IN SCORES.EVALUATION_ID%TYPE
 , performance_id IN SCORES.PERFORMANCE_ID%TYPE)
 RETURN NUMBER AS

Chapter 5
Declaring and Assigning Values to Variables and Constants

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 50

 n_score SCORES.SCORE%TYPE;
 n_weight PERFORMANCE_PARTS.WEIGHT%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT SCORES.SCORE%TYPE := 9;
 max_weight CONSTANT PERFORMANCE_PARTS.WEIGHT%TYPE:= 1;
BEGIN
 running_total := max_score * max_weight;
 RETURN running_total;
END calculate_score;

Assigning Values to Variables with the SELECT INTO Statement
To use table values in subprograms or packages, you must assign them to variables with
SELECT INTO statements.

Example 5-2 shows, in bold font, the changes to make to the
EMP_EVAL.CALCULATE_SCORE function to have it calculate running_total from table values.

The ADD_EVAL procedure in Example 5-3 inserts a row into the EVALUATIONS table, using
values from the corresponding row in the EMPLOYEES table. Add the ADD_EVAL procedure
to the body of the EMP_EVAL package, but not to the specification. Because it is not in the
specification, ADD_EVAL is local to the package—it can be invoked only by other subprograms
in the package, not from outside the package.

See Also

Oracle AI Database PL/SQL Language Reference for more information about the
SELECT INTO statement

Example 5-2 Assigning Table Values to Variables with SELECT INTO

FUNCTION calculate_score (evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)
 RETURN NUMBER AS

 n_score scores.score%TYPE;
 n_weight performance_parts.weight%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT scores.score%TYPE := 9;
 max_weight CONSTANT performance_parts.weight%TYPE:= 1;
BEGIN
 SELECT s.score INTO n_score
 FROM SCORES s
 WHERE evaluation_id = s.evaluation_id
 AND performance_id = s.performance_id;

 SELECT p.weight INTO n_weight
 FROM PERFORMANCE_PARTS p
 WHERE performance_id = p.performance_id;

 running_total := n_score * n_weight;
 RETURN running_total;
END calculate_score;

Example 5-3 Inserting a Table Row with Values from Another Table

PROCEDURE add_eval (employee_id IN EMPLOYEES.EMPLOYEE_ID%TYPE
 , today IN DATE)

Chapter 5
Declaring and Assigning Values to Variables and Constants

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 50

AS
 job_id EMPLOYEES.JOB_ID%TYPE;
 manager_id EMPLOYEES.MANAGER_ID%TYPE;
 department_id EMPLOYEES.DEPARTMENT_ID%TYPE;
BEGIN
 INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
 SELECT
 evaluations_sequence.NEXTVAL, -- evaluation_id
 add_eval.employee_id, -- employee_id
 add_eval.today, -- evaluation_date
 e.job_id, -- job_id
 e.manager_id, -- manager_id
 e.department_id, -- department_id
 0 -- total_score
 FROM employees e;

 IF SQL%ROWCOUNT = 0 THEN
 RAISE NO_DATA_FOUND;
 END IF;
END add_eval;

Controlling Program Flow
Unlike SQL, which runs statements in the order in which you enter them, PL/SQL has control
statements that let you control the flow of your program.

About Control Statements
PL/SQL has three categories of control statements: conditional selection statements, loop
statements, and sequential control statements.

Conditional selection statements let you run different statements for different data values.
The conditional selection statements are IF and CASE.

Loop statements let you repeat the same statements with a series of different data values.
The loop statements are FOR LOOP, WHILE LOOP, and basic LOOP. The EXIT statement transfers
control to the end of a loop. The CONTINUE statement exits the current iteration of a loop and
transfers control to the next iteration. Both EXIT and CONTINUE have an optional WHEN clause, in
which you can specify a condition.

Sequential control statements let you go to a specified labeled statement or to do nothing.
The sequential control statements are GOTO and NULL.

See Also

Oracle AI Database PL/SQL Language Reference for an overview of PL/SQL control
statements

Chapter 5
Controlling Program Flow

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 50

Using the IF Statement
The IF statement either runs or skips a sequence of statements, depending on the value of a
Boolean expression.

The IF statement has this syntax:

IF boolean_expression THEN statement [, statement]
[ELSIF boolean_expression THEN statement [, statement]]...
[ELSE statement [, statement]]
END IF;

Suppose that your company evaluates employees twice a year in the first 10 years of
employment, but only once a year afterward. You want a function that returns the evaluation
frequency for an employee. You can use an IF statement to determine the return value of the
function, as in Example 5-4.

Add the EVAL_FREQUENCY function to the body of the EMP_EVAL package, but not to the
specification. Because it is not in the specification, EVAL_FREQUENCY is local to the package
—it can be invoked only by other subprograms in the package, not from outside the package.

Tip

When using a PL/SQL variable in a SQL statement, as in the second SELECT
statement in Example 5-4, qualify the variable with the subprogram name to ensure
that it is not mistaken for a table column.

See Also

• Oracle AI Database PL/SQL Language Reference for the syntax of the IF
statement

• Oracle AI Database PL/SQL Language Reference for more information about
using the IF statement

Example 5-4 IF Statement that Determines Return Value of Function

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;
 ELSE
 eval_freq := 2;
 END IF;

Chapter 5
Controlling Program Flow

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 50

 RETURN eval_freq;
END eval_frequency;

Using the CASE Statement
The CASE statement chooses from a sequence of conditions, and runs the corresponding
statement.

The simple CASE statement evaluates a single expression and compares it to several potential
values. It has this syntax:

CASE expression
WHEN value THEN statement
[WHEN value THEN statement]...
[ELSE statement [, statement]...]
END CASE;

The searched CASE statement evaluates multiple Boolean expressions and chooses the first
one whose value is TRUE. For information about the searched CASE statement, see Oracle AI
Database PL/SQL Language Reference.

Tip

When you can use either a CASE statement or nested IF statements, use a CASE
statement—it is both more readable and more efficient.

Suppose that, if an employee is evaluated only once a year, you want the EVAL_FREQUENCY
function to suggest a salary increase, which depends on the JOB_ID.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-5. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE, see
Oracle AI Database PL/SQL Packages and Types Reference.)

Example 5-5 CASE Statement that Determines Which String to Print

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, JOB_ID INTO h_date, j_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN
 eval_freq := 1;

 CASE j_id
 WHEN 'PU_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 8% salary increase for employee # ' || emp_id);
 WHEN 'SH_CLERK' THEN DBMS_OUTPUT.PUT_LINE(

Chapter 5
Controlling Program Flow

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 50

 'Consider 7% salary increase for employee # ' || emp_id);
 WHEN 'ST_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 6% salary increase for employee # ' || emp_id);
 WHEN 'HR_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 5% salary increase for employee # ' || emp_id);
 WHEN 'PR_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 5% salary increase for employee # ' || emp_id);
 WHEN 'MK_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 4% salary increase for employee # ' || emp_id);
 ELSE DBMS_OUTPUT.PUT_LINE(
 'Nothing to do for employee #' || emp_id);
 END CASE;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

See Also

• "Using CASE Expressions in Queries"

• Oracle AI Database PL/SQL Language Reference for the syntax of the CASE
statement

• Oracle AI Database PL/SQL Language Reference for more information about
using the CASE statement

Using the FOR LOOP Statement
The FOR LOOP statement repeats a sequence of statements once for each integer in the
range lower_bound through upper_bound.

The syntax of the FOR LOOP is:

FOR counter IN lower_bound..upper_bound LOOP
 statement [, statement]...
END LOOP;

The statements between LOOP and END LOOP can use counter, but cannot change its value.

Suppose that, instead of only suggesting a salary increase, you want the EVAL_FREQUENCY
function to report what the salary would be if it increased by the suggested amount every year
for five years.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-6. (For
information about the procedure that prints the strings, DBMS_OUTPUT.PUT_LINE, see Oracle AI
Database PL/SQL Packages and Types Reference.)

Example 5-6 FOR LOOP Statement that Computes Salary After Five Years

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;

Chapter 5
Controlling Program Flow

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 50

 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, JOB_ID, SALARY INTO h_date, j_id, sal
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN
 eval_freq := 1;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year for 5 years, it will be:');

 FOR i IN 1..5 LOOP
 sal := sal * (1 + sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2) || ' after ' || i || ' year(s)');
 END LOOP;
 END;
 END IF;

 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

See Also

• Oracle AI Database PL/SQL Language Reference for the syntax of the FOR
LOOP statement

• Oracle AI Database PL/SQL Language Reference for more information about
using the FOR LOOP statement

Using the WHILE LOOP Statement
The WHILE LOOP statement repeats a sequence of statements while a condition is TRUE.

The syntax of the WHILE LOOP statement is:

Chapter 5
Controlling Program Flow

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 50

WHILE condition LOOP
 statement [, statement]...
END LOOP;

Note

If the statements between LOOP and END LOOP never cause condition to become
FALSE, then the WHILE LOOP statement runs indefinitely.

Suppose that the EVAL_FREQUENCY function uses the WHILE LOOP statement instead of
the FOR LOOP statement and ends after the proposed salary exceeds the maximum salary for
the JOB_ID.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-7. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE, see
Oracle AI Database PL/SQL Packages and Types Reference.)

Example 5-7 WHILE LOOP Statement that Computes Salary to Maximum

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;
 sal_max JOBS.MAX_SALARY%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, j.JOB_ID, SALARY, MAX_SALARY INTO h_date, j_id, sal, sal_max
 FROM EMPLOYEES e, JOBS j
 WHERE EMPLOYEE_ID = eval_frequency.emp_id AND JOB_ID = eval_frequency.j_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN
 eval_freq := 1;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year, it will be:');

 WHILE sal <= sal_max LOOP
 sal := sal * (1 + sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2));

Chapter 5
Controlling Program Flow

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 50

 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Maximum salary for this job is ' || sal_max);
 END;
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

See Also

• Oracle AI Database PL/SQL Language Reference for the syntax of the WHILE
LOOP statement

• Oracle AI Database PL/SQL Language Reference for more information about
using the WHILE LOOP statement

Using the Basic LOOP and EXIT WHEN Statements
The basic LOOP statement repeats a sequence of statements.

The syntax of the basic LOOP statement is:

LOOP
 statement [, statement]...
END LOOP;

At least one statement must be an EXIT statement; otherwise, the LOOP statement runs
indefinitely.

The EXIT WHEN statement (the EXIT statement with its optional WHEN clause) exits a loop
when a condition is TRUE and transfers control to the end of the loop.

In the EVAL_FREQUENCY function, in the last iteration of the WHILE LOOP statement, the
last computed value usually exceeds the maximum salary.

Change the WHILE LOOP statement to a basic LOOP statement that includes an EXIT WHEN
statement, as in Example 5-8.

Example 5-8 Using the EXIT WHEN Statement

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;
 sal_max JOBS.MAX_SALARY%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, j.JOB_ID, SALARY, MAX_SALARY INTO h_date, j_id, sal, sal_max

Chapter 5
Controlling Program Flow

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 50

 FROM EMPLOYEES e, JOBS j
 WHERE EMPLOYEE_ID = eval_frequency.emp_id AND JOB_ID = eval_frequency.j_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN
 eval_freq := 1;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year, it will be:');

 LOOP
 sal := sal * (1 + sal_raise);
 EXIT WHEN sal > sal_max;
 DBMS_OUTPUT.PUT_LINE(ROUND(sal,2));
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Maximum salary for this job is ' || sal_max);
 END;
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

See Also

• Oracle AI Database PL/SQL Language Reference for the syntax of the LOOP
statement

• Oracle AI Database PL/SQL Language Reference for the syntax of the EXIT
statement

• Oracle AI Database PL/SQL Language Reference for more information about
using the LOOP and EXIT statements

Using Records and Cursors
You can store data values in records, and use a cursor as a pointer to a result set and related
processing information.

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 50

See Also

Oracle AI Database PL/SQL Language Reference for more information about records

About Records
A record is a PL/SQL composite variable that can store data values of different types. You can
treat Internal components (fields) like scalar variables. You can pass entire records as
subprogram parameters. Records are useful for holding data from table rows, or from certain
columns of table rows.

A record is a PL/SQL composite variable that can store data values of different types, similar
to a struct type in C, C++, or Java. The internal components of a record are called fields. To
access a record field, you use dot notation: record_name.field_name.

You can treat record fields like scalar variables. You can also pass entire records as
subprogram parameters.

Records are useful for holding data from table rows, or from certain columns of table rows.
Each record field corresponds to a table column.

There are three ways to create a record:

• Declare a RECORD type and then declare a variable of that type.

The syntax is:

TYPE record_name IS RECORD
 (field_name data_type [:= initial_value]
 [, field_name data_type [:= initial_value]]...);

variable_name record_name;

• Declare a variable of the type table_name%ROWTYPE.

The fields of the record have the same names and data types as the columns of the table.

• Declare a variable of the type cursor_name%ROWTYPE.

The fields of the record have the same names and data types as the columns of the table
in the FROM clause of the cursor SELECT statement.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about
defining RECORD types and declaring records of that type

• Oracle AI Database PL/SQL Language Reference for the syntax of a RECORD
type definition

• Oracle AI Database PL/SQL Language Reference for more information about the
%ROWTYPE attribute

• Oracle AI Database PL/SQL Language Reference for the syntax of the
%ROWTYPE attribute

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 50

Tutorial: Declaring a RECORD Type
This tutorial shows how to use the SQL Developer tool Edit to declare a RECORD type,
sal_info, whose fields can hold salary information for an employee—job ID, minimum and
maximum salary for that job ID, current salary, and suggested raise.

To declare RECORD type sal_info:

1. In the Connections frame, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Right-click EMP_EVAL.

A list of choices appears.

4. Click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER);
FUNCTION calculate_score(evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

END EMP_EVAL;

5. In the EMP_EVAL pane, immediately before END EMP_EVAL, add this code:

TYPE sal_info IS RECORD
 (j_id jobs.job_id%type
 , sal_min jobs.min_salary%type
 , sal_max jobs.max_salary%type
 , sal employees.salary%type
 , sal_raise NUMBER(3,3));

The title of the pane is in italic font, indicating that the changes have not been saved to the
database.

6. Click the icon Compile.

The changed package specification compiles and is saved to the database. The title of the
EMP_EVAL pane is no longer in italic font.

Now you can declare records of the type sal_info, as in "Tutorial: Creating and Invoking a
Subprogram with a Record Parameter".

Tutorial: Creating and Invoking a Subprogram with a Record Parameter
This tutorial shows how to use the SQL Developer tool Edit to create and invoke a subprogram
with a parameter of the record type sal_info.

The record type sal_info was created in "Tutorial: Declaring a RECORD Type".

This tutorial shows how to use the SQL Developer tool Edit to do the following:

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 50

• Create a procedure, SALARY_SCHEDULE, which has a parameter of type sal_info.

• Change the EVAL_FREQUENCY function so that it declares a record, emp_sal, of the type
sal_info, populates its fields, and passes it to the SALARY_SCHEDULE procedure.

Because EVAL_FREQUENCY will invoke SALARY_SCHEDULE, the declaration of
SALARY_SCHEDULE must precede the declaration of EVAL_FREQUENCY (otherwise the
package will not compile). However, the definition of SALARY_SCHEDULE can be anywhere
in the package body.

To create SALARY_SCHEDULE and change EVAL_FREQUENCY:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, expand EMP_EVAL.

4. In the list of choices, right-click EMP_EVAL Body.

5. In the list of choices, click Edit.

The EMP_EVAL Bodypane appears, showing the code for the package body.

6. In the EMP_EVAL Body pane, immediately before END EMP_EVAL, add this definition of the
SALARY_SCHEDULE procedure:

PROCEDURE salary_schedule (emp IN sal_info) AS
 accumulating_sal NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || emp.sal ||
 ' increases by ' || ROUND((emp.sal_raise * 100),0) ||
 '% each year, it will be:');

 accumulating_sal := emp.sal;

 WHILE accumulating_sal <= emp.sal_max LOOP
 accumulating_sal := accumulating_sal * (1 + emp.sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(accumulating_sal,2) ||', ');
 END LOOP;
END salary_schedule;

The title of the pane is in italic font, indicating that the changes have not been saved to the
database.

7. In the EMP_EVAL Body pane, enter the code shown in bold font, in this position:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

FUNCTION eval_frequency (emp_id EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER;
PROCEDURE salary_schedule(emp IN sal_info);
PROCEDURE add_eval(employee_id IN employees.employee_id%type, today IN DATE);

PROCEDURE eval_department (dept_id IN NUMBER) AS

8. Edit the EVAL_FREQUENCY function, making the changes shown in bold font:

FUNCTION eval_frequency (emp_id EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 emp_sal SAL_INFO; -- replaces sal, sal_raise, and sal_max

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 50

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;

 /* populate emp_sal */

 SELECT j.JOB_ID, j.MIN_SALARY, j.MAX_SALARY, e.SALARY
 INTO emp_sal.j_id, emp_sal.sal_min, emp_sal.sal_max, emp_sal.sal
 FROM EMPLOYEES e, JOBS j
 WHERE e.EMPLOYEE_ID = eval_frequency.emp_id
 AND j.JOB_ID = eval_frequency.emp_id;

 emp_sal.sal_raise := 0; -- default

 CASE emp_sal.j_id
 WHEN 'PU_CLERK' THEN emp_sal.sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN emp_sal.sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN emp_sal.sal_raise := 0.06;
 WHEN 'HR_REP' THEN emp_sal.sal_raise := 0.05;
 WHEN 'PR_REP' THEN emp_sal.sal_raise := 0.05;
 WHEN 'MK_REP' THEN emp_sal.sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (emp_sal.sal_raise != 0) THEN
 salary_schedule(emp_sal);
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
 END eval_frequency;

9. Click Compile.

About Cursors
When the database runs a SQL statement, it stores the result set and processing information
in an unnamed private SQL area. A pointer to this unnamed area, called a cursor, lets you
retrieve the result set one row at a time. Cursor attributes return information about the state
of the cursor.

Every time you run either a SQL DML statement or a PL/SQL SELECT INTO statement,
PL/SQL opens an implicit cursor. You can get information about this cursor from its attributes,
but you cannot control it. After the statement runs, the database closes the cursor; however, its
attribute values remain available until another DML or SELECT INTO statement runs.

PL/SQL also lets you declare cursors. A declared cursor has a name and is associated with a
query (SQL SELECT statement)—usually one that returns multiple rows. After declaring a
cursor, you must process it, either implicitly or explicitly. To process the cursor implicitly, use a
cursor FOR LOOP. The syntax is:

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 50

FOR record_name IN cursor_name LOOP
 statement
 [statement]...
END LOOP;

To process the cursor explicitly, open it (with the OPEN statement), fetch rows from the result
set either one at a time or in bulk (with the FETCH statement), and close the cursor (with the
CLOSE statement). After closing the cursor, you can neither fetch records from the result set
nor see the cursor attribute values.

The syntax for the value of an implicit cursor attribute is SQL%attribute (for example,
SQL%FOUND). SQL%attribute always refers to the most recently run DML or SELECT INTO
statement.

The syntax for the value of a declared cursor attribute is cursor_name%attribute (for example,
c1%FOUND).

Table 5-1 lists the cursor attributes and the values that they can return. (Implicit cursors have
additional attributes that are beyond the scope of this book.)

Table 5-1 Cursor Attribute Values

Attribute Values for Declared Cursor Values for Implicit Cursor

%FOUND If cursor is open1 but no fetch was
attempted, NULL.

If the most recent fetch returned a row,
TRUE.

If the most recent fetch did not return a
row, FALSE.

If no DML or SELECT INTO statement
has run, NULL.

If the most recent DML or SELECT
INTOstatement returned a row, TRUE.

If the most recent DML or SELECT
INTOstatement did not return a row,
FALSE.

%NOTFOUND If cursor is open1 but no fetch was
attempted, NULL.

If the most recent fetch returned a row,
FALSE.

If the most recent fetch did not return a
row, TRUE.

If no DML or SELECT INTO statement
has run, NULL.

If the most recent DML or SELECT
INTOstatement returned a row, FALSE.

If the most recent DML or SELECT INTO
statement did not return a row, TRUE.

%ROWCOUNT If cursor is open1, a number greater than
or equal to zero.

NULL if no DML or SELECT INTO
statement has run; otherwise, a number
greater than or equal to zero.

%ISOPEN If cursor is open, TRUE; if not, FALSE. Always FALSE.

1 If the cursor is not open, the attribute raises the predefined exception INVALID_CURSOR.

See Also

• "About Queries"

• "About Data Manipulation Language (DML) Statements"

• Oracle AI Database PL/SQL Language Reference for more information about the
SELECT INTO statement

• Oracle AI Database PL/SQL Language Reference for more information about
managing cursors in PL/SQL

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 50

Using a Declared Cursor to Retrieve Result Set Rows One at a Time
You can use a declared cursor to retrieve result set rows one at a time.

The following procedure uses each necessary statement in its simplest form, but provides
references to its complete syntax.

To use a declared cursor to retrieve result set rows one at a time:

1. In the declarative part:

a. Declare the cursor:

CURSOR cursor_name IS query;

For complete declared cursor declaration syntax, see Oracle AI Database PL/SQL
Language Reference.

b. Declare a record to hold the row returned by the cursor:

record_name cursor_name%ROWTYPE;

For complete %ROWTYPE syntax, see Oracle AI Database PL/SQL Language
Reference.

2. In the executable part:

a. Open the cursor:

OPEN cursor_name;

For complete OPEN statement syntax, see Oracle AI Database PL/SQL Language
Reference.

b. Fetch rows from the cursor (rows from the result set) one at a time, using a LOOP
statement that has syntax similar to this:

LOOP
 FETCH cursor_name INTO record_name;
 EXIT WHEN cursor_name%NOTFOUND;
 -- Process row that is in record_name:
 statement;
 [statement;]...
END LOOP;

For complete FETCH statement syntax, see Oracle AI Database PL/SQL Language
Reference.

c. Close the cursor:

CLOSE cursor_name;

For complete CLOSE statement syntax, see Oracle AI Database PL/SQL Language
Reference.

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 50

Tutorial: Using a Declared Cursor to Retrieve Result Set Rows One at a
Time

This tutorial shows how to implement the procedure EMP_EVAL.EVAL_DEPARTMENT, which
uses a declared cursor, emp_cursor.

To implement the EMP_EVAL.EVAL_DEPARTMENT procedure:

1. In the EMP_EVAL package specification, change the declaration of the
EVAL_DEPARTMENT procedure as shown in bold font:

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE);

2. In the EMP_EVAL package body, change the definition of the EVAL_DEPARTMENT
procedure as shown in bold font:

PROCEDURE eval_department (dept_id IN employees.department_id%TYPE)
AS
 CURSOR emp_cursor IS
 SELECT * FROM EMPLOYEES
 WHERE DEPARTMENT_ID = eval_department.dept_id;

 emp_record EMPLOYEES%ROWTYPE; -- for row returned by cursor
 all_evals BOOLEAN; -- true if all employees in dept need evaluations
 today DATE;

BEGIN
 today := SYSDATE;

 IF (EXTRACT(MONTH FROM today) < 6) THEN
 all_evals := FALSE; -- only new employees need evaluations
 ELSE
 all_evals := TRUE; -- all employees need evaluations
 END IF;

 OPEN emp_cursor;

 DBMS_OUTPUT.PUT_LINE (
 'Determining evaluations necessary in department # ' ||
 dept_id);

 LOOP
 FETCH emp_cursor INTO emp_record;
 EXIT WHEN emp_cursor%NOTFOUND;

 IF all_evals THEN
 add_eval(emp_record.employee_id, today);
 ELSIF (eval_frequency(emp_record.employee_id) = 2) THEN
 add_eval(emp_record.employee_id, today);
 END IF;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
END eval_department;

(For a step-by-step example of changing a package body, see "Tutorial: Declaring
Variables and Constants in a Subprogram".)

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 50

3. Compile the EMP_EVAL package specification.

4. Compile the EMP_EVAL package body.

About Cursor Variables
A cursor variable is like a cursor that it is not limited to one query. You can open a cursor
variable for a query, process the result set, and then use the cursor variable for another query.
Cursor variables are useful for passing query results between subprograms.

For information about cursors, see "About Cursors".

To declare a cursor variable, you declare a REF CURSOR type, and then declare a variable of
that type (therefore, a cursor variable is often called a REF CURSOR). A REF CURSOR type
can be either strong or weak.

A strong REF CURSOR type specifies a return type, which is the RECORD type of its cursor
variables. The PL/SQL compiler does not allow you to use these strongly typed cursor
variables for queries that return rows that are not of the return type. Strong REF CURSOR
types are less error-prone than weak ones, but weak ones are more flexible.

A weak REF CURSOR type does not specify a return type. The PL/SQL compiler accepts
weakly typed cursor variables in any queries. Weak REF CURSOR types are
interchangeable; therefore, instead of creating weak REF CURSOR types, you can use the
predefined type weak cursor type SYS_REFCURSOR.

After declaring a cursor variable, you must open it for a specific query (with the OPEN FOR
statement), fetch rows one at a time from the result set (with the FETCH statement), and then
either close the cursor (with the CLOSE statement) or open it for another specific query (with
the OPEN FOR statement). Opening the cursor variable for another query closes it for the
previous query. After closing a cursor variable for a specific query, you can neither fetch
records from the result set of that query nor see the cursor attribute values for that query.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about
using cursor variables

• Oracle AI Database PL/SQL Language Reference for the syntax of cursor variable
declaration

Using a Cursor Variable to Retrieve Result Set Rows One at a Time
You can use a cursor variable to retrieve result set rows one at a time.

The following procedure uses each of the necessary statements in its simplest form, but
provides references to their complete syntax.

To use a cursor variable to retrieve result set rows one at a time:

1. In the declarative part:

a. Declare the REF CURSOR type:

TYPE cursor_type IS REF CURSOR [RETURN return_type];

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 50

For complete REF CURSOR type declaration syntax, see Oracle AI Database PL/SQL
Language Reference.

b. Declare a cursor variable of that type:

cursor_variable cursor_type;

For complete cursor variable declaration syntax, see Oracle AI Database PL/SQL
Language Reference.

c. Declare a record to hold the row returned by the cursor:

record_name return_type;

For complete information about record declaration syntax, see Oracle AI Database
PL/SQL Language Reference.

2. In the executable part:

a. Open the cursor variable for a specific query:

OPEN cursor_variable FOR query;

For complete information about OPEN FOR statement syntax, see Oracle AI Database
PL/SQL Language Reference.

b. Fetch rows from the cursor variable (rows from the result set) one at a time, using a
LOOP statement that has syntax similar to this:

LOOP
 FETCH cursor_variable INTO record_name;
 EXIT WHEN cursor_variable%NOTFOUND;
 -- Process row that is in record_name:
 statement;
 [statement;]...
END LOOP;

For complete information about FETCH statement syntax, see Oracle AI Database
PL/SQL Language Reference.

c. Close the cursor variable:

CLOSE cursor_variable;

Alternatively, you can open the cursor variable for another query, which closes it for the
current query.

For complete information about CLOSE statement syntax, see Oracle AI Database
PL/SQL Language Reference.

Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time
This tutorial shows how to change the EMP_EVAL.EVAL_DEPARTMENT procedure so that it
uses a cursor variable instead of a declared cursor (which lets it process multiple departments)
and how to make EMP_EVAL.EVAL_DEPARTMENT and EMP_EVAL.ADD_EVAL more
efficient.

How this tutorial makes EMP_EVAL.EVAL_DEPARTMENT and EMP_EVAL.ADD_EVAL more
efficient: Instead of passing one field of a record to ADD_EVAL and having ADD_EVAL use
three queries to extract three other fields of the same record, EVAL_DEPARTMENT passes
the entire record to ADD_EVAL, and ADD_EVAL uses dot notation to access the values of the
other three fields.

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 50

To change the EMP_EVAL.EVAL_DEPARTMENT procedure to use a cursor variable:

1. In the EMP_EVAL package specification, add the procedure declaration and the REF
CURSOR type definition, as shown in bold font:

CREATE OR REPLACE
PACKAGE emp_eval AS

 PROCEDURE eval_department (dept_id IN employees.department_id%TYPE);

 PROCEDURE eval_everyone;

 FUNCTION calculate_score(eval_id IN scores.evaluation_id%TYPE
 , perf_id IN scores.performance_id%TYPE)
 RETURN NUMBER;
 TYPE SAL_INFO IS RECORD
 (j_id jobs.job_id%type
 , sal_min jobs.min_salary%type
 , sal_max jobs.max_salary%type
 , salary employees.salary%type
 , sal_raise NUMBER(3,3));

 TYPE emp_refcursor_type IS REF CURSOR RETURN employees%ROWTYPE;
END emp_eval;

2. In the EMP_EVAL package body, add a forward declaration for the procedure
EVAL_LOOP_CONTROL and change the declaration of the procedure ADD_EVAL, as
shown in bold font:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER;

 PROCEDURE salary_schedule(emp IN sal_info);

 PROCEDURE add_eval(emp_record IN EMPLOYEES%ROWTYPE, today IN DATE);

 PROCEDURE eval_loop_control(emp_cursor IN emp_refcursor_type);
...

(For a step-by-step example of changing a package body, see "Tutorial: Declaring
Variables and Constants in a Subprogram".)

3. Change the EVAL_DEPARTMENT procedure to retrieve three separate result sets based
on the department, and to invoke the EVAL_LOOP_CONTROL procedure, as shown in
bold font:

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE) AS
 emp_cursor emp_refcursor_type;
 current_dept departments.department_id%TYPE;

BEGIN
 current_dept := dept_id;

 FOR loop_c IN 1..3 LOOP
 OPEN emp_cursor FOR
 SELECT *
 FROM employees
 WHERE current_dept = eval_department.dept_id;

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 50

 DBMS_OUTPUT.PUT_LINE
 ('Determining necessary evaluations in department #' ||
 current_dept);

 eval_loop_control(emp_cursor);

 DBMS_OUTPUT.PUT_LINE
 ('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
 current_dept := current_dept + 10;
 END LOOP;
END eval_department;

4. Change the ADD_EVAL procedure as shown in bold font:

PROCEDURE add_eval(emp_record IN employees%ROWTYPE, today IN DATE)
AS
-- (Delete local variables)
BEGIN
 INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
 VALUES (
 evaluations_sequence.NEXTVAL, -- evaluation_id
 emp_record.employee_id, -- employee_id
 today, -- evaluation_date
 emp_record.job_id, -- job_id
 emp_record.manager_id, -- manager_id
 emp_record.department_id, -- department_id
 0 -- total_score
);
END add_eval;

5. Before END EMP_EVAL, add the following procedure, which fetches the individual records
from the result set and processes them:

PROCEDURE eval_loop_control (emp_cursor IN emp_refcursor_type) AS
 emp_record EMPLOYEES%ROWTYPE;
 all_evals BOOLEAN;
 today DATE;
BEGIN
 today := SYSDATE;

 IF (EXTRACT(MONTH FROM today) < 6) THEN
 all_evals := FALSE;
 ELSE
 all_evals := TRUE;
 END IF;

 LOOP
 FETCH emp_cursor INTO emp_record;
 EXIT WHEN emp_cursor%NOTFOUND;

 IF all_evals THEN
 add_eval(emp_record, today);
 ELSIF (eval_frequency(emp_record.employee_id) = 2) THEN

Chapter 5
Using Records and Cursors

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 50

 add_eval(emp_record, today);
 END IF;
 END LOOP;
END eval_loop_control;

6. Before END EMP_EVAL, add the following procedure, which retrieves a result set that
contains all employees in the company:

PROCEDURE eval_everyone AS
 emp_cursor emp_refcursor_type;
BEGIN
 OPEN emp_cursor FOR SELECT * FROM employees;
 DBMS_OUTPUT.PUT_LINE('Determining number of necessary evaluations.');
 eval_loop_control(emp_cursor);
 DBMS_OUTPUT.PUT_LINE('Processed ' || emp_cursor%ROWCOUNT || ' records.');
 CLOSE emp_cursor;
END eval_everyone;

7. Compile the EMP_EVAL package specification.

8. Compile the EMP_EVAL package body.

Using Associative Arrays
An associative array is a type of collection.

See Also

For more information about collections:

• Oracle AI Database Concepts

• Oracle AI Database PL/SQL Language Reference

About Collections
A collection is a PL/SQL composite variable that stores elements of the same type in a
specified order, similar to a one-dimensional array. The internal components of a collection are
called elements. Each element has a unique subscript that identifies its position in the
collection.

To access a collection element, you use subscript notation:
collection_name(element_subscript).

You can treat collection elements like scalar variables. You can also pass entire collections as
subprogram parameters (if neither the sending nor receiving subprogram is a standalone
subprogram).

A collection method is a built-in PL/SQL subprogram that either returns information about a
collection or operates on a collection. To invoke a collection method, you use dot notation:
collection_name.method_name. For example, collection_name.COUNT returns the number of
elements in the collection.

PL/SQL has three types of collections:

• Associative arrays (formerly called "PL/SQL tables" or "index-by tables")

• Nested tables

Chapter 5
Using Associative Arrays

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 50

• Variable arrays (varrays)

This document explains only associative arrays.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about
PL/SQL collection types

• Oracle AI Database PL/SQL Language Reference for more information about
collection methods

About Associative Arrays
An associative array is an unbounded set of key-value pairs. Each key is unique, and serves
as the subscript of the element that holds the corresponding value. Therefore, you can access
elements without knowing their positions in the array, and without traversing the array.

The data type of the key can be either PLS_INTEGER or VARCHAR2 (length).

If the data type of the key is PLS_INTEGER and the associative array is indexed by integer
and is dense (that is, has no gaps between elements), then every element between the first
and last element is defined and has a value (which can be NULL).

If the key type is VARCHAR2 (length), the associative array is indexed by string (of length
characters) and is sparse; that is, it might have gaps between elements.

When traversing a dense associative array, you need not beware of gaps between elements;
when traversing a sparse associative array, you do.

To assign a value to an associative array element, you can use an assignment operator:

array_name(key) := value

If key is not in the array, then the assignment statement adds the key-value pair to the array.
Otherwise, the statement changes the value of array_name(key) to value.

Associative arrays are useful for storing data temporarily. They do not use the disk space or
network operations that tables require. However, because associative arrays are intended for
temporary storage, you cannot manipulate them with DML statements.

If you declare an associative array in a package and assign values to the variable in the
package body, then the associative array exists for the life of the database session. Otherwise,
it exists for the life of the subprogram in which you declare it.

See Also

Oracle AI Database PL/SQL Language Reference for more information about
associative arrays

Chapter 5
Using Associative Arrays

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 50

Declaring Associative Arrays
To declare an associative array, you declare an associative array type and then declare a
variable of that type.

The simplest syntax is:

TYPE array_type IS TABLE OF element_type INDEX BY key_type;

array_name array_type;

An efficient way to declare an associative array is with a cursor, using the following procedure.
The procedure uses each necessary statement in its simplest form, but provides references to
its complete syntax.

To use a cursor to declare an associative array:

1. In the declarative part:

a. Declare the cursor:

CURSOR cursor_name IS query;

For complete declared cursor declaration syntax, see Oracle AI Database PL/SQL
Language Reference.

b. Declare the associative array type:

TYPE array_type IS TABLE OF cursor_name%ROWTYPE
 INDEX BY { PLS_INTEGER | VARCHAR2 length }

For complete associative array type declaration syntax, see Oracle AI Database
PL/SQL Language Reference.

c. Declare an associative array variable of that type:

array_name array_type;

For complete variable declaration syntax, see Oracle AI Database PL/SQL Language
Reference.

Example 5-9 uses the preceding procedure to declare two associative arrays, employees_jobs
and jobs_, and then declares a third associative array, job_titles, without using a cursor. The
first two arrays are indexed by integer; the third is indexed by string.

Note

The ORDER BY clause in the declaration of employees_jobs_cursor determines the
storage order of the elements of the associative array employee_jobs.

Example 5-9 Declaring Associative Arrays

DECLARE
 -- Declare cursor:

 CURSOR employees_jobs_cursor IS
 SELECT FIRST_NAME, LAST_NAME, JOB_ID
 FROM EMPLOYEES
 ORDER BY JOB_ID, LAST_NAME, FIRST_NAME;

Chapter 5
Using Associative Arrays

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 50

 -- Declare associative array type:

 TYPE employees_jobs_type IS TABLE OF employees_jobs_cursor%ROWTYPE
 INDEX BY PLS_INTEGER;

 -- Declare associative array:

 employees_jobs employees_jobs_type;

 -- Use same procedure to declare another associative array:

 CURSOR jobs_cursor IS
 SELECT JOB_ID, JOB_TITLE
 FROM JOBS;

 TYPE jobs_type IS TABLE OF jobs_cursor%ROWTYPE
 INDEX BY PLS_INTEGER;

 jobs_ jobs_type;

-- Declare associative array without using cursor:

 TYPE job_titles_type IS TABLE OF JOBS.JOB_TITLE%TYPE
 INDEX BY JOBS.JOB_ID%TYPE; -- jobs.job_id%type is varchar2(10)

 job_titles job_titles_type;

BEGIN
 NULL;
END;
/

See Also

• "About Cursors"

• Oracle AI Database PL/SQL Language Reference for associative array declaration
syntax

Populating Associative Arrays
The most efficient way to populate a dense associative array is usually with a SELECT
statement with a BULK COLLECT INTO clause.

Note

If a dense associative array is so large that a SELECT statement would a return a
result set too large to fit in memory, then do not use a SELECT statement. Instead,
populate the array with a cursor and the FETCH statement with the clauses BULK
COLLECT INTO and LIMIT. For information about using the FETCH statement with
BULK COLLECT INTO clause, see Oracle AI Database PL/SQL Language Reference.

Chapter 5
Using Associative Arrays

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 50

You cannot use a SELECT statement to populate a sparse associative array (such as job_titles
in "Declaring Associative Arrays"). Instead, you must use an assignment statement inside a
loop statement. For information about loop statements, see "Controlling Program Flow".

Example 5-10 uses SELECT statements to populate the associative arrays employees_jobs
and jobs_, which are indexed by integer. Then it uses an assignment statement inside a FOR
LOOP statement to populate the associative array job_titles, which is indexed by string.

Example 5-10 Populating Associative Arrays

-- Declarative part from Example 5-9 goes here.

BEGIN
 -- Populate associative arrays indexed by integer:

SELECT FIRST_NAME, LAST_NAME, JOB_ID BULK COLLECT INTO employees_jobs
 FROM EMPLOYEES ORDER BY JOB_ID, LAST_NAME, FIRST_NAME;

SELECT JOB_ID, JOB_TITLE BULK COLLECT INTO jobs_ FROM JOBS;

 -- Populate associative array indexed by string:

 FOR i IN 1..jobs_.COUNT() LOOP
 job_titles(jobs_(i).job_id) := jobs_(i).job_title;
 END LOOP;
END;
/

See Also

"About Cursors"

Traversing Dense Associative Arrays
A dense associative array (indexed by integer) has no gaps between elements—every
element between the first and last element is defined and has a value (which can be NULL).

You can traverse a dense array with a FOR LOOP statement, as in Example 5-11.

When inserted in the executable part of Example 5-10, after the code that populates the
employees_jobs array, the FOR LOOP statement in Example 5-11 prints the elements of the
employees_jobs array in the order in which they were stored. Their storage order was
determined by the ORDER BY clause in the declaration of employees_jobs_cursor, which was
used to declare employees_jobs (see Example 5-9).

The upper bound of the FOR LOOP statement, employees_jobs.COUNT, invokes a collection
method that returns the number of elements in the array. For more information about COUNT,
see Oracle AI Database PL/SQL Language Reference.

Example 5-11 Traversing a Dense Associative Array

-- Code that populates employees_jobs must precede this code:

FOR i IN 1..employees_jobs.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(
 RPAD(employees_jobs(i).first_name, 23) ||
 RPAD(employees_jobs(i).last_name, 28) || employees_jobs(i).job_id);
 END LOOP;

Chapter 5
Using Associative Arrays

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 50

Result:

William Gietz AC_ACCOUNT
Shelley Higgins AC_MGR
Jennifer Whalen AD_ASST
Steven King AD_PRES
Lex De Haan AD_VP
Neena Kochhar AD_VP
John Chen FI_ACCOUNT
...
Jose Manuel Urman FI_ACCOUNT
Nancy Greenberg FI_MGR
Susan Mavris HR_REP
David Austin IT_PROG
...
Valli Pataballa IT_PROG
Michael Hartstein MK_MAN
Pat Fay MK_REP
Hermann Baer PR_REP
Shelli Baida PU_CLERK
...
Sigal Tobias PU_CLERK
Den Raphaely PU_MAN
Gerald Cambrault SA_MAN
...
Eleni Zlotkey SA_MAN
Ellen Abel SA_REP
...
Clara Vishney SA_REP
Sarah Bell SH_CLERK
...
Peter Vargas ST_CLERK
Adam Fripp ST_MAN
...
Matthew Weiss ST_MAN

Traversing Sparse Associative Arrays
A sparse associative array (indexed by string) might have gaps between elements.

You can traverse it with a WHILE LOOP statement, as in Example 5-12.

To run the code in Example 5-12, which prints the elements of the job_titles array:

1. At the end of the declarative part of Example 5-9, insert this variable declaration:

i jobs.job_id%TYPE;

2. In the executable part of Example 5-10, after the code that populates the job_titles array,
insert the code from Example 5-12.

Example 5-12 Traversing a Sparse Associative Array

/* Declare this variable in declarative part:

 i jobs.job_id%TYPE;

 Add this code to the executable part,
 after code that populates job_titles:
*/

i := job_titles.FIRST;

Chapter 5
Using Associative Arrays

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 50

WHILE i IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(i, 12) || job_titles(i));
 i := job_titles.NEXT(i);
END LOOP;

Result:

AC_ACCOUNT Public Accountant
AC_MGR Accounting Manager
AD_ASST Administration Assistant
AD_PRES President
AD_VP Administration Vice President
FI_ACCOUNT Accountant
FI_MGR Finance Manager
HR_REP Human Resources Representative
IT_PROG Programmer
MK_MAN Marketing Manager
MK_REP Marketing Representative
PR_REP Public Relations Representative
PU_CLERK Purchasing Clerk
PU_MAN Purchasing Manager
SA_MAN Sales Manager
SA_REP Sales Representative
SH_CLERK Shipping Clerk
ST_CLERK Stock Clerk
ST_MAN Stock Manager

Example 5-12 includes two collection method invocations, job_titles.FIRST and
job_titles.NEXT(i). job_titles.FIRST returns the first element of job_titles, and job_titles.NEXT(i)
returns the subscript that succeeds i. For more information about FIRST, see Oracle AI
Database PL/SQL Language Reference. For more information about NEXT, see Oracle AI
Database PL/SQL Language Reference.

Handling Exceptions (Runtime Errors)
You can handle exceptions that occur at run time with PL/SQL code.

See Also

Oracle AI Database PL/SQL Language Reference for more information about handling
PL/SQL errors

About Exceptions and Exception Handlers
When a runtime error occurs in PL/SQL code, an exception is raised. If the subprogram (or
block) in which the exception is raised has an exception-handling part, then control transfers to
it; otherwise, execution stops.

Runtime errors can arise from design faults, coding mistakes, hardware failures, and many
other sources.

Oracle AI Database has many predefined exceptions, which it raises automatically when a
program violates database rules or exceeds system-dependent limits. For example, if a
SELECT INTO statement returns no rows, then Oracle AI Database raises the predefined
exception NO_DATA_FOUND. For a summary of predefined PL/SQL exceptions, see Oracle
AI Database PL/SQL Language Reference.

Chapter 5
Handling Exceptions (Runtime Errors)

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 50

PL/SQL lets you define (declare) your own exceptions. An exception declaration has this
syntax:

exception_name EXCEPTION;

Unlike a predefined exception, a user-defined exception must be raised explicitly, using either
the RAISE statement or the DBMS_STANDARD.RAISE_APPLICATION_ERROR. procedure.
For example:

IF condition THEN RAISE exception_name;

For information about the DBMS_STANDARD.RAISE_APPLICATION_ERROR procedure, see
Oracle AI Database PL/SQL Language Reference.

The exception-handling part of a subprogram contains one or more exception handlers. An
exception handler has this syntax:

WHEN { exception_name [OR exception_name]... | OTHERS } THEN
 statement; [statement;]...

("About Subprogram Structure" shows where to put the exception-handling part of a
subprogram.)

A WHEN OTHERS exception handler handles unexpected runtime errors. If used, it must be
last. For example:

EXCEPTION
 WHEN exception_1 THEN
 statement; [statement;]...
 WHEN exception_2 OR exception_3 THEN
 statement; [statement;]...
 WHEN OTHERS THEN
 statement; [statement;]...
 RAISE; -- Reraise the exception (very important).
END;

An alternative to the WHEN OTHERS exception handler is the EXCEPTION_INIT pragma,
which associates a user-defined exception name with an Oracle AI Database error number.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about
exception declaration syntax

• Oracle AI Database PL/SQL Language Reference for more information about
exception handler syntax

• Oracle AI Database PL/SQL Language Reference for more information about the
EXCEPTION_INIT pragma

When to Use Exception Handlers
Oracle recommends using exception handlers only in these situations.

• You expect an exception and want to handle it.

For example, you expect that eventually, a SELECT INTO statement will return no rows,
causing the database to raise the predefined exception NO_DATA_FOUND. You want your

Chapter 5
Handling Exceptions (Runtime Errors)

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 50

subprogram or block to handle that exception (which is not an error) and then continue, as
in Example 5-13.

• You must relinquish or close a resource.

For example:

...
file := UTL_FILE.OPEN ...
BEGIN
 statement statement]... -- If this code fails for any reason,
EXCEPTION
 WHEN OTHERS THEN
 UTL_FILE.FCLOSE(file); -- then you want to close the file.
 RAISE; -- Reraise the exception (very important).
END;
UTL_FILE.FCLOSE(file);
...

• At the top level of the code, you want to log the error.

For example, a client process might issue this block:

BEGIN
 proc(...);
EXCEPTION
 WHEN OTHERS THEN
 log_error_using_autonomous_transaction(...);
 RAISE; -- Reraise the exception (very important).
END;
/

Alternatively, the standalone subprogram that the client invokes can include the same
exception-handling logic—but only at the top level.

Handling Predefined Exceptions
You can handle predefined exceptions.

Example 5-13 shows, in bold font, how to change the EMP_EVAL.EVAL_DEPARTMENT
procedure to handle the predefined exception NO_DATA_FOUND. Make this change and
compile the changed procedure. (For an example of how to change a package body, see
"Tutorial: Declaring Variables and Constants in a Subprogram".)

Example 5-13 Handling Predefined Exception NO_DATA_FOUND

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE) AS
 emp_cursor emp_refcursor_type;
 current_dept departments.department_id%TYPE;

BEGIN
 current_dept := dept_id;

 FOR loop_c IN 1..3 LOOP
 OPEN emp_cursor FOR
 SELECT *
 FROM employees
 WHERE current_dept = eval_department.dept_id;

 DBMS_OUTPUT.PUT_LINE
 ('Determining necessary evaluations in department #' ||
 current_dept);

Chapter 5
Handling Exceptions (Runtime Errors)

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 50

 eval_loop_control(emp_cursor);

 DBMS_OUTPUT.PUT_LINE
 ('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
 current_dept := current_dept + 10;
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('The query did not return a result set');
END eval_department;

See Also

Oracle AI Database PL/SQL Language Reference for more information about
predefined exceptions

Declaring and Handling User-Defined Exceptions
You can declare and handle user-defined exceptions.

Example 5-14 shows, in bold font, how to change the EMP_EVAL.CALCULATE_SCORE
function to declare and handle two user-defined exceptions, wrong_weight and wrong_score.
Make this change and compile the changed function. (For an example of how to change a
package body, see "Tutorial: Declaring Variables and Constants in a Subprogram".)

Example 5-14 Handling User-Defined Exceptions

FUNCTION calculate_score (evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)
 RETURN NUMBER AS

 weight_wrong EXCEPTION;
 score_wrong EXCEPTION;
 n_score scores.score%TYPE;
 n_weight performance_parts.weight%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT scores.score%TYPE := 9;
 max_weight CONSTANT performance_parts.weight%TYPE:= 1;
BEGIN
 SELECT s.score INTO n_score
 FROM SCORES s
 WHERE evaluation_id = s.evaluation_id
 AND performance_id = s.performance_id;

 SELECT p.weight INTO n_weight
 FROM PERFORMANCE_PARTS p
 WHERE performance_id = p.performance_id;

 BEGIN
 IF (n_weight > max_weight) OR (n_weight < 0) THEN
 RAISE weight_wrong;
 END IF;
 END;

 BEGIN
 IF (n_score > max_score) OR (n_score < 0) THEN
 RAISE score_wrong;

Chapter 5
Handling Exceptions (Runtime Errors)

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 50

 END IF;
 END;

 running_total := n_score * n_weight;
 RETURN running_total;

EXCEPTION
 WHEN weight_wrong THEN
 DBMS_OUTPUT.PUT_LINE(
 'The weight of a score must be between 0 and ' || max_weight);
 RETURN -1;
 WHEN score_wrong THEN
 DBMS_OUTPUT.PUT_LINE(
 'The score must be between 0 and ' || max_score);
 RETURN -1;
END calculate_score;

See Also

Oracle AI Database PL/SQL Language Reference for more information about user-
defined exceptions

Chapter 5
Handling Exceptions (Runtime Errors)

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 50

6
Using Triggers

Triggers are stored PL/SQL units that automatically run ("fire") in response to specified events.

About Triggers
A trigger is a PL/SQL unit that is stored in the database and (if it is in the enabled state)
automatically runs ("fires") in response to a specified event.

A trigger has this structure:

TRIGGER trigger_name
 triggering_event
 [trigger_restriction]
BEGIN
 triggered_action;
END;

The trigger_name must be unique for triggers in the schema. A trigger can have the same
name as another kind of object in the schema (for example, a table); however, Oracle
recommends using a naming convention that avoids confusion.

If the trigger is in the enabled state, the triggering_event causes the database to run the
triggered_action if the trigger_restriction is either TRUE or omitted. The triggering_event is
associated with either a table, a view, a schema, or the database, and it is one of these:

• DML statement (described in "About Data Manipulation Language (DML) Statements")

• DDL statement (described in "About Data Definition Language (DDL) Statements")

• Database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN)

If the trigger is in the disabled state, the triggering_event does not cause the database to run
the triggered_action, even if the trigger_restriction is TRUE or omitted.

By default, a trigger is created in the enabled state. You can disable an enabled trigger, and
enable a disabled trigger.

Unlike a subprogram, a trigger cannot be invoked directly. A trigger is invoked only by its
triggering event, which can be caused by any user or application. You might be unaware that a
trigger is executing unless it causes an error that is not handled properly.

A simple trigger can fire at exactly one of these timing points:

• Before the triggering event runs (statement-level BEFORE trigger)

• After the triggering event runs (statement-level AFTER trigger)

• Before each row that the event affects (row-level BEFORE trigger)

• After each row that the event affects (row-level AFTER trigger)

A compound trigger can fire at multiple timing points. For information about compound
triggers, see Oracle AI Database PL/SQL Language Reference.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 10

An INSTEAD OF trigger is defined on a view, and its triggering event is a DML statement.
Instead of executing the DML statement, the database runs the INSTEAD OF trigger. For more
information, see "Creating an INSTEAD OF Trigger".

A system trigger is defined on a schema or the database. A trigger defined on a schema fires
for each event associated with the owner of the schema (the current user). A trigger defined on
a database fires for each event associated with all users.

One use of triggers is to enforce business rules that apply to all client applications. For
example, suppose that data added to the EMPLOYEES table must have a certain format, and
that many client applications can add data to this table. A trigger on the table can ensure the
proper format of all data added to it. Because the trigger runs whenever any client adds data to
the table, no client can circumvent the rules, and the code that enforces the rules can be
stored and maintained only in the trigger, rather than in every client application. For other uses
of triggers, see Oracle AI Database PL/SQL Language Reference.

See Also

Oracle AI Database PL/SQL Language Reference for complete information about
triggers

Creating Triggers
To create triggers, use either the SQL Developer graphical interface or the DDL statement
CREATE TRIGGER.

This section shows how to use both of these ways to create triggers.

By default, a trigger is created in the enabled state. To create a trigger in disabled state, use
the CREATE TRIGGER statement with the DISABLE clause.

Note

To create triggers, you must have appropriate privileges; however, for this discussion,
you do not need this additional information.

Note

To do the tutorials in this document, the hr sample schema must be installed and you
must be connected to the database as the user HR from SQL Developer.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about the
CREATE TRIGGER statement

• "Editing Installation Scripts that Create Triggers"

Chapter 6
Creating Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 10

About OLD and NEW Pseudorecords
When a row-level trigger fires, the PL/SQL runtime system creates and populates the two
pseudorecords OLD and NEW. They are called pseudorecords because they have some, but
not all, of the properties of records.

For the row that the trigger is processing:

• For an INSERT trigger, OLD contains no values, and NEW contains the new values.

• For an UPDATE trigger, OLD contains the old values, and NEW contains the new values.

• For a DELETE trigger, OLD contains the old values, and NEW contains no values.

To reference a pseudorecord, put a colon before its name—:OLD or :NEW—as in Example 6-1.

See Also

Oracle AI Database PL/SQL Language Reference for more information about OLD
and NEW pseudorecords

Tutorial: Creating a Trigger that Logs Table Changes
This tutorial shows how to use the CREATE TRIGGER statement to create a trigger,
EVAL_CHANGE_TRIGGER, which adds a row to the table EVALUATIONS_LOG whenever an
INSERT, UPDATE, or DELETE statement changes the EVALUATIONS table.

The trigger adds the row after the triggering statement runs, and uses the conditional
predicates INSERTING, UPDATING, and DELETING to determine which of the three possible
DML statements fired the trigger.

EVAL_CHANGE_TRIGGER is a statement-level trigger and an AFTER trigger.

To create EVALUATIONS_LOG and EVAL_CHANGE_TRIGGER:

1. Create the EVALUATIONS_LOG table:

CREATE TABLE EVALUATIONS_LOG (log_date DATE
 , action VARCHAR2(50));

2. Create EVAL_CHANGE_TRIGGER:

CREATE OR REPLACE TRIGGER EVAL_CHANGE_TRIGGER
 AFTER INSERT OR UPDATE OR DELETE
 ON EVALUATIONS
DECLARE
 log_action EVALUATIONS_LOG.action%TYPE;
BEGIN
 IF INSERTING THEN
 log_action := 'Insert';
 ELSIF UPDATING THEN
 log_action := 'Update';
 ELSIF DELETING THEN
 log_action := 'Delete';
 ELSE
 DBMS_OUTPUT.PUT_LINE('This code is not reachable.');
 END IF;

Chapter 6
Creating Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 10

 INSERT INTO EVALUATIONS_LOG (log_date, action)
 VALUES (SYSDATE, log_action);
END;

See Also

Oracle AI Database PL/SQL Language Reference for more information about
conditional predicates

Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before
It Is Inserted

This tutorial shows how to use the SQL Developer Create Trigger tool to create a trigger that
fires before a row is inserted into the EVALUATIONS table, and generates the unique number
for the primary key of that row, using EVALUATIONS_SEQUENCE.

The sequence EVALUATIONS_SEQUENCE (created in "Tutorial: Creating a Sequence")
generates primary keys for the EVALUATIONS table (created in "Creating Tables"). However,
these primary keys are not inserted into the table automatically.

This tutorial shows how to use the SQL Developer Create Trigger tool to create a trigger
named NEW_EVALUATION_TRIGGER, which fires before a row is inserted into the
EVALUATIONS table, and generates the unique number for the primary key of that row, using
EVALUATIONS_SEQUENCE. The trigger fires once for each row affected by the triggering
INSERT statement.

NEW_EVALUATION_TRIGGER is a row-level trigger and a BEFORE trigger.

To create the NEW_EVALUATION trigger:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Triggers.

3. In the list of choices, click New Trigger.

4. In the Create Trigger window:

a. In the Name field, type NEW_EVALUATION_TRIGGER over the default value
TRIGGER1.

b. For Base Object, select EVALUATIONS from the menu.

c. Move INSERT from Available Events to Selected Events.

(Select INSERT and click >.)

d. Deselect the option Statement Level.

e. Click OK.

The NEW_EVALUATION_TRIGGER pane opens, showing the CREATE TRIGGER
statement that created the trigger:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN

Chapter 6
Creating Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 10

 NULL;
END;

The title of the NEW_EVALUATION_TRIGGER pane is in italic font, indicating that the
trigger is not yet saved in the database.

5. In the CREATE TRIGGER statement, replace NULL with this:

:NEW.evaluation_id := evaluations_sequence.NEXTVAL

6. From the File menu, select Save.

The database compiles the procedure and saves it. The title of the
NEW_EVALUATION_TRIGGER pane is no longer in italic font.

Creating an INSTEAD OF Trigger
A view presents the output of a query as a table. If you want to change a view as you would
change a table, then you must create INSTEAD OF triggers. Instead of changing the view, they
change the underlying tables.

For example, consider the view EMP_LOCATIONS, whose NAME column is created from the
LAST_NAME and FIRST_NAME columns of the EMPLOYEES table:

CREATE VIEW EMP_LOCATIONS AS
SELECT e.EMPLOYEE_ID,
 e.LAST_NAME || ', ' || e.FIRST_NAME NAME,
 d.DEPARTMENT_NAME DEPARTMENT,
 l.CITY CITY,
 c.COUNTRY_NAME COUNTRY
FROM EMPLOYEES e, DEPARTMENTS d, LOCATIONS l, COUNTRIES c
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID AND
 d.LOCATION_ID = l.LOCATION_ID AND
 l.COUNTRY_ID = c.COUNTRY_ID
ORDER BY LAST_NAME;

To update the view EMP_LOCATIONS.NAME (created in "Creating Views with the CREATE
VIEW Statement"), you must update EMPLOYEES.LAST_NAME and
EMPLOYEES.FIRST_NAME. This is what the INSTEAD OF trigger in Example 6-1 does.

NEW and OLD are pseudorecords that the PL/SQL runtime engine creates and populates
whenever a row-level trigger fires. OLD and NEW store the original and new values,
respectively, of the record being processed by the trigger. They are called pseudorecords
because they do not have all properties of PL/SQL records.

Example 6-1 Creating an INSTEAD OF Trigger

CREATE OR REPLACE TRIGGER update_name_view_trigger
INSTEAD OF UPDATE ON emp_locations
BEGIN
 UPDATE employees SET
 first_name = substr(:NEW.name, instr(:new.name, ',')+2),
 last_name = substr(:NEW.name, 1, instr(:new.name, ',')-1)
 WHERE employee_id = :OLD.employee_id;
END;

Chapter 6
Creating Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 10

See Also

• Oracle AI Database PL/SQL Language Reference for more information about
INSTEAD OF triggers

• Oracle AI Database PL/SQL Language Reference for more information about OLD
and NEW

Tutorial: Creating Triggers that Log LOGON and LOGOFF Events
This tutorial shows how to use the CREATE TRIGGER statement to create two triggers,
HR_LOGON_TRIGGER and HR_LOGOFF_TRIGGER. After someone logs on as user HR,
HR_LOGON_TRIGGER adds a row to the table HR_USERS_LOG. Before someone logs off
as user HR, HR_LOGOFF_TRIGGER adds a row to the table HR_USERS_LOG.

HR_LOGON_TRIGGER and HR_LOGOFF_TRIGGER are system triggers.
HR_LOGON_TRIGGER is an AFTER trigger and HR_LOGOFF_TRIGGER is a BEFORE
trigger.

To create HR_USERS_LOG, HR_LOGON_TRIGGER, and HR_LOGOFF_TRIGGER:

1. Create the HR_USERS_LOG table:

CREATE TABLE hr_users_log (
 user_name VARCHAR2(30),
 activity VARCHAR2(20),
 event_date DATE
);

2. Create HR_LOGON_TRIGGER:

CREATE OR REPLACE TRIGGER hr_logon_trigger
 AFTER LOGON
 ON HR.SCHEMA
BEGIN
 INSERT INTO hr_users_log (user_name, activity, event_date)
 VALUES (USER, 'LOGON', SYSDATE);
END;

3. Create HR_LOGOFF_TRIGGER:

CREATE OR REPLACE TRIGGER hr_logoff_trigger
 BEFORE LOGOFF
 ON HR.SCHEMA
BEGIN
 INSERT INTO hr_users_log (user_name, activity, event_date)
 VALUES (USER, 'LOGOFF', SYSDATE);
END;

See Also

Oracle AI Database PL/SQL Language Reference for more information about system
triggers

Chapter 6
Creating Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 10

Changing Triggers
To change a trigger, use either the SQL Developer tool Edit or the DDL statement CREATE
TRIGGER with the OR REPLACE clause.

To change a trigger using the Edit tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Triggers.

3. In the list of triggers, click the trigger to change.

4. In the frame to the right of the Connections frame, the Code pane appears, showing the
code that created the trigger.

The Code pane is in write mode. (Clicking the pencil icon switches the mode from write
mode to read only, or the reverse.)

5. In the Code pane, change the code.

The title of the pane is in italic font, indicating that the change is not yet saved in the
database.

6. From the File menu, select Save.

The database compiles the trigger and saves it. The title of the pane is no longer in italic
font.

See Also

• "About Data Definition Language (DDL) Statements" for general information that
applies to the CREATE OR REPLACE TRIGGER statement

• Oracle AI Database PL/SQL Language Reference for more information about the
CREATE OR REPLACE TRIGGER statement

Disabling and Enabling Triggers
You might need to temporarily disable triggers that reference objects that are unavailable, or to
upload a large amount of data without the delay that triggers cause (as in a recovery
operation). After the referenced objects become available, or you have finished uploading the
data, you can re-enable the triggers.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about the
ALTER TRIGGER statement

• Oracle AI Database SQL Language Reference for more information about the
ALTER TABLE statement

Chapter 6
Changing Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 10

Disabling or Enabling a Single Trigger
To disable or enable a single trigger, use either the Disable Trigger or Enable Trigger tool or the
ALTER TRIGGER statement with the DISABLE or ENABLE clause.

For example, these statements disable and enable the eval_change_trigger:

ALTER TRIGGER eval_change_trigger DISABLE;
ALTER TRIGGER eval_change_trigger ENABLE;

To use the Disable Trigger or Enable Trigger tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Triggers.

3. In the list of triggers, right-click the desired trigger.

4. In the list of choices, select Disable or Enable.

5. In the Disable or Enable window, click Apply.

6. In the Confirmation window, click OK.

Disabling or Enabling All Triggers on a Single Table
To disable or enable all triggers on a specific table, use either the Disable All Triggers or
Enable All Triggers tool or the ALTER TABLE statement with the DISABLE ALL TRIGGERS or
ENABLE ALL TRIGGERS clause.

For example, these statements disable and enable all triggers on the evaluations table:

ALTER TABLE evaluations DISABLE ALL TRIGGERS;
ALTER TABLE evaluations ENABLE ALL TRIGGERS;

To use the Disable All Triggers or Enable All Triggers tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click the desired table.

4. In the list of choices, select Triggers.

5. In the list of choices, select Disable All or Enable All.

6. In the Disable All or Enable All window, click Apply.

7. In the Confirmation window, click OK.

About Trigger Compilation and Dependencies
Compiled triggers depend on the schema objects on which they are defined. If an object on
which a trigger depends is dropped, or changed such that there is a mismatch between the
trigger and the object, then the trigger is invalidated.

Running a CREATE TRIGGER statement compiles the trigger being created. If this compilation
causes an error, then the CREATE TRIGGER statement fails. To see the compilation errors,
use this statement:

SELECT * FROM USER_ERRORS WHERE TYPE = 'TRIGGER';

Chapter 6
About Trigger Compilation and Dependencies

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 10

Compiled triggers depend on the schema objects on which they are defined. For example,
NEW_EVALUATION_TRIGGER depends on the EVALUATIONS table:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 :NEW.evaluation_id := evaluations_seq.NEXTVAL;
END;

To see the schema objects on which triggers depend, use this statement:

SELECT * FROM ALL_DEPENDENCIES WHERE TYPE = 'TRIGGER';

If an object on which a trigger depends is dropped, or changed such that there is a mismatch
between the trigger and the object, then the trigger is invalidated. The next time the trigger is
invoked, it is recompiled. To recompile a trigger immediately, use the ALTER TRIGGER
statement with the COMPILE clause. For example:

ALTER TRIGGER NEW_EVALUATION_TRIGGER COMPILE;

See Also

Oracle AI Database PL/SQL Language Reference for more information about trigger
compilation and dependencies

Dropping Triggers
You must drop a trigger before dropping the objects on which it depends.

To drop a trigger, use either the SQL Developer Connections frame and Drop tool, or the DDL
statement DROP TRIGGER.

This statement drops the trigger EVAL_CHANGE_TRIGGER:

DROP TRIGGER EVAL_CHANGE_TRIGGER;

To drop a trigger using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Triggers.

3. In the list of triggers, right-click the name of the trigger to drop.

4. In the list of choices, click Drop Trigger.

5. In the Drop window, click Apply.

6. In the Confirmation window, click y.

Chapter 6
Dropping Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 10

See Also

• "About Data Definition Language (DDL) Statements" for general information that
applies to the DROP TRIGGER statement

• Oracle AI Database PL/SQL Language Reference for information about the DROP
TRIGGER statement

Chapter 6
Dropping Triggers

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 10

7
Working in a Global Environment

Globalization support features enable multilingual applications to run simultaneously from
anywhere in the world. Applications can render the content of the user interface, and process
data, using the native language and locale preferences of the user.

About Globalization Support Features
Globalization support features enable you to develop multilingual applications that can be run
simultaneously from anywhere in the world. An application can render the content of the user
interface, and process data, using the native language and locale preferences of the user.

Note

In the past, Oracle called globalization support National Language Support (NLS),
but NLS is actually a subset of globalization support. NLS is the ability to choose a
national language and store data using a specific character set. NLS is implemented
with NLS parameters.

See Also

Oracle AI Database Globalization Support Guide for more information about
globalization support features

About Language Support
Oracle AI Database enables you to store, process, and retrieve data in native languages. The
languages that can be stored in a database are all languages written in scripts that are
encoded by Oracle-supported character sets. Through the use of Unicode databases and data
types, Oracle AI Database supports most contemporary languages.

Additional support is available for a subset of the languages. The database can, for example,
display dates using translated month names, and can sort text data according to cultural
conventions.

In this document, the term language support refers to the additional language-dependent
functionality, and not to the ability to store text of a specific language. For example, language
support includes displaying dates or sorting text according to specific locales and cultural
conventions. Additionally, for some supported languages, Oracle AI Database provides
translated server messages and a translated user interface for the database utilities.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 29

See Also

• "About the NLS_LANGUAGE Parameter"

• Oracle AI Database Globalization Support Guide for a complete list of languages
that Oracle AI Database supports

• Oracle AI Database Globalization Support Guide for a list of languages into which
Oracle AI Database messages are translated

About Territory Support
The default local time format, date format, and numeric and monetary conventions depend on
the local territory setting.

Oracle AI Database supports cultural conventions that are specific to geographical locations.
The default local time format, date format, and numeric and monetary conventions depend on
the local territory setting. Setting different NLS parameters enables the database session to
use different cultural settings. For example, you can set the euro (EUR) as the primary currency
and the Japanese yen (JPY) as the secondary currency for a given database session, even
when the territory is AMERICA.

See Also

• "About the NLS_TERRITORY Parameter"

• Oracle AI Database Globalization Support Guide for a complete list of territories
that Oracle AI Database supports

About Date and Time Formats
Different countries have different conventions for displaying the hour, day, month, and year.

For example, this table shows the local date and time format for five countries and gives an
example of each format:

Country Date Format Example Time Format Example

China yyyy-mm-dd 2005-02-28 hh24:mi:ss 13:50:23

Estonia dd.mm.yyyy 28.02.2005 hh24:mi:ss 13:50:23

Germany dd.mm.rr 28.02.05 hh24:mi:ss 13:50:23

UK dd/mm/yyyy 28/02/2005 hh24:mi:ss 13:50:23

US mm/dd/yyyy 02/28/2005 hh:mi:ssxff am 1:50:23.555 PM

Chapter 7
About Globalization Support Features

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 29

See Also

• "About the NLS_DATE_FORMAT Parameter"

• "About the NLS_DATE_LANGUAGE Parameter"

• "About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT
Parameters"

• Oracle AI Database Globalization Support Guide for information about date/time
data types and time zone support

• Oracle AI Database SQL Language Reference for information about date and time
formats

About Calendar Formats
Different countries use different calendars.

Oracle AI Database stores this calendar information for each territory:

• First day of the week

Sunday in some cultures, Monday in others. Set by the NLS_TERRITORY parameter.

• First week of the calendar year

Some countries use week numbers for scheduling, planning, and bookkeeping. In the ISO
standard, this week number can differ from the week number of the calendar year. For
example, 1st Jan 2005 is in ISO week number 53 of 2004. An ISO week starts on Monday
and ends on Sunday. To support the ISO standard, Oracle AI Database provides the IW
date format element, which returns the ISO week number. The first calendar week of the
year is set by the NLS_TERRITORY parameter.

• Number of days and months in a year

Oracle AI Database supports six calendar systems in addition to the Gregorian calendar,
which is the default. These additional calendar systems are:

– Japanese Imperial

Has the same number of months and days as the Gregorian calendar, but the year
starts with the beginning of each Imperial Era.

– ROC Official

Has the same number of months and days as the Gregorian calendar, but the year
starts with the founding of the Republic of China.

– Persian

The first six months have 31 days each, the next five months have 30 days each, and
the last month has either 29 days or (in leap year) 30 days.

– Thai Buddha uses a Buddhist calendar.

– Arabic Hijrah has 12 months and 354 or 355 days.

– English Hijrah has 12 months and 354 or 355 days.

The calendar system is specified by the NLS_CALENDAR parameter.

• First year of era

Chapter 7
About Globalization Support Features

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 29

The Islamic calendar starts from the year of the Hegira. The Japanese Imperial calendar
starts from the beginning of an Emperor's reign (for example, 1998 is the tenth year of the
Heisei era).

See Also

• "About the NLS_TERRITORY Parameter"

• "About the NLS_CALENDAR Parameter"

• Oracle AI Database Globalization Support Guide for information about calendar
formats

About Numeric and Monetary Formats
Different countries have different numeric and monetary conventions.

This table shows the local numeric and monetary format for five countries and gives an
example of each format:

Country Numeric Format Monetary Format

China 1,234,567.89 ©1,234.56

Estonia 1 234 567,89 1 234,56 kr

Germany 1.234.567,89 1.234,56€

UK 1,234,567.89 £1,234.56

US 1,234,567.89 $1,234.56

See Also

• "About the NLS_NUMERIC_CHARACTERS Parameter"

• "About the NLS_CURRENCY Parameter"

• "About the NLS_ISO_CURRENCY Parameter"

• "About the NLS_DUAL_CURRENCY Parameter"

• Oracle AI Database Globalization Support Guide for information about numeric
and list parameters

• Oracle AI Database Globalization Support Guide for information about monetary
parameters

• Oracle AI Database SQL Language Reference for information about number
format models

About Linguistic Sorting and String Searching
Different languages have different sort orders (collating sequences). Also, different countries or
cultures that use the same alphabets sort words differently. For example, in Danish, Æ is after
Z, and Y and Ü are considered to be variants of the same letter.

Chapter 7
About Globalization Support Features

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 29

See Also

• "About the NLS_SORT Parameter"

• "About the NLS_COMP Parameter"

• Oracle AI Database Globalization Support Guide for more information about
linguistic sorting and string searching

About Length Semantics
To calculate the number of characters in a string, using byte length, you must know the number
of bytes in each character in the character set.

In single-byte character sets, the number of bytes and the number of characters in a string are
the same. In multibyte character sets, a character or code point consists of one or more bytes.
Calculating the number of characters based on byte length can be difficult in a variable-width
character set. Calculating column length in bytes is called byte semantics, while measuring
column length in characters is called character semantics.

Character semantics is useful for specifying the storage requirements for multibyte strings of
varying widths. For example, in a Unicode database (AL32UTF8), suppose that you must have
a VARCHAR2 column that can store up to five Chinese characters with five English characters.
Using byte semantics, this column requires 15 bytes for the Chinese characters, which are 3
bytes long, and 5 bytes for the English characters, which are 1 byte long, for a total of 20
bytes. Using character semantics, the column requires 10 characters.

See Also

• "About the NLS_LENGTH_SEMANTICS Parameter"

• Oracle AI Database Globalization Support Guide for information about character
sets and length semantics

About Unicode and SQL National Character Data Types
Unicode is a character encoding system that defines every character in most of the spoken
languages in the world. In Unicode, every character has a unique code, regardless of the
platform, program, or language.

You can store Unicode characters in an Oracle AI Database in two ways:

• You can create a Unicode database that enables you to store UTF-8 encoded characters
as SQL character data types (CHAR, VARCHAR2, CLOB, and LONG).

• You can declare columns and variables that have SQL national character data types.

The SQL national character data types are NCHAR, NVARCHAR2, and NCLOB. They are
also called Unicode data types, because they are used only for storing Unicode data.

The national character set, which is used for all SQL national character data types, is specified
when the database is created. The national character set can be either UTF8 or AL16UTF16
(default).

Chapter 7
About Globalization Support Features

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 29

When you declare a column or variable of the type NCHAR or NVARCHAR2, the length that
you specify is the number of characters, not the number of bytes.

See Also

• Oracle AI Database Globalization Support Guide for more information about
Unicode

• Oracle AI Database Globalization Support Guide for more information about
storing Unicode characters in an Oracle AI Database

• Oracle AI Database Globalization Support Guide for more information about SQL
national character data types

About Initial NLS Parameter Values
Except in SQL Developer, the initial values of NLS parameters are set by database initialization
parameters.

The DBA can set the values of initialization parameters in the initialization parameter file, and
they take effect the next time the database is started.

In SQL Developer, the initial values of NLS parameters are as shown in Table 7-1.

Table 7-1 Initial Values of NLS Parameters in SQL Developer

Parameter Initial Value

NLS_CALENDAR GREGORIAN

NLS_CHARACTERSET AL32UTF8

NLS_COMP BINARY

NLS_CURRENCY $

NLS_DATE_FORMAT DD-MON-RR

NLS_DATE_LANGUAGE AMERICAN

NLS_DUAL_CURRENCY $

NLS_ISO_CURRENCY AMERICA

NLS_LANGUAGE AMERICAN

NLS_LENGTH_SEMANTICS BYTE

NLS_NCHAR_CHARACTERSE
T

AL16UTF16

NLS_NCHAR_CONV_EXCP FALSE

NLS_NUMERIC_CHARACTER
S

.,

NLS_SORT BINARY

NLS_TERRITORY AMERICA

NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM

NLS_TIMESTAMP_TZ_FORMA
T

DD-MON-RR HH.MI.SSXFF AM TZR

NLS_TIME_FORMAT HH.MI.SSXFF AM

Chapter 7
About Initial NLS Parameter Values

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 29

Table 7-1 (Cont.) Initial Values of NLS Parameters in SQL Developer

Parameter Initial Value

NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR

See Also

Oracle AI Database Administrator's Guide for information about initialization
parameters and initialization parameter files

Viewing NLS Parameter Values
To view the current values of NLS parameters, use the SQL Developer report National
Language Support Parameters.

To view the National Language Support Parameters report:

1. From the SQL Developer menu View, select Reports.

2. In the Reports pane, expand Data Dictionary Reports.

3. In the list of reports, expand About Your Database.

4. In the list of reports, select National Language Support Parameters.

5. In the Select Connection window, select hr_conn.

6. Click OK.

The Select Connection window closes and the National Language Support Parameters
pane appears, showing the names of the NLS parameters and their current values.

See Also

Oracle SQL Developer User's Guide for more information about SQL Developer
reports

Changing NLS Parameter Values
You can change the value of one or more NLS parameters in any of these ways.

• Change the values for all SQL Developer connections, current and future.

• On the client, change the settings of the corresponding NLS environment variables.

Only on the client, the new values of the NLS environment variables override the values of
the corresponding NLS parameters.

You can use environment variables to specify locale-dependent behavior for the client. For
example, on a Linux system, this statement sets the value of the NLS_SORT environment
variable to FRENCH, overriding the value of the NLS_SORT parameter:

% setenv NLS_SORT FRENCH

Chapter 7
Viewing NLS Parameter Values

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 29

Note

Environment variables might be platform-dependent.

• Change the values only for the current session, using an ALTER SESSION statement with
this syntax:

ALTER SESSION SET parameter_name=parameter_value
 [parameter_name=parameter_value]... ;

Only in the current session, the new values override those set in all of the preceding ways.

You can use the ALTER SESSION to test your application with the settings for different
locales.

• Change the values only for the current SQL function invocation.

Only for the current SQL function invocation, the new values override those set in all of the
preceding ways.

See Also

• Oracle AI Database SQL Language Reference for more information about the
ALTER SESSION statement

• Oracle AI Database Globalization Support Guide for more information about
setting NLS parameters

Changing NLS Parameter Values for All SQL Developer Connections
You can change the values of NLS parameters for all SQL Developer connections, current and
future.

To change National Language Support Parameter values:

1. From the SQL Developer menu Tools, select Preferences.

2. In the Preferences window, in the left frame, expand Database.

3. In the list of database preferences, click NLS.

A list of NLS parameters and their current values appears. The value fields are menus.

4. From the menu to the right of each parameter whose value you want to change, select the
desired value.

5. Click OK.

The NLS parameters now have the values that you specified. To verify these values, see
"Viewing NLS Parameter Values".

Note

If the NLS parameter values do not reflect your changes, click the icon Run Report.

Chapter 7
Changing NLS Parameter Values

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 29

See Also

Oracle SQL Developer User's Guide for more information about SQL Developer
preferences

Changing NLS Parameter Values for the Current SQL Function Invocation
SQL functions whose behavior depends on the values of NLS parameters are called locale-
dependent. Some locale-dependent SQL functions have optional NLS parameters.

The local-dependent functions that have optional NLS parameters are:

• TO_CHAR

• TO_DATE

• TO_NUMBER

• NLS_UPPER

• NLS_LOWER

• NLS_INITCAP

• NLSSORT

In all of the preceding functions, you can specify these NLS parameters:

• NLS_DATE_LANGUAGE

• NLS_DATE_LANGUAGE

• NLS_NUMERIC_CHARACTERS

• NLS_CURRENCY

• NLS_ISO_CURRENCY

• NLS_DUAL_CURRENCY

• NLS_CALENDAR

• NLS_SORT

In the NLSSORT function, you can also specify these NLS parameters:

• NLS_LANGUAGE

• NLS_TERRITORY

• NLS_DATE_FORMAT

To specify NLS parameters in a function, use this syntax:

'parameter=value' ['parameter=value']...

Suppose that you want NLS_DATE_LANGUAGE to be AMERICAN when this query is
evaluated:

SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

You can set NLS_DATE_LANGUAGE to AMERICAN before running the query:

ALTER SESSION SET NLS_DATE_LANGUAGE=American;
SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

Chapter 7
Changing NLS Parameter Values

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 29

Alternatively, you can set NLS_DATE_LANGUAGE to AMERICAN inside the query, using the
locale-dependent SQL function TO_DATE with its optional NLS_DATE_LANGUAGE
parameter:

SELECT last_name FROM employees
WHERE hire_date > TO_DATE('01-JAN-1999', 'DD-MON-YYYY',
 'NLS_DATE_LANGUAGE=AMERICAN');

Tip

Using session default values for NLS parameters in SQL functions usually results in
better performance. Therefore, specify optional NLS parameters in locale-dependent
SQL functions only in SQL statements that must not use the default NLS parameter
values.

See Also

Oracle AI Database Globalization Support Guide for more information about locale-
dependent SQL functions with optional NLS parameters

About Individual NLS Parameters
Many individual NLS parameters are available.

See Also

• Oracle AI Database Globalization Support Guide for more information about
setting up a globalization support environment

• "Changing NLS Parameter Values"

About Locale and the NLS_LANG Parameter
A locale is a linguistic and cultural environment in which a system or application runs. The
simplest way to specify a locale for Oracle AI Database software is to set the NLS_LANG
parameter.

The NLS_LANG parameter sets the default values of the parameters NLS_LANGUAGE and
NLS_TERRITORY for both the server session (for example, SQL statement processing) and
the client application (for example, display formatting in Oracle AI Database tools). The
NLS_LANG parameter also sets the character set that the client application uses for data
entered or displayed.

The default value of NLS_LANG is set during database installation. You can use the ALTER
SESSION statement to change the values of NLS parameters, including those set by
NLS_LANG, for your session. However, only the client can change the NLS settings in the
client environment.

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 29

See Also

• Oracle AI Database Globalization Support Guide for more information about
specifying a locale with the NLS_LANG parameter

• Oracle AI Database Globalization Support Guide for information about languages,
territories, character sets, and other locale data supported by Oracle AI Database

• "About the NLS_LANGUAGE Parameter"

• "About the NLS_TERRITORY Parameter"

• "Changing NLS Parameter Values"

About the NLS_LANGUAGE Parameter
This parameter specifies the default language of the database.

Specifies: Default language of the database. Default conventions for:

• Language for server messages

• Language for names and abbreviations of days and months that are specified in the SQL
functions TO_CHAR and TO_DATE

• Symbols for default-language equivalents of AM, PM, AD, and BC

• Default sorting order for character data when the ORDER BY clause is specified

• Writing direction

• Affirmative and negative response strings (for example, YES and NO)

Acceptable Values: Any language name that Oracle supports. For a list, see Oracle AI
Database Globalization Support Guide.

Default Value: Set by NLS_LANG, described in "About Locale and the NLS_LANG
Parameter".

Sets default values of:

• NLS_DATE_LANGUAGE, described in "About the NLS_DATE_LANGUAGE Parameter".

• NLS_SORT, described in "About the NLS_SORT Parameter".

Example 7-1 shows how setting NLS_LANGUAGE to ITALIAN and GERMAN affects server
messages and month abbreviations.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-1 NLS_LANGUAGE Affects Server Message and Month Abbreviations

1. Note the current value of NLS_LANGUAGE.

2. If the value in step 1 is not ITALIAN, change it:

ALTER SESSION SET NLS_LANGUAGE=ITALIAN;

3. Query a nonexistent table:

SELECT * FROM nonexistent_table;

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 29

Result:

SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: tabella o vista inesistente

4. Run this query:

SELECT LAST_NAME, HIRE_DATE
FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (111, 112, 113);

Result:

LAST_NAME HIRE_DATE
------------------------- ---------
Sciarra 30-SET-97
Urman 07-MAR-98
Popp 07-DIC-99

3 rows selected.

5. Change the value of NLS_LANGUAGE to GERMAN:

ALTER SESSION SET NLS_LANGUAGE=GERMAN;

6. Repeat the query from step 3.

Result:

SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: Tabelle oder View nicht vorhanden

7. Repeat the query from step 4.

Result:

LAST_NAME HIRE_DATE
------------------------- ---------
Sciarra 30-SEP-97
Urman 07-MRZ-98
Popp 07-DEZ-99

3 rows selected.

8. Set NLS_LANGUAGE to the value that it had at step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_LANGUAGE parameter

• "About Language Support"

• "Changing NLS Parameter Values"

About the NLS_TERRITORY Parameter
This parameter specifies default conventions for date format, time stamp format, decimal and
group separator, local currency symbol, ISO currency symbol, and dual currency symbol.

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 29

Specifies: Default conventions for:

• Date format

• Time stamp format

• Decimal character and group separator

• Local currency symbol

• ISO currency symbol

• Dual currency symbol

Acceptable Values: Any territory name that Oracle supports. For a list, see Oracle AI
Database Globalization Support Guide.

Default Value: Set by NLS_LANG, described in "About Locale and the NLS_LANG
Parameter".

Sets default values of:

• NLS_DATE_FORMAT, described in "About the NLS_DATE_FORMAT Parameter".

• NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT, described in "About
NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters".

• NLS_NUMERIC_CHARACTERS, described in "About the NLS_NUMERIC_CHARACTERS
Parameter".

• NLS_CURRENCY, described in "About the NLS_CURRENCY Parameter".

• NLS_ISO_CURRENCY, described in "About the NLS_ISO_CURRENCY Parameter".

• NLS_DUAL_CURRENCY, described in "About the NLS_DUAL_CURRENCY Parameter".

Example 7-2 shows how setting NLS_TERRITORY to JAPAN and AMERICA affects the
currency symbol.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-2 NLS_TERRITORY Affects Currency Symbol

1. Note the current value of NLS_TERRITORY.

2. If the value in step 1 is not JAPAN, change it:

ALTER SESSION SET NLS_TERRITORY=JAPAN;

3. Run this query:

SELECT TO_CHAR(SALARY,'L99G999D99') SALARY
FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (100, 101, 102);

Result:

SALARY

 ©24,000.00
 ©17,000.00
 ©17,000.00

3 rows selected.

4. Change the value of NLS_TERRITORY to AMERICA:

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 29

ALTER SESSION SET NLS_TERRITORY=AMERICA;

5. Repeat the query from step 3.

Result:

SALARY

 $24,000.00
 $17,000.00
 $17,000.00

3 rows selected.

6. Set NLS_TERRITORY to the value that it had at step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_TERRITORY parameter

• "About Territory Support"

• "Changing NLS Parameter Values"

About the NLS_DATE_FORMAT Parameter
This parameter specifies the default date format to use with the TO_CHAR and TO_DATE
functions.

Specifies: Default date format to use with the TO_CHAR and TO_DATE functions (which are
introduced in "Using Conversion Functions in Queries").

Acceptable Values: Any any valid datetime format model. For example:

NLS_DATE_FORMAT='MM/DD/YYYY'

For information about datetime format models, see Oracle AI Database SQL Language
Reference.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

The default date format might not correspond to the convention used in a given territory. To get
dates in localized formats, you can use the 'DS' (short date) and 'DL' (long date) formats.

Example 7-3 shows how setting NLS_TERRITORY to AMERICA and FRANCE affects the
default, short, and long date formats.

Example 7-4 changes the value of NLS_DATE_FORMAT, overriding the default value set by
NLS_TERRITORY.

To try the examples in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-3 NLS_TERRITORY Affects Date Formats

1. Note the current value of NLS_TERRITORY.

2. If the value in step 1 is not AMERICA, change it:

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 29

ALTER SESSION SET NLS_TERRITORY=AMERICA;

3. Run this query:

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"
FROM employees
WHERE employee_id IN (111, 112, 113);

Result:

Default Short Long
--------- ---------- -----------------------------
30-SEP-05 9/30/2005 Friday, September 30, 2005
07-MAR-98 3/7/2006 Tuesday, March 07, 2006
07-DEC-99 12/7/2007 Friday, December 07, 2007

3 rows selected.

4. Change the value of NLS_TERRITORY to FRANCE:

ALTER SESSION SET NLS_TERRITORY=FRANCE;

5. Repeat the query from step 3.

Result:

Default Short Long
-------- ---------- ---------------------------
30/09/05 30/09/2005 friday 30 september 2005
07/03/06 07/03/2006 tuesday 7 march 2006
07/12/07 07/12/2007 friday 7 december 2007

3 rows selected.

(To get the names of the days and months in French, you must set either
NLS_LANGUAGE or NLS_DATE_LANGUAGE to FRENCH before running the query.)

6. Set NLS_TERRITORY to the value that it had at step 1.

Example 7-4 NLS_DATE_FORMAT Overrides NLS_TERRITORY

1. Note the current values of NLS_TERRITORY and NLS_DATE_FORMAT.

2. If the value of NLS_TERRITORY in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

3. If the value of NLS_DATE_FORMAT in step 1 is not 'Day Month ddth', change it:

ALTER SESSION SET NLS_DATE_FORMAT='Day Month ddth';

4. Run this query (from previous example, step 3):

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"
FROM employees
WHERE employee_id IN (111, 112, 113);

Result:

Default Short Long
------------------------ ---------- -----------------------------
Friday September 30th 9/30/2005 Tuesday, September 30, 2005
Tuesday March 07th 3/7/2006 Saturday, March 07, 2006
Friday December 07th 12/7/2007 Tuesday, December 07, 2007

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 29

3 rows selected.

5. Set NLS_TERRITORY and NLS_DATE_FORMAT to the values that they had at step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_DATE_FORMAT parameter

• Oracle AI Database SQL Language Reference for more information about the
TO_CHAR function

• Oracle AI Database SQL Language Reference for more information about the
TO_DATE function

• "About Date and Time Formats"

• "Changing NLS Parameter Values"

About the NLS_DATE_LANGUAGE Parameter
This parameter specifies the language for names and abbreviations of days and months that
are produced by: SQL functions TO_CHAR and TO_DATE, the default date format (set by
NLS_DATE_FORMAT), and symbols for the default-language equivalents of AM, PM, AD, and
BC.

Specifies: Language for names and abbreviations of days and months that are produced by:

• SQL functions TO_CHAR and TO_DATE (which are introduced in "Using Conversion
Functions in Queries")

• Default date format (set by NLS_DATE_FORMAT, described in "About the
NLS_DATE_FORMAT Parameter")

• Symbols for default-language equivalents of AM, PM, AD, and BC

Acceptable Values: Any language name that Oracle supports. For a list, see Oracle AI
Database Globalization Support Guide.

Default Value: Set by NLS_LANGUAGE, described in "About the NLS_LANGUAGE
Parameter".

Example 7-5 shows how setting NLS_DATE_LANGUAGE to FRENCH and SWEDISH affects the
displayed system date.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-5 NLS_DATE_LANGUAGE Affects Displayed SYSDATE

1. Note the current value of NLS_DATE_LANGUAGE.

2. If the value of NLS_DATE_LANGUAGE in step 1 is not FRENCH, change it:

ALTER SESSION SET NLS_DATE_LANGUAGE=FRENCH;

3. Run this query:

SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy') "System Date"
FROM DUAL;

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 29

Result:

System Date

Vendredi:28 December 2012

4. Change the value of NLS_DATE_LANGUAGE to SWEDISH:

ALTER SESSION SET NLS_DATE_LANGUAGE=SWEDISH;

5. Repeat the query from step 3.

Result:

System Date

Fredag :28 December 2012

6. Set NLS_DATE_LANGUAGE to the value that it had at step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_DATE_LANGUAGE parameter

• Oracle AI Database SQL Language Reference for more information about the
TO_CHAR function

• Oracle AI Database SQL Language Reference for more information about the y
function

• "About Date and Time Formats"

• "Changing NLS Parameter Values"

About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT
Parameters

This parameter specifies the default date format for the TIMESTAMP audiotape and
TIMESTAMP WITH LOCAL TIME ZONEaudiotapeTIMESTAMP WITH LOCAL TIME
ZONEaudiotape.

Specify: Default date format for:

• TIMESTAMP audiotape

• TIMESTAMP WITH LOCAL TIME ZONEaudiotape

Acceptable Values: Any any valid datetime format model. For example:

NLS_TIMESTAMP_FORMAT='YYYY-MM-DD HH:MI:SS.FF'
NLS_TIMESTAMP_TZ_FORMAT='YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

For information about datetime format models, see Oracle AI Database SQL Language
Reference.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 29

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_TIMESTAMP_FORMAT parameter

• Oracle AI Database Globalization Support Guide for more information about the
NLS_TIMESTAMP_TZ_FORMAT parameter

• Oracle AI Database Globalization Support Guide for information about date/time
data types and time zone support

• Oracle AI Database SQL Language Reference for more information about the
TIMESTAMP audiotape

• Oracle AI Database SQL Language Reference for more information about the
TIMESTAMP WITH LOCAL TIME ZONE data type

• "About Date and Time Formats"

• "Changing NLS Parameter Values"

About the NLS_CALENDAR Parameter
This parameter specifies the calendar system for the database.

Specifies: Calendar system for the database.

Acceptable Values: Any calendar system that Oracle supports. For a list, see Oracle AI
Database Globalization Support Guide.

Default Value: Gregorian

Example 7-6 shows how setting NLS_CALENDAR to 'English Hijrah' and Gregorian
affects the displayed system date.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-6 NLS_CALENDAR Affects Displayed SYSDATE

1. Note the current value of NLS_CALENDAR.

2. If the value of NLS_CALENDAR in step 1 is not 'English Hijrah', change it:

ALTER SESSION SET NLS_CALENDAR='English Hijrah';

3. Run this query:

SELECT SYSDATE FROM DUAL;

Result:

SYSDATE

17 Safar 1434

4. Change the value of NLS_CALENDAR to 'Gregorian':

ALTER SESSION SET NLS_CALENDAR='Gregorian';

5. Run this query:

SELECT SYSDATE FROM DUAL;

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 29

Result:

SYSDATE

31-DEC-12

6. Set NLS_CALENDAR to the value that it had at step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_CALENDAR parameter

• "About Calendar Formats"

• "Changing NLS Parameter Values"

About the NLS_NUMERIC_CHARACTERS Parameter
This parameter specifies the decimal character (which separates the integer and decimal parts
of a number) and group separator (which separates integer groups to show thousands and
millions, for example). The group separator is the character returned by the numeric format
element G.

Specifies: Decimal character (which separates the integer and decimal parts of a number) and
group separator (which separates integer groups to show thousands and millions, for
example). The group separator is the character returned by the numeric format element G.

Acceptable Values: Any two different single-byte characters except:

• A numeric character

• Plus (+)

• Minus (-)

• Less than (<)

• Greater than (>)

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

In a SQL statement, you can represent a number as either:

• Numeric literal

A numeric literal is not enclosed in quotation marks, always uses a period (.) as the
decimal character, and never contains a group separator.

• Text literal

A text literal is enclosed in single quotation marks. It is implicitly or explicitly converted to a
number, if required, according to the current NLS settings.

Example 7-7 shows how two different NLS_NUMERIC_CHARACTERS settings affect the
displayed result of the same query.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 29

Example 7-7 NLS_NUMERIC_CHARACTERS Affects Decimal Character and Group
Separator

1. Note the current value of NLS_NUMERIC_CHARACTERS.

2. If the value of NLS_NUMERIC_CHARACTERS in step 1 is not ",." (decimal character is
comma and group separator is period), change it:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=",.";

3. Run this query:

SELECT TO_CHAR(4000, '9G999D99') "Number" FROM DUAL;

Result:

Number

 4.000,00

4. Change the value of NLS_NUMERIC_CHARACTERS to ",." (decimal character is period
and group separator is comma):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=".,";

5. Run this query:

SELECT TO_CHAR(4000, '9G999D99') "Number" FROM DUAL;

Result:

Number

 4,000.00

6. Set NLS_NUMERIC_CHARACTERS to the value that it had at step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_NUMERIC_CHARACTERS parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_CURRENCY Parameter
This parameter specifies the local currency symbol (the character string returned by the
numeric format element L).

Specifies: Local currency symbol (the character string returned by the numeric format element
L).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

Example 7-8 changes the value of NLS_CURRENCY, overriding the default value set by
NLS_TERRITORY. To try this example in SQL Developer, enter the statements and queries in
the Worksheet. For information about the Worksheet, see "Running Queries in SQL

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 29

Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL
Developer.

Example 7-8 NLS_CURRENCY Overrides NLS_TERRITORY

1. Note the current values of NLS_TERRITORY and NLS_CURRENCY.

2. If the value of NLS_TERRITORY in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

3. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Salary"
FROM EMPLOYEES
WHERE salary > 13000;

Result:

Salary

 $024,000.00
 $017,000.00
 $017,000.00
 $014,000.00
 $013,500.00

4. Change the value of NLS_CURRENCY to '©':

ALTER SESSION SET NLS_CURRENCY='©';

5. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Salary"
FROM EMPLOYEES
WHERE salary > 13000;

Result:

Salary

 ©024,000.00
 ©017,000.00
 ©017,000.00
 ©014,000.00
 ©013,500.00

6. Set NLS_TERRITORY and NLS_CURRENCY to the values that they had at step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_CURRENCY parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_ISO_CURRENCY Parameter
This parameter specifies the ISO currency symbol (the string returned by the numeric format
element C).

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 29

Specifies: ISO currency symbol (the character string returned by the numeric format element
C).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY Parameter".

Local currency symbols can be ambiguous, but ISO currency symbols are unique.

Example 7-9 shows that the territories AUSTRALIA and AMERICA have the same local
currency symbol, but different ISO currency symbols.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-9 NLS_ISO_CURRENCY

1. Note the current values of NLS_TERRITORY and NLS_ISO_CURRENCY.

2. If the value of NLS_TERRITORY in step 1 is not AUSTRALIA, change it:

ALTER SESSION SET NLS_TERRITORY=AUSTRALIA;

3. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Local",
 TO_CHAR(salary, 'C099G999D99') "ISO"
FROM EMPLOYEES
WHERE salary > 15000;

Result:

Local ISO
--------------------- ------------------
 $024,000.00 AUD024,000.00
 $017,000.00 AUD017,000.00
 $017,000.00 AUD017,000.00

4. Change the value of NLS_TERRITORY to AMERICA:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

5. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Local",
 TO_CHAR(salary, 'C099G999D99') "ISO"
FROM EMPLOYEES
WHERE salary > 15000;

Result:

Local ISO
--------------------- ------------------
 $024,000.00 USD024,000.00
 $017,000.00 USD017,000.00
 $017,000.00 USD017,000.00

6. Set NLS_TERRITORY and NLS_ISO_CURRENCY to the values that they had at step 1.

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 29

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_ISO_CURRENCY parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_DUAL_CURRENCY Parameter
This parameter specifies the dual currency symbol (introduced to support the euro currency
symbol during the euro transition period).

Specifies: Dual currency symbol (introduced to support the euro currency symbol during the
euro transition period).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_DUAL_CURRENCY parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_SORT Parameter
This parameter specifies the linguistic sort order (collating sequence) for queries that have the
ORDER BY clause.

Specifies: Linguistic sort order (collating sequence) for queries that have the ORDER BY
clause.

Acceptable Values:

• BINARY

Sort order is based on the binary sequence order of either the database character set or
the national character set, depending on the data type.

• Any linguistic sort name that Oracle supports

Sort order is based on the order of the specified linguistic sort name. The linguistic sort
name is usually the same as the language name, but not always. For a list of supported
linguistic sort names, see Oracle AI Database Globalization Support Guide.

Default Value: Set by NLS_LANGUAGE, described in "About the NLS_LANGUAGE
Parameter".

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 29

Example 7-10 shows how two different NLS_SORT settings affect the displayed result of the
same query. The settings are BINARY and Traditional Spanish (SPANISH_M). Traditional
Spanish treats ch, ll, and ñ as letters that follow c, l, and n, respectively.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Case-Insensitive and Accent-Insensitive Sorts

Operations inside Oracle AI Database are sensitive to the case and the accents of the
characters. To perform a case-insensitive sort, append _CI to the value of the NLS_SORT
parameter (for example, BINARY_CI or GERMAN_CI). To perform a sort that is both case-
insensitive and accent-insensitive, append _AI to the value of the NLS_SORT parameter (for
example, BINARY_AI or FRENCH_M_AI).

Example 7-10 NLS_SORT Affects Linguistic Sort Order

1. Create table for Spanish words:

CREATE TABLE temp (name VARCHAR2(15));

2. Populate table with some Spanish words:

INSERT INTO temp (name) VALUES ('laguna');
INSERT INTO temp (name) VALUES ('llama');
INSERT INTO temp (name) VALUES ('loco');

3. Note the current value of NLS_SORT.

4. If the value of NLS_SORT in step 3 is not BINARY, change it:

ALTER SESSION SET NLS_SORT=BINARY;

5. Run this query:

SELECT * FROM temp ORDER BY name;

Result:

NAME

laguna
llama
loco

6. Change the value of NLS_SORT to SPANISH_M (Traditional Spanish):

ALTER SESSION SET NLS_SORT=SPANISH_M;

7. Repeat the query from step 5.

Result:

NAME

laguna
loco
llama

8. Drop the table:

DROP TABLE temp;

9. Set NLS_SORT to the value that it had at step 3.

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 29

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_SORT parameter

• Oracle AI Database Globalization Support Guide for more information about case-
insensitive and accent-insensitive sorts

• "About Linguistic Sorting and String Searching"

• "Changing NLS Parameter Values"

About the NLS_COMP Parameter
This parameter specifies the character-comparison behavior of SQL operations.

Specifies: Character-comparison behavior of SQL operations.

Acceptable Values:

• BINARY

SQL compares the binary codes of characters. One character is greater than another if it
has a higher binary code.

• LINGUISTIC

SQL performs a linguistic comparison based on the value of the NLS_SORT parameter,
described in "About the NLS_SORT Parameter".

• ANSI

This value is provided only for backward compatibility.

Default Value: BINARY

Example 7-11 shows that the result of a query can depend on the NLS_COMP setting.

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-11 NLS_COMP Affects SQL Character Comparison

1. Note the current values of NLS_SORT and NLS_COMP.

2. If the values of NLS_SORT and NLS_COMP in step 1 are not SPANISH_M (Traditional
Spanish) and BINARY, respectively, change them:

ALTER SESSION SET NLS_SORT=SPANISH_M NLS_COMP=BINARY;

3. *Run this query:

SELECT LAST_NAME FROM EMPLOYEES
WHERE LAST_NAME LIKE 'C%';

Result:

LAST_NAME

Cabrio
Cambrault
Cambrault

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 29

Chen
Chung
Colmenares

6 rows selected

4. Change the value of NLS_COMP to LINGUISTIC:

ALTER SESSION SET NLS_COMP=LINGUISTIC;

5. Repeat the query from step 3.

Result:

LAST_NAME

Cabrio
Cambrault
Cambrault
Colmenares

4 rows selected

This time, Chen and Chung are not returned because Traditional Spanish treats ch as a
single character that follows c.

6. Set NLS_SORT and NLS_COMP to the values that they had in step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_COMP parameter

• "About Linguistic Sorting and String Searching"

• "Changing NLS Parameter Values"

About the NLS_LENGTH_SEMANTICS Parameter
This parameter specifies the length semantics for columns of the character data types CHAR,
VARCHAR2, and LONG; that is, whether these columns are specified in bytes or in characters.
(Applies only to columns that are declared after the parameter is set.)

Specifies: Length semantics for columns of the character data types CHAR, VARCHAR2, and
LONG; that is, whether these columns are specified in bytes or in characters. (Applies only to
columns that are declared after the parameter is set.)

Acceptable Values:

• BYTE

New CHAR, VARCHAR2, and LONG columns are specified in bytes.

• CHAR

New CHAR, VARCHAR2, and LONG columns are specified in characters.

Default Value: BYTE

To try this example in SQL Developer, enter the statements and queries in the Worksheet. For
information about the Worksheet, see "Running Queries in SQL Developer". The results shown
here are from SQL*Plus; their format is slightly different in SQL Developer.

Chapter 7
About Individual NLS Parameters

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 29

Example 7-12 NLS_LENGTH_SEMANTICS Affects Storage of VARCHAR2 Column

1. Note the current values of NLS_LENGTH_SEMANTICS.

2. If the value of NLS_LENGTH_SEMANTICS in step 1 is not BYTE, change it:

ALTER SESSION SET NLS_LENGTH_SEMANTICS=BYTE;

3. Create a table with a VARCHAR2 column:

CREATE TABLE SEMANTICS_BYTE(SOME_DATA VARCHAR2(20));

4. Click the tab Connections.

5. In the Connections frame, expand hr_conn.

6. In the list of schema object types, expand Tables.

7. In the list of tables, select SEMANTICS_BYTE.

To the right of the Connections frame, the Columns pane shows that for Column Name
SOME_DATA, the Data Type is VARCHAR2(20 BYTE).

8. Change the value of NLS_LENGTH_SEMANTICS to CHAR:

ALTER SESSION SET NLS_LENGTH_SEMANTICS=CHAR;

9. Create another table with a VARCHAR2 column:

CREATE TABLE SEMANTICS_CHAR(SOME_DATA VARCHAR2(20));

10. In the Connections frame, click the Refresh icon.

The list of tables now includes SEMANTICS_CHAR.

11. Select SEMANTICS_CHAR.

The Columns pane shows that for Column Name SOME_DATA, the Data Type is
VARCHAR2(20 CHAR).

12. Select SEMANTICS_BYTE again.

The Columns pane shows that for Column Name SOME_DATA, the Data Type is still
VARCHAR2(20 BYTE).

13. Set the value of NLS_LENGTH_SEMANTICS to the value that it had in step 1.

See Also

• Oracle AI Database Globalization Support Guide for more information about the
NLS_LENGTH_SEMANTICS parameter

• "About Length Semantics"

• "Changing NLS Parameter Values"

Using Unicode in Globalized Applications
You can insert and retrieve Unicode data. Data is transparently converted among the database
and client programs, which ensures that client programs are independent of the database
character set and national character set.

Chapter 7
Using Unicode in Globalized Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 29

See Also

• Oracle AI Database Globalization Support Guide for more information about SQL
and PL/SQL programming with Unicode

• Oracle AI Database Globalization Support Guide for general information about
programming with Unicode

Representing Unicode String Literals in SQL and PL/SQL
There are three ways to represent a Unicode string literal in SQL or PL/SQL.

The three ways to represent a Unicode string literal in SQL or PL/SQL are:

• N'string'

Example: N'résumé'.

Limitations: See "Avoiding Data Loss During Character-Set Conversion".

• NCHR(number)

The SQL function NCHR returns the character whose binary equivalent is number in the
national character set. The character returned has data type NVARCHAR2.

Example: NCHR(36) represents $ in the default national character set, AL16UTF16.

Limitations: Portability of the value of NCHR(number) is limited to applications that use
the same national character set.

• UNISTR('string')

The SQL function UNISTR converts string to the national character set.

For portability and data preservation, Oracle recommends that string contain only ASCII
characters and Unicode encoding values. A Unicode encoding value has the form \xxxx,
where xxxx is the hexadecimal value of a character code value in UCS-2 encoding format.
Example: UNISTR('G\0061ry') represents 'Gary'

ASCII characters are converted to the database character set and then to the national
character set. Unicode encoding values are converted directly to the national character set.

See Also

• Oracle AI Database Globalization Support Guide for more information about
Unicode string literals

• Oracle AI Database SQL Language Reference for more information about the
NCHR function

• Oracle AI Database SQL Language Reference for more information about the
UNISTR function

Avoiding Data Loss During Character-Set Conversion
As part of a SQL or PL/SQL statement, a literal (with or without the prefix N) is encoded in the
same character set as the rest of the statement.

Chapter 7
Using Unicode in Globalized Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 29

On the client side, the statement is encoded in the client character set, which is determined by
the NLS_LANG parameter. On the server side, the statement is encoded in the database
character set.

When the SQL or PL/SQL statement is transferred from the client to the database, its character
set is converted accordingly. If the database character set does not contain all characters that
the client used in the text literals, then data is lost in this conversion. NCHAR string literals are
more vulnerable than CHAR text literals, because they are designed to be independent of the
database character set.

To avoid data loss in conversion to an incompatible database character set, you can activate
the NCHAR literal replacement functionality. For more information, see Oracle AI Database
Globalization Support Guide.

Chapter 7
Using Unicode in Globalized Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 29

8
Building Effective Applications

Effective applications are scalable and use recommended programming and security practices.

See Also

Oracle AI Database Development Guide for more information about creating and
deploying applications that are optimized for Oracle AI Database

Building Scalable Applications
Design your applications to use the same resources, regardless of user populations and data
volumes, and not to overload system resources.

About Scalable Applications
A scalable application can process a larger workload with a proportional increase in system
resource usage.

A scalable application can process a larger workload with a proportional increase in system
resource usage. For example, if you double its workload, a scalable application uses twice as
many system resources.

An unscalable application exhausts a system resource; therefore, if you increase the
application workload, no more throughput is possible. Unscalable applications result in fixed
throughputs and poor response times.

Examples of resource exhaustion are:

• Hardware exhaustion

• Table scans in high-volume transactions causing inevitable disk input/output (I/O)
shortages

• Excessive network requests causing network and scheduling bottlenecks

• Memory allocation causing paging and swapping

• Excessive process and thread allocation causing operating system thrashing

Design your applications to use the same resources, regardless of user populations and data
volumes, and not to overload system resources.

Using Bind Variables to Improve Scalability
Bind variables, used correctly, let you develop efficient, scalable applications.

A bind variable is a placeholder in a SQL statement that must be replaced with a valid value
or value address for the statement to run successfully. By using bind variables, you can write a
SQL statement that accepts inputs or parameters at run time.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 22

Just as a subprogram can have parameters, whose values are supplied by the invoker, a SQL
statement can have bind variable placeholders, whose values (called bind variables) are
supplied at runtime. Just as a subprogram is compiled once and then run many times with
different parameters, a SQL statement with bind variable placeholders is hard parsed once and
then soft parsed with different bind variables.

A hard parse, which includes optimization and row source generation, is a very CPU-intensive
operation. A soft parse, which skips optimization and row source generation and proceeds
straight to execution, is usually much faster than a hard parse of the same statement. (For an
overview of SQL processing, which includes the difference between a hard and soft parse, see
Oracle AI Database Concepts.)

Not only is a hard parse a CPU-intensive operation, it is an unscalable operation, because it
cannot be done concurrently with many other operations. For more information about
concurrency and scalability, see "About Concurrency and Scalability".

Example 8-1 shows the performance difference between a query without a bind variable and a
semantically equivalent query with a bind variable. The former is slower and uses many more
latches (for information about how latches affect scalability, see "About Latches and
Concurrency"). To collect and display performance statistics, the example uses the Runstats
tool, described in "Comparing Programming Techniques with Runstats".

Note

• Example 8-1 shows the performance cost for a single user. As more users are
added, the cost escalates rapidly.

• The result of Example 8-1 was produced with this setting:

SET SERVEROUTPUT ON FORMAT TRUNCATED

Note

• Using bind variables instead of string literals is the most effective way to make
your code invulnerable to SQL injection attacks. For details, see Oracle AI
Database PL/SQL Language Reference.

• Bind variables sometimes reduce the efficiency of data warehousing systems.
Because most queries take so long, the optimizer tries to produce the best plan for
each query rather than the best generic query. Using bind variables sometimes
forces the optimizer to produce the best generic query. For information about
improving performance in data warehousing systems, see Oracle AI Database
Data Warehousing Guide.

Although soft parsing is more efficient than hard parsing, the cost of soft parsing a statement
many times is still very high. To maximize the efficiency and scalability of your application,
minimize parsing. The easiest way to minimize parsing is to use PL/SQL.

Example 8-1 Bind Variable Improves Performance

CREATE TABLE t (x VARCHAR2(5));

DECLARE
 TYPE rc IS REF CURSOR;
 l_cursor rc;
BEGIN

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 22

 runstats_pkg.rs_start; -- Collect statistics for query without bind variable

 FOR i IN 1 .. 5000 LOOP
 OPEN l_cursor FOR 'SELECT x FROM t WHERE x = ' || TO_CHAR(i);
 CLOSE l_cursor;
 END LOOP;

 runstats_pkg.rs_middle; -- Collect statistics for query with bind variable

 FOR i IN 1 .. 5000 LOOP
 OPEN l_cursor FOR 'SELECT x FROM t WHERE x = :x' USING i;
 CLOSE l_cursor;
 END LOOP;

 runstats_pkg.rs_stop(500); -- Stop collecting statistics
end;
/

Result is similar to:

Run 1 ran in 740 hsec
Run 2 ran in 30 hsec
Run 1 ran in 2466.67% of the time of run 2

Name Run 1 Run 2 Difference
STAT...recursive cpu usage 729 19 -710
STAT...CPU used by this sessio 742 30 -712
STAT...parse time elapsed 1,051 4 -1,047
STAT...parse time cpu 1,066 2 -1,064
STAT...session cursor cache hi 1 4,998 4,997
STAT...table scans (short tabl 5,000 1 -4,999
STAT...parse count (total) 10,003 5,004 -4,999
LATCH.session idle bit 5,003 3 -5,000
LATCH.session allocation 5,003 3 -5,000
STAT...execute count 10,003 5,003 -5,000
STAT...opened cursors cumulati 10,003 5,003 -5,000
STAT...parse count (hard) 10,001 5 -9,996
STAT...CCursor + sql area evic 10,000 1 -9,999
STAT...enqueue releases 10,008 7 -10,001
STAT...enqueue requests 10,009 7 -10,002
STAT...calls to get snapshot s 20,005 5,006 -14,999
STAT...calls to kcmgcs 20,028 35 -19,993
STAT...consistent gets pin (fa 20,013 17 -19,996
LATCH.call allocation 20,002 6 -19,996
STAT...consistent gets from ca 20,014 18 -19,996
STAT...consistent gets 20,014 18 -19,996
STAT...consistent gets pin 20,013 17 -19,996
LATCH.simulator hash latch 20,014 11 -20,003
STAT...session logical reads 20,080 75 -20,005
LATCH.shared pool simulator 20,046 5 -20,041
LATCH.enqueue hash chains 20,343 15 -20,328
STAT...recursive calls 40,015 15,018 -24,997
LATCH.cache buffers chains 40,480 294 -40,186
STAT...session pga memory max 131,072 65,536 -65,536
STAT...session pga memory 131,072 65,536 -65,536
LATCH.row cache objects 165,209 139 -165,070
STAT...session uga memory max 219,000 0 -219,000
LATCH.shared pool 265,108 152 -264,956
STAT...logical read bytes from 164,495,360 614,400 -163,880,960

Run 1 latches total compared to run 2 -- difference and percentage
 Run 1 Run 2 Diff Pct

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 22

 562,092 864 -561,228 2,466.67%

PL/SQL procedure successfully completed.

Using PL/SQL to Improve Scalability
Certain PL/SQL features can help you to improve application scalability.

How PL/SQL Minimizes Parsing
PL/SQL, which is optimized for database access, silently caches statements. In PL/SQL, when
you close a cursor, the cursor closes from your perspective—that is, you cannot use it where
an open cursor is required—but PL/SQL actually keeps the cursor open and caches its
statement.

If you use the cached statement again, PL/SQL uses the same cursor, thereby avoiding a
parse. (PL/SQL closes cached statements if necessary—for example, if your program must
open another cursor but doing so would exceed the init.ora setting of OPEN_CURSORS.)

PL/SQL can silently cache only SQL statements that cannot change at runtime.

About the EXECUTE IMMEDIATE Statement
The EXECUTE IMMEDIATE statement builds and runs a dynamic SQL statement in a single
operation.

The basic syntax of the EXECUTE IMMEDIATE statement is:

EXECUTE IMMEDIATE sql_statement

sql_statement is a string that represents a SQL statement. If sql_statement has the same
value every time the EXECUTE IMMEDIATE statement runs, then PL/SQL can cache the
EXECUTE IMMEDIATE statement. If sql_statement can be different every time the EXECUTE
IMMEDIATE statement runs, then PL/SQL cannot cache the EXECUTE IMMEDIATE
statement.

See Also

• Oracle AI Database PL/SQL Language Reference for information about
EXECUTE IMMEDIATE

• "About the DBMS_SQL Package"

About OPEN FOR Statements
The OPEN FOR statement has the following basic syntax.

The basic syntax of the OPEN FOR statement is:

OPEN cursor_variable FOR query

Your application can open cursor_variable for several different queries before closing it.
Because PL/SQL cannot determine the number of different queries until runtime, PL/SQL
cannot cache the OPEN FOR statement.

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 22

If you do not need to use a cursor variable, then use a declared cursor, for both better
performance and ease of programming. For details, see Oracle AI Database Development
Guide.

See Also

• Oracle AI Database PL/SQL Language Reference for information about OPEN
FOR

• "About Cursor Variables"

• "About Cursors"

About the DBMS_SQL Package
The DBMS_SQL package is an API for building, running, and describing dynamic SQL
statements. You must use the DBMS_SQL package instead of the EXECUTE IMMEDIATE
statement if the PL/SQL compiler cannot determine at compile time the number or types of
output host variables (select list items) or input bind variables.

The DBMS_SQL package is an API for building, running, and describing dynamic SQL
statements. Using the DBMS_SQL package takes more effort than using the EXECUTE
IMMEDIATE statement, but you must use the DBMS_SQL package if the PL/SQL compiler
cannot determine at compile time the number or types of output host variables (select list
items) or input bind variables.

See Also

• Oracle AI Database PL/SQL Language Reference for more information about
when to use the DBMS_SQL package

• Oracle AI Database PL/SQL Packages and Types Reference for complete
information about the DBMS_SQL package

• "About the EXECUTE IMMEDIATE Statement"

About Bulk SQL
Bulk SQL reduces the number of "round trips" between PL/SQL and SQL, thereby using fewer
resources.

Without bulk SQL, you retrieve one row at a time from the database (SQL), process it (PL/
SQL), and return it to the database (SQL). With bulk SQL, you retrieve a set of rows from the
database, process the set of rows, and then return the whole set to the database.

Oracle recommends using Bulk SQL when you retrieve multiple rows from the database and
return them to the database, as in Example 8-2. You do not need bulk SQL if you retrieve
multiple rows but do not return them; for example:

FOR x IN (SELECT * FROM t WHERE ...) -- Retrieve row set (implicit array fetch)
 LOOP
 DBMS_OUTPUT.PUT_LINE(t.x); -- Process rows but do not return them
 END LOOP;

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 22

Example 8-2 loops through a table t with a column object_name, retrieving sets of 100 rows,
processing them, and returning them to the database. (Limiting the bulk FETCH statement to
100 rows requires an explicit cursor.)

Example 8-3 does the same job as Example 8-2, without bulk SQL.

As these TKPROF reports for Example 8-2 and Example 8-3 show, using bulk SQL for this job
uses almost 50% less CPU time:

SELECT ROWID RID, OBJECT_NAME FROM T T_BULK

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 721 0.17 0.17 0 22582 0 71825
**
UPDATE T SET OBJECT_NAME = :B1 WHERE ROWID = :B2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 719 12.83 13.77 0 71853 74185 71825
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 720 12.83 13.77 0 71853 74185 71825

SELECT ROWID RID, OBJECT_NAME FROM T T_SLOW_BY_SLOW

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 721 0.17 0.17 0 22582 0 71825
**
UPDATE T SET OBJECT_NAME = :B2 WHERE ROWID = :B1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 71824 21.25 22.25 0 71836 73950 71824
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 71825 21.25 22.25 0 71836 73950 71824

However, using bulk SQL for this job uses more CPU time—and more code—than using a
single SQL statement, as this TKPROF report shows:

UPDATE T SET OBJECT_NAME = SUBSTR(OBJECT_NAME,2) || SUBSTR(OBJECT_NAME,1,1)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 1.30 1.44 0 2166 75736 71825
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 1.30 1.44 0 2166 75736 71825

Example 8-2 Bulk SQL

CREATE OR REPLACE PROCEDURE bulk AS
 TYPE ridArray IS TABLE OF ROWID;
 TYPE onameArray IS TABLE OF t.object_name%TYPE;

 CURSOR c is SELECT ROWID rid, object_name -- explicit cursor
 FROM t t_bulk;

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 22

 l_rids ridArray;
 l_onames onameArray;
 N NUMBER := 100;
BEGIN
 OPEN c;
 LOOP
 FETCH c BULK COLLECT
 INTO l_rids, l_onames LIMIT N; -- retrieve N rows from t

 FOR i in 1 .. l_rids.COUNT
 LOOP -- process N rows
 l_onames(i) := substr(l_onames(i),2) || substr(l_onames(i),1,1);
 END LOOP;

 FORALL i in 1 .. l_rids.count -- return processed rows to t
 UPDATE t
 SET object_name = l_onames(i)
 WHERE ROWID = l_rids(i);
 EXIT WHEN c%NOTFOUND;
 END LOOP;
 CLOSE c;
END;
/

Example 8-3 Without Bulk SQL

CREATE OR REPLACE PROCEDURE slow_by_slow AS
BEGIN
 FOR x IN (SELECT rowid rid, object_name FROM t t_slow_by_slow)
 LOOP
 x.object_name := substr(x.object_name,2) || substr(x.object_name,1,1);

 UPDATE t
 SET object_name = x.object_name
 WHERE rowid = x.rid;
 END LOOP;
END;

See Also

• Oracle AI Database Development Guide for an overview of bulk SQL

• Oracle AI Database Development Guide for more specific information about when
to use bulk SQL

• Oracle AI Database PL/SQL Language Reference for more information about bulk
SQL

About Concurrency and Scalability
Concurrency is the simultaneous execution of multiple transactions. A scalable application
can process a larger workload with a proportional increase in system resource usage.

Statements within concurrent transactions can update the same data. The better your
application handles concurrency, the more scalable it is. For example, if you double its
workload, a scalable application uses twice as many system resources.

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 22

Concurrent transactions must produce meaningful and consistent results. Therefore, a
multiuser database must provide the following:

• Data concurrency, which ensures that users can access data at the same time.

• Data consistency, which ensures that each user sees a consistent view of the data,
including visible changes from their own transactions and committed transactions of other
users

Oracle AI Database maintains data consistency by using a multiversion consistency model and
various types of locks and transaction isolation levels. For an overview of the Oracle AI
Database locking mechanism, see Oracle AI Database Concepts. For an overview of Oracle AI
Database transaction isolation levels, see Oracle AI Database Concepts.

To describe consistent transaction behavior when transactions run concurrently, database
researchers have defined the serializable transaction isolation category. A serializable
transaction operates in an environment that appears to be a single-user database.
Serializable transactions are desirable in specific cases, but for 99% of the work load, read
committed isolation is most useful.

Oracle AI Database has features that improve concurrency and scalability—for example,
sequences, latches, nonblocking reads and writes, and shared SQL.

See Also

Oracle AI Database Concepts for more information about data concurrency and
consistency

About Sequences and Concurrency
Sequences eliminate serialization, thereby improving the concurrency and scalability of your
application.

A sequence is a schema object from which multiple users can generate unique integers, which
is very useful when you need unique primary keys.

Without sequences, unique primary key values must be produced programmatically. A user
gets a new primary key value by selecting the most recently produced value and incrementing
it. This technique requires a lock during the transaction and causes multiple users to wait for
the next primary key value—that is, the transactions serialize. Sequences eliminate
serialization, thereby improving the concurrency and scalability of your application.

See Also

• Oracle AI Database Concepts for information about concurrent access to
sequences

• "Creating and Managing Sequences"

About Latches and Concurrency
An increase in latches means more concurrency-based waits, and therefore a decrease in
scalability.

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 22

A latch is a simple, low-level serialization mechanism that coordinates multiuser access to
shared data structures. Latches protect shared memory resources from corruption when
accessed by multiple processes.

An increase in latches means more concurrency-based waits, and therefore a decrease in
scalability. If you can use either an approach that runs slightly faster during development or
one that uses fewer latches, use the latter.

See Also

• Oracle AI Database Concepts for information about latches

• Oracle AI Database Concepts for information about mutexes, which are like
latches for single objects

About Nonblocking Reads and Writes and Concurrency
In Oracle AI Database, nonblocking reads and writes let queries run concurrently with
changes to the data they are reading, without blocking or stopping. Nonblocking reads and
writes let one session read data while another session is changing that data.

About Shared SQL and Concurrency
Oracle AI Database compiles a SQL statement into an executable object once, and then other
sessions can reuse the object for as long as it exists.

This feature, called shared SQL, lets the database do very resource-intensive operations—
compiling and optimizing SQL statements—only once, instead of every time that a session
uses the same SQL statement.

See Also

Oracle AI Database Concepts for more information about shared SQL

Limiting the Number of Concurrent Sessions
The more concurrent sessions you have, the more concurrency-based waits you have, and the
slower your response time is.

If your computer has n CPU cores, then at most n sessions can really be concurrently active.
Each additional "concurrent" session must wait for a CPU core to be available before it can
become active. If some waiting sessions are waiting only for I/O, then increasing the number of
concurrent sessions to slightly more than n might slightly improve runtime performance.
However, increasing the number of concurrent sessions too much will significantly reduce
runtime performance.

The SESSIONS initialization parameter determines the maximum number of concurrent users
in the system. For details, see Oracle AI Database Reference.

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 22

See Also

http://www.youtube.com/watch?v=xNDnVOCdvQ0 for a video that shows the effect of
reducing the number of concurrent sessions on a computer with 12 CPU cores from
thousands to 96

Comparing Programming Techniques with Runstats
The Runstats tool lets you compare the performance of two programming techniques to see
which is better.

About Runstats
The Runstats tool lets you compare the performance of two programming techniques to see
which is better.

Runstats measures:

• Elapsed time for each technique in hundredths of seconds (hsec)

• Elapsed time for the first technique as a percentage of that of the second technique

• System statistics for the two techniques (for example, parse calls)

• Latching for the two techniques

Of the preceding measurements, the most important is latching (see "About Latches and
Concurrency").

See Also

Example 8-1, which uses Runstats

Setting Up Runstats
The Runstats tool is implemented as a package that uses a view and a temporary table.

Note

For step 1 of the following procedure, you need the SELECT privilege on the dynamic
performance views V$STATNAME, V$MYSTAT, and V$LATCH. If you cannot get this
privilege, then have someone who has the privilege create the view in step 1 and grant
you the SELECT privilege on it.

To set up the Runstats tool:

1. Create the view that Runstats uses:

CREATE OR REPLACE VIEW stats
AS SELECT 'STAT...' || a.name name, b.value
FROM V$STATNAME a, V$MYSTAT b
WHERE a.statistic# = b.statistic#

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 22

http://www.youtube.com/watch?v=xNDnVOCdvQ0

UNION ALL
SELECT 'LATCH.' || name, gets
FROM V$LATCH;

2. Create the temporary table that Runstats uses:

DROP TABLE run_stats;

CREATE GLOBAL TEMPORARY TABLE run_stats
(runid VARCHAR2(15),
 name VARCHAR2(80),
 value INT)
ON COMMIT PRESERVE ROWS;

3. Create this package specification:

CREATE OR REPLACE PACKAGE runstats_pkg
AS
 PROCEDURE rs_start;
 PROCEDURE rs_middle;
 PROCEDURE rs_stop(p_difference_threshold IN NUMBER DEFAULT 0);
end;
/

The parameter p_difference_threshold controls the amount of statistics and latching
data that Runstats displays. Runstats displays data only when the difference for the two
techniques is greater than p_difference_threshold. By default, Runstats displays all
data.

4. Create this package body:

CREATE OR REPLACE PACKAGE BODY runstats_pkg
AS
 g_start NUMBER;
 g_run1 NUMBER;
 g_run2 NUMBER;

 PROCEDURE rs_start
 IS
 BEGIN
 DELETE FROM run_stats;

 INSERT INTO run_stats
 SELECT 'before', stats.* FROM stats;

 g_start := DBMS_UTILITY.GET_TIME;
 END rs_start;

 PROCEDURE rs_middle
 IS
 BEGIN
 g_run1 := (DBMS_UTILITY.GET_TIME - g_start);

 INSERT INTO run_stats
 SELECT 'after 1', stats.* FROM stats;

 g_start := DBMS_UTILITY.GET_TIME;
 END rs_middle;

 PROCEDURE rs_stop(p_difference_threshold IN NUMBER DEFAULT 0)
 IS
 BEGIN
 g_run2 := (DBMS_UTILITY.GET_TIME - g_start);

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 22

 DBMS_OUTPUT.PUT_LINE
 ('Run 1 ran in ' || g_run1 || ' hsec');

 DBMS_OUTPUT.PUT_LINE
 ('Run 2 ran in ' || g_run2 || ' hsec');

 DBMS_OUTPUT.PUT_LINE
 ('Run 1 ran in ' || round(g_run1/g_run2*100, 2) || '% of the time of run 2');

 DBMS_OUTPUT.PUT_LINE(CHR(9));

 INSERT INTO run_stats
 SELECT 'after 2', stats.* FROM stats;

 DBMS_OUTPUT.PUT_LINE
 (RPAD('Name', 30) ||
 LPAD('Run 1', 14) ||
 LPAD('Run 2', 14) ||
 LPAD('Difference', 14)
);

 FOR x IN
 (SELECT RPAD(a.name, 30) ||
 TO_CHAR(b.value - a.value, '9,999,999,999') ||
 TO_CHAR(c.value - b.value, '9,999,999,999') ||
 TO_CHAR(((c.value - b.value) - (b.value - a.value)),
 '9,999,999,999') data
 FROM run_stats a, run_stats b, run_stats c
 WHERE a.name = b.name
 AND b.name = c.name
 AND a.runid = 'before'
 AND b.runid = 'after 1'
 AND c.runid = 'after 2'
 AND (c.value - a.value) > 0
 AND abs((c.value - b.value) - (b.value - a.value)) >
 p_difference_threshold
 ORDER BY ABS((c.value - b.value) - (b.value - a.value))
) LOOP
 DBMS_OUTPUT.PUT_LINE(x.data);
 END LOOP;

 DBMS_OUTPUT.PUT_LINE(CHR(9));

 DBMS_OUTPUT.PUT_LINE(
 'Run 1 latches total compared to run 2 -- difference and percentage');

 DBMS_OUTPUT.PUT_LINE
 (LPAD('Run 1', 14) ||
 LPAD('Run 2', 14) ||
 LPAD('Diff', 14) ||
 LPAD('Pct', 10)
);

 FOR x IN
 (SELECT TO_CHAR(run1, '9,999,999,999') ||
 TO_CHAR(run2, '9,999,999,999') ||
 TO_CHAR(diff, '9,999,999,999') ||
 TO_CHAR(ROUND(g_run1/g_run2*100, 2), '99,999.99') || '%' data
 FROM (SELECT SUM (b.value - a.value) run1,
 SUM (c.value - b.value) run2,
 SUM ((c.value - b.value) - (b.value - a.value)) diff
 FROM run_stats a, run_stats b, run_stats c

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 22

 WHERE a.name = b.name
 AND b.name = c.name
 AND a.runid = 'before'
 AND b.runid = 'after 1'
 AND c.runid = 'after 2'
 AND a.name like 'LATCH%'
)
) LOOP
 DBMS_OUTPUT.PUT_LINE(x.data);
 END LOOP;

 END rs_stop;

END;
/

See Also

• "Creating Views"

• "Creating Tables"

• "Tutorial: Creating a Package Specification"

• "Tutorial: Creating a Package Body"

• Oracle AI Database Reference for information about dynamic performance views

Using Runstats
This topic gives the syntax for using the Runstats tool.

To use Runstats to compare two programming techniques, invoke the runstats_pkg procedures
from an anonymous block, using this syntax:

[DECLARE local_declarations]
BEGIN
 runstats_pkg.rs_start;
 code_for_first_technique
 runstats_pkg.rs_middle;
 code_for_second_technique
 runstats_pkg.rs_stop(n);
END;
/

See Also

Example 8-1, which uses Runstats

Real-World Performance and Data Processing Techniques
A common task in database applications in a data warehouse environment is querying or
modifying a huge data set. The problem for application developers is how to achieve high
performance when processing large data sets.

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 22

Processing techniques fall into two categories: iterative, and set-based. Over years of testing,
the Real-World Performance group has discovered that set-based processing techniques
perform orders of magnitude better for database applications that process large data sets.

This topic includes the following major subtopics:.

About Iterative Data Processing
In iterative processing, applications use conditional logic to loop through a set of rows.

Typically, although not necessarily, iterative processing uses a client/server model as follows:

1. Transfer a group of rows from the database server to the client application.

2. Process the group within the client application.

3. Transfer the processed group back to the database server.

You can implement iterative algorithms using three main techniques: row-by-row processing,
array processing, and manual parallelism.

Iterative Processing: Row-By-Row

In row-by-row processing, a single process loops through a data set and operates on a single
row a time. In a typical implementation, the application retrieves each row from the database,
processes it in the middle tier, and then sends the row back to the database, which runs DML
and commits.

Assume that your functional requirement is to query an external table named ext_scan_events,
and then insert its rows into a heap-organized staging table named stage1_scan_events. The
following PL/SQL block uses a row-by-row technique to meet this requirement:

declare
 cursor c is select s.* from ext_scan_events s;
 r c%rowtype;
begin
 open c;
 loop
 fetch c into r;
 exit when c%notfound;
 insert into stage1_scan_events d values r;
 commit;
 end loop;
 close c;
end;

The row-by-row technique has the following advantages:

• It performs well on small data sets.

• The looping algorithm is familiar to all professional developers, easy to write quickly, and
easy to understand.

The row-by-row technique has the following disadvantages:

• Processing time can be unacceptably long for large data sets.

• The application runs serially, and thus cannot exploit the native parallel processing
features of Oracle AI Database running on modern hardware.

See Also: RWP #7 Set-Based Processing

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 22

Iterative Processing: Arrays

Array processing is identical to row-by-row processing, except that it processes a group of
rows in each iteration rather than a single row.

Assume that your functional requirement is the same as in Example X-X: query an external
table named ext_scan_events, and then insert its rows into a heap-organized staging table
named stage1_scan_events. The following PL/SQL block uses an array technique to meet this
requirement:

declare
 cursor c is select s.* from ext_scan_events s;
 type t is table of c%rowtype index by binary_integer;
 a t;
 rows binary_integer := 0;
begin
 open c;
 loop
 fetch c bulk collect into a limit array_size;
 exit when a.count = 0;
 forall i in 1..a.count
 insert into stage1_scan_events d values a(i);
 commit;
 end loop;
 close c;
end;

The preceding code differs from the equivalent row-by-row code in using a BULK COLLECT
operator in the FETCH STATEMENT, which is limited by the array_size value of type
PLS_INTEGER. For example, if array_size is set to 100, then the application fetches rows in
groups of 100.

The array technique has the following advantages over the row-by-row technique:

• The array enables the application to process a group of rows at the same time, which
means that it reduces network round trips, COMMIT time, and the code path in the client
and server.

• The database is more efficient because the server process batches the inserts, and
commits after every group of inserts rather than after every insert.

The disadvantages of this technique are the same as for row-by-row processing. Processing
time can be unacceptable for large data sets. Also, the application must run serially on a single
CPU core, and thus cannot exploit the native parallelism of Oracle AI Database.

Iterative Processing: Manual Parallelism

Manual parallelism uses the same iterative algorithm as row-by-row and array processing, but
enables multiple server processes to divide the work and run in parallel.

Assume the functional requirement is the same as in the row-by-row and array examples. The
primary differences are as follows:

• The scan event records are stored in a mass of flat files.

• 32 server processes must run in parallel, with each server process querying a different
external table.

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 22

• You use PL/SQL to achieve the parallelism by executing 32 threads of the same PL/SQL
program, with each thread running simultaneously as a separate job managed by Oracle
Scheduler. A job is the combination of a schedule and a program.

The following PL/SQL code uses manual parallellism:

declare
 sqlstmt varchar2(1024) := q'[
-- BEGIN embedded anonymous block
 cursor c is select s.* from ext_scan_events_${thr} s;
 type t is table of c%rowtype index by binary_integer;
 a t;
 rows binary_integer := 0;
begin
 for r in (select ext_file_name from ext_scan_events_dets where
ora_hash(file_seq_nbr,${thrs}) = ${thr})
 loop
 execute immediate
 'alter table ext_scan_events_${thr} location' || '(' || r.ext_file_name
|| ')';
 open c;
 loop
 fetch c bulk collect into a limit ${array_size};
 exit when a.count = 0;
 forall i in 1..a.count
 insert into stage1_scan_events d values a(i);
 commit;
-- demo instrumentation
 rows := rows + a.count; if rows > 1e3 then exit when not
sd_control.p_progress('loading','userdefined',rows); rows := 0; end if;
 end loop;
 close c;
 end loop;
end;
-- END embedded anonymous block
]';

begin
 sqlstmt := replace(sqlstmt, '${array_size}', to_char(array_size));
 sqlstmt := replace(sqlstmt, '${thr}', thr);
 sqlstmt := replace(sqlstmt, '${thrs}', thrs);
 execute immediate sqlstmt;
end;

The ORA_HASH function divides the ext_scan_events_dets table into 32 evenly distributed
buckets, and then the SELECT statement retrieves the file names for bucket 0. For each file
name in the bucket, the program sets the location of the external table to this file name. The
program then uses batch processing to query the external table, insert into the staging table,
and then commit.

While job 1 is executing, the other 31 Oracle Scheduler jobs run in parallel. In this way, each
job simultaneously reads a different subset of the scan event files, and inserts the records from
its subset into the same staging table.

The manual parallelism technique has the following advantages over the alternative iterative
techniques:

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 22

• It performs far better on large data sets because server processes are working in parallel.

• When the application uses ORA_HASH to distribute the workload, each thread of
execution can access the same amount of data, which means that the parallel processes
can finish at the same time.

The manual parallelism technique has the following disadvantages:

• The code is relatively lengthy, complicated, and difficult to understand.

• The application must perform a certain amount of preparatory work before the database
can begin the main work, which is processing the rows in parallel.

• If multiple threads perform the same operations on a common set of database objects,
then lock and latch contention is possible.

• Parallel processing consumes significant CPU resources compared to the competing
iterative techniques.

See Also: RWP #8: Set-Based Parallel Processing

About Set-Based Processing
Set-based processing is a SQL technique that processes a data set inside the database.

In a set-based model, the SQL statement defines the result, and allows the database to
determine the most efficient way to obtain it. In contrast, iterative algorithms use conditional
logic to pull each each row or group of rows from the database to the client application,
process the data on the client, and then send the data back to the database. Set-based
processing eliminates the network round-trip and database API overhead because the data
never leaves the database.

Assume the same functional requirement as in the previous examples. The following SQL
statements meet this requirement using a set-based algorithm:

alter session enable parallel dml;
insert /*+ APPEND */ into stage1_scan_events d
 select s.* from ext_scan_events s;
commit;

Because the INSERT statement contains a subquery of the ext_scan_events table, a single
SQL statement reads and writes all rows. Also, the application runs a single COMMIT after the
database has inserted all rows. In contrast, iterative applications run a COMMIT after the insert
of each row or each group of rows.

The set-based technique has significant advantages over iterative techniques:

• As demonstrated in Real-World Performance demonstrations and classes, the
performance on large data sets is orders of magnitude faster. It is not unusual for the run
time of a program to drop from several hours to several seconds.

• A side-effect of the orders of magnitude increase in processing speed is that DBAs can
eliminate long-running and error-prone batch jobs, and innovate business processes in real
time.

• The length of the code is significantly shorter, a short as two or three lines of code,
because SQL defines the result and not the access method.

• In contrast to manual parallelism, parallel DML is optimized for performance because the
database, rather than the application, manages the processes.

Chapter 8
Building Scalable Applications

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 22

• When joining data sets, the database automatically uses highly efficient hash joins instead
of relatively inefficient application-level loops.

• The APPEND hint forces a direct-path load, which means that the database creates no
redo and undo, thereby avoiding the waste of I/O and CPU.

Set-based processing does have some potential disadvantages:

• The techniques are unfamiliar to many database developers, so they may be more difficult.

• Because a set-based model is completely different from an iterative model, changing it
requires completely rewriting the source code.

See Also: RWP #7 Set-Based Processing, RWP #8: Set-Based Parallel Processing, RWP #9:
Set-Based Processing--Data Deduplication, RWP #10: Set-Based Processing--Data
Transformations, and RWP #11: Set-Based Processing--Data Aggregation

Recommended Programming Practices
Use the following recommended programming practices.

Use Instrumentation Packages
Oracle AI Database supplies instrumentation packages whose subprograms let your
application generate trace information whenever necessary. Using this trace information, you
can debug your application without a debugger and identify code that performs badly.

Instrumentation provides your application with considerable functionality; therefore, it is not
overhead. Overhead is something that you can remove without losing much benefit.

Some instrumentation packages that Oracle AI Database supplies are:

• DBMS_APPLICATION_INFO, which enables a system administrator to track the
performance of your application by module.

For more information about DBMS_APPLICATION_INFO, see Oracle AI Database PL/SQL
Packages and Types Reference.

• DBMS_SESSION, which enables your application to access session information and set
preferences and security levels

For more information about DBMS_SESSION, see Oracle AI Database PL/SQL Packages
and Types Reference.

• UTL_FILE, which enables your application to read and write operating system text files

For more information about UTL_FILE, see Oracle AI Database PL/SQL Packages and
Types Reference.

See Also

Oracle AI Database PL/SQL Packages and Types Reference for a summary of
PL/SQL packages that Oracle AI Database supplies

Chapter 8
Recommended Programming Practices

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 22

Statistics Gathering and Application Tracing
Database statistics provide information about the type of load on the database and the internal
and external resources used by the database. To accurately diagnose performance problems
with the database using ADDM, statistics must be available.

For information about statistics gathering, see Oracle AI Database Get Started with
Performance Tuning.

Note

If Oracle Enterprise Manager is unavailable, you can gather statistics using
DBMS_MONITOR subprograms as described in Oracle AI Database PL/SQL
Packages and Types Reference.

Oracle AI Database provides several tracing tools that can help you monitor and analyze
database applications. For details, see Oracle AI Database SQL Tuning Guide.

Use Existing Functionality
An application that uses existing functionality is easier to develop and maintain than one that
does not, and it also runs faster.

When developing your application, use the existing functionality of your programming
language, your operating system, Oracle AI Database, and the PL/SQL packages and types
that Oracle AI Database supplies as much as possible.

Examples of existing functionality that many developers reinvent are:

• Constraints

For introductory information about constraints, see "Ensuring Data Integrity in Tables."

• SQL functions (functions that are "built into" SQL)

For information about SQL functions, see Oracle AI Database SQL Language Reference.

• Sequences (which can generate unique sequential values)

See "Creating and Managing Sequences".

• Auditing (the monitoring and recording of selected user database actions)

For introductory information about auditing, see Oracle AI Database Security Guide.

• Replication (the process of copying and maintaining database objects, such as tables, in
multiple databases that comprise a distributed database system)

For information about replication, see the Oracle GoldenGate documentation..

• Message queuing (how web-based business applications communicate with each other)

For introductory information about Oracle AI Database Advanced Queuing (AQ), see
Oracle AI Database Advanced Queuing User's Guide.

• Maintaining a history of record changes

For introductory information about Workspace Manager, see Oracle AI Database
Workspace Manager Developer's Guide.

Chapter 8
Recommended Programming Practices

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 22

In Example 8-4, two concurrent transactions dequeue messages stored in a table (that is, each
transaction finds and locks the next unprocessed row of the table). Rather than simply invoking
the DBMS_AQ.DEQUEUE procedure (described in Oracle AI Database PL/SQL Packages and
Types Reference), the example creates a function-based index on the table and then uses that
function in each transaction to retrieve the rows and display the messages.

The code in Example 8-4 implements a feature similar to a DBMS_AQ.DEQUEUE invocation
but with fewer capabilities. The development time saved by using existing functionality (in this
case, function-based indexes) can be large.

Example 8-4 Concurrent Dequeuing Transactions

Create table:

DROP TABLE t;
CREATE TABLE t
 (id NUMBER PRIMARY KEY,
 processed_flag VARCHAR2(1),
 payload VARCHAR2(20)
);

Create index on table:

CREATE INDEX t_idx ON
 t(DECODE(processed_flag, 'N', 'N'));

Populate table:

INSERT INTO t
 SELECT r,
 CASE WHEN MOD(r,2) = 0 THEN 'N' ELSE 'Y' END,
 'payload ' || r
 FROM (SELECT LEVEL r FROM DUAL CONNECT BY LEVEL <= 5);

Show table:

SELECT * FROM t;

Result:

 ID P PAYLOAD
---------- - --------------------
 1 Y payload 1
 2 N payload 2
 3 Y payload 3
 4 N payload 4
 5 Y payload 5

5 rows selected.

First transaction:

DECLARE
 l_rec t%ROWTYPE;
 CURSOR c IS
 SELECT *
 FROM t
 WHERE DECODE(processed_flag,'N','N') = 'N'
 FOR UPDATE
 SKIP LOCKED;
BEGIN
 OPEN c;

Chapter 8
Recommended Programming Practices

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 22

 FETCH c INTO l_rec;

 IF (c%FOUND) THEN
 DBMS_OUTPUT.PUT_LINE('Got row ' || l_rec.id || ', ' || l_rec.payload);
 END IF;

 CLOSE c;
END;
/

Result:

Got row 2, payload 2

Concurrent transaction:

DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 l_rec t%ROWTYPE;
 CURSOR c IS
 SELECT *
 FROM t
 WHERE DECODE(processed_flag,'N','N') = 'N'
 FOR UPDATE
 SKIP LOCKED;
BEGIN
 OPEN c;

 FETCH c INTO l_rec;

 IF (c%FOUND) THEN
 DBMS_OUTPUT.PUT_LINE('Got row ' || l_rec.id || ', ' || l_rec.payload);
 END IF;

 CLOSE c;
 COMMIT;
END;
/

Result:

Got row 4, payload 4

See Also

• Oracle AI Database New Features Guide (with each release)

• Oracle AI Database Concepts (with each release)

Cover Database Tables with Editioning Views
If your application uses database tables, then cover each one with an editioning view so that
you can use edition-based redefinition (EBR) to upgrade the database component of your
application while it is in use, thereby minimizing or eliminating down time.

For information about edition-based redefinition, see Oracle AI Database Development Guide.

Chapter 8
Recommended Programming Practices

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 22

Recommended Security Practices
When granting privileges on the schema objects that comprise your application, use the
principle of least privilege.

That is, users and middle tiers should be given the fewest privileges necessary to perform their
actions, to reduce the danger of inadvertent or malicious unauthorized activities.

See Also

"Using Bind Variables to Improve Scalability" for information about using bind variables
instead of string literals, which is the most effective way to make your code
invulnerable to SQL injection attacks

Chapter 8
Recommended Security Practices

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 22

9
Developing a Simple Oracle AI Database
Application

By following the instructions for developing this simple application, you learn the general
procedure for developing Oracle AI Database applications.

About the Application
The application has the following purpose, structure, and naming conventions.

Purpose of the Application
The application is intended for two kinds of users in a company.

• Typical users (managers of employees)

• Application administrators

Typical users can do the following:

• Get the employees in a given department

• Get the job history for a given employee

• Show general information for a given employee (name, department, job, manager, salary,
and so on)

• Change the salary of a given employee

• Change the job of a given employee

Application administrators can do the following:

• Change the ID, title, or salary range of an existing job

• Add a new job

• Change the ID, name, or manager of an existing department

• Add a new department

Structure of the Application
The application uses the following schema objects and schemas.

Schema Objects of the Application
The application is composed of these schema objects:

• Four tables, which store data about:

– Jobs

– Departments

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 29

– Employees

– Job history of employees

• Four editioning views, which cover the tables, enabling you to use edition-based
redefinition (EBR) to upgrade the finished application when it is in use

• Two triggers, which enforce business rules

• Two sequences that generate unique primary keys for new departments and new
employees

• Two packages:

– employees_pkg, the application program interface (API) for typical users

– admin_pkg, the API for application administrators

The typical users and application administrators access the application only through its
APIs. Therefore, they can change the data only by invoking package subprograms.

See Also

• "About Oracle AI Database" for information about schema objects

• Oracle AI Database Development Guide for information about EBR

Schemas for the Application
For security, the application uses these five schemas (or users), each of which has only the
privileges that it needs:

• The app_data schema, which owns all of the schema objects except the packages and
loads its tables with data from tables in the hr sample schema.

The developers who create the packages never work in this schema. Therefore, they
cannot accidentally alter or drop application schema objects.

• The app_code schema, which owns only the package employees_pkg.

The developers of the employees_pkg package work in this schema.

• The app_admin schema, which owns only the package admin_pkg.

The developers of the admin_pkg package work in this schema.

• The app_user user, the typical application user, who owns nothing and can only run the
package employees_pkg.

The middle-tier application server connects to the database in the connection pool as user
app_user. If this schema is compromised—by a SQL injection bug, for example—the
attacker can see and change only what the employees_pkg package subprograms let it see
and change. The attacker cannot drop tables, escalate privileges, create or alter schema
objects, or anything else.

• The app_admin_user user, an application administrator, who owns nothing and can only
run the admin_pkg and employees_pkg packages.

The connection pool for this schema is very small, and only privileged users can access it.
If this schema is compromised, the attacker can see and change only what admin_pkg and
employees_pkg package subprograms let it see and change.

Chapter 9
About the Application

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 29

Suppose that instead of users app_user and app_admin_user, the application had only one
schema that owned nothing and could run both employees_pkg and admin_pkg packages. The
connection pool for this schema would have to be large enough for both the typical users and
the application administrators. If there were a SQL injection bug in the employees_pkg
package, a typical user who exploited that bug could access the admin_pkg package.

Suppose that instead of the app_data, app_code, and app_admin schemas, the application had
only one schema that owned all the schema objects, including the packages. The packages
would then have all privileges on the tables, which would be both unnecessary and
undesirable.

For example, suppose that you have an audit trail table, AUDIT_TRAIL. You want the developers
of the employees_pkg package to be able to write to the AUDIT_TRAIL table, but not read or
change it. You want the developers of the admin_pkg package to be able to read the
AUDIT_TRAIL table and write to it, but not change it. If the AUDIT_TRAIL table and the
employees_pkg, and admin_pkg packages belong to the same schema, then the developers of
the two packages have all privileges on the AUDIT_TRAIL table. However, if the AUDIT_TRAIL
table belongs to the app_data schema, the employees_pkg package belongs to the app_code
schema, and the admin_pkg package belongs to the app_admin schema, then you can connect
to the database as the app_data schema and run the following commands:

GRANT INSERT ON AUDIT_TRAIL TO app_code;
GRANT INSERT, SELECT ON AUDIT_TRAIL TO app_admin;

See Also

• About Oracle AI Database for information about schemas

• About Sample Schema HR for information about sample schema HR

• Recommended Security Practices

Naming Conventions in the Application
The application uses these naming conventions.

Item Name

Table table#

Editioning view for table# table

Trigger on editioning view table table_{a|b}event[_fer] where:

• a identifies an AFTER trigger.
• b identifies a BEFORE trigger.
• fer identifies a FOR EACH ROW trigger.
• event identifies the event that fires the

trigger. For example: i for INSERT, iu for
INSERT or UPDATE, d for DELETE.

PRIMARY KEY constraint in table# table_pk

NOT NULL constraint on table#.column table_column_not_null1

UNIQUE constraint on table#.column table_column_unique1

CHECK constraint on table#.column table_column_check1

REF constraint on table1#.column to table2#.column table1_to_table2_fk1

Chapter 9
About the Application

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 29

Item Name

REF constraint on table1#.column1 to
table2#.column2

table1_col1_to_table2_col2_fk1 2

Sequence for table# table_sequence

Parameter name p_name

Local variable name l_name

1 table, table1, and table2 are abbreviated to emp for employees, dept for departments, and job_hist for job_history.
2 col1 and col2 are abbreviations of column names column1 and column2. A constraint name cannot have more than

30 characters.

Creating the Schemas for the Application
Using the procedure in this section, create the schemas for the application.

The schema names are:

• app_data

• app_code

• app_admin

• app_user

• app_admin_user

Note

For the following procedure, you need the name and password of a user who has the
CREATE USER and DROP USER system privileges.

To create the schema (or user) schema_name:

1. Using SQL*Plus, connect to Oracle AI Database as a user with the CREATE USER and
DROP USER system privileges.

The SQL> prompt appears.

2. In case the schema exists, drop the schema and its objects with this SQL statement:

DROP USER schema_name CASCADE;

If the schema existed, the system responds:

User dropped.

If the schema did not exist, the system responds:

DROP USER schema_name CASCADE
 *
ERROR at line 1:
ORA-01918: user 'schema_name' does not exist

3. If schema_name is either app_data, app_code, or app_admin, then create the schema with
this SQL statement:

Chapter 9
Creating the Schemas for the Application

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 29

CREATE USER schema_name IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

Otherwise, create the schema with this SQL statement:

CREATE USER schema_name IDENTIFIED BY password
ENABLE EDITIONS;

Caution

Choose a secure password. For guidelines for secure passwords, see Oracle AI
Database Security Guide.

The system responds:

User created.

4. (Optional) In SQL Developer, create a connection for the schema, using the instructions in
"Connecting to Oracle AI Database from SQL Developer".

See Also

• "About the Application"

• "Connecting to Oracle AI Database from SQL*Plus"

• Oracle AI Database SQL Language Reference for information about the DROP USER
statement

• Oracle AI Database SQL Language Reference for information about the CREATE
USER statement

Granting Privileges to the Schemas
To grant privileges to schemas, use the SQL statement GRANT.

You can enter the GRANT statements either in SQL*Plus or in the Worksheet of SQL
Developer. For security, grant each schema only the privileges that it needs.

See Also

• "About the Application"

• Oracle AI Database SQL Language Reference for information about the GRANT
statement

Granting Privileges to the app_data Schema
Grant to the app_data schema only the privileges to do the following:

• Connect to the database:

Chapter 9
Granting Privileges to the Schemas

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 29

GRANT CREATE SESSION TO app_data;

• Create the tables, views, triggers, and sequences for the application:

GRANT CREATE TABLE, CREATE VIEW, CREATE TRIGGER, CREATE SEQUENCE TO app_data;

• Load data from four tables in the sample schema HR into its own tables:

GRANT SELECT ON HR.DEPARTMENTS TO app_data;
GRANT SELECT ON HR.EMPLOYEES TO app_data;
GRANT SELECT ON HR.JOB_HISTORY TO app_data;
GRANT SELECT ON HR.JOBS TO app_data;

Granting Privileges to the app_code Schema
Grant to the app_code schema only the privileges to do the following:

• Connect to the database:

GRANT CREATE SESSION TO app_code;

• Create the package employees_pkg:

GRANT CREATE PROCEDURE TO app_code;

• Create a synonym (for convenience):

GRANT CREATE SYNONYM TO app_code;

Granting Privileges to the app_admin Schema
Grant to the app_admin schema only the privileges to do the following tasks:

• Connect to the database:

GRANT CREATE SESSION TO app_admin;

• Create the package admin_pkg:

GRANT CREATE PROCEDURE TO app_admin;

• Create a synonym (for convenience):

GRANT CREATE SYNONYM TO app_admin;

Granting Privileges to the app_user and app_admin_user Schemas
Grant to the app_user and app_admin_user schemas only the privileges to do the following:

• Connect to the database:

GRANT CREATE SESSION TO app_user;
GRANT CREATE SESSION TO app_admin_user;

• Create synonyms (for convenience):

GRANT CREATE SYNONYM TO app_user;
GRANT CREATE SYNONYM TO app_admin_user;

Chapter 9
Granting Privileges to the Schemas

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 29

Creating the Schema Objects and Loading the Data
This section shows how to create the tables, editioning views, triggers, and sequences for the
application, how to load data into the tables, and how to grant privileges on these schema
objects to the users that need them.

To create the schema objects and load the data:

1. Connect to the database as user app_data.

For instructions, see either "Connecting to Oracle AI Database from SQL*Plus" or
"Connecting to Oracle AI Database from SQL Developer".

2. Create the tables, with all necessary constraints except the foreign key constraint that you
must add after you load the data.

3. Create the editioning views.

4. Create the triggers.

5. Create the sequences.

6. Load the data into the tables.

7. Add the foreign key constraint.

Creating the Tables
This section shows how to create the tables for the application, with all necessary constraints
except one, which you must add after you load the data.

Note

You must be connected to the database as user app_data.

In the following procedure, you can enter the statements either in SQL*Plus or in the
Worksheet of SQL Developer. Alternatively, you can create the tables with the SQL Developer
tool Create Table.

To create the tables:

1. Create jobs#, which stores information about the jobs in the company (one row for each
job):

CREATE TABLE jobs#
(job_id VARCHAR2(10)
 CONSTRAINT jobs_pk PRIMARY KEY,
 job_title VARCHAR2(35)
 CONSTRAINT jobs_job_title_not_null NOT NULL,
 min_salary NUMBER(6)
 CONSTRAINT jobs_min_salary_not_null NOT NULL,
 max_salary NUMBER(6)
 CONSTRAINT jobs_max_salary_not_null NOT NULL
)
/

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 29

2. Create departments#, which stores information about the departments in the company
(one row for each department):

CREATE TABLE departments#
(department_id NUMBER(4)
 CONSTRAINT departments_pk PRIMARY KEY,
 department_name VARCHAR2(30)
 CONSTRAINT department_name_not_null NOT NULL
 CONSTRAINT department_name_unique UNIQUE,
 manager_id NUMBER(6)
)
/

3. Create employees#, which stores information about the employees in the company (one
row for each employee):

CREATE TABLE employees#
(employee_id NUMBER(6)
 CONSTRAINT employees_pk PRIMARY KEY,
 first_name VARCHAR2(20)
 CONSTRAINT emp_first_name_not_null NOT NULL,
 last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_not_null NOT NULL,
 email_addr VARCHAR2(25)
 CONSTRAINT emp_email_addr_not_null NOT NULL,
 hire_date DATE
 DEFAULT TRUNC(SYSDATE)
 CONSTRAINT emp_hire_date_not_null NOT NULL
 CONSTRAINT emp_hire_date_check
 CHECK(TRUNC(hire_date) = hire_date),
 country_code VARCHAR2(5)
 CONSTRAINT emp_country_code_not_null NOT NULL,
 phone_number VARCHAR2(20)
 CONSTRAINT emp_phone_number_not_null NOT NULL,
 job_id CONSTRAINT emp_job_id_not_null NOT NULL
 CONSTRAINT emp_jobs_fk REFERENCES jobs#,
 job_start_date DATE
 CONSTRAINT emp_job_start_date_not_null NOT NULL,
 CONSTRAINT emp_job_start_date_check
 CHECK(TRUNC(JOB_START_DATE) = job_start_date),
 salary NUMBER(6)
 CONSTRAINT emp_salary_not_null NOT NULL,
 manager_id CONSTRAINT emp_mgr_to_empno_fk REFERENCES employees#,
 department_id CONSTRAINT emp_to_dept_fk REFERENCES departments#
)
/

The reasons for the REF constraints are:

• An employee must have an existing job. That is, values in the column
employees#.job_id must also be values in the column jobs#.job_id.

• An employee must have a manager who is also an employee. That is, values in the
column employees#.manager_id must also be values in the column
employees#.employee_id.

• An employee must work in an existing department. That is, values in the column
employees#.department_id must also be values in the column
departments#.department_id.

Also, the manager of an employee must be the manager of the department in which the
employee works. That is, values in the column employees#.manager_id must also be
values in the column departments#.manager_id. However, you could not specify the

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 29

necessary constraint when you created departments#, because employees# did not exist
yet. Therefore, you must add a foreign key constraint to departments# later (see "Adding
the Foreign Key Constraint").

4. Create job_history#, which stores the job history of each employee in the company (one
row for each job held by the employee):

CREATE TABLE job_history#
(employee_id CONSTRAINT job_hist_to_employees_fk REFERENCES employees#,
 job_id CONSTRAINT job_hist_to_jobs_fk REFERENCES jobs#,
 start_date DATE
 CONSTRAINT job_hist_start_date_not_null NOT NULL,
 end_date DATE
 CONSTRAINT job_hist_end_date_not_null NOT NULL,
 department_id
 CONSTRAINT job_hist_to_departments_fk REFERENCES departments#
 CONSTRAINT job_hist_dept_id_not_null NOT NULL,
 CONSTRAINT job_history_pk PRIMARY KEY(employee_id,start_date),
 CONSTRAINT job_history_date_check CHECK(start_date < end_date)
)
/

The reasons for the REF constraints are that the employee, job, and department must
exist. That is:

• Values in the column job_history#.employee_id must also be values in the column
employees#.employee_id.

• Values in the column job_history#.job_id must also be values in the column
jobs#.job_id.

• Values in the column job_history#.department_id must also be values in the column
departments#.department_id.

See Also

"Creating Tables"

Creating the Editioning Views

Note

You must be connected to the database as user app_data.

To create the editioning views, use the following statements (in any order). You can enter the
statements either in SQL*Plus or in the Worksheet of SQL Developer. Alternatively, you can
create the editioning views with the SQL Developer tool Create View.

CREATE OR REPLACE EDITIONING VIEW jobs AS SELECT * FROM jobs#
/
CREATE OR REPLACE EDITIONING VIEW departments AS SELECT * FROM departments#
/
CREATE OR REPLACE EDITIONING VIEW employees AS SELECT * FROM employees#
/
CREATE OR REPLACE EDITIONING VIEW job_history AS SELECT * FROM job_history#
/

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 29

Note

The application must always reference the base tables through the editioning views.
Otherwise, the editioning views do not cover the tables and you cannot use EBR to
upgrade the finished application when it is in use.

See Also

• "Creating Views"

• Oracle AI Database Development Guide for general information about editioning
views

• Oracle AI Database Development Guide for information about preparing an
application to use editioning views

Creating the Triggers

Note

You must be connected to the database as user app_data.

The triggers in the application enforce these business rules:

• An employee with job j must have a salary between the minimum and maximum salaries
for job j.

• If an employee with job j has salary s, then you cannot change the minimum salary for j to
a value greater than s or the maximum salary for j to a value less than s. (To do so would
make existing data invalid.)

See Also

Using Triggers, for information about triggers

Creating the Trigger to Enforce the First Business Rule
The first business rule is: An employee with job j must have a salary between the minimum and
maximum salaries for job j.

This rule could be violated either when a new row is inserted into the employees table or when
the salary or job_id column of the employees table is updated.

To enforce the rule, create the following trigger on the editioning view employees. You can
enter the CREATE TRIGGER statement either in SQL*Plus or in the Worksheet of SQL
Developer. Alternatively, you can create the trigger with the SQL Developer tool Create Trigger.

CREATE OR REPLACE TRIGGER employees_aiufer
AFTER INSERT OR UPDATE OF salary, job_id ON employees FOR EACH ROW

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 29

DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE jobs IN SHARE MODE; -- Ensure that jobs does not change
 -- during the following query.
 SELECT COUNT(*) INTO l_cnt
 FROM jobs
 WHERE job_id = :NEW.job_id
 AND :NEW.salary BETWEEN min_salary AND max_salary;

 IF (l_cnt<>1) THEN
 RAISE_APPLICATION_ERROR(-20002,
 CASE
 WHEN :new.job_id = :old.job_id
 THEN 'Salary modification invalid'
 ELSE 'Job reassignment puts salary out of range'
 END);
 END IF;
END;
/

LOCK TABLE jobs IN SHARE MODE prevents other users from changing the table jobs while the
trigger is querying it. Preventing changes to jobs during the query is necessary because
nonblocking reads prevent the trigger from "seeing" changes that other users make to jobs
while the trigger is changing employees (and prevent those users from "seeing" the changes
that the trigger makes to employees).

Another way to prevent changes to jobs during the query is to include the FOR UPDATE
clause in the SELECT statement. However, SELECT FOR UPDATE restricts concurrency more
than LOCK TABLE jobs IN SHARE MODE does.

LOCK TABLE jobs IN SHARE MODE prevents other users from changing jobs, but not from
locking jobs in share mode themselves. Changes to jobs will probably be much rarer than
changes to employees. Therefore, locking jobs in share mode provides more concurrency than
locking a single row of jobs in exclusive mode.

See Also

• Oracle AI Database Development Guide for information about locking tables IN
SHARE MODE

• Oracle AI Database PL/SQL Language Reference for information about SELECT
FOR UPDATE

• "Creating Triggers"

• "Tutorial: Showing How the employees_pkg Subprograms Work" to see how the
employees_aiufer trigger works

Creating the Trigger to Enforce the Second Business Rule
The second business rule is: If an employee with job j has salary s, then you cannot change
the minimum salary for j to a value greater than s or the maximum salary for j to a value less
than s. (To do so would make existing data invalid.)

This rule could be violated when the min_salary or max_salary column of the jobs table is
updated.

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 29

To enforce the rule, create the following trigger on the editioning view jobs. You can enter the
CREATE TRIGGER statement either in SQL*Plus or in the Worksheet of SQL Developer.
Alternatively, you can create the trigger with the SQL Developer tool Create Trigger.

CREATE OR REPLACE TRIGGER jobs_aufer
AFTER UPDATE OF min_salary, max_salary ON jobs FOR EACH ROW
WHEN (NEW.min_salary > OLD.min_salary OR NEW.max_salary < OLD.max_salary)
DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE employees IN SHARE MODE;

 SELECT COUNT(*) INTO l_cnt
 FROM employees
 WHERE job_id = :NEW.job_id
 AND salary NOT BETWEEN :NEW.min_salary and :NEW.max_salary;

 IF (l_cnt>0) THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Salary update would violate ' || l_cnt || ' existing employee records');
 END IF;
END;
/

LOCK TABLE employees IN SHARE MODE prevents other users from changing the table
employees while the trigger is querying it. Preventing changes to employees during the query
is necessary because nonblocking reads prevent the trigger from "seeing" changes that other
users make to employees while the trigger is changing jobs (and prevent those users from
"seeing" the changes that the trigger makes to jobs).

For this trigger, SELECT FOR UPDATE is not an alternative to LOCK TABLE IN SHARE
MODE. While you are trying to change the salary range for this job, this trigger must prevent
other users from changing a salary to be outside the new range. Therefore, the trigger must
lock all rows in the employees table that have this job_id and lock all rows that someone could
update to have this job_id.

One alternative to LOCK TABLE employees IN SHARE MODE is to use the DBMS_LOCK package
to create a named lock with the name of the job_id and then use triggers on both the
employees and jobs tables to use this named lock to prevent concurrent updates. However,
using DBMS_LOCK and multiple triggers negatively impacts runtime performance.

Another alternative to LOCK TABLE employees IN SHARE MODE is to create a trigger on the
employees table which, for each changed row of employees, locks the corresponding job row
in jobs. However, this approach causes excessive work on updates to the employees table,
which are frequent.

LOCK TABLE employees IN SHARE MODE is simpler than the preceding alternatives, and
changes to the jobs table are rare and likely to happen at application maintenance time, when
locking the table does not inconvenience users.

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 29

See Also

• Oracle AI Database Development Guide for information about locking tables with
SHARE MODE

• Oracle AI Database PL/SQL Packages and Types Reference for information about
the DBMS_LOCK package

• "Creating Triggers"

• "Tutorial: Showing How the admin_pkg Subprograms Work"

Creating the Sequences

Note

You must be connected to the database as user app_data.

To create the sequences that generate unique primary keys for new departments and new
employees, use the following statements (in either order). You can enter the statements either
in SQL*Plus or in the Worksheet of SQL Developer. Alternatively, you can create the
sequences with the SQL Developer tool Create Sequence.

CREATE SEQUENCE employees_sequence START WITH 210;
CREATE SEQUENCE departments_sequence START WITH 275;

To avoid conflict with the data that you will load from tables in the sample schema HR, the
starting numbers for employees_sequence and departments_sequence must exceed the
maximum values of employees.employee_id and departments.department_id, respectively.
After "Loading the Data", this query displays these maximum values:

SELECT MAX(e.employee_id), MAX(d.department_id)
FROM employees e, departments d;

Result:

MAX(E.EMPLOYEE_ID) MAX(D.DEPARTMENT_ID)
------------------ --------------------
 206 270

See Also

"Creating and Managing Sequences"

Loading the Data

Note

You must be connected to the database as user app_data.

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 29

Load the tables of the application with data from tables in the sample schema HR.

Note

The following procedure references the tables of the application through their
editioning views.

In the following procedure, you can enter the statements either in SQL*Plus or in the
Worksheet of SQL Developer.

To load data into the tables:

1. Load jobs with data from the table HR.JOBS:

INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
SELECT job_id, job_title, min_salary, max_salary
 FROM HR.JOBS
/

Result:

19 rows created.

2. Load departments with data from the table HR.DEPARTMENTS:

INSERT INTO departments (department_id, department_name, manager_id)
SELECT department_id, department_name, manager_id
 FROM HR.DEPARTMENTS
/

Result:

27 rows created.

3. Load employees with data from the tables HR.EMPLOYEES and HR.JOB_HISTORY,
using searched CASE expressions and SQL functions to get employees.country_code and
employees.phone_number from HR.phone_number and SQL functions and a scalar
subquery to get employees.job_start_date from HR.JOB_HISTORY:

INSERT INTO employees (employee_id, first_name, last_name, email_addr,
 hire_date, country_code, phone_number, job_id, job_start_date, salary,
 manager_id, department_id)
SELECT employee_id, first_name, last_name, email, hire_date,
 CASE WHEN phone_number LIKE '011.%'
 THEN '+' || SUBSTR(phone_number, INSTR(phone_number, '.')+1,
 INSTR(phone_number, '.', 1, 2) - INSTR(phone_number, '.') - 1)
 ELSE '+1'
 END country_code,
 CASE WHEN phone_number LIKE '011.%'
 THEN SUBSTR(phone_number, INSTR(phone_number, '.', 1, 2)+1)
 ELSE phone_number
 END phone_number,
 job_id,
 NVL((SELECT MAX(end_date+1)
 FROM HR.JOB_HISTORY jh
 WHERE jh.employee_id = employees.employee_id), hire_date),
 salary, manager_id, department_id
 FROM HR.EMPLOYEES
/

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 29

Result:

107 rows created.

Note

The preceding INSERT statement fires the trigger created in "Creating the Trigger
to Enforce the First Business Rule".

4. Load job_history with data from the table HR.JOB_HISTORY:

INSERT INTO job_history (employee_id, job_id, start_date, end_date,
 department_id)
SELECT employee_id, job_id, start_date, end_date, department_id
 FROM HR.JOB_HISTORY
/

Result:

10 rows created.

5. Commit the changes:

COMMIT;

See Also

• "About the INSERT Statement"

• "About Sample Schema HR"

• "Using CASE Expressions in Queries"

• "Using NULL-Related Functions in Queries" for information about the NVL function

• Oracle AI Database SQL Language Reference for information about the SQL
functions

Adding the Foreign Key Constraint

Note

You must be connected to the database as user app_data.

Now that the tables departments and employees contain data, add a foreign key constraint
with the following ALTER TABLE statement. You can enter the statement either in SQL*Plus or
in the Worksheet of SQL Developer. Alternatively, you can add the constraint with the SQL
Developer tool Add Foreign Key.

ALTER TABLE departments#
ADD CONSTRAINT dept_to_emp_fk
FOREIGN KEY(manager_id) REFERENCES employees#;

If you add this foreign key constraint before departments# and employees# contain data, then
you get this error when you try to load either of them with data:

Chapter 9
Creating the Schema Objects and Loading the Data

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 29

ORA-02291: integrity constraint (APP_DATA.JOB_HIST_TO_DEPT_FK) violated - parent key not found

See Also

"Tutorial: Adding Constraints to Existing Tables"

Granting Privileges on the Schema Objects to Users

Note

You must be connected to the database as user app_data.

To grant privileges to users, use the SQL statement GRANT. You can enter the GRANT
statements either in SQL*Plus or in the Worksheet of SQL Developer.

Grant to app_code only the privileges that it needs to create employees_pkg:

GRANT SELECT, INSERT, UPDATE, DELETE ON employees TO app_code;
GRANT SELECT ON departments TO app_code;
GRANT SELECT ON jobs TO app_code;
GRANT SELECT, INSERT on job_history TO app_code;
GRANT SELECT ON employees_sequence TO app_code;

Grant to app_admin only the privileges that it needs to create admin_pkg:

GRANT SELECT, INSERT, UPDATE, DELETE ON jobs TO app_admin;
GRANT SELECT, INSERT, UPDATE, DELETE ON departments TO app_admin;
GRANT SELECT ON employees_sequence TO app_admin;
GRANT SELECT ON departments_sequence TO app_admin;

See Also

Oracle AI Database SQL Language Reference for information about the GRANT
statement

Creating the employees_pkg Package
This section shows how to create the employees_pkg package, how its subprograms work,
how to grant the EXECUTE privilege on the package to the users who need it, and how those
users can invoke one of its subprograms.

To create the employees_pkg package:

1. Connect to the database as user app_code.

For instructions, see either "Connecting to Oracle AI Database from SQL*Plus" or
"Connecting to Oracle AI Database from SQL Developer".

2. Create these synonyms:

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 29

CREATE OR REPLACE SYNONYM employees FOR app_data.employees;
CREATE OR REPLACE SYNONYM departments FOR app_data.departments;
CREATE OR REPLACE SYNONYM jobs FOR app_data.jobs;
CREATE OR REPLACE SYNONYM job_history FOR app_data.job_history;

You can enter the CREATE SYNONYM statements either in SQL*Plus or in the Worksheet
of SQL Developer. Alternatively, you can create the synonyms with the SQL Developer tool
Create Synonym.

3. Create the package specification.

4. Create the package body.

See Also

• "Creating Synonyms"

• "About Packages"

Creating the Package Specification for employees_pkg

Note

You must be connected to the database as user app_code.

To create the package specification for employees_pkg, the API for managers, use the
following CREATE PACKAGE statement. You can enter the statement either in SQL*Plus or in
the Worksheet of SQL Developer. Alternatively, you can create the package with the SQL
Developer tool Create Package.

CREATE OR REPLACE PACKAGE employees_pkg
AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_salary IN employees.salary%TYPE);

 PROCEDURE change_job
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL);

END employees_pkg;
/

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 29

See Also

• "About the Application"

• "Creating and Managing Packages"

• Oracle AI Database PL/SQL Language Reference for information about the
CREATE PACKAGE statement

Creating the Package Body for employees_pkg

Note

You must be connected to the database as user app_code.

To create the package body for employees_pkg, the API for managers, use the following
CREATE PACKAGE BODY statement. You can enter the statement either in SQL*Plus or in
the Worksheet of SQL Developer. Alternatively, you can create the package with the SQL
Developer tool Create Body.

CREATE OR REPLACE PACKAGE BODY employees_pkg
AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 l_cursor SYS_REFCURSOR;
 BEGIN
 OPEN p_result_set FOR
 SELECT e.employee_id,
 e.first_name || ' ' || e.last_name name,
 TO_CHAR(e.hire_date, 'Dy Mon ddth, yyyy') hire_date,
 j.job_title,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 LEFT OUTER JOIN employees m ON (e.manager_id = m.employee_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.department_id = p_deptno ;
 END get_employees_in_dept;

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT e.First_name || ' ' || e.last_name name, j.job_title,
 e.job_start_date start_date,
 TO_DATE(NULL) end_date
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 UNION ALL
 SELECT e.First_name || ' ' || e.last_name name,
 j.job_title,
 jh.start_date,

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 29

 jh.end_date
 FROM employees e INNER JOIN job_history jh
 ON (e.employee_id = jh.employee_id)
 INNER JOIN jobs j ON (jh.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 ORDER BY start_date DESC;
 END get_job_history;

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT sys_refcursor)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT *
 FROM (SELECT TO_CHAR(e.employee_id) employee_id,
 e.first_name || ' ' || e.last_name name,
 e.email_addr,
 TO_CHAR(e.hire_date,'dd-mon-yyyy') hire_date,
 e.country_code,
 e.phone_number,
 j.job_title,
 TO_CHAR(e.job_start_date,'dd-mon-yyyy') job_start_date,
 to_char(e.salary) salary,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j on (e.job_id = j.job_id)
 RIGHT OUTER JOIN employees m ON (m.employee_id = e.manager_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.employee_id = p_employee_id)
 UNPIVOT (VALUE FOR ATTRIBUTE IN (employee_id, name, email_addr, hire_date,
 country_code, phone_number, job_title, job_start_date, salary, manager,
 department_name));
 END show_employee;

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%type,
 p_new_salary IN employees.salary%type)
 IS
 BEGIN
 UPDATE employees
 SET salary = p_new_salary
 WHERE employee_id = p_employee_id;
 END update_salary;

 PROCEDURE change_job
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL)
 IS
 BEGIN
 INSERT INTO job_history (employee_id, start_date, end_date, job_id,
 department_id)
 SELECT employee_id, job_start_date, TRUNC(SYSDATE), job_id, department_id
 FROM employees
 WHERE employee_id = p_employee_id;

 UPDATE employees
 SET job_id = p_new_job,
 department_id = NVL(p_new_dept, department_id),
 salary = NVL(p_new_salary, salary),

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 29

 job_start_date = TRUNC(SYSDATE)
 WHERE employee_id = p_employee_id;
 END change_job;
END employees_pkg;
/

See Also

• "About the Application"

• "Creating and Managing Packages"

• Oracle AI Database PL/SQL Language Reference for information about the
CREATE PACKAGE BODY statement

Tutorial: Showing How the employees_pkg Subprograms Work
Using SQL*Plus, this tutorial shows how the subprograms of the employees_pkg package
work. The tutorial also shows how the trigger employees_aiufer and the CHECK constraint
job_history_date_check work.

Note

You must be connected to Oracle AI Database as user app_code from SQL*Plus.

To use SQL*Plus to show how the employees_pkg subprograms work:

1. Use formatting commands to improve the readability of the output. For example:

SET LINESIZE 80
SET RECSEP WRAPPED
SET RECSEPCHAR "="
COLUMN NAME FORMAT A15 WORD_WRAPPED
COLUMN HIRE_DATE FORMAT A20 WORD_WRAPPED
COLUMN DEPARTMENT_NAME FORMAT A10 WORD_WRAPPED
COLUMN JOB_TITLE FORMAT A29 WORD_WRAPPED
COLUMN MANAGER FORMAT A11 WORD_WRAPPED

2. Declare a bind variable for the value of the subprogram parameter p_result_set:

VARIABLE c REFCURSOR

3. Show the employees in department 90:

EXEC employees_pkg.get_employees_in_dept(90, :c);
PRINT c

Result:

EMPLOYEE_ID NAME HIRE_DATE JOB_TITLE
----------- --------------- -------------------- --------------------------
MANAGER DEPARTMENT
----------- ----------
 100 Steven King Tue Jun 17th, 2003 President
 Executive
===
 102 Lex De Haan Sat Jan 13th, 2001 Administration Vice President
Steven King Executive

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 29

===
 101 Neena Kochhar Wed Sep 21st, 2005 Administration Vice President
Steven King Executive
===

4. Show the job history of employee 101:

EXEC employees_pkg.get_job_history(101, :c);
PRINT c

Result:

NAME JOB_TITLE START_DAT END_DATE
--------------- ----------------------------- --------- ---------
Neena Kochhar Administration Vice President 16-MAR-05
Neena Kochhar Accounting Manager 28-OCT-01 15-MAR-05
Neena Kochhar Public Accountant 21-SEP-97 27-OCT-01

5. Show general information about employee 101:

EXEC employees_pkg.show_employee(101, :c);
PRINT c

Result:

ATTRIBUTE VALUE
--------------- --
EMPLOYEE_ID 101
NAME Neena Kochhar
EMAIL_ADDR NKOCHHAR
HIRE_DATE 21-sep-2005
COUNTRY_CODE +1
PHONE_NUMBER 515.123.4568
JOB_TITLE Administration Vice President
JOB_START_DATE 16-mar-05
SALARY 17000
MANAGER Steven King
DEPARTMENT_NAME Executive

11 rows selected.

6. Show the information about the job Administration Vice President:

SELECT * FROM jobs WHERE job_title = 'Administration Vice President';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------- ---------- ----------
AD_VP Administration Vice President 15000 30000

7. Try to give employee 101 a new salary outside the range for their job:

EXEC employees_pkg.update_salary(101, 30001);

Result:

SQL> EXEC employees_pkg.update_salary(101, 30001);
BEGIN employees_pkg.update_salary(101, 30001); END;

*
ERROR at line 1:
ORA-20002: Salary modification invalid
ORA-06512: at "APP_DATA.EMPLOYEES_AIUFER", line 13
ORA-04088: error during execution of trigger 'APP_DATA.EMPLOYEES_AIUFER'

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 29

ORA-06512: at "APP_CODE.EMPLOYEES_PKG", line 77
ORA-06512: at line 1

8. Give employee 101 a new salary inside the range for their job and show general
information about them again:

EXEC employees_pkg.update_salary(101, 18000);
EXEC employees_pkg.show_employee(101, :c);
PRINT c

Result:

ATTRIBUTE VALUE
--------------- --
EMPLOYEE_ID 101
NAME Neena Kochhar
EMAIL_ADDR NKOCHHAR
HIRE_DATE 21-sep-2005
COUNTRY_CODE +1
PHONE_NUMBER 515.123.4568
JOB_TITLE Administration Vice President
JOB_START_DATE 16-mar-05
SALARY 18000
MANAGER Steven King
DEPARTMENT_NAME Executive

11 rows selected.

9. Change the job of employee 101 to their current job with a lower salary:

EXEC employees_pkg.change_job(101, 'AD_VP', 17500, 90);

Result:

SQL> exec employees_pkg.change_job(101, 'AD_VP', 17500, 90);
BEGIN employees_pkg.change_job(101, 'AD_VP', 17500, 80); END;

*
ERROR at line 1:
ORA-02290: check constraint (APP_DATA.JOB_HISTORY_DATE_CHECK) violated
ORA-06512: at "APP_CODE.EMPLOYEES_PKG", line 101
ORA-06512: at line 1

10. Show information about the employee. (Note that the salary was not changed by the
statement in the preceding step; it is 18000, not 17500.)

exec employees_pkg.show_employee(101, :c);
print c

Result:

ATTRIBUTE VALUE
--------------- --
EMPLOYEE_ID 101
NAME Neena Kochhar
EMAIL_ADDR NKOCHHAR
HIRE_DATE 21-sep-2005
COUNTRY_CODE +1
PHONE_NUMBER 515.123.4568
JOB_TITLE Administration Vice President
JOB_START_DATE 10-mar-2015
SALARY 18000
MANAGER Steven King
DEPARTMENT_NAME Executive

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 29

11 rows selected.

See Also

• SQL*Plus User's Guide and Reference for information about SQL*Plus commands

• "Creating and Managing Packages"

Granting the EXECUTE Privilege to app_user and app_admin_user

Note

You must be connected to the database as user app_code.

To grant the EXECUTE privilege on the package employees_pkg to app_user (typically a
manager) and app_admin_user (an application administrator), use the following GRANT
statements (in either order). You can enter the statements either in SQL*Plus or in the
Worksheet of SQL Developer.

GRANT EXECUTE ON employees_pkg TO app_user;
GRANT EXECUTE ON employees_pkg TO app_admin_user;

See Also

• "Schemas for the Application"

• Oracle AI Database SQL Language Reference for information about the GRANT
statement

Tutorial: Invoking get_job_history as app_user or app_admin_user
Using SQL*Plus, this tutorial shows how to invoke the subprogram
app_code.employees_pkg.get_job_history as the user app_user (typically a manager) or
app_admin_user (an application administrator).

To invoke employees_pkg.get_job_history as app_user or app_admin_user:

1. Connect to the database as user app_user or app_admin_user from SQL*Plus.

For instructions, see "Connecting to Oracle AI Database from SQL*Plus".

2. Create the following synonym:

CREATE SYNONYM employees_pkg FOR app_code.employees_pkg;

3. Show the job history of employee 101:

EXEC employees_pkg.get_job_history(101, :c);
PRINT c

Result:

Chapter 9
Creating the employees_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 29

NAME JOB_TITLE START_DAT END_DATE
--------------- ----------------------------- --------- ---------
Neena Kochhar Administration Vice President 16-MAR-05 15-MAY-12
Neena Kochhar Accounting Manager 28-OCT-01 15-MAR-05
Neena Kochhar Public Accountant 21-SEP-97 27-OCT-01

Creating the admin_pkg Package
This section shows how to create the admin_pkg package, how its subprograms work, how to
grant the EXECUTE privilege on the package to the user who needs it, and how that user can
invoke one of its subprograms.

To create the admin_pkg package:

1. Connect to Oracle AI Database as user app_admin.

For instructions, see either "Connecting to Oracle AI Database from SQL*Plus" or
"Connecting to Oracle AI Database from SQL Developer".

2. Create these synonyms:

CREATE SYNONYM departments FOR app_data.departments;
CREATE SYNONYM jobs FOR app_data.jobs;
CREATE SYNONYM departments_sequence FOR app_data.departments_sequence;

You can enter the CREATE SYNONYM statements either in SQL*Plus or in the Worksheet
of SQL Developer. Alternatively, you can create the tables with the SQL Developer tool
Create Synonym.

3. Create the package specification.

4. Create the package body.

See Also

• "Creating and Managing Synonyms"

• "About Packages"

Creating the Package Specification for admin_pkg

Note

You must be connected to the database as user app_admin.

To create the package specification for admin_pkg, the API for application administrators, use
the following CREATE PACKAGE statement. You can enter the statement either in SQL*Plus
or in the Worksheet of SQL Developer. Alternatively, you can create the package with the SQL
Developer tool Create Package.

CREATE OR REPLACE PACKAGE admin_pkg
AS
 PROCEDURE update_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,

Chapter 9
Creating the admin_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 29

 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL);

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE);

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE);

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE;

END admin_pkg;
/

See Also

• "About the Application"

• "Creating and Managing Packages"

• Oracle AI Database PL/SQL Language Reference for information about the
CREATE PACKAGE statement

Creating the Package Body for admin_pkg

Note

You must be connected to the database as user app_admin.

To create the package body for admin_pkg, the API for application administrators, use the
following CREATE PACKAGE BODY statement. You can enter the statement either in
SQL*Plus or in the Worksheet of SQL Developer. Alternatively, you can create the package
with the SQL Developer tool Create Body.

CREATE OR REPLACE PACKAGE BODY admin_pkg
AS
 PROCEDURE update_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,
 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL)
 IS
 BEGIN
 UPDATE jobs
 SET job_title = NVL(p_job_title, job_title),
 min_salary = NVL(p_min_salary, min_salary),
 max_salary = NVL(p_max_salary, max_salary)

Chapter 9
Creating the admin_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 29

 WHERE job_id = p_job_id;
 END update_job;

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE)
 IS
 BEGIN
 INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
 VALUES (p_job_id, p_job_title, p_min_salary, p_max_salary);
 END add_job;

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE)
 IS
 BEGIN
 IF (p_update_manager_id) THEN
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name),
 manager_id = p_manager_id
 WHERE department_id = p_department_id;
 ELSE
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name)
 WHERE department_id = p_department_id;
 END IF;
 END update_department;

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE
 IS
 l_department_id departments.department_id%TYPE;
 BEGIN
 INSERT INTO departments (department_id, department_name, manager_id)
 VALUES (departments_sequence.NEXTVAL, p_department_name, p_manager_id)
 RETURNING department_id INTO l_department_id;
 RETURN l_department_id;
 END add_department;

END admin_pkg;
/

See Also

• "About the Application"

• "Creating and Managing Packages"

• Oracle AI Database PL/SQL Language Reference for information about the
CREATE PACKAGE BODY statement

Chapter 9
Creating the admin_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 29

Tutorial: Showing How the admin_pkg Subprograms Work
Using SQL*Plus, this tutorial shows how the subprograms of the admin_pkg package work.
The tutorial also shows how the trigger jobs_aufer works.

Note

You must be connected to the database as user app_admin from SQL*Plus.

To show how the admin_pkg subprograms work:

1. Show the information about the job whose ID is AD_VP:

SELECT * FROM jobs WHERE job_id = 'AD_VP';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_VP Administration Vice President 15000 30000

2. Increase the maximum salary for this job and show the information about it again:

EXEC admin_pkg.update_job('AD_VP', p_max_salary => 31000);
SELECT * FROM jobs WHERE job_id = 'AD_VP';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_VP Administration Vice President 15000 31000

3. Show the information about the job whose ID is IT_PROG:

SELECT * FROM jobs WHERE job_id = 'IT_PROG';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
IT_PROG Programmer 4000 10000

4. Try to increase the maximum salary for this job:

EXEC admin_pkg.update_job('IT_PROG', p_max_salary => 4001);

Result (from SQL*Plus):

SQL> EXEC admin_pkg.update_job('IT_PROG', p_max_salary => 4001);
BEGIN admin_pkg.update_job('IT_PROG', p_max_salary => 4001); END;

*
ERROR at line 1:
ORA-20001: Salary update would violate 5 existing employee records
ORA-06512: at "APP_DATA.JOBS_AUFER", line 12
ORA-04088: error during execution of trigger 'APP_DATA.JOBS_AUFER'
ORA-06512: at "APP_ADMIN.ADMIN_PKG", line 10
ORA-06512: at line 1

5. Add a new job and show the information about it:

Chapter 9
Creating the admin_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 29

EXEC admin_pkg.add_job('AD_CLERK', 'Administrative Clerk', 3000, 7000);
SELECT * FROM jobs WHERE job_id = 'AD_CLERK';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_CLERK Administrative Clerk 3000 7000

6. Show the information about department 100:

SELECT * FROM departments WHERE department_id = 100;

Result:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID
------------- ------------------------------ ----------
 100 Finance 108

7. Change the name and manager of department 100 and show the information about it:

EXEC admin_pkg.update_department(100, 'Financial Services');
EXEC admin_pkg.update_department(100, p_manager_id => 111,
 p_update_manager_id => true);
SELECT * FROM departments WHERE department_id = 100;

Result:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID
------------- ------------------------------ ----------
 100 Financial Services 111

See Also

"Creating and Managing Packages"

Granting the EXECUTE Privilege to app_admin_user

Note

You must be connected to the database as user app_admin.

To grant the EXECUTE privilege on the package admin_pkg to app_admin_user (an application
administrator), use the following GRANT statement. You can enter the statement either in
SQL*Plus or in the Worksheet of SQL Developer.

GRANT EXECUTE ON admin_pkg TO app_admin_user;

See Also

• "Schemas for the Application"

• Oracle AI Database SQL Language Reference for information about the GRANT
statement

Chapter 9
Creating the admin_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 29

Tutorial: Invoking add_department as app_admin_user
Using SQL*Plus, this tutorial shows how to invoke the function
app_admin.admin_pkg.add_department as the user app_admin_user (an application
administrator) and then see the information about the new department.

To invoke admin_pkg.add_department as app_admin_user:

1. Connect to Oracle AI Database as user app_admin_user from SQL*Plus.

For instructions, see "Connecting to Oracle AI Database from SQL*Plus".

2. Create this synonym:

CREATE SYNONYM admin_pkg FOR app_admin.admin_pkg;

3. Declare a bind variable for the return value of the function:

VARIABLE n NUMBER

4. Add a new department without a manager:

EXEC :n := admin_pkg.add_department('New department', NULL);

5. Show the ID of the manager of the new department:

PRINT :n

Result:

 N

 275

To see the information about the new department:

1. Connect to the database as user app_admin.

2. Show the information about the new department:

SELECT * FROM departments WHERE department_name LIKE 'New department%';

Result:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID
------------- ------------------------------ ----------
 275 New department

Chapter 9
Creating the admin_pkg Package

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 29

10
Deploying an Oracle AI Database Application

After you develop your application, you can install it on other databases, called deployment
environments, where other users can run it.

About Development and Deployment Environments
The database on which you develop your application is called the development environment.
After developing your application, you can install it on other databases, called deployment
environments, where other users can run it.

The first deployment environment is the test environment. In the test environment, you can
thoroughly test the functionality of the application, determine whether it is structured correctly,
and fix any problems before deploying it in the production environment.

You might also deploy your application to an education environment, either before or after
deploying it to the production environment. An education environment provides a place for
users to practice running the application without affecting other environments.

If the desired deployment environments do not exist in your organization, you can create them.

About Installation Scripts
An installation script can either have all the SQL statements needed to create the application
or it can be a primary script that runs other scripts.

A script is a series of SQL statements in a file whose name ends with .sql (for example,
create_app.sql). When you run a script in a client program such as SQL*Plus or SQL
Developer, the SQL statements run in the order in which they appear in the script. A script
whose SQL statements create an application is called an installation script.

To deploy an application, you run one or more installation scripts in the deployment
environment. For a new application, you must create the installation scripts. For an older
application, the installation scripts might exist, but if they do not, you can create them.

About DDL Statements and Schema Object Dependencies
An installation script contains DDL statements that create schema objects and, optionally,
INSERT statements that load data into tables that DDL statements create. To create
installation scripts correctly, and to run multiple installation scripts in the correct order, you must
understand the dependencies between the schema objects of your application.

If the definition of object A references object B, then A depends on B. Therefore, you must
create B before you create A. Otherwise, the statement that creates B either fails or creates B
in an invalid state, depending on the object type.

For a complex application, the order for creating the objects is rarely obvious. Usually, you
must consult the database designer or a diagram of the design.

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 19

See Also

• Oracle AI Database Development Guide for more information about schema
object dependencies

• "About Data Definition Language (DDL) Statements"

About INSERT Statements and Constraints
When you run an installation script that contains INSERT statements, you must determine
whether constraints could be violated when data from source tables (in the development
environment) is inserted into new tables in the deployment environment.

For each source table in your application, you must determine whether any constraints could
be violated when their data is inserted in the new table. If so, you must first disable those
constraints, then insert the data, and then try to re-enable the constraints. If a data item
violates a constraint, then you cannot re-enable that constraint until you correct the data item.

If you are simply inserting lookup data in correct order (as in "Loading the Data"), then
constraints are not violated. Therefore, you do not need to disable them first.

If you are inserting data from an outside source (such as a file, spreadsheet, or older
application), or from many tables that have much dependent data, disable the constraints
before inserting the data.

Some possible ways to disable and re-enable the constraints are:

• Using SQL Developer, disable and re-enable the constraints one at a time:

1. In the Connections frame, select the appropriate table.

2. In the pane labeled with table name, select the subtab Constraints.

3. In the list of all constraints on the table, change ENABLED to DISABLED (or the
reverse).

• Edit the installation script, adding SQL statements that disable and re-enable each
constraint.

• Create a SQL script with SQL statements that disable and enable each constraint.

• Find the constraints in the database data dictionary, and create a SQL script with the SQL
statements to disable and enable each constraint.

For example, to find and enable the constraints used in the EVALUATIONS,
PERFORMANCE_PARTS, and SCORES tables from "Creating Tables", enter these
statements in the Worksheet:

SELECT 'ALTER TABLE '|| TABLE_NAME || ' DISABLE CONSTRAINT '||
 CONSTRAINT_NAME ||';'
 FROM user_constraints
 WHERE table_name IN ('EVALUATIONS','PERFORMANCE_PARTS','SCORES');

SELECT 'ALTER TABLE '|| TABLE_NAME || ' ENABLE CONSTRAINT '||
 CONSTRAINT_NAME ||';'
 FROM user_constraints
 WHERE table_name IN ('EVALUATIONS','PERFORMANCE_PARTS','SCORES');

Chapter 10
About Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 19

See Also

• "About the INSERT Statement"

• "Ensuring Data Integrity in Tables"

Creating Installation Scripts
You can create installation scripts in SQL Developer or a text editor.

If an installation script needs only DDL and INSERT statements, then you can create it with
either SQL Developer or any text editor. In SQL Developer, you can use either the Cart or the
Database Export wizard. Oracle recommends the Cart for installation scripts that you expect to
run in multiple deployment environments and the Database Export wizard for installation
scripts that you expect to run in only one deployment environment.

If an installation script needs SQL statements that are neither DDL nor INSERT statements,
then you must create it with a text editor.

This section explains how to create installation scripts with the Cart and the Database Export
wizard, when and how to edit installation scripts that create sequences and triggers, and how
create installation scripts for the application in Developing a Simple Oracle AI Database
Application ("the sample application").

Creating Installation Scripts with the Cart
The SQL Developer Cart is a convenient tool for deploying Oracle AI Database objects from
one or more database connections to a destination connection.

You drag and drop objects from the navigator frame into the Cart window, specify the desired
options, and click the Export Cart icon to display the Export Objects dialog box. After you
complete the information in that dialog box, SQL Developer creates a .zip file containing
scripts (including a primary script) to create the objects in the schema of a desired destination
connection.

To create installation scripts with the Cart:

1. In the SQL Developer window, click the menu View.

2. From the View menu, select Cart.

The Cart window opens. The Export Cart icon is inactive (gray).

Tip

In the Cart window, for information about Cart user preferences, press the key F1.

3. In the Connections frame, select the schema objects that you want the installation script to
create and drag them into the Cart window.

In The Cart window, the Export Cart icon is now active (not gray).

4. For each Selected Object of type TABLE, if you want the installation script to export data,
then select the option Data.

5. Click Export Cart.

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 19

6. In the Export Objects dialog box, enter the necessary values in the fields.

7. Select Apply.

SQL Developer creates a .zip file containing scripts (including a primary script) to create
the objects in the schema of a desired destination connection.

8. In the primary script and the scripts that it runs, check that:

• Referenced objects are created before their dependent objects.

• Tables are created before data is inserted into them.

If the installation scripts create sequences, see "Editing Installation Scripts that Create
Sequences".

If the installation scripts create triggers, see "Editing Installation Scripts that Create
Sequences".

If necessary, edit the installation files in the Worksheet or any text editor.

See Also

Oracle SQL Developer User's Guide for more information about the Cart

Creating an Installation Script with the Database Export Wizard
To create an installation script in SQL Developer with the Database Export wizard, you specify
the name of the installation script, the objects and data to export, and the desired options, and
the wizard generates an installation script.

Note

In the following procedure, you might have to enlarge the SQL Developer windows to
see all fields and options.

To create an installation script with the Database Export wizard:

1. If you have not done so, create a directory for the installation script, separate from the
Oracle AI Database installation directory (for example, C:\my_exports).

2. In the SQL Developer window, click the menu Tools.

3. From the menu, select Database Export.

4. In the Export Wizard - Step 1 of 5 (Source/Destination) window:

a. In the Connection field, select your connection to the development environment.

b. Select the desired Export DDL options (and deselect any selected undesired options).

Note

Do not deselect Terminator, or the installation script will fail.

c. If you do not want the installation script to export data, then deselect Export Data.

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 19

d. In the Save As field, accept the default Single File and type the full path name of
the installation script (for example, C:\my_exports\hr_export.sql).

The file name must end with .sql.

e. Click Next.

5. In the Export Wizard - Step 2 of 5 (Types to Export) window:

a. Deselect the check boxes for the types that you do not want to export.

Selecting or deselecting Toggle All selects or deselects all check boxes.

b. Click Next.

6. In the Export Wizard - Step 3 of 5 (Specify Objects) window:

a. Click More.

b. In the Schema field, select your schema from the menu.

c. In the Type field, select from the menu either ALL OBJECTS or a specific object type
(for example, TABLE).

d. Click Lookup.

A list of objects appears in the left frame. If the value of the Type field is ALL
OBJECTS, then the list contains all objects in the selected schema. If the value of the
Type field is a specific object type, then the list contains all objects of that type in the
selected schema.

e. Move the objects that you want to export from the left frame to the right frame:

To move all objects, click >>. (To move all objects back, click <<.)

To move selected objects, select them and then click >. (To move selected objects
back, select them and click <.)

f. (Optional) Repeat steps 6.c through 6.e for other object types.

g. Click Next.

If you deselected Export Data in the Source/Destination window, then the Export
Summary window appears—go to step 8.

If you did not deselect Export Data in the Source/Destination window, then the
Export Wizard - Step 4 of 5 (Specify Data) window appears. The lower frame lists the
objects that you specified in the Specify Objects window.

7. In the Specify Data window:

a. Move the objects whose data you do not want to export from the lower frame to the
upper frame:

To move all objects, click the double upward arrow icon. (To move all objects back,
click the double downward arrow icon.)

To move selected objects, select them and then click the single upward arrow icon.

b. Click Next.

8. In the Export Wizard - Step 5 of 5 (Export Summary) window, click Finish.

The Exporting window opens, showing that exporting is occurring. When exporting is
complete, the Exporting window closes, and the Worksheet shows the contents of the
installation script that you specified in the Source/Destination window.

9. In the installation script, check that:

• Referenced objects are created before their dependent objects.

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 19

• Tables are created before data is inserted into them.

If necessary, edit the file in the Worksheet or any text editor.

Editing Installation Scripts that Create Sequences
If your application uses the sequence to generate unique keys, and you will not insert the data
from the source tables into the corresponding new tables, then you might want to edit the
START WITH value in the installation script.

For a sequence, SQL Developer generates a CREATE SEQUENCE statement whose START
WITH value is relative to the current value of the sequence in the development environment.

If your application uses the sequence to generate unique keys, and you will not insert the data
from the source tables into the corresponding new tables, then you might want to edit the
START WITH value in the installation script.

You can edit the installation script in either the Worksheet or any text editor.

See Also

"Tutorial: Creating a Sequence"

Editing Installation Scripts that Create Triggers
If your application has a BEFORE INSERT trigger on a source table, and you will insert data
from that source table into the corresponding new table, you must decide if you want the
trigger to fire before each INSERT statement in the installation script inserts data into the new
table.

For example, NEW_EVALUATION_TRIGGER (created in "Tutorial: Creating a Trigger that
Generates a Primary Key for a Row Before It Is Inserted") fires before a row is inserted into the
EVALUATIONS table. The trigger generates the unique number for the primary key of that row,
using EVALUATIONS_SEQUENCE.

The source EVALUATIONS table is populated with primary keys. If you do not want the
installation script to put new primary key values in the new EVALUATIONS table, then you
must edit the CREATE TRIGGER statement in the installation script as shown in bold font:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 IF :NEW.evaluation_id IS NULL THEN
 :NEW.evaluation_id := evaluations_sequence.NEXTVAL
 END IF;
END;

Also, if the current value of the sequence is not greater than the maximum value in the primary
key column, then you must make it greater.

You can edit the installation script in either the Worksheet or any text editor.

Two alternatives to editing the installation script are:

• Change the trigger definition in the source file and then re-create the installation script.

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 19

For information about changing triggers, see "Changing Triggers".

• Disable the trigger before running the data installation script, and then re-enable it
afterward.

For information about disabling and enabling triggers, see "Disabling and Enabling
Triggers".

See Also

"Creating Triggers"

Creating Installation Scripts for the Sample Application
You can create installation scripts for the sample application.

These scripts are for the application in Developing a Simple Oracle AI Database Application:

• schemas.sql, which does in the deployment environment what you did in the development
environment in "Creating the Schemas for the Application" and "Granting Privileges to the
Schemas"

• objects.sql, which does in the deployment environment what you did in the development
environment in "Creating the Schema Objects and Loading the Data"

• employees.sql, which does in the deployment environment what you did in the
development environment in "Creating the employees_pkg Package"

• admin.sql, which does in the deployment environment what you did in the development
environment in "Creating the admin_pkg Package"

• create_app.sql, a primary script that runs the preceding scripts, thereby deploying the
sample application in the deployment environment

You can create the scripts in any order. To create schemas.sql and create_app.sql, you must
use a text editor. To create the other scripts, you can use either a text editor or SQL Developer.

Creating Installation Script schemas.sql
The installation script schemas.sql does in the deployment environment what you did in the
development environment in "Creating the Schemas for the Application" and "Granting
Privileges to the Schemas".

To create schemas.sql, enter the following text in any text editor and save the file as
schemas.sql.

Caution

Choose secure passwords. For guidelines for secure passwords, see Oracle AI
Database Security Guide.

-- Create schemas

DROP USER app_data CASCADE;

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 19

CREATE USER app_data IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

DROP USER app_code CASCADE;

CREATE USER app_code IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

DROP USER app_admin CASCADE;

CREATE USER app_admin IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

DROP USER app_user CASCADE;

CREATE USER app_user IDENTIFIED BY password
ENABLE EDITIONS;

DROP USER app_admin_user CASCADE;

CREATE USER app_admin_user IDENTIFIED BY password
ENABLE EDITIONS;

-- Grant privileges to schemas

GRANT CREATE SESSION TO app_data;
GRANT CREATE TABLE, CREATE VIEW, CREATE TRIGGER, CREATE SEQUENCE TO app_data;
GRANT SELECT ON HR.DEPARTMENTS TO app_data;
GRANT SELECT ON HR.EMPLOYEES TO app_data;
GRANT SELECT ON HR.JOB_HISTORY TO app_data;
GRANT SELECT ON HR.JOBS TO app_data;

GRANT CREATE SESSION, CREATE PROCEDURE, CREATE SYNONYM TO app_code;

GRANT CREATE SESSION, CREATE PROCEDURE, CREATE SYNONYM TO app_admin;

GRANT CREATE SESSION, CREATE SYNONYM TO app_user;

GRANT CREATE SESSION, CREATE SYNONYM TO app_admin_user;

See Also

"Schemas for the Application" for descriptions of the schemas for the sample
application

Creating Installation Script objects.sql
The installation script objects.sql does in the deployment environment what you did in the
development environment in "Creating the Schema Objects and Loading the Data".

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 19

You can create objects.sql using either a text editor or SQL Developer.

To create objects.sql in any text editor, enter the following text and save the file as objects.sql.
For password, use the password that schema.sql specifies when it creates the user app_data.

Note

The INSERT statements that load the data work only if the deployment environment
has a standard HR schema. If it does not, then either use SQL Developer to create a
script that loads the new tables (in the deployment environment) with data from the
source tables (in the development environment) or modify the INSERT statements in
the following script.

-- Create schema objects

CONNECT app_data/password

CREATE TABLE jobs#
(job_id VARCHAR2(10)
 CONSTRAINT jobs_pk PRIMARY KEY,
 job_title VARCHAR2(35)
 CONSTRAINT jobs_job_title_not_null NOT NULL,
 min_salary NUMBER(6)
 CONSTRAINT jobs_min_salary_not_null NOT NULL,
 max_salary NUMBER(6)
 CONSTRAINT jobs_max_salary_not_null NOT NULL
)
/

CREATE TABLE departments#
(department_id NUMBER(4)
 CONSTRAINT departments_pk PRIMARY KEY,
 department_name VARCHAR2(30)
 CONSTRAINT dept_department_name_not_null NOT NULL
 CONSTRAINT dept_department_name_unique UNIQUE,
 manager_id NUMBER(6)
)
/

CREATE TABLE employees#
(employee_id NUMBER(6)
 CONSTRAINT employees_pk PRIMARY KEY,
 first_name VARCHAR2(20)
 CONSTRAINT emp_first_name_not_null NOT NULL,
 last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_not_null NOT NULL,
 email_addr VARCHAR2(25)
 CONSTRAINT emp_email_addr_not_null NOT NULL,
 hire_date DATE
 DEFAULT TRUNC(SYSDATE)
 CONSTRAINT emp_hire_date_not_null NOT NULL
 CONSTRAINT emp_hire_date_check
 CHECK(TRUNC(hire_date) = hire_date),
 country_code VARCHAR2(5)
 CONSTRAINT emp_country_code_not_null NOT NULL,
 phone_number VARCHAR2(20)
 CONSTRAINT emp_phone_number_not_null NOT NULL,

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 19

 job_id CONSTRAINT emp_job_id_not_null NOT NULL
 CONSTRAINT emp_to_jobs_fk REFERENCES jobs#,
 job_start_date DATE
 CONSTRAINT emp_job_start_date_not_null NOT NULL,
 CONSTRAINT emp_job_start_date_check
 CHECK(TRUNC(JOB_START_DATE) = job_start_date),
 salary NUMBER(6)
 CONSTRAINT emp_salary_not_null NOT NULL,
 manager_id CONSTRAINT emp_mgrid_to_emp_empid_fk REFERENCES employees#,
 department_id CONSTRAINT emp_to_dept_fk REFERENCES departments#
)
/

CREATE TABLE job_history#
(employee_id CONSTRAINT job_hist_to_emp_fk REFERENCES employees#,
 job_id CONSTRAINT job_hist_to_jobs_fk REFERENCES jobs#,
 start_date DATE
 CONSTRAINT job_hist_start_date_not_null NOT NULL,
 end_date DATE
 CONSTRAINT job_hist_end_date_not_null NOT NULL,
 department_id
 CONSTRAINT job_hist_to_dept_fk REFERENCES departments#
 CONSTRAINT job_hist_dept_id_not_null NOT NULL,
 CONSTRAINT job_history_pk PRIMARY KEY(employee_id,start_date),
 CONSTRAINT job_history_date_check CHECK(start_date < end_date)
)
/

CREATE EDITIONING VIEW jobs AS SELECT * FROM jobs#
/
CREATE EDITIONING VIEW departments AS SELECT * FROM departments#
/
CREATE EDITIONING VIEW employees AS SELECT * FROM employees#
/
CREATE EDITIONING VIEW job_history AS SELECT * FROM job_history#
/

CREATE OR REPLACE TRIGGER employees_aiufer
AFTER INSERT OR UPDATE OF salary, job_id ON employees FOR EACH ROW
DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE jobs IN SHARE MODE; -- Ensure that jobs does not change
 -- during the following query.
 SELECT COUNT(*) INTO l_cnt
 FROM jobs
 WHERE job_id = :NEW.job_id
 AND :NEW.salary BETWEEN min_salary AND max_salary;

 IF (l_cnt<>1) THEN
 RAISE_APPLICATION_ERROR(-20002,
 CASE
 WHEN :new.job_id = :old.job_id
 THEN 'Salary modification invalid'
 ELSE 'Job reassignment puts salary out of range'
 END);
 END IF;
END;
/

CREATE OR REPLACE TRIGGER jobs_aufer
AFTER UPDATE OF min_salary, max_salary ON jobs FOR EACH ROW

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 19

WHEN (NEW.min_salary > OLD.min_salary OR NEW.max_salary < OLD.max_salary)
DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE employees IN SHARE MODE;

 SELECT COUNT(*) INTO l_cnt
 FROM employees
 WHERE job_id = :NEW.job_id
 AND salary NOT BETWEEN :NEW.min_salary and :NEW.max_salary;

 IF (l_cnt>0) THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Salary update would violate ' || l_cnt || ' existing employee records');
 END IF;
END;
/

CREATE SEQUENCE employees_sequence START WITH 210;
CREATE SEQUENCE departments_sequence START WITH 275;

-- Load data

INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
SELECT job_id, job_title, min_salary, max_salary
 FROM HR.JOBS
/

INSERT INTO departments (department_id, department_name, manager_id)
SELECT department_id, department_name, manager_id
 FROM HR.DEPARTMENTS
/

INSERT INTO employees (employee_id, first_name, last_name, email_addr,
 hire_date, country_code, phone_number, job_id, job_start_date, salary,
 manager_id, department_id)
SELECT employee_id, first_name, last_name, email, hire_date,
 CASE WHEN phone_number LIKE '011.%'
 THEN '+' || SUBSTR(phone_number, INSTR(phone_number, '.')+1,
 INSTR(phone_number, '.', 1, 2) - INSTR(phone_number, '.') - 1)
 ELSE '+1'
 END country_code,
 CASE WHEN phone_number LIKE '011.%'
 THEN SUBSTR(phone_number, INSTR(phone_number, '.', 1, 2)+1)
 ELSE phone_number
 END phone_number,
 job_id,
 NVL((SELECT MAX(end_date+1)
 FROM HR.JOB_HISTORY jh
 WHERE jh.employee_id = employees.employee_id), hire_date),
 salary, manager_id, department_id
 FROM HR.EMPLOYEES
/

INSERT INTO job_history (employee_id, job_id, start_date, end_date,
 department_id)
SELECT employee_id, job_id, start_date, end_date, department_id
 FROM HR.JOB_HISTORY
/

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 19

COMMIT;

-- Add foreign key constraint

ALTER TABLE departments#
ADD CONSTRAINT dept_to_emp_fk
FOREIGN KEY(manager_id) REFERENCES employees#;

--
-- Grant privileges on schema objects to users
--

GRANT SELECT, INSERT, UPDATE, DELETE ON employees TO app_code;
GRANT SELECT ON departments TO app_code;
GRANT SELECT ON jobs TO app_code;
GRANT SELECT, INSERT on job_history TO app_code;
GRANT SELECT ON employees_sequence TO app_code;

GRANT SELECT, INSERT, UPDATE, DELETE ON jobs TO app_admin;
GRANT SELECT, INSERT, UPDATE, DELETE ON departments TO app_admin;
GRANT SELECT ON employees_sequence TO app_admin;
GRANT SELECT ON departments_sequence TO app_admin;

GRANT SELECT ON jobs TO app_admin_user;
GRANT SELECT ON departments TO app_admin_user;

See Also

• "Schema Objects of the Application" for descriptions of the schema objects of the
sample application

• "Creating Installation Scripts with the Cart"

• "Creating an Installation Script with the Database Export Wizard"

Creating Installation Script employees.sql
The installation script employees.sql does in the deployment environment what you did in the
development environment in "Creating the employees_pkg Package".

You can create employees.sql using either a text editor or SQL Developer.

To create employees.sql in any text editor, enter the following text and save the file as
employees.sql. For password, use the password that schema.sql specifies when it creates the
user app_code.

-- Create employees_pkg

CONNECT app_code/password

CREATE SYNONYM employees FOR app_data.employees;
CREATE SYNONYM departments FOR app_data.departments;
CREATE SYNONYM jobs FOR app_data.jobs;
CREATE SYNONYM job_history FOR app_data.job_history;

CREATE OR REPLACE PACKAGE employees_pkg

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 19

AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_salary IN employees.salary%TYPE);

 PROCEDURE change_job
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL);
END employees_pkg;
/

CREATE OR REPLACE PACKAGE BODY employees_pkg
AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 l_cursor SYS_REFCURSOR;
 BEGIN
 OPEN p_result_set FOR
 SELECT e.employee_id,
 e.first_name || ' ' || e.last_name name,
 TO_CHAR(e.hire_date, 'Dy Mon ddth, yyyy') hire_date,
 j.job_title,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 LEFT OUTER JOIN employees m ON (e.manager_id = m.employee_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.department_id = p_deptno ;
 END get_employees_in_dept;

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT e.First_name || ' ' || e.last_name name, j.job_title,
 e.job_start_date start_date,
 TO_DATE(NULL) end_date
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 UNION ALL
 SELECT e.First_name || ' ' || e.last_name name,
 j.job_title,
 jh.start_date,
 jh.end_date

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 19

 FROM employees e INNER JOIN job_history jh
 ON (e.employee_id = jh.employee_id)
 INNER JOIN jobs j ON (jh.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 ORDER BY start_date DESC;
 END get_job_history;

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT sys_refcursor)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT *
 FROM (SELECT TO_CHAR(e.employee_id) employee_id,
 e.first_name || ' ' || e.last_name name,
 e.email_addr,
 TO_CHAR(e.hire_date,'dd-mon-yyyy') hire_date,
 e.country_code,
 e.phone_number,
 j.job_title,
 TO_CHAR(e.job_start_date,'dd-mon-yyyy') job_start_date,
 to_char(e.salary) salary,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j on (e.job_id = j.job_id)
 RIGHT OUTER JOIN employees m ON (m.employee_id = e.manager_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.employee_id = p_employee_id)
 UNPIVOT (VALUE FOR ATTRIBUTE IN (employee_id, name, email_addr, hire_date,
 country_code, phone_number, job_title, job_start_date, salary, manager,
 department_name));
 END show_employee;

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%type,
 p_new_salary IN employees.salary%type)
 IS
 BEGIN
 UPDATE employees
 SET salary = p_new_salary
 WHERE employee_id = p_employee_id;
 END update_salary;

 PROCEDURE change_job
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL)
 IS
 BEGIN
 INSERT INTO job_history (employee_id, start_date, end_date, job_id,
 department_id)
 SELECT employee_id, job_start_date, TRUNC(SYSDATE), job_id, department_id
 FROM employees
 WHERE employee_id = p_employee_id;

 UPDATE employees
 SET job_id = p_new_job,
 department_id = NVL(p_new_dept, department_id),
 salary = NVL(p_new_salary, salary),
 job_start_date = TRUNC(SYSDATE)

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 19

 WHERE employee_id = p_employee_id;
 END change_job;
END employees_pkg;
/

-- Grant privileges on employees_pkg to users

GRANT EXECUTE ON employees_pkg TO app_user;
GRANT EXECUTE ON employees_pkg TO app_admin_user;

See Also

• "Creating Installation Scripts with the Cart"

• "Creating an Installation Script with the Database Export Wizard"

Creating Installation Script admin.sql
The installation script admin.sql does in the deployment environment what you did in the
development environment in "Creating the admin_pkg Package".

You can create admin.sql using either a text editor or SQL Developer.

To create admin.sql in any text editor, enter the following text and save the file as admin.sql.
For password, use the password that schema.sql specifies when it creates the user
app_admin.

-- Create admin_pkg

CONNECT app_admin/password

CREATE SYNONYM departments FOR app_data.departments;
CREATE SYNONYM jobs FOR app_data.jobs;
CREATE SYNONYM departments_sequence FOR app_data.departments_sequence;

CREATE OR REPLACE PACKAGE admin_pkg
AS
 PROCEDURE update_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,
 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL);

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE);

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE);

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 19

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE;

END admin_pkg;
/

CREATE OR REPLACE PACKAGE BODY admin_pkg
AS
 PROCEDURE update_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,
 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL)
 IS
 BEGIN
 UPDATE jobs
 SET job_title = NVL(p_job_title, job_title),
 min_salary = NVL(p_min_salary, min_salary),
 max_salary = NVL(p_max_salary, max_salary)
 WHERE job_id = p_job_id;
 END update_job;

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE)
 IS
 BEGIN
 INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
 VALUES (p_job_id, p_job_title, p_min_salary, p_max_salary);
 END add_job;

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE)
 IS
 BEGIN
 IF (p_update_manager_id) THEN
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name),
 manager_id = p_manager_id
 WHERE department_id = p_department_id;
 ELSE
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name)
 WHERE department_id = p_department_id;
 END IF;
 END update_department;

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE
 IS
 l_department_id departments.department_id%TYPE;
 BEGIN
 INSERT INTO departments (department_id, department_name, manager_id)

Chapter 10
Creating Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 19

 VALUES (departments_sequence.NEXTVAL, p_department_name, p_manager_id)
 RETURNING department_id INTO l_department_id;
 RETURN l_department_id;
 END add_department;

END admin_pkg;
/

--
-- Grant privileges on admin_pkg to user
--

GRANT EXECUTE ON admin_pkg TO app_admin_user;

See Also

• "Creating Installation Scripts with the Cart"

• "Creating an Installation Script with the Database Export Wizard"

Creating Primary Installation Script create_app.sql
The primary installation script create_app.sql runs the other four installation scripts for the
sample application in the correct order, which deploys the sample application in the
deployment environment.

To create the create_app.sql script, enter the following text in any text editor and save the
file as create_app.sql.

@schemas.sql
@objects.sql
@employees.sql
@admin.sql

Deploying the Sample Application
You can deploy the sample application using installation scripts.

Use the installation scripts that you created in "Creating Installation Scripts for the Sample
Application".

Note

For the following procedures, you need the name and password of a user who has the
CREATE USER and DROP USER system privileges.

To deploy the sample application using SQL*Plus:

1. Copy the installation scripts that you created in "Creating Installation Scripts for the
Sample Application" to the deployment environment.

2. In the deployment environment, connect to the database as a user with the CREATE
USER and DROP USER system privileges.

3. At the SQL> prompt, run the primary installation script:

Chapter 10
Deploying the Sample Application

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 19

@create_app.sql

The primary installation script runs the other four installation scripts for the sample
application in the correct order, thereby deploying the sample application in the deployment
environment.

To deploy the sample application using SQL Developer:

1. If necessary, create a connection to the deployment environment.

For Connection Name, enter a name that is not the name of the connection to the
development environment.

2. Copy the installation scripts that you created in "Creating Installation Scripts for the
Sample Application" to the deployment environment.

3. Connect to the database as a user with the CREATE USER and DROP USER system
privileges in the deployment environment.

A new pane is displayed, showing the name of the connection to the deployment
environment. The pane has two subpanes, Worksheet and Query Builder.

4. In the Worksheet pane, type the command for running the primary installation script:

@create_app.sql

5. Click the icon Run Script.

The primary installation script runs the other four installation scripts for the sample
application in the correct order, thereby deploying the sample application in the deployment
environment. The output appears in the Script Output pane, under the Worksheet pane.

In the Connections frame, if you expand the connection to the deployment environment,
and then expand the type of each object that the sample application uses, you see the
objects of the sample application.

See Also

• SQL*Plus User's Guide and Reference for more information about using scripts in
SQL*Plus

• Oracle SQL Developer User's Guide for more information about running scripts in
SQL Developer

Checking the Validity of an Installation
After installing your application in a deployment environment, you can check its validity using
SQL Developer.

• In the Connections frame:

1. Expand the connection to the deployment environment.

2. Examine the definitions of the new objects.

• In the Reports pane:

1. Expand Data Dictionary Reports.

A list of data dictionary reports appears.

2. Expand All Objects.

Chapter 10
Checking the Validity of an Installation

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 19

A list of objects reports appears.

3. Select All Objects.

The Select Connection window appears.

4. In the Connection field, select from the menu the connection to the deployment
environment.

5. Click OK.

6. In the Enter Bind Values window, select either Owner or Object Name.

7. Click Apply.

The message Displaying Resultsshows, followed by the results.

For each object, this report lists the Owner, Object Type, Object Name, Status (Valid or
Invalid), Date Created, and Last DDL. Last DDL is the date of the last DDL operation
that affected the object.

8. In the Reports pane, select Invalid Objects.

9. In the Enter Bind Values window, click Apply.

For each object whose Status is Invalid, this report lists the Owner, Object Type, and
Object Name.

See Also

Oracle SQL Developer User's Guide for more information about SQL Developer
reports

Archiving the Installation Scripts
After you verify that the installation of your application is valid, Oracle recommends that you
archive your installation scripts in a source code control system.

Before doing so, add comments to each file, documenting its creation date and purpose. If you
ever must deploy the same application to another environment, you can use these archived
files.

See Also

Oracle AI Database Utilities for information about Oracle Data Pump, which enables
very high-speed movement of data and metadata from one database to another

Chapter 10
Archiving the Installation Scripts

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 19

Index

Symbols
.NET assembly, 8
.NET stored procedure, 8
%FOUND cursor attribute, 32
%ISOPEN cursor attribute, 32
%NOTFOUND cursor attribute, 32
%ROWCOUNT cursor attribute, 32
%ROWTYPE attribute, 29
%TYPE attribute

purpose of, 16
tutorial for, 17

A
accent-insensitive sort, 23
accessing Oracle AI Database, 3

See also connecting to Oracle AI Database
Add Check tool, 6
Add Foreign Key tool, 6
Add Primary Key tool, 6
Add Unique tool, 6
AFTER trigger, 1

statement-level example, 3
system example, 6

aggregate conversion function in query, 25
alias, 24

for column, 14
for table, 18

See also synonym
ALTER FUNCTION statement, 8
ALTER PROCEDURE statement, 8
ALTER TABLE statement

adding constraint with
Foreign Key, 6
Not Null, 6
Primary Key, 6

changing trigger status with, 8
ALTER TRIGGER statement

changing trigger status with, 8
recompiling trigger with, 8

annotation, 20
annotations

creating, 20
modifying, 22

anonymous block, 1

application program interface (API), 11
archiving installation script, 19
arithmetic operator in query, 20
array

associative
See associative array, 41

variable, 40
ASP.NET, 8
assignment operator, 20

assigning initial value to constant with, 15
assigning value to associative array element

with, 41
assigning value to variable with, 19

associative array, 40, 41
declaring, 42
dense, 41
indexed by integer, 41
indexed by string, 41
populating, 43
sparse, 41
traversing

dense, 44
sparse, 45

attribute
%ROWTYPE, 29
%TYPE

purpose of, 16
tutorial for, 17

cursor
See cursor attribute, 32

B
base type, 3
basic LOOP statement, 27
BEFORE trigger, 1

row-level example, 4
system example, 6

bind variable, 1
block

anonymous, 1
parts of, 5

body of subprogram, 4
browsing HR sample schema, 9
built-in data type, 2
BULK COLLECT INTO clause, 43

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-1 of Index-9

bulk SQL, 5
byte semantics, 5

C
C numeric format element, 21
calendar format, 3
Cart, 3
CASE expression in query, 29
case sensitivity

in PL/SQL identifiers, 2
in sort, 23

CASE statement, 23
character function in query, 22
character semantics, 5
character set

conversion and data loss, 28
length semantics and, 5

Check Constraint, 5
adding with Add Check tool, 6

checking validity of installation, 18
CLR (Common Language Runtime), 8
collapsing displayed information in SQL

Developer, 9
collating sequence, 4
collection, 40
collection method, 40

COUNT, 44
FIRST, 45
invoking, 40
NEXT, 45

column
alias for, 14
new heading for, 14
qualifying name of, 18
relationship to field, 2
selecting specific one in table, 13

comment in PL/SQL code, 4
Commit Changes icon, 6
COMMIT statement

explicit, 6
implicit, 6

committing transaction
explicitly, 6
implicitly, 6

Common Language Runtime (CLR), 8
comparing programming methods, 10
composite variable

collection, 40
record, 29

compound trigger, 1
concatenation operator in query, 21
concurrency, 7
concurrent sessions, 9
conditional predicate, 3

conditional selection statement, 21
CASE, 23
IF, 22

connecting to Oracle AI Database, 3
as user HR, 4
from SQL Developer, 2
from SQL*Plus, 1

constant, 15
declaring, 15
ensuring correct data type of, 16
in package body, 15
in package specification, 15
local, 15

constraint, 5
adding to table

with ALTER TABLE statement, 6
with Edit Table tool, 6

application deployment and, 2
enabled or disabled, 5
types of, 5
viewing, 10

controlling program flow, 21
conversion function in query, 24
COUNT collection method, 44
Create Body tool, 13
Create Database Synonym tool, 25
CREATE FUNCTION statement, 7
Create Function tool, 7
CREATE INDEX statement

changing index with, 14
creating index with, 13

Create Index tool, 13
CREATE PACKAGE BODY statement, 13
CREATE PACKAGE statement

changing package specification with, 12
creating package specification with, 11

Create Package tool, 11
CREATE PROCEDURE statement, 5
Create Procedure tool, 5
CREATE SEQUENCE statement, 23

in installation script, 6
Create Sequence tool, 23
CREATE SYNONYM statement, 25
CREATE TABLE statement, 3
Create Table tool, 3
CREATE TRIGGER statement

changing trigger with, 7
creating trigger with, 2

Create Trigger tool, 2
CREATE VIEW statement

changing query in view with, 17
creating view with, 17

Create View tool, 16
creation script

See installation script
CURRVAL pseudocolumn, 22

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-2 of Index-9

cursor, 32
declared, 32
declaring associative array with, 42
implicit, 32
populating associative array with, 43

cursor attribute, 32
%FOUND, 32
%ISOPEN, 32
%NOTFOUND, 32
%ROWCOUNT, 32
possible values of, 32
syntax for value of, 32

cursor variable, 36
disadvantages of, 4
retrieving result set rows one at a time with

procedure, 36
tutorial, 37

D
data concurrency, 7
data consistency, 7
data definition language statement

See DDL statement
data integrity

See constraint
data loss during character-set conversion, 28
data manipulation language statement

See DML statement
Data pane, 11
data type

base, 3
built-in, 2
of associative array key, 41
of constant, 3
of function return value, 3
of subprogram parameter, 3
of table column, 2
of variable, 3
PL/SQL, 3
SQL, 2
SQL national character, 5
subtype of, 3
Unicode, 5
user-defined, 2

data use case domain, 19
creating, 19
dropping, 19

Database Export wizard, 4
database initialization parameter, 6
date format, 2
datetime format model, 24
datetime function in query, 22
DBMS_APPLICATION_INFO package, 18
DBMS_OUTPUT.PUT_LINE procedure, 23
DBMS_SESSION package, 18

DBMS_SQL package, 5
DBMS_STANDARD.RAISE_APPLICATION_ERR

OR procedure, 46
DDL statement, 1

as triggering event, 1
decimal character, 19
declarative language, 4
declarative part

of block, 5
of subprogram, 4

declared cursor, 32
advantages over cursor variable, 4
retrieving result set rows one at a time with,

34
DECODE function in query, 30
Delete Selected Row(s) tool, 12
DELETE statement, 5
DELETING conditional predicate, 3
deleting entire table, 15
deleting row from table

with Delete Selected Row(s) tool, 12
with DELETE statement, 5

dense associative array, 41
populating, 43
traversing, 44

dependencies between schema objects
installation and, 1
trigger compilation and, 8

deploying application, 1
deployment environment, 1
development environment, 1

choice of, 5
disabled trigger, 1
disabling triggers, 7

all triggers in table, 8
in installation script, 6

DL (long date) format, 14
DML statement, 1

as triggering event, 1
associative arrays and, 41
implicit cursor for, 32

dot notation
for accessing record field, 29
for invoking collection method, 40

DROP FUNCTION statement, 10
DROP INDEX statement, 14
DROP PACKAGE statement, 14
DROP PROCEDURE statement, 10
DROP SEQUENCE statement, 24
DROP SYNONYM statement, 25
DROP TABLE statement, 15
Drop tool

for index, 14
for package, 14
for sequence, 24
for synonym, 25, 10

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-3 of Index-9

Drop tool (continued)
for table, 15
for trigger, 9
for view, 18

DROP TRIGGER statement, 9
DROP VIEW statement, 18
DS (short date) format, 14
DUAL table, 22

E
Edit Index tool, 14
Edit Table tool, 6
Edit tool

changing standalone subprogram with, 8
changing trigger with, 7

editioning view, 21
in sample application, 9

education environment, 1
enabled trigger, 1
enabling triggers, 7

all triggers in table, 8
in installation script, 6

ending transaction
by committing, 6
by rolling back, 8

ensuring data integrity, 4
environment variables, 7
error

See exception
exception handler syntax, 46
exception handling, 46

for predefined exception, 48
EXCEPTION_INIT pragma, 46
exception-handling part

of block, 5
of subprogram, 4

executable part
of block, 5
of subprogram, 4

EXECUTE IMMEDIATE statement, 4
exhaustion of resources, 1
EXIT WHEN statement, 27
expanding displayed information in SQL

Developer, 9
exploring Oracle AI Database

with SQL Developer, 9
with SQL*Plus, 6

expression in query, 19

F
FCL (Framework Class Libraries), 8
FETCH statement

explicit cursor and, 32
populating dense associative array with, 43

fetching results one row at a time, 32
field, 29

relationship to column, 2
FIRST collection method, 45
FOR LOOP statement, 24
Foreign Key constraint, 5

adding
to sample application, 15
with Add Foreign Key tool, 6
with ALTER TABLE statement, 6

format
calendar, 3
date, 2
datetime model, 24
monetary, 4
time, 2

Framework Class Libraries (FCL), 8
function, 2, 1

in query, 19
locale-dependent SQL, 9
statistical, 25
structure of, 4

See also subprogram

G
G numeric format element, 19
globalization support features, 1

See also NLS parameters
group separator in number, 19
grouping query results, 25

H
hard parse, 1
HR sample schema, 9

browsing, 9
unlocking, 4

Hypertext Preprocessor (PHP), 6

I
identifier, 2
IF statement, 22
implicit COMMIT statement, 6
implicit cursor, 32
index, 2

adding, 13
changing, 14
dropping, 14
implicitly created, 12

index-by table
See associative array

initial value of constant or variable, 15
initialization parameter, 6
Insert Row tool, 9

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-4 of Index-9

INSERT statement, 1, 13
in sample application, 13

INSERTING conditional predicate, 3
installation script, 1

archiving, 19
creating, 3
disabling and re-enabling triggers in, 6
editing CREATE SEQUENCE statement in, 6

INSTEAD OF trigger, 1
example, 5

instrumentation package, 18
integrity constraint

See constraint
intersecting tables, 18
invalidated trigger, 8
iterative data processing, 14
IW date format element, 3

J
JDBC (Oracle Java Database Connectivity), 6
joining tables, 18

K
key-value pair

See associative array

L
L numeric format element, 20
language support, 1
latch, 8
length semantics, 5
linguistic sorting and string searching, 4
loading data

See INSERT statement
local constant, 15
local subprogram, 1

in anonymous block, 1
in another subprogram, 1
in package, 11

local variable, 15
locale, 10
locale-dependent SQL function, 9
logical table

See view
long date (DL) format, 14
loop statement, 21

basic LOOP, 27
exiting early, 27
FOR LOOP, 24
populating associative array with, 43
WHILE LOOP, 25

M
method, 40
Microsoft .NET Framework, 8
Microsoft Visual Studio, 8
monetary format, 4
multiline comment in PL/SQL code, 4
multilingual applications, 1

N
naming convention

for sequences, 22
in sample application, 3

national character set, 5
National Language Support (NLS), 1
National Language Support (NLS) parameters

See NLS parameters
native language support, 1
NCHAR literal replacement, 28
nested subprogram

See local subprogram
nested table, 40
NEW pseudorecord, 3
NEXT collection method, 45
NEXTVAL pseudocolumn, 22
NLS (National Language Support), 1
NLS environment variables, 7
NLS parameters, 1

of locale-dependent SQL functions, 9
values of

changing, 7
initial, 6
viewing, 7

what they are, 1
NLS_CALENDAR parameter, 18
NLS_COMP parameter, 25
NLS_CURRENCY parameter, 20
NLS_DATE_FORMAT parameter, 14
NLS_DATE_LANGUAGE parameter, 16
NLS_DUAL_CURRENCY parameter, 23
NLS_ISO_CURRENCY parameter, 21
NLS_LANG parameter, 10
NLS_LANGUAGE parameter, 11
NLS_LENGTH_SEMANTICS parameter, 26
NLS_NUMERIC_CHARACTERS parameter, 19
NLS_SORT parameter, 23
NLS_TERRITORY parameter, 12
NLS_TIMESTAMP_FORMAT parameter, 17
nonblocking reads and writes, 9
nonprocedural language, 4
Not Null constraint, 5

adding
with ALTER TABLE statement, 6
with Edit Table tool, 6

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-5 of Index-9

numeric format
elements

C, 21
G, 19
L, 20

in different countries, 4
numeric function in query, 20
NVL function, 27
NVL2 function, 27

O
objects

See schema object
OCCI (Oracle C++ Call Interface), 7
OCI (Oracle Call Interface), 6
ODBC (Open Database Connectivity), 7
ODP.NET, 8
ODT (Oracle Developer Tools for Visual Studio), 8
OLD pseudorecord, 3
Open Database Connectivity (ODBC), 7
OPEN FOR statement, 4
OR REPLACE clause in DDL statement, 1
Oracle Application Express, 6
Oracle C++ Call Interface (OCCI), 7
Oracle Call Interface (OCI), 6
Oracle Deployment Wizard for .NET, 8
Oracle Developer Tools for Visual Studio, 8
Oracle Java Database Connectivity (JDBC), 6
Oracle Provider for OLE DB (OraOLEDB), 9
Oracle Providers for ASP.NET, 8
OraOLEDB (Oracle Provider for OLE DB), 9
ORDER BY clause of SELECT statement, 16

P
package, 1

dropping, 14
in sample application

admin_pkg, 24
employees_pkg, 16

instrumentation, 18
reasons to use, 1
structure of, 11

package body, 11
changing, 15
creating, 13

package specification, 11
changing, 12
creating, 11

package subprogram, 1
parameter

See subprogram parameter
parse, 1
PHP (Hypertext Preprocessor), 6

PL/SQL block
anonymous, 1
parts of, 5

PL/SQL data type, 3
PL/SQL identifier, 2
PL/SQL language, 5

scalability and, 4
PL/SQL table

See associative array
PL/SQL unit, 5
PLS_INTEGER data type, 3
precompiler

Pro*C/C++, 7
Pro*COBOL, 8

predefined exception, 46
handling, 48

Primary Key constraint, 5
adding

with Add Primary Key tool, 6
with ALTER TABLE statement, 6

primary script
See installation script

private SQL area, 32
privileges

for schemas of sample application, 5
for users of sample application

on admin_pkg, 24
on employees_pkg, 23, 28
on schema objects, 16

security and, 22
Pro*C/C++ precompiler, 7
Pro*COBOL precompiler, 8
Procedural Language/SQL (PL/SQL) language, 5
procedure, 2, 1

structure of, 4
See also subprogram

production environment, 1
program flow control, 21
programming practices, recommended, 18
pseudorecord, 3

Q
qualifying column names, 18
query

function in, 19
grouping results by column, 25
improving readability of, 18
operator in, 19
simple, 11
SQL expression in, 19
stored

See view, 16

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-6 of Index-9

R
RAISE statement, 46
RAISE_APPLICATION_ERROR procedure, 46
Real-World Performance, 13
recommended programming practices, 18
record, 29

creating, 29
creating type for, 30
relationship to row, 2

reducing disk input/output (I/O), 12
REF constraint, 5
REF CURSOR type, 36
REF CURSOR variable

See cursor variable
Refresh icon

DDL statements and, 1
DML statements and, 1
rolling back transactions and, 8

RENAME statement, 18
Rename tool, 18
resetting password of HR account, 4
resource exhaustion, 1
retrieving results one row at a time, 32
RETURN clause of function, 4
RETURN statement, 4
return type

of cursor variable, 36
of function, 3
of REF CURSOR type, 36

reversing transaction, 8
Rollback Changes icon, 8
ROLLBACK statement, 8
rolling back transaction, 8
row

adding
with Insert Row tool, 9
with INSERT statement, 1

relationship to record, 2
row-level trigger, 1

example, 4
pseudorecords and, 3

Run tool, 9
Runstats tool, 10
runtime error

See exception

S
sample application

deploying, 17
developing, 1

sample schema HR
See HR sample schema

SAVEPOINT statement, 9
scalable application, 1

schema, 2
in sample application

creating, 4
description of, 2
privileges for, 5

schema object, 2
creating and managing, 1
dependent

installation and, 1
trigger compilation and, 8

in sample application
creating, 7
description of, 1

schema-level subprogram
See standalone subprogram

script
See installation script

searched CASE expression, 29
searched CASE statement, 23
security

bind variables and, 1
in sample application, 2
privileges and, 22

SELECT INTO statement, 20
assigning value to variable with, 20
implicit cursor for, 32

See also assignment operator
SELECT statement

ORDER BY clause of, 16
simple, 11
WHERE clause of, 15

selecting table data
and sorting it, 16
that matches specified conditions, 15

semantics
byte, 5
character, 5
length, 5

sequence, 22
creating, 23

for sample application, 13
dropping, 24
improving data concurrency with, 8
in installation script, 6

sequential control statement, 21
serializable transaction, 7
set-based processing, 17
setting savepoints in transaction, 9
shared SQL, 9
short date (DS) format, 14
signature of subprogram, 4
simple CASE expression, 29
simple CASE statement, 23
simple trigger, 1
single-line comment in PL/SQL code, 4
soft parse, 1

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-7 of Index-9

sorting
accent-insensitive, 23
case-insensitive, 23
linguistic, 4
selected data, 16

sparse associative array, 41
populating, 43
traversing, 45

SQL cursor (implicit cursor), 32
SQL data type, 2
SQL Developer, 4

collapsing displayed information in, 9
connecting to Oracle AI Database from, 2

as user HR, 5
expanding displayed information in, 9
exploring database with, 9
initial values of NLS parameters in, 6

SQL expression in query, 19
SQL injection attack, 1
SQL language, 4
SQL national data types, 5
SQL*Plus, 3

connecting to Oracle AI Database from, 1
as user HR, 5

exploring database with, 6
standalone subprogram, 2, 1

changing, 8
creating

function, 7
procedure, 5

dropping, 10
statement-level trigger, 1

example, 3
statistical function, 25
statistics

for comparing programming techniques, 10
for database, 19

stored query
See view

stored subprogram, 1
strong REF CURSOR type, 36
strongly typed cursor variable, 36
struct type

See record
Structured Query Language (SQL), 4
subprogram, 2, 1

body of, 4
local

See local subprogram, 1
nested

See local subprogram, 1
package, 1
parameter of

See subprogram parameter, 1
parts of, 4

subprogram (continued)
schema-level

See standalone subprogram, 2
signature of, 4
standalone

See standalone subprogram, 2
stored, 1
structure of, 4

subprogram parameter, 1
collection as, 40
cursor variable as, 36
ensuring correct data type of, 16
record as, 29

subquery, 11
subscript notation, 40
subtype, 3
synonym, 24

creating, 25
dropping, 25

See also alias
SYS_REFCURSOR predefined type, 36
SYSDATE function, 22
system trigger, 1

example, 6
SYSTIMESTAMP function, 22

T
table, 1

adding constraint to
with ALTER TABLE statement, 6
with Edit Table tool, 6

adding row to
with Insert Row tool, 9
with INSERT statement, 1

alias for, 18
changing data in

in Data pane, 11
with UPDATE statement, 4

creating, 2
for sample application, 7

deleting row from
with Delete Selected Row(s) tool, 12
with DELETE statement, 5

dropping, 15
ensuring data integrity in, 4
index on

See index, 12
logical

See view, 16
selecting data from

and sorting it, 16
that matches specified conditions, 15

selecting specific columns of, 13
viewing properties and data of

with SQL Developer, 10

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-8 of Index-9

table (continued)
viewing properties and data of (continued)
with SQL*Plus, 7

virtual
See view, 16

territory support, 2
test environment, 1
time format, 2
timing point of trigger, 1
transaction, 5

committing
explicitly, 6
implicitly, 6

ending
by committing, 6
by rolling back, 8

rolling back, 8
serializable, 7
setting savepoints in, 9
visibility of, 6

transaction control statement, 5
trigger, 1

AFTER, 1
statement-level example, 3
system example, 6

BEFORE, 1
row-level example, 4
system example, 6

changing, 7
compiling, 8
compound, 1
creating, 2

for sample application, 10
disabled, 1
disabling, 7

in installation script, 6
dropping, 9
enabled, 1
enabling, 7

in installation script, 6
INSTEAD OF, 1

example, 5
invalidated, 8
on view, 5
recompiling, 8
row-level, 1

example, 4
pseudorecords and, 3

simple, 1
statement-level, 1

example, 3
system, 1

example, 6
timing point of, 1

U
undoing transaction, 8
Unicode, 5

data types for, 5
string literals in, 28

Unique constraint, 5
adding with Add Unique tool, 6

unlocking HR account, 4
unscalable application, 1
UPDATE statement, 4
UPDATING conditional predicate, 3
user-defined data type, 2
user-defined exception, 46
UTL_FILE package, 18

V
validity of installation, 18
variable, 15

assigning value to
with assignment operator, 19
with SELECT INTO statement, 20

composite
collection, 40
record, 29

cursor
See cursor variable, 36

declaring, 15
ensuring correct data type of, 16
in package body, 15
in package specification, 15
local, 15

variable array (varray), 40
view, 16

changing name of, 18
changing query in, 17
creating, 16

for sample application, 9
dropping, 18
trigger on, 5

viewing table properties and data
with SQL Developer, 10
with SQL*Plus, 7

virtual table
See view

visibility of transaction, 6
Visual Studio, 8

W
warehousing system, 1
weak REF CURSOR type, 36
WHEN OTHERS exception handler, 46
WHERE clause of SELECT statement, 15
WHILE LOOP statement, 25

Index

Get Started with Database Development
G43103-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-9 of Index-9

	Contents
	List of Tables
	About This Content
	1 Introduction to Get Started with Oracle AI Database Development
	About This Document
	About Oracle AI Database
	About Schema Objects
	About Oracle AI Database Access
	About SQL*Plus
	About SQL Developer
	About Structured Query Language (SQL)
	About Procedural Language/SQL (PL/SQL)
	About Other Client Programs, Languages, and Development Tools
	Oracle Application Express
	Oracle Java Database Connectivity (JDBC)
	Hypertext Preprocessor (PHP)
	Oracle Call Interface (OCI)
	Oracle C++ Call Interface (OCCI)
	Open Database Connectivity (ODBC)
	Pro*C/C++ Precompiler
	Pro*COBOL Precompiler
	Microsoft .NET Framework
	Oracle Provider for OLE DB (OraOLEDB)

	About Sample Schema HR

	2 Connecting to Oracle AI Database and Exploring It
	Connecting to Oracle AI Database from SQL*Plus
	Connecting to Oracle AI Database from SQL Developer
	Connecting to Oracle AI Database as User HR
	Unlocking the HR Account
	Connecting to Oracle AI Database as User HR from SQL*Plus
	Connecting to Oracle AI Database as User HR from SQL Developer

	Exploring Oracle AI Database with SQL*Plus
	Viewing HR Schema Objects with SQL*Plus
	Viewing EMPLOYEES Table Properties and Data with SQL*Plus

	Exploring Oracle AI Database with SQL Developer
	Tutorial: Viewing HR Schema Objects with SQL Developer
	Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer

	Selecting Table Data
	About Queries
	Running Queries in SQL Developer
	Tutorial: Selecting All Columns of a Table
	Tutorial: Selecting Specific Columns of a Table
	Displaying Selected Columns Under New Headings
	Selecting Data that Satisfies Specified Conditions
	Sorting Selected Data
	Selecting Data from Multiple Tables
	Using Operators and Functions in Queries
	Using Arithmetic Operators in Queries
	Using Numeric Functions in Queries
	Using the Concatenation Operator in Queries
	Using Character Functions in Queries
	Using Datetime Functions in Queries
	Using Conversion Functions in Queries
	Using Aggregate Functions in Queries
	Using NULL-Related Functions in Queries
	Using CASE Expressions in Queries
	Using the DECODE Function in Queries

	3 About DML Statements and Transactions
	About Data Manipulation Language (DML) Statements
	About the INSERT Statement
	About the UPDATE Statement
	About the DELETE Statement

	About Transaction Control Statements
	Committing Transactions
	Rolling Back Transactions
	Setting Savepoints in Transactions

	4 Creating and Managing Schema Objects
	About Data Definition Language (DDL) Statements
	Creating and Managing Tables
	About SQL Data Types
	Creating Tables
	Tutorial: Creating a Table with the Create Table Tool
	Creating Tables with the CREATE TABLE Statement

	Ensuring Data Integrity in Tables
	About Constraints
	Tutorial: Adding Constraints to Existing Tables

	Tutorial: Adding Rows to Tables with the Insert Row Tool
	Tutorial: Changing Data in Tables in the Data Pane
	Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool
	Managing Indexes
	Tutorial: Adding an Index with the Create Index Tool
	Tutorial: Changing an Index with the Edit Index Tool
	Tutorial: Dropping an Index

	Dropping Tables

	Creating and Managing Views
	Creating Views
	Tutorial: Creating a View with the Create View Tool
	Creating Views with the CREATE VIEW Statement

	Changing Queries in Views
	Tutorial: Changing View Names with the Rename Tool
	Dropping a View

	Creating and Managing Data Use Case Domains
	Creating Use Case Domains
	Dropping Use Case Domains

	Creating and Managing Schema Annotations
	Creating Annotations
	Listing Annotations
	Modifying Annotations

	Creating and Managing Sequences
	Tutorial: Creating a Sequence
	Dropping Sequences

	Creating and Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	5 Developing Stored Subprograms and Packages
	About Stored Subprograms
	About Packages
	About PL/SQL Identifiers
	About PL/SQL Data Types
	Creating and Managing Standalone Subprograms
	About Subprogram Structure
	Tutorial: Creating a Standalone Procedure
	Tutorial: Creating a Standalone Function
	Changing Standalone Subprograms
	Tutorial: Testing a Standalone Function
	Dropping Standalone Subprograms

	Creating and Managing Packages
	About Package Structure
	Tutorial: Creating a Package Specification
	Tutorial: Changing a Package Specification
	Tutorial: Creating a Package Body
	Dropping a Package

	Declaring and Assigning Values to Variables and Constants
	Tutorial: Declaring Variables and Constants in a Subprogram
	Ensuring that Variables, Constants, and Parameters Have Correct Data Types
	Tutorial: Changing Declarations to Use the %TYPE Attribute
	Assigning Values to Variables
	Assigning Values to Variables with the Assignment Operator
	Assigning Values to Variables with the SELECT INTO Statement

	Controlling Program Flow
	About Control Statements
	Using the IF Statement
	Using the CASE Statement
	Using the FOR LOOP Statement
	Using the WHILE LOOP Statement
	Using the Basic LOOP and EXIT WHEN Statements

	Using Records and Cursors
	About Records
	Tutorial: Declaring a RECORD Type
	Tutorial: Creating and Invoking a Subprogram with a Record Parameter
	About Cursors
	Using a Declared Cursor to Retrieve Result Set Rows One at a Time
	Tutorial: Using a Declared Cursor to Retrieve Result Set Rows One at a Time
	About Cursor Variables
	Using a Cursor Variable to Retrieve Result Set Rows One at a Time
	Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time

	Using Associative Arrays
	About Collections
	About Associative Arrays
	Declaring Associative Arrays
	Populating Associative Arrays
	Traversing Dense Associative Arrays
	Traversing Sparse Associative Arrays

	Handling Exceptions (Runtime Errors)
	About Exceptions and Exception Handlers
	When to Use Exception Handlers
	Handling Predefined Exceptions
	Declaring and Handling User-Defined Exceptions

	6 Using Triggers
	About Triggers
	Creating Triggers
	About OLD and NEW Pseudorecords
	Tutorial: Creating a Trigger that Logs Table Changes
	Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is Inserted
	Creating an INSTEAD OF Trigger
	Tutorial: Creating Triggers that Log LOGON and LOGOFF Events

	Changing Triggers
	Disabling and Enabling Triggers
	Disabling or Enabling a Single Trigger
	Disabling or Enabling All Triggers on a Single Table

	About Trigger Compilation and Dependencies
	Dropping Triggers

	7 Working in a Global Environment
	About Globalization Support Features
	About Language Support
	About Territory Support
	About Date and Time Formats
	About Calendar Formats
	About Numeric and Monetary Formats
	About Linguistic Sorting and String Searching
	About Length Semantics
	About Unicode and SQL National Character Data Types

	About Initial NLS Parameter Values
	Viewing NLS Parameter Values
	Changing NLS Parameter Values
	Changing NLS Parameter Values for All SQL Developer Connections
	Changing NLS Parameter Values for the Current SQL Function Invocation

	About Individual NLS Parameters
	About Locale and the NLS_LANG Parameter
	About the NLS_LANGUAGE Parameter
	About the NLS_TERRITORY Parameter
	About the NLS_DATE_FORMAT Parameter
	About the NLS_DATE_LANGUAGE Parameter
	About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters
	About the NLS_CALENDAR Parameter
	About the NLS_NUMERIC_CHARACTERS Parameter
	About the NLS_CURRENCY Parameter
	About the NLS_ISO_CURRENCY Parameter
	About the NLS_DUAL_CURRENCY Parameter
	About the NLS_SORT Parameter
	About the NLS_COMP Parameter
	About the NLS_LENGTH_SEMANTICS Parameter

	Using Unicode in Globalized Applications
	Representing Unicode String Literals in SQL and PL/SQL
	Avoiding Data Loss During Character-Set Conversion

	8 Building Effective Applications
	Building Scalable Applications
	About Scalable Applications
	Using Bind Variables to Improve Scalability
	Using PL/SQL to Improve Scalability
	How PL/SQL Minimizes Parsing
	About the EXECUTE IMMEDIATE Statement
	About OPEN FOR Statements
	About the DBMS_SQL Package
	About Bulk SQL

	About Concurrency and Scalability
	About Sequences and Concurrency
	About Latches and Concurrency
	About Nonblocking Reads and Writes and Concurrency
	About Shared SQL and Concurrency

	Limiting the Number of Concurrent Sessions
	Comparing Programming Techniques with Runstats
	About Runstats
	Setting Up Runstats
	Using Runstats

	Real-World Performance and Data Processing Techniques
	About Iterative Data Processing
	About Set-Based Processing

	Recommended Programming Practices
	Use Instrumentation Packages
	Statistics Gathering and Application Tracing
	Use Existing Functionality
	Cover Database Tables with Editioning Views

	Recommended Security Practices

	9 Developing a Simple Oracle AI Database Application
	About the Application
	Purpose of the Application
	Structure of the Application
	Schema Objects of the Application
	Schemas for the Application

	Naming Conventions in the Application

	Creating the Schemas for the Application
	Granting Privileges to the Schemas
	Granting Privileges to the app_data Schema
	Granting Privileges to the app_code Schema
	Granting Privileges to the app_admin Schema
	Granting Privileges to the app_user and app_admin_user Schemas

	Creating the Schema Objects and Loading the Data
	Creating the Tables
	Creating the Editioning Views
	Creating the Triggers
	Creating the Trigger to Enforce the First Business Rule
	Creating the Trigger to Enforce the Second Business Rule

	Creating the Sequences
	Loading the Data
	Adding the Foreign Key Constraint
	Granting Privileges on the Schema Objects to Users

	Creating the employees_pkg Package
	Creating the Package Specification for employees_pkg
	Creating the Package Body for employees_pkg
	Tutorial: Showing How the employees_pkg Subprograms Work
	Granting the EXECUTE Privilege to app_user and app_admin_user
	Tutorial: Invoking get_job_history as app_user or app_admin_user

	Creating the admin_pkg Package
	Creating the Package Specification for admin_pkg
	Creating the Package Body for admin_pkg
	Tutorial: Showing How the admin_pkg Subprograms Work
	Granting the EXECUTE Privilege to app_admin_user
	Tutorial: Invoking add_department as app_admin_user

	10 Deploying an Oracle AI Database Application
	About Development and Deployment Environments
	About Installation Scripts
	About DDL Statements and Schema Object Dependencies
	About INSERT Statements and Constraints

	Creating Installation Scripts
	Creating Installation Scripts with the Cart
	Creating an Installation Script with the Database Export Wizard
	Editing Installation Scripts that Create Sequences
	Editing Installation Scripts that Create Triggers
	Creating Installation Scripts for the Sample Application
	Creating Installation Script schemas.sql
	Creating Installation Script objects.sql
	Creating Installation Script employees.sql
	Creating Installation Script admin.sql
	Creating Primary Installation Script create_app.sql

	Deploying the Sample Application
	Checking the Validity of an Installation
	Archiving the Installation Scripts

	Index

