
Oracle® AI Database
Oracle Globally Distributed AI Database

26ai
F56768-01
October 2025



Oracle AI Database Oracle Globally Distributed AI Database, 26ai

F56768-01

Copyright © 2018, 2025, Oracle and/or its affiliates.

Primary Author: Virginia Beecher

Contributors: Sravya Balagala, Steve Ball, Nourdine Benadjaoud, Sebastian Binek, Prasad Budithi, Pankaj
Chandiramani, David Colello, Richard Delval , Mark Dilman, Shailesh Dwivedi, Shahab Hamid, Prakash Jashnani, Nitin
Karkhanis, Aman Kumar, Rupesh Kumar, Rennie Sreekumar Ranjit Kumar, Lin Lu, Darshan Maniyani, Vikas Mehta,
Sathis Muniyasamy , Leo Novak, Kehinde Otubamowo, Dinesh Putchala , Sachin Rathod, Sampanna Salunke, Vijaya
Sarode, Abhishek Srivastava, Jean-Francois Verrier, Lik Wong, Zaixian Xie, Jean Zeng

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Changes in Oracle Globally Distributed Database for Oracle Database
23ai

New Features i

Deprecated Features v

Desupported Features v

1   Oracle Globally Distributed Database Overview

What is a Distributed Database 1

About Oracle Globally Distributed Database 1

Oracle Globally Distributed Database as Distributed Partitioning 2

Benefits of Oracle Globally Distributed Database 3

Example Applications using Oracle Globally Distributed Database 4

Flexible Deployment Models 5

Data Replication in Oracle Globally Distributed Database 5

Data Distribution Methods 6

Client Request Routing 7

Query Processing 7

High Speed Data Ingest 7

Deployment Automation 8

Data Migration 8

Lifecycle Management 8

Federated Distributed Database 9

Where To Go From Here 9

2   Oracle Globally Distributed Database Architecture and Concepts

Architecture and Components 1

Distributed Database and Shards 2

Shard Catalog 2

Shard Director 3

Global Service 3

Management Interfaces for Oracle Globally Distributed Database 3

Schema Objects 4

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of xii



Partitions, Tablespaces, and Chunks 4

Tablespace Sets 5

Sharded Tables 6

Sharded Table Family 7

How a Table Family Is Sharded 7

Duplicated Tables 9

Non-Table Objects Created on All Shards 10

Data Distribution Methods 11

System-Managed Data Distribution 11

User-Defined Data Distribution 14

Directory-Based Data Distribution 16

Directory-Based Data Distribution Use Cases 16

Directory-Based Data Distribution Concepts and Architecture 17

Creating Sharded Tables in a Directory-Based Distributed Database 18

Composite Data Distribution 18

Using Subpartitions with a Distributed Database 21

Client Application Request Routing 23

Query Processing and the Query Coordinator 24

Data Replication 25

3   Oracle Globally Distributed Database Deployment

Introduction to Distributed Database Deployment 1

Planning Your Deployment 2

Plan the Configuration 3

Provision and Configure Hosts and Operating Systems 3

Install the Oracle Database Software 5

Install the Shard Director Software 6

Create the Shard Catalog Database 6

Create the Shard Databases 10

Validate the Shard Database 15

Configure the Distributed Database Topology 16

Create the Shard Catalog 17

Add and Start Shard Directors 19

Add Shardspaces If Needed 19

Add Shardgroups If Needed 20

Verify the Distributed Database Topology 20

Add the Shard CDBs 21

Add the Shard PDBs 22

Add Host Metadata 23

Check Free DB_FILES 23

Deploy the Configuration 24

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of xii



Create and Start Global Database Services 25

Verify Shard Status 26

Creating a Shard Catalog Standby 27

Example Distributed Database Deployment 28

Example Oracle Globally Distributed Database Topology 29

Deploy the Example Distributed Database 31

4   Oracle Globally Distributed Database Schema Design

Schema Design Considerations 1

Sharding Keys 2

Choosing Sharding Keys 2

Primary Key and Foreign Key Constraints 5

Enabling Automatic Data Movement on Sharding Key Update 6

Creating Schema Objects 7

Create an All-Shards User 7

Creating a Sharded Table Family 8

Designing Schemas With Multiple Table Families 11

Creating Sharded Tables 12

Tablespace Set Sizing 13

Sharded Tables for System-Managed Data Distribution 13

Sharded Tables for User-Defined Data Distribution 14

Sharded Tables for Composite Data Distribution 15

Sharded Tables for Directory-Based Data Distribution 16

Creating Duplicated Tables 16

Updating Duplicated Tables and Synchronizing Their Contents 17

Setting the Duplicated Table Global Refresh Rate 18

Customizing Duplicated Table Refresh Rates 19

Refreshing Duplicated Tables On Demand 19

Duplicated Table Support and Limitations 20

Creating Indexes on Sharded Tables 21

Oracle AI Vector Search in a Distributed Database 22

Vectors in Distributed Database Tables 23

Vector Indexes in a Globally Distributed Database 24

Modifying a Distributed Database Schema 25

DDL Processing in a Distributed Database 26

Creating Objects Locally and Globally 26

Monitor DDL Processing and Verify Object Creation 27

DDL Syntax Extensions for Oracle Globally Distributed Database 31

CREATE TABLESPACE SET 31

ALTER TABLESPACE SET 32

DROP TABLESPACE SET and PURGE TABLESPACE SET 32

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of xii



CREATE TABLE 32

ALTER TABLE 34

ALTER SESSION 35

Running PL/SQL Procedures in a Distributed Database 35

Generating Unique Sequence Numbers Across Shards 36

High Speed Data Ingest with SQL*Loader 38

Schema Creation Examples 39

Schema for System-Managed Data Distribution 39

Schema for User-Defined Data Distribution 41

Schema for Composite Data Distribution 44

DDL Failure and Recovery Examples 47

5   Shard-Level Replication with Oracle Data Guard

Using Oracle Data Guard with a Distributed Database 1

6   Raft Replication Configuration and Management

Using Raft Replication in Oracle Globally Distributed Database 1

Enabling Raft Replication 8

Specifying Replication Unit Attributes 8

Raft Replication Operations and Settings 8

Specifying Replication Unit Attributes 9

Ensuring Replicas Are Not Placed in the Same Rack 9

Getting Runtime Information for Replication Units 9

Scaling with Raft Replication 10

Adding Shards 10

Removing Shards 10

Moving Replication Unit Replicas 11

Changing the Replication Unit Leader 12

Copying Replication Units 12

Moving A Chunk to Another Replication Unit 13

Splitting Chunks in Raft Replication 13

Getting the Replication Type 14

Starting and Stopping Replication Units 14

Synchronizing Replication Unit Members 15

Enable or Disable Reads from Follower Replication Units 15

Viewing Parameter Settings 16

Setting Parameters with GDSCTL 16

Tuning Flow Control to Mitigate Follower Lag 16

Setting Transaction Consensus Timeout 18

Dynamic Performance Views for Raft Replication 18

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of xii



Raft Replication Restrictions 19

7   Deploying and Managing a Directory-Based Oracle Globally Distributed
Database

Directory-Based Distributed Database Roadmap 1

Creating a Shard Catalog for a Directory-Based Distributed Database 2

Creating Tables Sharded by Directory 2

Managing Keys in a Directory-Based Distributed Database 4

DML Support on Tables Sharded by Directory 5

Adding a New Tablespace and Chunks (Partition) in a Shardspace 5

Chunk Management in a Directory-Based Distributed Database 5

Splitting Partitions (Chunks) 6

Sharding Key Directory Public View 6

8   Query and DML Processing

How Database Requests are Routed to the Shards 1

Routing Queries and DMLs Directly to Shards 1

Routing Queries and DMLs by Proxy 2

Connecting to the Query Coordinator 3

Query Coordinator Operation 3

Query Processing for Single-Shard Queries 4

Query Processing for Multi-Shard Queries 5

Specifying Consistency Levels in a Multi-Shard Query 6

Multi-Shard Query Coordinator Availability and Scalability 6

Pushing PL/SQL Function Queries to the Shards 7

Gathering Optimizer Statistics on Sharded Tables 7

Supported Query Constructs and Example Query Shapes 9

Queries on Sharded Tables Only 10

Queries Involving Both Sharded and Duplicated Tables 10

Supported Aggregate Functions 12

Queries with User-Defined Types 12

Execution Plans for Proxy Routing 13

Supported DMLs and Examples 15

Simple DMLs Where Only the Target Table is Referenced 15

DMLs Referencing Other Tables 16

Example Merge Statements 17

Limitations in Multi-Shard DML Support 17

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of xii



9   Oracle Globally Distributed Database Administration

Managing the Oracle Globally Distributed Database Stack 1

Starting Up the Stack 1

Shutting Down the Stack 2

Oracle Globally Distributed Database Users and Roles 2

Overview of Users and Roles 2

Oracle Globally Distributed Database Roles 2

About the GSMUSER Account 3

About the GSMROOTUSER Account 3

Backing Up and Recovering a Distributed Database 4

About Distributed Database Backup and Recovery 4

Backup and Restoration Terminology 4

Automated and On-Demand Backups 4

Supported Backup Destinations 5

Limitations 5

Prerequisites to Configuring Centralized Backup and Restore 5

Configuring Automated Backups 7

Specifying Multiple Recovery Catalogs 10

Backup Set Encryption 11

Using Oracle Object Storage as a Backup Destination 13

Using Recovery Appliance as a Backup Destination 14

Using Amazon S3 as a Backup Destination 19

Managing Backup and Recovery 20

Enabling and Disabling Automated Backups 20

Backup Job Operation 21

Monitoring Backup Status 21

Viewing an Existing Backup Configuration 22

Listing Backups 23

Viewing Backup Job Status 24

Validating Backups 26

Deleting Backups 26

Creating and Listing Global Restore Points 27

Restoring Shards From Backup 28

Restoring the Shard Catalog from Backup 29

Removing Backup Configuration from a Shard 29

Running On-Demand Backups 30

Running RMAN Commands from GDSCTL 31

Error Handling for Automated Backup Operations 32

Propagation of Parameter Settings Across Shards 32

Patching and Upgrading Oracle Globally Distributed Database 33

Patching Oracle Globally Distributed Database 33

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of xii



Upgrading Oracle Globally Distributed Database Components 34

Performing a Rolling Upgrade 35

Downgrading an Oracle Globally Distributed Database 35

Managing Oracle Globally Distributed Database with Enterprise Manager Cloud Control 36

Prerequisite: Enable Oracle Globally Distributed Database Metrics 36

Prerequisite: Discover the Oracle Globally Distributed Database Topology 37

Oracle Globally Distributed Database Management with Oracle Enterprise Manager
Cloud Control 38

Monitoring an Oracle Globally Distributed Database 39

Querying System Objects Across Shards 39

Monitoring an Oracle Globally Distributed Database with Enterprise Manager Cloud
Control 40

Globally Distributed Database Home Page 41

Data Distribution and Performance Page 43

Monitoring Oracle Globally Distributed Database with GDSCTL 47

Shard Management 48

About Adding Shards 48

Work Flow for Adding Shards 48

Removing a Shard From the Pool 49

Replacing a Shard 49

Converting a Physical Standby to a Snapshot Standby 52

Migrating a Non-PDB Shard to a PDB 52

Managing Shards with Oracle Enterprise Manager Cloud Control 53

Validating a Shard 55

Adding Primary Shards 55

Adding Standby Shards 56

Deploying Shards 57

Editing a Shard 57

Removing a Shard 58

Chunk Management 58

Resharding and Hot Spot Elimination 58

Moving Chunks 60

Updating an In-Process Chunk Move Operation 61

Splitting Chunks 62

Splitting Chunks into Shardspaces Based on Super Key 62

Managing Chunks with Oracle Enterprise Manager Cloud Control 64

Moving Chunks 64

Splitting Chunks 65

Shard Director Management 65

Creating a Shard Director 65

Editing a Shard Director Configuration 66

Removing a Shard Director 66

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of xii



Region Management 67

Creating a Region 67

Editing a Region Configuration 67

Removing a Region 68

Shardspace Management 68

Adding a Shardspace to a Composite Distributed Database 68

Shardspace Management 69

Creating a Shardspace 70

Shardgroup Management 70

Creating a Shardgroup 70

Services Management 71

Creating a Service 71

10  
 

Developing Applications for Oracle Globally Distributed Database

Direct Routing to a Shard 1

APIs Supporting Direct Routing 2

Oracle JDBC APIs 2

Oracle Call Interface 3

Oracle Universal Connection Pool APIs 4

Oracle Data Provider for .NET APIs 7

JDBC Sharding Data Source 8

11  
 

Security in an Oracle Globally Distributed Database Environment

Using TCPS Protocol and Transport Layer Security 1

Using Wallets 1

Using Application Contexts During Cross-Shard Operations 3

Behavior Differences 4

Using Transparent Data Encryption 5

Creating a Single Encryption Key on All Shards 5

Oracle Database Vault 7

Failed Login Attempts Only Counted Per Shard 7

12  
 

Migrating to an Oracle Globally Distributed Database

Migration with Oracle Data Pump 1

Schema Migration 1

Migrating the Sample Schema 3

Migrating Data to a Distributed Database 5

Loading the Sample Schema Data 7

Migrating Data Without a Sharding Key 10

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of xii



Using External Tables to Load Data into a Distributed Database 11

Loading Data into Duplicated Tables 11

Loading Data into Sharded Tables 13

Oracle GoldenGate Microservices Migration 14

Prerequisites 14

Migrating Data from a Non-Distributed Database to a Distributed Database 15

Creating a Testing Environment 22

13  
 

Using Oracle Globally Distributed Database in Oracle Cloud Infrastructure

Oracle Cloud Infrastructure Services 1

Deploy an Oracle Globally Distributed Database on Kubernetes 1

Deploy an Oracle Globally Distributed Database with Terraform 2

Deploy an Oracle Globally Distributed Database with Docker 2

14  
 

Using the Sharding Advisor

About Sharding Advisor 1

Run Sharding Advisor 2

Run Sharding Advisor on a Non-Production System 3

Review Sharding Advisor Output 4

Choose a Sharding Advisor Recommended Configuration 5

Sharding Advisor Usage and Options 5

Sharding Advisor Output Tables 7

SHARDINGADVISOR_CONFIGURATIONS Table 7

SHARDINGADVISOR_CONFIGDETAILS Table 8

SHARDINGADVISOR_QUERYTYPES Table 8

Sharding Advisor Output Review SQL Examples 9

Sharding Advisor Security 10

15  
 

JSON Document Collections in a Distributed Database

Overview of Sharding JSON Documents 1

Preparing the Environment 2

Creating an All-Shards User with SODA Privileges 2

Choosing a Sharding Key 3

Using SODA ID as the Sharding Key 4

Creating a Sharded Table for the JSON Collection 5

Creating a Sharded Table: System-Managed 5

Creating a Sharded Table: User-Defined 6

Creating a Mapped SODA Collection on the Sharded Table 6

Code Samples 7

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of xii



Java Code Sample 7

Python Code Sample 11

Using a JSON Field as a Sharding Key 13

Creating a Sharded Table for the JSON Collection 13

Creating a Sharded Table: System-Managed 14

Creating a Sharded Table: User-Defined 14

Creating a Mapped SODA Collection on the Sharded Table 15

Creating a Trigger to Populate the Sharding Key 16

Code Samples 17

Java Code Sample 17

Python Code Sample 19

Additional Information About Sharding with SODA 21

Performance Tuning 21

Scaling Out Shards 22

16  
 

Achieving Data Sovereignty with Oracle Globally Distributed Database

Overview of Data Sovereignty 1

Benefits of Implementing Data Sovereignty with Oracle Globally Distributed Database 2

Implementing Data Sovereignty with Oracle Globally Distributed Database 2

Data Sovereignty Use Case 4

Overview of the Data Sovereignty Solution 4

Deployment Topology for Data Sovereignty 6

Configuring the Data Sovereignty Use Case 7

Configuring VCN Networks in All Three OCI Regions 7

Configuring Remote VCN Peering Between All Three Regions 7

Configuring Private DNS for Naming Resolution Between the Regions 8

Installing a Global Service Manager in Each Region 9

Collecting TNS Entries for the Shard Catalog and Shards 10

Configuring the Shard Catalog 10

Configuring the Shard Databases 11

Creating the Oracle Globally Distributed Database 12

Implementing a Session-Based Application Context Policy 13

17  
 

Creating a Federated Distributed Database

Overview of Federated Distributed Database 1

About Federated Distributed Database 1

Federated Distributed Database Schema Requirements 1

Sharded and Duplicated Tables in a Federated Distributed Database Configuration 2

Limitations to Federated Distributed Databases 2

Federated Distributed Database Security 2

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page x of xii



Configuring a Federated Distributed Database 2

Create a Federated Distributed Database Configuration 3

Retrieve, Inspect, and Apply the DDLs 4

Convert Tables to Duplicated Tables 5

Prepare the Shards For Multi-Shard Queries 5

Federated Distributed Database Reference 6

SYNC SCHEMA Operations 6

DDL Synchronization 6

Import Users 6

Grant User Roles and Priviledges 7

Import Object Definitions 7

Schema Object Comparison 7

Troubleshooting a Federated Distributed Database 9

18  
 

Creating Affinity Between Middle-Tier and Shards

19  
 

Troubleshooting

Troubleshooting Tips 1

Pre-Deployment Network Validation 1

Checking the Data Distribution Method 1

Checking the Replication Type 2

Checking the Oracle Data Guard Protection Mode 3

Checking Which Shards Are Mapped to a Key 3

Checking Shard Operation Mode (Read-Only or Read-Write) 4

Checking DDL Text 5

Checking Chunk Migration Status 5

Checking Table Type (Sharded or Duplicated) 6

Checking User Type (Local or ALL_SHARD) 7

Identifying Tables Created as Sharded Tablespaces 7

Checking if Shard DDL is Enabled or Disabled 7

Filtering Data by Sharding Key 8

Gathering Optimizer Statistics on Sharded Tables 9

Generate HTML SQL Monitor Output for a Query Running from the Shard Catalog 11

Tracing and Debug Information 11

Enabling Tracing 11

Where to Find Alert Logs and Trace Files 12

Common Error Patterns and Resolutions 13

Shard Director Fails to Start 13

Tablespace Set Creation Fails 14

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xii



Issues Using DEPLOY Command 15

Issues Moving Chunks 15

Issue During Deployment of Role-Separated Environment 16

Newly Elected RU Leader Status = Errors 16

20  
 

Oracle Globally Distributed Database Reference

Using GDSCTL with Oracle Globally Distributed Database 1

GDSCTL Operation 1

Starting GDSCTL 1

Running GDSCTL Commands Interactively 1

Running GDSCTL Batch Operations 2

GDSCTL Help Text 2

GDSCTL Connections 2

GDSCTL Shard Catalog Connections 2

GDSCTL Shard Director Connections 2

GDSCTL Commands Used with Oracle Globally Distributed Database 3

SHARDED_TABLE_FAMILIES 5

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xii



Preface

Review the following topics to:

• Discover how you can use this document to learn about Oracle Globally Distributed
Database

• Get accessibility information for this document

• See a list of related documents that may help you design, develop, deploy, and manage
your Oracle Globally Distributed Database environment

• Learn about typographic conventions used in this document

Audience
This document was written with a wide variety of audiences in mind. System and application
architects can use it to evaluate Oracle Globally Distributed Database suitability for their
requirements. IT managers can scope out the work needed to implement a distributed
database for proof of concept and production deployments. Database administrators can find
information to help them deploy and maintain a distributed database. Application developers
can learn about any code changes for using Oracle Globally Distributed Database. Finally,
business analysts can use this document as a guide to figure out costing for an Oracle Globally
Distributed Database implementation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Related Documents
The following publications may be of particular interest to you:

• Oracle Database Install and Upgrade

• Oracle AI Database Administrator’s Guide

• Oracle Data Guard Concepts and Administration

• Oracle Data Guard Broker

• Oracle AI Database Global Data Services Concepts and Administration Guide

• Oracle AI Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

• Oracle Data Provider for .NET Developer's Guide

• Oracle Call Interface Developer's Guide

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/en/database/oracle/oracle-database/19/install-and-upgrade.html


Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, a value in a list of values, or terms defined in the text.

italic Italic type indicates emphasis on a particular word or phrase, or book titles.

monospace Monospace type indicates

• SQL statements, commands, and code in examples
• SQL statements, configuration parameter names, keywords, and

commands in the text
• URLs, file names, folder or directory names, and paths
• Text that appears on the screen, and text that you enter, when shown in

combination with computer output

monospace italic Monospace italic type indicates placeholder variables for which you supply the
values.

Conventions

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 2



Changes in Oracle Globally Distributed
Database for Oracle Database 23ai

The following are changes in Oracle Globally Distributed Database for Oracle Database 23ai.

New Features
Vector Data Type Support

With Globally Distributed Database support for Vector Search, tables containing vectors are
automatically distributed and replicated across a pool of Oracle databases that share no
hardware. Similarity searches are automatically conducted in parallel across shards or directed
to a specific shard if the sharding key is provided.

Globally Distributed Database AI Vector Search offers several benefits, including greater
scalability by allowing vectors to be distributed across multiple machines, improved
performance by conducting parallel vector searches across shards, and improved data
resilience because if one shard goes down, the other shards can continue to operate. It also
allows vector search to be deployed as part of a distributed database, where a single logical
database is distributed over multiple geographies.

See Oracle AI Vector Search in a Distributed Database

Chunk Move Enhancement for Composite Data Distribution

In the composite data distribution method, the data can be organized into different
shardspaces based on the value of super shard key column values. This enhancement creates
a way to split the existing data chunks as per super shard key values into new shardspaces.

In Oracle 21c, for composite distribution, the data should be arranged physically as per super
shard keys, possibly in different a shardspace once the super shard key is specified, but this
data movement had to be done manually by selecting a huge amount of data from the source
shardspace, inserting it into a temporary table, then deleting it from the source shardspace and
inserting from the temporary table into the target shardspace. This would be done over
database links (DBLINK), row by row, and would take a significant amount of time.

In Oracle Database 23ai, a bulk move of data between shardspaces is supported by running
the split partitionset command. When there is a need to re-arrange the data based on the
super shard key, you split the existing data chunks as per super shard key values into new
shardspaces, which triggers the bulk data movement. Oracle Globally Distributed Database
23ai splits the data and makes the data available for access for client connections for the
maximum possible time while the bulk data movement operation is in progress.

Benefits :

• Automates the splitting and moving data

• Keeps data online during split and move

• Allows bulk data move using transportable tablespace

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of vi



See Splitting Chunks into Shardspaces Based on Super Key for more information.

Raft Replication

Raft replication, built right into Oracle Globally Distributed Database, provides built-in
replication without requiring configuration of Oracle Data Guard. Raft replication uses logical
replication with a consensus-based commit protocol, which enables declarative replication
configuration and sub-second fail over.

Oracle Globally Distributed Database relies on replication for availability, but using Data Guard
requires you to understand, deploy, and maintain the underlying replication technologies, which
results in operational overhead, especially with hyperscale deployments.

Raft replication makes replication simple and transparent because replication is built right into
Oracle Globally Distributed Database.

See Raft Replication Configuration and Management for more information.

Directory-Based Data Distribution

Today, our customers are using three types of data distribution methods: System-managed,
User-defined , and Composite. Directory-based distribution, which is an enhanced type of user-
defined distribution method, lets you control the placement of the data on the shards.

Directory-based distribution helps you use your distributed database resources more efficiently
when there is not a large enough set of distinct key values to result in an even distribution of
data with system-managed distribution. Directory-based distribution also provides full control
over the mapping of key values to shards.

Directory-based distribution allows you to explicitly associate key value with shards, giving you
full control over the mapping of key values to shards.

See Directory-Based Data Distribution for more information.

Synchronous Duplicated Tables

This feature introduces a new kind of duplicated table that is synchronized on the shards ‘on-
commit’ on the shard catalog. The rows in a duplicated table on the shards are synchronized
with the rows in the duplicated table on the shard catalog when the active transaction
performing DMLs on the duplicated tables in the shard catalog is committed.

This features enables efficient and absolute data consistency and synchronization for
duplicated tables, across all shards at all times.

See Creating Duplicated Tables for more information.

Fine-Grained Refresh Rate Control For Duplicated Tables

This feature enables refresh rate control for individual duplicated tables, and it helps optimize
the use of resources by customization of refresh rates for individual duplicated tables. .

The new REFRESH clause in CREATE DUPLICATED TABLE and ALTER TABLE allows you to specify
a refresh interval for a duplicated table. You can set an interval in seconds, minutes, hours, or
you can set the table to only refresh on demand. For example:

CREATE DUPLICATED TABLE Products 
...
REFRESH INTERVAL 2 MINUTE;

ALTER TABLE Products MODIFY REFRESH ON DEMAND;

Changes in Oracle Globally Distributed Database for Oracle Database 23ai

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of vi



See Customizing Duplicated Table Refresh Rates for more information.

Distributed Database Coordinated Backup and Restore Enhancements

Coordinated backup and restore functionality has several major enhancements in this release:

• Enhanced error handling and diagnosis for backup jobs (see Error Handling for Automated
Backup Operations).

• Automation of shard catalog database restore. Previously the shard catalog had to be
restored manually using RMAN. In this release GDSCTL RESTORE BACKUP is enhanced to
support shard catalog restoration with the option -shard CATALOG (see Restoring the Shard
Catalog from Backup).

• Using the new GDSCTL RMAN command you can submit RMAN commands to a list of shards
for execution. RMAN statements can be submitted in the body of the command, or you can
reference an RMAN command file. (see Running RMAN Commands from GDSCTL).

• Support for using different RMAN recovery catalogs for different shards is provided by
running GDSCTL CONFIG BACKUP multiple times to specify different recovery catalogs for
specific shards and the shard catalog (see Specifying Multiple Recovery Catalogs).

• Encryption of backup sets with the new GDSCTL CONFIG BACKUP -encryption option lets
you enable or disable the encryption of backup sets and choose an encryption algorithm
(see Backup Set Encryption).

• Support for additional backup destinations:

– Oracle Object Storage - using existing GDSCTL CONFIG BACKUP options you can now
send backups to Object Storage (see Using Oracle Object Storage as a Backup
Destination).

– Zero Data Loss Recovery Appliance - GDSCTL CONFIG BACKUP is enhanced with several
new Recovery Appliance-specific parameters (-zdlra_*) to specify Recovery
Appliance as the backup destination (see Using Recovery Appliance as a Backup
Destination).

– Amazon S3 - using existing GDSCTL CONFIG BACKUP options you can now send
backups to Amazon Simple Storage Service (see Using Amazon S3 as a Backup
Destination).

Automatic Data Move on Sharding Key Update

Sometimes a sharding key value needs updating. The previous solution was to delete the data
associated with the old key value and re-insert it with a new key value. The goal of this
enhancement is to allow row movement both within a shard and between shards.

When the sharding key value on a particular row of a sharded table is updated, Now moving
the data to a new location is handled by Oracle Globally Distributed Database, whether it is in
a different partition on the same shard or on a different shard.

This feature provides you with the flexibility to update the sharding key without worrying about
the destination of the records, because this feature allows Oracle Globally Distributed
Database to take care of the row movement regardless of the row destination, which could be
on a different shard.

Benefits:

• Provides flexibility to update the sharding key value

• Allows transparent data movement between shards

See Enabling Automatic Data Movement on Sharding Key Update for more information.

Changes in Oracle Globally Distributed Database for Oracle Database 23ai

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of vi



Global Partitioned Index Support on Subpartitions

This feature allows a global partitioned index on the sharding key when the sharded table is
sub-partitioned, as in a distributed database using composite data distribution. You can create
primary key/unique indexes on sharded tables that are composite partitioned without having to
include sub-partition keys.

This feature removes the restriction on the primary key columns when the sharded table is
sub-partitioned, as in composite data distribution.

See Creating Indexes on Sharded Tables for more information and examples.

PL/SQL Function Cross-Shard Query Support

PL/SQL functions are enhanced with the keyword SHARD_ENABLE to allow PL/SQL functions to
be referenced in cross-shard queries. With the new keyword, the query optimizer takes the
initiative to push the execution of the PL/SQL function to the shards.

This feature significantly improves performance for PL/SQL functions for distributed database
environments.

See Pushing PL/SQL Function Queries to the Shards for more information.

See SHARD_ENABLE Clause in Oracle Database PL/SQL Language Reference for syntax
and usage information.

Pre-Deployment Network Validation

An option to run a series of checks while processing several GDSCTL commands during the
configuration and deployment of a distributed database verify that there is no potential
environmental issue.

This feature proactively avoids common pitfalls to reduce time taken to complete a distributed
database deployment.

See Pre-Deployment Network Validation for more information.

New Partition Set Operations for Composite Data Distribution

For distributed databases using the composite data distribution method, two new ALTER TABLE
operations enhance partition set maintenance.

Previously, partition set operations did not support specifying tablespace sets for child and
reference-partitioned tables that are affected due to add and split partition set operations. MOVE
PARTITIONSET lets you move a whole partition set from one tablespace set to another, within
the same shardspace. MODIFY PARTITIONSET lets you add values to the list of values of a given
partition set.

These new operations enhance data redistribution capability. MOVE PARTITIONSET gives you the
control to move all subpartitions of a given table to another tablespace set, within a given
shardspace. You can also specify separate tablespace sets for LOBs and subpartitions. MODIFY
PARTITIONSET extends the add list values feature of partitions to partition sets.
See ALTER TABLE in Oracle Database SQL Language Reference for more information.

Parallel Cross-Shard DML Support

The Oracle Globally Distributed Database query coordinator can run cross-shard updates,
inserts, and deletes in parallel on multiple shards. This feature improves cross-shard DML
performance by running these operations in parallel rather than serially.

Changes in Oracle Globally Distributed Database for Oracle Database 23ai

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of vi



Oracle Data Pump Adds Support for Distributed Database Metadata

Oracle Data Pump supports data migration to Oracle Globally Distributed Database with
support for sharded DDL. You can migrate distributed database objects to a target database
based on source database shard objects.

Oracle Data Pump adds support for distributed database DDL in the API
dbms_metadata.get_ddl(). A new transform parameter, INCLUDE_SHARDING_CLAUSES,
facilitates this support. If this parameter is set to true, and the underlying object contains it,
then the get_ddl() API returns distributed database DDL for create table, sequence,
tablespace, and tablespace set.

See Oracle Database Utilities topics TRANSFORM and Placing Conditions on Transforms, and
Oracle Database PL/SQL Packages and Types Reference topic SET_TRANSFORM_PARAM
and SET_REMAP_PARAM Procedures for details, examples, and reference.

Automatic Parallel Direct Path Load Using SQL*Loader

SQL*Loader enables direct data loading into the database shards for high speed data ingest.
SQL*Loader can load data faster and easier into Oracle Database with automatic parallelism
and more efficient data storage.

With this release, SQL*Loader client can automatically start a parallel direct path load for data
without dividing the data into separate files and starting multiple SQL*Loader clients. Instead of
preparing your tables manually for parallel loads and setting the PARALLEL parameter, you can
perform the same task automatically by running SQL*Loader with just one command, setting
the degree of parallelism using the DEGREE_OF_PARALLELISM parameter, and setting
DIRECT=TRUE.

See Oracle Database Utilities topics Sharded Automatic Parallel Loading Modes for
SQL*Loader and Automatic Parallel Load of Table Data with SQL*Loader for more information.

Deprecated Features
The following features are deprecated in Release 23ai, and may be desupported in a future
release:

• Deprecation of Oracle Data Provider for .NET, Unmanaged Driver

Oracle Data Provider for .NET (ODP.NET), Unmanaged Driver is deprecated in Oracle
Database 23ai, and can be desupported in a future release. Oracle recommends existing
unmanaged ODP.NET applications migrate to ODP.NET, Managed Driver.

Desupported Features
The following features are desupported in Oracle Database Release 23ai:

• Desupport of Service Attribute Value, SESSION_STATE_CONSISTENCY = STATIC

The session attribute values FAILOVER_TYPE = TRANSACTION with
SESSION_STATE_CONSISTENCY = STATIC are no longer a supported service attribute
combination.

• Desupport of Oracle GoldenGate Replication for Oracle Globally Distributed Database
High Availability

The use of Oracle GoldenGate Replication for Shard-Level High Availability in Oracle
Globally Distributed Database is desupported in Oracle Database 23ai.

Changes in Oracle Globally Distributed Database for Oracle Database 23ai

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of vi



• Desupport of Oracle Database Extensions for .NET

Oracle Database Extensions for .NET is desupported. Oracle recommends that you either
place .NET code in the middle tier, or use the External Procedures feature, or rewrite the
code using PL/SQL or Java.

Changes in Oracle Globally Distributed Database for Oracle Database 23ai

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of vi



1
Oracle Globally Distributed Database
Overview

Learn about Oracle Globally Distributed Database capabilities and benefits in this high level
conceptual discussion.

What is a Distributed Database
A distributed database is a method of partitioning data to distribute the computational and
storage workload, which helps in achieving hyperscale computing.

Hyperscale computing is a computing architecture that can scale up or down quickly to meet
increased demand on the system. This architecture innovation was originally driven by internet
giants that run distributed sites and has been adopted by large-scale cloud providers.

Companies often achieve hyperscale computing using a technology called database sharding,
in which they distribute segments of a data set—a shard—across lots of databases on lots of
different computers.

All of the shards together make up a single logical database, called a distributed database. A
distributed database uses a shared-nothing architecture in which shards share no hardware or
software.

From the perspective of the application, a distributed database looks like a single database:
the number of shards, and the distribution of data across those shards, are completely
transparent to database applications. From the perspective of a database administrator, a
distributed database consists of multiple databases that can be managed collectively.

Figure 1-1    Distribution of a Table Across Database Shards

Sharded Table in Three Databases

Server B Server CServer A

Server

Unsharded Table in 

 One Database

About Oracle Globally Distributed Database
Oracle Globally Distributed Database is a feature of Oracle Database that lets you
automatically distribute and replicate data across a pool of Oracle databases that share no
hardware or software. Oracle Globally Distributed Database provides the best features and
capabilities of mature RDBMS and NoSQL databases, as described here.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 9



• SQL language used for object creation, strict data consistency, complex joins, ACID
transaction properties, distributed transactions, relational data store, security, encryption,
robust performance optimizer, backup and recovery, and patching with Oracle Database

• Oracle innovations and enterprise-level features, including Advanced Security, Automatic
Storage Management (ASM), Advanced Compression, partitioning, high-performance
storage engine, SMP scalability, Oracle RAC, Exadata, in-memory columnar, online
redefinition, JSON document store, and so on

• Distributed database-aware Oracle Database tools, such as SQL Developer, Enterprise
Manager Cloud Control, Recovery Manager (RMAN), and Data Pump, for distributed
database application development and management

• Programmatic interfaces, such as Java Database Connectivity (JDBC), Oracle Call
Interface (OCI), Universal Connection Pool (UCP), Oracle Data Provider for .NET
(ODP.NET), and PL/SQL, including extensions for distributed database application
development

• Extreme availability with Oracle Data Guard and Oracle Active Data Guard. Other
replication options include Raft replication, which is built into Oracle Globally Distributed
Database.

• Support for multi-model data like relational, text, and JSON

• Existing life-cycle management and operational processes can be kept, leveraging in-
house and world-wide Oracle database administrator skill sets

• Enterprise-level support

• Extreme scalability and availability of NoSQL databases

Oracle Globally Distributed Database as Distributed Partitioning
A distributed database is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such a
configuration is called a shard.

From the perspective of an application, a distributed database looks like a single database; the
number of shards, and the distribution of data across those shards, are completely transparent
to the application.

Even though a distributed database looks like a single database to applications and application
developers, from the perspective of a database administrator, a distributed database consists
of a set of discrete Oracle databases, each of which is a single shard, that can be managed
collectively.

A sharded table is partitioned across all shards of the distributed database. Table partitions on
each shard are not different from partitions that could be used in an Oracle database that is not
sharded.

The following figure shows the difference between partitioning on a single logical database and
partitions distributed across multiple shards.

Chapter 1
Oracle Globally Distributed Database as Distributed Partitioning

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 9



Figure 1-2    Oracle Globally Distributed Database as Distributed Partitioning

Single Logical Database Multiple Physical Shards

1 2 3

Partitions

4 5

6 7 8 9 10

9 10

11 12

11 12 13 14 15

16 17 18 19 20

Partitions

13 14

15 16

Partitions

17 18

19 20

Partitions

1 2

3 4

Partitions

5 6

7 8

Partitions

Oracle Globally Distributed Database automatically distributes the partitions across shards
when you issue the CREATE SHARDED TABLE statement, and the distribution of partitions is
transparent to applications. The figure above shows the logical view of a sharded table and its
physical implementation.

Benefits of Oracle Globally Distributed Database
Oracle Globally Distributed Database provides linear scalability, complete fault isolation, and
global data distribution for the most demanding applications.

Key benefits of Oracle Globally Distributed Database include:

• Linear Scalability

The Oracle Globally Distributed Database shared–nothing architecture eliminates
performance bottlenecks and provides unlimited scalability. Oracle Globally Distributed
Database supports scaling up to 1000 shards.

• Extreme Availability and Fault Isolation

Single points of failure are eliminated because shards do not share resources such as
software, CPU, memory, or storage devices. The failure or slow-down of one shard does
not affect the performance or availability of other shards.

Shards are protected by Oracle MAA best practice solutions, such as Oracle Data Guard
and Oracle RAC.

An unplanned outage or planned maintenance of a shard impacts only the availability of
the data on that shard, so only the users of that small portion of the data are affected, for
example, during a failover brownout.

• Geographical Distribution of Data

Oracle Globally Distributed Database enables you to deploy a global database, where a
single logical database could be distributed over multiple geographies. This makes it
possible to satisfy data privacy regulatory requirements (Data Sovereignty) as well as
allows to store particular data close to its consumers (Data Proximity).

Chapter 1
Benefits of Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 9



Example Applications using Oracle Globally Distributed
Database

Oracle Globally Distributed Database provides benefits for a variety of use cases.

Real Time OLTP

Real time OLTP applications have a very high transaction processing throughput, a large user
population, huge amounts of data, and require strict data consistency and management at
scale. Some examples include internet-facing consumer applications, financial applications
such as mobile payments, large scale SaaS applications such as billing and medical
applications. The benefits of using Oracle Globally Distributed Database for such applications
include:

• Linear scalability of transactions per second, with response time staying constant as new
shards are added to support larger data volume

• Better application SLAs, because planned and unplanned outages on any given shard
does not impact the data stored and available on other shards

• Strict data consistency for transactional applications

• Transactions spanning multiple shards

• Support for complex joins, triggers, and stored procedures

• Simplified manageability at scale

Global Applications

Many enterprise applications are global in nature, where the same application serves
customers in multiple geographic locations. Such applications typically use a single logical
global database which is distributed across multiple geographical regions. The benefits of a
distributed database include:

• Strict enforcement of data sovereignty, where data privacy regulations require data to stay
in a certain geographic location, region, country, or even state.

• Reduction of data replication across locations

• Better application SLAs, because planned and unplanned outages in one region do not
impact other regions

Internet of Things and Data Streaming Applications

Typically such applications collect large amounts of data and stream it at a very high speed.
Oracle Globally Distributed Database has optimized data stream libraries which use Oracle
Database's direct path I/O technology to load data into the distributed database with extremely
high speed. Data load requirements for these applications can be in to 100s of millions of
records per second. Once the data is loaded directly into the database, it is available for
immediate processing with advanced query processing and analytic capabilities.

Machine Learning

Many machine learning applications require training and scoring of models in real time. Model
training and scoring for many applications using algorithms like anomaly detection, and
clustering is specific to a given entity (for example, a given user's financial transaction patterns
or specific device metrics at a certain time of the day). This kind of data can easily be sharded
by using a sharding key specific to the user or devices. Additionally, Oracle Database Machine

Chapter 1
Example Applications using Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 9



Learning algorithms can be applied directly in the database obviating the need for a separate
data pipeline and machine learning processing infrastructure.

Big Data Analytics

When you have terabytes of data, having it in a distributed database means you don't have to
warehouse data to do analytics on it. With up to 1000 shards in capacity, Oracle Globally
Distributed Database can turn a relational database into a warehouse-sized data store. With
the federated distributed database solution, multiple database installations in different locations
that run the same application can be converted into a federated distributed database so that
you can run data analytics without moving the data.

NoSQL Alternative

NoSQL solutions lack major RDBMS features, such as relational schema, SQL, complex data
types, online schema changes, multi-core scalability, security, ACID properties, CR for single-
shard operations, and so on. With Oracle Globally Distributed Database you get the nearly
limitless scaling and partitioning you had with NoSQL and all of the features and benefits of
Oracle Database.

Flexible Deployment Models
The shared-nothing architecture of Oracle Globally Distributed Database lets you keep your
data on-premises, in the cloud, or on a hybrid of cloud and on-premises systems. Because the
database shards do not share any resources, the shards can exist anywhere on a variety of
on-premises and cloud systems.

You can choose to deploy all of the shards on-premises, have them all in the cloud, or you can
split them up between cloud and on-premises systems to suit your needs.

Shards can be deployed on all database deployment models such as single instance, Exadata,
and Oracle RAC.

Data Replication in Oracle Globally Distributed Database
Oracle Globally Distributed Database relies on replication for availability. Oracle Globally
Distributed Database provides various means of replication depending on your needs.

Replication provides high availability, disaster recovery, and additional scalability for reads. A
unit of replication can be a shard, a part of a shard, or a group of shards.

Replication topology in a distributed database is declaratively specified using GDSCTL
command syntax. You can choose either Oracle Data Guard or Raft replication to replicate
your data. Oracle Globally Distributed Database automatically deploys the specified replication
topology to the procured systems, and enables data replication.

Shard-level Replication

In Oracle Globally Distributed Database a shard is a database. The availability of a shard
database is not affected by an outage or slowdown of one or more shards. Oracle Data Guard
replication can be used to provide individual shard-level high availability. Replication is
automatically configured and deployed when the distributed database is created.

Oracle Data Guard is tightly integrated with Oracle Globally Distributed Database to provide
high availability and disaster recovery with strict data consistency and zero data loss. Oracle
Data Guard replication maintains one or more synchronized copies (standbys) of a shard (the
primary) for high availability and data protection. Standbys can be deployed locally or remotely,
and when using Oracle Active Data Guard can also be open for read-only access.

Chapter 1
Flexible Deployment Models

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 9



See Shard-Level Replication with Oracle Data Guard for more information.

Optionally, you can use Oracle RAC for shard-level high availability, complemented by
replication, to maintain shard-level data availability in the event of a cluster outage. Each shard
can be deployed on an Oracle RAC cluster to give it instant protection from node failure. For
example, each shard could be a two node Oracle RAC cluster. Oracle Globally Distributed
Database automatically fails over database connections from a shard to its replica in the event
of an unplanned outage.

Raft Replication

Instead of replication at the shard level, the Raft replication feature in Oracle Globally
Distributed Database creates smaller replication units and distributes them automatically
among the shards to handle chunk assignment, chunk movement, workload distribution, and
balancing upon scaling (addition or removal of shards), including planned or unplanned shard
availability changes.

Raft replication is built into Oracle Globally Distributed Database to provide a consensus-
based, high-performance, low-overhead availability solution, with distributed replicas and fast
failover with zero data loss, while automatically maintaining the replication factor if shards fail.
With Raft replication management overhead does not increase with the number of shards. If
you are used to NoSQL databases and do not expect to know anything about how replication
works, Oracle Globally Distributed Database native replication just works.

Unlike Data Guard replication, Raft replication does not need to be reconfigured when shards
are added or removed, and replicas do not need to be actively managed.

See Raft Replication Configuration and Management for more information.

Data Distribution Methods
Because Oracle Globally Distributed Database is based on table partitioning, all of the sub-
partitioning methods provided by Oracle Database are also supported by Oracle Globally
Distributed Database. A data distribution method controls the placement of the data on the
shards. Oracle Globally Distributed Database supports system-managed, user defined,
directory-based, or composite distribution methods.

• System-managed data distribution does not require you to map data to shards. The data
is automatically distributed across shards using partitioning by consistent hash. The
partitioning algorithm uniformly and randomly distributes data across shards.

• User-defined data distribution lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons, certain data
needs to be stored on a particular shard, and the administrator needs to have full control
over moving data between shards.

• Composite data distribution allows you to use two levels of partitioning. First the data is
partitioned by range or list and then it is partitioned further by consistent hash.

In many use cases, especially for data sovereignty and data proximity requirements, the
composite method offers the best of both system-managed and user-defined methods,
giving you the automation you want and the control over data placement you need.

• Directory-based data distribution is an enhancement of the user-defined method, whereby
the location of data records associated with any sharding key is specified dynamically at
runtime based on user preferences. The key location information is stored in a directory,
which can hold a large set of key values in the hundreds of thousands.

Chapter 1
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 9



You have the freedom to move individual key values from one location to another, or make
bulk movements to scale up or down, or for data and load balancing. The location
information can include the shard database information and partition information.

For more information see Data Distribution Methods

Client Request Routing
Oracle Globally Distributed Database supports direct, key-based routing from an application to
a shard, routing by proxy with the shard catalog, and routing to middle tiers, such as
application containers, web containers, and so on, which are given affinity with shards. Oracle
Database client drivers and connection pools are distributed database-aware.

• Key-based routing. Oracle client-side drivers (JDBC, OCI, UCP, ODP.NET) can recognize
sharding keys specified in the connection string for high performance data dependent
routing. A shard routing cache in the connection layer is used to route database requests
directly to the shard where the data resides.

• Routing by proxy. Oracle Globally Distributed Database supports routing for queries that
do not specify a sharding key, giving any database application the flexibility to run SQL
statements, without specifying the shards on which the query should be processed. Proxy
routing can handle single-shard queries and multi-shard queries.

• Middle-tier routing. In addition to partitioning the data tier, you can partition the web tier
and application tier, distributing the shards of those middle tiers to service a particular set
of database shards, creating a pattern known as a swim lane. A smart router can route
client requests based on specific sharding keys to the appropriate swim lane, which in turn
establishes connections on its subset of shards.

Query Processing
No changes to query and DML statements are required to support Oracle Globally Distributed
Database. Most existing DDL statements will work the same way on a distributed database
with the same syntax and semantics as they do on a non-sharded Oracle Database.

In the same way that DDL statements can be processed on all shards in a configuration, so too
can certain Oracle-provided PL/SQL procedures.

Oracle Globally Distributed Database also has its own keywords in the SQL DDL statements,
which can only be run against a distributed database.

High Speed Data Ingest
SQL*Loader enables direct data loading into the Oracle Globally Distributed Database shards
for a high speed data ingest.

SQL*Loader is a bulk loader utility used for moving data from external files into the Oracle
database. Its syntax is similar to that of the DB2 load utility, but comes with more options.
SQL*Loader supports various load formats, selective loading, and multi-table loads.

SQL*Loader client can automatically start a parallel direct path load for data without dividing
the data into separate files and starting multiple clients.

Other benefits include:

• Streaming capability lets you receive data from a large group of clients without blocking

• Group records according to Oracle RAC shard affinity using native UCP

Chapter 1
Client Request Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 9



• Optimize CPU allocation while decoupling record processing from I/O

• Fastest insert method for the Oracle Database through Direct Path Insert, bypassing SQL
and writing directly in the database files

Deployment Automation
Oracle Globally Distributed Database deployment is highly automated with Terraform,
Kubernetes, and Ansible scripts.

The deployment scripts take a simple input file describing your desired deployment topology,
and run from a single host to deploy shards to all of the distributed database hosts. Pause,
resume, and cleanup operations are included in the scripts in case of errors.

Data Migration
The Oracle Globally Distributed Database Sharding Advisor tool helps with distributed
database schema design for migration from a non-distributed to distributed database. Oracle
Data Pump is distributed database-aware and is used to migrate data from a non-sharded
Oracle database to a sharded Oracle database.

Sharding Advisor

The Sharding Advisor is a tool provided with Oracle Globally Distributed Database which can
help you design an optimal distributed database configuration by analyzing your current
database schema and workload, and recommending topology configurations and database
schema designs. The Sharding Advisor bases recommendations on key goals such as
parallelism (distributing query processing evenly among shards), minimizing cross-shard join
operations, and minimizing duplicated data.

Oracle Data Pump

You can load data directly into the shards by running Oracle Data Pump on each shard. This
method is very fast because the entire data loading operation can complete within the period of
time needed to load the shard with the maximum subset of the entire data set.

Lifecycle Management
The Oracle Globally Distributed Database command-line interface and Oracle Enterprise
Manager help you manage your distributed database.

Using the tools provided you can:

• Provision new distributed databases with scripts

• Scale out as needed by adding more shards online and take advantage of automatic
rebalancing

• Scale in by moving data and consolidating hardware when loads are low

• Monitor performance statistics using Enterprise Manager

• Back up for disaster recovery using Cloud Backup Service, RMAN, and Zero Data Loss
Recovery Appliance

• Patches and Upgrades automated with oPatchAuto in rolling mode

Chapter 1
Deployment Automation

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 9



Federated Distributed Database
Unify multiple existing databases into one Oracle Globally Distributed Database architecture.

Global businesses might have multiple instances of same applications deployed for multiple
departments in multiple regions. A federated distributed database allows mapping of
databases of such applications in to a single federated database and provides the following
benefits.

• Queries can be seamlessly processed against a single federated database using multi-
shard query coordinator

• Removes the need to replicate data for reporting and analytics purposes

• Tolerance for differences in schema and database versions

Where To Go From Here
Planning and deploying a Oracle Globally Distributed Database configuration that best fits your
requirements can be a daunting task. The following roadmap can guide you through the
process, from initial planning to life cycle management of a distributed database.

• Learn about Oracle Globally Distributed Database components, architecture, and how a
distributed database works in Oracle Globally Distributed Database Architecture and
Concepts

• Plan your specific distributed database requirements, including both the technical and
operational aspects of your IT systems and business processes, as described in Planning
Your Deployment

• Deploy a distributed database topology configuration, as explained, with examples, in 
Oracle Globally Distributed Database Deployment

• Design a distributed database schema for balanced distribution of data and workload
across shards in Oracle Globally Distributed Database Schema Design

• Develop a high performance, efficient distributed database application using the concepts
and APIs described in Developing Applications for Oracle Globally Distributed Database

• Migrate your existing database and application to a distributed database, as explained in 
Migrating to an Oracle Globally Distributed Database

• Manage your distributed database with the procedures described in Oracle Globally
Distributed Database Administration

Chapter 1
Federated Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 9



2
Oracle Globally Distributed Database
Architecture and Concepts

The following topics guide you through the concepts and architecture for Oracle Globally
Distributed Database.

Topics:

• Architecture and Components

• Schema Objects

• Data Distribution Methods

• Client Application Request Routing

• Query Processing and the Query Coordinator

• Data Replication

Architecture and Components
The following figure illustrates the major architectural components of Oracle Globally
Distributed Database, which are described in the topics that follow.

Figure 2-1    Oracle Globally Distributed Database Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key 
CustomerID=28459361

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 26



Distributed Database and Shards
A distributed database is a collection of shards.

A distributed database is a single logical Oracle Database that is horizontally partitioned across
a pool of physical Oracle Databases (shards) that share no hardware or software.

Each shard in the distributed database is an independent Oracle Database instance that hosts
subset of a distributed database's data. Shared storage is not required across the shards.

Shards can be hosted anywhere an Oracle database can be hosted. Oracle Globally
Distributed Database supports all of the deployment choices for a shard that you would expect
with a single instance or clustered Oracle Database, including on-premises, any cloud
platform, Oracle Exadata Database Machine, virtual machines, and so on.

Shards can all be placed in one region or can be placed in different regions. A region in the
context of Oracle Globally Distributed Database represents a data center or multiple data
centers that are in close network proximity.

Shards can be replicated for high availability and disaster recovery with Oracle Globally
Distributed Database native replication (Raft-based) or Oracle Data Guard.

Shard Catalog
A shard catalog is an Oracle Database that supports automated shard deployment,
centralized management of a distributed database, and multi-shard queries.

A shard catalog serves following purposes

• Serves as an administrative server for entire distributed database

• Stores a gold copy of the database schema

• Manages multi-shard queries with a multi-shard query coordinator

• Stores a gold copy of duplicated table data

The shard catalog is a special-purpose Oracle Database that is a persistent store for
distributed database configuration data and plays a key role in centralized management of a
distributed database. All configuration changes, such as adding and removing shards and
global services, are initiated on the shard catalog. All DDLs in a distributed database are
processed by connecting to the shard catalog.

The shard catalog also contains the primary copy of all duplicated tables in a distributed
database. The shard catalog uses materialized views to automatically replicate changes to
duplicated tables in all shards. The shard catalog database also acts as a query coordinator
used to process multi-shard queries and queries that do not specify a sharding key.

Multiple shard catalogs can be deployed for high availability purposes. Using Oracle Data
Guard for shard catalog high availability is a recommended best practice.

At run time, unless the application uses key-based queries, the shard catalog is required to
direct queries to the shards. Sharding key-based transactions continue to be routed and
processed by the distributed database and are unaffected by a catalog outage.

During the brief period required to complete an automatic failover to a standby shard catalog,
downtime affects the ability to perform maintenance operations, make schema changes,
update duplicated tables, run multi-shard queries, or perform other operations like add shard,
move chunks, and so on, which induce topology change.

Chapter 2
Architecture and Components

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 26



Shard Director
Shard directors are network listeners that enable high performance connection routing based
on a sharding key.

Oracle Database 12c introduced the global service manager to route connections based on
database role, load, replication lag, and locality. In support of Oracle Globally Distributed
Database, global service managers support routing of connections based on data location. A
global service manager, in the context of Oracle Globally Distributed Database, is known as a
shard director.

A shard director is a specific implementation of a global service manager that acts as a
regional listener for clients that connect to a distributed database. The director maintains a
current topology map of the distributed database. Based on the sharding key passed during a
connection request, the director routes the connections to the appropriate shard.

For a typical distributed database, a set of shard directors are installed on dedicated low-end
commodity servers in each region. To achieve high availability and scalability, deploy multiple
shard directors. You can deploy up to five shard directors in a given region.

The following are the key capabilities of shard directors:

• Maintain runtime data about distributed database configuration and availability of shards

• Measure network latency between its own and other regions

• Act as a regional listener for clients to connect to a distributed database

• Manage global services

• Perform connection load balancing

Global Service
A global service is a database service that is use to access data in an Oracle Globally
Distributed Database.

A global service is an extension to the notion of the traditional database service. All of the
properties of traditional database services are supported for global services. For distributed
databases, additional properties are set for global services — for example, database role,
replication lag tolerance, region affinity between clients and shards, and so on.

For a read-write transactional workload, a single global service is created to access data from
any primary shard in a distributed database. For highly available shards using Oracle Data
Guard, a separate read-only global service can be created.

Management Interfaces for Oracle Globally Distributed Database
The GDSCTL command-line utility is used to configure, deploy, monitor, and manage an
Oracle Globally Distributed Database. Oracle Enterprise Manager Cloud Control can also be
used for monitoring and management.

Like SQL*Plus, GDSCTL is a command-line utility with which you can control all stages of a
distributed database's life cycle. You can run GDSCTL remotely from a different server or laptop
to configure and deploy a distributed database topology, and then montior and manage your
distributed database.

Chapter 2
Architecture and Components

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 26



GDSCTL provides a simple declarative way of specifying the configuration of a distributed
database and automating its deployment. Only a few GDSCTL commands are required to
create a distributed database.

You can also use Cloud Control for distributed database monitoring and life cycle management
if you prefer a graphical user interface. With Cloud Control you can monitor availability and
performance, and you can make changes to a distributed database configuration, such as add
and deploy shards, services, and shard directors.

Schema Objects
To obtain the benefits of Oracle Globally Distributed Database, the schema of a distributed
database should be designed in a way that maximizes the number of database requests
processed on a single shard.

Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in tablespaces that
reside on different shards.

Each partition of a sharded table is stored in a separate tablespace, making the tablespace the
unit of data distribution in a distributed database.

As described in Sharded Table Family, to minimize the number of multi-shard joins,
corresponding partitions of all tables in a table family are always stored in the same shard. This
is guaranteed when tables in a table family are created in the same set of distributed
tablespaces as shown in the syntax examples where tablespace set ts1 is used for all tables.

However, it is possible to create different tables from a table family in different tablespace sets,
for example the Customers table in tablespace set ts1 and Orders in tablespace set ts2. In
this case, it must be guaranteed that the tablespace that stores partition 1 of Customers
always resides in the same shard as the tablespace that stores partition 1 of Orders.

To support this functionality, a set of corresponding partitions from all of the tables in a table
family, called a chunk, is formed. A chunk contains a single partition from each table of a table
family. This guarantees that related data from different sharded tables can be moved together.
In other words, a chunk is the unit of data migration between shards. With system-managed
and composite data distribution methods, the number of chunks within each shard is specified
when the distributed database is created. With user-defined data distribution, the total number
of chunks is equal to the number of partitions.

A chunk that contains corresponding partitions from the tables of Cutomers-Orders-LineItems
schema is shown in the following figure.

Figure 2-2    Chunk as a Set of Partitions

Customers_P1 (1-1000000) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Each shard contains multiple chunks as shown in the following figure.

Chapter 2
Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 26



Figure 2-3    Contents of a Shard

Customers_P1 (1-1M) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Customers_P6 (5000001-6M) Orders_P6 Lineitems_P6
Chunk #6

Sharded
Tables

Customers_P11(10000001-11M) Orders_P11 Lineitems_P11
Chunk #11

Sharded
Tables

Stockitems (Duplicated Table)

Shard

In addition to sharded tables, a shard can also contain one or more duplicated tables.
Duplicated tables cannot be stored in tablespaces that are used for sharded tables.

Tablespace Sets
Oracle Globally Distributed Database creates and manages tablespaces as a unit called a
TABLESPACE SET.

A distributed database configured with the system-managed and composite data distribution
methods use TABLESPACE SET, while user-defined data distribution uses regular tablespaces.

A tablespace is a logical unit of data distribution in a distributed database. The distribution of
partitions across shards is achieved by automatically creating partitions in tablespaces that
reside on different shards.

To minimize the number of multi-shard joins, the corresponding partitions of related tables are
always stored in the same shard. Each partition of a sharded table is stored in a separate
tablespace.

Chapter 2
Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 26



The PARTITIONS AUTO clause specifies that the number of partitions should be automatically
determined. This type of hashing provides more flexibility and efficiency in migrating data
between shards, which is important for elastic scalability.

The number of tablespaces created per tablespace set is determined based on the number of
chunks that were defined for the shardspace during deployment.

Note

Only Oracle Managed Files are supported by tablespace sets.

Individual tablespaces cannot be dropped or altered independently of the entire
tablespace set.

TABLESPACE SET cannot be used with the user-defined data distribution method.

Sharded Tables
A database table is split up across the shards, so that each shard contains the table with the
same columns, but a different subset of rows. A table split up in this manner is called a
sharded table.

The following figure shows how a set of large tables (referred to as a table family), can be
horizontally partitioned across the three shards, so that each shard contains a subset of the
data, indicated with red, yellow, and blue rows.

Figure 2-4    Horizontal Partitioning of a Table Across Shards

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Chapter 2
Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 26



Partitions are distributed across shards at the tablespace level, based on a sharding key.
Examples of keys include customer ID, account number, and country ID.

Each partition of a sharded table resides in a separate tablespace, and each tablespace is
associated with a specific shard. Depending on the data distribution method, the association
can be established automatically or defined by the administrator.

Even though the partitions of a sharded table reside in multiple shards, to the application, the
table looks and behaves exactly the same as a partitioned table in a single database. SQL
statements issued by an application never have to refer to shards or depend on the number of
shards and their configuration.

The familiar SQL syntax for table partitioning specifies how rows should be partitioned across
shards. For example, the following SQL statement creates a sharded table, horizontally
partitioning the table across shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250)
, region      VARCHAR2(20)
, class       VARCHAR2(3)
, signup      DATE
,CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The sharded table is partitioned by consistent hash, a special type of hash partitioning
commonly used in scalable distributed systems. This technique automatically spreads
tablespaces across shards to provide an even distribution of data and workload.

Note

Global indexes on sharded tables are not supported, but local indexes are supported.

Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way. Often there is a
parent-child relationship between database tables with a referential constraint in a child table
(foreign key) referring to the primary key of the parent table.

Multiple tables linked by such relationships typically form a tree-like structure where every child
has a single parent. A set of such tables is referred to as a table family. A table in a table family
that has no parent is called the root table. There can be only one root table in a table family.

How a Table Family Is Sharded
Sharding a table family is illustrated here with the Customers–Orders–LineItems schema.

Before sharding, the tables in the schema may look as shown in the examples below. The
three tables have a parent-child relationship, with Customers as the root table.

Chapter 2
Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 26



Customers Table (Root) Before Sharding

CustNo    Name       Address        Location  Class
--------- ---------- -------------- --------- ------
123       Brown      100 Main St    us3       Gold
456       Jones      300 Pine Ave   us1       Silver
999       Smith      453 Cherry St  us2       Bronze

Orders Table Before Sharding

OrderNo   CustNo   OrderDate
--------- -------- -----------
4001      123      14-FEB-2013
4002      456      09-MAR-2013
4003      456      05-APR-2013
4004      123      27-MAY-2013
4005      999      01-SEP-2013

LineItems Table Before Sharding

LineNo  OrderNo  CustNo  StockNo    Quantity
------  -------  ------  -------    --------
40011   4001     123     05683022   1
40012   4001     123     45423609   4
40013   4001     123     68584904   1
40021   4002     456     05683022   1
40022   4002     456     45423509   3
40022   4003     456     80345330   16
40041   4004     123     45423509   1
40042   4004     123     68584904   2
40051   4005     999     80345330   12

The tables can be sharded by the customer number, CustNo, in the Customers table, which is
the root. The shard containing data pertaining to customer 123 is shown in the following
example tables.

Customers Table Shard With Customer 123 Data

CustNo    Name       Address        Location   Class
--------- ---------- -------------- ---------- ------
123       Brown      100 Main St    us3        Gold

Orders Table Shard With Customer 123 Data

OrderNo   CustNo   OrderDate
--------- -------- -----------
4001      123      14-FEB-2013
4004      123      27-MAY-2013

LineItems Table Shard With Customer 123 Data

LineNo  OrderNo  CustNo  StockNo    Quantity
------  -------  ------  -------    --------
40011   4001     123     05683022   1
40012   4001     123     45423609   4
40013   4001     123     68584904   1
40041   4004     123     45423509   1
40042   4004     123     68584904   2

Chapter 2
Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 26



Duplicated Tables
In Oracle Globally Distributed Database a table with the same contents in each shard is called
a duplicated table.

A distributed database includes both sharded tables that are horizontally partitioned across
shards, and duplicated tables that are replicated to all shards.

Duplicated tables are a good choice for relatively small tables that are not updated frequently,
and that are often accessed together with sharded tables. For this reason, duplicated tables
usually contain reference information, for example, a Stock Items table that is common to each
shard.

For many applications, the number of database requests handled by a single shard can be
maximized by duplicating read-only or read-mostly tables across all shards. The combination
of sharded tables and duplicated tables enables all transactions associated with a sharding key
to be processed by a single shard. This technique enables linear scalability and fault isolation.

As an example of the need for a duplicated table, consider the table family that is described in 
Sharded Table Family. This database schema might also include a Products table which
contains data that is shared by all the customers in the shards that were created for this table
family, and it cannot be sharded by the customer number. To prevent multi-shard queries
during order processing, the entire table can be duplicated on all shards in the distributed
database.

The difference between sharded tables (Customers, Orders, and Line Items) and a duplicated
table (Products) is shown in the following figure.

Chapter 2
Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 26



Figure 2-5    Sharded Tables and a Duplicated Table

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

In the figure above, the Customers, Orders, and Line Items tables are all sharded by a
Customer ID number into three shards, illustrated by the colors of the rows in each table at the
top of the figure, and the corresponding color of the sharded table in each shard. The
duplicated table , Products, shown in gray, is replicated to all of the shards in its entirety, shown
by the arrow from the table pointing to each of the three shards.

See Creating Duplicated Tables for more information, limitations, and examples.

Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views, indexes,
synonyms, functions, procedures, and packages, and non-schema database objects, such as
tablespaces, tablespace sets, directories, and contexts, can be created on all shards in an
Oracle Globally Distributed Database.

Unlike tables, which require an extra keyword in the CREATE statement—SHARDED or
DUPLICATED—other objects are created on all shards using existing syntax. The only
requirement is that the SHARD DDL session property must be enabled.

Note that automatic creation on all shards of the following objects is not supported in this
release. These objects can be created by connecting to individual shards.

• Cluster

• Control file

• Database link

Chapter 2
Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 26



• Disk group

• Edition

• Flashback archive

• Materialized zone map

• Outline

• Pfile

• Profile

• Restore point

• Rollback segment

• Summary

Materialized views and view logs are supported starting in Oracle Database 18c, with the
following restrictions:

• Materialized views created on sharded tables remain empty on the catalog database, while
the corresponding materialized views on shards contain data from each of the individual
shards.

• Only the REFRESH COMPLETE ON DEMAND USING TRUSTED CONSTRAINTS option is supported
for materialized views on sharded tables.

Data Distribution Methods
Learn about the methods supported by Oracle Globally Distributed Database to distribute
sharded table data (also called the sharding method), how to choose a data distribution
method, and how to use subpartitioning.

System-Managed Data Distribution
System-managed data distribution is a method which does not require the user to specify
mapping of data to shards. Data is automatically distributed across shards using partitioning by
consistent hash. The partitioning algorithm evenly and randomly distributes data across
shards.

System-managed data distribution is intended to eliminate hot spots and provide uniform
performance across shards. Oracle Globally Distributed Database automatically maintains the
balanced distribution of chunks when shards are added to or removed from a distributed
database.

Consistent hash is a partitioning strategy commonly used in scalable distributed systems. It is
different from traditional hash partitioning. With traditional hashing, the bucket number is
calculated as HF(key) % N where HF is a hash function and N is the number of buckets. This
approach works fine if N is constant, but requires reshuffling of all data when N changes.

More advanced algorithms, such as linear hashing, do not require rehashing of the entire table
to add a hash bucket, but they impose restrictions on the number of buckets, such as the
number of buckets can only be a power of 2, and on the order in which the buckets can be
split.

The implementation of consistent hashing used in Oracle Globally Distributed Database avoids
these limitations by dividing the possible range of values of the hash function (for example.
from 0 to 232) into a set of N adjacent intervals, and assigning each interval to a chunk , as
shown in the figure below. In this example, the distributed database contains 1024 chunks, and

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 26



each chunk gets assigned a range of 222 hash values. Therefore partitioning by consistent
hash is essentially partitioning by the range of hash values.

Figure 2-6    Ranges of Hash Values Assigned to Chunks

Chunk #1024

429496672964290772992  41943040

...

8388608  

...Chunk #2...Chunk #1

Assuming that all of the shards have the same computing power, an equal number of chunks is
assigned to each shard in the distributed database. For example, if 1024 chunks are created in
a distributed database that contains 16 shards, each shard will contain 64 chunks.

In the event of resharding, when shards are added to or removed from a distributed database,
some of the chunks are relocated among the shards to maintain an even distribution of chunks
across the shards. The contents of the chunks does not change during this process; no
rehashing takes place.

When a chunk is split, its range of hash values is divided into two ranges, but nothing needs to
be done for the rest of the chunks. Any chunk can be independently split at any time.

All of the components of a distributed database that are involved in directing connection
requests to shards maintain a routing table that contains a list of chunks hosted by each shard
and ranges of hash values associated with each chunk. To determine where to route a
particular database request, the routing algorithm applies the hash function to the provided
value of the sharding key, and maps the calculated hash value to the appropriate chunk, and
then to a shard that contains the chunk.

The number of chunks in a distributed database with system-managed data distribution can be
specified when the shard catalog is created. If not specified, the default value, 120 chunks per
shard, is used. Once a distributed database is deployed, the number of chunks can only be
changed running split chunk operations.

Before creating a sharded table partitioned by consistent hash, a set of tablespaces (one
tablespace per chunk) has to be created to store the table partitions. The tablespaces are
automatically created by processing the SQL statement, CREATE TABLESPACE SET.

All of the tablespaces in a tablespace set have the same physical attributes and can only
contain Oracle Managed Files (OMF). In its simplest form, the CREATE TABLESPACE SET
statement has only one parameter, the name of the tablespace set, for example:

CREATE TABLESPACE SET ts1;

In this case each tablespace in the set contains a single OMF file with default attributes. To
customize tablespace attributes, the USING TEMPLATE clause (shown in the example below) is
added to the statement. The USING TEMPLATE clause specifies attributes that apply to each
tablespace in the set.

CREATE TABLESPACE SET ts1
USING TEMPLATE
( 
 DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 26



 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE
)
;

After a tablespace set has been created, a table partitioned by consistent hash can be created
with partitions stored in the tablespaces that belong to the set. The CREATE TABLE statement
might look as follows:

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250) 
, location_id VARCHAR2(20)
, class       VARCHAR2(3)
, signup      DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

PARTITIONS AUTO in this statement means that the number of partitions is automatically set to
the number of tablespaces in the tablespace set ts1 (which is equal to the number of chunks)
and each partition will be stored in a separate tablespace.

Each tablespace in a tablespace set belongs to a distinct chunk. In the other words, a chunk
can contain only one tablespace from a given tablespace set. However, the same tablespace
set can be used for multiple tables that belong to the same table family. In this case, each
tablespace in the set will store multiple partitions, one from each table.

Alternatively, each table in a table family can be stored in a separate tablespace set. In this
case, a chunk contains multiple tablespaces, one from each tablespace set with each
tablespace storing a single partition.

The following figure illustrates the relationship between partitions, tablespaces, and shards for
a use case with a single sharded table. In this case, each chunk contains a single tablespace,
and each tablespace stores a single partition.

Figure 2-7    System-Managed Data Distribution

Shard 1 Shard 2 Shard 3 Shard 4

P_1

tbs_1-1

P_120

tbs1-120

P_121

tbs1_121

P_240

tbs1-240

P_241

tbs1-241
.
.
.

.

.

.

.

.

.

.

.

.

P_360

tbs1-360

P_361

tbs1-361

P_480

tbs1-480

Tablespace Set tbs1

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 26



Note

The data distribution method is specified in the GDSCTL CREATE SHARDCATALOG
command and cannot be changed later.

User-Defined Data Distribution
User-defined data distribution lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons, certain data
needs to be stored on a particular shard, and the administrator needs to have full control over
moving data between shards.

Another advantage of user-defined data distribution is that, in case of planned or unplanned
outage of a shard, the user knows exactly what data is not available. The disadvantage of
user-defined data distribution is the need for the database administrator to monitor and
maintain balanced distribution of data and workload across shards.

Understanding Shardspaces

A shardspace is set of shards that store data that corresponds to a range or list of key values.
In user-defined data distribution, a shardspace consists of a shard or a set of fully replicated
shards. For simplicity, assume that each shardspace consists of a single shard.

Adding Shardspaces to a User-Defined Configuration

Before shards and their CDBs are added to a user-defined data distribution configuration, the
shardspaces must be created and populated. For example, you can use the following GDSCTL
commands:

ADD SHARDSPACE -SHARDSPACE east
ADD SHARDSPACE -SHARDSPACE central
ADD SHARDSPACE -SHARDSPACE west
ADD CDB -CONNECT cdb1
ADD CDB -CONNECT cdb2
ADD CDB -CONNECT cdb3
ADD SHARD –CONNECT shard-1 -CDB cdb1 –SHARDSPACE west;
ADD SHARD –CONNECT shard-2 -CDB cdb2 –SHARDSPACE central;
ADD SHARD –CONNECT shard-3 -CDB cdb3 –SHARDSPACE east;

Creating Tablespaces for User-Defined Data Distribution

There is no tablespace set for user-defined data distribution. Each tablespace has to be
created individually, and explicitly associated with a shardspace.

The following statements can be used to create the tablespaces for each shardspace in the
example above.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE central;
CREATE TABLESPACE tbs3 IN SHARDSPACE east;

Creating Sharded Tables in User-Defined Data Distribution

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 26



With user-defined data distribution, a sharded table can be partitioned by range or list. The
CREATE TABLE syntax for a sharded table is not very different from the syntax for a regular
table, except for the requirement that each partition should be stored in a separate tablespace.

For example:

 CREATE SHARDED TABLE accounts
( id             NUMBER
, account_number NUMBER
, customer_id    NUMBER
, branch_id      NUMBER
, state          VARCHAR(2) NOT NULL
, status         VARCHAR2(1)
)
PARTITION BY LIST (state)
( PARTITION p_west VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_central VALUES ('SD', 'WI') TABLESPACE ts2
, PARTITION p_east VALUES ('NY', 'VM', 'NJ') TABLESPACE ts3
)
;

The following figure shows the mapping of partitions to tablespaces, and tablespaces to
shards, for the accounts table in the previous examples.

Figure 2-8    User-Defined Data Distribution

Shard 1 Shard 2 Shard 3

P_NorthWest

Tablespace tbs1

P_SouthWest

Tablespace tbs2

P_NorthCentral

Tablespace tbs3

P_SouthCentral

Shardspace Central

Tablespace tbs4

P_NorthEast

Tablespace tbs5

P_SouthEast

Tablespace tbs6

Shardspace EastShardspace West

Chunk Management in User-Defined Data Distribution

As with system-managed data distribution, tablespaces created for user-defined data
distribution are assigned to chunks. However, no chunk migration is automatically started when
a shard is added to the distributed database. You must run the GDSCTL MOVE CHUNK command
for each chunk that needs to be migrated.

The total number of chunks is defined by the number of partitions specified in the sharded
table. The number of chunks for a given shardspace is the number of partitions assigned to it.
The ALTER TABLE ADD, DROP, SPLIT, and MERGE PARTITION commands on the sharded table
increases or decrease the number of chunks.

The GDSCTL SPLIT CHUNK command, which is used to split a chunk in the middle of the hash
range for system-managed data distribution, is not supported for user-defined data distribution.
You must use the ALTER TABLE SPLIT PARTITION statement to split a chunk.

Replication in User-Defined Data Distribution

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 26



For a user-defined distributed database, two replication schemes are supported:

• Oracle Data Guard

• Oracle Active Data Guard.

User-defined data distribution is not supported where Raft replication is used as the replication
method.

Directory-Based Data Distribution
Directory-based data distribution allows you to explicitly associate key value with shards
dynamically at run time, which gives you fine-grained control over mapping of key values to
shards

Compare this with system-managed data distribution, which can result in an uneven data
distribution, especially when there is a relatively large number of distinct key values (tens to
hundreds of thousands), yet often not large enough for hash-based assignments to achieve
uniform data distribution.

Also, compare this with regular user-defined data distribution, which is best suited for a small
number of static key values that can be specified during schema creation time.

Directory-Based Data Distribution Use Cases
The following use cases illustrate when it would be advantageous to use the directory-based
data distribution method in your distributed database.

System-managed data distribution results in uneven data distribution

Directory-based data distribution can be beneficial when system-managed data distribution
results in uneven data distribution as the number of distinct key values are not large enough

A typical use case is a B2B application that manages data for a large number of business
customer accounts, in the scale of tens of thousands of such accounts.

An example is a dealership application, which hosts and manages data for many dealers. The
number of dealerships is in the tens of thousands, which is not large enough to result in even
distribution of data with hashing. What’s more, the amount of data for different dealerships can
be drastically different: some dealers are large operations while others are much smaller, so it
is not desirable that we treat them all the same way as in system-mamanged data distribution.
There may also be a need to designate different resources/locations for the different
dealerships based on application-specific criteria.

Grouping certain key values together into the same location or chunk

Directory-based data distribution is useful when you need to group certain key values together
into the same location or chunk for affinity purposes, and when needed this group can be
moved together in an efficient manner

An example is a social network application, where grouping together customers who often
exchange messages on the same shard minimizes the cross-shard traffic. The grouping must
be preserved during re-sharding when data is moved between shards. On the other hand, if a
member of a group starts communicating more with members of another group, their data must
be moved to the appropriate group with minimal impact on the application.

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 26



Implement custom policy-based data distribution

Directory-based data distribution can be used to implement custom policy-based data
distribution, such as round-robin, random, least data, and so on.

Directory-Based Data Distribution Concepts and Architecture

The following are key concepts for understanding directory-based data distribution.

• Mapping of key values to partitions and shards is stored in a directory table.

• Directory table is automatically created in the shard catalog and shards when a table
sharded by directory is created.

• Shard director (GSM) and client-side connection pools cache the directory for routing
purposes. Key values in caches are encrypted.

• The directory is automatically updated when rows are inserted into or deleted from the
sharded table for inserts with an auto-assignment rule enabled. Deletes do not auto-delete
the mapping in the directory.

• Sharded table contains a virtual column with partition information, which is used for
partition pruning.

The following figure shows the key components of directory-based data distribution: the
directory table is hosted on the shard catalog, and is duplicated to all of the shards. The
sharded tables are distributed across different shards based on the key/partition mappings in
the directory table.

Figure 2-9    Directory-based data distribution architecture

Key insert and update operations are performed on the shard catalog, and synchronously
duplicated to the shards at commit time.

Client pools fetch the key to chunk/shard mappings from each shard the same way as in other
data distribution methods. They also subscribe to FAN events that notify them about new key
mappings or deletions.

Because directory-based distribution is an enhancement of the user-defined distribution
method, see User-Defined Data Distribution for information about the user-defined method and
some examples.

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 26



Creating Sharded Tables in a Directory-Based Distributed Database
Directory-based sharded tables are created using PARTITION BY DIRECTORY in the CREATE
SHARDED TABLE statement.

For example:

CREATE SHARDED TABLE customers
( id             NUMBER NOT NULL
, name           VARCHAR2(30)
, address        VARCHAR2(30)
, status         VARCHAR2(1)
,
CONSTRAINT cust_pk PRIMARY KEY(id)
)
PARTITION BY DIRECTORY (id)
( PARTITION p1 TABLESPACE tbs1,
  PARTITION p2 TABLESPACE tbs2,
  PARTITION p3 TABLESPACE tbs3…);

Note

• Unlike in user-defined data distribution, key values are not specified for the
partitions in the CREATE TABLE statement.

• The directory table is automatically created during root table creation. The
definition of the directory table is:

shard_user_schema.root_table$SDIR

For information about creating objects, deploying, and managing a directory-based distributed
database, see Deploying and Managing a Directory-Based Oracle Globally Distributed
Database.

Composite Data Distribution
The composite data distribution method allows you to create multiple shardspaces for different
subsets of data in a table partitioned by consistent hash. A shardspace is set of shards that
store data that corresponds to a range or list of key values.

System-managed data distribution uses partitioning by consistent hash to randomly distribute
data across shards. This provides better load balancing compared to user-defined distribution
that uses partitioning by range or list. However, system-managed distribution does not give the
user any control on assignment of data to shards.

When partitioning by consistent hash on a primary key, there is often a requirement to
differentiate subsets of data within a distributed database in order to store them in different
geographic locations, allocate to them different hardware resources, or configure high
availability and disaster recovery differently. Usually this differentiation is done based on the
value of another (non-primary) column, for example, customer location or a class of service.

Composite distribution is a combination of user-defined and system-managed distribution
which, when required, provides benefits of both methods. With composite distribution, data is

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 26



first partitioned by list or range across multiple shardspaces, and then further partitioned by
consistent hash across multiple shards in each shardspace. The two levels of distribution make
it possible to automatically maintain balanced distribution of data across shards in each
shardspace, and, at the same time, partition data across shardspaces.

For example, suppose you want to allocate three shards hosted on faster servers to “gold”
customers and four shards hosted on slower machines to “silver” customers. Within each set of
shards, customers have to be distributed using partitioning by consistent hash on customer ID.

Figure 2-10    Composite Data Distribution

Tablespace

Set tbs1

SHARD1

P_1

tbs1-1

P_120

tbs1-120

.

.

.

SHARD2

P_121

tbs1-121

P_240

tbs1-240

.

.

.

SHARD3

P_241

tbs1-241

P_360

tbs1-360

.

.

.

Shardspace for GOLD customers - shspace1

SHARD4

P_1

tbs2-1

P_120

tbs2-120

.

.

.

SHARD5

P_121

tbs2-121

P_240

tbs1-240

.

.

.

SHARD6

P_241

tbs2-241

P_360

tbs2-360

.

.

.

SHARD7

P_361

tbs2-361

P_480

tbs2-480

.

.

.

Shardspace for SILVER customers - shspace2

Tablespace

Set tbs2

The following commands would be issued to create this configuration. Note that two
shardspaces need to be created for this configuration.

create SHARDCATALOG -sharding composite -database 
     cat_host:1521/cat_pdb.domain -user gsmcatuser/gsmcatuser_pwd 
     -region dc1
 
add gsm -gsm gsm1 -listener 1540 -catalog cat_host:1521/cat_pdb.domain
     -region dc1 -pwd gsmcatuser_pwd
gdsctl start gsm
 
add shardspace -shardspace shspace1 -chunks 60
add shardspace -shardspace shspace2 -chunks 120
 
ADD SHARDGROUP -shardgroup gold -shardspace shspace1 -region dc1 -deploy_as 
     primary
ADD SHARDGROUP -shardgroup silver -shardspace shspace2 -region dc1 -deploy_as 
     primary
 

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 26



add CDB -connect cdb1_host:1521/cdb1.domain -pwd gsmrootuser_pwd
add CDB -connect cdb2_host:1521/cdb2.domain -pwd gsmrootuser_pwd
add CDB -connect cdb3_host:1521/cdb3.domain -pwd gsmrootuser_pwd
add CDB -connect cdb4_host:1521/cdb4.domain -pwd gsmrootuser_pwd
add CDB -connect cdb5_host:1521/cdb5.domain -pwd gsmrootuser_pwd
add CDB -connect cdb6_host:1521/cdb6.domain -pwd gsmrootuser_pwd
add CDB -connect cdb7_host:1521/cdb7.domain -pwd gsmrootuser_pwd
 
add shard -cdb cdb1 -shardgroup gold -connect 
     cdb1_host:1521/sh1_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb2 -shardgroup gold -connect 
     cdb2_host:1521/sh2_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb3 -shardgroup gold -connect 
     cdb3_host:1521/sh3_pdb.domain -pwd gsmuser_pwd
 
add shard -cdb cdb4 -shardgroup silver -connect 
     cdb4_host:1521/sh4_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb5 -shardgroup silver -connect 
     cdb5_host:1521/sh5_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb6 -shardgroup silver -connect 
     cdb6_host:1521/sh6_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb7 -shardgroup silver -connect 
     cdb7_host:1521/sh7_pdb.domain -pwd gsmuser_pwd
 
deploy

With composite distribution, as with the other data distribution methods, tablespaces are used
to specify the mapping of partitions to shards. To place subsets of data in a sharded table into
different shardspaces, a separate tablespace set must be created in each shardspace as
shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

To store user-defined subsets of data in different tablespaces, Oracle Globally Distributed
Database provides syntax to group partitions into sets and associate each set of partitions with
a tablespace set. Support for partition sets can be considered a logical equivalent of a higher
level of partitioning which is implemented on top of partitioning by consistent hash.

The statement in the following example partitions a sharded table into two partition sets: gold
and silver, based on class of service. Each partition set is stored in a separate tablespace.
Then data in each partition set is further partitioned by consistent hash on customer ID.

CREATE SHARDED TABLE customers
( cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250) 
, location_id VARCHAR2(20) 
, class VARCHAR2(3) 
, signup_date DATE 
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class) 
)
PARTITIONSET BY LIST (class) 
  PARTITION BY CONSISTENT HASH (cust_id)
  PARTITIONS AUTO

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 26



(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Note

The data distribution method is specified in the GDSCTL CREATE SHARDCATALOG
command and cannot be changed later.

Using Subpartitions with a Distributed Database
Because Oracle Globally Distributed Database is based on table partitioning, all of the
subpartitioning methods provided by Oracle Database are also supported by Oracle Globally
Distributed Database.

Subpartitioning splits each partition into smaller parts and may be beneficial for efficient parallel
processing within a shard, especially in the case of partitioning by range or list when the
number of partitions per shard may be small.

From a manageability perspective, subpartitioning makes it possible to support the tiered
storage approach by putting subpartitions into separate tablespaces and moving them between
storage tiers. Migration of subpartitions between storage tiers can be done without sacrificing
the scalability and availability benefits of partitioning and the ability to perform partition pruning
and partition-wise joins on a primary key.

The following example shows system-managed data distribution by consistent hash combined
with subpartitioning by range.

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250)
, location_id VARCHAR2(20)
, class       VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
TABLESPACE SET ts1
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
SUBPARTITION TEMPLATE 
( SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY')),
  SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY')),
  SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY')),
  SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
;

The following figure offers a graphical view of the table created by this statement.

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 26



Figure 2-11    Subpartitions Stored in the Tablespace of the Parent Partition

Shard 1 Shard 2 Shard 3

Partition 1

Sub-Partitions

Partition 2

Sub-Partitions

Partition 3

Sub-Partitions

Partition 4

Sub-Partitions

Partition 5

Sub-Partitions

Partition 6

Sub-Partitions

tbs1-1

tbs1-2

tbs1-3

tbs1-4

tbs1-5

tbs1-6

2 3 41 2 3 41 2 3 41

2 3 41 2 3 41 2 3 41

Tablespace 

Set tbs1

In this example each subpartition is stored in the parent partition’s tablespace. Because
subpartitioning is done by date, it makes more sense to store subpartitions in separate
tablespaces to provide the ability to archive older data or move it to a read-only storage. The
appropriate syntax is shown here.

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250) 
, location_id VARCHAR2(20)
, class       VARCHAR2(3)
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE(signup_date)
SUBPARTITION TEMPLATE 
( SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
       TABLESPACE SET ts1,
  SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
       TABLESPACE SET ts2,
  SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
       TABLESPACE SET ts3,
  SUBPARTITION future VALUES LESS THAN (MAXVALUE) 
       TABLESPACE SET ts4
)
PARTITIONS AUTO
;

Note that in the case of a database that is not sharded, when tablespaces are specified in the
subpartition template it means that subpartition N from every partition is stored in the same
tablespace. This is different in case of partitioning when subpartitions that belong to the
different partitions must be stored in separate tablespaces so that they can be moved in the
event of resharding.

Subpartitioning can be used with the composite data distribution method, too. In this case data
in a table is organized in three levels: partition sets, partitions, and subpartitions. Examples of
the three levels of data organization are shown below.

Specifying subpartition templates per partitionset is not supported to ensure that there is
uniformity in the number and bounds of subpartitions across partitionsets. If you need to

Chapter 2
Data Distribution Methods

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 26



specify tablespaces for subpartitions per partitionset, you can use the SUBPARTITIONS STORE
IN clause.

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250) 
, location_id VARCHAR2(20)
, class       VARCHAR2(3) NOT NULL
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class, signup_date)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
  SUBPARTITION TEMPLATE /* applies to both SHARDSPACEs */
  ( SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
  , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
  , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
  , SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
(
  PARTITIONSET gold   VALUES (‘gld’) TABLESPACE SET tbs1
 subpartitions store in(tbs1)
, PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2
 subpartitions store in(tbs2)
)
;

Client Application Request Routing
To route a client application request directly to a shard, you connect to the shard using the
Oracle drivers and provide a sharding key with the request.

About Sharding Keys

All database requests that require high performance and fault isolation must only access data
associated with a single value of the sharding key. The application must provide the sharding
key when establishing a database connection. If this is the case, the request is routed directly
to the appropriate shard.

Multiple requests can be processed in the same session as long as they all are related to the
same sharding key. Such transactions typically access 10s or 100s of rows. Examples of
single-shard transactions include order entry, lookup and update of a customer’s billing record,
and lookup and update of a subscriber’s documents.

Database requests that must access data associated with multiple values of the sharding key,
or for which the value of the sharding key is unknown, must be issued from the query
coordinator which orchestrates parallel processing of the query across multiple shards.

About Oracle Connection Drivers

At run time, connection pools act as shard directors by routing database requests across
pooled connections. Oracle Database supports connection-pooling in data access drivers such
as OCI, JDBC, and ODP.NET. These drivers can recognize sharding keys specified as part of a
connection request. Similarly, the Oracle Universal Connection Pool (UCP) for JDBC clients

Chapter 2
Client Application Request Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 26



can recognize sharding keys specified in a connection URL. Oracle UCP also enables non-
Oracle application clients such as Apache Tomcat and WebSphere to work with Oracle
Globally Distributed Database.

Oracle clients use UCP cache routing information to directly route a database request to the
appropriate shard, based on the sharding keys provided by the application. Such data-
dependent routing of database requests eliminates an extra network hop, decreasing the
transactional latency for high volume applications.

Routing information is cached during an initial connection to a shard, which is established
using a shard director. Subsequent database requests for sharding keys within the cached
range are routed directly to the shard, bypassing the shard director.

Like UCP, a shard director can process a sharding key specified in a connect string and cache
routing information. However, UCP routes database requests using an already established
connection, while a shard director routes connection requests to a shard. The routing cache
automatically refreshes when a shard becomes unavailable or changes occur to the distributed
database topology. For high-performance, data-dependent routing, Oracle recommends using
a connection pool when accessing data in the distributed database.

Separate connection pools must be used for direct routing and routing requests through the
query coordinator. For direct routing, separate global services must be created for read-write
and read-only workloads. This is true only if Data Guard replication is used. For proxy routing,
use the GDS$CATALOG service on the shard catalog database.

Query Processing and the Query Coordinator
The query coordinator is part of the shard catalog. The query coordinator provides query
processing support for the distributed database. With its access to the distributed database
topology metadata in the shard catalog, there are three general cases in which the query
coordinator plays an important part.

1. Single Shard Queries with No Sharding Key

If a sharding key is not passed from the application, the query coordinator figures out
which shard contains the data required by the query and sends the query there for
processing.

2. Multi-Shard Queries

The query coordinator can also assist with queries that need data from more than one
shard, called multi-shard queries, for example SELECT COUNT(*) FROM Customer.

3. Aggregate Queries

The query coordinator handles aggregate queries typically used in reporting, such as
aggregates on sales data.

In every case, the query coordinator’s SQL compiler identifies the relevant shards
automatically and coordinates the query processing across all of the participating shards.

In a single-shard query scenario, the entire query is processed on the single participating
shard, and the query coordinator just passes processed rows back to the client.

For a multi-shard query the SQL compiler analyzes and rewrites the query into query
fragments that are sent and processed by the participating shards. The queries are rewritten
so that most of the query processing is done on the participating shards and then aggregated
by the coordinator.

The query coordinator uses Oracle Database's parallel query engine to optimize and push
multi-shard queries in parallel to the shards. Each shard processes the query on the subset of

Chapter 2
Query Processing and the Query Coordinator

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 26



data that it has. Then the results are returned back to the query coordinator, which sends them
back to the client.

In essence, the shards act as compute nodes for the queries issued by the query coordinator.
Because the computation is pushed to the data, there is reduced movement of data between
shards and the coordinator. This arrangement also enables the effective use of resources by
offloading processing from the query coordinator on to the shards as much as possible.

Specifying Consistency Levels

You can specify different consistency levels for multi-shard queries. For example, you might
want some queries to avoid the cost of SCN synchronization across shards, and these shards
could be globally distributed. Another use case is when you use standbys for replication and
slightly stale data is acceptable for multi-shard queries, as the results could be fetched from
the primary and its standbys. A multi-shard query must maintain global read consistency (CR)
by issuing the query at the highest common SCN across all the shards.

High Availability and Performance

It is highly recommended that the query coordinator be protected with Oracle Data Guard in
Maximum Availability protection mode (zero data loss failover) with fast-start failover enabled.
The query coordinator may optionally be Oracle RAC-enabled for additional availability and
scalability. To improve the scalability and availability of multi-shard query workloads, Oracle
Active Data Guard standby shard catalog databases in read-only mode can act as multi-shard
query coordinators.

In aggregation use cases and issuing SQL without a sharding key, you will experience a
reduced level of performance compared with direct, key-based, routing.

Data Replication
Oracle Globally Distributed Database relies on replication for availability. Oracle Globally
Distributed Database provides various means of replication depending on your needs.

Replication provides high availability, disaster recovery, and additional scalability for reads. A
unit of replication can be a shard, a part of a shard, or a group of shards.

Replication topology in a distributed database is declaratively specified using GDSCTL
command syntax. You can choose either Oracle Data Guard or Raft replication to replicate
your data. Oracle Globally Distributed Database automatically deploys the specified replication
topology to the procured systems, and enables data replication.

Shard-level Replication

In Oracle Globally Distributed Database a shard is a database. The availability of a shard is not
affected by an outage or slowdown of one or more shards. Oracle Data Guard replication can
be used to provide individual shard-level high availability. Replication is automatically
configured and deployed when the distributed database is created.

Oracle Data Guard is tightly integrated with Oracle Globally Distributed Database to provide
high availability and disaster recovery with strict data consistency and zero data loss. Oracle
Data Guard replication maintains one or more synchronized copies (standbys) of a shard (the
primary) for high availability and data protection. Standbys can be deployed locally or remotely,
and when using Oracle Active Data Guard can also be open for read-only access.

See Shard-Level Replication with Oracle Data Guard for more information.

Optionally, you can use Oracle RAC for shard-level high availability, complemented by
replication, to maintain shard-level data availability in the event of a cluster outage. Each shard

Chapter 2
Data Replication

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 26



can be deployed on an Oracle RAC cluster to give it instant protection from node failure. For
example, each shard could be a two node Oracle RAC cluster. Oracle Globally Distributed
Database automatically fails over database connections from a shard to its replica in the event
of an unplanned outage.

Raft Replication

Instead of replication at the shard level, the Raft replication feature in Oracle Globally
Distributed Database creates smaller replication units and distributes them automatically
among the shards to handle chunk assignment, chunk movement, workload distribution, and
balancing upon scaling (addition or removal of shards), including planned or unplanned shard
availability changes.

Raft replication is built into Oracle Globally Distributed Database to provide a consensus-
based, high-performance, low-overhead availability solution, with distributed replicas and fast
failover with zero data loss, while automatically maintaining the replication factor if shards fail.
With Raft replication management overhead does not increase with the number of shards. If
you are used to NoSQL databases and do not expect to know anything about how replication
works, Oracle Globally Distributed Database native replication just works.

Unlike Data Guard replication, Raft replication does not need to be reconfigured when shards
are added or removed, and replicas do not need to be actively managed.

See Raft Replication Configuration and Management for more information.

Chapter 2
Data Replication

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 26



3
Oracle Globally Distributed Database
Deployment

Create and configure a distributed database, beginning with host provisioning, and continuing
through software configuration, database setup, distributed database metadata creation, and
schema creation. This process is known as deployment.

Topics:

• Introduction to Distributed Database Deployment

• Planning Your Deployment

• Install the Oracle Database Software

• Install the Shard Director Software

• Create the Shard Catalog Database

• Create the Shard Databases

• Validate the Shard Database

• Configure the Distributed Database Topology

• Deploy the Configuration

• Create and Start Global Database Services

• Verify Shard Status

• Creating a Shard Catalog Standby

• Example Distributed Database Deployment

Introduction to Distributed Database Deployment
Oracle Globally Distributed Database provides the capability to automatically deploy the
distributed database, which includes both the shards and the replicas.

The distributed database administrator defines the topology (regions, shard hosts, replication
technology) and invokes the DEPLOY command with a declarative specification using the GDSCTL
command-line interface.

Before You Begin

There are many different configurations and topologies that can be used for a distributed
database. Depending on your application’s particular architecture and system requirements,
you may have several choices from which to choose when designing your system. Familiarize
yourself with Planning Your Deployment before proceeding with deployment.

Distributed Database Deployment Road map

At a high level, the deployment steps are:

1. Set up the components.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 34



• Provision and configure the hosts that will be needed for the distributed database
configuration and topology selected (see Provision and Configure Hosts and Operating
Systems).

• Install Oracle Database software on the selected catalog and shard nodes (see Install
the Oracle Database Software).

• Install global service manager (GSM) software on the shard director nodes (see Install
the Shard Director Software).

2. Create databases needed to store the distributed database metadata and the application
data.

• Create a database that will become the shard catalog along with any desired replicas
for disaster recovery (DR) and high availability (HA) (see Create the Shard Catalog
Database).

• Create databases that will become the shards in the configuration including any
standby databases needed for DR and HA (see Create the Shard Databases).

3. Specify the distributed database topology using some or all the following commands from
the GDSCTL command line utility, among others (see Configure the Distributed Database
Topology).

• CREATE SHARDCATALOG

• ADD GSM

• START GSM

• ADD SHARDGROUP

• ADD SHARD

• ADD INVITEDNODE

4. Run DEPLOY to deploy the distributed database topology configuration (see Deploy the
Configuration).

5. Add the global services needed to access any shard in the distributed database (see 
Create and Start Global Database Services).

6. Verify the status of each shard (see Verify Shard Status).

When the distributed database configuration deployment is complete and successful, you can
create the sharded schema objects needed for your application. See Schema Objects.

The topics that follow describe each of the deployment tasks in more detail along with specific
requirements for various components in the system. These topics can act as a reference for
the set up and configuration of each particular step in the process. However, by themselves,
they will not produce a fully functional distributed database configuration since they do not
implement a complete distributed database scenario, but only provide the requirements for
each step.

Example Distributed Database Deployment walks you through a specific deployment scenario
of a representative reference configurations. This section provides examples of every
command needed to produce a fully functional distributed database once all the steps are
completed.

Planning Your Deployment
Many decisions need to be made when planning a Oracle Globally Distributed Database
deployment including the distributed database topology, replication method, and the distributed
database methodology.

Chapter 3
Planning Your Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 34



Your particular distributed database may employ a variety of Oracle software components such
as Oracle Data Guard and Oracle Real Application Clusters (Oracle RAC) along with different
data distribution methods including system-managed (automatic), user-defined, and composite
data distribution.

Depending on which data distribution method you choose (system, user-defined, or
composite), you can further refine your topology planning with decisions about considerations
such as the number of chunks, shardgroups or shardspaces, regions, standbys, and open as
opposed to mounted databases, and so on.

See Oracle Globally Distributed Database Architecture and Concepts for information pertaining
to these topology options.

Plan the Configuration
To plan your Oracle Globally Distributed Database configuration you need an understanding of
the objects that make up a distributed database configuration, so that you can best configure
and deploy them to meet your requirements.

The distributed database configuration consists of the data distribution (sharding) method,
replication (high availability) technology, the default number of chunks to be present in the
distributed database initially, the location and number of shard directors, the numbers of
shardgroups, shardspaces, regions, and shards in the distributed database, and the global
services that will be used to connect to the distributed database.

• Data distribution method - To decide which data distribution methodology works best for
your application, see Data Distribution Methods for a full discussion.

• Topology - To learn about each distributed database component you need, see 
Architecture and Components for a full discussion.

• Replication - To decide on a replication strategy, see Data Replication in Oracle Globally
Distributed Database.

Oracle Database Global Data Services Architecture

Because the Oracle Globally Distributed Database feature is built on the Oracle Database
Global Data Services feature, to plan your topology you might benefit from an understanding of
the Global Data Services architecture. See Introduction to Global Data Services for conceptual
information about Global Data Services.

Provision and Configure Hosts and Operating Systems
Before you install any software, review these hardware, network, and operating system
requirements for Oracle Globally Distributed Database.

Number and Sizing of Host Systems

Depending on your specific configuration, the hosts that are needed may include the following:

• Shard catalog host. The shard catalog host runs the Oracle Database that serves as the
shard catalog. This database contains a small amount of distributed database topology
metadata and any duplicated tables that are created for your application. In addition, the
shard catalog acts as a multi-shard query coordinator for cross-shard queries and services
connections for applications that have not been written to be distributed database-aware.
In general, the transaction workload and size of this database are not particularly large.

• Shard catalog database standbys (replicas). At least one more host to contain a replica
or standby of the primary shard catalog database is recommended. This host is necessary
in case of a failure of the primary catalog host.

Chapter 3
Planning Your Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 34



In addition, while acting as a standby database, this host can also be configured to be a
query coordinator for cross-shard queries. To improve the scalability and availability of
multi-shard query workloads, Oracle Active Data Guard standby shard catalog databases
in read-only mode can act as multi-shard query coordinators. See Multi-Shard Query
Coordinator Availability and Scalability.

• Shard director host. The shard director (global service manager) software can reside on
a separate host, or it can be co-located on the same host as the shard catalog. This
component of the distributed database system is comprised of a network listener and
several background processes used to monitor and configure a distributed database
configuration. If it is co-located on the same host as the catalog database, the shard
director must be installed in a separate Oracle Home from the catalog database, because
the installation package is different than the one used for Oracle Database.

• Multiple shard directors. For high-availability purposes, it is recommended that you have
more than one shard director running in a distributed database system. Any additional
shard directors can run on their own hosts or on the hosts running the standby shard
catalog databases.

• Shards. In addition to the above hosts, each shard that is configured in the system should
also run on its own separate host. The hosts and their configurations chosen for this task
should be sized in the same way as a typical Oracle Database host depending on how
much load is put on each particular shard.

• Shard standbys (replicas). Again, for high-availability and disaster recovery purposes,
use Oracle Data Guard and replicas created for all sharded data. Additional hosts will be
needed to run these replica or standby databases.

When the number of hosts and capacity requirements for each host have been determined,
provision your hardware resources as appropriate for your environment using whatever
methodologies you choose.

Note

Oracle Globally Distributed Database does not support proxy PDBs.

Hardware and Operating System

Hardware and operating system requirements for shards are the same as those for Oracle
Database. See your Oracle Database installation documentation for these requirements.

Hardware and operating system requirements for the shard catalog and shard directors are
the same as those for the Global Data Services catalog and global service manager. See 
Oracle Database Global Data Services Concepts and Administration Guide for these
requirements.

Network

Low Latency GigE is strongly recommended

Port Communication

Before installing any software, you must confirm that the hosts can communicate with each
other though the ports as described below. Because a distributed database configuration is
inherently a distributed system, it is crucial that this connectivity between and among all of the
hosts is confirmed before moving on to the next steps in the deployment process. Failure to set
up port access correctly will lead to failures in subsequent commands.

Chapter 3
Planning Your Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 34

https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/shard&id=GSMUG-GUID-B7010949-4EAE-4AB1-A136-D5A4CD2AE688


• Each and every shard must be able to reach each and every shard director's listener and
ONS ports. The shard director listener ports and the ONS ports must also be opened to the
application/client tier, all of the shards, the shard catalog, and all other shard directors.

The default listener port of the shard director is 1522, and the default ONS ports on most
platforms are 6123 for the local ONS and 6234 for remote ONS.

• Each and every shard must be able to reach the TNS Listener port (default 1521) of the
shard catalog (both primary and standbys).

• The TNS Listener port of each shard must be opened to all shard directors and the shard
catalog.

• All of the port numbers listed above are modifiable during the deployment configuration.
However, the port numbers to be used must be known before setting up the host software.

Host Name Resolution

Host name resolution must be successful between all of the shard catalog, shards, and shard
director hosts. Operating system commands such as ‘ping’ must succeed from a given host to
any other host when specifying any host names provided during distributed database
configuration commands.

Database

To see which editions of Oracle Database support Oracle Globally Distributed Database, see:

1. Oracle Database Features and Licensing app at https://apex.oracle.com/database-
features/.

Select the Licensing tab, deselect all boxes under Offerings, and search for Oracle
Globally Distributed Database to display the list of all supported editions.

2. Permitted Features, Options, and Management Packs by Oracle Database Offering in
Oracle AI Database Licensing Information User Manual for notes regarding the use of
Oracle Globally Distributed Database in specific editions.

Install the Oracle Database Software
Install Oracle Database on each system that will host the shard catalog, a database shard, or
their replicas.

To see which editions of Oracle Database support Oracle Globally Distributed Database, see:

1. Oracle Database Features and Licensing app at https://apex.oracle.com/database-
features/.

Select the Licensing tab, deselect all boxes under Offerings, and search for Oracle
Globally Distributed Database to display the list of all supported editions.

2. Permitted Features, Options, and Management Packs by Oracle Database Offering in
Oracle AI Database Licensing Information User Manual for notes regarding the use of
Oracle Globally Distributed Database in specific editions.

Aside from the requirement that the shard catalog and all of the shards in an Oracle Globally
Distributed Database configuration require Oracle Database Enterprise Edition, there are no
other special installation considerations needed for a distributed database as long as the
installation is successful and all post-install scripts have been run successfully.

See your platform’s installation guide at https://docs.oracle.com/en/database/oracle/oracle-
database/ for information about configuring operating system users.

Chapter 3
Install the Oracle Database Software

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 34

https://apex.oracle.com/database-features/
https://apex.oracle.com/database-features/
https://apex.oracle.com/database-features/
https://apex.oracle.com/database-features/
https://docs.oracle.com/en/database/oracle/oracle-database/
https://docs.oracle.com/en/database/oracle/oracle-database/


Install the Shard Director Software
Install the global service manager software on each system that you want to host a shard
director.

Note that this software installation is distinct from an Oracle Database installation. If you
choose to co-locate the shard director software on the same host as the shard catalog
database, it must be installed in a separate Oracle Home.

See Oracle AI Database Global Data Services Concepts and Administration Guide for
information about installing the global service manager software.

Create the Shard Catalog Database
Use the following information and guidelines to create the shard catalog database.

The shard catalog database contains a small amount of distributed database topology
metadata and also contains all the duplicated tables that will be created for use by your
sharded application. The shard catalog database also acts as a query coordinator to run cross-
shard queries that select and aggregate data from more than one shard.

From a distributed database perspective, the way in which you create or provision the catalog
database is irrelevant. The database can be created with the Database Configuration Assistant
(DBCA), manually using SQL*Plus, or provisioned from cloud infrastructure tools.

As long as you have a running Oracle Database Enterprise Edition instance on the shard
catalog host with the following characteristics, it can used as the shard catalog.

• Create a pluggable database (PDB) for use as the shard catalog database. Using the root
container (CDB$ROOT) of a container database (CDB) as the shard catalog database is not
supported.

• Your shard catalog database must use a server parameter file (SPFILE). This is required
because the distributed database infrastructure uses internal database parameters to store
configuration metadata, and that data needs to persist across database startup and
shutdown operations.

$ sqlplus / as sysdba

SQL> show parameter spfile

NAME     TYPE      VALUE
-------- --------- ------------------------------------
spfile   string    /u01/app/oracle/dbs/spfilecat.ora 

• The database character set and national character set must be the same, because it is
used for all of the shard databases. This means that the character set chosen must contain
all possible characters that will be inserted into the shard catalog or any of the shards.

This requirement arises from the fact that Oracle Data Pump is used internally to move
transportable tablespaces from one shard to another during GDSCTL MOVE CHUNK
commands. A requirement of that mechanism is that character sets must match on the
source and destination.

$ sqlplus / as sysdba

Chapter 3
Install the Shard Director Software

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 34



SQL> alter session set container=catalog_pdb_name;
SQL> select * from nls_database_parameters 
  2  where parameter like '%CHARACTERSET';

PARAMETER                                VALUE
---------------------------------------- --------------------
NLS_NCHAR_CHARACTERSET                   AL16UTF16
NLS_CHARACTERSET                         WE8DEC

• Because the shard catalog database can run multi-shard queries which connect to shards
over database links, the OPEN_LINKS and OPEN_LINKS_PER_INSTANCE database initialization
parameter values must be greater than or equal to the number of shards that will be part of
the distributed database configuration.

$ sqlplus / as sysdba    

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter open_links

NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------
open_links                           integer     20
open_links_per_instance              integer     20

• Set the DB_FILES database initialization parameter greater than or equal to the total
number of chunks and/or tablespaces in the system.

Each data chunk in a distributed database configuration is implemented as a tablespace
partition and resides in its own operating system data file. As a result, the DB_FILES
database initialization parameter must be greater than or equal to the total number of
chunks (as specified on the CREATE SHARDCATALOG or ADD SHARDSPACE commands) and/or
tablespaces in the system.

$ sqlplus / as sysdba    

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter db_files

NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------
db_files                             integer     1024

• To support Oracle Managed Files, which is used by the chunk management infrastructure,
the DB_CREATE_FILE_DEST database parameter must be set to a valid value.

This location is used during chunk movement operations (for example MOVE CHUNK or
automatic rebalancing) to store the transportable tablespaces holding the chunk data. In
addition, files described in Oracle AI Database Administrator’s Guide, "Using Oracle
Managed Files," are also stored in this location as is customary for any Oracle database
using Oracle Managed Files.

$ sqlplus / as sysdba    

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter db_create_file_dest

Chapter 3
Create the Shard Catalog Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 34



NAME                  TYPE      VALUE
--------------------- --------- -----------------------------
db_create_file_dest   string    /u01/app/oracle/oradata 

• If a standby catalog database will be part of the distributed database configuration, the
STANDBY_FILE_MANAGEMENT database parameter should be set to in order to automatically
create new database files on any standby catalog databases.

If this parameter is set to MANUAL (which is the default), then new database files created
during CREATE TABLESPACE commands, for example, will not be created on the standby.
This will cause data unavailability and application errors if the standby ever becomes a
primary database.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter standby_file_management

NAME TYPE VALUE
------------------------------------ ----------- ------------
standby_file_management stirng AUTO

• An Oracle-provided user account named GSMCATUSER must be unlocked and assigned a
password inside the PDB designated for the shard catalog. This account is used by the
shard director processes to connect to the shard catalog database and perform
administrative tasks in response to distributed database commands.

Note that GSMCATUSER is a common user in the container database. As a result, its
password is the same for CDB$ROOT and all PDBs in the CDB. If multiple PDBs in a single
CDB are to be used as catalog databases for different distributed database configurations,
they will all share the same GSMCATUSER password which can be a security concern. To
avoid this potential security concern, configure a separate CDB to host each shard catalog.
Each CDB should contain only a single shard catalog PDB so that no other PDBs in the
CDB can share the common GSMCATUSER password. In this way, multiple shard catalogs
can be configured across several CDBs, each having different GSMCATUSER passwords.

The password you specify is used later during distributed database topology creation in
any ADD GSM commands that are issued. It never needs to be specified again because the
shard director stores it securely in an Oracle Wallet and decrypts it only when necessary.

The MODIFY GSM command can be used to update the stored password if it is later changed
on the shard catalog database.

$ sqlplus / as sysdba

SQL> alter user gsmcatuser account unlock;

User altered.

SQL> alter user gsmcatuser identified by gsmcatuser_password;

User altered.

SQL> alter session set container=catalog_pdb_name;
SQL> alter user gsmcatuser account unlock;

User altered.

Chapter 3
Create the Shard Catalog Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 34



• A shard catalog administrator account must be created, assigned a password, and granted
privileges inside the PDB designated as the shard catalog.

This account is the administrator account for the distributed database metadata in the
shard catalog database. It is used to access the shard catalog using the GDSCTL utility
when an administrator needs to makes changes to the distributed database topology or
perform other administrative tasks.

GDSCTL connects as this user to the shard catalog database when GDSCTL commands are
run. The user name and password specified are used later in the CREATE SHARDCATALOG
command. As with the GSMCATUSER account above, the user name and password are
stored securely in an Oracle Wallet for later use. The stored credentials can be updated by
issuing an explicit CONNECT command from GDSCTL to reset the values in the wallet.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> create user mysdbadmin identified by mysdbadmin_password;

User created.

SQL> grant gsmadmin_role to mysdbadmin;

Grant succeeded.

• Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521) that can
service incoming connection requests for the shard catalog PDB.

The TNS Listener can be created and configured in whatever way you wish. Depending on
how the database was created, it may be necessary to explicitly create a database service
that can allow for direct connection requests to the PDB without the need to use ALTER
SESSION SET CONTAINER.

To validate that the listener is configured correctly, do the following using your newly
created mysdbadmin account above and an appropriate connect string. Running LSNRCTL
SERVICES lists all services currently available using the listener.

$ sqlplus mysdbadmin/mysdbadmin_password@catalog_connect_string

SQL> show con_name

CON_NAME
-----------------------
catalog_pdb_name

Once you confirm connectivity, make note of the catalog_connect_string above. It is used
later in the configuration process in the GDSCTL CREATE SHARDCATALOG command. Typically,
it will be of the form host:port/service_name (for example, cathost.example.com:1521/
catalog_pdb.example.com).

After all of the above requirements have been met, the newly created database can now be the
target of a GDSCTL CREATE SHARDCATALOG command.

For high availability and disaster recovery purposes, it is highly recommended that you also
create one or more standby shard catalog databases. From a distributed database
perspective, as long as the above requirements are also met on the standby databases, and all
changes to the primary shard catalog database are consistently applied to the standbys, there
are no further distributed database-specific configuration steps required.

Chapter 3
Create the Shard Catalog Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 34



Create the Shard Databases
The databases that will be used as shards should be created on their respective hosts.

As with the shard catalog database, the way in which you create or provision the shard
databases is irrelevant from a distributed database perspective. The database can be created
with the Database Configuration Assistant (DBCA), manually using SQL*Plus, or provisioned
from Oracle Cloud Infrastructure tools.

As long as you have a running Oracle Database Enterprise Edition instance on each shard
host that meets the following requirements, it can be used as a shard.

Unlock GSMROOTUSER

An Oracle-provided user account named GSMROOTUSER must be unlocked and assigned a
password inside CDB$ROOT of the database designated for a shard. In addition, this user must
be granted the SYSDG and SYSBACKUP system privileges.

The GSMROOTUSER account is used by GDSCTL and the shard director processes to connect to
the shard database to perform administrative tasks in response to distributed database
commands. The password specified is used by GDSCTL during distributed database topology
creation in any ADD CDB commands that are issued. It is also be used by the shard director
during the DEPLOY command to configure Oracle Data Guard (as necessary) on the shard
databases. It never needs to be specified again by the user, because GDSCTL and the shard
director store it securely in an Oracle Wallet and decrypt it only when necessary. The MODIFY
CDB command can be used to update the stored password if it is later changed on the shard
database.

$ sqlplus / as sysdba

SQL> alter user gsmrootuser account unlock;

User altered.

SQL> alter user gsmrootuser identified by gsmrootuser_password;

User altered.

SQL> grant SYSDG, SYSBACKUP to gsmrootuser;

Grant succeeded.

Unlock GSMUSER

An Oracle-provided user account named GSMUSER must be unlocked and assigned a password
inside the PDB designated as the shard database. In addition, this user must be granted the
SYSDG and SYSBACKUP system privileges.

Note that GSMUSER is a common user in the container database. As a result, its password is the
same for CDB$ROOT and all PDBs in the CDB, which can be a security concern. To avoid this,
host only one shard PDB per CDB, and do not unlock the GSMUSER account in any other PDBs.

This account is used by the shard director processes to connect to the shard database and
perform administrative tasks in response to distributed database commands. The password
specified is used later during distributed database topology creation in any ADD SHARD
commands that are issued. The password never needs to be specified again because the

Chapter 3
Create the Shard Databases

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 34



shard director stores it securely in an Oracle Wallet and only decrypts it when necessary. You
can update the stored password using the MODIFY SHARD command if the password is later
changed on the shard database.

$ sqlplus / as sysdba

SQL> alter user gsmuser account unlock;

User altered.

SQL> alter user gsmuser identified by gsmuser_password;

User altered.

SQL> alter session set container=shard_pdb_name;
SQL> alter user gsmuser account unlock;

User altered.

SQL> grant SYSDG, SYSBACKUP to gsmuser;

Grant succeeded.

Create a PDB

Create a pluggable database (PDB) for use as the shard database. Using the root container
(CDB$ROOT) of a container database (CDB) as a shard is not supported.

Verify SPFILE Exists

Your shard database must use a server parameter file (SPFILE).

The SPFILE is required because the distributed database infrastructure uses internal database
parameters to store configuration metadata, and that data must persist through database
startup and shutdown operations.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter spfile

NAME     TYPE      VALUE
-------- --------- ------------------------------------
spfile   string    /u01/app/oracle/dbs/spfileshard.ora

Calculate and Set DB_FILES Appropriately

Set the DB_FILES database initialization parameter greater than or equal to the total number of
chunks and/or tablespace sets required in the distributed database.

Each data chunk in a distributed database configuration is implemented as a tablespace
partition and resides in its own operating system data file. As a result, the DB_FILES database
initialization parameter must be greater than or equal to the total number of chunks (as
specified in the CREATE SHARDCATALOG or ADD SHARDSPACE commands) and/or tablespace sets
in the system.

Chapter 3
Create the Shard Databases

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 34



Note that the number of chunks present on a shard in a Raft replication scenario is the total of
all chunks that the shard is either leader or follower for.

To calculate the number of database files created for distributed database objects on a given
shard:

Database files required = (Number of CREATE TABLESPACE SET SQL statements executed
using SHARD DDL) * (Number of chunks present on the shard + 1)

DB_FILES must be set to at least the number of files used by the distributed database (above)
PLUS non-distributed database files (system, sysaux, and so on) PLUS any extra needed by
generic RDBMS code (5); therefore:

DB_FILES required in each shard = (Number of database files required, as calculated above)
+ Number of default database files(6) + 5

Check Character Sets

The database character set and national character set of the shard database must be the
same as that used for the shard catalog database and all other shard databases. This means
that the character set you choose must contain all possible characters that will be inserted into
the shard catalog or any of the shards.

This requirement arises from the fact that Oracle Data Pump is used internally to move
transportable tablespaces from one shard to another during MOVE CHUNK commands. A
requirement of that mechanism is that character sets must match on the source and
destination.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select * from nls_database_parameters 
  2  where parameter like '%CHARACTERSET';

PARAMETER                                VALUE
---------------------------------------- --------------------
NLS_NCHAR_CHARACTERSET                   AL16UTF16
NLS_CHARACTERSET                         WE8DEC

Set COMPATIBLE to 12.2.0 or Higher

The COMPATIBLE initialization parameter must be set to at least 12.2.0.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter compatible

NAME                   TYPE        VALUE
---------------------- ----------- -----------------
compatible             string      21.0.0

Set DB_CREATE_FILE_DEST

To support Oracle Managed Files, used by the chunk management infrastructure, the
DB_CREATE_FILE_DEST database parameter must be set to a valid value.

Chapter 3
Create the Shard Databases

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 34



This location is used during chunk movement operations (for example MOVE CHUNK or automatic
rebalancing) to store the transportable tablespaces holding the chunk data. In addition, files
described in Oracle AI Database Administrator’s Guide, "Using Oracle Managed Files," are
also stored in this location as is customary for any Oracle database using Oracle Managed
Files.

$ sqlplus / as sysdba    

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_create_file_dest

NAME                  TYPE      VALUE
--------------------- --------- -----------------------------
db_create_file_dest   string    /u01/app/oracle/oradata

Create DATA_PUMP_DIR

A directory object named DATA_PUMP_DIR must be created and accessible in the PDB from the
GSMADMIN_INTERNAL account.

GSMADMIN_INTERNAL is an Oracle-supplied account that owns all of the distributed database
metadata tables and PL/SQL packages. It should remain locked and is never used to login
interactively. It’s only purpose is to own and control access to the distributed database
metadata and PL/SQL.

$ sqlplus / as sysdba    

SQL> create or replace directory DATA_PUMP_DIR as ‘/u01/app/oracle/oradata’;

Directory created.

SQL> alter session set container=shard_pdb_name;
SQL> grant read, write on directory DATA_PUMP_DIR to gsmadmin_internal;

Grant succeeded.

Set DB_FILE_NAME_CONVERT

To support file movement from shard to shard, the DB_FILE_NAME_CONVERT database parameter
must be set to a valid value. This location is used when standby databases are in use, as is
typical with non-distributed databases, and the location can also be used during chunk
movement operations. For regular file system locations, it is recommended that this parameter
end with a trailing slash (/).

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_file_name_convert

NAME TYPE VALUE
---------------------- --------- -----------------------------
db_file_name_convert   string    /dbs/SHARD1/, /dbs/SHARD1S/

Set Up Oracle Net TNS Listener

Chapter 3
Create the Shard Databases

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 34



Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521) that can
service incoming connection requests for the shard PDB.

The TNS Listener can be created and configured in whatever way you wish. Depending on
how the database was created, it may be necessary to explicitly create a database service that
can allow for direct connection requests to the PDB without the need to use ALTER SESSION
SET CONTAINER.

To validate that the listener is configured correctly, run the following command using your newly
unlocked GSMUSER account and an appropriate connect string. Running LSNRCTL SERVICES lists
all services currently available using the listener.

$ sqlplus gsmuser/gsmuser_password@shard_connect_string

SQL> show con_name

CON_NAME
-----------------------
shard_pdb_name

Once you confirm connectivity, make note of the shard_connect_string above. It is used later in
the configuration process in the GDSCTL ADD SHARD command. Typically, the connect string is in
the form host:port/service_name (for example, shardhost.example.com:1521/
shard_pdb.example.com).

If standby shard databases will be used:

Enable Flashback Database

Enable Flashback Database if your distributed database will use Data Guard standby shard
databases.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select flashback_on from v$database;

FLASHBACK_ON
------------------
YES

Enable FORCE LOGGING

FORCE LOGGING mode must be enabled if your shard database will use standby shard
databases.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select force_logging from v$database;

FORCE_LOGGING
---------------------------------------
YES

Set STANDBY_FILE_MANAGEMENT

Chapter 3
Create the Shard Databases

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 34



If a standby shard databases will be part of the distributed database configuration, the
STANDBY_FILE_MANAGEMENT database parameter should be set to AUTO to automatically create
new database files on any standby shard databases.

If this parameter is set to MANUAL (which is the default), then new database files created during
CREATE TABLESPACE commands, for example, will not be created on the standby. This will
cause data unavailability and application errors if the standby ever becomes a primary
database.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter standby_file_management

NAME TYPE VALUE
------------------------------------ ----------- ------------
standby_file_management string AUTO

If Raft replication will be used:

Set the following database initialization parameters:

• FILESYSTEMIO_OPTIONS=setall - enables asynchronous I/O

• UNDO_RETENTION=900 - this is the default, and it is automatically tuned, but it is recommend
that you do not explicitly set this parameter to a very low value.

Validate the Shard Database
To validate that all of the shard database requirements have been met, you can run an Oracle-
supplied procedure, validateShard, that inspects the database and reports any issues
encountered. This procedure is read-only and makes no changes to the database
configuration.

The validateShard procedure can and should be run against primary, mounted (unopened)
standby, and Active Data Guard standby databases that are part of the distributed database
configuration. You can run validateShard multiple times and at any time during the distributed
database life cycle, including after upgrades and patching.

To run the validateShard package, do the following:

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard

This procedure will produce output similar to the following:

INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is SHARD1.
INFO: Database unique name is shard1.
INFO: Database ID is 4183411430.
INFO: Database open mode is READ WRITE.
INFO: Database in archivelog mode.

Chapter 3
Validate the Shard Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 34



INFO: Flashback is on.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is WE8DEC. This value must match the character 
set of the catalog database.
INFO: 'compatible' initialization parameter validated successfully.
INFO: Database is a multitenant container database.
INFO: Current container is SHARD1_PDB1.
INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_recovery_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_files=1000. Must be greater than the number of chunks and/or
tablespaces to be created in the shard.
INFO: dg_broker_start set to TRUE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '/dbs/SHARD1/, /dbs/SHARD1S/'
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '/u01/app/oracle/dbs/9830571348DFEBA8E0537517C40AF64B'.

All output lines marked INFO are for informational purposes and should be validated as correct
for your configuration.

All output lines marked ERROR must be fixed before moving on to the next deployment steps.
These issues will cause errors for certain distributed database operations if they are not
resolved.

All output lines marked WARNING may or may not be applicable for your configuration. For
example, if standby databases will not be used for this particular deployment, then any
warnings related to standby databases or recovery can be ignored. This is especially true for
non-production, proof-of-concept, or application development deployments. Review all
warnings and resolve as necessary.

Once all of the above steps have been completed, the newly created database can now be the
target of a GDSCTL ADD SHARD command.

For high availability and disaster recovery purposes, it is highly recommended that you also
create one or more standby shard databases. From a distributed database perspective, as
long as the above requirements are also met on the standby databases, and all changes to the
primary shard database are applied to the standbys, the standby database only needs to be
added to the distributed database configuration with an ADD SHARD command.

Configure the Distributed Database Topology
After the databases for the shard catalog and all of the shards are configured, along with
corresponding TNS listeners, you can add the distributed database metadata to the shard
catalog database using GDSCTL. The distributed database metadata describes the topology
used for the distributed database.

The distributed database topology consists of the data distribution method, replication (high
availability) technology, the default number of chunks to be present in the distributed database,
the location and number of shard directors, the numbers of shardgroups, shardspaces,
regions, and shards in the distributed database, and the global services that will be used to
connect to the distributed database.

Keep the Global Data Services Control Utility (GDSCTL) Command Reference in the Oracle AI
Database Global Data Services Concepts and Administration Guide on hand for information
about usage and options for the GDSCTL commands used in the configuration procedures.

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 34



Follow the procedures listed below, in order, to complete your distributed database topology
configuration.

Run the commands from a shard director host, because the GDSCTL command line interface is
installed there as part of the shard director (global service manager) installation.

Create the Shard Catalog
Use the GDSCTL CREATE SHARDCATALOG command to create metadata describing the distributed
database topology in the shard catalog database.

Note that once you run CREATE SHARDCATALOG, and the rest of the distributed database
metadata has been created, there are several metadata properties that cannot be modified
without recreating the entire distributed database from scratch. These include the distributed
database method (system-managed, user-defined, composite), replication technology (Oracle
Data Guard or Raft replication), default number of chunks in the shardspace, and others. Make
sure that you consult the GDSCTL reference documentation for the complete list of possible
command options and their defaults.

Shard Catalog Connect String

When you run the CREATE SHARDCATALOG command, GDSCTL connects to the shard catalog
database with the user name and connect string specified.

If your shard catalog database has an associated standby database for high availability or
disaster recovery purposes, the connection string, catalog_connect_string in the examples that
follow, should specify all primary and standby databases. If you don't include the standby
databases in the connect string, then the shard director processes will not be able to connect
to the standby if the primary shard catalog is unavailable.

Note that catalog_connect_string should specify the PDB for the shard catalog database, not
the CDB$ROOT.

The following is a simple tnsnames.ora entry.

CATALOG_CONNECT_STRING=
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = tcp)(HOST = primary_catalog)(PORT = 1521))
      (ADDRESS = (PROTOCOL = tcp)(HOST = standby_catalog)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVICE_NAME = catpdb.example.com)
    )
  )

Creating the Shard Catalog

Run CREATE SHARDCATALOG with the settings appropriate for your planned distributed database
topology.

System-Managed Distribution Method

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 34



In the following example, the distributed database metadata is created for a system-managed
configuration with two regions named region1 and region2. Because system-managed is
the default distribution method, it does not need to be specified with the -sharding parameter.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -repl DG -region region1,region2

Note also that if -shardspace is not specified, a default shardspace named shardspaceora is
created. If -region is not specified, the default region named regionora is created. If the
single default region is created along with the default shardspace, then a default shardgroup
named shardspaceora_regionora is also created in the shardspace.

For replication (-repl) with system-managed distribution, you can choose either Oracle Data
Guard (DG) or Raft replication (native).

Composite Distribution Method

The following example shows you how to create shard catalog metadata for a composite
distributed database with Data Guard replication in MaxAvailability protection mode, 60
chunks per shardspace, and two shardspaces.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding composite -chunks 60 
 -protectmode maxavailability -shardspace shardspace1,shardspace2

User-Defined Distribution Method

The next example shows you how to create shard catalog metadata for a user-defined
distributed database with Data Guard replication.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding user
 -protectmode maxperformance 

Consult the GDSCTL documentation or run GDSCTL HELP CREATE SHARDCATALOG for more details
about the command usage.

Replication Settings

Oracle Data Guard can be used with any data distribution method, and is configured in the
CREATE SHARDCATALOG command with -repl DG.

Raft replication requires a bit more planning, but it is also enabled in CREATE SHARDCATALOG
command with -repl native. See Raft Replication Configuration and Management for
additional configurable attributes.

Future Connections to the Shard Catalog

GDSCTL stores the credentials for the shard catalog administrator in a wallet on the local host.
However, for subsequent GDSCTL sessions on other hosts, it may be necessary to explicitly
connect to the shard catalog in order to perform administrative tasks by running the GDSCTL
CONNECT command, as shown here.

GDSCTL> connect mysdbadmin/mysdbadmin_password@catalog_connect_string

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 34



Add and Start Shard Directors
Add to the configuration the shard directors, which will monitor the distributed database system
and run background tasks in response to GDSCTL commands and other events, and start them.

The following commands must be run on the host where the shard director processes are to
run. This can be the shard catalog host or a dedicated host for the shard director processes.

1. Add and start a shard director (GSM), as shown in the following example.

GDSCTL> connect mysdbadmin/mysdbadmin_password@catalog_connect_string
GDSCTL> add gsm -gsm sharddirector1 -catalog catalog_connect_string -pwd 
gsmcatuser_password
GDSCTL> start gsm -gsm sharddirector1

The value for the -gsm parameter is the name that you will be using to reference this shard
director in later GDSCTL commands. The values for the -catalog and -pwd parameters
should be the same used when you created the shard catalog database.

Use the -listener, -localons, and -remoteons parameters as described in the GDSCTL
reference to override the default port numbers of 1522, 6123, and 6234, respectively.
Always confirm that the port numbers to be used, whether default or user-specified, are
available on the host and do not conflict with other running software or Oracle listeners.

2. Repeat the ADD GSM and START GSM commands for any additional shard directors on each
shard director host.

Replace the shard director name (that is, sharddirector1 in the example) with an
appropriate value for each shard director.

If more than one shard director is used, then multiple regions must have been created for
them in the CREATE SHARDCATALOG command, or you can add them later by running ADD
REGION.

Specify a region for each shard director with the -region parameter on each ADD GSM
command, as shown here.

GDSCTL> add gsm -gsm sharddirector2 -catalog catalog_connect_string -pwd 
gsmcatuser_password -region dc2

For later GDSCTL sessions, you might need to explicitly specify the shard director to be
administered. If an error message is shown referencing the default GSMORA shard director, run
GDSCTL SET GSM before continuing, as shown here.

GDSCTL> set gsm -gsm sharddirector1

Add Shardspaces If Needed
If you are using composite or user-defined data distribution, and you need to add more
shardspaces to complete your desired distributed database topology, use the ADD SHARDSPACE
command to add additional shardspaces.

• Run ADD SHARDSPACE as shown here.

GDSCTL> add shardspace -shardspace shardspace2 

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 34



By default, the ADD SHARDSPACE command inherits the -chunks and -protectmode values
that you used in the CREATE SHARDCATALOG command. You can specify, on a per-
shardspace basis,the number of chunks and the Data Guard protection mode by using the
-chunks and -protectmode parameters with ADD SHARDSPACE.

Add Shardgroups If Needed
If your distributed database topology uses the system-managed or composite data distribution
method, you can add any necessary additional shardgroups for your application.

Each shardspace must contain at least one primary shardgroup and may contain any number
or type of standby shardgroups. Shardgroups are not used in the user-defined distribution
method.

• Run ADD SHARDGROUP to add shardgroups to the configuration.

GDSCTL> add shardgroup -shardgroup shardgroup_primary -shardspace 
shardspace1
 -deploy_as primary -region region1
GDSCTL> add shardgroup -shardgroup shardgroup_standby -shardspace 
shardspace1
 -deploy_as active_standby -region region2

Note that when you run ADD SHARDGROUP you can specify one of three types of
shardgroups: primary, standby (mounted, not open), and active_standby (open, available
for queries) using the -deploy_as parameter (the default is standby).

Any shards subsequently added to the shardgroup must be opened in the mode
corresponding to the -deploy_as setting for the shardgroup. For example, read-write for
primary shardgroups, mounted for standby shardgroups, or read-only with apply for active
standby shardgroups.

After shards are deployed, their current mode is monitored by the shard directors and
communicated to the shard catalog such that it is possible and expected that shards of
different open modes may be in the same shardgroup, depending upon subsequent
switchover or failover operations.

Verify the Distributed Database Topology
Before adding information about your shard databases to the catalog, verify that your
distributed database topology is correct before proceeding by using the various GDSCTL CONFIG
commands.

Once shards are added and deployed, it is no longer possible to change much of the shard
catalog metadata, so validating your configuration is an important task at this point.

• Run GDSCTL CONFIG to view overall configuration information.

GDSCTL> config

Regions
------------------------
region1                       
region2                       

GSMs

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 34



------------------------
sharddirector1                          
sharddirector2                          

Sharded Database
------------------------
orasdb                     

Databases
------------------------ 

Shard Groups
------------------------
shardgroup_primary                         
shardgroup_standby                         

Shard spaces
------------------------
shardspaceora                         

Services
------------------------

GDSCTL pending requests
------------------------
Command                   Object                  Status
-------                   ------                  ------

Global properties
------------------------
Name: oradbcloud
Master GSM: sharddirector1
DDL sequence #: 0

You can use the various GDSCTL CONFIG commands to display more information about
shardspaces, shardgroups, and other shard catalog objects. For a complete list of GDSCTL
CONFIG command variants, see the GDSCTL reference documentation or run GDSCTL HELP.

Add the Shard CDBs
Add the CDBs containing the shard PDBs to the distributed database configuration with the
ADD CDB command.

1. Run the ADD CDB command as shown here.

GDSCTL> add cdb -connect cdb_connect_string -pwd gsmrootuser_password

This command causes GDSCTL to connect to GSMROOTUSER/
gsmrootuser_password@cdb_connect_string as SYSDG to validate settings and to retrieve
the DB_UNIQUE_NAME of the CDB, which will become the CDB name in the shard catalog.

2. Repeat the ADD CDB command for all of the CDBs that contain a shard PDB in the
configuration.

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 34



3. When all of the CDBs are added, run GDSCTL CONFIG CDB to display a list of CDBs in the
catalog.

GDSCTL> config cdb

Add the Shard PDBs
Use the ADD SHARD command to add the shard PDB information to the shard catalog, then
verify it with the CONFIG SHARD command.

1. Run ADD SHARD with the usage appropriate to your data distribution method, as shown in
the following examples.

For system-managed or composite distribution, run ADD SHARD with the parameters
shown here.

GDSCTL> add shard -connect shard_connect_string -pwd gsmuser_password 
-shardgroup shardgroup_name -cdb cdb_name

For user-defined distribution, the command usage is slightly different.

GDSCTL> add shard -connect shard_connect_string -pwd gsmuser_password 
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

The -cdb parameter specifies the name of the CDB in which the shard PDB exists, -
shardgroup or -shardspace specifies the location of the shard in your distributed database
topology, and -deploy_as specifies the open mode (primary, standby,
active_standby) of the shard.

Note

It is highly recommended that you set server=dedicated in the connect string.

When you run ADD SHARD, GDSCTL connects to GSMUSER/
gsmuser_password@shard_connect_string as SYSDG to validate the settings on the
shard, re-runs dbms_gsm_fix.validateShard to check for errors, and constructs the shard
name using the convention db_unique_name_of_CDB_PDB_name (for example
cdb1_pdb1).

Finally, the metadata that describes the shard is added to the shard catalog.

2. Run GDSCTL CONFIG SHARD to view the shard metadata on the shard catalog.

GDSCTL> config shard
Name      Shard Group          Status    State    Region    Availability
--------- -------------------  ------    -----    ------    ------------
cdb1_pdb1 shardgroup_primary   U         none     region1   -
cdb2_pdb1 shardgroup_standby   U         none     region2   -
cdb3_pdb2 shardgroup_primary   U         none     region1   -
cdb4_pdb2 shardgroup_standby   U         none     region2   -

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 34



Note that the value for Status is U for “undeployed”, and State and Availability are none and
- until the DEPLOY command is successfully run.

Add Host Metadata
Add all of the host names and IP addresses of your shard hosts to the shard catalog.

As part of the deployment process, the shard director contacts the shards and directs them to
register with the shard director’s TNS listener process. This listener process only accepts
incoming registration requests from trusted sources and will reject registration requests from
unknown hosts.

If your shard hosts have multiple host names or network interfaces assigned to them, it is
possible that the incoming registration request to the shard director may come from a host that
was not automatically added during ADD SHARD. In this case, the registration request is rejected
and the shard will not deploy correctly. The visible symptom of this problem will be that CONFIG
SHARD shows PENDING for the shard’s Availability after DEPLOY has completed.

To avoid this issue, use the GDSCTL ADD INVITEDNODE command to manually add all host
names and IP addresses of your shard hosts to the shard catalog metadata.

1. View a list of trusted hosts.

By default, the ADD SHARD command adds the default host name of the shard host to the
shard catalog metadata, so that any registration requests from that host to the shard
director will be accepted. You can view the list of trusted hosts by running the GDSCTL
CONFIG VNCR command.

GDSCTL> config vncr

2. Ping from all of the hosts in the configuration to verify successful host name resolution.

Any hosts listed in the CONFIG VNCR output must be reachable by name from all of the other
hosts in the topology. Use the ping command from the shard, shard catalog, and shard
director hosts to verify that hostname resolution succeeds for all of the host names listed.

To resolve any issues, use operating system commands or settings to ensure that all of the
host names can be resolved.

3. Run the REMOVE INVITEDNODE command to manually remove any host names that are not
necessary and cannot be resolved from all of the hosts.

4. Run the ADD INVITEDNODE command to manually add all host names and IP addresses of
your shard hosts to the shard catalog metadata.

GDSCTL> add invitednode 127.0.0.1

Check Free DB_FILES
Verify that there are enough free data files in each shard to make sure there is enough
capacity to create the number of chunks and tablespace sets you need for the distributed
database.

To check free DB_FILES and parameter setting:

SQL> select count(*) from v$datafile;

  COUNT(*)

Chapter 3
Configure the Distributed Database Topology

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 34



----------
XxxXX

SQL> show parameter db_files

NAME                     TYPE     VALUE
------------------------------------ ----------- 
------------------------------
db_files                 integer     200

Formulas to calculate the DB_FILES setting can be found in Create the Shard Databases.

Deploy the Configuration
When the distributed database topology has been fully configured with GDSCTL commands, run
the GDSCTL DEPLOY command to deploy the Oracle Globally Distributed Database configuration.

When you run the GDSCTL DEPLOY command the output looks like the following.

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

What Happens During Deployment

As you can see, when you run DEPLOY several things happen.

• GDSCTL calls a PL/SQL procedure on the shard catalog that examines the distributed
database topology configuration to determine if there are any undeployed shards present
that are able to be deployed.

• For shards that need to be deployed, the shard catalog sends requests to the shard
director to update database parameters on the shards, populate topology metadata on the
shard, and direct the shard to register with the shard director.

• If Oracle Data Guard replication is in use, and standby databases are present to deploy,
then the shard director calls PL/SQL APIs on the primary shards to create a Data Guard
configuration, or to validate an existing configuration on the primary and standby sets. Fast
Start Failover functionality is enabled on all of the shards and, in addition, the shard
director starts a Data Guard observer process on its host to monitor the Data Guard
configuration.

• If new shards are being added to an existing distributed database that already contains
deployed shards (called an incremental deployment), then any DDL statements that have
been run previously are run on the new shards to ensure that the application schemas are
identical across all of the shards.

• Finally, in the case of an incremental deployment on a distributed database using system-
managed or composite data distribution methods, automatic chunk movement is scheduled
in the background, which is intended to balance the number of chunks distributed among
the shards now in the configuration. This process can be monitored using the GDSCTL
CONFIG CHUNKS command after the DEPLOY command returns control to GDSCTL.

What Does a Successful Deployment Look Like?

Chapter 3
Deploy the Configuration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 34



Following a successful deployment, the output from CONFIG SHARD should look similar to the
following, if Data Guard active standby shards are in use.

GDSCTL> config shard
Name      Shard Group          Status   State     Region   Availability
--------- -------------------  -------  --------  -------  ------------
cdb1_pdb1 shardgroup_primary   Ok       Deployed  region1  ONLINE
cdb2_pdb1 shardgroup_standby   Ok       Deployed  region2  READ ONLY
cdb3_pdb2 shardgroup_primary   Ok       Deployed  region1  ONLINE
cdb4_pdb2 shardgroup_standby   Ok       Deployed  region2  READ ONLY

If mounted, non-open standbys are in use, the output will be similar to the following, because
the shard director is unable to log in to check the status of a mounted database.

GDSCTL> config shard
Name      Shard Group         Status        State     Region   Availability
--------- ------------------  ------------- --------  -------  ------------
cdb1_pdb1 shardgroup_primary  Ok            Deployed  region1  ONLINE
cdb2_pdb1 shardgroup_standby  Uninitialized Deployed  region2  -
cdb3_pdb2 shardgroup_primary  Ok            Deployed  region1  ONLINE
cdb4_pdb2 shardgroup_standby  Uninitialized Deployed  region2  -

What To Do If Something Is Not Right

If any shards are showing an availability of PENDING, confirm that all steps related to ADD
INVITEDNODE and CONFIG VNCR from the topology configuration were completed. If not,
complete them now and run GDSCTL SYNC DATABASE -database shard_name to complete shard
deployment.

If the "State" column of the GDSCTL config shard command output shows a shard that is
"Replicated" instead of "Deployed," then the shard did not register with the GSM listener during
deployment. Any of the following steps can resolve the issue assuming that the ADD
INVITEDNODE and CONFIG VNCR steps in Add Host Metadata were completed:

1. Connect to the shard as SYS and run

alter system register reconnect;

2. Stop and restart the shard PDB.

3. Stop and restart all GSMs.

After performing one of the three actions above, run CONFIG SHARD to verify the state of the
shard.

Create and Start Global Database Services
After the shards are successfully deployed, and the correct status has been confirmed, create
and start global database services on the shards to service incoming connection requests from
your application.

As an example, the commands in the following examples create read-write services on the
primary shards in the configuration and read-only services on the standby shards. These
service names can then be used in connect strings from your application to appropriately route
requests to the correct shards.

Chapter 3
Create and Start Global Database Services

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 34



Example 3-1    Add and start a global service that runs on all of the primary shards

The following commands create and start a global service named oltp_rw_srvc that a client
can use to connect to the distributed database. The oltp_rw_srvc service runs read/write
transactions on the primary shards.

GDSCTL> add service -service oltp_rw_srvc -role primary
GDSCTL> start service -service oltp_rw_srvc

Example 3-2    Add and start a global service for the read-only workload to run on the
standby shards

The oltp_ro_srvc global service is created and started to run read-only workloads on the
standby shards. This assumes that the standby shards are Oracle Active Data Guard standby
shards which are open for read-only access. Mounted, non-open standbys cannot service
read-only connections, and exist for disaster recovery and high availability purposes only.

GDSCTL> add service -service oltp_ro_srvc -role physical_standby
GDSCTL> start service -service oltp_ro_srvc

Example 3-3    Verify the status of the global services

GDSCTL> config service 

Name         Network name                    Pool    Started Preferred all
----         ------------                    ----    ------- -------------
oltp_rw_srvc oltp_rw_srvc.orasdb.oracdbcloud orasdb  Yes     Yes
oltp_ro_srvc oltp_ro_srvc.orasdb.oracdbcloud orasdb  Yes     Yes

GDSCTL> status service
Service "oltp_rw_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
   Instance "orasdb%1", name: "cdb1_pdb1", db: "cdb1_pdb1", region: 
"region1", status: ready.
   Instance "orasdb%21", name: "cdb3_pdb2", db: "cdb3_pdb2", region: 
"region1", status: ready.
Service "oltp_ro_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
   Instance "orasdb%11", name: "cdb2_pdb1", db: "cdb2_pdb1", region: 
"region2", status: ready.
   Instance "orasdb%31", name: "cdb4_pdb2", db: "cdb4_pdb2", region: 
"region2", status: ready.

Verify Shard Status
Once you complete the DEPLOY step in your Oracle Globally Distributed Database configuration
deployment, verify the detailed status of a shard

• Run GDSCTL CONFIG SHARD to see the detailed status of each shard.

GDSCTL> config shard -shard cdb1_pdb1
Name: cdb1_pdb1
Shard Group: shardgroup_primary
Status: Ok
State: Deployed

Chapter 3
Verify Shard Status

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 34



Region: region1
Connection string:shard_connect_string
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 23.0.0.0
Failed DDL:
DDL Error: ---
Management error:
Failed DDL id:
Availability: ONLINE
Rack:

Supported services
------------------------
Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled 

Creating a Shard Catalog Standby
You can modify the shard director to add a standby shard catalog database (that has already
been created).

This procedure assumes you have already created and configured a database appropriate for
a shard catalog Create the Shard Catalog Database.

1. Modify the shard director to add a standby shard catalog database.

When the standby shard catalog is not added in the connect string for ADD GSM it can be
done using MODIFY GSM.

Use the following command for each shard director in the distributed database
configuration. Include the full connect string to include both the primary and standby
catalog databases.

A service can be created to use that instead of giving the full connect string.

GDSCTL> MODIFY GSM -gsm shard_director_name
 -catalog '(DESCRIPTION =(CONNECT_TIMEOUT=3)(TRANSPORT_CONNECT_TIMEOUT=3)
(RETRY_COUNT=3)(FAILOVER=ON)(ADDRESS_LIST= (address = (protocol = tcp)
(host = &primaryCatalog)(port = &dbport))(address = (protocol = tcp)(host 
= &standbyCatalog)(port = &dbport)))(CONNECT_DATA =(SERVICE_NAME = 
&serviceName)))'
 -pwd gsmcatuser_password

2. Restart the shard director to use the updated connection string with the standby catalog
database.

GDSCTL> stop gsm
GDSCTL> start gsm

Chapter 3
Creating a Shard Catalog Standby

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 34



3. Switch over from the shard catalog primary database to its standby.

$dgmgrl
DGMGRL> connect sys/password as sysdba
DGMGRL> show configuration
DGMGRL> SWITCHOVER TO '&PhysicalStandby'

In this case, we are switching over to <Catalog1b>

DGMGRL> show configuration

4. After the catalog switchover, open the PDBs on the original shard catalog primary (recently
switched to catalog standby).

$ sqlplus / as sysdba
SQL> show pdbs

It will show OPEN MODE as "MOUNTED"

SQL>alter pluggable database all open services=all;
SQL>show pdbs

It will show OPEN MODE as "READ ONLY"

Note

The catalog database may need to be restarted if the database is not in the
expected mode, even after following the above steps.

5. Validate the GSM connection.

$gdsctl validate

6. Validate logs showing switchover activities.

Check observer logs at $GSM_HOME/network/admin

Validate observer logs on each database.

Verify that none of the observer logs shows errors from any databases or shard directors
(GSMs).

Example Distributed Database Deployment
This example explains how to deploy a typical system-managed Oracle Globally Distributed
Database with multiple replicas, using Oracle Data Guard for high availability.

To deploy a system-managed distributed database you create shardgroups and shards, create
and configure the databases to be used as shards, run the DEPLOY command, and create role-
based global services.

You are not required to map data to shards in the system-managed data distribution method,
because the data is automatically distributed across shards using partitioning by consistent
hash. The partitioning algorithm evenly and randomly distributes data across shards. For more

Chapter 3
Example Distributed Database Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 34



conceptual information about the system-managed distribution method, see System-Managed
Data Distribution.

Example Oracle Globally Distributed Database Topology
Consider the following system-managed Oracle Globally Distributed Database configuration,
where shardgroup sg1 contains the primary shards, while shardgroups sg2 and sg3 contain
standby replicas.

In addition, let’s assume that the replicas in shardgroup sg2 are Oracle Active Data Guard
standbys (that is, databases open for read-only access), while the replicas in shardgroup sg3
are mounted databases that have not been opened.

 

Chapter 3
Example Distributed Database Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 34



Key

Redo Apply

Backup

Data Center 2  Region = dc2

gsmhost2

shardgroup 
sg3

shardhost7

cdb7

pdb1

cathost2

catpdb2

catcdb2

shardhost8

cdb8

pdb2

shardhost9

cdb9

pdb3

Data Center 1  Region = dc1

gsmhost1

gsmhost1b

shardgroup 
sg1

shardhost1

cdb1

pdb1

cathost

catpdb

catcdb

cathost1

catpdb1

catcdb1

shardhost2

cdb2

pdb2

shardhost3

cdb3

pdb3

shardgroup 
sg2

shardhost4

cdb4

pdb1

shardhost5

cdb5

pdb2

shardhost6

cdb6

pdb3

1522

1521 1521

1521 1521

1521

1521

1521

gsmhost2b

1521

1521

1521

1522

1521 1521

gsm1

gsm2bgsm1b

gsm2

Chapter 3
Example Distributed Database Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 34



 

Table 3-1    Example System-Managed Topology Host Names

Topology Object Description

Shard Catalog Database Every distributed database topology requires a
shard catalog. In our example, the shard catalog
database has 2 standbys, one in each data center.

Primary

• Data center = 1
• Host name = cathost
• DB_UNIQUE_NAME = catcdb
• PDB name = catpdb
• Connect service name = catpdb
Active Standby

• Data center = 1
• Host name = cathost1
Standby

• Data center = 2
• Host name = cathost2

Regions Because there are two data centers involved in this
configuration, there are two corresponding regions
created in the shard catalog database.

Data center 1

• Region name = dc1
Data center 2

• Region name = dc2

Shard Directors (global service managers) Each region requires a shard director running on a
host within that data center.

Data center 1

• Shard director host name = gsmhost1
• Shard director name = gsm1
Data center 2

• Shard director hast name = gsmhost2
• Shard director name = gsm2

Shardgroups Data center 1

• sg1
• sg2
Data center 2

• sg3

Shards • Host names = shardhost1, …, shardhost9
• DB_UNIQUE_NAME = cdb1, …, cdb9
• PDB names = pdb1, pdb2, pdb3

PDB names on standby replicas are the same
as the PDB names on their corresponding
primaries

Deploy the Example Distributed Database
Do the following steps to deploy the example system-managed distributed database with
multiple replicas, using Oracle Data Guard for high availability.

Chapter 3
Example Distributed Database Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 34



1. Provision and configure the following hosts: cathost, cathost1, cathost2, gsmhost1,
gsmhost2, and hosts shardhost1 through shardhost9.

See Provision and Configure Hosts and Operating Systems for details.

2. Install the Oracle Database software on the following hosts: cathost, cathost1, cathost2,
and shardhost1 through shardhost9.

See Install the Oracle Database Software for details.

3. Install the shard director software on hosts gsmhost1 and gsmhost2.

See Install the Shard Director Software for details.

4. Create the shard catalog database and start an Oracle TNS Listener on cathost.

Additionally, create standby replicas of the catalog on cathost1 and cathost2, and verify
that changes made to the primary catalog are applied on these standbys.

See Create the Shard Catalog Database for details.

5. Create the 3 primary databases that will contain the sharded data on hosts shardhost1,
shardhost2 and shardhost3.

Create the corresponding replicas, located and named as listed here.

• shardhost1 (cdb1/pdb1) replicas on shardhost4 (cdb4) and shardhost7 (cdb7)

• shardhost2 (cdb2/pdb2) replicas on shardhost5 (cdb5) and shardhost8 (cdb8)

• shardhost3 (cdb3/pdb3) replicas on shardhost6 (cdb6) and shardhost9 (cdb9)

The db_unique_name of the 9 container databases (CDB) should be cdb1 through cdb9, in
which the PDB names should be pdb1, pdb2 and pdb3 on the three primaries and their
replicas.

The service names for the CDBs should be cdb1 through cdb9, which the service names
for the PDB shards are pdb1, pdb2, and pdb3.

See Create the Shard Databases for details.

6. Assuming that all port numbers are the defaults, to configure the distributed database
topology, issue the following GDSCTL commands, replacing domains and passwords with
the appropriate values.

a. On host gsmhost1, run the following commands in GDSCTL.

create shardcatalog -database cathost.example.com:1521/
catpdb.example.com -user mydbsadmin/mydbsadmin_password -region dc1,dc2

add gsm -gsm gsm1 -region dc1 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm1

See Create the Shard Catalog and Add and Start Shard Directors for details.

b. On host gsmhost2, run the following commands in GDSCTL.

connect mydbsadmin/mydbsadmin_password@cathost.example.com:1521/
catpdb.example.com
add gsm -gsm gsm2 -region dc2 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm2

Chapter 3
Example Distributed Database Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 34



See Add and Start Shard Directors for details.

c. Back on host gsmhost1, run the following from GDSCTL to complete the distributed
database setup.

add shardgroup -shardgroup sg1 -deploy_as primary -region dc1
add shardgroup -shardgroup sg2 -deploy_as active_standby -region dc1
add shardgroup -shardgroup sg3 -deploy_as standby -region dc2
add cdb -connect shardhost1.example.com:1521/cdb1.example.com -pwd 
gsmrootuser_password
add cdb -connect shardhost2.example.com:1521/cdb2.example.com -pwd 
gsmrootuser_password

Repeat the ADD CDB command for shardhost3 through shardhost9 and cdb3 through
cdb9, then run the following commands.

add shard -connect shardhost1.example.com:1521/pdb1.example.com -pwd 
gsmuser_password -shardgroup sg1 -cdb cdb1
add shard -connect shardhost2.example.com:1521/pdb2.example.com -pwd 
gsmuser_password -shardgroup sg1 -cdb cdb2
add shard -connect shardhost3.example.com:1521/pdb3.example.com -pwd 
gsmuser_password -shardgroup sg1 -cdb cdb3
add shard -connect shardhost4.example.com:1521/pdb1.example.com -pwd 
gsmuser_password -shardgroup sg2 -cdb cdb4
add shard -connect shardhost5.example.com:1521/pdb2.example.com -pwd 
gsmuser_password -shardgroup sg2 -cdb cdb5
add shard -connect shardhost6.example.com:1521/pdb3.example.com -pwd 
gsmuser_password -shardgroup sg2 -cdb cdb6
add shard -connect shardhost7.example.com:1521/pdb1.example.com -pwd 
gsmuser_password -shardgroup sg3 -cdb cdb7
add shard -connect shardhost8.example.com:1521/pdb2.example.com -pwd 
gsmuser_password -shardgroup sg3 -cdb cdb8
add shard -connect shardhost9.example.com:1521/pdb3.example.com -pwd 
gsmuser_password -shardgroup sg3 -cdb cdb9

See Add Shardgroups If Needed, Add the Shard CDBs, and Add the Shard PDBs for
details.

d. Use the CONFIG VNCR and ADD INVITEDNODE commands to validate that all of the
VNCR entries are valid and sufficient for a successful deployment.

See Add Host Metadata for details.

e. Run DEPLOY from GDSCTL to complete the configuration of the distributed database.

See Deploy the Configuration for details.

f. Add and start services for read-write and read-only access to the distributed database.

add service -service oltp_rw_srvc -role primary
start service -service oltp_rw_srvc
add service -service oltp_ro_srvc -role physical_standby
start service -service oltp_ro_srvc

See Create and Start Global Database Services for details.

Chapter 3
Example Distributed Database Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 34



7. You can use the GDSCL CONFIG, CONFIG SHARD, and CONFIG SERVICE commands to validate
that all of the shards and services are online and running.

See Verify Shard Status for details.

Chapter 3
Example Distributed Database Deployment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 34



4
Oracle Globally Distributed Database Schema
Design

To obtain the benefits of Oracle Globally Distributed Database, the schema should be designed
in a way that maximizes the number of database requests processed on a single shard.

Topics:

• Schema Design Considerations

• Sharding Keys

• Creating Schema Objects

• Creating Indexes on Sharded Tables

• Oracle AI Vector Search in a Distributed Database

• Modifying a Distributed Database Schema

• DDL Processing in a Distributed Database

• Running PL/SQL Procedures in a Distributed Database

• Generating Unique Sequence Numbers Across Shards

• High Speed Data Ingest with SQL*Loader

• Schema Creation Examples

• DDL Failure and Recovery Examples

Schema Design Considerations
Design of the Oracle Globally Distributed Database schema has a big impact on performance
and scalability. An improperly designed schema can lead to unbalanced distribution of data
and workload across shards and large percentage of multi-shard operations.

The data model should be a hierarchical tree structure with a single root table. Oracle Globally
Distributed Database supports any number of levels within the hierarchy.

To obtain the benefits of a distributed database, the schema of a distributed database should
be designed in a way that maximizes the number of database requests processed on a single
shard.

A distributed database schema consists of a sharded table family and duplicated tables with
the following characteristics.

Sharded table family

• A set of tables which are equi-partitioned by the sharding key.

– Related data is always stored and moved together.

– Joins and integrity constraint checks are done within a shard.

• The data distribution method and sharding key are based on the application's
requirements.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 51



• The sharding key must be included in the primary key.

Duplicated tables

• Non-sharded tables which are replicated to all shards.

• Usually contain common reference data.

• Can be read and updated on each shard.

Planning a Distributed Database Schema Design

Once the distributed database is populated with data, it is impossible to change many
attributes of the schema, such as whether a table is sharded or duplicated, sharding key, and
so on. Therefore, the following points should be carefully considered before deploying a
distributed database.

• Which tables should be sharded?

• Which tables should be duplicated?

• Which sharded table should be the root table?

• What method should be used to link other tables to the root table?

• Which data distribution method should be used?

• Which sharding key should be used?

• Which super sharding key should be used (if the data distribution method is composite)?

Sharding Keys
Tips for choosing sharding keys, information about constraints rules, and enabling data
movement between shards on sharding key updates.

Choosing Sharding Keys
Sharded table partitions are distributed across shards at the tablespace level, based on a
sharding key. Examples of keys include customer ID, account number, and country ID.

Sharding keys must adhere to the following characteristics.

• The sharding key should be very stable; its value should almost never change.

• The sharding key must be present in all of the sharded tables. This allows the creation of a
family of equi-partitioned tables based on the sharding key.

• Joins between tables in a table family should be performed using the sharding key.

Sharding Keys for System-Managed Distributed Databases

For the system-managed data distribution method, the sharding key must be based on a
column that has high cardinality; the number of unique values in this column must be much
bigger than the number of shards. Customer ID, for example, is a good candidate for the
sharding key, while a United States state name is not.

A sharding key can be a single column or multiple columns. When multiple columns are
present, the hash of the columns are concatenated to form the sharding key.

Chapter 4
Sharding Keys

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 51



The following examples create a sharded table called Customers and specify that columns
cust_id and name form the sharding keys for the table.

CREATE SHARDED TABLE customers
(cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250)
, region      VARCHAR2(20)
, class       VARCHAR2(3)
, signup      DATE,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, name))
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO
TABLESPACE SET ts1;

CREATE SHARDED TABLE Orders
( OrderNo   NUMBER NOT NULL
, CustNo    NUMBER NOT NULL
, Name      VARCHAR2(50) NOT NULL
, OrderDate DATE
, CONSTRAINT OrderPK PRIMARY KEY (CustNo, Name, OrderNo)
, CONSTRAINT CustFK  FOREIGN KEY (CustNo, Name) REFERENCES Customers(Cust_ID, 
Name)
)
PARTITION BY REFERENCE (CustFK);

Sharding Keys for Composite Distributed Databases

Composite data distribution enables two levels of partitioning - one by list or range and another
by consistent hash. This is accomplished by the application providing two keys: a super
sharding key and a sharding key.

Composite distribution does not support multi-column LIST partitionsets, as shown here.

CREATE SHARDED TABLE customers (
cust_id     NUMBER NOT NULL,
Name    VARCHAR2(50) NOT NULL,
class VARCHAR2(3) NOT NULL ,
class2 number not null,
CONSTRAINT cust_pk PRIMARY KEY(cust_id,name,class))
PARTITIONSET BY LIST (class, class2)
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO (
PARTITIONSET silver VALUES (('SLV',1),('BRZ',2)) TABLESPACE SET ts1
PARTITIONSET gold   VALUES (('GLD',3),('OTH',4)) TABLESPACE SET ts2);

PARTITION BY CONSISTENT HASH (cust_id,name)
*
ERROR at line 8:
ORA-02514: list PARTITIONSET method expects a single partitioning column

Chapter 4
Sharding Keys

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 51



Multi-column RANGE partitionsets are supported, as shown below.

CREATE SHARDED TABLE customers (
cust_id     NUMBER NOT NULL,
Name    VARCHAR2(50) NOT NULL,
class number NOT NULL ,
class2 number not null,
CONSTRAINT cust_pk PRIMARY KEY(cust_id,name,class))
PARTITIONSET BY RANGE (class, class2)
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO (
PARTITIONSET silver VALUES LESS THAN (10,100) TABLESPACE SET ts1,
PARTITIONSET gold   VALUES LESS THAN (20,200) TABLESPACE SET ts2);

Table created.

In both of the above cases, the sharding key (not the partitionset key) can be multi-column.

Sharding Keys for User-Defined Distributed Databases

For partition by list in user-defined data distribution, Oracle Globally Distributed Database
expects a single sharding key column. An error is thrown when multiple columns are specified
for a list-partitioned sharded table.

CREATE SHARDED TABLE accounts
( id             NUMBER
, account_number NUMBER
, customer_id    NUMBER
, branch_id      NUMBER
, state          VARCHAR(2) NOT NULL
, state2         VARCHAR(2) NOT NULL
, status         VARCHAR2(1)
)
PARTITION BY LIST (state,state2)
( PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
);

ERROR at line 1:
ORA-03813: list partition method expects a single partitioning column in
user-defined sharding

For a range-partitioned sharded table, you can specify multiple columns as sharding key
columns.

CREATE SHARDED TABLE accounts
( id             NUMBER
, account_number NUMBER
, customer_id    NUMBER

Chapter 4
Sharding Keys

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 51



, branch_id      NUMBER
, state          NUMBER NOT NULL
, state2         NUMBER NOT NULL
, status         VARCHAR2(1)
)
PARTITION BY RANGE (state, state2)
( PARTITION p_northwest VALUES LESS THAN(10, 100) TABLESPACE ts1
, PARTITION p_southwest VALUES LESS THAN(20,200) TABLESPACE ts2);

Table created.

But in both cases, the sharding key (not the partitionset key) can be multi-column.

Sharding Key Type Support

The following data types are supported for the sharding key.

• NUMBER

• INTEGER

• SMALLINT

• RAW

• VARCHAR

• (N)VARCHAR2

• (N)CHAR

• DATE

• TIMESTAMP

Primary Key and Foreign Key Constraints
In a Oracle Globally Distributed Database environment, the primary key constraints and foreign
key constraints are controlled by the following rules.

• For primary keys, there are unique constraints and unique indexes on sharded tables; the
column list must contain the sharding key columns. In earlier Oracle releases the
restriction was that the sharding key must be a prefix of such columns, but this rule is now
more relaxed.

• Foreign keys from one sharded table to another sharded table also must contain the
sharding key. This is automatically enforced because a foreign key refers to either the
primary key or unique columns of the referenced table.

• Foreign keys on sharded tables must be within the same table family. This is required
because different table families have different sharding key columns.

• Foreign keys in sharded tables referencing local tables are not allowed.

• Foreign keys in sharded tables referencing duplicated tables are not allowed.

• Foreign keys in duplicated table referencing sharded tables are not allowed.

Chapter 4
Sharding Keys

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 51



Enabling Automatic Data Movement on Sharding Key Update
You can update the sharding key for any particular record directly on the shard where the data
is located, using a normal SQL UPDATE statement. Oracle Globally Distributed Database moves
the data to the correct shard automatically, as a distributed transaction in the background.

Note

It is recommended that you commit your previous work and start a new transaction
before you update a sharding key, because a distributed transaction has a higher risk
than local transaction in the case of a remote machine or network failure. To avoid
race condition, the rows being updated are locked before starting the insertion-deletion
operation.

Use Case

Sometimes a sharding key value for a particular record must be updated. For example,
employee location can be one of the sharding keys. When employees move from one country
to another, their country value must be updated, in which case the data must be moved to the
shard mapped to the new key value.

What happens when I update a sharding key?

When a record’s sharding key value is updated in a sharded table, the record could end up in
three possible locations after the update, depending on which shard the new value is mapped
to.

1. The row stays within the same partition.

2. The row is moved to a different partition in the same shard.

3. The row is moved to a different shard.

When the sharding key value on a particular row of a sharded table is updated, Oracle Globally
Distributed Database handles moving the data to a new location, whether it is in a different
partition on the same shard or on a different shard.

Support for Sharded Table Family

A table family is a parent-child relationship between database tables. Multiple tables linked by
such relationships typically form a tree-like hierarchy where every child has a single parent. A
table family can be defined using reference partitioning or the PARENT clause.

Support for automatic row movement in a table family which was created with the PARENT
clause, requires primary key-foreign key constraints to be added between the parent and child
table.

In a table family which was created with reference partitioning, the primary key-foreign key
constraints between the parent and child table already exist, so automatic row movement is
supported and no extra step is needed.

Enable and Disable Automatic Data Movement

This operation uses the ROW MOVEMENT clause on the sharded table in the database.

ALTER TABLE tablename ENABLE ROW MOVEMENT;

Chapter 4
Sharding Keys

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 51



ALTER TABLE tablename DISABLE ROW MOVEMENT;

ROW MOVEMENT can also be specified on CREATE TABLE.

When ROW MOVEMENT is enabled and there is an update to the sharding key value, the data is
transparently moved between shards.

For details about the ROW MOVEMENT clause, see row_movement_clause in Oracle Database
SQL Language Reference.

Enable Automatic Data Movement in a Table Family

In the case of a table family, ROW MOVEMENT must be enabled on the child table first, and then
on the parent table.

In the example below, accounts is the root table, orders is a child of accounts, lineitems is a
child of orders.

ALTER TABLE lineitems ENABLE ROW MOVEMENT;

ALTER TABLE orders ENABLE ROW MOVEMENT;

ALTER TABLE accounts ENABLE ROW MOVEMENT;

Limitations

• This feature is not supported when Raft replication is configured.

• This feature and the ON DELETE CASCADE clause in a sharded table are not compatible.
Sharding key update DML for a table family fails when the ON DELETE CASCADE clause is
defined on the sharded table family.

Creating Schema Objects
The following topics show you how to create the schema objects in your Oracle Globally
Distributed Database.

Refer back to Schema Objects for conceptual information about these objects.

Create an All-Shards User
Local users that only exist in the shard catalog database do not have the privileges to create
schema objects in the Oracle Globally Distributed Database. The first step of creating the
distributed database schema is to create an all-shards user.

Create an all-shards user by connecting to the shard catalog database as a privileged user,
enabling SHARD DDL, and running the CREATE USER command. When the all-shards user
connects to the shard catalog database, the SHARD DDL mode is enabled by default.

alter session enable shard ddl; 
create user <all-shards_user> identified by <password>; 
grant ...

The database administrator decides which privileges these accounts need, and grants them
individually to the account.

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 51



Note

Local users can create non-schema distributed database objects, such as
tablespaces, directories, and contexts, if they enable SHARD DDL mode; however, they
cannot create schema objects, such as tables, views, indexes, functions, procedures,
and so on.

Sharded objects cannot have any dependency on local objects. For example, you
cannot create an all-shard view on a local table.

You cannot grant SYS privileges to sharded users using sharded DDL. You must log in
to each shard and grant the privilege to the account manually on that shard.

Creating a Sharded Table Family
Create a sharded table family with the SQL CREATE TABLE statement. You can specify parent-
child relationships between tables using reference partitioning or equi-partitioning.

Use Reference Partitioning to Specify Parent-Child Relationships Between Tables

The recommended way to create a sharded table family is to specify parent-child relationships
between tables using reference partitioning.

Partitioning by reference simplifies the syntax since the partitioning scheme is only specified
for the root table. Also, partition management operations that are performed on the root table
are automatically propagated to its descendents. For example, when adding a partition to the
root table, a new partition is created on all its descendents.

The appropriate CREATE TABLE statements for Customers–Orders–LineItems schema using a
system-managed data distribution methodology are shown below. The first statement creates
the root table of the table family, Customers.

CREATE SHARDED TABLE Customers 
( CustNo      NUMBER NOT NULL
, Name        VARCHAR2(50)
, Address     VARCHAR2(250) 
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The following two statements create the Orders and LineItems tables, which are a child and
grandchild of the Customers table.

CREATE SHARDED TABLE Orders 
( OrderNo   NUMBER NOT NULL
, CustNo    NUMBER NOT NULL
, OrderDate DATE
, CONSTRAINT OrderPK PRIMARY KEY (CustNo, OrderNo)
, CONSTRAINT CustFK  FOREIGN KEY (CustNo) REFERENCES Customers(CustNo) 
)

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 51



PARTITION BY REFERENCE (CustFK)
;

CREATE SHARDED TABLE LineItems 
( CustNo    NUMBER NOT NULL
, LineNo    NUMBER(2) NOT NULL
, OrderNo   NUMBER(5) NOT NULL
, StockNo   NUMBER(4)
, Quantity  NUMBER(2)
, CONSTRAINT LinePK  PRIMARY KEY (CustNo, OrderNo, LineNo)
, CONSTRAINT LineFK  FOREIGN KEY (CustNo, OrderNo) REFERENCES Orders(CustNo, 
OrderNo)
)
PARTITION BY REFERENCE (LineFK)
;

In the example statements above, corresponding partitions of all tables in the family are stored
in the same tablespace set, TS1. However, it is possible to specify separate tablespace sets
for each table.

Note that in the example statements above, the partitioning column CustNo used as the
sharding key is present in all three tables. This is despite the fact that reference partitioning, in
general, allows a child table to be equi-partitioned with the parent table without having to
duplicate the key columns in the child table. The reason for this is that reference partitioning
requires a primary key in a parent table because the primary key must be specified in the
foreign key constraint of a child table used to link the child to its parent. However, a primary
key on a sharded table must be the same as, or contain, the sharding key. This makes it
possible to enforce global uniqueness of a primary key without coordination with other shards,
a critical requirement for linear scalability.

To summarize, the use of reference-partitioned tables in a distributed database requires
adhering to the following rules:

• A primary key on a sharded table must either be the same as the sharding key, or contain
the sharding key. This is required to enforce global uniqueness of a primary key without
coordination with other shards.

• Reference partitioning requires a primary key in a parent table, because the primary key
must be specified in the foreign key constraint of a child table to link the child to its parent.
It is also possible to have a foreign key constraint when the parent table has just UNIQUE
constraint, but no PRIMARY KEY. The sharding key must also be NOT NULL.

For example, to link the LineItems (child) table to the Orders (parent) table, you need a
primary key in the Orders table. The second rule implies that the primary key in the Orders
table contains the CustNo value. (This is an existing partitioning rule not specific to Oracle
Globally Distributed Database.)

Use Equi-Partitioning to Specify Parent-Child Relationships Between Tables

In some cases it is impossible or undesirable to create primary and foreign key constraints that
are required for reference partitioning. For such cases, specifying parent-child relationships in
a table family requires that all tables are explicitly equi-partitioned. Each child table is created
with the PARENT clause in CREATE SHARDED TABLE that contains the name of its parent. An
example of the syntax is shown below.

 CREATE SHARDED TABLE Customers 
( CustNo      NUMBER NOT NULL

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 51



, Name        VARCHAR2(50)
, Address     VARCHAR2(250) 
, region      VARCHAR2(20)
, class       VARCHAR2(3)
, signup      DATE
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders 
( OrderNo   NUMBER 
, CustNo    NUMBER NOT NULL
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems 
( LineNo    NUMBER
, OrderNo   NUMBER
, CustNo    NUMBER NOT NULL
, StockNo   NUMBER
, Quantity  NUMBER
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Because the partitioning scheme is fully specified in all of the CREATE SHARDED TABLE
statements, any table can be independently subpartitioned. This is not permitted with reference
partitioning where subpartitions can only be specified for the root table and the subpartitioning
scheme is the same for all tables in a table family.

Note that this method only supports two-level table families, that is, all children must have the
same parent and grandchildren cannot exist. This is not a limitation as long as the partitioning
column from the parent table exists in all of the child tables.

See Also

Oracle AI Database VLDB and Partitioning Guide for information about reference
partitioning

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 51



Designing Schemas With Multiple Table Families
An Oracle Globally Distributed Database schema can have multiple table families, where all of
the data from different table families reside in the same chunks, which contain partitions from
different table families sharing the same hash key range.

Note

Multiple table families are supported in system-managed distributed databases only.
Composite and user-defined distributed databases only support one table family.

To create a new table family, create a root sharded table and specify tablespace sets that are
not used by existing tablespace families. Each table family is identified by its root table. Tables
in the different table families should not be related to each other.

Each table family should have its own sharding key definition, while the same restriction on
having the same sharding key columns in child tables still holds true within each table family.
This means that all tables from different table families are sharded the same way with
consistent hash into the same number of chunks, with each chunk containing data from all the
table families.

Design your table families such that queries between different table-families are minimal and
only carried out on the sharding coordinator, as many such joins will have an effect on
performance

The following example shows you how to create multiple table families using the PARENT clause
with a system-managed sharding methodology (PARTITION BY CONSISTENT HASH).

CREATE SHARDED TABLE Customers <=== Table Family #1
( CustId NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
)
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders
( OrderNo NUMBER
, CustId NUMBER
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
( LineNo NUMBER

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 51



, OrderNo NUMBER
, CustId NUMBER
, StockNo NUMBER
, Quantity NUMBER
)
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Products <=== Table Family #2
( ProdId NUMBER NOT NULL,
  CONSTRAINT pk_products PRIMARY KEY (ProdId)
)
PARTITION BY CONSISTENT HASH (ProdId)
PARTITIONS AUTO
TABLESPACE SET ts_2
;

Note

ORA-3850 is thrown if you attempt to use a tablespace set for a table family, but that
tablespace set is already in use by an existing table family.

Joins across table families may not be efficient, and if you have many such joins, or if
they are performance-critical, you should use duplicated tables instead of multiple
table families.

Associating Global Services With Multiple Table Families

Each table family should be associated with a different global service. Applications from
different table families each have their own connection pool and service, and use their own
sharding key for routing to the correct shard.

When you create the first root table (that is, the first table family) all of the existing global
services are automatically associated with it. You can use the GDSCTL MODIFY SERVICE
command to change the services associated with a table family after more table families are
created, as shown in this example.

GDSCTL> MODIFY SERVICE –GDSPOOL shdpool –TABLE_FAMILY sales.customer -SERVICE 
sales

Creating Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable pieces among
multiple databases, called shards.

The following topics guide your decisions and provide instructions for creating sharded tables:

• Tablespace Set Sizing

• Sharded Tables for System-Managed Data Distribution

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 51



• Sharded Tables for User-Defined Data Distribution

• Sharded Tables for Composite Data Distribution

• Sharded Tables for Directory-Based Data Distribution

Tablespace Set Sizing
When you create a tablespace set on the shard catalog, you must make sure you have enough
space for the tablespaces created on the shard catalog and on each of the shards.

This is especially important in a metered usage environment.

For example, with a shard catalog and three shards in the configuration, you issue the
following statements.

ALTER SESSION ENABLE SHARD DDL;
CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE SHSPC_1 USING TEMPLATE
 (DATAFILE SIZE 100M  AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED);

For example, assuming a default of 120 chunks per shard, the command creates the following
objects in these configurations:

• System sharding:

120 tablespaces (for 120 chunks on each shard)

+ 1 tablespace in the shard catalog

= 120 + 1 tablespace in each shard, with initial tables space 100M

• Raft replication:

360 tablespaces (for 360 chunks on each shard, because there are 3 chunks created for
each replication unit)

+ 1 tablespace in the shard catalog

= 360 + 1 tablespace in each shard, with initial tables space 100M

If the required amount of storage is not planned for, this can lead to a failed DDL, and that will
require significant effort to recover from.

To prevent this issue, you must set the database initialization parameter DB_FILES greater than
or equal to the total number of chunks and/or tablespace sets required in the shard. Find a
formula for calculating DB_FILES in Create the Shard Databases.

Also, note that all tablespaces in a tablespace set are bigfile tablespaces. A bigfile
tablespace is a tablespace with a single, but potentially very large (up to 4G blocks) data file.
See Bigfile Tablespaces in Oracle AI Database Administrator’s Guide for details.

Sharded Tables for System-Managed Data Distribution
In a system-managed distributed database, data is automatically distributed across the shards
using partitioning by consistent hash.

Before creating a sharded table, create a tablespace set with CREATE TABLESPACE SET to store
the table partitions.

CREATE TABLESPACE SET ts1;

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 51



If you need to customize the tablespace attributes, add the USING TEMPLATE clause to CREATE
TABLESPACE SET as shown in this example.

CREATE TABLESPACE SET ts1
USING TEMPLATE
( DATAFILE SIZE 10M
  EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
  SEGMENT SPACE MANAGEMENT AUTO
  ONLINE
)
;

You create a sharded table with CREATE SHARDED TABLE, horizontally partitioning the table
across the shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250)
, region      VARCHAR2(20)
, class       VARCHAR2(3)
, signup      DATE
CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

A system-managed sharded table is partitioned by consistent hash, by specifying PARTITION
BY CONSISTENT HASH (primary_key_column).

The PARTITIONS AUTO clause specifies that the number of partitions is automatically set to the
number of tablespaces in the tablespace set ts1, and each partition is stored in a separate
tablespace.

Sharded Tables for User-Defined Data Distribution
In a user-defined distributed database, you explicitly map data to individual shards. A sharded
table in a user-defined distributed database can be partitioned by range or list.

You do not create tablespace sets for user-defined sharded tables; however, you must create
each tablespace individually and explicitly associate it with a shardspace deployed in the
distributed database configuration, as shown here.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE central;
CREATE TABLESPACE tbs3 IN SHARDSPACE east;

When you create the sharded table, you define the partitions with the ranges or lists of data to
be stored in each tablespace, as shown in the following example.

CREATE SHARDED TABLE accounts
( id             NUMBER

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 51



, account_number NUMBER
, customer_id    NUMBER
, branch_id      NUMBER
, state          VARCHAR(2) NOT NULL
, status         VARCHAR2(1)
)
PARTITION BY LIST (state)
( PARTITION p_west VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_central VALUES ('SD', 'WI') TABLESPACE ts2
, PARTITION p_east VALUES ('NY', 'VM', 'NJ') TABLESPACE ts3
)
;

Sharded Tables for Composite Data Distribution
The distributed database using the composite data distribution method allows you to partition
subsets of data that correspond to a range or list of key values in a table partitioned by
consistent hash.

With composite data distribution, as with the other data distribution methods, tablespaces are
used to specify the mapping of partitions to shards. To partition subsets of data in a sharded
table, a separate tablespace set must be created for each shardspace deployed in the
distributed database configuration as shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

The statement in the following example partitions a sharded table into two partition sets: gold
and silver, based on class of service. Each partition set is stored in a separate tablespace.
Then data in each partition set is further partitioned by consistent hash on customer ID.

CREATE SHARDED TABLE customers
( cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250) 
, location_id VARCHAR2(20) 
, class VARCHAR2(3) 
, signup_date DATE 
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class) 
)
PARTITIONSET BY LIST (class) 
  PARTITION BY CONSISTENT HASH (cust_id)
  PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 51



Sharded Tables for Directory-Based Data Distribution
Create directory-based sharded tables using PARTITION BY DIRECTORY in the CREATE SHARDED
TABLE statement.

For example:

CREATE SHARDED TABLE customers
( id             NUMBER NOT NULL
, name           VARCHAR2(30)
, address        VARCHAR2(30)
, status         VARCHAR2(1)
,
CONSTRAINT cust_pk PRIMARY KEY(id)
)
PARTITION BY DIRECTORY (id)
( PARTITION p1 TABLESPACE tbs1,
  PARTITION p2 TABLESPACE tbs2,
  PARTITION p3 TABLESPACE tbs3…);

Note

• Unlike in user-defined sharding, key values are not specified for the partitions in
the CREATE TABLE statement.

• The directory table is automatically created during root table creation. The
definition of the directory table is:

<shard_user_schema>.<root_table>$SDIR

• If a child table is created with PARENT clause in a different schema from the root
table, an additional privilege is required for the child table's schema owner. (This is
only for directory-based data distribution and is not required for regular user-
defined data distribution.)

This is because there is a foreign key constraint on the child table to the directory
table's sharding key columns, to ensure that no rows can be inserted into the child
table without the sharding key value being present in the directory mapping. As a
consequence, the child table's schema needs a reference privilege on the
directory table's sharding key columns.

See "Granting References" in Creating Tables Sharded by Directory for the
workaround.

Creating Duplicated Tables
The number of database requests handled by a single shard can be maximized by duplicating
read-only or read-mostly tables across all shards.

Duplicated tables are a good choice for relatively small tables that are not updated frequently,
and that are often accessed together with sharded tables. See Duplicated Tables for more
detailed concepts and a diagram.

Types of Duplicated Tables

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 51



There are three types of duplicated tables you can create in a distributed database:

• Duplicated tables that refresh at a "refresh interval" set for the table. (see Setting the
Duplicated Table Global Refresh Rate and Customizing Duplicated Table Refresh Rates)

• Duplicated tables that refresh on demand. These tables don't refresh until you explicitly
attempt to refresh them. (see Refreshing Duplicated Tables On Demand)

• Duplicated tables that refresh on commit. These are called synchronous duplicated
tables. (See example below)

With the first two types of duplicated table, you can connect to any shard and update a
duplicated table directly on the shard. Then the update is asynchronously propagated to all
other shards.

A synchronous duplicated table is a duplicated table that is synchronized on the shards ‘on-
commit’ on the shard catalog. The rows in a duplicated table on the shards are automatically
synchronized with the rows in the duplicated table on the shard catalog when the active
transaction performing DMLs on the duplicated tables is committed.

See Updating Duplicated Tables and Synchronizing Their Contents for more details.

Creating a Duplicated Table

A duplicated table, Products, can be created using the following statement:

CREATE DUPLICATED TABLE Products 
( StockNo     NUMBER PRIMARY KEY
, Description VARCHAR2(20)
, Price       NUMBER(6,2))
;

Creating a Synchronous Duplicated Table

To create this same table as a synchronous duplicated table, use the SYNCHRONOUS keyword in
the statement, as shown here:

CREATE DUPLICATED TABLE Products 
( StockNo     NUMBER PRIMARY KEY
, Description VARCHAR2(20)
, Price       NUMBER(6,2))
SYNCHRONOUS;

See CREATE TABLE in Oracle Database SQL Language Reference for more information
about the DUPLICATED clause.

Updating Duplicated Tables and Synchronizing Their Contents
Oracle Globally Distributed Database synchronizes the contents of duplicated tables using
Materialized View Replication.

A duplicated table on each shard is represented by a materialized view. The primary table for
the materialized views is located in the shard catalog. The CREATE DUPLICATED TABLE
statement automatically creates the primary table, materialized views, and other objects
required for materialized view replication.

Synchronous Duplicated Tables

Synchronous duplicated tables refresh automatically on commit from the shard catalog.

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 51



When the active transaction is committed on the duplicated tables created with SYNCHRONOUS in
the shard catalog, a multi-shard DML is initiated for any synchronous duplicated tables that
were updated with DMLs. To minimize the impact on performance of this commit, these
synchronization DMLs are performed in parallel.

Note

All shards must be up and running for a synchronous duplicated table DML to get
refreshed on the shards “on-commit” on the shard catalog.

Non-Synchronous Duplicated Tables

For duplicated tables that are not created with SYNCHRONOUS, you can connect to any shard and
update a duplicated table directly on the shard. What happens after that depends on whether
you have set up automated refresh.

The materialized views on all of the shards can be refreshed with one of the two options:

• Automatic refresh at a configurable frequency per table

• On-demand refresh by running a stored procedure

For automatic refresh, to get better refresh performance, you can also use a stored procedure
interface to create materialized view refresh groups.

On a refresh, the update is first propagated over a database link from the shard to the primary
table on the shard catalog. Then the update is asynchronously propagated to all other shards
as a result of a materialized view refresh.

Setting the Duplicated Table Global Refresh Rate
You can set a global refresh rate for all duplicated tables.

By default duplicated tables are refreshed every 60 seconds. The example below shows
increasing the refresh interval to 100 seconds by setting the database parameter
shrd_dupl_table_refresh_rate.

SQL> show parameter refresh
 
NAME                                 TYPE        VALUE
------------------------------------ ----------- 
------------------------------
shrd_dupl_table_refresh_rate         integer     60
 
SQL> alter system set shrd_dupl_table_refresh_rate=100 scope=both;
 
System altered.
 
SQL> show parameter refresh
 
NAME                                 TYPE        VALUE
------------------------------------ ----------- 
------------------------------
shrd_dupl_table_refresh_rate         integer     100

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 51



Customizing Duplicated Table Refresh Rates
You can set a finer grained refresh rate for individual duplicated tables.

Table-level refresh rates can be initially set with CREATE TABLE, and can be updated using
ALTER TABLE.

The REFRESH clause syntax allows you to specify a refresh interval in seconds, minutes, hours,
or you can set the table to only refresh on demand.

[REFRESH INTERVAL refresh_rate [SECOND|MINUTE|HOUR] | REFRESH ON DEMAND]

For example, to create a duplicated table with customized refresh rate of two minutes:

CREATE DUPLICATED TABLE Products
( StockNo NUMBER PRIMARY KEY
, Description VARCHAR2(20)
, Price NUMBER(6,2))
REFRESH INTERVAL 2 MINUTE;

(To set on demand refresh, see Refreshing Duplicated Tables On Demand.)

To alter the duplicated table with a customized refresh rate of one hour:

ALTER TABLE table_name MODIFY REFRESH INTERVAL 1 HOUR;

If DEFAULT is specified, the value set in database parameter shrd_dupl_table_refresh_rate is
used.

ALTER TABLE table_name MODIFY REFRESH INTERVAL DEFAULT;

Refreshing Duplicated Tables On Demand
You can set duplicated tables to be refreshed on demand rather than at a refresh interval.

When configured with the REFRESH ON DEMAND clause, duplicated tables are not automatically
refreshed. You need to manually refresh these tables.

Setting On-Demand Refresh

To create a duplicated table that you can refresh on demand:

CREATE DUPLICATED TABLE Products
( StockNo NUMBER PRIMARY KEY
, Description VARCHAR2(20)
, Price NUMBER(6,2))
REFRESH ON DEMAND;

To update a duplicated table refresh method to on-demand refresh:

ALTER TABLE table_name MODIFY REFRESH ON DEMAND;

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 51



Refreshing the Duplicated Table On Demand

To refresh the tables created with the ON DEMAND clause, a utility procedure is provided which
can be run on the shard catalog.

exec sys.refreshDuplicatedTable(table_name);

Here table_name can optionally be qualified with schema_name, so it would be
schema_name.table_name.

Alternatively, you can refresh duplicated table materialized views directly on shards using the
DBMS_MVIEW.REFRESH procedure.

Duplicated Table Support and Limitations
Keep the following considerations in mind when designing your schema with duplicated tables.

The following are supported for duplicated tables:

• ALTER TABLE ADD/DROP CONSTRAINT (one constraint at a time)

• ALTER TABLE ADD/DROP PRIMARY KEY

• The creation and alteration of duplicated tables with the inmemory and parallel options is
supported.

The following are not supported for duplicated tables.

• System and reference partitioned tables

• LONGdata type

• REF data types

• abstract (MDSYS datatypes are supported)

• Maximum number of columns without primary key is 999

• nologging options

Note

A race condition is possible when a transaction run on a shard tries to update a row
which was deleted on the shard catalog. In this case, an error is returned and the
transaction on the shard is rolled back.

The following use cases are not supported when updating duplicated tables on a
shard.

• Updating a LOB or a data type not supported by database links

• Updating or deleting of a row inserted by the same transaction

Chapter 4
Creating Schema Objects

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 51



Creating Indexes on Sharded Tables
You can create local indexes on sharded tables. You can also create a global partitioned index
on the sharding key when the sharded table is sub-partitioned

Local Indexes

Unique local indexes on sharded tables must contain the sharding key.

The following example creates a local index named id1 for the id column of the account table.

CREATE INDEX id1 ON account (id) LOCAL;

The following example creates a local unique index named id2 for the id and state columns
of the account table.

CREATE UNIQUE INDEX id2 ON account (id, state) LOCAL;

Global Indexes on Subpartitions

Global indexes on most sharded tables are not allowed because they can compromise the
performance of online chunk movement. However, you can create a primary key/unique
indexes on sharded tables that are composite partitioned without having to include sub-
partition keys.

The following CREATE INDEX syntax is used to create a global index on a composite partitioned
sharded table.

CREATE [UNIQUE] INDEX index_name ON table_name (col1, col2 ...)
[TABLESPACE SET tsset]
PARTITIONED AS TABLE;

For example, the following statement creates a composite sharded table with a primary key.

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250)
, location_id VARCHAR2(20)
, class       VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
TABLESPACE SET ts1
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
SUBPARTITION TEMPLATE 
( SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY')),
  SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY')),
  SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY')),
  SUBPARTITION future VALUES LESS THAN (MAXVALUE))
PARTITIONS AUTO
;

Chapter 4
Creating Indexes on Sharded Tables

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 51



The following statement shows the creation of a PARTITIONED AS TABLE index.

CREATE UNIQUE INDEX custid_idx
ON customers(cust_id)
TABLESPACE SET tsidx1
PARTITIONED AS TABLE;

SPLIT CHUNK Handling

The global partitioned index is split automatically when splitting the underlying table partition
when chunks are split.

A chunk split is in fact a series of split partition operations. For a global index, the default
behavior during partition split is to invalidate the entire index. For the sharded table index,
because each index partition is equi-partitioned with the table, the distributed database can
issue corresponding split index operations automatically.

MOVE CHUNK Handling

Rather than invalidate the entire index, for a sharded table index, the distributed database
invalidates only the index partition affected and rebuilds indexes after all exchanges are done.

Vector Indexes

You can create vector indexes on sharded tables with some slight differences. See Vector
Indexes in a Globally Distributed Database.

Oracle AI Vector Search in a Distributed Database
Oracle Globally Distributed Database support for AI Vector Search includes most of the
distributed database functionality.

The support includes the following:

• Creation of sharded and duplicated tables with vector data type columns.

• Creation of vector indexes on sharded and duplicated tables, including Inverted File Flat
(IVF) index and Hierarchical Navigable Small World (HNSW) index.

• DMLs can be issued from the shard catalog on sharded tables and duplicated tables with
vector data types.

• DMLs can be issued from shards on duplicated tables with vector datatype columns.

• Vector search queries on sharded tables and duplicated tables can be issued from the
shard catalog or from the shards using the direct routing capability.

• Vector search queries issued on the shard catalog are analyzed and transformed to
identify the part of the query that will be sent to the shards and the part that needs to be
run on the catalog.

• Vector search is supported with all types of data distribution: system sharding, user-defined
sharding, composite sharding, and directory based sharding.

• The procedures in the packages DBMS_VECTOR and DBMS_VECTOR_CHAIN are supported in
Globally Distributed Database.

There are some limitations:

Chapter 4
Oracle AI Vector Search in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 51



• Sharding keys: Globally Distributed Database only supports sharding keys on non-vector
columns. The vector data can be distributed across shards using a primary key on any
other non-vector column identified as a sharding key.

• Raft replication: A distributed database using the Raft replication method does not support
vector columns.

AI Vector Search can benefit from what a distributed database has to offer, that is, to distribute
data across several databases to:

• Comply with data sovereignty regulations

• Reduce the risk of unavailability of all the data

• Allow the scalability by increasing the throughput and reducing latency

Vectors in Distributed Database Tables
There is no new SQL syntax or keyword when creating sharded tables and duplicated tables
with vector columns in a Globally Distributed Database; however, there are some requirements
and restrictions to consider.

User Permissions

Only an all-shards user can create sharded and duplicated tables. You must connect to the
shard catalog as an all-shards user. Connecting to the shard catalog as an all-shards user
automatically enables SHARD DDL, and the DDL to create the tables is propagated to all the
shards in the distributed database.

Creating Sharded Tables with a Vector Column

• Sharded tables must be created on the catalog database with SHARD DDL enabled.

• A vector column cannot be part of the sharding key or the partitionset key.

• The CREATE SHARDED TABLE command is propagated to all of the shards by the shard
coordinator.

The syntax to create a sharded table with a vector column is same as the syntax to create a
non-sharded table with a vector column. The only difference is to include the SHARDED keyword
in the CREATE TABLE statement.

CREATE SHARDED TABLE REALTORS(
     REALTOR_ID NUMBER PRIMARY KEY,
     NAME VARCHAR2(20),
     IMAGE VECTOR,
     ZIPCODE VARCHAR2(40)) 
PARTITION BY CONSISTENT HASH(REALTOR_ID) 
TABLESPACE SET TS1; 

Creating Duplicated Tables with a Vector Column

• Duplicated tables must be created on the shard catalog database with SHARD DDL enabled.

The syntax to create a duplicated table with a vector column is same as the syntax to create a
non-sharded table with a vector column. The only difference is to include the DUPLICATED
keyword in the CREATE TABLE statement.

CREATE DUPLICATED TABLE PRODUCT_DESCRIPTIONS
     (

Chapter 4
Oracle AI Vector Search in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 51



     PRODUCT_ID          NUMBER(6,0) NOT NULL,
     ORDER_ID            NUMBER(6,0) NOT NULL,
     LANGUAGE_ID         VARCHAR2(6 BYTE),
     TRANSLATED_NAME     NVARCHAR2(50),
     TRANSLATED_DESCRIPTION NVARCHAR2(2000),
     VECT4 VECTOR,
     VECT5 VECTOR,
     CONSTRAINT  PRODUCT_DESCRIPTIONS_PK primary key (PRODUCT_ID)
     ) tablespace products
     STORAGE (INITIAL 1M NEXT 1M);

Vector Indexes in a Globally Distributed Database
Inverted File Flat (IVF) index and Hierarchical Navigable Small World (HNSW) index are
supported on sharded tables in a distributed database; however there are some
considerations.

Note

• Global indexes are not supported on sharded tables; however, this limitation does
not exist for the global HNSW and IVF index.

• Hybrid Vector Indexes (HVI) are not currently supported on sharded tables.

• GDSCTL commands MOVE CHUNK, ADD CDB, and ADD SHARD, and incremental
deployment, will raise ORA-05118 if there are global vector indexes on sharded
tables. Drop the global vector indexes before performing these operations.

Inverted File Flat Index

Inverted File Flat Index (IVF Flat or simply IVF) is a partitioned-based index that lets you
balance high-search quality with reasonable speed.

You can create a local IVF index on vector columns in a sharded table. There is no syntax
change required.

• IVF indexes and HNSW indexes on a sharded table must be created on the shard catalog
database with SHARD DDL enabled.

• The CREATE INDEX command is propagated as is to all of the shards by the shard
coordinator. The CREATE INDEX clause scope is the shard.

There is no syntax change to create an IVF index on a sharded table, when compared to the
syntax to create an IVF index on a non-sharded table.

CREATE VECTOR INDEX ivf_image 
     ON houses (image) 
 ORGANIZATION NEIGHBOR PARTITIONS WITH TARGET ACCURACY 95 
 DISTANCE EUCLIDEAN PARAMETERS 
 (type IVF, NEIGHBOR PARTITIONS 1000) PARALLEL 16;

Chapter 4
Oracle AI Vector Search in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 51



Hierarchical Navigable Small World Index

There is no syntax change to create a Hierarchical Navigable Small World (HNSW) index on a
sharded table, when compared to the syntax to create an HNSW index on a non-sharded
table.

CREATE VECTOR INDEX hnsw_image 
     ON houses (image) 
 ORGANIZATION INMEMORY NEIGHBOR GRAPH
 WITH TARGET ACCURACY 95;

Modifying a Distributed Database Schema
When making changes to duplicated tables or sharded tables in an Oracle Globally Distributed
Database, these changes should be done from the shard catalog database.

Before running any DDL operations on a distributed database, enable sharded DDL with

ALTER SESSION ENABLE SHARD DDL; 

This statement ensures that the DDL changes will be propagated to each shard in the
distributed database.

The DDL changes that are propagated are commands that are defined as “schema related,”
which include operations such as ALTER TABLE.  There are other operations that are
propagated to each shard, such as the CREATE, ALTER, DROP user commands for simplified
user management, and TABLESPACE operations to simplify the creation of tablespaces on
multiple shards.

GRANT and REVOKE operations can be done from the shard catalog and are propagated to each
shard, providing you have enabled shard DDL for the session. If more granular control is
needed you can issue the command directly on each shard.

Operations such as DBMS package calls or similar operations are not propagated. For
example, operations gathering statistics on the shard catalog are not propagated to each
shard.

If you perform an operation that requires a lock on a table, such as adding a not null column, it
is important to remember that each shard needs to obtain the lock on the table in order to
perform the DDL operation. Oracle’s best practices for applying DDL in a single instance apply
to sharded environments.

Multi-shard queries, which are processed on the shard catalog, issue remote queries across
database connections on each shard. In this case it is important to ensure that the user has the
appropriate privileges on each of the shards, whether or not the query will return data from that
shard.

See Also

Oracle AI Database SQL Language Reference for information about operations used
with duplicated tables and sharded tables

Chapter 4
Modifying a Distributed Database Schema

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 51



DDL Processing in a Distributed Database
To create a schema in an Oracle Globally Distributed Database, you must issue DDL
commands on the shard catalog database, which validates the DDLs and processes them
locally before they are processed on the shards.

The shard catalog database contains local copies of all of the objects that exist in the
distributed database, and serves as the primary copy of the distributed database schema. If
the shard catalog validation and processing of DDLs are successful, the DDLs are
automatically propagated to all of the shards and applied in the order in which they were
issued on the shard catalog.

If a shard is down or not accessible during DDL propagation, the shard catalog keeps track of
DDLs that could not be applied to the shard, and then applies them when the shard is back up.
When the shard comes back online, all of the DDLs that have been processed in the
distributed database are applied in the same order to the shard before it becomes accessible
to clients.

When a new shard is added to a distributed database, all of the DDLs that have been
processed in the distributed database are applied in the same order to the shard before it
becomes accessible to clients.

There are two ways you can issue DDLs in a distributed database.

• Use the GDSCTL SQL command.

When you issue a DDL with the GDSCTL SQL command, as shown in the following example,
GDSCTL waits until all of the shards have finished processing the DDL and returns the
status.

GDSCTL> sql “create tablespace set tbsset”

• Connect to the shard catalog database using SQL*Plus using the GDS$CATALOG.sdbname
service.

When you issue a DDL command on the shard catalog database, it returns the status
when it finishes processing locally, but the propagation of the DDL to all of the shards
happens in the background asynchronously.

SQL> create tablespace set tbsset;

Note

Using the SYS account to process shard DDL is not recommended; create a privileged
account for this purpose.

For information about DDL syntax extensions for Oracle Globally Distributed Database, see 
DDL Syntax Extensions for Oracle Globally Distributed Database.

Creating Objects Locally and Globally
Objects created using GDSCTL creates global Oracle Globally Distributed Database objects;
however, you can create local or global objects by connecting to the shard catalog with
SQL*Plus.

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 51



When a DDL to create an object is issued using the GDSCTL sql command, the object is
created on all of the shards. A primary copy of the object is also created in the shard catalog
database. An object that exists on all shards, and the shard catalog database, is called a
distributed database object.

When connecting to the shard catalog using SQL*Plus, two types of objects can be created:
distributed database objects and local objects. Local objects are traditional objects that exist
only in the shard catalog. Local objects can be used for administrative purposes, or they can
be used by multi-shard queries originated from the shard catalog database, to generate and
store a report, for example.

Sharded objects cannot have any dependency on local objects. For example, you cannot
create an all-shard view on a local table.

The type of object (distributed database or local) that is created in a SQL*Plus session
depends on whether the SHARD DDL mode is enabled in the session. This mode is enabled by
default on the shard catalog database for the all-shards user, which is a user that exists on all
of the shards and the shard catalog database. All of the objects created while SHARD DDL is
enabled in a session are distributed database objects.

To enable SHARD DDL in the session, the all-shards user must run

ALTER SESSION ENABLE SHARD DDL

All of the objects created while SHARD DDL is disabled are local objects. To create a local object,
the all-shards user must first run

ALTER SESSION DISABLE SHARD DDL

See ALTER SESSION for more information about the SHARD DDL session parameter.

Monitor DDL Processing and Verify Object Creation
You can monitor DDL processing using GDSCTL and SQL, to verify that the DDLs are
propagated to all of the shards.

Monitor DDL Processing

You can check the status of the DDL propagation to the shards by using the GDSCTL show
ddl and config shard commands.

This check is mandatory when a DDL is run using SQL*Plus on the shard catalog, because
SQL*Plus does not return the DDL status on all of the shards.

The show ddl command output might be truncated. You can run SELECT ddl_text FROM
gsmadmin_internal.ddl_requests on the shard catalog to see the full text of the statements.

Run the following command from the shard director host.

GDSCTL> show ddl
id    DDL Text                                  Failed shards
--    --------                                  -------------
5     grant connect, resource to app_schema
6     grant dba to app_schema
7     grant execute on dbms_crypto to app_s... 
8     CREATE TABLESPACE SET  TSP_SET_1 usin...
9     CREATE TABLESPACE products_tsp datafi...

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 51



10    CREATE SHARDED TABLE Customers (   Cu...
11    CREATE SHARDED TABLE Orders (   Order...
12    CREATE SEQUENCE Orders_Seq;
13    CREATE SHARDED TABLE LineItems (   Or...
14    CREATE MATERIALIZED VIEW "APP_SCHEMA"...

Run the config shard command on each shard in your configuration, as shown here, and
note the Last Failed DDL line in the command output.

GDSCTL> config shard -shard sh1
Name: sh1
Shard Group: primary_shardgroup
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:1521/sh1_host:dedicated
SCAN address: 
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL: 
DDL Error: ---
Failed DDL id: 
Availability: ONLINE

Supported services
------------------------
Name                                          Preferred Status    
----                                          --------- ------    
oltp_ro_srvc                                  Yes       Enabled   
oltp_rw_srvc                                  Yes       Enabled  

Verify Tablespace Set Creation

Verify that the tablespaces of the tablespace set you created for the sharded table family, and
the tablespaces you created for the duplicated tables, are created on all of the shards.

The number of tablespaces in the tablespace set, shown below as C001TSP_SET_1 through
C006TSP_SET_1, is based on the number of chunks specified in the GDSCTL create
shardcatalog command when the distributed database configuration was deployed.

The duplicated Products tablespace is shown below as PRODUCTS_TSP.

Run SELECT TABLESPACE_NAME on all of the shards in your configuration, as shown here.

$ sqlplus / as sysdba

SQL> select TABLESPACE_NAME, BYTES/1024/1024 MB from sys.dba_data_files
 order by tablespace_name;

TABLESPACE_NAME             MB
----------------------- ----------
C001TSP_SET_1           100
C002TSP_SET_1           100
C003TSP_SET_1                  100

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 51



C004TSP_SET_1                  100
C005TSP_SET_1                  100
C006TSP_SET_1                  100
PRODUCTS_TSP            100
SYSAUX                  650
SYSTEM                  890
SYS_SHARD_TS                  100
TSP_SET_1                      100

TABLESPACE_NAME              MB
------------------------ ----------
UNDOTBS1                       105
USERS                                 5

13 rows selected.

Verify Chunk Creation and Distribution

Verify that the chunks and chunk tablespaces were created on all of the shards.

Run the GDSCTL config chunks command as shown here, and note the ranges of chunk
IDs on each shard.

GDSCTL> config chunks
Chunks
------------------------
Database                      From      To        
--------                      ----      --        
sh1                           1         6         
sh2                           1         6         
sh3                           7         12        
sh4                           7         12

Run the following SQL statements on each of the shards in your configuration, as shown here.

SQL> show parameter db_unique_name

NAME             TYPE        VALUE
---------------- ----------- ------------------------------
db_unique_name   string      sh1

SQL> select table_name, partition_name, tablespace_name
 from dba_tab_partitions
 where tablespace_name like 'C%TSP_SET_1'
 order by tablespace_name;

TABLE_NAME       PARTITION_NAME   TABLESPACE_NAME
---------------- ---------------- --------------------
ORDERS           CUSTOMERS_P1     C001TSP_SET_1
CUSTOMERS        CUSTOMERS_P1     C001TSP_SET_1
LINEITEMS        CUSTOMERS_P1     C001TSP_SET_1
CUSTOMERS        CUSTOMERS_P2     C002TSP_SET_1
LINEITEMS        CUSTOMERS_P2     C002TSP_SET_1
ORDERS           CUSTOMERS_P2     C002TSP_SET_1
CUSTOMERS        CUSTOMERS_P3     C003TSP_SET_1
ORDERS           CUSTOMERS_P3     C003TSP_SET_1

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 51



LINEITEMS        CUSTOMERS_P3     C003TSP_SET_1
ORDERS           CUSTOMERS_P4     C004TSP_SET_1
CUSTOMERS        CUSTOMERS_P4     C004TSP_SET_1

TABLE_NAME       PARTITION_NAME   TABLESPACE_NAME
---------------- ---------------- --------------------
LINEITEMS        CUSTOMERS_P4     C004TSP_SET_1
CUSTOMERS        CUSTOMERS_P5     C005TSP_SET_1
LINEITEMS        CUSTOMERS_P5     C005TSP_SET_1
ORDERS           CUSTOMERS_P5     C005TSP_SET_1
CUSTOMERS        CUSTOMERS_P6     C006TSP_SET_1
LINEITEMS        CUSTOMERS_P6     C006TSP_SET_1
ORDERS           CUSTOMERS_P6     C006TSP_SET_1
18 rows selected.

Connect to the shard catalog database and verify that the chunks are uniformly distributed, as
shown here.

$ sqlplus / as sysdba

SQL> SELECT a.name Shard, COUNT(b.chunk_number) Number_of_Chunks
  FROM gsmadmin_internal.database a, gsmadmin_internal.chunk_loc b
  WHERE a.database_num=b.database_num
  GROUP BY a.name
  ORDER BY a.name;

SHARD                   NUMBER_OF_CHUNKS
------------------------------ ----------------
sh1                          6
sh2                          6
sh3                          6
sh4                          6

Verify Table Creation

To verify that the sharded and duplicated tables were created, log in as the application schema
user on the shard catalog database and each of the shards and query the tables on a
database shard, as shown below with the example app_schema user.

$ sqlplus app_schema/app_schema_password
Connected.

SQL> select table_name from user_tables;

TABLE_NAME
-----------------------------------------------------------------------
CUSTOMERS
ORDERS
LINEITEMS
PRODUCTS

4 rows selected.

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 51



DDL Syntax Extensions for Oracle Globally Distributed Database
Oracle Globally Distributed Database includes SQL DDL statements with syntax that can only
be run against a distributed database.

Changes to query and DML statements are not required to support Oracle Globally Distributed
Database, and the changes to the DDL statements are very limited. Most existing DDL
statements will work the same way on a distributed database, with the same syntax and
semantics, as they do on a non-distributed database.

CREATE TABLESPACE SET
This statement creates a tablespace set that can be used as a logical storage unit for one or
more sharded tables and indexes. A tablespace set consists of multiple Oracle tablespaces
distributed across shards in a shardspace.

The CREATE TABLESPACE SET statement is intended specifically for distributed databases. Its
syntax is similar to CREATE TABLESPACE.

CREATE TABLESPACE SET tablespace_set 
       [IN SHARDSPACE shardspace]
              [USING TEMPLATE (
    { MINIMUM EXTENT size_clause
    | BLOCKSIZE integer [ K ]
    | logging_clause
    | FORCE LOGGING
    | ENCRYPTION tablespace_encryption_spec
    | DEFAULT [ table_compression ] storage_clause
    | { ONLINE | OFFLINE }
    | extent_management_clause
    | segment_management_clause
    | flashback_mode_clause
    }...
   )];

Note that in system-managed sharding there is only one default shardspace in the distributed
database. The number of tablespaces in a tablespace set is determined automatically and is
equal to the number of chunks in the corresponding shardspace.

All tablespaces in a tablespace set are bigfile tablespaces and have the same properties. The
properties are specified in the USING TEMPLATE clause and they describe the properties of one
single tablespace in the tablespace set. This clause is the same as
permanent_tablespace_clause for a typical tablespace, with the exception that a data file
name cannot be specified in the datafile_tempfile_spec clause. The data file name for each
tablespace in a tablespace set is generated automatically.

Note that a tablespace set can only consist of permanent tablespaces, there is no system,
undo, or temporary tablespace set. Also, note that in the example below the total data file size
of the tablespace set is 100mxN (where N is the number of tablespaces in the tablespace set).

Example

CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE sgr1 
USING TEMPLATE
( DATAFILE SIZE 100m

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 51



  EXTEND MANAGEMENT LOCAL
  SEGMENT SPACE MANAGEMENT AUTO
);

ALTER TABLESPACE SET
This statement alters a tablespace set that can be used as a logical storage unit for one or
more sharded tables and indexes.

The SHARDSPACE property of a tablespace set cannot be modified. All other attributes of a
tablespace set can be altered just as for a regular permanent tablespace. Because
tablespaces in a tablespace set are bigfile, the ADD DATAFILE and DROP DATAFILE clauses are
not supported.

DROP TABLESPACE SET and PURGE TABLESPACE SET
These statements drop or purge a tablespace set, which can be used as a logical storage unit
for one or more sharded tables and indexes.

The syntax and semantics for these statements are similar to DROP and PURGE TABLESPACE
statements.

CREATE TABLE
The CREATE TABLE statement has been extended to create sharded and duplicated tables, and
specify a table family.

Syntax

CREATE [ { GLOBAL TEMPORARY | SHARDED | DUPLICATED} ] 
         TABLE [ schema. ] table
      { relational_table | object_table | XMLType_table }
          [ PARENT [ schema. ] table ] ;

The following parts of the CREATE TABLE statement are intended to support distributed
databases

• The SHARDED and DUPLICATED keywords indicate that the table content is either partitioned
across shards or duplicated on all shards respectively. The DUPLICATED keyword is the only
syntax change to create duplicated tables. All other changes described below apply only to
sharded tables.

• The PARENT clause links a sharded table to the root table of its table family.

• In system and composite sharding, to create a sharded table, TABLESPACE SET is used
instead of TABLESPACE. All clauses that contain TABLESPACE are extended to contain
TABLESPACE SET.

• Three clauses: consistent_hash_partitions, consistent_hash_with_subpartitions,
and partition_set_clause in the table_partitioning_clauses.

table_partitioning_clauses ::=
{range_partitions
| hash_partitions
| list_partitions
| composite_range_partitions

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 51



| composite_hash_partitions
| composite_list_partitions
| reference_partitioning
| system_partitioning
| consistent_hash_partitions
| consistent_hash_with_subpartitions
| partition_set_clause
}

Example

CREATE SHARDED TABLE customers 
( cust_id     NUMBER NOT NULL
, name        VARCHAR2(50)
, address     VARCHAR2(250) 
, location_id VARCHAR2(20)
, class       VARCHAR2(3)
, signup_date DATE
,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
(PARTITIONSET gold   VALUES (‘gld’) TABLESPACE SET ts2,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET ts1)
;

Example of consistent_hash_with_subpartitions

CREATE SHARDED TABLE Customers
       ( "custi_id" NUMBER NOT NULL
       , name VARCHAR2(50)
       , class VARCHAR2(3) NOT NULL
       , signup_date DATE
       ,
       CONSTRAINT cust_pk PRIMARY KEY("custi_id",name,signup_date,class)
       )
       PARTITIONSET BY LIST (class)
       PARTITION BY CONSISTENT HASH ("custi_id",name)
       SUBPARTITION BY RANGE (signup_date)
       SUBPARTITION TEMPLATE
          ( SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/
YYYY'))
          , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/
YYYY'))
          , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/
YYYY'))
          , SUBPARTITION future VALUES LESS THAN (MAXVALUE))
       PARTITIONS AUTO
       (
         PARTITIONSET "gold" VALUES ('Gld','BRZ') TABLESPACE SET ts1 
SUBPARTITIONS STORE IN(TBS1,TBS2,TBS3,TBS4)
       , PARTITIONSET "silver" VALUES ('Slv','OTH') TABLESPACE SET ts2 

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 51



SUBPARTITIONS STORE IN(TBS5,TBS6,TBS7,TBS8)
       ) ;

Limitations

Limitations for sharded tables in the current release:

• There is no default tablespace set for sharded tables.

• A temporary table cannot be sharded or duplicated.

• Index-organized sharded tables are not supported.

• A sharded table cannot contain a nested table column or an identity column.

• A primary key constraint defined on a sharded table must contain the sharding column(s).
A foreign key constraint on a column of a sharded table referencing a duplicated table
column is not supported.

• System partitioning and interval range partitioning are not supported for sharded tables.
Specification of individual hash partitions is not supported for partitioning by consistent
hash.

• A column in a sharded table used in PARTITION BY or PARTITIONSET BY clauses cannot be
a virtual column.

Duplicated tables in the current release are not supported with the following:

• System and reference partitioned tables

• Non-final abstract types

• Maximum number of columns without primary key is 999

• The nologging option

• XMLType column in a duplicated table cannot be used in non-ASSM tablespace

See CREATE TABLE for more information about using the clauses supporting distributed
databases.

ALTER TABLE
The ALTER TABLE statement is extended to modify sharded and duplicated tables.

There are limitations on using ALTER TABLE with a distributed database.

The following options are not supported for a sharded table in a system-managed or composite
distributed database:

• Rename

• All partition-related operations on the shard, except TRUNCATE partition, UNUSABLE LOCAL
INDEXES, and REBUILD UNUSABLE LOCAL INDEXES

The following are not supported for duplicated tables:

• Data types: Non-final abstract types

• Column options: vector encode, invisible column, nested tables

• Clustered table

• External table

• ILM policy

Chapter 4
DDL Processing in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 51



• PARENT clause

• Flashback table operation

• System and Reference partitioning

• Enable NOLOGGING option

• Drop duplicated table materialized view log

• Drop duplicated table materialized views on shards

• Alter materialized views (of duplicated tables) on shards

ALTER SESSION
The ALTER SESSION statement is extended to support distributed databases.

The session-level SHARD DDL parameter sets the scope for DDLs issued against the shard
catalog database.

ALTER SESSION { ENABLE | DISABLE } SHARD DDL;

When SHARD DDL is enabled, all DDLs issued in the session are executed on the shard catalog
and all shards. When SHARD DDL is disabled, a DDL is executed only against the shard catalog
database. SHARD DDL is enabled by default for a distributed database user (the user that exists
on all shards and the catalog). To create a distributed database user, the SHARD DDL parameter
must be enabled before running CREATE USER.

Running PL/SQL Procedures in a Distributed Database
In the same way that DDL statements can be run on all shards in an Oracle Globally
Distributed Database configuration, so too can certain Oracle-provided PL/SQL procedures.

These specific procedure calls behave as if they were sharded DDL statements, in that they
are propagated to all shards, tracked by the catalog, and run whenever a new shard is added
to a configuration.

All of the following procedures can act as if they were a sharded DDL statement.

• Oracle Text CTXSYS procedures listed in Oracle Text Application Developer's Guide, 
Supported APIs in a Sharded Database

• Any procedure in the DBMS_FGA package

• Any procedure in the DBMS_RLS package

• Any procedure in the DBMS_REDACT package

• The following procedures from the DBMS_STATS package:

– GATHER_INDEX_STATS

– GATHER_TABLE_STATS

– GATHER_SCHEMA_STATS

– GATHER_DATABASE_STATS

– GATHER_SYSTEM_STATS

• The following procedures from the DBMS_GOLDENGATE_ADM package:

– ADD_AUTO_CDR

Chapter 4
Running PL/SQL Procedures in a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 51



– ADD_AUTO_CDR_COLUMN_GROUP

– ADD_AUTO_CDR_DELTA_RES

– ALTER_AUTO_CDR

– ALTER_AUTO_CDR_COLUMN_GROUP

– PURGE_TOMBSTONES

– REMOVE_AUTO_CDR

– REMOVE_AUTO_CDR_COLUMN_GROUP

– REMOVE_AUTO_CDR_DELTA_RES

To run one of the procedures in the same way as sharded DDL statements, do the following
steps.

1. Connect to the shard catalog database using SQL*Plus as a database user with the
gsm_pooladmin_role.

2. Enable sharding DDL using ALTER SESSION ENABLE SHARD DDL.

3. Run the target procedure using a sharding-specific PL/SQL procedure named
SYS.EXEC_SHARD_PLSQL.

This procedure takes a single CLOB argument, which is a character string specifying a
fully qualified procedure name and its arguments. Note that running the target procedure
without using EXEC_SHARD_PLSQL causes the procedure to only be run on the shard catalog,
and it is not propagated to all of the shards. Running the procedure without specifying the
fully qualified name (for example, SYS.DBMS_RLS.ADD_POLICY) will result in an error.

For example, to run DBMS_RLS.ADD_POLICY on all shards, do the following from SQL*Plus after
enabling SHARD DLL.

exec 
sys.exec_shard_plsql('sys.dbms_rls.add_policy(object_schema               =>
          ''testuser1'',                                    
          object_name     => ''DEPARTMENTS'',               
          policy_name     => ''dept_vpd_pol'',              
          function_schema => ''testuser1'',              
          policy_function => ''authorized_emps'',           
          statement_types => ''INSERT, UPDATE, DELETE, SELECT, INDEX'',
          update_check    => TRUE)' 
          ) ;

Take careful note of the need for double single-quotes inside the target procedure call
specification, because the call specification itself is a string parameter to EXEC_SHARD_PLSQL.

If the target procedure runs correctly on the shard catalog database, it is queued for
processing on all of the currently deployed shards. Any error in running the target procedure on
the shard catalog is returned to the SQL*Plus session. Errors while running on the shards can
be tracked in the same way they are for DDLs.

Generating Unique Sequence Numbers Across Shards
You can generate globally unique sequence numbers across shards for non-primary key
columns, and it is handled by the Oracle Globally Distributed Database.

Chapter 4
Generating Unique Sequence Numbers Across Shards

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 51



You may need to generate unique IDs for non-primary key columns, for example order_id,
when the customer_id is the sharding key. For this case among others, this feature lets you
generate unique sequence numbers across shards, while not requiring you to manage the
global uniqueness of a given non-primary key column in your application.

This functionality is supported by the SHARDED SEQUENCE object. A sharded sequence is created
on the shard catalog but has an instance on each shard. Each instance generates
monotonically increasing numbers that belong to a range which does not overlap with ranges
used on other shards. Therefore, every generated number is globally unique.

A sharded sequence can be used, for example, to generate a unique order number for a table
sharded by a customer ID. An application that establishes a connection to a shard using the
customer ID as a key can use a local instance of the sharded sequence to generate a globally
unique order number.

Note that the number generated by a sharded sequence cannot be immediately used as a
sharding key for a new row being inserted into this shard, because the key value may belong
to another shard and the insert will result in an error. To insert a new row, the application
should first generate a value of the sharding key and then use it to connect to the appropriate
shard. A typical way to generate a new value of the sharding key would be use a regular (non-
sharded) sequence on the shard catalog.

If a single sharding key generator becomes a bottleneck, a sharded sequence can be used for
this purpose. In this case, an application should connect to a random shard (using the global
service without specifying the sharding key), get a unique key value from a sharded sequence,
and then connect to the appropriate shard using the key value.

To support this feature, the SEQUENCE object clauses, SHARD and NOSHARD, are included in the
SEQUENCE object DDL syntax, as shown in the following CREATE statement syntax.

CREATE | ALTER SEQUENCE [ schema. ]sequence
   [ { INCREMENT BY | START WITH } integer
   | { MAXVALUE integer | NOMAXVALUE }
   | { MINVALUE integer | NOMINVALUE }
   | { CYCLE | NOCYCLE }
   | { CACHE integer | NOCACHE }
   | { ORDER | NOORDER }
   | { SCALE {EXTEND | NOEXTEND} | NOSCALE}
   | { SHARD {EXTEND | NOEXTEND} | NOSHARD} 
   ]

NOSHARD is the default for a sequence. If the SHARD clause is specified, this property is
registered in the sequence object’s dictionary table, and is shown using the DBA_SEQUENCES,
USER_SEQUENCES, and ALL_SEQUENCES views.

When SHARD is specified, the EXTEND and NOEXTEND clauses define the behavior of a sharded
sequence. When EXTEND is specified, the generated sequence values are all of length (x+y),
where x is the length of a SHARD offset of size 4 (corresponding to the width of the maximum
number of shards, that is, 1000) affixed at beginning of the sequence values, and y is the
maximum number of digits in the sequence MAXVALUE/MINVALUE.

The default setting for the SHARD clause is NOEXTEND. With the NOEXTEND setting, the generated
sequence values are at most as wide as the maximum number of digits in the sequence
MAXVALUE/MINVALUE. This setting is useful for integration with existing applications where
sequences are used to populate fixed width columns. On invocation of NEXTVAL on a sequence
with SHARD NOEXTEND specified, a user error is thrown if the generated value requires more
digits of representation than the sequence’s MAXVALUE/MINVALUE.

Chapter 4
Generating Unique Sequence Numbers Across Shards

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 51



If the SCALE clause is also specified with the SHARD clause, the sequence generates scalable
values within a shard for multiple instances and sessions, which are globally unique. When
EXTEND is specified with both the SHARD and SCALE keywords, the generated sequence values
are all of length (x+y+z), where x is the length of a prepended SHARD offset of size 4, y is the
length of the scalable offset (default 6), and z is the maximum number of digits in the sequence
MAXVALUE/MINVALUE.

Note

When using the SHARD clause, do not specify ORDER on the sequence. Using SHARD
generates globally unordered values. If ORDER is required, create the sequences locally
on each node.

The SHARD keyword will work in conjunction with CACHE and NOCACHE modes of
operation.

See Also

Oracle AI Database SQL Language Reference

High Speed Data Ingest with SQL*Loader
SQL*Loader is a bulk loader utility used for moving data from external files into the Oracle
database.

Its syntax is similar to that of the DB2 load utility, but comes with more options. SQL*Loader
supports various load formats, selective loading, and multi-table loads. Other benefits include:

• Streaming capability lets you receive data from a large group of clients without blocking

• Group records according to Oracle RAC shard affinity using native UCP

• Optimize CPU allocation while decoupling record processing from I/O

• Fastest insert method for the Oracle Database through Direct Path Insert, bypassing SQL
and writing directly in the database files

Automatic Parallel Direct Path Load Using SQL*Loader

SQL*Loader enables direct data loading into the database shards for a high speed data ingest.
SQL*Loader can load data faster and easier into Oracle Database with automatic parallelism
and more efficient data storage.

In Oracle Database 23ai, SQL*Loader client can automatically start a parallel direct path load
for data without dividing the data into separate files and starting multiple SQL*Loader clients.
This feature prevents fragmentation into many small data extents. The data doesn't need to be
resident on the database server. Cloud users can employ this feature to load data in parallel
without having to move data on to the cloud system if there is sufficient network bandwidth.

See Oracle Database Utilities topics Automatic Parallel Load of Table Data with SQL*Loader
and Sharded Automatic Parallel Loading Modes for SQL*Loader for more information.

Chapter 4
High Speed Data Ingest with SQL*Loader

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 51



Schema Creation Examples
The following examples show the steps you would take to create a schema for an Oracle
Globally Distributed Database using the system-managed, user-defined, and composite
sharding methods.

• Schema for System-Managed Data Distribution

• Schema for User-Defined Data Distribution

• Schema for Composite Data Distribution

Schema for System-Managed Data Distribution
Create the tablespace set, sharded tables, and duplicated tables for an Oracle Globally
Distributed Database that uses the system-managed data distribution method.

1. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create a tablespace set for the sharded tables.

SQL> CREATE TABLESPACE SET TSP_SET_1 using template
 (datafile size 100m autoextend on next 10M maxsize unlimited
  extent management local segment space management auto);

3. If you use LOBs in a column, you can specify a tablespace set for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1;

Note

Tablespace sets for LOBS cannot be specified at the subpartitition level in system-
managed data distribution.

4. Create a tablespace for the duplicated tables.

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 51



In this example the duplicated table is the Products table in the sample Customers-Orders-
Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m
 autoextend on next 10M maxsize unlimited
 extent management local uniform size 1m; 

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-Orders-
Products schema.

SQL> CONNECT app_schema/app_schema_password
SQL> CREATE SHARDED TABLE Customers
  (
    CustId      VARCHAR2(60) NOT NULL,
    FirstName   VARCHAR2(60),
    LastName    VARCHAR2(60),
    Class       VARCHAR2(10),
    Geo         VARCHAR2(8),
    CustProfile VARCHAR2(4000),
    Passwd      RAW(60),
    CONSTRAINT pk_customers PRIMARY KEY (CustId),
    CONSTRAINT json_customers CHECK (CustProfile IS JSON)
  ) TABLESPACE SET TSP_SET_1
  PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

Note

If any columns contain LOBs, you can include the tablespace set in the parent
table creation statement, as shown here.

SQL> CREATE SHARDED TABLE Customers
  (
    CustId      VARCHAR2(60) NOT NULL,
    FirstName   VARCHAR2(60),
    LastName    VARCHAR2(60),
    Class       VARCHAR2(10),
    Geo         VARCHAR2(8),
    CustProfile VARCHAR2(4000),
    Passwd      RAW(60),
    image       BLOB,
    CONSTRAINT pk_customers PRIMARY KEY (CustId),
    CONSTRAINT json_customers CHECK (CustProfile IS JSON)
  ) TABLESPACE SET TSP_SET_1
    LOB(image) store as (TABLESPACE SET LOBTS1) 
  PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 51



The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
  (
    OrderId     INTEGER NOT NULL,
    CustId      VARCHAR2(60) NOT NULL,
    OrderDate   TIMESTAMP NOT NULL,
    SumTotal    NUMBER(19,4),
    Status      CHAR(4),
    CONSTRAINT  pk_orders PRIMARY KEY (CustId, OrderId),
    CONSTRAINT  fk_orders_parent FOREIGN KEY (CustId) 
    REFERENCES Customers ON DELETE CASCADE
  ) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
  (
    OrderId     INTEGER NOT NULL,
    CustId      VARCHAR2(60) NOT NULL,
    ProductId   INTEGER NOT NULL,
    Price       NUMBER(19,4),
    Qty         NUMBER,
    CONSTRAINT  pk_items PRIMARY KEY (CustId, OrderId, ProductId),
    CONSTRAINT  fk_items_parent FOREIGN KEY (CustId, OrderId)
    REFERENCES Orders ON DELETE CASCADE
  ) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
  (
    ProductId  INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
    Name       VARCHAR2(128),
    DescrUri   VARCHAR2(128),
    LastPrice  NUMBER(19,4)
  ) TABLESPACE products_tsp;

Next you should monitor the DDL processing and verify that the tablespace sets, tables, and
chunks were correctly created on all of the shards.

Schema for User-Defined Data Distribution
Create the schema user, tablespace set, sharded tables, and duplicated tables for an Oracle
Globally Distributed Database that uses the user-defined data distribution method.

1. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 51



In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create tablespaces for the sharded tables.

SQL> CREATE TABLESPACE ck1_tsp DATAFILE SIZE 100M autoextend on next 10M 
maxsize 
unlimited extent management local segment space management auto in
 shardspace shspace1;

SQL> CREATE TABLESPACE ck2_tsp DATAFILE SIZE 100M autoextend on next 10M 
maxsize 
unlimited extent management local segment space management auto in
 shardspace shspace2;

3. If you use LOBs in any columns, you can specify tablespaces for the LOBs.

SQL> CREATE TABLESPACE lobts1 ... in shardspace shspace1;

SQL> CREATE TABLESPACE lobts2 ... in shardspace shspace2;

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample Customers-Orders-
Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m autoextend
 on next 10M maxsize unlimited extent management local uniform size 1m; 

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-Orders-
Products schema.

SQL> CONNECT app_schema/app_schema_password

SQL> ALTER SESSION ENABLE SHARD DDL;

SQL> CREATE SHARDED TABLE Customers
  (
    CustId      VARCHAR2(60) NOT NULL,
    CustProfile VARCHAR2(4000),
    Passwd      RAW(60),
    CONSTRAINT pk_customers PRIMARY KEY (CustId),
    CONSTRAINT json_customers CHECK (CustProfile IS JSON)
  ) PARTITION BY RANGE (CustId)

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 51



  ( PARTITION ck1 values less than ('m') tablespace ck1_tsp,
    PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
  );

Note

If any columns in the sharded tables contain LOBs, the CREATE SHARDED
TABLE statement can include the LOB tablespaces, as shown here.

SQL> CREATE SHARDED TABLE Customers
  (
    CustId      VARCHAR2(60) NOT NULL,
    CustProfile VARCHAR2(4000),
    Passwd      RAW(60),
    image       BLOB,
    CONSTRAINT pk_customers PRIMARY KEY (CustId),
    CONSTRAINT json_customers CHECK (CustProfile IS JSON)
  ) PARTITION BY RANGE (CustId)
  ( PARTITION ck1 values less than ('m') tablespace ck1_tsp
     lob(image) store as (tablespace lobts1),
    PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
     lob(image) store as (tablespace lobts2)
  );

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
  (
    OrderId     INTEGER NOT NULL,
    CustId      VARCHAR2(60) NOT NULL,
    OrderDate   TIMESTAMP NOT NULL,
    SumTotal    NUMBER(19,4),
    Status      CHAR(4),
    CONSTRAINT  pk_orders PRIMARY KEY (CustId, OrderId),
    CONSTRAINT  fk_orders_parent FOREIGN KEY (CustId) 
    REFERENCES Customers ON DELETE CASCADE
  ) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
  (
    OrderId     INTEGER NOT NULL,

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 51



    CustId      VARCHAR2(60) NOT NULL,
    ProductId   INTEGER NOT NULL,
    Price       NUMBER(19,4),
    Qty         NUMBER,
    CONSTRAINT  pk_items PRIMARY KEY (CustId, OrderId, ProductId),
    CONSTRAINT  fk_items_parent FOREIGN KEY (CustId, OrderId)
    REFERENCES Orders ON DELETE CASCADE
  ) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
  (
    ProductId  INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
    Name       VARCHAR2(128),
    DescrUri   VARCHAR2(128),
    LastPrice  NUMBER(19,4)
  ) TABLESPACE products_tsp;

Next you should monitor the DDL processing and verify that the tablespace sets, tables, and
chunks were correctly created on all of the shards.

Schema for Composite Data Distribution
Create the schema user, tablespace set, sharded tables, and duplicated tables for an Oracle
Globally Distributed Database that uses the composite data distribution method.

1. Connect to the shard catalog host, and set the ORACLE_SID to the shard catalog name.

2. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> connect / as sysdba
SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant connect, resource, alter session to app_schema;
SQL> grant execute on dbms_crypto to app_schema;
SQL> grant create table, create procedure, create tablespace,
 create materialized view to app_schema;
SQL> grant unlimited tablespace to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant dba to app_schema;

3. Create tablespace sets for the sharded tables.

SQL> CREATE TABLESPACE SET  
  TSP_SET_1 in shardspace cust_america using template
  (datafile size 100m autoextend on next 10M maxsize
   unlimited extent management

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 51



   local segment space management auto );

SQL> CREATE TABLESPACE SET
  TSP_SET_2 in shardspace cust_europe using template
  (datafile size 100m autoextend on next 10M maxsize
   unlimited extent management
   local segment space management auto );

4. If you use LOBs in any columns, you can specify tablespace sets for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1 in shardspace cust_america ... ;

SQL> CREATE TABLESPACE SET LOBTS2 in shardspace cust_europe ... ;

Note

Tablespace sets for LOBs cannot be specified at the subpartitition level in
composite data distribution.

5. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample Customers-Orders-
Products schema.

CREATE TABLESPACE products_tsp datafile size 100m autoextend on next 10M
 maxsize unlimited extent management local uniform size 1m;

6. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-Orders-
Products schema.

connect app_schema/app_schema_password
alter session enable shard ddl;

CREATE SHARDED TABLE Customers
(
  CustId      VARCHAR2(60) NOT NULL,
  FirstName   VARCHAR2(60),
  LastName    VARCHAR2(60),
  Class       VARCHAR2(10),
  Geo         VARCHAR2(8),
  CustProfile VARCHAR2(4000),
  Passwd      RAW(60),
  CONSTRAINT pk_customers PRIMARY KEY (CustId),
  CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1,
partitionset europe values ('EUROPE') tablespace set tsp_set_2
);

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 51



Note

If any columns in the sharded tables contain LOBs, the CREATE SHARDED
TABLE statement can include the LOB tablespace set, as shown here.

CREATE SHARDED TABLE Customers
(
  CustId      VARCHAR2(60)  NOT NULL,
  FirstName   VARCHAR2(60),
  LastName    VARCHAR2(60),
  Class       VARCHAR2(10),
  Geo         VARCHAR2(8)   NOT NULL,
  CustProfile VARCHAR2(4000),
  Passwd      RAW(60),
  image       BLOB,
  CONSTRAINT pk_customers PRIMARY KEY (CustId),
  CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1
 lob(image) store as (tablespace set lobts1),
partitionset europe values ('EUROPE') tablespace set tsp_set_2
 lob(image) store as (tablespace set lobts2));

7. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

Create the sequence used for the OrderId column.

CREATE SEQUENCE Orders_Seq;

The Orders sharded table is created first:

CREATE SHARDED TABLE Orders
(
  OrderId     INTEGER NOT NULL,
  CustId      VARCHAR2(60) NOT NULL,
  OrderDate   TIMESTAMP NOT NULL,
  SumTotal    NUMBER(19,4),
  Status      CHAR(4),
  constraint  pk_orders primary key (CustId, OrderId),
  constraint  fk_orders_parent foreign key (CustId) 
    references Customers on delete cascade
) partition by reference (fk_orders_parent);

Create a sharded table for LineItems

CREATE SHARDED TABLE LineItems
(
  OrderId     INTEGER NOT NULL,

Chapter 4
Schema Creation Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 51



  CustId      VARCHAR2(60) NOT NULL,
  ProductId   INTEGER NOT NULL,
  Price       NUMBER(19,4),
  Qty         NUMBER,
  constraint  pk_items primary key (CustId, OrderId, ProductId),
  constraint  fk_items_parent foreign key (CustId, OrderId)
    references Orders on delete cascade
) partition by reference (fk_items_parent);

8. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

CREATE DUPLICATED TABLE Products
(
  ProductId  INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
  Name       VARCHAR2(128),
  DescrUri   VARCHAR2(128),
  LastPrice  NUMBER(19,4)
) tablespace products_tsp;

Next you should monitor the DDL processing and verify that the tablespace sets, tables, and
chunks were correctly created on all of the shards.

DDL Failure and Recovery Examples
The following examples demonstrate the steps to issue a DDL, monitor its status, and what to
do when errors are encountered.

When a DDL fails on a shard, all further DDLs on that shard are blocked until the failure is
resolved and the GDSCTL recover shard command is run.

Note that you must have GSM_ADMIN privileges to run these GDSCTL commands.

The following examples demonstrate the case when a DDL is issued using SQL*Plus, but the
same status checking and corrective actions apply when using the GDSCTL SQL command.

Example 4-1    A DDL processing error on the shard catalog

In this example the user makes a typo in the CREATE USER command.

SQL> alter session enable shard ddl;
Session altered.

SQL> CREATE USER example_user IDENTRIFIED BY out_standing1;
CREATE USER example_user IDENTRIFIED BY out_Standing1
                   *
ERROR at line 1:
ORA-00922: missing or invalid option

The DDL fails to run on the shard catalog and, as expected, the GDSCTL show ddl command
shows that no DDL was run on any of the shards:

GDSCTL> show ddl
id      DDL Text                         Failed shards 
--      --------                         -------------

Chapter 4
DDL Failure and Recovery Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 51



Then the user repeats the command with the correct spelling. Note that there is no need to run
alter session enable shard ddl again because the same session is used.

SQL> CREATE USER example_user IDENTIFIED BY out_Standing1;
User created.

Now show ddl shows that the DDL has been successfully run on the shard catalog database
and it did not fail on any shards that are online.

GDSCTL> show ddl
id      DDL Text                                     Failed shards 
--      --------                                     ------------- 
1       create user example_user identified by *****

Note

For any shard that is down at the time of the DDL processing, the DDL is automatically
applied when the shard is back up.

Example 4-2    Recovery from an error on a shard by issuing a corrective action on that
shard

In this example, the user attempts to create a tablespace set for system-managed sharded
tables. But the data file directory on one of the shards is not writable, so the DDL is
successfully run on the catalog, but fails on the shard.

SQL> connect example_user/out_Standing1
Connected

SQL> create tablespace set tbsset;
Tablespace created.

Note that there is no need to run alter session enable shard ddl because the user
example_user was created as the distributed database user and shard ddl is enabled by
default.

Check status using GDSCTL show ddl:

GDSCTL> show ddl
id      DDL Text                                      Failed shards 
--      --------                                      ------------- 
1       create user example_user identified by *****
2       create tablespace set tbsset                  shard01 

The command output shows that the DDL failed on the shard shard01. Run the GDSCTL
config shard command to get detailed information:

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1

Chapter 4
DDL Failure and Recovery Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 51



Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address: 
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Failed DDL: create tablespace set tbsset
DDL Error: ORA-02585: create tablepsace set failure, one of its tablespaces 
not created
ORA-01119: error in creating database file \'/ade/b/3667445372/oracle/
rdbms/dbs/
SHARD01/datafile/o1_mf_tbsset_%u_.dbf\'
ORA-27040: file create error, unable to create file
Linux-x86_64 Error: 13: Permission denied
Additional information: 1 \(ngsmoci_execute\) 
Failed DDL id: 2
Availability: ONLINE

The text beginning with “Failed DDL:” indicates the problem. To resolve it, the user must log in
to the shard database host and make the directory writable.

Display the permissions on the directory:

cd $ORACLE_HOME/rdbms/dbs 
 ls –l ../ | grep dbs
dr-xr-xr-x  4 oracle dba    102400 Jul 20 15:41 dbs/

Change the directory to writable:

chmod +w .
ls –l ../ | grep dbs
drwxrwxr-x  4 oracle dba    102400 Jul 20 15:41 dbs/

Go back to the GDSCTL console and issue the recover shard command:

GDSCTL> recover shard -shard shard01

Check the status again:

GDSCTL> show ddl
id      DDL Text                                      Failed shards 
--      --------                                      ------------- 
1       create user example_user identified by *****
2       create tablespace set tbsset

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1

Chapter 4
DDL Failure and Recovery Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 51



Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address: 
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL: 
DDL Error: ---
DDL id: 
Availability: ONLINE

As shown above, the failed DDL error no longer appears.

Example 4-3    Recovery from an error on a shard by issuing a corrective action on all
other shards

In this example, the user attempts to create another tablespace set, tbs_set, but the DDL fails
on a shard because there is already an existing local tablespace with the same name.

On the shard catalog:

SQL> create tablespace set tbs_set;
Tablespace created.

Check status using the GDSCTL show ddl command:

GDSCTL> show ddl
id      DDL Text                                      Failed shards 
--      --------                                      ------------- 
1       create user example_user identified by *****
2       create tablespace set tbsset 
3       create tablespace set tbs_set                 shard01  

GDSCTL> config shard -shard shard01
Conversion = ':'Name: shard01
……
Failed DDL: create tablespace set tbs_set
DDL Error: ORA-02585: create tablespace set failure, one of its tablespaces 
not created
ORA-01543: tablespace \'TBS_SET\' already exists \(ngsmoci_execute\)

A solution to this problem is to login to shard01 as a local database administrator, drop the
tablespace TBS_SET, and then run GDSCTL recover shard -shard shard01. But suppose
you want to keep this tablespace, and instead choose to drop the newly created tablespace set
that has the name conflict and create another tablespace set with a different name, such as
tbsset2. The following example shows how to do that on the shard catalog:

SQL> drop tablespace set tbs_set;
SQL> create tablespace set tbs_set2;

Chapter 4
DDL Failure and Recovery Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 51



Check status using GDSCTL:

GDSCTL> show ddl
id      DDL Text                                      Failed shards 
--      --------                                      ------------- 
1       create user example_user identified by *****
2       create tablespace set tbsset             
3       create tablespace set tbs_set                 shard01  
4       drop tablespace set tbs_set
5       create tablespace set tbsset2 

You can see that DDLs 4 and 5 are not attempted on shard01 because DDL 3 failed there. To
make this shard consistent with the shard catalog, you must run the GDSCTL recover shard
command. However, it does not make sense to run DDL 3 on this shard because it will fail
again and you actually do not want to create tablespace set tbs_set anymore. To skip DDL 3
run recover shard with the –ignore_first option:

GDSCTL> recover shard -shard shard01 –ignore_first
GSM Errors: dbs1 shard01:ORA-00959: tablespace \'TBS_SET\' does not exist
 (ngsmoci_execute)

GDSCTL> show ddl
id      DDL Text                                Failed shards 
--      --------                                ------------- 
1       create user sidney identified by *****
2       create tablespace set tbsset             
3       create tablespace set tbs_set            
4       drop tablespace set tbs_set             shard01  
5       create tablespace set tbsset2 

There is no failure with DDL 3 this time because it was skipped. However, the next DDL (4 -
drop tablespace set tbs_set) was applied and resulted in the error because the tablespace set
to be dropped does not exist on the shard.

Because the –ignore_first option only skips the first DDL, you need to run recover shard
again to skip the drop statement as well:

GDSCTL> recover shard -shard shard01 –ignore_first

GDSCTL> show ddl
id      DDL Text                                Failed shards 
--      --------                                -------------
1       create user sidney identified by *****
2       create tablespace set tbsset             
3       create tablespace set tbs_set          
4       drop tablespace set tbs_set
5       create tablespace set tbsset2 

Note that there are no longer any failures shown, and all of the DDLs were applied successfully
on the shards.

When recover shard is run with the –ignore_first option, the failed DDL is marked to be
ignored during incremental deployment. Therefore, DDL numbers 3 and 4 are skipped when a
new shard is added to the distributed database, and only DDL numbers 1, 2, and 5 are applied.

Chapter 4
DDL Failure and Recovery Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 51



5
Shard-Level Replication with Oracle Data
Guard

Oracle Globally Distributed Database is tightly integrated with Oracle Data Guard, which
provides shard-level replication.

The availability of a distributed database is not affected by an outage or slowdown of one or
more shards. Oracle Active Data Guard replication is used to provide individual shard-level
high availability. Replication is automatically configured and deployed when the distributed
database is created.

Note

In addition to the shards, you can separately configure Data Guard high availability
and data protection on the shard catalog database. See Creating a Shard Catalog
Standby for details.

Using Oracle Data Guard with a Distributed Database
Oracle Data Guard replication maintains one or more synchronized copies (standbys) of a
shard (the primary) for high availability and data protection. Standbys may be deployed locally
or remotely, and when using Oracle Active Data Guard can also be open for read-only access.

Oracle Data Guard can be used as the replication technology for distributed databases using
the system-managed, user-defined, or composite method of sharding.

Using Oracle Data Guard with a System-Managed Distributed Database

In system-managed and composite sharding, the logical unit of replication is a group of shards
called a shardgroup. In system-managed sharding, a shardgroup contains all of the data stored
in the distributed database. The data is sharded by consistent hash across shards that make
up the shardgroup. Shards that belong to a shardgroup are usually located in the same data
center. An entire shardgroup can be fully replicated to one or more shardgroups in the same or
different data centers.

The following figure illustrates how Data Guard replication is used with system-managed
sharding. In the example in the figure there is a primary shardgroup, Shardgroup 1, and two
standby shardgroups, Shardgroup 2 and Shardgroup 3. Shardgroup 1 consists of Data Guard
primary databases (shards 1-3). Shardgroup 2 consists of local standby databases (shards
4-6) which are located in the same data center and configured for synchronous replication. And
Shardgroup 3 consists of remote standbys (shards 7-9) located in a different data center and
configured for asynchronous replication. Oracle Active Data Guard is enabled in this
configuration, so each standby is open read-only.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 6



Figure 5-1    System-Managed Sharding with Data Guard Replication

Datacenter 1

Datacenter 2

Shardgroup 1

Shardgroup 2

Shardgroup 3

1 2

5

3

4 6

7 8 9

The concept of shardgroup as a logical unit of replication hides from the user the
implementation details of replication. With Data Guard, replication is done at the shard
(database) level. The distributed database in the figure above consists of three sets of
replicated shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards is managed as
a Data Guard Broker configuration with fast-start failover (FSFO) enabled.

To deploy replication, specify the properties of the shardgroups (region, role, and so on) and
add shards to them. Oracle Globally Distributed Database automatically configures Data Guard
and starts an FSFO observer for each set of replicated shards. It also provides load balancing
of the read-only workload, role based global services and replication lag, and locality based
routing.

For high availability, Data Guard standby shards can be placed in the same region where the
primary shards are placed. For disaster recovery, the standby shards can be located in another
region.

Run the following GDSCTL commands to deploy the example configuration shown in the figure
above.

CREATE SHARDCATALOG –database host00:1521:shardcat –region dc1,dc2

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:shardcat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:shardcat –region dc2
START GSM -gsm gsm1
START GSM -gsm gsm2

ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -deploy_as primary 
ADD SHARDGROUP -shardgroup shardgroup2 -region dc1 -deploy_as active_standby 
ADD SHARDGROUP -shardgroup shardgroup3 -region dc2 -deploy_as active_standby 

ADD CDB -connect cdb1
ADD CDB -connect cdb2

Chapter 5
Using Oracle Data Guard with a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 6



...
ADD CDB -connect cdb9

ADD SHARD -connect shard1 -CDB cdb1 -shardgroup shardgroup1
ADD SHARD -connect shard2 -CDB cdb2 -shardgroup shardgroup2
...
ADD SHARD -connect shard9 -CDB cdb9 -shardgroup shardgroup3

DEPLOY

Using Oracle Data Guard with a User-Defined Distributed Database

With user-defined sharding the logical (and physical) unit of replication is a shard. Shards are
not combined into shardgroups. Each shard and its replicas make up a shardspace which
corresponds to a single Data Guard Broker configuration. Replication can be configured
individually for each shardspace. Shardspaces can have different numbers of standbys which
can be located in different data centers. An example of user-defined sharding with Data Guard
replication is shown in the following figure.

Figure 5-2    User-Defined Sharding with Data Guard Replication

Datacenter 1

Datacenter 3

Datacenter 2

Shardspace A Shardspace B Shardspace C

1 2 3

4 5

6 7

8 9 10

Chapter 5
Using Oracle Data Guard with a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 6



Run the following GDSCTL commands to deploy the example configuration shown in the figure
above.

CREATE SHARDCATALOG -sharding user –database host00:1521:cat –region 
dc1,dc2,dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a 
ADD SHARDSPACE -shardspace shardspace_b
ADD SHARDSPACE -shardspace shardspace_c

ADD CDB -connect cdb1
ADD CDB -connect cdb2
...
ADD CDB -connect cdb10

ADD SHARD -connect shard1 -CDB cdb1 -shardspace shardspace_a
ADD SHARD -connect shard2 -CDB cdb2 -shardspace shardspace_b
...
ADD SHARD -connect shard10 -CDB cdb10 -shardspace shardspace_c

DEPLOY

Using Oracle Data Guard with a Composite Distributed Database

In composite sharding, similar to user-defined sharding, a distributed database consists of
multiple shardspaces. However, each shardspace, instead of replicated shards, contains
replicated shardgroups.

Chapter 5
Using Oracle Data Guard with a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 6



Figure 5-3    Composite Sharding with Data Guard Replication

Shardgroup 
A1

Shardgroup 
B1

Shardgroup 
A2

Shardgroup 
B2

Shardgroup 
B3

Shardgroup 
A3

Shardspace A Shardspace B

Datacenter
1

Datacenter
2

Datacenter
3

Run the following GDSCTL commands to deploy the example configuration shown in the figure
above.

CREATE SHARDCATALOG -sharding composite –database host00:1521:cat –region 
dc1,dc2,dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a 
ADD SHARDSPACE -shardspace shardspace_b

ADD SHARDGROUP -shardgroup shardgroup_a1 –shardspace shardspace_a -region dc1 
-deploy_as primary 
ADD SHARDGROUP -shardgroup shardgroup_a2 –shardspace shardspace_a -region 
dc1     
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_a3 –shardspace shardspace_a -region 

Chapter 5
Using Oracle Data Guard with a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 6



dc3     
-deploy_as active_standby 
ADD SHARDGROUP -shardgroup shardgroup_b1 –shardspace shardspace_b -region dc1 
-deploy_as primary 
ADD SHARDGROUP -shardgroup shardgroup_b2 –shardspace shardspace_b -region 
dc1     
-deploy_as active_standby 
ADD SHARDGROUP -shardgroup shardgroup_b3 –shardspace shardspace_b -region 
dc2     
-deploy_as active_standby 

ADD CDB -connect cdb1
ADD CDB -connect cdb2
...

ADD SHARD -connect shard1 -cdb cdb1 -shardgroup shardgroup_a1
ADD SHARD -connect shard2 -cdb cdb2 -shardgroup shardgroup_a2
...

DEPLOY

Considerations and Limitations

Role switchback is user dependent: If a single-instance primary fails over to its standby,
unlike Oracle RAC, you must intervene to reinstate the old primary by starting the database in
mount state. The broker will then automatically complete the reinstatement.

Per-PDB feature is not supported: The database feature Per-PDB Data Guard integration is
not supported in a distributed database architecture.

Chapter 5
Using Oracle Data Guard with a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 6



6
Raft Replication Configuration and
Management

Raft replication in Oracle Globally Distributed Database creates smaller replication units and
distributes them automatically to handle chunk assignment, chunk movement, workload
distribution, and balancing upon scaling (addition or removal of shards), including planned or
unplanned shard availability changes.

As part of the distributed database configuration, when creating the shard catalog, you can
choose a replication method: Raft replication or Oracle Data Guard. Unlike Oracle Data Guard
replication, Raft replication does not need to be reconfigured when shards are added or
removed, and replicas do not need to be actively managed.

Oracle Globally Distributed Database provides commands and options in the GDSCTL CLI to
enable and manage Raft replication in a system-managed distributed database.

Note

• Raft replication does not provide high availability for the catalog database. You
can configure Data Guard separately on the catalog. See Creating a Shard
Catalog Standby.

• Raft replication is only supported for system-managed (automatic) data distribution
method.

Topics:

• Using Raft Replication in Oracle Globally Distributed Database

• Enabling Raft Replication

• Raft Replication Operations and Settings

• Raft Replication Restrictions

Using Raft Replication in Oracle Globally Distributed Database
Oracle Globally Distributed Database provides built-in fault tolerance with Raft replication, a
capability that integrates data replication with transaction execution in a distributed database.

Raft replication enables fast automatic failover with zero data loss. If all shards are in the same
data center, it is possible to achieve sub-second failover. Raft replication is active/active; each
shard can process reads and writes for a subset of data. This capability provides a uniform
configuration with no primary or standby shards.

Raft replication is integrated and transparent to applications. Raft replication provides built-in
replication for Oracle Globally Distributed Database without requiring configuration of Oracle
Data Guard. Raft replication automatically reconfigures replication in case of shard host
failures or when shards are added or removed from the distributed database.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 19



When Raft replication is enabled, a distributed database contains multiple replication units. A
replication unit (RU) is a set of chunks that have the same replication topology. Each RU has
multiple replicas placed on different shards.

Replication Unit

When Raft replication is enabled, a distributed database contains multiple replication units. A
replication unit (RU) is a set of chunks that have the same replication topology. Each RU has
three replicas placed on different shards.

Each shard contains replicas from multiple RUs. Some of these replicas are leaders and some
are followers. Raft replication tries to maintain a balanced distribution of leaders and followers
across shards. By default each shard is a leader for two RUs and is a follower for four other
RUs. This makes all shards active and provides optimal utilization of hardware resources.

In Oracle Globally Distributed Database, an RU is a set of chunks, as shown in the image
below.

 

Shard
Chunk set

(Replication Unit)
Chunk

 
The diagram above illustrates the relationship among shards, chunk sets, and chunks. A shard
contains a set of chunks. A chunk is a set of table partitions in a given table family. A chunk is a
unit of resharding (data movement across shards). A set of chunks which have the same
replication topology is called chunk set.

Raft Group

Each replication unit contains exactly one chunk set and has a leader and a set of followers,
and these members form a raft group. The leader and its followers for a replication unit contain
replicas of the same chunk set in different shards as shown below. A shard can be the leader
for some replication units and a follower for other replication units.

All DMLs for a particular subset of data are executed in the leader first, and then are replicated
to its followers.

 

Chapter 6
Using Raft Replication in Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 19



AZ - 1

AZ - 2 AZ - 3

 
In the image above, a leader in each shard, indicated by the set of chunks in one color with a
star next to it, points to a follower (of the same color) on each of the two other shards.

Replication Factor

The replication factor (RF) determines the number of participants in a Raft group. This
number includes the leader and its followers.

The RU needs a majority of replicas available for write.

• RF = 3: tolerates one replica failure

• RF = 5: tolerates two replica failures

Note

In Oracle Globally Distributed Database the replication factor is currently limited to
three.

In Oracle Globally Distributed Database, the replication factor is specified for the entire
distributed database, that is all replication units in the database have the same RF.

Chapter 6
Using Raft Replication in Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 19



Raft Log

Each RU is associated with a set of Raft logs and OS processes that maintain the logs and
replicate changes from the leader to followers. This allows multiple RUs to operate
independently and in parallel within a single shard and across multiple shards. It also makes it
possible to scale the replication up and down by changing the number of RUs.

Changes to data made by a DML are recorded in the Raft log. A commit record is also
recorded at the end of each user transaction. Raft logs are maintained independently from
redo logs and contain logical changes to rows. Logical replication reduces failover time
because followers are open to incoming transactions and can quickly become the leader.

The Raft protocol guarantees that followers receive log records in the same order they are
generated by the leader. A user transaction is committed on the leader as soon as half of the
followers acknowledge the receipt of the commit record and writes it to the Raft log.

Transactions

On a busy system, multiple commits are acknowledged at the same time. The synchronous
propagation of transaction commit records provides zero data loss. The application of DML
change records to followers, however, is done asynchronously to minimize the impact on
transaction latency.

Leader Election Process

Per Raft protocol, if followers do not receive data or heartbeat from the leader for a specified
period of time, then a new leader election process begins.

The default heartbeat interval is 150 milliseconds, with randomized election timeouts (up to
150 milliseconds) to prevent multiple shards from triggering elections at the same time, leading
to split votes.

Node Failure

Node failure and recovery are handled in an automated way with minimal impact on the
application.

The failover time is sub-3 seconds with less than 10 millisecond network latencies between
Availability Zones. This includes failure detection, shard failover, change of leadership,
application reconnecting to new leader, and continuing business transactions as before.

The impact of the failure on the application can further be abstracted by configuring retries in
JDBC driver and end customer experience will be that a particular request took longer rather
than getting an error.

The following is an illustration of a distributed database with all three shards in a healthy state.
Applications requests are able to reach all three shards, and replication between the leaders
and followers is ongoing between the shards.

 

Chapter 6
Using Raft Replication in Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 19



Application

DB Shards

AZ - 1 AZ - 2 AZ - 3

 
Leader Node Failure

When the leader for a replication unit becomes unavailable, followers will initiate a new leader
election process using the Raft protocol.

As long as a majority of the nodes (quorum) are still healthy, the Raft protocol will ensure that a
new leader is elected from the available nodes.

When one of the followers succeeds in becoming the new leader, proactive notifications are
sent from the shard to the client driver of leadership change. The client driver starts routing the
request to the new leader shard. Routing clients (such as UCP) are notified using ONS
notifications to update their shard and chunk mapping, ensuring that they route traffic to the
leader.

During this failover and reconnection period, the application could be configured to wait and
retry with the retry interval and retry counts settings at the JDBC driver configuration. These
are very similar to the present RAC instance failover configuration.

Upon connecting to new leader, the application will continue to function as before.

The following diagram shows that the first shard failed, and that a new leader for the replication
unit whose leader was once on that first shard has been replaced by a new leader in the
second shard.

 

Chapter 6
Using Raft Replication in Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 19



Application

DB Shards

AZ - 2AZ - 1 AZ - 3

 
Failback

When the original leader comes back online after a failure, it first tries to identify the current
leader and attempts to rejoin the cluster as a follower. Once the failed shard rejoins the cluster,
it asks the leader for logs based on its current index in order to sync up with the leader.

Leadership rebalancing can be done by calling the API SWITCHOVER RU -REBALANCE, which
could also be scripted if needed.

If there are not enough Raft logs available on the present leader, the follower will have to be
repopulated from one of the good followers using data copy API (COPY RU).

Follower Node Failure

If a follower node becomes unavailable, the leader's attempts to replicate the Raft log to that
follower will fail.

The leader will attempt to reach the failed follower indefinitely until the failed follower rejoins or
a new follower replaces it.

If needed, a new follower will have to be created and added to the cluster, and its data needs
to be synchronized from a good follower as explained above.

Chapter 6
Using Raft Replication in Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 19



Example Raft Replication Deployment

The following diagram shows a simple distributed database Raft replication deployment with 6
shards, 12 replication units, and replication factor = 3.

Each shard has two leaders and 4 followers. Each member is labeled with an RU number and
the suffix indicates whether it is a leader (-L) or follower (-Fn). The leaders are also indicated
by a star. In this configuration, two shards can take over the load of a failed shard.

 

Shard 1

1-L

6-F1

5-F2

7-L

8-F1

9-F2

Shard 2

2-L

1-F1

6-F2

8-L

9-F1

10-F2

Shard 3

3-L

2-F1

1-F2

9-L

10-F1

11-F2

Shard 6

6-L

5-F1

4-F2

12-L

7-F1

8-F2

Shard 5

5-L

4-F1

3-F2

11-L

12-F1

7-F2

Shard 4

4-L

3-F1

2-F2

10-L

11-F1

12-F2

Legend:

Indicates the leader of an RU

 
To configure this deployment, at the shard catalog creation step, you specify GDSCTL CREATE
SHARDCATALOG -repl NATIVE. You can specify the replication factor (-repfactor) in the GDSCTL
CREATE SHARDCATALOG or ADD SHARDGROUP commands. Similar to the specification of chunks,
you specify the number of replication units in GDSCTL CREATE SHARDCATALOG or ADD
SHARDSPACE commands.

Chapter 6
Using Raft Replication in Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 19



Enabling Raft Replication
You enable Raft replication when you configure the shard catalog.

To enable Raft replication, specify the native replication option in the create shardcatalog
command when you create the shard catalog.

gdsctl> create shardcatalog ... -repl native

For example

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -repl native -region region1,region2

See Create the Shard Catalog for shard catalog configuration details.

After the shard catalog is created, you can add shards to the configuration and run the DEPLOY
command.

Note

You must have at least 3 shards in your distributed database to use Raft replication.

Specifying Replication Unit Attributes
By default, Oracle Globally Distributed Database determines the number of replication units
(RUs) in a shardspace and the number of chunks in an RU.

You can specify the number of primary RUs using the -repunit option when you create the
shard catalog. Specify a value greater than zero (0).

gdsctl> create shardcatalog ... -repunit number

The RU value cannot be modified after the first DEPLOY command is run on the distributed
database configuration. Before you run DEPLOY, you can modify the number of RUs using the
MODIFY SHARDSPACE command.

gdsctl> modify shardspace -shardspace shardspaceora -repunit number

Note that in system-managed sharding there is one shardspace named shardspaceora.

If the -repunit parameter is not specified, the default number of RUs is determined at the time
of execution of the first DEPLOY command.

Raft Replication Operations and Settings

Chapter 6
Enabling Raft Replication

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 19



Specifying Replication Unit Attributes
By default, Oracle Globally Distributed Database determines the number of replication units
(RUs) in a shardspace and the number of chunks in an RU.

The RU value cannot be modified after deployment. Before you deploy, you can modify the
number of RUs using the MODIFY SHARDSPACE command with the -repunit parameter.

gdsctl> modify shardspace -shardspace shardspaceora -repunit number

Note that in system-managed (automatic) data distribution there is one shardspace named
shardspaceora.

Ensuring Replicas Are Not Placed in the Same Rack
To ensure high availability, Raft replication group members should not be placed in the same
rack.

If specified using the ADD SHARD command -rack rack_id option, the shard catalog will
enforce that shards that contain replicated data are not placed in the same rack. If this is not
possible an error is raised.

gdsctl> add shard -connect connect_identifier … -rack rack_id

Getting Runtime Information for Replication Units
Use GDSCTL STATUS REPLICATION to get replication unit runtime statistics, such as the leader
and its followers.

GDSCTL STATUS REPLICATION can also be entered as STATUS RU, or just RU).

When option -ru is specified, you can get specific information for a particular replication unit.

For example, to get information about replication unit ru1:

GDSCTL> status ru -ru 1

Replication units
------------------------
Database RU# Role Term Log Index Status
-------- --- ---- ---- --------- ------
cdbsh1_sh1 1 Leader 2 21977067 Ok
cdbsh2_sh2 1 Follower 2 21977067 Ok
cdbsh3_sh3 1 Follower 2 21977067 Ok
cdbsh1_sh1 2 Follower 1 32937130 Ok
cdbsh2_sh2 2 Leader 1 32937130 Ok
cdbsh3_sh3 2 Follower 1 32937130 Ok
cdbsh1_sh1 3 Follower 2 16506205 Ok
cdbsh2_sh2 3 Follower 2 16506205 Ok
cdbsh3_sh3 3 Leader 2 16506205 Ok 

For details about the command syntax, options, and examples, see status ru (RU, status
replication) in Global Data Services Concepts and Administration Guide.

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 19



Scaling with Raft Replication
You can add or remove shards from your Raft replication distributed database with the
following instructions.

Adding Shards
To scale up your Raft replicated distributed database, you create and validate new databases
to host the shards, add the shards to the distributed database configuration, and deploy the
updated configuration.

See Work Flow for Adding Shards for detailed steps to add shards to the distributed database.

The distributed database automatically rebalances the data on the new shard by default, but
you can chose to manually rebalance the data with an extra option at deploy time.

Generally when a new shard is deployed in the configuration, you will see the behavior noted
in About Adding Shards

In a Raft replication case, when the shard is deployed, you can configure which of the following
two scenarios take place:

• Automatic rebalancing: By default, Raft replication automatically splits the replication
units (RUs), such that for each shard added, 2 new RUs are created, and their leaders are
placed on the new shard. Chunks from other RUs are moved to the new RUs to rebalance
data distribution. The DEPLOY operation also creates some intermediate/staging RUs for
relocating and balancing chunks which are dropped after the DEPLOY tasks are completed.

After deploying new shards you can run CONFIG TASK to view the ongoing rebalancing
tasks.

• Manual rebalancing: If you don't want automatic rebalancing to occur, you can deploy the
updated distributed database configuration with the GDSCTL DEPLOY -no_rebalance option,
and then manually move RUs and chunks to suit your needs.

See Moving Replication Unit Replicas and Moving A Chunk to Another Replication Unit for
details.

Removing Shards
To scale down your Raft replicated distributed database, you move any RUs on the shard to
the remaining shards, remove the shards from the distributed database configuration, and
deploy the updated configuration.

1. Move any RUs off of the shard you plan to remove.

Before making any changes to the distributed database configuration, move RUs to the
other shards.

See Moving Replication Unit Replicas for complete details.

a. Switch over all of the leader RU members from the shard to be dropped to other
shards.

GDSCTL> switchover ru -ru 4
 -shard target_shard
 [-timeout=n]

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 19



b. Move all of the follower RU members from the shard to be dropped to other shard
databases where a follower does not exist for the specific RU you are moving.

GDSCTL> move ru -ru 1
 -source shard_to_be_dropped
 -target target_shard_where_ru_follower_does_not_exist

2. Remove the shard from the distributed database configuration.

a. Verify that there are no RUs on the shard to be dropped.

GDSCTL> status ru -shard shard_to_be_dropped 

b. Remove the shard PDB and CDB from the distributed database configuration, and
remove the host address information from the VNCR list.

GDSCTL> remove shard shard_to_be_dropped
GDSCTL> remove cdb shard_to_be_dropped_cdb_name
GDSCTL> remove invitednode node

3. You are left with additional RUs on the remaining shards for which you can choose to:

• Relocate the chunks on the remaining shards and remove the RUs that were moved
from the dropped shard. For example:

GDSCTL> relocate chunk -chunk 3, 4 -sourceru 1 -targetru 2
GDSCTL> remove ru 4

See Moving A Chunk to Another Replication Unit and remove ru (replication_unit) for
details.

• Keep the additional RUs if those are needed for a new shard in future.

Moving Replication Unit Replicas
Use MOVE RU to move a follower replica of a replication unit from one shard database to
another.

For example,

gdsctl> move ru -ru 1 -source dba -target dbb

Notes:

• Source database shouldn't contain the replica leader

• Target database should not already contain another replica of the replication unit

See move ru (replication_unit) in Global Data Services Concepts and Administration Guide for
syntax and option details.

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 19



Changing the Replication Unit Leader
Using SWITCHOVER RU, you can change which replica is the leader for the specified replication
unit.

The -shard option makes the replication unit member on the specified shard (database) the
new leader of the given RU.

gdsctl> switchover ru -ru 1 -shard dba

To then automatically rebalance the leaders, use SWITCHOVER RU -rebalance.

For full syntax and option details, see switchover ru (replication_unit) in Global Data Services
Concepts and Administration Guide.

Copying Replication Units
You can copy a replication unit from one shard database to another using COPY RU. This allows
you to instantiate or repair a replica of a replication unit on the target shard database.

For example, to copy replication unit 1 from dba to dbb:

gdsctl> copy ru -ru 1 -source dba -target dbb

Notes:

• Neither source database nor target database should be the replica leader for the given
replication unit

• If the target database already contains this replication unit it will be replaced by full replica
of the replication unit on the source database

• If -replace is specified, the replication unit is removed from that database

• If the target database doesn't contain the specified replication unit, then the total number of
members for the given replication unit should be less than replication factor (3), unless -
replace is specified.

gdsctl> copy ru -ru 1 -source dba -target dbc -replace dbb

• If -source is not specified, then an existing follower of the replication unit is chosen as the
source database.

Note

Because running this command requires a tablespace set for the destination chunk,
create a minimum of 1 tablespace set before running this command.

For syntax and option details, see copy ru (replication_unit) in Global Data Services Concepts
and Administration Guide.

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 19



Moving A Chunk to Another Replication Unit
To move a chunk from one Raft replication unit to another replication unit, use the GDSCTL
RELOCATE CHUNK command.

To use RELOCATE CHUNK, the source and target replication unit leaders must be located on the
same shard, and their followers must also be on the same shards. If they are not on the same
shard, use SWITCHOVER RU to move the leader and MOVE RU to move the followers to co-located
shards.

When moving chunks, specify the chunk ID numbers, the source RU ID from which to move
them, and the target RU ID to move them to, as shown here.

GDSCTL> relocate chunk -chunk 3, 4 -sourceru 1, -targetru 2

The specified chunks must be in the same source replication unit. If -targetru is not specified,
an new empty target replication unit is created.

GDSCTL MOVE CHUNK is not supported for moving chunks in a distributed database with Raft
replication enabled.

Note

Because running this command requires a tablespace set for the destination chunk,
create a minimum of 1 tablespace set before running this command.

See also relocate chunk in Global Data Services Concepts and Administration Guide.

Splitting Chunks in Raft Replication
You can manually split chunks with GDSCTL SPLIT CHUNK in a Raft replication-enabled
distributed database.

1. If you want to move some data within an RU to a new chunk, you can use GDSCTL SPLIT
CHUNK to manually split the chunk.

GDSCTL> split chunk -chunk 3

See split chunk for usage details.

2. You can then use RELOCATE CHUNK to move the new chunk to another RU if you wish. See 
Moving A Chunk to Another Replication Unit.

Note

Because running this command requires a tablespace set for the destination chunk,
create a minimum of 1 tablespace set before running this command.

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 19



Getting the Replication Type
To find out if your distributed database is using Raft replication, run CONFIG SDB to see the
replication type in the command output.

In the command output, the Replication Type is listed as Native when Raft replication is
enabled.

For example,

GDSCTL> config sdb

GDS Pool administrators
------------------------

Replication Type
------------------------
Native

Shard type
------------------------
System-managed

Shard spaces
------------------------
shardspaceora

Services
------------------------
oltp_ro_srvc
oltp_rw_srvc

Starting and Stopping Replication Units

Stopping and starting a replication unit is rarely needed except for cases when you want to
perform Raft replication-specific maintenance such as recovering from an apply error on a
follower shard or leader recovery error.

Note

You might want to stop the RU on a specific replica to disable replication temporarily
so that you can do maintenance tasks on the database, operating system, or machine.

It is a best practice to switchover RU leaders from a shard database before doing any
maintenance operations. See Changing the Replication Unit Leader for details.

You can run START RU and STOP RU commands for specific replicas within a given replication
unit (RU) or for all replicas.

The START RU command is used to resume the operation of previously stopped RUs.
Additionally, it can be used in cases where an RU is offline due to errors. For example, if the

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 19



log producer process for any replica within an RU stops functioning, it results in the RU being
halted. The START RU command lets you restart the RU without a complete database restart.

To use the commands, follow this syntax:

start ru -ru ru_id [-database db]

stop ru -ru ru_id [-database db]

You supply the RU ID that you want to start to stop, and you can optionally specify the
database name on which a member of the RU runs. If the database is not specified, the
commands affect all available replicas of the specified replication unit.

Synchronizing Replication Unit Members
Use the GDSCTL command SYNC RU to synchronize data of the specified replication unit on all
shards. This operation also erases Raft logs and resets log index and term.

To use SYNC RU, specify the replication unit (-ru ru_id).

gdsctl> sync ru -ru ru_id [-database db]

You can optionally specify a shard database name. If a database is not specified for the SYNC
RU command, a replica to synchronize with will be chosen based on the following criteria:

1. Pick the replica that was the last leader.

2. If not available, pick the replica with greatest apply index.

The status of the SYNC RU operation can be seen using gdsctl config task.

If you see "Warning: GSM timeout expired" this doesn't mean that the synchronization
operation is not still running. Replication unit synchronization can take a longer time to
complete than the default GDSCTL timeout.

If you don't want to see "Warning: GSM timeout expired" you can set the GDSCTL global
service manager (shard director) request timeout to a higher value.

gdsctl configure -gsm gsm_ID -timeout seconds -save_config

Enable or Disable Reads from Follower Replication Units
Use the database initialization parameter SHARD_ENABLE_RAFT_FOLLOWER_READ to enable or
disable reads from follower replication units in a shard.

Set this parameter to TRUE to enable reads, or set to FALSE to disable reads.

This parameter can have different values on different shards.

See also: SHARD_ENABLE_RAFT_FOLLOWER_READ in Oracle AI Database Reference.

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 19



Viewing Parameter Settings
Use the SHARD_RAFT_PARAMETERS static data dictionary view to see parameters set at an RU
level on each shard.

The values for these parameters, if set, can be seen in this view. The columns in the view are:

ORA_SHARD_ID: shard ID

RU_ID: replication unit ID

NAME: parameter name

VALUE: parameter value

For details about this view, see SHARD_RAFT_PARAMETERS in Oracle AI Database
Reference.

Setting Parameters with GDSCTL
You can set some Raft-specific parameters at the replication unit level on each shard using the
GDSCTL set ru parameter command.

Syntax

set ru parameter parameter_name=value [-shard shard_name] [-ru ru_id]

Arguments

Argument Type

parameter_name=value Specify the parameter name and
the value you wish to set it to.
See the following topics for
details about each parameter
setting.

Tuning Flow Control to Mitigate
Follower Lag

Setting Transaction Consensus
Timeout

-ru ru_id Specify a replication unit ID
number, If not specified, the
command applies to all RUs.

-shard shard_name Specify a shard name. If not
specified, the command applies
to all shards.

Tuning Flow Control to Mitigate Follower Lag
Flow control in Raft replication coordinates Raft group followers to optimize performance,
efficiently utilize memory, and smooth out replication pipeline hiccups, such as variable network
latency.

Followers may not consistently maintain the same speed. Occasionally, one might be slightly
faster, while at other times, slightly slower.

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 19



To tune flow control set the SHARD_FLOW_CONTROL parameter on the shard where a follower is
lagging.

For example,

gdsctl set ru parameter SHARD_FLOW_CONTROL=value

You can optionally specify a shard (-shard) or a replication unit ID number (-ru)

The value argument can be set to one of the following:

• (Default) TILL_TIMEOUT: As long as the slow follower has received an LCR within a
threshold time (see "Configuring Threshold Timeout" below), from the fast follower, the fast
follower is throttled.

However, if the slow follower falls behind by more than the threshold time, then it is
disconnected, at which point it may or may not be able to catch up, depending on why
there is a lag between the two followers. For example, if the slow follower is lagging
because the network connection to it is bad for a very long time, it will be disconnected.
This is also the case if the slow follower is actually a down follower.

TILL_TIMEOUT at 10 times the heartbeat interval is the SHARD_FLOW_CONTROL default setting.

• AT_DISTANCE: As long as the slow follower is within a threshold distance (see "Configuring
Threshold Distance" below), in terms of LCRs, from the fast follower, the fast follower is
throttled.

However, if the slow follower falls behind by more than the threshold distance, then it is
disconnected, at which point it may or may not be able to catch up, depending on why
there is a lag between the two followers. For example, if the slow follower is lagging
because the network connection to it is bad for a very long time, it will be disconnected.
This is also the case if the slow follower is actually a down follower.

• AT_LOGLIMIT: Flow control does not kick in during normal operation at all, but only starts if
the log file is about to be overwritten by the leader but the slow follower still needs LCRs
from the file being overwritten. When this situation occurs, the leader waits for the slow
follower to consume the LCRs from the file to be overwritten.

If the slow follower is actually a down follower, then with this option the leader waits for the
slow follower to come online again when the RU's raft log limit is reached.

Configuring Threshold Distance

Threshold distance, expressed as a percentage of the in-memory queue size for LCRs, is used
by the AT_DISTANCE option for flow control.

The default value is 10.

To set the threshold distance to another value, run:

gdsctl set ru parameter SHARD_FLOW_CONTROL_NS_DISTANCE_PCT=number

You can optionally specify a shard (-shard) or a replication unit ID number (-ru)

Configuring Threshold Timeout

Threshold timeout, in milliseconds, is used by the TILL_TIMEOUT option for flow control.

The timeout is expressed as a multiple of the heartbeat interval, and the default value is 10.

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 19



To set the threshold timeout, run:

gdsctl set ru parameter SHARD_FLOW_CONTROL_TIMEOUT_MULTIPLIER=milliseconds

You can optionally specify a shard (-shard) or a replication unit ID number (-ru)

See Setting Parameters with GDSCTL for details about using the set ru parameter
command.

Setting Transaction Consensus Timeout
You can change the timeout value for a transaction to get consensus in Raft replication.

To configure the transaction consensus timeout, set the SHARD_TXN_ACK_TIMEOUT_SEC
parameter, which specified the maximum time a user transaction waits for the consensus of its
commit before raising ORA-05086.

gdsctl set ru parameter SHARD_TXN_ACK_TIMEOUT_SEC=seconds

You can optionally specify a shard (-shard) or a replication unit ID number (-ru)

By default, Raft replication waits 90 seconds for a transaction to get consensus. However, if
the leader is disconnected from the other replicas, it may not get consensus for its commits; if
there is low memory in the replication pipeline, the replication of LCRs slows down, resulting in
the delayed delivery of acknowledgments. In many cases such as these, 90 seconds may be
too long to wait, so you may want to error out a transaction much earlier, depending on your
application requirements.

The minimum valid value is 1 second.

See Setting Parameters with GDSCTL for details about using the set ru parameter
command.

Dynamic Performance Views for Raft Replication
There are several dynamic performance (V$) views available for Raft replication.

• V$SHARD_ACK_SENDER

• V$SHARD_ACK_RECEIVER

• V$SHARD_APPLY_COORDINATOR

• V$SHARD_APPLY_LCR_READER

• V$SHARD_APPLY_READER

• V$SHARD_APPLY_SERVER

• V$SHARD_LCR_LOGS

• V$SHARD_LCR_PERSISTER

• V$SHARD_LCR_PRODUCER

• V$SHARD_NETWORK_SENDER

• V$SHARD_MESSAGE_TRACKING

• V$SHARD_REPLICATION_UNIT

Chapter 6
Raft Replication Operations and Settings

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 19



• V$SHARD_TRANSACTION

For descriptions and column details for these views, see Dynamic Performance Views in
Oracle AI Database Reference.

Raft Replication Restrictions
The following restrictions apply to Raft replication in Oracle Globally Distributed Database.

GDSCTL MOVE CHUNK is not supported for Raft replication. To move chunks from one replication
unit to another, use RELOCATE CHUNK. See Moving A Chunk to Another Replication Unit.

Chapter 6
Raft Replication Restrictions

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 19



7
Deploying and Managing a Directory-Based
Oracle Globally Distributed Database

Directory-based data distribution allows you to explicitly associate key value with shards
dynamically at run time, which gives you fine-grained control over mapping of key values to
shards

Topics:

• Directory-Based Distributed Database Roadmap

• Creating a Shard Catalog for a Directory-Based Distributed Database

• Sharded Tables for Directory-Based Data Distribution

• Managing Keys in a Directory-Based Distributed Database

• DML Support on Tables Sharded by Directory

• Adding a New Tablespace and Chunks (Partition) in a Shardspace

• Chunk Management in a Directory-Based Distributed Database

• Splitting Partitions (Chunks)

• Sharding Key Directory Public View

Directory-Based Distributed Database Roadmap
Set up a directory-based distributed database, including configuring the distributed database,
creating schema objects, and doing lifecycle management operations.

1. Deploy a Directory-Based Distributed Database

A directory-based configuration follows the same steps as you would for a user-defined
distributed database, with a few differences.

Most of the information you need is found in Oracle Globally Distributed Database Deployment
for planning, installing and creating the databases for the distributed database topology.

To configure the topology for Directory-based data distribution, do the following tasks:

1. Create a shard catalog for user-defined data distribution. See Creating a Shard Catalog for
a Directory-Based Distributed Database.

2. Add and start shard directors. See Add and Start Shard Directors.

3. Create shardspaces, and shards in those shardspaces. See Add Shardspaces If Needed, 
Add the Shard CDBs, and Add the Shard PDBs.

4. Create tablespaces in the shardspaces. See User-Defined Data Distribution for examples.

Note that each tablespace has to be created individually, and explicitly associated with a
shardspace.

5. Verify the topology, add shards and host metadata, deploy the configuration, and start
global database services. See Oracle Globally Distributed Database Deployment.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 7



2. Create Schema Objects

• To create tables sharded by directory, see Creating Tables Sharded by Directory.

• To add (and remove) keys to the directory, see Managing Keys in a Directory-Based
Distributed Database.

3. Run DML and Queries

See DML Support on Tables Sharded by Directory.

4. Perform Lifecycle Operations

Over the lifetime of your directory-based distributed database, you'll need to do tasks such as:

• Add and remove keys. See Managing Keys in a Directory-Based Distributed Database

• Add partitions. See Adding a New Tablespace and Chunks (Partition) in a Shardspace

• Move chunks. See Chunk Management in a Directory-Based Distributed Database.

• Split chunks. See Splitting Partitions (Chunks).

• Query the directory view for metadata. See Sharding Key Directory Public View.

Creating a Shard Catalog for a Directory-Based Distributed
Database

Directory-based data distribution is an enhancement of the User-defined data distribution
method, so the shard catalog is configured with the user-defined data distribution option.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding user
 -protectmode maxperformance 

More details about creating a shard catalog, including specifying the shard catalog Connect
String and connecting to the shard catalog can be found in Create the Shard Catalog.

Creating Tables Sharded by Directory
Create directory-based sharded tables using PARTITION BY DIRECTORY in the CREATE SHARDED
TABLE statement.

For example:

CREATE SHARDED TABLE customers
( id             NUMBER NOT NULL
, name           VARCHAR2(30)
, address        VARCHAR2(30)
, status         VARCHAR2(1)
,
CONSTRAINT cust_pk PRIMARY KEY(id)
)
PARTITION BY DIRECTORY (id)
( PARTITION p1 TABLESPACE tbs1,
  PARTITION p2 TABLESPACE tbs2,
  PARTITION p3 TABLESPACE tbs3…)
DIRECTORY TABLESPACE tablespace-name //This clause is valid only for root 

Chapter 7
Creating a Shard Catalog for a Directory-Based Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 7



table creation
;

Note

• The clause DIRECTORY TABLESPACE is only allowed after the partition definition,
and it is only valid for the root table creation of a directory-based sharded table.

This clause gives you a way to create a separate tablespace just for the directory
table instead of having to use the default tablespace.

• Maximum length for the root table name (identifier length limit) is 113, to account
for the additional characters added to the view name created on the root table (as
in root_table_name_$SHARD_DIR_VIEW).

• The directory table is automatically created during root table creation. The
definition of the directory table is:

<shard user schema>.<root_table>$SDIR

• Unlike in user-defined data distribution, key values are not specified for the
partitions in the CREATE TABLE statement.

• If a child table is created with parent clause in a different schema from the root
table, an additional privilege is required for the child table's schema owner. (This is
only for directory-based data distribution and is not required for regular user-
defined data distribution.)

This is because there is a foreign key constraint on the child table to the directory
table's sharding key columns, to ensure that no rows can be inserted into the child
table without the sharding key value being present in the directory mapping. As a
consequence, the child table's schema needs a reference privilege on the
directory table's sharding key columns.

See "Granting References" below.

Granting References

This case is illustrated in this example:

• Root table dealerships is under schema user1, and has account_id as the sharding key.

• Child table salespeople is under schema user2, and is defined via "parent
user1.dealerships".

Before this salespeople child table can be created, you need:

• grant all privileges on user1.dealerships to user2;

This is the same as needed for user-defined data distribution.

• grant references (account_id) on user1.dealerships$sdir to user2;

This is new for directory-based data distribution.

Note that dealerships$sdir is the internally generated directory table name; it has the format
of root_table_name$sdir.

Chapter 7
Creating Tables Sharded by Directory

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 7



Without the 2nd grant, the child table creation DDL will succeed on the shard catalog but will
fail on the shards (as the foreign key is only added on the shards).

Managing Keys in a Directory-Based Distributed Database
The directory table contains the metadata for mapping keys to partitions. You can use the
DBMS_SHARDING_DIRECTORY PL/SQL API to add and remove keys.

Note

When adding and removing keys there are APIs that include commit and those that do
not. Unless the commit versions of the APIs are used, the directory content is not
propagated to the shards until commit is issued explicitly.

Adding Keys

You can add a key to the directory with the specified partition name using addKeyToPartition
or addKeyToPartitionCommit.

The addKeyToPartitionCommit procedure is exactly the same as the addKeyToPartition
procedure with the same parameters, except that it performs a commit automatically at the
end.

PROCEDURE addKeyToPartition[Commit]
     (schema_name    IN varchar2,    -- root table schema name
      root_table     IN varchar2,    -- root table name
      partition_name IN  varchar2,   -- name of the partition
      key …)                        -- shard key column value

Note that the key column value needs to be in the same order as specified in the CREATE TABLE
statement with the correct types. The procedure can only succeed if the provided key does not
yet exist in the directory.

Removing Keys

You can remove a key from the directory using removeKey or removeKeyCommit.

The removeKeyCommit procedure is exactly the same as the removeKey procedure with the
same parameters, except that it performs a commit automatically at the end.

PROCEDURE removeKey
     (schema_name    IN varchar2,    -- root table schema name
      root_table     IN varchar2,    -- root table name
      key … )                       -- shard key column values

Note that the key column values need to be in the same order as specified in the CREATE TABLE
statement with the correct types. The procedure can only succeed if the provided key exists in
the directory, and there are no tables (either root table or child tables) with rows still referencing
the key.

Enable Automatic Key-to-Partition Assignment

Chapter 7
Managing Keys in a Directory-Based Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 7



You can indicate an automatic key-to-partition assignment rule for subsequent new key inserts
into the root table.

PROCEDURE setAssignmentRule
     (schema_name    IN varchar2,    -- root table schema name
      root_table     IN varchar2,    -- root table name
      rule_id        IN number);   -- rule ID as defined in public constants

Once set, the key-to-partition assignment rule stays in effect across different sessions,
regardless of system restart, until another call to the procedure is made with a different rule
value, or with NONE meaning automatic assignment should be turned off.

The following constants are defined for key-to-partition assignment rules.

• NONE constant number :=0; -- turn off rule-based assignment

• LAST_PARTITION constant number := 1; -- rule for assigning key only to the last added
partition

• ROUNT_ROBIN constant number :=2; -- rule for assigning key to partition by round robin

• RANDOM constant number :=3; -- rule for assigning key to partition randomly

• CUSTOM constant number :=4; -- TBD

DML Support on Tables Sharded by Directory
Directory-based data distribution offers the same support as other data distribution methods for
regular DMLs and queries run on the shard with partition pruning support.

Adding a New Tablespace and Chunks (Partition) in a
Shardspace

You may need to add a new tablespace and partition to a table sharded by directory when you
want to add new groupings of keys on an existing shardspace or a newly added shardspace.

The steps involved are:

1. Create new tablespaces in the desired shardspace.

2. Run ALTER TABLE ADD PARTITION partition_name TABLESPACE tablespace_name on the
sharded table, for example:

ALTER TABLE customers ADD PARTITION p4 TABLESPACE tb4;

This results in the creation of an empty partition and chunk in the specified shardspace.
Subsequent inserts of new key values can then specify this new partition as the target.

If you specify the assignment rule to be last partition, all new key inserts will be
automatically assigned to the new partition.

Chunk Management in a Directory-Based Distributed Database
As with user-defined data distribution, tablespaces created for directory-based data distribution
are assigned to chunks.

Chapter 7
DML Support on Tables Sharded by Directory

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 7



The total number of chunks is defined by the number of partitions specified in the sharded
table. The number of chunks for a given shardspace is the number of partitions assigned to it.
The ALTER TABLE ADD, DROP, and SPLIT PARTITION commands on the sharded table increases
or decrease the number of chunks.

The GDSCTL SPLIT CHUNK command, which is used to split a chunk in the middle of the hash
range for system-managed data distribution, is not supported for directory-based data
distribution. You must use the ALTER TABLE SPLIT PARTITION statement to split a chunk.

Also, just like user-defined data distribution, no chunk migration is automatically started when a
shard is added to the distributed database. You must run the GDSCTL MOVE CHUNK command for
each chunk that needs to be moved to another shard.

Splitting Partitions (Chunks)
Do the following steps to split chunks in a directory-based distributed database.

1. Invoke the DBMS_SHARDING_DIRECTORY PL/SQL API flagKeyForSplit to mark keys for
splitting.

PROCEDURE flagKeyForSplit
     (schema_name    IN varchar2,    -- root table schema name
      root_table     IN varchar2,    -- root table name
      key … )                       -- shard key column values

Note that the key column values need to be in the same order as specified in the CREATE
TABLE statement with the correct types. The procedure can only succeed if the provided
key exists in the directory.

2. Issue the partition split DDL.

ALTER TABLE customers SPLIT PARTITION p1 INTO 
( PARTITION p1 TABLESPACE tb1,
  PARTITION p3 TABLESPACE tb3 ) 
  UPDATE INDEXES;

Note that, in directory-based data distribution, a partition can be split into only two
partitions at a time.

This operation will go through all of the keys that have been marked for split in the
directory and split the corresponding data out into the new partition.

Sharding Key Directory Public View
The view root_table_name$shard_dir_view provides you with the key to partition/chunk/shard
mappings for the specified root table.

Table 7-1    root_table_name$SHARD_DIR_VIEW

Name Type NULL Description

KEY columns… varies No Unique sharding key column
values

KEY_ID$ RAW(32) No Unique SHA-256 ID assigned
to the key

Chapter 7
Splitting Partitions (Chunks)

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 7



Table 7-1    (Cont.) root_table_name$SHARD_DIR_VIEW

Name Type NULL Description

CHUNK_ID$ NUMBER No The chunk ID to which the
key is assigned

PARTITION_NAME VARCHAR2(128) No Name of the root table
partition the key is assigned
to

SHARDSPACE_NAME VARCHAR2(128) No The shardspace name where
the chunk belongs to

SPLIT_FLAG$ NUMBER Yes 0: not flagged (default)

1: flagged

Chapter 7
Sharding Key Directory Public View

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 7



8
Query and DML Processing

On a distributed database, queries and DML can be routed to the shards for processing with or
without a sharding key. If a key is provided by the application a database request is routed
directly to the shards, but if no key is provided the request is processed by the shard catalog,
and then directed to the necessary shards for processing.

Topics:

• How Database Requests are Routed to the Shards

• Connecting to the Query Coordinator

• Query Coordinator Operation

• Query Processing for Single-Shard Queries

• Query Processing for Multi-Shard Queries

• Multi-Shard Query Coordinator Availability and Scalability

• Pushing PL/SQL Function Queries to the Shards

• Gathering Optimizer Statistics on Sharded Tables

• Supported Query Constructs and Example Query Shapes

• Supported DMLs and Examples

How Database Requests are Routed to the Shards
In Oracle Globally Distributed Database, database query and DML requests are routed to the
shards in two main ways, depending on whether a sharding key is supplied with the request.

These two routing methods are called direct routing and proxy routing.

Direct Routing

You can connect directly to the shards to process queries and DML by providing a sharding
key with the database request. Direct routing is the preferred way of accessing shards to
achieve better performance, among other benefits.

Proxy Routing

Queries that need data from multiple shards, and queries that do not specify a sharding key,
cannot be routed directly by the application. Those queries require a proxy to route requests
between the application and the shards. Proxy routing is handled by the shard catalog query
coordinator.

Routing Queries and DMLs Directly to Shards
Applications can have their requests routed directly to the shards if they provide a sharding
key. With the direct routing mechanism, requests can only query and manipulate the data that
belongs to the shard they were routed to.

Direct access to the data on the shards has several advantages.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 18



• Offers better performance: Overall, applications experience better performance compared
to routing requests to the shards indirectly through the shard catalog (by proxy). With direct
routing there is no need for the requests and the results to pass through a coordinator
database.

• Accommodates geographic distribution of shards: Applications can access the data in
shards localized in their region.

• Eases load balancing: Load balancing application requests across the shards can be
easily achieved by moving the data across shards using chunk moves.

• Supports all type of queries:

– SELECT, INSERT, and UPDATE on sharded tables: The scope of these requests is the
data that belong to the shards accessed.

– SELECT, INSERT, and UPDATE on duplicated tables: The scope of theses requests is all
of the data in the duplicated tables. Because the primary copies of a duplicated tables
reside in the coordinator database, the DMLs on the duplicated tables are re-routed to
the coordinator database.

The following figure illustrates DML on duplicated tables using direct routing to a shard.

1. The Application sends the DML request directly to one of the shards, Shard DB1.

2. The DML is forwarded from Shard DB1 to the Coordinator Database, where it is run on the
primary duplicated tables.

3. The Coordinator Database refresh mechanism runs periodically to update the instances of
the duplicated tables on all of the shards.

Figure 8-1    DML on a Duplicated Table with Direct Routing

Application

Coordinator Database

Shard DB2 Shard DB3Shard DB1

2

1

3 3 3

For more information about direct routing, see Client Application Request Routing.

For information about developing applications for direct routing, see Developing Applications
for Oracle Globally Distributed Database

Routing Queries and DMLs by Proxy
Using the shard catalog query coordinator as a proxy, Oracle Globally Distributed Database
can handle request routing for queries and DMLs that do not specify a sharding key.

Chapter 8
How Database Requests are Routed to the Shards

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 18



By using the coordinator as a proxy, Oracle Globally Distributed Database provides you with
the flexibility to allow any database application to run SQL statements without the need to
specify the shards where the query should be processed. The query coordinator runs cross-
shard updates, inserts, and deletes in parallel on multiple shards.

For more information about the coordinator, see Query Processing and the Query Coordinator.

The following figure illustrates DML on duplicated tables using proxy routing.

1. The Application sends the DML request to the Coordinator Database where it is run on the
primary duplicated tables.

2. The Coordinator Database refresh mechanism runs periodically to update the instances of
the duplicated tables on all of the shards.

Figure 8-2    DML on a Duplicated Table with Proxy Routing

Coordinator Database

Shard DB2 Shard DB3Shard DB1

1

2 2 2

Application

The remaining topics in this chapter discuss routing and processing database requests by
proxy.

Connecting to the Query Coordinator
The query coordinator, a component of the shard catalog, contains the metadata of the
sharded topology and provides query processing support for distributed databases.

To perform multi-shard queries, connect to the multi-shard coordinator using the GDS$CATALOG
service on the shard catalog database.

sqlplus app_schema/app_schema@shardcatvm:1521/GDS\$CATALOG.oradbcloud

For more information about the coordinator, see Query Processing and the Query Coordinator

Query Coordinator Operation
The SQL compiler in the shard catalog identifies the relevant shards automatically, and
coordinates the query processing across all of the participating shards. Database links are
used for the communication between the coordinator and the shards.

As shown in the following figure, at a high level, the coordinator rewrites each incoming query,
Q, into two queries, Coordinator Query (CQ) and Shard Query (SQ) where SQ, where SQ

Chapter 8
Connecting to the Query Coordinator

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 18



(Shard Query) is the part of Q that runs on each participating shard, and CQ (Coordinator
Query) is the part of Q that runs on the coordinator shard.

A query, Q, is rewritten into CQ ( Shard_Iterator( SQ ) ), where the Shard_Iterator is
the operator that connects to the shards and runs SQ. It can be run in parallel or serially.

Figure 8-3    Query Coordinator Operation

Application Coordinator Database

Shard DB2 Shard DB3Shard DB1

CQ + Shard Iterator

Q

R

SQ r1 r2 r3SQSQ

The following is an example of an aggregate query, Q1, rewritten into Q1’.

Q1 : SELECT COUNT(*) FROM customers

Q1’: SELECT SUM(sc) FROM (Shard_Iterator(SELECT COUNT(*) sc FROM s1 (i) ))

There are two main elements in this process.

1. The relevant shards are identified.

2. The query is rewritten into a distributive form and iterated across the relevant shards.

During the query compilation on the coordinator database, the query compiler analyzes the
predicates on the sharding key, and extracts the predicates that can be used to identify the
participating shards, that is, the shards that will contribute rows for the sharded tables
referenced in the query. The rest of the shards are referred to as pruned shards.

In the case where only one participating shard was identified, the full query is routed to that
shard for processing. This is called a single-shard query.

If there is more than one participating shard, the query is called a multi-shard query and it is
rewritten. The rewriting process takes into account the expressions computed by the query as
well as the query shape.

Query Processing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and does not
need to lookup data from any other shards.

The single-shard query is similar to a client connecting to a specific shard and issuing a query
on that shard. In this scenario, the entire query will be processed on the single participating

Chapter 8
Query Processing for Single-Shard Queries

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 18



shard, and the coordinator just passes processed rows back to the client. The plan on the
coordinator is similar to the remote mapped cursor.

For example, the following query is fully mapped to a single shard because the data for
customer 123 is located only on that shard.

SELECT count(*) FROM customers c, orders o WHERE c.custno = o.custno and 
c.custno = 123;

The query contains a condition on the shard key that maps to one and only one shard which is
known at query compilation time (literals) or query start time (bind). The query is fully
processed on the qualifying shard.

Single-shard queries are supported for:

• Equality and In-list, such as Area = ‘West’

• Conditions containing literal, bind, or expression of literals and binds, such as

Area = :bind

Area = CASE :bind <10 THEN ‘West’ ELSE ‘East’ END

• SELECT, UPDATE, DELETE, INSERT, FOR UPDATE, and MERGE. UPSERT is not supported.

Query Processing for Multi-Shard Queries
A multi-shard query is a query that must scan data from more than one shard, and the
processing on each shard is independent of any other shard.

A multi-shard query maps to more than one shard and the coordinator might need to do
some processing before sending the result to the client. For example, the following query gets
the number of orders placed by each customer.

SELECT count(*), c.custno FROM customers c, orders o WHERE c.custno = o.custno
 GROUP BY c.custno;

The query is transformed to the following by the coordinator.

SELECT sum(count_col), custno FROM (SELECT count(*) count_col, c.custno
 FROM customers c, orders o 
 WHERE c.custno = o.custno GROUP BY c.custno) GROUP BY custno;

The inline query block is mapped to every shard just as a remote mapped query block. The
coordinator performs further aggregation and GROUP BY on top of the result set from all shards.
The unit of processing on every shard is the inline query block.

Multi-Shard Queries and Global Read Consistency

A multi-shard query must maintain global read consistency (CR) by issuing the query at the
highest common SCN across all the shards. See Specifying Consistency Levels in a Multi-
Shard Query for information about how to set consistency levels.

Passing Hints in Multi-Shard Queries

Any hint specified in the original query on the coordinator is propagated to the shards.

Chapter 8
Query Processing for Multi-Shard Queries

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 18



Tracing and Troubleshooting Slow Running Multi-Shard Queries

Set the trace event shard_sql on the coordinator to trace the query rewrite and shard pruning.
One of the common performance issues observed is when the GROUP BY is not pushed to
the shards because of certain limitations of the sharding. Check if all of the possible operations
are pushed to the shards and the coordinator has minimal work to consolidate the results from
shards.

Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter MULTISHARD_QUERY_DATA_CONSISTENCY to set
different consistency levels when running multi-shard queries across shards.

You can specify different consistency levels for multi-shard queries. For example, you might
want some queries to avoid the cost of SCN synchronization across shards, and these shards
could be globally distributed. Another use case is when you use standbys for replication and
slightly stale data is acceptable for multi-shard queries, as the results could be fetched from
the primary and its standbys.

The default mode is strong, which performs SCN synchronization across all shards. Other
modes skip SCN synchronization. The delayed_standby_allowed level allows fetching data
from the standbys as well, depending on load balancing and other factors, and could contain
stale data.

This parameter can be set either at the system level or at the session level.

See Also

Oracle AI Database Reference for more information about
MULTISHARD_QUERY_DATA_CONSISTENCY usage.

Multi-Shard Query Coordinator Availability and Scalability
The multi-shard query coordinator, a component of the shard catalog, can be kept highly
available and scaled to meet its workload with these recommendations.

The availability of the multi-shard coordinator impacts proxy-routing based workloads, so it is
highly recommended that the coordinator be protected with Data Guard in Maximum
Availability protection mode (zero data loss failover) with fast-start failover enabled. The
coordinator may optionally be Oracle RAC-enabled for additional availability and scalability.

To improve the scalability and availability of multi-shard query workloads, Oracle Active Data
Guard standby shard catalog databases in read-only mode can act as multi-shard query
coordinators. For each active replica of the catalog database, a special coordinator service,
GDS$COORDINATOR.cloud_name (where cloud_name is the value specified for the configname
parameter in the GDSCTL CREATE SHARDCATALOG command, and is oradbcloud by default) is
running and registered on all shard directors.

Clients can connect to this service on any of the replicas and perform multi-shard queries,
allowing shard directors to distribute the multi-shard query workload with respect to runtime
load balancing and decrease the load on in the primary shard catalog, which is the central
component of Oracle Globally Distributed Database.

Chapter 8
Multi-Shard Query Coordinator Availability and Scalability

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 18



Additionally, if the database’s region is set, and the client specifies the region in the connection
string, a shard director routes a connection with respect to regional affinity.

Availability of the multi-shard query coordinator has zero impact on workloads using direct
routing.

Pushing PL/SQL Function Queries to the Shards
The SHARD_ENABLE keyword allows the PL/SQL CREATE function statement to indicate that the
function evaluation can be pushed down into the shards.

Note that the parallel_enable_clause uses the PARALLEL_ENABLE keyword, which is used to
parallelize the execution of a query with the PL/SQL function within one shard.

However, the SHARD_ENABLE keyword, is used to parallelize the query across all shards.
Therefore, these two keywords are different and can be used simultaneously to achieve
parallel execution within and across shards.

Existing PL/SQL functions called from a cross-shard query (CSQ) will be executed on the
shard catalog and won’t be pushed to the shards. To benefit from the PL/SQL functions
support, you need to re-run CREATE or replace the PL/SQL functions with the keyword
SHARD_ENABLE.

See SHARD_ENABLE Clause in Oracle Database PL/SQL Language Reference for more
information about syntax and usage.

Gathering Optimizer Statistics on Sharded Tables
You can gather statistics on sharded tables from the coordinator database.

The statistic preference parameter COORDINATOR_TRIGGER_SHARD, when set to TRUE on all of the
shards, allows the coordinator database to import the statistics gathered on the shards.

The PL/SQL procedures DBMS_STATS.GATHER_SCHEMA_STATS() and
DBMS_STATS.GATHER_TABLE_STATS() gather statistics on sharded tables and duplicated tables
in the shards and in the coordinator database. See also, REPORT_GATHER_TABLE_STATS
Function.

Manual Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you have a
schema named sharduser:

connect / as sysdba
EXECUTE 
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD','TRUE')
;

2. Gather statistics across the shards.

The user should be an all-shards user and needs to have privileges to access dictionary
tables.

Chapter 8
Pushing PL/SQL Function Queries to the Shards

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 18



a. On the shards run the following.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER', options => 
'GATHER');

b. When all shards are completed, to pull aggregated statistics run the following on the
coordinator.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER', options => 
'GATHER');

c. Check the statistics on all of the shards.

connect sharduser/password

ALTER SESSION SET nls_date_format='DD-MON-YYYY HH24:MI:SS';
  col TABLE_NAME form a40
  set pagesize 200 linesize 200

SELECT TABLE_NAME, NUM_ROWS, sharded, duplicated, last_analyzed
  FROM user_tables
  WHERE table_name not like 'MLOG%' and table_name not like 'RUPD%'
  and table_name not like 'USLOG%';

Automatic Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you have a
schema named sharduser:

connect / as sysdba
EXECUTE 
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD','TRUE')
;

2. Schedule a job to pull aggregated statistics on the shards and on the coordinator
database.

The user should be an all-shards user and must have privileges to access dictionary
tables.

Start the following job on the shards:

connect sharduser/password
BEGIN 
DBMS_SCHEDULER.CREATE_JOB ( 
   job_name => 'Gather_Stats_2', 
   job_type => 'PLSQL_BLOCK',
   job_action => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 
''DEMO'', options => ''GATHER''); END;',
   start_date => SYSDATE,
   repeat_interval => 
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=14;byminute=10;bysecon
d=00',

Chapter 8
Gathering Optimizer Statistics on Sharded Tables

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 18



   end_date => NULL,
   enabled => TRUE,
   comments => 'Gather table statistics');
END; 
/

After the job on all of the shards is finished, start the following job on the coordinator.

connect sharduser/password
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
   job_name             => 'Gather_Stats_2',
   job_type             => 'PLSQL_BLOCK',
   job_action           => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname 
=> ''DEMO'', options => ''GATHER''); END;',
   start_date           =>  SYSDATE,
   repeat_interval      => 
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=15;byminute=10;bysecon
d=00', 
   end_date             =>  NULL,
   enabled              =>  TRUE,
   comments             => 'Gather table statistics');
END;
/

Supported Query Constructs and Example Query Shapes
Oracle Globally Distributed Database supports single-shard and multi-shard query shapes with
some restrictions.

The following are restrictions on query constructs in Oracle Globally Distributed Database.

• CONNECT BY Queries CONNECT BY queries are not supported.

• MODEL Clause The MODEL clause is not supported.

• User-Defined PL/SQL in the WHERE Clause User-defined PL/SQL is allowed in multi-
shard queries only in the SELECT clause. If it is specified in the WHERE clause then an error
is thrown.

• XLATE and XML Query type XLATE and XML Query type columns are not supported.

• Object types You can include object types in SELECT lists, WHERE clauses, and so on, but
custom constructors and member functions of type object type are not permitted in WHERE
clauses.

Furthermore, for duplicated tables, non-final types, that is, object types that are created
with the NOT FINAL keyword, cannot be used as a column data type. For sharded tables,
non-final types can be used as a column data type but the column must be created with
keywords NOT SUBSTITUTABLE AT ALL LEVELS.

Note

Queries involving only duplicated tables are run on the coordinator.

Chapter 8
Supported Query Constructs and Example Query Shapes

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 18



The following topics show several examples of query shapes supported in Oracle Globally
Distributed Database.

Queries on Sharded Tables Only
For a single-table query, the query can have an equality filter on the sharding key that qualifies
a shard. For join queries, all of the tables should be joined using equality on the sharding key.

The following examples show queries where only sharded tables participate.

Example 8-1    Inner Join

SELECT … FROM s1 INNER JOIN s2 ON s1.sk=s2.sk 
WHERE any_filter(s1) AND any_filter(s2)

Example 8-2    Left Outer Join

SELECT … FROM s1 LEFT OUTER JOIN s2 ON s1.sk=s2.sk

Example 8-3    Right Outer Join

SELECT … FROM s1 RIGHT OUTER JOIN s2 ON s1.sk=s2.sk

Example 8-4    Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Queries Involving Both Sharded and Duplicated Tables
A query involving both sharded and duplicated tables can be either a single-shard or multi-
shard query, based on the predicates on the sharding key. The only difference is that the query
contains a non-sharded table.

Note

Joins between a sharded table and a duplicated table can be on any column, using
any comparison operator, = < > <= >=, or arbitrary join expressions.

Example 8-5    Inner Join

SELECT … FROM s1 INNER JOIN r1 ON any_join_condition(s1,r1) 
WHERE any_filter(s1) AND any_filter(r1)

Example 8-6    Left or Right Outer Join

In this case, the sharded table is the first table in LEFT OUTER JOIN.

SELECT … FROM s1 LEFT OUTER JOIN r1 ON any_join_condition(s1,r1) 
WHERE any_filter(s1) AND any_filter(r1)

Chapter 8
Supported Query Constructs and Example Query Shapes

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 18



SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2) 
AND any_filter(r1) AND filter_one_shard(s1)

In this case, the sharded table is the second table in RIGHT OUTER JOIN.

SELECT … FROM r1 RIGHT OUTER JOIN s1 ON any_join_condition(s1,r1) 
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2) 
AND filter_one_shard(s1) AND any_filter(r1)

In some cases, the duplicated table is the first table in LEFT OUTER JOIN, or the sharded table
is first and it maps to a single shard, based on filter predicate on the sharding key.

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2) 
AND any_filter(r1) AND any_filter(s1)

In some cases, the duplicated table is the second table in RIGHT OUTER JOIN, or the sharded
table is second and it maps to a single shard based on filter predicate on sharding key.

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2) 
AND any_filter (s1) AND any_filter(r1)

Example 8-7    Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

In this case, the sharded table requires access to multiple shards:

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.non_sk=s2.non_sk
WHERE any_filter(s1) AND any_filter(s2)

Example 8-8    Semi-Join (EXISTS)

SELECT … FROM s1 EXISTS 
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

SELECT … FROM r1 EXISTS 
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey and filter_one_shard(s1))

In this case, the sharded table is in a subquery that requires the participation of multiple
shards.

SELECT … FROM r1 EXISTS 
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey)

Chapter 8
Supported Query Constructs and Example Query Shapes

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 18



Example 8-9    Anti-Join (NOT EXISTS)

SELECT … FROM s1 NOT EXISTS 
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)    

In this case, the sharded table is in the sub-query.

SELECT … FROM r1 NOT EXISTS 
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey

Supported Aggregate Functions
The following aggregations are supported by proxy routing in Oracle Globally Distributed
Database.

• COUNT

• SUM

• MIN

• MAX

• AVG

Queries with User-Defined Types
User-defined SQL object types and user-defined SQL collection types are referred to as user-
defined types. Oracle Globally Distributed Database supports queries with user-defined types.

Example 8-10    Create Table with User-Defined Types

The following example creates an all-shard type and type body, then creates a sharded table
referencing the type.

ALTER SESSION ENABLE SHARD DDL;

CREATE OR REPLACE TYPE person_typ AS OBJECT (
    first_name   VARCHAR2(20),
    last_name    VARCHAR2(25),
    email        VARCHAR2(25),
    phone        VARCHAR2(20),
    MEMBER FUNCTION details (
    self IN person_typ
    ) RETURN VARCHAR2
);
/

CREATE OR REPLACE TYPE BODY person_typ AS
    MEMBER FUNCTION details (
    self IN person_typ
    ) RETURN VARCHAR2 IS
        result VARCHAR2(100);
    BEGIN
        result := first_name || ' ' || last_name || ' ' || email || ' ' || 
phone;

Chapter 8
Supported Query Constructs and Example Query Shapes

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 18



        RETURN result;
    END;
END;
/

CREATE SHARDED TABLE Employees
( Employee_id      NUMBER NOT NULL
, person      person_typ
, signup_date DATE NOT NULL
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Example 8-11    Insert Data Using Type Constructor

INSERT INTO Employees values ( 1, person_typ('John', 'Doe', 
'jdoe@example.com', '123-456-7890'), to_date('24 Jun 2020', 'dd Mon YYYY'));

Example 8-12    Multi-Shard Query of a User-Defined Type Column

SELECT e.person FROM Employees e;

SELECT e.person.first_name, e.person.last_name FROM Employees e;

SELECT e.person.details() FROM Employee e where e.person.first_name = 'John’;

 
SELECT signup_date from Employees e where e.person = person_typ('John', 
'Doe', 'jdoe@example.com', '123-456-7890’);

Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan which is optimized
for the data size and compute resources available on the shard.

You do not need to connect to individual shards to see the explain plan for SQL fragments.
Interfaces provided in dbms_xplan.display_cursor() display on the coordinator the plans for
the SQL segments run on the shards, and [V/X]$SHARD_SQL uniquely maps a shard SQL
fragment of a multi-shard query to the target shard database.

SQL Segment Interfaces for dbms_xplan.display_cursor()

Two interfaces can display the plan for a SQL segment run on shards. The interfaces take
shard IDs as the argument to display the plans from the specified shards. The ALL_SHARDS
format displays the plans from all of the shards.

Chapter 8
Supported Query Constructs and Example Query Shapes

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 18



To print all of the plans from all shards use the format value ALL_SHARDS as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
                                              cursor_child_no=>:childno,
                                              format=>'BASIC +ALL_SHARDS‘,
                                              shard_ids=>shard_ids))

To print selective plans from the shards, pass shard IDs in the display_cursor() function. For
plans from multiple shards, pass an array of numbers containing shard IDs in the shard_ids
parameter as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid, 
                                               cursor_child_no=>:childno,
                                               format=>'BASIC',
                                               shard_ids=>ids))

To return a plan from one shard pass the shard ID directly to the shard_id parameter, as
shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
                                              cursor_child_no=>:childno,
                                              format=>'BASIC',
                                              shard_id=>1))

V$SQL_SHARD

V$SQL_SHARD uniquely maps a shard SQL fragment of a multi-shard query to the target shard
database. This view is relevant only for the shard coordinator database to store a list of shards
accessed for each shard SQL fragment for a given multi-shard query. Every time a multi-shard
query runs, it can run a shard SQL fragment on different set of shards, so the shard IDs update
each time it is runs. This view maintains the SQL ID of a shard SQL fragment for each
REMOTE node and the SHARD IDs on which the shard SQL fragment was run.

Name                                      Null?    Type
----------------------------------------- -------- 
----------------------------
 SQL_ID                                            VARCHAR2(13)
 CHILD_NUMBER                                      NUMBER
 NODE_ID                                           NUMBER
 SHARD_SQL_ID                                      VARCHAR2(13)
 SHARD_ID                                          NUMBER
 SHARD_CHILD_NUMBER                                NUMBER

• SQL_ID – SQL ID of a multi-shard query on coordinator

• CHILD_NUMBER – cursor child number of a multi-shard query on coordinator

• NODE_ID – ID of REMOTE node for a shard SQL fragment of a multi-shard query

• SHARD_SQL_ID – SQL ID of the shard SQL fragment for given remote NODE ID

• SHARD_ID – IDs of shards where the shard SQL fragment was run

• SHARD _CHILD_NUMBER– cursor child number of a shard SQL fragment on a shard
(default 0)

Chapter 8
Supported Query Constructs and Example Query Shapes

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 18



The following is an example of a multi-shard query on the distributed database and the
execution plan.

SQL> select count(*) from departments a where exists (select distinct 
department_id
 from departments b where b.department_id=60);
------------------------------------------------
| Id  | Operation          | Name              |
------------------------------------------------
|   0 | SELECT STATEMENT   |                   |
|   1 |  SORT AGGREGATE    |                   |
|   2 |   FILTER           |                   |
|   3 |    VIEW            | VW_SHARD_377C5901 |
|   4 |     SHARD ITERATOR |                   |
|   5 |      REMOTE        |                   |
|   6 |    VIEW            | VW_SHARD_EEC581E4 |
|   7 |     SHARD ITERATOR |                   |
|   8 |      REMOTE        |                   |
------------------------------------------------

A query of SQL_ID on the V$SQL_SHARD view.

SQL> Select * from v$sql_shard where SQL_ID = ‘1m024z033271u’;
SQL_ID        NODE_ID   SHARD_SQL_ID  SHARD_ID
------------- -------  -------------- --------
1m024z033271u       5   5z386yz9suujt        1
1m024z033271u       5   5z386yz9suujt       11 
1m024z033271u       5   5z386yz9suujt       21 
1m024z033271u       8   8f50ctj1a2tbs         11

See Also

Oracle AI Database PL/SQL Packages and Types Reference

Oracle AI Database Reference

Supported DMLs and Examples
DMLs in Oracle Globally Distributed Database can target either duplicated tables or sharded
tables. There are no limitations on DMLs when the target is a duplicated table.

DMLs (mainly Insert, Update and Delete) targeting sharded tables can be

• Simple DMLs where only the target table is referenced

• DMLs referencing other tables

• Merge statements

Simple DMLs Where Only the Target Table is Referenced
The following are several examples of supported DMLs.

Chapter 8
Supported DMLs and Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 18



Example 8-13    Update all of the rows

UPDATE employees SET salary = salary *1.1;

Example 8-14    Insert one row

INSERT INTO employees VALUES (102494, 'Jane Doe, ...
    );

Example 8-15    Delete one row

DELETE employees WHERE employee_id = 103678;

DMLs Referencing Other Tables
DMLs on sharded tables can reference other sharded tables, duplicated tables, or local tables.

Example 8-16    DML referencing duplicated table

In this example, employees is a sharded table and ref_jobs is a duplicated table.

DELETE employees
            WHERE job_id IN (SELECT job_id FROM ref_jobs
                            WHERE job_id = 'SA_REP');

Example 8-17    DML referencing another sharded table

UPDATE departments SET department_name = 'ABC‘
            WHERE department_id IN (SELECT department_id
                                    FROM employees
                                    WHERE salary < 10000);

Example 8-18    Insert as select from a local table

INSERT INTO employees SELECT * FROM local_employees;

Example 8-19    DML affecting one shard

A DML statement might affect only one shard, or it can involve multiple shards. For example,
the DELETE statement shown here affects only one shard because there is a predicate on the
sharding key (employee_id) in the WHERE clause..

DELETE employees WHERE employee_id = 103678;

Example 8-20    DML affecting multiple shards

The following statement affects all of the rows in the EMPLOYEES table because it does not have
a WHERE clause.

UPDATE employees SET salary = salary *1.1;

Chapter 8
Supported DMLs and Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 18



To run this UPDATE statement on all shards, the shard coordinator iterates over all of the primary
shard databases and invokes the UPDATE statement remotely. The coordinator starts a
distributed transaction and performs two phase commit to guarantee the consistency of the
distributed transaction. If there is an in-doubt transaction, you must recover it manually.

Example Merge Statements
The MERGE statement can target a sharded table or a duplicated table. The merge is allowed as
long as the MERGE operation itself can be pushed to the shards.

Example 8-21    Merge statement with sharded table employees as the target table

In this example, the employee_id column is the sharding key, and the join predicate on the
source query is on the sharding key, so the MERGE statement will get pushed to all of the shards
to be processed.

MERGE INTO employees D
   USING (SELECT employee_id, salary, department_id FROM employees
   WHERE department_id = 80) S
   ON (D.employee_id = S.employee_id)
   WHEN MATCHED THEN UPDATE SET D.salary = D.salary + S.salary*.01
     DELETE WHERE (S.salary > 8000)
   WHEN NOT MATCHED THEN INSERT (D.employee_id, D.salary)
     VALUES (S.employee_id, S.salary*0.1)
     WHERE (S.salary <= 8000);

Example 8-22    Merge statement with duplicated table as the target table

In this example, the target table is the duplicated table ref_employees. The source query
references the sharded table employees and the join predicate is on the sharding key
employee_id.

MERGE INTO ref_employees D
   USING (SELECT employee_id, salary, department_id FROM employees
   WHERE department_id = 80) S
   ON (D.employee_id = S.employee_id)
   WHEN MATCHED THEN UPDATE SET D.salary = D.salary + S.salary*.01
     DELETE WHERE (S.salary > 8000)
   WHEN NOT MATCHED THEN INSERT (D.employee_id, D.salary)
     VALUES (S.employee_id, S.salary*0.1)
      WHERE (S.salary <= 8000);

Limitations in Multi-Shard DML Support
The following DML features are not supported by multi-shard DML in Oracle Globally
Distributed Database.

• Error Logging The ERROR LOG clause with DML is not supported by multi-shard DML. A
user error is raised in this case.

• Array DML Array DML is not supported by multi-shard DML. ORA-2681 is raised in this
cases.

• RETURNING Clause The RETURNING INTO clause is not supported by regular distributed
DMLs; therefore, it is not supported. ORA-22816 is raised if you try to use the RETURNING
INTO clause in multi-shard DMLs.

Chapter 8
Supported DMLs and Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 18



• MERGE and UPSERT The MERGE statement is partially supported, that is, a MERGE
statement affecting only single shard is supported. ORA error is raised if a MERGE statement
requires the modification of multiple shards.

• Multi-Table INSERT Multi-table inserts are not supported by database links; therefore,
multi-table inserts are not supported.

• Updatable Join View ORA-1779 is thrown when the updatable join view has a join on a
sharded table on sharding keys. The reason for this error is that the primary key defined on
a sharded table is combination of internal column SYS_HASHVAL + sharding key and you
cannot specify SYS_HASHVAL in the updatable join view. Because of this restriction you
cannot establish the key-preserved table resulting in raising ORA-1779.

• Triggers

Chapter 8
Supported DMLs and Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 18



9
Oracle Globally Distributed Database
Administration

Oracle Globally Distributed Database provides tools and some automation for the
administration of a distributed database.

The following topics describe the aspects of Oracle Globally Distributed Database
administration in detail:

• Managing the Oracle Globally Distributed Database Stack

• Oracle Globally Distributed Database Users and Roles

• Backing Up and Recovering a Distributed Database

• Propagation of Parameter Settings Across Shards

• Patching and Upgrading Oracle Globally Distributed Database

• Managing Oracle Globally Distributed Database with Enterprise Manager Cloud Control

• Monitoring an Oracle Globally Distributed Database

• Shard Management

• Chunk Management

• Shard Director Management

• Region Management

• Shardspace Management

• Shardgroup Management

• Services Management

Managing the Oracle Globally Distributed Database Stack
Follow these recommended sequences for startup and shutdown of components in the Oracle
Globally Distributed Database configuration.

Starting Up the Stack
The following is the recommended startup sequence of the distributed database stack:

• Start the shard catalog database and local listener.

• Start the shard directors (GSMs).

• Start up the shard databases and local listeners.

• Start the global services.

• Start the connection pools and clients.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 71



Shutting Down the Stack
The following is the recommended shutdown sequence of the distributed database stack:

• Shut down the connection pools and clients.

• Stop the global services.

• Shut down the shard databases and local listeners.

• Stop the shard directors (GSMs).

• Stop the shard catalog database and local listener.

Oracle Globally Distributed Database Users and Roles
Here you will learn about the management of database users and roles specific to Oracle
Globally Distributed Database.

Overview of Users and Roles
In Oracle Globally Distributed Database some types of users require certain roles and
privileges.

For distributed databases there are three kinds of users:

• Distributed database/GSM administrator - Grant this user the GSMADMIN_ROLE role. This role
should be granted to one, or only a few accounts, that require elevated privileges to do
administrative tasks. This role has a number of powerful privileges, including ALTER
SYSTEM.

• Distributed database schema owner - Grant this user the SHARDED_SCHEMA_OWNER role. This
role should be granted only to accounts which own a distributed database schema. The
role only has enough privileges to allow the account to manage their own schema for
various operations, for example, "select any table" would not be a privilege this role has.

• Regular distributed database user - This type of user includes any account which has been
created under ENABLE SHARD DDL; these users have no special privileges or roles except
those needed to run a distributed database application. The database administrator
decides which privileges these accounts need, and grants them individually to the account.

Oracle Globally Distributed Database Roles
Oracle Globally Distributed Database provides a set of predefined database roles to help in
distributed database administration.

Most of the Oracle Globally Distributed Database roles don't have many privileges, but they do
have execute rights on certain Oracle-delivered procedures and packages which allow them to
perform administrative tasks.

Predefined Role Description

GSMADMIN_ROLE Should be granted to Oracle Globally Distributed
Database administrators, so that they can
administer the Oracle Globally Distributed
Database configuration

Chapter 9
Oracle Globally Distributed Database Users and Roles

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 71



Predefined Role Description

SHARDED_SCHEMA_OWNER Provides privileges for Oracle Globally Distributed
Database schema owners to perform administrative
tasks on their own schema

GSMCATUSER_ROLE Granted only the Oracle delivered account
GSMCATUSER for internal use

GSMROOTUSER_ROLE Granted only to Oracle delivered account
GSMROOTUSER for internal use

GSMUSER_ROLE Granted only to Oracle delivered account GSMUSER
for internal use

For more information about database roles, see Predefined Roles in an Oracle Database
Installation.

About the GSMUSER Account
The GSMUSER account is used by GDSCTL and shard directors (global service managers) to
connect to databases in an Oracle Globally Distributed Database configuration.

This account need to be unlocked for both the CDB and PDB.

GSMUSER exists by default on any Oracle database. In an Oracle Globally Distributed Database
configuration, the account is used to connect to shards instead of pool databases, and it must
be granted both the SYSDG and SYSBACKUP system privileges after the account has been
unlocked.

The password given to the GSMUSER account is used in the gdsctl add shard command.
Failure to grant SYSDG and SYSBACKUP to GSMUSER on a new shard causes gdsctl add shard to
fail with an ORA-1031: insufficient privileges error.

See Also

add shard in Global Data Services Concepts and Administration Guide

About the GSMROOTUSER Account
GSMROOTUSER is a database account specific to Oracle Globally Distributed Database that is
only used when pluggable database (PDB) shards are present. The account is used by
GDSCTL and global service managers to connect to the root container of container databases
(CDBs) to perform administrative tasks.

If PDB shards are not in use, the GSMROOTUSER user should not by unlocked nor assigned a
password on any database. However, in sharded configurations containing PDB shards,
GSMROOTUSER must be unlocked and granted the SYSDG and SYSBACKUP privileges before a
successful gdsctl add cdb command can be run. The password for the GSMROOTUSER account
can be changed after deployment if desired using the alter user SQL command in the root
container of the CDB in combination with the gdsctl modify cdb -pwd command.

Chapter 9
Oracle Globally Distributed Database Users and Roles

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 71



See Also

add cdb in Global Data Services Concepts and Administration Guide

Backing Up and Recovering a Distributed Database
The GDSCTL utility lets you define a backup policy for a distributed database and restore one or
more shards, or the entire distributed database, to the same point in time. Configured backups
are run automatically, and you can define a schedule to run backups during off-peak hours.

GDSCTL commands in Oracle Globally Distributed Database enable and simplify the centralized
management of backup policies for a distributed database, using Oracle MAA best practices.
You can create a backup schedule using an incremental scheme that leverages the Oracle Job
Scheduler. Oracle Recovery Manager (RMAN) performs the actual backup and restore
operations.

About Distributed Database Backup and Recovery

Backup and Restoration Terminology
The following are some terms you will encounter in the Oracle Globally Distributed Database
backup and restore procedures.

• Target database - A database RMAN is to back up.

• Global SCN - A common point in time for all target databases for which a restore of the
entire distributed database is supported. A restore point is taken at this global SCN, and
the restore point is the point to which the distributed database (including the shard catalog)
can be restored.

Note that you are not prohibited from restoring the shard catalog or a specific shard to an
arbitrary point in time. However, doing so may put that target in an inconsistent state with
the rest of the distributed database and you may need to take corrective action outside of
the restore operation.

• Incremental backup - Captures block-level changes to a database made after a previous
incremental backup.

• Level 0 incremental backup (level 0 backup) - The incremental backup strategy starting
point, which backs up blocks in the database. This backup is identical in content to a full
backup; however, unlike a full backup, the level 0 backup is considered a part of the
incremental backup strategy.

• Level 1 incremental backup (level 1 backup) - A level 1 incremental backup contains
only blocks changed after a previous incremental backup. If no level 0 backup exists in
either the current or parent database incarnation and you run a level 1 backup, then RMAN
takes a level 0 backup automatically. A level 1 incremental backup can be either
cumulative or differential.

Automated and On-Demand Backups
There are two type of backups in Oracle Globally Distributed Database: automated backups
and on-demand backups.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 71



• Automated backups are started by Oracle Scheduler jobs based on the job schedules,
and they run in the background on the database servers.

• On-demand backups are started by users from GDSCTL.

Internally, the on-demand backups are also started by Oracle Scheduler jobs on the
database servers. The jobs are created on-fly when the on-demand backup commands are
issued. They are temporary jobs and automatically dropped after the backups have
finished.

See also: Scheduling Jobs with Oracle Scheduler

Supported Backup Destinations
The following are supported backup destinations for Oracle Globally Distributed Database.

• Common disk/directory structure (NFS mount) which can be located anywhere,
including the shard catalog database host.

• Zero Data Loss Recovery Appliance (advantage is continuous backup, can leverage
Data Guard broker to manage and monitor redo transport)

• Oracle Object Storage

• Amazon S3 (Amazon Simple Storage Service)

Limitations
Note the following limitations for Oracle Globally Distributed Database backup and restore
using GDSCTL.

• Microsoft Windows is not supported.

• You must provide for backup of Clusterware Repository if Clusterware is deployed

Prerequisites to Configuring Centralized Backup and Restore
Before configuring backup for a distributed database, make sure the following prerequisites are
met.

• Create one or more recovery catalogs in a dedicated database. If Recovery Appliance is
used for the backup, the recovery catalog in the Recovery Appliance will be used.

Before you can backup or restore a distributed database using GDSCTL, you must have
access to a recovery catalog created in a dedicated database. This recovery catalog
serves as a centralized RMAN repository for the shard catalog database and all of the
shard databases.

Note the following:

– The version of the recovery catalog schema in the recovery catalog database must be
compatible with the distributed database version because RMAN has compatibility
requirements for the RMAN client, the target databases, and the recovery catalog
schema. For more information, see Oracle AI Database Backup and Recovery
Reference, cross-referenced below.

– The recovery catalog must not share a host database with the shard catalog because
the shard catalog database is one of the target databases in the distributed database
backup configuration, and RMAN does not allow the recovery catalog to reside in a
target database.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 71



– It is recommended that you back up the recovery catalog backup periodically, following
appropriate best practices.

– The shard catalog database and all of the shard databases can be configured to use
the same recovery catalog or split between various recovery catalogs.

• Configure backup destinations for the shard catalog database and all of the shard
databases.

The backup destination types are either DISK or system backup to tape. The supported
DISK destinations are NFS and Oracle ASM file systems.

Note that, if you are using Oracle Object Storage, Recovery Appliance, or Amazon S3 as a
backup destionation, RMAN treats them as tape internally. A spcial backup module needs
to be installed on the target database host.

System backup to tape destinations require additional software modules to be installed on
the database host. They must be properly configured to work with RMAN.

Using Recovery Appliance as the distributed database backup destination is special case.
Recovery Appliance comes with a built-in recovery catalog. Because a database can only
be registered as a target database with a single recovery catalog, when configuring the
distributed database backup with a Recovery Appliance as the backup destination, the
built-in recovery catalog is used for the distributed database backup and restore.

The shard catalog database and all of the shard databases must be configured to use the
same Recovery Appliance as the backup destination.

If the shard catalog database or the shard databases are in Data Guard configurations,
you can choose to back up either the primary or standby databases.

See also:

– Using Oracle Object Storage as a Backup Destination

– Using Recovery Appliance as a Backup Destination

– Using Amazon S3 as a Backup Destination

• RMAN connects to the target databases as specific internal users to do database backup
and restore with the exception of the shard catalog.

For the shard catalog, a common user in the CDB hosting the shard catalog PDB must be
provided at the time when the distributed database backup is configured. This user must
be granted the SYSDG and SYSBACKUP privileges. If the CDB is configured to use local undo
for its PDBs, the SYSBACKUP privilege must also be granted commonly.

For the shard databases, the internal CDB common user, GSMROOTUSER, is used. This user
must be unlocked in the shard CDB root databases and granted the SYSBACKUP privilege in
addition to other privileges that the distributed database requires for GSMROOUSER. If the
CDB is configured to use local undo for its PDBs, the SYSBACKUP privilege must be granted
commonly to GSMROOTUSER, meaning the CONTAINER=ALL clause must be used when
granting the SYSBACKUP privilege.

• All of the GDSCTL commands for the distributed database backup and restore operations
require the shard catalog database to be open. If the shard catalog database itself must be
restored, you must manually restore it.

• You are responsible for offloading backups to tape or other long-term storage media and
following the appropriate data retention best practices.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 71



Note

See RMAN Compatibility in Oracle AI Database Backup and Recovery Reference

Configuring Automated Backups
Use the GDSCTL CONFIG BACKUP command to configure automated backups.

You should connect to a shard director (GSM) host to run the GDSCTL backup commands. If the
commands are run from elsewhere, you must explicitly connect to the shard catalog database
using the GDSCTL CONNECT command.

When you run the GDSCTL backup configuration, you can provide the following inputs.

• A list of databases

The databases are the shard catalog database and shard databases. Backup configuration
requires that the primary databases of the specified databases be open for read and write,
but the standby databases can be mounted or open.

If a database is in a Data Guard configuration when it is configured for backup, all of the
databases in the Data Guard configuration are configured for backup. For a shard in Data
Guard configuration, you must provide the backup destinations and start times for the
primary and all of the standby shards.

This is different for the shard catalog database. The shard catalog database and all the
shard catalog standby databases will share a backup destination and a start time.

• Connect strings to the recovery catalog databases

For the connect string you need a user account with privileges for RMAN, such as
RECOVERY_CATALOG_OWNER role.

• RMAN backup destination parameters

These parameters include backup device and channel configurations. Different backup
destinations can be used for different shards.

Please note the following:

– Backup destinations for shards in Data Guard configuration must be properly defined
to ensure that the backups created from standby databases can be used to restore the
primary database and conversely. See "Using RMAN to Back Up and Restore Files" in
Oracle Data Guard Concepts and Administration for Data Guard RMAN support.

– The same destination specified for the shard catalog database is used as the backup
destination for the shard catalog standby databases.

– For system backup to tape devices, the media managers for the specific system
backup to tape devices are needed for RMAN to create channels to read and write
data to the devices. The media manager must be installed and properly configured.

See also:

– Using Oracle Object Storage as a Backup Destination

– Using Recovery Appliance as a Backup Destination

– Using Amazon S3 as a Backup Destination

• Backup target type

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 71



Backup target type defines whether the backups for the shard catalog database and
shards should be done at the primary or one of the standby databases. It can be either
PRIMARY or STANDBY. The default backup target type is STANDBY. For the shard catalog
database or shards that are not in Data Guard configurations, the backups will be done on
the shard catalog database or the shards themselves even when the backup target type is
STANDBY.

• Backup retention policy

The backup retention policy specifies a database recovery window for the backups. It is
specified as a number of days.

Obsolete backups are not deleted automatically, but a GDSCTL command is provided for
you to manually delete them.

• Backup schedule

Backup schedules specify the automated backup start time and repeat intervals for the
level 0 and level 1 incremental backups. Different automated backup start times can be
used for the shard catalog database and individual shards.

The time is a local time in the time zone in which the shard catalog database or shard is
located. The backup repeat intervals for the level 0 and level 1 incremental backups are
the same for the shard catalog database and all the shards in the distributed database,

• CDB root database connect string for the shard catalog database

The provided user account must have common SYSBACKUP privilege in the provided CDB.

When no parameters are provided for the CONFIG BACKUP command, GDSCTL displays the
current distributed database backup configuration. If the backup has not been configured yet
when the command is used to show the backup configuration, it displays that the backup is not
configured.

To configure a backup, run GDSCTL CONFIG BACKUP as shown in the following example. For
complete syntax, command options, and usage notes, run HELP CONFIG BACKUP.

The following example configures a backup channel of type DISK for the shard catalog
database, two parallel channels of type DISK for each of the shards (shard spaces dbs1 and
dbs2 are used in the shard list), the backup retention window is set to 14 days, the level 0 and
level 1 incremental backup repeat intervals are set to 7 and 1 day, and the backup start time is
set to 12:00 AM, leaving the incremental backup type the default DIFFERENTIAL, and the
backup target type the default STANDBY.

GDSCTL> config backup -rccatalog rccatalog_connect_string 
-destination "CATALOG::configure channel device type disk format '/tmp/rman/
backups/%d_%U'" 
-destination "dbs1,dbs2:configure device type disk parallelism 2:configure 
channel 1 device type disk format '/tmp/rman/backups/1/%U';configure channel 
2 device type disk format '/tmp/rman/backups/2/%U'" 
-starttime ALL:00:00 -retention 14 -frequency 7,1 -catpwd gsmcatuser_password 
-cdb catcdb_connect_string;

Once GDSCTL has the input it displays output similar to the following, pertaining to the current
status of the configuration operation.

Configuring backup for database "sales_catalog" ...

Updating wallet ...
The operation completed successfully

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 71



 
Configuring RMAN ...
new RMAN configuration parameters:
CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/tmp/rman/backups/%d_%u';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
 
new RMAN configuration parameters:
CONFIGURE BACKUP OPTIMIZATION ON;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
...

Creating RMAN backup scripts ...
replaced global script full_backup 
replaced global script incremental_backup
...
Creating backup scheduler jobs ...
The operation completed successfully
 

Creating restore point creation job ...
The operation completed successfully

Configuring backup for database "sales_east" ...
 
Updating wallet ...
The operation completed successfully
 
Configuring RMAN ...
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK PARALLELISM 2 BACKUP TYPE TO BACKUPSET;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
 
new RMAN configuration parameters:
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT '/tmp/rman/backups/1/%u';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
...
 
Configuring backup for database "sales_west" ... 
Updating wallet ...
The operation completed successfully
 
Configuring RMAN ...
...

Recovery Manager complete.

As shown in the CONFIG BACKUP command output above, GDSCTL does the following steps.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 71



1. GDSCTL updates the shard wallets.

The updated wallets will contain:

• Connect string and authentication credentials to the RMAN catalog database.

• Connect string and authentication credentials to the RMAN TARGET database.

• Automated backup target type and start time.

2. GDSCTL sets up the RMAN backup environment for the database.

This includes the following tasks.

• Registering the database as a target in the recovery catalog.

• Setting up backup channels.

• Setting up backup retention policies.

• Enabling control file and server parameter file auto-backup.

• Enabling block change tracking for all the target databases.

3. On the shard catalog, GDSCTL creates global RMAN backup scripts for level 0 and level 1
incremental backups.

4. On the shard catalog, GDSCTL creates a global restore point creation job.

5. On the shard catalog and each of the primary databases, GDSCTL

• Creates DBMS Scheduler database backup jobs for level 0 and level 1 incremental
backups

• Schedules the jobs based on the backup repeat intervals you configure.

Specifying Multiple Recovery Catalogs
When configuring backups, you can specify different recovery catalogs for different shards and
the shard catalog by running GDSCTL CONFIG BACKUP multiple times with different recovery
catalogs and different shards or the shard catalog specified in each run of the command.

For example:

CONFIG BACKUP –shard shard_east -rccatalog rcadmin/rman@rc_east
CONFIG BACKUP –shard shard_west -rccatalog rcadmin/rman@rc_west

After running the above two commands, the shard “shard_east” will use “rc_east” as the
recovery catalog, while “shard_west” will use “rc_west”, for all following manual and automatic
backup jobs, and LIST/DELETE/VALIDATE/RESTORE BACKUP commands.

If the parameter -rccatalog is not provided, then the recovery catalog credentials and connect
identifier specified previously will be used. For example, after running the above two
commands, if you issue the following command without parameter -rccatalog:

CONFIG BACKUP –shard catalog ... 

Then the shard catalog will use “rc_west” as the recovery catalog.

Note that if running CONFIG BACKUP against a distributed database for the first time but without
-rccatalog, the command will do nothing but print an error message.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 71



Backup Set Encryption
Backup sets to be stored in the Oracle Object Store must be encrypted. Set up encryption on
all shards and shard catalog in a distributed database using the following procedure.

Note that you can use encryption even if you are not using Oracle Object Store as a backup
destination. This may be preferred when there is sensitive data in the database or if you are
using third-party cloud storage such as Amazon S3.

Task 1: Configure TDE Encryption

To enable the encryption of backup sets, a user having ADMINISTER KEY MANAGEMENT or SYSKM
privilege needs to perform the following actions on all container databases (CDBs) at the root
level for the shards and the shard catalog:

1. Configure the keystore location and type by setting the WALLET_ROOT and
TDE_CONFIGURATION initialization parameters.

a. First check if WALLET_ROOT points to an existing file location.

If necessary, you can use the following SQL*Plus statement to change it.

ALTER SYSTEM SET WALLET_ROOT=wallet-root-location SCOPE=BOTH 

b. Specify the keystore type.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" 
SCOPE=BOTH;

c. Restart the database.

Note the following:

• The WALLET_ROOT parameter specifies the top directory for many different software
keystores (such as TDE, Oracle Enterprise User Security (EUS), TLS). For TDE, the
directory for automated discovery is WALLET_ROOT/tde.

• In releases older than 19c, the SQLNET.ENCRYPTION_WALLET_LOCATION parameter was
used to define the keystore directory location. This parameter has since been
deprecated. Oracle recommends that you use the WALLET_ROOT static initialization
parameter and TDE_CONFIGURATION dynamic initialization parameter instead.

• If the value of parameter TDE_CONFIGURATION is KEYSTORE_CONFIGURATION=FILE,
software keystore will be used. Two alternative keystore type values are
KEYSTORE_CONFIGURATION=OKV|HSM for Oracle Key Vault or hardware security module
keystores.

2. Create a password-protected software keystore.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'wallet-root-location/tde'
 IDENTIFIED BY keystore_password;

Note that wallet-root-location should be the same value as the initialization parameter
WALLET_ROOT.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 71



3. Open the software keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
 IDENTIFIED BY keystore_password CONTAINER=ALL;

4. Set the TDE encryption master key.

ADMINISTER KEY MANAGEMENT SET KEY
 IDENTIFIED BY keystore_password WITH BACKUP CONTAINER=ALL;

See also: Configuring a Software Keystore

Task 2: Enable Encryption

To enable the encryption of backup sets, specify an encryption algorithm in the GDSCTL CONFIG
BACKUP command using option -encryption. For example:

GDSCTL> CONFIG BACKUP … -encryption shard-list:encryption-algorithm

You can get a list of supported algorithms from column ALGORITHM_NAME in
V$RMAN_ENCRYPTION_ALGORITHMS. When an algorithm is given, the CONFIG BACKUP command
invokes the following RMAN scripts after registering a backup target database in the recovery
catalog:

CONFIGURE ENCRYPTION FOR DATABASE ON; 
CONFIGURE ENCRYPTION ALGORITHM TO encryption_algorithm;

Note

You must configure Transparent Data Encryption on the shards and shard catalog
where encryption is needed. Otherwise, manual and automatic backup jobs, or
VALIDATE/RESTORE BACKUP commands will fail.

Disabling Backup Set Encryption

To disable encryption, you can set the CONFIG BACKUP -encryption option to OFF.

When OFF is specified, the encryption on the shards and/or shard catalog in shard-list is
disabled. For example:

GDSCTL> CONFIG BACKUP … -encryption shard-list:OFF

Then the GDSCTL invokes the following RMAN script:

CONFIGURE ENCRYPTION FOR DATABASE OFF;

Note

When the encryption is disabled, you cannot restore the database with encrypted
backup sets.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 71



Using Oracle Object Storage as a Backup Destination
Oracle Object Storage is a convenient location on Oracle Cloud Infrastructure where you can
store files. Oracle Recovery Manager (RMAN) has a media library that lets you set Object
Storage as a backup destination for distributed databases through the GDSCTL CONFIG
BACKUP command.

To use Oracle Object Store as a repository for distributed database backups, complete the
following prerequisites, and specify the CONFIG BACKUP destination as described below.

Prerequisites for Oracle Object Store Backup Destination

1. Configure Transparent Data Encryption (TDE) on all backup target databases, including
the shard catalog and the shards where backup destinations will be the Object Storage as
described in Backup Set Encryption.

This includes:

• Configure the keystore location and type by setting initialization parameters
WALLET_ROOT and TDE_CONFIGURATION.

• Create the software keystore used by TDE.

2. Enable the encryption of backup sets as described in Backup Set Encryption.

3. Get the following Oracle Cloud related accounts and IDs:

• An Oracle Cloud account with access to Oracle Cloud Infrastructure Object Storage

• Oracle Cloud Infrastructure API signing keys, tenant OCID, and user OCID

4. Create an Oracle Object Storage bucket to use as the backup destination..

5. Install Oracle Cloud Infrastructure Backup Modules on the shard catalog and all shards.

During the installation specify:

• The credentials for Oracle Cloud console - Note that the installer will put these
credentials in a wallet.

• Bucket name and endpoint URL

• Oracle Cloud Infrastructure API signing keys, tenant OCID, and user OCID

See Installing the Oracle Database Cloud Backup Module for OCI in Using Oracle
Database Backup Cloud Service for more details.

Set the Backup Destination in the Distributed Database Backup Configuration

In the following example, Object Storage is set as the backup destination of shardspace dbs1.

GDSCTL> config backup
 –shard dbs1
 -rccatalog rccatalog_connect_string
 -catpwd password
 -cdb catcdb_connect_string
 -encryption dbs1:AES256 
 -destination dbs1:”CONFIGURE DEFAULT DEVICE TYPE TO SBT”:”CONFIGURE CHANNEL 
DEVICE TYPE SBT
 PARMS='SBT_LIBRARY=/orclhome/lib/libopc.so,SBT_PARMS=(OPC_PFILE=/
orclhome/dbs/opct1.ora)’” 

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 71

https://docs.oracle.com/en/cloud/paas/db-backup-cloud/csdbb/installing-oracle-database-cloud-backup-module-oci.html#GUID-600A939A-6BA8-48F5-8F2F-DFF2A74A015A


As shown above, Object Storage requires the following CONFIG BACKUP parameter settings in
addition to the standard options:

• Enable encryption on the shardspace with option -encryption. To support the Oracle
Object Storage as a backup destination, the backup sets must be encrypted.

• Specify the following in option -destination using RMAN device configuration and
channel configuration statements.

– SBT_TAPE as the backup default device

– SBT library file and OPC configuration file locations in the backup channel parameters,
using the following template:

CONFIGURE CHANNEL DEVICE TYPE sbt 
   PARMS='SBT_LIBRARY=location-of-SBT-library-for-backup-module, 
   SBT_PARMS=(OPC_PFILE=location-of-configuration-file)'; 

Using Recovery Appliance as a Backup Destination
Zero Data Loss Recovery Appliance (Recovery Appliance), configured for real-time redo
transport, directly transports redo data from the protected database and stores it on the
Recovery Appliance. This reduces the window of potential data loss that exists between
successive archived log backups.

To use Recovery Appliance as a repository for distributed database backups, complete the
following prerequisites and specify the CONFIG BACKUP destination as described below.

Prerequisites

1. Copy the shared library libra.so from the Recovery Appliance Backup Module to the
hosts where the shard catalog and each shard are located.

You can find this library file in the $ORACLE_HOME/lib directory of the Recovery Appliance.

2. (Required only if configuring real-time redo transport) Create a redo transport user at the
root level of the shard catalog and shards and grant CREATE SESSION and SYSOPER
privileges to this user.

create user c##rman1 identified by rman1; 
grant create session, sysoper to rman1;

Note that

• This user must be a common user on the shard catalog or shard.

• This user should have the same user name and password as the Recovery Appliance
virtual private catalog user assigned to the shard catalog or shards.

• If in a Data Guard configuration, you only create this user on the primary database,
then the user is propagated to the standby databases.

This waives the requirements to install the Recovery Appliance Backup Module on the
protected databases. Moreover, you do not need to enroll the protected database with DBMS_RA
package. The CONFIG BACKUP command automates the setup.

Collect Required Information

• The location of the shared library, libra.so, on the shard catalog and each shard

• Connect string to the Recovery Appliance catalog

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 71



• The user name and password of a catalog owner to use in RMAN command CONNECT
CATALOG

• The user name and password of a virtual private catalog (VPC) account of the Recovery
Appliance

HTTP digest access authentication must be enabled for this user.

For example:

create user vpc_user1 identified by vpc;
grant create session to vpc_user1 identified by vpc; 
# enable HTTP digest access authentication
alter user vpc_user1 identified by vpc digest enable;

• The name of a protection policy created on the Recovery Appliance

• The amount of disk space on Recovery Appliance reserved for the shard catalog and each
shard

• (Required only if configuring real-time redo transport) The location of the auto login wallets
used by shard catalog or shards for real-time redo transport. The GDSCTL CONFIG BACKUP
command creates the wallet in this location.

Set the Backup Destination in the Distributed Database Backup Configuration

The following example shows how to issue GDSCTL command CONFIG BACKUP to set up a
backup configuration using the Recovery Appliance “ra_east” as the backup destination of a
distributed database:

GDSCTL> config backup
 –shard ALL
 -cdb catcdb_connect_string
 -zdlra_catalog username@ra_east
 -zdlra_vpc CATALOG:catalog_vpc_username
 -zdlra_vpc SH1:shard_vpc_username 
 -zdlra_policy CATALOG:catalog_protection_policy_name
 -zdlra_policy SH1:shard_protection_policy_name
 -zdlra_space CATALOG:20G
 -zdlra_space SH1:2T
 -zdlra_lib_dir CATALOG:?/lib
 -zdlra_lib_dir SH1:/u01/app/oracle/product/19.0.0/dbhome_1/lib

Note

The -destination and -rccatalog parameters are not used for configuring Recovery
Appliance as the backup destination.

The -zdlra_* parameters used in the example are explained below:

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 71



Parameter Description/Usage Notes/Examples

-zdlra_catalog username[/
password]@connect-string

This parameter is mutually exclusive with -
rccatalog.

If specified, it indicates that all listed shards and/or
shard catalog in parameter -shard will use the
specified Recovery Appliance as the backup
destination.

Provide the user name and connect string of the
Recovery Appliance administrator that should have
RASYS privilege.

For example:

-zdlra_catalog cat_username@ra_east

Note:

• The password will be prompted if not specified.
• The user name specified in this parameter is

the administrator of the Recovery Appliance
that should have RASYS privilege. It is
different from the virtual private catalog user
provided in parameter -zdlra_vpc.

-zdlra_vpc(ALL|CATALOG|shard-
list):username[/password]

Mandatory if -zdlra_catalog is specified.

It specifies the user of a Recovery Appliance VPC
(virtual private catalog) user for a specified shard,
shardgroup, shardspace, or region.

For example:

-zdlra_vpc CATALOG:catalog_vpc_username

-zdlra_vpc SH1:shard_vpc_username

Note:

• This parameter can appear multiple times on
one command line to allow different VPC users
for different shards.

• The shard list specifies a comma-separated
list of shard identifiers. They can be
shardspaces, shardgroups, regions, or shard
names.

• The password will be prompted if not specified.
This user is different from the Recovery Appliance
administrator (RASYS user) provided in the
parameter -zdlra_catalog.

-zdlra_policy (ALL|CATALOG|shard-
list):protection-policy-name

Mandatory if -zdlra_catalog is specified.

It specifies the name of a protection policy defined
in Recovery Appliance.

For example:

-zdlra_policy CATALOG:brzone_dev

-zdlra_policy SH1:silver_dev

Note:

• This parameter can appear multiple times on
one command line to allow different protection
policies for different shards.

• The shard list specifies a comma-separated
list of shard identifiers. They can be
shardspaces, shardgroups, regions, or shard
names.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 71



Parameter Description/Usage Notes/Examples

-zdlra_space (ALL|CATALOG|shard-list):
(0-9)+(K|M|G|T|P|E|Z|Y)

Mandatory if -zdlra_catalog is specified.

Specifies the amount of disk space allocated on the
Recovery Appliance for each shard and shard
catalog.

For example:

-zdlra_space CATALOG:20G

-zdlra_space SH1:2T

Note:

• This parameter can appear multiple times on
one command line in case the space
requirements for different shards are different.

• The shard list specifies a comma-separated
list of shard identifiers. They can be
shardspaces, shardgroups, regions, or shard
names.

• The letter at the end is a unit specifier in the
following list:
K: Kilobytes

M: Megabytes

G: Gigabytes

T: Terabytes

P: Petabytes

E: Exabytes

Z: Zettabytes

Y: Yottabytes

-zdlra_lib_dir (ALL|CATALOG|shard-
list):library-location

Mandatory if -zdlra_catalog is specified.

Specifies the location of the shared library,
libra.so, for the Recovery Appliance backup
module. This location should be accessible by the
specified shard or shard catalog.

For example:

-zdlra_lib_dir CATALOG:?/lib

-zdlra_lib_dir SH1:/u01/app/oracle/
product/23.1.0/dbhome_1/lib

Note:

• This parameter can appear multiple times on
one command line in case the library locations
on different shards are different.

• You can use a question mark (?) to represent
ORACLE_HOME environment variable. The
"at" sign (@) stands for ORACLE_SID
environment variable. This can help simplify
the setup if the Oracle installation folders for
different shards are different.
For example, if the library file location is in the
folder $ORACLE_HOME/lib/, then the user can
use the following parameter to specify the
library file location for all shards:

-zdlra_lib_dir ALL:?/lib

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 71



Parameter Description/Usage Notes/Examples

-zdlra_redo_wallet (ALL|CATALOG|shard-
list):wallet-location

Optional.

Specifies the location of the auto-login wallet used
by the redo transport layer to log into Recovery
Appliance.

Once specified, CONFIG BACKUP command will
configure real-time redo transport for the databases
specified in parameter -shard and create an auto-
login wallet for each protected database.

For example:

-zdlra_redo_wallet CATALOG:?/wallet

-zdlra_redo_wallet SH1:/u01/app/oracle/
product/23.1.0/dbhome_1/wallet

Note:

• This parameter can appear multiple times on
one command line in case the wallet locations
on different shards are different.

• You can use question mark (?) and "at" sign
(@) to represent ORACLE_HOME and
ORACLE_SID environment variables
respectively. This can help simplify the setup if
the Oracle installation folders for different
shards are different.

• The following entry will be added into the auto-
login wallet:
(connect-string-specified-in-
parameter-zdlracatalog, VPC-
username, VPC-user-password)

where VPC user name and password are from
parameter -zdlra_vpc. As explained in the
prerequisites, you must create a redo transport
user on the protected database having the
same user name as VPC user.

See Global Data Services Control Utility (GDSCTL) Command Reference in Global Data
Services Concepts and Administration Guide for details about other CONFIG BACKUP
parameters.

Real-Time Redo Transport Post-Configuration Requirements

If the real-time redo transport is required, perform the following actions after running CONFIG
BACKUP:

• Add the location of wallets used by redo transport to sqlnet.ora and set
SQLNET.WALLET_OVERRIDE to TRUE.

WALLET_LOCATION= 
 (SOURCE=(METHOD=FILE)(METHOD_DATA= 
 (DIRECTORY= wallet_location))) 
SQLNET.WALLET_OVERRIDE=TRUE 

• Reboot the primary databases of the shard catalog and shards, so the changes to
sqlnet.ora can take effect.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 71



• In the shard catalog and shards (primary and standby databases for all), change the
initialization parameter REDO_TRANSPORT_USER to the redo transport user (which uses the
same user name as the virtual private catalog (VPC) user).

For example:

alter system set "redo_transport_user"=" c##rman1"; 

• You can run a manual backup once, or wait until the first automatic backup runs, then the
real-time redo transport is active.

Once active, the following query on Recovery Appliance should return TRUE:

select NZDL_ACTIVE
from DBMS_RA. RA_DATABASE 
where DB_UNIQUE_NAME='DB_UNIQUE_NAME-of-the-protected-database' 

Using Amazon S3 as a Backup Destination
Amazon S3 (Amazon Simple Storage Service) is a cloud-based storage service. Oracle’s
Secure Backup Cloud Module can store backup sets on Amazon S3 storage using Oracle
Recovery Manager (RMAN).

To use Amazon S3 as a repository for distributed database backups, complete the following
prerequisites and specify the CONFIG BACKUP destination as described below.

Prerequisites for Amazon S3 Backup Destination

The Oracle Secure Backup Cloud Module must be installed on the shard catalog and the
shards where backup sets will be sent to Amazon S3 cloud storage.

During the installation, you need to provide some parameters, including, but not limited to:

• (Mandatory) AWSID, the access key ID for Amazon S3 cloud storage service

• (Mandatory) AWSKey, the password for the above ID

• (Optional) awsEndpoint, the host name where the backup sets will be sent

• (Optional) awsPort, the HTTP/HTTPS connection port number

• (Optional) location, the Amazon S3 location

• (Optional) walletDir, a directory for Oracle wallet to store Amazon S3 credentials, and
proxy information if applicable

• (Optional) configFile, a configuration file that contains the parameters used by RMAN,
including the Oracle wallet directory.

• (Optional) libDir, a directory to store the downloaded Oracle Secure Backup Cloud
Module library

During the installation, you will create a wallet to store Amazon S3 credentials and proxy
information if applicable, create a configuration file, and download Oracle Secure Backup
Cloud Module library.

For detailed information about the installation of backup module, See Using Oracle Secure
Backup Cloud Module on Amazon S3 in Oracle Database Backup and Recovery Reference.

It is also recommended that you encrypt backup sets destined for Amazon S3 storage. See 
Backup Set Encryption for details.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 71



Set the Backup Destination in the Distributed Database Backup Configuration

The following example shows how to issue GDSCTL command CONFIG BACKUP to set up a
backup configuration using the Amazon S3 as the backup destination of shardspace DBS1,
and enabling backup set encryption.

GDSCTL> config backup
 –shard dbs1
 -rccatalog rccatalog_connect_string
 -catpwd password
 -cdb catcdb_connect_string
 -encryption dbs1:AES256 
 -destination dbs1: "CONFIGURE DEFAULT DEVICE TYPE TO SBT":
"CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE' 
PARMS 'SBT_LIBRARY=/u01/app/oracle/product/19.0.0/dbhome_1/lib/libosbws.so 
ENV=(OSB_WS_PFILE=/u01/app/oracle/product/19.0.0/dbhome_1/dbs/
osbwssales.ora)'"

To use Amazon S3 as a backup destination, you must provide the following information when
writing channel config statement in option -destination.

• The path to shared library libra.so

• The location of the configuration file used by RMAN
The template for the CONFIGURE CHANNEL command is:

CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE'
   PARMS 'SBT_LIBRARY=secure-backup-library-location 
   ENV=(OSB_WS_PFILE=configuration-file-location)'

For more information on RMAN channel settings related to Amazon S3, See Configuring
RMAN SBT Channels for Recovery Appliance in Zero Data Loss Recovery Appliance
Protected Database Configuration Guide.

Managing Backup and Recovery

Enabling and Disabling Automated Backups
You can enable or disable backups on all shards, or specific shards, shardspaces, or
shardgroups.

All backup jobs are initially disabled. They can be enabled by running the GDSCTL ENABLE
BACKUP command.

GDSCTL> ENABLE BACKUP

When not specified, ENABLE BACKUP enables the backup on all shards. You can optionally list
specific shards, shardspaces, or shardgroups on which to enable the backup.

GDSCTL> ENABLE BACKUP -shard dbs1

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 71

https://docs.oracle.com/en/engineered-systems/zero-data-loss-recovery-appliance/19.2/ampdb/config_pdb.html#GUID-5C98F0AE-F319-4434-8861-FB128945E19E
https://docs.oracle.com/en/engineered-systems/zero-data-loss-recovery-appliance/19.2/ampdb/config_pdb.html#GUID-5C98F0AE-F319-4434-8861-FB128945E19E


The DISABLE BACKUP command disables an enabled backup.

GDSCTL> DISABLE BACKUP -shard dbs1

Backup Job Operation
Once configured and enabled, backup jobs run on the primary shard catalog database and the
primary shards as scheduled.

After a backup job is configured, it is initially disabled. You must enable a backup job for it to
run as scheduled. Use the GDSCTL commands ENABLE BACKUP and DISABLE BACKUP to enable
or disable the jobs.

Backup jobs are scheduled based on the backup repeat intervals you configure for the level 0
and level 1 incremental backups, and the backup start time for the shard catalog database and
the shards.

Two separate jobs are created for level 0 and level 1 incremental backups. The names of the
jobs are AUTOMATED_SDB_LEVEL0_BACKUP_JOB and AUTOMATED_SDB_LEVEL1_BACKUP_JOB. Full
logging is enabled for both jobs.

When running, the backup jobs find the configured backup target type (PRIMARY or STANDBY),
figure out the correct target databases based on the backup target type, and then launch
RMAN to back up the target databases. RMAN uses the shard wallets updated during the
backup configuration for database connection authentication.

Note that chunk moves do not delay automated backups.

Monitoring Backup Status
There are a few different ways to monitor the status of automated and on-demand backup jobs.

Monitoring an Automated Backup Job

Because full logging is enabled for the automated backup jobs, DBMS Scheduler writes job
processing details in the job log and views. The Scheduler job log and views are your basic
resources and starting point for monitoring the automated backups. Note that although the
DBMS Scheduler makes a list of job state change events available for email notification
subscription. This capability is not used for distributed database automated backups.

You can use the GDSCTL command LIST BACKUP to view the backups and find out whether
backups are created at the configured backup job repeat intervals.

Automated backups are not delayed by chunk movement in the distributed database, so the
backup creation times should be close to the configured backup repeat intervals and the
backup start time.

Monitoring an On-Demand Backup Job

Internally, on-demand backup jobs are also started by DBMS Scheduler jobs on the database
servers. The names of the temporary jobs are prefixed with tag MANUAL_BACKUP_JOB_. On-
demand backups always run in the same session that GDSCTL uses to communicate with the
database server. Failures from the job are sent directly to the client.

Using DBMS Scheduler Jobs Views

The automated backup jobs only run on the primary shard catalog database and the primary
shards. To check the backup job details for a specific target database, connect to the

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 71



database, or its primary database if the database is in a Data Guard configuration, using
SQL*PLUS, and query the DBMS Scheduler views *_SCHEDULER_JOB_LOG and
*_SCHEDULER_JOB_RUN_DETAILS based on the job names.

The names of the two automated backup jobs are AUTOMATED_SDB_LEVEL0_BACKUP_JOB and
AUTOMATED_SDB_LEVEL1_BACKUP_JOB.

You can also use the GDSCTL command STATUS BACKUP to retrieve the job state and run
details from these views. See Viewing Backup Job Status for more information about running
STATUS BACKUP.

The job views only contain high level information about the job. For job failure diagnosis, you
can find more details about the job in the RDBMS trace files by grepping the job names.

If no errors are found in the job, but still no backups have been created, you can find the PIDs
of the processes that the jobs have created to run RMAN for the backups in the trace files, and
then look up useful information in the trace files associated with the PIDs.

Using Backup Command Output

This option is only available for on-demand backups.

When you start on-demand backups with GDSCTL RUN BACKUP, you can specify the -sync
command option. This forces all backup tasks to run in the foreground, and the output from the
internally launched RMAN on the database servers is displayed in the GDSCTL console.

The downside of running the backup tasks in the foreground is that the tasks will be run in
sequence, therefore the whole backup will take more time to complete.

See the GDSCTL reference in Oracle AI Database Global Data Services Concepts and
Administration Guide for detailed command syntax and options.

Viewing an Existing Backup Configuration
When GDSCTL CONFIG BACKUP is not provided with any parameters, it shows the current backup
configuration.

Because the parameters -destination and -starttime can appear more than once in CONFIG
BACKUP command line for different shards and backup configuration can be done more than
once, multiple items could be listed in each of the Backup destinations and Backup start times
sections. The items are listed in the same order as they are specified in the CONFIG BACKUP
command line and the order the command is repeatedly run.

To view an existing backup configuration, run CONFIG BACKUP, as shown here.

GDSCTL> CONFIG BACKUP;

If a distributed database backup has not been configured yet, the command output will indicate
it. Otherwise the output looks like the following:

GDSCTL> config backup
Recovery catalog database user: rcadmin
Recovery catalog database connect descriptor: 
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=den02qxr)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=cdb6_pdb1.example.com)))
Catalog database root container user: gsm_admin
Catalog database root container connect descriptor: 
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=den02qxr)(PORT=1521))

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 71



(CONNECT_DATA=(SERVICE_NAME=v1908.example.com)))
Backup retention policy in days: 14
Level 0 incremental backup repeat interval in minutes: 10080
Level 1 incremental backup repeat interval in minutes: 1440
Level 1 incremental backup type : DIFFERENTIAL
Backup target type: STANDBY
Backup destinations:
catalog::channel device type disk format '/tmp/rman/backups/%d_%u'
dbs1,dbs2:device type disk parallelism 2:channel 1 device type disk format 
'/tmp/rman/backups/1/%u';channel 2 device type disk format '/tmp/rman/
backups/2/%u'
catalog::configure channel device type disk format '/tmp/rman/backups/%d_%u'
dbs1,dbs2:configure device type disk parallelism 2:configure channel 1 device 
type disk format '/tmp/rman/backups/1/%u';configure channel 2 device type 
disk format '/tmp/rman/backups/2/%u'
Backup start times:
all:00:00

CONFIG BACKUP Output for Multiple Recovery Catalogs

The output of CONFIG BACKUP issued without any parameters on a configuration with multiple
recovery catalogs prints the recovery catalog users and connect identifiers for different shards
and shard catalog. The last used recovery catalog will be printed as well. For example:

GDSCTL> config backup
...  
Recovery catalog database user:  
last::rcadmin_west 
shard_east::rcadmin_east 
shard_west::rcadmin_west  
Recovery catalog databaseconnect identifier:   
last::<theconnect identifier of rc_west> 
shard_east::<theconnect identifier of rc_east> 
shard_west::<theconnect identifier of rc_west> 
...

Note

• In the actual output for the above example, three real connector identifiers will be
printed.

• The example shows only the parts related to recovery catalog settings.

Listing Backups
Use GDSCTL LIST BACKUP to list backups usable to restore a distributed database or a list of
shards to a specific global restore point.

The command requires the shard catalog database to be open, but the shards can be in any of
the started states: nomount, mount, or open.

You can specify a list of shards to list backups for in the command. You can also list backups
usable to restore the control files of the listed databases and list backups for standby shards.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 71



The following example shows the use of the command to list the backups from shard
cdb2_pdb1 recoverable to restore point BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> LIST BACKUP -shard cdb2_pdb1 -restorepoint 
BACKUP_BEFORE_DB_MAINTENANCE

If option -controlfile is used, LIST BACKUPS will only list the backups usable to restore the
control files of the specified shards. If option -summary is used, the backup will be listed in a
summary format.

GDSCTL> list backup -shard shd1,shd2 -controlfile -summary 

Viewing Backup Job Status
Use GDSCTL command STATUS BACKUP to view the detailed state on the scheduled backup
jobs in the specified shards. Command output includes the job state (enabled or disabled) and
the job run details.

By default, the command displays the job run details of all the runs that the automated backup
jobs have had from 30 days ago in the specified shards. If the job run details for different
periods are needed, options -start_time and -end_time must be used.

Run STATUS BACKUP as shown in the following examples.

The following STATUS BACKUP command example lists the job state and all job run details from
the SDB catalog and the primary shard “rdbmsb_cdb2_pdb1”:

GDSCTL> status backup -catpwd -shard catalog,rdbmsb_cdb2_pdb1;
"GSMCATUSER" password:***
 
Retrieving scheduler backup job status for database "rdbms" ...
Jobs:
  Incremental Level 0 backup job is enabled
    Job schedule start time: 2020-07-27 00:00:00.000 -0400
    Job repeat interval: freq=daily;interval=1
  Incremental Level 1 backup job is enabled
    Job schedule start time: 2020-07-27 00:00:00.000 -0400
    Job repeat interval: freq=minutely;interval=60
  Global restore point create job is enabled
    Job schedule start time: 2020-07-27 23:59:55.960 -0400
    Job repeat interval: freq=hourly
 
Run Details:
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-26 14:00:00.177 -0400
    Job run slave process ID: 9023
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-26 22:00:01.305 -0400
Job run slave process ID: 59526
…
Global restore point create job status: SUCCEEDED
    Job run actual start time: 2020-07-27 15:28:37.603 -0400
    Job run slave process ID: 44227
  …
  Global restore point create job status: SUCCEEDED

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 71



    Job run actual start time: 2020-07-27 17:28:38.251 -0400
    Job run slave process ID: 57611
  
Retrieving scheduler backup job status for database "rdbmsb_cdb2_pdb1" ...
Jobs:
  Incremental Level 0 backup job is enabled
    Job schedule start time: 2020-07-28 00:00:00.000 -0400
    Job repeat interval: freq=daily;interval=1
  Incremental Level 1 backup job is enabled
    Job schedule start time: 2020-07-28 00:00:00.000 -0400
    Job repeat interval: freq=minutely;interval=60
 
Run Details:
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-26 14:00:00.485 -0400
    Job run slave process ID: 9056
  …
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-27 14:33:42.702 -0400
    Job run slave process ID: 9056
  Incremental Level 0 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-27 00:00:01.469 -0400
    Job run slave process ID: 75176

The following command lists the scheduler backup job state and the details of the job runs in
the time frame from 2020/07/26 12:00:00 to 07/27 00:00 from the SDB catalog and the primary
shard “rdbmsb_cdb2_pdb1”:

GDSCTL> status backup -start_time "2020-07-26 12:00:00" -end_time "2020-07-27 
00:00:00" -catpwd -shard catalog,rdbmsb_cdb2_pdb1;
"GSMCATUSER" password:***

Retrieving scheduler backup job status for database "rdbms" ...
Jobs:
  Incremental Level 0 backup job is enabled
    Job schedule start time: 2020-07-27 00:00:00.000 -0400
    Job repeat interval: freq=daily;interval=1
  Incremental Level 1 backup job is enabled
    Job schedule start time: 2020-07-27 00:00:00.000 -0400
    Job repeat interval: freq=minutely;interval=60
  Globa1 restore point create job is enabled
    Job schedule start time: 2020-07-27 23:59:55.960 -0400
    Job repeat interval: freq=hourly
 
Run Details:
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-26 14:00:00.177 -0400
    Job run slave process ID: 9023
  …
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-26 23:50:00.293 -0400
    Job run slave process ID: 74171
  Globa1 restore point create job status: SUCCEEDED
    Job run actual start time: 2020-07-26 14:28:38.263 -0400
    Job run slave process ID: 11987

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 71



  …
  Globa1 restore point create job status: SUCCEEDED
    Job run actual start time: 2020-07-26 23:28:37.577 -0400
    Job run slave process ID: 69451
 
Retrieving scheduler backup job status for database "rdbmsb_cdb2_pdb1" ...
Jobs:
  Incremental Level 0 backup job is enabled
    Job schedule start time: 2020-07-28 00:00:00.000 -0400
    Job repeat interval: freq=daily;interval=1
  Incremental Level 1 backup job is enabled
    Job schedule start time: 2020-07-28 00:00:00.000 -0400
    Job repeat interval: freq=minutely;interval=60
 
Run Details:
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-26 14:00:00.485 -0400
    Job run slave process ID: 9056
  Incremental Level 1 backup job status: SUCCEEDED
    Job run actual start time: 2020-07-26 22:11:50.931 -0400
    Job run slave process ID: 9056

Validating Backups
Run the GDSCTL VALIDATE BACKUP command to validate distributed database backups against
a specific global restore point for a list of shards. The validation confirms that the backups to
restore the databases to the specified restore point are available and not corrupted.

The shard catalog database must be open, but the shard databases can be either mounted or
open. If the backup validation is for database control files, the shards can be started nomount.

The following example validates the backups of the control files from the shard catalog
databases recoverable to restore point BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> VALIDATE BACKUP -shard shd1,shd2 -controlfile -restorepoint 
BACKUP_BEFORE_DB_MAINTENANCE

Backup validation for shards are done one shard a time sequentially.

Deleting Backups
Use the GDSCTL DELETE BACKUP command to delete backups from the recovery repository.

The DELETE BACKUP command deletes the distributed database backups identified with specific
tags from the recovery repository. It deletes the records in the recovery database for the
backups identified with the provided tags, and, if the media where the files are located is
accessible, the physical files from the backup sets from those backups. This is done for each
of the target databases. You will be prompted to confirm before the actual deletion starts.

To run this command, the shard catalog database must be open, but the shard databases can
be either mounted or open.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 71



The following is an example of deleting backups with tag odb_200414205057124_0400 from
shard cdb2_pdb1.

GDSCTL> DELETE BACKUP -shard cdb2_pdb1 -tag ODB_200414205057124_0400
"GSMCATUSER" password:

This will delete identified backups, would you like to continue [No]?y

Deleting backups for database "cdb2_pdb1" ...

Creating and Listing Global Restore Points
A restore point for a distributed database that we call a global restore point, actually maps to a
set of normal restore points in the individual primary databases in a distributed database.

These restore points are created at a common SCN across all of the primary databases in the
distributed database. The restore points created in the primary databases are automatically
replicated to the Data Guard standby databases. When the databases are restored to this
common SCN, the restored distributed database is guaranteed to be in a consistent state.

The global restore point creation must be mutually exclusive with distributed database chunk
movement. When the job runs, it first checks whether any chunk moves are going on and waits
for them to finish. Sometimes the chunk moves might take a long time. Also, new chunk moves
can start before the previous ones have finished. In that case the global restore point creation
job might wait for a very long time before there is an opportunity to generate a common SCN
and create a global restore point from it. Therefore, it is not guaranteed that a global restore
point will be created every hour.

To create the global restore point, run the GDSCTL command CREATE RESTOREPOINT as shown
here.

GDSCTL> CREATE RESTOREPOINT 

The global restore point creation job is configured on the shard catalog database. The name of
the job is AUTOMATED_SDB_RESTOREPOINT_JOB. Full logging for this job is enabled.

You can optionally enter a name for the restore point by using the -name option as shown here.

GDSCTL> CREATE RESTOREPOINT -name CUSTOM_SDB_RESTOREPOINT_JOB

The job is initially disabled, so you must use GDSCTL ENABLE BACKUP to enable the job. The job
runs every hour and the schedule is not configurable.

To list all global restore points, run LIST RESTOREPOINT.

GDSCTL> LIST RESTOREPOINT

This command lists all of the available global restore points in the distributed database that
were created during the specified time period with SCNs (using the -start_scn and -end_scn
options) in the specified SCN interval (using the -start_time and -end_time options).

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 71



The following command lists the available restore points in the distributed database with the
SCN between 2600000 and 2700000.

GDSCTL> LIST RESTOREPOINT -start_scn 2600000 -end_scn 2700000

The command below lists the available restore points in the distributed database that were
created in the time frame from 2020/07/27 00:00:00 to 2020/07/28 00:00:00.

GDSCTL> LIST RESTOREPOINT -start_time "2020-07-27 00:00:00" -end_time 
"2020-07-28 00:00:00"

Restoring Shards From Backup
The GDSCTL RESTORE BACKUP command lets you restore a distributed database to a specific
global restore point.

This command is used to restore a shard database to a specific global restore point. It can also
be used to restore only the shard database control files.

The typical procedure for restoring a distributed database is:

1. List the available restore points.

2. Select a restore point to validate the backups.

3. Restore the databases to the selected restore point.

You should validate the backups for a shard against the selected restore point to verify that all
the needed backups are available before you start to restore the shard to the restore point.

Note that you are not prohibited from restoring the shard catalog or a specific shard to an
arbitrary point in time. However, doing so may put that target in an inconsistent state with the
rest of the distributed database and you may need to take corrective action outside of the
restore operation.

The database to be restored must be in NOMOUNT state. This command alters the database
to MOUNT state after it has restored the control file.

The RESTORE BACKUP command requires the shard catalog database to be open.

For data file restore, the shards must be in MOUNT state, but if the command is to restore the
control files, the shard databases must be started in NOMOUNT state. To bring the databases
to the proper states will be a manual step.

To restore the shard database control files, the database must be started in nomount mode.
The control files will be restored from AUTOBACKUP. To restore the database data files, the
database must be mounted. The shard catalog database must be open for this command to
work.

The following example restores the control files of shard cdb2_pdb1 to restore point
BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> RESTORE BACKUP -shard cdb2_pdb1 -restorepoint 
BACKUP_BEFORE_DB_MAINTENANCE –controlfile

The restore operation can be done for the shards in parallel. When the restore for the shards
happens in parallel, you should not close GDSCTL until the command has finished running,

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 71



because interrupting the restore operation can result in database corruption or get the
distributed database into an inconsistent state.

Backup validation only logically restores the database while RESTORE BACKUP will do both the
physical database restore and the database recovery. Therefore, after RESTORE BACKUP is
done, usually the restored the databases need to be opened with the resetlogs option.

After the database restore is completed, you should open the database and verify that the
database has been restored as intended and it is in a good state.

Restoring the Shard Catalog from Backup

To configure a shard catalog to be restored from backup:

• The distributed database must have been configured for backup and restore.

• The CDB must be started in NOMOUNT state for control file restore, in MOUNT or OPEN
state for the shard catalog restore.

Note that no database connection to the shard catalog is needed for GDSCTL to run the
RESTORE BACKUP command to restore the distributed database control files and the shard
catalog PDB.

Shard catalog restore uses GDSCTL RESTORE BACKUP with some different parameters than are
used for a shard restore, as shown in the syntax here.

GDSCTL> RESTORE BACKUP -shard CATALOG
    -cdb connect-string
    -catalog_name pdb-name
    -catalog_dbid dbid
    [-scn scn]
    [-controlfile]
    [-restore_only | -recover_only]

Because the shard catalog database must not be open when it is restored, some information
obtainable from the catalog that is needed for the database restore will not be available
automatically, so it will need to be provided with the RESTORE BACKUP command. This includes:

• A common user with SYSDG privilege in the root container and SYSBACKUP privilege for
all containers in the shard catalog CDB and its password

• A connect identifier to the shard catalog CDB root (-cdb connect-string)

• The name of the shard catalog PDB (-catalog_name pdb-name)

• The shard catalog DBID (-catalog_dbid dbid)

• If the shard catalog needs to be restored to a specific global restore point, instead of the
name of the global restore point, the associated SCN must be provided for the command
(-scn scn)

Removing Backup Configuration from a Shard
When you remove a shard from the distributed database configuration some backup artifacts
remain on the database. You can remove these artifacts with GDSCTL CONFIG BACKUP option -
REMOVE.

When a shard is removed from a distributed database configuration, the shard will no longer be
included in automated backup jobs, but the artifacts created on the database host when the

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 71



shard was configured for backup (for example, the backup wallets and the backup jobs) are not
deleted.

To remove these artifacts from the shard before it is removed from the distributed database,
run CONFIG BACKUP with the -REMOVE option, and provide a list of shards that should be
removed, as shown here.

GDSCTL> CONFIG BACKUP -remove -shard shard_list

The command does the following tasks:

• Deletes the shard PDB container-level backup wallet.

• Deletes the DBMS scheduler backup jobs from the shard database.

• If the CDB is not a shared target database by some other distributed database, which
happens when multiple distributed databases are placed inside the same set of CDBs,
deletes the CDB root container level backup wallet.

This command should only be used if the shard is removed and is not expected to be added
back to the same distributed database.

Running On-Demand Backups
The GDSCTL RUN BACKUP command lets you start backups for the shard catalog database and a
list of shards.

All on-demand backups are level 0 incremental backups. On-demand backups have no impact
on the automated backup schedules configured for the shard catalog database and the shards.

Internally, on-demand backups are started by DBMS Scheduler jobs on the database servers.
The jobs are created on-the-fly when the on-demand backup command RUN BACKUP is run.

On-demand backup jobs are temporary jobs, and they are automatically dropped after the
backups have finished.

The names of the temporary jobs are prefixed with tag MANUAL_BACKUP_JOB_.

To use RUN BACKUP, you must have already set up the backup configuration with the CONFIG
BACKUP command.

The RUN BACKUP command requires the shard catalog database and any primary shards to be
backed up to be open.

GDSCTL> RUN BACKUP -shard dbs1

The -shard option lets you specify a set of shards, shardspaces or shardgroups on which to
run the backup. To take an on-demand backup on shardspace dbs1, you can run RUN BACKUP
as shown in the example above.

See the GDSCTL reference in Oracle AI Database Global Data Services Concepts and
Administration Guide for detailed command syntax and options.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 71



Running RMAN Commands from GDSCTL
RMAN commands can be submitted from the GDSCTL CLI to run against multiple shards and
the shard catalog, either in serial or in parallel.

Prerequisites

To run RMAN commands from the GDSCTL CLI, the distributed database must have been
configured for backup and restore using the GDSCTL CONFIG BACKUP command.

Some RMAN commands also require the target database in a specific state: OPEN, MOUNT
or NOMOUNT, to be able to run. Also, some RMAN commands can be run only when RMAN is
connected to the CDB root as the target database. Therefore, before submitting RMAN
commands to run against a shard, make sure the target shard and its CDB are in the specific
state required by the commands.

Using the GDSCTL RMAN Command

GDSCTL provides the RMAN command to allow you to run RMAN commands in a GDSCTL
session.

You can pass RMAN commands either by referencing a file or including the RMAN statements
in the GDSCTL RMAN command.

• Enter a semi-colon after each RMAN statement:

GDSCTL> RMAN -shard cdb1_pdb1 rman-stmt1;rman-stmt2;

The RMAN statement must be contained in single or double quotation marks if the
provided RMAN commands contain spaces and quotation marks:

GDSCTL> RMAN -shard cdb1_pdb1 'rman-stmt1;rman-stmt2;'

• Specify the file path of a RMAN command file:

GDSCTL> RMAN -shard cdb2_pdb1 -cmd_file file-path

The following options are available:

Option Description

-async Specifies that all tasks created to run this
command will run in the background.

By default, these tasks run in the foreground.

-catpwd password Specifies the password for user GSMCATUSER,
which is prompted if not specified.

It needs to be specified only once for the entire
GDSCTL session.

-check_syntax Runs the command as a validation the RMAN
command syntax.

Chapter 9
Backing Up and Recovering a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 71



Option Description

-from_cdb userid/password Lets you specify a common user in the shard CDB
root and its password.

This option is required if the provided RMAN
commands must be run from the CDB root,
meaning that RMAN will be connected to the CDB
root as the target database to run the RMAN
commands.

The provided user must have SYSBACKUP
privileges.

By default, the provided RMAN commands are run
from the shard PDB.

-shard shard-list Lets you specify a comma separated list of shard
identifiers.

Each identifier can be a shardspace, a shardgroup,
or a shard name.

The default is “no shards”

Error Handling for Automated Backup Operations

Automated Backup Error Handling

After the RMAN BACKUP command completes, the scheduler job continues running. It checks
the RMAN output for errors. If no errors are found, the file is deleted, the job continues and is
expected to complete successfully. If errors are found in the RMAN output file, then:

• The RMAN output file is retained.

• A job run error status is recorded in the table ALL_SCHEDULER_JOB_RUN_DETAILS.

• The RMAN output file name is stored in the ADDITIONAL_INFO column of the
ALL_SCHEDULER_JOB_RUN_DETAILS table, along with a path to the original RMAN output file.

Background Task Error Handling

When a command is run in the background, the fetched RMAN output is kept in memory. After
the command is completed, the task checks the RMAN output for errors. If errors are detected,
the last 1024 characters of the RMAN output are displayed in the GDSCTL console.

In this case, the entire the RMAN output are logged in the GDSCTL log file as well, which is
specified using command CONFIGURE -LOG_FILE.

Propagation of Parameter Settings Across Shards
When you configure system parameter settings at the shard catalog, they are automatically
propagated to all shards of the distributed database.

Oracle Globally Distributed Database provides centralized management by allowing you to set
parameters on the shard catalog. Then the settings are automatically propagated to all shards
of the distributed database.

Chapter 9
Propagation of Parameter Settings Across Shards

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 71



Propagation of system parameters happens only if done under ENABLE SHARD DDL on the shard
catalog, then include SHARD=ALL in the ALTER statement.

SQL>alter session enable shard ddl;
SQL>alter system set enable_ddl_logging=true shard=all;

Note

Propagation of the enable_goldengate_replication parameter setting is not
supported.

Patching and Upgrading Oracle Globally Distributed Database
There are special considerations for patching and upgrading a distributed database
deployment.

Patching Oracle Globally Distributed Database
Applying an Oracle patch to a distributed database environment can be done on a single shard
or all shards; however, the method you use depends on the replication option used for the
environment and the type of patch being applied.

Oracle Globally Distributed Database uses consolidated patching to update a shard director
(GSM) ORACLE_HOME, so you must apply the Oracle Database release updates to the
ORACLE_HOME to get security and Global Data Services fixes.

Most patches can be applied to a single shard at a time; however, some patches should be
applied across all shards. Use Oracle’s best practices for applying patches to single shards just
as you would a non-distributed database, keeping in mind the replication method that is being
used with the distributed database.

Oracle opatchauto can be used to apply patches to multiple shards at a time, and can be done
in a rolling manner. Data Guard configurations are applied one after another, and in some
cases (depending on the patch) you can use Standby First patching.

If a patch addresses an issue with multi-shard queries, replication, or the sharding
infrastructure, it should be applied to all of the shards in the distributed database.

Note

Because logical standbys are not supported in Oracle Sharding, rolling upgrades may
run into a DDL recovery issue because a physical standby database becomes a
'transient logical standby' during a rolling upgrade. To avoid this issue, follow the steps
in Performing a Rolling Upgrade.

Chapter 9
Patching and Upgrading Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 71



See Also

Oracle OPatch User's Guide

Oracle Data Guard Concepts and Administration for information about patching in an
Oracle Data Guard configuration.

Upgrading Oracle Globally Distributed Database Components
The order in which Oracle Globally Distributed Database components are upgraded is
important for limiting downtime and avoiding errors as components are brought down and back
online.

Upgrading the Oracle Globally Distributed Database environment is not much different from
upgrading other Oracle Database and global service manager environments; however, the
components must be upgraded in a particular sequence such that the shard catalog is
upgraded first, followed by the shard directors, and finally the shards.

Before upgrading any Oracle Globally Distributed Database components you must

• Complete any pending MOVE CHUNK operations that are in progress.

• Do not start any new MOVE CHUNK operations.

• Do not add any new shards during the upgrade process.

1. Upgrade the shards with the following points in mind.

• For system-managed distributed databases: upgrade each set of shards in a Data
Guard Broker configuration in a rolling manner.

• For user-defined distributed databases: upgrade each set of shards in a shardspace in
a rolling manner.

• For composite distributed databases: in a given shardspace, upgrade each set of
shards in a Data Guard Broker configuration in a rolling manner.

2. Upgrade the shard catalog database.

 For best results the catalog should be upgraded using a rolling database upgrade;
however, global services will remain available during the upgrade if the catalog is
unavailable, although service failover will not occur.

3. Upgrade any shard directors that are used to run GDSCTL clients, and which do not also
run a global service manager (GSM) server, before you update the shard directors running
GSMs.

4. For shard directors running GSMs, do the following steps on one GSM at a time.

To ensure zero downtime, at least one GSM server should always be running. GSM
servers at an earlier version than the catalog will continue to operate fully until catalog
changes are made.

a. Stop one of the GSMs to be upgraded.

b. Copy the tnsnames.ora, gsm.ora, gsmwallet directory from the old version to the
new version.

After copying the gsm.ora file it needs to be edited. The WALLET_LOCATION DIRECTORY
path needs to be updated to point to the new Oracle home location because it points to
the old home gsmwallet directory.

Chapter 9
Patching and Upgrading Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 71

https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.4/optch/opatchauto-binary.html#GUID-20D4BB16-AF28-45AC-8D92-3BD8B5F89335


Ideally, wallets should be stored in a directory outside of Oracle Home, for example, in
an Oracle Base admin directory.

c. Connect to the new GSM using GDSCTL, and start the GSM.

d. Stop the old GSM.

For an example, see Global Data Services Patching and Upgrading Examples.

See Also

Oracle AI Database Global Data Services Concepts and Administration Guide for
information about upgrading the shard directors.

Oracle Data Guard Concepts and Administration for information about using
DBMS_ROLLING to perform a rolling upgrade.

Oracle Data Guard Concepts and Administration for information about upgrading
databases in an Oracle Data Guard configuration.

Performing a Rolling Upgrade
Because logical standbys are not supported by Oracle Globally Distributed Database, rolling
upgrades may run into a DDL recovery issue because a physical standby database becomes a
'transient logical standby' during a rolling upgrade.

To avoid this issue, perform the following steps.

1. Shut down the shard catalog database.

Shutting down the shard catalog database prevents any shard director (GSM) from
becoming the master, and the catalog will not try to apply any DDL in this state, but the
shard director will continue in steady-state allowing production applications to connect and
run.

2. Perform the rolling upgrade.

3. When the rolling upgrade is complete, start up the shard catalog database.

Note

During a rolling upgrade, some operations such as automatic failover may not be
available while the shard catalog is shut down.

Downgrading an Oracle Globally Distributed Database
Oracle Globally Distributed Database does not support downgrading.

Shard catalogs and shards cannot be downgraded.

Chapter 9
Patching and Upgrading Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 71



Managing Oracle Globally Distributed Database with Enterprise
Manager Cloud Control

Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage an Oracle
Globally Distributed Database and its components.

See the following topics for information about Oracle Globally Distributed Database discovery,
monitoring, and management using Enterprise Manager Cloud Control:

• Prerequisite: Enable Oracle Globally Distributed Database Metrics

• Prerequisite: Discover the Oracle Globally Distributed Database Topology

• Oracle Globally Distributed Database Management with Oracle Enterprise Manager Cloud
Control

• Monitoring an Oracle Globally Distributed Database with Enterprise Manager Cloud
Control

• Managing Shards with Oracle Enterprise Manager Cloud Control

• Managing Chunks with Oracle Enterprise Manager Cloud Control

• Shard Director Management

• Region Management

• Shardspace Management

• Shardgroup Management

• Services Management

Prerequisite: Enable Oracle Globally Distributed Database Metrics

By default Oracle Globally Distributed Database performance metrics are disabled. They can
be enabled from the Enterprise Manager Cloud Console or the monitoring template.

There are two methods of gathering metrics, which require you to follow different setup steps
as explained in each section below.

Using Default Enterprise Manager Database Metrics

By default, metrics shown in the Enterprise Manager Cloud Console Globally Distributed
Database pages are the default database metrics, require that you create a metrics query user,
and are only gathered on the shard databases discovered in Enterprise Manager.

The default database metrics do not give you data as frequently as the enhanced distributed
database metrics described later.

Because multi-shard queries are used to gather metrics, you must also create a user that can
access all shards in the distributed database to run the queries.

To use default metrics:

1. Create a new metrics query account on every shard and the shard catalog manually.

create user SHARD_SYS identified by password;
grant connect, create session, gsmadmin_role to SHARD_SYS;
GRANT ALL PRIVILEGES TO SHARD_SYS; /*Needed to get all the schemas stats*/

Chapter 9
Managing Oracle Globally Distributed Database with Enterprise Manager Cloud Control

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 71



GRANT SELECT ANY DICTIONARY TO SHARD_SYS; /*Needed to get all the schemas 
stats*/

2. Use the same metrics query account credentials to discover the shard catalog and all
shard databases in Enterprise Manager.

See Prerequisite: Discover the Oracle Globally Distributed Database Topology

3. To enable the default metrics:

$emctl set property
 -sysman_pwd password
 -name oracle.sysman.db.ha.sdb.dd.usesdbmetrics
 -value false 

Using Enhanced Distributed Database Metrics

With distributed database enhanced metrics you can gather information about the shards from
the shard catalog, so it is not required that you discover all of the shard databases in
Enterprise Manager to get complete metrics for the distributed database topology.

To use enhanced metrics:

1. Discover the shard catalog in Enterprise Manager.

See Prerequisite: Discover the Oracle Globally Distributed Database Topology

2. Enable the distributed database metrics using the Console or using the monitoring
template.

$emctl set property
 -sysman_pwd password
 -name oracle.sysman.db.ha.sdb.dd.usesdbmetrics
 -value true

Prerequisite: Discover the Oracle Globally Distributed Database Topology
In Enterprise Manager Cloud Control, you can discover the shard catalog and optionally the
shard databases, then add the shard directors, distributed databases, shardspaces, and
shardgroups using guided discovery.

As a prerequisite to managing the distributed database in Cloud Control, you must first
discover at minimum the shard director hosts and the shard catalog database. Optionally to
manage all of the shards in the distributed database, you must also discover the shard
databases.

Because the shard catalog database and each of the shards is a database itself, you can use
standard database discovery procedures.

Managing the shards is only possible when the individual shards are discovered using
database discovery. Discovering the shards is optional to discovering a distributed database,
because you can have a distributed database configuration without the shards.

1. In Enterprise Manager Cloud Control, select Setup, choose Add Target, then choose Add
Target Manually.

2. In the Add Targets Manually page, click Add Using Guided Process in the Add Non-Host
Target Using Guided Process panel.

Chapter 9
Managing Oracle Globally Distributed Database with Enterprise Manager Cloud Control

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 71



3. In the Add Using Guided Process dialog, locate and select Globally Distributed
Database, and click Add.

4. In the Add Globally Distributed Database: Catalog Database page, click the browse icon
next to Catalog Database to locate the shard catalog database.

5. In the Select Targets dialog, click the target name corresponding to the catalog database
and click Select.

The Catalog Database and Monitoring Credentials fields are filled in if they exist. The
monitoring credential is used to query the shard catalog database to get the configuration
information.

The monitoring user (usually DBSNMP) should be granted the GDS_CATALOG_SELECT role
and has read only privileges on the shard catalog repository tables.

SQL> grant GDS_CATALOG_SELECT to dbsnmp;

Click Next to proceed to the next step.

In the Add Globally Distributed Database: Components page you are shown information
about the distributed database that is managed by the catalog database, including the
distributed database name, its domain name, the data distribution (sharding) method
employed on the distributed database, and a list of discovered shard directors.

6. To set monitoring credentials on a shard director, click the plus sign icon on the right side
of the list entry.

A dialog opens allowing you to set the credentials.

Click OK to close the dialog, and click Next to proceed to the next step.

7. In the Add Globally Distributed Database: Review page, verify that all of the shard
directors, shardspaces, and shardgroups were discovered.

8. Click Submit to finalize the steps.

An Enterprise Manager Deployment Procedure is submitted and you are returned to the
Add Targets Manually page.

At the top of the page you will see information about the script that was submitted to add
all of the discovered components to Cloud Control.

9. Click the link to view the provisioning status of the distributed database components.

In another browser window you can go to the Cloud Control All Targets page to observe
the status of the distributed database.

When the target discovery procedure is finished, distributed database targets are added in
Cloud Control. You can open the distributed database in Cloud Control to monitor and manage
the components.

Oracle Globally Distributed Database Management with Oracle Enterprise
Manager Cloud Control

Your distributed database can be configured, deployed, monitored, and managed using Oracle
Enterprise Manager Cloud Control

Targets

Any discovered distributed database objects can be found in the All Targets page in Enterprise
Manager.

Chapter 9
Managing Oracle Globally Distributed Database with Enterprise Manager Cloud Control

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 71



Shard Director and Globally Distributed Database objects are found in the Databases target
type category.

Shardgroup and Shardspace objects are found in the Groups, Systems and Services target
type category.

Globally Distributed Database Home Page

You can access the Globally Distributed Database home page from All Targets. Click the
Globally Distributed Database object in All Targets, and choose the distributed database to
view from the list.

On the Globally Distributed Database home page, you can access most of the management
tools from the Globally Distributed Database menu, such as Add Primary Shards, Add Standby
Shards, and Deploy Shards.

Management tools for other distributed database objects are located in the menus of other
Globally Distributed Database object pages, which are described in the following topics

• Managing Shards with Oracle Enterprise Manager Cloud Control

• Managing Chunks with Oracle Enterprise Manager Cloud Control

• Shard Director Management

• Region Management

• Shardspace Management

• Shardgroup Management

• Services Management

For more information about the Globally Distributed Database Home page, see Monitoring an
Oracle Globally Distributed Database with Enterprise Manager Cloud Control

Monitoring an Oracle Globally Distributed Database
Oracle Globally Distributed Database can be monitored using Enterprise Manager Cloud
Control or GDSCTL.

Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance, diagnostic,
and audit data from V$ views and DBA_* views.

The shard catalog database can be used as the entry point for centralized diagnostic
operations using the SQL SHARDS() clause. The SHARDS() clause allows you to query the same
Oracle supplied objects, such as V$, DBA/USER/ALL views and dictionary objects and tables,
on all of the shards and return the aggregated results.

As shown in the examples below, an object in the FROM part of the SELECT statement is
wrapped in the SHARDS() clause to specify that this is not a query to local object, but to objects
on all shards in the distributed database configuration. A virtual column called SHARD_ID is
automatically added to a SHARDS()-wrapped object while processing a multi-shard query to
indicate the source of every row in the result. The same column can be used in predicate for
pruning the query.

A query with the SHARDS() clause can only be run on the shard catalog database.

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 71



Examples

The following statement queries performance views

SQL> SELECT shard_id, callspersec FROM SHARDS(v$servicemetric)
 WHERE service_name LIKE 'oltp%' AND group_id = 10;

The following statement gathers statistics.

SQL> SELECT table_name, partition_name, blocks, num_rows
 FROM SHARDS(dba_tab_partition) p
 WHERE p.table_owner= :1;

The following example statement shows how to find the SHARD_ID value for each shard.

SQL> select ORA_SHARD_ID, INSTANCE_NAME from SHARDS(sys.v_$instance);

    ORA_SHARD_ID INSTANCE_NAME
    ------------ ----------------
               1 sh1
              11 sh2
              21 sh3
              31 sh4

The following example statement shows how to use the SHARD_ID to prune a query.

SQL> select ORA_SHARD_ID, INSTANCE_NAME
 from SHARDS(sys.v_$instance)
 where ORA_SHARD_ID=21;

    ORA_SHARD_ID INSTANCE_NAME
    ------------ ----------------
              21 sh3

See Also

Oracle AI Database SQL Language Reference for more information about the
SHARDS() clause.

Monitoring an Oracle Globally Distributed Database with Enterprise
Manager Cloud Control

Oracle Globally Distributed Database targets are found in the All Targets page in Enterprise
Manager Cloud Control.

To monitor Globally Distributed Database components you must first enable statistics gathering
and then discover the distributed database. See Prerequisite: Enable Oracle Globally

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 71



Distributed Database Metrics and Prerequisite: Discover the Oracle Globally Distributed
Database Topology for more information.

For more information about Globally Distributed Database metrics, see Globally Distributed
Database in the Enterprise Manager Cloud Control Oracle Database Metric Reference Manual.

Globally Distributed Database Home Page
The target home page for a Globally Distributed Database shows you a summary of the
distributed database configuration and status.

Summary

The Summary pane, in the top left of the page, shows the following information:

• Globally Distributed Database Name: Distributed database name

• Globally Distributed Database Domain Name: Distributed database domain name

• Catalog Database: Shard catalog database name. You can click the name to view more
information about the shard catalog database.

• Catalog Version: Oracle Database version of the shard catalog

• Sharding Type: Data distribution (sharding) method. This could be System-managed,
User-defined, or Composite.

• Replication Type: Replication technology used for high availability. This could be Data
Guard or Raft.

• Shard Directors: Number and status of the shard directors

• Master Shard Director: Primary shard director name. You can click the shard director
name to view more information about the primary shard director, including the shard
director (global service manager) version, current status, ports used, and incidents.

• Replication Factor: If Replication Type is Raft, the replication factor (number of members
in a replication unit) configured for Raft replication type is displayed.

• Replication Units: If Replication Type is Raft, the number of replication units in the
distributed database for Raft replication type is displayed.

Members

The Members pane, in the upper right of the page, shows some relevant information about
each of the Globally Distributed Database components.

The pane is divided into tabs for each component: Shardspaces, Shardgroups, Shard
Directors, Shards, Catalog Databases, and Global Services. Click on a tab to view the
information about each type of component

• Shardspaces:

Shardspaces are only displayed for databases partitioned with the user-defined or
composite data distribution method.

The Shardspaces tab displays the shardspace names, status, number of chunks, and Data
Guard protection mode if Data Guard is configured. The shardspace names can be clicked
to reveal more details about the selected shardspace.

You can click the shardspace name to view more details, including information about the
shardgroups within the shardspace (for composite data distribution) and incidents.

• Shardgroups:

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 71

http://www.oracle.com/pls/topic/lookup?ctx=en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/24.1&id=EMDBM-GUID-D4260086-F550-4D87-85C5-4078A3EF8401
http://www.oracle.com/pls/topic/lookup?ctx=en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/24.1&id=EMDBM-GUID-D4260086-F550-4D87-85C5-4078A3EF8401


Shardgroups are only displayed for databases partitioned with the system-managed or
composite data distribution method.

The Shardgroups tab displays the shardgroup names, status, and the shardspace to which
it belongs, the region to which it belongs, and if Replication Type is Data Guard the Data
Guard Role is shown.

You can click the shardgroup name to reveal more details about the selected component,
including information about the shards within the shardgroup, and incidents.

Note that for a database partitioned using the system-managed data distribution method,
shardspaceora is the shardspace created by default to contain all of the shardgroups. It is
managed by the distributed database and will not appear in the Shardspaces tab.

• Shard Directors:

The Shard Directors tab displays the shard director names, status, region, host, and
Oracle home.

You can click the shard director names to reveal more details about the selected shard
director, including the shard director (global service manager) version, current status, ports
used, and incidents.

You can also click the shard director host to view more details about the host system.

• Shards:

The Shards tab displays the shard names, Data Guard roles (if applicable), target type,
target status, the shardspaces and shardgroups to which they belong, the regions to which
they belong, and the state.

In the Names column, you can expand the primary shards to display the information about
their corresponding standby shards.

You can hover the mouse over the Deployed column icon and the deployment status
details are displayed. You can click on the shard, shardspace, and shardgroup names to
reveal more details about the selected component.

• Catalog Databases

The Catalog Databases tab lists the shard catalog databases and displays the shard
catalog database name, type, status, and role for each catalog database.

You can click on the catalog database name to view more information about the database.

• Global Services:

The Global Services tab displays the name, status, and Data Guard role of the distributed
database global services. Above the list is shown the total number of services and an icon
showing how many services are in a particular status. You can hover your mouse pointer
over the icon to read a description of the status icon.

Incidents

The Incidents pane displays messages and warnings about the various components in the
distributed database environment. More information about how to use this pane is in the Cloud
Control online help.

Globally Distributed Database Menu

The Globally Distributed Database menu, located in the top left corner, provides you with
access to tools to manage the distributed database components.

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 71



Target Navigation

The Target Navigation pane gives you easy access to more details about any of the
components in the distributed database.

Clicking the navigation tree icon on the upper left corner of the Globally Distributed Database
home page opens the Target Navigation pane. This pane shows all of the discovered
components in the distributed database in tree form.

Expanding a shardspace reveals the shardgroups in them. Expanding a shardgroup reveals
the shards in that shardgroup.

Any of the component names can be clicked to view more details about them.

Data Distribution and Performance Page
In Enterprise Manager Cloud Control, the Globally Distributed Database page, Data
Distribution and Performance, gives you an overall view of the data in your distributed
database and how the shards are performing.

Overview

The Overview section at the top of the page displays number of regions, shardspaces,
shardgroups, shards (broken down into primary and standby), chunks, and services in the
distributed database configuration that are represented by the data in the chart. If you apply a
filter to the chart these numbers change.

Data Distribution and Performance Chart Views

The two icons at the top left corner of the chart toggle the chart between two views:

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 71



Figure 9-1    Home and Top Shards Icons

• Home: is the default view. Home displays data for all shards in the distributed database by
default. You can filter the chart and change the metrics on display as described below.

• Top Shards: shows you charts for the top 5, 10, or 20 shards for certain metrics.

Shard Blocks

The color-coded chart displays data by shard. Each shard is indicated by a block.

Figure 9-2    Shard Block with Mouse Over Text

Each block is labeled with the shard name. Moving the mouse over a block displays the Shard
name, Data Guard Role, Number of Chunks in the shard, and the Service Time (msec/call).

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 71



Note

If you are using default database metrics then you will not see data from any
undiscovered shards in the chart.
If you are using enhanced metrics, the data for all shards is displayed because the
shards are discovered by the shard catalog.

Home View Summary Icons

The row of icons above the chart display the following information:

Figure 9-3    Home View Summary Icons

• Up: (Green arrow pointing up) Number of shard databases that are up

• Down: (Red arrow pointing down) Number of shards that are down

• Unmonitored: (Yellow arrow with "X") Number of shards that are unmonitored. This is the
number of shards not discovered by Enterprise Manager.

• Other: (Yellow gear with question mark "?") Distributed database targets discovered in
Enterprise Manager, but that have some issue with target monitoring, such as an
unreachable agent, or an availability evaluation error.

• Critical: (Red circle with "X") Number of critical incidents

• Warning: (Yellow triangle with exclamation point "!") Number of warning incidents

Chart View Controls

Compare metrics on each of the shards by size and color of the blocks in the chart.

Figure 9-4    Chart View Controls

• View Size By: changes the size distribution of the blocks by the metric selected

• View Color By: changes the comparative color of the blocks by the metric selected

By default, the colors are light, medium, and dark blue, which indicates that the thresholds
for the lightest and darkest color categories are set to arbitrary Enterprise Manager
defaults.

Click Configure Threshold (button with three dots) to set custom thresholds for low and
high categories in each metric. Charts configured with custom thresholds are shown in a
different color spectrum with green=low, yellow=medium, and red=high.

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 71



• Tree Map Table View: (button with table at the top right corner of the chart) displays a
table view of the data shown in the chart

Filters

Click the hamburger icon at the top left corner of the chart to apply filters to the data.

Figure 9-5    Filters Icon

• Shard Search: Filter by shard name. You can use an asterisk (*) to select a group of
shards with matching name patterns.

• Key Search: Lets you enter a shard key value to view the shards that contain data with
that key. In the resulting chart you can right-click a block and select Shard-Level Data
Distribution to drill down into a particular shard.

• SQL ID Search: Display which shards are processing a query by the SQL ID for the query,
which you can find in the V$SQL_SHARD view in the catalog database.

• Sort By: Sort the blocks in the chart by size in the default tiled view, in a sequence of bars,
or show only the top or bottom 5 blocks.

• Filter By: Lets you display only shards in the specified Role, Shardgroup, or Service.

Hide Inactive Shards: When using the Service filter, you will see all of the shards;
however, shards on which the service is not running are shown in grey (inactive), and you
can use the checkbox to hide the inactive shards.

• Group By: Toggles that display aggregates for the group, which is indicated by a box line
around the group of shards.

– Shardgroup displays a shardgroup box at the top of the grouping, which displays
aggregate info about the shardgroup on hover, and you can drill down for shardgroup-
based data.

– Region displays a region box at the top of the group, which displays aggregate info
about the region on hover.

– Data Guard Aggregate Group groups each shard and its standbys as a single entity,
so that you can see the data set being handled by a particular shard and its standbys
as a whole.

Top Shards View

Click the Top Shards button on the left side of the chart to view graphs with metrics on the
shards with the highest Data Size, Number of Chunks, Throughput, and Service Time.

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 71



Use the View list at the top right corner of the view to display the top 5, 10, or 20 shards in
each graph.

 

 

Monitoring Oracle Globally Distributed Database with GDSCTL
There are numerous GDSCTL CONFIG commands that you can use to obtain the health status of
individual shards, shardgroups, shardspaces, and shard directors.

Monitoring a shard is just like monitoring a normal database, and standard Oracle best
practices should be used to monitor the individual health of a single shard. However, it is also
important to monitor the overall health of the entire sharded environment. The GDSCTL
commands can also be scripted and through the use of a scheduler and can be done at regular
intervals to help ensure that everything is running smoothly. 

See Also

Oracle AI Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL CONFIG commands

Chapter 9
Monitoring an Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 71



Shard Management
You can manage shards in your Oracle Globally Distributed Database deployment with Oracle
Enterprise Manager Cloud Control and GDSCTL.

About Adding Shards
New shards can be added to an existing distributed database environment to scale out and to
improve fault tolerance.

For fault tolerance, it is beneficial to have many smaller shards than a few very large ones. As
an application matures and the amount of data increases, you can add an entire shard or
multiple shards to the distributed database to increase capacity. 

When you add a shard to a distributed database, if the environment is partitioned by consistent
hash (system-managed), then chunks from existing shards are automatically moved to the new
shard to rebalance the distributed database environment.

When using user-defined data distribution, populating a new shard with data may require
manually moving chunks from existing shards to the new shard using the GDSCTL split
chunk and move chunk commands.

Oracle Enterprise Manager Cloud Control can be used to help identify chunks that would be
good candidates to move, or split and move to the new shard.

When you add a shard to the environment, verify that the standby server is ready, and after the
new shard is in place take backups of any shards that have been involved in a move chunk
operation.

All of the DDLs that have been processed in the distributed database are applied in the same
order to the shard before it becomes accessible to clients.

Work Flow for Adding Shards
Task 1: Create the shard databases

Before you add new shards to the distributed database configuration, you must install the
Oracle Database software on the shard host systems and configure new databases for each
primary and standby shard. Following these steps, referring to the linked topics for details:

1. Install the Oracle Database Software

2. Create the Shard Databases

Task 2: Validate the shard databases

Validate the shard database to verify that all of the shard database requirements have been
met.

• Validate the Shard Database using SQL*Plus

• Validating a Shard using Enterprise Manager

Task 3: Add the shard databases to the configuration

Add each primary and standby shard to the distributed database configuration.

• Add the Shard CDBs and Add the Shard PDBs using GDSCTL

• Adding Primary Shards and Adding Standby Shards using Enterprise Manager

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 71



Task 4: Deploy the updated distributed database configuration

The final task is to deploy the updated distributed database configuration with the new shard
and its standbys that you added.

• Deploy the Configuration using GDSCTL

• Deploying Shards using Enterprise Manager
Note that using Enterprise Manager distributed database management tools, you can
optionally add and deploy a shard in a single step. However, if you choose not to deploy
when adding the shard to the configuration, then use this procedure to deploy it.

Removing a Shard From the Pool
It may become necessary to remove a shard from the distributed database environment, either
temporarily or permanently, without losing any data that resides on that shard.

For example, removing a shard might become necessary if a distributed database environment
is scaled down after a busy holiday, or to replace a server or infrastructure within the data
center. Prior to decommissioning the shard, you must move all of the chunks from the shard to
other shards that will remain online. As you move them, try to maintain a balance of data and
activity across all of the shards.

If the shard is only temporarily removed, keep track of the chunks moved to each shard so that
they can be easily identified and moved back once the maintenance is complete.

If a shard is part of a distributed database configured for centralized automatic backup, you
can remove backup artifacts from the database before removing the shard from the distributed
database configuration. See Removing Backup Configuration from a Shard.

You can remove shards using GDSCTL or Oracle Enterprise Manager Cloud Control:

• Oracle AI Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL REMOVE SHARD command

• Removing a Shard with Oracle Enterprise Manager Cloud Control

Replacing a Shard
If a shard fails, or if you just want to move a shard to a new host for other reasons, you can
replace it using the ADD SHARD -REPLACE command in GDSCTL.

When a shard database fails and the database can be recovered on the same host (using
RMAN backup/restore or other methods), there is no need to replace the shard using the -
replace parameter. If the shard cannot be recovered locally, or for some other reason you want
to relocate the shard to another host or CDB, it is possible to create its replica on the new host.
The distributed database configuration can be updated with the new information by specifying
the -replace option in GDSCTL command ADD SHARD.

The following are some cases where replacing a shard using ADD SHARD -REPLACE is
useful.

• The server (machine) where the shard database was running suffered irreparable damage
and has to be replaced

• You must replace a working server with another (more powerful, for example) server

• A shard in a PDB was relocated from one CDB to another

In all of these cases the number of shards and data distribution across shards does not change
after ADD SHARD is run; a shard is replaced with another shard that holds the same data.

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 71



This is different from ADD SHARD used without the -replace option when the number of shards
increases and data gets redistributed.

Upon running ADD SHARD -REPLACE, the old shard parameters, such as connect_string,
 db_unique_name, and so on, are replaced with their new values. A new database can have
different db_unique_name than the failed one. When replacing a standby in a Data Guard
configuration, the DBID of the new database must match the old one, as Data Guard requires
all of the members of the configuration to have same DBID.

Before Using Replace

Before you use ADD SHARD -REPLACE, verify the following:

• You have restored the database correctly (for example, using RMAN restore or other
method). The new database shard must have the same distributed database metadata as
the failed one. Perform basic validation to ensure that you do not accidently provide a
connect string to the wrong shard.

• The shard that failed must have been in a deployed state before failure happened.

• The shard that failed must be down when running the ADD SHARD -REPLACE command.

• Fast-start failover observer must be running, if fast-start failover is enabled (which it is by
default).

Replacing a Shard in a Data Guard Environment

The ADD SHARD -REPLACE command can only be used to replace a standby shard if the primary
is still available. In order to replace a primary shard that failed, wait for one of the remaining
standbys to switch over to the primary role before trying to replace the failed shard.

When a switchover is not possible (primary and all the standbys are down), you must run ADD
SHARD -REPLACE for each member starting with the primary. This creates a new broker
configuration from scratch.

In MAXPROTECTION mode with no standbys available, the primary database shuts down to
maintain the protection mode. In this case, the primary database cannot be opened if the
standby is not available. To handle the replace operation in this scenario, you must first
downgrade Data Guard protection mode using DGMGRL (to MAXAVAILABILITY or
MAXPERFORMANCE) by starting up the database in mounted mode. After the protection
mode is set, open the primary database and perform the replace operation using GDSCTL.
After the replace operation finishes you can revert the protection mode back to the previous
level using DGMGRL.

When replacing a standby in a Data Guard configuration, the DBID of the new database must
match the old one, as Data Guard requires all of the members of the configuration to have
same DBID.

Example 9-1    Example 1: Replacing the primary shard with no standbys in the
configuration

The initial configuration has two primary shards deployed and no standbys, as shown in the
following example. The Availability for shdc is shown as a dash because it has gone down in a
disaster scenario.

$ gdsctl config shard

Name    Shard Group    Status    State       Region    Availability
----    -----------    ------    -----       ------    ------------

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 71



shdb    dbs1           Ok        Deployed    east      ONLINE      
shdc    dbs1           Ok        Deployed    east      -   

To recover, you create a replica of the primary from the backup, using RMAN for example. For
this example, a new shard is created with db_unique_name shdd and connect string inst4.
Now, the old shard, shdc, can be replaced with the new shard, shdd, as follows:

$ gdsctl add shard -replace shdc -connect inst4 -pwd password

DB Unique Name: SHDD

You can verify the configuration as follows:

$ gdsctl config shard

Name     Shard Group      Status    State       Region    Availability
----     -----------      ------    -----       ------    ------------
shdb     dbs1             Ok        Deployed    east      ONLINE
shdd     dbs1             Ok        Deployed    east      ONLINE

Example 9-2    Example 2: Replacing a standby shard

Note that you cannot replace a primary shard when the configuration contains a standby shard.
In such cases, if the primary fails, the replace operation must be performed after one of the
standbys becomes the new primary by automatic switchover.

The initial configuration has two shardgroups: one primary and one standby, each containing
two shards, when the standby, shdd goes down.

$ gdsctl config shard

Name    Shard Group      Status    State       Region    Availability
----    -----------      ------    -----       ------    ------------
shdb    dbs1             Ok        Deployed    east      ONLINE
shdc    dbs1             Ok        Deployed    east      ONLINE
shdd    dbs2             Ok        Deployed    east      -
shde    dbs2             Ok        Deployed    east      READ ONLY

Create a new standby. Because the primary is running, this should be done using the RMAN
DUPLICATE command with the FOR STANDBY option. Once the new standby, shdf, is ready,
replace the old shard, shdd, as follows:

$ gdsctl add shard -replace shdd -connect inst6 -pwd password

DB Unique Name: shdf

You can verify the configuration as follows:

$ gdsctl config shard

Name    Shard Group      Status    State       Region    Availability
----    -----------      ------    -----       ------    ------------
shdb    dbs1             Ok        Deployed    east      ONLINE

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 71



shdc    dbs1             Ok        Deployed    east      ONLINE
shde    dbs2             Ok        Deployed    east      READ ONLY
shdf    dbs2             Ok        Deployed    east      READ ONLY

Common Errors

ORA-03770: incorrect shard is given for replace

This error is thrown when the shard given for the replace operation is not the replica of the
original shard. Specifically, the distributed database metadata does not match the metadata
stored in the shard catalog for this shard. Make sure that the database was copied correctly,
preferably using RMAN. Note that this is not an exhaustive check. It is assumed that you
created the replica correctly.

ORA-03768: The database to be replaced is still up: shardc

The database to be replaced must not be running when running the add shard -replace
command. Verify this by looking at the output of GDSCTL command config shard. If the shard
failed but still shows ONLINE in the output, wait for some time (about 2 minutes) and retry.

See Also

Oracle AI Database Global Data Services Concepts and Administration Guide for
information about the ADD SHARD command.

Converting a Physical Standby to a Snapshot Standby
When using Oracle Data Guard as the replication method for a distributed database, Oracle
Globally Distributed Database supports only the addition of a primary or physical standby
shard; other types of Data Guard standby databases are not supported when adding a new
standby to the distributed database.

However, a shard that is already part of the distributed database can be converted from a
physical standby to a snapshot standby.

1. Stop all global services on the shard using the GDSCTL command STOP SERVICE.

2. Disable all global services on the shard using the GDSCTL command DISABLE SERVICE.

3. Convert the shard to a snapshot standby using the procedure described in the Oracle Data
Guard documentation Converting a Physical Standby Database into a Snapshot Standby
Database.

At this point, the shard remains part of the distributed database, but will not accept
connections which use the sharding key.

If the database is converted back to a physical standby, the global services can be enabled
and started again, and the shard becomes an active member of the distributed database.

Migrating a Non-PDB Shard to a PDB
Do the following steps if you want to migrate shards from a traditional single-instance database
to Oracle multitenant architecture. Also, you must migrate to a multitenant architecture before
upgrading to Oracle Database 21c or later releases.

1. Back up each existing non-PDB shard, and then create a new CDB, and a PDB inside it.

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 71



2. Restore each shard to the PDB inside the CDB.

3. Run the GDSCTL ADD CDB command to add the new CDB.

GDSCTL> add cdb -connect cdb_connect_string -pwd gsmrootuser_password

4. Run the GDSCTL ADD SHARD -REPLACE command, specifying the connect string of the PDB,
shard_connect_string, which tells the distributed database infrastructure to replace the old
location of the shard with new PDB location.

For system-managed or composite data distribution, run ADD SHARD with the parameters
shown here.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect 
shard_connect_string -pwd gsmuser_password 
-shardgroup shardgroup_name -cdb cdb_name

For user-defined data distribution, the command usage is slightly different.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect 
shard_connect_string -pwd gsmuser_password 
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

Managing Shards with Oracle Enterprise Manager Cloud Control
You can manage database shards using Oracle Enterprise Manager Cloud Control

To manage shards using Cloud Control, they must first be discovered. Because each database
shard is a database itself, you can use standard Cloud Control database discovery procedures.

Shards are managed from within their respective shardgroups. To manage a shard you must
first navigate to the shardgroup which contains the shard you wish to manage. This can be
done from the All Targets page or the Globally Distributed Database page.

In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 71



Figure 9-6    Shardgroup Menu

If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

The following topics describe shard management using Oracle Enterprise Manager Cloud
Control:

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 71



Validating a Shard
Validate a shard prior to adding it to your Oracle Globally Distributed Database deployment.

You can use Oracle Enterprise Manager Cloud Control to validate shards before adding them
to your Oracle Globally Distributed Database deployment. You can also validate a shard after
deployment to confirm that the settings are still valid later in the shard life cycle. For example,
after a software upgrade you can validate existing shards to confirm correctness of their
parameters and configuration.

To validate shards with Cloud Control, they should be existing targets that are being monitored
by Cloud Control.

1. In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. In the Manage Shards page, select a shard from the list and click Validate.

4. Click OK to confirm you want to validate the shard.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

When the shard validation script runs successfully check for errors reported in the output.

Adding Primary Shards
You can use Oracle Enterprise Manager Cloud Control to add a primary shards to your Oracle
Globally Distributed Database deployment.

To add a primary shard using Cloud Control it must be an existing target being monitored by
Cloud Control.

Note

It is highly recommended that you validate a shard before adding it to your
configuration. You can either use Cloud Control to validate the shard (see Validating a
Shard), or run the DBMS_GSM_FIX.validateShard procedure against the shard using
SQL*Plus (see Validate the Shard Database).

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Add Primary Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. To add and deploy the shards in the same operation, select Deploy All Shards in the
distributed database to deploy all shards added to the distributed database configuration.

The deployment operation validates the configuration of the shards and performs final
configuration steps. Shards can be used only after they are deployed.

4. Click Add.

5. In the Database field of the Shard Details dialog, select the shard database target and
click Select.

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 71



6. In composite data distribution you can select also the shardspace to which to add the
shard.

7. Configure any Advanced Settings:

Connect Descriptor (you can use the default Enterprise Manager connect descriptor or
specify another connect descriptor in the Connect Descriptor box)

CPU Utilization Threshold (%)

Disk Threshold (ms)

8. Click OK.

9. Enter the GSMUSER credentials if necessary, then click Next.

10. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the adjacent
field

11. Review the configuration of the shard to be added and click Submit.

12. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

If you did not select Deploy All Shards in the distributed database in the procedure above,
deploy the shard in your Oracle Globally Distributed Database deployment as described in 
Deploying Shards.

Adding Standby Shards
Use Oracle Enterprise Manager Cloud Control to add a standby shards to your distributed
database deployment.

To add a standby shard using Cloud Control the database must be an existing target being
monitored by Cloud Control.

Note

It is highly recommended that you validate a shard before adding it to your
deployment. You can either use Cloud Control to validate the shard (see Validating a
Shard), or run the DBMS_GSM_FIX.validateShard procedure against the shard using
SQL*Plus (see Validate the Shard Database).

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Add Standby Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. To add and deploy the shards in the same operation, select Deploy All Shards in the
distributed database to deploy all shards added to the distributed database configuration.

The deployment operation validates the configuration of the shards and performs final
configuration steps. Shards can be used only after they are deployed.

4. In the Primary Shards list, select a primary shard for which the new shard database will
act as a standby.

5. At the top of the Standby Shards list, click Add.

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 71



6. In the Database field of the Shard Details dialog, select the standby shard.

7. Select the shardgroup to which to add the shard.

Only shardgroups that do not already contain a standby for the selected primary are
shown.

8. Click OK.

9. Enter the GSMUSER credentials if necessary, then click Next.

10. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the adjacent
field

11. Review the configuration of the shard to be added and click Submit.

12. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

If you did not select Deploy All Shards in the distributed database in the procedure above,
deploy the shard in your deployment as described in Deploying Shards.

Deploying Shards
Use Oracle Enterprise Manager Cloud Control to deploy shards that have been added to your
deployment.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Deploy Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select the Perform Rebalance check box to redistribute data between shards
automatically after the shard is deployed.

If you want to move chunks to the shard manually, uncheck this box.

4. Click Submit.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

Editing a Shard
You can update a shard's CPU Utilization Threshold (%), Disk Threshold (ms), ONS Port,
SCAN Address, Connect Descriptor, and GSMUSER Password in the Manage Shards page in
Oracle Enterprise Management Cloud Control.

1. In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. In the Manage Shards page, select a shard from the list and click Edit.

4. Click OK to save any changes made in the Edit Shard dialog.

Chapter 9
Shard Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 71



Removing a Shard
You can remove a shard from your distributed database configuration in the Manage Shards
page in Oracle Enterprise Management Cloud Control.

1. In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. In the Manage Shards page, select a shard from the list and click Remove.

Use the Force option to remove the specified shard even if it is inaccessible and/or
contains chunks. Using this option might result in a lower number of replicas or total
unavailability for a certain range of data.

4. Click OK to confirm that you want to remove the shard.

Chunk Management
You can manage chunks in your deployment with Oracle Enterprise Manager Cloud Control
and GDSCTL.

Resharding and Hot Spot Elimination
The process of redistributing data between shards, triggered by a change in the number of
shards, is called resharding. Automatic resharding is a feature of the system-managed
sharding method that provides elastic scalability of a distributed database.

Sometimes data in a distributed database needs to be migrated from one shard to another.
Data migration across shards is required in the following cases:

• When one or multiple shards are added to or removed from a distributed database

• When there is skew in the data or workload distribution across shards

The unit of data migration between shards is the chunk. Migrating data in chunks guaranties
that related data from different sharded tables are moved together.

When a shard is added to or removed from a distributed database, multiple chunks are
migrated to maintain a balanced distribution of chunks and workload across shards.

Depending on the sharding method, resharding happens automatically (system-managed) or is
directed by the user (composite). The following figure shows the stages of automatic
resharding when a shard is added to a distributed database with three shards.

Chapter 9
Chunk Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 71



Figure 9-7    Resharding a Distributed Database

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

5

6

7

9

10

11

4 8 12

+

1

2

3

5

6

7

9

10

11

4

8

12

A particular chunk can also be moved from one shard to another, when data or workload skew
occurs, without any change in the number of shards. In this case, chunk migration can be
initiated by the database administrator to eliminate the hot spot.

RMAN Incremental Backup, Transportable Tablespace, and Oracle Notification Service
technologies are used to minimize impact of chunk migration on application availability. A
chunk is kept online during chunk migration. There is a short period of time (a few seconds)
when data stored in the chunk is available for read-only access only.

FAN-enabled clients receive a notification when a chunk is about to become read-only in the
source shard, and again when the chunk is fully available in the destination shard on
completion of chunk migration. When clients receive the chunk read-only event, they can
either repeat connection attempts until the chunk migration is completed, or access the read-
only chunk in the source chunk. In the latter case, an attempt to write to the chunk will result in
a run-time error.

Chapter 9
Chunk Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 71



Note

Running multi-shard queries while a distributed database is resharding can result in
errors, so it is recommended that you do not deploy new shards during multi-shard
workloads.

Moving Chunks
Sometimes it becomes necessary to move a chunk from one shard to another. To maintain
scalability of the distributed database environment, it is important to attempt to maintain an
equal distribution of the load and activity across all shards.

As the environment matures in a composite distributed database, some shards may become
more active and have more data than other shards. In order to keep a balance within the
environment you must move chunks from more active servers to less active servers. There are
other reasons for moving chunks:

• When a shard becomes more active than other shards, you can move a chunk to a less
active shard to help redistribute the load evenly across the environment.

• When using range, list, or composite sharding, and you are adding a shard to a
shardgroup.

• When using range, list, or composite sharding, and you a removing a shard from a
shardgroup.

• After splitting a chunk it is often advisable to move one of the resulting chunks to a new
shard.

When moving shards to maintain scalability, the ideal targets of the chunks are shards that are
less active, or have a smaller portion of data. Oracle Enterprise Manager and AWR reports can
help you identify the distribution of activity across the shards, and help identify shards that are
good candidates for chunk movement.

Note

Any time a chunk is moved from one shard to another, you should make a full backup
of the databases involved in the operation (both the source of the chunk move, and
the target of the chunk move.)

You can manage chunks using GDSCTL or Oracle Enterprise Manager Cloud Control:

• Oracle AI Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL MOVE CHUNK command

• Moving Chunks

Chapter 9
Chunk Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 71



Updating an In-Process Chunk Move Operation
While a MOVE CHUNK operation is in process, you can use the GDSCTL ALTER MOVE command to
suspend, resume, or cancel any or all chunks scheduled to be moved (where the move is not
yet started) in the operation.

There are three variations on this command: -SUSPEND is used to postpone chunk migration
operation, -RESUME is used to restart the move process, and -CANCEL cancels chunk migration.

In addition, the -CHUNK and -SHARD options are used to filter the list of scheduled chunk moves.
You can use the CONFIG CHUNKS -SHOW_RESHARD command to get a list of scheduled chunk
moves.

Suspending Chunk Moves

ALTER MOVE -SUSPEND postpones chunk migration for a specified scope until you wish resume
or cancel the operation. The shards on which to suspend operation must be specified, and you
can list source and target shards. You can also specify a list of specific chunks to suspend.

If any chunk in the defined scope is already being moved (any state other than "scheduled"),
that chunk will not be suspended.

For example, the following command suspends all scheduled chunk moves to or from shard1.

GDSCTL> alter move -suspend -shard shard1

Restarting Chunk Moves

ALTER MOVE -RESUME resets any "move failed" flags on specified shards, and restarts any
stalled or suspended chunk moves.

You can optionally provide a list of source and target shards that will have their "move failed"
flags reset before the moves restart. If no shards are specified, the suspended moves are
restarted once any moves in process are complete.

For example, the following command restarts chunk moves on any suspended or "failed"
chunk moves scheduled to or from shard1.

GDSCTL> alter move -resume -shard shard1

Canceling Chunk Moves

ALTER MOVE -CANCEL removes specified chunks from the move chunk schedule.

The -CHUNK option specifies that all listed chunks will be removed from the schedule, and -
SHARD specifies that all chunk moves to/from this database will be removed from the schedule.
If no chunks or shards are specified, then all chunk moves not already in process are
canceled.

If any chunk in the defined scope is currently being moved (any state other than "scheduled"),
that chunk move will not be canceled.

Chunks that are canceled cannot be resumed/restarted. You must issue a new MOVE CHUNK
command to move these chunks.

Chapter 9
Chunk Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 71



For example, the following command removes chunks 1, 2, and 3 from the chunk move
schedule, if they are not already being moved.

GDSCTL> alter move -cancel -chunk 1,2,3

Splitting Chunks
Splitting a chunk in a distributed database is required when chunks become too big, or only
part of a chunk must be migrated to another shard.

Oracle Globally Distributed Database supports the online split of a chunk. Theoretically it is
possible to have a single chunk for each shard and split it every time data migration is
required. However, even though a chunk split does not affect data availability, the split is a
time-consuming and CPU-intensive operation because it scans all of the rows of the partition
being split, and then inserts them one by one into the new partitions. For composite sharding, it
is time consuming and may require downtime to redefine new values for the shard key or super
shard key.

Therefore, it is recommended that you pre-create multiple chunks on each shard and split them
either when the number of chunks is not big enough for balanced redistribution of data during
re-sharding, or a particular chunk has become a hot spot.

Even with system-managed sharding, a single chunk may grow larger than other chunks or
may become more active. In this case, splitting that chunk and allowing automatic re-sharding
to move one of the resulting chunks to another shard maintains a more equal balanced
distribution of data and activity across the environment.

Oracle Enterprise Manager heat maps show which chunks are more active than other chunks.
Using this feature will help identify which chunks could be split, and one of the resulting chunks
could then be moved to another shard to help rebalance the environment.

You can manage chunks using GDSCTL or Oracle Enterprise Manager Cloud Control:

• Oracle AI Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL SPLIT CHUNK command

• Splitting Chunks with Oracle Enterprise Manager Cloud Control

Splitting Chunks into Shardspaces Based on Super Key
In a distributed database using the composite sharding data distribution method, the data can
be organized into different shardspaces based on super shard key column values. You can
split the existing data chunks per super shard key values into new shardspaces.

Splitting chunks by super sharding key is a unique operation of partition/chunk split which also
requires data reorganization and movement. Many internal steps during the course of this
operation make use of online DDL support so that your application can stay online during a
reshard operation.

Use Case

For example, you have a distributed database with tables Customers, Orders, and Lineitems,
which are related to each other through the customer_id as reference key and sharding key.
The distributed database uses the composite sharding data distribution method with Class for
customers as the super shard key.

Chapter 9
Chunk Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 71



You want to arrange the location of the data by customer Class so that in the future, the data
can be rearranged to provide different levels of service or resources to premium Class
customers.

Due to business needs, a requirement arises for a new shardspace where data for only Gold
and Silver Class customers reside in the future, though the data is not currently distributed that
way. For example, there could be additional reporting or business services or data security
services offered only to premium customers for additional costs, and segregating these
customers in a different shardspace hosted in a different availability domain or region in the
cloud makes it more convenient. Or, there is more efficient, but expensive hardware which can
host only few shards and not all of the shards, so you want to allot those to the premium
classes.

Splitting the Data into Shardspaces Based on Super Key

A PARTITIONSET operator, SPLIT, is introduced to support splitting chunks by super sharding
key, as shown in this ALTER TABLE syntax.

ALTER TABLE tablename 
SPLIT PARTITIONSET partitionset_name
INTO 
(partitionset partitionset_name 
values [(list of values)] | [LESS THAN (value)]
 [lob_column1 store as (tablespace set_name1),
 lob_column2 store as (tablespace set_name2) … ] 
[[SUBPARTITIONS store in (<tablespace set_name1, 
tablespace set_name2, …]|[tablespace_set 
tablespaceset_name]],
  partitionset partitionset_name
[lob_column1 store as (tablespace set_name1),
 lob_column2 store as (tablespace set_name2) … ] 
[[SUBPARTITIONS store in (<tablespace set_name1, 
Tablespace set_name2, …]|[tablespace_set 
tablespaceset_name]]) ;

For example, to split a customers partitionset into Gold customers and non-Gold customers:

ALTER TABLE customers 
SPLIT PARTITIONSET all_customers
INTO (PARTITIONSET gold_customers 
VALUES (‘gold’) 
 TABLESPACE SET ts2,
PARTITIONSET non_gold_customers)

As shown above, the command resembles ALTER TABLE SPLIT PARTITION; however, there are
certain rules for this syntax in the SPLIT PARTITIONSET case as follows.

1. The number of shards in the target shardspace must be the same as the source
shardspace.

2. The target shardspace must be clean and not have any chunks.

3. The number of chunks in the target shardspace must be the same as the source
shardspace.

4. Only two resulting partitionsets are allowed from one source partitionset. So the command
can have at most 3 partitionsets specified.

Chapter 9
Chunk Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 71



5. You can specify the STORAGE clauseor TABLESPACE SET clause with only one resulting
partitionset and not both.

6. Whichever partitionset has a TABLESPACE SET or STORAGE clause is considered the target
partitionset; that is, the new partitionset on a different shardspace. All of the tablespace
sets specified in the clause need to be on the target, or new shardspace.

7. PARTITIONSET without TABLESPACE SET clause is considered local; that is, it will be on the
same shardspace the as existing source shardspace.

8. The VALUES clause must always be specified with the first PARTITIONSET in the list. This
enables either the upper or lower side of the range to be moved to the target shardspace in
case of range partitioning for partitionsets. This clause can’t be specified or is implicit for
the second resulting partitionset.

9. You cannot use the DEPENDENT TABLES clause to set specific properties for dependent
tables when you issue SPLIT PARTITIONSET.

10. Resulting partitionsets must have distinct names.

Note that in case of range partitioning for partitionset keys, the command can retain the upper
range or lower range in the original partitionset, by indicating the storage clause with the
intended target partitionset. For example,

ALTER TABLE employees SPLIT PARTITIONSET P1
into (PARTITIONSET junior_employees values less than 10,
PARTITIONSET senior_employees TABLESPACE SET ts4)

The above command has ‘senior_employees’ as the new, or target, partitionset. Rows of
partitionset employees having partitionset key column values less than 10 remain in the origin
partitionset, and this partitionset is renamed ‘junior_employees’ at the end of the operation.

Rows of partitionset employees having partitionset key column values equal to or greater than
10 are moved to a new partitionset ‘senior_employees’ with a shardspace different than that of
partitionset ‘employees’. Tablespace set clause associated with partitionset ‘senior_employees’
and tablespace set ‘ts4’ being in the target shardspace indicates that this partitionset will be in
the new target shardspace.

Managing Chunks with Oracle Enterprise Manager Cloud Control
You can manage Globally Distributed Database chunks using Oracle Enterprise Manager
Cloud Control.

To manage chunks using Cloud Control, the shard databases on which they reside must first
be discovered. Because each database shard is a database itself, you can use standard Cloud
Control database discovery procedures.

The following topics describe chunk management using Oracle Enterprise Manager Cloud
Control:

Moving Chunks
You can move chunks from one shard to another in your deployment using Oracle Enterprise
Manager Cloud Control.

1. From a shardspace management page, open the Shardspace menu, located in the top left
corner of the Globally Distributed Database target page, and choose Manage
Shardgroups.

Chapter 9
Chunk Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 71



2. Select a shardgroup in the list and click Move Chunks.

3. In the Move Chunks dialog, select the source and destination shards between which to
move the chunks.

4. Select the chunks that you want to move by choosing one of the options.

• Enter ID List: enter a comma separates list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk move should occur.

• Immediately: the chunk move is provisioned upon confirmation

• Later: schedule the timing of the chunk move using the calendar tool in the adjacent
field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning status
of the chunk move.

Splitting Chunks
You can split chunks in your deployment using Oracle Enterprise Manager Cloud Control.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a shardspace in the list and click Split Chunks.

4. Select the chunks that you want to split by choosing one of the options.

• Enter ID List: enter a comma separate list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk split should occur.

• Immediately: the chunk split is provisioned upon confirmation

• Later: schedule the timing of the chunk split using the calendar tool in the adjacent
field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning status
of the chunk split.

When the chunk is split successfully the number of chunks is updated in the Shardspaces list.
You might need to refresh the page to see the updates.

Shard Director Management
You can add, edit, and remove shard directors in your deployment with Oracle Enterprise
Manager Cloud Control.

Creating a Shard Director
Use Oracle Enterprise Manager Cloud Control to create and add a shard director to your
deployment.

Chapter 9
Shard Director Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 71



1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create, or select a shard director from the list and click Create Like.

Choosing Create opens the Add Shard Director dialog with default configuration values in
the fields.

Choosing Create Like opens the Add Shard Director dialog with configuration values from
the selected shard director in the fields. You must select a shard director from the list to
enable the Create Like option.

4. Enter the required information in the Add Shard Director dialog, and click OK.

Note

If you do not want the shard director to start running immediately upon creation,
you must uncheck the Start Shard Director After Creation checkbox.

5. Click OK on the confirmation dialog.

6. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director.

When the shard director is created successfully it appears in the Shard Directors list. You
might need to refresh the page to see the updates.

Editing a Shard Director Configuration
Use Oracle Enterprise Manager Cloud Control to edit a shard director configuration in your
deployment.

You can change the region, ports, local endpoint, and host credentials for a shard director in
Cloud Control. You cannot edit the shard director name, host, or Oracle home.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a shard director from the list and click Edit.

Note that you cannot edit the shard director name, host, or Oracle home.

4. Edit the fields, enter the GSMCATUSER password, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director configuration changes.

Removing a Shard Director
Use Oracle Enterprise Manager Cloud Control to remove shard directors from your
deployment.

If the shard director you want to remove is the administrative shard director, as indicated by a
check mark in that column of the Shard Directors list, you must choose another shard director
to be the administrative shard director before removing it.

Chapter 9
Shard Director Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 71



1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a shard director from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director removal.

When the shard director is removed successfully it no longer appears in the Shard Directors
list. You might need to refresh the page to see the changes.

Region Management
You can add, edit, and remove regions in your deployment with Oracle Enterprise Manager
Cloud Control.

Creating a Region
Create regions in your distributed database deployment using Oracle Enterprise Manager
Cloud Control.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create.

4. Enter a unique name for the region in the Create Region dialog.

5. Optionally, select a buddy region from among the existing regions.

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning status
of the region.

When the region is created successfully it appears in the Regions list. You might need to
refresh the page to see the updates.

Editing a Region Configuration
Edit distributed database region configurations in your deployment using Oracle Enterprise
Manager Cloud Control.

You can change the buddy region for a distributed database region in Cloud Control. You
cannot edit the region name.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under Shard
Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Edit.

4. Select or remove a buddy region, and click OK.

Chapter 9
Region Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 71



5. Click the link in the Information box at the top of the page to view the provisioning status
of the region configuration changes.

When the region configuration is successfully updated the changes appear in the Regions list.
You might need to refresh the page to see the updates.

Removing a Region
Remove distributed database regions in your deployment using Oracle Enterprise Manager
Cloud Control.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under Shard
Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning status
of the region removal.

When the region configuration is successfully removed the changes appear in the Regions list.
You might need to refresh the page to see the updates.

Shardspace Management
You can manage shardspaces in your deployment with Oracle Enterprise Manager Cloud
Control and GDSCTL.

Adding a Shardspace to a Composite Distributed Database
Learn to create a new shardspace, add shards to the shardspace, create a tablespace set in
the new shardspace, and add a partitionset to the sharded table for the added shardspace.
Then verify that the partitions in the tables are created in the newly added shards in the
corresponding tablespaces.

To add a new shardspace to an existing distributed database, make sure that the composite
distributed database is deployed and all DDLs are propagated to the shards.

1. Create a new shardspace, add shards to the shardspace, and deploy the environment.

a. Connect to the shard catalog database.

GDSCTL> connect mysdbadmin/mysdbadmin_password

b. Add a shardspace and add a shardgroup to the shardspace.

GDSCTL> add shardspace -chunks 8 -shardspace cust_asia
GDSCTL> add shardgroup -shardspace cust_asia -shardgroup asia_shgrp1 -
deploy_as primary -region region3

c. Add shards

GDSCTL> add shard -shardgroup asia_shgrp1 –connect 
shard_host:TNS_listener_port/shard_database_name –pwd GSMUSER_password
GDSCTL> add shard asia_shgrp1 –connect shard_host:TNS_listener_port/
shard_database_name –pwd GSMUSER_password

Chapter 9
Shardspace Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 71



d. Deploy the environment.

GDSCTL> deploy

Running DEPLOY ensures that all of the previous DDLs are replayed on the new shards and
all of the tables are created. The partition is created in the default SYS_SHARD_TS
tablespace.

2. On the shard catalog create the tablespace set for the shardspace and add partitionsets to
the sharded root table.

a. Create the tablespace set.

SQL> CREATE TABLESPACE SET
  TSP_SET_3 in shardspace cust_asia using template
  (datafile size 100m autoextend on next 10M maxsize
   unlimited extent management
   local segment space management auto );

b. Add the partitionset.

SQL> ALTER table customers add PARTITIONSET asia VALUES ('ASIA”') 
TABLESPACE SET TSP_SET_3 ;

c. When lobs are present, create the tablespace set for lobs and mention the lob storage
information in the add partitionset command.

SQL> alter table customers add partitionset asia VALUES ('ASIA') 
tablespace set TSP_SET_3 lob(docn) store as (tablespace set 
LOBTSP_SET_4)) ;

d. When the root table contains subpartitions, use the store as clause to specify the
tablespace set for the subpartitions.

SQL> alter table customers add partitionset asia VALUES ('ASIA') 
tablespace set TSP_SET_3 subpartitions store in(SUB_TSP_SET_1, 
SUB_TSP_SET_2);

The ADD PARTITIONSET command ensures that the child tables are moved to the
appropriate tablespaces.

3. Verify that the partitions in the new shardspace are moved to the new tablespaces.

Connect to the new shards and verify that the partitions are created in the new tablespace
set.

SQL> select table_name, partition_name, tablespace_name, read_only from 
dba_tab_partitions;

Shardspace Management
You can add, edit, and remove shardspaces in your distributed database deployment with
Oracle Enterprise Manager Cloud Control.

Chapter 9
Shardspace Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 71



Creating a Shardspace
Create shardspaces in your composite distributed database deployment using Oracle
Enterprise Manager Cloud Control.

Only databases that are partitioned using the composite data distribution method can have
more than one shardspace. A system-managed distributed database can have only one
shardspace.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create.

Note

This option is disabled in the Shardspaces page for a system-managed distributed
database.

4. Enter the values in the fields in the Add Shardspace dialog, and click OK.

• Name: enter a unique name for the shardspace (required)

• Chunks: Enter the number of chunks that should be created in the shardspace
(default 120)

• Protection Mode: select the Data Guard protection mode (default Maximum
Performance)

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shardspace.

When the shardspace is created successfully it appears in the Shardspaces list. You might
need to refresh the page to see the updates.

Shardgroup Management
You can add, edit, and remove shardgroups in your deployment with Oracle Enterprise
Manager Cloud Control.

Creating a Shardgroup
Create shardgroups in your deployment using Oracle Enterprise Manager Cloud Control.

1. Select a shardspace to which to add the shardgroup.

2. Open the Shardspace menu, located in the top left corner of the shardspace target page,
and choose Manage Shardgroups.

3. Click Create.

4. Enter values in the Create Shardgroup dialog, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shardgroup.

Chapter 9
Shardgroup Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 71



For example, with the values entered in the screenshots above, the following command is
run:

GDSCTL Command: ADD SHARDGROUP -SHARDGROUP 'north' -SHARDSPACE 
'shardspaceora'
 -REGION 'north' -DEPLOY_AS 'STANDBY'

When the shardgroup is created successfully it appears in the Manage Shardgroups list. You
might need to refresh the page to see the updates.

Services Management
You can manage services in your deployment with Oracle Enterprise Manager Cloud Control.

To manage Oracle Globally Distributed Database services, open the Globally Distributed
Database menu, located in the top left corner of the Globally Distributed Database target page,
and choose Services. On the Services page, using the controls at the top of the list of
services, you can start, stop, enable, disable, create, edit, and delete services.

Selecting a service opens a service details list which displays the hosts and shards on which
the service is running, and the status, state, and Data Guard role of each of those instances.
Selecting a shard in this list allows you to enable, disable, start, and stop the service on the
individual shards.

Creating a Service
Create services in your deployment using Oracle Enterprise Manager Cloud Control.

1. Open the Globally Distributed Database menu, located in the top left corner of the
Globally Distributed Database target page, and choose Services.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create, or select a service from the list and click Create Like.

Choosing Create opens the Create Service dialog with default configuration values in the
fields.

Choosing Create Like opens the Create Like Service dialog with configuration values from
the selected service in the fields. You must select a service from the list to enable the
Create Like option.

4. Enter the required information in the dialog, and click OK.

Note

If you do not want the service to start running immediately upon creation, you must
uncheck the Start service on all shards after creation checkbox.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the service.

When the service is created successfully it appears in the Services list. You might need to
refresh the page to see the updates.

Chapter 9
Services Management

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 71



10
Developing Applications for Oracle Globally
Distributed Database

You can develop your application to direct requests to a shard within a distributed database.

Topics:

• Direct Routing to a Shard

• APIs Supporting Direct Routing

• JDBC Sharding Data Source

Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified in the
connection string for high performance data dependent routing. A shard routing cache in the
connection layer is used to route database requests directly to the shard where the data
resides.

In direct, key-based, routing to a shard, a connection is established to a single, relevant shard
which contains the data pertinent to the required transaction using a sharding key.

A sharding key is used to route database connection requests at a user session level during
connection checkout. The composite sharding method requires both a sharding key and a
super sharding key. Direct, key-based, routing requires the sharding key (or super sharding
key) be passed as part of the connection. Based on this information, a connection is
established to the relevant shard which contains the data pertinent to the given sharding key or
super sharding key.

Once the session is established with a shard, all SQL queries and DMLs are run in the scope
of the given shard. This routing is fast and is used for all OLTP workloads that perform intra-
shard transactions. It is recommended that direct routing be employed for all OLTP workloads
that require the highest performance and availability.

In support of Oracle Globally Distributed Database, key enhancements have been made to
Oracle connection pools and drivers. JDBC, Universal Connection Pool (UCP), OCI Session
Pool (OCI), and Oracle Data Provider for .NET (ODP.NET) provide APIs to pass sharding keys
during the connection creation. Apache Tomcat, IBM Websphere, Oracle WebLogic Server,
and JBOSS can leverage JDBC/UCP support and use sharding. PHP, Python, Perl, and
Node.js can leverage OCI support.

A shard topology cache is a mapping of the sharding key ranges to the shards. Oracle
Integrated Connection Pools maintain this shard topology cache in their memory. Upon the first
connection to a given shard (during pool initialization or when the pool connects to newer
shards), the sharding key range mapping is collected from the shards to dynamically build the
shard topology cache.

Caching the shard topology creates a fast path to the shards and expedites the process of
creating a connection to a shard. When a connection request is made with a sharding key, the
connection pool looks up the corresponding shard on which this particular sharding key exists

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 8



(from its topology cache). If a matching connection is available in the pool then the pool returns
a connection to the shard by applying its internal connection selection algorithm.

A database connection request for a given sharding key that is in any of the cached topology
map, goes directly to the shard (that is, bypassing the shard director). Connection Pool also
subscribes to RLB notifications from the SDB and dispenses the best connection based on
runtime load balancing advisory. Once the connection is established, the client runs
transactions directly on the shard. After all transactions for the given sharding key are
complete, the application must return the connection to the pool and obtain a connection for
another key.

If a matching connection is not available in the pool, then a new connection is created by
forwarding the connection request with the sharding key to the shard director.

Once the pools are initialized and the shard topology cache is built based on all shards, a
shard director outage has no impact on direct routing.

APIs Supporting Direct Routing
Oracle connection pools and drivers support Oracle Globally Distributed Database.

JDBC, UCP, OCI, and Oracle Data Provider for .NET (ODP.NET) recognize sharding keys as
part of the connection check. Apache Tomcat, Websphere, and WebLogic leverage UCP
support for sharding and PHP, Python, Perl, and Node.js leverage OCI support.

Oracle JDBC APIs
Oracle Java Database Connectivity (JDBC) provides APIs for connecting to database shards in
an Oracle Globally Distributed Database configuration.

The JDBC driver recognizes the specified sharding key and super sharding key and connects
to the relevant shard that contains the data. Once the connection is established to a shard,
then any database operations, such as DMLs, SQL queries and so on, are supported and run
in the usual way.

A shard-aware application gets a connection to a given shard by specifying the sharding key
using the database sharding APIs.

• The OracleShardingKey interface indicates that the current object represents a sharding
key that is to be used with a distributed database.

• The OracleShardingKeyBuilder interface builds the compound sharding key with subkeys
of various supported data types. This interface uses the new JDK 8 builder pattern for
building a sharding key.

• The OracleConnectionBuilder interface builds connection objects with additional
parameters other than user name and password.

• The OracleDataSource class provides database sharding support with the
createConnectionBuilder and createShardingKeyBulider methods.

• The OracleXADataSource class provides database sharding support with the
createConnectionBuilder method

• The OracleConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

• The OracleXAConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

Chapter 10
APIs Supporting Direct Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 8



See the Oracle AI Database JDBC Developer’s Guide for more information and examples.

Example 10-1    Sample Shard-Aware Application Code Using JDBC

The following code snippet shows how to use JDBC sharding APIs

OracleDataSource ods = new OracleDataSource();
   ods.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)
(PORT=1521)(PROTOCOL=tcp))
(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))");
   ods.setUser("hr");
   ods.setPassword("hr");
 
  // Employee name is the sharding Key in this example.
  // Build the Sharding Key using employee name as shown below.

   OracleShardingKey employeeNameShardKey = ods.createShardingKeyBuilder()
                                               .subkey("Mary", 
JDBCType.VARCHAR)// First Name
                                               .subkey("Claire", 
JDBCType.VARCHAR)// Last Name
                                               .build();

   OracleShardingKey locationSuperShardKey = 
ods.createShardingKeyBuilder() // Building a super sharding key using 
location as the key
                                                .subkey("US", 
JDBCType.VARCHAR)
                                                .build();

   OracleConnection connection = ods.createConnectionBuilder()
                                    .shardingKey(employeeNameShardKey)
                                    .superShardingKey(locationSuperShardKey)
                                    .build();

Related Topics

• JDBC Support for Database Sharding in Oracle AI Database JDBC Developer’s Guide

Oracle Call Interface
Oracle Call Interface (OCI) provides an interface for connecting to database shards in an
Oracle Globally Distributed Database configuration.

To make requests that read from or write to a chunk, your application must be routed to the
appropriate database (shard) that stores that chunk during the connection initiation step. This
routing is accomplished by using a data key. The data key enables routing to the specific chunk
by specifying its sharding key or to a group of chunks by specifying its super sharding key.

In order to get a connection to the correct shard containing the chunk you wish to operate on,
you must specify a key in your application before getting a connection to a sharded Oracle
database for either stand-alone connections or connections obtained from an OCI Session
pool. For an OCI Session pool, you must specify a data key before you check out connections
from the pool.

At a high-level, the following steps have to be followed to form sharding keys and shard group
keys and get a session with an underlying connection:

Chapter 10
APIs Supporting Direct Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 8



1. Allocate the sharding key descriptor by calling OCIDescriptorAlloc() and specifying the
descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the sharding key.

2. Allocate the shard group key descriptor by calling OCIDescriptorAlloc() and specifying
the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the shard group key.

3. Call OCISessionGet() using the initialized authentication handle from the previous step
containing the sharding key and shard group key information to get the database
connection to the shard and chunk specified by the sharding key and group of chunks as
specified by the shard group key.

See Oracle Call Interface Developer's Guide for information about creating connections to OCI
Session pools, stand-alone connections, and custom pool connections.

Related Topics

• OCI Interface for Using Shards in Oracle Call Interface Developer's Guide

Oracle Universal Connection Pool APIs
Oracle Universal Connection Pool (UCP) provides APIs for connecting to database shards in
an Oracle Globally Distributed Database configuration.

A shard-aware application gets a connection to a given shard by specifying the sharding key
using the enhanced sharding API calls createShardingKeyBuilder and
createConnectionBuilder.

At a high-level, the following steps have to be followed in making an application work with a
distributed database:

1. Update the URL to reflect the shard directors and global service.

2. Set the following pool parameters at the pool level and the shard level.

• setInitialPoolSize sets the initial number of connections to be created when UCP is
started

• setMinPoolSize sets the minimum number of connections maintained by pool at
runtime

• setMaxPoolSize sets maximum number of connections allowed on connection pool

• setMaxConnectionsPerShard sets max connections per shard

3. Build a sharding key object with createShardingKeyBuilder.

4. Establish a connection using createConnectionBuilder.

5. Run transactions within the scope of the given shard.

Example 10-2    Establishing a Connection Using UCP Sharding API

The following is a code fragment which illustrates how the sharding keys are built and
connections established using UCP Sharding API calls.

...

PoolDataSource pds =                                
     PoolDataSourceFactory.getPoolDataSource();
  
  // Set Connection Pool properties
pds.setURL(DB_URL);
pds.setUser("hr");  

Chapter 10
APIs Supporting Direct Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 8



pds.setPassword("****");
pds.setInitialPoolSize(10);
pds.setMinPoolSize(20);
pds.setMaxPoolSize(30);
                
// build the sharding key object

OracleShardingKey shardingKey = 
    pds.createShardingKeyBuilder() 
      .subkey("mary.smith@example.com", OracleType.VARCHAR2)
      .build(); 

  // Get an UCP connection for a shard
Connection conn = 
    pds.createConnectionBuilder()
     .shardingKey(shardingKey)
     .build();
...

Example 10-3    Sample Shard-Aware Application Code Using UCP Connection Pool

In this example the pool settings are defined at the pool level and at the shard level.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

public class MaxConnPerShard
{    
  public static void main(String[] args) throws SQLException
  {    
    String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=shard-dir1)
(PORT=3216)
 (PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=shsvc.shpool.oradbcloud)
(REGION=east)))";
    String user="testuser1", pwd = "testuser1";  
  
    int maxPerShard = 100, initPoolSize = 20;    

    PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
    pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
    pds.setURL(url);
    pds.setUser(user);
    pds.setPassword(pwd);
    pds.setConnectionPoolName("testpool");
    pds.setInitialPoolSize(initPoolSize);    

    // set max connection per shard
    pds.setMaxConnectionsPerShard(maxPerShard);

Chapter 10
APIs Supporting Direct Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 8



    System.out.println("Max-connections per shard is: 
"+pds.getMaxConnectionsPerShard());
                
    // build the sharding key object
    int shardingKeyVal = 123;    
    OracleShardingKey sdkey = pds.createShardingKeyBuilder()
        .subkey(shardingKeyVal, OracleType.NUMBER)
        .build();

    // try to build maxPerShard connections with the sharding key
    Connection[] conns = new Connection[maxPerShard];
    for (int i=0; i<maxPerShard; i++)
    {      
      conns[i] = pds.createConnectionBuilder()
          .shardingKey(sdkey)
          .build();
    
Statement stmt = conns[i].createStatement();
      ResultSet rs = stmt.executeQuery("select sys_context('userenv', 
'instance_name'),
       sys_context('userenv', 'chunk_id') from dual");
      while (rs.next()) {
        System.out.println((i+1)+" - inst:"+rs.getString(1)+", 
chunk:"+rs.getString(2));
      }
      rs.close();
      stmt.close();
    }      

    System.out.println("Try to build "+(maxPerShard+1)+" connection ...");
    try {
      Connection conn = pds.createConnectionBuilder()
          .shardingKey(sdkey)
          .build();

      Statement stmt = conn.createStatement();
      ResultSet rs = stmt.executeQuery("select sys_context('userenv', 
'instance_name'),
       sys_context('userenv', 'chunk_id') from dual");
      while (rs.next()) {
        System.out.println((maxPerShard+1)+" - inst:"+rs.getString(1)+",
         chunk:"+rs.getString(2));
      }
      rs.close();
      stmt.close();

      System.out.println("Problem!!! could not build connection as max-
connections per
        shard exceeded");
      conn.close();
    } catch (SQLException e) {
      System.out.println("Max-connections per shard met, could not build 
connection
        any more, expected exception: "+e.getMessage());
    }    
    for (int i=0; i<conns.length; i++)

Chapter 10
APIs Supporting Direct Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 8



    {
      conns[i].close();
    }        
  }
}

Related Topics

• UCP APIs for Database Sharding Support in Oracle Universal Connection Pool
Developer’s Guide

Oracle Data Provider for .NET APIs
Oracle Data Provider for .NET (ODP.NET) provides APIs for connecting to database shards in
an Oracle Globally Distributed Database configuration.

Using ODP.NET APIs, a shard-aware application gets a connection to a given shard by
specifying the sharding key and super sharding key with APIs such as the
SetShardingKey(OracleShardingKey shardingKey, OracleShardingKey superShardingKey)
instance method in the OracleConnection class.

At a high level, the following steps are necessary for a .NET application to work with a
distributed database:

1. Use ODP.NET, Unmanaged Driver.

Sharding is supported with or without ODP.NET connection pooling. Each pool can
maintain connections to different shards of the distributed database.

Note

Oracle Data Provider for .NET (ODP.NET), Unmanaged Driver is deprecated in
Oracle Database 23ai, and can be desupported in a future release. Oracle
recommends existing unmanaged ODP.NET applications migrate to ODP.NET,
Managed Driver.

2. Use an OracleShardingKey class to set the sharding key and another instance for the
super sharding key.

3.  Invoke the OracleConnection.SetShardingKey() method prior to calling
OracleConnection.Open() so that ODP.NET can return a connection with the specified
sharding key and super sharding key.

These keys must be set while the OracleConnection is in a Closed state, otherwise an
exception is thrown.

Example 10-4    Sample Shard-Aware Application Code Using ODP.NET

using System;
using Oracle.DataAccess.Client;
 
class Sharding
{
  static void Main()
  {
    OracleConnection con = new OracleConnection
      ("user id=hr;password=hr;Data Source=orcl;");

Chapter 10
APIs Supporting Direct Routing

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 8



    //Setting a shard key
    OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 
123);
    //Setting a second shard key value for a composite key
    shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
    //Creating and setting the super shard key
    OracleShardingKey superShardingKey = new OracleShardingKey();
    superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);
    
    //Setting super sharding key and sharding key on the connection
    con.SetShardingKey(shardingKey, superShardingKey);
    con.Open();

    //perform SQL query
  }
}

Related Topics

• Database Sharding in Oracle Data Provider for .NET Developer's Guide

JDBC Sharding Data Source
Oracle Java Database Connectivity (JDBC) sharding data source enables Java connectivity to
an Oracle Globally Distributed Database without requiring the application to provide a sharding
key.

Using the JDBC sharding data source, you do not need to identify and build the sharding key
and the super sharding key to establish a connection. The sharding data source scales out to
distributed databases transparently because it does not involve any change to the application
code.

To use the JDBC sharding data source, set the connection property
oracle.jdbc.useShardingDriverConnection to true as shown here.

Properties prop = new Properties();
prop.setProperty("oracle.jdbc.useShardingDriverConnection", "true");

The default value of oracle.jdbc.useShardingDriverConnection is false.

See Overview of the Distributed Database Data Source Oracle AI Database JDBC Developer’s
Guide for more information and examples.

Chapter 10
JDBC Sharding Data Source

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 8



11
Security in an Oracle Globally Distributed
Database Environment

Topics:

• Using TCPS Protocol and Transport Layer Security

• Using Wallets

• Using Application Contexts During Cross-Shard Operations

• Behavior Differences

• Using Transparent Data Encryption

• Creating a Single Encryption Key on All Shards

• Oracle Database Vault

• Failed Login Attempts Only Counted Per Shard

Using TCPS Protocol and Transport Layer Security
To secure the communication between the various Oracle Globally Distributed Database
components in a distributed environment, Oracle recommends that you use Oracle Database
Native Network Encryption or the TCPS protocol and Transport Layer Security (TLS) for all
connections to, and between, the shard catalog and shards.

For information about configuring this security feature, see the documents based on the types
of database you plan to run shards on.

• Autonomous Database

For Oracle Autonomous Database, TLS is already enabled by default, and you only need
to create the remaining security infrastructure, such as vaults, keys, and certificate
resources on OCI.

• Base Database Service

For Base Database Service on OCI you will need to enable TLS using the information in 
Configure TCP/IP with SSL/TLS for Sharding – GSM OCI Mode (Doc ID 2881390.1)

• On-Premises

For on-premises databases, see Configure TCP/IP with SSL/TLS for Sharding – GSM
JDBC THIN MODE (Doc ID 2881420.1)

More information is also available in Configuring Oracle Database Native Network Encryption
and Data Integrity and Configuring Secure Sockets Layer Authentication

Using Wallets
Beginning with Oracle Database 21c, Oracle wallets created for a distributed database are an
important part of any deployment. All primary databases and their replicas within the

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 7

https://support.oracle.com/rs?type=doc&id=2881390.1
https://support.oracle.com/rs?type=doc&id=2881420.1
https://support.oracle.com/rs?type=doc&id=2881420.1


distributed database configuration must have a sharding-specific wallet file present to ensure
proper operation.

These wallets are created during the deployment of a distributed database and enable
encrypted data to be sent between the shard catalog and individual shards. The process by
which the wallets are created establishes a trust relationship between the different components
of a distributed database deployment and prevents unauthorized operations from occurring on
a shard.

The wallets themselves are created on the shard catalog and any shard catalog replicas when
the GDSCTL command CREATE SHARDCATALOG is issued, and the wallets are created on the
shards when the GDSCTL command DEPLOY is issued.

After a successful deployment, the wallet files contain information needed for shard catalogs
and shards to connect to one another to perform operations such as DDL processing, user
context propagation, and the passing of other sensitive data. The information stored in the
wallet includes sharding-specific encryption and decryption keys, connect strings, and
encrypted passwords. Any command issued from GDSCTL or SQL*Plus which changes this
data will automatically cause the wallet to be updated with the new information.

Compatibility and Migration from Oracle Database 19c

For existing Oracle Globally Distributed Database configurations which are being upgraded
from a previous Oracle Database release, perform the steps in #unique_310 after the database
upgrade.

Locating the Wallet

The location of the wallet files is under the directory specified by the wallet_root database
initialization parameter. If wallet_root is not set before issuing CREATE SHARDCATALOG or
DEPLOY, then wallet_root is set to $ORACLE_BASE/admin/db_unique_name on the shard catalog
or shards, respectively.

For example, assume the following after logging into the shard catalog or into a shard.

SQL> select guid from v$pdbs where con_id = sys_context('userenv','con_id');

GUID
--------------------------------
C23E7C78D5B77D50E0537517C40ACE4A

SQL> select value from v$parameter where name='wallet_root';

VALUE
------------------------------------------------------------------------------
--
your-path-to-keystore

Given these values, the sharding-specific wallet file name is your-path-to-keystore/
C23E7C78D5B77D50E0537517C40ACE4A/shard/cwallet.sso.

Wallets on Shard Catalog Replicas

If a standby database is created as a replica of the shard catalog, the shard wallet for the
catalog must be manually copied from the primary shard catalog wallet. Find the location of the
primary wallet using the above method, and make a copy to the correct location on the standby
shard catalog database.

Chapter 11
Using Wallets

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 7



Note

The value of wallet_root may be different on the standby shard catalog, and may not
be set. Remember to set the value of wallet_root before copying the wallet to the
standby location

The wallet only exists on the primary shard catalog after the GDSCTL create
shardcatalog command is run. If a standby shard catalog database is created before
running create shardcatalog, then first run create shardcatalog to create the shard
wallet on the primary shard catalog, then copy the wallet to the standby shard catalog.

The shard catalog database also requires a wallet for CDB$ROOT. When copying and
backing up shard wallets for a shard catalog database, you should also copy the shard
wallet for CDB$ROOT regardless of which PDB is being used for the shard catalog.

Wallet Life Cycle Management

Once a distributed database has been deployed, it is crucial that the shard wallet is maintained
throughout the life cycle of the shard catalog, the shards, and their replicas. Specifically, the
shard wallet should be included in all backup and restore operations for each database, just as
if it were a database data file.

Likewise, if a PDB is cloned, relocated, or otherwise moved, then the shard wallet should
accompany the PDB to its new location. Note that in the case of PDB cloning specifically, the
GUID for the PDB changes during the cloning operation, and therefore the path to the wallet
will change as described above.

Updating a Wallet

If the shard wallet becomes lost, out of date. or is no longer accessible, a newly populated
wallet can be created using the following GDSCTL command:

gdsctl sync database -database shard_name

Attempting to perform certain operations when the wallet is not present, or its contents are out
of date, results in one or more of the following errors.

ORA-03873: unable to encrypt DDL statement with error ...

ORA-03874: unable to encrypt GSMUSER password with error ...

ORA-03876: error ... when attempting to generate a temporary key to add new
shards

ORA-03894: "Failed to send keys to shard %s with error ...."

ORA-03896: Unable to load the sharding wallet successfully.

ORA-00600: internal error code, arguments: [gwsec_get_latest_key]

Using Application Contexts During Cross-Shard Operations
The ability to use several Oracle security features such as Virtual Private Database (VPD),
Unified Auditing, and Oracle Label Security (OLS) typically depend upon the use of session-
level application contexts.

Chapter 11
Using Application Contexts During Cross-Shard Operations

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 7



Before Oracle 21c, any cross-shard operations such as cross-shard queries or DMLs initiated
by the shard catalog would not send session-level application context values to the affected
shards. Therefore, features that depended on the context values being passed from the shard
catalog session to the shards were not supported in a sharded environment.

Starting with Oracle 21c, any database session-based application context values set before a
cross-shard query or DML are sent securely to all shards involved in the operation. This is how
features such as VPD, auditing, and OLS are supported in a sharding environment.

For example, if a user connects to the shard catalog or a query coordinator from SQL*Plus and
calls the DBMS_SESSION.SET_CONTEXT procedure to set a context value, then that value is sent
to any shards involved in subsequent cross-shard operations initiated from the SQL*Plus
session on the shard catalog. Calling the SYS_CONTEXT function on the shard will return the
value originally set on the shard catalog as you would expect.

Note the following limitations when you attempt to use application contexts for cross-shard
operations:

• The maximum length of a context value is 1968 bytes, as opposed to 4000 bytes in non-
sharded environments.

• The maximum length of a context attribute name is 32 bytes, as opposed to 128 bytes in
non-sharded environments.

• Only database session-based contexts initialized locally are currently supported.

• All of the shards in the configuration must be Oracle Database 21c or later releases for the
context value to be passed during cross-shard operations.

For more information see Using Application Contexts to Retrieve User Information.

Behavior Differences
Some behavior that you would expect from a typical Oracle Database is modified in the context
of a distributed database.

In general, database limits on a per-user or per-schema basis are not aggregated across all
databases in the distributed database, but only apply on a per-database level.

From an application perspective, a distributed database acts a single, logical database in most
respects. However, a distributed database itself consists of several independent, loosely-
coupled Oracle Database instances acting as shard catalogs, query coordinators, and shards.
As a result, some behavior that you would expect from a typical Oracle Database is modified in
the context of a distributed database.

For example, if a distributed database user is created and a user profile is assigned to the user
with the SQL statement CREATE PROFILE, the limits set in the profile do not apply to the
distributed database as a whole. Rather, they apply to each database that is a part of the
larger, virtual distributed database.

Therefore, if you set the maximum number of failed login attempts to 20 for a sharded user,
that limit does not apply to the entire distributed database but rather applies to each individual
database in the configuration. If 20 failed attempts are reached when logging into a particular
shard, then those failures do not count against the limits on the other shards or the shard
catalog.

Chapter 11
Behavior Differences

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 7



Using Transparent Data Encryption
Oracle Globally Distributed Database supports Transparent Data Encryption (TDE), but to
successfully move chunks in a distributed database with TDE enabled, all of the shards must
share and use the same encryption key for the encrypted tablespaces.

A distributed database consists of multiple independent databases and a shard catalog
database. For TDE to work properly certain restrictions apply, especially when data is moved
between shards. For chunk movement between shards to work when data is encrypted, you
must ensure that all of the shards use the same encryption key.

There are two ways to accomplish this:

• Create and export an encryption key from the shard catalog, and then import and activate
the key on all of the shards individually.

• Store the wallet in a shared location and have the shard catalog and all of the shards use
the same wallet.

The following TDE statements are automatically propagated to shards when run on the shard
catalog with shard DDL enabled:

• ADMINISTER KEY MANAGEMENT SET KEYSTORE [OPEN|CLOSE] IDENTIFIED BY
password

• ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY password

• ADMINISTER KEY MANAGEMENT USE KEY IDENTIFIED BY password

• ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY password

Limitations

The following limitations apply to using TDE with Oracle Globally Distributed Database.

• For GDSCTL MOVE CHUNK to work, all of the shard database hosts must be on the same
platform.

• MOVE CHUNK cannot use compression during data transfer, which may impact performance.

• Only encryption on the tablespace level is supported. Encryption on specific columns is not
supported.

For more information about TDE see Introduction to Transparent Data Encryption

Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in a distributed database
configuration, you must create a master encryption key on the shard catalog, then use wallet
export, followed by wallet import onto the shards, and activate the keys.

This procedure assumes that the keystore password and wallet directory path are the same for
the shard catalog and all of the shards. If you require different passwords and directory paths,
all of the commands should be issued individually on each shard and the shard catalog with
shard DDL disabled, using the shard’s own password and path.

These steps should be done before any data encryption is performed.

1. Create an encryption key on the shard catalog.

Chapter 11
Using Transparent Data Encryption

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 7



With shard DDL enabled, issue the following statements.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE wallet_directory_path
 IDENTIFIED BY keystore_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY 
keystore_password;

The value for keystore_password should be the same if you prefer to issue wallet open
and close commands centrally from the shard catalog.

The wallet directory path should match the WALLET_ROOT in the corresponding initialization
parameter file.

2. With shard DDL disabled, issue the following statement to activate the encryption key.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
 IDENTIFIED BY keystore_password;
ADMINISTER KEY MANAGEMENT USE KEY master_key_id
 IDENTIFIED BY keystore_password WITH BACKUP;

All of the shards and the shard catalog database now have the same encryption key
activated and ready to use for data encryption. On the shard catalog, you can issue TDE
DDLs (with shard DDL enabled), such as:

• Create encrypted tablespaces and tablespace sets.

• Create sharded tables using encrypted tablespaces.

• Create sharded tables containing encrypted columns (with limitations).

3. Validate that the key IDs on all of the shards match the ID on the shard catalog.

SELECT KEY_ID  FROM V$ENCRYPTION_KEYS 
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
  WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

4. ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY keystore_password WITH 
BACKUP;

An encryption key is created and activated in the shard catalog database’s wallet.

If you issue this statement with DDL enabled, it will also create encryption keys in each of
the shards’ wallets, which are different keys from that of the shard catalog. For data
movement to work, you cannot use different encryption keys on each shard.

5. Get the master key ID from the shard catalog keystore.

SELECT KEY_ID  FROM V$ENCRYPTION_KEYS 
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
  WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

Chapter 11
Creating a Single Encryption Key on All Shards

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 7



6. With shard DDL disabled, export the catalog wallet containing the encryption key.

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET secret_phrase 
TO
 wallet_export_file IDENTIFIED BY keystore_password;

7. Physically copy the wallet file to each of the shard hosts, into their corresponding wallet
export file location, or put the wallet file on a shared disk to which all of the shards have
access.

8. With shard DDL disabled, log on to each shard and import the wallet containing the key.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY 
keystore_password;
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET secret_phrase 
FROM
 wallet_export_file IDENTIFIED BY keystore_password WITH BACKUP;

9. Restart the shard databases.

10. Activate the key on all of the shards on the shard catalog with shard DDL enabled.

Oracle Database Vault
Do not enable Oracle Database Vault (Data Vault) on your distributed databases. Oracle
Globally Distributed Database does not support Oracle Database Vault.

Failed Login Attempts Only Counted Per Shard
Oracle Globally Distributed Database doesn't support management of all shards as a single
database. A distributed database is a collection of independent databases which have to be
managed individually.

If you are relying on failed login counts, you either need to use external (centrally managed)
users, or keep in mind that the number of unsuccessful login attempts is counted per shard
when setting the limit in the distributed database.

A distributed database user created using ENABLE SHARD DDL, followed by the CREATE USER
command, has identical user account status across all of the shards. However, the user's life
cycle could move to a different status because of invalid login attempts against the catalog
database or the shards.

The user account status does not get synced across shards. An explicit account lock using
DDL such as ALTER USER may get replicated across shards, but any account status transition,
such as locked account or expired account (because password life time has elapsed) is not
propagated.

Chapter 11
Oracle Database Vault

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 7



12
Migrating to an Oracle Globally Distributed
Database

Migration from an existing non-distributed database to a distributed database consists of two
phases: schema migration and data migration. Oracle Globally Distributed Database provides
guidelines for migrating your existing database schema and data to a distributed database.

The following approaches are recommended for database migration.

• Migration with Oracle Data Pump

• Using External Tables to Load Data into a Distributed Database

• Oracle GoldenGate Microservices Migration

Migration with Oracle Data Pump
Using the examples and guidelines provided in the following topics, you can extract DDL
definitions and data from the source database with the Oracle Data Pump export utility, and
then use the Data Pump import utility against the database export files to populate the target
distributed database.

If you already created the schema for your distributed database, you can go directly to the data
migration topic.

Schema Migration
Transition from a non-distributed database to a distributed database requires some schema
changes. At a minimum, the keyword SHARDED or DUPLICATED should be added to CREATE
TABLE statements. In some cases, the partitioning of tables should be changed as well, or a
column with the shading key added.

To properly design the distributed database schema, you must analyze the schema and
workload of the non-distributed database and make the following decisions.

• Which tables should be sharded and which should be duplicated

• What are the parent-child relationships between the sharded tables in the table family

• Which sharding method is used on the sharded tables

• What to use as the sharding key

If these decisions are not straightforward, you can use the Sharding Advisor to help you to
make them. Sharding Advisor is a tool that you run against a non-sharded Oracle Database
that you are considering to migrate to an Oracle Globally Distributed Database environment.

To illustrate schema and data migration from a non-distributed database to distributed
database, we will use a sample data model shown in the following figure.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 24



Figure 12-1    Schema Migration Example Data Model

The data model consists of four tables, Customers, Orders, StockItems, and LineItems, and
the data model enforces the following primary key constraints.

• Customer.(CustNo)

• Orders.(PONo)

• StockItems.(StockNo)

• LineItems.(LineNo, PONo)

The data model defines the following referential integrity constraints.

• Customers.CustNo -> Orders.CustNo

• Orders.PONo -> LineItems.PONo

• StockItems.StockNo -> LineItems.StockNo

The following DDL statements create the example non-distributed database schema
definitions.

CREATE TABLE Customers (
 CustNo     NUMBER(3) NOT NULL,
 CusName    VARCHAR2(30) NOT NULL,
 Street     VARCHAR2(20) NOT NULL,
 City       VARCHAR2(20) NOT NULL,
 State      CHAR(2) NOT NULL,
 Zip        VARCHAR2(10) NOT NULL,
 Phone      VARCHAR2(12),
 PRIMARY KEY (CustNo)
);

CREATE TABLE Orders (
 PoNo       NUMBER(5),
 CustNo     NUMBER(3) REFERENCES Customers,
 OrderDate  DATE,
 ShipDate   DATE,

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 24



 ToStreet   VARCHAR2(20),
 ToCity     VARCHAR2(20),
 ToState    CHAR(2),
 ToZip      VARCHAR2(10),
 PRIMARY KEY (PoNo)
);

CREATE TABLE LineItems (
 LineNo      NUMBER(2),
 PoNo        NUMBER(5) REFERENCES Orders,
 StockNo     NUMBER(4) REFERENCES StockItems,
 Quantity    NUMBER(2),
 Discount    NUMBER(4,2),
 PRIMARY KEY (LineNo, PoNo)
);

CREATE TABLE StockItems (
 StockNo     NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price       NUMBER(6,2)
);

Migrating the Sample Schema
As an example, to migrate the sample schema described above to a distributed database, do
the following steps.

1. Get access to the source database export directory.

The database administrator has to authorize the database user for required access to the
database export directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’; 
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT EXP_FULL_DATABASE TO uname;

With a full database export, the database administrator must grant you the
EXP_FULL_DATABASE role, uname. No additional role is required for a table level export.

2. Extract the DDL definitions from the source database.

A convenient way to extract the DDL statements is to create a Data Pump extract file. You
can export only metadata, or only a part of the schema containing the set of tables you are
interested in migrating, as shown in this example.

expdp uname/pwd directory=EXPDIR dumpfile=sample_mdt.dmp 
logfile=sample_mdt.log INCLUDE=TABLE:\"IN \( \'CUSTOMERS\', \'ORDERS\', 
\'STOCKITEMS\', \'LINEITEMS\' \) \" CONTENT=METADATA_ONLY 
FLASHBACK_TIME=SYSTIMESTAMP

Then, use the Data Pump import utility against this database export file.

impdp uname/pwd@orignode directory=expdir dumpfile=sample_mdt.dmp 
sqlfile=sample_ddl.sql

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 24



In this example, the impdp command does not actually perform an import of the contents of
the dump file. Rather, the sqlfile parameter triggers the creation of a script named
sample_ddl.sql which contains all of the DDL from within the export dump file.

Trimming down the export in this way more efficiently captures a consistent image of the
database metadata without a possibly lengthy database data dump process. You still must
get the DDL statements in text format to perform the DDL modifications required by your
distributed database schema design.

3. Modify the extracted DDL statements for the distributed database.

For the sample schema shown above, the corresponding DDL statements for the
distributed database may look like the following. This is an example with system-managed
sharding.

CREATE SHARDED TABLE Customers (
 CustNo     NUMBER(3) NOT NULL,
 CusName    VARCHAR2(30) NOT NULL,
 Street     VARCHAR2(20) NOT NULL,
 City       VARCHAR2(20) NOT NULL,
 State      CHAR(2) NOT NULL,
 Zip        VARCHAR2(10) NOT NULL,
 Phone      VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders (
 PoNo       NUMBER(5) NOT NULL,
 CustNo     NUMBER(3) NOT NULL,
 OrderDate  DATE,
 ShipDate   DATE,
 ToStreet   VARCHAR2(20),
 ToCity     VARCHAR2(20),
 ToState    CHAR(2),
 ToZip      VARCHAR2(10),
 CONSTRAINT OrderPK PRIMARY KEY (CustNo, PoNo),
 CONSTRAINT CustFK Foreign Key (CustNo) REFERENCES Customers (CustNo)
)
PARTITION BY REFERENCE (CustFK)
;
CREATE SHARDED TABLE LineItems (
 LineNo      NUMBER(2) NOT NULL,
 PoNo        NUMBER(5) NOT NULL,
 CustNo      NUMBER(3) NOT NULL,
 StockNo     NUMBER(4) NOT NULL,
 Quantity    NUMBER(2),
 Discount    NUMBER(4,2),
 CONSTRAINT LinePK PRIMARY KEY (CustNo, LineNo, PoNo),
 CONSTRAINT LineFK FOREIGN KEY (CustNo, PoNo) REFERENCES Orders (CustNo, 
PoNo)
)
PARTITION BY REFERENCE (LineFK)
;

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 24



CREATE DUPLICATED TABLE StockItems (
 StockNo     NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price       NUMBER(6,2)
);

Here are some observations about the schema of the distributed database.

• Customers-Orders-LineItems form a table family of SHARDED tables, with Customers as
the root table and child tables are partitioned by reference. StockItems is a DUPLICATED
table.

• CustNo is chosen as the sharding key. Hence, this column must be included in all the
tables of the table family. Note that in the non-distributed database, the LineItems table
did not have a CustNo column, but it was included in the sharded version of the table.
The sharding key column also needs to be present in all primary and foreign key
constraints in sharded tables.

• StockItems is now a duplicated table. The primary copy of a duplicated table resides
on the shard catalog database. Thus, the foreign key constraint in the LineItems table
referencing StockItems table cannot be enforced and is removed.

4. Run the modified DDLs against the target database.

Connect to the shard catalog database and run

ALTER SESSION ENABLE SHARD DDL;

Then run the DDLs listed above to create the sharded and duplicated tables.

It is recommended that you validate the sharding configuration using the GDSCTL VALIDATE
command, before loading the data.

gdsctl> validate

If you see inconsistencies or errors, you must correct the problem using the GDSCTL
commands SHOW DDL and RECOVER. After successful validation, the distributed database is
ready for data loading.

Migrating Data to a Distributed Database
Transitioning from a non-distributed database to a distributed database involves moving the
data from non-sharded tables in the source database to sharded and duplicated tables in the
target database.

Moving data from non-sharded tables to duplicated tables is straightforward, but moving data
from non-sharded tables to sharded tables requires special attention.

Loading Data into Duplicated Tables

You can load data into a duplicated table using any existing database tools, such as Data
Pump, SQL Loader, or plain SQL. The data must be loaded to the shard catalog database.
Then it gets automatically replicated to all shards.

Because the contents of the duplicated table is fully replicated to the database shards using
materialized views, loading a duplicated table may take longer than loading the same data into
a regular table.

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 24



Figure 12-2    Loading Duplicated Tables

Source
Database

Data
Pump

0

1

1

Shard Catalog
(Coordinator)

Duplicated
TableSource

Table

Shard1

Duplicated
Table

Shard2

Duplicated
Table

ShardN

Duplicated
Table

...

Loading Data into Sharded Tables

When loading a sharded table, each database shard accommodates a distinct subset of the
data set, so the data in each table must be split (partitioned) across shards during the load.

You can use the Oracle Data Pump utility to load the data across database shards in subsets.
Data from the source database can be exported into a Data Pump dump file. Then Data Pump
import can be run on each shard concurrently by using the same dump file.

The dump file can be either placed on shared storage accessible to all shards, or copied to the
local storage of each shard. When importing to individual shards, Data Pump import ignores
the rows that do not belong to the current shard.

Figure 12-3    Loading Sharded Tables Directly to the Database Shards

Data Pump
Export

...Shard 1

Partition 1

Source
Database

Source
Table

Shard Catalog
(Coordinator)

Shard 2

Partition 2

Shard N

Partition N

Data
Pump 1

Data
Pump 2

Data
Pump N

Loading the data directly into the shards is much faster, because all shards are loaded in
parallel. It also provides linear scalability; the more shards there are in the distributed
database, the higher data ingestion rate is achieved.

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 24



Oracle Data Pump Support for Sharding Metadata

Oracle Data Pump supports migration to distributed databases with support for sharded DDL.
You can migrate distributed database objects to a target database based on source database
shard objects.

Oracle Data Pump provides support for sharding DDL in the API dbms_metadata.get_ddl(). A
transform parameter, INCLUDE_SHARDING_CLAUSES, facilitates this support. If this parameter is
set to true, and the underlying object contains it, then the get_ddl() API returns sharding
DDL for create table, sequence, tablespace and tablespace set. To prevent sharding
attributes from being set on import, the default value for INCLUDE_SHARDING_CLAUSES is set to
false.

See Oracle Database Utilities topics TRANSFORM and Placing Conditions on Transforms, and
Oracle Database PL/SQL Packages and Types Reference topic SET_TRANSFORM_PARAM
and SET_REMAP_PARAM Procedures for details, examples, and reference.

Loading the Sample Schema Data

As an example, the following steps illustrate how to move the sample schema data from a non-
distributed database to distributed database. The syntax examples are based on the sample
Customers-Orders-LineItems-StockItems schema introduced in the previous topics.

1. Export the data from your database tables.

expdp uname/pwd@non_dist_db directory=expdir dumpfile=original_tables.dmp 
logfile=original_tables.log SCHEMAS=UNAME INCLUDE=TABLE:\"IN \
( \'CUSTOMERS\', \'ORDERS\', \'STOCKITEMS\' ) \" 
FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY

If the source table (in the non-distributed database) is partitioned, then export to dump files
in non-partitioned format (data_options=group_partition_table_data).

Example, if the Orders table is a partitioned table on the source database, export it as
follows.

$ cat ordexp.par
directory=expdir
logfile=ordexp.log
dumpfile=ord_%U.dmp
tables=ORDERS
parallel=8
COMPRESSION=ALL
content=data_only
DATA_OPTIONS=GROUP_PARTITION_TABLE_DATA

$ expdp user/password parfile=ordexp.par

Because the SHARDED and DUPLICATED tables were already created in the target database,
you only export the table content (DATA_ONLY).

Data Pump export utility files are consistent on a per table basis. If you want all of the
tables in the export to be consistent at the same point in time, you must use the
FLASHBACK_SCN or FLASHBACK_TIME parameters as shown in the example above. Having a
consistent “as of” point in time database export files is recommended.

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 24



2. Make the export file (original_tables.dmp) accessible by the target database nodes
before you start importing the data to the distributed database.

You can either move this file (or multiple files in the case of parallel export) to the target
database system or share the file over the network.

3. Prepare all the target databases (shard catalog and shards) for import.

The database administrator has to authorize the database user for required access to the
database import directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’; 
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT IMP_FULL_DATABASE TO uname;

4. Load the DUPLICATED table (StockItems) using the shard catalog.

The following is an example of the import command.

impdp uname/pwd@catnode:1521/ctlg directory=expdir 
dumpfile=original_tables.dmp logfile=imp_dup.log tables=StockItems 
content=DATA_ONLY

5. Load the SHARDED tables on the shards directly.

The best way to load the exported SHARDED tables (Customers, Orders) is to run the Data
Pump on each shard (shrd1,2,…, N) directly. The following is an example of the import
command on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1 directory=expdir 
DUMPFILE=original_tables.dmp LOGFILE=imp_shd1.log TABLES=”Customers, 
Orders, LineItems” CONTENT=DATA_ONLY

Repeat this step on all of the other shards. Note that the same dump file
(original_tables.dmp) is used to load data for all of the shards. Data Pump import will
ignore rows that do not belong to the current shard. This operation can be run in parallel on
all shards.

To benefit from fast loading into very large partitioned tables with parallelism, the data
pump parameter DATA_OPTIONS should include the value _FORCE_PARALLEL_DML.

$ cat ordimp.par
directory=expdir
logfile=ordimp.log
dumpfile=ord_%U.dmp
tables=ORDERS
parallel=8
content=data_only
DATA_OPTIONS=_force_parallel_dml
$ impdp user/password parfile=ordimp.par

You can alternatively migrate data using an external table of type DATA PUMP, as shown in
the following example.

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 24



a. Export on the source database.

CREATE TABLE ORDERS_EXT 
 ORGANIZATION EXTERNAL 
    ( TYPE ORACLE_DATAPUMP 
      DEFAULT DIRECTORY "expdir" 
      ACCESS PARAMETERS ( DEBUG = (3 , 33489664)) 
      LOCATION ('ord1.dat',
                'ord2.dat',
                'ord3.dat',
                'ord4.dat') 
    ) 
PARALLEL 8 
REJECT LIMIT UNLIMITED
AS SELECT * FROM user.ORDERS;

b. Import into each target shard.

CREATE TABLE ORDERS_EXT 
 ORGANIZATION EXTERNAL 
    ( TYPE ORACLE_DATAPUMP 
      DEFAULT DIRECTORY "expdir" 
      ACCESS PARAMETERS ( DEBUG = (3 , 33489664)) 
      LOCATION ('ord1.dat',
                'ord2.dat',
                'ord3.dat',
                'ord4.dat') 
    ) 
PARALLEL 8 
REJECT LIMIT UNLIMITED
;
INSERT /*+ APPEND ENABLE_PARALLEL_DML PARALLEL(a,12) pq_distribute(a, 
random) */ INTO "user"."ORDERS" a
SELECT /*+ full(b) parallel(b,12) pq_distribute(b, random)*/ 
* 
FROM "ORDERS_EXT" 
WHERE <predicate*>;
Commit;

(*) The predicate in the WHERE clause depends on the sharding method. For user-
defined sharding by range, for example, it will be based on the range of CustNo on a
particular shard. For system-managed (consistent hash-based) sharding, see the use
case in Using External Tables to Load Data into a Distributed Database.

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 24



Note

You can make Data Pump run faster by using the PARALLEL parameter in the expdp
and impdp commands. For export, this parameter should be used in conjunction with
the %U wild card in the DUMPFILE parameter to allow multiple dump files be created, as
shown in this example.

expdp uname/pwd@orignode SCHEMAS=uname directory=expdir 
dumpfile=samp_%U.dmp logfile=samp.log FLASHBACK_TIME=SYSTIMESTAMP 
PARALLEL=4 

The above command uses four parallel workers and creates four dump files with
suffixes _01, _02, _03, and _04. The same wild card can be used during the import to
allow you to reference multiple input files.

Migrating Data Without a Sharding Key
As an example, the following steps illustrate how to migrate data to a sharded table from a
source table that does not contain the sharding key.

The examples of the Data Pump export and import commands in the previous topic do not
include the LineItems table. The reason is that this table in the non-distributed database does
not contain the sharding key column (CustNo). However, this column is required in the sharded
version of the table.

Because of the schema mismatch between the non-sharded and sharded versions of the table,
data migration for LineItems must be handled differently, as shown in the following steps.

1. On the source, non-distributed database, create a temporary view with the missing column
and SQL expression to generate value for this column.

CREATE OR REPLACE VIEW Lineitems_View AS
  SELECT l.*,
        (SELECT o.CustNo From Orders o WHERE l.PoNo=o.PoNo) CustNo
FROM LineItems l;

This creates a view LineItems_View with the column CustNo populated based on the
foreign key relationship with the Orders table.

2. Export the new view with VIEWS_AS_TABLES option of the data pump export utility.

expdp uname/pwd@non_dist_db directory=expdir 
DUMPFILE=original_tables_vat.dmp LOGFILE=original_tables_vat.log 
FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY 
TABLES=Uname.Customers,Uname.Orders,Uname.StockItems  
VIEWS_AS_TABLES=Uname.LineItems_

3. Import the data to sharded tables by directly running the data pump import on individual
shards (shrd1, shrd2,.., shrdN).

The following is an example of running the import on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1 directory=expdir 
DUMPFILE=original_tables_vat.dmp LOGFILE=imp_shd_vat1.log 

Chapter 12
Migration with Oracle Data Pump

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 24



CONTENT=DATA_ONLY TABLES=Uname.Customers,Uname.Orders,Uname.LineItems_View 
VIEWS_AS_TABLES=Uname.LineItems_View REMAP_TABLE=Lineitems_View:Lineitems

The examples uses the impdp tool VIEWS_AS_TABLES option to import the view
LineItems_View exported as a table during export operation. And the parameter
REMAP_TABLE is used to indicate that this data should actually be inserted in the original
table LineItems.

Using External Tables to Load Data into a Distributed Database
Using the examples and guidelines in the following topics, you can load data into a distributed
database by creating external tables and then loading the data from the external tables into
sharded or duplicated tables.

This data loading method is useful when the data to be loaded resides in external files, for
example in CSV files.

External tables can be defined using the ORGANIZATION EXTERNAL keyword in the CREATE
TABLE statement. This table must be local to each shard and not sharded or duplicated.
Loading the data into the sharded or duplicated table involves a simple INSERT … SELECT
statement from an external table, with a condition to filter only a subset of data for sharded
tables.

You may choose to keep the files on different hosts based on the access time and size of the
files. For example, copy the files for duplicated tables on the shard catalog host and keep files
for sharded tables on a network share that is accessible to all of the shards. It is also possible
to keep a copy of the sharded table files on each shard for faster loading.

For more information about external tables, see External Tables in Oracle AI Database Utilities.

Loading Data into Duplicated Tables
Data for the duplicated tables resides on the shard catalog, so loading the data into the
duplicated tables is also done on the shard catalog. The data is then automatically replicated to
shards after loading is complete.

Consider the following table defined as a duplicated table.

CREATE DUPLICATED TABLE StockItems (
 StockNo     NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price       NUMBER(6,2)
);

Loading data into the table StockItems involves the following steps.

1. Create a directory object pointing to the directory containing the data file and grant access
to the shard user on this directory.

CREATE OR REPLACE DIRECTORY shard_dir AS '/path/to/datafile';
GRANT ALL on DIRECTORY shard_dir TO uname;

2. Create an external table that is local to the shard catalog, with the same columns as the
duplicated table.

Chapter 12
Using External Tables to Load Data into a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 24



On the shard catalog, run:

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE StockItems_Ext (
 StockNo     NUMBER(4) NOT NULL,
 Description VARCHAR2(20),
 Price       NUMBER(6,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
    ACCESS PARAMETERS
        (FIELDS TERMINATED BY ’|’ (
          StockNo,
          Description,
          Price)
    )LOCATION (’StockItems.dat’)
 );

In this example, the data file for the duplicated table is named StockItems.dat and column
values are separated by the character ‘|’.

3. Insert data from the external table into the duplicated table.

INSERT INTO StockItems  (SELECT * FROM StockItems_Ext);

You can use also optimizer hints such as APPEND and PARALLEL (with degree of
parallelism) for faster loading depending on your system resources. For example:

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL */ INTO StockItems
  (SELECT * FROM StockItems_Ext);

or

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL(24) */ INTO StockItems
  (SELECT * FROM StockItems_Ext);

4. Commit the insert operation.

COMMIT;

5. Drop the external table.

DROP TABLE StockItems_Ext;

Repeat these steps for each duplicated table.

Chapter 12
Using External Tables to Load Data into a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 24



Loading Data into Sharded Tables
Loading data into a sharded table needs to be performed on individual shards because data for
a sharded table is partitioned across shards. The load can be done concurrently on all the
shards, even if the source data file is shared.

The process of loading is similar to the loading of duplicated tables, with an additional filter in
the INSERT … SELECT statement to filter out the rows that do not belong to the current shard.

As an example, consider the sharded table created as follows.

CREATE SHARDED TABLE Customers (
 CustNo     NUMBER(3) NOT NULL,
 CusName    VARCHAR2(30) NOT NULL,
 Street     VARCHAR2(20) NOT NULL,
 City       VARCHAR2(20) NOT NULL,
 State      CHAR(2) NOT NULL,
 Zip        VARCHAR2(10) NOT NULL,
 Phone      VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Loading data into this table involves doing the following steps on each shard.

1. Create the directory object in the same way as done for the duplicated tables.

2. Create an external table for Customers table.

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE Customers_Ext (
 CustNo     NUMBER(3) NOT NULL,
 CusName    VARCHAR2(30) NOT NULL,
 Street     VARCHAR2(20) NOT NULL,
 City       VARCHAR2(20) NOT NULL,
 State      CHAR(2) NOT NULL,
 Zip        VARCHAR2(10) NOT NULL,
 Phone      VARCHAR2(12)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
    ACCESS PARAMETERS
    (FIELDS TERMINATED BY ’|’ (
      CustNo, CusName, Street, City, State, Zip, Phone)
    )LOCATION (’Customers.dat’)
 );

3. Insert data from external table into sharded table.

ALTER SESSION ENABLE PARALLEL DML;

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers

Chapter 12
Using External Tables to Load Data into a Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 24



 (SELECT * FROM Customers_Ext WHERE
        SHARD_CHUNK_ID(’UNAME.CUSTOMERS’, CUSTNO) IS NOT NULL
  );

The operator SHARD_CHUNK_ID is used to filter the rows that belong to the current shard.
This operator returns a valid chunk number for the given sharding key value. The
parameters for this operator are the root table name (in this case UNAME.CUSTOMERS) and
values of the sharding key columns. When a value does not belong to the current shard,
this operator returns NULL.

Note that this operator is introduced in the current release (Oracle Database 21c). If this
operator is not available in your version, you must modify the insert statement as follows
for the case of system-managed sharding.

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers c
 (SELECT * FROM Customers_Ext WHERE
        EXISTS (SELECT chunk_number FROM gsmadmin_internal.chunks
            WHERE ora_hash(c.CustNo)>= low_key
              AND ora_hash c.CustNo)< high_key)
  );

This query user internal sharding metadata to decide the eligibility for the row to be
inserted.

4. Commit the insert operation.

COMMIT;

5. Drop external tables.

DROP TABLE Customers_Ext;

Repeat the above steps for each sharded table, starting with the root table and descending
down the table family hierarchy to maintain any foreign key constraints.

Oracle GoldenGate Microservices Migration
You can migrate data from a non-distributed database to an Oracle 23ai distributed database
using Oracle GoldenGate Microservices.

Prerequisites

• The tables to be migrated from the non-distributed database must be classified into
sharded tables and duplicated tables

• The sharding keys for all of the tables to be migrated to sharded tables must be identified.

• The target distributed database shard catalog must be created with the system-managed
data distribution method.

• Sharded tables and duplicated tables must be pre-created in the target distributed
database. This can be done by extracting DDLs from the source database and modifying
them to create corresponding sharded and duplicated table statements.

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 24



• Install Oracle GoldenGate Hub software using the OCI Marketplace image - Oracle
GoldenGate 23ai for Oracle Database (23.7.2.25.03). See Using Oracle GoldenGate on
Oracle Cloud Marketplace for instructions.

Migrating Data from a Non-Distributed Database to a Distributed Database

Example Environment

The examples in the steps below use the following topology.

System/Object Source Environment Target Environment

Database type Non-distributed database Oracle Globally Distributed
Database

Oracle Database release 23ai (Multitenant) 23ai (Multitenant)

Oracle GoldenGate release 23ai (Microservices Architecture) 23ai (Microservices Architecture)

CDB name nshdcdb sdbcdb

PDB names nshdpdb Shards:
sdbpdb1,sdbpdb2,sdbpdb3

Shard catalog: scpdb

Application schema app_schema app_schema

Sharded tables Customers, Orders, LineItems Customers, Orders, LineItems

Duplicated tables Products Products

High Level Steps

At a high level, migrating data from a non-distributed database to a distributed database using
Oracle GoldenGate Microservices is done in two phases:

1. Extraction on source database: All the tables from source database are extracted using
single Extract process on the source database.

2. Replication on target database: The data replication into the sharded tables is done on
the shard databases and the data replication into the duplicate table is done on the shard
catalog.

Configure Source and Target Databases

Configure source and target databases to enable GoldenGate replication.

Source Database:
 
CDB Level.
 
1. Enable FORCE LOGGING on database.
 
SQL> ALTER DATABASE FORCE LOGGING;
 
2. Enable minimum database-level supplemental logging.
 
SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
 
3. Enable GoldenGate Replication.
 
SQL> ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION = TRUE SCOPE=BOTH;

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 24

https://docs.oracle.com/en/middleware/goldengate/core/23/oggmp/oracle-goldengate-microservices-oracle-cloud-marketplace.html
https://docs.oracle.com/en/middleware/goldengate/core/23/oggmp/oracle-goldengate-microservices-oracle-cloud-marketplace.html


 
PDB level.
 
4. Create user and grant privileges on the source PDB.
 
SQL> alter session set container=GGPDB;
SQL> create user ggadmin identified by <password>;
SQL> GRANT CONNECT, RESOURCE to ggadmin;
SQL> alter user ggadmin QUOTA UNLIMITED on users;
SQL> GRANT OGG_CAPTURE to ggadmin;
 
 
Target Databases: All Shard Databases
 
CDB Level.
 
1. Enable GoldenGate replication.
 
ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION = TRUE SCOPE=BOTH;
 
PDB Level. 
 
2. Create users and privileges. (local user, NOT a sharded user)
 
create user ggadmin identified by <password>;
alter user ggadmin QUOTA UNLIMITED on users;
GRANT CONNECT, RESOURCE to ggadmin;
GRANT OGG_APPLY to ggadmin;
GRANT SELECT, INSERT, UPDATE, DELETE on APP_SCHEMA.CUSTOMERS to ggadmin;
GRANT SELECT, INSERT, UPDATE, DELETE on APP_SCHEMA.ORDERS to ggadmin;
GRANT SELECT, INSERT, UPDATE, DELETE on APP_SCHEMA.LINEITEMS to ggadmin;
 
 
Catalog Database:
 
CDB Level.
 
1. Enable GoldenGate replication.
 
ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION = TRUE SCOPE=BOTH;
 
PDB Level. 
 
2. create users and privileges. (local user, NOT a sharded user)
 
create user ggadmin identified by <password>;
alter user ggadmin QUOTA UNLIMITED on users;
GRANT CONNECT, RESOURCE to ggadmin;
GRANT OGG_APPLY to ggadmin;
GRANT SELECT, INSERT, UPDATE, DELETE on APP_SCHEMA.PRODUCTS to ggadmin;

Add Credentials

Log in to OCI GoldenGate instance (hub) and create source and target user credentials.

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 24



The oggadmin password can be found in the GoldenGate Hub node (installed using
Marketplace) location, /home/opc/ogg-credentials.json.

export PATH=$PATH:/u01/app/ogg/bin/
 
[opc@ogg23aiora ~]$ adminclient
 
OGG (not connected) 1>
 
OGG (not connected) 6> connect http://localhost:9000 as oggadmin password 
<password>
Using default deployment 'GG23Test'
 
--Add credentials for the source database:
 
ALTER CREDENTIALSTORE ADD USER
 ggadmin@gg23ai.dbsubnet.shardvcn.oraclevcn.com:1521/
ggpdb.dbsubnet.shardvcn.oraclevcn.com
 ALIAS ggadmin_src DOMAIN OracleGoldenGate PASSWORD <password>
 
--Add credentials for the downstream database:
 
ALTER CREDENTIALSTORE ADD USER
 ggadmin@devshdphx10.dbsubnet.shardvcn.oraclevcn.com:1521/
shdpdb.dbsubnet.shardvcn.oraclevcn.com
 ALIAS ggadmin_shd1 DOMAIN OracleGoldenGate PASSWORD <password>
ALTER CREDENTIALSTORE ADD USER
 ggadmin@devshdphx11.dbsubnet.shardvcn.oraclevcn.com:1521/
shdpdb.dbsubnet.shardvcn.oraclevcn.com
 ALIAS ggadmin_shd2 DOMAIN OracleGoldenGate PASSWORD <password>
ALTER CREDENTIALSTORE ADD USER
 ggadmin@devshdphx12.dbsubnet.shardvcn.oraclevcn.com:1521/
shdpdb.dbsubnet.shardvcn.oraclevcn.com
 ALIAS ggadmin_shd3 DOMAIN OracleGoldenGate PASSWORD <password>
ALTER CREDENTIALSTORE ADD USER
 ggadmin@devcatphx10.dbsubnet.shardvcn.oraclevcn.com:1521/
catpdb.dbsubnet.shardvcn.oraclevcn.com ALIAS
 ggadmin_cat DOMAIN OracleGoldenGate PASSWORD <password>

Source (Non-Distributed) Database Configuration

1. Enable SCHEMATRANDATA and create an Extract on source database to capture transactions
from source tables, and start it.

$ adminclient

OGG (not connected) 6> connect http://localhost:9000 as oggadmin password 
<password>
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 > DBLOGIN USERIDALIAS ggadmin_src

--Enable SCHEMATRANDATA:
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 3> add schematrandata app_schema
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 24



 7> info schematrandata app_schema
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 6> info trandata app_schema.*

--Add Extract
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 > ADD EXTRACT extnshd INTEGRATED TRANLOG BEGIN NOW
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 > REGISTER EXTRACT extnshd DATABASE
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 > ADD EXTTRAIL extnshd/et EXTRACT extnshd 
  
Add the following parameters in extract parameter file
 
OGG (http://localhost:9000 GG23Test) 3> edit params extnshd
EXTRACT EXTNSHD
USERIDALIAS ggadmin_src DOMAIN OracleGoldenGate
EXTTRAIL extnshd/et
Table app_schema.customers;
Table app_schema.orders;
Table app_schema.lineitems;
Table app_schema.products;
 
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 > START EXTRACT extnshd

2. Capture data from the source database for initial load using expdp.

Note

The flashback_scn option is not required because SCHEMATRANDATA (enabled on
the source) and DBOPTIONS ENABLE_INSTANTIATION_FILTERING parameters on the
Replicats take care of SCNs.

$ expdp app_schema/<password>@NSHDPDB directory=DATA_PUMP_DIR
 dumpfile=app_schema_exp.dmp logfile=app_schema_exp.log

Target (Distributed) Database Configuration

1. Perform initial load on the target distributed databases and catalog using impdp.

Import into shards:
$ impdp app_schema/<password>@SDBPDB1 directory=DATA_PUMP_DIR 
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=CUSTOMERS,ORDERS,LINEITEMS, 
CONTENT=DATA_ONLY
$ impdp app_schema/xxxxx@SDBPDB2 directory=DATA_PUMP_DIR 
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=CUSTOMERS,ORDERS,LINEITEMS, 
CONTENT=DATA_ONLY
$ impdp app_schema/xxxxx@SDBPDB3 directory=DATA_PUMP_DIR 
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=CUSTOMERS,ORDERS,LINEITEMS, 
CONTENT=DATA_ONLY

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 24



 
Import into shard catalog:
$ impdp app_schema/<password>@SCPDB directory=DATA_PUMP_DIR 
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=PRODUCTS CONTENT=DATA_ONLY

2. Create 3 Replicats (same as the number of shards) on target databases.

Replicat for sharded tables on Shard 1
======================================
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 34> DBLOGIN USERIDALIAS ggadmin_shd1

OGG (http://localhost:9000 GG23Test as ggadmin_shd1@SHDCDB)
 42> ADD CHECKPOINTTABLE ggadmin.GGCHKPT

OGG (http://localhost:9000 GG23Test as ggadmin_shd2@SHDCDB)
 51> ADD REPLICAT REP1,PARALLEL INTEGRATED, EXTTRAIL extnshd/et
 CHECKPOINTTABLE ggadmin.GGCHKPT

Add the following parameters in replicat for shard1

  
OGG (http://localhost:9000 GG23Test) 4> view params REP1
  
REPLICAT rep1
USERIDALIAS ggadmin_shd1 DOMAIN OracleGoldenGate
DBOPTIONS ENABLE_INSTANTIATION_FILTERING
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
MAP app_schema.customers, TARGET app_schema.customers;
MAP APP_SCHEMA.orders, target APP_SCHEMA.orders;
MAP APP_SCHEMA.lineitems, target APP_SCHEMA.lineitems;
 

Replicat for sharded tables on Shard 2
======================================
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 34> DBLOGIN USERIDALIAS ggadmin_shd2

OGG (http://localhost:9000 GG23Test as ggadmin_shd1@SHDCDB)
 42> ADD CHECKPOINTTABLE ggadmin.GGCHKPT

OGG (http://localhost:9000 GG23Test as ggadmin_shd2@SHDCDB)
 51> ADD REPLICAT REP2,PARALLEL INTEGRATED, EXTTRAIL extnshd/et
 CHECKPOINTTABLE ggadmin.GGCHKPT

Add the following parameters in replicat for shard2

  
OGG (http://localhost:9000 GG23Test) 4> view params REP2
  
REPLICAT rep2
USERIDALIAS ggadmin_shd2 DOMAIN OracleGoldenGate
DBOPTIONS ENABLE_INSTANTIATION_FILTERING

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 24



MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
MAP app_schema.customers, TARGET app_schema.customers;
MAP APP_SCHEMA.orders, target APP_SCHEMA.orders;
MAP APP_SCHEMA.lineitems, target APP_SCHEMA.lineitems;

Replicat for sharded tables on Shard 3
======================================
OGG (http://localhost:9000 GG23Test as ggadmin_src@GGDB23)
 34> DBLOGIN USERIDALIAS ggadmin_shd3

OGG (http://localhost:9000 GG23Test as ggadmin_shd1@SHDCDB)
 42> ADD CHECKPOINTTABLE ggadmin.GGCHKPT

OGG (http://localhost:9000 GG23Test as ggadmin_shd2@SHDCDB)
 51>  ADD REPLICAT REP3,PARALLEL INTEGRATED, EXTTRAIL extnshd/et
 CHECKPOINTTABLE ggadmin.GGCHKPT

Add the following parameters in replicat for shard3

  
OGG (http://localhost:9000 GG23Test) 4> view params REP3
  
REPLICAT rep3
USERIDALIAS ggadmin_shd3 DOMAIN OracleGoldenGate
DBOPTIONS ENABLE_INSTANTIATION_FILTERING
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
MAP app_schema.customers, TARGET app_schema.customers;
MAP APP_SCHEMA.orders, target APP_SCHEMA.orders;
MAP APP_SCHEMA.lineitems, target APP_SCHEMA.lineitems;

#### NOTE ####

You can remove DBOPTIONS ENABLE_INSTANTIATION_FILTERING parameter
 when Replicat has processed all transactions beyond the instantiation SCN.

 
Replicat for duplicate tables on Catalog
========================================
 
OGG (http://localhost:9000 GG23Test as ggadmin_shd3@SHDCDB)
 67> DBLOGIN USERIDALIAS ggadmin_cat

OGG (http://localhost:9000 GG23Test as ggadmin_cat@CATCDB)
 68> ADD CHECKPOINTTABLE ggadmin.GGCHKPT

OGG (http://localhost:9000 GG23Test as ggadmin_cat@CATCDB)
 69> ADD REPLICAT REPC, PARALLEL INTEGRATED, EXTTRAIL extnshd/et
 CHECKPOINTTABLE ggadmin.GGCHKPT

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 24



Add the following parameters in replicat for catalog 

OGG (http://localhost:9000 GG23Test as ggadmin_cat@CATCDB) > edit params 
repcat
  
REPLICAT repc
USERIDALIAS ggadmin_cat DOMAIN OracleGoldenGate
DBOPTIONS ENABLE_INSTANTIATION_FILTERING
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
MAP APP_SCHEMA.products, target APP_SCHEMA.products;

3. Start Replicats on the target shards using AFTERCSN.

OGG (http://localhost:9000 GG23Test as ggadmin_shd3@SHDCDB)
 64> start replicat rep1
OGG (http://localhost:9000 GG23Test as ggadmin_shd3@SHDCDB) 64> start 
replicat rep2
OGG (http://localhost:9000 GG23Test as ggadmin_shd3@SHDCDB) 64> start 
replicat rep3
OGG (http://localhost:9000 GG23Test as ggadmin_shd3@SHDCDB) 64> start 
replicat repc  

OGG (http://localhost:9000 GG23Test as ggadmin_cat@CATCDB) 17> info all
Program     Status      Group       Type            Lag at Chkpt    Time 
Since Chkpt

ADMINSRVR   RUNNING   
DISTSRVR    RUNNING   
PMSRVR      RUNNING   
RECVSRVR    RUNNING   
EXTRACT     RUNNING     EXTNSHD     INTEGRATED      00:00:00        
00:00:08    
REPLICAT    RUNNING     REP1        PARALLEL INT    00:00:00        
00:00:09    
REPLICAT    RUNNING     REP2        PARALLEL INT    00:00:00        
00:00:00    
REPLICAT    RUNNING     REP3        PARALLEL INT    00:00:00        
00:00:03    
REPLICAT    RUNNING     REPC        PARALLEL INT    00:00:00        
00:00:00 

Validate

Validate that rows are replicated from the non-sharded tables to the shards. For example, if
you have 9000 rows in the source table, and three target shards, about 3000 rows should be
distributed to each shard.

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 24



Creating a Testing Environment

How to create a source non distributed database environment for testing

Login to Database
 
Create tablespace
SQL> create tablespace customers_tsp datafile size 100m autoextend on;
 
Create app_schema
SQL> create user app_schema identified by <password>;
SQL> grant connect, resource, alter session to app_schema;
SQL> grant create view, create database link, alter database link, create 
materialized view, create tablespace to app_schema;
SQL> grant unlimited tablespace to app_schema;
 
Create tables
SQL> CREATE TABLE Customers
(
  CustId      VARCHAR2(60) NOT NULL,
  FirstName   VARCHAR2(60),
  LastName    VARCHAR2(60),
  Class       VARCHAR2(10),
  Geo         VARCHAR2(8),
  CustProfile VARCHAR2(4000),
 CONSTRAINT pk1_customers PRIMARY KEY (CustId)
) TABLESPACE customers_tsp;
 
 
SQL> CREATE TABLE Orders
(
  OrderId     INTEGER NOT NULL,
  CustId      VARCHAR2(60) NOT NULL,
  OrderDate   TIMESTAMP NOT NULL,
  SumTotal    NUMBER(19,4),
  Status      CHAR(4),
  constraint  pk_orders primary key (CustId, OrderId)
 ) TABLESPACE customers_tsp;
 
 
SQL> CREATE TABLE LineItems
(
  OrderId     INTEGER NOT NULL,
  CustId      VARCHAR2(60) NOT NULL,
  ProductId   INTEGER NOT NULL,
  Price       NUMBER(19,4),
  Qty         NUMBER,
  constraint  pk_items primary key (CustId, OrderId, ProductId)
) TABLESPACE customers_tsp;
 

SQL> CREATE TABLE "PRODUCTS"
   (    "PRODUCTID" NUMBER(*,0) GENERATED BY DEFAULT AS IDENTITY MINVALUE 1 

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 24



MAXVALUE 9999999999999999999999999999 INCREMENT BY 1 START WITH 1 CACHE 20 
NOORDER  NOCYCLE  NOKEEP  NOSCALE  NOT NULL ENABLE,
    "NAME" VARCHAR2(128),
    "DESCRURI" VARCHAR2(128),
    "LASTPRICE" NUMBER(19,4),
     PRIMARY KEY ("PRODUCTID")
)  TABLESPACE USERS;

How to create a target distributed database environment for testing

create tablespace set tsp_set_1 using template (datafile size 100m autoextend 
on next 10M maxsize unlimited extent
management local segment space management auto) in shardspace shardspaceora;
 
create tablespace products_tsp datafile size 100m autoextend on;
 
create user app_schema identified by xxxxxx;
grant connect, resource, alter session to app_schema;
 
grant create view, create database link, alter database link, create 
materialized view, create tablespace to app_schema;
 
grant unlimited tablespace to app_schema;
 
Tables creation:
 
sqlplus app_schema/<password>@SCPDB
 
alter session enable shard ddl;
 
CREATE SHARDED TABLE Customers
(
  CustId      VARCHAR2(60) NOT NULL,
  FirstName   VARCHAR2(60),
  LastName    VARCHAR2(60),
  Class       VARCHAR2(10),
  Geo         VARCHAR2(8),
  CustProfile VARCHAR2(4000),
  CONSTRAINT pk1_customers PRIMARY KEY (CustId)
) TABLESPACE SET tsp_set_1
PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;
 
CREATE SHARDED TABLE Orders
(
  OrderId     INTEGER NOT NULL,
  CustId      VARCHAR2(60) NOT NULL,
  OrderDate   TIMESTAMP NOT NULL,
  SumTotal    NUMBER(19,4),
  Status      CHAR(4),
  constraint  pk_orders primary key (CustId, OrderId),
  constraint  fk_orders_parent foreign key (CustId) 
    references Customers on delete cascade
) partition by reference (fk_orders_parent);
 
 

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 24



CREATE SHARDED TABLE LineItems
(
  OrderId     INTEGER NOT NULL,
  CustId      VARCHAR2(60) NOT NULL,
  ProductId   INTEGER NOT NULL,
  Price       NUMBER(19,4),
  Qty         NUMBER,
  constraint  pk_items primary key (CustId, OrderId, ProductId),
  constraint  fk_items_parent foreign key (CustId, OrderId)
    references Orders on delete cascade
) partition by reference (fk_items_parent);
 
CREATE DUPLICATED TABLE Products
(
  ProductId  INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
  Name       VARCHAR2(128),
  DescrUri   VARCHAR2(128),
  LastPrice  NUMBER(19,4)
) TABLESPACE PRODUCTS_TSP;

Chapter 12
Oracle GoldenGate Microservices Migration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 24



13
Using Oracle Globally Distributed Database in
Oracle Cloud Infrastructure

Oracle Globally Distributed Database provides native Oracle Cloud Infrastructure (OCI)
services for managed deployments, and supplies tooling to automate and simplify a manual
distributed database deployment.

Topics:

• Oracle Cloud Infrastructure Services

• Deploy an Oracle Globally Distributed Database on Kubernetes

• Deploy an Oracle Globally Distributed Database with Terraform

• Deploy an Oracle Globally Distributed Database with Docker

Oracle Cloud Infrastructure Services
Oracle's Globally Distributed Database suite of fully managed Oracle Cloud Infrastructure
services provide a single user interface to deploy and manage a data set across many
database instances (shards) in a globally distributed, linearly scalable, multimodel database.

Oracle Globally Distributed Autonomous Database brings the power of distributed
(sharded) databases to Oracle Autonomous Database on Dedicated Exadata Infrastructure.
The service is built on top of Oracle's autonomous technology, which means that it is self-
driving, self-securing, and self-healing. This allows automation of many of the routine tasks
associated with managing a database, such as patching, tuning, and backup and recovery,
which can help reduce the risk of human error and improve system uptime. See https://
docs.oracle.com/en/cloud/paas/globally-distributed-autonomous-database/

Oracle Globally Distributed Exadata Database on Exascale Infrastructure (Distributed
ExaDB-XS) brings the power of distributed databases to Oracle Exadata Database on
Exascale Infrastructure. The service is built on top of Oracle's Exascale software services
technology, which further empowers Exadata to meet the most demanding corporate and cloud
computing requirements by decoupling Oracle Database and GI clusters from the underlying
Exadata storage servers. See https://docs.oracle.com/en/cloud/paas/globally-distributed-
exascale-database/

Deploy an Oracle Globally Distributed Database on Kubernetes
Automate the provisioning of a distributed database on Oracle Kubernetes Engine (OKE) using
Oracle Cloud Infrastructure Ansible Modules and Helm/Chart.

To deploy Oracle Globally Distributed Database on OKE, Oracle Cloud Infrastructure Ansible
Modules create compute resources, configure the network, and create block storage volumes
by using YAML files passed to Ansible playbooks.

Find the instructions and downloads for distributed database deployment on Kubernetes at 
https://github.com/oracle/db-sharding/tree/master/oke-based-sharding-deployment.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 2

https://docs.oracle.com/en/cloud/paas/globally-distributed-autonomous-database/
https://docs.oracle.com/en/cloud/paas/globally-distributed-autonomous-database/
https://docs.oracle.com/en/cloud/paas/globally-distributed-exascale-database/
https://docs.oracle.com/en/cloud/paas/globally-distributed-exascale-database/
https://github.com/oracle/db-sharding/tree/master/oke-based-sharding-deployment


Deploy an Oracle Globally Distributed Database with Terraform
Tooling for Oracle Globally Distributed Database includes Terraform modules and scripts to
automate your distributed database deployment on both Oracle Cloud Infrastructure and on-
premises systems.

The Terraform modules and scripts create and configure a complete distributed database
infrastructure, including shard directors, shard catalogs, and shards. The scripts also provide
the option to deploy standby shards and shard catalogs using Oracle Data Guard for
replication to provide high availability and disaster recovery of the partitioned data.

As part of the set-up process, you install the Terraform binary, download the Oracle Globally
Distributed Database shard director installation package, and for on-premises deployments,
you download the Oracle Database installation files.

Find the instructions and downloads for Terraform-based distributed database deployment for
your target systems at the following locations.

• Oracle Cloud Infrastructure https://github.com/oracle/db-sharding/tree/master/
deployment-with-terraform/sdb-terraform-oci.

• On-Premises https://github.com/oracle/db-sharding/tree/master/deployment-with-
terraform/sdb-terraform-onprem

Deploy an Oracle Globally Distributed Database with Docker
Oracle Globally Distributed Database provides sample Docker build files to facilitate distributed
database installation, configuration, and environment setup for DevOps users.

In this process you install and configure the Docker engine, create global service manager
(shard director) and Oracle Database images, create a network bridge, create containers for
the Oracle Globally Distributed Database objects and shard director, and deploy the
containers.

Find the instructions and downloads for distributed database deployment with Docker at https://
github.com/oracle/db-sharding/tree/master/container-based-sharding-deployment/
containerfiles.

Chapter 13
Deploy an Oracle Globally Distributed Database with Terraform

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 2

https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem
https://github.com/oracle/db-sharding/tree/master/container-based-sharding-deployment/containerfiles
https://github.com/oracle/db-sharding/tree/master/container-based-sharding-deployment/containerfiles
https://github.com/oracle/db-sharding/tree/master/container-based-sharding-deployment/containerfiles


14
Using the Sharding Advisor

The Sharding Advisor for Oracle Globally Distributed Database simplifies the migration of your
existing, non-distributed Oracle database to a distributed database, by analyzing your workload
and database schema, and recommending the most effective distributed database
configurations.

Topics:

• About Sharding Advisor

• Run Sharding Advisor

• Run Sharding Advisor on a Non-Production System

• Review Sharding Advisor Output

• Choose a Sharding Advisor Recommended Configuration

• Sharding Advisor Usage and Options

• Sharding Advisor Output Tables

• Sharding Advisor Output Review SQL Examples

• Sharding Advisor Security

About Sharding Advisor
The Sharding Advisor is a client-side, command-line tool that you run against any non-
distributed, production, 10g or later release, Oracle Database that you are considering
migrating to an Oracle Globally Distributed Database.

The Sharding Advisor analysis provides you with the information you need to design a schema
that maximizes performance while reducing duplicated data in the new distributed database
environment.

The following are benefits of using Sharding Advisor to aid you with schema design.

• Maximize query workload performance

• Minimize multi-shard operations requiring cross-shard joins

• Maximize parallelism for complex queries (spread query processing across all shards)

• Minimize the amount of duplicated data on each shard

The Sharding Advisor utility, GWSADV, is installed with Oracle Database as a standalone tool,
and connects to your database using authenticated OCI connections.

To get an understanding of your schema and other preferences, Sharding Advisor asks you
questions as part of an interactive dialog.

Sharding Advisor then connects to the existing non-distributed database, also called the
source, analyzes its schema and query workload, and produces a set of alternative designs
for the distributed database, including recommendations for an effective sharding key, which
tables to shard, and which tables to duplicate on all shards.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 11



Sharding configurations are ranked in terms of query performance, with the ranking favoring
configurations that maximize single and multi-shard queries that do not require cross-shard
joins, while minimizing multi-shard queries that require cross-shard joins.

You choose the design that best fits your requirements. The designs are ranked by the advisor,
so if you don't have specific preferences you can choose the highest ranked design by default.

Note

There are restrictions to Sharding Advisor capabilities:
The source database must be Oracle Database 10g or later release.

If you cannot run the Sharding Advisor against the live production database, you can
run the Sharding Advisor on a different server that has the schema and workload
imported from the production database.

Sharding Advisor discovers the table families based on primary key-foreign key
relationships. If the schema does not have any primary key-foreign key constraints,
sharding by PARENT clause is recommended.

Currently, Sharding Advisor recommends only single-table family, system-managed
sharding (sharding by reference) configurations if the source database has foreign key
constraints; otherwise, Sharding Advisor recommends sharding using the PARENT
clause.

Run Sharding Advisor
Run the Sharding Advisor command-line tool against your existing, non-distributed Oracle
Database to obtain recommended distributed database configurations.

The user running Sharding Advisor requires the following privileges.

SQL> ALTER SYSTEM SET statistics_level=all;
SQL> grant create session to sharding_advisor_user;
SQL> grant alter session to sharding_advisor_user;
SQL> grant select on v_$sql_plan to sharding_advisor_user;
SQL> grant select on v_$sql_plan_statistics_all to sharding_advisor_user;
SQL> grant select on gv_$sql_plan to sharding_advisor_user;
SQL> grant select on gv_$sql_plan_statistics_all to sharding_advisor_user;
SQL> grant select on DBA_HIST_SQLSTAT to sharding_advisor_user;
SQL> grant select on dba_hist_sql_plan to sharding_advisor_user;
SQL> grant select on dba_hist_snapshot to sharding_advisor_user;

The Sharding Advisor command-line utility, GWSADV, runs from $ORACLE_HOME/bin.

Run the Sharding Advisor from the command line, as shown here.

$ gwsadv -u username -p password -c –w sch=\(schema1,schema2\)

Note

The parenthesis in this command is escaped on Linux systems.

Chapter 14
Run Sharding Advisor

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 11



Where -u and -p are the user name and password of the user that runs the Sharding Advisor.

Use the capture workload parameter, -c, the first time you run Sharding Advisor against an
existing query workload, to capture the predicate information from the source's
GV$SQL_PLAN_STATISTICS_ALL view. You don't need to use -c in subsequent queries on the
same workload.

The required -w flag indicates that Sharding Advisor uses the query workload for sharding
configuration generation and ranking.

In this case, the sch parameter specifies a list of schemas to run Sharding Advisor against.
There are several other options you can use with Sharding Advisor, detailed in Sharding
Advisor Usage and Options.

Run Sharding Advisor on a Non-Production System
To minimize the impact on a live production system, you can run the Sharding Advisor on a
copy of the database schema and workload, located on a different server than the production
system.

To get the same results as if it were the live production system, the production database
schema and workload can be exported using the Oracle Data Pump utilities and copied to a
different server. Then you can run Sharding Advisor on the imported schema.

You only export the database schema and system tables. There is no need to export the actual
data.

The following procedure uses the HR schema as an example.

Do the following steps on the source (production) database server.

1. Export the schema using Data Pump Export.

> expdp system/password SCHEMAS=HR DIRECTORY=HR_DIR CONTENT=METADATA_ONLY
 DUMPFILE=hr_metadata.dmp LOGFILE=hr_exp.lst

2. Export the Automatic Work Repository (AWR) snapshot.

SQL> @$ORACLE_HOME/rdbms/admin/awrextr.sql

Do the following steps on the target database server.

3. Copy the dump files from the source to the target.

For example, copy the dump files to /scratch/dump.

4. Create a user that can run Sharding Advisor on the schema.

SQL> CREATE USER hr IDENTIFIED BY password;

5. Create (or replace) the dump file directory variable that Data Pump Import can reference.

SQL> CREATE DIRECTORY HR_DIR AS '/scratch/dump'

SQL> CREATE OR REPLACE DIRECTORY  HR_DIR AS '/scratch/dump'

Chapter 14
Run Sharding Advisor on a Non-Production System

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 11



6. Import the schema.

> impdp system/password DIRECTORY=HR_DIR DUMPFILE=hr.dmp LOGFILE=imp.lst 
SCHEMAS=HR

7. Load the AWR data.

SQL> @$ORACLE_HOME/rdbms/admin/awrload.sql

8. Now you can run Sharding Advisor on the target, non-production, copy of the database
with the user you created.

> gwsadv –u hr –p password –c -awr_snap_begin begin_timestamp –
awr_snap_end end_timestamp -w

Review Sharding Advisor Output
Sharding Advisor discovers the table families for each potential sharding column that it extracts
from the query workload, and ranks the table families based on query classification rules and a
ranking algorithm.

To review the sharding configurations and related information that is owned by the user running
Sharding Advisor, you can query the following output database tables, which are stored in the
same schema as your source database.

• SHARDINGADVISOR_CONFIGURATIONS has one row for each table in a ranked sharded
configuration, and provides details for each table, such as whether to shard or duplicate it,
and if sharded, its level in a table family hierarchy, its parent table, root table sharding key,
foreign key reference constraints, and the estimated size per shard.

• SHARDINGADVISOR_CONFIGDETAILS has one row for each ranked sharding configuration, and
provides details for each ranked sharding configuration, such as the number and collective
size, per shard, of the sharded tables, and the number and collective size of the duplicated
tables. It also provides the number of single shard and multi-shard queries to expect in
production, as well as the number of multi-shard queries requiring cross-shard joins, based
on your source database's current workload, and an estimated cost.

• SHARDINGADVISOR_QUERYTYPES, for each query in the workload, lists the query type for each
sharding configuration. Note that the same query can be of a different query type
depending on the sharding configuration.

Because the Sharding Advisor output is contained in regular database tables, you can run
many kinds of SQL queries against them to look at the output from different perspectives.

For example, to display the sharding configurations in ranking order, run

SELECT rank, tableName as tname, tabletype as type,
           tablelevel as tlevel, parent, shardby as shardBy,
           shardingorreferencecols as cols, unenforceableconstraints,
           sizeoftable  
FROM SHARDINGADVISOR_CONFIGURATIONS
ORDER BY rank, tlevel, tname, parent;

For details about the Sharding Advisor output tables and more example queries see Sharding
Advisor Output Tables and Sharding Advisor Output Review SQL Examples

Chapter 14
Review Sharding Advisor Output

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 11



Choose a Sharding Advisor Recommended Configuration
There are some aspects of database sharding to take into consideration when deciding which
configuration to choose for your distributed database.

Increasing the number of shards will result in higher availability and scalability of the distributed
database.

Minimizing duplicated data can conflict with your desire to minimize multi-shard queries that
require joins across multiple shards. Because joins in a distributed database are usually
performed on related data, storing related data in the same shard can dramatically speed up
processing of such joins.

The overall cost, in terms of query workload, of the recommended sharding configurations is
based on the number of each query type (single shard, multi-shard, and multi-shard with cross-
shard joins) in the workload, where multi-shard queries with cross-shard joins have the highest
cost, and single shard queries have the lowest cost. The cost information is in the COST column
of the Sharding Advisor SHARDINGADVISOR_CONFIGDETAILS output table.

Sharding Advisor Usage and Options
Sharding Advisor is a client command-line tool that connects to an existing non-distributed
database and provides distributed database configuration recommendations.

Syntax

gwsadv
 [-n nodeName[:portnum]]
 [-s serviceName]
  -u username
  -p password
 [-c]
 [-awr_snap_begin timestamp] 
 [-awr_snap_end timestamp]
  –w
 [sch=(schema1, schema2, …)]
 [-tab importantTabsFile]
 [-pr numpreds:n]
 [-t trace_file]

Options

Note that each option must be prefixed with a minus sign (-) except for the sch argument.

Option Description Required (Y/N)

-awr_snap_begin timestamp Specify the beginning timestamp,
in the format 'YYYY-MM-DD
HH24:MI:SS', to specify the AWR
snapshots to capture the
workload from.

N

Chapter 14
Choose a Sharding Advisor Recommended Configuration

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 11



Option Description Required (Y/N)

-awr_snap_end timestamp Specify the end timestamp, in the
format 'YYYY-MM-DD
HH24:MI:SS', to specify the AWR
snapshots to capture the
workload from.

N

-c Capture a new or changed
workload.

Use -pr to limitthe number of
predicates to be captured

Required on first run of Sharding
Advisor on a new or changed
workload.

Not required on subsequent runs
on the same workload.

By default, the workload is
captured from the
V$SQL_PLAN_STATISTICS_ALL
table.

Alternatively, the workload can be
captured from Automatic
Workload Repository (AWR)
snapshots by using the -
awr_snap_begin and -
awr_snap_end options with the -
c option to specify the beginning
and ending time stamps of the
AWR snapshots.

N

-n nodeName[:portnum] Node name and port number, if
connecting to a database on
another host

N

-p password Oracle password Y

-pr numpreds:n Limits the number of predicates
to be captured when using -c to
capture a new or changed
workload.

N

-s serviceName Service name, if connecting to a
database on another host

N

sch The sch option specifies the list
of schemas to run Sharding
Advisor against, if you want to run
as a different user.

N

-t trace_file Enables tracing of all activities
performed by sharding advisor.
Specify an output file name.

N

-tab importantTabsFile Name of file that consists of table
names, one per line, in the format
schemaname.tablename, to
restrict the number of tables that
the Sharding Advisor needs to
analyze.

N

-u username Oracle user name Y

Chapter 14
Sharding Advisor Usage and Options

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 11



Option Description Required (Y/N)

-w Directs Sharding Advisor to use
the query workload for sharding
configuration generation and
ranking.

Y

Usage Notes

The normal usage of the sharding advisor is to not specify the –pr option. The query workload
capture should be faster now even without the –pr option. If however, the you want to speed it
up further, the –pr option can be used. If it is used, it has to be used in conjunction with the –c
option. If unspecified, the number of predicates to be captured is not limited.

For procedures describing how to run the Sharding Advisor with example commands see Run
Sharding Advisor and Run Sharding Advisor on a Non-Production System.

Sharding Advisor Output Tables
To review the sharding configurations and related information, you can query the following
output database tables, which are stored in the same schema as your source database.

SHARDINGADVISOR_CONFIGURATIONS Table
Each row of the SHARDINGADVISOR_CONFIGURATIONS table represents a table in a
ranked sharded configuration, and provides information about whether to shard or duplicate it,
and if sharded, its level in a table family hierarchy, its parent table, root table sharding key,
foreign key reference constraints, and table size per shard.

SHARDINGADVISOR_CONFIGURATIONS Schema

Column Description

RANK The rank of the sharding configuration based on
the ranking algorithm

TABLENAME Name of the table in the sharding configuration

TABLETYPE ‘S’ (Sharded), ‘D’ (Duplicated), or ‘L’ (Local)

TABLELEVEL Level of the table in the table family hierarchy,
NULL for duplicated tables

PARENT Parent of the table in the table family hierarchy,
NULL for duplicated tables

SHARDBY Sharding method. REFERENCE for sharding by
reference, or PARENT for sharding by PARENT
clause, for child tables.

SHARDINGORREFERENCECOLS Sharding key for the root table, partition by
REFERENCE or PARENT for the child tables in a table
family, and NULL for duplicated tables

UNENFORCEABLECONSTRAINTS Foreign key constraints other than the reference
columns, which cannot be enforced

SIZEOFTABLE Size of the table per shard

Chapter 14
Sharding Advisor Output Tables

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 11



SHARDINGADVISOR_CONFIGDETAILS Table
Each row of the SHARDINGADVISOR_CONFIGDETAILS table represents a ranked sharding
configuration, and provides the number and collective size, per shard, of each type of table, the
number of each type of query, and based on your source database's current workload, an
estimated cost.

SHARDINGADVISOR_CONFIGDETAILS Schema

Column Description

RANK The rank of the sharding configuration based on
the ranking algorithm

CHOSENBYUSER ‘Y’ if the sharding configuration is chosen by the
user, NULL for other sharding configurations

NUMSHARDEDTABLES Number of sharded tables in this sharding
configuration

SIZEOFSHARDEDTABLES Cumulative size of sharded tables (per shard) in
this sharding configuration

NUMDUPLICATEDTABLES Number of duplicated tables in this sharding
configuration

SIZEOFDUPLICATEDTABLES Cumulative size of duplicated tables (per shard) in
this sharding configuration

NUMSINGLESHARDQUERIES Number of single shard queries in the query
workload for this sharding configuration

NUMMULTISHARDQUERIES Number of multi-shard queries in the query
workload for this sharding configuration

NUMCROSSSHARDQUERIES Number of multi-shard queries that require an
external join in the query workload for this sharding
configuration

COST Cost of the sharding configuration based on the
costing algorithm

SHARDINGADVISOR_QUERYTYPES Table
Each row of the SHARDINGADVISOR_QUERYTYPES table represents a query in the
workload, and lists the query type and SQL ID. Note that the same query can be of a different
query type depending on the sharding configuration.

SHARDINGADVISOR_QUERYTYPES Schema

Column Description

RANK The rank of the sharding configuration based on
the ranking algorithm

SQLID The query SQL ID

QUERYTYPE The type of the query in this sharding configuration:
SINGLE SHARD QUERY, MULTI SHARD QUERY, or
CROSS SHARD QUERY

Chapter 14
Sharding Advisor Output Tables

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 11



Sharding Advisor Output Review SQL Examples
Because the Sharding Advisor output is contained in regular database tables, you can run
many kinds of SQL queries against them to look at the output from different perspectives.

Example 14-1    Display the sharding configurations in ranking order

SELECT rank, tableName as tname, tabletype as type,
           tablelevel as tlevel, parent, shardby as shardBy,
           shardingorreferencecols as cols, unenforceableconstraints,
           sizeoftable  
FROM SHARDINGADVISOR_CONFIGURATIONS
ORDER BY rank, tlevel, tname, parent;

Example 14-2    Display the table family of the top ranked sharding configuration

SELECT rank, tableName as tname, tabletype as type,
        tablelevel as tlevel, parent, shardby as shardBy,
        shardingorreferencecols as cols, unenforceableconstraints,
        sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS 
WHERE rank = 1 AND tabletype = 'S' 
ORDER BY tlevel, tname, parent;

Example 14-3    Display the table families in ranking order

SELECT rank, tableName as tname, tabletype as type,
        tablelevel as tlevel, parent, shardby as shardBy,
        shardingorreferencecols as cols, unenforceableconstraints,
        sizeoftable 
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE tabletype = 'S'
ORDER BY rank, tlevel, tname, parent;

Example 14-4    Display the duplicated tables of the top ranked sharding configuration

SELECT rank, tableName as tname, tabletype as type,
           tablelevel as tlevel, parent, shardby as shardBy,
           shardingorreferencecols as cols, unenforceableconstraints,
           sizeoftable   
FROM SHARDINGADVISOR_CONFIGURATIONS   
WHERE rank = 1 AND tabletype = 'D'   
ORDER BY tlevel, tname, parent;

Example 14-5    Display the number of sharding configurations with table_name as the
root table

SELECT COUNT(*)
FROM SHARDINGADVISOR_CONFIGURATIONS 
WHERE tablename = 'TABLE_NAME' AND tablelevel = 0;

Chapter 14
Sharding Advisor Output Review SQL Examples

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 11



Example 14-6    Display the table families of the sharding configurations with root table
table_name

SELECT rank, tableName as tname, tabletype as type,
        tablelevel as tlevel, parent, shardby as shardBy, 
        shardingorreferencecols as cols 
FROM SHARDINGADVISOR_CONFIGURATIONS 
WHERE tabletype = 'S'
    AND rank IN
        (SELECT rank 
        FROM SHARDINGADVISOR_CONFIGURATIONS
        WHERE tablename = 'TABLE_NAME' and tablelevel = 0)
ORDER BY rank, tlevel, tname, parent;

Example 14-7    Display the details of the sharding configurations in ranking order

SELECT rank, chosenbyuser,
        numshardedtables as stabs, sizeofshardedtables as sizestabs,
        numduplicatedtables as dtabs,
        sizeofduplicatedtables as sizedtabs,
        numsingleshardqueries as numssq,
        nummultishardqueries as nummsq,
        numcrossshardqueries as numcsq, cost
FROM SHARDINGADVISOR_CONFIGDETAILS
ORDER BY rank;

Example 14-8    Display the details of your chosen sharding configuration

SELECT rank,
        numshardedtables as stabs, sizeofshardedtables as sizestabs,
        numduplicatedtables as dtabs,
        sizeofduplicatedtables as sizedtabs,
        numsingleshardqueries as numssq,
        nummultishardqueries as nummsq,
        numcrossshardqueries as numcsq, cost
FROM SHARDINGADVISOR_CONFIGDETAILS
WHERE CHOSENBYUSER = ‘Y’
ORDER BY RANK;

Sharding Advisor Security
Sharding Advisor is a client-side utility that connects to the non-distributed database using
authenticated OCI connections.

• The Sharding Advisor requires the appropriate credentials (user name and password) to
connect to the source non-distributed database. Sharding Advisor can be run as a different
user than the user that owns the source database schema that the Sharding Advisor
analyzes. This user must have SELECT privileges on the tables in the non-sharded schema.

• The user needs SELECT privileges on the GV$SQL_PLAN and GV$SQL_PLAN_STATISTICS_ALL
views, and on the DBA_HIST_SQL_PLAN, DBA_HIST_SQLSTAT, and DBA_HIST_SNAPHSOT tables.
The user does not need any other special privileges.

• Sharding Advisor is not vulnerable to privilege escalation and denial of service.

Chapter 14
Sharding Advisor Security

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 11



• Sharding Advisor does not store or expose any sensitive data such as passwords,
database service names, or user names.

• Sharding Advisor does not expose sensitive details about the inner workings of the
product.

• Sharding Advisor does not include any interfaces or APIs which are not externally
documented.

• Sharding Advisor does not require any insecure protocols to be enabled.

• Sharding Advisor does not use any insecure modes of operation.

• Sharding Advisor does not store any data or other information in any files.

• All connections to the database are through authenticated OCI connections.

• There are no SETUID executables created.

• No new grants to PUBLIC are done.

• No new default schemas are created, but Sharding Advisor internal tables are created
under the user that is used to run Sharding Advisor.

Chapter 14
Sharding Advisor Security

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 11



15
JSON Document Collections in a Distributed
Database

Learn how to shard tables of JSON documents using Oracle Globally Distributed Database
with SODA.

Topics:

• Overview of Sharding JSON Documents

• Preparing the Environment

• Creating an All-Shards User with SODA Privileges

• Choosing a Sharding Key

• Using SODA ID as the Sharding Key

• Using a JSON Field as a Sharding Key

• Additional Information About Sharding with SODA

Overview of Sharding JSON Documents
Oracle Globally Distributed Database allows JSON documents to scale to massive data and
transactions volume, provide fault isolation, and support data sovereignty. Oracle Database
has support for native JSON objects. Applications can interact with the distributed database
using the SODA (Simple Oracle Document Access) API, which allows you to access data
using JSON document attributes.

In Oracle Database, JSON documents can be stored in a database table. The database tables
act as JSON collections, and each row is a JSON document. JSON documents are stored in
the database as type JSON, which is backed by a highly optimized binary JSON format called
OSON.

Although Oracle provides support for JSON operators to create, work with, and retrieve JSON
documents, the SODA interface is also supported. SODA provides a more intuitive interface for
working with JSON documents.

SODA is an API for NoSQL-style JSON (and not only JSON) document collections in Oracle
Database. Using SODA APIs, application can perform CRUD operations on documents in
collections. Collections are backed by regular Oracle tables (or views).

Typically, to create a collection, one would use SODA API. That creates the underlying table
backing the collection. In order to create a sharded collection, however, a shared table has to
be created first. Then, a collection can be created on top of a sharded table, by using a
mapped collection feature of SODA.

Working with JSON documents in a distributed database introduces the notion of a sharding
key. JSON documents are distributed to the individual database table shards according to the
sharding key. The sharding key can either be a field from within the JSON document or an
external column such as the ID assigned by the SODA API.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 22



For further reading about JSON and SODA, see JSON in Oracle Database and Overview of
SODA.

The topics that follow provide details about how to shard JSON objects in Oracle Database.
The high level steps are:

• Deploy a distributed database

• Identify a sharding key that the application can use to fetch data

• Define a data store for JSON in Oracle Database by creating sharded tables

• Map the sharded table with SODA

Then life cycle management tasks detailed are:

• Add documents to the sharded JSON collection in the application

• Fetch document data from the sharded JSON collection in the application

Preparing the Environment
Before you begin configuring an Oracle Globally Distributed Database with SODA, deploy a
sharding configuration and start the global services.

A distributed database configuration, including shard directors, shard catalog, and shard
databases, and any replicas must be deployed. After deploying the distributed database, you
must create and start global database services on the shards to service incoming connection
requests from your application.

See Oracle Globally Distributed Database Deployment for information about creating and
deploying a distributed database configuration.

Creating an All-Shards User with SODA Privileges
Create a user on the shard catalog that has the privileges to create schema objects in the
distributed database, and also has the necessary execute privileges on the DBMS_SODA PL/SQL
package.

For the purposes of this document, the user is referred to as the Sharding/SODA user, and the
user name is app_schema in the examples.

To create the Sharding/SODA user:

1. Connect to the shard catalog database (for example, as SYSDBA).

2. Enable SHARD DDL.

3. Run CREATE USER command, granting the permissions shown in the example below.
Note that the Sharding/SODA user is created on the PDB, not the CDB.

The following is an example Sharding/SODA user creation script.

-- Set the container and create the sharded user
alter session set container=SDBPDB;
alter session enable shard ddl;
create user app_schema identified by password;
 
-- Grant basic privileges
grant connect, resource, alter session to app_schema;
grant execute on dbms_crypto to app_schema;

Chapter 15
Preparing the Environment

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 22

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/overview-soda.html#GUID-BE42F8D3-B86B-43B4-B2A3-5760A4DF79FB
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/overview-soda.html#GUID-BE42F8D3-B86B-43B4-B2A3-5760A4DF79FB


-- All privileges below are required. User can also be granted all privileges
grant create table, create procedure, create tablespace, create
materialized view to app_schema;
grant unlimited tablespace to app_schema;
grant select_catalog_role to app_schema;

-- Grant soda_app for this user
grant soda_app to app_schema;

-- Specific grants on shard plsql
grant execute on exec_shard_plsql to app_schema;
grant gsmadmin_role to app_schema;
grant gsm_pooladmin_role to app_schema;

Note the standard database schema privileges and the standard SODA privileges granted to
the user. The exec_shard_plsql grant, which gives the user the ability to run PL/SQL
procedures on a distributed database, is a sharding-specific privilege required for the Sharding/
SODA user.

For more information about Oracle Globally Distributed Database schema design, including
sharding user creation and running PL/SQL, see Oracle Globally Distributed Database
Schema Design.

Choosing a Sharding Key
SODA collections are backed by regular Oracle tables. One of the columns in these tables is
the ID column, which contains unique keys for the documents in the collection. This column
can be used as the sharding key. Alternatively, you can choose a JSON field in the document
content to be the sharding key.

The choice of sharding key is application dependent.

The advantages and disadvantages of each sharding key choice are listed in the sections
below.

Using the SODA ID as the Sharding Key

The SODA API automatically manages a unique ID for each SODA document. This ID is used
by the SODA API to create and retrieve documents within a collection.

The SODA ID must be provided manually by the application when it is used as a sharding key.
This is because when creating a new document on a specific shard, the sharding key is
required beforehand in order to connect to the appropriate shard. The SODA API allows for
this manual (also known as CLIENT key) assignment of a SODA ID on document creation.
Examples are provided in the code samples in Using SODA ID as the Sharding Key.

It is up to the application to decide if this SODA ID represents something meaningful (for
example, a Customer ID) or is merely a unique Document ID. In any case, the ID must be
unique. This is not a requirement imposed by Oracle Globally Distributed Database but by the
SODA API.

A summary of using the SODA ID as the sharding key:

• The sharding key must be unique.

• The sharding key is a document ID, which can be independent of the contents of the JSON
fields.

Chapter 15
Choosing a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 22



• Whenever a new document is inserted, this ID must be provided by the application.

Using a JSON field as the Sharding Key

A JSON field can be used as the sharding key. This key does not need to be unique.

In this case, each document in a collection has a separate SODA ID (as required by SODA),
but it is managed automatically by the SODA API as a separate document ID.

A summary of using a JSON field as the sharding key:

• The sharding key does not need to be unique.

• The sharding key is a field within the JSON of each document.

• The SODA ID does not need to be specified when inserting a new document.

Considerations in choosing a Sharding Key method

Note that in both cases, a sharding key is a field which rarely or never changes. This might be
a uniquely assigned Customer or Document ID. It can also be a non-unique ID such as a
customer birth date, with day, month and year, or a postal code.

For system-managed sharding, either sharding key method is appropriate for distributing
documents across shards.

For user-defined sharding, SODA ID as shard key only makes sense if the ID has a meaningful
value and it makes sense to partition this by range, for example.

Given no other constraints, using a JSON field as the sharding key offers greater flexibility and
allows the sharding key to be stored naturally as part of the JSON.

System-managed vs. User-defined Sharding
Although similar in many ways, user-defined sharding gives you greater control over where
data resides. This can be useful when data needs to be separated geographically, or other
reasons arise so that data also requires a physical mapping.

Much of the procedures and examples in later topics apply to both sharding methods. There
are two exceptions:

1. On creation of the sharded table which underlies the SODA collection, the physical
mapping for user-defined sharding must be specified. You can find an example in which a
range of ZIP codes must reside on specific shards in Using a JSON Field as a Sharding
Key.

2. SODA queries (QBEs) can rely on this data grouping to be able to perform queries on one
shard which includes a range of sharding keys.

How to Implement a Solution

After choosing which type of sharding key to use, refer to the following use cases to see
examples of how to create a sharded table for the JSON collection, and how to interact with
the sharded table from an application.

• Using SODA ID as the Sharding Key

• Using a Sharding Key Other Than the SODA ID

Using SODA ID as the Sharding Key
You can designate the SODA ID as the sharding key when creating the distributed database
schema.

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 22



The following examples show you how to create a sharded table for the JSON collection,
create the SODA mapping, and access the sharded table from an application with Java and
Python code samples.

Creating a Sharded Table for the JSON Collection

To create a sharded table that uses the SODA ID as the sharding key:

1. Connect to the shard catalog as the Sharding/SODA user.

2. Enable SHARD DDL.

3. Create a tablespace set.

4. Run CREATE SHARDED TABLE, as shown in the example below.

The following example creates a sharded table (Customers) for a JSON collection of customer
profile documents (CUSTPROFILE).

A column for the SODA ID (ID) identifies the JSON entries, and is also used as the primary key
and sharding key. When creating a JSON entry in the table with SODA, the application
populates the ID column with a unique value.

The other columns are the default column names given when SODA creates a table to hold an
underlying collection. You can see this for yourself when creating a SODA collection and then
examining the created table.

Creating a Sharded Table: System-Managed

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create a tablespace set */
CREATE TABLESPACE SET TSP_SET_1 USING TEMPLATE
 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto); 

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"VERSION" varchar2(255) NOT NULL,
"CUSTPROFILE" JSON,
PRIMARY KEY (ID),
)
TABLESPACE SET TSP_SET_1
PARTITION BY CONSISTENT HASH (ID) PARTITIONS AUTO;

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 22



Creating a Sharded Table: User-Defined
If the SODA ID has a meaningful value, then the database can be sharded with the user-
defined method, and you can create a sharded table using the example below.

Before creating the sharded table in a user-defined distributed database, ensure that the
necessary tablespaces and shardspaces have been created. See User-Defined Data
Distribution and Configure the Distributed Database Topology for details about creating
distributed database objects.

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"VERSION" varchar2(255) NOT NULL,
"CUSTPROFILE" JSON,
PRIMARY KEY (ID),
)
PARTITION BY RANGE (ID)
(PARTITION p1 VALUES LESS THAN ('5000') TABLESPACE ts1,
PARTITION p2 VALUES LESS THAN ('10000') TABLESPACE ts2)

Creating a Mapped SODA Collection on the Sharded Table
Create a mapped SODA collection to let SODA know which columns to use when working with
the sharded table.

In this task, you first run a procedure to create the mapped collection, which creates the
metadata necessary for SODA to recognize the previously created table as a SODA collection.

Afterwards you run an additional procedure, sys.exec_shard_plsql(), which ensures that the
map collection is created on all shards and all future shards.

Creating a SODA Mapped Collection Across All Shards

As the Sharding/SODA user and with SHARD DDL enabled, run the following commands on the
shard catalog. The shard catalog propagates the procedure to all of the shards to be
processed automatically.

GRANT SODA_APP TO PROCEDURE APP_SCHEMA.COLLECTION_PROC_CUSTOMERS;

create or replace procedure COLLECTION_PROC_CUSTOMERS AS 
METADATA varchar2(8000);
 COL SODA_COLLECTION_T;
 begin METADATA := '{"tableName":"CUSTOMERS",
 "keyColumn":{"name":"ID","assignmentMethod" : "CLIENT"},
 "contentColumn":{"name":"CUSTPROFILE","sqlType":"JSON"},
 "versionColumn":{"name":"VERSION","method":"UUID"},
 "lastModifiedColumn":{"name":"LAST_MODIFIED"},
 "creationTimeColumn":{"name":"CREATED_ON"},

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 22



 "readOnly":false}'; 
-- Create a collection using "map" mode, based on 
-- the table you've created above and specified in 
-- the custom metadata under "tableName" field. 
COL := 
dbms_soda.create_collection('CUSTOMERS',METADATA,DBMS_SODA.CREATE_MODE_MAP); 
end ; 
/ 

exec sys.exec_shard_plsql('app_schema.collection_proc_customers()',4+1);

Note that the keyColumn is mapped as ID, which holds the unique ID of each document. It is
designated as CLIENT here because the application will supply a unique key for each
document on insert.

At this point, a new collection has been created.

You can run PL/SQL to list the collections. On the shard catalog, run the following commands,
and verify that the output lists the CUSTOMERS collection as shown here.

SET SERVEROUTPUT ON
DECLARE
l_coll_list SODA_COLLNAME_LIST_T;
BEGIN
l_coll_list := DBMS_SODA.list_collection_names;
 
IF l_coll_list.COUNT > 0 THEN
FOR i IN 1 .. l_coll_list.COUNT LOOP
DBMS_OUTPUT.put_line(i || ' : ' || l_coll_list(i));
END LOOP;
END IF;
END;
/
1 : CUSTOMERS
 
PL/SQL procedure successfully completed.

Code Samples
The following code samples in Java and Python show you how to connect to a shard using the
sharding key and insert a new document.

Note that when using SODA in a distributed database environment, new documents should be
created by connecting to specific shards, and not using the shard catalog.

Java Code Sample
These Java code samples are created for the "Using SODA ID as the Sharding Key" use case.

The Java sample below shows you how to connect to a shard and insert a JSON document
into the collection.

import java.sql.Connection;
import java.util.Properties;
import java.util.List;

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 22



 
// SODA specific imports
import oracle.soda.rdbms.OracleRDBMSClient;
import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;
 
// Sharding and UCP imports
import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;
 
 
/*
* The sample demonstrates connecting to a distributed database using
* Oracle JDBC driver and UCP as a client side connection pool.
*/
public class QuickInsertShard {
 
 public static void main(String args[]) throws Exception {
 
// TNS_ADMIN - Should be the path where the tnsnames.ora file resides
// dbshard_rw - It is the TNS alias present in tnsnames.ora.
// Note that the connection is to the Shard Director (GSM) and the service 
name is the shard RW service
final String DB_URL="jdbc:oracle:thin:@dbshard_rw?TNS_ADMIN=/home/opc/
dbhome/";
 
// Update the Database Username and Password to the Shard User
final String DB_USER = "app_schema";
String DB_PASSWORD = "<user_password>" ;
 
 
// Get the PoolDataSource for UCP
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 
// Set the connection factory first before all other properties
pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
pds.setURL(DB_URL);
pds.setUser(DB_USER);
pds.setPassword(DB_PASSWORD);
pds.setConnectionPoolName("JDBC_UCP_POOL");
 
// Default is 0. Set the initial number of connections to be created
// when UCP is started.
pds.setInitialPoolSize(10);
// Default is 0. Set the minimum number of connections
// that is maintained by UCP at runtime.
pds.setMinPoolSize(10);
// Instead of Max Pool Size, we can set the number of max connections per 
shard
pds.setMaxConnectionsPerShard(20);

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 22



 
// We cannot get the connection until we have the Shard key which is part of 
the SQL
//We first set the sharding key or document id explicitly
String shardingKeyVal="10";
 
// Now we build the connection using this shard key
OracleShardingKey sdkey = 
pds.createShardingKeyBuilder().subkey(shardingKeyVal, 
OracleType.VARCHAR2).build();
System.out.println("Initiating UCP and Creating Connection...");
Connection conn = pds.createConnectionBuilder().shardingKey(sdkey).build();
 
// Enable the SODA Shared Metadata cache
Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);
 
// Get a DB Connection for use in SODA
OracleDatabase db = cl.getDatabase(conn);
 
// Print all the Collections in this DB
List<String> names =  db.admin().getCollectionNames();
for (String name : names)
 System.out.println ("Collection name: " + name);
 
// Open up the CUSTOMERS Collection
OracleCollection col = db.openCollection("CUSTOMERS");
 
//For a collection configured with client-assigned document keys,
//you must provide the key for the input document. Build a document with JSON.
OracleDocument cKeyDoc = db.createDocumentFromString(shardingKeyVal, 
"{\"name\": \"Matilda\", \"State\": \"CA\", \"ZIP\":\"94065\"}");
 
// Insert the document above
//If the key  already identifies a document in the collection
//then this will replace the existing doc.
OracleDocument savedDoc = col.saveAndGet(cKeyDoc);
 
// Get the document back assuming we only know the key
// We are still connected to the same shard
OracleDocument doc = col.find().key(shardingKeyVal).getOne();
String content = doc.getContentAsString();
System.out.println("Retrieved content is: " + content);
 
// We are done, so close the connection to the shard
conn.close();
 
// At this point we could open up a new shard connection using a different 
sharding key
 
 
 }} // End of QuickInsertShard

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 22



This Java sample shows how you would perform a multi-shard query.

import java.sql.Connection;
import java.util.Properties;
import java.util.List;
 
// SODA specific imports
import oracle.soda.rdbms.OracleRDBMSClient;
import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;
 
// Sharding and UCP imports
import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;
 
 
/*
* The sample demonstrates connecting to a distributed database using
* Oracle JDBC driver and UCP as a client side connection pool.
*/
public class QuickQueryCat {
 
 public static void main(String args[]) throws Exception {
 
// TNS_ADMIN - Should be the path where the tnsnames.ora file resides
// dbshard_rw - It is the TNS alias present in tnsnames.ora.
// This connection is to the shard director using the catalog service name.
final String DB_URL="jdbc:oracle:thin:@dbcat?TNS_ADMIN=/home/opc/dbhome/";
 
// Update the Database Username and Password to the Shard User
final String DB_USER = "app_schema";
String DB_PASSWORD = "<user_password>" ;
 
 
// Get the PoolDataSource for UCP
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 
// Set the connection factory first before all other properties
pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
pds.setURL(DB_URL);
pds.setUser(DB_USER);
pds.setPassword(DB_PASSWORD);
pds.setConnectionPoolName("JDBC_UCP_POOL");
 
// Now we get a direct connection to the shard catalog
System.out.println("Initiating UCP and Creating Connection...");
Connection conn = pds.getConnection();
 
// Enable the SODA Shared Metadata cache
Properties props = new Properties();

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 22



props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);
 
// Get a DB Connection
OracleDatabase db = cl.getDatabase(conn);
 
// Print all the Collections in this DB
List<String> names =  db.admin().getCollectionNames();
for (String name : names)
 System.out.println ("Collection name: " + name);
 
// Open up the CUSTOMERS Collection
OracleCollection col = db.openCollection("CUSTOMERS");
 
// Do a search across ALL Shards. In this case all users named Matilda
// Setup the specification and open a cursor
OracleDocument filterSpec = db.createDocumentFromString("{ \"name\" : 
\"Matilda\"}");
 
OracleCursor c = col.find().filter(filterSpec).getCursor();
 
// Print the results of the query
while (c.hasNext()) {
  OracleDocument resultDoc = c.next();
 
  // Print the document key and document content
  System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
                        " document content: " + 
resultDoc.getContentAsString());
}
 
// Close the cursor
c.close();
 
// Here, we could initiate another multi-shard query if desired
 
// We are done, so close the connection
conn.close();
 
 
 }} // End of QuickQueryCat

Python Code Sample
This Python sample shows how you can actually work with JSON objects using SODA in a
distributed database environment.

To use this sample code in your environment, follow the instructions to install the cx_Oracle
module for Python: https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

This example shows how to connect to a shard using the sharding key and insert a new
document.

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 22

https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html


Note that when using SODA in a distributed database environment, new documents should be
created by connecting to specific shards and not using the shard catalog.

# import the cx_Oracle module for Python
import cx_Oracle

# Create a connection pool that will be used for connecting to all shards
# The components of the dsn are hostname (shard director),
# port (usually 1522), global service (created with GDSCTL)
# The pool is then created and SODA metadata caching is enabled.
dsn=cx_Oracle.makedsn("shard_director_host",1522,service_name="service_name")
pool=cx_Oracle.SessionPool("app_schema","password",dsn, 
soda_metadata_cache=True)

# Connect to a specific shard by using the sharding key, which in this 
example is
# set explicitly with "sodaid", but this might be passed in or part of a loop 
# You must know beforehand if you are creating or working with a document for 
a specific Customer
# 
sodaid="2468"
connection=pool.acquire(shardingkey=[sodaid])

# Set autocommit and open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()
collection = soda.openCollection("CUSTOMERS")

# Insert a document
# Because you are specifying the shard key, you must pass that in with the 
document (key=custid)
# The value can be a UUID for example but it need not have any relation to 
the JSON Content.

content = {'name': 'Matilda', 'State': 'CA', 'ZIP':'94065'}
idcontent=soda.createDocument(content, key=sodaid)
doc = collection.insertOneAndGet(idcontent)

# Fetch the document back by key
doc = collection.find().key(sodaid).getOne()
content = doc.getContent()
print('Retrieved SODA document dictionary is:')
print(content)

# After you have finished, release this connection back into the pool
pool.release(connection)
  
# If you want to add or work with more customers, start with another 
connection
# For example: connection=pool.acquire(shardingkey=["123"]) and so on.
  
#When you are completely finished working with customers you can shut down 
the pool
pool.close()

Chapter 15
Using SODA ID as the Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 22



This code sample shows you how to run a multi-shard query to return all customer names
whose names begin with an "M".

import cx_Oracle
  
# Create an unpooled connection to the shard catalog
# In general, pooled connections should be used for all connections. This is 
shown here only as an example.
# The connect string connects to the shard director, but uses the catalog 
service, e.g. GD$catalog.oradbcloud
connection = cx_Oracle.connect("app_schema","password","db_connect_string")
  
# Open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()
collection = soda.openCollection("CUSTOMERS")
  
# Now query the collection
# It is important to note that this is a query across ALL shards
# In other words, you will get ALL users whose names start with M
documents = collection.find().filter({'name': {'$like': 'M%'}}).getDocuments()
for d in documents:
    content = d.getContent()
    print(content["name"])
  
# Close the connection
connection.close()

Using a JSON Field as a Sharding Key
You can designate a JSON field to be the sharding key when creating your distributed
database schema.

The examples in the topics that follow show you how to create a sharded table for the JSON
collection, create the SODA mapping, trigger the sharding key column population, and access
the sharded table from an application with Java and Python code samples.

Creating a Sharded Table for the JSON Collection

To create a sharded table that uses a sharding key other than the SODA ID:

1. Connect to the shard catalog as the Sharding/SODA user.

2. Enable SHARD DDL.

3. Create a tablespace set.

4. Run CREATE SHARDED TABLE, as shown in the example below.

The following examples create a sharded table (Customers) for a JSON collection of customer
profile documents (CUSTPROFILE).

A column for the SODA ID (ID) identifies the JSON entries. When creating a JSON entry in the
table with SODA, the application populates the ID column with a unique value.

A sharding key column (ZIP) is the ZIP code value extracted from the JSON document.

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 22



The other columns are the default column names given when SODA creates a table to hold an
underlying collection. You can see this for yourself when creating a SODA collection and then
examining the created table.

Note that the ID column by itself cannot be the primary key. The PK must be or must include
the sharding key, in this case ZIP. In the application examples, both ID and ZIP are used to
work with the sharded data. In the example above the PK consists of the sharding key and the
SODA ID (ZIP, ID), because ZIP will not be a unique value by itself.

Note that in Oracle 21c, you can use either (ZIP, ID) or (ID, ZIP) as the combined Primary Key.
In general, you should expect access to this table to be for these values individually, not as a
combination. SODA access for these examples looking for ID and customer queries might be
using the JSON field (ZIP in this case), so you will create individual indexes in any case. .

Choosing a good sharding key depends on the usage and application requirements. You can
use a unique sharding key, for example a Customer ID, but in that case you could also use the
SODA ID to store the sharding key.

Creating a Sharded Table: System-Managed

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create a tablespace set */
CREATE TABLESPACE SET TSP_SET_1 USING TEMPLATE
 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto); 

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"VERSION" varchar2(255) NOT NULL,
"ZIP" VARCHAR2(60) NOT NULL,
"CUSTPROFILE" JSON,
PRIMARY KEY (ID,ZIP))
TABLESPACE SET TSP_SET_1
PARTITION BY CONSISTENT HASH (ZIP) PARTITIONS AUTO;

Creating a Sharded Table: User-Defined

Ensure that all of the necessary tablespaces and shardspaces have been created.

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 22



"VERSION" varchar2(255) NOT NULL,
"ZIP" VARCHAR2(60) NOT NULL,
"CUSTPROFILE" JSON,
PRIMARY KEY (ID,ZIP))
PARTITION BY RANGE (ZIP)
(PARTITION p1 VALUES LESS THAN ('50000') TABLESPACE ts1,
PARTITION p2 VALUES LESS THAN ('99999') TABLESPACE ts2)

Creating a Mapped SODA Collection on the Sharded Table
Create a map to let SODA know which columns to use when working with the sharded table,
and add the sharded table to the list of collections.

You can run a procedure to create the map, but this procedure also must be run on ALL of the
shards in the distributed database. The procedure also needs to be run on any shards added
in the future. You can accomplish both of these requirements using a sharding-specific PL/SQL
procedure, sys.exec_shard_plsql().

To create a SODA map across all shards:

As the Sharding/SODA user and with SHARD DDL enabled, run the following commands on the
shard catalog. The shard catalog propagates the procedure to all of the shards to be
processed automatically.

create or replace procedure COLLECTION_PROC_CUSTOMERS AS
METADATA varchar2(8000);
COL SODA_COLLECTION_T;
begin
METADATA := '{"tableName":"CUSTOMERS",
"keyColumn":{"name":"ID"},
"contentColumn":{"name":"CUSTPROFILE","sqlType":"JSON"},
"versionColumn":{"name":"VERSION","method":"UUID"},
"lastModifiedColumn":{"name":"LAST_MODIFIED"},
"creationTimeColumn":{"name":"CREATED_ON"},
"readOnly":false}';
 -- Create a collection using "map" mode, based on
 -- the table you've created above and specified in 
 -- the custom metadata under "tableName" field.
COL := 
dbms_soda.create_collection('CUSTOMERS',METADATA,DBMS_SODA.CREATE_MODE_MAP);
end ;
/
 
exec sys.exec_shard_plsql('app_schema.collection_proc_customers()',4+1);

Note that the keyColumn is ID, the key used by SODA to insert and retrieve collections. There
is no reference to the ZIP column because it is not used by SODA in the mapping.

At this point, a new collection has been created just as if you had run a CREATE COLLECTION
command.

You can run some PL/SQL to list out the collections. On the shard catalog, run the following
command, and verify that the output lists the Customers table.

SET SERVEROUTPUT ON
DECLARE

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 22



l_coll_list SODA_COLLNAME_LIST_T;
BEGIN
l_coll_list := DBMS_SODA.list_collection_names;
 
IF l_coll_list.COUNT > 0 THEN
FOR i IN 1 .. l_coll_list.COUNT LOOP
DBMS_OUTPUT.put_line(i || ' : ' || l_coll_list(i));
END LOOP;
END IF;
END;
/
1 : CUSTOMERS
 
PL/SQL procedure successfully completed.
 
SQL>

Creating a Trigger to Populate the Sharding Key

When SODA inserts or updates the document, it automatically populates the underlying table
columns described in the collection metadata (that is ID, CUSTPROFILE, LAST_MODIFIED,
CREATED_ON, and VERSION). However, you also need to populate the ZIP column, and the
value must come from within the JSON document. This is accomplished using a trigger.

Note that this is a BEFORE trigger, which allows you to populate a column even when that
column is the primary key.

Run the following statements on the shard catalog as the application schema user. The
procedure sys.exec_shard_plsql ensures that it is also run on all shards and all future shards.

alter session enable shard ddl
 
create or replace procedure COLLECTION_BF_ZIP_CUSTOMERS AS
begin
EXECUTE IMMEDIATE 'alter session enable shard operations';
EXECUTE IMMEDIATE q'%
Create or Replace TRIGGER CUST_BF_TRIG
BEFORE INSERT or UPDATE on CUSTOMERS
FOR EACH ROW
begin
:new.ZIP := JSON_VALUE(:NEW.CUSTPROFILE, '$.ZIP' error on error error on 
empty);
end;
%';
end;
/

exec sys.exec_shard_plsql('app_schema.collection_bf_zip_customers()',4+1+2);

In the example above, ZIP is assumed to be a top-level field in the JSON document. If the
value is in a nested field, for example under an ADDRESS field, you must include the field
hierarchy, for example '$.ADDRESS.ZIP'.

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 22



Code Samples
The Java and Python code samples for "Using a JSON Field as the Sharding Key"
demonstrate how you can actually work with JSON objects using SODA in a distributed
database environment.

In these examples, you connect to a shard using the sharding key and insert a new document.

Note that when using SODA in a distributed database environment, new documents should be
created by connecting to specific shards and not using the shard catalog.

Java Code Sample
The Java code sample below shows you how to insert JSON documents in a collection where
the data is sharded by a JSON field, ZIP code in this example.

import java.sql.Connection;
import java.util.Properties;
import java.util.List;
 
// SODA specific imports
import oracle.soda.rdbms.OracleRDBMSClient;
import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;
 
// Sharding and UCP imports
import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;
 
 
/*
* The sample demonstrates connecting to a distributed database using
* Oracle JDBC driver and UCP as a client side connection pool.
*/
public class QuickInsertShardJSONField {
 
 public static void main(String args[]) throws Exception {
 
// TNS_ADMIN - Should be the path where the tnsnames.ora file resides
// dbshard_rw - It is the TNS alias present in tnsnames.ora.
// Note that the connection is to the Shard Director (GSM) and the service 
name is the shard RW service
final String DB_URL="jdbc:oracle:thin:@dbshard_rw?TNS_ADMIN=/home/opc/
dbhome/";
 
// Update the Database Username and Password to the Shard User
final String DB_USER = "app_schema";
String DB_PASSWORD = "<user_password>" ;
 

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 22



 
// Get the PoolDataSource for UCP
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 
// Set the connection factory first before all other properties
pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
pds.setURL(DB_URL);
pds.setUser(DB_USER);
pds.setPassword(DB_PASSWORD);
pds.setConnectionPoolName("JDBC_UCP_POOL");
 
// Default is 0. Set the initial number of connections to be created
// when UCP is started.
pds.setInitialPoolSize(10);
// Default is 0. Set the minimum number of connections
// that is maintained by UCP at runtime.
pds.setMinPoolSize(10);
// Instead of Max Pool Size, we can set the number of max connections per 
shard
pds.setMaxConnectionsPerShard(20);
 
// We cannot get the connection until we have the Shard key which is part of 
the SQL
//We first set the sharding key which in our case is the value of the ZIP 
code field
String shardingKeyVal="94065";
 
// Now we build the connection using this shard key
OracleShardingKey sdkey = 
pds.createShardingKeyBuilder().subkey(shardingKeyVal, 
OracleType.VARCHAR2).build();
System.out.println("Initiating UCP and Creating Connection...");
Connection conn = pds.createConnectionBuilder().shardingKey(sdkey).build();
 
// Enable the SODA Shared Metadata cache
Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);
 
// Get a DB Connection
OracleDatabase db = cl.getDatabase(conn);
 
// Print all the Collections in this DB
List<String> names =  db.admin().getCollectionNames();
for (String name : names)
 System.out.println ("Collection name: " + name);
 
// Open up the CUSTOMERS Collection
OracleCollection col = db.openCollection("CUSTOMERS");
 
//We do not provide an SODA ID column.
//This is provided by SODA when the document is created
// Note that the ZIP field MUST match what we have specified as the key
OracleDocument cDoc = db.createDocumentFromString("{\"name\": \"Matilda\", 
\"State\": \"CA\", \"ZIP\":\"94065\"}");
 

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 22



// Insert the document above
OracleDocument insertedDoc = col.insertAndGet(cDoc);
 
// Get the document key
String dockey = insertedDoc.getKey();
 
// Get the document back by key
// We are still connected to the same shard
OracleDocument doc = col.find().key(dockey).getOne();
String content = doc.getContentAsString();
System.out.println("Retrieved content is: " + content);
 
// We are done, so close the connection to the shard
conn.close();
 
// At this point we could open up a new shard connection using a different 
sharding key
 
 
 }} // End of QuickInsertShardJSONField

Python Code Sample
This code sample in Python shows how you can actually work with JSON objects using SODA
in a distributed database environment.

To use this sample code in your environment, follow the instructions to install the cx_Oracle
module for Python: https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

In this example, you connect to a shard using the sharding key and insert a new document.

Note that when using SODA in a distributed database environment, new documents should be
created by connecting to specific shards and not using the shard catalog.

# import the cx_Oracle module for Python
import cx_Oracle
 
# Create a connection pool that will be used for connecting to all shards
# The components of the dsn are hostname (shard director),
# port (usually 1522), global service (created using GDSCTL)
# We also enable SODA metadata caching
dsn=cx_Oracle.makedsn("shard_director_host",1522,service_name="service_name")
pool=cx_Oracle.SessionPool("app_schema","password",dsn,soda_metadata_cache=Tru
e)

# Connect to a specific shard by using the shard key, a ZIP code. which in 
this
# example is set explicitly as '94065', but this might be passed in or part 
of a loop 
# You must know beforehand whether you are creating or working with a document
# with a specific ZIP code value.
connection=pool.acquire(shardingkey=["94065"])
 
# set autocommit and open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 22

https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html


collection = soda.openCollection("CUSTOMERS")
 
# Insert a document
# A system generated SODA key is created by default.
content = {'name': 'Matilda', 'STATE': 'CA', 'ZIP': '94065'}
doc = collection.insertOneAndGet(content)
 
# The SODA key can now be used to work with this document directly
# We can retrieve it immediately
key = doc.key
print('The key of the new SODA document is: ', key)
 
# Fetch the document back by this same SODA key. 
# This only works because we are still connected to the same shard
doc = collection.find().key(key).getOne()
content = doc.getContent()
print('Retrieved SODA document dictionary is:')
print(content)
 

# Next, add another customer. We are in the shard containing 94065,
# so we can add a customer with the same ZIP code '94065'
content = {'name': 'Mildred', 'STATE': 'CA', 'ZIP: '94065'}
doc = collection.insertOneAndGet(content)
 
# Now do a query.
# It is important to note that this query is ONLY executed within this one 
shard,
# the shard which contains the part of the sharded table with 94065 ZIP codes.
# In other words, the actual query has the additional bound of customers whose
# names start with 'M' in 94065
# and any other ZIPs stored on this shard. This is unlikely to be a useful 
query
# for system-managed sharding.
documents = collection.find().filter({'name': {'$like': 'M%'}}).getDocuments()
for d in documents:
    content = d.getContent()
    print(content["name"])
 
# After you have finished, release this connection back into the pool
pool.release(connection)
 
# If you want to add or work with more customers with a different
# shard key start with another connection
# For example: connection=pool.acquire(shardingkey=["10012"]) and so on.
 
# When you are completely finished working with customers, shut down the pool.
pool.close()

This code sample shows you how to run a multi-shard query to return all customer names in all
shards whose names begin with an "M".

import cx_Oracle
 
# Create an unpooled connection to the shard catalog

Chapter 15
Using a JSON Field as a Sharding Key

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 22



# The connect string connects to the shard director, but uses the catalog 
service,
# e.g. GD$catalog.oradbcloud
connection = cx_Oracle.connect("app_schema","password","db_connect_string")

# Open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()
collection = soda.openCollection("CUSTOMERS")
  
# Now query the collection
# It is important to note that this is a query across ALL shards
# In other words, you will get ALL users whose name starts with M across ALL 
Zip codes
documents = collection.find().filter({'name': {'$like': 'M%'}}).getDocuments()
for d in documents:
    content = d.getContent()
    print(content["name"])
  
#Close the connection
connection.close()

Additional Information About Sharding with SODA

Performance Tuning

Metadata and Statement Caching

For all implementations, statement caching should be turned on the connection pool. This
avoids unnecessary round trips to the database.

To turn on SODA metadata caching:

• In Java:

Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);

More information is available at SODA Collection Metadata Caching.

• In Python:

# Create the session pool
pool = cx_Oracle.SessionPool(user="hr", password=userpwd,
               dsn="dbhost.example.com/orclpdb1",soda_metadata_cache=True)

More information is available at Using the SODA Metadata Cache

Threading

For optimal use of resources, an instantiation of OracleClient is only required once as it is
shared among threads.

Chapter 15
Additional Information About Sharding with SODA

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 22

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/java/adsda/soda-collection-metadata-caching.html#GUID-23756EFE-6F87-4246-BC9B-72CC207763EE
https://cx-oracle.readthedocs.io/en/latest/user_guide/soda.html?highlight=metadata%20caching#using-the-soda-metadata-cache


The objects obtained from it, such as OracleDatabase and consequently OracleCollection are
not thread-safe and do need to be instantiated when creating new requests.

Index Creation and Management

The shard key must be part of the Primary Key. There are no restrictions on creating additional
indexes.

All of the guidelines provided by the SODA documentation on creating and managing indexes
continue to apply.

Scaling Out Shards

When adding a new shard to the database configuration, all of the DDL, including the SODA
metadata and triggers, are automatically available on the new shard.

No extra configuration is required for SODA/JSON Sharding.

Chapter 15
Additional Information About Sharding with SODA

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 22



16
Achieving Data Sovereignty with Oracle
Globally Distributed Database

The proliferation of cloud computing has brought heightened concerns about industry-standard
regulations especially around protecting data and its privacy. Today, most organizations want to
know where their data is stored, and who has access to it. This creates a key concern about
managing data residency—the requirement that data be stored in a specific geographic
location.

There are more than 120 countries already engaged in some form of international privacy laws
for data protection to ensure that citizens' data are offered more rigorous protections and
controls, be it on-premises or on cloud.

Topics:

• Overview of Data Sovereignty

• Benefits of Implementing Data Sovereignty with Oracle Globally Distributed Database

• Implementing Data Sovereignty with Oracle Globally Distributed Database

• Data Sovereignty Use Case

Overview of Data Sovereignty
Data sovereignty generally refers to how data is governed by regulations specific to the region
in which it originated. These types of regulations can specify where data is stored, how it is
accessed, how it is processed, and the life-cycle of the data.

With the exponential growth of data crossing borders and public cloud regions, more than 100
countries now have passed regulations concerning where data is stored and how it is
transferred. Personally identifiable information (PII) in particular increasingly is subject to the
laws and governance structures of the nation in which it is collected. Data transfers to other
countries often are restricted or allowed based on whether that country offers similar levels of
data protection, and whether that nation collaborates in forensic investigations.

Data sovereignty requirements are driven by local regulations which could result in different
application architectures. A few of them are:

• Data must be physically stored in a certain geographic location. For example, within the
boundaries of a specific country or a region comprising of several countries. It is fine to
access and process the data remotely so far as the data is not stored in remote locations.
From a technical standpoint, this implies that data stores like databases, object stores, and
messaging stores that physically store the persistent data must be in a certain geographic
location. However, the application run time which has business logic for processing of data
could be outside the geographic location. Examples of such applications parts include
application servers, mobile applications, API Gateways, Workflows, and so on.

• Data must be physically stored and processed in a certain geographic location: In this
case, storing of data and processing of data must take place within the defined geographic
location.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 17



Benefits of Implementing Data Sovereignty with Oracle Globally
Distributed Database

Oracle Globally Distributed Database meets data sovereignty requirements and supports
applications that require low latency and high availability.

• Distributed databases make it possible to locate different parts of the data in different
countries or regions – thus satisfying regulatory requirements where data has to be located
in a certain jurisdiction.

• Distributed databases also support storing particular data closer to its consumers. Oracle
Globally Distributed Database automates the entire lifecycle of a distributed database –
deployment, schema creation, data-dependent routing with superior run-time performance,
elastic scaling, and life-cycle management.

• It also provides the advantages of an enterprise RDBMS, including relational schema,
SQL, and other programmatic interfaces, support for complex data types, online schema
changes, multi-core scalability, advanced security, compression, high-availability, ACID
properties, consistent reads, developer agility with JSON, and much more.

Implementing Data Sovereignty with Oracle Globally Distributed
Database

Oracle Globally Distributed Database distributes segments of a data set across many
databases (shards) on different computers, on-premises, or in the cloud. These shards can be
deployed in multiple regions across the globe. This enables Oracle Globally Distributed
Database to create globally distributed databases honoring data residency.

All of the shards in a given database are presented to the application as a single logical
database. Applications are seamlessly connected to the right shard based on the queries they
run. For example, if an application instance deployed in the US needs data that resides in
Europe, the application request is seamlessly routed to an EU data center, without the
application having to do anything special.

Chapter 16
Benefits of Implementing Data Sovereignty with Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 17



Figure 16-1    Oracle Globally Distributed Database Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key 
CustomerID=28459361

Additionally, Oracle Database security features such as Real Application Security (RAS),
Virtual Private Database (VPD), and Oracle Database Vault can be used to limit data access
further, even within a region. For example, an administrator in the EU region can further be
restricted to see data only from a subset of countries and not all EU countries. Within a Data
Sovereignty region, data can be replicated across multiple data centers using Oracle Data
Guard.

Oracle Globally Distributed Database management interfaces give you control of the global
metadata and provide a view of the physical databases (replicas), data they contain, replication
topology, and more. Oracle Globally Distributed Database handles data redistribution when
nodes are added or dropped.

You can access worldwide reporting without actually copying the data from the various regions.
Sharding can run multi-shard reports without copying any data from any region. Oracle
Globally Distributed Database pushes queries to the nodes where the data resides.

Oracle Globally Distributed Database provides comprehensive data sovereignty solutions that
focus on the following aspects:

• Data Residency: Data can be distributed across multiple shards, which can be deployed in
different geographical locations.

• Data Processing: Application requests are automatically routed to the correct shard
irrespective of where the application is running.

• Data Access: Data access within a region can be restricted further using the Virtual Private
Database capability of Oracle Database.

• Derivative Data: Ensuring that the data is stored in an Oracle Database, and using Oracle
Database features to contain the proliferation of derivative data.

Chapter 16
Implementing Data Sovereignty with Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 17



• Data Replication: Oracle Globally Distributed Database can be used with Oracle Data
Guard to replicate data within the same Data Sovereignty region.

Data Sovereignty Use Case
A large but imaginary financial institute, Shard Bank, wants to offer credit services to users in
multiple counties. Each country where credit service will be provided has its own data privacy
regulations and the Personally Identifiable Information (PII) data have to be stored in this
country.

The access to the data has to be limited and data administrators in one country cannot see
data in others. The solution for this use case is user-defined Sharding with shards configured
in different countries and Real Application Security (RAS) or Virtual Private Database (VPD) for
data access control.

Overview of the Data Sovereignty Solution
This data sovereignty solution provides you with in-country data storage, and still supports a
global view of all the data.

The example below demonstrates a hybrid Oracle Globally Distributed Database user-defined
deployment between OCI data centers and on-premises across multiple regions. In this
configuration, you can store and process all data locally. Each database (in each sovereign
region) is made into a shard and the shards belong to a single distributed database. Oracle
Globally Distributed Database allows you to query data in one shard (within one country), and
Oracle Globally Distributed Database supports multi-shard queries (that can query data from
all the countries).

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 17



Figure 16-2    Distributed Database

The global distributed database is partitioned by a key indicating the country in which it must
reside. In-country applications connect to the local database as usual, and all data is stored
and processed locally.

Any multi-shard queries are directed to the shard coordinator. The coordinator rewrites the
query and sends it to each shard (country) that has the required data. The coordinator
processes and aggregates the results from all of the countries and returns result.

Oracle Globally Distributed Database makes this use case possible with the following
capabilities:

• Direct-to-shard routing for in-country queries.

• The user-defined sharding method allows you to use a range or list of countries to partition
data among the shards.

• Automatic configuration of replication using Oracle Active Data Guard, and constrain the
replicas to be in-country.

• Data federation support (starting with Oracle Database 21c) for converting and adding
existing databases into a distributed database. For more information, see Creating a
Federated Distributed Database.

• Automatic derivation of sharding key (starting with Oracle Database 21c).

The benefits of this approach are:

• Each shard can be in a cloud or on-premises within the country.

• Shards can use different cloud providers (multi-cloud strategy) and replicas of a shard can
be in a different cloud or on-premises.

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 17



• Online resharding allows you to move data between clouds, or to and from the cloud and
on-premises.

• Strict enforcement of data sovereignty providing protection from inadvertent cross region
data leak.

• Single Multimodel Big Data store with reduced volume of data duplication.

• Better fault isolation as planned/unplanned down time within one region/LOB does not
impact other regions/LOBs.

• Ability to split busy partitions and shards as needed.

• Support for full ACID properties is critical for transactional applications.

Deployment Topology for Data Sovereignty
In this example use case, we create a distributed database on Oracle Cloud Infrastructure that
spans three regions, Frankfurt (Region1 FRA), Amsterdam (Region 2 AMS), and London
(Region 3 LON).

Each region hosts a shard director (Virtual Machine global service manager (GSM)) and one
shard (System Database Shard 1, 2, and 3 respectively), and Region 1 (FRA) hosts the shard
catalog (System Database GSM Catalog Database).

Figure 16-3    Deployment Topology of Data Sovereignty

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 17



Configuring the Data Sovereignty Use Case
Configure the Oracle Globally Distributed Database Data Sovereignty use case by performing
the steps given in the following topics.

Configuring VCN Networks in All Three OCI Regions
In Oracle Cloud Infrastructure (OCI), a virtual cloud network is a virtual version of a traditional
network on which your instances run. Deploy and configure a virtual cloud network (VCN) in
each of our regions (FRA, AMS, and LON).

In each region, create a VCN with two subnets: public and private.

1. Create new route table for private subnet and associate it with private subnet. The default
route table should only be used for the public subnet and the private subnet should have a
dedicated private route table.

2. Create an internet gateway and associate it with default route table.

3. Create a Network Address Translation (NAT) gateway, Service Gateway, and associate it
with route table for private subnet.

• VCN Name/CIDER: Sharding VCN FRA 10.0.0.0/16

• Public Subnet name/CIDER: public_fra 10.0.5.0/24

• Private Subnet name/CIDER: private_fra 10.0.6.0/24

Note

Repeat the steps in all regions used in the sharding deployment. The subnet CIDER
must be different in each region and you must provide region prefix in the VCN/subnet
name.

Configuring Remote VCN Peering Between All Three Regions
Remote VCN peering is the process of connecting two VCNs in different regions, which allows
the VCNs' resources to communicate using private IP addresses without routing the traffic over
the internet.

Configure two remote peering connections (RPCs) in each region to connect with the other two
regions in the topology.

1. See Remote VCN Peering using an RPC for the steps to configure an RPC.

2. Configure routing rules for the public subnet/VCN.

 

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 17

https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/remoteVCNpeering.htm


 

3. Configure routing rules for the private subnet/VCN.

 

 

4. Configure security rules.

 

 

Configuring Private DNS for Naming Resolution Between the Regions
You create private views for the public and private subnet for each domain in each region,
resulting in a total of 6 private zones within 1 zone. Then all entries are added to each private
zone configuration.

1. See Private DNS to create and manage private DNS zones.

2. Verify that all names are resolved correctly before you proceed with the next task.

Note

These steps must be done in each region on all VCNs/VMs so that names can be
correctly resolved.

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 17

https://docs.oracle.com/en-us/iaas/Content/DNS/Tasks/privatedns.htm


Installing a Global Service Manager in Each Region
Oracle Global Data Services global service manager (GSM) is used by Oracle Globally
Distributed Database to route queries from the application to the correct shard in a distributed
database.

Download the software and perform the following tasks:

• Download the global service manager (Oracle Database 19c) software into the bastion VM.

• Apply the latest version of OPatch.

• Apply the latest available Oracle Database Bundle Patch on the newly installed global
service manager (Oracle Database 19c).

To install a GSM in each region:

1. Create a 200 GB block storage using iSCSI. Configure iSCSI on the OCI Compute for
GSM. Mount block storage under/u01 .

See Connecting to Volumes With Consistent Device Paths for the mounting block storage
process.

2. As the root user, install all the required packages.

# yum install -y oracle-database-preinstall-19c

3. As the root user, ensure that /u01 is owned by oracle:oinstall.

# chown oracle:oinstall /u01

4. Download the GSM software to the designated shard director VM and install it in silent
mode.

See Performing a Silent Install of Global Service Manager.

5. Add gsm home to /etc/oratab.

gsm:/u01/app/oracle/product/19.0.0.0/dbhome_1:N

6. Apply the latest OPatch version.

7. Apply the latest available bundle patch version for Oracle Database 19c.

8. Open GSM port on Firewall:

$ systemctl start firewalld.service
$ systemctl enable firewalld.service
$ firewall-cmd --permanent --zone=public --add-port=1522/tcp # firewall-
cmd --reload
$ firewall-cmd --permanent --zone=public --list-ports
1522/tcp 22/tcp 

9. Ensure that the required port is open on security lists assigned to GSM VMs to allow
applications to connect to GSM.

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 17

https://docs.oracle.com/en-us/iaas/Content/Block/References/consistentdevicepaths.htm
https://docs.oracle.com/en/database/oracle/oracle-database/21/gsmug/global-data-services-config.html#GUID-C03F39F9-576F-48B7-892B-2636F423BF21


Collecting TNS Entries for the Shard Catalog and Shards
The collection of TNS entries is required to prepare GSM server for configuration of the shard
catalog database and shard databases.

The shard catalog database requires access only to PDB that stores the shard catalog
database objects. However for the shard databases, prepare the entries for each shard CDB
and PDB that stores the application schemas.

1. Prepare the tnsnames entries to access the shard catalog database and all shards (Shard
Catalog and Shards).

2. Add these entries to $ORACLE_HOME/network/admin/tnsnames.ora on the GSM VMs.

Note

Use FQDN for hostnames in connection strings.

db_unique_name =
  (DESCRIPTION =
    (ADDRESS = (PROTOCOL = TCP)(HOST = host_name_fqdn)(PORT = 1521))
    (CONNECT_DATA =
      (SERVER = DEDICATED)
      (SERVICE_NAME = cdb_service_name)
    )
  )

pdb_name =
  (DESCRIPTION =
    (ADDRESS = (PROTOCOL = TCP)(HOST = host_name_fqdn)(PORT = 1521))
    (CONNECT_DATA =
      (SERVER = DEDICATED)
      (SERVICE_NAME = pdb_service_name)
    )
  )

Configuring the Shard Catalog
The shard catalog manages the metadata for Oracle Globally Distributed Database. Configure
a database on Region 1 (FRA) which will be the shard catalog database.

1. Connect to all DBCS instances and update sqlnet encryption algorithms configured in
sqlnet.ora file and add the RC4_256 encryption method as a supported algorithm for client
and server.

Note

The patch is required to enable the AES encryption as the AES encryption is not
supported by default by GSM: Enh 29496977 - GDS ONLY USES RC4_256 TYPE
ENCRYPTION. To enable the AES encryption, apply the patch in Oracle Database
19c. However, this patch is not required in Oracle Database 21c.

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 17



Note

The RC4_256 algorithm is required only for Oracle Database 19c.

2. Configure the shard catalog database with requirements for Oracle Globally Distributed
Database.

SQL> alter system set open_links=16 scope=spfile;
SQL> alter system set open_links_per_instance=16 scope=spfile;
SQL> shu immediate
SQL> startup

3. Configure users on the shard catalog database.

SQL> alter user gsmcatuser account unlock.
SQL> alter user gsmcatuser identified by password;
# Switch to PDB dedicated for catalog database
SQL> alter session set container=catalog_db_pdb;
SQL> create user mysdbadmin identified by password;
SQL> grant connect, create session, gsmadmin_role to mysdbadmin; 
SQL> grant inherit privileges on user SYS to GSMADMIN_INTERNAL;

Configuring the Shard Databases
Configure a database in each region which will be a shard in the distributed database
configuration.

1. Connect to all DBCS instances and update sqlnet encryption algorithms configured in
sqlnet.ora file and add the RC4_256 encryption method as a supported algorithm for client
and server.

Note

The patch is required to enable the AES encryption as the AES encryption is not
supported by default by GSM: Enh 29496977 - GDS ONLY USES RC4_256 TYPE
ENCRYPTION. To enable the AES encryption, apply the patch in Oracle Database
19c. However, this patch is not required in Oracle Database 21c.

Note

The RC4_256 algorithm is required only for Oracle Database 19c.

2. Run the following commands:

SQL> alter database flashback on;
SQL> alter system set dg_broker_start=true;
SQL> alter user GSMROOTUSER account unlock;
SQL> alter user GSMUSER account unlock;
SQL> alter user GSMADMIN_INTERNAL account unlock;
SQL> alter user GSMROOTUSER identified by password;
SQL> alter user GSMUSER identified by password;
SQL> alter user GSMADMIN_INTERNAL identified by password;

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 17



SQL> grant sysdg to gsmuser;
SQL> grant SYSBACKUP to gsmuser;
SQL> grant sysdg to GSMROOTUSER;
SQL> grant SYSBACKUP to GSMROOTUSER;
SQL> alter system set global_names=false;
SQL> shu immediate
SQL> startup
# Switch to PDB used as shared database
SQL> alter session set container= pdb_name;
SQL> grant read,write on directory DATA_PUMP_DIR to GSMADMIN_INTERNAL;
SQL> grant sysdg to gsmuser;
SQL> grant SYSBACKUP to gsmuser;

Creating the Oracle Globally Distributed Database
Configure the global service manager listener, create a shard catalog database, and add all of
the shards to the configuration. The deployment step configures all shards as a single global
database.

1. Configure the shard catalog.

Note

By default system-managed data distribution is configured. If you require any other
data distribution method, specify it during shard catalog creation.

GDSCTL> create shardcatalog -database catalog_pdb_tns_entry -sharding user 
-user
      mysdbadmin/password -region region1

2. Add the GSM listener and start it. Run the listener from GDSCTL.

GDSCTL> add gsm -gsm sharddirector1 -listener 1522 -pwd password -catalog 
pdb_tns_entry
      -region region1

3. Use the following template to add shards to the configuration. Repeat for each shard
database.

Add shard in FRA:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_fra
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_fra -pwd gsmuser_pwd -deploy_as PRIMARY

Add shard in AMS:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_ams

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 17



GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_ams -pwd gsmuser_pwd -deploy_as PRIMARY

Add shard in LON:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_lon
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_lon -pwd gsmuser_pwd -deploy_as PRIMARY

4. Deploy the distributed database configuration.

Run the GDSCTL DEPLOY command, to get the following output:

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

5. Create global database services on the shards to service incoming connection requests
from your application. The global service is an extension to the traditional database
service. All the properties of traditional services are supported for global services. For
distributed databases, additional properties are set for global services. See Create and
Start Global Database Services.

For example, database role, replication lag tolerance, region affinity between clients and
shards, and so on. For a read-write transactional workload, create a single global service
to access data from any primary shard in a distributed database. For highly available
shards using Active Data Guard, create a separate read-only global service.

GDSCTL> add service -service oltp_rw_srvc -role primary

Load the data into the shards using the methods described in Migrating to a Sharded Database

Related Topics

• C.35 create shardcatalog

• Create the Shard Catalog Database

Implementing a Session-Based Application Context Policy
Add row-level data access control on the distributed database in conjunction with the Oracle
Database virtual private database (VPD) feature for both single shard queries and multi-shard
queries. Oracle Global Data Services global service manager (GSM) is used in Oracle Globally
Distributed Database to route queries from the application to the correct shard in a distributed
database.

1. Create user accounts and sample tables on the shard catalog.

connect / as sysdba
alter session enable shard ddl;
create user bt identified by bt;
grant dba, all privileges to bt;

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 17

https://docs.oracle.com/en/database/oracle/oracle-database/19/gsmug/gdsctl-reference.html#GUID-16E4FFF2-29C9-4954-9474-6D269BF3F6AF


--CREATE USER sysadmin_vpd IDENTIFIED BY password CONTAINER = CURRENT;
CREATE USER sysadmin_vpd IDENTIFIED BY password ; --CONTAINER = CURRENT;

GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE, CREATE 
TRIGGER, ADMINISTER DATABASE TRIGGER, ALTER SESSION TO sysadmin_vpd;
GRANT EXECUTE ON DBMS_SESSION TO sysadmin_vpd;
GRANT EXECUTE ON DBMS_RLS TO sysadmin_vpd;

CREATE USER CT identified by ct;
CREATE USER DT identified by dt;
GRANT CREATE SESSION TO CT, DT;

GRANT EXECUTE ON sys.exec_shard_plsql to bt, ct, dt, sysadmin_vpd;

connect bt/bt
create tablespace set ts1 in shardspace shd1;
CREATE SHARDED TABLE customers (custid number, name varchar2(20), 
constraint pk1 primary key(custid)) PARTITION BY CONSISTENT HASH(custid) 
PARTITIONS AUTO TABLESPACE SET ts1;
-- user-defined:
-- CREATE SHARDED TABLE customers (custid number primary key, name 
varchar2(20)) PARTITION BY RANGE (custid) (PARTITION p1 values less than 
(100) TABLESPACE  ts1, PARTITION p2 values less than(200) TABLESPACE  ts2, 
PARTITION p3 values less than(300) TABLESPACE  ts11, PARTITION p4 values 
less than(400) TABLESPACE  ts12);

insert into customers(custid, name) values(1,'CT');
insert into customers(custid, name) values(2,'DT');
insert into customers(custid, name) values(4,'ET');
insert into customers(custid, name) values(5,'FT');
commit;

GRANT READ ON customers TO sysadmin_vpd;

create sharded table orders(oid number not null, custid number not null, 
constraint ordfk foreign key(custid) references customers(custid)) 
partition by reference(ordfk);
-- user-defined:
-- CREATE SHARDED TABLE orders(oid number not null, custid number not 
null, constraint orders_fk1 foreign key(custid) references 
customers(custid)) partition by reference(orders_fk1);

insert into orders values(9876, 1);
insert into orders values(8888, 2);
insert into orders values(7777, 2);
insert into orders values(7771, 4);
insert into orders values(7772, 4);
insert into orders values(7773, 5);
commit;

GRANT READ ON orders TO CT, DT;

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 17



2. Create a database session-based application context.

CONNECT sysadmin_vpd/password
CREATE OR REPLACE CONTEXT orders_ctx USING orders_ctx_pkg;

3. Create a PL/SQL package to set the application context.

CONNECT sysadmin_vpd/password
CREATE OR REPLACE PACKAGE orders_ctx_pkg IS 
--  PROCEDURE set_custnum SHARD_ENABLE;
  PROCEDURE set_custnum;
 END;
/
CREATE OR REPLACE PACKAGE BODY orders_ctx_pkg IS
  --PROCEDURE set_custnum SHARD_ENABLE
  PROCEDURE set_custnum
  AS
    custnum NUMBER;
    cnt number;
    cname varchar2(256);
  BEGIN
    -- workaround for bug 33131789: run a CSQ before SET_CONTEXT
    SELECT count(*) INTO cnt FROM BT.CUSTOMERS;
    SELECT SYS_CONTEXT('USERENV', 'SESSION_USER') INTO cname FROM dual;
    SELECT custid INTO custnum FROM BT.CUSTOMERS WHERE name = cname;
    DBMS_SESSION.SET_CONTEXT('orders_ctx', 'cust_no', custnum);
  EXCEPTION
   WHEN NO_DATA_FOUND THEN NULL;
  END set_custnum;
END;
/

4. Create a logon trigger to run the application context PL/SQL package.

/* create trigger fails to propagate from catalog.
    CREATE TRIGGER set_custno_ctx_...
    DDL Error: ORA-06550: line 1, column 7:
    PLS-00352: Unable to access another database \'GDS$CATALOG.SYSLOCLINK\'
    ORA-06512: at "GSMADMIN_INTERNAL.EXECUTECOMMAND", line 166
    ORA-06550: line 1, column 7:
    PLS-00201: identifier \'SYS@GDS$CATALOG.SYSLOCLINK\' must be declared
    ORA-06550: line 1, column 7:
    PL/SQL: Statement ignored
    ORA-06512: at "SYS.DBMS_GSM_FIXED", line 3764
    ORA-06512: at "SYS.DBMS_GSM_FIXED", line 3866
    ORA-06512: at "GSMADMIN_INTERNAL.EXECUTECOMMAND", line 118
    ORA-06512: at "GSMADMIN_INTERNAL.EXECUTEDDL", line
  So we create it on shards as well manually. => Use alter session enable  
shard operations before creating the trigger.
*/
/* execute sys.exec_shard_plsql('CREATE OR REPLACE TRIGGER 
set_custno_ctx_trig AFTER LOGON ON DATABASE  BEGIN  
sysadmin_vpd.orders_ctx_pkg.set_custnum; END;');
ORA-03753: The procedure cannot be propagated.
*/
-- run on catalog and all shards

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 17



CONNECT sysadmin_vpd/password
CREATE OR REPLACE TRIGGER set_custno_ctx_trig AFTER LOGON ON DATABASE  
BEGIN  sysadmin_vpd.orders_ctx_pkg.set_custnum; END;
/

5. Test the logon trigger.

connect dt/dt
SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;
connect ct/ct
SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;
/* Example output:
SQL> SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;
CUSTNUM
---------------------------------------------------------------------------
-----
2
*/

6. On the shard catalog and shards, create a PL/SQL policy function to limit user access to
their orders only.

/* IF you see following error while propagation of DDL to shards, create 
the function on catalog and each shards manually.
    PLS-00352: Unable to access another database \'GDS$CATALOG.SYSLOCLINK\'
*/
connect sysadmin_vpd/password
CREATE OR REPLACE FUNCTION get_user_orders(
  schema_p   IN VARCHAR2,
  table_p    IN VARCHAR2)
 RETURN VARCHAR2
 AS
  orders_pred VARCHAR2 (400);
  cnum NUMBER;
 BEGIN
  SELECT NVL(SYS_CONTEXT('orders_ctx', 'cust_no'), 0) INTO cnum FROM dual;
  --orders_pred := 'custid = '||cnum;
  orders_pred := 'custid = SYS_CONTEXT(''orders_ctx'', ''cust_no'')'; 
 RETURN orders_pred;
END;
/

7. Create the new security policy.

execute sys.exec_shard_plsql(' SYS.DBMS_RLS.ADD_POLICY (object_schema => 
''BT'',   object_name => ''orders'', policy_name => ''orders_policy'',  
function_schema => ''sysadmin_vpd'', policy_function  => 
''get_user_orders'', statement_types  => ''select'',  policy_type => 
DBMS_RLS.CONTEXT_SENSITIVE,  namespace => ''orders_ctx'',  attribute => 
''cust_no'')');

-- exec sys.exec_shard_plsql('sys.DBMS_RLS.DROP_POLICY(''BT'', ''orders'', 
''orders_policy'')');
-- exec sys.exec_shard_plsql('sys.DBMS_RLS.REFRESH_POLICY(''BT'', 
''orders'', ''orders_policy'')');

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 17



8. Test the new policy.

connect ct/ct
select * from bt.orders;
connect dt/dt
select * from bt.orders;
/*
connect dt/dt
SQL> select * from bt.orders;
       OID     CUSTID
---------- ----------
      8888        2
      7777        2
      
connect ct/ct
SQL> select * from bt.orders;
       OID     CUSTID
---------- ----------
      9876        1
*/

Chapter 16
Data Sovereignty Use Case

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 17



17
Creating a Federated Distributed Database

If you have several database installations in different locations that run the same application,
and you want to to include the data from all of them, to run data analytics queries for example,
you can combine the independent databases into a federated distributed database to take
advantage of Oracle Globally Distributed Database multi-shard queries.

Topics:

• Overview of Federated Distributed Database

• Configuring a Federated Distributed Database

• Federated Distributed Database Reference

Overview of Federated Distributed Database

About Federated Distributed Database
Learn what a federated distributed database configuration is, why you need it, and how it
works.

A federated distributed database is a distributed database configuration where the shards
consist of independent databases with similar schemas.

Creating a distributed database from independent databases reduces the need to import tons
of data into a single location for data analytics.

Consider the following benefits to this approach.

• Create a distributed database environment using existing, geographically distributed
databases; there is no need to provision new systems.

• Run multi-shard queries; access data from many locations in a single query.

Oracle Globally Distributed Database, in a federated distributed database configuration, treats
each independent database as a shard, and as such can issue multi-shard queries on those
shards.

You can create a federated distributed database configuration with minor version mismatches
between the shard databases. For example, one region could be on Oracle Database 23.1 and
another could be on Oracle Database 23.3. All database shards and the shard catalog must be
on Oracle Database 21c or later.

Federated Distributed Database Schema Requirements
You can convert existing databases running the same application into a federated distributed
database configuration, without modifying the database schemas or the application.

However, the databases must have the same schema or minor differences. For example, a
table can have an extra column in one of the databases.

An application upgrade can trigger changes in the schema, such as when you add a new table,
new column, new check constraint, or/and modify a column data type. When part of an overall

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 11



federated distributed database configuration, Oracle Globally Distributed Database handles the
schema differences caused by an application upgrade, as long as the overall schema structure
stays the same.

Sharded and Duplicated Tables in a Federated Distributed Database
Configuration

Tables that have different sets of data on each of the federated databases are equivalent to the
sharded tables in a traditional distributed database. Tables with the same content on all of the
federated databases are equivalent to the duplicated tables in a traditional distributed
database.

When you create the federated distributed database configuration, the system assumes that all
of the tables are sharded, so you must explicitly mark the tables that must be considered
duplicated by the multi-shard query coordinator.

Limitations to Federated Distributed Databases
There are some limitations to creating a federated distributed database configuration.

• There is no concept of chunk in a federated distributed database configuration, so the
GDSCTL MOVE CHUNK command is not supported.

• Application sharding key-based routing is not supported.

• The existing databases, before being added to a federated distributed database
configuration, must be upgraded to Oracle Database 21c or later.

• DDLs, cross-shard insert, update, and delete are not supported from the shard catalog in a
federated distributed database architecture under ENABLE SHARD DDL.

Federated Distributed Database Security

The database users do not need to exist on all of the federated databases, but the schema
owners should exist on all of the databases. The privileges and the passwords of these
schema owners can be different. Only common privileges are imported for security.

Configuring a Federated Distributed Database
To deploy a federated distributed database configuration using existing databases, you define
the database layout just as you would for the user-defined data distribution method, using
GDSCTL commands.

The following is a high-level description of the process for creating and deploying a federated
distributed database configuration.

1. Run the GDSCTL CREATE SHARDCATALOG command with the FOR_FEDERATED_DATABASE option
to create the configuration

2. Add shard directors to the configuration.

3. Add a shardspace to the configuration. A shardspace is defined as an existing database
and its replica.

4. Add a shard by adding the existing database to the shardspace, then run DEPLOY.

Chapter 17
Configuring a Federated Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 11



5. Run GDSCTL SYNC SCHEMA to compare the schemas in the federated distributed database
configuration and retrieve the common shared schemas. Use SYNC SCHEMA to inspect and
apply the DDLs.

6. Use SQL ALTER TABLE on the shard catalog to convert tables containing the same data
across the federated shards to duplicated tables.

7. Prepare the shards in the federated distributed database configuration for multi-shard
queries.

Create a Federated Distributed Database Configuration
The GDSCTL command CREATE SHARDCATALOG is used to create the federated distributed
database configuration, with the FOR_FEDERATED_DATABASE option used instead of selecting a
data distribution method in the SHARDING parameter.

The usage for the GDSCTL command CREATE SHARDCATALOG in creating a federated distributed
database is similar to how it is used to create the shard catalog with the user-defined data
distribution method, except that instead of specifying a method in the SHARDING parameter, you
use the FOR_FEDERATED_DATABASE option. That is, the FOR_FEDERATED_DATABASE option is
mutually exclusive with the SHARDING option.

CREATE SHARDCATALOG -DATABASE connect_identifier
  [-USER username[/password]]
  [-REGION region_name_list] 
  [-CONFIGNAME config_name]
  [-AUTOVNCR ON/OFF]
  [-FORCE] 
  [-SDB distributed_db_name]
  [-SHARDSPACE shardspace_name_list]
  -FOR_FEDERATED_DATABASE

The CREATE SHARDCATALOG syntax statement above shows which parameters are supported.
The parameters not shown are not supported when used with the FOR_FEDERATED_DATABASE
data distribution method, for example, –AGENT_PASSWORD, REPFACTOR, and the Oracle Data
Guard protection mode PROTECTMODE.

Note

Only Oracle Data Guard replication is supported for a federated distributed database.
Oracle Globally Distributed Database doesn't handle the creation and management of
the Data Guard configuration, but you can use Data Guard parameters with the ADD
SHARD command so that you can add the primary and standby databases to see the
status in GDSCTL.

See Also

The GDSCTL create shardcatalog topic in Oracle AI Database Global Data Services
Concepts and Administration Guide for usage notes and command options.

Chapter 17
Configuring a Federated Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 11



Retrieve, Inspect, and Apply the DDLs
Run the GDSCTL SYNC SCHEMA command in phases to create the schema objects common to
the existing databases in the shard catalog.

The GDSCTL SYNC SCHEMA syntax shown here illustrates the three phases of the operation.

sync[hronize] schema
  [-schema [schemalist | all] [-retrieve_only] [-restart [-force]]
 | -apply [-skip_first]
 | -show [[-ddl ddlnum] [-count n] | [-failed_only]]]

SYNC SCHEMA should be run in phases, as described here.

1. Retrieve Phase

Run SYNC SCHEMA with the -retrieve_only option to inspect and verify the DDLs before
they are run on the shard catalog.

sync schema -schema schemalist –retrieve_only

When SYNC SCHEMA is run without -retrieve_only, the DDL is retrieved and applied at the
same time.

2. Inspection Phase

You can examine the DDL statements and their processing status with the -show option.
The -ddl ddlnum option shows the specified DDL, and the -count n option specifies the
maximum number of entries to show.

sync schema –show -ddl ddlnum -count n

Or you can use the -failed_only option to examine only the errored out statements.

sync schema –show -failed_only

3. Apply Phase

In the final phase, you run the DDLs on the shard catalog to create the schemas and their
objects.

sync schema –apply

If you get an error in the apply phase, there are a couple of ways to work around it:

• If you can fix the cause of the error, fix and then retry SYNC SCHEMA -apply, which
retries the failed DDL.

• If the DDL cannot be fixed or it is not required, you can run SYNC SCHEMA –apply -
skip_first, which resumes the apply phase from the point of the DDL failure.

For security reasons, Oracle Globally Distributed Database doesn't offer a way to edit the
DDLs.

4. Import Incremental Changes

Chapter 17
Configuring a Federated Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 11



If there are changes in the schema at a later point, the previous phases can be run again
to import incremental changes. For example, when new objects are added, or a new
column is added to a table, which will generate an ALTER TABLE ADD statement.

See Also

The sync schema (synchronize schema) topic in Oracle AI Database Global Data
Services Concepts and Administration Guide for more SYNC SCHEMA usage notes and
option details.

SYNC SCHEMA Operations for information about the tasks performed by SYNC
SCHEMA

Convert Tables to Duplicated Tables
Use ALTER TABLE table_name externally duplicated to mark tables as duplicated in a
federated distributed database configuration.

Any table created by SYNC SCHEMA is considered by the multi-shard query layer as an
externally sharded table. If the table contains the same data on all of the shards, you can
alter the table to externally duplicated, so that the multi-shard query retrieves the data from
one shard only, even if it is a query on a table with no filter predicates on
ORA_SHARDSPACE_NAME.

ALTER TABLE table_name [externally duplicated | externally sharded]

Prepare the Shards For Multi-Shard Queries
Create all shard users and use the ORA_SHARDSPACE_NAME pseudo-column to perform queries
on specific shards.

All Shard Users

Before running multi-shard queries from the shard catalog, you must create all shard users
and grant them access to the sharded and duplicated tables. These users and their privileges
should be created in the shard catalog under shard DDL enabled.

Create Shardspace-Specific Queries

A shardspace in a federated distributed database is a set consisting of a primary shard and
zero or more standby shards. To filter query results for a particular shard[space], a pseudo-
column called ORA_SHARDSPACE_NAME is added to every externally sharded table. The value
of this pseudo column in the tables is the name of the shardspace.

Depending on the value of MULTISHARD_QUERY_DATA_CONSISTENCY, the rows can be fetched
from the primary or from any of the standbys in the shardspace. To run a multi-shard query on
a given shard, you can filter the query with the predicate ORA_SHARDSPACE_NAME =
shardspace_name_shard_belongs_to.

A query like SELECT CUST_NAME, CUST_ID FROM CUSTOMER, where the table CUSTOMER is
marked as externally sharded, runs on all of the shards.

A query like SELECT CUST_NAME, CUST_ID FROM CUSTOMER WHERE ora_shardspace_name =
‘EUROPE’ runs on the shards belonging to the shardspace_name Europe. Depending on the

Chapter 17
Configuring a Federated Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 11



MULTISHARD_QUERY_DATA_CONSISTENCY parameter value, the query is run on either the primary
shard of the shardspace Europe or on its standbys.

You can join sharded tables from different shardspaces. For example, to find the customers
from shardspace Europe with orders in shardspace NA, write a query similar to the following.

SELECT order_id, customer_name FROM customers c , orders o WHERE c.cust_id = 
o.cust_id and
c.ora_shardspace_name = ‘Europe’ and o.ora_shardspace_name = ‘NA’ 

Querying an externally duplicated table, with or without the ORA_SHARDSPACE_NAME
predicate, should go to only one of the shardspaces. The
MULTISHARD_QUERY_DATA_CONSISTENCY parameter value determines whether to query a primary
shard in the shardspace or its replicas.

Federated Distributed Database Reference

SYNC SCHEMA Operations

DDL Synchronization
DDL synchronization is an operation that SYNC SCHEMA runs just after the deployment of the
shards in a federated distributed database configuration.

The goal of this operation is to import the object definitions from all of the shards, compare the
definitions across the shards, and generate DDLs for the objects that exist on all of the shards
(common objects). Once the DDLs are run and the objects are created, you can reference
these objects in multi-shard queries.

Import Users
A user or schema is a candidate for import by SYNC SCHEMA if it exists on all of the shards and
owns importable schema objects.

You can narrow the list of users to be imported by passing a list of users in the -SCHEMA
parameter. For example,

gdsctl> sync schema -schema scott

gdsctl> sync schema -schema scott,myschema

For case-sensitive schemas use quoted identifiers.

gdsctl> sync schema -schema "O'Brien",scott

To include all non-Oracle schemas, use the value ALL in the SCHEMA parameter.

gdsctl> sync schema -schema all

Chapter 17
Federated Distributed Database Reference

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 11



Before importing the users, SYNC SCHEMA verifies that any discovered users exist on all shards,
and no user already exists on the shard catalog with the same name. The users are then
created on the shard catalog as local users and they are locked. Because these are local
users, they only share the same name with shards and are essentially the same as any other
user that may have the same name across different databases. Note that these users are not
able to login and issue queries because they are not all shard users. To issue multi-shard
queries, an all shard user must be created.

Note

Only users local to a PDB are imported. Common CDB users are not imported.

Grant User Roles and Priviledges
For the imported users, SYNC SCHEMA compares users' privileges.

SYNC SCHEMA grants only the privileges that are granted on all of the shards (common grants).
A user A who has a DBA role on shard1, but does not have DBA role on shard2, is not granted
the DBA role in the shard catalog.

Import Object Definitions
The objects compared and imported by SYNC SCHEMA to the shard catalog are the objects that
will be referenced in multi-shard queries or used by multi-shard query processing.

These objects are:

• Tables

• Views and Materialized Views (exported as tables)

• Check Constraints

• Object Types

• Synonyms

Running SYNC SCHEMA does not import objects related to storage, or objects that have no
impact on multi-shard query processing, such as tablespaces, indexes, indextypes, directories,
or zone maps.

Schema Object Comparison
The objects, from one shard to another, can have different definitions. SYNC SCHEMA compares
the different definitions and creates a common definition to enable multi-shard queries against
imported objects.

SYNC SCHEMA detects the objects' differences at two levels: number of objects, and object
definitions.

First, SYNC SCHEMA considers the number of objects. It is likely that, during an application
upgrade, some objects are added to the schemas. Only objects that are on all of the shards
will be imported into the shard catalog.

Second, the object definitions from one shard to another can have different attributes. For the
objects that SYNC SCHEMA imports, the following differences are noted:

Chapter 17
Federated Distributed Database Reference

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 11



Differences in Tables

When comparing objects in a federated distributed database configuration, some differences in
tables have an impact on multi-shard queries and some do not.

Column Differences

Only column differences have an impact on multi-shard queries. SYNC SCHEMA addresses only
this difference.

• The number of columns can be different.

• The data type of a given column can be different.

• The default value of a given column can be different.

• The expression of a virtual column can be different

When a table has a different numbers of columns, SYNC SCHEMA will opt for the creation of a
table that contains the union of all of the columns. Taking the union of all of the columns,
compared to just taking the intersection, will spare you from re-writing multi-shard queries in
case of an incremental deploy, when the added shard has fewer columns than indicated in the
shard catalog.

When a column has different data types, SYNC SCHEMA defines it as the highest (largest)
datatype.

When a column has different data types, and one of the columns is a user-defined object type,
then that column is not imported into the shard catalog.

When a column has different default values, SYNC SCHEMA sets NULL as the default value.

Nested table columns are not imported into the shard catalog.

Example: a Customer table is defined on shard1 and shard2 as shown here.

On shard1:

Customer( Cust_id number, Name varchar(30),
    Address varchar(50),Zip_code number)

On shard2:

Customer( Cust_id varchar(20), Name varchar(30),
    Address varchar(50),Zip_code number,
    Country_code number)

Note that the column Cust_id is a number on shard1 and a varchar(20) on shard2. Also, note
that Country_code exists on shard2 but does not exist on shard1.

The Customer table created by SYNC SCHEMA in the shard catalog has all of the columns,
including Country_code, and the Cust_id type is varchar(20).

Customer( Cust_id varchar(20), Name varchar(30),
    Address  varchar(50),Zip_code number,
    Country_code number)

Chapter 17
Federated Distributed Database Reference

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 11



SYNC SCHEMA keeps track of these differences between schemas in the shard catalog. A query
issued on the catalog database that accesses these heterogeneous columns is rewritten to
address the differences before it is sent to the shards. On the shard, if there is a data type
mismatch, the data is CAST into the "superior" data type as created on the catalog. If the
column is missing on the shard, the default value is returned as set on the catalog.

Partition Scheme Differences

Note that this difference has no impact on multi-shard queries, and is ignored.

• Partitioning column can be different.

• Partition type can be different.

• Number of partitions can be different.

Storage Attribute Differences

Note that this difference has no impact on multi-shard queries, and is ignored.

• Tablespaces, on which the table is created, are different.

• The encryption can be different.

• The INMEMORY attribute can be different.

Differences in Views

Views on shards are created and handled as tables in the shard catalog. The same restrictions
that apply to tables also apply to views.

Differences in Constraints

Only CHECK constraints are created in the shard catalog. The CHECK constraint condition
should be same on all of the shards.

Differences in Object Types

Object types and type bodies are only created if they have the same definition on all of the
shards.

Troubleshooting a Federated Distributed Database
Solve common federated distributed database issues with these troubleshooting tips.

ORA-03851: Operation not supported in federated database

ORA-03701: Invalid parameter combination: federated database and ...

Some of the operations and command options that apply to a traditional distributed database
are not applicable to a federated distributed database. This is because:

• There is no concept of a chunk in a federated distributed database. Any chunk-related
operation is invalid, for example SPLIT CHUNK and MOVE CHUNK.

• The Data Guard broker configuration is not set up or managed by the system in federated
distributed database, because the existing shards may already have been set up with their
own high availability configurations. Operations such as SET DATAGUARD_PROPERTY or
MODIFY SHARDSPACE are not supported.

Chapter 17
Federated Distributed Database Reference

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 11



• The CREATE SHARD command is not supported.

ORA-03885: Some primary shards are undeployed or unavailable

The SYNC SCHEMA operation requires that all primary shards be available. Check the output of
the CONFIG SHARD command, and check the status of all primary shards. Fix any issues and
retry the operations when the shards become available.

ORA-03871: Some DDL statements are not applied to the catalog

The SYNC SCHEMA operation cannot import object definitions from the shards when some
statements from the previous issuance are still not applied on the shard catalog. Run SYNC
SCHEMA with the -apply option to run these statements.

Handling Errors During Multi-Shard Queries

If a multi-shard query fails with this error due to a mismatch of the object definition on the shard
and the catalog, make sure that the shard catalog has the latest schema changes imported.
Any time there are schema changes in the federated distributed database, you must run SYNC
SCHEMA to import any changes in the schemas on the shards.

Note that subsequent runs of SYNC SCHEMA will not drop and recreate the object, but will
generate ALTER statements to incorporate the definition changes. This ensures that if there are
queries already running during the SYNC SCHEMA operation, they won't fail with invalid object
errors.

Handling Errors During DDL Processing Phase

If DDL fails on the shard catalog, the status of each DDL can be examined with the SYNC
SCHEMA -show option.

gdsctl> sync schema -show

Note: The SYNC SCHEMA -show command is different from the command SHOW DDL. SHOW DDL
lists DDL statements run by an all-shard user that are first run on the catalog and then
propagated to the shards, whereas SYNC SCHEMA -show DDL statements are generated from
the objects imported from shards.

By default, SYNC SCHEMA -show lists a fixed number of the latest DDLs. The -count and -ddl
options can be used to inspect specific range of DDLs. For example,

gdsctl> sync schema -show -count 20
gdsctl> sync schema -show -count 20 -ddl 5

To check the complete DDL text and error message, if any, use the -ddl option.

gdsctl> sync schema -show -ddl 5

To list only the failed DDL statements, use the -failed_only option.

gdsctl> sync schema –failed_only

Based on the error message of the failed DDL, fix the cause of the error and perform the apply
phase.

gdsctl> sync schema -apply

Chapter 17
Federated Distributed Database Reference

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 11



The SYNC SCHEMA command also has a -restart option to perform the complete operation
from the beginning as if it were run for the first time. This option will DROP all existing schemas
imported during all previous runs of SYNC SCHEMA and any related metadata. Be aware that this
will cause any running queries on these objects to fail.

gdsctl> sync schema -restart

Chapter 17
Federated Distributed Database Reference

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 11



18
Creating Affinity Between Middle-Tier and
Shards

Middle-tier routing allows smart routers to route to the middle tier associated with a sharding
key.

You can use the middle-tier routing API to publish the distributed database topology to the
router tier so that requests based on specific sharding keys are routed to the
appropriate application middle tier, which in turn establishes connections on the given subset
of shards.

In a typical distributed database environment, middle-tier connection pools route database
requests to specific shards. This can lead to a situation where each middle-tier connection pool
establishes connections to each shard. This can create too many connections to the database.
The issue can be solved by creating an affinity between the middle tiers and shards.

In this scenario it would be ideal to dedicate a middle tier (web server, application server) for
each data center or cloud, and to have client requests routed directly to the middle tier where
the shard containing the client data (corresponding to the client shard key) resides. A common
term used for this kind of setup is swim lanes, where each swim lane is a dedicated stack, from
web server to application server all the way to the database.

Oracle Universal Connection Pool (UCP) solves this problem by providing a middle-tier routing
API which can be used to route client requests to the relevant middle tier. The UCP middle tier
API is exposed by the OracleShardRoutingCache class. An instance of this class represents
the UCP internal shard routing cache, which can be created by providing connection properties
such as user, password, and URL. The routing cache connects to the shard catalog to retrieve
the key to shard mapping topology and stores it in its cache.

The routing cache is used by UCP middle-tier API
getShardInfoForKey(shardKey,superShardKey), which accepts a sharding key as input and
returns a set of ShardInfo instances mapped to the input sharding key. The ShardInfo
instance encapsulates a unique shard name and priority of the shard. An application using the
middle-tier API can map the returned unique shard name value to a middle tier that has
connections to a specific shard. The routing cache is automatically updated when chunks are
split or moved to other shards by subscribing to respective ONS events.

The following code example illustrates the usage of Oracle UCP middle-tier routing API.

Example 18-1    Middle-Tier Routing Using UCP API

import java.sql.SQLException;
import java.util.Properties;
import java.util.Random;
import java.util.Set;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.ucp.UniversalConnectionPoolException;
import oracle.ucp.routing.ShardInfo;
import oracle.ucp.routing.oracle.OracleShardRoutingCache;

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 3



/**
 * The code example illustrates the usage of UCP's mid-tier routing feature.  
 * The API accepts sharding key as input and returns the set of ShardInfo 
 * instances mapped to the sharding key. The ShardInfo instance encapsulates 
 * unique shard name and priority. The unique shard name then can be mapped 
 * to a mid-tier server which connects to a specific shard.
 *
 */
public class MidtierShardingExample {

  private static String user = "testuser1";
  private static String password = "testuser1";

  // catalog DB URL
  private static String url = "jdbc:oracle:thin:@//hostName:1521/
catalogServiceName";
  private static String region = "regionName";

  public static void main(String args[]) throws Exception {
    testMidTierRouting();
  }

  static void testMidTierRouting() throws UniversalConnectionPoolException,
      SQLException {

    Properties dbConnectProperties = new Properties();
    dbConnectProperties.setProperty(OracleShardRoutingCache.USER, user);
    dbConnectProperties.setProperty(OracleShardRoutingCache.PASSWORD, 
password);
    // Mid-tier routing API accepts catalog DB URL
    dbConnectProperties.setProperty(OracleShardRoutingCache.URL, url);

    // Region name is required to get the ONS config string
    dbConnectProperties.setProperty(OracleShardRoutingCache.REGION, region);

    OracleShardRoutingCache routingCache = new OracleShardRoutingCache(
        dbConnectProperties);

    final int COUNT = 10;
    Random random = new Random();

    for (int i = 0; i < COUNT; i++) {
      int key = random.nextInt();
      OracleShardingKey shardKey = routingCache.getShardingKeyBuilder()
          .subkey(key, OracleType.NUMBER).build();
      OracleShardingKey superShardKey = null;

      Set<ShardInfo> shardInfoSet = routingCache.getShardInfoForKey(shardKey,
          superShardKey);

      for (ShardInfo shardInfo : shardInfoSet) {
        System.out.println("Sharding Key=" + key + " Shard Name="
            + shardInfo.getName() + " Priority=" + shardInfo.getPriority());
      }
    }

Chapter 18

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 3



  }
}

See Also

Middle-Tier Routing Using UCP in Oracle Universal Connection Pool Developer’s
Guide

Chapter 18

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 3



19
Troubleshooting

You can enable tracing, locate log and trace files, and troubleshooting common Oracle Globally
Distributed Database issues.

Topics:

• Troubleshooting Tips

• Gathering Optimizer Statistics on Sharded Tables

• Generate HTML SQL Monitor Output for a Query Running from the Shard Catalog

• Tracing and Debug Information

• Common Error Patterns and Resolutions

Troubleshooting Tips
Use these tips to discover information about the Globally Distributed Database that you need
to help you troubleshoot issues.

Pre-Deployment Network Validation
Several GDSCTL commands have a -validate_network option to detect network
configuration issues as early as possible during the specification and deployment of distributed
databases.

The -validate_network can be used in following GDSCTL commands for distributed
databases:

• add {invitednode | invitedsubnet}

• add shard

• deploy

• start gsm

• validate (also includes -show_errors)

Checking the Data Distribution Method
Run gdsctl config sdb to check which data distribution (sharding) method is used in the
distributed database.

The data distribution method can be system-managed, composite, user-defined, directiry-
based, or federated.

The distribution method is shown under "Shard type" in the output of gdsctl config sdb as
shown here.

gdsctl> config sdb
 

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 16



 
GDS Pool administrators
------------------------
 
Replication Type
------------------------
Data Guard
 
Shard type
------------------------
System-managed 
 
Shard spaces
------------------------
shd1
 
Services
------------------------
srv1

Checking the Replication Type
Run gdsctl config sdb to check which method is used for shard replication in the distributed
database.

The replication type is shown under "Replication Type" in the output of gdsctl config sdb as
shown here.

gdsctl> config sdb
 
 
GDS Pool administrators
------------------------
 
Replication Type
------------------------
Data Guard
 
Shard type
------------------------
System-managed 
 
Shard spaces
------------------------
shd1
 
Services
------------------------
srv1

Table 19-1    Replication types in config sdb output

Replication Type Value Shown in Output

Oracle Data Guard Data Guard

Chapter 19
Troubleshooting Tips

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 16



Table 19-1    (Cont.) Replication types in config sdb output

Replication Type Value Shown in Output

Raft

Checking the Oracle Data Guard Protection Mode
You can run gdsctl config shardspace on a given shardspace to check the Oracle Data
Guard protection mode in your GDSCTL session, rather than switching to DGMGRL.

Data Guard can be configured in three different protection modes: MaxProtection,
MaxAvailability, and MaxPerformance.

The Data Guard protection mode is shown under PROTECTION MODE in the gdsctl config
shardspace command output, as shown here.

GDSCTL> config shardspace -shardspace shd1
Shard Group                   Region                        Role
-----------                   ------                        ----
dbs1                          east                          Primary
 
PROTECTION_MODE               Chunks
---------------               ------
MaxProtection                 6

Checking Which Shards Are Mapped to a Key
You can run gdsctl config chunks -key to check which shards are mapped to a sharding
key.

Example 1: Single Table Family

In the following example, there is only one table family in the distributed database
configuration, and the table is partitioned (sharded) on data type number.

In this example, the user is checking which chunk sharding key value "2" is mapped to. In the
output it shows sharding key 2 is mapped to chunk "3" and is present in the database
"aime1b".

GDSCTL> config chunks -key 2
Range Definition
------------------------
Chunks    Range Definition
------    ----------------
3         1431655764-2147483646
 
Databases
------------------------
aime1b

Similarly, this can be done for any data type sharding is done on. Also, a multiple column
sharding key can be checked with comma separated values.

The range definition is the range of hash values and can be ignored.

Chapter 19
Troubleshooting Tips

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 16



Example 2: Multiple Table Families

In a multiple table family configuration, add the option -table_family to specify the table
family to which the specified sharding key belongs.

The config chunks command lists shards from all shardgroups in the topology. This example
also lists a Data Guard standby shardgroup, as shown by the addition of "aime1e" to the
Databases (shards) list.

GDSCTL> config chunks -key 1 -table_family testuserfam3.customersfam1
 
Range Definition
------------------------
Chunks    Range Definition
------    ----------------
1         0-357913941
 
Databases
------------------------
aime1b    
aime1e

Example 3: Specifying a Multiple Column Sharding Key

When a table is sharded by multiple columns, specify the sharding key value as a comma-
separated list as shown here.

GDSCTL> config chunks -key 10,mary,2010-04-04
 
Range Definition
------------------------
Chunks    Range Definition
------    ----------------
4         1288490187-1717986916
 
Databases
------------------------
aime1b    
aime1e

Checking Shard Operation Mode (Read-Only or Read-Write)
You can check whether shards are running in read-only or read-write mode by running gdsctl
config chunks -cross_shard.

The gdsctl config chunks -cross_shard command output shows which shards, listed under
"Database", are running in read-only and read-write modes, as shown below. The command
also lists the chunk ranges on those shards.

gdsctl config chunks -cross_shard

Read-Only cross shard targets
------------------------
Database                      From To
--------                      ---- --

Chapter 19
Troubleshooting Tips

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 16



tst3b_cdb2_pdb1               1    3
tst3c_cdb3_pdb1               9    10
tst3d_cdb2_pdb1               4    5
tst3e_cdb3_pdb1               6    8
 
Chunks not offered for cross-shard
------------------------
Shard space    From To
-----------    ---- --
 
Read-Write cross-shard targets
------------------------
Database                      From To
--------                      ---- --
tst3b_cdb2_pdb1               1    5
tst3c_cdb3_pdb1               6    10
 
Chunks not offered for Read-Write cross-shard activity
------------------------
Data N/A

Checking DDL Text
Run gdsctl show ddl -ddl ddl_id to get the text for the specified DDL.

The DDL numeric identifier is specified with -ddl ddl_id to get the text and other details of a
particular DDL, as shown here.

gdsctl show ddl -ddl 5

DDL Text: CREATE SHARDED TABLE Customers ( CustNo NUMBER NOT NULL, Name 
VARCHAR2(50), Address VARCHAR2(250), Location VARCHAR2(20), Class 
VARCHAR2(3), CONSTRAINT RootPK PRIMARY KEY(CustNo)) PARTITION BY CONSISTENT 
HASH (CustNo) PARTITIONS AUTO TABLESPACE SET ts1
Owner: TESTUSER1
Object name: CUSTOMERS
DDL type: C
Obsolete: 0
Failed shards:

Note

The show ddl command output might be truncated. You can run SELECT ddl_text
FROM gsmadmin_internal.ddl_requests on the shard catalog to see the full text of the
statements.

Checking Chunk Migration Status
Run gdsctl config chunks -show_reshard to check the status of chunk migration.

A chunk move is a long running operation, whether user-initiated or internal (during
incremental deploy), so if you need to check the status, the gdsctl config chunks -
show_reshard provides the following status indicators as the move progresses.

Chapter 19
Troubleshooting Tips

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 16



• empty - indicates no chunk migration in progress

• scheduled - chunk is pending movement, which could be because it is waiting on another
chunk move to complete, or the move didn't initiate due to some error

• running - current in progress

• failed - chunk move failed. Check GSM traces and source and target database traces for
details.

In the following example, chunk move status is shown in the "Ongoing chunk movement" table
in the command output.

gdsctl config chunks -show_reshard

Chunks
------------------------
Database                      From      To
--------                      ----      --
tst3b_cdb2_pdb1               1         6
tst3c_cdb3_pdb1               7         10
tst3d_cdb2_pdb1               1         6
tst3e_cdb3_pdb1               7         10
 
Ongoing chunk movement
------------------------
Chunk     Source                        Target                        status
-----     ------                        ------                        ------
7         tst3c_cdb3_pdb1               tst3b_cdb2_pdb1               Running
8         tst3c_cdb3_pdb1               tst3b_cdb2_pdb1               
scheduled
9         tst3c_cdb3_pdb1               tst3b_cdb2_pdb1               
scheduled
10        tst3c_cdb3_pdb1               tst3b_cdb2_pdb1               
scheduled

Checking Table Type (Sharded or Duplicated)
You can check whether tables are sharded or duplicated in dba/all/user_tables using SELECT
TABLE_NAME,SHARDED,DUPLICATED FROM user_tables;.

In the following example, column "S" indicates whether a table is sharded, and column "D"
indicates whether a table is duplicated.

SQL> select TABLE_NAME,SHARDED,DUPLICATED from user_tables;
 
TABLE_NAME      S D
--------------- - -
CUSTOMERS       Y N
DUP1            N Y
LINEITEMS       Y N
MLOG$_DUP1      N N
ORDERS          Y N

Chapter 19
Troubleshooting Tips

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 16



Checking User Type (Local or ALL_SHARD)
You can find out which users are created as local users and which are distributed database
users by selecting the username and ALL_SHARD column in dba/all/user_users.

SQL>  select USERNAME,ALL_SHARD from users_users where username='TESTUSER1';
 
USERNAME        ALL_SHARD
--------------- ---------
TESTUSER1       YES

Identifying Tables Created as Sharded Tablespaces
You can find out whether tablespaces are used for a sharded table by selecting the
TABLESPACE_NAME and CHUNK_TABLESPACE columns in dba/all/user_tablespaces.

The value in the CHUNK_TABLESPACE column is Y in dba/all/user_tablespaces if it is a
tablespace for a sharded table.

SQL> select TABLESPACE_NAME,CHUNK_TABLESPACE from user_tablespaces;
 
TABLESPACE_NAME                C
------------------------------ -
SYSTEM                         N
SYSAUX                         N
TEMP                           N
SYSEXT                         N
TS1                            Y

Checking if Shard DDL is Enabled or Disabled
You can check if Shard DDL is enabled or disabled in the current SQL session.

These examples show the result of checking Shard DDL status after enabling and disabling
Shard DDL.

SQL> alter session enable shard ddl;
 
Session altered.
 
SQL> select shard_ddl_status from v$session where AUDSID = 
userenv('SESSIONID');
 
SHARD_DD
--------
ENABLED

SQL> alter session disable shard ddl;
 
Session altered.
 
SQL> select shard_ddl_status from v$session where AUDSID = 

Chapter 19
Troubleshooting Tips

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 16



userenv('SESSIONID');
 
SHARD_DD
--------
DISABLED

Filtering Data by Sharding Key
You can set the SHARD_QUERIES_RESTRICTED_BY_KEY parameter to enable or disable data
filtering by a specified sharding key.

The parameter SHARD_QUERIES_RESTRICTED_BY_KEY can be set with ALTER at the system or
session level. If enabled, DMLs will only display select data for specified SHARDING_KEY set in
the client connection.

In the following example, the client connection is established with a shard with SHARDING_KEY
specified as "1". However, when the client runs a SELECT on the customers table, all of the rows
in that table in the shard are displayed.

connection established for client with sharding_key=1

SQL> select * from customers order by custno;
 
    CUSTNO NAME       ADDRESS    LOCATION   CLA
---------- ---------- ---------- ---------- ---
         1 John       Oracle KM  Bangalore  A
        50 Larry      Oracle HQ  SFO        B
 
2 rows selected.
 
SQL>

Now, as shown below, we enable session level filtering, and the result of the same SELECT
statement is restricted to only the single row that matches the SHARD_KEY specified in the client
connection.

SQL> alter session set shard_queries_restricted_by_key = true;
 
Session altered.
 
SQL> select current_shard_key from dual;
 
CURRENT_SHARD_KEY
-----------------
                1
 
1 row selected.
 
SQL> select * from customers;
 
    CUSTNO NAME       ADDRESS    LOCATION   CLA
---------- ---------- ---------- ---------- ---
         1 John       Oracle KM  Bangalore  A

Chapter 19
Troubleshooting Tips

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 16



Gathering Optimizer Statistics on Sharded Tables
You can gather statistics on sharded tables from the coordinator database.

The statistic preference parameter COORDINATOR_TRIGGER_SHARD, when set to TRUE on all of the
shards, allows the coordinator database to import the statistics gathered on the shards.

The PL/SQL procedures DBMS_STATS.GATHER_SCHEMA_STATS() and
DBMS_STATS.GATHER_TABLE_STATS() gather statistics on sharded tables and duplicated tables
in the shards and in the coordinator database. See also, REPORT_GATHER_TABLE_STATS
Function.

Manual Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you have a
schema named sharduser:

connect / as sysdba
EXECUTE 
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD','TRUE')
;

2. Gather statistics across the shards.

The user should be an all-shards user and needs to have privileges to access dictionary
tables.

a. On the shards run the following.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER', options => 
'GATHER');

b. When all shards are completed, to pull aggregated statistics run the following on the
coordinator.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER', options => 
'GATHER');

c. Check the statistics on all of the shards.

connect sharduser/password

ALTER SESSION SET nls_date_format='DD-MON-YYYY HH24:MI:SS';
  col TABLE_NAME form a40
  set pagesize 200 linesize 200

SELECT TABLE_NAME, NUM_ROWS, sharded, duplicated, last_analyzed
  FROM user_tables
  WHERE table_name not like 'MLOG%' and table_name not like 'RUPD%'
  and table_name not like 'USLOG%';

Automatic Statistics Gathering

Chapter 19
Gathering Optimizer Statistics on Sharded Tables

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 16



1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you have a
schema named sharduser:

connect / as sysdba
EXECUTE 
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD','TRUE')
;

2. Schedule a job to pull aggregated statistics on the shards and on the coordinator
database.

The user should be an all-shards user and must have privileges to access dictionary
tables.

Start the following job on the shards:

connect sharduser/password
BEGIN 
DBMS_SCHEDULER.CREATE_JOB ( 
   job_name => 'Gather_Stats_2', 
   job_type => 'PLSQL_BLOCK',
   job_action => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 
''DEMO'', options => ''GATHER''); END;',
   start_date => SYSDATE,
   repeat_interval => 
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=14;byminute=10;bysecon
d=00',
   end_date => NULL,
   enabled => TRUE,
   comments => 'Gather table statistics');
END; 
/

After the job on all of the shards is finished, start the following job on the coordinator.

connect sharduser/password
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
   job_name             => 'Gather_Stats_2',
   job_type             => 'PLSQL_BLOCK',
   job_action           => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname 
=> ''DEMO'', options => ''GATHER''); END;',
   start_date           =>  SYSDATE,
   repeat_interval      => 
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=15;byminute=10;bysecon
d=00', 
   end_date             =>  NULL,
   enabled              =>  TRUE,
   comments             => 'Gather table statistics');
END;
/

Chapter 19
Gathering Optimizer Statistics on Sharded Tables

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 16



Generate HTML SQL Monitor Output for a Query Running from
the Shard Catalog

To generate an HTML SQL monitor output, you can follow these steps:

1. Add hint to query:

SELECT /*+ MONITOR */ ...

For example, a cross-shard query from the shard catalog:

select /*+ MONITOR */ count(*) from CUSTOMER;

2. Get SQL_ID of the query from v$sql.

SELECT SQL_ID, SQL_FULLTEXT
FROM V$SQL
WHERE UPPER(SQL_FULLTEXT) LIKE '%CUSTOMER%'
AND LAST_ACTIVE_TIME > sysdate -1
ORDER BY LAST_ACTIVE_TIME DESC;

3. Generate a report in a file ( for example, report.html in either the default or a specific
folder with the same or different name).

SET LONG 1000000
SET LONGCHUNKSIZE 1000000
SET LINESIZE 1000
SET PAGESIZE 0
SET TRIM ON
SET TRIMSPOOL ON
SET ECHO OFFSET FEEDBACK OFF
spool report.html
-- replace sql_id values with sql_id of the query
SELECT DBMS_SQLTUNE.report_sql_monitor( sql_id => 'dfj5upfq6w50j',
  type => 'ACTIVE', report_level => 'ALL') AS report
FROM dual;
spool off;

4. Find the generated SQL Monitor report and view it in a browser or any HTML viewer tool.

Tracing and Debug Information
You can enable tracing for Oracle Globally Distributed Database and find information in any of
several trace files. GDSCTL also has several commands that can display status and error
information.

Enabling Tracing
Enable PL/SQL tracing to track down issues in the distributed database.

Chapter 19
Generate HTML SQL Monitor Output for a Query Running from the Shard Catalog

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 16



To get full tracing, set the GWM_TRACE level as shown here. The following statement provides
immediate tracing, but the trace is disabled after a database restart.

ALTER SYSTEM SET EVENTS 'immediate trace name GWM_TRACE level 263';

To disable the GWM_TRACE, issue:

ALTER SYSTEM SET EVENTS 'immediate trace name GWM_TRACE level 200';

The following statement enables tracing that continues in perpetuity, but only after restarting
the database.

ALTER SYSTEM SET EVENT='10798 trace name context forever, level 7' 
SCOPE=spfile;

It is recommended that you set both of the above traces to be thorough.

To trace everything in the distributed database environment, you must enable tracing on the
shard catalog and all of the shards. The traces are written to the RDBMS session trace file for
either the GDSCTL session on the shard catalog, or the session(s) created by the shard
director (also called GSM) on the individual shards.

Where to Find Alert Logs and Trace Files
There are several places to look for trace and alert logs in the distributed database
environment.

Standard RDBMS trace files located in diag/rdbms/.. will contain trace output.

Output from ‘deploy’ will go to job queue trace files db_unique_name_jXXX_PID.trc.

Output from other GDSCTL commands will go to either a shared server trace file
db_unique_name_sXXX_PID.trc or dedicated trace file db_unique_name_ora_PID.trc
depending on connect strings used.

Shared servers are typically used for many of the connections to the catalog and shards, so
the tracing is in a shared server trace file named SID_s00*.trc.

GDSCTL has several commands that can display status and error information.

Use GDSCTL STATUS GSM to view locations for shard director (GSM) trace and log files.

GDSCTL> status
Alias                     SHARDDIRECTOR1
Version                   18.0.0.0.0
Start Date                25-FEB-2016 07:27:39
Trace Level               support
Listener Log File         /u01/app/oracle/diag/gsm/slc05abw/sharddirector1/
alert/log.xml
Listener Trace File       /u01/app/oracle/diag/gsm/slc05abw/sharddirector1/
trace/
ora_10516_139939557888352.trc
Endpoint summary          (ADDRESS=(HOST=shard0)(PORT=1571)(PROTOCOL=tcp))
GSMOCI Version            2.2.1
Mastership                N
Connected to GDS catalog  Y

Chapter 19
Tracing and Debug Information

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 16



Process Id                10535
Number of reconnections   0
Pending tasks.     Total  0
Tasks in  process. Total  0
Regional Mastership       TRUE
Total messages published  71702
Time Zone                 +00:00
Orphaned Buddy Regions:   None
GDS region                region1
Network metrics:
   Region: region2 Network factor:0

The non-XML version of the alert.log file can be found in the /trace directory as shown here.

/u01/app/oracle/diag/gsm/shard-director-node/sharddirector1/trace/alert*.log

To decrypt log output in GSM use the following command.

GDSCTL> set _event 17 -config_only

Primary shard director (GSM) trace/alert files include status and errors on any and all
asynchronous commands or background tasks (move chunk, split chunk, deploy, shard
registration, Data Guard configuration, shard DDL processing, etc.)

To find pending AQ requests for the shard director, including error status, use GDSCTL CONFIG.

To see ongoing and scheduled chunk movement, use GDSCTL CONFIG CHUNKS -show_reshard

To see shards with failed DDLs, use GDSCTL SHOW DDL -failed_only

To see the DDL error information for a given shard, use GDSCTL CONFIG SHARD -shard
shard_name

Common Error Patterns and Resolutions
Troubleshoot common errors in Oracle Globally Distributed Database.

Shard Director Fails to Start
If you encounter issues starting the shard director, try the following:

To start Scheduler you must be inside ORACLE_HOME on each shard server.

GDSCTL>start gsm -gsm shardDGdirector
GSM-45054: GSM error
GSM-40070: GSM is not able to establish connection to GDS catalog

GSM alert log, /u01/app/oracle/diag/gsm/shard1/sharddgdirector/trace/
alert_gds.log
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
GSM-40122: OCI Catalog Error. Code: 12514. Message: ORA-12514: TNS:listener 
does not 
currently know of service requested in connect descriptor
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.

Chapter 19
Common Error Patterns and Resolutions

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 16



2017-04-20T22:50:22.496362+05:30
Process 1 in GSM instance is down
GSM shutdown is successful
GSM shutdown is in progress
NOTE : if not message displayed in the GSM log then enable GSM trace level to 
16 
while adding GSM itself.

1. Remove the newly created shard director (GSM) that failed to start.

GDSCTL> remove gsm -gsm shardDGdirector

2. Add the shard director using trace level 16.

GDSCTL> add gsm -gsm shardDGdirector -listener port_num -pwd 
gsmcatuser_password
 -catalog hostname:port_num:shard_catalog_name
 -region region1 -trace_level 16

3. If the shard catalog database is running on a non-default port (other than 1521), set the
remote listener.

SQL> alter system set local_listener='(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=hostname)(PORT=port_num)))';

Tablespace Set Creation Fails
A failure in tablespace set creation may be due to DB_FILES parameter set too low.

DB_FILES parameter default setting is 200. This may be too low for distributed databases with a
large number of shards and chunks. You may also require a larger number of data files in a
Raft replication scenario

To calculate the number of database files created for distributed database objects on a given
shard:

Distributed database files required = (Number of CREATE TABLESPACE SET SQL statements
executed using SHARD DDL) * (Number of chunks present on the shard + 1)

DB_FILES must be set to at least the number of files used by the distributed database (above)
PLUS non-distributed database files (system, sysaux, and so on) PLUS any extra needed by
generic RDBMS code (5); therefore:

DB_FILES required in each shard = (Number of distributed database files required, as
calculated above) + Number of default database files(6) + 5

To check free DB_FILES and parameter setting:

SQL> select count(*) from v$datafile;

  COUNT(*)
----------
XxxXX

SQL> show parameter db_files

Chapter 19
Common Error Patterns and Resolutions

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 16



NAME                     TYPE     VALUE
------------------------------------ ----------- 
------------------------------
db_files                 integer     200

Issues Using DEPLOY Command

GDSCTL> deploy
GSM-45029: SQL error
ORA-29273: HTTP request failed
ORA-06512: at "SYS.DBMS_ISCHED", line 3715
ORA-06512: at "SYS.UTL_HTTP", line 1267
ORA-29276: transfer timeout
ORA-06512: at "SYS.UTL_HTTP", line 651
ORA-06512: at "SYS.UTL_HTTP", line 1257
ORA-06512: at "SYS.DBMS_ISCHED", line 3708
ORA-06512: at "SYS.DBMS_SCHEDULER", line 2609
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 14284
ORA-06512: at line 1

Solution : Check the $ORACLE_HOME/data/pendingjobs for the exact error. ORA-1017 is thrown
if any issues on wallet.

1. On the problematic shard host stop the remote scheduler agent.

schagent -stop

2. Rename wallet directory on the database home.

mv $ORACLE_HOME/data/wallet $ORACLE_HOME/data/wallet.old

3. Start the remote scheduler agent and it will create new wallet directory.

schagent -start 
schagent -status 
echo welcome | schagent -registerdatabase 10.10.10.10 8080

Issues Moving Chunks
If you encounter issues with MOVE CHUNK, try the following:

Issue: Initialization parameter remote_dependencies_mode has a default value of timestamp;
therefore, because prvtgwmut.plb is run and DBMS_GSM_UTILITY recompiled durning upgrade,
GDSCTL MOVE CHUNK runs into ORA-04062 errors similar to the following.

GSM Errors:
server:ORA-03749: Chunk move cannot be performed at this time.
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 79
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_DBADMIN", line 5497
ORA-04062: timestamp of package "GSMADMIN_INTERNAL.DBMS_GSM_UTILITY" has been
changed
ORA-06512: at line 1

Chapter 19
Common Error Patterns and Resolutions

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 16



ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_DBADMIN", line 5366
ORA-06512: at line 1 (ngsmoci_execute)

Workaround 1: Restart the source and target shards after upgrade.

Workaround 2: ALTER SYSTEM SET remote_dependencies_mode=signature on both source
and target.

Issue During Deployment of Role-Separated Environment

The GSM-45029: SQL ERROR NO MORE DATA TO READ FROM SOCKET error occurs when you
perform administrative operations for Oracle Globally Distributed Database or for Oracle Global
Data Services (GDS) and connect through a listener that runs in the Oracle Real Application
Clusters (Oracle RAC) or Oracle Restart account in a role-separated environment.

The error occurs where the Oracle RAC or Oracle Restart account is different from the Oracle
Database account.

Solution:

Start a listener in the Oracle Database account on the shard catalog database and on each
shard, if it is not already running.

The listener can be used to connect and perform administrative operations.

This listener can also be used when you provide an Oracle Database Transparent Network
Substrate (TNS) address, when it is required for administrative commands, such as add shard.

Newly Elected RU Leader Status = Errors

In a Raft replication configuration, after a shard fails (abnormal or unexpected shutdown) and
new leaders are elected in the remaining shards, the new leaders are shown with status
"Errors" in GDSCTL status ru output. This is expected behavior, as one of the RU members
(follower or leader) went down unexpectedly.

Note that a normal shutdown of database doesn't cause this error state.

Using status ru with the -show_errors parameter shows that error as ORA-3113, which
indicates the connection between the Client and Server process was broken when the original
shard went down. The error condition continues to be associated with the leaders that lost
followers on the down shard, but this is the expected behavior.

When down follower is up, the error state is cleared.

Chapter 19
Common Error Patterns and Resolutions

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 16



20
Oracle Globally Distributed Database
Reference

The following topics provide you with reference information to help you plan, configure, deploy,
and manage your distributed database configuration.

• Using GDSCTL with Oracle Globally Distributed Database

• SHARDED_TABLE_FAMILIES

Using GDSCTL with Oracle Globally Distributed Database
Several of the Global Data Services GDSCTL commands are used for setting up and
deploying an Oracle Globally Distributed Database configuration. Learn how to use the
GDSCTL command-line tool and the Oracle Globally Distributed Database-related GDSCTL
commands in the following topics.

GDSCTL Operation
Learn how to start GDSCTL, run commands, and get command help text.

Starting GDSCTL
To start GDSCTL, enter gdsctl at the operating system prompt.

$ gdsctl

GDSCTL starts and displays the GDSCTL command prompt.

GDSCTL>

Running GDSCTL Commands Interactively
You can run GDSCTL commands interactively at either the operating system prompt or the
GDSCTL command prompt.

Run a GDSCTL command at the system prompt.

$ gdsctl add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Run a GDSCTL command at the GDSCTL command prompt.

GDSCTL> add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Both of these methods achieve the same result. The command syntax examples in this
document use the GDSCTL command prompt.

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 6



Running GDSCTL Batch Operations
You can gather all the GDSCTL commands in one file and run them as a batch with GDSCTL.

The following command starts GDSCTL and runs the commands contained in the specified
script file.

$ gdsctl @script_file_name

GDSCTL Help Text
You can display help for GDSCTL and GDSCTL commands.

The GDSCTL HELP command displays a summary of all GDSCTL commands.

GDSCTL> help

If you specify a command name after HELP, then the help text for that command is shown.

GDSCTL> help start gsm

You can also use the -h option with any GDSCTL command to show the help text for the
specified command.

GDSCTL> start gsm -h

GDSCTL Connections
Some GDSCTL commands require a connection to the shard catalog, and for ceratin
operations, GDSCTL must connect to a shard director.

GDSCTL Shard Catalog Connections
If you run GDSCTL commands that require a connection to the shard catalog, then you must
run the GDSCTL CONNECT command before the first command that requires the connection.

The CONNECT command only needs to be run once in a GDSCTL session.

GDSCTL uses Oracle Net Services to connect to the shard catalog database or another
database in the distributed database configuration. For these connections you can run
GDSCTL from any client or host that has the necessary network configuration.

Unless specified, GDSCTL resolves connect strings with the current name resolution methods
(such as TNSNAMES).

The GDSCTL operations that require a connection to a shard catalog are noted in the usage
notes for each command.

GDSCTL Shard Director Connections
For certain operations, GDSCTL must connect to a shard director, also known as global
service manager.

Chapter 20
Using GDSCTL with Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 6



Unless specified, GDSCTL resolves connect strings with the current name resolution methods
(such as TNSNAMES). However, to resolve the shard director name, GDSCTL queries the
gsm.ora file.

To connect to a shard director, GDSCTL must be running on the same host as the shard
director. When connecting to a shard director, GDSCTL looks for the gsm.ora file associated
with the local shard director.

The following are the GDSCTL operations that require a connection to a shard director.

• ADD GSM adds a shard director.

• START GSM starts the shard director.

• STOP GSM stops the shard director.

• MODIFY GSM modifies the configuration parameters of the shard director.

• STATUS GSM returns the status of a shard director.

• SET INBOUND_CONNECT_LEVEL sets the INBOUND_CONNECT_LEVEL listener parameter.

• SET TRACE_LEVEL sets the trace level for the listener associated with the specified shard
director.

• SET OUTBOUND_CONNECT_LEVEL sets the timeout value for the outbound connections for the
listener associated with a specific shard director.

• SET LOG_LEVEL sets the log level for the listener associated with a specific shard director.

GDSCTL Commands Used with Oracle Globally Distributed Database
A subset of GDSCTL commands is used with Oracle Globally Distributed Database.

• add cdb

• add credential

• add file

• add gsm

• add invitednode (add invitedsubnet)

• add region

• add service

• add shard

• add shardgroup

• add shardspace

• config

• config backup

• config cdb

• config chunks

• config credential

• config file

• config gsm

• config region

Chapter 20
Using GDSCTL with Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 6



• config sdb

• config service

• config shard

• config shardgroup

• config shardspace

• config table family

• config vncr

• configure

• connect

• create restorepoint

• create shardcatalog

• delete backup

• delete catalog

• deploy

• disable backup

• disable service

• enable backup

• enable service

• list backup

• list restorepoint

• modify catalog

• modify cdb

• modify credential

• modify file

• modify gsm

• modify region

• modify service

• modify shard

• modify shardgroup

• modify shardspace

• move chunk

• relocate service

• recover shard

• remove cdb

• remove credential

• remove file

• remove gsm

• remove invitednode (remove invitedsubnet)

Chapter 20
Using GDSCTL with Oracle Globally Distributed Database

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 6



• remove region

• remove service

• remove shard

• remove shardgroup

• remove shardspace

• restore backup

• run backup

• services

• set gsm

• set inbound_connect_level

• set log_level

• set outbound_connect_level

• set trace_level

• split chunck

• sql

• start gsm

• start service

• status backup

• status gsm

• status service

• stop gsm

• stop service

• sync schema (synchronize schema)

• validate backup

• validate catalog

SHARDED_TABLE_FAMILIES
The SHARDED_TABLE_FAMILIES public view shows all sharded tables and the corresponding root
table and schema names.

Column Data Type NULL Description

TABFAM_ID NUMBER This unique table family
identifier is a numeric
value and each table
family is assigned a
unique number

ROOT_SCHEMA_NAME VARCHAR2(128) The schema owning root
(parent) table for a table
family

ROOT_TABLE_NAME VARCHAR2(128) The root (parent) table
name for a table family

Chapter 20
SHARDED_TABLE_FAMILIES

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 6



Column Data Type NULL Description

SCHEMA_NAME VARCHAR2(128) The schema name for
tables

TABLE_NAME VARCHAR2(128) NOT NULL The table name

Sample Output

The following is sample output from a query on the SHARDED_TABLE_FAMILIES view. In this table
family customers1 is root table, and orders1 and lineitems1 are the child tables of
customers1.

SQL> select * from SHARDED_TABLE_FAMILIES order by 
TABFAM_ID,ROOT_SCHEMA_NAME,ROOT_TABLE_NAME,SCHEMA_NAME,TABLE_NAME;

 TABFAM_ID ROOT_SCHEMA_NAM ROOT_TABLE_NAME SCHEMA_NAM TABLE_NAME
---------- --------------- --------------- ---------- ---------------
         6 TESTUSER1       CUSTOMERS1      TESTUSER1  CUSTOMERS1 
         6 TESTUSER1       CUSTOMERS1      TESTUSER1  LINEITEMS1
         6 TESTUSER1       CUSTOMERS1      TESTUSER1  ORDERS1

        10 TESTUSER1       CUSTOMERS2      TESTUSER1  CUSTOMERS2
        10 TESTUSER1       CUSTOMERS2      TESTUSER1  LINEITEMS2
        10 TESTUSER1       CUSTOMERS2      TESTUSER1  ORDERS2

        13 TESTUSER1       CUSTOMERS3      TESTUSER1  CUSTOMERS3
        13 TESTUSER1       CUSTOMERS3      TESTUSER1  LINEITEMS3
        13 TESTUSER1       CUSTOMERS3      TESTUSER1  ORDERS3

Chapter 20
SHARDED_TABLE_FAMILIES

Oracle Globally Distributed AI Database
F56768-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 6


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in Oracle Globally Distributed Database for Oracle Database 23ai
	New Features
	Deprecated Features
	Desupported Features

	1 Oracle Globally Distributed Database Overview
	What is a Distributed Database
	About Oracle Globally Distributed Database
	Oracle Globally Distributed Database as Distributed Partitioning
	Benefits of Oracle Globally Distributed Database
	Example Applications using Oracle Globally Distributed Database
	Flexible Deployment Models
	Data Replication in Oracle Globally Distributed Database
	Data Distribution Methods
	Client Request Routing
	Query Processing
	High Speed Data Ingest
	Deployment Automation
	Data Migration
	Lifecycle Management
	Federated Distributed Database
	Where To Go From Here

	2 Oracle Globally Distributed Database Architecture and Concepts
	Architecture and Components
	Distributed Database and Shards
	Shard Catalog
	Shard Director
	Global Service
	Management Interfaces for Oracle Globally Distributed Database

	Schema Objects
	Partitions, Tablespaces, and Chunks
	Tablespace Sets
	Sharded Tables
	Sharded Table Family
	How a Table Family Is Sharded

	Duplicated Tables
	Non-Table Objects Created on All Shards

	Data Distribution Methods
	System-Managed Data Distribution
	User-Defined Data Distribution
	Directory-Based Data Distribution
	Directory-Based Data Distribution Use Cases
	Directory-Based Data Distribution Concepts and Architecture
	Creating Sharded Tables in a Directory-Based Distributed Database

	Composite Data Distribution
	Using Subpartitions with a Distributed Database

	Client Application Request Routing
	Query Processing and the Query Coordinator
	Data Replication

	3 Oracle Globally Distributed Database Deployment
	Introduction to Distributed Database Deployment
	Planning Your Deployment
	Plan the Configuration
	Provision and Configure Hosts and Operating Systems

	Install the Oracle Database Software
	Install the Shard Director Software
	Create the Shard Catalog Database
	Create the Shard Databases
	Validate the Shard Database
	Configure the Distributed Database Topology
	Create the Shard Catalog
	Add and Start Shard Directors
	Add Shardspaces If Needed
	Add Shardgroups If Needed
	Verify the Distributed Database Topology
	Add the Shard CDBs
	Add the Shard PDBs
	Add Host Metadata
	Check Free DB_FILES

	Deploy the Configuration
	Create and Start Global Database Services
	Verify Shard Status
	Creating a Shard Catalog Standby
	Example Distributed Database Deployment
	Example Oracle Globally Distributed Database Topology
	Deploy the Example Distributed Database


	4 Oracle Globally Distributed Database Schema Design
	Schema Design Considerations
	Sharding Keys
	Choosing Sharding Keys
	Primary Key and Foreign Key Constraints
	Enabling Automatic Data Movement on Sharding Key Update

	Creating Schema Objects
	Create an All-Shards User
	Creating a Sharded Table Family
	Designing Schemas With Multiple Table Families
	Creating Sharded Tables
	Tablespace Set Sizing
	Sharded Tables for System-Managed Data Distribution
	Sharded Tables for User-Defined Data Distribution
	Sharded Tables for Composite Data Distribution
	Sharded Tables for Directory-Based Data Distribution

	Creating Duplicated Tables
	Updating Duplicated Tables and Synchronizing Their Contents
	Setting the Duplicated Table Global Refresh Rate
	Customizing Duplicated Table Refresh Rates
	Refreshing Duplicated Tables On Demand
	Duplicated Table Support and Limitations


	Creating Indexes on Sharded Tables
	Oracle AI Vector Search in a Distributed Database
	Vectors in Distributed Database Tables
	Vector Indexes in a Globally Distributed Database

	Modifying a Distributed Database Schema
	DDL Processing in a Distributed Database
	Creating Objects Locally and Globally
	Monitor DDL Processing and Verify Object Creation
	DDL Syntax Extensions for Oracle Globally Distributed Database
	CREATE TABLESPACE SET
	ALTER TABLESPACE SET
	DROP TABLESPACE SET and PURGE TABLESPACE SET
	CREATE TABLE
	ALTER TABLE
	ALTER SESSION


	Running PL/SQL Procedures in a Distributed Database
	Generating Unique Sequence Numbers Across Shards
	High Speed Data Ingest with SQL*Loader
	Schema Creation Examples
	Schema for System-Managed Data Distribution
	Schema for User-Defined Data Distribution
	Schema for Composite Data Distribution

	DDL Failure and Recovery Examples

	5 Shard-Level Replication with Oracle Data Guard
	Using Oracle Data Guard with a Distributed Database

	6 Raft Replication Configuration and Management
	Using Raft Replication in Oracle Globally Distributed Database
	Enabling Raft Replication
	Specifying Replication Unit Attributes

	Raft Replication Operations and Settings
	Specifying Replication Unit Attributes
	Ensuring Replicas Are Not Placed in the Same Rack
	Getting Runtime Information for Replication Units
	Scaling with Raft Replication
	Adding Shards
	Removing Shards

	Moving Replication Unit Replicas
	Changing the Replication Unit Leader
	Copying Replication Units
	Moving A Chunk to Another Replication Unit
	Splitting Chunks in Raft Replication
	Getting the Replication Type
	Starting and Stopping Replication Units
	Synchronizing Replication Unit Members
	Enable or Disable Reads from Follower Replication Units
	Viewing Parameter Settings
	Setting Parameters with GDSCTL
	Tuning Flow Control to Mitigate Follower Lag
	Setting Transaction Consensus Timeout
	Dynamic Performance Views for Raft Replication

	Raft Replication Restrictions

	7 Deploying and Managing a Directory-Based Oracle Globally Distributed Database
	Directory-Based Distributed Database Roadmap
	Creating a Shard Catalog for a Directory-Based Distributed Database
	Creating Tables Sharded by Directory
	Managing Keys in a Directory-Based Distributed Database
	DML Support on Tables Sharded by Directory
	Adding a New Tablespace and Chunks (Partition) in a Shardspace
	Chunk Management in a Directory-Based Distributed Database
	Splitting Partitions (Chunks)
	Sharding Key Directory Public View

	8 Query and DML Processing
	How Database Requests are Routed to the Shards
	Routing Queries and DMLs Directly to Shards
	Routing Queries and DMLs by Proxy

	Connecting to the Query Coordinator
	Query Coordinator Operation
	Query Processing for Single-Shard Queries
	Query Processing for Multi-Shard Queries
	Specifying Consistency Levels in a Multi-Shard Query

	Multi-Shard Query Coordinator Availability and Scalability
	Pushing PL/SQL Function Queries to the Shards
	Gathering Optimizer Statistics on Sharded Tables
	Supported Query Constructs and Example Query Shapes
	Queries on Sharded Tables Only
	Queries Involving Both Sharded and Duplicated Tables
	Supported Aggregate Functions
	Queries with User-Defined Types
	Execution Plans for Proxy Routing

	Supported DMLs and Examples
	Simple DMLs Where Only the Target Table is Referenced
	DMLs Referencing Other Tables
	Example Merge Statements
	Limitations in Multi-Shard DML Support


	9 Oracle Globally Distributed Database Administration
	Managing the Oracle Globally Distributed Database Stack
	Starting Up the Stack
	Shutting Down the Stack

	Oracle Globally Distributed Database Users and Roles
	Overview of Users and Roles
	Oracle Globally Distributed Database Roles
	About the GSMUSER Account
	About the GSMROOTUSER Account

	Backing Up and Recovering a Distributed Database
	About Distributed Database Backup and Recovery
	Backup and Restoration Terminology
	Automated and On-Demand Backups
	Supported Backup Destinations
	Limitations

	Prerequisites to Configuring Centralized Backup and Restore
	Configuring Automated Backups
	Specifying Multiple Recovery Catalogs
	Backup Set Encryption
	Using Oracle Object Storage as a Backup Destination
	Using Recovery Appliance as a Backup Destination
	Using Amazon S3 as a Backup Destination

	Managing Backup and Recovery
	Enabling and Disabling Automated Backups
	Backup Job Operation
	Monitoring Backup Status
	Viewing an Existing Backup Configuration
	Listing Backups
	Viewing Backup Job Status
	Validating Backups
	Deleting Backups
	Creating and Listing Global Restore Points
	Restoring Shards From Backup
	Restoring the Shard Catalog from Backup
	Removing Backup Configuration from a Shard
	Running On-Demand Backups

	Running RMAN Commands from GDSCTL
	Error Handling for Automated Backup Operations

	Propagation of Parameter Settings Across Shards
	Patching and Upgrading Oracle Globally Distributed Database
	Patching Oracle Globally Distributed Database
	Upgrading Oracle Globally Distributed Database Components
	Performing a Rolling Upgrade
	Downgrading an Oracle Globally Distributed Database

	Managing Oracle Globally Distributed Database with Enterprise Manager Cloud Control
	Prerequisite: Enable Oracle Globally Distributed Database Metrics
	Prerequisite: Discover the Oracle Globally Distributed Database Topology
	Oracle Globally Distributed Database Management with Oracle Enterprise Manager Cloud Control

	Monitoring an Oracle Globally Distributed Database
	Querying System Objects Across Shards
	Monitoring an Oracle Globally Distributed Database with Enterprise Manager Cloud Control
	Globally Distributed Database Home Page
	Data Distribution and Performance Page

	Monitoring Oracle Globally Distributed Database with GDSCTL

	Shard Management
	About Adding Shards
	Work Flow for Adding Shards
	Removing a Shard From the Pool
	Replacing a Shard
	Converting a Physical Standby to a Snapshot Standby
	Migrating a Non-PDB Shard to a PDB
	Managing Shards with Oracle Enterprise Manager Cloud Control
	Validating a Shard
	Adding Primary Shards
	Adding Standby Shards
	Deploying Shards
	Editing a Shard
	Removing a Shard


	Chunk Management
	Resharding and Hot Spot Elimination
	Moving Chunks
	Updating an In-Process Chunk Move Operation
	Splitting Chunks
	Splitting Chunks into Shardspaces Based on Super Key
	Managing Chunks with Oracle Enterprise Manager Cloud Control
	Moving Chunks
	Splitting Chunks


	Shard Director Management
	Creating a Shard Director
	Editing a Shard Director Configuration
	Removing a Shard Director

	Region Management
	Creating a Region
	Editing a Region Configuration
	Removing a Region

	Shardspace Management
	Adding a Shardspace to a Composite Distributed Database
	Shardspace Management
	Creating a Shardspace


	Shardgroup Management
	Creating a Shardgroup

	Services Management
	Creating a Service


	10 Developing Applications for Oracle Globally Distributed Database
	Direct Routing to a Shard
	APIs Supporting Direct Routing
	Oracle JDBC APIs
	Oracle Call Interface
	Oracle Universal Connection Pool APIs
	Oracle Data Provider for .NET APIs

	JDBC Sharding Data Source

	11 Security in an Oracle Globally Distributed Database Environment
	Using TCPS Protocol and Transport Layer Security
	Using Wallets
	Using Application Contexts During Cross-Shard Operations
	Behavior Differences
	Using Transparent Data Encryption
	Creating a Single Encryption Key on All Shards
	Oracle Database Vault
	Failed Login Attempts Only Counted Per Shard

	12 Migrating to an Oracle Globally Distributed Database
	Migration with Oracle Data Pump
	Schema Migration
	Migrating the Sample Schema
	Migrating Data to a Distributed Database
	Loading the Sample Schema Data
	Migrating Data Without a Sharding Key

	Using External Tables to Load Data into a Distributed Database
	Loading Data into Duplicated Tables
	Loading Data into Sharded Tables

	Oracle GoldenGate Microservices Migration
	Prerequisites
	Migrating Data from a Non-Distributed Database to a Distributed Database
	Creating a Testing Environment


	13 Using Oracle Globally Distributed Database in Oracle Cloud Infrastructure
	Oracle Cloud Infrastructure Services
	Deploy an Oracle Globally Distributed Database on Kubernetes
	Deploy an Oracle Globally Distributed Database with Terraform
	Deploy an Oracle Globally Distributed Database with Docker

	14 Using the Sharding Advisor
	About Sharding Advisor
	Run Sharding Advisor
	Run Sharding Advisor on a Non-Production System
	Review Sharding Advisor Output
	Choose a Sharding Advisor Recommended Configuration
	Sharding Advisor Usage and Options
	Sharding Advisor Output Tables
	SHARDINGADVISOR_CONFIGURATIONS Table
	SHARDINGADVISOR_CONFIGDETAILS Table
	SHARDINGADVISOR_QUERYTYPES Table

	Sharding Advisor Output Review SQL Examples
	Sharding Advisor Security

	15 JSON Document Collections in a Distributed Database
	Overview of Sharding JSON Documents
	Preparing the Environment
	Creating an All-Shards User with SODA Privileges
	Choosing a Sharding Key
	Using SODA ID as the Sharding Key
	Creating a Sharded Table for the JSON Collection
	Creating a Sharded Table: System-Managed
	Creating a Sharded Table: User-Defined

	Creating a Mapped SODA Collection on the Sharded Table
	Code Samples
	Java Code Sample
	Python Code Sample


	Using a JSON Field as a Sharding Key
	Creating a Sharded Table for the JSON Collection
	Creating a Sharded Table: System-Managed
	Creating a Sharded Table: User-Defined

	Creating a Mapped SODA Collection on the Sharded Table
	Creating a Trigger to Populate the Sharding Key
	Code Samples
	Java Code Sample
	Python Code Sample


	Additional Information About Sharding with SODA
	Performance Tuning
	Scaling Out Shards


	16 Achieving Data Sovereignty with Oracle Globally Distributed Database
	Overview of Data Sovereignty
	Benefits of Implementing Data Sovereignty with Oracle Globally Distributed Database
	Implementing Data Sovereignty with Oracle Globally Distributed Database
	Data Sovereignty Use Case
	Overview of the Data Sovereignty Solution
	Deployment Topology for Data Sovereignty
	Configuring the Data Sovereignty Use Case
	Configuring VCN Networks in All Three OCI Regions
	Configuring Remote VCN Peering Between All Three Regions
	Configuring Private DNS for Naming Resolution Between the Regions
	Installing a Global Service Manager in Each Region
	Collecting TNS Entries for the Shard Catalog and Shards
	Configuring the Shard Catalog
	Configuring the Shard Databases
	Creating the Oracle Globally Distributed Database
	Implementing a Session-Based Application Context Policy



	17 Creating a Federated Distributed Database
	Overview of Federated Distributed Database
	About Federated Distributed Database
	Federated Distributed Database Schema Requirements
	Sharded and Duplicated Tables in a Federated Distributed Database Configuration
	Limitations to Federated Distributed Databases
	Federated Distributed Database Security

	Configuring a Federated Distributed Database
	Create a Federated Distributed Database Configuration
	Retrieve, Inspect, and Apply the DDLs
	Convert Tables to Duplicated Tables
	Prepare the Shards For Multi-Shard Queries

	Federated Distributed Database Reference
	SYNC SCHEMA Operations
	DDL Synchronization
	Import Users
	Grant User Roles and Priviledges
	Import Object Definitions
	Schema Object Comparison
	Differences in Tables
	Differences in Views
	Differences in Constraints
	Differences in Object Types


	Troubleshooting a Federated Distributed Database


	18 Creating Affinity Between Middle-Tier and Shards
	19 Troubleshooting
	Troubleshooting Tips
	Pre-Deployment Network Validation
	Checking the Data Distribution Method
	Checking the Replication Type
	Checking the Oracle Data Guard Protection Mode
	Checking Which Shards Are Mapped to a Key
	Checking Shard Operation Mode (Read-Only or Read-Write)
	Checking DDL Text
	Checking Chunk Migration Status
	Checking Table Type (Sharded or Duplicated)
	Checking User Type (Local or ALL_SHARD)
	Identifying Tables Created as Sharded Tablespaces
	Checking if Shard DDL is Enabled or Disabled
	Filtering Data by Sharding Key

	Gathering Optimizer Statistics on Sharded Tables
	Generate HTML SQL Monitor Output for a Query Running from the Shard Catalog
	Tracing and Debug Information
	Enabling Tracing
	Where to Find Alert Logs and Trace Files

	Common Error Patterns and Resolutions
	Shard Director Fails to Start
	Tablespace Set Creation Fails
	Issues Using DEPLOY Command
	Issues Moving Chunks
	Issue During Deployment of Role-Separated Environment
	Newly Elected RU Leader Status = Errors


	20 Oracle Globally Distributed Database Reference
	Using GDSCTL with Oracle Globally Distributed Database
	GDSCTL Operation
	Starting GDSCTL
	Running GDSCTL Commands Interactively
	Running GDSCTL Batch Operations
	GDSCTL Help Text

	GDSCTL Connections
	GDSCTL Shard Catalog Connections
	GDSCTL Shard Director Connections

	GDSCTL Commands Used with Oracle Globally Distributed Database

	SHARDED_TABLE_FAMILIES


