
Oracle® AI Database
Graph Developer's Guide for RDF Graph

26ai
G43351-01
October 2025

Oracle AI Database Graph Developer's Guide for RDF Graph, 26ai

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Contributors: Lavanya Jayapalan

Contributors: Melliyal Annamalai , Maitreyee Chaliha, Chuck Murray, Eugene Inseok Chong, Souripriya Das, Matthew
Perry, Siva Ravada, Joao Paiva, Jags Srinivasan, Seema Sundara, Zhe (Alan) Wu, Aravind Yalamanchi

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Related Documents i

Conventions i

 Changes in This Release for This Guide

Changes in Oracle AI Database Release 26ai i

 How to Use This Book

Part I Conceptual and Usage Information

1 RDF Graph Overview

1.1 Introduction to Oracle Semantic Technologies Support 3

1.2 Key Terms and Concepts for Working with RDF Graphs 4

1.3 RDF Data Modeling 5

1.4 RDF Data in the Database 5

1.4.1 RDF Networks 6

1.4.1.1 Schema-Private RDF Networks 8

1.4.1.2 Types of RDF Network Users 9

1.4.1.3 Naming Conventions for RDF Network Objects 9

1.4.1.4 RDF_PARAMETER Table in RDF Networks 9

1.4.1.5 Migrating from MDSYS to Schema-Private RDF Networks 9

1.4.1.6 Sharing Schema-Private RDF Networks 10

1.4.1.7 Migrating from Escaped to Unescaped Storage Form 13

1.4.2 RDF Graphs 13

1.4.3 Statements 15

1.4.3.1 Triple Uniqueness and Data Types for Literals 16

1.4.4 Subjects and Objects 17

1.4.5 Blank Nodes 18

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of xxi

1.4.6 Properties 18

1.4.7 Inferencing: Rules and Rulebases 18

1.4.8 Inferred Graphs 21

1.4.9 RDF Graph Collections 22

1.4.10 Named Graphs 26

1.4.10.1 Data Formats Related to Named Graph Support 26

1.4.11 RDF Data Security Considerations 27

1.4.12 RDF Privilege Considerations 28

1.5 RDF Metadata Tables and Views 28

1.6 RDF Data Types, Constructors, and Methods 29

1.6.1 Constructors for Inserting Triples 31

1.7 Using the SEM_MATCH Table Function to Query RDF Data 32

1.7.1 Performing Queries with Incomplete or Invalid Inferred Graphs 39

1.7.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER,
UNION, and GRAPH Keywords 40

1.7.2.1 GRAPH Keyword Support 50

1.7.3 Graph Patterns: Support for SPARQL ASK Syntax 51

1.7.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax 52

1.7.4.1 Typical SPARQL CONSTRUCT Workflow 56

1.7.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax 57

1.7.6 Graph Patterns: Support for SPARQL SELECT Syntax 58

1.7.7 Graph Patterns: Support for SPARQL 1.1 Constructs 62

1.7.7.1 Expressions in the SELECT Clause 63

1.7.7.2 Subqueries 64

1.7.7.3 Grouping and Aggregation 64

1.7.7.4 Negation 67

1.7.7.5 Value Assignment 69

1.7.7.6 Property Paths 71

1.7.8 Graph Patterns: Support for SPARQL 1.1 Federated Query 74

1.7.8.1 Privileges Required to Execute Federated SPARQL Queries 75

1.7.8.2 SPARQL SERVICE Join Push Down 75

1.7.8.3 SPARQL SERVICE SILENT 76

1.7.8.4 Using a Proxy Server with SPARQL SERVICE 76

1.7.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication 77

1.7.9 Inline Query Optimizer Hints 77

1.7.10 Full-Text Search 79

1.7.11 Spatial Support 82

1.7.11.1 OGC GeoSPARQL Support 82

1.7.11.2 Representing Spatial Data in RDF 83

1.7.11.3 Validating Geometries 85

1.7.11.4 Indexing Spatial Data 85

1.7.11.5 Querying Spatial Data 88

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of xxi

1.7.11.6 Using Long Literals with GeoSPARQL Queries 89

1.7.12 Flashback Query Support 90

1.7.13 Best Practices for Query Performance 91

1.7.13.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time 91

1.7.13.2 Indexes for FILTER Constructs Involving Typed Literals 92

1.7.13.3 FILTER Constructs Involving Relational Expressions 92

1.7.13.4 Optimizer Statistics and Dynamic Sampling 92

1.7.13.5 Multi-Partition Queries 93

1.7.13.6 Compression on Systems with OLTP Index Compression 93

1.7.13.7 Unbounded Property Path Expressions 93

1.7.13.8 Nested Loop Pushdown for Property Paths 93

1.7.13.9 Grouping and Aggregation 94

1.7.13.10 Use of Bind Variables to Reduce Compilation Time 95

1.7.13.11 Non-Null Expression Hints 97

1.7.13.12 Automatic JOIN Hints 97

1.7.13.13 RDF Network Indexes 98

1.7.13.14 Using RDF with Oracle AI Database In-Memory 98

1.7.13.15 Using Language Tags in FILTER Expressions 99

1.7.13.16 Type Casting for More Efficient FILTER Evaluation 99

1.7.13.17 Spatial Indexing for GeoSPARQL Queries 99

1.7.14 Special Considerations When Using SEM_MATCH 100

1.8 Speeding up Query Execution with Result Tables 101

1.8.1 Types of Result Tables 102

1.8.1.1 Star-Pattern Tables 103

1.8.1.2 Triple-Pattern Tables 105

1.8.1.3 Chain-Pattern Tables 106

1.8.2 Creating and Managing Result Tables 108

1.8.2.1 Including Lexical Values in Result Tables 108

1.8.2.2 Creating and Dropping Secondary Indexes on Result Tables 110

1.8.2.3 Dropping Result Tables 111

1.8.2.4 In-Memory Result Tables 111

1.8.2.5 Metadata for Result Tables 112

1.8.2.6 Utility Subprogram for Computing Per-Subject Cardinality Aggregates for
Individual Properties 113

1.8.2.7 Performing DML Operations on RDF Graphs with Result Tables 133

1.8.2.8 Performing Bulk Load Operations on RDF Graphs with Result Tables 134

1.8.2.9 Gathering Statistics on Result Tables 134

1.8.3 SPARQL Query Options for Result Tables 134

1.8.4 Special Considerations when Using Result Tables 135

1.9 Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data 135

1.9.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL 136

1.9.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared 139

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of xxi

1.10 Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF
Data 140

1.11 Loading and Exporting RDF Data 147

1.11.1 Bulk Loading RDF Data Using a Staging Table 148

1.11.1.1 Loading the Staging Table 149

1.11.1.2 Recording Event Traces During Bulk Loading 150

1.11.2 Loading RDF Data Using INSERT Statements 151

1.11.2.1 Loading Data into Named Graphs Using INSERT Statements 151

1.11.3 Exporting RDF Data 152

1.11.3.1 Retrieving RDF Data from an Application Table 152

1.11.3.2 Retrieving RDF Data from an RDF Graph 153

1.11.3.3 Removing RDF Graph Information from Retrieved Blank Node Identifiers 154

1.11.4 Exporting or Importing an RDF Network Using Oracle Data Pump 155

1.11.5 Moving, Restoring, and Appending an RDF Network 155

1.11.6 Purging Unused Values 158

1.12 Using RDF Network Indexes 158

1.12.1 SEM_NETWORK_INDEX_INFO View 159

1.13 Using Data Type Indexes 160

1.14 Managing Statistics for the RDF Graphs and RDF Network 161

1.14.1 Saving Statistics at the RDF Graph Level 162

1.14.2 Restoring Statistics at the RDF Graph Level 163

1.14.3 Saving Statistics at the Network Level 163

1.14.4 Dropping Extended Statistics at the Network Level 164

1.14.5 Restoring Statistics at the Network Level 164

1.14.6 Setting Statistics at the RDF Graph Level 164

1.14.7 Deleting Statistics at the RDF Graph Level 164

1.15 Support for SPARQL Update Operations on an RDF Graph 165

1.15.1 Tuning the Performance of SPARQL Update Operations 175

1.15.2 Transaction Management with SPARQL Update Operations 176

1.15.2.1 Transaction Isolation Levels 179

1.15.3 Support for Bulk Operations 180

1.15.3.1 Materialization of Intermediate Data (STREAMING=F) 180

1.15.3.2 Using SEM_APIS.BULK_LOAD_RDF_GRAPH 180

1.15.3.3 Using Delete as Insert (DEL_AS_INS=T) 181

1.15.4 Setting UPDATE_RDF_GRAPH Options at the Session Level 181

1.15.5 Load Operations: Special Considerations for SPARQL Update 182

1.15.6 Long Literals: Special Considerations for SPARQL Update 183

1.15.7 Blank Nodes: Special Considerations for SPARQL Update 183

1.16 RDF Support for Oracle AI Database In-Memory 184

1.16.1 Enabling Oracle AI Database In-Memory for RDF 185

1.16.2 Using In-Memory Virtual Columns with RDF 186

1.16.3 Using Invisible Indexes with Oracle AI Database In-Memory 186

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of xxi

1.17 RDF Support for Materialized Join Views 187

1.18 RDF Support in Oracle SQL Developer 188

1.19 Enhanced RDF ORDER BY Query Processing 188

1.20 Applying Oracle Machine Learning Algorithms to RDF Data 189

1.21 RDF Graph Management Examples (PL/SQL and Java) 190

1.21.1 Example: Journal Article Information 190

1.21.2 Example: Family Information 191

1.22 Software Naming Changes Since Release 11.1 196

1.23 For More Information About RDF Graph 196

1.24 Required Migration of Pre-12.2 RDF Data 197

1.25 Oracle RDF Graph Features that Support Accessibility 197

2 Quick Start for Using RDF Data

2.1 Getting Started with RDF Data in a Schema-Private Network 1

2.2 Quick Start for Using RDF Data in Oracle Autonomous AI Database 2

2.2.1 Getting Started with RDF Data in Oracle Autonomous AI Database 2

2.2.2 Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace 5

3 OWL Concepts

3.1 Ontologies 1

3.1.1 Example: Disease Ontology 1

3.1.2 Supported OWL Subsets 2

3.2 Using OWL Inferencing 5

3.2.1 Creating a Simple OWL Ontology 6

3.2.2 Performing Native OWL Inferencing 6

3.2.3 Performing OWL and User-Defined Rules Inferencing 6

3.2.4 Generating OWL Inferencing Proofs 8

3.2.5 Validating OWL RDF Graphs and Inferred Graphs 9

3.2.6 Using SEM_APIS.CREATE_INFERRED_GRAPH for RDFS Inference 10

3.2.7 Enhancing Inference Performance 11

3.2.8 Optimizing owl:sameAs Inference 11

3.2.8.1 Querying owl:sameAs Consolidated Inference Graphs 13

3.2.9 Performing Incremental Inference 13

3.2.10 Using Parallel Inference 15

3.2.11 Using Named Graph Based Inferencing (Global and Local) 15

3.2.11.1 Named Graph Based Global Inference (NGGI) 16

3.2.11.2 Named Graph Based Local Inference (NGLI) 16

3.2.11.3 Using NGGI and NGLI Together 18

3.2.12 Performing Selective Inferencing (Advanced Information) 18

3.3 Using Semantic Operators to Query Relational Data 19

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of xxi

3.3.1 Using the SEM_RELATED Operator 20

3.3.2 Using the SEM_DISTANCE Ancillary Operator 21

3.3.2.1 Computation of Distance Information 22

3.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE 23

3.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not
the First Parameter 23

3.3.5 Using URIPREFIX When Values Are Not Stored as URIs 24

4 Simple Knowledge Organization System (SKOS) Support

4.1 Supported and Unsupported SKOS Semantics 2

4.1.1 Supported SKOS Semantics 2

4.1.2 Unsupported SKOS Semantics 3

4.2 Performing Inference on SKOS RDF Graphs 3

4.2.1 Validating SKOS RDF Graphs and Inferred Graphs 3

4.2.2 Property Chain Handling 4

5 Semantic Indexing for Documents

5.1 Information Extractors for Semantically Indexing Documents 2

5.2 Extractor Policies 4

5.3 Semantically Indexing Documents 5

5.4 SEM_CONTAINS and Ancillary Operators 6

5.4.1 SEM_CONTAINS_SELECT Ancillary Operator 7

5.4.2 SEM_CONTAINS_COUNT Ancillary Operator 7

5.5 Searching for Documents Using SPARQL Query Patterns 8

5.6 Bindings for SPARQL Variables in Matching Subgraphs in a Document
(SEM_CONTAINS_SELECT Ancillary Operator) 9

5.7 Improving the Quality of Document Search Operations 10

5.8 Indexing External Documents 10

5.9 Configuring the Calais Extractor type 12

5.10 Working with General Architecture for Text Engineering (GATE) 12

5.11 Creating a New Extractor Type 13

5.12 Creating a Local Semantic Index on a Range-Partitioned Table 15

5.13 Altering a Semantic Index 15

5.13.1 Rebuilding Content for All Existing Policies in a Semantic Index 16

5.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index 16

5.13.3 Rebuilding Content for an Existing Policy from a Semantic Index 16

5.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic Index 16

5.14 Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX 16

5.15 Performing Document-Centric Inference 17

5.16 Metadata Views for Semantic Indexing 17

5.16.1 RDFCTX_POLICIES View 18

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of xxi

5.16.2 RDFCTX_INDEX_POLICIES View 18

5.16.3 RDFCTX_INDEX_EXCEPTIONS View 19

5.17 Default Style Sheet for GATE Extractor Output 19

6 Fine-Grained Access Control for RDF Data

6.1 Triple-Level Security 1

6.1.1 Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI) 2

6.1.2 Extended Example: Applying OLS Triple-Level Security on RDF Data 4

6.2 Triple-and-Values Security 23

6.2.1 Extended Example: Applying OLS Triple-and-Values Security on RDF Data 24

7 RDF Graph Support for Apache Jena

7.1 Setting Up the Software Environment 3

7.1.1 If You Used a Previous Version of the Support for Apache Jena 3

7.2 Setting Up the SPARQL Service 4

7.2.1 Client Identifiers 6

7.2.2 Using OLTP Compression for Application Tables and Staging Tables 7

7.2.3 N-Triples Encoding for Non-ASCII Characters 7

7.3 Setting Up the RDF Graph Environment 7

7.4 SEM_MATCH and RDF Graph Support for Apache Jena Queries Compared 8

7.5 Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query
Results 9

7.6 Optimized Handling of SPARQL Queries 13

7.6.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call 13

7.6.2 Optimized Handling of Property Paths 13

7.7 Additions to the SPARQL Syntax to Support Other Features 15

7.7.1 SQL Hints 15

7.7.2 Using Bind Variables in SPARQL Queries 15

7.7.3 Additional WHERE Clause Predicates 17

7.7.4 Additional Query Options 18

7.7.4.1 JOIN Option and Federated Queries 19

7.7.4.2 S2S Option Benefits and Usage Information 20

7.7.5 Midtier Resource Caching 21

7.8 Functions Supported in SPARQL Queries through RDF Graph Support for Apache
Jena 21

7.8.1 Functions in the ARQ Function Library 21

7.8.2 Native Oracle AI Database Functions for Projected Variables 22

7.8.3 User-Defined Functions 23

7.9 SPARQL Update Support 26

7.10 Analytical Functions for RDF Data 27

7.10.1 Generating Contextual Information about a Path in a Graph 33

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of xxi

7.11 Support for Server-Side APIs 34

7.11.1 RDF Graph Collections Support 34

7.11.2 Connection Pooling Support 36

7.11.3 RDF Graph PL/SQL Interfaces 37

7.11.4 Inference Options 37

7.11.5 PelletInfGraph Class Support Deprecated 40

7.12 Bulk Loading Using RDF Graph Support for Apache Jena 40

7.12.1 Using prepareBulk in Parallel (Multithreaded) Mode 42

7.12.2 Handling Illegal Syntax During Data Loading 45

7.13 Automatic Variable Renaming 46

7.14 JavaScript Object Notation (JSON) Format Support 46

7.15 Other Recommendations and Guidelines 48

7.15.1 BOUND or !BOUND Instead of EXISTS or NOT EXISTS 49

7.15.2 SPARQL 1.1 SELECT Expressions 49

7.15.3 Syntax Involving Bnodes (Blank Nodes) 49

7.15.4 Limit in the SERVICE Clause 49

7.16 Example Queries Using RDF Graph Support for Apache Jena 50

7.16.1 Query Family Relationships 51

7.16.2 Load OWL Ontology and Perform OWLPrime Inference 52

7.16.3 Bulk Load OWL Ontology and Perform OWLPrime Inference 54

7.16.4 SPARQL OPTIONAL Query 55

7.16.5 SPARQL Query with LIMIT and OFFSET 56

7.16.6 SPARQL Query with TIMEOUT and DOP 58

7.16.7 Query Involving Named Graphs 59

7.16.8 SPARQL ASK Query 61

7.16.9 SPARQL DESCRIBE Query 62

7.16.10 SPARQL CONSTRUCT Query 63

7.16.11 Query Multiple Models and Specify "Allow Duplicates" 64

7.16.12 SPARQL Update 65

7.16.13 SPARQL Query with ARQ Built-In Functions 66

7.16.14 SELECT Cast Query 68

7.16.15 Instantiate Oracle AI Database Using OracleConnection 69

7.16.16 Oracle AI Database Connection Pooling 70

7.17 SPARQL Gateway and RDF Data 71

7.17.1 SPARQL Gateway Features and Benefits Overview 72

7.17.2 Installing and Configuring SPARQL Gateway 72

7.17.2.1 Download the RDF Graph Support for Apache Jena .zip File (if Not
Already Done) 73

7.17.2.2 Deploy SPARQL Gateway in WebLogic Server 73

7.17.2.3 Modify Proxy Settings, if Necessary 73

7.17.2.4 Configure the OracleSGDS Data Source, if Necessary 74

7.17.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired 74

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of xxi

7.17.3 Using SPARQL Gateway with RDF Data 74

7.17.3.1 Storing SPARQL Queries and XSL Transformations 75

7.17.3.2 Specifying a Timeout Value 76

7.17.3.3 Specifying Best Effort Query Execution 77

7.17.3.4 Specifying a Content Type Other Than text/xml 77

7.17.4 Customizing the Default XSLT File 78

7.17.5 Using the SPARQL Gateway Java API 78

7.17.6 Using the SPARQL Gateway Graphical Web Interface 81

7.17.6.1 Main Page (index.html) 81

7.17.6.2 Navigation and Browsing Page (browse.jsp) 82

7.17.6.3 XSLT Management Page (xslt.jsp) 84

7.17.6.4 SPARQL Management Page (sparql.jsp) 85

7.17.7 Using SPARQL Gateway as an XML Data Source to OBIEE 86

7.18 Deploying Fuseki in Apache Tomcat 89

7.19 ORARDFLDR Utility for Bulk Loading RDF Data 90

7.19.1 Using ORARDFLDR with Oracle Autonomous AI Database 90

8 RDF Graph Support for Eclipse RDF4J

8.1 Oracle RDF Graph Support for Eclipse RDF4J Overview 2

8.2 Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J 3

8.3 Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J 4

8.3.1 Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java 4

8.3.2 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J
Server and Workbench 6

8.3.2.1 Using the Adapter for Eclipse RFD4J Through RDF4J Workbench 13

8.3.3 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As SPARQL
Service 14

8.3.3.1 Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench 15

8.4 Using Oracle RDF Graph Adapter for Eclipse RDF4J with Oracle Autonomous AI
Database 16

8.5 Database Connection Management 16

8.6 SPARQL Query Execution Model 17

8.6.1 Using BIND Values 18

8.6.2 Using JDBC BIND Values 18

8.6.2.1 Limitations for JDBC Bind Value Support 19

8.6.3 Additions to the SPARQL Query Syntax to Support Other Features 20

8.6.3.1 Query Execution Options 20

8.6.3.2 SPARQL_TO_SQL (SEM_MATCH) Options 20

8.6.4 Special Considerations for SPARQL Query Support 21

8.7 SPARQL Update Execution Model 21

8.7.1 Transaction Management for SPARQL Update 22

8.7.2 Additions to the SPARQL Syntax to Support Other Features 22

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of xxi

8.7.2.1 UPDATE_RDF_GRAPH Options 22

8.7.2.2 UPDATE_RDF_GRAPH Match Options 23

8.7.3 Special Considerations for SPARQL Update Support 23

8.8 Efficiently Loading RDF Data 24

8.9 Validating RDF Data with SHACL Constraints 24

8.9.1 SHACL Features Supported by Oracle Adapter for Eclipse RDF4J 26

8.9.2 Restrictions on the use of RDF4J SHACL Features 28

8.10 ORARDFLDR Utility for Bulk Loading RDF Data 28

8.11 Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J 29

8.12 Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J 30

8.13 Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J 31

8.14 Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J 31

8.14.1 Example 1: Basic Operations 32

8.14.2 Example 2: Add a Data File in TRIG Format 34

8.14.3 Example 3: Simple Query 37

8.14.4 Example 4: Simple Bulk Load 39

8.14.5 Example 5: Bulk Load RDF/XML 41

8.14.6 Example 6: SPARQL Ask Query 43

8.14.7 Example 7: SPARQL CONSTRUCT Query 45

8.14.8 Example 8: Named Graph Query 46

8.14.9 Example 9: Get COUNT of Matches 49

8.14.10 Example 10: Specify Bind Variable for Constant in Query Pattern 51

8.14.11 Example 11: SPARQL Update 54

8.14.12 Example 12: Oracle Hint 58

8.14.13 Example 13: Using JDBC Bind Values 61

8.14.14 Example 14: Simple Inference 63

8.14.15 Example 15: Simple Graph Collection 66

8.14.16 Example 16: Graph Validation with SHACL 70

9 User-Defined Inferencing and Querying

9.1 User-Defined Inferencing 1

9.1.1 Problem Solved and Benefit Provided by User-Defined Inferencing 2

9.1.2 API Support for User-Defined Inferencing 2

9.1.2.1 User-Defined Inference Function Requirements 3

9.1.3 User-Defined Inference Extension Function Examples 4

9.1.3.1 Example 1: Adding Static Triples 5

9.1.3.2 Example 2: Adding Dynamic Triples 7

9.1.3.3 Example 3: Optimizing Performance 10

9.1.3.4 Example 4: Temporal Reasoning (Several Related Examples) 12

9.1.3.5 Example 5: Spatial Reasoning 21

9.1.3.6 Example 6: Calling a Web Service 25

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page x of xxi

9.2 User-Defined Functions and Aggregates 28

9.2.1 Data Types for User-Defined Functions and Aggregates 29

9.2.2 API Support for User-Defined Functions 30

9.2.2.1 PL/SQL Function Implementation 30

9.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern 30

9.2.2.3 User-Defined Function Examples 30

9.2.3 API Support for User-Defined Aggregates 32

9.2.3.1 ODCIAggregate Interface 33

9.2.3.2 Invoking User-Defined Aggregates 33

9.2.3.3 User-Defined Aggregate Examples 34

9.3 SPARQL Rule-Based Inference 36

9.3.1 Storing SPARQL Rules 36

9.3.2 Setting Up Sample Data to Create a SPARQL Inferred Graph 37

9.3.3 Example Workflow to Create and Query a SPARQL Inferred Graph 38

10

RDF Views: Relational Data as RDF

10.1 Why Use RDF Views on Relational Data? 1

10.2 API Support for RDF Views 2

10.2.1 Creating an RDF View Graph with Direct Mapping 2

10.2.2 Creating an RDF View Graph with R2RML Mapping 3

10.2.3 Dropping an RDF View Graph 5

10.2.4 Exporting Virtual Content of an RDF View Graph into a Staging Table 6

10.3 Example: Using an RDF View Graph with Direct Mapping 6

10.4 Combining Native RDF Data with Virtual RDB2RDF Data 8

10.4.1 Nested Loop Pushdown with Overloaded Service 10

11

Creating Property Graphs from RDF Graphs

Part II RDF Graph Server and Query UI

12

Introduction to RDF Graph Server and Query UI

13

RDF Graph Server and Query UI Concepts

13.1 Data Sources 1

13.1.1 Oracle Data Sources 1

13.1.2 Endpoint URL Data Sources 3

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xxi

13.2 RDF Datasets 4

13.3 REST Services 4

14

Oracle RDF Graph Query UI

14.1 Installing RDF Graph Query UI 1

14.2 Managing User Roles for RDF Graph Query UI 2

14.2.1 Managing Groups and Users in WebLogic Server 2

14.2.1.1 Creating User Groups in WebLogic Server 3

14.2.1.2 Creating RDF and Guest Users in WebLogic Server 4

14.2.2 Managing Users and Roles in Tomcat Server 6

14.3 Getting Started with RDF Graph Query UI 7

14.3.1 Data Sources Page 7

14.3.1.1 Creating a JDBC URL Data Source 8

14.3.1.2 Creating an Oracle Container Data Source 9

14.3.1.3 Creating an Oracle Wallet Data Source 13

14.3.1.4 Creating an Endpoint URL Data Source 14

14.3.2 RDF Data Page 16

14.3.2.1 Data Source Selection 17

14.3.2.2 RDF Network Actions 18

14.3.2.3 Importing Data 18

14.3.2.4 SPARQL Query Cache Manager 19

14.3.2.5 RDF Objects Navigator 20

14.3.2.6 Data Source Published Datasets Navigator 22

14.3.2.7 Performing SPARQL Query and SPARQL Update Operations 22

14.3.2.8 Publishing Oracle RDF Models 24

14.3.2.9 Published Dataset Playground 27

14.3.2.10 Support for Result Tables 29

14.3.2.11 Advanced Graph View 39

14.3.2.12 RDF Views from Relational Data 46

14.3.2.13 Database Views from RDF Models 54

14.3.3 Configuration Files for RDF Server and Client 59

14.3.3.1 Data Sources JSON Configuration File 60

14.3.3.2 General JSON configuration file 61

14.3.3.3 Proxy JSON Configuration File 62

14.3.3.4 Logging JSON Configuration File 62

14.4 Accessibility 63

Part III Reference Information

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xxi

15

SEM_APIS Package Subprograms

15.1 SEM_APIS.ADD_DATATYPE_INDEX 6

15.2 SEM_APIS.ADD_NETWORK_INDEX 7

15.3 SEM_APIS.ADD_SEM_INDEX 8

15.4 SEM_APIS.ALTER_DATATYPE_INDEX 9

15.5 SEM_APIS.ALTER_ENTAILMENT 10

15.6 SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH 11

15.7 SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH 12

15.8 SEM_APIS.ALTER_INFERRED_GRAPH 13

15.9 SEM_APIS.ALTER_MODEL 14

15.10 SEM_APIS.ALTER_RDF_GRAPH 15

15.11 SEM_APIS.ALTER_RDF_INDEXES 16

15.12 SEM_APIS.ALTER_RESULT_TAB 17

15.13 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT 18

15.14 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL 20

15.15 SEM_APIS.ALTER_SEM_INDEXES 21

15.16 SEM_APIS.ALTER_SPM_TAB 22

15.17 SEM_APIS.ANALYZE_ENTAILMENT 24

15.18 SEM_APIS.ANALYZE_INFERRED_GRAPH 26

15.19 SEM_APIS.ANALYZE_MODEL 28

15.20 SEM_APIS.ANALYZE_RDF_GRAPH 30

15.21 SEM_APIS.APPEND_RDF_NETWORK_DATA 31

15.22 SEM_APIS.APPEND_SEM_NETWORK_DATA 32

15.23 SEM_APIS.BUILD_RESULT_TAB 33

15.24 SEM_APIS.BUILD_SPM_TAB 36

15.25 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE 38

15.26 SEM_APIS.BULK_LOAD_RDF_GRAPH 40

15.27 SEM_APIS.CLEANUP_BNODES 42

15.28 SEM_APIS.CLEANUP_FAILED 43

15.29 SEM_APIS.COMPOSE_RDF_TERM 44

15.30 SEM_APIS.CONVERT_TO_GML311_LITERAL 46

15.31 SEM_APIS.CONVERT_TO_WKT_LITERAL 47

15.32 SEM_APIS.CREATE_ENTAILMENT 48

15.33 SEM_APIS.CREATE_INDEX_ON_RESULT_TAB 56

15.34 SEM_APIS.CREATE_INDEX_ON_SPM_TAB 58

15.35 SEM_APIS.CREATE_INFERRED_GRAPH 60

15.36 SEM_APIS.CREATE_MATERIALIZED_VIEW 68

15.37 SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX 70

15.38 SEM_APIS.CREATE_RDF_GRAPH 71

15.39 SEM_APIS.CREATE_RDF_GRAPH_COLLECTION 72

15.40 SEM_APIS.CREATE_RDF_NETWORK 75

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiii of xxi

15.41 SEM_APIS.CREATE_RDFVIEW_GRAPH 77

15.42 SEM_APIS.CREATE_RDFVIEW_MODEL 80

15.43 SEM_APIS.CREATE_RULEBASE 84

15.44 SEM_APIS.CREATE_SEM_MODEL 85

15.45 SEM_APIS.CREATE_SEM_NETWORK 87

15.46 SEM_APIS.CREATE_SEM_SQL 89

15.47 SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE 89

15.48 SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH 91

15.49 SEM_APIS.CREATE_SPARQL_UPDATE_TABLES 92

15.50 SEM_APIS.CREATE_VIRTUAL_MODEL 93

15.51 SEM_APIS.DELETE_ENTAILMENT_STATS 96

15.52 SEM_APIS.DELETE_MODEL_STATS 97

15.53 SEM_APIS.DISABLE_CHANGE_TRACKING 97

15.54 SEM_APIS.DISABLE_INC_INFERENCE 98

15.55 SEM_APIS.DISABLE_INMEMORY 99

15.56 SEM_APIS.DISABLE_INMEMORY_FOR_ENT 100

15.57 SEM_APIS.DISABLE_INMEMORY_FOR_MODEL 100

15.58 SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH 101

15.59 SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH 102

15.60 SEM_APIS.DISABLE_NETWORK_SHARING 103

15.61 SEM_APIS.DROP_DATATYPE_INDEX 103

15.62 SEM_APIS.DROP_ENTAILMENT 104

15.63 SEM_APIS.DROP_INFERRED_GRAPH 105

15.64 SEM_APIS.DROP_MATERIALIZED_VIEW 106

15.65 SEM_APIS.DROP_MV_BITMAP_INDEX 107

15.66 SEM_APIS.DROP_NETWORK_INDEX 108

15.67 SEM_APIS.DROP_RDF_GRAPH 108

15.68 SEM_APIS.DROP_RDF_GRAPH_COLLECTION 109

15.69 SEM_APIS.DROP_RDF_NETWORK 110

15.70 SEM_APIS.DROP_RDFVIEW_GRAPH 111

15.71 SEM_APIS.DROP_RDFVIEW_MODEL 112

15.72 SEM_APIS.DROP_RESULT_TAB 113

15.73 SEM_APIS.DROP_RULEBASE 114

15.74 SEM_APIS.DROP_SEM_INDEX 115

15.75 SEM_APIS.DROP_SEM_MODEL 116

15.76 SEM_APIS.DROP_SEM_NETWORK 117

15.77 SEM_APIS.DROP_SEM_SQL 118

15.78 SEM_APIS.DROP_SPARQL_UPDATE_TABLES 118

15.79 SEM_APIS.DROP_SPM_TAB 119

15.80 SEM_APIS.DROP_USER_INFERENCE_OBJS 120

15.81 SEM_APIS.DROP_VIRTUAL_MODEL 121

15.82 SEM_APIS.ENABLE_CHANGE_TRACKING 122

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiv of xxi

15.83 SEM_APIS.ENABLE_INC_INFERENCE 123

15.84 SEM_APIS.ENABLE_INMEMORY 123

15.85 SEM_APIS.ENABLE_INMEMORY_FOR_ENT 124

15.86 SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH 125

15.87 SEM_APIS.ENABLE_INMEMORY_FOR_MODEL 126

15.88 SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH 127

15.89 SEM_APIS.ENABLE_NETWORK_SHARING 127

15.90 SEM_APIS.ESCAPE_CLOB_TERM 128

15.91 SEM_APIS.ESCAPE_CLOB_VALUE 129

15.92 SEM_APIS.ESCAPE_RDF_TERM 130

15.93 SEM_APIS.ESCAPE_RDF_VALUE 131

15.94 SEM_APIS.EXPORT_ENTAILMENT_STATS 132

15.95 SEM_APIS.EXPORT_MODEL_STATS 132

15.96 SEM_APIS.EXPORT_RDFVIEW_GRAPH 133

15.97 SEM_APIS.EXPORT_RDFVIEW_MODEL 134

15.98 SEM_APIS.GATHER_SPM_INFO 136

15.99 SEM_APIS.GET_CHANGE_TRACKING_INFO 137

15.100 SEM_APIS.GET_INC_INF_INFO 138

15.101 SEM_APIS.GET_MODEL_ID 139

15.102 SEM_APIS.GET_MODEL_NAME 140

15.103 SEM_APIS.GET_PLAN_COST 140

15.104 SEM_APIS.GET_SQL 141

15.105 SEM_APIS.GET_TRIPLE_ID 142

15.106 SEM_APIS.GETV$DATETIMETZVAL 143

15.107 SEM_APIS.GETV$DATETZVAL 144

15.108 SEM_APIS.GETV$GEOMETRYVAL 145

15.109 SEM_APIS.GETV$NUMERICVAL 146

15.110 SEM_APIS.GETV$STRINGVAL 147

15.111 SEM_APIS.GETV$TIMETZVAL 148

15.112 SEM_APIS.GRANT_MODEL_ACCESS_PRIV 149

15.113 SEM_APIS.GRANT_MODEL_ACCESS_PRIVS 150

15.114 SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS 152

15.115 SEM_APIS.GRANT_NETWORK_SHARING_PRIVS 153

15.116 SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV 153

15.117 SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS 155

15.118 SEM_APIS.IMPORT_ENTAILMENT_STATS 156

15.119 SEM_APIS.IMPORT_MODEL_STATS 157

15.120 SEM_APIS.IS_TRIPLE 158

15.121 SEM_APIS.LOAD_INTO_STAGING_TABLE 159

15.122 SEM_APIS.LOOKUP_ENTAILMENT 160

15.123 SEM_APIS.MERGE_MODELS 161

15.124 SEM_APIS.MERGE_RDF_GRAPHS 162

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xv of xxi

15.125 SEM_APIS.MIGRATE_DATA_TO_CURRENT 164

15.126 SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 165

15.127 SEM_APIS.MOVE_RDF_NETWORK_DATA 166

15.128 SEM_APIS.MOVE_SEM_NETWORK_DATA 167

15.129 SEM_APIS.PURGE_UNUSED_VALUES 168

15.130 SEM_APIS.REFRESH_MATERIALIZED_VIEW 169

15.131 SEM_APIS.REFRESH_NETWORK_INDEX_INFO 170

15.132 SEM_APIS.REFRESH_QUERY_STATE 170

15.133 SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO 171

15.134 SEM_APIS.RENAME_ENTAILMENT 172

15.135 SEM_APIS.RENAME_INFERRED_GRAPH 172

15.136 SEM_APIS.RENAME_MODEL 173

15.137 SEM_APIS.RENAME_RDF_GRAPH 174

15.138 SEM_APIS.RES2VID 175

15.139 SEM_APIS.RESTORE_RDF_NETWORK_DATA 176

15.140 SEM_APIS.RESTORE_SEM_NETWORK_DATA 177

15.141 SEM_APIS.REVOKE_MODEL_ACCESS_PRIV 178

15.142 SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS 180

15.143 SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS 181

15.144 SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS 182

15.145 SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV 183

15.146 SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS 184

15.147 SEM_APIS.SEM_SQL_COMPILE 186

15.148 SEM_APIS.SET_ENTAILMENT_STATS 186

15.149 SEM_APIS.SET_MODEL_STATS 187

15.150 SEM_APIS.SPARQL_TO_SQL 188

15.151 SEM_APIS.SWAP_NAMES 189

15.152 SEM_APIS.TRUNCATE_SEM_MODEL 190

15.153 SEM_APIS.TRUNCATE_RDF_GRAPH 191

15.154 SEM_APIS.UNESCAPE_CLOB_TERM 192

15.155 SEM_APIS.UNESCAPE_CLOB_VALUE 192

15.156 SEM_APIS.UNESCAPE_RDF_TERM 193

15.157 SEM_APIS.UNESCAPE_RDF_VALUE 194

15.158 SEM_APIS.UPDATE_MODEL 195

15.159 SEM_APIS.UPDATE_RDF_GRAPH 197

15.160 SEM_APIS.VALIDATE_ENTAILMENT 199

15.161 SEM_APIS.VALIDATE_GEOMETRIES 201

15.162 SEM_APIS.VALIDATE_INFERRED_GRAPH 203

15.163 SEM_APIS.VALIDATE_MODEL 204

15.164 SEM_APIS.VALIDATE_RDF_GRAPH 206

15.165 SEM_APIS.VALUE_NAME_PREFIX 207

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvi of xxi

15.166 SEM_APIS.VALUE_NAME_SUFFIX 208

16

SEM_PERF Package Subprograms

16.1 SEM_PERF.ANALYZE_AUX_TABLES 1

16.2 SEM_PERF.DELETE_NETWORK_STATS 2

16.3 SEM_PERF.DROP_EXTENDED_STATS 3

16.4 SEM_PERF.EXPORT_NETWORK_STATS 4

16.5 SEM_PERF.GATHER_STATS 5

16.6 SEM_PERF.IMPORT_NETWORK_STATS 7

17

SEM_RDFCTX Package Subprograms

17.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY 1

17.2 SEM_RDFCTX.CREATE_POLICY 2

17.3 SEM_RDFCTX.DROP_POLICY 4

17.4 SEM_RDFCTX.MAINTAIN_TRIPLES 4

17.5 SEM_RDFCTX.SET_DEFAULT_POLICY 6

17.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM 7

18

SEM_RDFSA Package Subprograms

18.1 SEM_RDFSA.APPLY_OLS_POLICY 1

18.2 SEM_RDFSA.DISABLE_OLS_POLICY 4

18.3 SEM_RDFSA.ENABLE_OLS_POLICY 5

18.4 SEM_RDFSA.REMOVE_OLS_POLICY 5

18.5 SEM_RDFSA.RESET_MODEL_LABELS 6

18.6 SEM_RDFSA.SET_PREDICATE_LABEL 7

18.7 SEM_RDFSA.SET_RDFS_LABEL 8

18.8 SEM_RDFSA.SET_RESOURCE_LABEL 10

18.9 SEM_RDFSA.SET_RULE_LABEL 11

Part IV Appendixes

A Enabling, Downgrading, or Removing RDF Graph Support

A.3 Removing RDF Graph Support A-1

A.1 Enabling RDF Graph Support A-2

A.1.1 Enabling RDF Semantic Graph Support in a New Database Installation A-2

A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1 A-2

A.1.2.1 Required Data Migration After Upgrade A-4

A.1.2.2 Handling of Empty RDF Literals A-6

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvii of xxi

A.1.3 Workspace Manager and Virtual Private Database Desupport A-6

A.2 Downgrading RDF Graph Support to a Previous Release A-7

A.2.1 Downgrading to Release 12.1 Semantic Graph Support A-7

B SEM_MATCH Support for Spatial Queries

B.1 GeoSPARQL Functions for Spatial Support B-1

B.1.1 ogcf:aggBoundingBox B-3

B.1.2 ogcf:aggBoundingCircle B-4

B.1.3 ogcf:aggCentroid B-4

B.1.4 ogcf:aggConcaveHull B-5

B.1.5 ogcf:aggConvexHull B-6

B.1.6 ogcf:aggUnion B-7

B.1.7 ogcf:Area B-7

B.1.8 ogcf:asGeoJSON B-8

B.1.9 ogcf:asGML B-9

B.1.10 ogcf:asKML B-10

B.1.11 ogcf:asWKT B-11

B.1.12 ogcf:boundary B-12

B.1.13 ogcf:boundingCircle B-13

B.1.14 ogcf:buffer B-13

B.1.15 ogcf:concaveHull B-15

B.1.16 ogcf:convexHull B-15

B.1.17 ogcf:coordinateDimension B-16

B.1.18 ogcf:difference B-17

B.1.19 ogcf:dimension B-18

B.1.20 ogcf:distance B-19

B.1.21 ogcf:envelope B-20

B.1.22 ogcf:geometryN B-21

B.1.23 ogcf:geometryType B-22

B.1.24 ogcf:getSRID B-23

B.1.25 ogcf:intersection B-24

B.1.26 ogcf:is3D B-25

B.1.27 ogcf:isEmpty B-25

B.1.28 ogcf:isMeasured B-26

B.1.29 ogcf:isSimple B-27

B.1.30 ogcf:length B-28

B.1.31 ogcf:maxX B-29

B.1.32 ogcf:maxY B-29

B.1.33 ogcf:maxZ B-30

B.1.34 ogcf:metricArea B-31

B.1.35 ogcf:metricBuffer B-32

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xviii of xxi

B.1.36 ogcf:metricLength B-33

B.1.37 ogcf:metricPerimeter B-33

B.1.38 ogcf:minX B-34

B.1.39 ogcf:minY B-35

B.1.40 ogcf:minZ B-35

B.1.41 ogcf:numGeometries B-36

B.1.42 ogcf:perimeter B-37

B.1.43 ogcf:relate B-38

B.1.44 ogcf:sfContains B-39

B.1.45 ogcf:sfCrosses B-40

B.1.46 ogcf:sfDisjoint B-41

B.1.47 ogcf:sfEquals B-42

B.1.48 ogcf:sfIntersects B-43

B.1.49 ogcf:sfOverlaps B-44

B.1.50 ogcf:sfTouches B-45

B.1.51 ogcf:sfWithin B-47

B.1.52 ogcf:spatialDimension B-48

B.1.53 ogcf:symDifference B-48

B.1.54 ogcf:transform B-49

B.1.55 ogcf:union B-50

B.2 Oracle-Specific Functions for Spatial Support B-51

B.2.1 orageo:aggrCentroid B-52

B.2.2 orageo:aggrConvexHull B-53

B.2.3 orageo:aggrMBR B-53

B.2.4 orageo:aggrUnion B-54

B.2.5 orageo:area B-55

B.2.6 orageo:buffer B-55

B.2.7 orageo:centroid B-56

B.2.8 orageo:convexHull B-57

B.2.9 orageo:difference B-58

B.2.10 orageo:distance B-59

B.2.11 orageo:getSRID B-60

B.2.12 orageo:intersection B-61

B.2.13 orageo:length B-62

B.2.14 orageo:mbr B-62

B.2.15 orageo:nearestNeighbor B-63

B.2.16 orageo:relate B-64

B.2.17 orageo:sdoDistJoin B-66

B.2.18 orageo:sdoJoin B-67

B.2.19 orageo:union B-68

B.2.20 orageo:withinDistance B-69

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xix of xxi

B.2.21 orageo:xor B-70

C RDF Support in SQL Developer

C.1 About RDF Support in SQL Developer C-1

C.2 Setting Up the RDF Semantic Graph Support In SQL Developer C-1

C.3 Working with RDF Semantic Networks Using SQL Developer C-4

C.3.1 Creating an RDF Semantic Network Using SQL Developer C-4

C.3.1.1 Creating Tablespaces for Semantic Networks Using SQL Developer C-6

C.3.2 Refreshing Semantic Network Indexes Using SQL Developer C-7

C.3.3 Gathering RDF Statistics Using SQL Developer C-8

C.3.4 Purging Unused Values from a Network Using SQL Developer C-8

C.3.5 Dropping a Semantic Network Using SQL Developer C-9

C.4 Bulk Loading RDF Data Using SQL Developer C-9

D MDSYS-Owned Semantic Network

D.1 Creating an MDSYS-owned Semantic Network D-1

D.2 Getting Started with Semantic Data in an MDSYS-Owned Network D-2

D.3 Example Queries Using Graph Support for Apache Jena D-4

D.3.1 Test.java: Query Family Relationships D-5

D.3.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference D-5

D.3.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference D-7

D.3.4 Test8.java: SPARQL OPTIONAL Query D-8

D.3.5 Test9.java: SPARQL Query with LIMIT and OFFSET D-10

D.3.6 Test10.java: SPARQL Query with TIMEOUT and DOP D-11

D.3.7 Test11.java: Query Involving Named Graphs D-12

D.3.8 Test12.java: SPARQL ASK Query D-14

D.3.9 Test13.java: SPARQL DESCRIBE Query D-14

D.3.10 Test14.java: SPARQL CONSTRUCT Query D-15

D.3.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates" D-16

D.3.12 Test16.java: SPARQL Update D-18

D.3.13 Test17.java: SPARQL Query with ARQ Built-In Functions D-18

D.3.14 Test18.java: SELECT Cast Query D-19

D.3.15 Test19.java: Instantiate Oracle Database Using OracleConnection D-20

D.3.16 Test20.java: Oracle Database Connection Pooling D-22

D.4 Example Queries Using Graph Adapter for Eclipse RDF4J D-23

D.5 Reference Information (MDSYS_Owned Semantic Network Only) D-24

D.5.1 SEM_OLS Package Subprograms D-24

D.5.1.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB D-24

D.5.1.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB D-25

D.5.2 SEM_APIS.PRIVILEGE_ON_APP_TABLES D-26

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xx of xxi

D.5.3 SEM_APIS.REMOVE_DUPLICATES D-27

D.6 Migrating an MDSYS-Owned Network to a Schema-Private Network D-29

E Changes in Terminology and Subprograms

Glossary

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxi of xxi

List of Figures

1-1 Oracle RDF Capabilities 3

1-2 Inferencing 18

1-3 Family Tree for RDF Example 192

2-1 Running SPARQL Query in RDF Graph Query UI 5

3-1 Disease Ontology Example 2

7-1 Visual Representation of Analytical Function Output 34

7-2 Graphical Interface Main Page (index.html) 81

7-3 SPARQL Query Main Page Response 82

7-4 Graphical Interface Navigation and Browsing Page (browse.jsp) 83

7-5 Browsing and Navigation Page: Response 83

7-6 Query and Response from Clicking URI Link 84

7-7 XSLT Management Page 85

7-8 SPARQL Management Page 86

7-9 Import Metadata - Select Data Source 87

7-10 Import Metadata - Select Metadata Types 88

7-11 Import Metadata - Select Metadata Objects 89

8-1 Data Source Repository in RDF4J Workbench 7

8-2 RDF4J Workbench Repository 12

8-3 RDF4J Workbench New Repository 13

8-4 Create New Repository in RDF4J Workbench 13

8-5 Summary of New Repository in RDF4J Workbench 14

8-6 List of Repositories 14

11-1 RDF Data Visualization 5

12-1 RDF Graph Server and Query UI 1

14-1 Oracle Graph Webapps deployment 1

14-2 User Roles for RDF Graph Query 2

14-3 WebLogic Server Administration Console 3

14-4 Creating new user groups in WebLogic Server 3

14-5 Created User Groups in WebLogic Server 4

14-6 Create new users in WebLogic Server 4

14-7 New RDF and Guest users 4

14-8 RDF User 5

14-9 RDF Guest User 6

14-10 Query UI Main Page 7

14-11 Data Sources Page 8

14-12 Creating a JDBC URL Data Source 9

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxii of xxi

14-13 Create Container Data Source 10

14-14 Generic Data Source 10

14-15 JDBC Data Source and JNDI 11

14-16 Create JDBC Data Source 11

14-17 Validate connection 12

14-18 Create JDBC Data Source 12

14-19 Cloud Wallet 13

14-20 Wallet Data Source from cloud zip 14

14-21 DBpedia Data Source 15

14-22 Apache Jena Fuseki Data Source 16

14-23 RDF Data Page 17

14-24 RDF Network 18

14-25 RDF Network Actions 18

14-26 RDF Import Data Actions 18

14-27 SPARQL Query Cache Manager 19

14-28 Manage SPARQL Query Cache 20

14-29 RDF Objects for Oracle Data Source 20

14-30 RDF Objects from capabilities 21

14-31 Default RDF Object 21

14-32 RDF Navigator - Context Menu 21

14-33 Data Source Published Datasets Navigator 22

14-34 SPARQL Query Page 23

14-35 SQL EXPLAIN PLAN for SPARQL Translation 23

14-36 Map Visualization for GeoSPARQL Data Types in a SPARQL Query 24

14-37 Publish Menu 25

14-38 Publish RDF Model 25

14-39 GET URL Endpoint 26

14-40 Open an RDF Dataset Definition 26

14-41 RDF Dataset Definition 27

14-42 Public Web Page 28

14-43 Opening a Published Dataset on the Public Page 28

14-44 Result Tables 29

14-45 Predicate Info Table 30

14-46 Select the Type of Result Table 31

14-47 Step1: Name of the Result Table 31

14-48 Step2: Select the Properties 32

14-49 Step3: Reorder and Configure Properties 32

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxiii of xxi

14-50 Step4: Review the Selections 33

14-51 Configuring Inverse property path 33

14-52 Configuring Multi-Occurrence 34

14-53 Edit Result Table 35

14-54 Deleting a Result table 35

14-55 Viewing Secondary Indexes 36

14-56 Step1: Defining the Index Name 36

14-57 Step2: Selecting the Properties 37

14-58 Step2: Selecting Accessory Columns 37

14-59 Step3: Reordering Properties 38

14-60 Step3: Reordering All the Columns 38

14-61 Step4: Reviewing the Selections 39

14-62 Advanced Graph View Components 40

14-63 Visualize Menu 41

14-64 Query Selector 42

14-65 Graph Visualization Toolbar 42

14-66 Graph Legend Panel 43

14-67 Managing the Graph Display Size 43

14-68 Layout Selector 44

14-69 Viewing Vertex Properties 44

14-70 Viewing Edge Properties 45

14-71 Expanding a Vertex 46

14-72 Create RDF View Wizard 47

14-73 Create Resource Maps 48

14-74 Viewing Resource Map Details 48

14-75 Create Triple Map: Name 49

14-76 Create Triple Map: Select 50

14-77 Create Triple Map: Define 50

14-78 Create Triple Map: Summary 51

14-79 Viewing Triple Map Details 52

14-80 Downloading R2RML 52

14-81 Create RDF View 53

14-82 Executing SPARQL Queries on an RDF View 53

14-83 Visualizing SPARQL Queries on an RDF View Graph 54

14-84 Create Graph View Option 55

14-85 RDF Classes 55

14-86 Sample Graph Definition 56

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxiv of xxi

14-87 Action Menu Options 56

14-88 Graph Visualization for RDF Database Views 56

14-89 Create Views 57

14-90 RDF Database Graph Views 57

14-91 Creating a Vertex View 58

14-92 Vertex View Definitions 58

14-93 Edge Views 59

14-94 Edge View Definition 59

14-95 General SPARQL Parameters 61

14-96 General JDBC Parameters 61

14-97 General File Upload Parameters 62

14-98 Proxy JSON Configuration File 62

14-99 Logging JSON Configuration File 63

14-100 Disabled Accessibility 63

14-101 Enabled Accessibility 63

14-102 Disabled Graph View 64

C-1 RDF Semantic Graph Setup C-2

C-2 Apply RDF Semantic Graph Setup C-3

C-3 Create Semantic Network C-5

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxv of xxi

List of Tables

1-1 Mapping Oracle and W3C RDF 1.1 Terms 4

1-2 network_owner and network_name Parameters 8

1-3 SEM_MODEL$ View Columns 14

1-4 SEMM_<rdf_graph_name> View Columns 14

1-5 RDF_VALUE$ Table Columns 15

1-6 SEMR_rulebase-name View Columns 19

1-7 SEM_RULEBASE_INFO View Columns 20

1-8 SEM_RULES_INDEX_INFO View Columns 21

1-9 SEM_RULES_INDEX_DATASETS View Columns 22

1-10 SEM_MODEL$ View Column Explanations for RDF graph collections 24

1-11 SEM_VMODEL_INFO View Columns 24

1-12 SEM_VMODEL_DATASETS View Columns 25

1-13 RDF Metadata Tables and Views 28

1-14 Built-in Functions Available for FILTER Clause 40

1-15 Oracle-Specific Query Functions 45

1-16 SEM_MATCH graphs and named_graphs Values, and Resulting Dataset Configurations 50

1-17 Built-in Aggregates 64

1-18 Property Path Syntax Constructs 72

1-19 Example Star-Pattern Table Structure 103

1-20 Extended Star-Pattern Table Including a Reversed Property 104

1-21 Example Triple-Pattern Table Structure 105

1-22 Example Chain-Pattern Table Structure 106

1-23 Multiple Occurrences of a Single Property in a Chain-Pattern Table 107

1-24 Reversed Property in a Chain-Pattern Table 107

1-25 Mapping from Suffix of Lexical Value Component Column Names to Component Code 110

1-26 Predicate Information Table Columns 112

1-27 Predicate Information Table Columns 113

1-28 Sample Cardinality Information in the Predicate Table 113

1-29 SEM_NETWORK_INDEX_INFO View Columns (Partial List) 159

1-30 Data Types for Data Type Indexing 160

1-31 SEM_DTYPE_INDEX_INFO View Columns 161

1-32 Semantic Technology Software Objects: Old and New Names 196

3-1 PATIENTS Table Example Data 2

3-2 RDFS/OWL Vocabulary Constructs Included in Each Supported Rulebase 4

3-3 SEMC_inferred_graph_name View Columns 12

5-1 RDFCTX_POLICIES View Columns 18

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxvi of xxi

5-2 RDFCTX_INDEX_POLICIES View Columns 18

5-3 RDFCTX_INDEX_EXCEPTIONS View Columns 19

7-1 Functions and Return Values for my_strlen Example 23

7-2 PL/SQL Subprograms and Corresponding RDF graph support for Apache Jena Java Class

and Methods 37

13-1 External Data source Parameters 3

15-1 Inferencing Keywords for inf_components_in Parameter 51

15-2 SEM_RDFSA Package Constants for label_gen Parameter 54

15-3 Inferencing Keywords for inf_components_in Parameter 63

15-4 SEM_RDFSA Package Constants for label_gen Parameter 66

18-1 SEM_RDFSA Package Constants for rdfsa_options Parameter 2

C-1 RDF Semantic Graph Setup Specific To SQL Developer and Oracle DB Version C-2

C-2 Recommended Semantic Network Type C-4

C-3 Release Specific Instructions to Create a Semantic Network C-4

E-1 Changes in Terminology E-1

E-2 Changes to the Subprogram Names in the SEM_APIS Package E-1

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxvii of xxi

Preface

Oracle AI Database Graph Developer's Guide for RDF Graph provides usage and reference
information about Oracle AI Database Enterprise Edition support for semantic technologies,
including storage, inference, and query capabilities for data and ontologies based on Resource
Description Framework (RDF), RDF Schema (RDFS), and Web Ontology Language (OWL).
The RDF Graph feature is licensed with the Oracle Spatial and Graph option to Oracle AI
Database Enterprise Edition, and it requires the Oracle Partitioning option to Oracle AI
Database Enterprise Edition.

Note

You must perform certain actions and meet prerequisites before you can use any
types, synonyms, or PL/SQL packages related to RDF Graph support. These actions
and prerequisites are explained in Enabling RDF Semantic Graph Support.

• Audience

• Related Documents

• Conventions

Audience
This guide is intended for those who need to use semantic technology to store, manage, and
query semantic data in the database.

You should be familiar with at least the main concepts and techniques for the Resource
Description Framework (RDF) and the Web Ontology Language (OWL).

Related Documents
For an excellent explanation of RDF concepts, see the World Wide Web Consortium (W3C)
RDF Primer at http://www.w3.org/TR/rdf-primer/.

For information about OWL, see the OWL Web Ontology Language Reference at http://
www.w3.org/TR/owl-ref/.

Conventions
The following text conventions are used in this document:

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of ii

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii

Changes in This Release for This Guide

This topic contains the following.

• Changes in Oracle AI Database Release 26ai

Changes in Oracle AI Database Release 26ai
The following are the changes in Oracle AI Database Graph Developer's Guide for RDF Graph
for Oracle AI Database Release 26ai.

Enhanced Support for Querying Semantic Data

In addition to the SEM_MATCH table function, you can also query semantic data in the
following order:

• Use the SEM_APIS.GET_SQL function to obtain the SQL translation for a SPARQL query.

• Run the SEM_APIS.CREATE_SEM_SQL as a one-time setup procedure to create the
SEM_SQL SQL Macro.

• Compile the SQL (SEM_APIS.SEM_SQL_COMPILE) and query the semantic data using
the SEM_SQL SQL Macro.

See Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data
for more information.

Support for In-Memory Subject-Property-Matrix Tables

You can create in-memory Subject-Property-Matrix (SPM) tables by using the INMEMORY=T
option in SEM_APIS.BUILD_SPM_TAB.

See In-Memory Result Tables for more information.

Support for GeoSPARQL 1.1

The Open Geospatial Consortium (OGC) has proposed GeoSPARQL 1.1 as an update to the
original OGC GeoSPARQL standard. This update includes new literal data types based on
GeoJSON and KML geometry serializations and several new spatial query functions and
spatial aggregates.

These new GeoSPARQL 1.1 geometry literals, query functions and aggregates can be used in
SPARQL queries through SPARQL APIs provided by the RDF feature of Oracle AI Database.

See Spatial Support for more information.

Support for Auto-List Subpartitioning of RDF_LINK$ table

To improve the performance of SPARQL update (CLEAR, MOVE, COPY, or DROP query constructs,
using keywords such as, DEFAULT, NAMED, GRAPH, and ALL), you can create the RDF_LINK$
table as a list-list composite partitioned table where subpartitions are automatically maintained

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of ii

https://github.com/opengeospatial/ogc-geosparql

on the graph ID. You can create the auto-list subpartitioned table by using the
MODEL_PARTITIONING=BY_LIST_G option in SEM_APIS.CREATE_SEM_NETWORK.

See RDF Networks for more information.

Support for Retrieving Query Execution Plan Cost

You can use the SEM_APIS.GET_PLAN_COST API procedure to get the cost of a query
execution plan.

See SEM_APIS.GET_PLAN_COST for more information.

Support for 32K VARCHAR RDF Values

You can now store RDF values up to 32767 bytes in length as VARCHAR values in your RDF
network if your database has extended VARCHAR support enabled
(MAX_STRING_SIZE=EXTENDED). In previous releases, only RDF values up to 4000 bytes in
length were stored as VARCHAR values. RDF values larger than this limit (4K or 32K bytes),
are stored as CLOBs. A 32K VARCHAR network results in less values being stored as CLOBs,
which increases performance for queries, DMLs, and bulk load operations on large RDF
literals.

To control the maximum VARCHAR size in your RDF network, you can pass
NETWORK_MAX_STRING_SIZE=EXTENDED for 32K VARCHAR or
NETWORK_MAX_STRING_SIZE=STANDARD (default) for 4K VARCHAR in the options argument of
SEM_APIS.CREATE_RDF_NETWORK.

A pre-existing 4K VARCHAR RDF network cannot be migrated to a 32K VARCHAR RDF
network. You must create a new RDF network using NETWORK_MAX_STRING_SIZE=EXTENDED and
reload your data into the new network.

Deprecation of MDSYS-Owned RDF Network

Creation of RDF graph networks in the MDSYS schema is deprecated. Oracle recommends
that you create RDF graph networks in a user schema, which was enabled in Oracle Database
19c.

An existing MDSYS-owned network can be migrated to a shared schema-private RDF network
by using the SEM_APIS.MOVE_RDF_NETWORK_DATA and
SEM_APIS.APPEND_RDF_NETWORK_DATA procedures.

See MDSYS-Owned Semantic Network in Appendix D for more information on MDSYS-owned
semantic networks.

Running Graph Analytics Algorithms with RDF Graphs

You can create property graph views from an RDF graph. You can first run SEM_MATCH
queries to create database views that represent vertex and edge tables, and then create a
PGQL property graph from those views. This property graph can be loaded into the graph
server for running graph analytics algorithms.

See Creating Property Graphs from RDF Graphs for more information.

Changes in This Release for This Guide

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii

How to Use This Book

This book is organized into three parts:

• Part I provides conceptual and usage information about RDF Graph.

• Part II provides information about using RDF Graph Server and Query UI.

• Part III provides reference information about RDF Graph subprograms.

All supplementary information is provided in Appendixes and specialized terms are defined in
the Glossary.

However, the following summary provides an outline of some of the main ideas in the book that
will help you to develop an understanding of RDF Graph support in Oracle AI Database and
how to store, load, query, infer and visualize RDF data.

Learn About Oracle RDF Graph

Introduction to Oracle Semantic Technologies
Support

RDF Data in the Database

OWL Concepts

RDF Views

Get Started With Oracle RDF Graph

Enabling RDF Graph Support

Quick Start for Using Semantic Data

Loading and Exporting RDF Data

Performing SPARQL Query operations

Performing SPARQL Update operations

Performance Tuning for SPARQL Queries

Tuning the Performance of SPARQL Update
Operations

What's New In Oracle RDF Graph

Speeding up Query Execution with Result
Tables

RDF Graph Support for Eclipse RDF4J

RDF Graph Server and Query UI

Additional Oracle RDF Graph Features

RDF Graph Support for Apache Jena

RDF Support in SQL Developer

Using RDF with Oracle AI Database In-
Memory

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of ii

Applying Oracle Machine Learning Algorithms
to RDF Data

How to Use This Book

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii

Part I
Conceptual and Usage Information

Part I provides conceptual and usage information about RDF Graph.

This part contains the following chapters:

• RDF Graph Overview
Oracle Graph support for semantic technologies consists mainly of Resource Description
Framework (RDF) and a subset of the Web Ontology Language (OWL). These capabilities
are referred to as the RDF Graph feature of Oracle Graph.

• Quick Start for Using RDF Data
This section provides the steps to help you get started on working with RDF data in an
Oracle AI Database.

• OWL Concepts
You should understand key concepts related to the support for a subset of the Web
Ontology Language (OWL).

• Simple Knowledge Organization System (SKOS) Support
You can perform inferencing based on a core subset of the Simple Knowledge
Organization System (SKOS) data model, which is especially useful for representing
thesauri, classification schemes, taxonomies, and other types of controlled vocabulary.

• Semantic Indexing for Documents
Information extractors locate and extract meaningful information from unstructured
documents. The ability to search for documents based on this extracted information is a
significant improvement over the keyword-based searches supported by the full-text
search engines.

• Fine-Grained Access Control for RDF Data
The default control of access to the RDF data stored in a given RDF network, shared
among select users in an Oracle AI Database, is at the RDF graph level: the owner of a
graph in that network can grant select, delete, and insert privileges on the graph to the
other users (with shared access to the network), by granting appropriate privileges on the
view named RDFM_<rdf_graph_name>. However, for applications with stringent security
requirements, you can enforce a fine-grained access control mechanism by using the
Oracle Label Security option of Oracle AI Database.

• RDF Graph Support for Apache Jena
RDF Graph support for Apache Jena (also referred to here as support for Apache Jena)
provides a Java-based interface to Oracle Graph RDF Graph by implementing the well-
known Jena Graph, RDF graph, and DatasetGraph APIs.

• RDF Graph Support for Eclipse RDF4J
Oracle RDF Graph Adapter for Eclipse RDF4J utilizes the popular Eclipse RDF4J
framework to provide Java developers support to use the RDF graph feature of Oracle AI
Database.

• User-Defined Inferencing and Querying
RDF graph extension architectures enable the addition of user-defined capabilities.

• RDF Views: Relational Data as RDF
You can create and use RDF views over relational data in RDF Graph.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 2

• Creating Property Graphs from RDF Graphs
Oracle Graph supports the property graph data model in addition to the RDF graph data
model.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 2

1
RDF Graph Overview

Oracle Graph support for semantic technologies consists mainly of Resource Description
Framework (RDF) and a subset of the Web Ontology Language (OWL). These capabilities are
referred to as the RDF Graph feature of Oracle Graph.

The RDF Graph feature enables you to create one or more RDF networks in an Oracle AI
Database. Each network contains RDF data.

This chapter assumes that you are familiar with the major concepts associated with RDF and
OWL, such as {subject, predicate, object} triples, {subject, predicate, object, graph} quads,
URIs, blank nodes, plain and typed literals, and ontologies. It does not explain these concepts
in detail, but focuses instead on how the concepts are implemented in Oracle.

• For an excellent explanation of RDF concepts, see the World Wide Web Consortium
(W3C) RDF Primer at http://www.w3.org/TR/rdf-primer/.

• For information about OWL, see the OWL Web Ontology Language Reference at http://
www.w3.org/TR/owl-ref/.

The PL/SQL subprograms for working with RDF data are in the SEM_APIS package, which is
documented in SEM_APIS Package Subprograms.

The RDF and OWL support are features of Oracle Graph, which must be installed for these
features to be used. However, the use of RDF and OWL is not restricted to spatial data.

Note

If you have any RDF data created using an Oracle Database release before 12.2, see
Required Migration of Pre-12.2 RDF Data.

For information about OWL concepts and the Oracle AI Database support for OWL
capabilities, see OWL Concepts .

Note

Before performing any operations described in this guide, you must enable RDF
Graph support in the database and meet other prerequisites, as explained in Enabling
RDF Semantic Graph Support.

• Introduction to Oracle Semantic Technologies Support
Oracle AI Database enables you to store RDF data and ontologies, to query RDF data and
to perform ontology-assisted query of enterprise relational data, and to use supplied or
user-defined inferencing to expand the power of querying on RDF data.

• Key Terms and Concepts for Working with RDF Graphs
Learn the Oracle terminology and the concepts for working with the RDF graph feature in
Oracle AI Database.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 197

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

• RDF Data Modeling
In addition to its formal semantics, RDF data has a simple data structure that is effectively
modeled using a directed graph.

• RDF Data in the Database
RDF data in Oracle AI Database is stored in one or more RDF networks.

• RDF Metadata Tables and Views
Oracle AI Database maintains several tables and views in the network owner’s schema to
hold metadata related to RDF data.

• RDF Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE_S object type is used for representing the edges (that is, triples
and quads) of RDF graphs.

• Using the SEM_MATCH Table Function to Query RDF Data
To query RDF data, use the SEM_MATCH table function.

• Speeding up Query Execution with Result Tables
Result tables are auxiliary tables that store the results for generic patterns of SPARQL
queries executed against an RDF graph or RDF graph collection.

• Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data
You can use the SEM_APIS.SPARQL_TO_SQL function as an alternative to the
SEM_MATCH table function to query RDF data.

• Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data
You can use the SEM_APIS.GET_SQL function as an alternative to the SEM_MATCH
table function to query RDF data.

• Loading and Exporting RDF Data
You can load RDF data into an RDF graph in the database and export that data from the
database into a staging table.

• Using RDF Network Indexes
RDF network indexes are nonunique B-tree indexes that you can add, alter, and drop for
use with RDF graphs and inferred graphs in a RDF network.

• Using Data Type Indexes
Data type indexes are indexes on the values of typed literals stored in an RDF network.

• Managing Statistics for the RDF Graphs and RDF Network
Statistics are critical to the performance of SPARQL queries and OWL inference against
RDF data stored in an Oracle AI Database.

• Support for SPARQL Update Operations on an RDF Graph
Effective with Oracle Database Release 12.2, you can perform SPARQL Update
operations on an RDF graph.

• RDF Support for Oracle AI Database In-Memory
RDF can use the in-memory Oracle AI Database In-Memory suite of features, including in-
memory column store, to improve performance for real-time analytics and mixed
workloads.

• RDF Support for Materialized Join Views
The most frequently used joins in RDF queries are subject-subject and subject-object joins.
To enhance the RDF query performance, you can create materialized join views on those
two columns.

• RDF Support in Oracle SQL Developer
You can use Oracle SQL Developer to perform operations related to the RDF Knowledge
Graph feature of Oracle Graph.

Chapter 1

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 197

• Enhanced RDF ORDER BY Query Processing
Effective with Oracle Database Release 12.2, queries on RDF data that use SPARQL
ORDER BY semantics are processed more efficiently than in previous releases.

• Applying Oracle Machine Learning Algorithms to RDF Data
You can apply Oracle Machine Learning algorithms to RDF data.

• RDF Graph Management Examples (PL/SQL and Java)
PL/SQL examples are provided in this topic.

• Software Naming Changes Since Release 11.1
Because the support for RDF data has been expanded beyond the original focus on RDF,
the names of many software objects (PL/SQL packages, functions and procedures, system
tables and views, and so on) have been changed as of Oracle Database Release 11.1.

• For More Information About RDF Graph
More information is available about RDF graph support and related topics.

• Required Migration of Pre-12.2 RDF Data
If you have any RDF data created using Oracle Database 11.1. 11.2, or 12.1, then before
you use it in an Oracle Database 12.2 environment, you must migrate this data.

• Oracle RDF Graph Features that Support Accessibility
This section describes the accessibility support provided by Oracle RDF Graph features.

1.1 Introduction to Oracle Semantic Technologies Support
Oracle AI Database enables you to store RDF data and ontologies, to query RDF data and to
perform ontology-assisted query of enterprise relational data, and to use supplied or user-
defined inferencing to expand the power of querying on RDF data.

Figure 1-1 shows how these capabilities interact.

Figure 1-1 Oracle RDF Capabilities

Query RDF/OWL

data and

ontologies

Ontology-assisted

query of

enterprise data

RDF/OWL

data and

ontologies

Enterprise

(relational)

data

U
s
e

r-
d

e
fi
n

e
d

R
D

F
/S

O
W

L
 s

u
b

s
e

t

INFER
QUERY

STORE

Bulk Load

Incremental

Load & DML

Database

As shown in Figure 1-1, the database contains RDF data and ontologies (RDF/OWL graphs),
as well as traditional relational data. To load RDF data, bulk loading is the most efficient
approach, although you can load data incrementally using transactional INSERT statements.

Chapter 1
Introduction to Oracle Semantic Technologies Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 197

Note

If you want to use existing RDF data from a release before Oracle Database 11.1, the
data must be upgraded as described in Enabling RDF Semantic Graph Support.

You can query RDF data and ontologies, and you can also perform ontology-assisted queries
of RDF and traditional relational data to find semantic relationships. To perform ontology-
assisted queries, use the SEM_RELATED operator, which is described in Using Semantic
Operators to Query Relational Data.

You can expand the power of queries on RDF data by using inferencing, which uses rules in
rulebases. Inferencing enables you to make logical deductions based on the data and the
rules. For information about using rules and rulebases for inferencing, see Inferencing: Rules
and Rulebases.

1.2 Key Terms and Concepts for Working with RDF Graphs
Learn the Oracle terminology and the concepts for working with the RDF graph feature in
Oracle AI Database.

Although the terminology used in this guide for RDF concepts are very similar to the W3C RDF
1.1 terminology, there are some differences. The most significant difference is that the term
RDF Graph in this document corresponds to RDF Dataset in W3C RDF 1.1 terminology.

The following table lists the Oracle RDF terminology and their corresponding mapping to the
W3C RDF 1.1 terminology.

Table 1-1 Mapping Oracle and W3C RDF 1.1 Terms

Oracle Terminology Description W3C RDF 1.1 Terminology

RDF Network Zero or more RDF Graphs and built-in
(such as OWL, RDFS, and so on) and
any user-defined rulebases.

None

RDF Graph Single Default Graph and zero or more
Named Graphs.

RDF Dataset

Default Graph Set of triples that are not associated with
any graph name. It is a part of an RDF
Graph.

Default (RDF) Graph

Named Graph Set of triples, each associated with the
same graph name. Each named graph is
part of an RDF Graph.

Named (RDF) Graph

RDF Graph Collection Set of RDF Graphs. Merged RDF Datasets

Inferred Graph RDF Graph comprising only the triples
inferred using specified RDF Graphs
and rulebases.

Entailed Graph, but excludes
the triples asserted in the
dataset.

RDFview Graph Relational data (in one or more tables)
viewed as RDF Graph using W3C
RDB2RDF mapping.

RDF Dataset obtained from
relational tables using W3C
RDB2RDF mapping.

The following diagram shows the structural representation of the Oracle RDF concepts
described in the preceding table:

Chapter 1
Key Terms and Concepts for Working with RDF Graphs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 197

1.3 RDF Data Modeling
In addition to its formal semantics, RDF data has a simple data structure that is effectively
modeled using a directed graph.

The metadata statements are represented as triples: nodes are used to represent two parts of
the triple, and the third part is represented by a directed link that describes the relationship
between the nodes. The triples are stored in an RDF data network. In addition, information is
maintained about specific RDF graphs created by database users. A user-created RDF Graph
has a graph name, and refers to triples stored in a specified table column.

Statements are expressed in triples: {subject or resource, predicate or property, object or
value}. In this manual, {subject, property, object} is used to describe a triple, and the terms
statement and triple may sometimes be used interchangeably. Each triple is a complete and
unique fact about a specific domain, and can be represented by a link in a directed graph.

1.4 RDF Data in the Database
RDF data in Oracle AI Database is stored in one or more RDF networks.

All triples are parsed and stored in the system as entries in tables is an RDF network, and
each RDF network is under a regular database user schema. A triple {subject, property, object}
is treated as one database object. As a result, a single document containing multiple triples
results in multiple database objects.

All the subjects and objects of triples are mapped to nodes in a RDF data network, and
properties are mapped to network links that have their start node and end node as subject and
object, respectively. The possible node types are blank nodes, URIs, plain literals, and typed
literals.

Chapter 1
RDF Data Modeling

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 197

The following requirements apply to the specifications of URIs and the storage of RDF data in
the database:

• A subject must be a URI or a blank node.

• A property must be a URI.

• An object can be any type, such as a URI, a blank node, or a literal. (However, null values
and null strings are not supported.)

• RDF Networks

• RDF Graphs

• Statements

• Subjects and Objects

• Blank Nodes

• Properties

• Inferencing: Rules and Rulebases

• Inferred Graphs

• RDF Graph Collections

• Named Graphs

• RDF Data Security Considerations

• RDF Privilege Considerations

1.4.1 RDF Networks
An RDF network is a set of tables and views that holds RDF data. An RDF network is not
created during installation. A database user must explicitly call
SEM_APIS.CREATE_RDF_NETWORK to create an RDF network before any RDF data can be
stored in the database.

Note

RDF Networks were called as Semantic Networks in the previous book versions
(prior to Oracle AI Database Release 26ai). See Changes in Terminology and
Subprograms for more information.

An RDF network contains, among other things, an RDF_LINK$ table for storing RDF triples or
quads. By default, the RDF_LINK$ table is list-partitioned into a set of RDF Graphs, which are
user-created containers for storing RDF triples or quads.

The RDF_LINK$ table can optionally use list-hash composite partitioning, where each RDF
graph partition is subpartitioned by a hash of the predicate. Composite partitioning can improve
SPARQL query performance on larger data sets through better parallelization and improved
query optimizer statistics.

The RDF_LINK$ table can also optionally use list-list composite partitioning, where each RDF
graph partition is subpartitioned by the graph ID. The subpartition is automatically maintained
on the graph ID. This configuration is highly recommended for quad data as it will drastically
improve the performance of SPARQL update (CLEAR, MOVE, DROP, or COPY) graph operations.

For more information about how to enable composite partitioning, see:

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 197

• The options parameter descriptions for SEM_APIS.CREATE_RDF_GRAPH and
SEM_APIS.CREATE_RDF_NETWORK.

• The usage notes for the options parameter for
SEM_APIS.CREATE_INFERRED_GRAPH, specifically for the MODEL_PARTITIONS=n
option.

An RDF_VALUE$ table is used to store a mapping of RDF values to internal numeric
identifiers. Starting with version 21c, values stored in the RDF_VALUE$ table can be stored
using an unescaped storage form; that is, Unicode characters and special characters are
stored as a single character instead of being stored as an ASCII escape sequence (such as
the single character 'ñ' instead of the ASCII escape sequence '\u00F1'). This unescaped
storage form reduces storage costs and increases query performance.

The network storage form can be specified in the options parameter of the
SEM_APIS.CREATE_RDF_NETWORK procedure at network creation time. Unescaped
storage form is the default in version 21c and later. Existing RDF networks can be migrated
using the SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 procedure.. Existing applications
should not be affected by any changes in network storage form.

Starting with Oracle AI Database 26ai, the following are the two options for the maximum size
of VARCHAR values stored in RDF_VALUE$ table:

• 4000 bytes: This is the default maximum size.

• 32767 bytes: If the database has extended VARCHAR enabled (see Extended Data
Types), then the default maximum size can optionally be extended to 32767 bytes.

RDF values smaller than or equal to this maximum size of 4K or 32K will be stored as
VARCHARs, and larger values will be stored as CLOBs. Using a 32K maximum VARCHAR
size results in fewer values being stored as CLOBs, which increases performance of query,
DML, and bulk load of large RDF values.

The maximum VARCHAR size for a network can be specified in the options parameter of the
SEM_APIS.CREATE_RDF_NETWORK procedure at network creation time.

• NETWORK_MAX_STRING_SIZE=STANDARD: Indicates a maximum size of 4000 bytes and is the
default.

• NETWORK_MAX_STRING_SIZE=EXTENDED: Indicates a maximum size of 32767 bytes.

The NETWORK_MAX_STRING_SIZE setting for an RDF network is recorded in the network’s
RDF_PARAMETER table.

One or more RDF networks can be created and owned by a regular database user schema.
Each such network is called a schema-private RDF network. You can have such a network in
a single database or pluggable database.

Note

Starting from Oracle AI Database Release 26ai, MDSYS-owned RDF networks are
deprecated. It is recommended that you create schema-private RDF networks.
An existing MDSYS-owned RDF network can be migrated to a shared schema-private
RDF network by using the SEM_APIS.MOVE_RDF_NETWORK_DATA and
SEM_APIS.APPEND_RDF_NETWORK_DATA procedures. Also, see Moving,
Restoring, and Appending an RDF Network for more information.

• Schema-Private RDF Networks

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 197

• Types of RDF Network Users

• Naming Conventions for RDF Network Objects

• RDF_PARAMETER Table in RDF Networks

• Migrating from MDSYS to Schema-Private RDF Networks

• Sharing Schema-Private RDF Networks

• Migrating from Escaped to Unescaped Storage Form

1.4.1.1 Schema-Private RDF Networks
In a schema-private RDF network, the associated database objects are created in the network
owner’s schema, and the network owner has exclusive privileges to those objects. (DBA users
also have such privileges, and the network owner or a DBA can grant and revoke the privileges
for other users.)

Schema-private RDF networks have several benefits:

• They provide better security and isolation because multiple users do not share tables and
indexes.

The network owner’s schema contains all RDF network database objects, and the network
owner has exclusive privileges to those objects by default.

Schema-private RDF networks provide better isolation because database objects are not
shared among multiple database users by default. However, after granting appropriate
privileges, a network owner may share their schema-private RDF network with other users.

• Regular users can perform administration operations on their own networks, for example,
index creation or network-wide statistics gathering.

The network owner can perform administration operations on the network without needing
DBA privileges.

Several schema-private RDF networks can coexist in a single database, PDB, or even
schema, which allows custom data type indexing schemes for different sets of RDF data.
For example, NETWORK1 can have only a spatial data type index while NETWORK2 has
only a text data type index.

Most SEM_APIS package subprograms now have network_owner and network_name
parameters to support schema-private RDF networks. Schema-private RDF networks are
identified by the two-element combination of network owner and network name, which is
specified in the last two parameters of the SEM_APIS.CREATE_SEM_NETWORK call that
created the network.

The following table describes the usage of the network_owner and network_name parameters
in subprograms that include them.

Table 1-2 network_owner and network_name Parameters

Parameter Name Description

network_owner Name of the schema that owns the network.
The network owner must be a non-NULL value that specifies a regular database
user.

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 197

Table 1-2 (Cont.) network_owner and network_name Parameters

Parameter Name Description

network_name Name of the network.
• The network name must be a non-NULL value.
• The network name must be unique within the schema of the network owner.

For example, schema SCOTT cannot have two networks named NET1; but
schemas SCOTT and ANNA can each have a network named NET1.

1.4.1.2 Types of RDF Network Users
The following three key types of RDF network users are supported:

• Network Creator: A user that invokes SEM_APIS.CREATE_RDF_NETWORK. The
network creator is either a database user with DBA privileges or it is the same as the
network owner.

• Network Owner: A user whose schema will hold the tables, triggers and views that make
up the RDF network.

• Network User: A database user that performs operations on the RDF network.
In many examples in this book, the name RDFUSER is given as a sample network user
name. There is nothing special about that name string; it could be the name of any
database user such as SCOTT, ANNA, or MARKETING.

The network owner is initially the only network user. (However, other database users can
be granted privileges on the network, thus making them additional potential network
users.)

1.4.1.3 Naming Conventions for RDF Network Objects
RDF network database objects follow specific naming conventions.

All RDF network database objects in a schema-private network are prefixed with
NETWORK_NAME#, for example, USER3.MYNET#SEM_MODEL$. This book uses the
portion of the database object name after the prefix to refer to the object. That is,
SEM_MODEL$ refers to NETWORK_OWNER.NETWORK_NAME#SEM_MODEL$ for a
schema-private RDF network.

1.4.1.4 RDF_PARAMETER Table in RDF Networks
The MDSYS.RDF_PARAMETER table holds database-wide RDF Graph installation
information. This table is created during installation and always exists.

In schema-private RDF networks, a NETWORK_NAME#RDF_PARAMETER table holds
network-specific information such as network compression settings and any RDFCTX or
RDFOLS policies used in the schema-private network.

A schema-private NETWORK_NAME#RDF_PARAMETER table is dependent on the existence
of the NETWORK_NAME RDF network. This table is created during schema-private RDF
network creation and is dropped when the schema-private network is dropped.

1.4.1.5 Migrating from MDSYS to Schema-Private RDF Networks
An existing MDSYS-owned RDF network can be migrated to a shared schema-private RDF
network by using the SEM_APIS.MOVE_RDF_NETWORK_DATA and

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 197

SEM_APIS.APPEND_RDF_NETWORK_DATA procedures. See Migrating an MDSYS-Owned
Network to a Schema-Private Network for details.

1.4.1.6 Sharing Schema-Private RDF Networks
After a schema-private network is created, it can optionally be shared, that is, made available
for use by other database users besides the network owner. Other users can be allowed to
have either of the following access capabilities:

• Read-only access to RDF data, which provides the ability to query the RDF data in the
network.
Granting read-only or query-only access to an RDF network can be done by:

1. The network owner by using the single command
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS with QUERY_ONLY=T included in the
OPTIONS parameter.

2. The network owner or the RDF graph owner by using
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS with appropriate privileges such
as QUERY or SELECT for the individual RDF graphs in the network.

See Example 1-1 for more details.

• Read/write access to RDF objects and data in the network, such as the ability to create,
alter, or drop RDF graphs and inferred graphs, and to read, insert, modify, or delete RDF
data.
The logical sequence of steps for granting both read and write access is as follows:

1. A DBA must grant network sharing privileges to the network owner. This needs to be
done only once for a given network owner. However, you can skip this step if you are
using Oracle AI Database 26ai.

2. The network owner must enable the specific network for sharing. This needs to be
done only once for a given network.

3. The network owner must grant network access privileges to the user(s) that will be
allowed to access the network.
Each of these grants can subsequently be revoked, if necessary.

See Example 1-2 for more details.

Note

Having the above access capabilities for a network allows a user to access only the
dictionary and metadata tables for the network. RDF graphs and inferred graphs not
owned by the user are not accessible unless the network owner or the owner of the
individual RDf graphs use the SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV or
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS subprogram to grant
appropriate privilege(s) for individual RDF graphs or inferred graphs in the network to
the user.

Example 1-1 Sharing a Network and Granting Query Only Privilege to Another User

The following example shares a network named NET1, owned by user RDFUSER. RDFUSER
grants query-only access on NET1 with user RDFQ.

-- As RDFUSER, create a schema-private network owned by RDFUSER named NET1
CONNECT rdfuser/<password>;
EXECUTE

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 197

SEM_APIS.CREATE_RDF_NETWORK('RDFTBS',network_owner=>'RDFUSER',network_name=>'N
ET1');

-- As RDFUSER, grant query only network access privilege for NET1 to RDFQ
EXECUTE
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(network_owner=>'RDFUSER',network_name=>'NE
T1',network_user=>'RDFQ', options=>' QUERY_ONLY=T ');

-- As RDFUSER, create an RDF graph M1 in network NET1
EXECUTE
SEM_APIS.CREATE_RDF_GRAPH('M1',null,null,network_owner=>'RDFUSER',network_name
=>'NET1');

-- Check metadata
SELECT *
FROM rdfuser.net1#sem_model$;

-- Insert some data
INSERT INTO rdfuser.net1#rdft_m1(triple)
VALUES
(SDO_RDF_TRIPLE_S('M1','<urn:person1>','<urn:name>','"Peter"','RDFUSER','NET1'
));
COMMIT;

-- Allow RDFQ to select and query an RDF graph that RDFUSER owns
EXECUTE
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS('M1','RDFQ',sys.odcivarchar2list('SELECT
','QUERY'),network_owner=>'RDFUSER',network_name=>'NET1');

-- As RDFQ, verify that RDF graph M1 is visible for querying
CONNECT rdfq/<password>;
SELECT *
FROM rdfuser.net1#rdf_model$
WHERE model_name='M1';

-- Query with SEM_MATCH
SELECT s$rdfterm, p$rdfterm, o$rdfterm
FROM TABLE(SEM_MATCH(
'SELECT ?s ?p ?o
 WHERE { ?s ?p ?o }'
,SEM_MODELS('M1')
,null,null,null,null
,' PLUS_RDFT=VC '
,null,null
,'RDFUSER','NET1'));

Example 1-2 Sharing a Network and Granting Read and Write Privileges to Another
User

The following example shares a network named NET1, owned by user RDFUSER, with user
RDFUSER2. Also RDFUSER grants query-only access on NET1 with user RDFUSER3.

-- As RDFUSER, create a schema-private network owned by RDFUSER named NET1
CONNECT rdfuser/<password>;
EXECUTE
SEM_APIS.CREATE_RDF_NETWORK('RDFTBS',network_owner=>'RDFUSER',network_name=>'N

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 197

ET1');

-- As RDFUSER, enable sharing for NET1
CONNECT rdfuser/<password>;
EXECUTE
SEM_APIS.ENABLE_NETWORK_SHARING(network_owner=>'RDFUSER',network_name=>'NET1')
;

-- As RDFUSER, grant network access privileges for NET1 to RDFUSER2
EXECUTE
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(network_owner=>'RDFUSER',network_name=>'NE
T1',network_user=>'RDFUSER2');

-- As RDFUSER2, create a RDF graph M2 in network NET1
CONNECT rdfuser2/<password>;
EXECUTE
SEM_APIS.CREATE_RDF_GRAPH('M2',null,null,network_owner=>'RDFUSER',network_name
=>'NET1');

-- Check metadata
SELECT *
FROM rdfuser.net1#sem_model$;

-- Insert some data
INSERT INTO rdfuser.net1#rdft_m2(triple)
VALUES
(SDO_RDF_TRIPLE_S('M2','<urn:person1>','<urn:name>','"John"','RDFUSER','NET1')
);
COMMIT;

-- Query with SEM_MATCH
SELECT s$rdfterm, p$rdfterm, o$rdfterm
FROM TABLE(SEM_MATCH(
'SELECT ?s ?p ?o
 WHERE { ?s ?p ?o }'
,SEM_MODELS('M2')
,null,null,null,null
,' PLUS_RDFT=VC '
,null,null
,'RDFUSER','NET1'));

-- As RDFUSER, grant query only network access privileges for NET1 to RDFUSER3
CONNECT rdfuser/<password>
EXECUTE
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(network_owner=>'RDFUSER',network_name=>'NE
T1',network_user=>'RDFUSER3', options=>' QUERY_ONLY=T ');

-- As RDFUSER2, allow RDFUSER3 to select and query an RDF graph that RDFUSER2
owns
CONNECT rdfuser2/<password>
EXECUTE
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS('M2','RDFUSER3',sys.odcivarchar2list('SE
LECT','QUERY'),network_owner=>'RDFUSER',network_name=>'NET1');

-- As RDFUSER3, verify that RDF graph M2 is visible for querying
CONNECT rdfuser3/<password>

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 197

SELECT *
FROM rdfuser.net1#rdf_model$
WHERE model_name='M2';

-- Query with SEM_MATCH
SELECT s$rdfterm, p$rdfterm, o$rdfterm
FROM TABLE(SEM_MATCH(
'SELECT ?s ?p ?o
 WHERE { ?s ?p ?o }'
,SEM_MODELS('M2')
,null,null,null,null
,' PLUS_RDFT=VC '
,null,null
,'RDFUSER','NET1'));

1.4.1.7 Migrating from Escaped to Unescaped Storage Form
You can migrate an existing RDF network from escaped storage form to unescaped storage
form by using the SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 procedure. This procedure
must be called by a DBA or the network owner.

Note that migration in the reverse direction is not possible. That is, you cannot migrate an RDF
network from unescaped storage form to escaped storage form.

1.4.2 RDF Graphs
An RDF graph is a user-created container for storing RDF triples or quads. An RDF network
contains zero or more RDF graphs. You can use the SEM_APIS.CREATE_RDF_GRAPH
procedure to create an RDF graph. Each graph is physically stored as a partition in the
network’s RDF_LINK$ table. Besides the corresponding RDF_LINK$ partition, each graph is
associated with two other database objects.

Note

RDF graphs were called as Semantic Models in the previous book versions (prior to
Oracle AI Database Release 26ai). See Changes in Terminology and Subprograms for
more information.

In a schema-private RDF network, each graph is associated with (1) a
SEMM_<rdf_graph_name> view of the graph’s RDF_LINK$ partition, and (2) an
RDFT_<rdf_graph_name> application view for the graph.

The application view is created automatically in the network owner’s schema and has one
column named TRIPLE with type SDO_RDF_TRIPLE_S. It is an updatable view that can be
used to perform SQL DMLs on the associated RDF graph. The graph owner is given SELECT,
INSERT, UPDATE, and DELETE privileges WITH GRANT OPTION on
RDFT_<rdf_graph_name>.

You can truncate a graph using SEM_APIS.TRUNCATE_RDF_GRAPH.

The SEM_MODEL$ view contains information about all RDF graphs defined in an RDF
network. When you create a graph using the SEM_APIS.CREATE_RDF_GRAPH procedure,
you specify a name for the graph, as well as a table and column to hold references to the RDF
data, and the system automatically generates a graph ID.

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 197

Oracle maintains the SEM_MODEL$ view automatically when you create and drop graphs.
Users should never modify this view directly. For example, do not use SQL INSERT, UPDATE,
or DELETE statements with this view.

The SEM_MODEL$ view contains the columns shown in Table 1-3.

Table 1-3 SEM_MODEL$ View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the RDF graph.

MODEL_ID NUMBER Unique model ID number, automatically generated.

MODEL_NAME VARCHAR2(25) Name of the RDF graph.

TABLE_NAME VARCHAR2(30) This value will be NULL for a schema-private network.

COLUMN_NAME VARCHAR2(30) This value will be NULL for a schema-private network.

MODEL_TABLESPA
CE_NAME

VARCHAR2(30) Name of the tablespace to be used for storing the triples for
this RDF graph.

MODEL_TYPE VARCHAR2(40) A value indicating the type of graph: M for regular RDF
graph; V for RDF graph collection; X for RDF graph created
to store the contents of the semantic index; or D for RDF
graph created on relational data.

INMEMORY VARCHAR2(1) String value indicating if the i is an Oracle AI Database In-
Memory RDF graph collection: T for in-memory, or F for not
in-memory.

When you create an RDF graph, a view for the triples associated with the graph is also created
under the network owner’s schema. This view has a name in the format
SEMM_<rdf_graph_name>, and it is visible only to the owner of the graph and to users with
suitable privileges. Each SEMM_<rdf_graph_name> view contains a row for each triple (stored
as a link in a network), and it has the columns shown in Table 1-4.

Table 1-4 SEMM_<rdf_graph_name> View Columns

Column Name Data Type Description

P_VALUE_ID NUMBER The VALUE_ID for the text value of the predicate of
the triple. Part of the primary key.

START_NODE_ID NUMBER The VALUE_ID for the text value of the subject of the
triple. Also part of the primary key.

CANON_END_NODE_I
D

NUMBER The VALUE_ID for the text value of the canonical form
of the object of the triple. Also part of the primary key.

END_NODE_ID NUMBER The VALUE_ID for the text value of the object of the
triple

MODEL_ID NUMBER The ID for the RDF graph to which the triple belongs.

COST NUMBER (Reserved for future use)

CTXT1 NUMBER (Reserved column; can be used for fine-grained
access control)

CTXT2 VARCHAR2(4000) (Reserved for future use)

DISTANCE NUMBER (Reserved for future use)

EXPLAIN VARCHAR2(4000) (Reserved for future use)

PATH VARCHAR2(4000) (Reserved for future use)

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 197

Table 1-4 (Cont.) SEMM_<rdf_graph_name> View Columns

Column Name Data Type Description

G_ID NUMBER The VALUE_ID for the text value of the graph name for
the triple. Null indicates the default graph (see Named
Graphs).

LINK_ID VARCHAR2(71) Unique triple identifier value. (It is currently a
computed column, and its definition may change in a
future release.)

Note

In Table 1-4, for columns P_VALUE_ID, START_NODE_ID, END_NODE_ID,
CANON_END_NODE_ID, and G_ID, the actual ID values are computed from the
corresponding lexical values. However, a lexical value may not always map to the
same ID value.

1.4.3 Statements
The RDF_VALUE$ table contains information about the subjects, properties, and objects used
to represent RDF statements. It uniquely stores the text values (URIs or literals) for these three
pieces of information, using a separate row for each part of each triple.

Oracle maintains the RDF_VALUE$ table automatically. Users should never modify this view
directly. For example, do not use SQL INSERT, UPDATE, or DELETE statements with this
view.

The RDF_VALUE$ table contains the columns shown in Table 1-5.

Table 1-5 RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_ID NUMBER Unique value ID number, automatically generated.

VALUE_TYPE VARCHAR2(10) The type of text information stored in the VALUE_NAME
column. Possible values: UR for URI, BN for blank node, PL
for plain literal, PL@ for plain literal with a language tag, PLL
for plain long literal, PLL@ for plain long literal with a
language tag, TL for typed literal, or TLL for typed long
literal. A long literal is a literal with more than 4000 bytes.

VNAME_PREFIX VARCHAR2(NETWOR
K_MAX_STRING_SIZ
E)

If the length of the lexical value is
NETWORK_MAX_STRING_SIZE bytes or less, this column
stores a prefix of a portion of the lexical value. The
SEM_APIS.VALUE_NAME_PREFIX function can be used
for prefix computation. For example, the prefix for the portion
of the lexical value <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> without the angle brackets is
http://www.w3.org/1999/02/22-rdf-syntax-ns#.

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 197

Table 1-5 (Cont.) RDF_VALUE$ Table Columns

Column Name Data Type Description

VNAME_SUFFIX VARCHAR2(512) If the length of the lexical value is
NETWORK_MAX_STRING_SIZE bytes or less, this column
stores a suffix of a portion of the lexical value. The
SEM_APIS.VALUE_NAME_SUFFIX function can be used
for suffix computation. For the lexical value mentioned in the
description of the VNAME_PREFIX column, the suffix is
type.

LITERAL_TYPE VARCHAR2(4000) For typed literals, the type information; otherwise, null. For
example, for a row representing a creation date of
1999-08-16, the VALUE_TYPE column can contain TL, and
the LITERAL_TYPE column can contain http://
www.w3.org/2001/XMLSchema#date.

LANGUAGE_TYPE VARCHAR2(80) Language tag (for example, fr for French) for a literal with a
language tag (that is, if VALUE_TYPE is PL@ or PLL@).
Otherwise, this column has a null value.

CANON_ID NUMBER The ID for the canonical lexical value for the current lexical
value. (The use of this column may change in a future
release.)

COLLISION_EXT VARCHAR2(64) Used for collision handling for the lexical value. (The use of
this column may change in a future release.)

CANON_COLLISIO
N_EXT

VARCHAR2(64) Used for collision handling for the canonical lexical value.
(The use of this column may change in a future release.)

ORDER_TYPE NUMBER Represents order based on data type. Used to improve
performance on ORDER BY queries.

ORDER_NUM NUMBER Represents order for number type. Used to improve
performance on ORDER BY queries.

ORDER_DATE TIMESTAMP WITH
TIME ZONE

Represents order based on date type Used to improve
performance on ORDER BY queries.

LONG_VALUE CLOB The character string if the length of the lexical value is
greater than NETWORK_MAX_STRING_SIZE bytes.
Otherwise, this column has a null value.

GEOM SDO_GEOMETRY A geometry value when a spatial index is defined.

VALUE_NAME VARCHAR2(NETWOR
K_MAX_STRING_SIZ
E)

This is a computed column. If length of the lexical value is
NETWORK_MAX_STRING_SIZE bytes or less, the value of this
column is the concatenation of the values of
VNAME_PREFIX column and the VNAME_SUFFIX column.

• Triple Uniqueness and Data Types for Literals

1.4.3.1 Triple Uniqueness and Data Types for Literals
Duplicate triples are not stored in an RDF network. To check if a triple is a duplicate of an
existing triple, the subject, property, and object of the incoming triple are checked against triple
values in the specified RDF graph. If the incoming subject, property, and object are all URIs, an
exact match of their values determines a duplicate. However, if the object of incoming triple is a
literal, an exact match of the subject and property, and a value (canonical) match of the object,
determine a duplicate. For example, the following two triples are duplicates:

<eg:a> <eg:b> <"123"^^http://www.w3.org/2001/XMLSchema#int>
<eg:a> <eg:b> <"123"^^http://www.w3.org/2001/XMLSchema#unsignedByte>

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 197

The second triple is treated as a duplicate of the first, because "123"^^<http://www.w3.org/
2001/XMLSchema#int> has an equivalent value (is canonically equivalent) to "123"^^<http://
www.w3.org/2001/XMLSchema#unsignedByte>. Two entities are canonically equivalent if they
can be reduced to the same value.

To use a non-RDF example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert into the
same canonical form.

Note

Although duplicate triples and quads are not stored in the underlying table partition for
the RDFM_<rdf_graph_name> view, it is possible to have duplicate rows in an
application table. For example, if a triple is inserted multiple times into an application
table, it will appear once in the RDFM_<rdf_graph_name> view, but will occupy
multiple rows in the application table.

Value-based matching of lexical forms is supported for the following data types:

• STRING: plain literal, xsd:string and some of its XML Schema subtypes

• NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double.
(Support is not provided for float/double INF, -INF, and NaN values.)

• DATETIME: xsd:datetime, with support for time zone. (Without time zone there are still
multiple representations for a single value, for example, "2004-02-18T15:12:54" and
"2004-02-18T15:12:54.0000".)

• DATE: xsd:date, with or without time zone

• OTHER: Everything else. (No attempt is made to match different representations).

Canonicalization is performed when the time zone is present for literals of type xsd:time and
xsd:dateTime.

The following namespace definition is used: xmlns:xsd="http://www.w3.org/2001/
XMLSchema"

The first occurrence of a long literal in the RDF_VALUE$ table is taken as the canonical form
and given the VALUE_TYPE value of CPLL, CPLL@, or CTLL as appropriate; that is, a C for
canonical is prefixed to the actual value type. If a long literal with the same canonical form (but
a different lexical representation) as a previously inserted long literal is inserted into the
RDF_VALUE$ table, the VALUE_TYPE value assigned to the new insertion is PLL, PLL@, or TLL
as appropriate.

Canonically equivalent text values having different lexical representations are thus stored in
the RDF_VALUE$ table; however, canonically equivalent triples are not stored in the database.

1.4.4 Subjects and Objects
RDF subjects and objects are mapped to nodes in an RDF network. Subject nodes are the
start nodes of links, and object nodes are the end nodes of links. Non-literal nodes (that is,
URIs and blank nodes) can be used as both subject and object nodes. Literals can be used
only as object nodes.

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 197

1.4.5 Blank Nodes
Blank nodes can be used as subject and object nodes in the RDF network. Blank node
identifiers are different from URIs in that they are scoped within an RDF graph. Thus, although
multiple occurrences of the same blank node identifier within a single RDF graph necessarily
refer to the same resource, occurrences of the same blank node identifier in two different RDF
graphs do not refer to the same resource.

In an Oracle RDF network, this behavior is modeled by requiring that blank nodes are always
reused (that is, are used to represent the same resource if the same blank node identifier is
used) within an RDF graph, and never reused between two different RDF graphs. Thus, when
inserting triples involving blank nodes into an RDF graph, you must use the
SDO_RDF_TRIPLE_S constructor that supports reuse of blank nodes.

1.4.6 Properties
Properties are mapped to links that have their start node and end node as subjects and
objects, respectively. Therefore, a link represents a complete triple.

When a triple is inserted into an RDF graph, the subject, property, and object text values are
checked to see if they already exist in the database. If they already exist (due to previous
statements in other RDF graphs), no new entries are made; if they do not exist, three new rows
are inserted into the RDF_VALUE$ table (described in Statements).

1.4.7 Inferencing: Rules and Rulebases
Inferencing is the ability to make logical deductions based on rules. Inferencing enables you to
construct queries that perform semantic matching based on meaningful relationships among
pieces of data, as opposed to just syntactic matching based on string or other values.
Inferencing involves the use of rules, either supplied by Oracle or user-defined, placed in
rulebases.

Figure 1-2 shows triple sets being inferred from RDF graph data and the application of rules in
one or more rulebases. In this illustration, the database can have any number of RDF graphs,
rulebases, and inferred triple sets, and an inferred triple set can be derived using rules in one
or more rulebases.

Figure 1-2 Inferencing

Model 1

Model 2

Rulebase 1 Rulebase 2

Inferred

Triple Set 1

Inferred

Triple Set 2

.

.

.

.

.

A rule is an object that can be applied to draw inferences from RDF data. A rule is identified by
a name and consists of:

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 197

• An IF side pattern for the antecedents

• A THEN side pattern for the consequents

For example, the rule that a chairperson of a conference is also a reviewer of the conference
could be represented as follows:

('chairpersonRule', -- rule name
 '(?r :ChairPersonOf ?c)', -- IF side pattern
 NULL, -- filter condition
 '(?r :ReviewerOf ?c)', -- THEN side pattern
 SEM_ALIASES (SEM_ALIAS('', 'http://some.org/test/'))
)

For best performance, use a single-triple pattern on the THEN side of the rule. If a rule has
multiple triple patterns on the THEN side, you can easily break it into multiple rules, each with
a single-triple pattern, on the THEN side.

A rulebase is an object that contains rules. The following Oracle-supplied rulebases are
provided:

• RDFS

• RDF (a subset of RDFS)

• OWLSIF (empty)

• RDFS++ (empty)

• OWL2EL (empty)

• OWL2RL (empty)

• OWLPrime (empty)

• SKOSCORE (empty)

The RDFS and RDF rulebases are created when you call the
SEM_APIS.CREATE_RDF_NETWORK procedure to add RDF support to the database. The
RDFS rulebase implements the RDFS inference rules, as described in the World Wide Web
Consortium (W3C) RDF Semantics document at http://www.w3.org/TR/rdf-mt/. The RDF
rulebase represents the RDF inference rules, which are a subset of the RDFS entailment rules.
You can see the contents of these rulebases by examining the SEMR_RDFS and SEMR_RDF
views.

You can also create user-defined rulebases using the SEM_APIS.CREATE_RULEBASE
procedure. User-defined rulebases enable you to provide additional specialized inferencing
capabilities.

For each rulebase, a table is created to hold rules in the rulebase, along with a view with a
name in the format SEMR_rulebase-name (for example, SEMR_FAMILY_RB for a rulebase
named FAMILY_RB). You must use this view to insert, delete, and modify rules in the rulebase.
Each SEMR_rulebase-name view has the columns shown in Table 1-6.

Table 1-6 SEMR_rulebase-name View Columns

Column Name Data Type Description

RULE_NAME VARCHAR2(30) Name of the rule

ANTECEDENTS VARCHAR2(4000) IF side pattern for the antecedents

FILTER VARCHAR2(4000) (Not supported.)

CONSEQUENTS VARCHAR2(4000) THEN side pattern for the consequents

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 197

http://www.w3.org/TR/rdf-mt/

Table 1-6 (Cont.) SEMR_rulebase-name View Columns

Column Name Data Type Description

ALIASES SEM_ALIASES One or more namespaces to be used. (The SEM_ALIASES
data type is described in Using the SEM_MATCH Table
Function to Query RDF data.)

Information about all rulebases is maintained in the SEM_RULEBASE_INFO view, which has
the columns shown in Table 1-7 and one row for each rulebase.

Table 1-7 SEM_RULEBASE_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rulebase

RULEBASE_NAME VARCHAR2(25) Name of the rulebase

RULEBASE_VIEW_
NAME

VARCHAR2(30) Name of the view that you must use for any SQL statements
that insert, delete, or modify rules in the rulebase

STATUS VARCHAR2(30) Contains VALID if the rulebase is valid, INPROGRESS if the
rulebase is being created, or FAILED if a system failure
occurred during the creation of the rulebase.

Example 1-3 Inserting a Rule into a Rulebase

Example 1-3 creates a rulebase named family_rb, and then inserts a rule named
grandparent_rule into the family_rb rulebase. This rule says that if a person is the parent of
a child who is the parent of a child, that person is a grandparent to (that is, has the
grandParentOf relationship with respect to) the child's child. It also specifies a namespace to
be used. (This example is an excerpt from Example 1-130 in Example: Family Information.)

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb', network_owner=>'RDFUSER',
network_name=>'NET1');

INSERT INTO rdfuser.net1#semr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));

Note that the kind of grandparent rule shown in Example 1-3 can be implemented using the
OWL 2 property chain construct. For information about property chain handling, see Property
Chain Handling.

Example 1-4 Using Rulebases for Inferencing

You can specify one or more rulebases when calling the SEM_MATCH table function
(described in Using the SEM_MATCH Table Function to Query RDF data), to control the
behavior of queries against RDF data. Example 1-4 refers to the family_rb rulebase and to
the grandParentOf relationship created in Example 1-3, to find all grandfathers (grandparents
who are male) and their grandchildren. (This example is an excerpt from Example 1-130 in
Example: Family Information.)

-- Select all grandfathers and their grandchildren from the family RDF graph.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x$rdfterm grandfather, y$rdfterm grandchild

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 197

 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

For information about support for native OWL inferencing, see Using OWL Inferencing.

1.4.8 Inferred Graphs
An inferred graph is an object containing precomputed triples that can be inferred from
applying a specified set of rulebases to a specified set of RDF graphs. If a SEM_MATCH query
refers to any rulebases, an inferred graph must exist for each rulebase-RDF graph combination
in the query.

Note

Inferred graphs were called as Entailments in the previous book versions (prior to
Oracle AI Database Release 26ai). See Changes in Terminology and Subprograms for
more information.

To create an inferred graph, use the SEM_APIS.CREATE_INFERRED_GRAPH procedure. To
drop (delete) an inferred graph, use the SEM_APIS.DROP_INFERRED_GRAPH procedure.

When you create an inferred graph, a view for the triples associated with the inferred graph is
also created under the network owner’s schema. This view has a name in the format
SEMI_inferred-graph-name, and it is visible only to the owner of the inferred graph and to
users with suitable privileges. Each SEMI_inferred-graph-name view contains a row for each
triple (stored as a link in a network), and it has the same columns as the SEMM_rdf-graph-
name view, which is described in Table 1-4 in Metadata for Models.

Information about all inferred graphs is maintained in the SEM_RULES_INDEX_INFO view,
which has the columns shown in Table 1-8 and one row for each inferred graph.

Table 1-8 SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the inferred graph.

INDEX_NAME VARCHAR2(25) Name of the inferred graph.

INDEX_VIEW_NAM
E

VARCHAR2(30) Name of the view that you must use for any SQL statements
that insert, delete, or modify rules in the inferred graph.

STATUS VARCHAR2(30) Contains VALID if the inferred graph is valid, INVALID if the
inferred graph is not valid, INCOMPLETE if the inferred graph
is incomplete (similar to INVALID but requiring less time to
re-create), INPROGRESS if the inferred graph is being
created, or FAILED if a system failure occurred during the
creation of the inferred graph.

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 197

Table 1-8 (Cont.) SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

MODEL_COUNT NUMBER Number of RDF graphs included in the inferred graph.

RULEBASE_COUN
T

NUMBER Number of rulebases included in the inferred graph.

Information about all database objects, such as RDF graphs and rulebases, related to inferred
graphs is maintained in the SEM_RULES_INDEX_DATASETS view. This view has the
columns shown in Table 1-9 and one row for each unique combination of values of all the
columns.

Table 1-9 SEM_RULES_INDEX_DATASETS View Columns

Column Name Data Type Description

INDEX_NAME VARCHAR2(25) Name of the inferred graph

DATA_TYPE VARCHAR2(8) Type of data included in the inferred graph. Examples:
MODEL for an RDF graph and RULEBASE for a rulebase

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE column

Example 1-5 creates an inferred graph named family_rb_rix_family, using the family graph
and the RDFS and family_rb rulebases. (This example is an excerpt from Example 1-130 in
Example: Family Information.)

Example 1-5 Creating an inferred graph

BEGIN
 SEM_APIS.CREATE_INFERRED_GRAPH(
 'rdfs_rix_family',
 sem_models('family'),
 sem_Rulebases('RDFS','family_rb'),
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.4.9 RDF Graph Collections
An RDF graph collection is a logical graph that can be used in a SEM_MATCH query. An RDF
graph collection is the result of a UNION or UNION ALL operation on one or more RDF graphs
and/or inferred graphs. Using RDF graph collections can help simplify the development
process. However, for operational workloads in production, it is recommended you use single
RDF graphs where possible.

Note

RDF Graph Collections were called as Virtual Models in the previous book versions
(prior to Oracle AI Database Release 26ai). See Changes in Terminology and
Subprograms for more information.

Queries against a single RDF graph can more effectively use partition pruning and are able to
use local optimizer statistics for the single-graph's partition, compared to queries against an

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 197

RDF graph collection. Queries against an RDF graph collection use global optimizer statistics
for the entire RDF network, which can be less accurate than local, graph-level statistics.
Hence, where possible you must combine the datasets that are queried together into a single
RDF graph.

Besides using RDF graph collections for development, you can also use them if you need to
access data across multiple RDF graphs in a single query, and also need to keep the individual
RDF graphs separate for other queries. However, if possible, you must combine the datasets
that are queried together into a single RDF graph.

Using an RDF graph collection, during the development phase of a project, provides the
following benefits:

• It can simplify management of access privileges for RDF data. For example, assume that
you have created three RDF graphs and one inferred graph based on the three graphs and
the OWLPrime rulebase. Without an RDF graph collection, you must individually grant and
revoke access privileges for each RDf graph and the inferred graph. However, if you create
an RDF graph collection that contains the three RDF graphs and the inferred graph, you
will only need to grant and revoke access privileges for the single RDF graph collection.

• It can facilitate rapid updates to RDF graphs. For example, assume that RDF graph
collection VM1 contains RDF graph M1 and inferred graph R1 (that is, VM1 = M1 UNION
ALL R1), and assume that RDF graph M1_UPD is a copy of M1 that has been updated
with additional triples and that R1_UPD is an inferred graph created for M1_UPD. Now, to
have user queries over VM1 go to the updated RDF graph and inferred graph, you can
redefine RDF graph collection VM1 (that is, VM1 = M1_UPD UNION ALL R1_UPD).

• It can simplify query specification because querying an RDF graph collection is equivalent
to querying multiple RDF graphs in a SEM_MATCH query. For example, assume that RDF
graphs m1, m2, and m3 already exist, and that an inferred graph has been created for m1,
m2 ,and m3 using the OWLPrime rulebase. You could create an RDF graph collection vm1
as follows:

EXECUTE sem_apis.create_rdf_graph_collection('vm1', sem_models('m1', 'm2', 'm3'),
 sem_rulebases('OWLPRIME'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');

To query the RDF graph collection, use the RDF graph collection name as if it were a RDF
graph in a SEM_MATCH query. For example, the following query on the RDF graph
collection:

SELECT * FROM TABLE (sem_match('{…}', sem_models('vm1'), null, …));

is equivalent to the following query on all the individual RDF graphs:

SELECT * FROM TABLE (sem_match('{…}', sem_models('m1', 'm2', 'm3'),
 sem_rulebases('OWLPRIME'), …));

A SEM_MATCH query over an RDF graph collection will query either the SEMV or SEMU
view (SEMU by default and SEMV if the 'ALLOW_DUP=T' option is specified) rather than
querying the UNION or UNION ALL of each RDF graph and inferred graph. For information
about these views and options, see the reference section for the
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION procedure.

RDF graph collections use views (described later in this section) and add some metadata
entries, but do not significantly increase system storage requirements.

To create an RDF graph collection, use the
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION procedure. To drop (delete) an RDF graph
collection, use the SEM_APIS.DROP_RDF_GRAPH_COLLECTION procedure. an RDF graph

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 197

collection is dropped automatically if any of its component RDF graphs, rulebases, or inferred
graph are dropped. To replace an RDF graph collection without dropping it, use the
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION procedure with the REPLACE=T option.
Replacing an RDF graph collection allows you to redefine it while maintaining any access
privileges.

To query an RDF graph collection, specify the RDF graph collection name in the models
parameter of the SEM_MATCH table function, as shown in Example 1-6.

For information about the SEM_MATCH table function, see Using the SEM_MATCH Table
Function to Query RDF data, which includes information using certain attributes when querying
an RDF graph collection.

When you create an RDF graph collection, an entry is created for it in the SEM_MODEL$ view,
which is described in Table 1-3 in RDF Graphs. However, the values in several of the columns
are different for RDF graph collections as opposed to RDF graphs, as explained in Table 1-10.

Table 1-10 SEM_MODEL$ View Column Explanations for RDF graph collections

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the RDF graph collection

MODEL_ID NUMBER Unique model ID number, automatically generated. Will be a
negative number, to indicate that this is an RDF graph
collection.

MODEL_NAME VARCHAR2(25) Name of the RDF graph collection

TABLE_NAME VARCHAR2(30) Null for an RDF graph collection

COLUMN_NAME VARCHAR2(30) Null for an RDF graph collection

MODEL_TABLESPA
CE_NAME

VARCHAR2(30) Null for an RDF graph collection

Information about all RDF graph collections is maintained in the SEM_VMODEL_INFO view,
which has the columns shown in Table 1-11 and one row for each RDF graph collection.

Table 1-11 SEM_VMODEL_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the RDF graph collection

VIRTUAL_MODEL_
NAME

VARCHAR2(25) Name of the RDF graph collection

UNIQUE_VIEW_NA
ME

VARCHAR2(30) Name of the view that contains unique triples in the RDF
graph collection, or null if the view was not created

DUPLICATE_VIEW
_NAME

VARCHAR2(30) Name of the view that contains duplicate triples (if any) in
the RDF graph collection

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 197

Table 1-11 (Cont.) SEM_VMODEL_INFO View Columns

Column Name Data Type Description

STATUS VARCHAR2(30) Contains VALID if the associated inferred graph is valid,
INVALID if the inferred graph is not valid, INCOMPLETE if the
inferred graph is incomplete (similar to INVALID but
requiring less time to re-create), INPROGRESS if the inferred
graph is being created, FAILED if a system failure occurred
during the creation of the inferred graph, or NORIDX if no
inferred graph is associated with the RDF graph collection.

In the case of multiple inferred graphs, the lowest status
among all of the component inferred graphs is used as the
RDF graph collection's status (INVALID < INCOMPLETE <
VALID).

MODEL_COUNT NUMBER Number of RDF graphs in the RDF graph collection

RULEBASE_COUN
T

NUMBER Number of rulebases used for the RDF graph collection

RULES_INDEX_CO
UNT

NUMBER Number of inferred graphs in the RDF graph collection

Information about all objects (RDF graphs, rulebases, and inferred graphs) related to RDF
graph collections is maintained in the SEM_VMODEL_DATASETS view. This view has the
columns shown in Table 1-12 and one row for each unique combination of values of all the
columns.

Table 1-12 SEM_VMODEL_DATASETS View Columns

Column Name Data Type Description

VIRTUAL_MODEL_
NAME

VARCHAR2(25) Name of the RDF graph collection

DATA_TYPE VARCHAR2(8) Type of object included in the RDF graph collection.
Examples: MODEL for an RDF graph, RULEBASE for a
rulebase, or RULEIDX for an inferred graph

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE column

Example 1-6 Querying an RDF Graph Collection

SELECT COUNT(protein)
 FROM TABLE (SEM_MATCH (
 'SELECT ?protein
 WHERE {
 ?protein rdf:type :Protein .
 ?protein :citation ?citation .
 ?citation :author "Bairoch A."}',
 RDF_MODELS('UNIPROT_VM'),
 NULL,
 SEM_ALIASES(SEM_ALIAS('', 'http://purl.uniprot.org/core/')),
 NULL,
 NULL,
 'ALLOW_DUP=T',
 NULL,
 NULL,
 'RDFUSER','NET1'));

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 197

1.4.10 Named Graphs
RDF Graph supports the use of named graphs, which are described in the "RDF Dataset"
section of the W3C SPARQL Query Language for RDF recommendation (http://
www.w3.org/TR/rdf-sparql-query/#rdfDataset).

This support is provided by extending an RDF triple consisting of the traditional subject,
predicate, and object, to include an additional component to represent a graph name. The
extended RDF triple, despite having four components, will continue to be referred to as an
RDF triple in this document. In addition, the following terms are sometimes used:

• N-Triple is a format that does not allow extended triples. Thus, n-triples can include only
triples with three components.

• N-Quad is a format that allows both "regular" triples (three components) and extended
triples (four components, including the graph name). For more information, see http://
www.w3.org/TR/2013/NOTE-n-quads-20130409/.

To load a file containing extended triples (possibly mixed with regular triples) into an Oracle
AI Database, the input file must be in N-Quad format.

The graph name component of an RDF triple must either be null or a URI. If it is null, the RDF
triple is said to belong to a default graph; otherwise it is said to belong to a named graph
whose name is designated by the URI.

Additionally, to support named graphs in SDO_RDF_TRIPLE_S object type (described in
Semantic Data Types_ Constructors_ and Methods), a new syntax is provided for specifying a
model-graph, that is, a combination of model (RDF graph) and named graph (if any) together,
and the RDF_M_ID attribute holds the identifier for a model-graph: a combination of model
(RDF graph) ID and value ID for the named graph (if any). The name of a model-graph is
specified as rdf_graph_name, and if a named graph is present, followed by the colon (:)
separator character and the name of the named graph (which must be a URI and enclosed
within angle brackets < >).

For example, in a medical data set the named graph component for each RDF triple might be a
URI based on patient identifier, so there could be as many named graphs as there are unique
patients, with each named graph consisting of data for a specific patient.

For information about performing specific operations with named graphs, see the following:

• Using constructors and methods: Semantic Data Types_ Constructors_ and Methods

• Loading: Loading N-Quad Format Data into a Staging Table Using an External Table and
Loading Data into Named Graphs Using INSERT Statements

• Querying: GRAPH Keyword Support and Expressions in the SELECT Clause

• Inferencing: Using Named Graph Based Inferencing (Global and Local)

• Data Formats Related to Named Graph Support

1.4.10.1 Data Formats Related to Named Graph Support
TriG and N-QUADS are two popular data formats that provide graph names (or context) to
triple data. The graph names (context) can be used in a variety of different ways. Typical usage
includes, but is not limited to, the grouping of triples for ease of management, localized query,
localized inference, and provenance.

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 197

http://www.w3.org/TR/rdf-sparql-query/#rdfDataset
http://www.w3.org/TR/rdf-sparql-query/#rdfDataset
http://www.w3.org/TR/2013/NOTE-n-quads-20130409/
http://www.w3.org/TR/2013/NOTE-n-quads-20130409/
https://www.w3.org/TR/trig/
http://www.w3.org/TR/n-quads/.

Example 1-7 RDF Data Encoded in TriG Format

Example 1-7 shows an RDF data set encoded in TriG format. It contains a default graph and a
named graph.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

Default graph
{
 <http://my.com/John> dc:publisher <http://publisher/Xyz> .
}

A named graph
<http://my.com/John> {
 <http://my.com/John> foaf:name "John Doe" .
}

When loading the TriG file from Example 1-7 into a DatasetGraphOracleSem object (for
example, using Example 7-12 in Bulk Loading Using RDF Semantic Graph Support for Apache
Jena, but replacing the constant "N-QUADS" with "TRIG"), the triples in the default graph will be
loaded into Oracle AI Database as triples with null graph names, and the triples in the named
graphs will be loaded into the database with the designated graph names.

Example 1-8 N-QUADS Format Representation

N-QUADS format is a simple extension of the existing N-TRIPLES format by adding an
optional fourth column (graph name or context). Example 1-8 shows the N-QUADS format
representation of the TriG file from Example 1-7.

<http://my.com/John> <http://purl.org/dc/elements/1.1/publisher> <http://publisher/Xyz> .
<http://my.com/John> <http://xmlns.com/foaf/0.1/name> "John Doe" <http://my.com/John>

When loading an N-QUADS file into a DatasetGraphOracleSem object (see Example 7-12),
lines without the fourth column will be loaded into Oracle AI Database as triples with null graph
names, and lines with a fourth column will be loaded into the database with the designated
graph names.

1.4.11 RDF Data Security Considerations
The following database security considerations apply to the use of RDF data:

• When an RDF graph or inferred graph is created, the owner gets the SELECT privilege
with the GRANT option on the associated view. Users that have the SELECT privilege on
these views can perform SEM_MATCH queries against the associated RDF graph or
inferred graph.

• When a rulebase is created, the owner gets the SELECT, INSERT, UPDATE, and DELETE
privileges on the rulebase, with the GRANT option. Users that have the SELECT privilege
on a rulebase can create an inferred graph that includes the rulebase. The INSERT,
UPDATE, and DELETE privileges control which users can modify the rulebase and how
they can modify it.

• To perform data manipulation language (DML) operations on an RDF graph, a user must
have DML privileges for the corresponding base table.

• The creator of the base table corresponding to an RDF graph can grant privileges to other
users.

• To perform data manipulation language (DML) operations on a rulebase, a user must have
the appropriate privileges on the corresponding database view.

Chapter 1
RDF Data in the Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 197

• The creator of an RDF graph can grant SELECT privileges on the corresponding database
view to other users.

• A user can query only those RDF graphs for which that user has SELECT privileges to the
corresponding database views.

• Only the creator of an RDF graph or a rulebase can drop it.

1.4.12 RDF Privilege Considerations
The following database privilege-related considerations apply to the use of RDF networks:

• The network owner user whose schema will hold the tables and views for the RDF network
must have the following roles and priviliges:
GRANT CONNECT, RESOURCE, CREATE VIEW TO <network_owner_user>;

• The network owner requires quota on the tablespace that will contain the network.

1.5 RDF Metadata Tables and Views
Oracle AI Database maintains several tables and views in the network owner’s schema to hold
metadata related to RDF data.

Some of these tables and views are created by the SEM_APIS.CREATE_RDF_NETWORK
procedure, as explained in Quick Start for Using Semantic Data, and some are created only as
needed.Table 1-13 lists the tables and views in alphabetical order. (In addition, several tables
and views are created for Oracle internal use, and these are accessible only by network
owners of the schema-private RDF networks).

Table 1-13 RDF Metadata Tables and Views

Name Contains Information About Described In

RDF_CRS_URI$ Available EPSG spatial
reference system URIs

Spatial Support

RDF_VALUE$ Subjects, properties, and objects
used to represent statements

Statements

SEM_DTYPE_IND
EX_INFO

All data type indexes in the
network

Using Data Type Indexes

SEM_MODEL$ All RDF graphs defined in the
database

RDF Graphs

SEM_NETWORK_
INDEX_INFO$

RDF network indexes SEM_NETWORK_INDEX_INFO View

SEM_RULEBASE_
INFO

Rulebases Inferencing: Rules and Rulebases

SEM_RULES_IND
EX_DATASETS

Database objects used in
inferred graphs

Inferred Graphs

SEM_RULES_IND
EX_INFO

Inferred graphs Inferred Graphs

SEM_VMODEL_IN
FO

RDF graph collections RDF Graph Collections

SEM_VMODEL_D
ATASETS

Database objects used in RDF
graph collections

RDF Graph Collections

SEMCL_inferred-
graph-name

owl:sameAs clique members
and canonical representatives

Optimizing owl:sameAs Inference

Chapter 1
RDF Metadata Tables and Views

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 197

Table 1-13 (Cont.) RDF Metadata Tables and Views

Name Contains Information About Described In

SEMI_inferred-
graph-name

Triples in the specified inferred
graph

Inferred Graphs

SEMM_rdf-graph-
name

Triples in the specified RDF
graph

RDF Graphs

SEMR_rulebase-
name

Rules in the specified rulebase Inferencing: Rules and Rulebases

SEMU_rdf-
collection-name

Unique triples in the RDF graph
collection

RDF Graph Collections

SEMV_rdf-
collection-name

Triples in the RDF graph
collection

RDF Graph Collections

1.6 RDF Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE_S object type is used for representing the edges (that is, triples and
quads) of RDF graphs.

The SDO_RDF_TRIPLE_S object type (the _S for storage) stores persistent RDF data in the
database.

The SDO_RDF_TRIPLE_S type has references to the data, because the actual RDF data is
stored only in the central RDF schema. This type has methods to retrieve the entire triple or
part of the triple.

Note

Blank nodes are always reused within an RDF graph and cannot be reused across
graphs.

The SDO_RDF_TRIPLE_S type is used to store the triples in database tables.

The SDO_RDF_TRIPLE_S object type has the following attributes:

SDO_RDF_TRIPLE_S (
 RDF_C_ID NUMBER, -- Canonical object value ID
 RDF_M_ID NUMBER, -- Model (or Model-Graph) ID
 RDF_S_ID NUMBER, -- Subject value ID
 RDF_P_ID NUMBER, -- Property value ID
 RDF_O_ID NUMBER) -- Object value ID

The SDO_RDF_TRIPLE_S type has the following methods that retrieve the name of the RDF
graph (or model-graph), or a part (subject, property, or object) of a triple:

GET_MODEL(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2
GET_SUBJECT(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2
GET_PROPERTY(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2

Chapter 1
RDF Data Types, Constructors, and Methods

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 197

GET_OBJECT(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS CLOB
GET_OBJ_VALUE(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2

Example 1-9 shows some of the SDO_RDF_TRIPLE_S methods.

Example 1-9 SDO_RDF_TRIPLE_S Methods

-- Find all articles that reference Article2.
SELECT a.triple.GET_SUBJECT('RDFUSER','NET1') AS subject
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_PROPERTY('RDFUSER','NET1') = '<http://purl.org/dc/terms/
references>'
 AND a.triple.GET_OBJ_VALUE('RDFUSER','NET1') = '<http://nature.example.com/
Article2>';

SUBJECT
--
<http://nature.example.com/Article1>

-- Find all triples with Article1 as subject.
SELECT a.triple.GET_SUBJECT('RDFUSER','NET1') AS subject,
 a.triple.GET_PROPERTY('RDFUSER','NET1') AS property,
 a.triple.GET_OBJ_VALUE('RDFUSER','NET1') AS object
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_SUBJECT('RDFUSER','NET1') = '<http://nature.example.com/
Article1>';

SUBJECT
--
PROPERTY
--
OBJECT
--
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/title>
"All about XYZ"

<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article2>

<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3

-- Find all objects where the subject is Article1.
SELECT a.triple.GET_OBJ_VALUE('RDFUSER','NET1') AS object
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_SUBJECT('RDFUSER','NET1') = '<http://nature.example.com/
Article1>';

OBJECT
--
"All about XYZ"
"Jane Smith"

Chapter 1
RDF Data Types, Constructors, and Methods

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 197

<http://nature.example.com/Article2>
<http://nature.example.com/Article3>

-- Find all triples where Jane Smith is the object.
SELECT a.triple.GET_SUBJECT('RDFUSER','NET1') AS subject,
 a.triple.GET_PROPERTY('RDFUSER','NET1') AS property,
 a.triple.GET_OBJ_VALUE('RDFUSER','NET1') AS object
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_OBJ_VALUE('RDFUSER','NET1') = '"Jane Smith"';

SUBJECT
--
PROPERTY
--
OBJECT
--
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

• Constructors for Inserting Triples

1.6.1 Constructors for Inserting Triples
The following constructor formats are available for inserting triples into a model table. The only
difference is that in the second format the data type for the object is CLOB, to accommodate
very long literals.

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object VARCHAR2, -- Object
 network_owner VARCHAR2 DEFAULT NULL,
 network_name VARCHAR2 DEFAULT NULL)
 RETURN SELF;

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object CLOB, -- Object
 network_owner VARCHAR2 DEFAULT NULL,
 network_name VARCHAR2 DEFAULT NULL)
 RETURN SELF;

Example 1-10 uses the first constructor format to insert several triples.

Example 1-10 SDO_RDF_TRIPLE_S Constructor to Insert Triples

INSERT INTO RDFUSER.NET1#RDFT_ARTICLES VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"Jane Smith"',
 'RDFUSER',
 'NET1'));

INSERT INTO RDFUSER.NET1#RDFT_ARTICLES VALUES (
 SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
 '<http://nature.example.com/Article102>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '_:b1',

Chapter 1
RDF Data Types, Constructors, and Methods

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 197

 'RDFUSER',
 'NET1'));

INSERT INTO RDFUSER.NET1#RDFT_ARTICLES VALUES (
 SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
 '_:b2',
 '<http://purl.org/dc/elements/1.1/creator>',
 '_:b1',
 'RDFUSER',
 'NET1'));

1.7 Using the SEM_MATCH Table Function to Query RDF Data
To query RDF data, use the SEM_MATCH table function.

Note

The SEM_MATCH table function is supported only if Oracle JVM is enabled on your
Oracle Autonomous AI Database Serverless deployments. To enable Oracle JVM, see
Use Oracle Java in Using Oracle Autonomous AI Database Serverless for more
information.

This function has the following attributes:

SEM_MATCH(
 query VARCHAR2,
 models SEM_MODELS,
 rulebases SEM_RULEBASES,
 aliases SEM_ALIASES,
 filter VARCHAR2,
 index_status VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT NULL,
 graphs SEM_GRAPHS DEFAULT NULL,
 named_graphs SEM_GRAPHS DEFAULT NULL,
 network_owner VARCHAR2 DEFAULT NULL,
 network_name VARCHAR2 DEFAULT NULL
) RETURN ANYDATASET;

The query and models attributes are required. The other attributes are optional (that is, each
can be a null value).

The query attribute is a string literal (or concatenation of string literals) with one or more triple
patterns, usually containing variables. (The query attribute cannot be a bind variable or an
expression involving a bind variable.) A triple pattern is a triple of atoms followed by a period.
Each atom can be a variable (for example, ?x), a qualified name (for example, rdf:type) that
is expanded based on the default namespaces and the value of the aliases attribute, or a full
URI (for example, <http://www.example.org/family/Male>). In addition, the third atom can
be a numeric literal (for example, 3.14), a plain literal (for example, "Herman"), a language-
tagged plain literal (for example, "Herman"@en), or a typed literal (for example,
"123"^^xsd:int).

For example, the following query attribute specifies three triple patterns to find grandfathers
(that is, grandparents who are also male) and the height of each of their grandchildren:

'SELECT * WHERE { ?x :grandParentOf ?y . ?x rdf:type :Male . ?y :height ?h }'

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 197

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

The models attribute identifies the RDF graphs to use. Its data type is SEM_MODELS, which
has the following definition: TABLE OF VARCHAR2(25). If you are querying an RDF graph
collection, specify only the name of the RDF graph collection and no other RDF graphs. (RDF
graph collections are explained in RDF Graph Collections.)

The rulebases attribute identifies one or more rulebases whose rules are to be applied to the
query. Its data type is SEM_RULEBASES, which has the following definition: TABLE OF
VARCHAR2(25). If you are querying an RDF graph collection, this attribute must be null.

The aliases attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. Its data type is
SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where each
SEM_ALIAS element identifies a namespace ID and namespace value. The SEM_ALIAS data
type has the following definition: (namespace_id VARCHAR2(30), namespace_val
VARCHAR2(4000))

The following default namespaces (namespace_id and namespace_val attributes) are used by
the SEM_MATCH table function and the SEM_CONTAINS and SEM_RELATED operators:

('ogc', 'http://www.opengis.net/ont/geosparql#')
('ogcf', 'http://www.opengis.net/def/function/geosparql/')
('ogcgml', 'http://www.opengis.net/ont/gml#')
('ogcsf', 'http://www.opengis.net/ont/sf#')
('orardf', 'http://xmlns.oracle.com/rdf/')
('orageo', 'http://xmlns.oracle.com/rdf/geo/')
('owl', 'http://www.w3.org/2002/07/owl#')
('rdf', 'http://www.w3.org/1999/02/22-rdf-syntax-ns#')
('rdfs', 'http://www.w3.org/2000/01/rdf-schema#')
('xsd', 'http://www.w3.org/2001/XMLSchema#')

You can override any of these defaults by specifying the namespace_id value and a different
namespace_val value in the aliases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not null, it
should be a string in the form of a WHERE clause without the WHERE keyword. For example: '(h
>= ''6'')' to limit the result to cases where the height of the grandfather's grandchild is 6 or
greater (using the example of triple patterns earlier in this section).

Note

Instead of using the filter attribute, you are encouraged to use the FILTER keyword
inside your query pattern whenever possible (as explained in Graph Patterns: Support
for Curly Brace Syntax_ and OPTIONAL_ FILTER_ UNION_ and GRAPH Keywords).
Using the FILTER keyword is likely to give better performance because of internal
optimizations. The filter argument, however, can be useful if you require SQL
constructs that cannot be expressed with the FILTER keyword.

The index_status attribute lets you query RDF data even when the relevant inferred graph
does not have a valid status. (If you are querying an RDF graph collection, this attribute refers
to the inferred graph associated with the RDF graph collection.) If this attribute is null, the
query returns an error if the inferred graph does not have a valid status. If this attribute is not
null, it must be the string INCOMPLETE or INVALID. For an explanation of query behavior with
different index_status values, see Performing Queries with Incomplete or Invalid Entailments.

The options attribute identifies options that can affect the results of queries. Options are
expressed as keyword-value pairs. The following options are supported:

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 197

• ALL_AJ_HASH, ALL_AJ_MERGE, and ALL_BGP_NL are global query optimizer hints that specify
that all anti joins for NOT EXISTS and MINUS operations should use the specified join
type.

• ALL_BGP_HASH and ALL_BGP_NL are global query optimizer hints that specify that all inter-
BGP joins (for example. the join between the root BGP and an OPTIONAL BGP) should
use the specified join type. (BGP stands for basic graph pattern. From the W3C SPARQL
Query Language for RDF Recommendation: "SPARQL graph pattern matching is defined
in terms of combining the results from matching basic graph patterns. A sequence of triple
patterns interrupted by a filter comprises a single basic graph pattern. Any graph pattern
terminates a basic graph pattern."

The BGP_JOIN(USE_NL) and BGP_JOIN(USE_HASH) HINT0 query optimizer hints can be used
to control the join type with finer granularity.

Example 1-17 shows the ALL_BGP_HASH option used in a SEM_MATCH query.

• AUTO_HINTS=T automatically detects and generates USE_HASH hints for unselective
SPARQL queries.

• ALL_LINK_HASH and ALL_LINK_NL are global query optimizer hints that specify the join type
for all RDF_LINK$ joins (that is, all joins between triple patterns within a BGP).
ALL_LINK_HASH and ALL_LINK_NL can also be used within a HINT0 query optimizer hint for
finer granularity.

• ALL_MAX_PP_DEPTH(n) is a global query optimizer hint that sets the maximum depth to use
when evaluating * and + property path operators. The default value is 10. The
MAX_PP_DEPTH(n) HINT0 hint can be used to specify maximum depth with finer granularity.

• ALL_NO_MERGE is a global query optimizer hint that adds NO_MERGE to each subquery in the
generated SQL for a SPARQL query. This hint is used to ensure that a selective subquery
in a SPARQL query is not merged with the other parts of the SPARQL query.

• ALL_ORDERED is a global query optimizer hint that specifies that the triple patterns in each
BGP in the query should be evaluated in order.

Example 1-17 shows the ALL_ORDERED option used in a SEM_MATCH query.

• ALL_USE_PP_HASH and ALL_USE_PP_NL are global query optimizer hints that specify the join
type to use when evaluating property path expressions. The USE_PP_HASH and USE_PP_NL
HINT0 hints can be used for specifying join type with finer granularity.

• ALLOW_DUP=T generates an underlying SQL statement that performs a "union all" instead of
a union of the RDF graphs and inferred data (if applicable). This option may introduce
more rows (duplicate triples) in the result set, and you may need to adjust the application
logic accordingly. If you do not specify this option, duplicate triples are automatically
removed across all the RDF graphs and inferred data to maintain the set semantics of
merged RDF graphs; however, removing duplicate triples increases query processing time.
In general, specifying 'ALLOW_DUP=T' improves performance significantly when multiple
RDF graphs are involved in a SEM_MATCH query.

If you are querying an RDF graph collection, specifying ALLOW_DUP=T causes the
SEMV_vm_name view to be queried; otherwise, the SEMU_vm_name view is queried.

• ALLOW_PP_DUP=T allows duplicate results for + and * property path queries. Allowing
duplicate results may return the first result rows faster.

• AS_OF [SCN, <SCN_VALUE>] , where <SCN_VALUE> is a valid system change number,
indicates that Flashback Query should be used to query the state of the RDF network as of
the specified SCN.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 197

• AS_OF [TIMESTAMP, <TIMESTAMP_VALUE>] , where <TIMESTAMP_VALUE> is a valid
timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF', indicates that Flashback
Query should be used to query the state of the RDF network as of the specified timestamp.

• CLOB_AGG_SUPPORT=T enables support for CLOB values for the following aggregates: MIN,
MAX, GROUP_CONCAT, SAMPLE. Note that enabling CLOB support incurs a significant
performance penalty.

• CLOB_EXP_SUPPORT=T enables support for CLOB values for some built-in SPARQL
functions. Note that enabling CLOB support incurs a significant performance penalty.

• CONSTRUCT_STRICT=T eliminates invalid RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries. RDF triples with literals in the
subject position or literals or blank nodes in the predicate position are considered invalid.

• CONSTRUCT_UNIQUE=T eliminates duplicate RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries.

• DISABLE_IM_VIRTUAL_COL specifies that the query compiler should not use in-memory
virtual columns.

• DISABLE_MVIEW specifies that the query compiler should not use materialized views.

• DISABLE_NULL_EXPR_JOIN specifies that the query compiler should assume that all
SELECT expressions produce non-null output.

• DISABLE_SAMEAS_BLOOM specifies that the query compiler should not use a Bloom filter
when owl:sameAs triples are joined. (For detailed information, see the explanation of
Bloom filters in Oracle AI Database SQL Tuning Guide.)

• DO_UNESCAPE=T causes characters in the following return columns to be unescaped
according to the W3C N-Triples specification (http://www.w3.org/TR/rdf-testcases/
#ntriples): var, var$_PREFIX, var$_SUFFIX, var$RDFCLOB, var$RDFLTYP,
var$RDFLANG, and var$RDFTERM.

See also the reference information for SEM_APIS.ESCAPE_CLOB_TERM,
SEM_APIS.ESCAPE_CLOB_VALUE, SEM_APIS.ESCAPE_RDF_TERM,
SEM_APIS.ESCAPE_RDF_VALUE, SEM_APIS.UNESCAPE_CLOB_TERM,
SEM_APIS.UNESCAPE_CLOB_VALUE, SEM_APIS.UNESCAPE_RDF_TERM, and
SEM_APIS.UNESCAPE_RDF_VALUE.

• FINAL_VALUE_HASH and FINAL_VALUE_NL are global query optimizer hints that specify the
join method that should be used to obtain the lexical values for any query variables that are
not used in a FILTER clause.

• GRAPH_MATCH_UNNAMED=T allows unnamed triples (null G_ID) to be matched inside GRAPH
clauses. That is, two triples will satisfy the graph join condition if their graphs are equal or if
one or both of the graphs are null. This option may be useful when your dataset includes
unnamed TBOX triples or unnamed entailed triples.

• HINT0={<hint-string>} (pronounced and written "hint" and the number zero) specifies
one or more keywords with hints to influence the execution plan and results of queries.
Conceptually, a graph pattern with n triple patterns and referring to m distinct variables
results in an (n+m)-way join: n-way self-join of the target RDFgraphs and optionally the
corresponding inferred graph, and then m joins with RDF_VALUE$ for looking up the
values for the m variables. A hint specification affects the join order and join type used for
the query execution.

The hint specification, <hint-string>, uses keywords, some of which have parameters
consisting of a sequence or set of aliases, or references, for individual triple patterns and
variables used in the query. Aliases for triple patterns are of the form ti where i refers to the
0-based ordinal numbers of triple patterns in the query. For example, the alias for the first
triple pattern in a query is t0, the alias for the second one is t1, and so on. Aliases for the

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 197

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

variables used in a query are simply the names of those variables. Thus, ?x will be used in
the hint specification as the alias for a variable ?x used in the graph pattern.

Hints used for influencing query execution plans include LEADING(<sequence of
aliases>), USE_NL(<set of aliases>), USE_HASH(<set of aliases>), and INDEX(<alias>
<index_name>). These hints have the same format and basic meaning as hints in SQL
statements, which are explained in Oracle AI Database SQL Language Reference.

Example 1-12 shows the HINT0 option used in a SEM_MATCH query.

• HTTP_METHOD=POST_PAR indicates that the HTTP POST method with URL-encoded
parameters pass should be used for the SERVICE request. The default option for requests
is the HTTP GET method. For more information about SPARQL protocol, see http://
www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol.

• INF_ONLY=T queries only the entailed graph for the specified RDF graphs and rulebases.

• OVERLOADED_NL=T specifies that a procedural nested loop execution should be used to join
with an overloaded SERVICE clause.

• PLUS_RDFT=T can be used with SPARQL SELECT syntax (see Expressions in the SELECT
Clause) to additionally return a var$RDFTERM CLOB column for each projected query
variable. The value for this column is equivalent to the result of
SEM_APIS.COMPOSE_RDF_TERM(var, var$RDFVTYP, var$RDFLTYP, var$RDFLANG,
var$RDFCLOB). When using this option, the return columns for each variable var will be
var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB,
var$RDFLTYP, var$RDFLANG, and var$RDFTERM.

• PLUS_RDFT=VC can be used with SPARQL SELECT syntax (see Expressions in the
SELECT Clause) to additionally return a var$RDFTERM
VARCHAR2(NETWORK_MAX_STRING_SIZE) column for each projected query variable. The
value for this column is equivalent to the result of SEM_APIS.COMPOSE_RDF_TERM(var,
var$RDFVTYP, var$RDFLTYP, var$RDFLANG). When using this option, the return
columns for each variable var will be var, var$RDFVID, var$_PREFIX, var$_SUFFIX,
var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, var$RDFLANG, and var$RDFTERM. Note
that when your RDF network is using NETWORK_STORAGE_FORM=UNESC, special characters in
var$RDFTERM are automatically escaped to form syntactically valid RDF values. This may
cause the size of var$RDFTERM to exceed NETWORK_MAX_STRING_SIZE and hence an error
will be raised in such cases. To avoid the error, you can use PLUS_RDFT=T to return a CLOB
instead.

• PROJ_EXACT_VALUES=T disables canonicalization of values returned from functions and of
constant values used in value assignment statements. Such values are canonicalized by
default.

• SERVICE_CLOB=F sets the column values of var$RDFCLOB to null instead of saving values
when calling the service. If CLOB data is not needed in your application, performance can
be improved by using this option to skip CLOB processing.

• SERVICE_ESCAPE=F disables character escaping for RDF literal values returned by SPARQL
SERVICE calls. RDF literal values are escaped by default. If character escaping is not
relevant for your application, performance can be improved by disabling character
escaping.

• SERVICE_JPDWN=T is a query optimizer hint for using nested loop join in SPARQL SERVICE.
Example 1-73 shows the SERVICE_JPDWN=T option used in a SEM_MATCH query.

• SERVICE_PROXY=<proxy-string> sets a proxy address to be used when performing http
connections. The given proxy-string will be used in SERVICE queries. Example 1-76
shows a SEM_MATCH query including a proxy address.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 197

http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol

• STRICT_AGG_CARD=T uses SPARQL semantics (one null row) instead of SQL semantics
(zero rows) for aggregate queries with graph patterns that fail to match. This option incurs
a slight performance penalty.

• STRICT_DEFAULT=T restricts the default graph to unnamed triples when no dataset
information is specified.

The graphs attribute specifies the set of named graphs from which to construct the default
graph for a SEM_MATCH query. Its data type is SEM_GRAPHS, which has the following
definition: TABLE OF VARCHAR2(4000). The default value for this attribute is NULL. When graphs
is NULL, the "union all" of all default graphs in the set of RDF graphs specified in the models
attribute is used as the default graph.

The named_graphs attribute specifies the set of named graphs that can be matched by a
GRAPH clause. Its data type is SEM_GRAPHS, which has the following definition: TABLE OF
VARCHAR2(4000). The default value for this attribute is NULL. When named_graphs is NULL, all
named graphs in the set of RDF graphs specified in the models attribute can be matched by a
GRAPH clause.

The network_owner attribute specifies the schema that owns the RDF network that contains
the RDF graph or RDF graph collection specified in the models attribute. This attribute should
be non-null to query a schema-private RDF network.

The network_name attribute specifies the name of the RDF network that contains the RDF
graph or graph collection specified in the models attribute. This attribute should be non-null to
query a schema-private RDF network.

The SEM_MATCH table function returns an object of type ANYDATASET, with elements that
depend on the input variables. In the following explanations, var represents the name of a
variable used in the query. For each variable var, the result elements have the following
attributes: var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB,
var$RDFLTYP, and var$RDFLANG.

In such cases, var has the lexical value bound to the variable, var$RDFVID has the VALUE_ID
of the value bound to the variable, var$_PREFIX and var$_SUFFIX are the prefix and suffix of
the value bound to the variable, var$RDFVTYP indicates the type of value bound to the
variable (URI, LIT [literal], or BLN [blank node]), var$RDFCLOB has the lexical value bound to
the variable if the value is a long literal, var$RDFLTYP indicates the type of literal bound if a
literal is bound, and var$RDFLANG has the language tag of the bound literal if a literal with
language tag is bound. var$RDFCLOB is of type CLOB, while all other attributes are of type
VARCHAR2.

For a literal value or a blank node, its prefix is the value itself and its suffix is null. For a URI
value, its prefix is the left portion of the value up to and including the rightmost occurrence of
any of the three characters / (slash), # (pound), or : (colon), and its suffix is the remaining
portion of the value to the right. For example, the prefix and suffix for the URI value http://
www.example.org/family/grandParentOf are http://www.example.org/family/ and
grandParentOf, respectively.

Along with columns for variable values, a SEM_MATCH query that uses SPARQL SELECT
syntax returns one additional NUMBER column, SEM$ROWNUM, which can be used to
ensure the correct result ordering for queries that involve a SPARQL ORDER BY clause.

A SEM_MATCH query that uses SPARQL ASK syntax returns the columns ASK,
ASK$RDFVID, ASK$_PREFIX, ASK$_SUFFIX, ASK$RDFVTYP, ASK$RDFCLOB,
ASK$RDFLTYP, ASK$RDFLANG, and SEM$ROWNUM. This is equivalent to a SPARQL
SELECT syntax query that projects a single ?ask variable.

A SEM_MATCH query that uses SPARQL CONSTRUCT or SPARQL DESCRIBE syntax
returns columns that contain RDF triple data rather than query result bindings. Such queries

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 197

return values for subject, predicate and object components. See Graph Patterns: Support for
SPARQL CONSTRUCT Syntaxfor details.

To use the SEM_RELATED operator to query an OWL ontology, see Using Semantic
Operators to Query Relational Data.

When you are querying multiple RDF graphs, or querying one or more RDF graphs and the
corresponding inferred graph, consider using RDF graph collections (explained in RDF Graph
Collections) because of the potential performance benefits.

Example 1-11 SEM_MATCH Table Function

Example 1-11 selects all grandfathers (grandparents who are male) and their grandchildren
from the family RDF graph, using inferencing from both the RDFS and family_rb rulebases.
(This example is an excerpt from Example 1-130 in Example: Family Information.)

SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-12 HINT0 Option with SEM_MATCH Table Function

Example 1-12 is functionally the same as Example 1-11, but it adds the HINT0 option.

SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC HINT0={LEADING(t0 t1) USE_NL(?x ?y)}',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-13 DISABLE_SAMEAS_BLOOM Option with SEM_MATCH Table Function

Example 1-12 specifies that the query compiler should not use a Bloom filter when owl:sameAs
triples are joined.

SELECT select s, o
FROM table(sem_match('{ # HINT0={LEADING(t1 t0) USE_HASH(t0 t1)}
 ?s owl:sameAs ?o. ?o owl:sameAs ?s}', sem_models('M1'), null,null,null,null,
 ' DISABLE_SAMEAS_BLOOM ')) order by 1,2;

Example 1-14 SEM_MATCH Table Function

Example 1-14 uses the Pathway/Genome BioPax ontology to get all chemical compound types
that belong to both Proteins and Complexes:

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 197

SELECT t.r
 FROM TABLE (SEM_MATCH (
 'PREFIX : <http://www.biopax.org/release1/biopax-release1.owl>
 SELECT ?r
 WHERE {
 ?r rdfs:subClassOf :Proteins .
 ?r rdfs:subClassOf :Complexes}',
 SEM_Models ('BioPax'),
 SEM_Rulebases ('rdfs'),
 NULL, NULL, NULL, '', NULL, NULL,
 'RDFUER','NET1')) t;

As shown in Example 1-14, the search pattern for the SEM_MATCH table function is specified
using SPARQL syntax where the variable starts with the question-mark character (?). In this
example, the variable ?r must match to the same term, and thus it must be a subclass of both
Proteins and Complexes.

• Performing Queries with Incomplete or Invalid Inferred Graphs

• Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER, UNION, and
GRAPH Keywords

• Graph Patterns: Support for SPARQL ASK Syntax

• Graph Patterns: Support for SPARQL CONSTRUCT Syntax

• Graph Patterns: Support for SPARQL DESCRIBE Syntax

• Graph Patterns: Support for SPARQL SELECT Syntax

• Graph Patterns: Support for SPARQL 1.1 Constructs

• Graph Patterns: Support for SPARQL 1.1 Federated Query

• Inline Query Optimizer Hints

• Full-Text Search

• Spatial Support

• Flashback Query Support

• Best Practices for Query Performance

• Special Considerations When Using SEM_MATCH

1.7.1 Performing Queries with Incomplete or Invalid Inferred Graphs
You can query RDF data even when the relevant inferred graph does not have a valid status if
you specify the string value INCOMPLETE or INVALID for the index_status attribute of the
SEM_MATCH table function. (The inferred graph status is stored in the STATUS column of the
SEM_RULES_INDEX_INFO view, which is described in Inferred Graphs. The SEM_MATCH
table function is described in Using the SEM_MATCH Table Function to Query RDF Data.)

The index_status attribute value affects the query behavior as follows:

• If the inferred graph has a valid status, the query behavior is not affected by the value of
the index_status attribute.

• If you provide no value or specify a null value for index_status, the query returns an error
if the inferred graph does not have a valid status.

• If you specify the string INCOMPLETE for the index_status attribute, the query is performed
if the status of the inferred graph is incomplete or valid.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 197

• If you specify the string INVALID for the index_status attribute, the query is performed
regardless of the actual status of the inferred graph (invalid, incomplete, or valid).

However, the following considerations apply if the status of the inferred graph is incomplete or
invalid:

• If the status is incomplete, the content of an inferred graph may be approximate, because
some triples that are inferable (due to the recent insertions into the underlying RDF
graphs) may not actually be present in the inferred graph, and therefore results returned by
the query may be inaccurate.

• If the status is invalid, the content of the inferred graph may be approximate, because
some triples that are no longer inferable (due to recent modifications to the underlying RDF
graphs or rulebases, or both) may still be present in the inferred graph, and this may affect
the accuracy of the result returned by the query. In addition to possible presence of triples
that are no longer inferable, some inferable rows may not actually be present in the
inferred graph.

1.7.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL,
FILTER, UNION, and GRAPH Keywords

The SEM_MATCH table function accepts the syntax for the graph pattern in which a sequence
of triple patterns is enclosed within curly braces. The period is usually required as a separator
unless followed by the OPTIONAL, FILTER, UNION, or GRAPH keyword. With this syntax, you
can do any combination of the following:

• Use the OPTIONAL construct to retrieve results even in the case of a partial match

• Use the FILTER construct to specify a filter expression in the graph pattern to restrict the
solutions to a query

• Use the UNION construct to match one of multiple alternative graph patterns

• Use the GRAPH construct (explained in GRAPH Keyword Support) to scope graph pattern
matching to a set of named graphs

In addition to arithmetic operators (+, -, *, /), Boolean operators and logical connectives (||,
&&, !), and comparison operators (<, >, <=, >=, =, !=), several built-in functions are available for
use in FILTER clauses. Table 1-14 lists built-in functions that you can use in the FILTER
clause. In the Description column of Table 1-14, x, y, and z are arguments of the appropriate
types.

Table 1-14 Built-in Functions Available for FILTER Clause

Function Description

ABS(RDF term) Returns the absolute value of term. If term is a
non-numerical value, returns null.

BNODE(literal) or BNODE() Constructs a blank node that is distinct from all
blank nodes in the dataset of the query, and those
created by this function in other queries. The form
with no arguments results in a distinct blank node
in every call. The form with a simple literal results in
distinct blank nodes for different simple literals, and
the same blank node for calls with the same simple
literal.

BOUND(variable) BOUND(x) returns true if x is bound (that is, non-
null) in the result, false otherwise.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 197

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

CEIL(RDF term) Returns the closest number with no fractional part
which is not less than term. If term is a non-
numerical value, returns null.

COALESCE(term list) Returns the first element on the argument list that
is evaluated without raising an error. Unbound
variables raise an error if evaluated. Returns null if
there are no valid elements in the term list.

CONCAT(term list) Returns an xsd:String value resulting of the
concatenation of the string values in the term list.

CONTAINS(literal, match) Returns true if the string match is found anywhere
in literal. It returns false otherwise.

DATATYPE(literal) DATATYPE(x) returns a URI representing the
datatype of x.

DAY(argument) Returns an integer corresponding to the day part of
argument. If the argument is not a dateTime or
date data type, it returns a null value.

ENCODE_FOR_URI(literal) Returns a string where the reserved characters in
literal are escaped and converted to its percent-
encode form.

EXISTS(pattern) Returns true if the pattern matches the query data
set, using the current bindings in the containing
group graph pattern and the current active graph. If
there are no matches, it returns false.

FLOOR(RDF term) Returns the closest number with no fractional part
which is less than term. If term is a non-numerical
value, returns null.

HOURS(argument) Returns an integer corresponding to the hours part
of argument. If the argument is not a dateTime or
date data type, it returns a null value.

IF(condition , expression1, expression2) Evaluates the condition and obtains the effective
Boolean value. If true, the first expression is
evaluated and its value returned. If false, the
second expression is used. If the condition raises
an error, the error is passed as the result of the IF
statement.

IRI(RDF term) Returns an IRI resolving the string representation
of argument term. If there is a base IRI defined in
the query, the IR is resolve against it, and the result
must result in an absolute IRI.

isBLANK(RDF term) isBLANK(x) returns true if x is a blank node,
false otherwise.

isIRI(RDF term) isIRI(x) returns true if x is an IRI, false
otherwise.

isLITERAL(RDF term) isLiteral(x) returns true if x is a literal, false
otherwise.

IsNUMERIC(RDF term) Returns true if term is a numeric value, false
otherwise.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 197

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

isURI(RDF term) isURI(x) returns true if x is a URI, false
otherwise.

LANG(literal) LANG(x) returns a plain literal serializing the
language tag of x.

LANGMATCHES(literal, literal) LANGMATCHES(x, y) returns true if language tag
x matches language range y, false otherwise.

LCASE(literal) Returns a string where each character in literal is
converted to its lowercase correspondent.

MD5(literal)

Note

Starting from Oracle
Database 21c
Release, the use of
MD5 algorithm is
deprecated. As this
function will be
desupported in a future
release, it is
recommended to
replace MD5 with one
of the SHA hash
functions.

Returns the checksum for literal, corresponding
to the MD5 hash function.

MINUTES(argument) Returns an integer corresponding to the minutes
part of argument. If the argument is not a
dateTime or date data type, it returns a null value.

MONTH(argument) Returns an integer corresponding to the month part
of argument. If the argument is not a dateTime or
date data type, it returns a null value.

NOT_EXISTS(pattern) Returns true if the pattern does not match the
query data set, using the current bindings in the
containing group graph pattern and the current
active graph. It returns false otherwise.

NOW() Returns an xsd:dateTime value corresponding to
the current time at the moment of the query
execution.

RAND() Generates a numeric value in the range of [0,1).

REGEX(string, pattern) REGEX(x,y) returns true if x matches the regular
expression y, false otherwise. For more
information about the regular expressions
supported, see the Oracle Regular Expression
Support appendix in Oracle AI Database SQL
Language Reference.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 197

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

REGEX(string, pattern, flags) REGEX(x,y,z) returns true if x matches the
regular expression y using the options given in z,
false otherwise. Available options: 's' – dot all
mode ('.' matches any character including the
newline character); 'm' – multiline mode ('^'
matches the beginning of any line and '$'
matches the end of any line); 'i' – case
insensitive mode; 'x' – remove whitespace
characters from the regular expression before
matching.

REPLACE(string, pattern, replacement) Returns a string where each match of the regular
expression pattern in string is replaced by
replacement. For more information about the
regular expressions supported, see the Oracle
Regular Expression Support appendix in Oracle AI
Database SQL Language Reference.

REPLACE(string, pattern, replacement, flags) Returns a string where each match of the regular
expression pattern in string is replaced by
replacement. Available options: 's' – dot all
mode ('.' matches any character including the
newline character); 'm' – multiline mode ('^'
matches the beginning of any line and '$'
matches the end of any line); 'i' – case
insensitive mode; 'x' – remove whitespace
characters from the regular expression before
matching.

For more information about the regular expressions
supported, see the Oracle Regular Expression
Support appendix in Oracle AI Database SQL
Language Reference.

ROUND(RDF term) Returns the closest number with no fractional part
to term. If two values exist, the value closer to
positive infinite is returned. If term is a non-
numerical value, returns null.

sameTerm(RDF term, RDF term) sameTerm(x, y) returns true if x and y are the
same RDF term, false otherwise.

SECONDS(argument) Returns an integer corresponding to the seconds
part of argument. If the argument is not a
dateTime or date data type, it returns a null value.

SHA1(literal) Returns the checksum for literal, corresponding
to the SHA1 hash function.

SHA256(literal) Returns the checksum for literal, corresponding
to the SHA256 hash function.

SHA384(literal) Returns the checksum for literal, corresponding
to the SHA384 hash function.

SHA512(literal) Returns the checksum for literal, corresponding
to the SHA512 hash function.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 197

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

STR(RDF term) STR(x) returns a plain literal of the string
representation of x (that is, what would be stored in
the VALUE_NAME column of RDF_VALUE$
enclosed within double quotes).

STRAFTER(literal, literal) StrAfter (x,y) returns the portion of the string
corresponding to substring that precedes in x the
first match of y, and the end of x. If y cannot be
matched inside x, the empty string is returned.

STRBEFORE(literal, literal) StrBefore (x,y) returns the portion of the string
corresponding to the start of x and the first match
of y. If y cannot be matched inside x, the empty
string is returned.

STRDT(string, datatype) Construct a literal term composed by the string
lexical form and the datatype passed as
arguments. datatype must be a URI; otherwise,
the function returns a null value.

STRENDS(literal, match) Returns true if the string literal ends with the
string match. It returns false otherwise.

STRLANG (string, languageTag) Constructs a string composed by the string
lexical form and language tag passed as
arguments.

STRLEN(literal) Returns the length of the lexical form of the
literal.

STRSTARTS(literal, match) Returns true if the string literal starts with the
string match. It returns false otherwise.

STRUUID() Returns a string containing the scheme section of a
new UUID.

SUBSTR(term, startPos) Returns the string corresponding to the portion of
term that starts at startPos and continues until
term ends. The index of the first character is 1.

SUBSTR(term, startPos, length) Returns the string corresponding to the portion of
term that starts at startPos and continues for
length characters. The index of the first character
is 1.

term IN (term list) The expression x IN(term list) returns true if x can
be found in any of the values in termlist. Returns
false if not found. Zero-length lists are legal. An
error is raised if any of the values in termlist
raises an error and x is not found.

term NOT IN (term list) The expression x NOT IN(term list) returns false if
x can be found in any of the values in term list.
Returns true if not found. Zero-length lists are
legal. An error is raised if any of the values in term
list raises an error and x is not found.

TIMEZONE(argument) Returns the time zones section of argument as an
xsd:dayTimeDuration value. If the argument is
not a dateTime or date data type, it returns a null
value.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 197

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

TZ(argument) Returns an integer corresponding to the time zone
part of argument. If the argument is not a
dateTime or date data type, it returns a null value.

UCASE(literal) Returns a string where each character in literal
is converted to its uppercase correspondent.

URI(RDF term) (Synonym for IRI(RDF term)

UUID() Returns a URI with a new Universal Unique
Identifier. The value and the version correspond to
the PL/SQL function sys_guid ().

YEAR(argument) Returns an integer corresponding to the year part
of argument.

See also the descriptions of the built-in functions defined in the SPARQL query language
specification (http://www.w3.org/TR/sparql11-query/), to better understand the built-in
functions available in SEM_MATCH.

In addition, Oracle provides some proprietary query functions that take advantage of Oracle AI
Database features and help improve query performance. The following table lists these Oracle-
specific query functions. Note that the built-in namespace prefix orardf expands to <http://
xmlns.oracle.com/rdf/>.

Table 1-15 Oracle-Specific Query Functions

Function Description

orardf:concat(RDF
term, RDF term, …)

Returns true if the given term matches with the given like pattern.
Otherwise, the function returns false.

orardf:contains(RD
F term, RDF term)

Returns true if the string representation of the first term contains the string
representation of the second term as a substring. Otherwise, the function
returns false.

orardf:instr(RDF
term, RDF term)

Searches the string representation of the first term for the string representation
of the second term. Returns an integer indicating the position of the first
character of the occurrence in the first term (the first character in a string is
position 1).

If the search is unsuccessful, then the returned value is 0.

orardf:instr(RDF
term, RDF term,
position)

Searches the string representation of the first term for the string representation
of the second term. Returns an integer indicating the position of the first
character of the occurrence in first term (the first character is position 1).

If the search is unsuccessful, then the returned value is 0.

Position is a nonzero interger indicating the character of the string
representation of the first term at which to begin the search (the first character
is position 1). If position is negative, then orardf:instr counts and searches
backwards from the end of the first term.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 197

http://www.w3.org/TR/sparql11-query/

Table 1-15 (Cont.) Oracle-Specific Query Functions

Function Description

orardf:instr(RDF
term, RDF term,
position,
occurrence)

Searches the string representation of the first term for the string representation
of the second term. Returns an integer indicating the position of the first
character of the occurrence in first term (the first character is position 1).

If the search is unsuccessful, then the returned value is 0.

Position is a nonzero interger indicating the character of the string
representation of the first term at which to begin the search (the first character
is position 1). If position is negative, then orardf:instr counts and searches
backwards from the end of the first term.

Occurrence is a positive integer indicating which occurrence of the first term
orardf:instr should search for.

orardf:lcase(RDF
term)

Returns a string literal whose lexical form is the lower case of the string
representation of the input term.

orardf:like(RDF
term, pattern)

Returns true if the given term matches with the given like pattern.
Otherwise, the function returns false. See Full-Text Search for more
information.

orardf:like(RDF
term, pattern,
flags)

Returns true if the given term matches with the given like pattern using the
specified flags. Otherwise, the function returns false. Available flags: 'i' –
case insensitive mode. See Full-Text Search for more information.

orardf:ltrim(RDF
term)

Returns the string representation of the input term with all blank characters
removed from the left end.

orardf:ltrim(RDF
term, set)

Returns the string representation of the input term with all of the characters
contained in set removed from the left end.

orardf:rtrim(RDF
term)

Returns the string representation of the input term with all blank characters
removed from the right end.

orardf:rtrim(RDF
term, set)

Returns the string representation of the input term with all of the characters
contained in set removed from the right end.

orardf:sameCanonTe
rm(RDF term, RDF
term)

Returns true if two terms represent the same canonical RDF term. Otherwise,
the function returns false. Allows a VALUE_ID-based comparison, which is
more efficient than sameTerm(?x, ?y) or (?x = ?y).

orardf:strafter(RD
F term, RDF term)

Returns the part of the string representation of the first term that follows the first
occurrence of the string representation of the second term.

If there is no such occurrence, then an empty string literal is returned.

orardf:strbefore(R
DF term, RDF term)

Returns the part of the string representation of the first term that precedes the
first occurrence of the string representation of the second term.

If there is no such occurrence, then an empty string literal is returned.

orardf:strends(RDF
term, RDF term)

Returns true if the string representation of the first term contains the string
representation of the second term as a trailing substring. Otherwise, the
function returns false.

orardf:strlen(RDF
term)

Returns the number of characters in the string representation of the input term.

orardf:strstarts(R
DF term, RDF term)

Returns true if the string representation of the first term contains the string
representation of the second term as a leading substring. Otherwise, the
function returns false.

orardf:substr(RDF
term, start)

Returns a portion of the string representation of the input term beginning at the
position indicated by the start value and continuing to the end of the input term
(the first character is position 1).

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 197

Table 1-15 (Cont.) Oracle-Specific Query Functions

Function Description

orardf:substr(RDF
term, start,
length)

Returns a portion of the string representation of the input term beginning at the
position indicated by the start value and continuing for the number of characters
indicated by the length value (the first character is position 1).

orardf:textContain
s(RDF term,
pattern)

Returns true if the given term matches with the given Oracle Text search
pattern. Otherwise, the function returns false. See Full-Text Search for more
information.

orardf:textScore(i
nvocation id)

Returns the score of an orardf:textContains match. See Full-Text Search
for more information.

orardf:ucase(RDF
term)

Returns a string literal whose lexical form is the upper case of the lexical form
of the input term.

(Spatial built-in
functions)

(See Spatial Support.)

The following XML Schema casting functions are available for use in FILTER clauses. These
functions take an RDF term as input and return a new RDF term of the desired type or raise an
error if the term cannot be cast to the desired type. Details of type casting can be found in
Section 17.1 of the XPath query specification: http://www.w3.org/TR/xpath-functions/
#casting-from-primitive-to-primitive. These functions use the XML Namespace xsd :
http://www.w3.org/2001/XMLSchema#.

• xsd:string (RDF term)

• xsd:dateTime (RDF term)

• xsd:boolean (RDF term)

• xsd:integer (RDF term)

• xsd:float (RDF term)

• xsd:double (RDF term)

• xsd:decimal (RDF term)

If you use the syntax with curly braces to express a graph pattern:

• The query always returns canonical lexical forms for the matching values for the variables.

• Any hints specified in the options argument using HINT0={<hint-string>} (explained in
Using the SEM_MATCH Table Function to Query RDF Data), should be constructed only
on the basis of the portion of the graph pattern inside the root BGP. For example, the only
valid aliases for use in a hint specification for the query in Example 1-16 are t0, t1, ?x,
and ?y. Inline query optimizer hints can be used to influence other parts of the graph
pattern (see Inline Query Optimizer Hints).

• The FILTER construct is not supported for variables bound to long literals.

Example 1-15 Curly Brace Syntax

Example 1-15 uses the syntax with curly braces and a period to express a graph pattern in the
SEM_MATCH table function.

SELECT x, y
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 197

http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive
http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive

 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, '', null, null,
 'RDFUSER', 'NET1'));

Example 1-16 Curly Brace Syntax and OPTIONAL Construct

Example 1-16 uses the OPTIONAL construct to modify Example 1-15, so that it also returns,
for each grandfather, the names of the games played or null if no games are played.

SELECT x, y, game
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game}
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null,
 null,
 'HINT0={LEADING(t0 t1) USE_NL(?x ?y)}',
 null,
 null,
 'RDFUSER', 'NET1'));

Example 1-17 Curly Brace Syntax and Multi-Pattern OPTIONAL Construct

When multiple triple patterns are present in an OPTIONAL graph pattern, values for optional
variables are returned only if a match is found for each triple pattern in the OPTIONAL graph
pattern. Example 1-17 modifies Example 1-16 so that it returns, for each grandfather, the
names of the games played with the grandchildren, or null if they have no such games in
common. It also uses global query optimizer hints to specify that triple patterns should be
evaluated in order within each BGP and that a hash join should be used to join the root BGP
with the OPTIONAL BGP.

SELECT x, y, game
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game . ?y :plays ?game}
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null,
 'ALL_ORDERED ALL_BGP_HASH',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-18 Curly Brace Syntax and Nested OPTIONAL Construct

A single query can contain multiple OPTIONAL graph patterns, which can be nested or
parallel. Example 1-18 modifies Example 1-17 with a nested OPTIONAL graph pattern. This
example returns (1) the games each grandfather plays or null if they play no games and (2) if
the grandfather plays games, the ages of the grandchildren that play the same game, or null if
they has no games in common. Note that in Example 1-18 a value is returned for ?game even if
the nested OPTIONAL graph pattern ?y :plays ?game . ?y :age ?age is not matched.

SELECT x, y, game, age
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game
 OPTIONAL {?y :plays ?game . ?y :age ?age} }
 }',

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 197

 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-19 Curly Brace Syntax and Parallel OPTIONAL Construct

Example 1-19 modifies Example 1-17 with a parallel OPTIONAL graph pattern. This example
returns (1) the games the each grandfather plays or null if they play no games and (2) the
email address of each grandfather or null if they have no email address. Note that, unlike
nested OPTIONAL graph patterns, parallel OPTIONAL graph patterns are treated
independently. That is, if an email address is found, it will be returned regardless of whether or
not a game was found; and if a game was found, it will be returned regardless of whether an
email address was found.

SELECT x, y, game, email
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game}
 OPTIONAL{?x :email ?email}
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-20 Curly Brace Syntax and FILTER Construct

Example 1-20 uses the FILTER construct to modify Example 1-15, so that it returns
grandchildren information for only those grandfathers who are residents of either NY or CA.

SELECT x, y
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :residentOf ?z
 FILTER (?z = "NY" || ?z = "CA")}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-21 Curly Brace Syntax and FILTER with REGEX and STR Built-In
Constructs

Example 1-21 uses the REGEX built-in function to select all grandfathers who have an Oracle
email address. Note that backslash (\) characters in the regular expression pattern must be
escaped in the query string; for example, \\. produces the following pattern: \.

SELECT x, y, z
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :email ?z
 FILTER (REGEX(STR(?z), "@oracle\\.com$"))}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 197

Example 1-22 Curly Brace Syntax and UNION and FILTER Constructs

Example 1-22 uses the UNION construct to modify Example 1-20, so that grandfathers are
returned only if they are residents of NY or CA or own property in NY or CA, or if both
conditions are true (they reside in and own property in NY or CA).

SELECT x, y
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male
 {{?x :residentOf ?z} UNION {?x :ownsPropertyIn ?z}}
 FILTER (?z = "NY" || ?z = "CA")}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

• GRAPH Keyword Support

1.7.2.1 GRAPH Keyword Support
A SEM_MATCH query is executed against an RDF Dataset. An RDF Dataset is a collection of
graphs that includes one unnamed graph, known as the default graph, and one or more named
graphs, which are identified by a URI. Graph patterns that appear inside a GRAPH clause are
matched against the set of named graphs, and graph patterns that do not appear inside a
graph clause are matched against the default graph. The graphs and named_graphs
SEM_MATCH parameters are used to construct the default graph and set of named graphs for
a given SEM_MATCH query. A summary of possible dataset configurations is shown in
Table 1-16.

Table 1-16 SEM_MATCH graphs and named_graphs Values, and Resulting Dataset Configurations

Parameter Values Default Graph Set of Named Graphs

graphs: NULL

named_graphs: NULL

Union All of all unnamed triples and all named graph triples.
(But if the options parameter contains STRICT_DEFAULT=T,
only unnamed triples are included in the default graph.)

All named graphs

graphs: NULL

named_graphs: {g1,…, gn}

Empty set {g1,…, gn}

graphs: {g1,…, gm}

named_graphs: NULL

Union All of {g1,…, gm} Empty set

graphs: {g1,…, gm}

named_graphs: {gn,…, gz}

Union All of {g1,…, gm} {gn,…, gz}

See also the W3C SPARQL specification for more information on RDF data sets and the
GRAPH construct, specifically: http://www.w3.org/TR/rdf-sparql-query/#rdfDataset

Example 1-23 Named Graph Construct

Example 1-23 uses the GRAPH construct to scope graph pattern matching to a specific named
graph. This example finds the names and email addresses of all people in the <http://
www.example.org/family/Smith> named graph.

SELECT name, email
 FROM TABLE(SEM_MATCH(
 '{GRAPH :Smith {
 ?x :name ?name . ?x :email ?email } }',

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 197

http://www.w3.org/TR/rdf-sparql-query/#rdfDataset

 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-24 Using the named_graphs Parameter

In addition to URIs, variables can appear after the GRAPH keyword. Example 1-24 uses a
variable, ?g, with the GRAPH keyword, and uses the named_graphs parameter to restrict the
possible values of ?g to the <http://www.example.org/family/Smith> and <http://
www.example.org/family/Jones> named graphs. Aliases specified in SEM_ALIASES
argument can be used in the graphs and named_graphs parameters.

SELECT name, email
 FROM TABLE(SEM_MATCH(
 '{GRAPH ?g {
 ?x :name ?name . ?x :email ?email } }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null,null,null,null,
 SEM_GRAPHS('<http://www.example.org/family/Smith>',
 ':Jones'),
 'RDFUSER', 'NET1'));

Example 1-25 Using the graphs Parameter

Example 1-25 uses the default graph to query the union of the <http://www.example.org/
family/Smith> and <http://www.example.org/family/Jones> named graphs.

FROM TABLE(SEM_MATCH(
 '{?x :name ?name . ?x :email ?email }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null,null,null,
 SEM_GRAPHS('<http://www.example.org/family/Smith>',
 ':Jones'),
 null,
 'RDFUSER', 'NET1'));

1.7.3 Graph Patterns: Support for SPARQL ASK Syntax
SEM_MATCH allows fully-specified SPARQL ASK queries in the query parameter.

ASK queries are used to test whether or not a solution exists for a given query pattern. In
contrast to other forms of SPARQL queries, ASK queries do not return any information about
solutions to the query pattern. Instead, such queries return "true"^^xsd:boolean if a solution
exists and "false"^^xsd:boolean if no solution exists.

All SPARQL ASK queries return the same columns: ASK, ASK$RDFVID, ASK$_PREFIX,
ASK$_SUFFIX, ASK$RDFVTYP, ASK$RDFCLOB, ASK$RDFLTYP, ASK$RDFLANG,
SEM$ROWNUM. Note that these columns are the same as a SPARQL SELECT syntax query
that projects a single ?ask variable.

SPARQL ASK queries will generally give better performance than an equivalent SPARQL
SELECT syntax query because the ASK query does not have to retrieve lexical values for
query variables, and query execution can stop after a single result has been found.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 197

SPARQL ASK queries use the same syntax as SPARQL SELECT queries, but the topmost
SELECT clause must be replaced with the keyword ASK.

Example 1-26 SPARQL ASK

Example 1-26 shows a SPARQL ASK query that determines whether or not any cameras are
for sale with more than 10 megapixels that cost less than 50 dollars.

SELECT ask
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 ASK
 WHERE
 {?x :price ?p .
 ?x :megapixels ?m .
 FILTER (?p < 50 && ?m > 10)
 }',
 SEM_Models('electronics'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

See also the W3C SPARQL specification for more information on SPARQL ASK queries,
specifically: http://www.w3.org/TR/sparql11-query/#ask

1.7.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax
SEM_MATCH allows fully-specified SPARQL CONSTRUCT queries in the query parameter.

CONSTRUCT queries are used to build RDF graphs from stored RDF data. In contrast to
SPARQL SELECT queries, CONSTRUCT queries return a set of RDF triples rather than a set
of query solutions (variable bindings).

All SPARQL CONSTRUCT queries return the same columns from SEM_MATCH. These
columns correspond to the subject, predicate and object of an RDF triple, and there are 10
columns for each triple component. In addition, a SEM$ROWNUM column is returned. More
specifically, the following columns are returned:

SUBJ
SUBJ$RDFVID
SUBJ$_PREFIX
SUBJ$_SUFFIX
SUBJ$RDFVTYP
SUBJ$RDFCLOB
SUBJ$RDFLTYP
SUBJ$RDFLANG
SUBJ$RDFTERM
SUBJ$RDFCLBT
PRED
PRED$RDFVID
PRED$_PREFIX
PRED$_SUFFIX
PRED$RDFVTYP
PRED$RDFCLOB
PRED$RDFLTYP
PRED$RDFLANG
PRED$RDFTERM
PRED$RDFCLBT
OBJ
OBJ$RDFVID
OBJ$_PREFIX
OBJ$_SUFFIX

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 197

http://www.w3.org/TR/sparql11-query/#ask

OBJ$RDFVTYP
OBJ$RDFCLOB
OBJ$RDFLTYP
OBJ$RDFLANG
OBJ$RDFTERM
OBJ$RDFCLBT
SEM$ROWNUM

For each component, COMP, COMP$RDFVID, COMP$_PREFIX, COMP$_SUFFIX,
COMP$RDFVTYP, COMP$RDFCLOB, COMP$RDFLTYP, and COMP$RDFLANG correspond
to the same values as those from SPARQL SELECT queries. COMP$RDFTERM holds a
VARCHAR2(NETWORK_MAX_STRING_SIZE) RDF term in N-Triple syntax, and COMP$RDFCLBT
holds a CLOB RDF term in N-Triple syntax.

SPARQL CONSTRUCT queries use the same syntax as SPARQL SELECT queries, except the
topmost SELECT clause is replaced with a CONSTRUCT template. The CONSTRUCT
template determines how to construct the result RDF graph using the results of the query
pattern defined in the WHERE clause. A CONSTRUCT template consists of the keyword
CONSTRUCT followed by sequence of SPARQL triple patterns that are enclosed within curly
braces. The keywords OPTIONAL, UNION, FILTER, MINUS, BIND, VALUES, and GRAPH are
not allowed within CONSTRUCT templates, and property path expressions are not allowed
within CONSTRUCT templates. These keywords, however, are allowed within the query
pattern inside the WHERE clause.

SPARQL CONSTRUCT queries build result RDF graphs in the following manner. For each
result row returned by the WHERE clause, variable values are substituted into the
CONSTRUCT template to create one or more RDF triples. Suppose the graph pattern in the
WHERE clause of Example 1-27 returns the following result rows.

E$RDFTERM FNAME$RDFTERM LNAME$RDFTERM

ent:employee1 "Fred" "Smith"

ent:employee2 "Jane" "Brown"

ent:employee3 "Bill" "Jones"

The overall SEM_MATCH CONSTRUCT query in Example 1-27 would then return the
following rows, which correspond to six RDF triples (two for each result row of the query
pattern).

SUBJ$RDFTERM PRED$RDFTERM OBJ$RDFTERM

ent:employee1 foaf:givenName "Fred"

ent:employee1 foaf:familyName "Smith"

ent:employee2 foaf:givenName "Jane"

ent:employee2 foaf:familyName "Brown"

ent:employee3 foaf:givenName "Bill"

ent:employee3 foaf:familyName "Jones"

There are two SEM_MATCH query options that influence the behavior of SPARQL
CONSTRUCT: CONSTRUCT_UNIQUE=T and CONSTRUCT_STRICT=T. Using the CONSTRUCT_UNIQUE=T
query option ensures that only unique RDF triples are returned from the CONSTRUCT query.
Using the CONSTRUCT_STRICT=T query option ensures that only valid RDF triples are returned
from the CONSTRUCT query. Valid RDF triples are those that have (1) a URI or blank node in
the subject position, (2) a URI in the predicate position, and (3) a URI, blank node or RDF

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 197

literal in the object position. Both of these query options are turned off by default for improved
query performance.

Example 1-27 SPARQL CONSTRUCT

Example 1-27 shows a SPARQL CONSTRUCT query that builds an RDF graph of employee
names using the foaf vocabulary.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 {?e foaf:givenName ?fname .
 ?e foaf:familyName ?lname
 }
 WHERE
 {?e ent:fname ?fname .
 ?e ent:lname ?lname
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-28 CONSTRUCT with Solution Modifiers

SPARQL SOLUTION modifiers can be used with CONSTRUCT queries. Example 1-28 shows
the use of ORDER BY and LIMIT to build a graph about the top two highest-paid employees.
Note that the LIMIT 2 clause applies to the query pattern not to the overall CONSTRUCT
query. That is, the query pattern will return two result rows, but the overall CONSTRUCT query
will return 6 RDF triples (three for each of the two employees bound to ?e).

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 { ?e ent:fname ?fname .
 ?e ent:lname ?lname .
 ?e ent:dateOfBirth ?dob }
 WHERE
 { ?e ent:fname ?fname .
 ?e ent:lname ?lname .
 ?e ent:salary ?sal
 }
 ORDER BY DESC(?sal)
 LIMIT 2',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-29 SPARQL 1.1 Features with CONSTRUCT

SPARQL 1.1 features are supported within CONSTRUCT query patterns. Example 1-29 shows
the use of subqueries and SELECT expressions within a CONSTRUCT query.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 197

 { ?e foaf:name ?name }
 WHERE
 { SELECT ?e (CONCAT(?fname," ",?lname) AS ?name)
 WHERE { ?e ent:fname ?fname .
 ?e ent:lname ?lname }
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-30 SPARQL CONSTRUCT with Named Graphs

Named graph data cannot be returned from SPARQL CONSTRUCT queries because, in
accordance with the W3C SPARQL specification, only RDF triples are returned, not RDF
quads. The FROM, FROM NAMED and GRAPH keywords, however, can be used when
matching the query pattern defined in the WHERE clause.

Example 1-30 constructs an RDF graph with ent:name triples from the UNION of named
graphs ent:g1 and ent:g2, ent:dateOfBirth triples from named graph ent:g3, and ent:ssn
triples from named graph ent:g4.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 { ?e ent:name ?name .
 ?e ent:dateOfBirth ?dob .
 ?e ent:ssn ?ssn
 }
 FROM ent:g1
 FROM ent:g2
 FROM NAMED ent:g3
 FROM NAMED ent:g4
 WHERE
 { ?e foaf:name ?name .
 GRAPH ent:g3 { ?e ent:dateOfBirth ?dob }
 GRAPH ent:g4 { ?e ent:ssn ?ssn }
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-31 SPARQL CONSTRUCT Normal Form

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 {?e foaf:givenName ?fname .
 ?e foaf:familyName ?lname
 }
 WHERE
 {?e ent:fname ?fname .
 ?e ent:lname ?lname
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 197

 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-32 SPARQL CONSTRUCT Short Form

A short form of CONSTRUCT is supported when the CONSTRUCT template is exactly the
same as the WHERE clause. In this case, only the keyword CONSTRUCT is needed, and the
graph pattern in the WHERE clause will also be used as a CONSTRUCT template.
Example 1-32 shows the short form of Example 1-31.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 WHERE
 {?e ent:fname ?fname .
 ?e ent:lname ?lname
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

• Typical SPARQL CONSTRUCT Workflow

1.7.4.1 Typical SPARQL CONSTRUCT Workflow
A typical workflow for SPARQL CONSTRUCT would be to execute a CONSTRUCT query to
extract and/or transform RDF triple data from an existing RDF graph and then load this data
into an existing or new RDF graph. The data loading can be accomplished through simple
INSERT statements or executing the SEM_APIS.BULK_LOAD_RDF_GRAPH procedure.

Example 1-33 SPARQL CONSTRUCT Workflow

Example 1-33 constructs foaf:name triples from existing ent:fname and ent:lname triples and
then bulk loads these new triples back into the original RDF graph. Afterward, you can query
the original graph for foaf:name values.

-- Use create table as select to build a staging table
CREATE TABLE STAB(RDFSTC_sub, RDFSTC_pred, RDF$STC_obj) AS
SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 { ?e foaf:name ?name }
 WHERE
 { SELECT ?e (CONCAT(?fname," ",?lname) AS ?name)
 WHERE { ?e ent:fname ?fname .
 ?e ent:lname ?lname }
 }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

-- Bulk load data back into the enterprise model
BEGIN
 SEM_APIS.BULK_LOAD_RDF_GRAPH(

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 197

 rdf_graph_name=>'enterprise',
 table_owner=>'rdfuser',
 table_name=>'stab',
 flags=>' parallel_create_index parallel=4 ',
 network_owner=>'RDFUSER',
 network_name=>'NET1');
END;
/

-- Query for foaf:name data
SELECT e$rdfterm, name$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT ?e ?name
 WHERE { ?e foaf:name ?name }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

See also the W3C SPARQL specification for more information on SPARQL CONSTRUCT
queries, specifically: http://www.w3.org/TR/sparql11-query/#construct

1.7.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax
SEM_MATCH allows fully-specified SPARQL DESCRIBE queries in the query parameter.

SPARQL DESCRIBE queries are useful for exploring RDF data sets. You can easily find
information about a given resource or set of resources without knowing information about the
exact RDF properties used in the data set. A DESCRIBE query returns a "description" of a
resource r, where a "description" is the set of RDF triples in the query data set that contain r in
either the subject or object position.

Like CONSTRUCT queries, DESCRIBE queries return an RDF graph instead of result
bindings. Each DESCRIBE query, therefore, returns the same columns as a CONSTRUCT
query (see Graph Patterns: Support for SPARQL CONSTRUCT Syntax for a listing of return
columns).

SPARQL DESCRIBE queries use the same syntax as SPARQL SELECT queries, except the
topmost SELECT clause is replaced with a DESCRIBE clause. A DESCRIBE clause consists
of the DESCRIBE keyword followed by a sequence of URIs and/or variables separated by
whitespace or the DESCRIBE keyword followed by a single * (asterisk).

Two SEM_MATCH query options affect SPARQL DESCRIBE queries: CONSTRUCT_UNIQUE=T
and CONSTRUCT_STRICT=T. CONSTRUCT_UNIQUE=T ensures that duplicate triples are eliminated
from the result, and CONSTRUCT_STRICT=T ensures that invalid triples are eliminated from the
result. Both of these options are turned off by default. These options are described in more
detail in Graph Patterns: Support for SPARQL CONSTRUCT Syntax.

See also the W3C SPARQL specification for more information on SPARQL DESCRIBE
queries, specifically: http://www.w3.org/TR/sparql11-query/#describe

Example 1-34 SPARQL DESCRIBE Short Form

A short form of SPARQL DESCRIBE is provided to describe a single constant URI. In the short
form, only a DESCRIBE clause is needed. Example 1-34 shows a short form SPARQL
DESCRIBE query.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'DESCRIBE <http://www.example.org/enterprise/emp_1>',

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 197

http://www.w3.org/TR/sparql11-query/#construct
http://www.w3.org/TR/sparql11-query/#describe

 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-35 SPARQL DESCRIBE Normal Form

The normal form of SPARQL DESCRIBE specifies a DESCRIBE clause and a SPARQL query
pattern, possibly including solution modifiers. Example 1-35 shows a SPARQL DESCRIBE
query that describes all employees whose departments are located in New Hampshire.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 DESCRIBE ?e
 WHERE
 { ?e ent:department ?dept .
 ?dept ent:locatedIn "New Hampshire" }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-36 DESCRIBE *

With the normal form of DESCRIBE, as shown in Example 1-35, all resources bound to
variables listed in the DESCRIBE clause are described. In Example 1-35, all employees
returned from the query pattern and bound to ?e will be described. When DESCRIBE * is used,
all visible variables in the query are described.

Example 1-36 shows a modified version of Example 1-35 that describes both employees
(bound to ?e) and departments (bound to ?dept).

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 DESCRIBE *
 WHERE
 { ?e ent:department ?dept .
 ?dept ent:locatedIn "New Hampshire" }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.6 Graph Patterns: Support for SPARQL SELECT Syntax
In addition to curly-brace graph patterns, SEM_MATCH allows fully-specified SPARQL
SELECT queries in the query parameter. When using the SPARQL SELECT syntax option,
SEM_MATCH supports the following query constructs: BASE, PREFIX, SELECT, SELECT
DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT, and OFFSET. Each SPARQL
SELECT syntax query must include a SELECT clause and a graph pattern.

A key difference between curly-brace and SPARQL SELECT syntax when using SEM_MATCH
is that only variables appearing in the SPARQL SELECT clause are returned from
SEM_MATCH when using SPARQL SELECT syntax.

One additional column, SEM$ROWNUM, is returned from SEM_MATCH when using SPARQL
SELECT syntax. This NUMBER column can be used to order the results of a SEM_MATCH
query so that the result order matches the ordering specified by a SPARQL ORDER BY clause.

The SPARQL ORDER BY clause can be used to order the results of SEM_MATCH queries.
This clause specifies a sequence of comparators used to order the results of a given query. A
comparator consists of an expression composed of variables, RDF terms, arithmetic operators

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 197

(+, -, *, /), Boolean operators and logical connectives (||, &&, !), comparison operators (<, >, <=,
>=, =, !=), and any functions available for use in FILTER expressions.

The following order of operations is used when evaluating SPARQL SELECT queries:

1. Graph pattern matching

2. Grouping (see Grouping and Aggregation.)

3. Aggregates (see Grouping and Aggregation)

4. Having (see Grouping and Aggregation)

5. Values (see Value Assignment)

6. Select expressions

7. Order by

8. Projection

9. Distinct

10. Offset

11. Limit

See also the W3C SPARQL specification for more information on SPARQL BASE, PREFIX,
SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT, and
OFFSET constructs, specifically: http://www.w3.org/TR/sparql11-query/

Example 1-37 SPARQL PREFIX, SELECT, and WHERE Clauses

Example 1-37 uses the following SPARQL constructs:

• SPARQL PREFIX clause to specify an abbreviation for the http://www.example.org/
family/ and http://xmlns.com/foaf/0.1/ namespaces

• SPARQL SELECT clause to specify the set of variables to project out of the query

• SPARQL WHERE clause to specify the query graph pattern

SELECT y, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT ?y ?name
 WHERE
 {?x :grandParentOf ?y .
 ?x foaf:name ?name }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-37 returns the following columns: y, y$RDFVID, y$_PREFIX, y$_SUFFIX,
y$RDFVTYP, y$RDFCLOB, y$RDFLTYP, y$RDFLANG, name, name$RDFVID,
name$_PREFIX, name$_SUFFIX, name$RDFVTYP, name$RDFCLOB, name$RDFLTYP,
name$RDFLANG, and SEM$ROWNUM.

Example 1-38 SPARQL SELECT * (All Variables in Triple Pattern)

The SPARQL SELECT clause specifies either (A) a sequence of variables and/or expressions
(see Expressions in the SELECT Clause), or (B) * (asterisk), which projects all variables that
appear in a specified triple pattern. Example 1-38 uses the SPARQL SELECT clause to select
all variables that appear in a specified triple pattern.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 197

http://www.w3.org/TR/sparql11-query/

SELECT x, y, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT *
 WHERE
 {?x :grandParentOf ?y .
 ?x foaf:name ?name }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-39 SPARQL SELECT DISTINCT

The DISTINCT keyword can be used after SELECT to remove duplicate result rows.
Example 1-39 uses SELECT DISTINCT to select only the distinct names.

SELECT name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT DISTINCT ?name
 WHERE
 {?x :grandParentOf ?y .
 ?x foaf:name ?name }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-40 RDF Dataset Specification Using FROM and FROM NAMED

SPARQL FROM and FROM NAMED are used to specify the RDF dataset for a query. FROM
clauses are used to specify the set of graphs that make up the default graph, and FROM
NAMED clauses are used to specify the set of graphs that make up the set of named graphs.
Example 1-40 uses FROM and FROM NAMED to select email addresses and friend of
relationships from the union of the <http://www.friends.com/friends> and <http://
www.contacts.com/contacts> graphs and grandparent information from the <http://
www.example.org/family/Smith> and <http://www.example.org/family/Jones> graphs.

SELECT x, y, z, email
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 PREFIX friends: <http://www.friends.com/>
 PREFIX contacts: <http://www.contacts.com/>
 SELECT *
 FROM friends:friends
 FROM contacts:contacts
 FROM NAMED :Smith
 FROM NAMED :Jones
 WHERE
 {?x foaf:frendOf ?y .
 ?x :email ?email .
 GRAPH ?g {
 ?x :grandParentOf ?z }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 197

Example 1-41 SPARQL ORDER BY

In a SPARQL ORDER BY clause:

• Single variable ordering conditions do not require enclosing parenthesis, but parentheses
are required for more complex ordering conditions.

• An optional ASC() or DESC() order modifier can be used to indicate the desired order
(ascending or descending, respectively). Ascending is the default order.

• When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query should be
ordered by SEM$ROWNUM to ensure that the desired ordering is maintained through any
enclosing SQL blocks.

Example 1-41 uses a SPARQL ORDER BY clause to select all cameras, and it specifies
ordering by descending type and ascending total price (price * (1 - discount) * (1 +
tax)).

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT *
 WHERE
 {?x :price ?p .
 ?x :discount ?d .
 ?x :tax ?t .
 ?x :cameraType ?cType .
 }
 ORDER BY DESC(?cType) ASC(?p * (1-?d) * (1+?t))',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY SEM$ROWNUM;

Example 1-42 SPARQL LIMIT

SPARQL LIMIT and SPARQL OFFSET can be used to select different subsets of the query
solutions. Example 1-42 uses SPARQL LIMIT to select the five cheapest cameras, and
Example 1-43 uses SPARQL LIMIT and OFFSET to select the fifth through tenth cheapest
cameras.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 }
 ORDER BY ASC(?p)
 LIMIT 5',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY SEM$ROWNUM;

Example 1-43 SPARQL OFFSET

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 197

 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 }
 ORDER BY ASC(?p)
 LIMIT 5
 OFFSET 5',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY SEM$ROWNUM;

Example 1-44 Query Using Full URIs

The SPARQL BASE keyword is used to set a global prefix. All relative IRIs will be resolved with
the BASE IRI using the basic algorithm described in Section 5.2 of the Uniform Resource
Identifier (URI): Generic Syntax (RFC3986) (http://www.ietf.org/rfc/rfc3986.txt).
Example 1-44 is a simple query using full URIs, and Example 1-45 is an equivalent query using
a base IRI.

SELECT *
 FROM TABLE(SEM_MATCH(
 'SELECT ?employee ?position
 WHERE
 {?x <http://www.example.org/employee> ?p .
 ?p <http://www.example.org/employee/name> ?employee .
 ?p <http://www.example.org/employee/position> ?pos .
 ?pos <http://www.example.org/positions/name> ?position
 }',
 SEM_Models('enterprise'),
 null,
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY 1,2;

Example 1-45 Query Using a Base IRI

SELECT *
 FROM TABLE(SEM_MATCH(
 'BASE <http://www.example.org/>
 SELECT ?employee ?position
 WHERE
 {?x <employee> ?p .
 ?p <employee/name> ?employee .
 ?p <employee/position> ?pos .
 ?pos <positions/name> ?position
 }',
 SEM_Models('enterprise'),
 null,
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY 1,2;

1.7.7 Graph Patterns: Support for SPARQL 1.1 Constructs
SEM_MATCH supports the following SPARQL 1.1 constructs:

• An expanded set of functions (all items in Table 1-14 in Graph Patterns: Support for Curly
Brace Syntax_ and OPTIONAL_ FILTER_ UNION_ and GRAPH Keywords)

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 197

http://www.ietf.org/rfc/rfc3986.txt

• Expressions in the SELECT Clause

• Subqueries

• Grouping and Aggregation

• Negation

• Value Assignment

• Property Paths

1.7.7.1 Expressions in the SELECT Clause
Expressions can be used in the SELECT clause to project the value of an expression from a
query. A SELECT expression is composed of variables, RDF terms, arithmetic operators (+, -,
*, /), Boolean operators and logical connectives (||, &&, !), comparison operators (<, >, <=, >=,
=, !=), and any functions available for use in FILTER expressions. The expression must be
aliased to a single variable using the AS keyword, and the overall <expression> AS <alias>
fragment must be enclosed in parentheses. The alias variable cannot already be defined in the
query. A SELECT expression may reference the result of a previous SELECT expression (that
is, an expression that appears earlier in the SELECT clause).

Example 1-46 SPARQL SELECT Expression

Example 1-46 uses a SELECT expression to project the total price for each camera.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ((?p * (1-?d) * (1+?t)) AS ?totalPrice)
 WHERE
 {?x :price ?p .
 ?x :discount ?d .
 ?x :tax ?t .
 ?x :cameraType ?cType .
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-47 SPARQL SELECT Expressions (2)

Example 1-47 uses two SELECT expressions to project the discount price with and without
sales tax.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ((?p * (1-?d)) AS ?preTaxPrice) ((?preTaxPrice * (1+?t)) AS ?finalPrice)
 WHERE
 {?x :price ?p .
 ?x :discount ?d .
 ?x :tax ?t .
 ?x :cameraType ?cType .
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 197

1.7.7.2 Subqueries
Subqueries are allowed with SPARQL SELECT syntax. That is, fully-specified SPARQL
SELECT queries may be embedded within other SPARQL SELECT queries. Subqueries have
many uses, for example, limiting the number of results from a subcomponent of a query.

Example 1-48 SPARQL SELECT Subquery

Example 1-48 uses a subquery to find the manufacturer that makes the cheapest camera and
then finds all other cameras made by this manufacturer.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?c1
 WHERE {?c1 rdf:type :Camera .
 ?c1 :manufacturer ?m .
 {
 SELECT ?m
 WHERE {?c2 rdf:Type :Camera .
 ?c2 :price ?p .
 ?c2 :manufacturer ?m .
 }
 ORDER BY ASC(?p)
 LIMIT 1
 }
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Subqueries are logically evaluated first, and the results are projected up to the outer query.
Note that only variables projected in the subquery's SELECT clause are visible to the outer
query.

1.7.7.3 Grouping and Aggregation
The GROUP BY keyword used to perform grouping. Syntactically, the GROUP BY keyword
must appear after the WHERE clause and before any solution modifiers such as ORDER BY
or LIMIT.

Aggregates are used to compute values across results within a group. An aggregate operates
over a collection of values and produces a single value as a result. SEM_MATCH supports the
following built-in Aggregates: COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT and
SAMPLE. These aggregates are described in Table 1-17.

Table 1-17 Built-in Aggregates

Aggregate Description

AVG(expression) Returns the numeric average of expression over the values within a
group.

COUNT(* | expression) Counts the number of times expression has a bound, non-error value
within a group; asterisk (*) counts the number of results within a group.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 197

Table 1-17 (Cont.) Built-in Aggregates

Aggregate Description

GROUP_CONCAT(expression
[; SEPARATOR = "STRING"])

Performs string concatenation of expression over the values within a
group. If provided, an optional separator string will be placed between
each value.

MAX(expression) Returns the maximum value of expression within a group based on the
ordering defined by SPARQL ORDER BY.

MIN(expression) Returns the minimum value of expression within a group based on the
ordering defined by SPARQL ORDER BY.

SAMPLE(expression) Returns expression evaluated for a single arbitrary value from a group.

SUM(expression) Calculates the numeric sum of expression over the values within a
group.

Certain restrictions on variable references apply when using grouping and aggregation. Only
group-by variables (single variables in the GROUP BY clause) and alias variables from
GROUP BY value assignments can be used in non-aggregate expressions in the SELECT or
HAVING clauses.

Example 1-49 Simple Grouping Query

Example 1-49 shows a query that uses the GROUP BY keyword to find all the different types of
cameras.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType
 WHERE
 {?x rdf:type :Camera .
 ?x :cameraType ?cType .
 }
 GROUP BY ?cType',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

A grouping query partitions the query results into a collection of groups based on a grouping
expression (?cType in Example 1-49) such that each result within a group has the same values
for the grouping expression. The final result of the grouping operation will include one row for
each group.

Example 1-50 Complex Grouping Expression

A grouping expression consists of a sequence of one or more of the following: a variable, an
expression, or a value assignment of the form (<expression> as <alias>). Example 1-50
shows a grouping query that uses one of each type of component in the grouping expression.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType ?totalPrice
 WHERE
 {?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m .

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 197

 ?x :price ?p .
 ?x :tax ?t .
 }
 GROUP BY ?cType (STR(?m)) ((?p*(1+?t)) AS ?totalPrice)',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-51 Aggregation

Example 1-51 uses aggregates to select the maximum, minimum, and average price for each
type of camera.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType
 (MAX(?p) AS ?maxPrice)
 (MIN(?p) AS ?minPrice)
 (AVG(?p) AS ?avgPrice)
 WHERE
 {?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m .
 ?x :price ?p .
 }
 GROUP BY ?cType',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-52 Aggregation Without Grouping

If an aggregate is used without a grouping expression, then the entire result set is treated as a
single group. Example 1-52 computes the total number of cameras for the whole data set.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT (COUNT(?x) as ?cameraCnt)
 WHERE
 { ?x rdf:type :Camera
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-53 Aggregation with DISTINCT

The DISTINCT keyword can optionally be used as a modifier for each aggregate. When
DISTINCT is used, duplicate values are removed from each group before computing the
aggregate. Syntactically, DISTINCT must appear as the first argument to the aggregate.
Example 1-53 uses DISTINCT to find the number of distinct camera manufacturers. In this
case, duplicate values of STR(?m) are removed before counting.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT (COUNT(DISTINCT STR(?m)) as ?mCnt)
 WHERE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 197

 { ?x rdf:type :Camera .
 ?x :manufacturer ?m
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-54 HAVING Clause

The HAVING keyword can be used to filter groups based on constraints. HAVING expressions
can be composed of variables, RDF terms, arithmetic operators (+, -, *, /), Boolean operators
and logical connectives (||, &&, !), comparison operators (<, >, <=, >=, =, !=), aggregates, and
any functions available for use in FILTER expressions. Syntactically, the HAVING keyword
appears after the GROUP BY clause and before any other solution modifiers such as ORDER
BY or LIMIT.

Example 1-54 uses a HAVING expression to find all manufacturers that sell cameras for less
than $200.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?m
 WHERE
 { ?x rdf:type :Camera .
 ?x :manufacturer ?m .
 ?x :price ?p
 }
 GROUP BY ?m
 HAVING (MIN(?p) < 200)
 ORDER BY ASC(?m)',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.7.4 Negation
SEM_MATCH supports two forms of negation in SPARQL query patterns: NOT EXISTS and
MINUS. NOT EXISTS can be used to filter results based on whether or not a graph pattern
matches, and MINUS can be used to remove solutions based on their relation to another graph
pattern.

Example 1-55 Negation with NOT EXISTS

Example 1-55 uses a NOT EXISTS FILTER to select those cameras that do not have any user
reviews.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 FILTER(NOT EXISTS({?x :userReview ?r}))
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 197

Example 1-56 EXISTS

Conversely, the EXISTS operator can be used to ensure that a pattern matches. Example 1-56
uses an EXISTS FILTER to select only those cameras that have a user review.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 FILTER(EXISTS({?x :userReview ?r}))
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 RDFUSER', 'NET1'));

Example 1-57 Negation with MINUS

Example 1-57 uses MINUS to arrive at the same result as Example 1-55. Only those solutions
that are not compatible with solutions from the MINUS pattern are included in the result. That
is, if a solution has the same values for all shared variables as a solution from the MINUS
pattern, it is removed from the result.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 MINUS {?x :userReview ?r}
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-58 Negation with NOT EXISTS (2)

NOT EXISTS and MINUS represent two different styles of negation and have different results
in certain cases. One such case occurs when no variables are shared between the negation
pattern and the rest of the query. For example, the NOT EXISTS query in Example 1-58
removes all solutions because {?subj ?prop ?obj} matches any triple, but the MINUS query
in Example 1-59 removes no solutions because there are no shared variables.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 FILTER(NOT EXISTS({?subj ?prop ?obj}))
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 197

Example 1-59 Negation with MINUS (2)

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 MINUS {?subj ?prop ?obj}
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.7.5 Value Assignment
SEM_MATCH provides a variety of ways to assign values to variables in a SPARQL query.

The value of an expression can be assigned to a new variable in three ways: (1) expressions in
the SELECT clause, (2) expressions in the GROUP BY clause, and (3) the BIND keyword. In
each case, the new variable must not already be defined in the query. After assignment, the
new variable can be used in the query and returned in results. As discussed in Expressions in
the SELECT Clause, the syntax for value assignment is (<expression> AS <alias>) where alias
is the new variable, for example, ((?price * (1+?tax)) AS ?totalPrice).

Example 1-60 Nested SELECT Expression

Example 1-60 uses a nested SELECT expression to compute the total price of a camera and
assign the value to a variable (?totalPrice). This variable is then used in a FILTER in the
outer query to find cameras costing less than $200.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?totalPrice
 WHERE
 {?x :cameraType ?cType .
 { SELECT ?x (((?price*(1+?tax)) AS ?totalPrice)
 WHERE { ?x :price ?price .
 ?x :tax ?tax }
 }
 FILTER (?totalPrice < 200)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-61 BIND

The BIND keyword can be used inside a basic graph pattern to assign a value and is
syntactically more compact than an equivalent nested SELECT expression. Example 1-61
uses the BIND keyword to expresses a query that is logically equivalent to Example 1-60.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?totalPrice
 WHERE
 {?x :cameraType ?cType .

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 197

 ?x :price ?price .
 ?x :tax ?tax .
 BIND (((?price*(1+?tax)) AS ?totalPrice)
 FILTER (?totalPrice < 200)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-62 GROUP BY Expression

Value assignments in the GROUP BY clause can subsequently be used in the SELECT clause,
the HAVING clause, and the outer query (in the case of a nested grouping query).
Example 1-62 uses a GROUP BY expression to find the maximum number of megapixels for
cameras at each price point less than $1000.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?totalPrice (MAX(?mp) as ?maxMP)
 WHERE
 {?x rdf:type :Camera .
 ?x :price ?price .
 ?x :tax ?tax .
 GROUP BY (((?price*(1+?tax)) AS ?totalPrice)
 HAVING (?totalPrice < 1000)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null));

Example 1-63 VALUES

In addition to the preceding three ways to assign the value of an expression to a new variable,
the VALUES keyword can be used to introduce an unordered solution sequence that is
combined with the query results through a join operation. A VALUES block can appear inside a
query pattern or at the end of a SPARQL SELECT query block after any solution modifiers. The
VALUES construct can be used in subqueries.

Example 1-63 uses the VALUES keyword to constrain the query results to DSLR cameras
made by :Company1 or any type of camera made by :Company2. The keyword UNDEF is used
to represent an unbound variable in the solution sequence.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?m
 WHERE
 { ?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m
 }
 VALUES (?cType ?m)
 { ("DSLR" :Company1)
 (UNDEF :Company2)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 197

Example 1-64 Simplified VALUES Syntax

A simplified syntax can be used for the common case of a single variable. Specifically, the
parentheses around the variable and each solution can be omitted. Example 1-64 uses the
simplified syntax to constrain the query results to cameras made by :Company1 or :Company2.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?m
 WHERE
 { ?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m
 }
 VALUES ?m
 { :Company1
 :Company2
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-65 Inline VALUES Block

Example 1-65 also constrains the query results to any camera made by :Company1
or :Company2, but specifies the VALUES block inside the query pattern.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?m
 WHERE
 { VALUES ?m { :Company1 :Company2 }
 ?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.7.6 Property Paths
A SPARQL Property Path describes a possible path between two RDF resources (nodes) in an
RDF graph. A property path appears in the predicate position of a triple pattern and uses a
regular expression-like syntax to place constraints on the properties (edges) making up a path
from the subject of the triple pattern to the object of a triple pattern. Property paths allow
SPARQL queries to match arbitrary length paths in the RDF graph and also provide a more
concise way to express other graph patterns.

Table 1-18 describes the syntax constructs available for constructing SPARQL Property Paths.
Note that iri is either an IRI or a prefixed name, and elt is a property path element, which may
itself be composed of other property path elements.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 197

Table 1-18 Property Path Syntax Constructs

Syntax Construct Matches

iri An IRI or a prefixed name. A path of length 1 (one).

^elt Inverse path (object to subject).

!iri or !(iri1 | … | irin) Negated property set. An IRI that is not one of irii.

!^iri or !(iri1 | … | irij | ^irij+1
| … | ^irin)

Negated property set with some inverse properties. An IRI that is not one
of irii, nor one of irij+1...irin as reverse paths. !^iri is short for !(^iri). The
order of properties and inverse properties is not important. They can occur
in mixed order.

(elt) A group path elt; brackets control precedence.

elt1 / elt2 A sequence path of elt1, followed by elt2.

elt1 | elt2 An alternative path of elt1, or elt2 (all possibilities are tried).

elt* A path of zero or more occurrences of elt.

elt+ A path of one or more occurrences of elt.

elt? A path of zero or one occurrence of elt.

The precedence of the syntax constructs is as follows (from highest to lowest):

• IRI, prefixed names

• Negated property sets

• Groups

• Unary operators *, ?, +

• Unary ^ inverse links

• Binary operator /

• Binary operator |

Precedence is left-to-right within groups.

Special Considerations for Property Path Operators + and *

In general, truly unbounded graph traversals using the + (plus sign) and * (asterisk) operator
can be very expensive. For this reason, a depth-limited version of the + and * operator is used
by default, and the default depth limit is 10. In addition, the depth-limited implementation can
be run in parallel. The ALL_MAX_PP_DEPTH(n) SEM_MATCH query option or the
MAX_PP_DEPTH(n) inline HINT0 query optimizer hint can be used to change the depth-limit
setting. To achieve a truly unbounded traversal, you can set a depth limit of less than 1 to fall
back to a CONNECT BY-based implementation.

Query Hints for Property Paths

Other query hints are available to influence the performance of property path queries. The
ALLOW_PP_DUP=T query option can be used with * and + queries to allow duplicate results.
Allowing duplicate results may return the first rows from a query faster. In addition,
ALL_USE_PP_HASH and ALL_USE_PP_NL query options are available to influence the join types
used when evaluating property path expressions. Analogous USE_PP_HASH and USE_PP_NL
inline HINT0 query optimizer hints can also be used.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 197

Example 1-66 SPARQL Property Path (Using rdfs:subClassOf Relations)

Example 1-66 uses a property path to find all Males based on transitivity of the
rdfs:subClassOf relationship. A property path allows matching an arbitrary number of
consecutive rdfs:subClassOf relations.

SELECT x, name
 FROM TABLE(SEM_MATCH(
 '{ ?x foaf:name ?name .
 ?x rdf:type ?t .
 ?t rdfs:subClassOf* :Male }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')
 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-67 SPARQL Property Path (Using foaf:friendOf or foaf:knows
Relationships)

Example 1-67 uses a property path to find all of Scott's close friends (those people reachable
within two hops using foaf:friendOf or foaf:knows relationships).

SELECT name
 FROM TABLE(SEM_MATCH(
 '{ { :Scott (foaf:friendOf | foaf:knows) ?f }
 UNION
 { :Scott (foaf:friendOf | foaf:knows)/(foaf:friendOf | foaf:knows) ?f }
 ?f foaf:name ?name .
 FILTER (!sameTerm(?f, :Scott)) }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/'),
 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-68 Specifying Property Path Maximum Depth Value

Example 1-68 specifies a maximum depth of 12 for all property path expressions with the
ALL_MAX_PP_DEPTH(n) query option value.

SELECT x, name
 FROM TABLE(SEM_MATCH(
 '{ ?x foaf:name ?name .
 ?x rdf:type ?t .
 ?t rdfs:subClassOf* :Male }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')
 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null,
 null,
 ' ALL_MAX_PP_DEPTH(12) ',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-69 Specifying Property Path Join Hint

Example 1-69 shows an inline HINT0 query optimizer hint that requests a nested loop join for
evaluating the property path expression.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 197

SELECT x, name
 FROM TABLE(SEM_MATCH(
 '{ # HINT0={ USE_PP_NL }
 ?x foaf:name ?name .
 ?x rdf:type ?t .
 ?t rdfs:subClassOf* :Male }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')
 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.8 Graph Patterns: Support for SPARQL 1.1 Federated Query
SEM_MATCH supports SPARQL 1.1 Federated Query (see http://www.w3.org/TR/
sparql11-federated-query/#SPROT). The SERVICE construct can be used to retrieve results
from a specified SPARQL endpoint URL. With this capability, you can combine local RDF data
(native RDF data or RDF views of relational data) with other, possibly remote, RDF data
served by a W3C standards-compliant SPARQL endpoint.

Example 1-70 SPARQL SERVICE Clause to Retrieve All Triples

Example 1-70 shows a query that uses a SERVICE clause to retrieve all triples from the
SPARQL endpoint available at http://www.example1.org/sparql.

SELECT s, p, o
 FROM TABLE(SEM_MATCH(
 'SELECT ?s ?p ?o
 WHERE {
 SERVICE <http://www.example1.org/sparql>{ ?s ?p ?o }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' ',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-71 SPARQL SERVICE Clause to Join Remote and Local RDF Data

Example 1-71 joins remote RDF data with local RDF data. This example joins camera types ?
cType from local RDF graph electronics with the camera names ?name from the SPARQL
endpoint at http://www.example1.org/sparql.

SELECT cType, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType ?name
 WHERE {
 ?s :cameraType ?cType
 SERVICE <http://www.example1.org/sparql>{ ?s :name ?name }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' ',
 null, null,
 'RDFUSER', 'NET1'));

• Privileges Required to Execute Federated SPARQL Queries

• SPARQL SERVICE Join Push Down

• SPARQL SERVICE SILENT

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 197

http://www.w3.org/TR/sparql11-federated-query/#SPROT
http://www.w3.org/TR/sparql11-federated-query/#SPROT

• Using a Proxy Server with SPARQL SERVICE

• Accessing SPARQL Endpoints with HTTP Basic Authentication

1.7.8.1 Privileges Required to Execute Federated SPARQL Queries
You need certain database privileges to use the SERVICE construct within SEM_MATCH
queries. You should be granted EXECUTE privilege on the SPARQL_SERVICE function by a
user with DBA privileges. The following example grants this access to a user named
RDFUSER:

grant execute on sparql_service to rdfuser;

Also, an Access Control List (ACL) should be used to grant the CONNECT privilege to the user
attempting a federated query. Example 1-72 creates a new ACL to grant the user RDFUSER
the CONNECT privilege and assigns the domain * to the ACL. For more information about
ACLs, see Oracle AI Database PL/SQL Packages and Types Reference.

Example 1-72 Access Control List and Host Assignment

dbms_network_acl_admin.create_acl (
 acl => 'rdfuser.xml',
 description => 'Allow rdfuser to query SPARQL endpoints',
 principal => 'RDFUSER',
 is_grant => true,
 privilege => 'connect'
);

dbms_network_acl_admin.assign_acl (
 acl => 'rdfuser.xml',
 host => '*'
);

After the necessary privileges are granted, you are ready to execute federated queries from
SEM_MATCH

1.7.8.2 SPARQL SERVICE Join Push Down
The SPARQL SERVICE Join Push Down (SERVICE_JPDWN=T) feature can be used to improve
the performance of certain SPARQL SERVICE queries. By default, the query pattern within the
SERVICE clause is executed first on the remote SPARQL endpoint. The full result of this
remote execution is then joined with the local portion of the query. This strategy can result in
poor performance if the local portion of the query is very selective and the remote portion of the
query is very unselective.

The SPARQL SERVICE Join Push Down feature cannot be used in a query that contains more
than one SERVICE clause.

Example 1-73 SPARQL SERVICE Join Push Down

Example 1-73 shows the SPARQL SERVICE Join Push Down feature.

SELECT s, prop, obj
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?s ?prop ?obj
 WHERE {
 ?s rdf:type :Camera .
 ?s :modelName "Camera 12345"
 SERVICE <http://www.example1.org/sparql> { ?s ?prop ?obj }
 }',

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 75 of 197

 SEM_Models('electronics'),
 null, null, null, null, ' SERVICE_JPDWN=T ',
 null, null,
 'RDFUSER', 'NET1'));

In Example 1-73, the local portion of the query will return a very small number of rows, but the
remote portion of the query is completely unbound and will return the entire remote dataset.
When the SERVICE_JPDWN=T option is specified, SEM_MATCH performs a nested-loop style
evaluation by first executing the local portion of the query and then executing a modified
version of the remote query once for each row returned by the local portion. The remote query
is modified with a FILTER clause that effectively performs a substitution for the join variable ?s.
For example, if <urn:camera1> and <urn:camera2> are returned from the local portion of
Example 1-73 as bindings for ?s, then the following two queries are sent to the remote
endpoint: { ?s ?prop ?obj FILTER (?s = <urn:camera1>) } and { s ?prop ?obj FILTER
(?s = <urn:camera2>) }.

1.7.8.3 SPARQL SERVICE SILENT
When the SILENT keyword is used in federated queries, errors while accessing the specified
remote SPARQL endpoint will be ignored. If the SERVICE SILENT request fails, a single
solution with no bindings will be returned.

Example 1-74 uses SERVICE with the SILENT keyword inside an OPTIONAL clause, so that,
when connection errors accessing http://www.example1.org/sparql appear, such errors will
be ignored and all the rows retrieved from triple ?s :cameratype ?k will be combined with a
null value for ?n.

Example 1-74 SPARQL SERVICE with SILENT Keyword

SELECT s, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?s ?n
 WHERE {
 ?s :cameraType ?k
 OPTIONAL { SERVICE SILENT <http://www.example1.org/sparql>{ ?k :name ?n } }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.8.4 Using a Proxy Server with SPARQL SERVICE
The following methods are available for sending SPARQL SERVICE requests through an
HTTP proxy:

• Specifying the HTTP proxy that should be used for requests in the current session. This
can be done through the SET_PROXY function of UTL_HTTP package. Example 1-75 sets
the proxy proxy.example.com to be used for HTTP requests, excluding those to hosts in
the domain example2.com. (For more information about the SET_PROXY procedure, see
Oracle AI Database PL/SQL Packages and Types Reference.)

• Using the SERVICE_PROXY SEM_MATCH option, which allows setting the proxy address
for SPARQL SERVICE request. However, in this case no exceptions can be specified, and
all requests are sent to the given proxy server. Example 1-76 shows a SEM_MATCH query
where the proxy address proxy.example.com at port 80 is specified.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 76 of 197

Example 1-75 Setting Proxy Server with UTL_HTTP.SET_PROXY

BEGIN
 UTL_HTTP.SET_PROXY('proxy.example.com:80', 'example2.com');
END;
/

Example 1-76 Setting Proxy Server in SPARQL SERVICE

SELECT *
 FROM TABLE(SEM_MATCH(
 'SELECT *
 WHERE {
 SERVICE <http://www.example1.org/sparql>{ ?s ?p ?o }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' SERVICE_PROXY=proxy.example.com:80 ',
 null, null,
 'RDFUSER', 'NET1'));

1.7.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication
To allow accessing of SPARQL endpoints with HTTP Basic Authentication, user credentials
should be saved in Session Context SDO_SEM_HTTP_CTX. A user with DBA privileges must
grant EXECUTE on this context to the user that wishes to use basic authentication. The
following example grants this access to a user named RDFUSER:

grant execute on mdsys.sdo_sem_http_ctx to rdfuser;

After the privilege is granted, the user should save the user name and password for each
SPARQL Endpoint with HTTP Authentication through functions
mdsys.sdo_sem_http_ctx.set_usr and mdsys.sdo_sem_http_ctx.set_pwd. The following
example sets a user name and password for the SPARQL endpoint at http://
www.example1.org/sparql:

BEGIN
 mdsys.sdo_sem_http_ctx.set_usr('http://www.example1.org/sparql','user');
 mdsys.sdo_sem_http_ctx.set_pwd('http://www.example1.org/sparql','pwrd');
END;
/

1.7.9 Inline Query Optimizer Hints
In SEM_MATCH, the SPARQL comment construct has been overloaded to allow inline HINT0
query optimizer hints. In SPARQL, the hash (#) character indicates that the remainder of the
line is a comment. To associate an inline hint with a particular BGP, place a HINT0 hint string
inside a SPARQL comment and insert the comment between the opening curly bracket ({) and
the first triple pattern in the BGP. Inline hints enable you to influence the execution plan for
each BGP in a query.

Inline optimizer hints override any hints passed to SEM_MATCH through the options argument.
For example, a global ALL_ORDERED hint applies to each BGP that does not specify an inline
optimizer hint, but those BGPs with an inline hint use the inline hint instead of the
ALL_ORDERED hint.

Example 1-77 Inline Query Optimizer Hints (BGP_JOIN)

The following example shows a query with inline query optimizer hints.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 77 of 197

SELECT x, y, hp, cp
 FROM TABLE(SEM_MATCH(
 '{ # HINT0={ LEADING(t0) USE_NL(?x ?y ?bd) }
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
 OPTIONAL { # HINT0={ LEADING(t0 t1) BGP_JOIN(USE_HASH) }
 ?x :homepage ?hp . ?x :cellPhoneNum ?cp }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

The BGP_JOIN hint influences inter-BGP joins and has the following syntax:
BGP_JOIN(<join_type>), where <join_type> is USE_HASH or USE_NL. Example 1-77 uses
the BGP_JOIN(USE_HASH) hint to specify that a hash join should be used when joining the
OPTIONAL BGP with its parent BGP.

Inline optimizer hints override any hints passed to SEM_MATCH through the options
argument. For example, a global ALL_ORDERED hint applies to each BGP that does not
specify an inline optimizer hint, but those BGPs with an inline hint use the inline hint instead of
the ALL_ORDERED hint.

Example 1-78 Inline Query Optimizer Hints (ANTI_JOIN)

The ANTI_JOIN hint influences the evaluation of NOT EXISTS and MINUS clauses. This hint
has the syntax ANTI_JOIN(<join_type>), where <join_type> is HASH_AJ, NL_AJ, or
MERGE_AJ. The following example uses a hint to indicate that a hash anti join should be
used. Global ALL_AJ_HASH, ALL_AJ_NL, ALL_AJ_MERGE can be used in the options
argument of SEM_MATCH to influence the join type of all NOT EXISTS and MINUS clauses in
the entire query.

SELECT x, y
 FROM TABLE(SEM_MATCH(
 'SELECT ?x ?y
 WHERE {
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
 FILTER (
 NOT EXISTS {# HINT0={ ANTI_JOIN(HASH_AJ) }
 ?x :homepage ?hp . ?x :cellPhoneNum ?cp })
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-79 Inline Query Optimizer Hints (NON_NULL)

HINT0={ NON_NULL} is supported in SPARQL SELECT clauses to signify that a particular
variable is always bound (that is, has a non-null value in each result row). This hint allows the
query compiler to optimize joins for values produced by SELECT expressions. These
optimizations cannot be applied by default because it cannot be guaranteed that expressions
will produce non-null values for all possible input. If you know that a SELECT expression will
not produce any null values for a particular query, using this NON_NULL hint can significantly
increase performance. This hint should be specified in the comment in a line before the 'AS'
keyword of a SELECT expression.

The following example shows the NON_NULL hint option used in a SEM_MATCH query,
specifying that variable ?full_name is definitely bound.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 78 of 197

SELECT s, t
 FROM TABLE(SEM_MATCH(
 'SELECT * WHERE {
 ?s :name ?full_name
 { SELECT (CONCAT(?fname, " ", ?lname) # HINT0={ NON_NULL }
 AS ?full_name)
 WHERE {
 ?t :fname ?fname .
 ?t :lname ?lname }
 }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.10 Full-Text Search
The Oracle-specific orardf:textContains SPARQL FILTER function uses full-text indexes on
the RDF_VALUE$ table. This function has the following syntax (where orardf is a built-in
prefix that expands to <http://xmlns.oracle.com/rdf/>):

orardf:textContains(variable, pattern)

The first argument to orardf:textContains must be a local variable (that is, a variable present
in the BGP that contains the orardf:textContains filter), and the second argument must be a
constant plain literal.

For example, orardf:textContains(x, y) returns true if x matches the expression y, where y
is a valid expression for the Oracle Text SQL operator CONTAINS. For more information about
such expressions, see Oracle Text Reference.

Before using orardf:textContains, you must create an Oracle Text index for the RDF
network. To create such an index, invoke the SEM_APIS.ADD_DATATYPE_INDEX procedure
as follows:

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://xmlns.oracle.com/rdf/text',
network_owner=>'RDFUSER', network_name=>'NET1');

Performance for wildcard searches like orardf:textContains(?x, "%abc%") can be improved
by using prefix and substring indexes. You can include any of the following options to the
SEM_APIS.ADD_DATATYPE_INDEX procedure:

• PREFIX_INDEX=TRUE – for adding prefix index

• PREFIX_MIN_LENGTH=<number> – minimum length for prefix index tokens

• PREFIX_MAX_LENGTH=<number> – maximum length for prefix index tokens

• SUBSTRING_INDEX=TRUE – for adding substring index

• LOGGING=T – to enable logging for text index

For more information about Oracle Text indexing elements, see Oracle Text Reference.

When performing large bulk loads into a RDF network with a text index, the overall load time
may be faster if you drop the text index, perform the bulk load, and then re-create the text
index. See Using Data Type Indexes for more information about data type indexing.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 79 of 197

After creating a text index, you can use the orardf:textContains FILTER function in
SEM_MATCH queries. Example 1-80 uses orardf:textContains to find all grandfathers
whose names start with the letter A or B.

Example 1-80 Full-Text Search

SELECT x, y, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n
 FILTER (orardf:textContains(?n, " A% | B% ")) }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-81 orardf:textScore

The ancillary operator orardf:textScore can be used in combination with
orardf:textContains to rank results by the goodness of their text match. There are, however,
limitations when using orardf:textScore. The orardf:textScore invocation must appear as a
SELECT expression in the SELECT clause immediately surrounding the basic graph pattern
that contains the corresponding orardf:textContains FILTER. The alias for this SELECT
expression can then be used in other parts of the query. In addition, a REWRITE=F' query hint
must be used in the options argument of SEM_MATCH.

The following example finds text matches with score greater than 0.5. Notice that an additional
invocation id argument is required for orardf:textContains, so that it can be linked to the
orardf:textScore invocation with the same invocation id. The invocation ID is an arbitrary
integer constant used to match a primary operator with its ancillary operator.

SELECT x, y, n, scr
 FROM TABLE(SEM_MATCH(
 'PREFIX <http://www.example.org/family/>
 SELECT *
 WHERE {
 { SELECT ?x ?y ?n (orardf:textScore(123) AS ?scr)
 WHERE {
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n
 FILTER (orardf:textContains(?n, " A% | B% ", 123)) }
 }
 FILTER (?scr > 0.5)
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,
 null,
 ' REWRITE=F ',
 null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 80 of 197

Example 1-82 orardf:like

For a lightweight text search, you can use the orardf:like function, which performs simple
test for pattern matching using the Oracle SQL operator LIKE. The orardf:like function has
the following syntax:

• orardf:like(string, pattern)

• orardf:like(string, pattern, flags)

The first argument of orardf:like can be any variable or RDF term, as opposed to
orardf:Contains, which requires the first argument to be a local variable. When the first
argument to orardf:like is a URI, the match is performed against the URI suffix only. The
second argument must be a pattern expression, which can contain the following special
pattern-matching characters:

• The percent sign (%) can match zero or more characters.

• The underscore (_) matches exactly one character.

The flags argument must be a constant string. The flag "i" is supported to allow a case-
insensitive search.

The following example shows a percent sign (%) wildcard search to find all grandparents
whose URIs start with Ja.

SELECT x, y, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y . ?y :name ?n
 FILTER (orardf:like(?x, "Ja%")) }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),

 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

The following example shows an underscore (_) wildcard search to find all the grandchildren
whose names start with J followed by two characters and end with k. The case-insensitive flag
"i" is used to make the search case-insensitive.

SELECT x, y, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y . ?y :name ?n
 FILTER (orardf:like(?n, "j__k", "i"))
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),

 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 197

For efficient execution of orardf:like, you can create an index using the
SEM_APIS.ADD_DATATYPE_INDEX procedure with http://xmlns.oracle.com/rdf/like as
the data type URI. This index can speed up queries when the first argument is a local variable
and the leading character of the search pattern is not a wildcard. The underlying index is a
simple function-based B-Tree index on a varchar function, which has lower maintenance and
storage costs than a full Oracle Text index. The index for orardf:like is created as follows:

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://xmlns.oracle.com/rdf/like',
network_owner=>'RDFUSER', network_name=>'NET1');

1.7.11 Spatial Support
RDF Graph supports storage and querying of spatial geometry data through the OGC
GeoSPARQL standard and through Oracle-specific SPARQL extensions. Geometry data can
be stored as orageo:WKTLiteral, ogc:wktLiteral, ogc:gmlLiteral, ogc:geoJSONLiteral, or
ogc:kmlLiteral typed literals, and geometry data can be queried using several query
functions for spatial operations. Spatial indexing for increased performance is also supported.

orageo is a built-in prefix that expands to <http://xmlns.oracle.com/rdf/geo/>, ogc is a
built-in prefix that expands to <http://www.opengis.net/ont/geosparql#>, and ogcf is a built-
in prefix that expands to <http://www.opengis.net/def/function/geosparql>.

• OGC GeoSPARQL Support

• Representing Spatial Data in RDF

• Validating Geometries

• Indexing Spatial Data

• Querying Spatial Data

• Using Long Literals with GeoSPARQL Queries

1.7.11.1 OGC GeoSPARQL Support
RDF Graph supports the following conformance classes for the OGC GeoSPARQL standard
(http://www.opengeospatial.org/standards/geosparql) using well-known text (WKT)
serialization and the Simple Features relation family.

• Core

• Topology Vocabulary Extension (Simple Features)

• Geometry Extension (WKT, 1.2.0)

• Geometry Topology Extension (Simple Features, WKT, 1.2.0)

• RDFS Entailment Extension (Simple Features, WKT, 1.2.0)

RDF Graph supports the following conformance classes for OGC GeoSPARQL using
Geography Markup Language (GML) serialization and the Simple Features relation family.

• Core

• Topology Vocabulary Extension (Simple Features)

• Geometry Extension (GML, 3.1.1)

• Geometry Topology Extension (Simple Features, GML, 3.1.1)

• RDFS Entailment Extension (Simple Features, GML, 3.1.1)

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 82 of 197

http://www.opengeospatial.org/standards/geosparql

RDF Graph supports the following conformance classes for OGC GeoSPARQL using
Geographic JavaScript Object Notation (GeoJSON) serialization and the Simple Features
relation family.

• Core

• Topology Vocabulary Extension (Simple Features)

• Geometry Extension (GeoJSON, 1.0)

• Geometry Topology Extension (Simple Features, GeoJSON, 1.0)

• RDFS Entailment Extension (Simple Features, GeoJSON, 1.0)

RDF Graph supports the following conformance classes for OGC GeoSPARQL using Keyhole
Markup Language (KML) serialization and the Simple Features relation family.

• Core

• Topology Vocabulary Extension (Simple Features)

• Geometry Extension (KML, 2.1)

• Geometry Topology Extension (Simple Features, KML, 2.1)

• RDFS Entailment Extension (Simple Features, KML, 2.1)

Specifics for representing and querying spatial data using GeoSPARQL are covered in
sections that follow this one.

1.7.11.2 Representing Spatial Data in RDF
Spatial geometries can be represented in RDF as orageo:WKTLiteral, ogc:wktLiteral,
ogc:gmlLiteral, ogc:geoJSONLiteral, or ogc:kmlLiteral typed literals. In this document, the
term geometry literal is used to refer to an RDF literal that is any one of these five literal
types.

Example 1-83 Spatial Point Geometry Represented as orageo:WKTLiteral

The following example shows the orageo:WKTLiteral encoding for a simple point geometry.

"Point(-83.4 34.3)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>

Example 1-84 Spatial Point Geometry Represented as ogc:wktLiteral

The following example shows the ogc:wktLiteral encoding for the same point as in the
preceding example.

"Point(-83.4 34.3)"^^<http://www.opengis.net/ont/geosparql#wktLiteral>

Both orageo:WKTLiteral and ogc:wktLiteral encodings consist of an optional spatial
reference system URI, followed by a Well-Known Text (WKT) string that encodes a geometry
value. The spatial reference system URI and the WKT string should be separated by a
whitespace character.

Supported spatial reference system URIs have the following form <http://
www.opengis.net/def/crs/EPSG/0/{srid}>, where {srid} is a valid spatial reference system
ID defined by the European Petroleum Survey Group (EPSG). For URIs that are not in the
EPSG Geodetic Parameter Dataset, the spatial reference system URIs used have the form
<http://xmlns.oracle.com/rdf/geo/srid/{srid}>, where {srid} is a valid spatial reference
system ID from Oracle Spatial. If a geometry literal value does not include a spatial reference

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 83 of 197

system URI, then the default spatial reference system, WGS84 Longitude-Latitude (URI
<http://www.opengis.net/def/crs/OGC/1.3/CRS84>), is used. The same default spatial
reference system is used when geometry literal values are encountered in a query string.

Example 1-85 Spatial Point Geometry Represented as ogc:gmlLiteral

The following example shows the ogc:gmlLiteral encoding for a point geometry.

"<gml:Point srsName=\"urn:ogc:def:crs:EPSG::8307\" xmlns:gml=\"http://
www.opengis.net/gml\"><gml:posList srsDimension=\"2\">-83.4 34.3</
gml:posList></gml:Point>"^^<http://www.opengis.net/ont/geosparql#gmlLiteral>

ogc:gmlLiteral encodings consist of a valid element from the GML schema that implements a
subtype of GM_Object. In contrast to WKT literals, A GML encoding explicitly includes spatial
reference system information, so a spatial reference system URI prefix is not needed.

Example 1-86 Spatial Polygon Geometry Represented as ogc:geoJSONLiteral

The following example shows a valid ogc:geoJSONLiteral encoding for a polygon geometry.

"{ \"type\": \"Polygon\", \"coordinates\": [[[-75, 44], [-75, 42], [-72,
42],
[-72, 45], [-74, 45], [-75, 44]]] }"^^<http://www.opengis.net/ont/
geosparql#geoJSONLiteral>

ogc:geoJSONLiteral encodings consist of a valid GeoJSON serialization of a geometry object.
ogc:geoJSONLiterals are always interpreted using WGS84 geodetic longitude-latitude spatial
reference system.

Example 1-87 Spatial Polygon Geometry Represented as ogc:kmlLiteral

The following example shows the ogc:kmlLiteral encoding for a polygon geometry.

"<Polygon><extrude>0</extrude><tessellate>0</
tessellate><altitudeMode>relativeToGround</altitudeMode>
<outerBoundaryIs><LinearRing><coordinates>-73.0,44.0 -71.0,44.0 -71.0,47.0
-73.0,47.0 -73.0,44.0 </coordinates>
</LinearRing></outerBoundaryIs></Polygon>"^^<http://www.opengis.net/ont/
geosparql#kmlLiteral>

ogc:kmlLiteral encodings consist of a valid KML geometry serialization. ogc:kmlLiterals
are always interpreted using WGS84 geodetic longitude-latitude spatial reference system.

Several geometry types can be represented as geometry literal values, including point,
linestring, polygon, polyhedral surface, triangle, TIN, multipoint, multi-linestring, multipolygon,
and geometry collection. Up to 500,000 vertices per geometry are supported for two-
dimensional geometries.

Example 1-88 Spatial Data Encoded Using ogc:wktLiteral Values

The following example shows some RDF spatial data (in N-triple format) encoded using
ogc:wktLiteral values. In this example, the first two geometries (in lot1) use the default
WGS84 coordinate system (SRID 4326), but the other two geometries (in lot2) specify SRID
4269.

spatial data for lot1 using the default WGS84 Longitude-Latitude spatial
reference system

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 84 of 197

http://www.opengis.net/def/crs/EPSG/0/4326
http://www.opengis.net/def/crs/EPSG/0/4326
http://www.opengis.net/def/crs/EPSG/0/4326
http://www.opengis.net/def/crs/EPSG/0/4269
http://www.opengis.net/def/crs/EPSG/0/4269

<urn:lot1> <urn:hasExactGeometry> "Polygon((-83.6 34.1, -83.6 34.5, -83.2
34.5, -83.2 34.1, -83.6 34.1))"^^<http://www.opengis.net/ont/
geosparql#wktLiteral> .
<urn:lot1> <urn:hasPointGeometry> "Point(-83.4 34.3)"^^<http://
www.opengis.net/ont/geosparql#wktLiteral> .
spatial data for lot2 using the NAD83 Longitude-Latitude spatial reference
system
<urn:lot2> <urn:hasExactGeometry> "<http://www.opengis.net/def/crs/
EPSG/0/4269> Polygon((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6
34.1))"^^<http://www.opengis.net/ont/geosparql#wktLiteral> .
<urn:lot2> <urn:hasPointGeometry> "<http://www.opengis.net/def/crs/
EPSG/0/4269> Point(-83.5 34.2)"^^<http://www.opengis.net/ont/
geosparql#wktLiteral> .

For more information, see the chapter about coordinate systems (spatial reference systems) in
Oracle Spatial Developer's Guide. See also the material about the WKT geometry
representation in the Open Geospatial Consortium (OGC) Simple Features document,
available at: http://www.opengeospatial.org/standards/sfa

1.7.11.3 Validating Geometries
Before manipulating spatial data, you should check that there are no invalid geometry literals
stored in your RDF graph. The procedure SEM_APIS.VALIDATE_GEOMETRIES allows
verifying geometries in an RDF graph. The geometries are validated using an input SRID and
tolerance value. (SRID and tolerance are explained in Indexing Spatial Data.)

If there are invalid geometries, a table with name {graph_name}_IVG$, is created in the user
schema, where {graph_name} is the name of the RDF graph specified. Such table contains, for
each invalid geometry literal, the value_id of the geometry literal in the RDF_VALUE$ table, the
error message explaining the reason the geometry is not valid and a corrected geometry literal
if the geometry can be rectified. For more information about geometry validation, see the
reference information for the Oracle Spatial subprograms
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT and
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT.

Example 1-89 Validating Geometries in an RDF Graph

The following example validates an RDF graph m, using SRID=8307 and tolerance=0.1.

-- Validate
EXECUTE sem_apis.validate_geometries(RDF graph_name=>'m',SRID=>8307,tolerance=>0.1,
network_owner=>'RDFUSER', network_name=>'NET1');-- Check for invalid geometries
SELECT original_vid, error_msg, corrected_wkt_literal FROM M_IVG$;

1.7.11.4 Indexing Spatial Data
Before you can use any of the SPARQL extension functions (introduced in Querying Spatial
Data) to query spatial data, you must create a spatial index on the RDF network by calling the
SEM_APIS.ADD_DATATYPE_INDEX procedure.

When you create the spatial index, you must specify the following information:

• SRID - The ID for the spatial reference system in which to create the spatial index. Any
valid spatial reference system ID from Oracle Spatial and Graph can be used as an SRID
value.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 85 of 197

http://www.opengeospatial.org/standards/sfa

Note

If you plan to use geospatial RDF data in web-based mapping applications like
Oracle Spatial Studio, it is recommended to pre-transform your data to WGS84
longitude-latitude (SRID 4326 or 8307) and also use SRID 4326 or 8307 for your
spatial index. This will improve performance by avoiding repeated coordinate
transformations to WGS84 longitude-latitude for display on a map.

• TOLERANCE – The tolerance value for the spatial index. Tolerance is a positive number
indicating how close together two points must be to be considered the same point. The
units for this value are determined by the default units for the SRID used (for example,
meters for WGS84 Long-Lat). Tolerance is explained in detail in Oracle Spatial Developer's
Guide.

• DIMENSIONS - A text string encoding dimension information for the spatial index. Each
dimension is represented by a sequence of three comma-separated values: name,
minimum value, and maximum value. Each dimension is enclosed in parentheses, and the
set of dimensions is enclosed by an outer parenthesis.

Example 1-90 Adding a Spatial Data Type Index on RDF Data

Example 1-90 adds a spatial data type index on the RDF network, specifying the WGS84
Longitude-Latitude spatial reference system, a tolerance value of 0.1, and the recommended
dimensions for the indexing of spatial data that uses this coordinate system. The
TOLERANCE, SRID, and DIMENSIONS keywords are case sensitive, and creating a data type
index for any supported geometry literal type (<http://xmlns.oracle.com/rdf/geo/
WKTLiteral>, <http://www.opengis.net/ont/geosparql#wktLiteral>, <http://
www.opengis.net/ont/geosparql#gmlLiteral>, <http://www.opengis.net/ont/
geosparql#geoJSONLiteral>, or <http://www.opengis.net/ont/geosparql#kmlLiteral>) will
create an index for all the supported geometry literal types. For example, if you create an index
for ogc:wktLiteral, any orageo:WKTLiteral, ogc:gmlLiteral, ogc:geoJSONLiteral, and
ogc:kmlLiteral geometry literals will also be indexed.

EXECUTE sem_apis.add_datatype_index('http://www.opengis.net/ont/geosparql#wktLiteral',
 options=>'TOLERANCE=0.1 SRID=8307 DIMENSIONS=((LONGITUDE,-180,180)
(LATITUDE,-90,90))',
 network_owner=>'RDFUSER', network_name=>'NET1');

No more than one spatial data type index is supported for an RDF network. Geometry literal
values stored in the RDF network are automatically normalized to the spatial reference system
used for the index, so a single spatial index can simultaneously support geometry literal values
from different spatial reference systems. This coordinate transformation is done transparently
for indexing and spatial computations. When geometry literal values are returned from a
SEM_MATCH query, the original, untransformed geometry is returned.

For more information about spatial indexing, see the chapter about indexing and querying
spatial data in Oracle Spatial Developer's Guide.

Example 1-91 Adding a Spatial Data Type Materialized Index on RDF Data

When you manipulate spatial data, conversions from geometry literals to geometry objects may
be needed, but several conversions may lead to poor performance. To avoid this situation, all
the stored geometry literals can be transformed into SDO_GEOMETRY objects and
materialized at index creation time.

This can be achieved using the MATERIALIZE=T option when adding a spatial data type index. If
the amount of geometry literals to be indexed is very large, using the option INS_AS_SEL=T may
help to speed up the materialized index creation.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 86 of 197

The following example shows the creation of a materialized spatial index.

EXECUTE sem_apis.add_datatype_index('http://www.opengis.net/ont/
geosparql#wktLiteral',
 options=>'TOLERANCE=0.1 SRID=8307
DIMENSIONS=((LONGITUDE,-180,180) (LATITUDE,-90,90)) MATERIALIZE=T ');

Example 1-92 Adding a 3D Spatial Data Type Index on RDF Data

Spatial indexes with three coordinates can be created in Oracle Spatial. To create a 3D index,
you must specify SDO_INDX_DIMS=3 option in the options argument of the
SEM_APIS.ADD_DATATYPE_INDEX procedure.

The following example shows creation and indexing of 3D data. Note that coordinates are
specified in (X, Y, Z) order, and linear rings for outer polygon boundaries are given in counter-
clockwise order.

Note: For information about support for geometry operations with 3D data, including any
restrictions, see Three Dimensional Spatial Objects.

conn rdfuser/<password>;

create table geo3d_tab(tri sdo_rdf_triple_s);

exec sem_apis.create_sem_model('geo3d','geo3d_tab','tri');

-- 3D Polygon
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#A>',
 '<http://example.org/
ApplicationSchema#hasExactGeometry>',
 '<http://example.org/
ApplicationSchema#AExactGeom>'));
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#AExactGeom>',
 '<http://www.opengis.net/ont/
geosparql#asWKT>',
 '"<http://xmlns.oracle.com/rdf/geo/srid/
31468> Polygon ((4467504.578 5333958.396 513.9,
 4467508.939
5333956.379 513.9,
 4467509.736
5333958.101 513.9,
 4467505.374
5333960.118 513.9,
 4467504.578
5333958.396 513.9))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>'));

-- 3D Point at same elevation as Polygon
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#B>',
 '<http://example.org/
ApplicationSchema#hasExactGeometry>',
 '<http://example.org/
ApplicationSchema#BExactGeom>'));
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 87 of 197

example.org/ApplicationSchema#BExactGeom>',
 '<http://
www.opengis.net/ont/geosparql#asWKT>',
 '"<http://
xmlns.oracle.com/rdf/geo/srid/31468> Point (4467505.000 5333959.000
513.9)"^^<http://www.opengis.net/ont/geosparql#wktLiteral>'));

-- 3D Point at different elevation from Polygon
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#C>',
 '<http://example.org/
ApplicationSchema#hasExactGeometry>',
 '<http://example.org/
ApplicationSchema#CExactGeom>'));
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#CExactGeom>',
 '<http://
www.opengis.net/ont/geosparql#asWKT>',
 '"<http://
xmlns.oracle.com/rdf/geo/srid/31468> Point (4467505.000 5333959.000
13.9)"^^<http://www.opengis.net/ont/geosparql#wktLiteral>'));
commit;

-- Create 3D index
conn system/manager;
exec sem_apis.add_datatype_index('http://www.opengis.net/ont/
geosparql#wktLiteral' ,
 options=>'TOLERANCE=0.1 SRID=3148
 DIMENSIONS=((x,4386596.4101,4613610.5843)
(y,5237914.5325,6104496.9694) (z,0,10000))
 SDO_INDX_DIMS=3 ');

conn rdfuser/rdfuser;
-- Find geometries within 200 M of my:A
-- Returns only one point because of 3D index
SELECT aGeom, f, fGeom, aWKT, fWKT
FROM TABLE(SEM_MATCH(
 '{ my:A my:hasExactGeometry ?aGeom .
 ?aGeom ogc:asWKT ?aWKT .
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom ogc:asWKT ?fWKT .
 FILTER (orageo:withinDistance(?aWKT, ?fWKT,200,"M") &&
 !sameTerm(?aGeom,?fGeom))
 }',
 SEM_Models('geo3d'),
 null,
 SEM_ALIASES(
 SEM_ALIAS('my','http://example.org/ApplicationSchema#')),
 null));

1.7.11.5 Querying Spatial Data
Several SPARQL extension functions are available for performing spatial queries in
SEM_MATCH. For example, for spatial RDF data, you can find the area and perimeter (length)
of a geometry, the distance between two geometries, and the centroid and the minimum

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 88 of 197

bounding rectangle (MBR) of a geometry, and you can check various topological relationships
between geometries.

SEM_MATCH Support for Spatial Queries contains reference and usage information about the
available functions, including:

• GeoSPARQL functions

• Oracle-specific functions

1.7.11.6 Using Long Literals with GeoSPARQL Queries
Geometry literals can become very long, which make the use of CLOBs necessary to
represent them when using a SQL interface. CLOB constants cannot be used directly in a
SEM_MATCH query. However, a user-defined SPARQL function can be used to bind CLOB
constants into SEM_MATCH queries. Note that long geometry literals can be used directly in
SPARQL query strings when using Java or REST interfaces for SPARQL execution.

The following example uses a user-defined SPARQL function in combination with a temporary
table to allow CLOB geometries in a SEM_MATCH query.

Example 1-93 Binding a CLOB Constant into a SPARQL Query

conn rdfuser/<password>;

-- Create temporary table
create global temporary table local_value$(
 VALUE_TYPE VARCHAR2(10),
 VALUE_NAME VARCHAR2(4000),
 LITERAL_TYPE VARCHAR2(1000),
 LANGUAGE_TYPE VARCHAR2(80),
 LONG_VALUE CLOB)
on commit preserve rows;

-- Create user-defined function to transform a CLOB into an RDF term
CREATE OR REPLACE FUNCTION myGetClobTerm
RETURN SDO_RDF_TERM
AS
 term SDO_RDF_TERM;
BEGIN
 select sdo_rdf_term(
 value_type,
 value_name,
 literal_type,
 language_type,
 long_value)
 into term
 from local_value$
 where rownum < 2;

 RETURN term;
END;
/

-- Insert a row with CLOB geometry
insert into local_value$
(value_type,value_name,literal_type,language_type,long_value)

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 89 of 197

values ('LIT','','http://www.opengis.net/ont/
geosparql#wktLiteral','','Some_CLOB_WKT');

-- Use the CLOB constant in a SEM_MATCH query
SELECT cdist
FROM table(sem_match(
'{ ?cdist ogc:asWKT ?cgeom
 FILTER (
 orageo:withinDistance(?cgeom, oraextf:myGetClobTerm(), 200, "M")) }'
,sem_models('gov_all_vm')
,null, null, null, null, ' ALLOW_DUP=T ', null, null
,'RDFUSER', 'NET1'));

1.7.12 Flashback Query Support
You can perform SEM_MATCH queries that return past data using Flashback Query. A
TIMESTAMP or a System Change Number (SCN) value is passed to SEM_MATCH through
the AS_OF hint. The AS_OF hint can have one of the following forms:

• AS_OF[TIMESTAMP,<TIMESTAMP_VALUE>], where <TIMESTAMP_VALUE> is a valid
timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF'.

• AS_OF[SCN,<SCN_VALUE>], where <SCN_VALUE> is a valid SCN.

The AS_OF hint is internally transformed to perform a Flashback Query (SELECT AS OF)
against the queried table or view containing triples of the specified RDF graph. This allows you
to query the graph as it existed in a prior time. For this feature to work, the invoker needs a
flashback privilege on the queried metadata table or view (RDFM_rdf-graph-name view for
native RDF graphs, SEMU_rdf-collection--name and SEMV_rdf-collection-name for RDF graph
collections, and underlying relational tables for RDF view graphs). For example: grant
flashback on RDFUSER.NET1#RDFM_FAMILY to scott

Restrictions on Using Flashback Query with RDF Data

Adding or removing a partition from a partitioned table disables Flashback Query for previous
versions of the partitioned table. As a consequence, creating or dropping a native RDF graph
or creating or dropping an inferred graph will disable Flashback Query for previous versions of
all native RDF graphs in an RDF network. Therefore, be sure to control such operations when
using Flashback Query in an RDF network.

Example 1-94 Flashback Query Using TIMESTAMP

The following example shows the use of the AS_OF clause defining a TIMESTAMP.

SELECT x, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE { ?x :name ?name }',
 SEM_Models('family'),
 null, null,
 null,null,' AS_OF=[TIMESTAMP,2016/05/02 13:06:03.979546]',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-95 Flashback Query Using SCN

The following example shows the use of the AS_OF clause specifying an SCN.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 90 of 197

SELECT x, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE { ?x :name ?name }',
 SEM_Models('family'),
 null, null,
 null,null,' AS_OF=[SCN,1429849]',
 null, null,
 'RDFUSER', 'NET1'));

1.7.13 Best Practices for Query Performance
This section describes some recommended practices for using the SEM_MATCH table function
to query RDF data. It includes the following subsections:

• FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time

• Indexes for FILTER Constructs Involving Typed Literals

• FILTER Constructs Involving Relational Expressions

• Optimizer Statistics and Dynamic Sampling

• Multi-Partition Queries

• Compression on Systems with OLTP Index Compression

• Unbounded Property Path Expressions

• Nested Loop Pushdown for Property Paths

• Grouping and Aggregation

• Use of Bind Variables to Reduce Compilation Time

• Non-Null Expression Hints

• Automatic JOIN Hints

• RDF Network Indexes

• Using RDF with Oracle AI Database In-Memory

• Using Language Tags in FILTER Expressions

• Type Casting for More Efficient FILTER Evaluation

• Spatial Indexing for GeoSPARQL Queries

1.7.13.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time
By default, SEM_MATCH complies with the XML Schema standard for comparison of xsd:date,
xsd:time, and xsd:dateTime values. According to this standard, when comparing two calendar
values c1 and c2 where c1 has an explicitly specified time zone and c2 does not have a
specified time zone, c2 is converted into the interval [c2-14:00, c2+14:00]. If c2-14:00 <= c1 <=
c2+14:00, then the comparison is undefined and will always evaluate to false. If c1 is outside
this interval, then the comparison is defined.

However, the extra logic required to evaluate such comparisons (value with a time zone and
value without a time zone) can significantly slow down queries with FILTER constructs that
involve calendar values. For improved query performance, you can disable this extra logic by
specifying FAST_DATE_FILTER=T in the options parameter of the SEM_MATCH table function.
When FAST_DATE_FILTER=T is specified, all calendar values without time zones are assumed to
be in Greenwich Mean Time (GMT).

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 197

Note that using FAST_DATE_FILTER=T does not affect query correctness when either (1) all
calendar values in the data set have a time zone or (2) all calendar values in the data set do
not have a time zone.

1.7.13.2 Indexes for FILTER Constructs Involving Typed Literals
The evaluation of SEM_MATCH queries involving the FILTER construct often uses order
columns on the RDF_VALUE$ table. For example, the filter (?x < "1929-11-16Z"^^xsd:date)
uses the ORDER_DATE column.

Indexes can be used to improve the performance of queries that contain a filter condition
involving a typed literal. For example, an xsd:date index may speed up evaluation of the filter
(?x < "1929-11-16Z"^^xsd:date).

Convenient interfaces are provided for creating, altering, and dropping these indexes for order
columns. For more information, see Using Data Type Indexes.

Note, however, that the existence of these indexes on the RDF_VALUE$ table can significantly
slow down bulk load operations. In many cases it may be faster to drop the indexes, perform
the bulk load, and then re-create the indexes, as opposed to doing the bulk load with the
indexes in place.

1.7.13.3 FILTER Constructs Involving Relational Expressions
The following recommendations apply to FILTER constructs involving relational expressions:

• The orardf:sameCanonTerm extension function is the most efficient way to compare two
RDF terms for equality because it allows an id-based comparison in all cases.

• When using standard SPARQL features, the sameTerm built-in function is more efficient
than using = or != when comparing two variables in a FILTER clause, so (for example) use
sameTerm(?a, ?b) instead of (?a = ?b) and use (!sameTerm(?a, ?b)) instead of (?a !
= ?b) whenever possible.

• When comparing values in FILTER expressions, you may get better performance by
reducing the use of negation. For example, it is more efficient to evaluate (?x <=
"10"^^xsd:int) than it is to evaluate the expression (!(?x > "10"^^xsd:int)).

1.7.13.4 Optimizer Statistics and Dynamic Sampling
Having sufficient statistics for the query optimizer is critical for good query performance. In
general, you should ensure that you have gathered basic statistics for the RDF network using
the SEM_PERF.GATHER_STATS procedure (described in SEM_PERF Package
Subprograms).

Due to the inherent flexibility of the RDF graph, static information may not produce optimal
execution plans for SEM_MATCH queries. Dynamic sampling can often produce much better
query execution plans. Dynamic sampling levels can be set at the session or system level
using the optimizer_dynamic_sampling parameter, and at the individual query level using the
dynamic_sampling(level) SQL query hint. In general, it is good to experiment with dynamic
sampling levels between 3 and 6. For information about estimating statistics with dynamic
sampling, see Oracle AI Database SQL Tuning Guide.

Example 1-96 uses a SQL hint for a dynamic sampling level of 6.

Example 1-96 SQL Hint for Dynamic Sampling

SELECT /*+ DYNAMIC_SAMPLING(6) */ x, y
 FROM TABLE(SEM_MATCH(

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 92 of 197

 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y .
 ?x rdf:type :Male .
 ?x :birthDate ?bd }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, '', null, null,
 'RDFUSER', 'NET1'));

1.7.13.5 Multi-Partition Queries
The following recommendations apply to the use of multiple RDF graphs, RDF graphs plus
inferred graphs, and RDF graph collections:

• If you execute SEM_MATCH queries against multiple RDF graphs or against RDF graphs
plus inferred graphs, you can probably improve query performance if you create a RDF
graph collection (see RDF Graph Collections) that contains all the RDF graphs and
inferred graphs you are querying and then query this single RDF graph collection.

• Use the ALLOW_DUP=T query option. If you do not use this option, then an expensive (in
terms of processing) duplicate-elimination step is required during query processing, in
order to maintain set semantics for RDF data. However, if you use this option, the
duplicate-elimination step is not performed, and this results in significant performance
gains.

1.7.13.6 Compression on Systems with OLTP Index Compression
On systems where OLTP index compression is supported (such as Exadata). you can take
advantage of the feature to improve the compression ratio for some of the B-tree indexes used
by the RDF network.

For example, a DBA or the owner of a schema-private network can use the following command
to change the compression scheme on the RDF_VAL_NAMETYLITLNG_IDX index from prefix
compression to OLTP index compression:

SQL> alter index rdfuser.net1#RDF_VAL_NAMETYLITLNG_IDX rebuild compress for oltp high;

1.7.13.7 Unbounded Property Path Expressions
A depth-limited search should be used for + and * property path operators whenever possible.
The depth-limited implementation for * and + is likely to significantly outperform the CONNECT
BY-based implementation in large and/or highly connected graphs. A depth limit of 10 is used
by default. For a given graph, depth limits larger than the graph's diameter are not useful. See
Property Paths for more information on setting depth limits.

A backward chaining style inference using rdfs:subClassOf+ for ontologies with very deep
class hierarchies may be an exception to this rule. In such cases, unbounded CONNECT BY-
based evaluations may perform better than depth-limited evaluations with very high depth
limits (for example, 50).

1.7.13.8 Nested Loop Pushdown for Property Paths
If an unbounded CONNECT BY evaluation is performed for a property path, and if the subject
of the property path triple pattern is a variable, a CONNECT BY WITHOUT FILTERING
operation will most likely be used. If this subject variable is only bound to a small number of
values during query execution, a nested loop strategy (see Nested Loop Pushdown with

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 93 of 197

Overloaded Service) could be a good option to run the query. In this case, the property path
can be pushed down into an overloaded SERVICE clause and the OVERLOADED_NL=T hint
can be used.

For example, consider the following query where there is an unbounded property path search
{ ?s :hasManager+ ?x }, but the triple { ?s :ename "ADAMS" } only has a small number of
possible values for ?s.

select s, x
from table(sem_match(
'PREFIX : <http://scott-hr.org#>
 SELECT *
 WHERE {
 ?s :ename "ADAMS" .
 ?s :hasManager+ ?x .
 }',
sem_models('scott_hr_data'),
null,null,null,null,' ALL_MAX_PP_DEPTH(0) ', null, null,
'RDFUSER', 'NET1'));

The query can be transformed to force the nested-loop strategy. Notice that the RDF graph
specified in the SERVICE graph is the same as the RDF graph specified in the SEM_MATCH
call.

select s, x
from table(sem_match(
'PREFIX : <http://scott-hr.org#>
 SELECT *
 WHERE {
 ?s :ename "ADAMS" .
 service oram:scott_hr_data { ?s :hasManager+ ?x . }
 }',
sem_models('scott_hr_data'),
null,null,null,null,' ALL_MAX_PP_DEPTH(0) OVERLOADED_NL=T ', null, null,
'RDFUSER', 'NET1'));

With this nested-loop strategy, { ?s :hasManager_ ?x } is evaluated once for each value of ?
s, and in each evaluation, a constant value is substituted for ?s. This constant in the subject
position allows a CONNECT BY WITH FILTERING operation, which usually provides a
substantial performance improvement.

1.7.13.9 Grouping and Aggregation
MIN, MAX and GROUP_CONCAT aggregates require special logic to fully capture SPARQL
semantics for input of non-uniform type (for example, MAX(?x)). For certain cases where a
uniform input type can be determined at compile time (for example, MAX(STR(?x)) – plain
literal input), optimizations for built-in SQL aggregates can be used. Such optimizations
generally give an order of magnitude increase in performance. The following cases are
optimized:

• MIN/MAX(<plain literal>)

• MIN/MAX(<numeric>)

• MIN/MAX(<dateTime>)

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 94 of 197

• GROUP_CONCAT(<plain literal>)

Example 1-97 uses MIN/MAX(<numeric>) optimizations.

Example 1-97 Aggregate Optimizations

SELECT dept, minSal, maxSal
 FROM TABLE(SEM_MATCH(
 'SELECT ?dept (MIN(xsd:decimal(?sal)) AS ?minSal) (MAX(xsd:decimal(?sal)) AS ?maxSal)
 WHERE
 {?x :salary ?y .
 ?x :department ?dept }
 GROUP BY ?dept',
 SEM_Models('hr_data'),
 null, null, null, null, '', null, null,
 'RDFUSER', 'NET1'));

1.7.13.10 Use of Bind Variables to Reduce Compilation Time
For some queries, query compilation can be more expensive than query execution, which can
limit throughput on workloads of small queries. If the queries in your workload differ only in the
constants used, then session context-based bind variables can be used to skip the compilation
step for SEM_MATCH queries. See also Using Bind Variables with
SEM_APIS.SPARQL_TO_SQL for a description of how to use JDBC bind variables and
PL/SQL bind variables with SPARQL queries.

The following example shows how to use a session context in combination with a user-defined
SPARQL function to compile a SEM_MATCH query once and then run it with different
constants. The basic idea is to create a user-defined function that reads an RDF term value
from the session context and returns it. A SEM_MATCH query with this function will read the
RDF term value at run time; so when the session context variable changes, the same exact
SEM_MATCH query will see a different value.

conn / as sysdba;
grant create any context to testuser;

conn testuser/testuser;

create or replace package MY_CTXT_PKG as
 procedure set_attribute(name varchar2, value varchar2);
 function get_attribute(name varchar2) return varchar2;
end MY_CTXT_PKG;
/

create or replace package body MY_CTXT_PKG as
 procedure set_attribute(
 name varchar2,
 value varchar2
) as
 begin
 dbms_session.set_context(namespace => 'MY_CTXT',
 attribute => name,
 value => value);
 end;

 function get_attribute(
 name varchar2
) return varchar2 as

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 95 of 197

 begin
 return sys_context('MY_CTXT', name);
 end;
end MY_CTXT_PKG;
/

create or replace function myCtxFunc(
 params in SDO_RDF_TERM_LIST
) return SDO_RDF_TERM
as
 name varchar2(4000);
 arg SDO_RDF_TERM;
begin
 arg := params(1);
 name := arg.value_name;
 return SDO_RDF_TERM(my_ctxt_pkg.get_attribute(name));
end;
/

CREATE OR REPLACE CONTEXT MY_CTXT using TESTUSER.MY_CTXT_PKG;

-- Set a value
exec MY_CTXT_PKG.set_attribute('value','<http://www.example.org/family/
Martha>');

-- Query using the function
-- Note the use of HINT0={ NON_NULL } to allow the most efficient join
SELECT s, p, o
 FROM TABLE(SEM_MATCH(
 'SELECT ?s ?p ?o
 WHERE {
 BIND (oraextf:myCtxFunc("value") # HINT0={ NON_NULL }
 AS ?s)
 ?s ?p ?o }',
 SEM_Models('family'),
 null,
 null,
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

-- Set another value
exec MY_CTXT_PKG.set_attribute('value','<http://www.example.org/family/
Sammy>');

-- Now the same query runs for Sammy without recompiling
SELECT s, p, o
 FROM TABLE(SEM_MATCH(
 'SELECT ?s ?p ?o
 WHERE {
 BIND (oraextf:myCtxFunc("value") # HINT0={ NON_NULL }
 AS ?s)
 ?s ?p ?o }',
 SEM_Models('family'),
 null,
 null,

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 96 of 197

 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.7.13.11 Non-Null Expression Hints
When performing a join of several graph patterns with common variables that can be unbound,
a more complex join condition is needed to handle null values to avoid performance
degradation. Unbound values can be introduced through SELECT expressions, binds,
OPTIONAL clauses, and unions. In many cases, SELECT expressions are not expected to
produce NULL values. In such cases, query performance can be substantially improved
through use of an inline HINT0={ NON_NULL } hint to mark a specific SELECT expression as
definitely non-null or through use of a DISABLE_NULL_EXPR_JOIN query option to signify
that all SELECT expressions produce only non-null values.

The following example includes the global DISABLE_NULL_EXPR_JOIN hint to signify that
variable ?fulltitle is always bound on both sides of the join. (See also Inline Query
Optimizer Hints.)

SELECT s, t
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT * WHERE {
 { SELECT ?s (CONCAT(?title, ". ", ?fullname) AS ?fulltitle)
 WHERE { ?s :fullname ?fullname .
 ?s :title ?title }
 }
 { SELECT ?t (CONCAT(?title, ". ", ?fname, " ", ?lname) AS ?fulltitle)
 WHERE {
 ?t :fname ?fname .
 ?t :lname ?lname .
 ?t :title ?title }
 }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,
 null,
 ' DISABLE_NULL_EXPR_JOIN ', null, null,
 'RDFUSER', 'NET1'));

1.7.13.12 Automatic JOIN Hints
SEM_MATCH queries that are very unselective usually execute faster if the SQL engine uses
HASH joins to evaluate joins between triple patterns. The SPARQL-to-SQL query translator
used by SEM_MATCH will attempt to auto detect such queries and automatically add
appropriate USE_HASH hints if the string AUTO_HINTS=T appears in the options argument string.

The following SEM_MATCH query uses AUTO_HINTS=T to automatically generate USE_HASH
hints.

SELECT f, l, n, e
 FROM table(sem_match(
 'PREFIX : <http://www.example.com#>
 SELECT ?f ?l ?n ?e

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 97 of 197

 WHERE { ?s :fname ?f . ?s :lname ?l . ?s :nickName ?n . ?s :email ?e }',
 sem_models('m1'),
 null,null,null,null,
 ' AUTO_HINTS=T ')
);

1.7.13.13 RDF Network Indexes
RDF Network Indexes (described in Using RDF Network Indexes) are nonunique B-tree
indexes on the RDF_LINK$ table. Network owners and DBAs can manage these indexes with
various SEM_APIS procedures. Columns to index in RDF_LINK$ are identified by an index
code, which is a sequence of the following letters (without repetition): P, C, S, G, M, H. These
letters used in the index_code correspond to the following columns in RDF_LINK$:
P_VALUE_ID (predicate), CANON_END_NODE_ID (object), START_NODE_ID (subject),
G_ID (graph), MODEL_ID, and H - a function-based index on (MODEL_ID, GID).

It is important to have the proper set of RDF Network Indexes for your query workload. In
versions 19c and earlier, the default index setup is PCSGM, PSCGM. In versions 21c and later the
default index setup is PCSGM, SPCGM, CM, H.

The following are a few general recommendations for RDF Network Indexes:

• Most SPARQL queries have triple patterns with bound predicates, so it is a good idea to
have P, PC, and PS combinations covered as leading columns in your overall index set.
Such a combination is captured by the default index setup (PCSGM, PSCGM in 19c, and PCSGM,
SPCGM in 21c).

• If you have queries with unbound predicates (for example, { ?s :ssn 1234 . ?s ?p ?
o }), then a network index with a leading column other than P may be needed. An SPCGM
index would be more suitable for this example because of the join on subject variable ?s.

• If you are running DESCRIBE queries or DESCRIBE-style patterns such as
{ { <urn:abc> ?p1 ?o1 } UNION { ?s2 ?p2 <urn:abc> } }, then a network index with a
leading C column (for example, CM) in addition to an index with a leading S column may be
needed.

• If you have named graph queries with selective FROM, FROM NAMED, or GRAPH
clauses, then a network index with a leading G column may be needed (for example,
GPCSM).

• An H index is needed for efficient SPARQL Update GRAPH operations (for example,
DROP GRAPH) on schema-private networks.

• A PSCGM index is usually smaller than an SPCGM index due to better prefix compression, so if
your workload does not include queries with unbound predicates, replacing an SPCGM index
with a PSCGM index may give better performance.

1.7.13.14 Using RDF with Oracle AI Database In-Memory
RDF data stored in the RDF_LINK$ and RDF_VALUE$ tables can be loaded into memory
using Oracle AI Database In-Memory. See RDF Support for Oracle AI Database In-Memory for
details on how to load RDF data into memory using SEM_APIS procedures.

In general, for the best and most consistent performance with Oracle AI Database In-Memory,
it is recommended to make indexes on the RDF_LINK$ (RDF network indexes) and
RDF_VALUE$ tables invisible, with the exception of <NETWORK_NAME>#C_PK_VID and
<NETWORK_NAME>#RDF_VAL_NAMETYLITLNG_IDX indexes on RDF_VALUE$. These

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 98 of 197

index settings can be achieved with the following SQL commands (assuming a RDF network
named NET1 owned by RDFUSER).

exec sem_apis.alter_rdf_indexes('VISIBILITY','N', network_owner=>'RDFUSER',
network_name=>'NET1');

alter index NET1#C_PK_VID visible;

alter index NET1#RDF_VAL_NAMETYLITLNG_IDX visible;

Note that the performance of very selective queries may suffer with RDF_LINK$ indexes
invisible, so you may need to experiment with index visibility depending on your query
workload.

In addition to these index settings, it is recommended to use parallel query execution with
Oracle AI Database In-Memory, as the speedup from parallelization can be significant in many
cases.

For larger datasets (100 M triples or more), it is also recommended to use a hash-
subpartitioned RDF network with Oracle AI Database In-Memory. Hash subpartitioning is
described in RDF Networks.

1.7.13.15 Using Language Tags in FILTER Expressions
When filtering query results based on language tags, it is more efficient to use LANG instead of
LANGMATCHES whenever possible. For example, the simple filter langMatches(lang(?x),
"en") could be replaced with lang(?x) = "en" for a more efficient evaluation. Language tags
in stored RDF literals are canonicalized to lower case, so a lower case language tag constant
should be used in such filters.

1.7.13.16 Type Casting for More Efficient FILTER Evaluation
SPARQL FILTERs that compare two variables using operators other than equality, for
example ?x < ?y, can have poor performance in some cases because of weak typing in
SPARQL. Because datatypes for ?x and ?y cannot be determined at query compilation time,
complex logic for comparisons of multiple datatypes must be used at run time.

If you know the datatypes of the values to which ?x and ?y will be bound, then it is best to
cast ?x and ?y to those datatypes in your FILTER expression, so that the types will be known
at query compilation time. For example, the following query casts salary values to xsd:decimal
in the FILTER clause for a more efficient single-datatype comparison.

SELECT ?y
WHERE {
 :emp1 :salary ?s1 .
 ?y :salary ?s2 .
 FILTER (xsd:decimal(?s2) < xsd:decimal(?s1))
}

1.7.13.17 Spatial Indexing for GeoSPARQL Queries
Options used during spatial index creation can have significant effects on the performance of
GeoSPARQL queries.

The two most important options are:

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 99 of 197

• Type of index: function-based or materialized

• Spatial reference system: SRID used for the index

SEM_APIS.ADD_DATATYPE_INDEX creates a function-based spatial index by default. A
function-based index is adequate for simple point geometries, but you should use a
materialized spatial index if your dataset contains polygon or line geometries. You can create a
materialized spatial index by specifying MATERIALIZE=T in the options argument of
SEM_APIS.ADD_DATATYPE_INDEX.

The SRID used for a spatial index is also important for performance. Oracle's GeoSPARQL
implementation is very flexible in that it allows you to load geometry literals that have been
encoded in different spatial reference systems. These geometries must be canonicalized to a
single SRID for indexing and query evaluation. You can specify this canonical SRID at index
creation time. For best performance, you must choose the SRID that is most common among
your geometry literals to minimize required coordinate transformations.

See Indexing Spatial Data for more information on spatial index creation.

1.7.14 Special Considerations When Using SEM_MATCH
The following considerations apply to SPARQL queries executed using SEM_MATCH:

• Value assignment

– A compile-time error is raised when undefined variables are referenced in the source
of a value assignment.

• Grouping and aggregation

– Non-grouping variables (query variables not used for grouping and therefore not valid
for projection) cannot be reused as a target for value assignment.

– Non-numeric values are ignored by the AVG and SUM aggregates.

– By default, SEM_MATCH returns no rows for an aggregate query with a graph pattern
that fails to match. The W3C specification requires a single, null row for this case.
W3C-compliant behavior can be obtained with the STRICT_AGG_CARD=T query option for
a small performance penalty.

• ORDER BY

– When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query should
be ordered by SEM$ROWNUM to ensure that the desired ordering is maintained
through any enclosing SQL blocks.

• Numeric computations

– The native Oracle NUMBER type is used internally for all arithmetic operations, and
the results of all arithmetic operations are serialized as xsd:decimal. Note that the
native Oracle NUMBER type is more precise than both BINARY_FLOAT and
BINARY_DOUBLE. See Oracle AI Database SQL Language Reference for more
information on the NUMBER built-in data type.

– Division by zero causes a runtime error instead of producing an unbound value.

• Negation

– EXISTS and NOT EXISTS filters that reference potentially unbound variables are not
supported in the following contexts:

* Non-aliased expressions in GROUP BY

* Input to aggregates

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 100 of 197

* Expressions in ORDER BY

* FILTER expressions within OPTIONAL graph patterns that also reference
variables that do not appear inside of the OPTIONAL graph pattern

The first three cases can be realized by first assigning the result of the EXISTS or NOT
EXISTS filter to a variable using a BIND clause or SELECT expression.

These restrictions do not apply to EXISTS and NOT EXISTS filters that only reference
definitely bound variables.

• Blank nodes

– Blank nodes are not supported within graph patterns.

– The BNODE(literal) function returns the same blank node value every time it is called
with the same literal argument.

• Property paths

– Unbounded operators + and * use a 10-hop depth limit by default for performance
reasons. This behavior can be changed to a truly unbounded search by setting a depth
limit of 0. See Property Paths for details.

• Long literals (CLOBs)

– SPARQL functions and aggregates do not support long literals by default.

– Specifying the CLOB_EXP_SUPPORT=T query option enables long literal support for the
following SPARQL functions: IF, COALESCE, STRLANG, STRDT, SUBSTR,
STRBEFORE, STRAFTER, CONTAINS, STRLEN, STRSTARTS, STRENDS.

– Specifying the CLOB_AGG_SUPPORT=T query option enables long literal support for the
following aggregates: MIN, MAX, SAMPLE, GROUP_CONCAT.

• Canonicalization of RDF literals

– By default, RDF literals returned from SPARQL functions and constant RDF literals
used in value assignment statements (BIND, SELECT expressions, GROUP BY
expressions) are canonicalized. This behavior is consistent with the SPARQL 1.1 D-
Entailment Regime.

– Canonicalization can be disabled with the PROJ_EXACT_VALUES=T query option.

1.8 Speeding up Query Execution with Result Tables
Result tables are auxiliary tables that store the results for generic patterns of SPARQL queries
executed against an RDF graph or RDF graph collection.

Note

Result tables were called as Subject-Property-Matrix (SPM) tables in the previous
book versions (prior to Oracle AI Database Release 26ai). See Changes in
Terminology and Subprograms for more information.

Generic pattern queries include star-pattern, chain-pattern, and single-triple-pattern queries.

Improvement of performance with result tables is derived from the use of:

• Pre-materialized joins in these tables to reduce joins at query processing time

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 101 of 197

• Compact representation of triples for individual properties in separate tables for faster
access

• More accurate RDF data statistics obtained from these tables to arrive at better query
execution plans

The following sections provide in-depth information on result tables.

• Types of Result Tables
There are three types of result tables that can be defined on an RDF graph or an RDF
graph collection.

• Creating and Managing Result Tables
The following sections explain the steps for creating and managing result tables.

• SPARQL Query Options for Result Tables
SPARQL queries will automatically use result tables if they are present.

• Special Considerations when Using Result Tables
This section describes a few limitations to be considered when using result tables.

1.8.1 Types of Result Tables
There are three types of result tables that can be defined on an RDF graph or an RDF graph
collection.

The different result tables are as follows:

• Star-Pattern Tables: These tables hold the results for star-pattern queries (with restriction
that each property must be single-valued) such as:
?x :fname ?fnm . ?x miname ?m . ?x :lname ?lnm .

• Triple-Pattern Tables: These tables hold the results for single triple-pattern queries such
as:
?x :hasHobby ?y .

This is same as an RDF triple, but for a specific property.

• Chain-Pattern Tables: These tables hold the results for chain-pattern queries such as:
?child :hasParent ?parent . ?parent :hasBrother ?uncle .

A chain is stored only if all the links exist.

Note

Star-Pattern, Triple-Pattern, and Chain-Pattern tables were called as Single-
Valued Property (SVP), Multi-Valued Property (MVP), and Property Chain (PCN)
tables respectively in the previous book versions (prior to Oracle AI Database
Release 26ai). See Changes in Terminology and Subprograms for more information.

Consider an RDF graph containing the following sample data.

:john :fname "John" ; :lname "Brown" ; :height 72 ; :email "john@email-
example.com", "johnnyB@email-example.com" .
:mary :fname "Mary" ; :lname "Smith" ; :height 68 ; :email "Mary.Smith@email-
example.com" .
:bob :fname "Robert" ; :lname "Brown" ; :height
70 ; :fatherOf :john, :mary ; :email "bobBrown@email-example.com" .
:alice :fname "Alice" ; :lname "Brown" ; :height 68 ; :motherOf :john, :mary .

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 102 of 197

:henry :fatherOf :bob .
:kathy :motherOf :bob .

Note that for simplicity, Id(rdfterm) will be used instead of the actual numeric identifier
(available in the RDF_VALUE$ table) for each rdfterm. A complete example with additional data is
included in Example 1-107.

• Star-Pattern Tables
Each row in a star-pattern table holds values for one or more single-valued RDF properties
for a resource in an RDF graph.

• Triple-Pattern Tables
Each row in a triple-pattern table, created for a given property, holds a value for the
property.

• Chain-Pattern Tables
Each row in a chain-pattern table holds a fixed-length path in the RDF graph.

1.8.1.1 Star-Pattern Tables
Each row in a star-pattern table holds values for one or more single-valued RDF properties for
a resource in an RDF graph.

In the best case, a star-pattern table defined for n properties may be used during query
processing to replace an n-way join of the RDF_LINK$ table with simple table lookups.

A property p is single-valued in an RDF graph if each resource in the graph has at most one
value for p regardless of named graphs. In the sample RDF dataset (described in Types of
Result Tables), the properties :first_name, :last_name, and :height are single-valued, but
the property :email is multi-valued.

To speed up execution of a query pattern such as { ?s :first_name ?fname ; :last_name ?
lname ; :height ?height }, involving use of single-valued properties only, a star-pattern
table may be created on the RDF graph to include the preceding three single-valued properties
by using the string ‘:first_name :last_name :height’ as the value for the key_string
parameter in a call to the SEM_APIS.BUILD_RESULT_TAB subprogram.

Table 1-19 describes the structure and content for such a star-pattern table corresponding to
the preceding sample data. Also, note that:

• The table shows only a subset of the actual set of columns. Specifically, not shown are the
columns with name like G<Id(property)> that are used to store the named graph
component of the corresponding RDF statements.

• The table describes values in the columns as Id(rdfterm) instead of the actual numeric
identifiers that get stored.

Table 1-19 Example Star-Pattern Table Structure

START_NODE_ID … P<Id(:first_name)> … P<Id(:last_name)> … P<Id(:height)>

Id(:john) ... Id(“John”) ... Id(“Brown”) ... Id(72)

Id(:mary) ... Id(“Mary”) ... Id(“Smith”) ... Id(68)

Id(:bob) ... Id(“Robert”) ... Id(“Brown”) ... Id(70)

Id(:alice) ... Id(“Alice”) ... Id(“Brown”) ... Id(68)

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 103 of 197

The availability of this star-pattern table allows the preceding query pattern to be processed
simply by accessing the rows in the star-pattern table and avoids the three-way self-join of the
RDF_LINK$ table that would otherwise be necessary.

It is also possible to include reversed-properties that are single-valued. In the sample RDF
data (described in Types of Result Tables), the property :fatherOf is not single-valued, but its
reversed version which is denoted as ^:fatherOf (intuitively equivalent to a :hasFather
property), is indeed single-valued. To speed up execution of a query pattern such as { ?
s :fname ?fname; :lname ?lname; :height ?height; ^:fatherOf ?father }, an extended
version of the preceding star-pattern table may be created, by using ‘:fname :lname :height
^:fatherOf’ as the key_string value.

Table 1-20 describes the structure and content of this extended version of the star-pattern table
that includes a reversed property. The use of the letter R, instead of P, as the first character in
the column name, R<Id(:fatherOf)>, indicates that this is a reversed property. As mentioned
earlier, availability of this star-pattern table allows avoiding a (four-way) self-join of the
RDF_LINK$ table.

Table 1-20 Extended Star-Pattern Table Including a Reversed Property

START_NODE
_ID

… P<Id(:first_na
me)>

… P<Id(:last_na
me)>

… P<Id(:height)> … R<Id(:fatherOf
)>

Id(:john) ... Id(“John”) ... Id(“Brown”) ... Id(72) ... :bob

Id(:mary) ... Id(“Mary”) ... Id(“Smith”) ... Id(68) ... :bob

Id(:bob) ... Id(“Robert”) ... Id(“Brown”) ... Id(70) ... :henry

Example 1-98 Creating a Star-Pattern Table

The following code creates an extended star-pattern table on an RDF graph named M1:

BEGIN
 SEM_APIS.BUILD_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , key_string => ' :fname :lname :height ^:fatherOf '
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

The name, structure, and default indexes for a star-pattern table may be described as follows:

• The name of a star-pattern table is created based on the following template:
<NETWORK_NAME>#RDF_XT$SVP_<MODEL_NAME>+__<SPM_NAME>

• The NUMBER column, START_NODE_ID, stores the subject id or, if reversed, the object id, of
the matching triple for the first property in the list of properties in the star-pattern table.

• For each property covered in a star-pattern table, the following columns are created for
storing the numeric identifiers for the lexical values in a triple: :

– NUMBER column (G<Id(property)>) for storing the named graph id.

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 104 of 197

– NUMBER column (P<Id(property)> for storing the object id or if reversed
R<Id(property)>), the subject id.

– (Optional) additional columns for internal use.

• The START_NODE_ID column is defined as the primary key of the star-pattern table and a
unique index named using the template:
<NETWORK_NAME>#RDF_XX$SVP_<MODEL_NAME>_UQ__<SPM_NAME>, is created on this column
when the star-pattern table is created.

1.8.1.2 Triple-Pattern Tables
Each row in a triple-pattern table, created for a given property, holds a value for the property.

A triple-pattern table stores the values for a given property in a separate table and in a
compact fashion, thus allowing faster access and better statistics. Unlike a star-pattern table,
the (single) property included in a triple-pattern table does not have to be, but could be, single-
valued.

A property p is multi-valued in an RDF graph if there exist two or more triples (regardless of
named graphs), (s p o1) and (s p o2) with o1 not equal to o2. That is, s has more than one
distinct object values for the property p.

In the sample RDF dataset (described in Types of Result Tables), the
properties :email, :fatherOf, and :motherOf are multi-valued.

Table 1-21 shows the structure and content of a triple-pattern table for the :motherOf property
for the preceding sample data. The two columns shown here store the numeric identifiers for
lexical values for variables ?mom and ?c, respectively, in a pattern { ?mom :motherOf ?c }. The
triple-pattern table contains another column, G<id<:motherOf>), not shown here, to store the
numeric identifier of the named graph in case the matching RDF statement is a quad.

Table 1-21 Example Triple-Pattern Table Structure

START_NODE_ID ... P<Id(:motherOf)>

Id(:alice) Id(:john)

Id(:alice) Id(:mary)

Id(:kathy) Id(:bob)

Example 1-99 Creating a Triple-Pattern Table

To create the preceding triple-pattern table on an RDF graph named M1, you can use the
following SQL command.

BEGIN
 SEM_APIS.BUILD_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_MVP
 , result_tab_name => null /* must be NULL (the name is auto-generated
based on id(property) */
 , rdf_graph_name => 'M1'
 , key_string => ' :motherOf ' /* must have exactly one property */
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 105 of 197

END;
/

The name, structure, and default indexes for a triple-pattern table may be described as follows:

• The naming convention for a triple-pattern table is created based on the following template:
<NETWORK_NAME>#RDF_XT$MVP_<MODEL_NAME>+__P<id(property)>

• The NUMBER column, START_NODE_ID, stores the subject id of the matching triples that use
the target property as the predicate.

• For the property covered in a triple-pattern table, the following columns are created for
storing the numeric identifiers for the lexical values in a triple:

– NUMBER column G<Id(property)> for storing the named graph id

– NUMBER column P<Id(property)> for storing the object id

– Optional additional columns for internal use

• A nonunique index is created on the START_NODE_ID column using the following naming
convention: <NETWORK_NAME>#RDF_XX$MVP_<MODEL_NAME>_P<id(property)> .

1.8.1.3 Chain-Pattern Tables
Each row in a chain-pattern table holds a fixed-length path in the RDF graph.

A path is a sequence of two or more triples where, except for the last triple in the sequence,
object of a triple is the same as the subject of the next triple. A chain-pattern table that stores
paths of length n can be used during query processing to replace an n-way join of type
current_triple.object = next_triple.subject, of the RDF_LINK$ table with simple table lookups.

For example, to speed up the execution of the following query pattern - { ?gma :motherOf ?
f . ?f :fatherOf ?c }, you can create a chain-pattern table using the following sequence of
properties, specified as the key_string: ‘ :motherOf :fatherOf ’.

Table 1-22 shows the structure and content of the chain-pattern table for the preceding sample
data. The three columns here store the numeric identifiers for lexical values for variables ?
gma, ?f, and ?c, respectively, for the two paths that satisfy the property chain: (:kathy) –
[:motherOf]-> (:bob) –[:fatherOf]-> (:john) and (:alice) –[:motherOf]-> (:bob) –
[:fatherOf]-> (:mary).

Table 1-22 Example Chain-Pattern Table Structure

START_NODE_ID … P<Id(:motherOf)> … P<Id(:fatherOf)>

Id(:kathy) ... Id(:bob) ... Id(:john)

Id(:kathy) ... Id(:bob) ... Id(:mary)

A property chain can include multiple occurrences of the same property. Consider the following
query pattern to connect a grandfather to the children:

{ ?gfa :fatherOf ?f . ?f :fatherOf ?c }

You can create a chain-pattern table using the following sequence of properties, specified as
the key_string- ‘ :fatherOf :fatherOf ’. The following table describes the structure and
content for such a chain-pattern table. The column name with ‘#2’ as suffix corresponds to the
second occurrence of the :fatherOf property in the specified chain. It stores two paths that

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 106 of 197

satisfy the property chain - (:henry) –[:fatherOf]-> (:bob) –[:fatherOf]-> (:john) and
(:henry) –[:fatherOf]-> (:bob) –[:fatherOf]-> (:mary).

Table 1-23 Multiple Occurrences of a Single Property in a Chain-Pattern Table

START_NODE_ID … P<Id(:fatherOf)> … P<Id(:fatherOf)>#2

Id(:henry) ... Id(:bob) ... Id(:john)

Id(:henry) ... Id(:bob) ... Id(:mary)

A property chain may involve reversed properties as well. For example, consider the following
query pattern { ?mom :motherOf ?c . ?c ^:fatherOf ?dad } to connect the siblings. You
can create a Chain-Pattern table with the following key_string- ‘:motherOf ^:fatherOf ‘.

Table 1-24 shows the structure and content of this chain-pattern table. Note that the letter ‘R’ in
the rightmost column name R<id(:fatherOf)> indicates that the column corresponds to the
reversed property. The availability of this chain-pattern table allows the preceding query pattern
to be processed simply by accessing the rows in the chain-pattern table and avoids the two-
way join of the RDF_LINK$ table that would otherwise be necessary.

Table 1-24 Reversed Property in a Chain-Pattern Table

START_NODE_ID … P<Id(:motherOf)> … R<Id(:fatherOf)>

Id(:alice) ... Id(:john) ... Id(:bob)

Id(:alice) ... Id(:mary) ... Id(:bob)

Id(:kathy) ... Id(:bob) ... Id(:henry)

Example 1-100 Creating a Chain-Pattern Table

The following example creates a chain-pattern table representing the grandfather chain using
two occurrences of the :fatherOf property on an RDF graph named M1.

BEGIN
 SEM_APIS.BUILD_RESULT_TAB(
 result_tab_name => ‘GRANDPA’
 , query_pattern_type => SEM_APIS.SPM_TYPE_PCN
 , rdf_graph_name => 'M1'
 , key_string => ' S :fatherOf :fatherOf '
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

The name, structure, and default indexes for a chain-pattern table may be described as
follows:

• The name of a chain-pattern table is based on the following template:
<NETWORK_NAME>#RDF_XT$PCN_<MODEL_NAME>+__<SPM_NAME>

• The NUMBER column, START_NODE_ID, stores the subject id or, if reversed, the object id, of
the matching triple for the first property in the sequence of properties in the chain-pattern
table.

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 107 of 197

• For each property’s n-th occurrence in a chain-pattern table, the following columns are
created for storing the numeric identifiers for the lexical values in a triple: (note that the #n
suffix is used only if n > 1):

– NUMBER column G<Id(property)> (or G<Id(property)>#n) for storing the named graph
id

– NUMBER column P<Id(property)> (or P<Id(property)>#n) or, if reversed,
R<Id(property)> (or R<Id(property)>#n), for storing the object id or, if reversed, the
subject id

– (Optional) additional columns for internal use

• A nonunique index, named using the template
<NETWORK_NAME>#RDF_XX$PCN_<MODEL_NAME>__<SPM_NAME>, is created on the
START_NODE_ID column.

• Additionally, a nonunique index is created on each of the property columns.

1.8.2 Creating and Managing Result Tables
The following sections explain the steps for creating and managing result tables.

• Including Lexical Values in Result Tables
You can also include lexical values for objects in result tables.

• Creating and Dropping Secondary Indexes on Result Tables
You can create and drop secondary indexes on result tables.

• Dropping Result Tables
You can drop a specific result table.

• In-Memory Result Tables
Taking advantage of Oracle AI Database In-Memory, you can create in-memory result
tables using the INMEMORY=T flag in the options parameter.

• Metadata for Result Tables
You can use the RDF_SPM_INFO view to retrieve metadata information for the result
tables defined on an RDF graph.

• Utility Subprogram for Computing Per-Subject Cardinality Aggregates for Individual
Properties
You can use the SEM_APIS.GATHER_SPM_INFO procedure to create and populate a
table to store the per-subject cardinality information for each property in an RDF graph,
based on its use as predicate of triples.

• Performing DML Operations on RDF Graphs with Result Tables
All star-pattern, triple-pattern, and chain-pattern tables are automatically maintained for
DML operations.

• Performing Bulk Load Operations on RDF Graphs with Result Tables

• Gathering Statistics on Result Tables
Having up-to-date statistics on result tables is critical for good query performance.

1.8.2.1 Including Lexical Values in Result Tables
You can also include lexical values for objects in result tables.

Result tables include numeric identifiers for object values by default. Additionally, by storing the
lexical values (RDF terms) in the SPM tables, retrieval of lexical values during SPARQL query

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 108 of 197

processing can be made faster by avoiding the lookups involving joins with the RDF_VALUE$
table.

If you choose to include lexical values for the subject or values of any of the properties stored
in a result table, new columns for the lexical property values are added to the star-pattern and
chain-pattern tables. Note that these columns correspond exactly to the columns with the same
name in RDF_VALUE$. Specifically, when including lexical values for a non-reversed property
into a result table, the following columns get added to the result table:

• P<Id(property)>_VALUE_TYPE

• P<Id(property)>_VNAME_PREFIX

• P<Id(property)>_VNAME_SUFFIX

• P<Id(property)>_LITERAL_TYPE

• P<Id(property)>_LANGUAGE_TYPE

• P<Id(property)>_ORDER_NUM

• P<Id(property)>_ORDER_DATE

• P<Id(property)>_LONG_VALUE

For reversed properties, the column names use ‘R’ as the first character instead of the
character ‘P’. Names for the additional columns added for including the lexical values for the
subject (that is, corresponding to the numeric identifiers stored in the START_NODE_ID column),
use the prefix ‘S’, instead of P<Id(property)> or R<Id(property)>.

The following example is a variation of Example 1-98, in that the lexical values for the subject
and the reversed :fatherOf property are included. The ‘+’ symbol is used to indicate that
lexical values needed to be stored in the result table. Here, use of ‘+S’ and ‘+^:fatherOf’ in
the key_string parameter causes the additional columns to get added for the subject and the
(reversed) :fatherOf property, respectively.

Example 1-101 Including Lexical Values for the Subject and for the Reversed Property

BEGIN
 SEM_APIS.BUILD_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , key_string => ' +S :fname :lname :height +^:fatherOf '
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

If a result table is already present, you can use the SEM_APIS.ALTER_RESULT_TAB
subprogram to include lexical values for either the subject or any one of the properties by using
the string ‘ADD_S_VALUE’ or ‘ADD_VALUE’, respectively, as value for the command parameter.
The following example results in inclusion of the lexical values for the :lname property. (The
command DROP_S_VALUE or DROP_VALUE, not shown in this example, can be used to remove the
lexical value columns for the subject or a property, respectively.)

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 109 of 197

Example 1-102 Altering a Star-Pattern Table to Add Lexical Values for a Property

BEGIN
 SEM_APIS.ALTER_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , command => 'ADD_VALUE'
 , pred_name => '<http://www.example.com#lname>'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

1.8.2.2 Creating and Dropping Secondary Indexes on Result Tables
You can create and drop secondary indexes on result tables.

If for a given workload, accessing the content of a result table through access paths other than
those already provided by the default indexes on the result table are needed, corresponding
secondary (B+-tree) indexes may be created by using the
SEM_APIS.CREATE_INDEX_ON_RESULT_TAB subprogram.

The following example shows creation of such an index, named name_idx, on the star-pattern
table created in Example 1-101. The key_string parameter, ‘2P 1P S’, indicates that the key
should be the (numeric id) value from the column corresponding to the second property in the
table, namely, :lname, followed by that from the first property in the table, namely, :fname,
followed by the subject (that is, the START_NODE_ID column). Note that the reference to the n-th
property is always <n>P regardless whether the corresponding column name in the result table
is of the form P<Id(property)> or R<Id(property).

If the lexical values for a property are included in the result table, then the index key may also
include one or more of the columns that store the components of the lexical values. To refer to
a component, use the form <n><component-code>, where n is 0 (for START_NODE_ID) or position
of the target property, and the component code is determined based on the suffix of the
included value component names as shown in Table 1-25

Table 1-25 Mapping from Suffix of Lexical Value Component Column Names to
Component Code

Suffix of Lexical Value Component Column
Name

Component Code

VALUE_TYPE VT

VNAME_PREFIX VP

VNAME_SUFFIX VS

LITERAL_TYPE LT

LANGUAGE_TYPE LA

ORDER_NUM VN

ORDER_DATE VD

For example, the reference to 2VP and 0VP in the key ‘2P 1P 2VP 0VP S’ indicates the
inclusion of the following two columns in the key at the respective positions:

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 110 of 197

1. The <column_name_for_the_2nd_property_of_the _SPM_table>_VNAME_PREFIX column

2. The S_VNAME_PREFIX column (where S corresponds to the zeroth column of the SPM table,
that is , the START_NODE_ID column).

Example 1-103 Creating a Secondary (B+-tree) Index on a Result Table

SEM_APIS.CREATE_INDEX_ON_RESULT_TAB(
 index_name. => ‘name_idx’
 , query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , key_string => ' 2P 1P S '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

To drop any index created using this subprogram, use the SQL DROP INDEX <index_name>
command. For example:

DROP INDEX name_idx;

1.8.2.3 Dropping Result Tables
You can drop a specific result table.

You can use the SEM_APIS.DROP_RESULT_TAB subprogram to drop a result table as shown
in the following example.

Example 1-104 Dropping a Result Table

BEGIN
 SEM_APIS.DROP_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

Note that the use of the special string, ‘*’, for the result_tab_name parameter, allows dropping
all result tables of the type specified by the query_pattern_type parameter. To drop all the
result tables, regardless of the type, use SEM_APIS.SPM_TYPE_ALL for the query_pattern_type
parameter.

1.8.2.4 In-Memory Result Tables
Taking advantage of Oracle AI Database In-Memory, you can create in-memory result tables
using the INMEMORY=T flag in the options parameter.

Generally, on-disk result tables are designed based on the commonly occurring patterns in the
individual queries in a workload. If the result tables contain extra columns that are not needed

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 111 of 197

for the query, it could incur disk scan overhead. If the query workload is not known or varying,
building a result table with all properties could be a good choice. The in-memory columnar
format ensures that only the necessary columns are accessed. Only one in-memory result
table with all properties can be built and any other result tables are not allowed.

The in-memory result table with all properties can be built using ‘INMEMORY=T’ as shown in the
following example.

Example 1-105 Creating an In-memory Result Table

As a prerequisite, ensure that the table M1_PRED_INFO that is used in this example already
exists. This table can be created using the SEM_APIS.GATHER_SPM_INFO subprogram.

BEGIN
SEM_APIS.BUILD_RESULT_TAB(
 rdf_graph_name =>'M1',
 pred_info_tabname =>'M1_PRED_INFO',
 pred_name =>NULL,
 options =>' INMEMORY=T ',
 degree =>2,
 network_owner =>'RDFUSER',
 network_name =>'NET1'
);
END;
/

If a set of properties to access for all queries is known, an in-memory SVP table with a subset
of all properties can be built by altering the SVP table built using the set as follows:

ALTER TABLE “MYNET#RDF_XT$SVP_M1+__SVP1” INMEMORY;

1.8.2.5 Metadata for Result Tables
You can use the RDF_SPM_INFO view to retrieve metadata information for the result tables
defined on an RDF graph.

Table 1-26 Predicate Information Table Columns

Column Name Type Description

TABLE_NAME VARCHAR2(128) Name of the SPM table.

COLUMN_NAME VARCHAR2(128) Name of a column in the SPM table: either
START_NODE_ID, or P<id(property)> or
R<id(property)>.

COLUMN_ID NUMBER Position of the column in the SPM table’s column
list.

HASVALUES NUMBER(1) Indicates if in addition to the numeric identifiers for
the values, their lexical values too are stored in the
SPM table.

MODEL_ID NUMBER Numeric identifier of the RDF graph.

MODEL_NAME VARCHAR2(128) Name of the RDF graph.

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 112 of 197

1.8.2.6 Utility Subprogram for Computing Per-Subject Cardinality Aggregates for
Individual Properties

You can use the SEM_APIS.GATHER_SPM_INFO procedure to create and populate a table to
store the per-subject cardinality information for each property in an RDF graph, based on its
use as predicate of triples.

The P_VALUE_ID column stores the numeric identifier corresponding to a property. For a
reversed property, P_VALUE_ID stores the negative value of the id for the property.

This property cardinality table has the structure as shown in the following table. If MAX_CNT > 1
for a given property, then that property is multi-valued, that is, for at least one of the subject
resources, this property has been used as predicate for two or more distinct triples (that share
the same subject and same predicate but has distinct objects).

Table 1-27 Predicate Information Table Columns

Column Name Type Description

P_VALUE_ID NUMBER The value id for this property. A negative value
indicates reversed property.

PRED_NAME VARCHAR2(4000) The lexical value for this property.

MIN_CNT NUMBER The minimum of the per-subject cardinalities for
this property.

MAX_CNT NUMBER The maximum of the per-subject cardinalities for
this property.

MED_CNT NUMBER The median of the per-subject cardinalities for this
property.

AVG_CNT NUMBER The average of the per-subject cardinalities for this
property.

TOT_CNT NUMBER The total number of triples that have this property
as predicate.

INCLUDE VARCHAR2(30) Not used.

For the sample RDF dataset (described in Types of Result Tables), the cardinality information
is described in the following table.

Table 1-28 Sample Cardinality Information in the Predicate Table

P_VALUE_ID PRED_NAME MIN_CN
T

MAX_C
NT

MED_C
NT

AVG_C
NT

TOT_CN
T

INCLUD
E

Id(:fname) :fname 1 1 … … 4 ...

Id(:lname) :lname 1 1 … … 4 ...

Id(:height) :height 1 1 … … 4 ...

Id(:email) :email 1 2 … … 4 ...

Id(:fatherOf) :fatherOf 1 2 … … 3 ...

Id(:motherOf) :motherOf 1 2 … … 3 ...

A second procedure, SEM_APIS.BUILD_RESULT_TAB, creates and populates star-pattern,
triple-pattern, and chain-pattern tables.

The following example illustrates creation of a set of result tables for an RDF graph with
SEM_APIS.GATHER_SPM_INFO and SEM_APIS.BUILD_RESULT_TAB. These result tables

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 113 of 197

are automatically used for SPARQL query execution. This example uses SEM_MATCH, but
SPARQL queries executed through other APIs, such as those supported for Apache Jena or
RDF server will also automatically use result tables.

Example 1-106 Creating Result Tables and Using the Tables in SPARQL Queries

SQL> set echo on pages 10000 numwidth 20 lines 200 long 10000
SQL> column s format a30
SQL> column fname format a5
SQL> column lname format a5
SQL> column height format a6
SQL> column email format a25
SQL> column nick format a10
SQL> column friend format a30
SQL> column state format a5

SQL> conn rdfuser/rdfuser
Connected.

SQL> -- create an RDF network
SQL> exec
sem_apis.create_rdf_network('tbs_rdf',network_owner=>'RDFUSER',network_name=>'
NET1');

PL/SQL procedure successfully completed.

SQL> --move the RDF_SPM$ table and indexes defined on it to the network's
tablespace
SQL> alter table NET1#RDF_SPM$ move tablespace tbs_rdf;
SQL> set serverout on;
SQL> begin
 2 for idx in (select index_name from sys.user_indexes where
table_name='NET1#RDF_SPM$') loop
 3 execute immediate 'alter index "' || idx.index_name || '" rebuild
tablespace TBS_RDF';
 4 sys.dbms_output.put_line('moved (rebuild) index: ' || idx.index_name);
 5 end loop;
 6 end;
 7 /
SQL> set serverout off;

SQL> -- create an RDF graph
SQL> exec
sem_apis.create_rdf_graph('M1',null,null,network_owner=>'RDFUSER',network_name
=>'NET1');

PL/SQL procedure successfully completed.

SQL> -- add some data: fname, lname, height, and nickName are single-valued;
email and friendOf are multi-valued
SQL> begin
 2 sem_apis.update_rdf_graph('M1',
 3 'PREFIX : <http://www.example.com#>
 4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
 5 INSERT DATA {
 6 :john :fname "John" ; :lname "Brown" ; :height 72

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 114 of 197

 7 ; :email "john@email-example.com", "johnnyB@email-example.com"
 8 ; :nickName "Johnny B"
 9 ; :friendOf :ann
 10 ; :address [:addrNum 20 ; :addrStreet "Elm
Street" ; :addrCityState [:addrCity "Boston" ; :addrState "MA"]] .
 11 :ann :fname "Ann" ; :lname "Green" ; :height 65
 12 ; :email "ann@email-example.com"
 13 ; :nickName "Annie"
 14 ; :friendOf :john, :bill
 15 ; :address [:addrNum 10 ; :addrStreet "Main
Street" ; :addrCityState [:addrCity "New York" ; :addrState "NY"]] .
 16 :bill :fname "Bill" ; :lname "Red" ; :height 70
 17 ; :email "bill@email-example.com"
 18 ; :nickName "Billy"
 19 ; :friendOf :ann, :jane
 20 ; :address [:addrNum 5 ; :addrStreet "Peachtree
Street" ; :addrCityState [:addrCity "Atlanta" ; :addrState "GA"]] .
 21 :jane :fname "Jane" ; :lname "Blue" ; :height 68
 22 ; :email "jane@email-example.com", "jane2@email-example.com"
 23 ; :friendOf :bill
 24 ; :address [:addrNum 101 ; :addrStreet "Maple
Street" ; :addrCityState [:addrCity "Chicago" ; :addrState "IL"]] .
 25 }'
 26 ,network_owner=>'RDFUSER'
 27 ,network_name=>'NET1');
 28 end;
 29 /

PL/SQL procedure successfully completed.

SQL> -- create a star-pattern table for single-valued
predicates :fname, :lname, :height
SQL> BEGIN
 2 SEM_APIS.BUILD_RESULT_TAB(
 3 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 4 , result_tab_name => 'fnm_lnm_hght'
 5 , rdf_graph_name => 'M1'
 6 , key_string => ' :fname :lname :height '
 7 , prefixes => ' PREFIX : <http://www.example.com#> '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL> -- check the star-pattern table
SQL> select * from "NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT" order by start_node_id;

 START_NODE_ID G8337314745347241189 P8337314745347241189
G7644445801044650266 P7644445801044650266 G4791477124431525340
P4791477124431525340
-------------------- -------------------- --------------------
-------------------- -------------------- --------------------

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 115 of 197

 1399946303865654932
2838435233532231409
5036507830384741776
7949294891880010615
 7024748068782994892
9071571320455459462
8802343394415720481
7603694794035016230
 8531245907959123227
50859040499294923
9011354822640550059
4318017261525689661
 8972322488425499169
3239737248730612593
6648986869806945928
2028730158517518732

4 rows selected.

SQL> -- create a chain-pattern table for :address/:addrCityState/:addrState
SQL> BEGIN
 2 SEM_APIS.BUILD_RESULT_TAB(
 3 query_pattern_type => SEM_APIS.SPM_TYPE_PCN
 4 , result_tab_name => 'addr_state'
 5 , rdf_graph_name => 'M1'
 6 , key_string => ' S :address :addrCityState :addrState '
 7 , prefixes => ' PREFIX : <http://www.example.com#> '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL> -- check the chain-pattern table content
SQL> -- Note: Since generated blank node labels may differ from run to run,
the 3rd and 5th column values may vary as well
SQL> select * from "NET1#RDF_XT$PCN_M1+__ADDR_STATE" order by start_node_id,
3, 5, 7;

START_NODE_ID G5055192271510902740 P5055192271510902740
G2282073771135796724 P2282073771135796724 G594560333771551504
P594560333771551504
-------------------- -------------------- --------------------
-------------------- -------------------- --------------------

1399946303865654932 6519232173603163724
2583525877732786353 2028557412112123936
7024748068782994892 5974521208853734660
3828178052943534859 7995579594576433205
8531245907959123227 7758805114187110754
6401534854183681859 5359878998404290171
8972322488425499169 875920943154203631

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 116 of 197

3729916732662692051 4933462079191011078

4 rows selected.

SQL> -- create triple-pattern tables for :email and :friendOf
SQL> -- :email
SQL> BEGIN
 2 SEM_APIS.BUILD_RESULT_TAB(
 3 query_pattern_type => SEM_APIS.SPM_TYPE_MVP
 4 , result_tab_name => null
 5 , rdf_graph_name => 'M1'
 6 , key_string => ' :email '
 7 , prefixes => ' PREFIX : <http://www.example.com#> '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL> -- check the triple-pattern table
SQL> select * from "NET1#RDF_XT$MVP_M1+_P2930492586059823454" order by
start_node_id;

 START_NODE_ID G2930492586059823454
P2930492586059823454

-------------------- --------------------

 1399946303865654932
6100245385739701229

 7024748068782994892
2096397932624357828

 7024748068782994892
6480436012276020283

 8531245907959123227
1846003049324830366

 8531245907959123227
7834835188342349976

 8972322488425499169
7251371240613573863

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 117 of 197

6 rows selected.

SQL> -- :friendOf
SQL> BEGIN
 2 SEM_APIS.BUILD_RESULT_TAB(
 3 query_pattern_type => SEM_APIS.SPM_TYPE_MVP
 4 , result_tab_name => null
 5 , rdf_graph_name => 'M1'
 6 , key_string => ' :friendOf '
 7 , prefixes => ' PREFIX : <http://www.example.com#> '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL> -- check the triple-pattern table
SQL> select * from "NET1#RDF_XT$MVP_M1+_P1285894645615718351" order by
start_node_id, 3;

 START_NODE_ID G1285894645615718351
P1285894645615718351

-------------------- --------------------

 1399946303865654932
7024748068782994892

 1399946303865654932
8972322488425499169

 7024748068782994892
1399946303865654932

 8531245907959123227
8972322488425499169

 8972322488425499169
1399946303865654932

 8972322488425499169
8531245907959123227

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 118 of 197

6 rows selected.

SQL> -- gather optimizer statistics on result auxiliary tables
SQL> begin
 2 sem_perf.analyze_aux_tables(
 3 model_name=>'M1',
 4 network_owner=>'RDFUSER',
 5 network_name=>'NET1');
 6 end;
 7 /

PL/SQL procedure successfully completed.

SQL> -- Execute a SPARQL query that uses result tables
SQL> SELECT s, fname, lname, height, email, nick, friend, state
 2 FROM TABLE(SEM_MATCH(
 3 'PREFIX : <http://www.example.com#>
 4 SELECT *
 5 WHERE {
 6 ?s :fname ?fname
 7 ; :lname ?lname
 8 ; :height ?height
 9 ; :email ?email
 10 ; :nickName ?nick
 11 ; :friendOf ?friend
 12 ; :address/:addrCityState/:addrState ?state
 13 }'
 14 ,sem_models('M1')
 15 ,null,null,null,null
 16 ,' '
 17 ,null,null
 18 ,'RDFUSER','NET1'))
 19 ORDER BY 1,2,3,4,5,6,7,8;

S FNAME LNAME HEIGHT EMAIL
NICK FRIEND
STATE

------------------------------ ----- ----- ------ -------------------------
---------- ------------------------------

http://www.example.com#ann Ann Green 65 ann@email-example.com
Annie http://www.example.com#bill
NY

http://www.example.com#ann Ann Green 65 ann@email-example.com
Annie http://www.example.com#john
NY

http://www.example.com#bill Bill Red 70 bill@email-example.com
Billy http://www.example.com#ann
GA

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 119 of 197

http://www.example.com#bill Bill Red 70 bill@email-example.com
Billy http://www.example.com#jane
GA

http://www.example.com#john John Brown 72 john@email-example.com
Johnny B http://www.example.com#ann
MA

http://www.example.com#john John Brown 72 johnnyB@email-example.com
Johnny B http://www.example.com#ann
MA

6 rows selected.

SQL> -- See the relevant portion of the SQL translation showing the result
table usage.
SQL> --
SQL> -- This SQL evaluates 9 triple patterns with only 4 joins
SQL> -- instead of the 8 joins that would normally be required
SQL> -- without result tables.
SQL> --
SQL> -- The star-pattern table is used for :fname, :lname, :height.
SQL> -- triple-pattern tables are used for :email and :friendOf.
SQL> -- RDFM_M1 (view of RDF_LINK$ for RDF graph M1) is used for :nickName.
SQL> -- The chain-pattern table is used for the sequence
SQL> -- :address/:addrCityState/:addrStat
SQL> SELECT sys.dbms_lob.substr(
 2 SEM_APIS.SPARQL_TO_SQL(
 3 'PREFIX : <http://www.example.com#>
 4 SELECT *
 5 WHERE {
 6 ?s :fname ?fname
 7 ; :lname ?lname
 8 ; :height ?height
 9 ; :email ?email
 10 ; :nickName ?nick
 11 ; :friendOf ?friend
 12 ; :address/:addrCityState/:addrState ?state
 13 }'
 14 ,sem_models('M1')
 15 ,null,null,null
 16 ,' '
 17 ,null,null
 18 ,'RDFUSER','NET1'), 1004, 3377) AS SQL_TRANS_PORTION
 19 FROM SYS.DUAL;

SQL_TRANS_PORTION

--
--
--
SELECT SVP0.START_NODE_ID AS S$RDFVID,
SVP0.P7644445801044650266 AS LNAME$RDFVID,

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 120 of 197

MVP1.P1285894645615718351 AS FRIEND$RDFVID,
T4.CANON_END_NODE_ID AS NICK$RDFVID,
PCN0.P594560333771551504 AS STATE$RDFVID,
SVP0.P4791477124431525340 AS HEIGHT$RDFVID,
MVP0.P2930492586059823454 AS EMAIL$RDFVID,
SVP0.P8337314745347241189 AS FNAME$RDFVID,
SVP0.START_NODE_ID AS BGP$1
FROM (
SELECT * FROM "RDFUSER".NET1#RDFM_M1) T4,
"RDFUSER"."NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT" SVP0,
"RDFUSER"."NET1#RDF_XT$PCN_M1+__ADDR_STATE" PCN0,
"RDFUSER"."NET1#RDF_XT$MVP_M1+_P2930492586059823454" MVP0,
"RDFUSER"."NET1#RDF_XT$MVP_M1+_P1285894645615718351" MVP1
WHERE SVP0.P8337314745347241189 IS NOT NULL AND
SVP0.P7644445801044650266 IS NOT NULL AND
SVP0.P4791477124431525340 IS NOT NULL AND
T4.P_VALUE_ID = 2558054308995111125 AND
1=1 AND
1=1 AND
1=1 AND
SVP0.START_NODE_ID = MVP0.START_NODE_ID AND
SVP0.START_NODE_ID = T4.START_NODE_ID AND
SVP0.START_NODE_ID = MVP1.START_NODE_ID AND
SVP0.START_NODE_ID = PCN0.START_NODE_ID AND
1=1

1 row selected.

Example 1-107 Including Lexical Values in Result Tables

Example 1-106

SQL> conn rdfuser/rdfuser

SQL> -- Drop and recreate the FNM_LNM_HGHT SVP table, with in-line lexical
values for the :fname and :height properties.
SQL> -- Check metadata for the new result table to verify that HASVALUES=1
for the two properties whose lexical values are in-lined.

SQL> exec sem_apis.drop_result_tab(sem_apis.SPM_TYPE_SVP, ' fnm_lnm_hght ',
'm1', network_owner=>'rdfuser', network_name=>'net1');

PL/SQL procedure successfully completed.

SQL>

SQL> BEGIN
 2 SEM_APIS.BUILD_RESULT_TAB(
 3 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 4 , result_tab_name => 'fnm_lnm_hght'
 5 , rdf_graph_name => 'M1'
 6 , key_string => ' S +:fname :lname +:height '

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 121 of 197

 7 , prefixes => ' PREFIX : <http://www.example.com#> '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL>
SQL> select * from net1#rdf_spm_info where table_name like
'%SVP%FNM_LNM_HGHT' order by table_name, column_id;

TABLE_NAME COLUMN_NAME
COLUMN_ID HASVALUES MODEL_ID
MODEL_NAME

-- --------------------
-------------------- -------------------- --------

NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT
START_NODE_ID 1 0 1
M1

NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT
P8337314745347241189 3 1 1
M1

NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT
P7644445801044650266 5 0 1
M1

NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT
P4791477124431525340 7 1 1
M1

4 rows selected.

SQL>
SQL> -- Drop and recreate the ADDR_STATE chain-pattern table, with in-line
lexical values for the :addrState property.
SQL> -- Check metadata for the new table to verify that HASVALUES=1 for
the :addrState property.

SQL> exec sem_apis.drop_result_tab(sem_apis.SPM_TYPE_PCN, ' addr_state ',
'm1', network_owner=>'rdfuser', network_name=>'net1');

PL/SQL procedure successfully completed.

SQL>
SQL> BEGIN
 2 SEM_APIS.BUILD_RESULT_TAB(
 3 query_pattern_type => SEM_APIS.SPM_TYPE_PCN

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 122 of 197

 4 , result_tab_name => 'addr_state'
 5 , rdf_graph_name => 'M1'
 6 , key_string => ' S :address :addrCityState +:addrState '
 7 , prefixes => ' PREFIX : <http://www.example.com#> '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL>
SQL> select * from net1#rdf_spm_info where table_name like '%PCN%ADDR_STATE'
order by table_name, column_id;

TABLE_NAME COLUMN_NAME
COLUMN_ID HASVALUES MODEL_ID
MODEL_NAME

-- --------------------
-------------------- -------------------- --------

NET1#RDF_XT$PCN_M1+__ADDR_STATE
START_NODE_ID 1 0 1
M1

NET1#RDF_XT$PCN_M1+__ADDR_STATE
P5055192271510902740 3 0 1
M1

NET1#RDF_XT$PCN_M1+__ADDR_STATE
P2282073771135796724 5 0 1
M1

NET1#RDF_XT$PCN_M1+__ADDR_STATE
P594560333771551504 7 1 1
M1

4 rows selected.

SQL>
SQL> -- Drop and recreate the triple-pattern table for the :email property
(id: 2930492586059823454), with in-line lexical values for the :email
property.
SQL> -- Check metadata for the new table to verify that HASVALUES=1 for
the :email property.

SQL> exec sem_apis.drop_result_tab(sem_apis.SPM_TYPE_MVP, '<http://
www.example.com#email>', 'm1', network_owner=>'rdfuser',
network_name=>'net1');

PL/SQL procedure successfully completed.

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 123 of 197

SQL> BEGIN
 2 SEM_APIS.BUILD_RESULT_TAB(
 3 query_pattern_type => SEM_APIS.SPM_TYPE_MVP
 4 , result_tab_name => null
 5 , rdf_graph_name => 'M1'
 6 , key_string => ' +:email '
 7 , prefixes => ' PREFIX : <http://www.example.com#> '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL>
SQL> select * from net1#rdf_spm_info where table_name like
'%MVP%P2930492586059823454' order by table_name, column_id;

TABLE_NAME COLUMN_NAME
COLUMN_ID HASVALUES MODEL_ID
MODEL_NAME

-- --------------------
-------------------- -------------------- --------

NET1#RDF_XT$MVP_M1+_P2930492586059823454
START_NODE_ID 1 0 1
M1

NET1#RDF_XT$MVP_M1+_P2930492586059823454
P2930492586059823454 3 1 1
M1

2 rows selected.

SQL>
SQL> -- gather optimizer statistics on result auxiliary tables
SQL> begin
 2 sem_perf.analyze_aux_tables(
 3 model_name=>'M1',
 4 network_owner=>'RDFUSER',
 5 network_name=>'NET1');
 6 end;
 7 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Execute a SPARQL query that uses result tables
SQL> SELECT s, fname, lname, height, email, nick, friend, state
 2 FROM TABLE(SEM_MATCH(

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 124 of 197

 3 'PREFIX : <http://www.example.com#>
 4 SELECT *
 5 WHERE {
 6 ?s :fname ?fname
 7 ; :lname ?lname
 8 ; :height ?height
 9 ; :email ?email
 10 ; :nickName ?nick
 11 ; :friendOf ?friend
 12 ; :address/:addrCityState/:addrState ?state
 13 }'
 14 ,sem_models('M1')
 15 ,null,null,null,null
 16 ,' '
 17 ,null,null
 18 ,'RDFUSER','NET1'))
 19 ORDER BY 1,2,3,4,5,6,7,8;

S FNAME LNAME HEIGHT EMAIL
NICK FRIEND
STATE

------------------------------ ----- ----- ------ -------------------------
---------- ------------------------------

http://www.example.com#ann Ann Green 65 ann@email-example.com
Annie http://www.example.com#bill
NY

http://www.example.com#ann Ann Green 65 ann@email-example.com
Annie http://www.example.com#john
NY

http://www.example.com#bill Bill Red 70 bill@email-example.com
Billy http://www.example.com#ann
GA

http://www.example.com#bill Bill Red 70 bill@email-example.com
Billy http://www.example.com#jane
GA

http://www.example.com#john John Brown 72 john@email-example.com
Johnny B http://www.example.com#ann
MA

http://www.example.com#john John Brown 72 johnnyB@email-example.com
Johnny B http://www.example.com#ann
MA

6 rows selected.

SQL>
SQL> -- See the relevant portion of the SQL translation showing SPM table
usage including in-line lexical values.

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 125 of 197

SQL> --
SQL> -- The number of joins with the RDF_VALUE$ table (for looking up lexical
values) goes down from 8 to 4
SQL> -- because out of the 8 variables being projected, 4 -- fname, height,
email, state -- appear
SQL> -- with properties whose lexical values are present in-line in the
available result tables.
SQL> --
SQL> SELECT SEM_APIS.SPARQL_TO_SQL(
 2 'PREFIX : <http://www.example.com#>
 3 SELECT *
 4 WHERE {
 5 ?s :fname ?fname
 6 ; :lname ?lname
 7 ; :height ?height
 8 ; :email ?email
 9 ; :nickName ?nick
 10 ; :friendOf ?friend
 11 ; :address/:addrCityState/:addrState ?state
 12 }'
 13 ,sem_models('M1')
 14 ,null,null,null
 15 ,' '
 16 ,null,null
 17 ,'RDFUSER','NET1')
 18 FROM SYS.DUAL;

SEM_APIS.SPARQL_TO_SQL('PREFIX:<HTTP://WWW.EXAMPLE.COM#>SELECT*WHERE{?S:FNAME?
FN

--
--

SELECT * FROM
(

SELECT … <omitted> …
FROM (SELECT … <omitted>
…

FROM
(

SELECT * FROM "RDFUSER".NET1#RDFM_M1)
T4,

"RDFUSER"."NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT"
SVP0,

"RDFUSER"."NET1#RDF_XT$PCN_M1+__ADDR_STATE"
PCN0,

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 126 of 197

"RDFUSER"."NET1#RDF_XT$MVP_M1+_P2930492586059823454"
MVP0,

"RDFUSER"."NET1#RDF_XT$MVP_M1+_P1285894645615718351"
MVP1

WHERE 1=1
AND

1=1
AND

1=1
AND

1=1
AND

SVP0.P8337314745347241189 IS NOT NULL
AND

SVP0.P7644445801044650266 IS NOT NULL
AND

SVP0.P4791477124431525340 IS NOT NULL
AND

T4.P_VALUE_ID = 2558054308995111125
AND

1=1
AND

1=1
AND

1=1
AND

SVP0.START_NODE_ID = MVP0.START_NODE_ID
AND

SVP0.START_NODE_ID = T4.START_NODE_ID
AND

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 127 of 197

SVP0.START_NODE_ID = MVP1.START_NODE_ID
AND

SVP0.START_NODE_ID = PCN0.START_NODE_ID
AND

1=1) R, "RDFUSER".NET1#RDF_VALUE$ V0, "RDFUSER".NET1#RDF_VALUE$ V1,
"RDFUSER".NET1#RDF_VALUE$ V2, "RDFUSER".NET1#RDF_VALUE$
V3

WHERE (1=1) AND (R.S$RDFVID = V0.VALUE_ID) AND (R.LNAME$RDFVID =
V1.VALUE_ID) AND (R.FRIEND$RDFVID = V2.VALUE_ID) AND (R.NICK$RDFVID =
V3.VALUE_ID)

) WHERE
(1=1)

1 row selected.

SQL>
SQL> -- In addition to value projection. In-line lexical values
SQL> -- can be used to evaluate FILTER conditions.
SQL> -- The value for ?height can be taken directly from the
SQL> -- SVP table in this case.
SQL> SELECT s, height
 2 FROM TABLE(SEM_MATCH(
 3 'PREFIX : <http://www.example.com#>
 4 SELECT ?s ?height
 5 WHERE {
 6 ?s :fname ?fname
 7 ; :lname ?lname
 8 ; :height ?height
 9 FILTER (?height >= 72)
 10 }'
 11 ,sem_models('M1')
 12 ,null,null,null,null
 13 ,' '
 14 ,null,null
 15 ,'RDFUSER','NET1'))
 16 ORDER BY 1,2;

S
HEIGHT

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 128 of 197

http://www.example.com#john
72

1 row selected.

SQL>
SQL> -- The SQL translation shows in-line lexical value usage for ?height >=
72.
SQL> SELECT SEM_APIS.SPARQL_TO_SQL(
 2 'PREFIX : <http://www.example.com#>
 3 SELECT ?s ?height
 4 WHERE {
 5 ?s :fname ?fname
 6 ; :lname ?lname
 7 ; :height ?height
 8 FILTER (?height >= 72)
 9 }'
 10 ,sem_models('M1')
 11 ,null,null,null
 12 ,' '
 13 ,null,null
 14 ,'RDFUSER','NET1') AS SQL_TRANS
 15 FROM SYS.DUAL;

SQL_TRANS

--
--

SELECT * FROM
(

SELECT … <omitted>
…

FROM (SELECT …<omitted>
…

FROM "RDFUSER"."NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT"
SVP0

WHERE 1=1
AND

SVP0.P8337314745347241189 IS NOT NULL
AND

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 129 of 197

SVP0.P7644445801044650266 IS NOT NULL
AND

SVP0.P4791477124431525340 IS NOT NULL
AND

1=1
AND

1=1
AND

(SVP0.P4791477124431525340_ORDER_NUM >= to_number(72))) R,
"RDFUSER".NET1#RDF_VALUE$
V0

WHERE (1=1) AND (R.S$RDFVID =
V0.VALUE_ID)

) WHERE
(1=1)

1 row selected.

SQL>

Example 1-108 Creating Secondary Indexes on Result Auxiliary Tables

The following example illustrates creation of secondary indexes on result auxiliary tables. Note
that this example follows Example 1-106 and Example 1-107.

SQL>
SQL> conn rdfuser/rdfuser
Connected.
SQL>
SQL> -- create index on the ORDER_NUM (VN) component of the lexical value of
the :height property.
SQL> -- This component is stored as a column in the FNM_LNM_HGHT SVP table.
SQL> -- It holds the numeric value for RDF literals of numeric type.
SQL> -- Since the :height property is the 3rd property in the SVP table, it
is referred to using 3VN in the key_string argument below.

SQL> BEGIN
 2 SEM_APIS.CREATE_INDEX_ON_RESULT_TAB(

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 130 of 197

 3 index_name => 'height_idx'
 4 , query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 5 , result_tab_name => 'fnm_lnm_hght'
 6 , rdf_graph_name => 'M1'
 7 , key_string => ' 3VN S '
 8 , degree => 2
 9 , network_owner => 'RDFUSER'
 10 , network_name => 'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- EXPLAIN PLAN for the SPARQL query above involving "height >= 72"
shows use of this index for access.
SQL> EXPLAIN PLAN FOR
 2 SELECT s, height
 3 FROM TABLE(SEM_MATCH(
 4 'PREFIX : <http://www.example.com#>
 5 SELECT ?s ?height
 6 WHERE {
 7 ?s :fname ?fname
 8 ; :lname ?lname
 9 ; :height ?height
 10 FILTER (?height >= 72)
 11 }'
 12 ,sem_models('M1')
 13 ,null,null,null,null
 14 ,' '
 15 ,null,null
 16 ,'RDFUSER','NET1'))
 17 ORDER BY 1,2;

Explained.

SQL>
SQL> select plan_table_output from
table(dbms_xplan.display('plan_table',null,'basic +predicate'));

PLAN_TABLE_OUTPUT

--
--
--
Plan hash value:
3046664063

--

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 131 of 197

| Id | Operation |
Name
|

--

| 0 | SELECT STATEMENT
|
|

| 1 | SORT ORDER BY
|
|

| 2 | NESTED LOOPS
|
|

| 3 | NESTED LOOPS
|
|

| 4 | VIEW
|
|

|* 5 | TABLE ACCESS BY INDEX ROWID BATCHED|
NET1#RDF_XT$SVP_M1+__FNM_LNM_HGHT
|

|* 6 | INDEX RANGE SCAN |
HEIGHT_IDX
|

|* 7 | INDEX UNIQUE SCAN |
NET1#C_PK_VID
|

| 8 | TABLE ACCESS BY INDEX ROWID |
NET1#RDF_VALUE$
|

--

Predicate Information (identified by operation
id):

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 132 of 197

 5 - filter("SVP0"."P8337314745347241189" IS NOT NULL
AND

 "SVP0"."P7644445801044650266" IS NOT NULL AND
"SVP0"."P4791477124431525340"

 IS NOT
NULL)

 6 - access("SVP0"."P4791477124431525340_ORDER_NUM">=72
AND

 "SVP0"."START_NODE_ID">0 AND
"SVP0"."P4791477124431525340_ORDER_NUM" IS
NOT

NULL)

filter("SVP0"."START_NODE_ID">0)

 7 -
access("R"."S$RDFVID"="V0"."VALUE_ID")

27 rows selected.

SQL>
SQL> select column_name, column_position from all_ind_columns where
index_name='HEIGHT_IDX' order by 2;

COLUMN_NAME COLUMN_POSITION
------------------------------ --------------------
P4791477124431525340_ORDER_NUM 1
START_NODE_ID 2

1.8.2.7 Performing DML Operations on RDF Graphs with Result Tables
All star-pattern, triple-pattern, and chain-pattern tables are automatically maintained for DML
operations.

• Delete: For delete operations, corresponding rows from the triple-pattern table are deleted.
In star-pattern tables, the corresponding column value is set to null including value
columns. In chain-pattern tables, rows that use the deleted triple are deleted to reflect the
removal of a link in the chain.

• Insert: For insert operations, a new subject row or the corresponding column value is
inserted into the triple-pattern table if it does not exist including value columns. For star-

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 133 of 197

pattern and chain-pattern tables, a new subject row or the column value is inserted if the
existing value is null. If a different value is inserted than the existing value, an error is
raised for constraint violation for star-pattern table.

1.8.2.8 Performing Bulk Load Operations on RDF Graphs with Result Tables
When bulk-loading RDF data into an RDF graph, if any result tables are present for the graph,
those will be truncated before loading the data and re-populated after the loading has been
completed.

1.8.2.9 Gathering Statistics on Result Tables
Having up-to-date statistics on result tables is critical for good query performance.

You can call the SEM_PERF.ANALYZE_AUX_TABLES procedure to gather statistics for your
result tables.

1.8.3 SPARQL Query Options for Result Tables
SPARQL queries will automatically use result tables if they are present.

An existing SPARQL workload does not need to change to take advantage of result tables.
However, several new query options and optimizer hints can be used to fine-tune result table
usage.

The following query options can be used in the options argument of SEM_MATCH or in the
SEM_FS_NS prefix used by support for Apache Jena and RDF Server.

• COST_BASED_SPM_OPT – usage of result tables is determined by the query execution plan
cost

• DISABLE_SPM_OPT – do not use result tables (star-pattern, triple-pattern, and chain-pattern)

• DISABLE_SVP_OPT – do not use star-pattern tables

• DISABLE_PCN_OPT – do not use chain-pattern tables

• DISABLE_MVP_OPT – do not use triple-pattern tables

• DISABLE_SPM_VALUES_OPT – do not use in-line lexical values in result tables for value
projection or filter evaluation (star-pattern, triple-pattern, and chain-pattern)

• DISABLE_SPM_VALUE_PROJ_OPT – do not use in-line lexical values in result tables for value
projection (star-pattern, triple-pattern, and chain-pattern)

• MIN_SVP_CLUSTER_SIZE(n) – only use the star-pattern table for star pattern clusters that
reference at least n properties contained in the star-pattern table (n = 1 by default)

• PREFER_PCN=T – when a triple pattern can be evaluated using either a star-pattern or chain-
pattern table, choose the chain-pattern table (the default behavior is to use the star-pattern
table)

The following query optimizer hints can be used in HINT0 hint strings, the options argument of
SEM_MATCH, and the SEM_FS_NS prefix used by support for Apache Jena and RDF server.

• ALL_SPM_HASH / ALL_SPM_NL – use hash / nested-loop join for all joins with result tables
(star-pattern, triple-pattern, and chain-pattern)

• ALL_SVP_HASH / ALL_SVP_NL – use hash / nested-loop join for all joins with star-pattern
tables

Chapter 1
Speeding up Query Execution with Result Tables

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 134 of 197

• ALL_MVP_HASH / ALL_MVP_NL – use hash / nested-loop join for all joins with triple-pattern
tables

• ALL_PCN_HASH / ALL_PCN_NL – use hash / nested-loop join for all joins with chain-pattern
tables

1.8.4 Special Considerations when Using Result Tables
This section describes a few limitations to be considered when using result tables.

• Result tables are supported for single RDF graphs and RDF graph collections. Inferred
graphs are not supported.

• Result tables are not supported on RDF networks that are using Oracle Label Security.

• Flashback queries are not supported with result tables.

• An RDF graph with result tables cannot be used as the destination RDF graph in a
SEM_APIS.MERGE_RDF_GRAPHS operation.

• SPARQL queries that use GeoSPARQL functions or Oracle Text functions do not utilize
result tables.

• Evaluation of + and * property path expressions does not utilize result tables.

• Result tables are not supported for SEM_APIS.APPEND_SEM_NETWORK_DATA,
SEM_APIS.MOVE_SEM_NETWORK_DATA or SEM_APIS.RESTORE_SEM_NETWORK_DATA operations.

1.9 Using the SEM_APIS.SPARQL_TO_SQL Function to Query
RDF Data

You can use the SEM_APIS.SPARQL_TO_SQL function as an alternative to the SEM_MATCH
table function to query RDF data.

Note

The SEM_APIS.SPARQL_TO_SQL function is supported only if Oracle JVM is
enabled on your Oracle Autonomous AI Database Serverless deployments. To enable
Oracle JVM, see Use Oracle Java in Using Oracle Autonomous AI Database
Serverless for more information.

The SEM_APIS.SPARQL_TO_SQL function is provided as an alternative to the SEM_MATCH
table function. It can be used by application developers to obtain the SQL translation for a
SPARQL query. This is the same SQL translation that would be executed by SEM_MATCH.
The resulting SQL translation can then be executed in the same way as any other SQL string
(for example, with EXECUTE IMMEDIATE in PL/SQL applications or with JDBC in Java
applications).

The first (sparql_query) parameter to SEM_APIS.SPARQL_TO_SQL specifies a SPARQL
query string and corresponds to the query argument of SEM_MATCH. In this case, however,
sparql_query is of type CLOB, which allows query strings longer than 4000 bytes (or 32K
bytes with long VARCHAR enabled). All other parameters are exactly equivalent to the same
arguments of SEM_MATCH (described in Using the SEM_MATCH Table Function to Query
RDF Data). The SQL query string returned by SEM_APIS.SPARQL_TO_SQL will produce the
same return columns as an execution of SEM_MATCH with the same arguments.

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 135 of 197

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

The following PL/SQL fragment is an example of using the SEM_APIS.SPARQL_TO_SQL
function.

DECLARE
 c sys_refcursor;
 sparql_stmt clob;
 sql_stmt clob;
 x_value varchar2(4000);
BEGIN
 sparql_stmt :=
 'PREFIX : <http://www.example.org/family/>
 SELECT ?x
 WHERE {
 ?x :grandParentOf ?y .
 ?x rdf:type :Male
 }';

 sql_stmt := sem_apis.sparql_to_sql(
 sparql_stmt,
 sem_models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,
 ' PLUS_RDFT=VC ', null, null,
 'RDFUSER', 'NET1');

 open c for 'select x$rdfterm from(' || sql_stmt || ')';
 loop
 fetch c into x_value;
 exit when c%NOTFOUND;

 dbms_output.put_line('x_value: ' || x_value);
 end loop;
 close c;

END;
/

• Using Bind Variables with SEM_APIS.SPARQL_TO_SQL

• SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared

1.9.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL
The SEM_APIS.SPARQL_TO_SQL function allows the use of PL/SQL and JDBC bind
variables. This is possible because the SQL translation returned from
SEM_APIS.SPARQL_TO_SQL does not involve an ANYTYPE table function invocation. The
basic strategy is to transform simple SPARQL BIND clauses into either JDBC or PL/SQL bind
variables when the USE_BIND_VAR=PLSQL or USE_BIND_VAR=JDBC query option is specified. A
simple SPARQL BIND clause is one with the form BIND (<constant> AS ?var).

With the bind variable option, the SQL translation will contain two bind variables for each
transformed SPARQL query variable: one for the value ID, and one for the RDF term string. An
RDF term value can be substituted for a SPARQL query variable by specifying the value ID
(from RDF_VALUE$ table) as the first bind value and the RDF term string as the second bind
value. The value ID for a bound-in RDF term is required for performance reasons. The typical

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 136 of 197

workflow would be to look up the value ID for an RDF term from the RDF_VALUE$ table (or
with SEM_APIS.RES2VID) and then bind the ID and RDF term into the translated SQL.

Multiple query variables can be transformed into bind variables in a single query. In such
cases, bind variables in the SQL translation will appear in the same order as the SPARQL
BIND clauses appear in the SPARQL query string. That is, the (id, term) pair for the first BIND
clause should be bound first, and the (id, term) pair for the second BIND clause should be
bound second.

The following example shows the use of bind variables for SEM_APIS.SPARQL_TO_SQL from
a PL/SQL block. A dummy bind variable ?n is declared..

DECLARE
 sparql_stmt clob;
 sql_stmt clob;
 cur sys_refcursor;
 vid number;
 term varchar2(4000);
 c_val varchar2(4000);
BEGIN
 -- Add a dummy bind clause in the SPARQL statement
 sparql_stmt := 'PREFIX : <http://www.example.org/family/>
 SELECT ?c WHERE {
 BIND("" as ?s)
 ?s :parentOf ?c }';
 -- Get the SQL translation for SPARQL statement
 sql_stmt := sem_apis.sparql_to_sql(
 sparql_stmt,
 sem_models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,' USE_BIND_VAR=PLSQL PLUS_RDFT=VC ', null, null,
 'RDFUSER', 'NET1');

 -- Execute with <http://www.example.org/family/Martha>
 term := '<http://www.example.org/family/Martha>';
 vid := sem_apis.res2vid('RDFUSER.NET1#RDF_VALUE$',term);

 dbms_output.put_line(chr(10)||'?s='||term);
 open cur for 'select c$rdfterm from('|| sql_stmt || ')' using vid,term;
 loop
 fetch cur into c_val;
 exit when cur%NOTFOUND;
 dbms_output.put_line('|-->?c='||c_val);
 end loop;
 close cur;

 -- Execute with <http://www.example.org/family/Sammy>
 term := '<http://www.example.org/family/Sammy>';
 vid := sem_apis.res2vid('RDFUSER.NET1#RDF_VALUE$',term);

 dbms_output.put_line(chr(10)||'?s='||term);
 open cur for 'select c$rdfterm from('|| sql_stmt || ')' using vid,term;
 loop
 fetch cur into c_val;
 exit when cur%NOTFOUND;
 dbms_output.put_line('|-->?c='||c_val);

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 137 of 197

 end loop;
 close cur;

END;
/

The following example shows the use of bind variables from Java for
SEM_APIS.SPARQL_TO_SQL. In this case, the hint USE_BIND_VAR=JDBC is used.

public static void sparqlToSqlTest() {

 try {
 // Get connection
 Connection conn=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:orcl","testuser","testuser");

 String sparqlStmt =
 "PREFIX : http://www.example.org/family/ \n" +
 "SELECT ?c WHERE { \n" +
 " BIND(\"\" as ?s) \n" +
 " ?s :parentOf ?c \n" +
 "}";

 // Get SQL translation of SPARQL statement
 // through sem_apis.sparql_to_sql
 OracleCallableStatement ocs =
(OracleCallableStatement)conn.prepareCall(
 "begin" +
 " ? := " +
 " sem_apis.sparql_to_sql('" +
 " "+sparqlStmt+"'," +
 " sem_models('family')," +
 " SEM_Rulebases('RDFS','family_rb')," +
 " null,null," +
 " ' USE_BIND_VAR=JDBC PLUS_RDFT=VC " +
 " ',null,null,'RDFUSER','NET1');" +
 "end;");
 ocs.registerOutParameter(1,Types.VARCHAR);
 ocs.execute();
 String sqlStmt = ocs.getString(1);
 ocs.close();

 // Set up statement to look up value ids
 OracleCallableStatement ocsVid =
(OracleCallableStatement)conn.prepareCall(
 "begin" +
 " ? := sem_apis.res2vid(?,?);" +
 "end;");

 // Execute SQL setting values for a bind variable
 PreparedStatement stmt=conn.prepareStatement(sqlStmt);

 // Look up value id for first value
 long valueId = 0;

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 138 of 197

 String term = "<http://www.example.org/family/Martha>";
 ocsVid.registerOutParameter(1,Types.NUMERIC);
 ocsVid.setString(2,"RDFUSER.NET1#RDF_VALUE$");
 ocsVid.setString(3,term);
 ocsVid.execute();
 valueId = ocsVid.getLong(1);

 stmt.setLong(1, valueId);
 stmt.setString(2, term);
 ResultSet rs=stmt.executeQuery();

 // Print results
 System.out.println("\n?s="+term);
 while(rs.next()) {
 System.out.println("|-->?c=" + rs.getString("c$rdfterm"));
 }
 rs.close();

 // Execute the same query for a different URI
 // Look up value id for next value
 valueId = 0;
 term = "<http://www.example.org/family/Sammy>";
 ocsVid.registerOutParameter(1,Types.NUMERIC);
 ocsVid.setString(2,"RDFUSER.NET1#RDF_VALUE$");
 ocsVid.setString(3,term);
 ocsVid.execute();
 valueId = ocsVid.getLong(1);

 stmt.setLong(1, valueId);
 stmt.setString(2, term);
 rs=stmt.executeQuery();

 // Print results
 System.out.println("\n?s="+term);
 while(rs.next()) {
 System.out.println("|-->?c=" + rs.getString("c$rdfterm"));
 }
 rs.close();

 stmt.close();
 ocsVid.close();
 conn.close();

 } catch (SQLException e) {
 e.printStackTrace();
 }
}

1.9.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared
The SEM_APIS.SPARQL_TO_SQL function avoids some limitations that are inherent in the
SEM_MATCH table function due to its use of the rewritable table function interface.
Specifically, SEM_APIS.SPARQL_TO_SQL adds the following capabilities.

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 139 of 197

• SPARQL query string arguments larger than 4000 bytes (32K bytes with long varchar
support) can be used.

• The plain SQL returned from SEM_APIS.SPARQL_TO_SQL can be executed against
read-only databases.

• The plain SQL returned from SEM_APIS.SPARQL_TO_SQL can support PL/SQL and
JDBC bind variables.

SEM_MATCH, however, provides some unique capabilities that are not possible with
SEM_APIS.SPARQL_TO_SQL..

• Support for projection optimization: If only the VAR$RDFVID column of a projected variable
is selected from the SEM_MATCH invocation, the RDF_VALUE$ join for this variable will
be avoided.

• Support for advanced features that require the procedural start-fetch-close table function
execution: SERVICE_JPDWN=T and OVERLOADED_NL=T options with SPARQL SERVICE.

• The ability to execute queries interactively with tools like SQL*Plus.

1.10 Using the SEM_APIS.GET_SQL Function and SEM_SQL
SQL Macro to Query RDF Data

You can use the SEM_APIS.GET_SQL function as an alternative to the SEM_MATCH table
function to query RDF data.

It can be used by application developers to obtain the SQL translation for a SPARQL query.
The resulting SQL translation can then be executed using SEM_SQL SQL Macro. The
SEM_APIS.GET_SQL has exactly the same signature as SEM_APIS.SPARQL_TO_SQL
function.

The following PL/SQL fragment is an example of using the SEM_APIS.GET_SQL function and
SEM_SQL SQL Macro:

SQL> EXECUTE SEM_APIS.GET_SQL('SELECT ?s ?o { ?s <http://www.w3.org/
1999/02/22-rdf-syntax-ns#type> ?o }',
sem_models('m1'),null,null,null,'
',null,null,network_owner=>'RDFUSER',network_name=>'MYNET');

PL/SQL procedure successfully completed.

SQL> SELECT count(s), count(o) FROM SEM_SQL();
 COUNT(S) COUNT(O)
-------------------- --------------------
 3 3
1 row selected.

SQL> SELECT * FROM SEM_SQL() ORDER BY s,o;
S S$RDFVID
------------------------------ --------------------
S$_PREFIX S$_SUFFIX S$RDFVTYP
------------------------------ ------------------------------ ----------
S$RDFCLOB S$RDFLTYP S$RDFLANG
-------------------- -- ----------
O O$RDFVID
------------------------------ --------------------
O$_PREFIX O$_SUFFIX O$RDFVTYP

Chapter 1
Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 140 of 197

------------------------------ ------------------------------ ----------
O$RDFCLOB O$RDFLTYP O$RDFLANG
-------------------- -- ----------
 SEM$ROWNUM

John 4802682235912431956
John URI

OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1
Matt 5972784495178428863
Matt URI

OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1
Sue 8947116472173989398
Sue URI

OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1

3 rows selected.

Application developers can utilize SEM_SQL SQL Macro to run any translated query stored in
some other tables using RDF$S2S_SQL$ table and SEM_APIS.SEM_SQL_COMPILE to compile
the SQL in the table as shown in the following example. This will save query translation time
from SPARQL to SQL. Note that before using SEM_SQL for the first time, you must execute
SEM_APIS.CREATE_SEM_SQL.

SQL> CREATE TABLE sql_tab(id int, s2s_sql clob);

Table created.

SQL> DECLARE
 2 sql_stmt CLOB;
 3 BEGIN
 4 sql_stmt := sem_apis.SPARQL_TO_SQL('SELECT ?s ?o { ?s <http://
www.w3.org/1999/02/22-rdf-syntax-ns#type> ?o }',
 sem_models('m1'),null,null,null,'
',null,null,network_owner=>'RDFUSER2',network_name=>'MYNET');
 5 EXECUTE IMMEDIATE 'INSERT INTO sql_tab VALUES (1, :1)' USING sql_stmt;
 6
 7 sql_stmt := SEM_APIS.SPARQL_TO_SQL('SELECT ?s ?p ?o { ?s ?p ?o }',

sem_models('m1'),null,null,null,null,null,null,network_owner=>'RDFUSER2',netwo
rk_name=>'MYNET');
 8 EXECUTE IMMEDIATE 'INSERT INTO sql_tab VALUES (2, :1)' USING sql_stmt;
 9 EXECUTE IMMEDIATE 'commit';
 10 END;
 11 /

PL/SQL procedure successfully completed.

Chapter 1
Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 141 of 197

SQL> truncate table RDF$S2S_SQL$;

Table truncated.

SQL> INSERT INTO RDF$S2S_SQL$ SELECT s2s_sql FROM sql_tab WHERE id=1;

1 row created.

SQL> EXEC SEM_APIS.SEM_SQL_COMPILE;

PL/SQL procedure successfully completed.

SQL> SELECT count(s), count(o) FROM sem_sql();
 COUNT(S) COUNT(O)
-------------------- --------------------
 3 3
1 row selected.

SQL> SELECT * FROM sem_sql() ORDER BY s,o;
S S$RDFVID
------------------------------ --------------------
S$_PREFIX S$_SUFFIX S$RDFVTYP
------------------------------ ------------------------------ ----------
S$RDFCLOB S$RDFLTYP S$RDFLANG
-------------------- -- ----------
O O$RDFVID
------------------------------ --------------------
O$_PREFIX O$_SUFFIX O$RDFVTYP
------------------------------ ------------------------------ ----------
O$RDFCLOB O$RDFLTYP O$RDFLANG
-------------------- -- ----------
 SEM$ROWNUM

John 4802682235912431956
John URI
OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1
Matt 5972784495178428863
Matt URI
OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1
Sue 8947116472173989398
Sue URI
OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1

3 rows selected.

SQL> TRUNCATE TABLE RDF$S2S_SQL$;

Table truncated.

Chapter 1
Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 142 of 197

SQL> INSERT INTO RDF$S2S_SQL$ SELECT s2s_sql FROM sql_tab where id=2;

1 row created.

SQL> EXEC sem_apis.sem_sql_compile;
PL/SQL procedure successfully completed.

SQL> SELECT count(*) from sem_sql();

 COUNT(*)

 26
1 row selected.

SQL> SELECT * FROM sem_sql() ORDER BY s,p,o;
S S$RDFVID
------------------------------ --------------------
S$_PREFIX S$_SUFFIX S$RDFVTYP
------------------------------ ------------------------------ ----------
S$RDFCLOB S$RDFLTYP S$RDFLANG
-------------------- -- ----------
P P$RDFVID
------------------------------ --------------------
P$_PREFIX P$_SUFFIX P$RDFVTYP
------------------------------ ------------------------------ ----------
P$RDFCLOB P$RDFLTYP P$RDFLANG
-------------------- -- ----------
O O$RDFVID
------------------------------ --------------------
O$_PREFIX O$_SUFFIX O$RDFVTYP
------------------------------ ------------------------------ ----------
O$RDFCLOB O$RDFLTYP O$RDFLANG
-------------------- -- ----------
 SEM$ROWNUM

John 4802682235912431956
John URI
age 7369467453923552448
age URI
35 9085530268529116130
35 LIT
 http://www.w3.org/2001/XMLSchema#decimal
 1
John 4802682235912431956
John URI
email 6480734238761529200
email URI
john2@oracle.com 5315621098565335765
john2@oracle.com LIT
 1
John 4802682235912431956
John URI
foaf 2289371774016051690
foaf URI
Matt 5972784495178428863
Matt URI

Chapter 1
Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 143 of 197

 1
John 4802682235912431956
John URI
http://www.w3.org/1999/02/22-r 834132227519661324
df-syntax-ns#type
http://www.w3.org/1999/02/22-r type URI
df-syntax-ns#
OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1
John 4802682235912431956
John URI
mbox 5760688889368728142
mbox URI
john@oracle.com 1322012223731379319
john@oracle.com LIT
 1
John 4802682235912431956
John URI
name 6027014909707307188
name URI
John Doe 3287391926372438447
John Doe LIT
 1
John 4802682235912431956
John URI
nick 4608123542649301902
nick URI
JD 8942401707893765892
JD LIT
 1
Matt 5972784495178428863
Matt URI

age 7369467453923552448
age URI

40 1809238195348668799
40 LIT
 http://www.w3.org/2001/XMLSchema#decimal
 1
Matt 5972784495178428863
Matt URI
email 6480734238761529200
email URI
matt2@oracle.com 5816699135852471804
matt2@oracle.com LIT
 1
Matt 5972784495178428863
Matt URI
foaf 2289371774016051690
foaf URI
Su 7425194847458329079
Su URI
 1
Matt 5972784495178428863

Chapter 1
Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 144 of 197

Matt URI
http://www.w3.org/1999/02/22-r 834132227519661324
df-syntax-ns#type
http://www.w3.org/1999/02/22-r type URI
df-syntax-ns#
OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1
Matt 5972784495178428863
Matt URI
mbox 5760688889368728142
mbox URI
matt@oracle.com 1674614553190527316
matt@oracle.com LIT
 1
Matt 5972784495178428863
Matt URI
name 6027014909707307188
name URI
Matt Adams 1025319037763704306
Matt Adams LIT
 1
Matt 5972784495178428863
Matt URI
teleCommFrom 493206824495339087
teleCommFrom URI
teleCommLoc1 4570292005318753230
teleCommLoc1 URI
 1
Sue 8947116472173989398
Sue URI

age 7369467453923552448
age URI

26 4033985797457567386
26 LIT
 http://www.w3.org/2001/XMLSchema#decimal
 1
Sue 8947116472173989398
Sue URI
email 6480734238761529200
email URI
sue2@oracle.com 5229415107273694944
sue2@oracle.com LIT
 1
Sue 8947116472173989398
Sue URI
http://www.w3.org/1999/02/22-r 834132227519661324
df-syntax-ns#type
http://www.w3.org/1999/02/22-r type URI
df-syntax-ns#
OracleHQEmployee 9022701012979055032
OracleHQEmployee URI
 1
Sue 8947116472173989398

Chapter 1
Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 145 of 197

Sue URI
mbox 5760688889368728142
mbox URI
sue@oracle.com 31820890332196705
sue@oracle.com LIT
 1
Sue 8947116472173989398
Sue URI
nick 4608123542649301902
nick URI
Su 4914588660956121377
Su LIT
 1
Sue 8947116472173989398
Sue URI
teleCommFrom 493206824495339087
teleCommFrom URI
teleCommLoc2 1084777556269608129
teleCommLoc2 URI
 1
email 6480734238761529200
email URI
http://www.w3.org/2002/07/owl# 1982040897380465245
equivalentProperty
http://www.w3.org/2002/07/owl# equivalentProperty URI
mbox 5760688889368728142
mbox URI
 1
teleCommLoc1 4570292005318753230
teleCommLoc1 URI
city 3506365445274213635
city URI
NYC 6275600577248419523
NYC URI
 1
teleCommLoc1 4570292005318753230
teleCommLoc1 URI
state 4843125665925023053
state URI
NY 917887745150543696
NY URI
 1
teleCommLoc1 4570292005318753230
teleCommLoc1 URI
zip 627678011281517369
zip URI
10101 9180109679895673868
10101 LIT
 1
teleCommLoc2 1084777556269608129
teleCommLoc2 URI
state 4843125665925023053
state URI
NH 3642103339971966862
NH URI
 1

Chapter 1
Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 146 of 197

teleCommLoc2 1084777556269608129
teleCommLoc2 URI
zip 627678011281517369
zip URI
03060 2914451030353375942
03060 LIT
 1
26 rows selected.

1.11 Loading and Exporting RDF Data
You can load RDF data into an RDF graph in the database and export that data from the
database into a staging table.

To load RDF data into an RDF graph, use one or more of the following options:

• Bulk load or append data into the RDF graph from a staging table, with each row
containing the three components -- subject, predicate, and object -- of an RDF triple and
optionally a named graph. This is explained in Bulk Loading RDF Data Using a Staging
Table.

This is the fastest option for loading large amounts of data.

• Load data into the application table using SQL INSERT statements that call the
SDO_RDF_TRIPLE_S constructor, which results in the corresponding RDF triple, possibly
including a graph name, to be inserted into the RDF data store, as explained in Loading
RDF Data Using INSERT Statements.

This option is convenient for loading small amounts of data

• Load data into the RDF graph with SPARQL Update statements executed through
SEM_APIS.UPDATE_RDF_GRAPH, as explained in Support for SPARQL Update
Operations on an RDF Graph.

This option is convenient for loading small amounts of data, and can also be used to load
larger amounts of data through LOAD statements.

• Load data into the RDF graph using the Apache Jena-based Java API, which is explained
in RDF Graph Support for Apache Jena.

This option provides several ways to load both small and large amounts of data, and it
supports many different RDF serialization formats.

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 147 of 197

Note

Unicode data in the staging table should be escaped as specified in WC3 N-Triples
format (http://www.w3.org/TR/rdf-testcases/#ntriples). You can use the
SEM_APIS.ESCAPE_RDF_TERM function to escape Unicode values in the staging
table. For example:

create table esc_stage_tab(rdfstc_sub, rdfstc_pred, rdf$stc_obj);

insert /*+ append nologging parallel */ into esc_stage_tab
(rdfstc_sub, rdfstc_pred, rdf$stc_obj)
select sem_apis.escape_rdf_term(rdf$stc_sub, options=>’ UNI_ONLY=T '),
sem_apis.escape_rdf_term(rdf$stc_pred, options=>’ UNI_ONLY=T '),
sem_apis.escape_rdf_term(rdf$stc_obj, options=>’ UNI_ONLY=T ')
from stage_tab;

To export RDF data, that is, to retrieve RDF data from Oracle AI Database where the results
are in N-Triple or N-Quad format that can be stored in a staging table, use the SQL queries
described in Exporting RDF Data.

Note

Effective with Oracle Database Release 12.1, you can export and import a RDF
network using the full database export and import features of the Oracle Data Pump
utility, as explained in Exporting or Importing an RDF Network Using Oracle Data
Pump.

• Bulk Loading RDF Data Using a Staging Table

• Loading RDF Data Using INSERT Statements

• Exporting RDF Data

• Exporting or Importing an RDF Network Using Oracle Data Pump

• Moving, Restoring, and Appending an RDF Network

• Purging Unused Values

1.11.1 Bulk Loading RDF Data Using a Staging Table
You can load RDF data (and optionally associated non-RDF data) in bulk using a staging table.
Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure (described in SEM_APIS
Package Subprograms) to load the data, and you can have during the load operation to check
for syntax correctness. Then, you can call the SEM_APIS.BULK_LOAD_RDF_GRAPH
procedure to load the data into the RDF store from the staging table. (If the data was not
parsed during the load operation into the staging table, you must specify the PARSE keyword in
the flags parameter when you call the SEM_APIS.BULK_LOAD_RDF_GRAPH procedure.)

The following example shows the format for the staging table, including all required columns
and the required names for these columns, plus the optional RDF$STC_graph column which
must be included if one or more of the RDF triples to be loaded include a graph name:

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 148 of 197

http://www.w3.org/TR/rdf-testcases/#ntriples

CREATE TABLE stage_table (
 RDF$STC_sub varchar2(4000) not null,
 RDF$STC_pred varchar2(4000) not null,
 RDF$STC_obj varchar2(4000) not null,
 RDF$STC_graph varchar2(4000)
);

If you also want to load non-RDF data, specify additional columns for the non-RDF data in the
CREATE TABLE statement. The non-RDF column names must be different from the names of
the required columns. The following example creates the staging table with two additional
columns (SOURCE and ID) for non-RDF attributes.

CREATE TABLE stage_table_with_extra_cols (
 source VARCHAR2(4000),
 id NUMBER,
 RDF$STC_sub varchar2(4000) not null,
 RDF$STC_pred varchar2(4000) not null,
 RDF$STC_obj varchar2(4000) not null,
 RDF$STC_graph varchar2(4000)
);

Note

For either form of the CREATE TABLE statement, you may want to add the
COMPRESS clause to use table compression, which will reduce the disk space
requirements and may improve bulk-load performance.

Both the invoker and the network owner user must have the following privileges: SELECT
privilege on the staging table, and INSERT privilege on the application table.

See also the following:

• Loading the Staging Table

• Recording Event Traces During Bulk Loading

1.11.1.1 Loading the Staging Table
You can load RDF data into the staging table, as a preparation for loading it into the RDF store,
in several ways. Some of the common ways are the following:

• Loading N-Triple Format Data into a Staging Table Using SQL*Loader

• Loading N-Quad Format Data into a Staging Table Using an External Table

1.11.1.1.1 Loading N-Triple Format Data into a Staging Table Using SQL*Loader
You can use the SQL*Loader utility to parse and load RDF data into a staging table. If you
installed the demo files from the Oracle AI Database Examples media (see Oracle AI Database
Examples Installation Guide), a sample control file is available at $ORACLE_HOME/md/demo/
network/rdf_demos/bulkload.ctl. You can modify and use this file if the input data is in N-
Triple format.

Objects longer than NETWORK_MAX_STRING_SIZE bytes cannot be loaded. If you use the sample
SQL*Loader control file, triples (rows) containing such long values will be automatically
rejected and stored in a SQL*Loader "bad" file. However, you can load these rejected rows by
inserting them into the application table using SQL INSERT statements (see Loading RDF
Data Using INSERT Statements).

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 149 of 197

1.11.1.1.2 Loading N-Quad Format Data into a Staging Table Using an External Table
You can use an Oracle external table to load N-Quad format data (extended triple having four
components) into a staging table, as follows:

1. Call the SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE procedure to create an
external table, and then use the SQL STATEMENT ALTER TABLE to alter the external
table to include the relevant input file name or names. You must have READ and WRITE
privileges for the directory object associated with folder containing the input file or files.

2. Ensure the network owner has SELECT and INSERT privileges on the external table.

If the network owner is invoking the routine to populate the staging table and then loading
from the staging table, then ensure that the owner has SELECT privilege on the external
table and both INSERT and SELECT privileges on the staging table.

3. Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure to populate the staging
table.

4. After the loading is finished, issue a COMMIT statement to complete the transaction.

Example 1-109 Using an External Table to Load a Staging Table

-- Create a source external table (note: table names are case sensitive)
BEGIN
 sem_apis.create_source_external_table(
 source_table => 'stage_table_source'
 ,def_directory => 'DATA_DIR'
 ,bad_file => 'CLOBrows.bad'
);
END;
/

-- Use ALTER TABLE to target the appropriate file(s)
alter table "stage_table_source" location ('demo_datafile.nt');

-- Load the staging table (note: table names are case sensitive)
BEGIN
 sem_apis.load_into_staging_table(
 staging_table => 'STAGE_TABLE'
 ,source_table => 'stage_table_source'
 ,input_format => 'N-QUAD');
END;
/

Rows where the objects and graph URIs (combined) are longer than
NETWORK_MAX_STRING_SIZE bytes will be rejected and stored in a "bad" file. However, you can
load these rejected rows by inserting them into the application table using SQL INSERT
statements (see Loading RDF Data Using INSERT Statements).

Example 1-109 shows the use of an external table to load a staging table.

1.11.1.2 Recording Event Traces During Bulk Loading
If a table named RDF$ET_TAB exists in the invoker's schema and if the network owner user
has been granted the INSERT and UPDATE privileges on this table, event traces for some of
the tasks performed during executions of the SEM_APIS.BULK_LOAD_RDF_GRAPH
procedure will be added to the table. You may find the content of this table useful if you ever
need to report any problems in bulk load. The RDF$ET_TAB table must be created as follows:

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 150 of 197

CREATE TABLE RDF$ET_TAB (
 proc_sid VARCHAR2(128),
 proc_sig VARCHAR2(200),
 event_name varchar2(200),
 start_time timestamp,
 end_time timestamp,
 start_comment varchar2(1000) DEFAULT NULL,
 end_comment varchar2(1000) DEFAULT NULL
);
-- Grant privileges on RDF$ET_TAB to network owner if network owner
-- is not the owner of RDF$ET_TAB
GRANT SELECT, INSERT, UPDATE on RDF$ET_TAB to <network_owner>;

1.11.2 Loading RDF Data Using INSERT Statements
To load RDF data using INSERT statements, the data should be encoded using < > (angle
brackets) for URIs, _: (underscore colon) for blank nodes, and " " (quotation marks) for
literals. Spaces are not allowed in URIs or blank nodes. Use the SDO_RDF_TRIPLE_S
constructor to insert the data, as described in Constructors for Inserting Triples. You must have
INSERT privilege on the application table.

Note

If URIs are not encoded with < > and literals with " ", statements will still be
processed. However, the statements will take longer to load, since they will have to be
further processed to determine their VALUE_TYPE values.

The following example assumes an RDF network named NET1 owned by RDFUSER. It
includes statements with URIs, a blank node, a literal, a literal with a language tag, and a typed
literal:

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu','<http://nature.example.com/nsu/rss.rdf>',
 '<http://purl.org/rss/1.0/title>', '"Nature''s Science Update"', 'RDFUSER', 'NET1'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '_:BNSEQN1001A',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>', 'RDFUSER', 'NET1'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu',
 '<http://nature.example.com/cgi-taf/dynapage.taf?file=/nature/journal/v428/n6978/index.html>',
 '<http://purl.org/dc/elements/1.1/language>', '"English"@en-GB', 'RDFUSER', 'NET1'));
INSERT INTO nature VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://dx.doi.org/10.1038/428004b>',
 '<http://purl.org/dc/elements/1.1/date>', '"2004-03-04"^^xsd:date', 'RDFUSER', 'NET1'));

• Loading Data into Named Graphs Using INSERT Statements

1.11.2.1 Loading Data into Named Graphs Using INSERT Statements
To load an RDF triple with a non-null graph name using an INSERT statement, you must
append the graph name, enclosed within angle brackets (< >), after the RDF graph name and
colon (:) separator character, as shown in the following example:

INSERT INTO articles_rdf_data VALUES (
 SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
 '<http://nature.example.com/Article101>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"John Smith"', 'RDFUSER', 'NET1'));

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 151 of 197

1.11.3 Exporting RDF Data
This section contains the following topics related to exporting RDF data, that is, retrieving RDF
data from Oracle AI Database where the results are in N-Triple or N-Quad format that can be
stored in a staging table.

• Retrieving RDF Data from an Application Table

• Retrieving RDF Data from an RDF Graph

• Removing RDF Graph Information from Retrieved Blank Node Identifiers

1.11.3.1 Retrieving RDF Data from an Application Table
RDF data can be retrieved from an application table using the member functions of
SDO_RDF_TRIPLE_S, as shown in Example 1-110 (where the output is reformatted for
readability). The example assumes a RDF network named NET1 owned by a database user
named RDFUSER.

Example 1-110 Retrieving RDF Data from an Application Table

--
-- Retrieves model-graph, subject, predicate, and object
--
SQL> SELECT a.triple.GET_MODEL('RDFUSER','NET1') AS model_graph,
 a.triple.GET_SUBJECT('RDFUSER','NET1') AS sub,
 a.triple.GET_PROPERTY('RDFUSER','NET1') pred,
 a.triple.GET_OBJ_VALUE('RDFUSER','NET1') obj
 FROM RDFUSER.NET1#RDFT_ARTICLES a;

MODEL_GRAPH
--
SUB
--
PRED
--
OBJ
--
ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/title>
"All about XYZ"

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article2>

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3>

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 152 of 197

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/elements/1.1/title>
"A review of ABC"

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/elements/1.1/creator>
"Joe Bloggs"

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3>

7 rows selected.

1.11.3.2 Retrieving RDF Data from an RDF Graph
RDF data can be retrieved from an RDF graph using the SEM_MATCH table function
(described in Using the SEM_MATCH Table Function to Query RDF Data), as shown in
Example 1-111. The example assumes an RDF network named NET1 owned by a database
user named RDFUSER.

Example 1-111 Retrieving RDF Data from an RDF Graph

--
-- Retrieves graph, subject, predicate, and object
--
SQL> select to_char(g$rdfterm) graph, to_char(x$rdfterm) sub, to_char(p$rdfterm) pred,
y$rdfterm obj from table(sem_match('Select ?g ?x ?p ?y WHERE { { GRAPH ?g {?x ?p ?y} }
UNION { ?x ?p ?y }}',sem_models('articles'),null,null,null,null,' STRICT_DEFAULT=T
PLUS_RDFT=T ',null,null,'RDFUSER','NET1'));

GRAPH
--
SUB
--
PRED
--
OBJ

<http://examples.com/ns#Graph1>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb2
<http://purl.org/dc/elements/1.1/creator>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb1

<http://examples.com/ns#Graph1>
<http://nature.example.com/Article102>
<http://purl.org/dc/elements/1.1/creator>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb1

<http://examples.com/ns#Graph1>
<http://nature.example.com/Article101>
<http://purl.org/dc/elements/1.1/creator>
"John Smith"

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 153 of 197

<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

1.11.3.3 Removing RDF Graph Information from Retrieved Blank Node Identifiers
Blank node identifiers retrieved during the retrieval of RDF data can be trimmed to remove the
occurrence of RDF graph information using the transformations shown in the code excerpt in
Example 1-112, which are applicable to VARCHAR2 (for example, subject component) and
CLOB (for example, object component) data, respectively.

Example 1-113 shows the results obtained after using these two transformations in
Example 1-112 on the sub and obj columns, respectively, using the RDF data retrieval query
described in Retrieving RDF Data from an RDF Graph.

Example 1-112 Retrieving RDF Data from an Application Table

--
-- Transformation on column "sub VARCHAR2"
-- holding blank node identifier values
--
Select (case substr(sub,1,2) when '_:' then '_:' || substr(sub,instr(sub,'m',1,2)+1)
else sub end) from …
--
-- Transformation on column "obj CLOB"
-- holding blank node identifier values
--
Select (case dbms_lob.substr(obj,2,1) when '_:' then to_clob('_:' ||
substr(obj,instr(obj,'m',1,2)+1)) else obj end) from …

Example 1-113 Results from Applying Transformations from Example 1-112

--
-- Results obtained by applying transformations on the sub and pred cols
--
SQL> select (case substr(sub,1,2) when '_:' then '_:' ||
substr(sub,instr(sub,'m',1,2)+1) else sub end) sub, pred, (case dbms_lob.substr(obj,2,1)
when '_:' then to_clob('_:' || substr(obj,instr(obj,'m',1,2)+1)) else obj end) obj from
(select to_char(g$rdfterm) graph, to_char(x$rdfterm) sub, to_char(p$rdfterm) pred,
y$rdfterm obj from table(sem_match('Select ?g ?x ?p ?y WHERE { { GRAPH ?g {?x ?p ?y} }
UNION { ?x ?p ?y }}',sem_models('articles'),null,null,null,null,' STRICT_DEFAULT=T
PLUS_RDFT=T ',null,null,'RDFUSER','NET1'));

SUB
--
PRED
--
OBJ

_:b2
<http://purl.org/dc/elements/1.1/creator>
_:b1

<http://nature.example.com/Article102>
<http://purl.org/dc/elements/1.1/creator>
_:b1

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 154 of 197

1.11.4 Exporting or Importing an RDF Network Using Oracle Data Pump
Effective with Oracle Database Release 12.1, you can export and import an RDF network
using the full database export and import features of the Oracle Data Pump utility. The network
is moved as part of the full database export or import, where the whole database is
represented in an Oracle dump (.dmp) file.

The following usage notes apply to using Data Pump to export or import a RDF network:

• The target database for an import must have the RDF Graph software installed, and there
cannot be a pre-existing RDF network.

• RDF networks using fine-grained access control (triple-level or resource-level OLS or VPD)
cannot be exported or imported.

• RDF document indexes for SEM_CONTAINS (MDSYS.SEMCONTEXT index type) and
semantic indexes for SEM_RELATED (MDSYS.SEM_INDEXTYPE index type) must be
dropped before an export and re-created after an import.

• Only default privileges for RDF network objects (those that exist just after object creation)
are preserved during export and import. For example, if user A creates an RDF graph M
and grants SELECT on RDFM_M to user B, only user A's SELECT privilege on RDFM_M
will be present after the import. User B will not have SELECT privilege on RDFM_M after
the import. Instead, user B's SELECT privilege will have to be granted again.

• The Data Pump command line option transform=oid:n must be used when exporting or
importing RDF network data. For example, use a command in the following format:

impdp system/<password-for-system> directory=dpump_dir dumpfile=rdf.dmp full=YES
version=12 transform=oid:n

For Data Pump usage information and examples, see the relevant chapters in Part I of Oracle
AI Database Utilities.

1.11.5 Moving, Restoring, and Appending an RDF Network
The SEM_APIS package includes utility procedures for transferring data into and out of an
RDF network.

The contents of an RDF network can be moved to a staging schema. an RDF network in a
staging schema can then be (1) exported with Oracle Data Pump or a similar tool, (2)
appended to a different RDF network, or (3) restored back into the source RDF network. Move,
restore and append operations mostly use partition exchange to move data rather than SQL
inserts to copy data. Consequently, these operations are very efficient.

The procedures to move, restore, and append RDF network data are:

• SEM_APIS.MOVE_RDF_NETWORK_DATA

• SEM_APIS.RESTORE_RDF_NETWORK_DATA

• SEM_APIS.APPEND_RDF_NETWORK_DATA

Special Considerations When Performing Move, Restore, and Append Operations

Move, restore, and append operations are not supported for RDF networks that use any of the
following features:

• Domain indexes on the RDF_VALUE$ table (for example, spatial indexes)

• Oracle Label Security for RDF

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 155 of 197

• Semantic indexing for documents

• Incremental inference

Domain indexes and inferred graphs that use incremental inference should be dropped before
moving the RDF network and then recreated after any subsequent restore or append
operations.

Some restrictions apply to the target network used for an append operation.

• The set of RDF terms in the target network must be a subset of the set of RDF terms in the
source network.

• The set of model (referred to as RDF graph) IDs used in the source and target RDF
networks must be disjoint.

• The set of entailment (referred to as inferred graph) IDs used in the source and target RDF
networks must be disjoint.

• The set of rulebase IDs used in the source and target RDF networks must be disjoint, with
the exception of built-in rulebases such as OWL2RL.

Example 1-114 Moving and Exporting a Schema Private RDF Network

This first example uses Data Pump Export to export relevant network data to multiple .dmp
files, so that the data can be imported into an RDF network in another database (as shown in
the second example).

This example performs the following major actions.

1. Creates a directory for a Data Pump Export operation.

2. Creates a database user (RDFEXPIMPU) that will hold the output of the export of the RDF
network.

3. Moves the RDF network data to the RDFEXPIMPU schema.

4. Uses Data Pump to export the moved RDF network data.

5. Uses Data Pump to export any user tables referenced in RDF views.

6. Optionally, restores the RDF network data in the current network.

Note that the example assumes that the schema-private network is named as NET1 and it is
owned by RDFUSER. It also assumes that the tables EMP, WORKED_FOR, and DEPT, owned by
RDFUSER, are used in the RDF view RDF graph(s) in the network.

conn sys/<password_for_sys> as sysdba;

-- create directory for datapump export
create directory dpump_dir as '<path_to_directory>';
grant read,write on directory dpump_dir to public;

-- create user to hold exported RDF network
grant connect, resource, unlimited tablespace to rdfexpimpu identified by
<password_for_rdfexpimpu>;

-- connect as a privileged user to move the network
conn system/<password_for_system>
-- move RDF network data to RDFEXPIMPU schema
exec sem_apis.move_rdf_network_data(dest_schema=>'RDFEXPIMPU',
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 156 of 197

-- export moved network data with datapump
-- export rdfexpimpu schema
host expdp rdfexpimpu/<password_for_rdfexpimpu> DIRECTORY=dpump_dir
DUMPFILE=expuser.dmp version=12.2 logfile=export_move_sem_network_data.log

-- export any user tables referenced in RDF Views
host expdp rdfuser/<password_for_rdfuser> tables=EMP,WORKED_FOR,DEPT
DIRECTORY=dpump_dir DUMPFILE=exp_rdfviewtabs.dmp version=12.2
logfile=export_move_rdfview_tabs.log

-- optionally restore the network data or drop the source RDF network
exec sem_apis.restore_rdf_network_data(from_schema=>'RDFEXPIMPU',
network_owner=>'RDFUSER', network_name=>'NET1');

Example 1-115 Importing and Appending a Schema Private RDF Network

This second example uses Data Pump Import to import relevant network data (from the first
example), creates necessary database users, creates a new MDSYS-owned RDF network,
and "appends" the imported network data into the newly created network.

This example performs the following major actions.

1. Creates a database user (RDFEXPIMPU), if it does not already exist in the database, that
will hold the output of the export of the RDF network.

2. Uses Data Pump to import any RDF view component tables and previously moved RDF
network data.

3. Creates a new RDF network in which the imported data is to be appended.

4. Appends the imported data into the newly created RDF network.

conn sys/<password_for_sys>

-- create a user to hold the imported RDF network data
grant connect, resource, unlimited tablespace to rdfexpimpu identified by
<password_for_rdfexpimpu>;

-- create the network owner
grant connect, resource, unlimited tablespace to rdfuser identified by
<password_for_rdfuser>;

conn system/<password_for_system>

-- import any RDF view component tables
host impdp rdfuser/<password_for_rdfuser> tables=EMP,WORKED_FOR,DEPT
DIRECTORY=dpump_dir DUMPFILE=exp_rdfviewtabs.dmp version=12.2
logfile=import_append_rdfview_tabs.log

-- import the previously moved RDF network
host impdp rdfexpimpu/<password_for_rdfexpimpu> DIRECTORY=dpump_dir
DUMPFILE=expuser.dmp version=12.2 logfile=import_append_atabs.log

-- create a new RDF network in which to append the imported one
exec sem_apis.create_rdf_network('rdf_tablespace', network_owner=>'RDFUSER',
network_name=>'NET1');

-- append the imported RDF network

Chapter 1
Loading and Exporting RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 157 of 197

exec sem_apis.append_rdf_network_data(from_schema=>'RDFEXPIMPU',
network_owner=>'RDFUSER', network_name=>'NET1');

1.11.6 Purging Unused Values
Deletion of triples over time may lead to a subset of the values in the RDF_VALUE$ table
becoming unused in any of the RDF triples or rules currently in the RDF network. If the count
of such unused values becomes large and a significant portion of the RDF_VALUE$ table, you
may want to purge the unused values using the SEM_APIS.PURGE_UNUSED_VALUES
subprogram.

Event traces for tasks performed during the purge operation may be recorded into the
RDF$ET_TAB table, if present in the invoker's schema, as described in Recording Event
Traces During Bulk Loading.

1.12 Using RDF Network Indexes
RDF network indexes are nonunique B-tree indexes that you can add, alter, and drop for use
with RDF graphs and inferred graphs in a RDF network.

You can use such indexes to tune the performance of SEM_MATCH queries on the RDF
graphs and inferred graphs in the network. As with any indexes, RDF network indexes enable
index-based access that suits your query workload. This can lead to substantial performance
benefits, such as in the following example scenarios:

• If your graph pattern is '{<John> ?p <Mary>}', you may want to have a usable 'CSPGM'or
'SCPGM' index for the target RDF graphs and on the corresponding inferred graph, if used
in the query.

• If your graph pattern is '{?x <talksTo> ?y . ?z ?p ?y}', you may want to have a usable
RDF network index on the relevant RDF graphs and inferred graph, with C as the leading
key (for example, 'CPSGM').

However, using RDF network indexes can affect overall performance by increasing the time
required for DML, load, and inference operations.

You can create and manage RDF network indexes using the following subprograms:

• SEM_APIS.ADD_NETWORK_INDEX

• SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH

• SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH

• SEM_APIS.DROP_NETWORK_INDEX

All of these subprograms have an index_code parameter, which can contain any sequence of
the following letters (without repetition): P, C, S, G, M. These letters used in the index_code
correspond to the following columns in the SEMM_* and SEMI_* views: P_VALUE_ID,
CANON_END_NODE_ID, START_NODE_ID, G_ID, and MODEL_ID.

The SEM_APIS.ADD_NETWORK_INDEX procedure creates an RDF network index that
results in the creation of a nonunique B-tree index in UNUSABLE status for each of the
existing RDF graphs and inferred graphs. The name of the index is
RDF_LNK_<index_code>_IDX and the index is owned by the network owner. This operation is
allowed only if the invoker has DBA role or is the network owner. The following example shows
creation of the PSCGM index with the following key: <P_VALUE_ID, START_NODE_ID,
CANON_END_NODE_ID, G_ID, MODEL_ID>.

Chapter 1
Using RDF Network Indexes

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 158 of 197

EXECUTE SEM_APIS.ADD_NETWORK_INDEX('PSCGM' network_owner=>'RDFUSER',
network_name=>'NET1');

After you create a RDF network index, each of the corresponding nonunique B-tree indexes is
in the UNUSABLE status, because making it usable can cause significant time and resources
to be used, and because subsequent index maintenance operations might involve performance
costs that you do not want to incur. You can make a RDF network index usable or unusable for
specific RDF graphs or inferred graphs that you own by calling the
SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH and
SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH procedures and specifying 'REBUILD' or
'UNUSABLE' as the command parameter. Thus, you can experiment by making different RDF
network indexes usable and unusable, and checking for any differences in performance. For
example, the following statement makes the PSCGM index usable for the FAMILY RDF graph:

EXECUTE SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH('FAMILY','PSCGM','REBUILD'
network_owner=>'RDFUSER', network_name=>'NET1');

Also note the following:

• Independent of any RDF network indexes that you create, when an RDF network is
created, one of the indexes that is automatically created is an index that you can manage
by referring to the index_code as 'PSCGM' when you call the subprograms mentioned in
this section.

• When you create a new RDF graph or a new inferred graph, a new nonunique B-tree index
is created for each of the RDF network indexes, and each such B-tree index is in the
USABLE status.

• Including the MODEL_ID column in an RDF network index key (by including 'M' in the
index_code value) may improve query performance. This is particularly relevant when RDF
graph collections are used.

• SEM_NETWORK_INDEX_INFO View

1.12.1 SEM_NETWORK_INDEX_INFO View
Information about all network indexes on RDF graphs and inferred graphs is maintained in the
SEM_NETWORK_INDEX_INFO view, which includes (a partial list) the columns shown in
Table 1-29 and one row for each network index.

Table 1-29 SEM_NETWORK_INDEX_INFO View Columns (Partial List)

Column Name Data Type Description

NAME VARCHAR2(30) Name of the RDF graph or inferred graph

TYPE VARCHAR2(10) Type of object on which the index is built: MODEL,
ENTAILMENT, or NETWORK

ID NUMBER ID number for the RDF graph or inferred graph, or zero (0)
for an index on the network

INDEX_CODE VARCHAR2(25) Code for the index (for example, PSCGM).

INDEX_NAME VARCHAR2(30) Name of the index (for example, RDF_LNK_PSCGM_IDX)

LAST_REFRESH TIMESTAMP(6) WITH
TIME ZONE

Timestamp for the last time this content was refreshed

Chapter 1
Using RDF Network Indexes

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 159 of 197

In addition to the columns listed in Table 1-29, the SEM_NETWORK_INDEX_INFO view
contains columns from the ALL_INDEXES and ALL_IND_PARTITIONS views (both described
in Oracle AI Database Reference), including:

• From the ALL_INDEXES view: UNIQUENESS, COMPRESSION, PREFIX_LENGTH

• From the ALL_IND_PARTITIONS view: STATUS, TABLESPACE_NAME, BLEVEL,
LEAF_BLOCKS, NUM_ROWS, DISTINCT_KEYS, AVG_LEAF_BLOCKS_PER_KEY,
AVG_DATA_BLOCKS_PER_KEY, CLUSTERING_FACTOR, SAMPLE_SIZE,
LAST_ANALYZED

Note that the information in the SEM_NETWORK_INDEX_INFO view may sometimes be stale.
You can refresh this information by using the
SEM_APIS.REFRESH_NETWORK_INDEX_INFO procedure.

1.13 Using Data Type Indexes
Data type indexes are indexes on the values of typed literals stored in an RDF network.

These indexes may significantly improve the performance of SEM_MATCH queries involving
certain types of FILTER expressions. For example, a data type index on xsd:dateTime literals
may speed up evaluation of the filter (?x < "1929-11-16T13:45:00Z"^^xsd:dateTime).
Indexes can be created for several data types, which are listed in Table 1-30.

Table 1-30 Data Types for Data Type Indexing

Data Type URI Oracle Type Index Type

http://www.w3.org/2001/
XMLSchema#decimal

NUMBER Non-unique B-tree (creates a single
index for all xsd numeric types,
including xsd:float,
xsd:double, and xsd:decimal
and all of its subtypes)

http://www.w3.org/2001/
XMLSchema#string

VARCHAR2 Non-unique B-tree (creates a single
index for xsd:string typed literals
and plain literals)

http://www.w3.org/2001/
XMLSchema#time

TIMESTAMP WITH
TIMEZONE

Non-unique B-tree

http://www.w3.org/2001/
XMLSchema#date

TIMESTAMP WITH
TIMEZONE

Non-unique B-tree

http://www.w3.org/2001/
XMLSchema#dateTime

TIMESTAMP WITH
TIMEZONE

Non-unique B-tree

http://xmlns.oracle.com/rdf/text (Not applicable) CTXSYS.CONTEXT

http://xmlns.oracle.com/rdf/geo/
WKTLiteral

SDO_GEOMETRY SPATIAL_INDEX

http://www.opengis.net/
geosparql#wktLiteral

SDO_GEOMETRY SPATIAL_INDEX

http://www.opengis.net/
geosparql#gmlLiteral

SDO_GEOMETRY SPATIAL_INDEX

http://xmlns.oracle.com/rdf/like VARCHAR2 Non-unique B-tree

The suitability of data type indexes depends on your query workload. Data type indexes on xsd
data types can be used for filters that compare a variable with a constant value, and are
particularly useful when queries have an unselective graph pattern with a very selective filter
condition. Appropriate data type indexes are required for queries with spatial or text filters.

Chapter 1
Using Data Type Indexes

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 160 of 197

While data type indexes improve query performance, overhead from incremental index
maintenance can degrade the performance of DML and bulk load operations on the RDF
network. For bulk load operations, it may often be faster to drop data type indexes, perform the
bulk load, and then re-create the data type indexes. As it is time consuming to create a text
index on large amounts of text data, nologging is enabled by default when the text index is
created. The logging can be enabled by specifying ‘LOGGING=T’ in the options field of
add_datatype_index API for the text index.

You can add, alter, and drop data type indexes using the following procedures, which are
described in SEM_APIS Package Subprograms:

• SEM_APIS.ADD_DATATYPE_INDEX

• SEM_APIS.ALTER_DATATYPE_INDEX

• SEM_APIS.DROP_DATATYPE_INDEX

Information about existing data type indexes is maintained in the SEM_DTYPE_INDEX_INFO
view, which has the columns shown in Table 1-31 and one row for each data type index.

Table 1-31 SEM_DTYPE_INDEX_INFO View Columns

Column Name Data Type Description

DATATYPE VARCHAR2(51) Data type URI

INDEX_NAME VARCHAR2(30) Name of the index

STATUS VARCHAR2(8) Status of the index: USABLE or UNUSABLE

TABLESPACE_NA
ME

VARCHAR2(30) Tablespace for the index

FUNCIDX_STATU
S

VARCHAR2(8) Status of the function-based index: NULL, ENABLED, or
DISABLED

You can use the HINT0 hint to ensure that data type indexes are used during query evaluation,
as shown in Example 1-116, which finds all grandfathers who were born before November 16,
1929.

Example 1-116 Using HINT0 to Ensure Use of Data Type Index

SELECT x, y
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
 FILTER (?bd <= "1929-11-15T23:59:59Z"^^xsd:dateTime) }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),

 null, null, null,
 'HINT0={ LEADING(?bd) INDEX(?bd rdf_v$dateTime_idx) }
 FAST_DATE_FILTER=T',
 null, null,
 'RDFUSER', 'NET1'));

1.14 Managing Statistics for the RDF Graphs and RDF Network
Statistics are critical to the performance of SPARQL queries and OWL inference against RDF
data stored in an Oracle AI Database.

Chapter 1
Managing Statistics for the RDF Graphs and RDF Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 161 of 197

Oracle Database Release 11g introduced SEM_APIS.ANALYZE_RDF_GRAPH,
SEM_APIS.ANALYZE_INFERRED_GRAPH, and SEM_PERF.GATHER_STATS to analyze
RDF data and keep statistics up to date. These APIs are straightforward to use and they are
targeted at regular users who may not care about the internal details about table and partition
statistics.

You can export, import, set, and delete the RDF graph and inferred graph statistics, and can
export, import, and delete network statistics, using the following subprograms:

• SEM_APIS.DELETE_ENTAILMENT_STATS

• SEM_APIS.DELETE_MODEL_STATS

• SEM_APIS.EXPORT_ENTAILMENT_STATS

• SEM_APIS.EXPORT_MODEL_STATS

• SEM_APIS.IMPORT_ENTAILMENT_STATS

• SEM_APIS.IMPORT_MODEL_STATS

• SEM_APIS.SET_ENTAILMENT_STATS

• SEM_APIS.SET_MODEL_STATS

• SEM_PERF.DELETE_NETWORK_STATS

• SEM_PERF.DROP_EXTENDED_STATS

• SEM_PERF.EXPORT_NETWORK_STATS

• SEM_PERF.IMPORT_NETWORK_STATS

This section contains the following topics related to managing statistics for RDF graphs and the
RDF network.

• Saving Statistics at the RDF Graph Level

• Restoring Statistics at the RDF Graph Level

• Saving Statistics at the Network Level

• Dropping Extended Statistics at the Network Level

• Restoring Statistics at the Network Level

• Setting Statistics at the RDF Graph Level

• Deleting Statistics at the RDF Graph Level

1.14.1 Saving Statistics at the RDF Graph Level
If queries and inference against an existing RDF graph are executed efficiently, as the owner of
the RDF graph, you can save the statistics of the existing RDF graph.

-- Login as the RDF graph owner (for example, SCOTT)
-- Create a stats table. This is required.
execute dbms_stats.create_stat_table('scott','rdf_stat_tab');

-- Now export the statistics of RDF graph TEST
execute sem_apis.export_model_stats('TEST','rdf_stat_tab', 'model_stat_saved_on_AUG_10',
true, 'SCOTT', 'OBJECT_STATS', network_owner=>'RDFUSER', network_name=>'NET1');

You can also save the statistics of an inferred graph by using
SEM_APIS.EXPORT_ENTAILMENT_STATS .

Chapter 1
Managing Statistics for the RDF Graphs and RDF Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 162 of 197

execute
sem_apis.create_inferred_graph('test_inf',sem_models('test'),sem_rulebases('owl2rl'),0,nu
ll,network_owner=>'RDFUSER',network_name=>'NET1');
PL/SQL procedure successfully completed.

execute sem_apis.export_entailment_stats('TEST_INF','rdf_stat_tab',
'inf_stat_saved_on_AUG_10', true, 'SCOTT', 'OBJECT_STATS', network_owner=>'RDFUSER',
network_name=>'NET1');

1.14.2 Restoring Statistics at the RDF Graph Level
As the owner of an RDF graph, can restore the statistics that were previously saved with
SEM_APIS.EXPORT_MODEL_STATS . This may be necessary if updates have been applied
to this RDF graph and statistics have been re-collected. A change in statistics might cause a
plan change to existing SPARQL queries, and if such a plan change is undesirable, then an old
set of statistics can be restored.

execute sem_apis.import_model_stats('TEST','rdf_stat_tab', 'model_stat_saved_on_AUG_10',
true, 'SCOTT', false, true, 'OBJECT_STATS', network_owner=>'RDFUSER',
network_name=>'NET1');

You can also restore the statistics of an inferred graph by using
SEM_APIS.IMPORT_ENTAILMENT_STATS .

execute sem_apis.import_entailment_stats('TEST','rdf_stat_tab',
'inf_stat_saved_on_AUG_10', true, 'SCOTT', false, true, 'OBJECT_STATS',
network_owner=>'RDFUSER', network_name=>'NET1');

1.14.3 Saving Statistics at the Network Level
You can save statistics at the network level.

-- Network owners and DBAs have privileges to gather network-wide
-- statistics with the SEM_PERF package.
--
-- This example assumes a schema-private RDF network named NET1
-- owned by RDFUSER.
--

conn RDFUSER/<password>

execute dbms_stats.create_stat_table('RDFUSER','rdf_stat_tab');

--
-- This API call will save the statistics of both the RDF_VALUE$ table
-- and RDF_LINK$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab', 'NETWORK_ALL_saved_on_Aug_10',
true, 'RDFUSER', 'OBJECT_STATS', network_owner=>'RDFUSER', network_name=>'NET1');

--
-- Alternatively, you can save statistics of only the RDF_VALUE$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab',
'NETWORK_VALUE_TAB_saved_on_Aug_10', true, 'RDFUSER', 'OBJECT_STATS', options=>
mdsys.sdo_rdf.VALUE_TAB_ONLY, network_owner=>'RDFUSER', network_name=>'NET1');

--
-- Or, you can save statistics of only the RDF_LINK$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab',

Chapter 1
Managing Statistics for the RDF Graphs and RDF Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 163 of 197

'NETWORK_LINK_TAB_saved_on_Aug_10', true, 'RDFUSER', 'OBJECT_STATS', options=>
mdsys.sdo_rdf.LINK_TAB_ONLY, network_owner=>'RDFUSER', network_name=>'NET1');

1.14.4 Dropping Extended Statistics at the Network Level
By default, SEM_PERF.GATHER_STATS creates extended statistics with column groups on
the RDF_LINK$ table. The privileged user from Saving Statistics at the Network Level can drop
these column groups using SEM_PERF.DROP_EXTENDED_STATS.

connect RDFUSER/<password>
execute sem_perf.drop_extended_stats(network_owner=>'RDFUSER', network_name=>'NET1');

See also the information about managing extended statistics in Oracle AI Database SQL
Tuning Guide.

1.14.5 Restoring Statistics at the Network Level
The privileged user from Saving Statistics at the Network Level can restore the network level
statistics using SEM_PERF.IMPORT_NETWORK_STATS .

conn RDFUSER/<password>

execute sem_perf.import_network_stats('rdf_stat_tab', 'NETWORK_ALL_saved_on_Aug_10',
true, 'RDFUSER', false, true, 'OBJECT_STATS', network_owner=>'RDFUSER',
network_name=>'NET1');

1.14.6 Setting Statistics at the RDF Graph Level
As the owner of an RDF graph, you can manually adjust the statistics for this RDF graph.
(However, before you adjust statistics, you should save the statistics first so that they can be
restored if necessary.) The following example sets two metrics: number of rows and number of
blocks for the RDF graph.

execute sem_apis.set_model_stats('TEST', numrows=>10,
numblks=>1,no_invalidate=>false,network_owner=>'RDFUSER',network_name=>'NET1');

You can also set the statistics for the inferred graph by using
SEM_APIS.SET_ENTAILMENT_STATS .

execute sem_apis.set_entailment_stats('TEST_INF', numrows=>10,
numblks=>1,no_invalidate=>false,network_owner=>'RDFUSER',network_name=>'NET1');

1.14.7 Deleting Statistics at the RDF Graph Level
Removing statistics can also have an impact on execution plans. As owner of an RDF graph,
you can remove the statistics for the graph.

execute sem_apis.delete_model_stats('TEST', no_invalidate=> false,
network_owner=>'RDFUSER', network_name=>'NET1');

You can also remove the statistics for the inferred graph by using
SEM_APIS.DELETE_ENTAILMENT_STATS. (However, before you remove statistics of an
RDF graph or an inferred graph, you should save the statistics first so that they can be
restored if necessary.)

execute sem_apis.delete_entailment_stats('TEST_INF', no_invalidate=> false,
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 1
Managing Statistics for the RDF Graphs and RDF Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 164 of 197

1.15 Support for SPARQL Update Operations on an RDF Graph
Effective with Oracle Database Release 12.2, you can perform SPARQL Update operations on
an RDF graph.

Note

SPARQL update operations on an RDF graph is supported only if Oracle JVM is
enabled on your Oracle Autonomous AI Database Serverless deployments. To enable
Oracle JVM, see Use Oracle Java in Using Oracle Autonomous AI Database
Serverless for more information.

The W3C provides SPARQL 1.1 Update (https://www.w3.org/TR/2013/REC-sparql11-
update-20130321/), an update language for RDF graphs. SPARQL 1.1 Update is supported in
Oracle AI Database semantic technologies through the SEM_APIS.UPDATE_RDF_GRAPH
procedure.

Before performing any SPARQL Update operations on an RDF graph, some prerequisites
apply:

• The SEM_APIS.CREATE_SPARQL_UPDATE_TABLES procedure should be run in the
schema of each user that will be using the SEM_APIS.UPDATE_RDF_GRAPH procedure.

• To update an RDF graph, the user should have SELECT, INSERT, DELETE, UPDATE, and QUERY
privileges on the network and the target RDF graph. Note that these privileges are
automatically present for the network owner. See Sharing Schema-Private RDF Networks
to enable other users to update the RDF graph.

• To run a LOAD operation, the user must have the CREATE ANY DIRECTORY and DROP
ANY DIRECTORY privileges, or the user must be granted READ privileges on an existing
directory object whose name is supplied in the options parameter.

The following examples show update operations being performed on an RDF graph. These
examples assume a schema-private RDF network named NET1 owned by a database user
named RDFUSER.

Example 1-117 INSERT DATA Operation

This example shows an INSERT DATA operation that inserts several triples in the default
electronics graph.

-- Dataset before operation:
#Empty default graph
-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT DATA {
 :camera1 :name "Camera 1" .
 :camera1 :price 120 .
 :camera1 :cameraType :Camera .
 :camera2 :name "Camera 2" .
 :camera2 :price 150 .
 :camera2 :cameraType :Camera .
 } ',

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 165 of 197

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B
https://www.w3.org/TR/2013/REC-sparql11-update-20130321/
https://www.w3.org/TR/2013/REC-sparql11-update-20130321/

 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :price 120;
 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Example 1-118 DELETE DATA Operation

This example shows a DELETE DATA operation that removes a single triple from the default
electronics RDF graph.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :price 120;
 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE DATA { :camera1 :price 120 . } ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Example 1-119 DELETE/INSERT Operation on Default Graph

This example performs a DELETE/INSERT operation. The :cameraType of :camera1 is updated
to :digitalCamera.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 166 of 197

 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE { :camera1 :cameraType ?type . }
 INSERT { :camera1 :cameraType :digitalCamera . }
 WHERE { :camera1 :cameraType ?type . }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :cameraType :digitalCamera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Example 1-120 DELETE/INSERT Operation Involving Default Graph and Named Graph

Graphs can also be specified inside the DELETE and INSERT templates, as well as inside the
WHERE clause. This example moves all triples corresponding to digital cameras from the
default graph to the graph :digitalCameras.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :cameraType :digitalCamera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Empty graph :digitalCameras

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE { ?s ?p ?o }
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 167 of 197

:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Example 1-121 INSERT WHERE and DELETE WHERE Operations

One of either the DELETE template or the INSERT template can be omitted from a DELETE/
INSERT operation. In addition, the template following DELETE can be omitted as a shortcut for
using the WHERE pattern as the DELETE template. This example uses an INSERT WHERE
statement to insert the contents of the :digitalCameras graph to the :cameras graph, and it
uses a DELETE WHERE statement (with syntactic shortcut) to delete all contents of
the :cameras graph.

-- INSERT WHERE
-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Empty graph :cameras

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT { graph :cameras { ?s ?p ?o } }
 WHERE { graph :digitalCameras { ?s ?p ?o } }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 168 of 197

 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- DELETE WHERE
-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE WHERE { graph :cameras { ?s ?p ?o } }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Empty graph :cameras

Example 1-122 COPY Operation

This example performs a COPY operation. All data from the default graph is inserted into the
graph :cameras. Existing data from :cameras, if any, is removed before the insertion.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 169 of 197

GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera3 :name "Camera 3" .
}

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 COPY DEFAULT TO GRAPH :cameras',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}

Example 1-123 ADD Operation

This example adds all the triples in the graph :digitalCameras to the graph :cameras.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 170 of 197

}

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 ADD GRAPH :digitalCameras TO GRAPH :cameras',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}

Example 1-124 MOVE Operation

This example moves all the triples in the graph :digitalCameras to the graph :digCam.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 171 of 197

 :camera4 :cameraType :digCamera .
}

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 MOVE GRAPH :digitalCameras TO GRAPH :digCam',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2" .
 :camera2 :price 150 .
 :camera2 :cameraType :Camera .
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Example 1-125 CLEAR Operation

This example performs a CLEAR operation, deleting all the triples in the default graph.
Because empty graphs are not stored in the RDF graph, the CLEAR operation always
succeeds and is equivalent to a DROP operation. (For the same reason, the CREATE
operation has no effect on the RDF graph.)

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 172 of 197

GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- Update operation:
BEGIN
 sem_apis.update_rdf_graph('electronics',
 'CLEAR DEFAULT ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Empty Default graph
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Example 1-126 LOAD Operation

N-Triple, N-Quad, Turtle, and Trig files can be loaded from the local file system using the
LOAD operation. Note that the simpler N-Triple, and N-Quad formats can be loaded faster than
Turtle and Trig. An optional INTO clause can be used to load the file into a specific named
graph. To perform a LOAD operation, the user must either (1) have CREATE ANY
DIRECTORY and DROP ANY DIRECTORY privileges or (2) supply the name of an existing
directory object in the options parameter of UPDATE_RDF_GRAPH. This example loads the /
home/oracle/example.nq N-Quad file into an RDF graph..

Note that the use of an INTO clause with an N-Quad or Trig file will override any named graph
information in the file. In this example, INTO GRAPH :cameras overrides :myGraph for the first
quad, so the subject, property, object triple component of this quad is inserted into
the :cameras graph instead.

-- Datafile: /home/oracle/example.nq
<http://www.example.org/electronics/camera3> <http://www.example.org/
electronics/name> "Camera 3" <http://www.example.org/electronics/myGraph> .
<http://www.example.org/electronics/camera3> <http://www.example.org/
electronics/price> "125"^^<http://www.w3.org/2001/XMLSchema#decimal> .

-- Dataset before operation:
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 173 of 197

 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- Update operation:
CREATE OR REPLACE DIRECTORY MY_DIR AS '/home/oracle';

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example.nq> INTO GRAPH :cameras',
 options=>'LOAD_DIR={MY_DIR}',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
 :camera3 :name "Camera 3";
 :price 125.
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Several files under the same directory can be loaded in parallel with a single LOAD operation.
To specify extra N-Triple or N-Quad files to be loaded, you can use the LOAD_OPTIONS hint.
The degree of parallelism for the load can be specified with PARALLEL(n) in the options string..
The following example shows how to load the files /home/oracle/example1.nq, /home/
oracle/example2.nq, and /home/oracle/example3.nq into an RDF graph. A degree of
parallelism of 3 is used for this example.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example1.nq>',
 options=> ' PARALLEL(3) LOAD_OPTIONS={ example2.nq example3.nq }
LOAD_DIR={MY_DIR} ',

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 174 of 197

 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

Related subtopics:

• Tuning the Performance of SPARQL Update Operations

• Transaction Management with SPARQL Update Operations

• Support for Bulk Operations

• Setting UPDATE_RDF_GRAPH Options at the Session Level

• Load Operations: Special Considerations for SPARQL Update

• Long Literals: Special Considerations for SPARQL Update

• Blank Nodes: Special Considerations for SPARQL Update

1.15.1 Tuning the Performance of SPARQL Update Operations
In some cases it may be necessary to tune the performance of SPARQL Update operations.
Because SPARQL Update operations involve executing one or more SPARQL queries based
on the WHERE clause in the UPDATE statement, the Best Practices for Query Performance
also apply to SPARQL Update operations. The following considerations also apply:

• Delete operations require an appropriate index on the application table (associated with
the apply_model parameter in SEM_APIS.UPDATE_RDF_GRAPH) for good performance.
Assuming an application table named APP_TAB with the SDO_RDF_TRIPLE_S column
named TRIPLE, an index similar to the following is recommended (this is the same index
used by RDF Graph Support for Apache Jena):

-- Application table index for
-- (graph_id, subject_id, predicate_id, canonical_object_id)
CREATE INDEX app_tab_idx ON app_tab app (
 BITAND(app.triple.rdf_m_id,79228162514264337589248983040)/4294967296,
 app.triple.rdf_s_id,
 app.triple.rdf_p_id,
 app.triple.rdf_c_id)
COMPRESS;

• Performance-related SEM_MATCH options can be passed to the match_options
parameter of SEM_APIS.UPDATE_RDF_GRAPH, and performance-related options such
as PARALLEL and DYNAMIC_SAMPLING can be specified in the options parameter of
that procedure. The following example uses the options parameter to specify a degree of
parallelism of 4 and an optimizer dynamic sampling level of 6 for the update. In addition,
the example uses ALLOW_DUP=T as a match option when matching against the RDF
graph collection VM1.

BEGIN
 sem_apis.update_rdf_graph(
 'electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 match_models=>sem_models('VM1'),

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 175 of 197

 match_models=>sem_models('VM1'),
 match_options=>' ALLOW_DUP=T ',
 options=>' PARALLEL(4) DYNAMIC_SAMPLING(6) ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

• Inline Query Optimizer Hints can be specified in the WHERE clause. The following
example extends the preceding example by using the HINT0 hint in the WHERE clause
and the FINAL_VALUE_NL hint in the match_options parameter.

BEGIN
 sem_apis.update_rdf_graph(
 'electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { # HINT0={ LEADING(t0 t1) USE_NL(t0 t1)
 ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 match_models=>sem_models('VM1'),
 match_options=>' ALLOW_DUP=T FINAL_VALUE_NL ',
 options=>' PARALLEL(4) DYNAMIC_SAMPLING(6) ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.15.2 Transaction Management with SPARQL Update Operations
You can exercise some control over the number of transactions used and whether they are
automatically committed by a SEM_APIS.UPDATE_RDF_GRAPH operation.

By default, the SEM_APIS.UPDATE_RDF_GRAPH procedure executes in a single transaction
that is either committed upon successful completion or rolled back if an error occurs. For
example, the following call executes three update operations (separated by semicolons) in a
single transaction:

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert camera data
 INSERT DATA {
 elec:camera1 elec:name "Camera 1" .
 elec:camera1 elec:price 120 .
 elec:camera1 elec:cameraType elec:DigitalCamera .
 elec:camera2 elec:name "Camera 2" .
 elec:camera2 elec:price 150 .
 elec:camera2 elec:cameraType elec:DigitalCamera . };
 # insert ecom:price triples
 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p };
 # delete elec:price triples
 DELETE WHERE { ?c elec:price ?p }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 176 of 197

/

PL/SQL procedure successfully completed.

By contrast, the following example uses three separate SEM_APIS.UPDATE_RDF_GRAPH
calls to execute the same three update operations in three separate transactions:

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert camera data
 INSERT DATA {
 elec:camera1 elec:name "Camera 1" .
 elec:camera1 elec:price 120 .
 elec:camera1 elec:cameraType elec:DigitalCamera .
 elec:camera2 elec:name "Camera 2" .
 elec:camera2 elec:price 150 .
 elec:camera2 elec:cameraType elec:DigitalCamera . }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;

PL/SQL procedure successfully completed.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert ecom:price triples
 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert elec:price triples
 DELETE WHERE { ?c elec:price ?p }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

The AUTOCOMMIT=F option can be used to prevent separate transactions for each
SEM_APIS.UPDATE_RDF_GRAPH call. With this option, transaction management is the

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 177 of 197

responsibility of the caller. The following example shows how to execute the update operations
in the preceding example as a single transaction instead of three separate ones.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert camera data
 INSERT DATA {
 elec:camera1 elec:name "Camera 1" .
 elec:camera1 elec:price 120 .
 elec:camera1 elec:cameraType elec:DigitalCamera .
 elec:camera2 elec:name "Camera 2" .
 elec:camera2 elec:price 150 .
 elec:camera2 elec:cameraType elec:DigitalCamera . }',
 options=>' AUTOCOMMIT=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert ecom:price triples
 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p }',
 options=>' AUTOCOMMIT=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert elec:price triples
 DELETE WHERE { ?c elec:price ?p }',
 options=>' AUTOCOMMIT=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

COMMIT;

Commit complete.

However, the following cannot be used with the AUTOCOMMIT=F option:

• Bulk operations (FORCE_BULK=T, DEL_AS_INS=T)

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 178 of 197

• LOAD operations

• Materialization of intermediate data (STREAMING=F)

• Transaction Isolation Levels

1.15.2.1 Transaction Isolation Levels
Oracle AI Database supports three different transaction isolation levels: read committed,
serializable, and read-only.

Read committed isolation level is the default. Queries in a transaction using this isolation level
see only data that was committed before the query – not the transaction – began and any
changes made by the transaction itself. This isolation level allows the highest degree of
concurrency.

Serializable isolation level queries see only data that was committed before the transaction
began and any changes made by the transaction itself.

Read-only isolation level behaves like serializable isolation level but data cannot be modified
by the transaction.

SEM_APIS.UPDATE_RDF_GRAPH supports read committed and serializable transaction
isolation levels, and read committed is the default. SPARQL UPDATE operations are
processed in the following basic steps.

1. A query is executed to obtain a set of triples to be deleted.

2. A query is executed to obtain a set of triples to be inserted.

3. Triples obtained in Step 1 are deleted.

4. Triples obtained in Step 2 are inserted.

With the default read committed isolation level, the underlying triple data may be modified by
concurrent transactions, so each step may see different data. In addition, changes made by
concurrent transactions will be visible to subsequent update operations within the same
SEM_APIS.UPDATE_RDF_GRAPH call. Note that steps 1 and 2 happen as a single step
when using materialization of intermediate data (STREAMING=F), so underlying triple data cannot
be modified between steps 1 and 2 with this option. See Support for Bulk Operations for more
information about materialization of intermediate data.

Serializable isolation level can be used by specifying the SERIALIZABLE=T option. In this case,
each step will only see data that was committed before the update RDF graph operation
began, and multiple update operations executed in a single
SEM_APIS.UPDATE_RDF_GRAPH call will not see modifications made by concurrent update
operations in other transactions. However, ORA-08177 errors will be raised if a
SEM_APIS.UPDATE_RDF_GRAPH execution tries to update triples that were modified by a
concurrent transaction. When using SERIALIZABLE=T, the application should detect and handle
ORA-08177 errors (for example, retry the update command if it could not be serialized on the
first attempt).

The following cannot be used with the SERIALIZABLE=T option:

• Bulk operations (FORCE_BULK=T, DEL_AS_INS=T)

• LOAD operations

• Materialization of intermediate data (STREAMING=F)

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 179 of 197

1.15.3 Support for Bulk Operations
SEM_APIS.UPDATE_RDF_GRAPH supports bulk operations for efficient execution of large
updates. The following options are provided; however, when using any of these bulk
operations, serializable isolation (SERIALIZABLE=T) and autocommit false (AUTOCOMMMIT=F)
cannot be used.

• Materialization of Intermediate Data (STREAMING=F)

• Using SEM_APIS.BULK_LOAD_RDF_GRAPH

• Using Delete as Insert (DEL_AS_INS=T)

1.15.3.1 Materialization of Intermediate Data (STREAMING=F)
By default, SEM_APIS.UPDATE_RDF_GRAPH executes two queries for a basic DELETE
INSERT SPARQL Update operation: one query to find triples to delete and one query to find
triples to insert. For some update operations with WHERE clauses that are expensive to
evaluate, executing two queries may not give the best performance. In these cases, executing
a single query for the WHERE clause, materializing the results, and then using the materialized
results to construct triples to delete and triples to insert may give better performance. This
approach incurs overhead from a DDL operation, but overall performance is likely to be better
for complex update statements.

The following example update using this option (STREAMING=F). Note that STREAMING=F is not
allowed with serializable isolation (SERIALIZABLE=T) or autocommit false (AUTOCOMMIT=F).

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE { ?s ?p ?o }
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 options=>' STREAMING=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.15.3.2 Using SEM_APIS.BULK_LOAD_RDF_GRAPH
For updates that insert a large number of triples (such as tens of thousands), the default
approach of incremental DML on the application table may not give acceptable performance. In
such cases, the FORCE_BULK=T option can be specified so that
SEM_APIS.BULK_LOAD_RDF_GRAPH is used instead of incremental DML.

However, not all update operations can use this optimization. The FORCE_BULK=T option is only
allowed for a SEM_APIS.UPDATE_RDF_GRAPH call with either a single ADD operation or a
single INSERT WHERE operation. The use of SEM_APIS.BULK_LOAD_RDF_GRAPH forces
a series of commits and autonomous transactions, so the AUTOCOMMIT=F and SERIALIZABLE=T
options are not allowed with FORCE_BULK=T. In addition, bulk load cannot be used with
CLOB_UPDATE_SUPPORT=T.

SEM_APIS.BULK_LOAD_RDF_GRAPH allows various customizations through its flags
parameter. SEM_APIS.UPDATE_RDF_GRAPH supports the

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 180 of 197

BULK_OPTIONS={ OPTIONS_STRING } flag so that OPTIONS_STRING can be passed into the flags
input of SEM_APIS.BULK_LOAD_RDF_GRAPH to customize bulk load options. The following
example shows a SEM_APIS.UPDATE_RDF_GRAPH invocation using the FORCE_BULK=T
option and BULK_OPTIONS flag.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p }',
 options=>' FORCE_BULK=T BULK_OPTIONS={ parallel=4
parallel_create_index }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.15.3.3 Using Delete as Insert (DEL_AS_INS=T)
For updates that delete a large number of triples (such as tens of thousands), the default
approach of incremental DML on the application table may not give acceptable performance.
For such cases, the DEL_AS_INS=T option can be specified. With this option, a large delete
operation is implemented as INSERT, TRUNCATE, and EXCHANGE PARTITION operations.

The use of DEL_AS_INS=T causes a series of commits and autonomous transactions, so this
option cannot be used with SERIALIZABLE=T or AUTOCOMMIT=F. In addition, this option can only
be used with SEM_APIS.UPDATE_RDF_GRAPH calls that involve a single DELETE WHERE
operation, a single DROP operation, or a single CLEAR operation.

Delete as insert internally uses SEM_APIS.MERGE_RDF_GRAPHS during intermediate
operations. The string OPTIONS_STRING from the MM_OPTIONS={ OPTIONS_STRING } flag can be
specified to customize options for merging. The following example shows a
SEM_APIS.UPDATE_RDF_GRAPH invocation using the DEL_AS_INS=T option and MM_OPTIONS
flag.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'CLEAR NAMED',
 options=>' DEL_AS_INS=T MM_OPTIONS={ dop=4 } ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.15.4 Setting UPDATE_RDF_GRAPH Options at the Session Level
Some settings that affect the SEM_APIS.UPDATE_RDF_GRAPH procedure’s behavior can be
modified at the session level through the use of the special
MDSYS.SDO_SEM_UPDATE_CTX.SET_PARAM procedure. The following options can be set
to true or false at the session level: autocommit, streaming, strict_bnode, and clob_support.

The MDSYS.SDO_SEM_UPDATE_CTX contains the following subprograms to get and set
SEM_APIS.UPDATE_RDF_GRAPH parameters at the session level:

SQL> describe mdsys.sdo_sem_update_ctx
FUNCTION GET_PARAM RETURNS VARCHAR2

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 181 of 197

 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 NAME VARCHAR2 IN
PROCEDURE SET_PARAM
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 NAME VARCHAR2 IN
 VALUE VARCHAR2 IN

The following example causes all subsequent calls to the SEM_APIS.UPDATE_RDF_GRAPH
procedure to use the AUTOCOMMIT=F setting, until the end of the session or the next call to
SEM_APIS.UPDATE_RDF_GRAPH that specifies a different autocommit value.

begin
 mdsys.sdo_sem_update_ctx.set_param('autocommit','false');
end;
/

1.15.5 Load Operations: Special Considerations for SPARQL Update
The format of the file to load affects the amount of parallelism that can be used during the load
process. Load operations have two phases:

1. Loading from the file system to a staging table

2. Calling SEM_APIS.BULK_LOAD_RDF_GRAPH to load from a staging table into an RDF
graph

All supported data formats can use parallel execution in phase 2, but only N-Triple and N-Quad
formats can use parallel execution in phase 1. In addition, if a load operation is interrupted
during phase 2 after the staging table has been fully populated, loading can be resumed with
the RESUME_LOAD=T keyword in the options parameter.

Load operations for RDF documents that contain object values longer than
NETWORK_MAX_STRING_SIZE bytes may require additional operations. Load operations on Turtle
and Trig documents will automatically load all triples/quads regardless of object value size.
However, load operations on N-Triple and N-Quad documents will only load triples/quads with
object values that are less than NETWORK_MAX_STRING_SIZE bytes in length. For N-Triple and N-
Quad data, a second load operation should be issued with the LOAD_CLOB_ONLY=T option to
also load triples/quads with object values larger than NETWORK_MAX_STRING_SIZE bytes.

Loads from Unix named pipes are only supported for N-Triple and N-Quad formats. Turtle and
Trig files should be uncompressed, physical files.

Unicode characters are handled differently depending on the format of the RDF file to load.
Unicode characters in N-Triple and N-Quad files should be escaped as
\u<HEX><HEX><HEX><HEX> or \U<HEX><HEX><HEX><HEX><HEX><HEX><HEX><HEX> using the hex
value of the Unicode codepoint value. Turtle and Trig files do not require Unicode escaping
and can be directly loaded with unescaped Unicode values.

Example 1-127 Short and Long Literal Load for N-Quad Data

BEGIN
 -- short literal load
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example1.nq>',

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 182 of 197

 options=> ' LOAD_DIR={MY_DIR} ',
 network_owner=>'RDFUSER', network_name=>'NET1');

 -- long literal load
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example1.nq>',
 options=> ' LOAD_DIR={MY_DIR} LOAD_CLOB_ONLY=T ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.15.6 Long Literals: Special Considerations for SPARQL Update
By default, SPARQL Update operations do not manipulate values longer than
NETWORK_MAX_STRING_SIZE bytes. To enable long literals support, specify
CLOB_UPDATE_SUPPORT=T in the options parameter with the SEM_APIS.UPDATE_RDF_GRAPH
procedure.

Bulk load does not work for long literals; the FORCE_BULK=T option is ignored when used with
the CLOB_UPDATE_SUPPORT=T option.

1.15.7 Blank Nodes: Special Considerations for SPARQL Update
Some update operations only affect the graph of a set of RDF triples. Specifically, these
operations are ADD, COPY and MOVE. For example, the MOVE operation example in Support
for SPARQL Update Operations on an RDF Graph can be performed only updating triples
having :digitalCameras as the graph. However, the performance of such operations can be
improved by using ID-only operations over the RDF graph. To run a large ADD, COPY, or
MOVE operation as an ID-only operation, you can specify the STRICT_BNODE=F hint in the
options parameter for the SEM_APIS.UPDATE_RDF_GRAPH procedure.

ID-only operations may lead to incorrect blank nodes, however, because no two graphs should
share the same blank node. RDF graph uses a blank node prefixing scheme based on the
model (RDF graph) and named graph combination that contains a blank node. These prefixes
ensure that blank node identifiers are unique across models (RDF graphs) and named graphs.
An ID-only approach for ADD, COPY, and UPDATE operations does not update blank node
prefixes.

Example 1-128 ID-Only Update Causing Incorrect Blank Node Values

The update in the following example leads to the same blank node subject for both triples in
graphs :cameras and :cameras2. This can be verified running the provided SEM_MATCH
query.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT DATA {
 GRAPH :cameras { :camera2 :owner _:bn1 .
 _:bn1 :name "Axel" }
 };
 COPY :cameras TO :cameras2',
 options=>' STRICT_BNODE=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;

Chapter 1
Support for SPARQL Update Operations on an RDF Graph

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 183 of 197

/

SELECT count(s)
FROM TABLE(SEM_MATCH('
 PREFIX : <http://www.example.org/electronics/>
 SELECT *
 WHERE { { graph :cameras {?s :name "Axel" } }
 { graph :cameras2 {?s :name "Axel" } } }
', sem_models('electronics'),null,null,null,null,' STRICT_DEFAULT=T ',
null, null, 'RDFUSER', 'NET1'));

To avoid such errors, you should specify the STRICT_BNODE=F hint in the options parameter for
the SEM_APIS.UPDATE_RDF_GRAPH procedure only when you are sure that blank nodes
are not involved in the ADD, COPY, or MOVE update operation.

However, ADD, COPY, and MOVE operations on large graphs with the STRICT_BNODE=F option
may run significantly faster than they would run using the default method. If you need to run a
series of ID-only updates, another option is to use the STRICT_BNODE=F option, and then
execute the SEM_APIS.CLEANUP_BNODES procedure at the end. This approach resets the
prefix of all blank nodes in a given RDF graph, which effectively corrects ("cleans up") all
erroneous blank node labels.

Note that this two-step strategy should not be used with a small number of ADD, COPY, or
MOVE operations. Performing a few operations using the default approach will execute faster
than running a few ID-only operations and then executing the
SEM_APIS.CLEANUP_BNODES procedure.

The following example corrects blank nodes in the RDF graph named electronics.

EXECUTE sem_apis.cleanup_bnodes('electronics');

1.16 RDF Support for Oracle AI Database In-Memory
RDF can use the in-memory Oracle AI Database In-Memory suite of features, including in-
memory column store, to improve performance for real-time analytics and mixed workloads.

After database In-Memory setup, the RDF in-memory loading can be performed using the
SEM_APIS.ENABLE_INMEMORY procedure. This requires an administrative privilege and
affects the entire RDF network. It loads frequently used columns from the RDF_LINK$ and
RDF_VALUE$ tables into memory.

After this procedure is executed, RDF in-memory virtual columns can be loaded into memory.
This is done at the RDF graph collection level: when an RDF graph collection is created, the in-
memory option can be specified in the call to
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION.

You can also enable and disable in-memory population of RDF data for specified RDF graphs
and inferred graphs by using the SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH,
SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH,
SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH, and
SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH procedures.

Chapter 1
RDF Support for Oracle AI Database In-Memory

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 184 of 197

Note

To use RDF with Oracle AI Database In-Memory, you must understand how to enable
and configure Oracle AI Database In-Memory, as explained in Oracle AI Database In-
Memory Guide.

• Enabling Oracle AI Database In-Memory for RDF

• Using In-Memory Virtual Columns with RDF

• Using Invisible Indexes with Oracle AI Database In-Memory

1.16.1 Enabling Oracle AI Database In-Memory for RDF
To load RDF data into memory, the compatibility must be set to 12.2 or later, and the
inmemory_size value must be at least 100MB. The RDF network can then be loaded into
memory using the SEM_APIS.ENABLE_INMEMORY procedure.

Before you use RDF data in memory, you should verify that the data is loaded into memory:

SQL> select pool, alloc_bytes, used_bytes, populate_status from V$INMEMORY_AREA;
POOL ALLOC_BYTES USED_BYTES POPULATE_STATUS
-------------------------- ----------- ---------- --------------------------
1MB POOL 5.0418E+10 4.4603E+10 DONE
64KB POOL 3202088960 9568256 DONE

If the POPULATE_STATUS value is DONE, the RDF data has been fully loaded into memory.

To check if RDF data in memory is used, search for ‘TABLE ACCESS INMEMORY FULL’ in the
execution plan:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 1 | 13 | 580 (60)| 00:00:01
| | | | | |
| 1 | VIEW | | 1 | 13 | 580 (60)| 00:00:01
| | | | | |
| 2 | VIEW | | 1 | 13 | 580 (60)| 00:00:01
3	SORT AGGREGATE		1	16	
4	PX COORDINATOR				
5	PX SEND QC (RANDOM)	:TQ10000	1	16	
		Q1,00	P->S	QC (RAND)	
6	SORT AGGREGATE		1	16	
		Q1,00	PCWP		
7	PX BLOCK ITERATOR		242M	3697M	580 (60)
KEY(I)	KEY(I)	Q1,00	PCWC		
8	TABLE ACCESS INMEMORY FULL	RDF_LINK$	242M	3697M	580 (60)
00:00:01 |KEY(I) |KEY(I) | Q1,00 | PCWP | |

Chapter 1
RDF Support for Oracle AI Database In-Memory

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 185 of 197

To disable in-memory population of RDF data, use the SEM_APIS.DISABLE_INMEMORY
procedure.

1.16.2 Using In-Memory Virtual Columns with RDF
In addition to RDF data in memory, RDF in-memory virtual columns can be used to load lexical
values for RDF terms in the RDF_LINK$ table into memory. To load the RDF in-memory virtual
columns, you must first execute SEM_APIS.ENABLE_INMEMORY with administrative
privileges, setting the inmemory_virtual_columns parameter to ENABLE. The in-memory virtual
columns are created in the RDF_LINK$ table and loaded into memory at the RDF graph
collection level.

To load the virtual columns into memory, use the option ‘PXN=F INMEMORY=T’ in the call to
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION. For example (assuming a schema-private
network named NET1 owned by a database user named RDFUSER):

EXECUTE SEM_APIS.CREATE_RDF_GRAPH_COLLECTION
('vm2',SEM_MODELS('lubm1k','univbench'),SEM_RULEBASES
('owl2rl'),options=>'PXN=F INMEMORY=T', network_owner=>'RDFUSER',
network_name=>'NET1');

You can check for in-memory RDF graph collections by examining the SEM_MODEL$ view,
where the INMEMORY column is set to T for an in-memory graph collection.

The in-memory RDF graph collection removes the need for joins with the RDF_VALUE$ table.
To check the usage of in-memory RDF graph collections, use the same commands in Enabling
Oracle AI Database In-Memory for RDF.

For best performance, fully populate the in-memory virtual columns before any query is
processed, because unpopulated virtual columns are assembled at run time and this overhead
may impair performance.

1.16.3 Using Invisible Indexes with Oracle AI Database In-Memory
Sometimes, inconsistent query performance may result due to the use of indexes. If you want
consistent performance across different workloads, even though it may mean negating some
performance gains that normally result from indexing, you can make the RDF network indexes
invisible so that the query execution is done by pure memory scans. The following example
makes the RDF network indexes invisible in a schema-private network named NET1 owned by
a database user named RDFUSER:

EXECUTE SEM_APIS.ALTER_RDF_INDEXES('VISIBILITY','N',
network_owner=>'RDFUSER', network_name=>'NET1');

To make the RDF network indexes visible again, use the following

EXECUTE SEM_APIS.ALTER_RDF_INDEXES('VISIBILITY','Y',
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 1
RDF Support for Oracle AI Database In-Memory

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 186 of 197

Note

RDF_VALUE$ indexes must be visible so that Oracle AI Database can efficiently look
up VALUE_IDs for query constants at compile time.

For an explanation of invisible and unusable indexes, see Oracle AI Database Administrator’s
Guide.

1.17 RDF Support for Materialized Join Views
The most frequently used joins in RDF queries are subject-subject and subject-object joins. To
enhance the RDF query performance, you can create materialized join views on those two
columns.

Materialized join views can be created on a single RDF graph, or on more than one graphs by
creating an RDF graph collection with the 'ALLOW_DUP=T' option, and then creating the
materialized join view on that RDF graph collection. All materialized views are owned by the
network owner. (To create a materialized join view, use the
SEM_APIS.CREATE_MATERIALIZED_VIEW procedure.)

The materialized views are compressed by default, and in-memory can be enabled if the IMDB
option is installed. Two materialized views are created on subject-subject join (SS-join) and
subject-object join (SO-join) between two tables named, for example, T0 and T1, and all
G,S,P,O values are fetched by a deterministic function using the IDs. The values can optionally
be defined as a virtual column. In other words, only G,S,P,O IDs for both T0 and T1 are real
columns, and the rest are virtual columns. It is recommended that the virtual columns be used
with in-memory virtual column enabled, so that the values are materialized in memory if the
IMDB option is installed.

A bitmap index can be created on a single column in the materialized view. The materialized
view columns are named as follows in each table in the join:

• Graph ID: G

• Subject ID: S

• Predicate ID: P

• Object ID: O

• Graph name: GV

• Subject name: SV

• Predicate name: PV

• Object name: OV

• value type: $RDFVTYP

• literal type: $RDFLTYP

• language type: $RDFLANG

• order_type: $RDFORDT

• order_num: $RDFORDN

• order_date: $RDFORDD

Chapter 1
RDF Support for Materialized Join Views

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 187 of 197

For example, if a materialized view named MVX is created, the following join views are
created:

SS-join (MVX$SS) and SO-join (MVX$SO)

MVX$SS(T0G, T0S, T0P, T0O, T1G, T1S, T1P, T1O,
 T0GV, T0G$RDFVTYP, T0G$RDFLTYP, T0G$RDFLANG, T0G$RDFORDT, T0G$RDFORDN, T0G$RDFORDD
 T0SV, T0S$RDFVTYP, T0S$RDFLTYP, T0S$RDFLANG, T0S$RDFORDT, T0S$RDFORDN, T0S$RDFORDD
 T0PV, T0P$RDFVTYP, T0P$RDFLTYP, T0P$RDFLANG, T0P$RDFORDT, T0P$RDFORDN, T0P$RDFORDD
 T0OV, T0O$RDFVTYP, T0O$RDFLTYP, T0O$RDFLANG, T0O$RDFORDT, T0O$RDFORDN, T0O$RDFORDD
 T1GV, T1G$RDFVTYP, T1G$RDFLTYP, T1G$RDFLANG, T1G$RDFORDT, T1G$RDFORDN, T1G$RDFORDD
 T1SV, T1S$RDFVTYP, T1S$RDFLTYP, T1S$RDFLANG, T1S$RDFORDT, T1S$RDFORDN, T1S$RDFORDD
 T1PV, T1P$RDFVTYP, T1P$RDFLTYP, T1P$RDFLANG, T1P$RDFORDT, T1P$RDFORDN, T1P$RDFORDD
 T1OV, T1O$RDFVTYP, T1O$RDFLTYP, T1O$RDFLANG, T1O$RDFORDT, T1O$RDFORDN, T1O$RDFORDD)

The same column names for the MVX$SO join view are specified as well.

When a bitmap index is created on a SS-join view, the index is named <MView name><index
column name>_I0$. Similarly, the index is named <MView name><index column name>_I1$
for SO-join view. For example, if an index is created on a column T0P in the materialized view
MVX, then the index name would be MVXT0P_I0$ for the SS-join view and MVXT0P_I1$ for
the SO-join view.

1.18 RDF Support in Oracle SQL Developer
You can use Oracle SQL Developer to perform operations related to the RDF Knowledge
Graph feature of Oracle Graph.

For details, see RDF Support in SQL Developer.

1.19 Enhanced RDF ORDER BY Query Processing
Effective with Oracle Database Release 12.2, queries on RDF data that use SPARQL ORDER
BY semantics are processed more efficiently than in previous releases.

This internal efficiency involves the use of the ORDER_TYPE, ORDER_NUM, and
ORDER_DATE columns in the RDF_VALUE$ metadata table (documented in Statements).
The values for these three columns are populated during loading, and this enables ORDER BY
queries to reduce internal function calls and to execute faster.

Effective with Oracle Database Release 12.2, the procedure
SEM_APIS.ADD_DATATYPE_INDEX creates an index on the ORDER_NUM column for
numeric types (xsd:float, xsd:double, and xsd:decimal and all of its subtypes) and an index on
ORDER_DATE column for date-related types (xsd:date, xsd:time, and xsd:dateTime) instead
of a function-based index as in previous versions. If you want to continue using a function-
based index for these data types, you should use the FUNCTION=T option of the
SEM_APIS.ADD_DATATYPE_INDEX procedure. For example (assuming a schema-private
RDF network named NET1 owned by a database user named RDFUSER):

EXECUTE sem_apis.add_datatype_index('http://www.w3.org/2001/
XMLSchema#decimal', options=>'FUNCTION=T', network_owner=>'RDFUSER',
network_name=>'NET1');

EXECUTE sem_apis.add_datatype_index('http://www.w3.org/2001/XMLSchema#date',
options=>'FUNCTION=T', network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 1
RDF Support in Oracle SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 188 of 197

1.20 Applying Oracle Machine Learning Algorithms to RDF Data
You can apply Oracle Machine Learning algorithms to RDF data.

Oracle Data Mining requires data to be in a single table or view, and each row represents a
single case. Therefore, RDF data needs to be defined as a view mimicking this structure. To
accomplish that, do the following:

1. Find the number of predicates of interest: P1, P2, P3, … , Pn.

2. Create a view with columns (S, C1, C2, C3, …. , Cn), where columns correspond to the
subject, P1, P2, …, and Pn.

Depending upon requirements, such as a text column that needs to be defined in a table,
you can also create a table.

Convert numerical values using the TO_NUMBER or CAST function.

For example:

CREATE VIEW ML_TAB (S, C1, C2, C3, … , Cn)
AS
SELECT subj, O1, to_number(O2), CAST (O3 AS INTEGER), ... , On
FROM TABLE(SEM_MATCH(
'SELECT ?subj ?O1 ?O2 ?O3 … ?On
 WHERE {
 OPTIONAL { ?subj P1 ?O1 }
 OPTIONAL { ?subj P2 ?O2 }
 OPTIONAL { ?subj P3 ?O3 }
….
 OPTIONAL { ?subj Pn ?On }
 }'
, SEM_MODELS('M1')
,null, null, null, null));

Now the view looks something like this:

SQL> SELECT * FROM ML_TAB;
S C1 C2 C3
---------- -------------------- -------------------- --------------------
S1 O11 O21 O31
S2 O21 O32
S3 O23

After you have this structure defined, you can directly apply Oracle Machine Learning
algorithms on this view. Oracle Data Mining deals with three types of attributes:

• numerical attribute

• categorical attribute

• unstructured text

You must separate the data into three groups based on the data types of the three types of
attributes.

Chapter 1
Applying Oracle Machine Learning Algorithms to RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 189 of 197

1.21 RDF Graph Management Examples (PL/SQL and Java)
PL/SQL examples are provided in this topic.

For Java examples, see RDF Graph Support for Apache Jena.

• Example: Journal Article Information

• Example: Family Information

1.21.1 Example: Journal Article Information
This section presents a simplified PL/SQL example of RDF graph for statements about journal
articles. Example 1-129 contains descriptive comments, refers to concepts that are explained
in this chapter, and uses functions and procedures documented in SEM_APIS Package
Subprograms.

Example 1-129 Using an RDF Graph for Journal Article Information

-- Basic steps:
-- After you have connected as a privileged user and called
-- SEM_APIS.CREATE_RDF_NETWORK to create a schema for storing RDF data,
-- connect as a regular database user and do the following.

-- 1. For each desired network, create an RDF graph(SEM_APIS.CREATE_RDF_GRAPH).
-- Note that we are using the schema-private network NET1 created in
-- "Quick Start for Using RDF Data".

EXECUTE SEM_APIS.CREATE_RDF_GRAPH('articles', 'null', 'null', network_owner=>'RDFUSER',
network_name=>'NET1');

-- Information to be stored about some fictitious articles:
-- Article1, titled "All about XYZ" and written by Jane Smith, refers
-- to Article2 and Article3.
-- Article2, titled "A review of ABC" and written by Joe Bloggs,
-- refers to Article3.
-- Seven SQL statements to store the information. In each statement:
-- Each article is referred to by its complete URI The URIs in
-- this example are fictitious.
-- Each property is referred to by the URL for its definition, as
-- created by the Dublin Core Metadata Initiative.

-- 2. Use SEM_APIS.UPDATE_RDF_GRAPH to insert data with SPARQL Update statements

BEGIN
 SEM_APIS.UPDATE_RDF_GRAPH('articles',
 'PREFIX nature: <http://nature.example.com/>
 PREFIX dc: <http://purl.org/dc/elements/1.1/>
 PREFIX dcterms: <http://purl.org/dc/terms/>

 INSERT DATA {

 # article1 has the title "All about XYZ".
 # article1 was created (written) by Jane Smith.
 # article1 references (refers to) article2 and article3
 nature:article1 dc:title "All about XYZ" ;
 dc:creator "Jane Smith" ;
 dcterms:references nature:article2,
 nature:article3 .

Chapter 1
RDF Graph Management Examples (PL/SQL and Java)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 190 of 197

 # article2 has the title "A review of ABC".
 # article2 was created (written) by Joe Bloggs.
 # article2 references (refers to) article3.
 nature:article2 dc:title "A Review of ABC" ;
 dc:creator "Joe Bloggs" ;
 dcterms:references nature:article3 .
 }',
 network_owner=>'RDFUSER',
 network_name=>'NET1');
END;
/

-- 3. Query RDF data with SEM_MATCH table function.
-- 3.a Get all article authors and titles
SELECT author$rdfterm, title$rdfterm
FROM TABLE(SEM_MATCH(
'PREFIX dc: <http://purl.org/dc/elements/1.1/>
 SELECT ?author ?title
 WHERE { ?article dc:creator ?author
 ; dc:title ?title . }'
, SEM_MODELS('articles')
, null, null, null, null
, ' PLUS_RDFT=VC '
, null, null
, 'RDFUSER', 'NET1'));

-- 3.b Find all articles referenced by Article1
SELECT ref$rdfterm
FROM TABLE(SEM_MATCH(
'PREFIX dcterms: <http://purl.org/dc/terms/>
 PREFIX nature: <http://nature.example.com/>
 SELECT ?ref
 WHERE { nature:article1 dcterms:references ?ref . }'
, SEM_MODELS('articles')
, null, null, null, null
, ' PLUS_RDFT=VC '
, null, null
, 'RDFUSER', 'NET1'));

1.21.2 Example: Family Information
This section presents a simplified PL/SQL example of an RDF graph for statements about
family tree (genealogy) information. Example 1-129 contains descriptive comments, refers to
concepts that are explained in this chapter, and uses functions and procedures documented in
SEM_APIS Package Subprograms.

The family relationships in this example reflect the family tree shown in Figure 1-3. This figure
also shows some of the information directly stated in the example: Cathy is the sister of Jack,
Jack and Tom are male, and Cindy is female.

Chapter 1
RDF Graph Management Examples (PL/SQL and Java)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 191 of 197

Figure 1-3 Family Tree for RDF Example

John Janice

Suzie MattSammy Martha

Cathy Jack Tom Cindy

(sisterOf Jack) (Male) (Male) (Female)

Example 1-130 Using an RDF graph for Family Information

-- Preparation: create tablespace; enable RDF support.
-- Connect as a privileged user. Example: CONNECT SYSTEM/password-for-SYSTEM
-- Create a tablespace for the RDF data. Example:
CREATE TABLESPACE rdf_tblspace
 DATAFILE 'rdf_tblspace.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 128M MAXSIZE 4G
 SEGMENT SPACE MANAGEMENT AUTO;

-- Call SEM_APIS.CREATE_RDF_NETWORK to create a schema-private RDF
-- network named NET1 owned by RDFUSER, which will create database
-- objects to store RDF data. Example:
EXECUTE SEM_APIS.CREATE_RDF_NETWORK('rdf_tblspace', network_owner=>'RDFUSER',
network_name=>'NET1');

-- Connect as the user that is to perform the RDF operations (not SYSTEM),
-- and do the following:
-- 1. For each desired network, create an RDF graph (SEM_APIS.CREATE_RDF_GRAPH).
-- 2. Use various subprograms and constructors.
-- Create the RDF graph.EXECUTE SEM_APIS.CREATE_RDF_GRAPH('family', 'null', 'null',
network_owner=>'RDFUSER', network_name=>'NET1');

-- Insert RDF triples using SEM_APIS.UPDATE_RDF_GRAPH. These express the following
information:

-- John and Janice have two children, Suzie and Matt.
-- Matt married Martha, and they have two children:
-- Tom (male) and Cindy (female).
-- Suzie married Sammy, and they have two children:
-- Cathy (female) and Jack (male).

-- Person is a class that has two subslasses: Male and Female.
-- parentOf is a property that has two subproperties: fatherOf and motherOf.
-- siblingOf is a property that has two subproperties: brotherOf and sisterOf.
-- The domain of the fatherOf and brotherOf properties is Male.
-- The domain of the motherOf and sisterOf properties is Female.

BEGIN

 -- Insert some TBox (schema) information.
 SEM_APIS.UPDATE_RDF_GRAPH('family',
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX family: <http://www.example.org/family/>

Chapter 1
RDF Graph Management Examples (PL/SQL and Java)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 192 of 197

 INSERT DATA {

 # Person is a class.
 family:Person rdf:type rdfs:Class .

 # Male is a subclass of Person.
 family:Male rdfs:subClassOf family:Person .

 # Female is a subclass of Person.
 family:Female rdfs:subClassOf family:Person .

 # siblingOf is a property.
 family:siblingOf rdf:type rdf:Property .

 # parentOf is a property.
 family:parentOf rdf:type rdf:Property .

 # brotherOf is a subproperty of siblingOf.
 family:brotherOf rdfs:subPropertyOf family:siblingOf .

 # sisterOf is a subproperty of siblingOf.
 family:sisterOf rdfs:subPropertyOf family:siblingOf .

 # A brother is male.
 family:brotherOf rdfs:domain family:Male .

 # A sister is female.
 family:sisterOf rdfs:domain family:Female .

 # fatherOf is a subproperty of parentOf.
 family:fatherOf rdfs:subPropertyOf family:parentOf .

 # motherOf is a subproperty of parentOf.
 family:motherOf rdfs:subPropertyOf family:parentOf .

 # A father is male.
 family:fatherOf rdfs:domain family:Male .

 # A mother is female.
 family:motherOf rdfs:domain family:Female .
 }',
 network_owner=>'RDFUSER',
 network_name=>'NET1');

 -- Insert some ABox (instance) information.
 SEM_APIS.UPDATE_RDF_GRAPH('family',
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX family: <http://www.example.org/family/>

 INSERT DATA {
 # John is the father of Suzie and Matt
 family:John family:fatherOf family:Suzie .
 family:John family:fatherOf family:Matt .

 # Janice is the mother of Suzie and Matt
 family:Janice family:motherOf family:Suzie .
 family:Janice family:motherOf family:Matt .

 # Sammy is the father of Cathy and Jack
 family:Sammy family:fatherOf family:Cathy .
 family:Sammy family:fatherOf family:Jack .

Chapter 1
RDF Graph Management Examples (PL/SQL and Java)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 193 of 197

 # Suzie is the mother of Cathy and Jack
 family:Suzie family:motherOf family:Cathy .
 family:Suzie family:motherOf family:Jack .

 # Matt is the father of Tom and Cindy
 family:Matt family:fatherOf family:Tom .
 family:Matt family:fatherOf family:Cindy .

 # Martha is the mother of Tom and Cindy
 family:Martha family:motherOf family:Tom .
 family:Martha family:motherOf family:Cindy .

 # Cathy is the sister of Jack
 family:Cathy family:sisterOf family:Jack .

 # Jack is male
 family:Jack rdf:type family:Male .

 # Tom is male.
 family:Tom rdf:type family:Male .

 # Cindy is female.
 family:Cindy rdf:type family:Female .
 }',
 network_owner=>'RDFUSER',
 network_name=>'NET1');

END;
/

-- RDFS inferencing in the family RDF graph
BEGIN
 SEM_APIS.CREATE_INFERRED_GRAPH(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');
END;
/

-- Select all males from the family graph, without inferencing.
-- (Returns only Jack and Tom.)
SELECT m$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?m
 WHERE {?m rdf:type :Male}',
 SEM_Models('family'),
 null, null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

-- Select all males from the family graph, with RDFS inferencing.
-- (Returns Jack, Tom, John, Sammy, and Matt.)
SELECT m$rdfterm
 FROM TABLE(SEM_MATCH(

Chapter 1
RDF Graph Management Examples (PL/SQL and Java)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 194 of 197

 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?m
 WHERE {?m rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

-- General inferencing in the family graph

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb', network_owner=>'RDFUSER',
network_name=>'NET1');

INSERT INTO rdfuser.net1#semr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));

COMMIT;

-- Because a new rulebase has been created, and it will be used in the
-- inferred graph, drop the preceding inferred graph and then re-create it.
EXECUTE SEM_APIS.DROP_INFERRED_GRAPH ('rdfs_rix_family', network_owner=>'RDFUSER',
network_name=>'NET1');

-- Re-create the inferred graph.
BEGIN
 SEM_APIS.CREATE_INFERRED_GRAPH(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Select all grandfathers and their grandchildren from the family graph,
-- without inferencing. (With no inferencing, no results are returned.)
SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 null, null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

-- Select all grandfathers and their grandchildren from the family graph.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Chapter 1
RDF Graph Management Examples (PL/SQL and Java)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 195 of 197

 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

1.22 Software Naming Changes Since Release 11.1
Because the support for RDF data has been expanded beyond the original focus on RDF, the
names of many software objects (PL/SQL packages, functions and procedures, system tables
and views, and so on) have been changed as of Oracle Database Release 11.1.

In most cases, the change is to replace the string RDF with SEM. although in some cases it
may be to replace SDO_RDF with SEM.

All valid code that used the pre-Release 11.1 names will continue to work; your existing
applications will not be broken. However, it is suggested that you change old applications to
use new object names, and you should use the new names for any new applications. This
manual will document only the new names.

Table 1-32 lists the old and new names for some objects related to support for semantic
technologies, in alphabetical order by old name.

Table 1-32 Semantic Technology Software Objects: Old and New Names

Old Name New Name

RDF_ALIAS data type SEM_ALIAS

RDF_MODEL$ view SEM_MODEL$

RDF_RULEBASE_INFO view SEM_RULEBASE_INFO

RDF_RULES_INDEX_DATASETS view SEM_RULES_INDEX_DATASETS

RDF_RULES_INDEX_INFO view SEM_RULES_INDEX_INFO

RDFI_rules-index-name view SEMI_rules-index-name

RDFM_model-name view SEMM_model-name

RDFR_rulebase-name view SEMR_rulebase-name

SDO_RDF package SEM_APIS

SDO_RDF_INFERENCE package SEM_APIS

SDO_RDF_MATCH table function SEM_MATCH

SDO_RDF_MODELS data type SEM_MODELS

SDO_RDF_RULEBASES data type SEM_RULEBASES

1.23 For More Information About RDF Graph
More information is available about RDF graph support and related topics.

See the following resources:

• Oracle Graph RDF Graph page (OTN), which includes links for downloads, technical and
business white papers, a discussion forum, and other sources of information: http://

Chapter 1
Software Naming Changes Since Release 11.1

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 196 of 197

http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html

www.oracle.com/technetwork/database/options/spatialandgraph/overview/
rdfsemantic-graph-1902016.html

• World Wide Web Consortium (W3C) RDF Primer: http://www.w3.org/TR/rdf-primer/

• World Wide Web Consortium (W3C) OWL Web Ontology Language Reference: http://
www.w3.org/TR/owl-ref/

1.24 Required Migration of Pre-12.2 RDF Data
If you have any RDF data created using Oracle Database 11.1. 11.2, or 12.1, then before you
use it in an Oracle Database 12.2 environment, you must migrate this data.

To perform the migration, use the SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure.
This applies not only to your existing RDF data, but also to any other RDF data introduced into
your environment if that data was created using Oracle Database 11.1. 11.2, or 12.1

The reason for this requirement is for optimal performance of queries that use ORDER BY.
Effective with Release 12.2, Oracle Database creates, populates, and uses the
ORDER_TYPE, ORDER_NUM, and ORDER_DATE columns (new in Release 12.2) in the
RDF_VALUE$ table (described in Statements). The
SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure populates these order-related
columns. If you do not do this, those columns will be null for existing data.

You run this procedure after upgrading to Oracle Database Release 12.2. If you later bring into
your Release 12.2 environment any RDF data that was created using an earlier release, you
must also run the procedure before using that data. Running the procedure can take a long
time with large amounts of RDF data, so consider that in deciding when to tun it. (Note that
using the INS_AS_SEL=T option improves the performance of the
SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure with large data sets.)

1.25 Oracle RDF Graph Features that Support Accessibility
This section describes the accessibility support provided by Oracle RDF Graph features.

• The Oracle Adapter for Eclipse RDF4J enables developers to build applications that can
interact with the RDF graph feature in Oracle AI Database using the Eclipse RDF4J
framework. See the WCAG Documentation to create applications based on WCAG 2.1
accessibility standards.

• The RDF Query UI is based on Oracle JET. For more information about accessibility of
Oracle JET components, see the Oracle JET Documentation.

• Additionally, by enabling accessibility in RDF Query UI, all SPARQL query execution
results are displayed in tabular format. See the Accessibility section for more information.

Chapter 1
Required Migration of Pre-12.2 RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 197 of 197

http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/2018/REC-WCAG21-20180605/
https://docs.oracle.com/en/middleware/developer-tools/jet/10/develop/oracle-jet-and-accessibility.html#GUID-9E3452C1-2A85-4700-83B1-B266F348C7E5

2
Quick Start for Using RDF Data

This section provides the steps to help you get started on working with RDF data in an Oracle
AI Database.

To work with RDF data, you must create an RDF network in the user schema. Follow these
general steps as applicable to your environment.

• Getting Started with RDF Data in a Schema-Private Network

• Quick Start for Using RDF Data in Oracle Autonomous AI Database

2.1 Getting Started with RDF Data in a Schema-Private Network
1. Create a tablespace for the system tables. You must be connected as a user with

appropriate privileges to create the tablespace. The following example creates a
tablespace named rdf_tblspace:

CREATE TABLESPACE rdf_tblspace
 DATAFILE 'rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

2. Create a database user to work with RDF data in the database and grant the necessary
privileges to the database user. You must be connected as a user with appropriate
privileges to create the database user.

The following example creates a network owner user rdfuser and grants the necessary
privileges to rdfuser:

CREATE USER rdfuser
IDENTIFIED BY <password-for-rdfuser>
QUOTA 5G ON rdf_tblspace;

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;

3. Connect as the network owner user.

CONNECT rdfuser/<password-for-rdfuser>

4. Create a schema-private RDF network.

Creating an RDF network adds RDF data support to an Oracle AI Database. You must
create an RDF network as the intended owner of the schema-private network, specifying a
valid tablespace with adequate space.

The following example creates a schema-private RDF network named net1 owned by a
database user named rdfuser using a tablespace named rdf_tblspace:

EXECUTE SEM_APIS.CREATE_RDF_NETWORK('rdf_tblspace',
network_owner=>'rdfuser', network_name=>'net1');

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 6

5. Create an RDF graph.

When you create an RDF graph, you specify the RDF graph name, the table to hold
references to RDF data for the graph, and the column of type SDO_RDF_TRIPLE_S in
that table.

The following command creates an RDF graph named articles in the net1 schema-
private network.

EXECUTE SEM_APIS.CREATE_RDF_GRAPH('articles', NULL, NULL,
network_owner=>'rdfuser', network_name=>'net1');

After you create the RDF graph, you can insert triples into the graph, as shown in the
examples in RDF Graph Management Examples (PL/SQL and Java).

2.2 Quick Start for Using RDF Data in Oracle Autonomous AI
Database

You can use any of the following options to work with RDF data in Autonomous AI Database:

• RDF feature of Oracle Graph is included in Autonomous AI Database in both shared and
dedicated deployments.

• RDF Graph Server and Query UI is supported in Autonomous AI Database in both shared
and dedicated deployments. RDF Graph Server enables you to create a SPARQL endpoint
and perform other RDF graph data management operations using the Query UI.

• Graph Studio, a component of Autonomous AI Database in shared deployments, allows
you to easily create, manage, query, analyze, and visualize RDF graphs.

• Getting Started with RDF Data in Oracle Autonomous AI Database
This tutorial describes how you can quickly get started with RDF data in Autonomous AI
Database.

• Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace

2.2.1 Getting Started with RDF Data in Oracle Autonomous AI Database
This tutorial describes how you can quickly get started with RDF data in Autonomous AI
Database.

You can run the SQL statements shown in the steps through one of the following options:

• Using any of the SQL based tools that is connected with your Autonomous AI Database.
See Connect to Autonomous AI Database Using Oracle Database Tools for more details.

• Using the built-in Database Actions which provides a web-based interface. See Connect
with Built-in Oracle Database Actions for more details.

1. Connect to your Autonomous AI Database instance as a user with administrative privileges
and create a network owner user.

CREATE USER rdfuser
IDENTIFIED BY <password-for-rdfuser>
QUOTA 5G ON DATA;

Chapter 2
Quick Start for Using RDF Data in Oracle Autonomous AI Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 6

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-CF6C7E1B-D0D4-4641-BADA-5C57DEA7C73B
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/adbsa&id=GUID-102845D9-6855-4944-8937-5C688939610F
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/adbsa&id=GUID-102845D9-6855-4944-8937-5C688939610F

Note

If you are using Database Actions, then you must REST Enable the user in order
to enable the new user to access Database Actions. See Create User for more
details.

2. Grant the required privileges to the newly created network owner user.

You must be connected as a user with administrative privileges to run the following
statement:

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;

Note

If you are using Database Actions to create the new user in the preceding step,
then the CONNECT and the RESOURCE privileges are provided by default. Hence, you
must only grant the CREATE VIEW privilege to the new user.

3. Connect as the network owner user.

CONNECT rdfuser/<password-for-rdfuser>

4. Create an RDF network by calling SEM_APIS.CREATE_RDF_NETWORK.

You must create an RDF network as the intended owner of the schema-private network on
the tablespace DATA.

The following example creates a schema-private RDF network named net1 owned by
network owner user rdfuser using the DATA tablespace.

EXECUTE SEM_APIS.CREATE_RDF_NETWORK('DATA', network_owner=>'rdfuser',
network_name=>'net1');

5. Create an RDF graph by calling SEM_APIS.CREATE_RDF_GRAPH.

The following example creates an RDF graph named articles in the net1 schema-private
network.

EXECUTE SEM_APIS.CREATE_RDF_GRAPH('articles', NULL, NULL,
network_owner=>'rdfuser', network_name=>'net1');

6. Insert triples into the RDF graph using one of the following options.

• Use the SEM_APIS.UPDATE_RDF_GRAPH procedure to insert data:

Note

The SEM_APIS.UPDATE_RDF_GRAPH function is supported only if Oracle
JVM is enabled on your Oracle Autonomous AI Database Serverless
deployments. To enable Oracle JVM, see Use Oracle Java in Using Oracle
Autonomous AI Database Serverless for more information.

Chapter 2
Quick Start for Using RDF Data in Oracle Autonomous AI Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 6

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-web&id=GUID-856BBD92-DFEC-4C6E-A8EE-54368078F699
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

You can insert triples into an RDF graph using SEM_APIS.UPDATE_RDF_GRAPH as
shown in the examples in RDF Graph Management Examples (PL/SQL and Java).

• Use the SQL INSERT statement to insert data:
For example:

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/title>','"All about XYZ"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>','"Jane Smith"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles',
 '<http://nature.example.com/Article1>',
 '<http://purl.org/dc/terms/references>',
 '<http://nature.example.com/Article2>',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article2>',
 '<http://purl.org/dc/elements/1.1/title>','"A review of ABC"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article2>',
 '<http://purl.org/dc/elements/1.1/creator>','"Joe Bloggs"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles',
 '<http://nature.example.com/Article2>',
 '<http://purl.org/dc/terms/references>',
 '<http://nature.example.com/Article3>',
 network_owner=>'RDFUSER', network_name=>'NET1'));

7. Execute SPARQL queries on the inserted data using one of the following options as
applicable.

• Query RDF data with the SEM_MATCH table function:

Note

The SEM_MATCH table function is supported only if Oracle JVM is enabled
on your Oracle Autonomous AI Database Serverless deployments. To enable
Oracle JVM, see Use Oracle Java in Using Oracle Autonomous AI Database
Serverless for more information.

You can query the inserted triples data using the SEM_MATCH table function as
shown in the examples in RDF Graph Management Examples (PL/SQL and Java).

• Query RDF data using RDF Graph Server and Query UI:

Chapter 2
Quick Start for Using RDF Data in Oracle Autonomous AI Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 6

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

See Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace to
launch the RDF Query UI application.

You can query the inserted data by running SPARQL queries on the SPARQL query
page in RDF Graph Query UI.

Figure 2-1 Running SPARQL Query in RDF Graph Query UI

• Query using SPARQL editor in SQL Developer:
You can also run SPARQL queries using SPARQL editor in SQL Developer.

Note

SQL Developer versions earlier than 21.2 is supported only if Oracle JVM is
enabled on your Oracle Autonomous AI Database Serverless deployments. To
enable Oracle JVM, see Use Oracle Java in Using Oracle Autonomous AI
Database Serverless for more information.

See Connect Oracle SQL Developer with a Wallet for creating a connection to your
Autonomous AI Database instance using Cloud Wallet.

2.2.2 Deploying RDF Graph Server and Query UI from Oracle Cloud
Marketplace

You can set up RDF Graph Server and Query UI in your Autonomous AI Database instance
using the Oracle Cloud Marketplace image.

As a prerequisite, you must have the following already created:

• Oracle Autonomous AI Database (shared or dedicated infrastructure) created using your
Oracle Cloud account

• Virtual Cloud Network (VCN) in your tenancy

• OCI compartment to create the stack instance

• SSH Key pair for ssh access to the instance

The Oracle Cloud Infrastructure (OCI) Marketplace displays two listings for Oracle RDF Graph
Server and Query UI. However, the deployment varies depending on the pricing model as
shown:

Chapter 2
Quick Start for Using RDF Data in Oracle Autonomous AI Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 6

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=ADBSB-GUID-14217939-3E8F-4782-BFF2-021199A908FD

• Free: Apache Tomcat Server deployment

• BYOL: Oracle WebLogic Server deployment

Perform the following steps set up RDF Graph Server and Query UI in your Autonomous AI
Database instance using the Oracle Cloud Marketplace image.

1. Sign in to the OCI console and navigate to Marketplace.

2. Search RDF on the Cloud Marketplace page and click the RDF Graph Server and Query
UI listing that applies to you.

3. Review, accept the Oracle Standard Terms and Restrictions and click Launch Stack.

The Stack setup wizard gets triggered.

4. Enter the appropriate metadata, selecting the required options to create the Compute
Instance and configure the Instance Network variables.

5. Enter the ADMIN user credentials for your application server under Advanced
Configuration.

6. Review the information and click Create.

The stack deployment gets invoked and you can monitor the job progress on the Job
Details page.
Once the job completes and the stack is created successfully, the status shows as
SUCCEEDED on the Job Details page.

The RDF Graph Server and Query UI instance is now provisioned.

7. Scroll down to the bottom of the logs section and note the public URL to launch RDF
Graph Server and Query UI.

The URL follows the format as shown:

• Apache Tomcat Deployment: https://<public_IP>:4040/orardf

• WebLogic Server Deployment: https://<public_IP>:8001/orardf

8. Launch the RDF Graph Server and Query UI application in your browser.

The RDF Graph login screen appears. See RDF Graph Server and Query UI for more
details.

Chapter 2
Quick Start for Using RDF Data in Oracle Autonomous AI Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 6

3
OWL Concepts

You should understand key concepts related to the support for a subset of the Web Ontology
Language (OWL).

This chapter builds on the information in RDF Graph Overview, and it assumes that you are
familiar with the major concepts associated with OWL, such as ontologies, properties, and
relationships. For detailed information about OWL, see the OWL Web Ontology Language
Reference at http://www.w3.org/TR/owl-ref/.

• Ontologies
An ontology is a shared conceptualization of knowledge in a particular domain.

• Using OWL Inferencing
You can use inference rules to perform native OWL inferencing.

• Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted manner,
based on the semantic relationship between the data in a table column and terms in an
ontology.

3.1 Ontologies
An ontology is a shared conceptualization of knowledge in a particular domain.

It consists of a collection of classes, properties, and optionally instances. Classes are typically
related by class hierarchy (subclass/ superclass relationship). Similarly, the properties can be
related by property hierarchy (subproperty/ superproperty relationship). Properties can be
symmetric or transitive, or both. Properties can also have domain, ranges, and cardinality
constraints specified for them.

RDFS-based ontologies only allow specification of class hierarchies, property hierarchies,
instanceOf relationships, and a domain and a range for properties.

OWL ontologies build on RDFS-based ontologies by additionally allowing specification of
property characteristics. OWL ontologies can be further classified as OWL-Lite, OWL-DL, and
OWL Full. OWL-Lite restricts the cardinality minimum and maximum values to 0 or 1. OWL-DL
relaxes this restriction by allowing minimum and maximum values. OWL Full allows instances
to be also defined as a class, which is not allowed in OWL-DL and OWL-Lite ontologies.

Supported OWL Subsets describes OWL capabilities that are supported and not supported
with RDF data.

• Example: Disease Ontology

• Supported OWL Subsets

3.1.1 Example: Disease Ontology
Figure 3-1 shows part of a disease ontology, which describes the classes and properties
related to certain diseases. One requirement is to have a PATIENTS data table with a column
named DIAGNOSIS, which must contain a value from the Diseases_and_Disorders class
hierarchy.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 24

http://www.w3.org/TR/owl-ref/

Figure 3-1 Disease Ontology Example

 Immune_System_Disorder

 T_Cell_Immunodeficiency

Autoimmune_Disease

 AIDS

 Rheumatoid_Arthritis

Immunodeficiency_

 Syndrome

In the disease ontology shown in Figure 3-1, the diagnosis Immune_System_Disorder includes
two subclasses, Autoimmune_Disease and Immunodeficiency_Syndrome. The
Autoimmune_Disease diagnosis includes the subclass Rheumatoid_Arthritis; and the
Immunodeficiency_Syndrome diagnosis includes the subclass T_Cell_Immunodeficiency,
which includes the subclass AIDS.

The data in the PATIENTS table might include the PATIENT_ID and DIAGNOSIS column
values shown in Table 3-1.

Table 3-1 PATIENTS Table Example Data

PATIENT_ID DIAGNOSIS

1234 Rheumatoid_Arthritis

2345 Immunodeficiency_Syndrome

3456 AIDS

To query ontologies, you can use the SEM_MATCH table function or the SEM_RELATED
operator and its ancillary operators.

Related Topics

• Using the SEM_MATCH Table Function to Query RDF Data
To query RDF data, use the SEM_MATCH table function.

• Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted manner,
based on the semantic relationship between the data in a table column and terms in an
ontology.

3.1.2 Supported OWL Subsets
This section describes OWL vocabulary subsets that are supported.

Chapter 3
Ontologies

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 24

Oracle AI Database supports the RDFS++, OWLSIF, and OWLPrime vocabularies, which have
increasing expressivity, as well as OWL 2 RL. Each supported vocabulary has a corresponding
rulebase; however, these rulebases do not need to be populated because the underlying
inference rules of these three vocabularies are internally implemented. The supported
vocabularies are as follows:

• RDFS++: A minimal extension to RDFS; which is RDFS plus owl:sameAs and
owl:InverseFunctionalProperty.

• OWLSIF: OWL with IF Semantic, with the vocabulary and semantics proposed for pD*
semantics in Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary, by H.J. Horst, Journal of Web
Semantics 3, 2 (2005), 79–115.

• OWLPrime: The following OWL capabilities:

– Basics: class, subclass, property, subproperty, domain, range, type

– Property characteristics: transitive, symmetric, functional, inverse functional, inverse

– Class comparisons: equivalence, disjointness

– Property comparisons: equivalence

– Individual comparisons: same, different

– Class expressions: complement

– Property restrictions: hasValue, someValuesFrom, allValuesFrom

As with pD*, the supported semantics for these value restrictions are only intensional
(IF semantics).

• OWL 2 RL: Described in the "OWL 2 RL" section of the W3C OWL 2 Web Ontology
Language Profiles recommendation (http://www.w3.org/TR/owl2-profiles/#OWL_2_RL)
as: "The OWL 2 RL profile is aimed at applications that require scalable reasoning without
sacrificing too much expressive power. It is designed to accommodate both OWL 2
applications that can trade the full expressivity of the language for efficiency, and RDF(S)
applications that need some added expressivity from OWL 2."

The system-defined rulebase OWL2RL supports all the standard production rules defined for
OWL 2 RL. As with OWLPRIME, users will not see any rules in this OWL2RL rulebase. The
rulebase OWL2RL will be created automatically if it does not already exist.

The following code excerpt uses the OWL2RL rulebase:

EXECUTE sem_apis.create_rdf_graph('m1',NULL, NULL, network_owner=>'RDFUSER',
network_name=>'NET1');
-- Insert data into RDF graph M1. Details omitted
...
-- Now run inference using the OWL2RL rulebase
EXECUTE
sem_apis.create_inferred_graph('m1_inf',sem_models('m1'),sem_rulebases('owl2rl'),netw
ork_owner=>'RDFUSER',network_name=>'NET1');

Note that inference-related optimizations, such as parallel inference and RAW8, are all
applicable when the OWL2RL rulebase is used.

• OWL 2 EL: Described in the "OWL 2 EL" section of the W3C OWL 2 Web Ontology
Language Profiles recommendation (http://www.w3.org/TR/owl2-profiles/#OWL_2_EL)
as: "The OWL 2 EL profile is designed as a subset of OWL 2 that:

– is particularly suitable for applications employing ontologies that define very large
numbers of classes and/or properties,

Chapter 3
Ontologies

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 24

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

– captures the expressive power used by many such ontologies, and

– for which ontology consistency, class expression subsumption, and instance checking
can be decided in polynomial time."

A prime example of OWL 2 EL ontology is the biomedical ontology SNOMED Clinical
Terms (SNOMED CT). For information about SNOMED CT, see: http://www.ihtsdo.org/
snomed-ct/

The system-defined rulebase OWL2EL supports the EL syntax.

As with OWLPRIME and OWL2RL, users will not see any rules in this OWL2EL rulebase, and the
OWL2EL rulebase will be created automatically if it does not already exist.

The following code excerpt uses the OWL2EL rulebase against the well known SNOMED
ontology:

EXECUTE
sem_apis.create_rdf_graph('snomed',NULL,NULL,network_owner=>'RDFUSER',network_name=>'
NET1') compress;
-- Insert data into RDF graph SNOMED. Details omitted
...
-- Now run inference using the OWL2EL rulebase
EXECUTE
sem_apis.create_inferred_graph('snomed_inf',sem_models('snomed'),sem_rulebases('owl2e
l'),network_owner=>'RDFUSER',network_name=>'NET1');

Note that the OWL2EL rulebase support does not include reflexive object properties
(ReflexiveObjectProperty) simply because a reflexive object property will link every
individual with itself, which would probably cause an unnecessary and costly expansion of
the inference graph.

Table 3-2 lists the RDFS/OWL vocabulary constructs included in each supported rulebase.

Table 3-2 RDFS/OWL Vocabulary Constructs Included in Each Supported Rulebase

Rulebase Name RDFS/OWL Constructs Included

RDFS++ all RDFS vocabulary constructs

owl:InverseFunctionalProperty

owl:sameAs

OWLSIF all RDFS vocabulary constructs

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom

Chapter 3
Ontologies

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 24

http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org/snomed-ct/

Table 3-2 (Cont.) RDFS/OWL Vocabulary Constructs Included in Each Supported
Rulebase

Rulebase Name RDFS/OWL Constructs Included

OWLPrime rdfs:subClassOf

rdfs:subPropertyOf

rdfs:domain

rdfs:range

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom

owl:differentFrom

owl:disjointWith

owl:complementOf

OWL2RL (As described in http://www.w3.org/TR/owl2-profiles/#OWL_2_RL)

OWL2EL (As described in http://www.w3.org/TR/owl2-profiles/#OWL_2_EL)

3.2 Using OWL Inferencing
You can use inference rules to perform native OWL inferencing.

This section creates a simple ontology, performs native inferencing, and illustrates some more
advanced features.

• Creating a Simple OWL Ontology

• Performing Native OWL Inferencing

• Performing OWL and User-Defined Rules Inferencing

• Generating OWL Inferencing Proofs

• Validating OWL RDF Graphs and Inferred Graphs

• Using SEM_APIS.CREATE_INFERRED_GRAPH for RDFS Inference

• Enhancing Inference Performance

• Optimizing owl:sameAs Inference

• Performing Incremental Inference

• Using Parallel Inference

• Using Named Graph Based Inferencing (Global and Local)

• Performing Selective Inferencing (Advanced Information)

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 24

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

3.2.1 Creating a Simple OWL Ontology
Example 3-1 creates a simple OWL ontology, inserts one statement that two URIs refer to the
same entity, and performs a query using the SEM_MATCH table function.

Example 3-1 Creating a Simple OWL Ontology

SQL> EXECUTE
sem_apis.create_rdf_graph('owltst',NULL,NULL,network_owner=>'RDFUSER',network_name=>'NET1
');
PL/SQL procedure successfully completed.

SQL> INSERT INTO owltst VALUES (sdo_rdf_triple_s('owltst',
 'http://example.com/name/John', 'http://www.w3.org/2002/07/owl#sameAs',
 'http://example.com/name/JohnQ','RDFUSER','NET1'));
1 row created.

SQL> commit;

SQL> -- Use SEM_MATCH to perform a simple query.
SQL> select s$rdfterm,p$rdfterm,o$rdfterm from table(SEM_MATCH('SELECT * WHERE {?s ?p ?
o}', SEM_Models('OWLTST'),
 null, null, null, null, 'PLUS_RDFT=VC', null, null, 'RDFUSER', 'NET1'));

3.2.2 Performing Native OWL Inferencing
Example 3-2 calls the SEM_APIS.CREATE_INFERRED_GRAPH procedure. You do not need
to create the rulebase and add rules to it, because the OWL rules are already built into the
RDF Graph inferencing engine.

Example 3-2 Performing Native OWL Inferencing

SQL> -- Invoke the following command to run native OWL inferencing that
SQL> -- understands the vocabulary defined in the preceding section.
SQL>
SQL> EXECUTE sem_apis.create_inferred_graph('owltst_idx', sem_models('owltst'),
sem_rulebases('OWLPRIME'), network_owner=>'RDFUSER', network_name=>'NET1');
PL/SQL procedure successfully completed.

SQL> -- The following view is generated to represent the inferred graph (rules index).
SQL> desc RDFUSER.NET1#semi_owltst_idx;

SQL> -- Run the preceding query with an additional rulebase parameter to list
SQL> -- the original graph plus the inferred triples.
SQL> SELECT s$rdfterm,p$rdfterm,o$rdfterm FROM table(SEM_MATCH('SELECT * WHERE {?s ?p ?
o}', SEM_MODELS('OWLTST'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null,
null, 'RDFUSER', 'NET1'));

3.2.3 Performing OWL and User-Defined Rules Inferencing
Example 3-3 creates a user-defined rulebase, inserts a simplified uncleOf rule (stating that the
brother of one's father is one's uncle), and calls the SEM_APIS.CREATE_INFERRED_GRAPH
procedure.

Example 3-3 Performing OWL and User-Defined Rules Inferencing

SQL> -- First, insert the following assertions.

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 24

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://example.com/name/John', 'http://example.com/rel/fatherOf',
 'http://example.com/name/Mary', 'RDFUSER', 'NET1'));

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://example.com/name/Jack', 'http://example.com/rel/brotherOf',
 'http://example.com/name/John', 'RDFUSER', 'NET1'));

SQL> -- Create a user-defined rulebase.

SQL> EXECUTE sem_apis.create_rulebase('user_rulebase', network_owner=>'RDFUSER',
network_name=>'NET1');

SQL> -- Insert a simple "uncle" rule.

SQL> INSERT INTO RDFUSER.NET1#SEMR_USER_RULEBASE VALUES ('uncle_rule',
'(?x <http://example.com/rel/brotherOf> ?y)(?y <http://example.com/rel/fatherOf> ?z)',
NULL, '(?x <http://example.com/rel/uncleOf> ?z)', null);

SQL> -- In the following statement, 'USER_RULES=T' is required, to
SQL> -- include the original graph plus the inferred triples.
SQL> EXECUTE sem_apis.create_inferred_graph('owltst2_idx', sem_models('owltst'),
 sem_rulebases('OWLPRIME','USER_RULEBASE'),
 SEM_APIS.REACH_CLOSURE, null, 'USER_RULES=T', network_owner=>'RDFUSER',
network_name=>'NET1');

SQL> -- In the result of the following query, :Jack :uncleOf :Mary is inferred.
SQL> SELECT s$rdfterm,p$rdfterm,o$rdfterm FROM table(SEM_MATCH('SELECT * WHERE {?s ?p ?
o}',
 SEM_MODELS('OWLTST'),
 SEM_RULEBASES('OWLPRIME','USER_RULEBASE'), null, null, null, null,
'PLUS_RDFT=VC', null, null, 'RDFUSER', 'NET1'));

For performance, the inference engine by default executes each user rule without checking the
syntax legality of inferred triples (for example, literal value as a subject, blank node as a
predicate) until after the last round of inference. After completing the last inference round, the
inference engine removes all syntactically illegal triples without throwing any errors for these
triples. However, because triples with illegal syntax may exist during multiple rounds of
inference, rules can use these triples as part of their antecedents. For example, consider the
following user-defined rules:

• Rule 1:

(?s :account ?y)
(?s :country :Spain) --> (?y rdf:type :SpanishAccount)

• Rule 2:

(?s :account ?y)
(?y rdf:type :SpanishAccount) --> (?s :language "es_ES")

Rule 1 finds all Spanish users and designates their accounts as Spanish accounts. Rule 2 sets
the language for all users with Spanish accounts to es_ES (Spanish). Consider the following
data, displayed in Turtle format:

:Juan :account "123ABC4Z"
 :country :Spain

:Alejandro :account "5678DEF9Y"
 :country :Spain

Applying Rule 1 and Rule 2 produces the following inferred triples:

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 24

(:Juan :language "es_ES")
(:Alejandro :language "es_ES")

Note there are no triples specifying which accounts are of type :SpanishAccount. The user-
defined rules infer those triples during creation of the inferred graph, but the inference engine
removes them after the last round of inference because they contain illegal syntax. The
accounts are the literal values, which cannot be used as subjects in an RDF triple.

To force the checking of syntax legality of inferred triples, add the /*+
ENABLE_SYNTAX_CHECKING */ optimizer hint to the beginning of the rule's FILTER expression.
Forcing syntax checking for a rule can result in a performance penalty and will throw an
exception for any syntactically illegal triples. The following example, similar to Rule 1, forces
syntax checking. (In addition, merely to illustrate the use of a filter expression, the example
restricts accounts to those that do not end with the letter 'Z'.)

INSERT INTO RDFUSER.NET1#SEMR_USER_RULEBASE VALUES (
 'spanish_account_rule',
 '(?s <http://example.com/account> ?y)(?y <http://example.com/account> <http://
example.com/Spain>)',
 '/*+ ENABLE_SYNTAX_CHECKING */ y not like ''%Z'' ',
 '(?y <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://example.com/
SpanishAccount>)',
 NULL
);

3.2.4 Generating OWL Inferencing Proofs
OWL inference can be complex, depending on the size of the ontology, the actual vocabulary
(set of language constructs) used, and the interactions among those language constructs. To
enable you to find out how a triple is derived, you can use proof generation during inference.
(Proof generation does require additional CPU time and disk resources.)

To generate the information required for proof, specify PROOF=T in the call to the
SEM_APIS.CREATE_INFERRED_GRAPH procedure, as shown in the following example:

EXECUTE sem_apis.create_inferred_graph('owltst_idx', sem_models('owltst'), -
 sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, 'SAM', 'PROOF=T',
network_owner=>'RDFUSER', network_name=>'NET1');

Specifying PROOF=T causes a view to be created containing proof for each inferred triple. The
view name is the inferred graph name prefixed by RDFUSER.NET1#SEMI_. Two relevant columns
in this view are LINK_ID and EXPLAIN (the proof). The following example displays the
LINK_ID value and proof of each generated triple (with LINK_ID values shortened for
simplicity):

SELECT link_id || ' generated by ' || explain as
 triple_and_its_proof FROM RDFUSER.NET1#SEMI_OWLST_IDX;

TRIPLE_AND_ITS_PROOF
--
8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_SYMM
8_4_5_4 generated by 8_5_5_4 4_D_5_5 : SAM_SAMH
. . .

A proof consists of one or more triple (link) ID values and the name of the rule that is applied
on those triples:

link-id1 [link-id2 ... link-idn] : rule-name

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 24

Example 3-4 Displaying Proof Information

To get the full subject, predicate, and object URIs for proofs, you can query the RDF graph
view and the inferred graph view. Example 3-4 displays the LINK_ID value and associated
triple contents using the RDF graph view SEMM_OWLTST and the inferred graph view
SEMI_OWLTST_IDX.

SELECT to_char(x.triple.rdf_m_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_s_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_p_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_c_id, 'FMXXXXXXXXXXXXXXXX'),
 x.triple.get_triple()
 FROM (
 SELECT sdo_rdf_triple_s(
 t.canon_end_node_id,
 t.model_id,
 t.start_node_id,
 t.p_value_id,
 t.end_node_id) triple
 FROM (select * from rdfuser.net1#semm_owltst union all
 select * from rdfuser.net1#semi_owltst_idx
) t
 WHERE t.link_id IN ('4_D_5_5','8_5_5_4')
) x;

 LINK_ID X.TRIPLE.GET_TRIPLE()(SUBJECT, PROPERTY, OBJECT)
---------- --
4_D_5_5 SDO_RDF_TRIPLE('<http://example.com/name/John>', '<http://www.w3.org/2002/07/
owl#sameAs>', '<http://example.com/name/JohnQ>')
8_5_5_4 SDO_RDF_TRIPLE('<http://example.com/name/JohnQ>', '<http://www.w3.org/2002/07/
owl#sameAs>', '<http://example.com/name/John>')

In Example 3-4, for the proof entry 8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_SYMM
for the triple with LINK_ID = 8_5_5_4, it is inferred from the triple with 4_D_5_5 using the
symmetricity of owl:sameAs.

If the inference status is INCOMPLETE and if the last inference was generated without proof
information, you cannot invoke SEM_APIS.CREATE_INFERRED_GRAPH with PROOF=T. In this
case, you must first drop the inferred graph and create it again specifying PROOF=T.

3.2.5 Validating OWL RDF Graphs and Inferred Graphs
An OWL ontology may contain errors, such as unsatisfiable classes, instances belonging to
unsatisfiable classes, and two individuals asserted to be same and different at the same time.
You can use the SEM_APIS.VALIDATE_RDF_GRAPH and
SEM_APIS.VALIDATE_INFERRED_GRAPH functions to detect inconsistencies in the original
RDF graph and in the inferred graph, respectively.

Example 3-5 Validating an Inferred Graph

Example 3-5 shows uses the SEM_APIS.VALIDATE_INFERRED_GRAPH function, which
returns a null value if no errors are detected or a VARRAY of strings if any errors are detected.

SQL> -- Insert an offending triple.
SQL> insert into owltst values (1, sdo_rdf_triple_s('owltst',
 'urn:C1', 'http://www.w3.org/2000/01/rdf-schema#subClassOf', 'http://
www.w3.org/2002/07/owl#Nothing', 'RDFUSER', 'NET1'));

SQL> -- Drop inferred graph first.
SQL> exec sem_apis.drop_inferred_graph('owltst_idx', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 24

PL/SQL procedure successfully completed.

SQL> -- Perform OWL inferencing.
SQL> exec sem_apis.create_inferred_graph('owltst_idx', sem_models('OWLTST'),
sem_rulebases('OWLPRIME') , network_owner=>'RDFUSER', network_name=>'NET1');
PL/SQL procedure successfully completed.

SQL > set serveroutput on;
SQL > -- Now invoke validation API: sem_apis.validate_inferred_graph
SQL >
declare
 lva sem_longvarchararray;
 idx int;
begin
 lva := sem_apis.validate_inferred_graph(sem_models('OWLTST'),
sem_rulebases('OWLPRIME'), network_owner=>'RDFUSER', network_name=>'NET1') ;

 if (lva is null) then
 dbms_output.put_line('No errors found.');
 else
 for idx in 1..lva.count loop
 dbms_output.put_line('Offending entry := ' || lva(idx)) ;
 end loop ;
 end if;
end ;
/

SQL> -- NOTE: The LINK_ID value and the numbers in the following
SQL> -- line are shortened for simplicity in this example. --

 Offending entry := 1 10001 (4_2_4_8 2 4 8) Unsatisfiable class.

Each item in the validation report array includes the following information:

• Number of triples that cause this error (1 in Example 3-5)

• Error code (10001 Example 3-5)

• One or more triples (shown in parentheses in the output; (4_2_4_8 2 4 8) in
Example 3-5).

These numbers are the LINK_ID value and the ID values of the subject, predicate, and
object.

• Descriptive error message (Unsatisfiable class. in Example 3-5)

The output in Example 3-5 indicates that the error is caused by one triple that asserts that a
class is a subclass of an empty class owl:Nothing.

3.2.6 Using SEM_APIS.CREATE_INFERRED_GRAPH for RDFS Inference
In addition to accepting OWL vocabularies, the SEM_APIS.CREATE_INFERRED_GRAPH
procedure accepts RDFS rulebases. The following example shows RDFS inference (all
standard RDFS rules are defined in http://www.w3.org/TR/rdf-mt/):

EXECUTE sem_apis.create_inferred_graph('rdfstst_idx', sem_models('my_model'),
sem_rulebases('RDFS'), network_owner=>'RDFUSER', network_name=>'NET1');

Because rules RDFS4A, RDFS4B, RDFS6, RDFS8, RDFS10, RDFS13 may not generate
meaningful inference for your applications, you can deselect those components for faster
inference. The following example deselects these rules.

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 24

EXECUTE sem_apis.create_inferred_graph('rdfstst_idx', sem_models('my_model'),
sem_rulebases('RDFS'), SEM_APIS.REACH_CLOSURE, -
 'RDFS4A-, RDFS4B-, RDFS6-, RDFS8-, RDFS10-, RDFS13-'), network_owner=>'RDFUSER',
network_name=>'NET1');

3.2.7 Enhancing Inference Performance
This section describes suggestions for improving the performance of inference operations.

• Collect statistics before inferencing. After you load a large RDF/OWL data model, you
should execute the SEM_PERF.GATHER_STATS procedure. See the Usage Notes for that
procedure (in SEM_PERF Package Subprograms) for important usage information.

• Allocate sufficient temporary tablespace for inference operations. OWL inference support
in Oracle relies heavily on table joins, and therefore uses significant temporary tablespace.

• Use the appropriate implementations of the SVFH and AVFH inference components.

The default implementations of the SVFH and AVFH inference components work best
when the number of restriction classes defined by owl:someValuesFrom and/or
owl:allValuesFrom is low (as in the LUBM data sets). However, when the number of such
classes is high (as in the Gene Ontology http://www.geneontology.org/), using non-
procedural implementations of SVFH and AVFH may significantly improve performance.

To disable the procedural implementations and to select the non-procedural
implementations of SVFH and AVFH, include 'PROCSVFH=F' and/or 'PROCAVFH=F' in the
options to SEM_APIS.CREATE_INFERRED_GRAPH. Using the appropriate
implementation for an ontology can provide significant performance benefits. For example,
selecting the non-procedural implementation of SVFH for the NCI Thesaurus ontology
produced a 960% performance improvement for the SVFH inference component (tested on
a dual-core, 8GB RAM desktop system with 3 SATA disks tied together with Oracle ASM).

See also Optimizing owl:sameAs Inference.

Related Topics

• Optimizing owl:sameAs Inference

3.2.8 Optimizing owl:sameAs Inference
You can optimize inference performance for large owl:sameAs cliques by specifying
'OPT_SAMEAS=T' in the options parameter when performing OWLPrime inference. (A clique is
a graph in which every node of it is connected to, bidirectionally, every other node in the same
graph.)

According to OWL semantics, the owl:sameAs construct is treated as an equivalence relation,
so it is reflexive, symmetric, and transitive. As a result, during inference a full materialization of
owl:sameAs-related inferences could significantly increase the size of the inferred graph.
Consider the following example triple set:

:John owl:sameAs :John1 .
:John owl:sameAs :John2 .
:John2 :hasAge "32" .

Applying OWLPrime inference (with the SAM component specified) to this set would generate
the following new triples:

:John1 owl:sameAs :John .
:John2 owl:sameAs :John .
:John1 owl:sameAs :John2 .
:John2 owl:sameAs :John1 .

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 24

http://www.geneontology.org/

:John owl:sameAs :John .
:John1 owl:sameAs :John1 .
:John2 owl:sameAs :John2 .
:John :hasAge "32" .
:John1 :hasAge "32" .

In the preceding example, :John, :John1 and :John2 are connected to each other with the
owl:sameAs relationship; that is, they are members of an owl:sameAs clique. To provide
optimized inference for large owl:sameAs cliques, you can consolidate owl:sameAs triples
without sacrificing correctness by specifying 'OPT_SAMEAS=T' in the options parameter when
performing OWLPrime inference. For example:

EXECUTE sem_apis.create_inferred_graph('M_IDX',sem_models('M'),
 sem_rulebases('OWLPRIME'),null,null,'OPT_SAMEAS=T', network_owner=>'RDFUSER',
network_name=>'NET1');

When you specify this option, for each owl:sameAs clique, one resource from the clique is
chosen as a canonical representative and all of the inferences for that clique are consolidated
around that resource. Using the preceding example, if :John1 is the clique representative, after
consolidation the inferred graph would contain only the following triples:

:John1 owl:sameAs :John1 .
:John1 :hasAge "32" .

Some overhead is incurred with owl:sameAs consolidation. During inference, all asserted RDF
graphs are copied into the inference partition, where they are consolidated together with the
inferred triples. Additionally, for very large asserted graphs, consolidating and removing
duplicate triples incurs a large runtime overhead, so the OPT_SAMEAS=T option is recommended
only for ontologies that have a large number of owl:sameAs relationships and large clique
sizes.

After the OPT_SAMEAS=T option has been used for an inferred graph, all subsequent uses of
SEM_APIS.CREATE_INFERRED_GRAPH for that inferred graph must also use
OPT_SAMEAS=T, or an error will be reported. To disable optimized sameAs handling, you must first
drop the inferred graph.

Clique membership information is stored in a view named SEMC_inferred-graph-name, where
inferred-graph-name is the name of the inferred graph. Each SEMC_inferred-graph-name view
has the columns shown in Table 3-3.

Table 3-3 SEMC_inferred_graph_name View Columns

Column Name Data Type Description

MODEL_ID NUMBER ID number of the inferred model

VALUE_ID NUMBER) ID number of a resource that is a member of the
owl:sameAs clique identified by CLIQUE_ID

CLIQUE_ID NUMBER ID number of the clique representative for the VALUE_ID
resource

To save space, the SEMC_inferred-graph-name view does not contain reflexive rows like
(CLIQUE_ID, CLIQUE_ID).

• Querying owl:sameAs Consolidated Inference Graphs

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 24

3.2.8.1 Querying owl:sameAs Consolidated Inference Graphs
At query time, if the inferred graph queried was created using the OPT_SAMEAS=T option, the
results are returned from an owl:sameAs-consolidated inference partition. The query results are
not expanded to include the full owl:sameAs closure.

In the following example query, the only result returned would be :John1, which is the
canonical clique representative.

SELECT A FROM TABLE (
 SEM_MATCH ('SELECT ?A WHERE {?A :hasAge "32"}',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'),null, null, null, null, 'PLUS_RDFT=VC', null, null,
'RDFUSER', 'NET1'));

With the preceding example, even though :John2 :hasAge "32" occurs in the RDF graph, it
has been replaced during the inference consolidation phase where redundant triples are
removed. However, you can expand the query results by performing a join with the
RDFUSER.NET1#SEMC_rules-index-name view that contains the consolidated owl:sameAs
information. For example, to get expanded result set for the preceding SEM_MATCH query,
you can use the following expanded query:

SELECT V.VALUE_NAME A_VAL FROM TABLE (
 SEM_MATCH ('SELECT ?A WHERE {?A :hasAge "32"}',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null, null,
'RDFUSER', 'NET1')) Q,
 RDFUSER.NET1#RDF_VALUE$ V, RDFUSER.NET1#SEMC_M_IDX C
 WHERE V.VALUE_ID = C.VALUE_ID
 AND C.CLIQUE_ID = Q.A$RDFVID
 UNION ALL
 SELECT A A_VAL FROM TABLE (
 SEM_MATCH ('SELECT ?A WHERE {?A :hasAge "32"}',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null, null,
'RDFUSER', 'NET1'));

Or, you could rewrite the preceding expanded query using a left outer join, as follows:

SELECT V.VALUE_NAME A_VAL FROM TABLE (
 SEM_MATCH ('(?A <http://hasAge> "33")',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null, null,
'RDFUSER', 'NET1')) Q,
 RDFUSER.NET1#RDF_VALUE$ V,
 (SELECT value_id, clique_id FROM RDFUSER.NET1#SEMC_M_IDX
 UNION ALL
 SELECT DISTINCT clique_id, clique_id
 FROM RDFUSER.NET1#SEMC_M_IDX) C
 WHERE Q.A$RDFVID = c.clique_id (+)
 AND V.VALUE_ID = nvl(C.VALUE_ID, Q.A$RDFVID);

3.2.9 Performing Incremental Inference
Incremental inference can be used to update inferred graphs efficiently after triple additions.
There are two ways to enable incremental inference for an inferred graph:

• Specify the options parameter value INC=T when creating the inferred graph. For
example:

EXECUTE sem_apis.create_inferred_graph ('M_IDX',sem_models('M'),
 sem_rulebases('OWLPRIME'),null,null, 'INC=T', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 24

• Use the SEM_APIS.ENABLE_INC_INFERENCE procedure.

If you use this procedure, the inferred graph must have a VALID status. Before calling the
procedure, if you do not own the RDF graphs involved in the inferred graph, you must
ensure that the respective RDF graph owners have used the
SEM_APIS.ENABLE_CHANGE_TRACKING procedure to enable change tracking for
those RDF graphs.

When incremental inference is enabled for an inferred graph, the parameter INC=T must be
specified when invoking the SEM_APIS.CREATE_INFERRED_GRAPH procedure for that
inferred graph.

Incremental inference for an inferred graph depends on triggers for the application tables of the
RDF graphs involved in creating the inferred graph. This means that incremental inference
works only when triples are inserted in the application tables underlying the inferred graph
using conventional path loads, unless you specify the triples by using the delta_in parameter
in the call to the SEM_APIS.CREATE_INFERRED_GRAPH procedure, as in the following
example, in which the triples from RDF graph M_NEW will be added to the RDF graph M, and
inferred graph M_IDX will be updated with the new inferences:

EXECUTE sem_apis.create_inferred_graph('M_IDX', sem_models('M'),
 sem_rulebases('OWLPRIME''), SEM_APIS.REACH_CLOSURE, null, null,
 sem_models('M_NEW'), network_owner=>'RDFUSER', network_name=>'NET1');

If multiple RDF graphs are involved in the incremental inference call, then to specify the
destination RDF graph to which the delta_in RDF graph or RDF graphs are to be added,
specify DEST_MODEL=<rdf_graph_name> in the options parameter. For example, the following
causes the RDF data in RDF graph M_NEW to be added to the RDF graph M2:

EXECUTE sem_apis.create_inferred_graph('M_IDX', sem_models('M1','M2','M3'),
sem_rulebases('OWLPRIME''), SEM_APIS.REACH_CLOSURE, null, 'DEST_MODEL=M2',
sem_models('M_NEW')), network_owner=>'RDFUSER', network_name=>'NET1');

Another way to bypass the conventional path loading requirement when using incremental
inference is to set the UNDO_RETENTION parameter to cover the intervals between inferred
graphs when you perform bulk loading. For example, if the last inferred graph was created 6
hours ago, the UNDO_RETENTION value should be set to greater than 6 hours; if it is less
than that, then (given a heavy workload and limited undo space) it is not guaranteed that all
relevant undo information will be preserved for incremental inference to apply. In such cases,
the SEM_APIS.CREATE_INFERRED_GRAPH procedure falls back to regular (non-
incremental) inference.

To check if change tracking is enabled on an RDF graph, use the
SEM_APIS.GET_CHANGE_TRACKING_INFO procedure. To get additional information about
incremental inference for an inferred graph, use the SEM_APIS.GET_INC_INF_INFO
procedure.

The following restrictions apply to incremental inference:

• It does not work with optimized owl:sameAs handling (OPT_SAMEAS), user-defined rules,
VPD-enabled RDF graphs, or version-enabled RDF graphs.

• It supports only the addition of triples. With updates or deletions, the inferred graph will be
completely rebuilt.

• It depends on triggers on application tables.

• Column types (RAW8 or NUMBER) used in incremental inference must be consistent. For
instance, if RAW8=T is used to build the inferred graph initially, then for every subsequent
SEM_APIS.CREATE_INFERRED_GRAPH call the same option must be used. To change
the column type to NUMBER, you must drop and rebuild the inferred graph.

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 24

3.2.10 Using Parallel Inference
Parallel inference can improve inference performance by taking advantage of the capabilities
of a multi-core or multi-CPU architectures. To use parallel inference, specify the DOP (degree of
parallelism) keyword and an appropriate value when using the
SEM_APIS.CREATE_INFERRED_GRAPH procedure. For example:

EXECUTE sem_apis.create_inferred_graph('M_IDX',sem_models('M'),
 sem_rulebases('OWLPRIME'), sem_apis.REACH_CLOSURE, null, 'DOP=4',
 network_owner=>'RDFUSER', network_name=>'NET1');

Specifying the DOP keyword causes parallel execution to be enabled for an Oracle-chosen set
of inference components

The success of parallel inference depends heavily on a good hardware configuration of the
system on which the database is running. The key is to have a "balanced" system that
implements the best practices for database performance tuning and Oracle SQL parallel
execution. For example, do not use a single 1 TB disk for an 800 GB database, because
executing SQL statements in parallel on a single physical disk can even be slower than
executing SQL statements in serial mode. Parallel inference requires ample memory; for each
CPU core, you should have at least 4 GB of memory.

Parallel inference is best suited for large ontologies; however, inference performance can also
improve for small ontologies.

There is some transient storage overhead associated with using parallel inference. Parallel
inference builds a source table that includes all triples based on all the source RDF/OWL
graphs and existing inferred graph. This table might use an additional 10 to 30 percent of
storage compared to the space required for storing data and index of the source RDF graphs.

3.2.11 Using Named Graph Based Inferencing (Global and Local)
The default inferencing in Oracle AI Database takes all asserted triples from all the source
RDF graph or RDF graphs provided and applies semantic rules on top of all the asserted
triples until an inference closure is reached. Even if the given source RDF graphs contain one
or more multiple named graphs, it makes no difference because all assertions, whether part of
a named graph or not, are treated the same as if they come from a single graph. (For an
introduction to named graph support in RDF Graph, see Named Graphs.)

This default inferencing can be thought of as completely "global" in that it does not consider
named graphs at all.

However, if you use named graphs, you can override the default inferencing and have named
graphs be considered by using either of the following features:

• Named graph based global inference (NGGI), which treats all specified named graphs as a
unified graph. NGGI lets you narrow the scope of triples to be considered, while enabling
great flexibility; it is explained in Named Graph Based Global Inference (NGGI).

• Named graph based local inference (NGLI), which treats each specified named graph as a
separate entity. NGLI is explained in Named Graph Based Local Inference (NGLI).

For using NGGI and NGLI together, see a recommended usage flow in Using NGGI and NGLI
Together.

You specify NGGI or NGLI through certain parameters and options to the
SEM_APIS.CREATE_INFERRED_GRAPH procedure when you create an inferred graph.

• Named Graph Based Global Inference (NGGI)

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 24

• Named Graph Based Local Inference (NGLI)

• Using NGGI and NGLI Together

3.2.11.1 Named Graph Based Global Inference (NGGI)
Named graph based global inference (NGGI) enables you to narrow the scope of triples used
for inferencing at the named graph level (as opposed to the RDF graph level). It also enables
great flexibility in selecting the scope; for example, you can include triples from zero or more
named graphs and/or from the default graph, and you can include all triples with a null graph
name from specified RDF graphs.

For example, in a hospital application you may only want to apply the inference rules on all the
information contained in a set of named graphs describing patients of a particular hospital. If
the patient-related named graphs contains only instance-related assertions (ABox), you can
specify one or multiple additional schema related-RDF graphs (TBox), as in Example 3-6.

Example 3-6 Named Graph Based Global Inference

EXECUTE sem_apis.create_inferred_graph(
 'patients_inf',
 rdf_graphs_in => sem_models('patients','hospital_ontology'),
 rulebases_in => sem_rulebases('owl2rl'),
 passes => SEM_APIS.REACH_CLOSURE,
 inf_components_in => null,
 options => 'DOP=4,RAW8=T',
 include_default_g => sem_models('hospital_ontology'),
 include_named_g => sem_graphs('<urn:hospital1_patient1>','<urn:hospital1_patient2>'),
 inf_ng_name => '<urn:inf_graph_for_hospital1>',
 network_owner =>'RDFUSER',
 network_name =>'NET1'
);

In Example 3-6:

• Two RDF graphs are involved: patients contains a set of named graphs where each
named graph holds triples relevant to a particular patient, and hospital_ontology contains
schema information describing concepts and relationships that are defined for hospitals.
These two RDF graphs together are the source graphs, and they set up an overall scope
for the inference.

• The include_default_g parameter causes all triples with a NULL graph name in the
specified RDF graphs to participate in NGGI. In this example, all triples with a NULL graph
name in RDF graph hospital_ontology will be included in NGGI.

• The include_named_g parameter causes all triples from the specified named graphs
(across all source RDF graphs) to participate in NGGI. In this example, triples from named
graphs <urn:hospital1_patient1> and <urn:hospital1_patient2> will be included in
NGGI.

• The inf_ng_name parameter assigns graph name <urn:inf_graph_for_hospital1> to all
the new triples inferred by NGGI.

3.2.11.2 Named Graph Based Local Inference (NGLI)
Named graph based local inference (NGLI) treats each named graph as a separate entity
instead of viewing the graphs as a single unified graph. Inference logic is performed within the
boundary of each entity. You can specify schema-related assertions (TBox) in a default graph,
and that default graph will participate the inference of each named graph. For example,

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 24

inferred triples based on a graph with name G1 will be assigned the same graph name G1 in the
inferred data partition.

Assertions from any two separate named graphs will never jointly produce any new assertions.

For example, assume the following:

• Graph G1 includes the following assertion:

:John :hasBirthMother :Mary .

• Graph G2 includes the following assertion:

:John :hasBirthMother :Bella .

• The default graph includes the assertion that :hasBirthMother is an
owl:FunctionalProperty. (This assertion has a null graph name.)

In this example, named graph based local inference (NGLI) will not infer that :Mary is
owl:sameAs :Bella because the two assertions are from two distinct graphs, G1 and G2. By
contrast, a named graph based global inference (NGGI) that includes G1, G2, and the functional
property definition would be able to infer that :Mary is owl:sameAs :Bella.

NGLI currently does not work together with proof generation, user-defined rules, optimized
owl:sameAs handling, or incremental inference.

Example 3-7 Named Graph Based Local Inference

Example 3-7 shows NGLI.

EXECUTE sem_apis.create_inferred_graph(
 'patients_inf',
 rdf_graphs_in => sem_models('patients','hospital_ontology'),
 rulebases_in => sem_rulebases('owl2rl'),
 passes => SEM_APIS.REACH_CLOSURE,
 inf_components_in => null,
 options => 'LOCAL_NG_INF=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

In Example 3-7:

• The two RDF graphs patients and hospital_ontology together are the source graphs, and
they set up an overall scope for the inference, similar to the case of global inference in
Example 3-6. All triples with a null graph name are treated as part of the common schema
(TBox). Inference is performed within the boundary of every single named graph combined
with the common schema.

• Then options parameter keyword-value pair LOCAL_NG_INF=T specifies that named graph
based local inference (NGLI) is to be performed.

Note that, by design, NGLI does not apply to the default graph itself. However, you can easily
apply named graph based global inference (NGGI) on the default graph and set the
inf_ng_name parameter to null. In this way, the TBox inference is precomputed, improving the
overall performance and storage consumption.

NGLI does not allow the following:

• Inferring new relationships based on a mix of triples from multiple named graphs

• Inferring new relationships using only triples from the default graph.

To get the inference that you would normally expect, you should keep schema assertions and
instance assertions separate. Schema assertions (for example, :A rdfs:subClassOf :B

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 24

and :p1 rdfs:subPropertyOf :p2) should be stored in the default graph as unnamed triples
(with null graph names). By contrast, instance assertions (for example, :X :friendOf :Y)
should be stored in one of the named graphs.

For a discussion and example of using NGLI to perform document-centric inference with
semantically indexed documents, see Performing Document-Centric Inference.

3.2.11.3 Using NGGI and NGLI Together
The following is a recommended usage flow for using NGGI and NGLI together. It assumes
that TBox and ABox are stored in two separate RDF graphs, that TBox contains schema
definitions and all triples in the TBox have a null graph name, but that ABox consists of a set of
named graphs describing instance-related data.

1. Invoke NGGI on the TBox by itself. For example:

EXECUTE sem_apis.create_inferred_graph(
 'TEST_INF',
 sem_models('abox','tbox'),
 sem_rulebases('owl2rl'),
 SEM_APIS.REACH_CLOSURE,
 include_default_g=>sem_models('tbox'),
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

2. Invoke NGLI for all named graphs. For example:

EXECUTE sem_apis.create_inferred_graph(
 'TEST_INF',
 sem_models('abox','tbox'),
 sem_rulebases('owl2rl'),
 SEM_APIS.REACH_CLOSURE,
 options => 'LOCAL_NG_INF=T,ENTAIL_ANYWAY=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

ENTAIL_ANYWAY=T is specified because the NGGI call in step 1 will set the status of inferred
graph to VALID, and the SEM_APIS.CREATE_INFERRED_GRAPH procedure call in step
2 will quit immediately unless ENTAIL_ANYWAY=T is specified.

3.2.12 Performing Selective Inferencing (Advanced Information)
Selective inferencing is component-based inferencing, in which you limit the inferencing to
specific OWL components that you are interested in. To perform selective inferencing, use the
inf_components_in parameter to the SEM_APIS.CREATE_INFERRED_GRAPH procedure to
specify a comma-delimited list of components. The final inferencing is determined by the union
of rulebases specified and the components specified.

Example 3-8 Performing Selective Inferencing

Example 3-8 limits the inferencing to the class hierarchy from subclass (SCOH) relationship
and the property hierarchy from subproperty (SPOH) relationship. This example creates an
empty rulebase and then specifies the two components ('SCOH,SPOH') in the call to the
SEM_APIS.CREATE_INFERRED_GRAPH procedure.

EXECUTE sem_apis.create_rulebase('my_rulebase', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 3
Using OWL Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 24

EXECUTE sem_apis.create_inferred_graph('owltst_idx', sem_models('owltst'),
sem_rulebases('my_rulebase'), SEM_APIS.REACH_CLOSURE, 'SCOH,SPOH',
network_owner=>'RDFUSER', network_name=>'NET1');

The following component codes are available: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, MBRH,
SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM,
TRANS, DIF, SAM, CHAIN, HASKEY, ONEOF, INTERSECT, INTERSECTSCOH, MBRLST, PROPDISJH,
SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION, RDFP1, RDFP2, RDFP3, RDFP4, RDFP6, RDFP7,
RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B, RDFP12C, RDFP13A, RDFP13B,
RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16, RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6,
RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12, RDFS13

The rules corresponding to components with a prefix of RDFP can be found in Completeness,
decidability and complexity of entailment for RDF Schema and a semantic extension involving
the OWL vocabulary, by H.J. Horst.

The syntax for deselecting a component is component_name followed by a minus (-) sign. For
example, the following statement performs OWLPrime inference without calculating the
subClassOf hierarchy:

EXECUTE sem_apis.create_inferred_graph('owltst_idx', sem_models('owltst'),
sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, 'SCOH-', network_owner=>'RDFUSER',
network_name=>'NET1');

By default, the OWLPrime rulebase implements the transitive semantics of owl:sameAs.
OWLPrime does not include the following rules (semantics):

U owl:sameAs V .
U p X . ==> V p X .

U owl:sameAs V .
X p U . ==> X p V .

The reason for not including these rules is that they tend to generate many assertions. If you
need to include these assertions, you can include the SAM component code in the call to the
SEM_APIS.CREATE_INFERRED_GRAPH procedure.

3.3 Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted manner,
based on the semantic relationship between the data in a table column and terms in an
ontology.

The SEM_RELATED semantic operator retrieves rows based on semantic relatedness. The
SEM_DISTANCE semantic operator returns distance measures for the semantic relatedness,
so that rows returned by the SEM_RELATED operator can be ordered or restricted using the
distance measure. The index type MDSYS.SEM_INDEXTYPE allows efficient execution of
such queries, enabling scalable performance over large data sets.

Note

SEM_RELATED and SEM_DISTANCE are not supported on schema-private RDF
networks.

• Using the SEM_RELATED Operator

Chapter 3
Using Semantic Operators to Query Relational Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 24

• Using the SEM_DISTANCE Ancillary Operator

• Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE

• Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the First
Parameter

• Using URIPREFIX When Values Are Not Stored as URIs

3.3.1 Using the SEM_RELATED Operator
Referring to the ontology example in Example: Disease Ontology, consider the following query
that requires semantic matching: Find all patients whose diagnosis is of the type
'Immune_System_Disorder'. A typical database query of the PATIENTS table (described in
Example: Disease Ontology) involving syntactic match will not return any rows, because no
rows have a DIAGNOSIS column containing the exact value Immune_System_Disorder. For
example the following query will not return any rows:

SELECT diagnosis FROM patients WHERE diagnosis = 'Immune_System_Disorder';

Example 3-9 SEM_RELATED Operator

However, many rows in the patient data table are relevant, because their diagnoses fall under
this class. Example 3-9 uses the SEM_RELATED operator (instead of lexical equality) to
retrieve all the relevant rows from the patient data table. (In this example, the term
Immune_System_Disorder is prefixed with a namespace, and the default assumption is that the
values in the table column also have a namespace prefix. However, that might not always be
the case, as explained in Using URIPREFIX When Values Are Not Stored as URIs.)

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

The SEM_RELATED operator has the following attributes:

SEM_RELATED(
 sub VARCHAR2,
 predExpr VARCHAR2,
 obj VARCHAR2,
 ontologyName SEM_MODELS,
 ruleBases SEM_RULEBASES,
 index_status VARCHAR2,
 lower_bound INTEGER,
 upper_bound INTEGER
) RETURN INTEGER;

The sub attribute is the name of table column that is being searched. The terms in the table
column are typically the subject in a <subject, predicate, object> triple pattern.

The predExpr attribute represents the predicate that can appear as a label of the edge on the
path from the subject node to the object node.

The obj attribute represents the term in the ontology for which related terms (related by the
predExpr attribute) have to be found in the table (in the column specified by the sub attribute).
This term is typically the object in a <subject, predicate, object> triple pattern. (In a query with
the equality operator, this would be the query term.)

The ontologyName attribute is the name of the ontology that contains the relationships between
terms.

Chapter 3
Using Semantic Operators to Query Relational Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 24

The rulebases attribute identifies one or more rulebases whose rules have been applied to the
ontology to infer new relationships. The query will be answered based both on relationships
from the ontology and the inferred new relationships when this attribute is specified.

The index_status optional attribute lets you query the data even when the relevant inferred
graph (created when the specified rulebase was applied to the ontology) does not have a valid
status. If this attribute is null, the query returns an error if the inferred graph does not have a
valid status. If this attribute is not null, it must be the string VALID, INCOMPLETE, or INVALID, to
specify the minimum status of the inferred graph for the query to succeed. Because OWL does
not guarantee monotonicity, the value INCOMPLETE should not be used when an OWL Rulebase
is specified.

The lower_bound and upper_bound optional attributes let you specify a bound on the distance
measure of the relationship between terms that are related. See Using the SEM_DISTANCE
Ancillary Operator for the description of the distance measure.

The SEM_RELATED operator returns 1 if the two input terms are related with respect to the
specified predExpr relationship within the ontology, and it returns 0 if the two input terms are
not related. If the lower and upper bounds are specified, it returns 1 if the two input terms are
related with a distance measure that is greater than or equal to lower_bound and less than or
equal to upper_bound.

3.3.2 Using the SEM_DISTANCE Ancillary Operator
The SEM_DISTANCE ancillary operator computes the distance measure for the rows filtered
using the SEM_RELATED operator. The SEM_DISTANCE operator has the following format:

SEM_DISTANCE (number) RETURN NUMBER;

The number attribute can be any number, as long as it matches the number that is the last
attribute specified in the call to the SEM_RELATED operator (see Example 3-10). The number
is used to match the invocation of the ancillary operator SEM_DISTANCE with a specific
SEM_RELATED (primary operator) invocation, because a query can have multiple invocations
of primary and ancillary operators.

Example 3-10 SEM_DISTANCE Ancillary Operator

Example 3-10 expands Example 3-9 to show several statements that include the
SEM_DISTANCE ancillary operator, which gives a measure of how closely the two terms (here,
a patient's diagnosis and the term Immune_System_Disorder) are related by measuring the
distance between the terms. Using the ontology described in Example: Disease Ontology, the
distance between AIDS and Immune_System_Disorder is 3.

SELECT diagnosis, SEM_DISTANCE(123) FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1;

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 ORDER BY SEM_DISTANCE(123);

SELECT diagnosis, SEM_DISTANCE(123) FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',

Chapter 3
Using Semantic Operators to Query Relational Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 24

 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 AND SEM_DISTANCE(123) <= 3;

Example 3-11 Using SEM_DISTANCE to Restrict the Number of Rows Returned

Example 3-11 uses distance information to restrict the number of rows returned by the primary
operator. All rows with a term related to the object attribute specified in the SEM_RELATED
invocation, but with a distance of greater than or equal to 2 and less than or equal to 4, are
retrieved.

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 2, 4) = 1;

In Example 3-11, the lower and upper bounds are specified using the lower_bound and
upper_bound parameters in the SEM_RELATED operator instead of using the
SEM_DISTANCE operator. The SEM_DISTANCE operator can be also be used for restricting
the rows returned, as shown in the last SELECT statement in Example 3-10.

• Computation of Distance Information

3.3.2.1 Computation of Distance Information
Distances are generated for the following properties during inference (inferred graph): OWL
properties defined as transitive properties, and RDFS subClassOf and RDFS subPropertyOf
properties. The distance between two terms linked through these properties is computed as
the shortest distance between them in a hierarchical class structure. Distances of two terms
linked through other properties are undefined and therefore set to null.

Each transitive property link in the original model (viewed as a hierarchical class structure) has
a distance of 1, and the distance of an inferred triple is generated according to the number of
links between the two terms. Consider the following hypothetical sample scenarios:

• If the original graph contains C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3, then
C1 rdfs:subClassof of C3 will be derived. In this case:

– C1 rdfs:subClassOf C2: distance = 1, because it exists in the model.

– C2 rdfs:subClassOf C3: distance = 1, because it exists in the model.

– C1 rdfs:subClassOf C3: distance = 2, because it is generated during inference.

• If the original graph contains P1 rdfs:subPropertyOf P2 and P2 rdfs:subPropertyOf P3,
then P1 rdfs:subPropertyOf P3 will be derived. In this case:

– P1 rdfs:subPropertyOf P2: distance = 1, because it exists in the model.

– P2 rdfs:subPropertyOf P3: distance = 1, because it exists in the model.

– P1 rdfs:subPropertyOf P3: distance = 2, because it is generated during inference.

• If the original graph contains C1 owl:equivalentClass C2 and C2 owl:equivalentClass
C3, then C1 owl:equivalentClass C3 will be derived. In this case:

– C1 owl:equivalentClass C2: distance = 1, because it exists in the model.

– C2 owl:equivalentClass C3: distance = 1, because it exists in the model.

– C1 owl:equivalentClass C3: distance = 2, because it is generated during inference.

Chapter 3
Using Semantic Operators to Query Relational Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 24

The SEM_RELATED operator works with user-defined rulebases. However, using the
SEM_DISTANCE operator with a user-defined rulebase is not yet supported, and will raise an
error.

3.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
When using the SEM_RELATED operator, you can create a semantic index of type
MDSYS.SEM_INDEXTYPE on the column that contains the ontology terms. Creating such an
index will result in more efficient execution of the queries. The CREATE INDEX statement must
contain the INDEXTYPE IS MDSYS.SEM_INDEXTYPE clause, to specify the type of index being
created.

Example 3-12 Creating a Semantic Index

Example 3-12 creates a semantic index named DIAGNOSIS_SEM_IDX on the DIAGNOSIS
column of the PATIENTS table using the ontology in Example: Disease Ontology.

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE;

The column on which the index is built (DIAGNOSIS in Example 3-12) must be the first
parameter to the SEM_RELATED operator, in order for the index to be used. If it not the first
parameter, the index is not used during the execution of the query.

Example 3-13 Creating a Semantic Index Specifying an RDF and Rulebase

To improve the performance of certain RDF queries, you can cause statistical information to be
generated for the semantic index by specifying one or more RDF graphs and rulebases when
you create the index. Example 3-13 creates an index that will also generate statistics
information for the specified RDF graph and rulebase. The index can be used with other RDF
graphs and rulebases during query, but the statistical information will be used only if the RDF
graph and rulebase specified during the creation of the index are the same RDF graph and
rulebase specified in the query.

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE('ONTOLOGY_MODEL(medical_ontology),
 RULEBASE(OWLPrime)');

Example 3-14 Query Benefitting from Generation of Statistical Information

The statistical information is useful for queries that return top-k results sorted by semantic
distance. Example 3-14 shows such a query.

SELECT /*+ FIRST_ROWS */ diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 ORDER BY SEM_DISTANCE(123);

3.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed
Column Is Not the First Parameter

If an index of type MDSYS.SEM_INDEXTYPE has been created on a table column that is the
first parameter to the SEM_RELATED operator, the index will be used. For example, the

Chapter 3
Using Semantic Operators to Query Relational Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 24

following query retrieves all rows that have a value in the DIAGNOSIS column that is a
subclass of (rdfs:subClassOf) Immune_System_Disorder.

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

Assume, however, that this query instead needs to retrieve all rows that have a value in the
DIAGNOSIS column for which Immune_System_Disorder is a subclass. You could rewrite the
query as follows:

SELECT diagnosis FROM patients
 WHERE SEM_RELATED
 ('<http://www.example.org/medical_terms/Immune_System_Disorder>',
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 diagnosis,
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

However, in this case a semantic index on the DIAGNOSIS column will not be used, because it
is not the first parameter to the SEM_RELATED operator. To cause the index to be used, you
can change the preceding query to use the inverseOf keyword, as follows:

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 'inverseOf(http://www.w3.org/2000/01/rdf-schema#subClassOf)',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

This form causes the table column (on which the index is built) to be the first parameter to the
SEM_RELATED operator, and it retrieves all rows that have a value in the DIAGNOSIS column
for which Immune_System_Disorder is a subclass.

3.3.5 Using URIPREFIX When Values Are Not Stored as URIs
By default, the semantic operator support assumes that the values stored in the table are
URIs. These URIs can be from different namespaces. However, if the values in the table do not
have URIs, you can use the URIPREFIX keyword to specify a URI when you create the
semantic index. In this case, the specified URI is prefixed to the value in the table and stored in
the index structure. (One implication is that multiple URIs cannot be used).

Example 3-15 creates a semantic index that uses a URI prefix.

Example 3-15 Specifying a URI Prefix During Semantic Index Creation

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE
 PARAMETERS('URIPREFIX(<http://www.example.org/medical/>)');

The slash (/) character at the end of the URI is important, because the URI is prefixed to the
table value (in the index structure) without any parsing.

Chapter 3
Using Semantic Operators to Query Relational Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 24

4
Simple Knowledge Organization System
(SKOS) Support

You can perform inferencing based on a core subset of the Simple Knowledge Organization
System (SKOS) data model, which is especially useful for representing thesauri, classification
schemes, taxonomies, and other types of controlled vocabulary.

SKOS is based on standard semantic web technologies including RDF and OWL, which makes
it easy to define the formal semantics for those knowledge organization systems and to share
the semantics across applications.

Support is provided for most, but not all, of the features of SKOS, the detailed specification of
which is available at http://www.w3.org/TR/skos-reference/.

Around 40 SKOS-specific terms are included in the RDF Graph support, such as
skos:broader, skos:relatedMatch, and skos:Concept. Over 100 SKOS axiomatic triples have
been added, providing the basic coverage of SKOS semantics. However, support is not
included for the integrity conditions described in the SKOS specification.

To perform SKOS-based inferencing, specify the system-defined SKOSCORE rulebase in the
rulebases_in parameter in the call to the SEM_APIS.CREATE_INFERRED_GRAPH
procedure, as in the following example:

EXECUTE sem_apis.create_inferred_graph('tstidx',sem_models('tst'),
sem_rulebases('skoscore'), network_owner=>'RDFUSER', network_name=>'NET1');

Example 4-1 defines, in Turtle format, a simple electronics scheme and two relevant concepts,
cameras and digital cameras. Its meaning is straightforward and its representation is in RDF. It
can be managed by Oracle AI Database in the same way as other RDF and OWL data.

Example 4-1 SKOS Definition of an Electronics Scheme

ex1:electronicsScheme rdf:type skos:ConceptScheme;

ex1:cameras rdf:type skos:Concept;
 skos:prefLabel "cameras"@en;
 skos:inScheme ex1:electronicsScheme.

ex1:digitalCameras rdf:type skos:Concept;
 skos:prefLabel "digital cameras"@en;
 skos:inScheme ex1:electronicsScheme.

ex1:digitalCameras skos:broader ex1:cameras.

• Supported and Unsupported SKOS Semantics
This section describes features of SKOS semantics that are and are not supported by
Oracle AI Database.

• Performing Inference on SKOS RDF Graphs
Performing inference on a SKOS RDF graph is similar to performing inference on an RDF
graph.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 4

http://www.w3.org/TR/skos-reference/

4.1 Supported and Unsupported SKOS Semantics
This section describes features of SKOS semantics that are and are not supported by Oracle
AI Database.

• Supported SKOS Semantics

• Unsupported SKOS Semantics

4.1.1 Supported SKOS Semantics
All terms defined in SKOS and SKOS extension for labels are recognized. When the
SKOSCORE rulebase is chosen for inference, the recognized terms include the following:

skos:altLabel
skos:broader
skos:broaderTransitive
skos:broadMatch
skos:changeNote
skos:closeMatch
skos:Collection
skos:Concept
skos:ConceptScheme
skos:definition
skos:editorialNote
skos:exactMatch
skos:example
skos:hasTopConcept
skos:hiddenLabel
skos:historyNote
skos:inScheme
skos:mappingRelation
skos:member
skos:memberList
skos:narrower
skos:narrowerTransitive
skos:narrowMatch
skos:notation
skos:note
skos:OrderedCollection
skos:prefLabel
skos:related
skos:relatedMatch
skos:scopeNote
skos:semanticRelation
skos:topConceptOf
skosxl:altLabel
skosxl:hiddenLabel
skosxl:Label
skosxl:labelRelation
skosxl:literalForm
skosxl:prefLabel

Most SKOS axioms and definitions are supported including the following: S1-S8, S10-S11,
S15-S26, S28-S31, S33-S36, S38-S45, S47-S50, and S53-S54. (See the SKOS detailed
specification for definitions.)

Most SKOS integrity conditions are supported, including S9, S13, S27, S37, and S46.

S52 is partially supported.

Chapter 4
Supported and Unsupported SKOS Semantics

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 4

S55, S56, and S57 are not supported by default.

• S55, the property chain (skosxl:prefLabel, skosxl:literalForm), is a subproperty of
skos:prefLabel.

• S56, the property chain (skosxl:altLabel, skosxl:literalForm), is a subproperty of
skos:altLabel.

• S57, the property chain (skosxl:hiddenLabel, skosxl:literalForm), is a subproperty of
skos:hiddenLabel.chains.

However, S55, S56, and S57 can be implemented using the OWL 2 subproperty chain
construct. For information about property chain handling, see Property Chain Handling.

4.1.2 Unsupported SKOS Semantics
The following features of SKOS semantics are not supported:

• S12 and S51: The rdfs:range of the relevant predicates is the class of RDF plain literals.
There is no check that the object values of these predicates are indeed plain literals;
however, applications can perform such a check.

• S14: A resource has no more than one value of skos:prefLabel per language tag. This
integrity condition is even beyond OWL FULL semantics, and it is not enforced in the
current release.

• S32: The rdfs:range of skos:member is the union of classes skos:Concept and
skos:Collection. This integrity condition is not enforced.

• S55, S56, and S57 are not supported by default, but they can be implemented using the
OWL 2 subproperty chain construct, as explained in Supported SKOS Semantics.

4.2 Performing Inference on SKOS RDF Graphs
Performing inference on a SKOS RDF graph is similar to performing inference on an RDF
graph.

To create an SKOS RDF graph, use the same procedure (SEM_APIS.CREATE_RDF_GRAPH)
as for creating an RDF graph. You can load data into an SKOS RDF graph in the same way as
for RDF graphs.

To infer new relationships for one or more SKOS RDF graphs, use the
SEM_APIS.CREATE_INFERRED_GRAPH procedure with the system-defined rulebase
SKOSCORE. For example:

EXECUTE sem_apis.create_inferred_graph('tstidx',sem_models('tst'),
sem_rulebases('skoscore')), network_owner=>'RDFUSER', network_name=>'NET1');

The inferred data will include many of the axioms defined in the SKOS detailed specification.
Like other system-defined rulebases, SKOSCORE has no explicit rules; all the semantics
supported are coded into the implementation.

• Validating SKOS RDF Graphs and Inferred Graphs

• Property Chain Handling

4.2.1 Validating SKOS RDF Graphs and Inferred Graphs
You can use the SEM_APIS.VALIDATE_INFERRED_GRAPH and
SEM_APIS.VALIDATE_RDF_GRAPH procedures to validate the supported integrity conditions.

Chapter 4
Performing Inference on SKOS RDF Graphs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 4

The output will include any inconsistencies caused by the supported integrity conditions, such
as OWL 2 propertyDisjointWith and S52.

Example 4-2 validates an SKOS inferred graph.

Example 4-2 Validating an SKOS Inferred Graph

set serveroutput on
declare
 lva sem_longvarchararray;
 idx int;
begin
 lva := sem_apis.validate_inferred_graph(sem_models('tstskos'),
sem_rulebases('skoscore'), network_owner=>'RDFUSER',network_name=>'NET1');
 if (lva is null) then
 dbms_output.put_line('No conflicts');
 else
 for idx in 1..lva.count loop
 dbms_output.put_line('entry ' || idx || ' ' || lva(idx));
 end loop;
 end if;
end;
 /

4.2.2 Property Chain Handling
The SKOS S55, S56, and S57 semantics are not supported by default. However, you can add
support for them by using the OWL 2 subproperty chain construct.

Example 4-3 inserts the necessary chain definition triples for S55 into an SKOS model. After
the insertion, an invocation of SEM_APIS.CREATE_INFERRED_GRAPH that specifies the
SKOSCORE rulebase will include the semantics defined in S55.

Example 4-3 Property Chain Insertions to Implement S55

INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','<http://www.w3.org/2004/02/skos/
core#prefLabel>', '<http://www.w3.org/2002/07/owl#propertyChainAxiom>', '_:jA1',
'RDFUSER', 'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/1999/02/22-
rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-xl#prefLabel>', 'RDFUSER',
'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/1999/02/22-
rdf-syntax-ns#rest>', '_:jA2', 'RDFUSER', 'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/1999/02/22-
rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-xl#literalForm>', 'RDFUSER',
'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/1999/02/22-
rdf-syntax-ns#rest>', '<http://www.w3.org/1999/02/22-rdf-syntax-ns#nil>', 'RDFUSER',
'NET1'));

Chapter 4
Performing Inference on SKOS RDF Graphs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 4

5
Semantic Indexing for Documents

Information extractors locate and extract meaningful information from unstructured documents.
The ability to search for documents based on this extracted information is a significant
improvement over the keyword-based searches supported by the full-text search engines.

Semantic indexing for documents introduces an index type that can make use of information
extractors and annotators to semantically index documents stored in relational tables.
Documents indexed semantically can be searched using SEM_CONTAINS operator within a
standard SQL query. The search criteria for these documents are expressed using SPARQL
query patterns that operate on the information extracted from the documents, as in the
following example.

SELECT docId
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 ' { ?org rdf:type typ:Organization .
 ?org pred:hasCategory cat:BusinessFinance } ', ..) = 1

The key components that facilitate Semantic Indexing for documents in an Oracle AI Database
include:

• Extensible information extractor framework, which allows third-party information extractors
to be plugged into the database

• SEM_CONTAINS operator to identify documents of interest, based on their extracted
information, using standard SQL queries

• SEM_CONTAINS_SELECT ancillary operator to return relevant information about the
documents identified using SEM_CONTAINS operator

• SemContext index type to interact with the information extractor and manage the
information extracted from a document set in an index structure and to facilitate
semantically meaningful searches on the documents

The application program interface (API) for managing extractor policies and semantic indexes
created for documents is provided in the SEM_RDFCTX PL/SQL package. SEM_RDFCTX
Package Subprograms provides the reference information about the subprograms in
SEM_RDFCTX package.

• Information Extractors for Semantically Indexing Documents
Information extractors process unstructured documents and extract meaningful
information from them, often using natural-language processing engines with the aid of
ontologies.

• Extractor Policies
An extractor policy is a named dictionary entity that determines the characteristics of a
semantic index that is created using the policy.

• Semantically Indexing Documents
Textual documents stored in a CLOB or VARCHAR2 column of a relational table can be
indexed using the MDSYS.SEMCONTEXT index type, to facilitate semantically meaningful
searches.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 21

• SEM_CONTAINS and Ancillary Operators
You can use the SEM_CONTAINS operator in a standard SQL statement to search for
documents or document references that are stored in relational tables.

• Searching for Documents Using SPARQL Query Patterns
Documents that are semantically indexed (that is, indexed using the mdsys.SemContext
index type) can be searched using SEM_CONTAINS operator within a standard SQL
query.

• Bindings for SPARQL Variables in Matching Subgraphs in a Document
(SEM_CONTAINS_SELECT Ancillary Operator)
You can use the SEM_CONTAINS_SELECT ancillary operator to return additional
information about each document matched using the SEM_CONTAINS operator.

• Improving the Quality of Document Search Operations
The quality of a document search operation depends on the quality of the information
produced by the extractor used to index the documents. If the information extracted is
incomplete, you may want to add some annotations to a document.

• Indexing External Documents
You can use semantic indexing on documents that are stored in a file system or on the
network. In such cases, you store the references to external documents in a table column,
and you create a semantic index on the column using an appropriate extractor policy.

• Configuring the Calais Extractor type
The CALAIS_EXTRACTOR type, which is a subtype of the RDFCTX_WS_EXTRACTOR
type, enables you to access a Web service end point anywhere on the network, including
the one that is publicly accessible (OpenCalais.com).

• Working with General Architecture for Text Engineering (GATE)
General Architecture for Text Engineering (GATE) is an open source natural language
processor and information extractor.

• Creating a New Extractor Type
You can create a new extractor type by extending the RDFCTX_EXTRACTOR or
RDFCTX_WS_EXTRACTOR extractor type.

• Creating a Local Semantic Index on a Range-Partitioned Table
A local index can be created on a VARCHAR2 or CLOB column of a range-partitioned
table.

• Altering a Semantic Index
You can use the ALTER INDEX statement with a semantic index.

• Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX
The CREATE INDEX and ALTER INDEX statements allow the passing of parameters
needed by extractors.

• Performing Document-Centric Inference
Document-centric inference refers to the ability to infer from each document individually.

• Metadata Views for Semantic Indexing
This section describes views that contain metadata about semantic indexing

• Default Style Sheet for GATE Extractor Output
This section lists the default XML style sheet that the mdsys.gatenlp_extractor
implementation uses to convert the annotation set (encoded in XML) into RDF/XML.

5.1 Information Extractors for Semantically Indexing Documents
Information extractors process unstructured documents and extract meaningful information
from them, often using natural-language processing engines with the aid of ontologies.

Chapter 5
Information Extractors for Semantically Indexing Documents

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 21

The quality and the completeness of information extracted from a document vary from one
extractor to another. Some extractors simply identify the entities (such as names of persons,
organizations, and geographic locations from a document), while the others attempt to identify
the relationships among the identified entities and additional description for those entities. You
can search for a specific document from a large set when the information extracted from the
documents is maintained as a semantic index.

You can use an information extractor to create a semantic index on the documents stored in a
column of a relational table. An extensible framework allows any third-party information
extractor that is accessible from the database to be plugged into the database. An object type
created for an extractor encapsulates the extraction logic, and has methods to configure the
extractor and receive information extracted from a given document in RDF/XML format.

An abstract type MDSYS.RDFCTX_EXTRACTOR defines the common interfaces to all
information extractors. An implementation of this abstract type interacts with a specific
information extractor to produce RDF/XML for a given document. An implementation for this
type can access a third-party information extractor that either is available as a database
application or is installed on the network (accessed using Web service callouts). Example 5-1
shows the definition of the RDFCTX_EXTRACTOR abstract type.

Example 5-1 RDFCTX_EXTRACTOR Abstract Type Definition

create or replace type rdfctx_extractor authid current_user as object (
 extr_type VARCHAR2(32),
 member function getDescription return VARCHAR2,
 member function rdfReturnType return VARCHAR2,
 member function getContext(attribute VARCHAR2) return VARCHAR2,
 member procedure startDriver,
 member function extractRDF(document CLOB,
 docId VARCHAR2) return CLOB,
 member function extractRdf(document CLOB,
 docId VARCHAR2,
 params VARCHAR2,
 options VARCHAR2 default NULL) return CLOB
 member function batchExtractRdf(docCursor SYS_REFCURSOR,
 extracted_info_table VARCHAR2,
 params VARCHAR2,
 partition_name VARCHAR2 default NULL,
 docId VARCHAR2 default NULL,
 preferences SYS.XMLType default NULL,
 options VARCHAR2 default NULL)
 return CLOB,
 member procedure closeDriver
) not instantiable not final
/

A specific implementation of the RDFCTX_EXTRACTOR type sets an identifier for the
extractor type in the extr_type attribute, and it returns a short description for the extractor type
using getDescription method. All implementations of this abstract type return the extracted
information as RDF triples. In the current release, the RDF triples are expected to be serialized
using RDF/XML format, and therefore the rdfReturnType method should return 'RDF/XML'.

An extractor type implementation uses the extractRDF method to encapsulate the extraction
logic, possibly by invoking external information extractor using proprietary interfaces, and
returns the extracted information in RDF/XML format. When a third-party extractor uses some
proprietary XML Schema to capture the extracted information, an XML style sheet can be used
to generate an equivalent RDF/XML. The startDriver and closeDriver methods can perform
any housekeeping operations pertaining to the information extractor. The optional params
parameter allows the extractor to obtain additional information about the type of extraction
needed (for example, the desired quality of extraction).

Chapter 5
Information Extractors for Semantically Indexing Documents

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 21

Optionally, an extractor type implementation may support a batch interface by providing an
implementation of the batchExtractRdf member function. This function accepts a cursor
through the input parameter docCursor and typically uses that cursor to retrieve each
document, extract information from the document, and then insert the extracted information
into (the specified partition identified by the partition_name partition of the
extracted_info_table table. The preferences parameter is used to obtain the preferences
value associated with the policy (as described in Indexing External Documents and in the
SEM_RDFCTX.CREATE_POLICY reference section).

The getContext member function accepts an attribute name and returns the value for that
attribute. Currently this function is used only for extractors supporting the batch interface. The
attribute names and corresponding possible return values are the following:

• For the BATCH_SUPPORT attribute, the return values are 'YES' or 'NO' depending on whether
the extractor supports the batch interface.

• For the DBUSER attribute, the return value is the name of a database user that will connect
to the database to retrieve rows from the cursor (identified by the docCursor parameter)
and that will write to the table extracted_info_table.

This information is used for granting appropriate privileges to the table being indexed and the
table extracted_info_table.

The startDriver and closeDriver methods can perform any housekeeping operations
pertaining to the information extractor.

An extractor type for the General Architecture for Text Engineering (GATE) engine is defined as
a subtype of the RDFCTX_EXTRACTOR type. The implementation of this extractor type sends
the documents to a GATE engine over a TCP connection, receives annotations extracted by
the engine in XML format, and converts this proprietary XML document to an RDF/XML
document. For more information on configuring a GATE engine to work with Oracle AI
Database, see Working with General Architecture for Text Engineering (GATE). For an
example of creating a new information extractor, see Creating a New Extractor Type.

Information extractors that are deployed as Web services can be invoked from the database by
extending the RDFCTX_WS_EXTRACTOR type, which is a subtype of the
RDFCTX_EXTRACTOR type. The RDFCTX_WS_EXTRACTOR type encapsulates the Web
service callouts in the extractRDF method; specific implementations for network-based
extractors can reuse this implementation by setting relevant attribute values in the type
constructor.

Thomson Reuters Calais is an example of a network-based information extractor that can be
accessed using web-service callouts. The CALAIS_EXTRACTOR type, which is a subtype of
the RDFCTX_WS_EXTRACTOR type, encapsulates the Calais extraction logic, and it can be
used to semantically index the documents. The CALAIS_EXTRACTOR type must be
configured for the database instance before it can be used to create semantic indexes, as
explained in Configuring the Calais Extractor type.

5.2 Extractor Policies
An extractor policy is a named dictionary entity that determines the characteristics of a
semantic index that is created using the policy.

Each extractor policy refers, directly or indirectly, to an instance of an extractor type. An
extractor policy with a direct reference to an extractor type instance can be used to compose
other extractor policies that include additional RDF graphs for ontologies.

The following example creates a basic extractor policy created using the GATE extractor type:

Chapter 5
Extractor Policies

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 21

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
 extractor => mdsys.gatenlp_extractor());
end;
/

The following example creates a dependent extractor policy that combines the metadata
extracted by the policy in the preceding example with a user-defined RDF graph named
geo_ontology:

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
 base_policy => 'SEM_EXTR',
 user_models => SEM_MODELS ('geo_ontology'));
end;
/

You can use an extractor policy to create one or more semantic indexes on columns that store
unstructured documents, as explained in Semantically Indexing Documents.

5.3 Semantically Indexing Documents
Textual documents stored in a CLOB or VARCHAR2 column of a relational table can be
indexed using the MDSYS.SEMCONTEXT index type, to facilitate semantically meaningful
searches.

The extractor policy specified at index creation determines the information extractor used to
semantically index the documents. The extracted information, captured as a set of RDF triples
for each document, is managed in the RDF data store. Each instance of the semantic index is
associated with a system-generated RDF graph, which maintains the RDF triples extracted
from the corresponding documents.

The following example creates a semantic index named ArticleIndex on the textual
documents in the ARTICLE column of the NEWSFEED table, using the extractor policy named
SEM_EXTR:

CREATE INDEX ArticleIndex on Newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR');

The RDF graph created for an index is managed internally and it is not associated with an
application table. The triples stored in such an RDF graph are automatically maintained for any
modifications (such as update, insert, or delete) made to the documents stored in the table
column. Although a single RDF graph is used to index all documents stored in a table column,
the triples stored in the RDF graph maintain references to the documents from which they are
extracted; therefore, all the triples extracted from a specific document form an individual graph
within the RDF graph. The documents that are semantically indexed can then be searched
using a SPARQL query pattern that operates on the triples extracted from the documents.

When creating a semantic index for documents, you can use a basic extractor policy or a
dependent policy, which may include one or more user-defined RDF graphs. When you create
an index with a dependent extractor policy, the document search pattern specified using
SPARQL could span the triples extracted from the documents as well as those defined in user-
defined RDF graphs.

You can create an index using multiple extractor policies, in which case the triples extracted by
the corresponding extractors are maintained separately in distinct RDF graphs. A document
search query using one such index can select the specific policy to be used for answering the
query. For example, an extractor policy named CITY_EXTR can be created to extract the names

Chapter 5
Semantically Indexing Documents

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 21

of the cities from a given document, and this extractor policy can be used in combination with
the SEM_EXTR policy to create a semantic index, as in the following example:

CREATE INDEX ArticleIndex on Newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR CITY_EXTR');

The first extractor policy in the PARAMETERS list is considered to be the default policy if a
query does not refer to a specific policy; however, you can change the default extractor policy
for a semantic index by using the SEM_RDFCTX.SET_DEFAULT_POLICY procedure, as in
the following example:

begin
 sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
 policy_name => 'CITY_EXTR');
end;
/

5.4 SEM_CONTAINS and Ancillary Operators
You can use the SEM_CONTAINS operator in a standard SQL statement to search for
documents or document references that are stored in relational tables.

This operator has the following syntax:

SEM_CONTAINS(
 column VARCHAR2 / CLOB,
 sparql VARCHAR2,
 policy VARCHAR2,
 aliases SEM_ALIASES,
 index_status NUMBER,
 ancoper NUMBER
) RETURN NUMBER;

The column and sparql attributes attribute are required. The other attributes are optional (that
is, each can be a null value).

The column attribute identifies a VARCHAR2 or CLOB column in a relational table that stores
the documents or references to documents that are semantically indexed. An index of type
MDSYS.SEMCONTEXT must be defined in this column for the SEM_CONTAINS operator to
use.

The sparql attribute is a string literal that defines the document search criteria, expressed in
SPARQL format.

The optional policy attribute specifies the name of an extractor policy, usually to override the
default policy. A semantic document index can have one or more extractor policies specified at
index creation, and one of these policies is the default, which is used if the policy attribute is
null in the call to SEM_CONTAINS.

The optional aliases attribute identifies one or more namespaces, including a default
namespace, to be used for expansion of qualified names in the query pattern. Its data type is
SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where each
SEM_ALIAS element identifies a namespace ID and namespace value. The SEM_ALIAS data
type has the following definition: (namespace_id VARCHAR2(30), namespace_val
VARCHAR2(4000))

The optional index_status attribute is relevant only when a dependent policy involving one or
more inferred graphs is being used for the SEM_CONTAINS invocation. The index_status
value identifies the minimum required validity status of the inferred graphs. The possible values
are 0 (for VALID, the default), 1 (for INCOMPLETE), and 2 (for INVALID).

Chapter 5
SEM_CONTAINS and Ancillary Operators

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 21

The optional ancoper attribute specifies a number as the binding to be used when the
SEM_CONTAINS_SELECT ancillary operator is used with this operator in a query. The
number specified for the ancoper attribute should be the same as number specified for the
operbind attribute in the SEM_CONTAINS_SELECT ancillary operator.

The SEM_CONTAINS operator returns 1 for each document instance matching the specified
search criteria, and returns 0 for all other cases.

For more information about using the SEM_CONTAINS operator, including an example, see
Searching for Documents Using SPARQL Query Patterns.

• SEM_CONTAINS_SELECT Ancillary Operator

• SEM_CONTAINS_COUNT Ancillary Operator

5.4.1 SEM_CONTAINS_SELECT Ancillary Operator
You can use the SEM_CONTAINS_SELECT ancillary operator to return additional information
about each document that matches some search criteria. This ancillary operator has a single
numerical attribute (operbind) that associates an instance of the SEM_CONTAINS_SELECT
ancillary operator with a SEM_CONTAINS operator by using the same value for the binding.
This ancillary operator returns an object of type CLOB that contains the additional information
from the matching document, formatted in SPARQL Query Results XML format.

The SEM_CONTAINS_SELECT ancillary operator has the following syntax:

SEM_CONTAINS_SELECT(
 operbind NUMBER
) RETURN CLOB;

For more information about using the SEM_CONTAINS_SELECT ancillary operator, including
examples, see Bindings for SPARQL Variables in Matching Subgraphs in a Document
(SEM_CONTAINS_SELECT Ancillary Operator).

5.4.2 SEM_CONTAINS_COUNT Ancillary Operator
You can use the SEM_CONTAINS_COUNT ancillary operator for a SEM_CONTAINS operator
invocation. For each matched document, it returns the count of matching subgraphs for the
SPARQL graph pattern specified in the SEM_CONTAINS invocation.

The SEM_CONTAINS_COUNT ancillary operator has the following syntax:

SEM_CONTAINS_COUNT(
 operbind NUMBER
) RETURN NUMBER;

The following example excerpt shows the use of the SEM_CONTAINS_COUNT ancillary
operator to return the count of matching subgraphs for each matched document:

SELECT docId, SEM_CONTAINS_COUNT(1) as matching_subgraph_count
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type class:Organization .
 ?org pred:hasCategory cat:BusinessFinance }', ..,
 1)= 1;

Chapter 5
SEM_CONTAINS and Ancillary Operators

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 21

5.5 Searching for Documents Using SPARQL Query Patterns
Documents that are semantically indexed (that is, indexed using the mdsys.SemContext index
type) can be searched using SEM_CONTAINS operator within a standard SQL query.

In the query, the SEM_CONTAINS operator must have at least two parameters, the first
specifying the column in which the documents are stored and the second specifying the
document search criteria expressed as a SPARQL query pattern, as in the following example:

SELECT docId FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type <http://www.example.com/classes/Organization> .
 ?org <http://example.com/pred/hasCategory>
 <http://www.example.com/category/BusinessFinance> }'
)= 1;

The SPARQL query pattern specified with the SEM_CONTAINS operator is matched against
the individual graphs corresponding to each document, and a document is considered to match
a search criterion if the triples from the corresponding graph satisfy the query pattern. In the
preceding example, the SPARQL query pattern identifies the individual graphs (thus, the
documents) that refer to an Organization that belong to BusinessFinance category. The SQL
query returns the rows corresponding to the matching documents in its result set. The
preceding example assumes that the URIs used in the query are generated by the underlying
extractor, and that you (the user searching for documents) are aware of the properties and
terms that are generated by the extractor in use.

When you create an index using a dependent extractor policy that includes one or more user-
defined RDF graphs, the triples asserted in the user RDF graphs are considered to be
common to all the documents. Document searches involving such policies test the search
criteria against the triples in individual graphs corresponding to the documents, combined with
the triples in the user RDF graphs. For example, the following query identifies all articles
referring to organizations in the state of New Hampshire, using the geographical ontology
(geo_ontology RDF graph from a preceding example) that maps cities to states:

SELECT docId FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type class:Organization .
 ?org pred:hasLocation ?city .
 ?city geo:hasState state:NewHampshire }',
 'SEM_EXTR_PLUS_GEOONT',
 sem_aliases(
 sem_alias('class', 'http://www.myorg.com/classes/'),
 sem_alias('pred', 'http://www.myorg.com/pred/'),
 sem_alias('geo', 'http://geoont.org/rel/'),
 sem_alias('state', 'http://geoont.org/state/'))) = 1;

The preceding query, with a reference to the extractor policy SEM_EXTR_PLUS_GEOONT
(created in an example in Extractor Policies), combines the triples extracted from the indexed
documents and the triples in the user RDF graph to find matching documents. In this example,
the name of the extractor policy is optional if the corresponding index is created with just this
policy or if this is the default extractor policy for the index. When the query pattern uses some
qualified names, an optional parameter to the SEM_CONTAINS operator can specify the
namespaces to be used for expanding the qualified names.

SPARQL-based document searches can make use of the SPARQL syntax that is supported
through SEM_MATCH queries.

Chapter 5
Searching for Documents Using SPARQL Query Patterns

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 21

5.6 Bindings for SPARQL Variables in Matching Subgraphs in a
Document (SEM_CONTAINS_SELECT Ancillary Operator)

You can use the SEM_CONTAINS_SELECT ancillary operator to return additional information
about each document matched using the SEM_CONTAINS operator.

Specifically, the bindings for the variables used in SPARQL-based document search criteria
can be returned using this operator. This operator is ancillary to the SEM_CONTAINS operator,
and a literal number is used as an argument to this operator to associate it with a specific
instance of SEM_CONTAINS operator, as in the following example:

SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type class:Organization .
 ?org pred:hasCategory cat:BusinessFinance }', ..,
 1)= 1;

The SEM_CONTAINS_SELECT ancillary operator returns the bindings for the variables in
SPARQL Query Results XML format, as CLOB data. The variables may be bound to multiple
data instances from a single document, in which case all bindings for the variables are
returned. The following example is an excerpt from the output of the preceding query: a value
returned by the SEM_CONTAINS_SELECT ancillary operator for a document matching the
specified search criteria.

<results>
 <result>
 <binding name="ORG">
 <uri>http://newscorp.com/Org/AcmeCorp</uri>
 </binding>
 </result>
 <result>
 <binding name="ORG">
 <uri>http://newscorp.com/Org/ABCCorp</uri>
 </binding>
 </result>
</results>

You can rank the search results by creating an instance of XMLType for the CLOB value
returned by the SEM_CONTAINS_SELECT ancillary operator and applying an XPath
expression to sort the results on some attribute values.

By default, the SEM_CONTAINS_SELECT ancillary operator returns bindings for all variables
used in the SPARQL-based document search criteria. However, when the values for only a
subset of the variables are relevant for a search, the SPARQL pattern can include a SELECT
clause with space-separated list of variables for which the values should be returned, as in the
following example:

SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 'SELECT ?org ?city
 WHERE { ?org rdf:type class:Organization .
 ?org pred:hasLocation ?city .
 ?city geo:hasState state:NewHampshire }', ..,
 1) = 1;

Chapter 5
Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 21

5.7 Improving the Quality of Document Search Operations
The quality of a document search operation depends on the quality of the information produced
by the extractor used to index the documents. If the information extracted is incomplete, you
may want to add some annotations to a document.

You can use the SEM_RDFCTX.MAINTAIN_TRIPLES procedure to add annotations, in the
form of RDF triples, to specific documents in order to improve the quality of search, as shown
in the following example:

begin
 sem_rdfctx.maintain_triples(
 index_name => 'ArticleIndex',
 where_clause => 'docid in (1,15,20)',
 rdfxml_content => sys.xmltype(
 '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pred="http://example.com/pred/">
 <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
 <pred:hasShortName
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Example
 </pred:hasShortName>
 </rdf:Description>
 </rdf:RDF>'));
end;
/

The index name and the WHERE clause specified in the preceding example identify specific
instances of the document to be annotated, and the RDF/XML content passed in is used to
add additional triples to the individual graphs corresponding to those documents. This allows
domain experts and user communities to improve the quality of search by adding relevant
triples to annotate some documents.

5.8 Indexing External Documents
You can use semantic indexing on documents that are stored in a file system or on the
network. In such cases, you store the references to external documents in a table column, and
you create a semantic index on the column using an appropriate extractor policy.

To index external documents, define an extractor policy with appropriate preferences, using an
XML document that is assigned to the preferences parameter of the
SEM_RDFCTX.CREATE_POLICY procedure, as in the following example:

begin
 sem_rdfctx.create_policy (
 policy_name => 'SEM_EXTR_FROM_FILE',
 extractor => mdsys.gatenlp_extractor()),
 preferences => sys.xmltype('<RDFCTXPreferences>
 <Datastore type="FILE">
 <Path>EXTFILES_DIR</Path>
 </Datastore>
 </RDFCTXPreferences>'));
end;
/

The <Datastore> element in the preferences document specifies the type of repository used
for the documents to be indexed. When the value for the type attribute is set to FILE, the

Chapter 5
Improving the Quality of Document Search Operations

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 21

<Path> element identifies a directory object in the database (created using the SQL statement
CREATE DIRECTORY). A table column indexed using the specified extractor policy is
expected to contain relative paths to individual files within the directory object, as shown in the
following example:

CREATE TABLE newsfeed (docid number,
 articleLoc VARCHAR2(100));
INSERT INTO into newsfeed (docid, articleLoc) values
 (1, 'article1.txt');
INSERT INTO newsfeed (docid, articleLoc) values
 (2, 'folder/article2.txt');

CREATE INDEX ArticleIndex on newsfeed (articleLoc)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR_FROM_FILE');

To index documents that are accessed using HTTP protocol, create a extractor policy with
preferences that set the type attribute of the <Datastore> element to URL and that list one or
more hosts in the <Path> elements, as shown in the following excerpt:

<RDFCTXPreferences>
 <Datastore type="URL">
 <Path>http://cnn.com</Path>
 <Path>http://abc.com</Path>
 </Datastore>
</RDFCTXPreferences>

The schema in which a semantic index for external documents is created must have the
necessary privileges to access the external objects, including access to any proxy server used
to access documents outside the firewall, as shown in the following example:

-- Grant read access to the directory object for FILE data store --
grant read on directory EXTFILES_DIR to SEMUSR;

-- Grant connect access to set of hosts for URL data store --
begin
 dbms_network_acl_admin.create_acl (
 acl => 'network_docs.xml',
 description => 'Normal Access',
 principal => 'SEMUSR',
 is_grant => TRUE,
 privilege => 'connect');
end;
/

begin
 dbms_network_acl_admin.assign_acl (
 acl => 'network_docs.xml',
 host => 'cnn.com',
 lower_port => 1,
 upper_port => 10000);
end;
/

External documents that are semantically indexed in the database may be in one of the well-
known formats such as Microsoft Word, RTF, and PDF. This takes advantage of the Oracle
Text capability to extract plain text version from formatted documents using filters (see the
CTX_DOC.POLICY_FILTER procedure, described in Oracle Text Reference). To semantically
index formatted documents, you must specify the name of a CTX policy in the extractor
preferences, as shown in the following excerpt:

Chapter 5
Indexing External Documents

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 21

<RDFCTXPreferences>
 <Datastore type="FILE" filter="CTX_FILTER_POLICY">
 <Path>EXTFILES_DIR</Path>
 </Datastore>
</RDFCTXPreferences>

In the preceding example, the CTX_FILTER_POLICY policy, created using the
CTX_DDL.CREATE_POLICY procedure, must exist in your schema. The table columns that
are semantically indexed using this preferences document can store paths to formatted
documents, from which plain text is extracted using the specified CTX policy. The information
extractor associated with the extractor policy then processes the plain text further, to extract
the semantics in RDF/XML format.

5.9 Configuring the Calais Extractor type
The CALAIS_EXTRACTOR type, which is a subtype of the RDFCTX_WS_EXTRACTOR type,
enables you to access a Web service end point anywhere on the network, including the one
that is publicly accessible (OpenCalais.com).

To do so, you must connect as SYSTEM (not SYS … AS SYSDBA) or another non-SYS user
with the DBA role, and configure the Calais extractor type with Web service end point, the
SOAP action, and the license key by setting corresponding parameters, as shown in the
following example:

begin
 sem_rdfctx.set_extractor_param (
 param_key => 'CALAIS_WS_ENDPOINT',
 param_value => 'http://api1.opencalais.com/enlighten/calais.asmx',
 param_desc => 'Calais web service end-point');

 sem_rdfctx.set_extractor_param (
 param_key => 'CALAIS_KEY',
 param_value => '<Calais license key goes here>',
 param_desc => 'Calais extractor license key');

 sem_rdfctx.set_extractor_param (
 param_key => 'CALAIS_WS_SOAPACTION',
 param_value => 'http://clearforest.com/Enlighten',
 param_desc => 'Calais web service SOAP Action');
end;

To enable access to a Web service outside the firewall, you must also set the parameter for the
proxy host, as in the following example:

begin
 sem_rdfctx.set_extractor_param (
 param_key => 'HTTP_PROXY',
 param_value => 'www-proxy.example.com',
 param_desc => 'Proxy server');
end;

5.10 Working with General Architecture for Text Engineering
(GATE)

General Architecture for Text Engineering (GATE) is an open source natural language
processor and information extractor.

For details about GATE, see http://gate.ac.uk.

Chapter 5
Configuring the Calais Extractor type

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 21

http://gate.ac.uk

You can use GATE to perform semantic indexing of documents stored in the database. The
extractor type mdsys.gatenlp_extractor is defined as a subtype of the
RDFCTX_EXTRACTOR type. The implementation of this extractor type sends an unstructured
document to a GATE engine over a TCP connection, receives corresponding annotations, and
converts them into RDF following a user-specified XML style sheet.

The requests for information extraction are handled by a server socket implementation, which
instantiates the GATE components and listens to extraction requests at a pre-determined port.
The host and the post for the GATE listener are recorded in the database, as shown in the
following example, for all instances of the mdsys.gatenlp_extractor type to use.

begin
 sem_rdfctx.set_extractor_param (
 param_key => 'GATE_NLP_HOST',
 param_value => 'gateserver.example.com',
 param_desc => 'Host for GATE NLP Listener ');

 sem_rdfctx.set_extractor_param (
 param_key => 'GATE_NLP_PORT',
 param_value => '7687',
 param_desc => 'Port for Gate NLP Listener');
end;

The server socket application receives an unstructured document and constructs an annotation
set with the desired types of annotations. Each annotation in the set may be customized to
include additional features, such as the relevant phrase from the input document and some
domain specific features. The resulting annotation set is serialized into XML (using the
annotationSetToXml method in the gate.corpora.DocumentXmlUtils Java package) and
returned back to the socket client.

A sample Java implementation for the GATE listener is available for download from the code
samples and examples page on OTN (see RDF Graph Management Examples (PL/SQL and
Java) for information about this page).

The mdsys.gatenlp_extractor implementation in the database receives the annotation set
encoded in XML, and converts it to RDF/XML using an XML style sheet. You can replace the
default style sheet (listed in Default Style Sheet for GATE Extractor Output) used by the
mdsys.gatenlp_extractor implementation with a custom style sheet when you instantiate the
type.

The following example creates an extractor policy that uses a custom style sheet to generate
RDF from the annotation set produced by the GATE extractor:

begin
 sem_rdfctx.create_policy (policy_name => 'GATE_EXTR',
 extractor => mdsys.gatenlp_extractor(
 sys.XMLType('<?xml version="1.0"?>
 <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 ..
 </xsl:stylesheet>')));
end;
/

5.11 Creating a New Extractor Type
You can create a new extractor type by extending the RDFCTX_EXTRACTOR or
RDFCTX_WS_EXTRACTOR extractor type.

Chapter 5
Creating a New Extractor Type

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 21

The extractor type to be extended must be accessible using Web service calls. The schema in
which the new extractor type is created must be granted additional privileges to allow creation
of the subtype. For example, if a new extractor type is created in the schema RDFCTXU, you
must enter the following commands to grant the UNDER and RDFCTX_ADMIN privileges to
that schema:

GRANT under ON mdsys.rdfctx_extractor TO rdfctxu;
GRANT rdfctx_admin TO rdfctxu;

As an example, assume that an information extractor can process an incoming document and
return an XML document that contains extracted information. To enable the information
extractor to be invoked using a PL/SQL wrapper, you can create the corresponding extractor
type implementation, as in the following example:

create or replace type rdfctxu.info_extractor under rdfctx_extractor (
 xsl_trans sys.XMLtype,
 constructor function info_extractor (
 xsl_trans sys.XMLType) return self as result,
 overriding member function getDescription return VARCHAR2,
 overriding member function rdfReturnType return VARCHAR2,
 overriding member function extractRDF(document CLOB,
 docId VARCHAR2) return CLOB
)
/

create or replace type body rdfctxu.info_extractor as
 constructor function info_extractor (
 xsl_trans sys.XMLType) return self as result is
 begin
 self.extr_type := 'Info Extractor Inc.';
 -- XML style sheet to generate RDF/XML from proprietary XML documents
 self.xsl_trans := xsl_trans;
 return;
 end info_extractor;

 overriding member function getDescription return VARCHAR2 is
 begin
 return 'Extactor by Info Extractor Inc.';
 end getDescription;

 overriding member function rdfReturnType return VARCHAR2 is
 begin
 return 'RDF/XML';
 end rdfReturnType;

 overriding member function extractRDF(document CLOB,
 docId VARCHAR2) return CLOB is
 ce_xmlt sys.xmltype;
 begin
 EXECUTE IMMEDIATE
 'begin :1 = info_extract_xml(doc => :2); end;'
 USING IN OUT ce_xmlt, IN document;

 -- Now pass the ce_xmlt through RDF/XML transformation --
 return ce_xmlt.transform(self.xsl_trans).getClobVal();
 end extractRdf;

end;

In the preceding example:

Chapter 5
Creating a New Extractor Type

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 21

• The implementation for the created info_extractor extractor type relies on the XML style
sheet, set in the constructor, to generate RDF/XML from the proprietary XML schema used
by the underlying information extractor.

• The extractRDF function assumes that the info_extract_xml function contacts the
desired information extractor and returns an XML document with the information extracted
from the document that was passed in.

• The XML style sheet is applied on the XML document to generate equivalent RDF/XML,
which is returned by the extractRDF function.

5.12 Creating a Local Semantic Index on a Range-Partitioned
Table

A local index can be created on a VARCHAR2 or CLOB column of a range-partitioned table.

To do so, use the following syntax:

CREATE INDEX <index-name> … LOCAL;

The following example creates a range-partitioned table and a local semantic index on that
table:

CREATE TABLE part_newsfeed (
 docid number, article CLOB, cdate DATE)
partition by range (cdate)
(partition p1 values less than (to_date('01-Jan-2001')),
 partition p2 values less than (to_date('01-Jan-2004')),
 partition p3 values less than (to_date('01-Jan-2008')),
 partition p4 values less than (to_date('01-Jan-2012'))
);

CREATE INDEX ArticleLocalIndex on part_newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR')
LOCAL;

Note that every partition of the local semantic index will have content generated for the same
set of policies. When you use the ALTER INDEX statement on a local index to add or drop
policies associated with a semantic index partition, you should try to keep the same set of
policies associated with each partition. You can achieve this result by using ALTER INDEX
statements in a loop over the set of partitions. (For more information about altering semantic
indexes, see Altering a Semantic Index,)

5.13 Altering a Semantic Index
You can use the ALTER INDEX statement with a semantic index.

For a local semantic index, the ALTER INDEX statement applies to a specified partition. The
general syntax of the ALTER INDEX command for a semantic index is as follows:

ALTER INDEX <index-name> REBUILD [PARTITION <index-partition-name>]
 [PARAMETERS ('-<action_for_policy> <policy-name>')];

• Rebuilding Content for All Existing Policies in a Semantic Index

• Rebuilding to Add Content for a New Policy to a Semantic Index

• Rebuilding Content for an Existing Policy from a Semantic Index

Chapter 5
Creating a Local Semantic Index on a Range-Partitioned Table

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 21

• Rebuilding to Drop Content for an Existing Policy from a Semantic Index

5.13.1 Rebuilding Content for All Existing Policies in a Semantic Index
If the PARAMETERS clause is not included in the ALTER INDEX statement, the content of the
semantic index (or index partition) is rebuilt for every policy presently associated with the
index. The following are two examples:

ALTER INDEX ArticleIndex REBUILD;
ALTER INDEX ArticleLocalIndex REBUILD PARTITION p1;

5.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index
Using add_policy for <action_for_policy>, you can add content for a new base policy or a
dependent policy to a semantic index (or index partition). If a dependent policy is being added
and if its base policy is not already a part of the index, then content for the base policy is also
added implicitly (by invoking the extractor specified as part of the base policy definition). The
following is an example:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-add_policy MY_POLICY');

5.13.3 Rebuilding Content for an Existing Policy from a Semantic Index
Using rebuild_policy for <action_for_policy>, you can rebuild the content of the semantic
index (or index partition) for an existing policy presently associated with the index. The
following is an example:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-rebuild_policy MY_POLICY');

5.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic
Index

Using drop_policy for <action_for_policy>, you can drop content corresponding to an existing
base policy or a dependent policy from a semantic index (or index partition). Note that dropping
the content for a base policy will fail if it is the only policy for the index (or index partition) or if it
is used by dependent policies associated with this index (or index partition).

The following example drops the content for a policy from an index:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-drop_policy MY_POLICY');

5.14 Passing Extractor-Specific Parameters in CREATE INDEX
and ALTER INDEX

The CREATE INDEX and ALTER INDEX statements allow the passing of parameters needed
by extractors.

These parameters are passed on to the extractor using the params parameter of the
extractRdf and batchExtractRdf methods. The following two examples show their use:

CREATE INDEX ArticleIndex on Newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR=(NE_ONLY)');

ALTER INDEX ArticleIndex REBUILD
 PARAMETERS ('-add_policy MY_POLICY=(NE_ONLY)');

Chapter 5
Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 21

5.15 Performing Document-Centric Inference
Document-centric inference refers to the ability to infer from each document individually.

It does not allow triples extracted from two different documents to be used together for
inference. It contrasts with the more common corpus-centric inference, where new triples can
be inferred from combinations of triples extracted from multiple documents.

Document-centric inference can be desirable in document search applications because
inclusion of a document in the search result is based on the extracted and/or inferred triples for
that document only, that is, triples extracted and/or inferred from any other documents in the
corpus do not play any role in the selection of this document. (Document-centric inference
might be preferred, for example, if there is inconsistency among documents because of
differences in the reliability of the data or in the biases of the document creators.)

To perform document-centric inference, use named graph based local inference (explained in
Named Graph Based Local Inference (NGLI)) by specifying options => 'LOCAL_NG_INF=T' in
the call to the SEM_APIS.CREATE_INFERRED_GRAPH procedure.

Inferred graphs created through document-centric inference can be included as content of a
semantic index by creating a dependent policy and adding that policy to the semantic index, as
shown in Example 5-2.

Example 5-2 Using Document-Centric Inference

-- Create inferred graph 'extr_data_inf' using document-centric inference
-- assuming:
-- model_name for semantic index based on base policy: 'RDFCTX_MOD_1'
-- (model name (RDF graph name)is available from the RDFCTX_INDEX_POLICIES view;
-- see RDFCTX_INDEX_POLICIES View)
-- ontology: dataOntology
-- rulebase: OWL2RL
-- options: 'LOCAL_NG_INF=T' (for document-centric inference)
BEGIN
sem_apis.create_inferred_graph('extr_data_inf',
 models_in => sem_models('RDFCTX_MOD_1', 'dataOntology'),
 rulebases_in => sem_rulebases('OWL2RL'),
 options => 'LOCAL_NG_INF=T');
END;
/
-- Create a dependent policy to augment data extracted using base policy
-- with content of inferred graph extr_data_inf (computed in previous statement)
BEGIN
sem_rdfctx.create_policy (
 policy_name => 'SEM_EXTR_PLUS_DATA_INF',
 base_policy => 'SEM_EXTR',
 user_models => NULL,
 user_entailments => sem_models('extr_data_inf'));
END;
/
-- Add the dependent policy to the ARTICLEINDEX index.
EXECUTE sem_rdfctx.add_dependent_policy('ARTICLEINDEX','SEM_EXTR_PLUS_DATA_INF');

5.16 Metadata Views for Semantic Indexing
This section describes views that contain metadata about semantic indexing

• RDFCTX_POLICIES View

Chapter 5
Performing Document-Centric Inference

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 21

• RDFCTX_INDEX_POLICIES View

• RDFCTX_INDEX_EXCEPTIONS View

5.16.1 RDFCTX_POLICIES View
Information about extractor policies defined in the current schema is maintained in the
RDFCTX_POLICIES view, which has the columns shown in Table 5-1 and one row for each
extractor policy.

Table 5-1 RDFCTX_POLICIES View Columns

Column Name Data Type Description

POLICY_OWNER VARCHAR2(32) Owner of the extractor policy

POLICY_NAME VARCHAR2(32) Name of the extractor policy

EXTRACTOR MDSYS.RDFCTX_EXTRACTOR Instance of extractor type

IS_DEPENDENT VARCHAR2(3) Contains YES if the extractor
policy is dependent on a base
policy; contains NO if the extractor
policy is not dependent on a base
policy.

BASE_POLICY VARCHAR2(32) For a dependent policy, the name
of the base policy

USER_MODELS SEM_MODELS For a dependent policy, a list of
the RDF graphs included in the
policy

5.16.2 RDFCTX_INDEX_POLICIES View
Information about semantic indexes defined in the current schema and the extractor policies
used to create the index is maintained in the RDFCTX_POLICIES view, which has the columns
shown in Table 5-2 and one row for each combination of semantic index and extractor policy.

Table 5-2 RDFCTX_INDEX_POLICIES View Columns

Column Name Data Type Description

INDEX_OWNER VARCHAR2(32) Owner of the semantic index

INDEX_NAME VARCHAR2(32) Name of the semantic index

INDEX_PARTITION VARCHAR2(32) Name of the index partition (for
LOCAL index only)

POLICY_NAME VARCHAR2(32) Name of the extractor policy

EXTR_PARAMETERS VARCHAR2(100) Parameters specified for the
extractor

IS_DEFAULT VARCHAR2(3) Contains YES if POLICY_NAME
is the default extractor policy for
the index; contains NO if
POLICY_NAME is not the default
extractor policy for the index.

Chapter 5
Metadata Views for Semantic Indexing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 21

Table 5-2 (Cont.) RDFCTX_INDEX_POLICIES View Columns

Column Name Data Type Description

STATUS VARCHAR2(10) Contains VALID if the index is
valid, INPROGRESS if the index is
being created, or FAILED if a
system failure occurred during
the creation of the index.

RDF_MODEL VARCHAR2(32) Name of the RDF graph
maintaining the index data

5.16.3 RDFCTX_INDEX_EXCEPTIONS View
Information about exceptions encountered while creating or maintaining semantic indexes in
the current schema is maintained in the RDFCTX_INDEX_EXCEPTIONS view, which has the
columns shown in Table 5-3 and one row for each exception.

Table 5-3 RDFCTX_INDEX_EXCEPTIONS View Columns

Column Name Data Type Description

INDEX_OWNER VARCHAR2(32) Owner of the semantic index
associated with the exception

INDEX_NAME VARCHAR2(32) Name of the semantic index
associated with the exception

POLICY_NAME VARCHAR2(32) Name of the extractor policy
associated with the exception

DOC_IDENTIFIER VARCHAR2(38) Row identifier (rowid) of the
document associated with the
exception

EXCEPTION_TYPE VARCHAR2(13) Type of exception

EXCEPTION_CODE NUMBER Error code associated with the
exception

EXCEPTION_TEXT CLOB Text associated with the
exception

EXTRACTED_AT TIMESTAMP Time at which the exception
occurred

5.17 Default Style Sheet for GATE Extractor Output
This section lists the default XML style sheet that the mdsys.gatenlp_extractor
implementation uses to convert the annotation set (encoded in XML) into RDF/XML.

(This extractor is explained in Working with General Architecture for Text Engineering (GATE).)

<?xml version="1.0"?>
 <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 <xsl:output encoding="utf-8" indent="yes"/>
 <xsl:param name="docbase">http://xmlns.oracle.com/rdfctx/</xsl:param>
 <xsl:param name="docident">0</xsl:param>
 <xsl:param name="classpfx">

Chapter 5
Default Style Sheet for GATE Extractor Output

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 21

 <xsl:value-of select="$docbase"/>
 <xsl:text>class/</xsl:text>
 </xsl:param>
 <xsl:template match="/">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:prop="http://xmlns.oracle.com/rdfctx/property/">
 <xsl:for-each select="AnnotationSet/Annotation">
 <rdf:Description>
 <xsl:attribute name="rdf:about">
 <xsl:value-of select="$docbase"/>
 <xsl:text>docref/</xsl:text>
 <xsl:value-of select="$docident"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="@Id"/>
 </xsl:attribute>
 <xsl:for-each select="./Feature">
 <xsl:choose>
 <xsl:when test="./Name[text()='majorType']">
 <rdf:type>
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$classpfx"/>
 <xsl:text>major/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </rdf:type>
 </xsl:when>
 <xsl:when test="./Name[text()='minorType']">
 <xsl:element name="prop:hasMinorType">
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$docbase"/>
 <xsl:text>minorType/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:when>
 <xsl:when test="./Name[text()='kind']">
 <xsl:element name="prop:hasKind">
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$docbase"/>
 <xsl:text>kind/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:when>
 <xsl:when test="./Name[text()='locType']">
 <xsl:element name="prop:hasLocType">
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$docbase"/>
 <xsl:text>locType/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:when>
 <xsl:when test="./Name[text()='entityValue']">
 <xsl:element name="prop:hasEntityValue">
 <xsl:attribute name="rdf:datatype">

Chapter 5
Default Style Sheet for GATE Extractor Output

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 21

 <xsl:text>
 http://www.w3.org/2001/XMLSchema#string
 </xsl:text>
 </xsl:attribute>
 <xsl:value-of select="./Value/text()"/>
 </xsl:element>
 </xsl:when>
 <xsl:otherwise>
 <xsl:element name="prop:has{translate(
 substring(./Name/text(),1,1),
 'abcdefghijklmnopqrstuvwxyz',
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')}{
 substring(./Name/text(),2)}">
 <xsl:attribute name="rdf:datatype">
 <xsl:text>
 http://www.w3.org/2001/XMLSchema#string
 </xsl:text>
 </xsl:attribute>
 <xsl:value-of select="./Value/text()"/>
 </xsl:element>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </rdf:Description>
 </xsl:for-each>
 </rdf:RDF>
 </xsl:template>
 </xsl:stylesheet>

Chapter 5
Default Style Sheet for GATE Extractor Output

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 21

6
Fine-Grained Access Control for RDF Data

The default control of access to the RDF data stored in a given RDF network, shared among
select users in an Oracle AI Database, is at the RDF graph level: the owner of a graph in that
network can grant select, delete, and insert privileges on the graph to the other users (with
shared access to the network), by granting appropriate privileges on the view named
RDFM_<rdf_graph_name>. However, for applications with stringent security requirements, you
can enforce a fine-grained access control mechanism by using the Oracle Label Security
option of Oracle AI Database.

Oracle Label Security (OLS) for RDF data allows sensitivity labels to be associated with
individual triples, and (optionally) with individual lexical values, stored in an RDF graph. For
each query, access to specific triples, and (optionally) to lexical values needed for filtering or
projecting, is granted by comparing their labels with the user's session labels. This triple-level,
or triple-and-values level, security option provides a thin layer of RDF-specific capabilities on
top of the Oracle AI Database native support for label security.

For information about using OLS, see Oracle Label Security Administrator's Guide.

• Triple-Level Security
The triple-level security option provides a thin layer of RDF-specific capabilities on top of
Oracle AI Database native support for label security.

• Triple-and-Values Security
The triple-and-values security option extends the label security support provided by the
triple-level security option to include security for lexical values as well.

6.1 Triple-Level Security
The triple-level security option provides a thin layer of RDF-specific capabilities on top of
Oracle AI Database native support for label security.

To use triple-level security, specify SEM_RDFSA.TRIPLE_LEVEL_ONLY as the rdfsa_options
parameter value when you execute the SEM_RDFSA.APPLY_OLS_POLICY procedure. For
example:

EXECUTE sem_rdfsa.apply_ols_policy('defense', SEM_RDFSA.TRIPLE_LEVEL_ONLY,
network_owner=>'RDFOWNR', network_name=>'OLS_NET');

Ensure, you do not specify any of the other available parameters for the
SEM_RDFSA.APPLY_OLS_POLICY procedure.

When you use triple-level security, OLS is applied to each RDF graph in the network. That is,
label security is applied to the relevant internal tables.

With triple-level security, duplicate triples with different labels can be inserted in the RDF
graph. For example, assume that you have a triple with a very sensitive label, such as:

(<urn:X>,<urn:P>,<urn:Y>, "TOPSECRET")

This does not prevent a low-privileged (UNCLASSIFIED) user from inserting the triple
(<urn:X>,<urn:P>,<urn:Y>, "UNCLASSIFIED"). Because SPARQL and SEM_MATCH do not
return label information, a query will return both rows (assuming the user has appropriate

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 44

privileges), and it will not be easy to distinguish between the TOPSECRET and UNCLASSIFIED
triples.

To filter out such low-security triples when querying the RDF graphs, you can use one or more
of the following options with SEM_MATCH:

• POLICY_NAME specifies the OLS policy name.

• MIN_LABEL specifies the minimum label for triples that are included in the query.

In other words, every triple that contains a label that is strictly dominated by MIN_LABEL is not
included in the query. For example, to filter out the UNCLASSIFIED triple, you could use the
following query (assuming the OLS policy name is DEFENSE and that the query user has read
privileges over UNCLASSIFIED and TOPSECRET triples):

SELECT s,p,y FROM table(sem_match('{?s ?p ?y}' ,
 sem_models(TEST'), null, null, null, null,
 'MIN_LABEL=TOPSECRET POLICY_NAME=DEFENSE',
 null, null, ‘FGAC_ADMIN’, 'OLS_NET'));

Note that the filtering in the preceding example occurs in addition to the security checks
performed by the native OLS software.

After a triple has been inserted, you can view and update the label information through the
CTXT1 column in the application table for the RDF graph (assuming that you have the WRITEUP
and WRITEDOWN privileges to modify the labels).

There are no restrictions on who can perform inference or bulk loading with triple-level security;
all of the inferred or bulk loaded triples are inserted with the user's session row label. Note that
you can change the session labels by using the SA_UTL package. (For more information about
SA_UTL, see Oracle Label Security Administrator's Guide.)

• Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI)

• Extended Example: Applying OLS Triple-Level Security on RDF Data

6.1.1 Fine-Grained Security for Inferred Data and Ladder-Based Inference
(LBI)

When triple-level security is turned on for RDF data stored in Oracle AI Database, asserted
facts are tagged with data labels to enforce mandatory access control. In addition, when a user
invokes the forward-chaining based inference function through the
SEM_APIS.CREATE_INFERRED_GRAPH procedure, the newly inferred relationships will be
tagged with the current row label (SA_UTL.NUMERIC_ROW_LABEL).

These newly inferred relationships are derived solely based on the information that the user is
allowed to access. These relationships do, however, share the same data label. This is
understandable because a SEM_APIS.CREATE_INFERRED_GRAPH call can be viewed as a
three-step process: read operation, followed by a logical inference computation, followed by a
write operation. The read operation gathers information upon which inference computation is
based, and it is restricted by access privileges, the user's label, and the data labels; the logical
inference computation step is purely mathematical; and the final write of inferred information
into the entailed graph is no different from the same user asserting some new facts (which
happen to be calculated by the previous step).

Having all inferred assertions tagged with a single label is sufficient if a user only owns a single
label. It is, however, not fine-grained enough when there are multiple labels owned by the
same user, which is a common situation in a multitenancy setup.

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 44

For example, assume a user sets its user label and data label as TopSecret, invokes
SEM_APIS.CREATE_INFERRED_GRAPH, switches to a weaker label named Secret, and
finally performs a SPARQL query. The query will not be able to see any of those newly inferred
relationships because they were all tagged with the TopSecret label. However, if the user
switches back to the TopSecret label, now every single inferred relationship is visible. It is "all
or nothing" (that is, all visible or nothing visible) as far as inferred relationships are concerned.

When multiple labels are available for use by a given user, you normally want to assign
different labels to different inferred relationships. There are two ways to achieve this goal:

• Invoking SEM_APIS.CREATE_INFERRED_GRAPH Multiple Times

• Using Ladder-Based Inference (LBI)

Ladder-based inference, effective with Oracle Database 12c Release 1 (12.1), is probably the
simpler and more convenient of the two approaches.

Invoking SEM_APIS.CREATE_INFERRED_GRAPH Multiple Times

Assume a security policy named DEFENSE, a user named SCOTT, and a sequence of user
labels Label1, Label2, ..., Labeln owned by SCOTT. The following call by SCOTT sets the label
as Label1, runs the inference for the first time, and tags the newly inferred triples with Label1:

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Label1'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Label1'));
EXECUTE sem_apis.create_inferred_graph('inf', sem_models('contracts'),
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE,
null,'',network_owner=>'RDFOWNR',network_name=>'OLS_NET');

Now, SCOTT switches the label to Label2, runs the inference a second time, and tags the
newly inferred triples with Label2. Obviously, if Label2 is dominated by Label1, then no new
triples will be inferred because Label2 cannot see anything beyond what Label1 is allowed to
see. If Label2 is not dominated by Label1, the read step of the inference process will probably
see a different set of triples, and consequently the inference call can produce some new triples,
which will in turn be tagged with Label2.

For the purpose of this example, assume the following condition holds true: for any 1 <= i < j
<= n, Labelj is not dominated by Labeli.

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Label2'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Label2'));
EXECUTE sem_apis.create_inferred_graph('inf', sem_models('contracts'),
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, null, 'ENTAIL_ANYWAY=T',
network_owner=>'RDFOWNR', network_name=>'OLS_NET');

SCOTT continues the preceding actions using the rest of the labels in the label sequence:
Label1, Label2, ..., Labeln. The last step will be as follows:

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Labeln'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Labeln'));
EXECUTE sem_apis.create_inferred_graph('inf', sem_models('contracts'),
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, null, 'ENTAIL_ANYWAY=T',
network_owner=>'RDFOWNR', network_name=>'OLS_NET');

After all these actions are performed, the inference graph probably consists of triples tagged
with various different labels.

Using Ladder-Based Inference (LBI)

Basically, ladder-based inference (LBI) wraps in one API call all the actions described in the
Invoking SEM_APIS.CREATE_INFERRED_GRAPH Multiple Times approach. Visually, those

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 44

actions are like climbing up a ladder. When proceeding from one label to the next, more
asserted facts become visible or accessible (assuming the new label is not dominated by any
of the previous ones), and therefore new relationships can be inferred.

The syntax to invoke LBI is shown in the following example.

EXECUTE sem_apis.create_inferred_graph('inf',
 sem_models('contracts'),
 sem_rulebases('owlprime'),
 SEM_APIS.REACH_CLOSURE,
 null,
 null,
 ols_ladder_inf_lbl_seq=>'numericLabel1 numericLabel2 numericLabel3 numericLabel4',
 network_owner=>'RDFOWNR',
 network_name=>'OLS_NET'
);

The parameter ols_ladder_inf_lbl_seq specifies a sequence of labels. This sequence is
provided as a list of numeric labels delimited by spaces. When using LBI, it is a good practice
to arrange the sequence of labels so that weaker labels are put before stronger labels. This will
reduce the size of the inferred graph. (If labels do not dominate each other, they can be
specified in any order.)

6.1.2 Extended Example: Applying OLS Triple-Level Security on RDF Data
This section presents an extended example illustrating how to apply triple-level Oracle Label
Security (OLS) to RDF data. The examples are very simplified, and do not reflect
recommended practices regarding user names and passwords.

1. Create the policy and related administrative users.
The code example in this step performs the following actions in the same or slightly
different order:

a. Enable OLS in the database.

b. Connect as SYSDBA to create security admin users: fgac_admin and defense_admin.

c. Grant the LBAC_DBA role to fgac_admin to allow the creation of a new OLS DEFENSE
policy which creates the DEFENSE_DBA role.

d. Grant the DEFENSE_DBA role to defense_admin enabling users to set up the labels for
the DEFENSE policy.

e. Assign the appropriate labels to the intended users of the database objects to which
the DEFENSE policy may be applied.

SQL> conn sys/<password_for_sys> as sysdba
Connected.

SQL> -- enable OLS in the database
SQL> exec LBACSYS.configure_ols;

PL/SQL procedure successfully completed.

SQL> exec LBACSYS.OLS_ENFORCEMENT.enable_ols;

PL/SQL procedure successfully completed.

SQL>
SQL> -- create user for security admin, grant LBAC_DBA role

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 44

SQL> create user fgac_admin identified by <password_for_fgac_admin>;

User created.

SQL> grant connect, unlimited tablespace to fgac_admin;

Grant succeeded.

SQL> grant LBAC_DBA to fgac_admin;

Grant succeeded.

SQL> grant execute on sa_sysdba to fgac_admin;

Grant succeeded.

SQL>
SQL> conn fgac_admin/<password_for_fgac_admin>
Connected.
SQL> -- create policy DEFENSE, which creates the DEFENSE_DBA role
SQL> EXECUTE SA_SYSDBA.CREATE_POLICY('defense','def_label');

PL/SQL procedure successfully completed.

SQL> select column_name from lbacsys.all_sa_policies where
policy_name='DEFENSE';

COLUMN_NAME

DEF_LABEL

1 row selected.

SQL>
SQL> conn sys/<password_for_sys>
Connected.
SQL> -- create user for policy admin of the DEFENSE policy
SQL> -- create policy admin user for the DEFENSE policy (created above)
SQL> create user defense_admin identified by <password_for_defense_admin>;

User created.

SQL> grant connect, unlimited tablespace to defense_admin;

Grant succeeded.

SQL> grant DEFENSE_DBA to defense_admin;

Grant succeeded.

SQL> grant execute on sa_components to defense_admin;

Grant succeeded.

SQL> grant execute on sa_user_admin to defense_admin;

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 44

Grant succeeded.

SQL> grant execute on sa_label_admin to defense_admin;

Grant succeeded.

SQL> grant execute on sa_policy_admin to defense_admin;

Grant succeeded.

SQL>
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL>
SQL> BEGIN
 2 ------- create levels -------
 3 SA_COMPONENTS.CREATE_LEVEL('defense',3000,'TS','TOP SECRET');
 4 SA_COMPONENTS.CREATE_LEVEL('defense',2000,'SE','SECRET');
 5 SA_COMPONENTS.CREATE_LEVEL('defense',1000,'UN','UNCLASSIFIED');
 6
 7 ------ create labels (using the components defined above) -------
 8 SA_LABEL_ADMIN.CREATE_LABEL('defense',1000,'UN');
 9 SA_LABEL_ADMIN.CREATE_LABEL('defense',1500,'SE');
 10 SA_LABEL_ADMIN.CREATE_LABEL('defense',3100,'TS');
 11
 12 ------ assign default labels to users -------
 13 SA_USER_ADMIN.SET_USER_LABELS('defense', 'RDFOWNR', 'SE');
 14 SA_USER_ADMIN.SET_USER_LABELS('defense', 'A', 'UN');
 15 SA_USER_ADMIN.SET_USER_LABELS('defense', 'B', 'SE');
 16 SA_USER_ADMIN.SET_USER_LABELS('defense', 'C', 'TS');
 17 SA_USER_ADMIN.SET_USER_LABELS('defense', 'Q', 'SE');
 18 END;
 19 /

PL/SQL procedure successfully completed.

2. Create an RDF network, RDF graph, and share it with users in various modes.
The code example in this step performs the following actions in the same or slightly
different order:

a. Connect as SYSDBA to create the rdfownr user and several other users such as a, b, c,
and q.

b. Connect as rdfownr to create the NET1 RDF network.

c. Granting shared access on the RDF network to a, b, c, and q (query-only) users.

d. Grant SA_ONLY access on the RDF network to the defense_admin user enabling them
to perform OLS security related operations on the network only. This does not grant
access to the data stored in the RDF network.

e. Connect as defense_admin and apply the DEFENSE OLS policy (TRIPLE_LEVEL_ONLY) on
the RDF network.

f. Connect as rdfownr to create an RDF graph named PERSON and grant DML and query
access on the graph to users a, b, c, and query-only access to user q.

SQL> conn sys/<password_for_sys>
Connected.

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 44

SQL> -- create user that can be owner of RDF networks
SQL> create user rdfownr identified by <password_for_rdfownr>;

User created.

SQL> grant CREATE JOB, connect, resource, unlimited tablespace to rdfownr;

Grant succeeded.

SQL>
SQL> --- create general users
SQL> create user a identified by <password_for_a>;

User created.

SQL> grant connect, unlimited tablespace to a;

Grant succeeded.

SQL> create user b identified by <password_for_b>;

User created.

SQL> grant connect, unlimited tablespace to b;

Grant succeeded.

SQL> create user c identified by <password_for_c>;

User created.

SQL> grant connect, unlimited tablespace to c;

Grant succeeded.

SQL> create user q identified by <password_for_q>;

User created.

SQL> grant connect, unlimited tablespace to q;

Grant succeeded.

SQL>
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL>
SQL> -- create an RDF network and enable it for sharing with other users
SQL> exec
sem_apis.create_rdf_network('<tablespace_name>',null,network_owner=>'rdfown
r',network_name=>'NET1');

PL/SQL procedure successfully completed.

SQL> exec

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 44

sem_apis.enable_network_sharing(network_owner=>'rdfownr',network_name=>'NET
1');

PL/SQL procedure successfully completed.

SQL>
SQL> -- grant network access to a few users: full-access (they can create
their own graphs) or query-only access
SQL> EXECUTE sem_apis.enable_network_sharing('RDFOWNR', 'NET1');

PL/SQL procedure successfully completed.

SQL> BEGIN
 2 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'A');
 3 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'B');
 4 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'C');
 5 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'Q',
options=>' QUERY_ONLY=T ');
 6 END;
 7 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- share in SA_ONLY=T mode with policy admin user (note: this sharing
mode provides no visibility to RDF data)
SQL> exec sem_apis.grant_network_access_privs('rdfownr', 'NET1',
'DEFENSE_ADMIN', options=>' SA_ONLY=T ');

PL/SQL procedure successfully completed.

SQL>
SQL> -- tables in RDF network are not visible to security and policy admin
users (EXCEPT when managing security policies on them)
SQL> conn fgac_admin/<password_for_fgac_admin>
Connected.
SQL> select table_name from SYS.all_tables where table_name LIKE
'NET1#RDF%' order by 1;

no rows selected

SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> select table_name from SYS.all_tables where table_name LIKE
'NET1#RDF%' order by 1;

no rows selected

SQL>
SQL> -- APPLY_OLS_POLICY on the RDF network
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> exec sem_rdfsa.apply_ols_policy('defense',
sem_rdfsa.TRIPLE_LEVEL_ONLY,network_owner=>'rdfownr',network_name=>'NET1');

PL/SQL procedure successfully completed.

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 44

SQL>
SQL> -- after APPLY_OLS_POLICY: a new column gets added to RDF_VALUE$
table and to RDF_LINK$ table
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> select table_name, column_name, data_type from sys.user_tab_columns
where table_name IN ('NET1#RDF_VALUE$', 'NET1#RDF_LINK$') and
column_name='DEF_LABEL' order by 1;

TABLE_NAME COLUMN_NAME DATA_TYPE
------------------------------ --------------- ----------
NET1#RDF_LINK$ DEF_LABEL NUMBER

1 row selected.

SQL>
SQL> -- disable the OLS policy and set the label for all the pre-existing
values to the lowest label
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> exec
sem_rdfsa.disable_ols_policy(network_owner=>'rdfownr',network_name=>'NET1')
;

PL/SQL procedure successfully completed.

SQL>
SQL> -- re-enable the OLS policy and verify that the values are visible to
all (EXCEPT security and policy admin users)
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> exec
sem_rdfsa.enable_ols_policy(network_owner=>'rdfownr',network_name=>'NET1');

PL/SQL procedure successfully completed.

SQL>
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> -- create an RDF graph (owned by rdfownr)
SQL> exec
sem_apis.create_rdf_graph('PERSON',null,null,network_owner=>'rdfownr',netwo
rk_name=>'NET1');

PL/SQL procedure successfully completed.

SQL> -- the corr. RDFT view, used as target for DML operations for this
graph, has the extra label column
SQL> desc NET1#RDFT_PERSON

Name
 Null? Type

-------------------------------------- --------

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 44

-

TRIPLE
 MDSYS.SDO_RDF_TRIPLE_S

DEF_LABEL
 NUMBER

SQL> -- the corr. RDFM view, used as source for query processing for this
graph, has the extra column
SQL> desc NET1#RDFM_PERSON

Name
 Null? Type

-------------------------------------- --------

-

P_VALUE_ID
 NOT NULL NUMBER

START_NODE_ID
 NUMBER

CANON_END_NODE_ID
 NUMBER

END_NODE_ID
 NUMBER

MODEL_ID
 NUMBER

COST
 NUMBER

DEF_LABEL
 NUMBER

CTXT2
 VARCHAR2(4000)

DISTANCE
 NUMBER

EXPLAIN
 VARCHAR2(4000)

PATH
 VARCHAR2(4000)

G_ID
 NUMBER

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 44

LINK_ID
 VARCHAR2(89)

SQL>
SQL> -- share access to the above graph with users who already have shared
access to network (Note: user Q is given query-only access)
SQL> BEGIN
 2
sem_apis.grant_model_access_privs('PERSON','a',sys.odcivarchar2list('INSERT
','UPDATE','DELETE','SELECT','QUERY'),network_owner=>'rdfownr',network_name
=>'NET1');
 3
sem_apis.grant_model_access_privs('PERSON','b',sys.odcivarchar2list('INSERT
','UPDATE','DELETE','SELECT','QUERY'),network_owner=>'rdfownr',network_name
=>'NET1');
 4
sem_apis.grant_model_access_privs('PERSON','c',sys.odcivarchar2list('INSERT
','UPDATE','DELETE','SELECT','QUERY'),network_owner=>'rdfownr',network_name
=>'NET1');
 5
sem_apis.grant_model_access_privs('PERSON','q',sys.odcivarchar2list('QUERY'
),network_owner=>'rdfownr',network_name=>'NET1');
 6 END;
 7 /

PL/SQL procedure successfully completed.

3. Set up utility functions and views used for illustration purposes.
The following code creates the utility views, TRIPLES_VIEW and VALUES_VIEW. These return
a simplified view of the triples and values, along with the relevant OLS labels, that are
visible to the user. If a value is not found for a given id, it returns the id itself but prefixed
with an asterisk.

SQL> create or replace function shortval (val_id number) return varchar2 as
 2 shval varchar2(100);
 3 begin
 4 select NVL(vname_suffix, vname_prefix) into shval from
rdfownr.net1#rdf_value$ where value_id = val_id and rownum < 2;
 5 return substr(shval,1,20);
 6 exception
 7 when no_data_found then
 8 return '*' || val_id;
 9 end;
 10 /
Function created.

SQL> grant execute on shortval to public;
Grant succeeded.

SQL> create or replace view triples_view as
 2 select rdfownr.shortval(t.triple.rdf_s_id) subj,
rdfownr.shortval(t.triple.rdf_p_id) pred,
rdfownr.shortval(t.triple.rdf_c_id) obj, def_label
 3 from rdfownr.NET1#RDFT_PERSON t;
View created.

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 44

SQL> grant read on triples_view to public;
Grant succeeded.

SQL> create or replace view values_view as
 2 select value_id, value_name
 3 from rdfownr.net1#rdf_value$
 4 where (value_name NOT LIKE '%rdf%' and value_name NOT LIKE '%owl%'
and canon_id is NULL);
View created.

SQL> grant read on values_view to public;
Grant succeeded.

4. Set Fine Grained Access Control (FGAC) when using SQL Insert into RDF graphs.
Note that the label assigned to a user determines what labels can be associated with the
data inserted by the user. It could be the label assigned to the user or any label that is
dominated by the user's label. The assigned label also determines what data from such a
table is visible to the user.

SQL> --
SQL> -- INSERT using SQL Insert statement
SQL> --
SQL>
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL>
SQL> -- 1) use default label, which is 'SE::' or 1500 for rdfownr, for the
triple as well as the values
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:spouseOf>','<urn:mary>',
 3 'rdfownr','NET1'));

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

john spouseOf mary 1500

1 row selected.

SQL> select value_name from rdfownr.values_view group by value_name order
by 1;

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 44

VALUE_NAME

urn:john
urn:mary
urn:spouseOf

3 rows selected.

SQL>
SQL> conn c/<password_for_c>
Connected.
SQL> -- 2) use default explicit label 'UN::' (1000) for the triple
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple, def_label) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:secretId>','"jasmin#*!@"',
 3 'rdfownr','NET1'), char_to_label('DEFENSE', 'UN::'));

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

john secretId jasmin#*!@ 1000
john spouseOf mary 1500

2 rows selected.

SQL> select value_name from rdfownr.values_view group by value_name order
by 1;

VALUE_NAME

jasmin#*!@
urn:john
urn:mary
urn:secretId
urn:spouseOf

5 rows selected.

SQL>
SQL> conn a/<password_for_a>1
Connected.
SQL> -- 3) use default label, which is 'UN::' or 1000 for user A, for the
triple
SQL> -- this triple already exists, but with a higher label (1500) and

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 44

hence not visible to the current user: so, a duplicate triple gets inserted
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:spouseOf>','<urn:mary>',
 3 'rdfownr','NET1'));

1 row created.

SQL>
SQL> -- 4) use default label ('UN::' or 1000) for the triple
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:childOf>','owl:inverseOf','<urn:parentOf>',
 3 'rdfownr','NET1'));

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId jasmin#*!@ 1000
john spouseOf mary 1000

3 rows selected.

SQL> select value_name from rdfownr.values_view group by value_name order
by 1;

VALUE_NAME

jasmin#*!@
urn:childOf
urn:john
urn:mary
urn:parentOf
urn:secretId
urn:spouseOf

7 rows selected.

SQL>
SQL> conn b/<password_for_b>
Connected.
SQL> -- 5) use default label ('SE::' or 1500) for triple
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 44

(sdo_rdf_triple_s('person',
 2 '<urn:spouseOf>','rdf:type','owl:SymmetricProperty',
 3 'rdfownr','NET1'));

1 row created.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

4 rows selected.

SQL> select value_name from rdfownr.values_view group by value_name order
by 1;

VALUE_NAME

jasmin#*!@
urn:childOf
urn:john
urn:mary
urn:parentOf
urn:secretId
urn:spouseOf

7 rows selected.

SQL>
SQL> conn c/<password_for_c>
Connected.
SQL> -- 6) use default label ('TS::' or 3100) for the triple
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:childOf>','<urn:bob>',
 3 'rdfownr','NET1'));

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 44

by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john childOf bob 3100
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

5 rows selected.

SQL> select value_name from rdfownr.values_view group by value_name order
by 1;

VALUE_NAME

jasmin#*!@
urn:bob
urn:childOf
urn:john
urn:mary
urn:parentOf
urn:secretId
urn:spouseOf

8 rows selected.

5. Perform label-based inference by iterating repeatedly over the given sequence of labels.
The following code shows label-based inference with the label sequence <1000, 1500,
3100>. A derived triple is marked with the earliest (minimum) label without which it cannot
be derived. For example, the derived triple bob parentOf john will have the 3100
('TS::') label because it cannot be derived with any label below 3100 as john childOf
bob is only visible when user has label of at least 3100.

SQL> conn sys/<password_for_sys> as sysdba
Connected.

SQL> -- allow "exchange partition" operations used during inference
SQL> grant EXEMPT ACCESS POLICY on schema rdfownr to rdfownr;
Grant succeeded.

SQL> conn c/<password_for_c>
Connected.

SQL> BEGIN
 2 sem_apis.create_inferred_graph('inf',
 3 sem_models('PERSON'),
 4 sem_rulebases('OWL2RL'),
 5 SEM_APIS.REACH_CLOSURE,
 6 null,
 7 null,
 8 ols_ladder_inf_lbl_seq=>'1000 1500 3100',

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 44

 9 network_owner=>'RDFOWNR',
 10 network_name=>'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL> conn sys/<password_for_sys> as sysdba
Connected.

SQL> -- "exchange partition" operations not needed any more
SQL> revoke EXEMPT ACCESS POLICY on schema rdfownr from rdfownr;
Revoke succeeded.

SQL> conn rdfownr/<password_for_rdfownr>
Connected.

SQL> create or replace view inf_triples_view as
 2 select rdfownr.shortval(t.start_node_id) subj,
rdfownr.shortval(t.p_value_id) pred, rdfownr.shortval(canon_end_node_id)
obj, def_label
 3 from rdfownr.NET1#RDFI_INF t;
View created.

SQL> grant read on inf_triples_view to public;
Grant succeeded.

SQL> conn c/<password_for_c>
Connected.

SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

bob parentOf john 3100
mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

4 rows selected.

SQL> select value_name from rdfownr.values_view order by 1;

VALUE_NAME

1
jasmin#*!@
true
urn:bob
urn:childOf
urn:john

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 44

urn:mary
urn:parentOf
urn:secretId
urn:spouseOf

10 rows selected.

SQL>
SQL> -- visibility note: users with lower label may sometimes be able to
see a triple but not the higher-labeled values used in that triple
SQL> conn a/<password_for_a>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId jasmin#*!@ 1000
john spouseOf mary 1000

3 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

parentOf inverseOf childOf 1000

1 row selected.

SQL> conn b/<password_for_b>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

4 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 44

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

3 rows selected.

SQL> conn c/<password_for_c>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john childOf bob 3100
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

5 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

bob parentOf john 3100
mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

4 rows selected.

SQL> conn q/<password_for_q>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 44

4 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

3 rows selected.

SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

4 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

3 rows selected.

6. Define and use label functions.
The following code shows bulkload-time use of a label function that associates a higher
label ('SE::') with a triple when the predicate is <urn:salary> and a lower label ('UN::')
otherwise.

SQL> -- use of label functions and its use during bulk-load
SQL> conn sys/<password_for_sys>
Connected.
SQL> grant execute on to_lbac_data_label to rdfownr;

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 44

Grant succeeded.

SQL>
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL>
SQL> CREATE TABLE stage_table (
 2 RDF$STC_sub varchar2(4000) not null,
 3 RDF$STC_pred varchar2(4000) not null,
 4 RDF$STC_obj varchar2(4000) not null
 5);

Table created.

SQL>
SQL> insert into stage_table values
('<urn:john>','<urn:lastName>','"Smith"');

1 row created.

SQL> insert into stage_table values ('<urn:john>','<urn:salary>','"100K"');

1 row created.

SQL> commit;

Commit complete.

SQL>
SQL> -- define a label function for generating label for a given triple
SQL> -- label function for generating labels for triples (in RDF_LINK$)
SQL> CREATE OR REPLACE FUNCTION gen_triple_label_on_pid (p_value_id
number) Return LBACSYS.LBAC_LABEL
 2 as
 3 i_label varchar2(80);
 4 vty varchar2(10);
 5 vnm varchar2(100);
 6 BEGIN
 7 select value_type, value_name into vty, vnm from
rdfownr.net1#rdf_value$ where value_id=p_value_id;
 8 if (vty = 'UR' and vnm = 'urn:salary') then
 9 i_label := 'SE::';
 10 else
 11 i_label := 'UN::';
 12 end if;
 13 RETURN TO_LBAC_DATA_LABEL('DEFENSE',i_label);
 14 END;
 15 /

Function created.

SQL>
SQL> grant execute on gen_triple_label_on_pid to LBAC_TRIGGER;

Grant succeeded.

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 44

SQL>
SQL> -- ALTER_OLS_TABLE_POLICY to include use of label function for triples
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> exec sem_rdfsa.alter_ols_table_policy('triple', 'label_function',
'rdfownr.gen_triple_label_on_pid(:new.p_value_id)',
network_owner=>'rdfownr',network_name=>'net1');

PL/SQL procedure successfully completed.

SQL> select * from lbacsys.all_sa_table_policies where
schema_name='RDFOWNR' order by policy_name, table_name;

POLICY_NAM
SCHEMA_NAME

TABLE_NAME STATUS

------------------------------ --------
TABLE_OPTIONS

--
FUNCTION

--
PREDICATE

--
DEFENSE
RDFOWNR

NET1#RDF_LINK$ ENABLED
READ_CONTROL, INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL,
LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL
rdfownr.gen_triple_label_on_pid(:new.p_value_id)

1 row selected.

SQL>
SQL> -- bulk-load uses designated label function to mark the salary triple
as 'SE::' (1500) while marking the "lastName" triples as 'UN::' (1000)
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> exec
sem_apis.bulk_load_from_staging_table('person','rdfownr','stage_table',netw
ork_owner=>'rdfownr',network_name=>'net1');

PL/SQL procedure successfully completed.

Chapter 6
Triple-Level Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 44

SQL>
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john lastName Smith 1000
john salary 100K 1500
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

6 rows selected.

SQL> select value_name from rdfownr.values_view group by value_name order
by 1;

VALUE_NAME

1
100K
Smith
jasmin#*!@
true
urn:bob
urn:childOf
urn:john
urn:lastName
urn:mary
urn:parentOf
urn:salary
urn:secretId
urn:spouseOf

14 rows selected.

6.2 Triple-and-Values Security
The triple-and-values security option extends the label security support provided by the triple-
level security option to include security for lexical values as well.

This security option provides a thin layer of RDF-specific capabilities on top of the Oracle AI
Database native support for label security. It provides not only the capabilities supported by the
triple-level option but also supports the additional capability of applying label security to the
internal (values) table used for mapping RDF lexical values to unique numeric identifiers.

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 44

To use triple-and-values security, specify SEM_RDFSA.TRIPLE_AND_VALUES as the
rdfsa_options parameter value when you execute the SEM_RDFSA.APPLY_OLS_POLICY
procedure. For example:

EXECUTE sem_rdfsa.apply_ols_policy('defense', SEM_RDFSA.TRIPLE_AND_VALUES,
 network_owner=>‘RDFOWNR’, network_name=>'OLS_NET');

Since the methods for associating label security to the RDF triples are the same as described
in the section on Triple-Level Security, we outline below only the methods relevant for
associating label security to the lexical values for the (subject, predicate, object, and optionally,
named graph) components of an RDF triple.

Note that the labels attached to the individual components of a triple can be independent from
one another and from the label attached to the triple. Thus, a single triple can have up to five
distinct associated labels – up to four labels for the individual components of the triple and one
for the triple itself.

With triple-and-values security, duplicate lexical values with different labels can be inserted in
the values table. For example, assume that you already have a lexical value, say <urn:Y>,
stored with a very sensitive label (TOPSECRET). Now, a low-privileged (UNCLASSIFIED) user is
inserting the following triple:

<urn:X> <urn:P> <urn:Y> .

Since the already-stored, but TOPSECRET, <urn:Y> lexical value is not visible to the low-
privileged user, <urn:Y> gets stored again, this time with the UNCLASSIFIED label. A
subsequent query posed by a high-privileged user, with TOPSECRET label, will see both
instances of the <urn:Y> lexical value, thereby returning duplicate result rows caused by
presence of the two instances of the <urn:Y> lexical value. The following are some of the ways
for mitigating the issues related to duplicate lexical values:

• Preventing or minimizing the occurrence of duplicate lexical values: When inserting triples,
associate the lowest label with lexical values that are expected to be used by users with
different privilege levels.

• Eliminating duplicate result rows from query results: Use of DISTINCT in the SELECT
clause of queries can eliminate the duplicate results. Note that this will eliminate all
duplicate result rows including those that may not have been caused by presence of
duplicate lexical values.

• Extended Example: Applying OLS Triple-and-Values Security on RDF Data

6.2.1 Extended Example: Applying OLS Triple-and-Values Security on RDF
Data

This section presents an extended example illustrating how to apply triple-and-values Oracle
Label Security (OLS) to RDF data. The examples are very simplified, and do not reflect
recommended practices regarding user names and passwords.

1. Create the policy and related administrative users.
The code example in this step performs the following actions in the same or slightly
different order:

a. Enable OLS in the database.

b. Connect as SYSDBA to create security admin users: fgac_admin and defense_admin.

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 44

c. Grant the LBAC_DBA role to fgac_admin to allow the creation of a new OLS DEFENSE
policy which creates the DEFENSE_DBA role.

d. Grant the DEFENSE_DBA role to defense_admin enabling users to set up the labels for
the DEFENSE policy.

e. Assign the appropriate labels to the intended users of the database objects to which
the DEFENSE policy may be applied.

SQL> conn sys/<password_for_sys> as sysdba
Connected.

SQL> -- enable OLS in the database
SQL> exec LBACSYS.configure_ols;

PL/SQL procedure successfully completed.

SQL> exec LBACSYS.OLS_ENFORCEMENT.enable_ols;

PL/SQL procedure successfully completed.

SQL>
SQL> -- create user for security admin, grant LBAC_DBA role
SQL> create user fgac_admin identified by <password_for_fgac_admin>;

User created.

SQL> grant connect, unlimited tablespace to fgac_admin;

Grant succeeded.

SQL> grant LBAC_DBA to fgac_admin;

Grant succeeded.

SQL> grant execute on sa_sysdba to fgac_admin;

Grant succeeded.

SQL>
SQL> conn fgac_admin/<password_for_fgac_admin>
Connected.
SQL> -- create policy DEFENSE, which creates the DEFENSE_DBA role
SQL> EXECUTE SA_SYSDBA.CREATE_POLICY('DEFENSE','def_label');

PL/SQL procedure successfully completed.

SQL> select column_name from lbacsys.all_sa_policies where
policy_name='DEFENSE';

COLUMN_NAME

DEF_LABEL

1 row selected.

SQL>

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 44

SQL> conn sys/<password_for_sys>
Connected.
SQL> -- create user for policy admin of the DEFENSE policy
SQL> -- create policy admin user for the DEFENSE policy (created above)
SQL> create user defense_admin identified by <password_for_defense_admin>;

User created.

SQL> grant connect, unlimited tablespace to defense_admin;

Grant succeeded.

SQL> grant DEFENSE_DBA to defense_admin;

Grant succeeded.

SQL> grant execute on sa_components to defense_admin;

Grant succeeded.

SQL> grant execute on sa_user_admin to defense_admin;

Grant succeeded.

SQL> grant execute on sa_label_admin to defense_admin;

Grant succeeded.

SQL> grant execute on sa_policy_admin to defense_admin;

Grant succeeded.

SQL>
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL>
SQL> BEGIN
 2 ------- create levels -------
 3 SA_COMPONENTS.CREATE_LEVEL('defense',3000,'TS','TOP SECRET');
 4 SA_COMPONENTS.CREATE_LEVEL('defense',2000,'SE','SECRET');
 5 SA_COMPONENTS.CREATE_LEVEL('defense',1000,'UN','UNCLASSIFIED');
 6
 7 ------ create labels (using the components defined above) -------
 8 SA_LABEL_ADMIN.CREATE_LABEL('defense',1000,'UN');
 9 SA_LABEL_ADMIN.CREATE_LABEL('defense',1500,'SE');
 10 SA_LABEL_ADMIN.CREATE_LABEL('defense',3100,'TS');
 11
 12 ------ assign default labels to users -------
 13 SA_USER_ADMIN.SET_USER_LABELS('defense', 'RDFOWNR', 'SE');
 14 SA_USER_ADMIN.SET_USER_LABELS('defense', 'A', 'UN');
 15 SA_USER_ADMIN.SET_USER_LABELS('defense', 'B', 'SE');
 16 SA_USER_ADMIN.SET_USER_LABELS('defense', 'C', 'TS');
 17 SA_USER_ADMIN.SET_USER_LABELS('defense', 'Q', 'SE');
 18 END;
 19 /

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 44

PL/SQL procedure successfully completed.

2. Create an RDF network, RDF graph, and share it with users in various modes.
The code example in this step performs the following actions in the same or slightly
different order:

a. Connect as SYSDBA to create the rdfownr user and several other users such as a, b, c,
and q.

b. Connect as rdfownr to create the NET1 RDF network.

c. Granting shared access on the RDF network to a, b, c, and q (query-only) users.

d. Grant SA_ONLY access on the RDF network to the defense_admin user enabling them
to perform OLS security related operations on the network only. This does not grant
access to the data stored in the RDF network.

e. Connect as defense_admin and apply the DEFENSE OLS policy (TRIPLE_AND_VALUES) on
the RDF network.

f. Connect as rdfownr to create an RDF graph named PERSON and grant DML and query
access on the graph to users a, b, c, and query-only access to user q.

SQL> conn sys/<password_for_sys>
Connected.

SQL> -- create user that can be owner of RDF networks
SQL> create user rdfownr identified by <password_for_rdfownr>;

User created.

SQL> grant CREATE JOB, connect, resource, unlimited tablespace to rdfownr;

Grant succeeded.

SQL>
SQL> --- create general users
SQL> create user a identified by <password_for_a>;

User created.

SQL> grant connect, unlimited tablespace to a;

Grant succeeded.

SQL> create user b identified by <password_for_b>;

User created.

SQL> grant connect, unlimited tablespace to b;

Grant succeeded.

SQL> create user c identified by <password_for_c>;

User created.

SQL> grant connect, unlimited tablespace to c;

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 44

Grant succeeded.

SQL> create user q identified by <password_for_q>;

User created.

SQL> grant connect, unlimited tablespace to q;

Grant succeeded.

SQL>
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL>
SQL> -- create an RDF network and enable it for sharing with other users
SQL> exec
sem_apis.create_rdf_network('<tablespace_name>',null,network_owner=>'rdfown
r',network_name=>'NET1');

PL/SQL procedure successfully completed.

SQL> exec
sem_apis.enable_network_sharing(network_owner=>'rdfownr',network_name=>'NET
1');

PL/SQL procedure successfully completed.

SQL>
SQL> -- grant network access to a few users: full-access (they can create
their own graphs) or query-only access
SQL> EXECUTE sem_apis.enable_network_sharing('RDFOWNR', 'NET1');

PL/SQL procedure successfully completed.

SQL> BEGIN
 2 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'A');
 3 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'B');
 4 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'C');
 5 sem_apis.grant_network_access_privs('RDFOWNR', 'NET1', 'Q',
options=>' QUERY_ONLY=T ');
 6 END;
 7 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- share in SA_ONLY=T mode with policy admin user (note: this sharing
mode provides no visibility to RDF data)
SQL> exec sem_apis.grant_network_access_privs('rdfownr', 'NET1',
'DEFENSE_ADMIN', options=>' SA_ONLY=T ');

PL/SQL procedure successfully completed.

SQL>
SQL> -- tables in RDF network are not visible to security and policy admin

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 44

users (EXCEPT when managing security policies on them)
SQL> conn fgac_admin/<password_for_fgac_admin>
Connected.
SQL> select table_name from SYS.all_tables where table_name LIKE
'NET1#RDF%' order by 1;

no rows selected

SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> select table_name from SYS.all_tables where table_name LIKE
'NET1#RDF%' order by 1;

no rows selected

SQL>
SQL> -- APPLY_OLS_POLICY on the RDF network
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> exec sem_rdfsa.apply_ols_policy('DEFENSE',
sem_rdfsa.TRIPLE_AND_VALUES,network_owner=>'rdfownr',network_name=>'NET1');

PL/SQL procedure successfully completed.

SQL>
SQL> -- after APPLY_OLS_POLICY: a new column gets added to RDF_VALUE$
table and to RDF_LINK$ table
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> select table_name, column_name, data_type from sys.user_tab_columns
where table_name IN ('NET1#RDF_VALUE$', 'NET1#RDF_LINK$') and
column_name='DEF_LABEL' order by 1;

TABLE_NAME COLUMN_NAME DATA_TYPE
------------------------------ --------------- ----------
NET1#RDF_LINK$ DEF_LABEL NUMBER
NET1#RDF_VALUE$ DEF_LABEL NUMBER

2 rows selected.

SQL>
SQL> -- disable the OLS policy and set the label for all the pre-existing
values to the lowest label
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> exec
sem_rdfsa.disable_ols_policy(network_owner=>'rdfownr',network_name=>'NET1')
;

PL/SQL procedure successfully completed.

SQL>
SQL> -- re-enable the OLS policy and verify that the values are visible to
all (EXCEPT security and policy admin users)
SQL> conn defense_admin/<password_for_defense_admin>
Connected.

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 44

SQL> exec
sem_rdfsa.enable_ols_policy(network_owner=>'rdfownr',network_name=>'NET1');

PL/SQL procedure successfully completed.

SQL>
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> -- create an RDF graph (owned by rdfownr)
SQL> exec
sem_apis.create_rdf_graph('PERSON',null,null,network_owner=>'rdfownr',netwo
rk_name=>'NET1');

PL/SQL procedure successfully completed.

SQL> -- the corr. RDFT view, used as target for DML operations for this
graph, has the extra label column
SQL> desc NET1#RDFT_PERSON

Name
 Null? Type

-------------------------------------- --------

-

TRIPLE
 MDSYS.SDO_RDF_TRIPLE_S

DEF_LABEL
 NUMBER

SQL> -- the corr. RDFM view, used as source for query processing for this
graph, has the extra column
SQL> desc NET1#RDFM_PERSON

Name
 Null? Type

-------------------------------------- --------

-

P_VALUE_ID
 NOT NULL NUMBER

START_NODE_ID
 NUMBER

CANON_END_NODE_ID
 NUMBER

END_NODE_ID
 NUMBER

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 44

MODEL_ID
 NUMBER

COST
 NUMBER

DEF_LABEL
 NUMBER

CTXT2
 VARCHAR2(4000)

DISTANCE
 NUMBER

EXPLAIN
 VARCHAR2(4000)

PATH
 VARCHAR2(4000)

G_ID
 NUMBER

LINK_ID
 VARCHAR2(89)

SQL>
SQL> -- share access to the above graph with users who already have shared
access to network (Note: user Q is given query-only access)
SQL> BEGIN
 2
sem_apis.grant_model_access_privs('PERSON','a',sys.odcivarchar2list('INSERT
','UPDATE','DELETE','SELECT','QUERY'),network_owner=>'rdfownr',network_name
=>'NET1');
 3
sem_apis.grant_model_access_privs('PERSON','b',sys.odcivarchar2list('INSERT
','UPDATE','DELETE','SELECT','QUERY'),network_owner=>'rdfownr',network_name
=>'NET1');
 4
sem_apis.grant_model_access_privs('PERSON','c',sys.odcivarchar2list('INSERT
','UPDATE','DELETE','SELECT','QUERY'),network_owner=>'rdfownr',network_name
=>'NET1');
 5
sem_apis.grant_model_access_privs('PERSON','q',sys.odcivarchar2list('QUERY'
),network_owner=>'rdfownr',network_name=>'NET1');
 6 END;
 7 /

PL/SQL procedure successfully completed.

3. Set up utility functions and views used for illustration purposes.
The following code creates the utility views, TRIPLES_VIEW and VALUES_VIEW. These return
a simplified view of the triples and values, along with the relevant OLS labels, that are

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 44

visible to the user. If a value is not found for a given id, it returns the id itself but prefixed
with an asterisk.

SQL> -- set up for reporting visibility of triples and values
SQL> column visible_to_users format a30
SQL> column subj format a22
SQL> column pred format a22
SQL> column obj format a22
SQL> column labels format a30
SQL> --
SQL> create or replace function shortval (val_id number) return varchar2 as
 2 shval varchar2(100);
 3 begin
 4 select NVL(vname_suffix, vname_prefix) into shval from
rdfownr.net1#rdf_value$ where value_id = val_id and rownum < 2;
 5 return substr(shval,1,20);
 6 exception
 7 when no_data_found then
 8 return '*' || val_id;
 9 end;
 10 /
Function created.

SQL> grant execute on shortval to public;
Grant succeeded.

SQL> create or replace view triples_view as
 2 select rdfownr.shortval(t.triple.rdf_s_id) subj,
rdfownr.shortval(t.triple.rdf_p_id) pred,
rdfownr.shortval(t.triple.rdf_c_id) obj, def_label
 3 from rdfownr.NET1#RDFT_PERSON t;
View created.

SQL> grant read on triples_view to public;
Grant succeeded.

SQL> create or replace view values_view as
 2 select value_id, value_name
 3 from rdfownr.net1#rdf_value$
 4 where (value_name NOT LIKE '%rdf%' and value_name NOT LIKE '%owl%'
and canon_id is NULL);
View created.

SQL> grant read on values_view to public;
Grant succeeded.

4. Set Fine Grained Access Control (FGAC) when using SQL insert into RDF graphs.
Note that the label assigned to a user determines what labels can be associated with the
data inserted by the user. It could be the label assigned to the user or any label that is
dominated by the user's label. The assigned label also determines what data from such a
table is visible to the user.

SQL> --
SQL> -- INSERT using SQL Insert statement
SQL> --
SQL>

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 44

SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL>
SQL> -- 1) use default label, which is 'SE::' or 1500 for rdfownr, for the
triple as well as the values
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:spouseOf>','<urn:mary>',
 3 'rdfownr','NET1'));

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

john spouseOf mary 1500

1 row selected.

SQL> select value_name, listagg(def_label,', ') within group (order by
def_label) labels from rdfownr.values_view group by value_name order by 1;
VALUE_NAME LABELS

urn:john 1500
urn:mary 1500
urn:spouseOf 1500

3 rows selected.

SQL>
SQL> conn c/<password_for_c>
Connected.
SQL> -- 2) use default explicit label 'UN::' (1000) for the triple
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple, def_label) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:secretId>','"jasmin#*!@"',
 3 sys.odcinumberlist(char_to_label('DEFENSE', 'UN::'),
char_to_label('DEFENSE', 'UN::'), char_to_label('DEFENSE', 'TS::')),
 4 'rdfownr','NET1'), char_to_label('DEFENSE', 'UN::'));

1 row created.

SQL> COMMIT;

Commit complete.

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 44

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

john secretId jasmin#*!@ 1000
john spouseOf mary 1500

2 rows selected.

SQL> select value_name, listagg(def_label,', ') within group (order by
def_label) labels from rdfownr.values_view group by value_name order by 1;
VALUE_NAME LABELS

jasmin#*!@ 3100
urn:john 1500
urn:mary 1500
urn:secretId 1000
urn:spouseOf 1500

5 rows selected.

SQL>
SQL> conn a/<password_for_a>1
Connected.
SQL> -- 3) use default label, which is 'UN::' or 1000 for user A, for both
the triple as well as the values
SQL> -- this triple already exists, but with a higher label (1500) and
hence not visible to the current user: so, a duplicate triple gets inserted
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:spouseOf>','<urn:mary>',
 3 'rdfownr','NET1'));

1 row created.

SQL>
SQL> -- 4) use default label ('UN::' or 1000) for the triple and all its
values
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:childOf>','owl:inverseOf','<urn:parentOf>',
 3 'rdfownr','NET1'));

1 row created.

SQL> COMMIT;

Commit complete.

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 44

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId *7305832552150903811 1000
john spouseOf mary 1000

3 rows selected.

SQL> select value_name, listagg(def_label,', ') within group (order by
def_label) labels from rdfownr.values_view group by value_name order by 1;

VALUE_NAME LABELS

urn:childOf 1000
urn:john 1000
urn:mary 1000
urn:parentOf 1000
urn:secretId 1000
urn:spouseOf 1000

6 rows selected.

SQL>
SQL> conn b/<password_for_b>
Connected.
SQL> -- 5) use default label ('SE::' or 1500) for triple, but lowest label
('UN' or 1000) for values
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:spouseOf>','rdf:type','owl:SymmetricProperty',
 3 sys.odcinumberlist(char_to_label('DEFENSE', 'UN::'),
char_to_label('DEFENSE', 'UN::'), char_to_label('DEFENSE', 'UN::')),
 4 'rdfownr','NET1'));

1 row created.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;
SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId *7305832552150903811 1000
john spouseOf mary 1000,
1500

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 44

spouseOf type SymmetricProperty 1500

4 rows selected..

SQL> select value_name, listagg(def_label,', ') within group (order by
def_label) labels from rdfownr.values_view group by value_name order by 1;

VALUE_NAME LABELS

urn:childOf 1000
urn:john 1000,
1500
urn:mary 1000,
1500
urn:parentOf 1000
urn:secretId 1000
urn:spouseOf 1000,
1500

6 rows selected.

SQL>
SQL> conn c/<password_for_c>
Connected.
SQL> -- 6) use default label ('TS::' or 3100) for the triple
SQL> INSERT INTO rdfownr.NET1#RDFT_PERSON(triple) values
(sdo_rdf_triple_s('person',
 2 '<urn:john>','<urn:childOf>','<urn:bob>',
 3 'rdfownr','NET1'));

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john childOf bob 3100
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

5 rows selected.

SQL> select value_name, listagg(def_label,', ') within group (order by

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 44

def_label) labels from rdfownr.values_view group by value_name order by 1;

VALUE_NAME LABELS

jasmin#*!@ 3100
urn:bob 3100
urn:childOf 1000
urn:john 1000,
1500
urn:mary 1000,
1500
urn:parentOf 1000
urn:secretId 1000
urn:spouseOf 1000,
1500

8 rows selected.

5. Perform label-based inference by iterating repeatedly over the given sequence of labels.
The following code shows label-based inference with the label sequence <1000, 1500,
3100>. A derived triple is marked with the earliest (minimum) label without which it cannot
be derived. For example, the derived triple bob parentOf john will have the 3100
('TS::') label because it cannot be derived with any label below 3100 as john childOf
bob is only visible when user has label of at least 3100.

SQL> conn sys/<password_for_sys> as sysdba
Connected.

SQL> -- allow "exchange partition" operations used during inference
SQL> grant EXEMPT ACCESS POLICY on schema rdfownr to rdfownr;
Grant succeeded.

SQL> conn c/<password_for_c>
Connected.

SQL> BEGIN
 2 sem_apis.create_inferred_graph('inf',
 3 sem_models('PERSON'),
 4 sem_rulebases('OWL2RL'),
 5 SEM_APIS.REACH_CLOSURE,
 6 null,
 7 null,
 8 ols_ladder_inf_lbl_seq=>'1000 1500 3100',
 9 network_owner=>'RDFOWNR',
 10 network_name=>'NET1'
 11);
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL> conn sys/<password_for_sys> as sysdba
Connected.

SQL> -- "exchange partition" operations not needed any more

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 44

SQL> revoke EXEMPT ACCESS POLICY on schema rdfownr from rdfownr;
Revoke succeeded.

SQL> conn rdfownr/<password_for_rdfownr>
Connected.

SQL> create or replace view inf_triples_view as
 2 select rdfownr.shortval(t.start_node_id) subj,
rdfownr.shortval(t.p_value_id) pred, rdfownr.shortval(canon_end_node_id)
obj, def_label
 3 from rdfownr.NET1#RDFI_INF t;
View created.

SQL> grant read on inf_triples_view to public;
Grant succeeded.

SQL> conn c/<password_for_c>
Connected.

SQL> -- check labels for the visible triples and values
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

bob parentOf john 3100
mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

4 rows selected.

SQL> select value_name, listagg(def_label,', ') within group (order by
def_label) labels from rdfownr.values_view group by value_name order by 1;

VALUE_NAME LABELS

1 3100
jasmin#*!@ 3100
true 3100
urn:bob 3100
urn:childOf 1000
urn:john 1000,
1500
urn:mary 1000,
1500
urn:parentOf 1000
urn:secretId 1000
urn:spouseOf 1000,
1500

10 rows selected

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 44

SQL>
SQL> -- visibility note: users with lower label may sometimes be able to
see a triple but not the higher-labeled values used in that triple
SQL> conn a/<password_for_a>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId *7305832552150903811 1000
john spouseOf mary 1000

3 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

parentOf inverseOf childOf 1000

1 row selected.

SQL> conn b/<password_for_b>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId *7305832552150903811 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

4 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 44

3 rows selected.

SQL> conn c/<password_for_c>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john childOf bob 3100
john secretId jasmin#*!@ 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

5 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

bob parentOf john 3100
mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

4 rows selected.

SQL> conn q/<password_for_q>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId *7305832552150903811 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

4 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 44

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

3 rows selected.

SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john secretId *7305832552150903811 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

4 rows selected.

SQL> select subj, pred, obj, listagg(def_label,', ') within group (order
by def_label) labels from rdfownr.inf_triples_view group by subj, pred,
obj order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

mary spouseOf john 1500
parentOf inverseOf childOf 1000
spouseOf inverseOf spouseOf 1500

3 rows selected.

6. Define and use label functions.
The following code shows bulkload-time use of a label function that associates a higher
label ('SE::') with a triple when the predicate is <urn:salary> and a lower label ('UN::')
otherwise.

SQL> -- use of label functions and its use during bulk-load
SQL> conn sys/<password_for_sys>
Connected.
SQL> grant execute on to_lbac_data_label to rdfownr;

Grant succeeded.

SQL>
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL>
SQL> CREATE TABLE stage_table (

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 44

 2 RDF$STC_sub varchar2(4000) not null,
 3 RDF$STC_pred varchar2(4000) not null,
 4 RDF$STC_obj varchar2(4000) not null
 5);

Table created.

SQL>
SQL> insert into stage_table values
('<urn:john>','<urn:lastName>','"Smith"');

1 row created.

SQL> insert into stage_table values ('<urn:john>','<urn:salary>','"100K"');

1 row created.

SQL> commit;

Commit complete.

SQL>
SQL> -- define a label function for generating label for a given triple
SQL> -- label function for generating labels for triples (in RDF_LINK$)
SQL> CREATE OR REPLACE FUNCTION gen_triple_label_on_pid (p_value_id
number) Return LBACSYS.LBAC_LABEL
 2 as
 3 i_label varchar2(80);
 4 vty varchar2(10);
 5 vnm varchar2(100);
 6 BEGIN
 7 select value_type, value_name into vty, vnm from
rdfownr.net1#rdf_value$ where value_id=p_value_id;
 8 if (vty = 'UR' and vnm = 'urn:salary') then
 9 i_label := 'SE::';
 10 else
 11 i_label := 'UN::';
 12 end if;
 13 RETURN TO_LBAC_DATA_LABEL('DEFENSE',i_label);
 14 END;
 15 /

Function created.

SQL>
SQL> grant execute on gen_triple_label_on_pid to LBAC_TRIGGER;

Grant succeeded.

SQL>
SQL> -- ALTER_OLS_TABLE_POLICY to include use of label function for triples
SQL> conn defense_admin/<password_for_defense_admin>
Connected.
SQL> exec sem_rdfsa.alter_ols_table_policy('triple', 'label_function',
'rdfownr.gen_triple_label_on_pid(:new.p_value_id)',
network_owner=>'rdfownr',network_name=>'net1');

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 44

PL/SQL procedure successfully completed.

SQL> select * from lbacsys.all_sa_table_policies where
schema_name='RDFOWNR' order by policy_name, table_name;

POLICY_NAM
SCHEMA_NAME

TABLE_NAME STATUS

------------------------------ --------
TABLE_OPTIONS

--
FUNCTION

--
PREDICATE

--
DEFENSE
RDFOWNR

NET1#RDF_LINK$ ENABLED
READ_CONTROL, INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL,
LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL
rdfownr.gen_triple_label_on_pid(:new.p_value_id)

DEFENSE
RDFOWNR

NET1#RDF_VALUE$ ENABLED
READ_CONTROL, INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL,
LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL

2 rows selected.

SQL>
SQL> -- bulk-load uses designated label function to mark the salary triple
as 'SE::' (1500) while marking the "lastName" triples as 'UN::' (1000)
SQL> conn rdfownr/<password_for_rdfownr>
Connected.
SQL> exec
sem_apis.bulk_load_from_staging_table('person','rdfownr','stage_table',netw
ork_owner=>'rdfownr',network_name=>'net1');

PL/SQL procedure successfully completed.

SQL>
SQL> select subj, pred, obj, listagg(def_label,', ') within group (order

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 44

by def_label) labels from rdfownr.triples_view group by subj, pred, obj
order by 1,2,3;

SUBJ PRED OBJ LABELS
---------------------- ---------------------- ----------------------

childOf inverseOf parentOf 1000
john lastName Smith 1000
john salary 100K 1500
john secretId *7305832552150903811 1000
john spouseOf mary 1000,
1500
spouseOf type SymmetricProperty 1500

6 rows selected.

SQL> select value_name, listagg(def_label,', ') within group (order by
def_label) labels from rdfownr.values_view group by value_name order by 1;

VALUE_NAME LABELS

100K 1500
Smith 1500
urn:childOf 1000
urn:john 1000,
1500
urn:lastName 1500
urn:mary 1000,
1500
urn:parentOf 1000
urn:salary 1500
urn:secretId 1000
urn:spouseOf 1000,
1500

10 rows selected

Chapter 6
Triple-and-Values Security

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 44

7
RDF Graph Support for Apache Jena

RDF Graph support for Apache Jena (also referred to here as support for Apache Jena)
provides a Java-based interface to Oracle Graph RDF Graph by implementing the well-known
Jena Graph, RDF graph, and DatasetGraph APIs.

Note

This feature was previously referred to as the Jena Adapter for Oracle AI Database
and the Jena Adapter.

Support for Apache Jena extends the RDF data management capabilities of Oracle AI
Database RDF/OWL.

(Apache Jena is an open source framework. For license and copyright conditions, see http://
www.apache.org/licenses/ and http://www.apache.org/licenses/LICENSE-2.0.)

The DatasetGraph APIs are for managing named graph data, also referred to as quads. In
addition, RDF Graph support for Apache Jena provides network analytical functions on top of
RDF data through integrating with the Oracle Spatial Network Data Model Graph feature.

This chapter assumes that you are familiar with major concepts explained in RDF Graph
Overview and OWL Concepts . It also assumes that you are familiar with the overall
capabilities and use of the Jena Java framework. For information about the Jena framework,
see http://jena.apache.org/, especially the Jena Documentation page. If you use the
network analytical function, you should also be familiar with the Network Data Model feature,
which is documented in Oracle Spatial Topology and Network Data Model Developer's Guide.

Note

The current RDF Graph support for Apache Jena release has been tested against
Apache Jena 3.1.0, and it supports the RDF schema-private networks environment in
Release 19c databases. Because of the nature of open source projects, you should
not use this support for Apache Jena with later versions of Jena.

Apache Joseki support has been deprecated, although it still is part of the OTN kit
distribution for adapter version 3.1.0 with support for Release 19c databases.
References to Joseki have been removed from this book for Release 19c, but you can
find information about Joseki in previous versions of the book.

• Setting Up the Software Environment
To use the support for Apache Jena, you must first ensure that the system environment
has the necessary software, including Oracle AI Database with RDF Graph support
enabled, Apache Jena 3.12.0, and JDK 1.8 or later.

• Setting Up the SPARQL Service
This section explains how to set up a SPARQL web service endpoint by deploying the
fuseki.war file in WebLogic Server.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 91

http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0
http://jena.apache.org/

• Setting Up the RDF Graph Environment
To use the support for Apache Jena to perform queries, you can connect as any user (with
suitable privileges) and use any RDF graphs in the RDF network.

• SEM_MATCH and RDF Graph Support for Apache Jena Queries Compared
There are two ways to query RDF data stored in Oracle AI Database: SEM_MATCH-based
SQL statements and SPARQL queries through the support for Apache Jena.

• Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results
You can query an RDF graph using any of the following approaches.

• Optimized Handling of SPARQL Queries
This section describes some performance-related features of the support for Apache Jena
that can enhance SPARQL query processing. These features are performed automatically
by default.

• Additions to the SPARQL Syntax to Support Other Features
RDF Graph support for Apache Jena allows you to pass in hints and additional query
options. It implements these capabilities by overloading the SPARQL namespace prefix
syntax by using Oracle-specific namespaces that contain query options.

• Functions Supported in SPARQL Queries through RDF Graph Support for Apache Jena
SPARQL queries through the support for Apache Jena can use the following kinds of
functions.

• SPARQL Update Support
RDF Graph support for Apache Jena supports SPARQL Update (http://www.w3.org/TR/
sparql11-update/), also referred to as SPARUL.

• Analytical Functions for RDF Data
You can perform analytical functions on RDF data by using the SemNetworkAnalyst class
in the oracle.spatial.rdf.client.jena package.

• Support for Server-Side APIs
This section describes some of the RDF Graph features that are exposed by RDF Graph
support for Apache Jena.

• Bulk Loading Using RDF Graph Support for Apache Jena
To load thousands to hundreds of thousands of RDF/OWL data files into an Oracle AI
Database, you can use the prepareBulk and completeBulk methods in the
OracleBulkUpdateHandler Java class to simplify the task.

• Automatic Variable Renaming
Automatic variable renaming can enable certain queries that previously failed to run
successfully.

• JavaScript Object Notation (JSON) Format Support
JavaScript Object Notation (JSON) format is supported for SPARQL query responses.
JSON data format is simple, compact, and well suited for JavaScript programs.

• Other Recommendations and Guidelines
This section contains various recommendations and other information related to SPARQL
queries.

• Example Queries Using RDF Graph Support for Apache Jena
This section includes example queries using the support for Apache Jena. Each example
is self-contained: it typically creates a model, creates triples, performs a query that may
involve inference, displays the result, and drops the RDF graph.

• SPARQL Gateway and RDF Data
SPARQL Gateway is a J2EE web application that is included with the support for Apache
Jena. It is designed to make RDF data (RDF/OWL/SKOS) easily available to applications

Chapter 7

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 91

that operate on relational and XML data, including Oracle Business Intelligence Enterprise
Edition (OBIEE) 11g.

• Deploying Fuseki in Apache Tomcat
To deploy Fuseki in Apache Tomcat, you can use the Tomcat admin web page, or you can
just copy the Fuseki .war file into the webapps folder of Tomcat and it will be automatically
deployed.

• ORARDFLDR Utility for Bulk Loading RDF Data
This section describes using the ORARDFLDR utility program for Bulk Loading RDF Data.

7.1 Setting Up the Software Environment
To use the support for Apache Jena, you must first ensure that the system environment has the
necessary software, including Oracle AI Database with RDF Graph support enabled, Apache
Jena 3.12.0, and JDK 1.8 or later.

You can set up the software environment by performing these actions:

1. Install Oracle AI Database Enterprise Edition with the Oracle Spatial and Partitioning
Options.

2. Enable the support for RDF Graph, as explained in Enabling RDF Graph Support.

3. Download RDF Graph support for Apache Jena from Oracle Software Delivery Cloud.

4. Unzip the kit into a temporary directory, such as (on a Linux system) /tmp/jena_adapter.
(If this temporary directory does not already exist, create it before the unzip operation.)

The RDF Graph support for Apache Jena has the following top-level directories:

 |-- examples
 |-- fuseki
 |-- fuseki_web_app
 |-- jar
 |-- javadoc
 |-- joseki
 |-- joseki_web_app
 |-- protege_plugin
 |-- README
 |-- sparqlgateway_web_app

5. Install JDK 1.8 or later (if not already installed).

6. Ensure that the JAVA_HOME environment variable is referencing the JDK installation. For
example:

setenv JAVA_HOME /usr/local/packages/jdk18/

7. If the SPARQL service to support the SPARQL protocol is not set up, set it up as explained
in Setting Up the SPARQL Service.

After setting up the software environment, ensure that your RDF Graph environment can
enable you to use the support for Apache Jena to perform queries, as explained in Setting Up
the RDF Graph Environment.

• If You Used a Previous Version of the Support for Apache Jena

7.1.1 If You Used a Previous Version of the Support for Apache Jena
If you used a previous version of the support for Apache Jena, you must drop all functions/
procedure installed by previous Jena adapter in user schemas. Installing the new kit will

Chapter 7
Setting Up the Software Environment

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 91

https://edelivery.oracle.com

automatically load the updated functions and procedures, which are compatible with new RDF
schema private networks in 19c, and with the support in previous releases.

Connect to the user schema that you have used with the previous Jena adapter and execute
the following commands to clean the internal functions and procedures. (Some of the functions
and procedures referenced in these commands might not exist in the previous installation, so
any failed commands can be ignored.)

drop procedure ORACLE_ORARDF_S2SGETSRC;
drop procedure ORACLE_ORARDF_S2SGETSRCCLOB;
drop procedure ORACLE_ORARDF_S2SSVR;
drop procedure ORACLE_ORARDF_S2SSVRNG;
drop procedure ORACLE_ORARDF_S2SSVRNGCLOB;
drop procedure ORACLE_ORARDF_GRANT;
drop procedure ORACLE_ORARDF_VID2NAME_TYPE;
drop procedure ORACLE_ORARDF_S2SSVRNGNPV;
drop procedure ORACLE_ORARDF_S2SSVRNGCLOBNPV;
drop function ORACLE_ORARDF_SGC;
drop function ORACLE_ORARDF_SGCCLOB;
drop function ORACLE_ORARDF_S2SUSR;
drop function ORACLE_ORARDF_S2SUSRNG;
drop function ORACLE_ORARDF_S2SUSRNGL;
drop function ORACLE_ORARDF_S2SUSRNGCLOB;
drop function ORACLE_ORARDF_S2SLG;
drop function ORACLE_ORARDF_GETPLIST;
drop function ORACLE_ORARDF_RES2VID;
drop function ORACLE_ORARDF_VID2URI;

7.2 Setting Up the SPARQL Service
This section explains how to set up a SPARQL web service endpoint by deploying the
fuseki.war file in WebLogic Server.

Although there are several ways to deploy applications in WebLogic Server, this topic refers to
the autodeploy option.

Note

If you want to deploy Fuseki in Apache Tomcat instead of WebLogic Server, see
Deploying Fuseki in Apache Tomcat.

1. Download and Install Oracle WebLogic Server 12c or later.

2. Ensure that you have Java 8 or later installed.

3. Set the FUSEKI_BASE parameter, which defines the location of the Fuseki configuration
files. By default, this parameter is set to /etc/fuseki.

You can set this parameter to the the fuseki folder from downloaded OTN kit, which
already contains the fuseki configuration files. See the Jena Fuseki documentation for
more details: https://jena.apache.org/documentation/fuseki2/fuseki-layout.html

4. Configure an Oracle dataset in the fuseki configuration file: config.ttl

a. Before editing the Fuseki configuration file, create an RDF schema-private network
(explained in Schema-Private RDF Networks). For example, assuming a network with

Chapter 7
Setting Up the SPARQL Service

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 91

https://jena.apache.org/documentation/fuseki2/fuseki-layout.html

name SAMPLE_NET in user schema RDFUSER and tablespace RDFTBS, the
following command creates the RDF network.

EXECUTE SEM_APIS.CREATE_RDF_NETWORK('RDFTBS',
options=>'MODEL_PARTITIONING=BY_HASH_P MODEL_PARTITIONS=16',
network_owner=>'RDFUSER', network_name=>'SAMPLE_NET');

b. Edit file config.ttl, and add an oracle:Dataset definition using a model named
M_NAMED_GRAPHS. The following snippet shows the configuration. The
oracle:allGraphs predicate denotes that the SPARQL service endpoint will serve
queries using all graphs stored in the M_NAMED_GRAPHS model.

<#oracle> rdf:type oracle:Dataset;
oracle:connection
[a oracle:OracleConnection ;
oracle:jdbcURL "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
(HOST=<host>)(PORT=<port>))(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=<service_name>)))";
oracle:User "RDFUSER"
oracle:Password "<password>"
];
oracle:allGraphs [oracle:firstModel "M_NAMED_GRAPHS";
 oracle:networkOwner "RDFUSER";
 oracle:networkName "SAMPLE_NET"] .

c. Link the oracle dataset in the service section of the Fuseki configuration file:

<#service> rdf:type fuseki:Service ;
 # URI of the dataset -- http://host:port/ds
 fuseki:name "oracle" ;

 # SPARQL query services e.g. http://host:port/ds/sparql?query=...
 fuseki:serviceQuery "sparql" ;
 fuseki:serviceQuery "query" ;
 # SPARQL Update service -- http://host:port/ds/update?request=...
 fuseki:serviceUpdate "update" ; # SPARQL query service
-- /ds/update

 # Upload service -- http://host:port/ds/upload?graph=default or ?
graph=URI or ?default
 # followed by a multipart body, each part being RDF syntax.
 # Syntax determined by the file name extension.
 fuseki:serviceUpload "upload" ; # Non-SPARQL upload
service

 # SPARQL Graph store protocol (read and write)
 # GET, PUT, POST DELETE to http://host:port/ds/data?graph= or ?
default=
 fuseki:serviceReadWriteGraphStore "data" ;

 # A separate read-only graph store endpoint:
 fuseki:serviceReadGraphStore "get" ; # Graph store protocol
(read only) -- /ds/get

Chapter 7
Setting Up the SPARQL Service

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 91

 fuseki:dataset <#oracle> ;
 .

The M_NAMED_GRAPHS model will be created automatically (if it does not already exist)
upon the first SPARQL query request. You can add a few example triples and quads to test
the named graph functions. For example, for a database before Release 19.3:

SQL> CONNECT username/password
SQL> INSERT INTO m_named_graphs_tpl
VALUES(sdo_rdf_triple_s('m_named_graphs','<urn:s>','<urn:p>','<urn:o>'));
SQL> INSERT INTO m_named_graphs_tpl
VALUES(sdo_rdf_triple_s('m_named_graphs:<urn:G1>','<urn:g1_s>','<urn:g1_p>'
,'<urn:g1_o>'));
SQL> INSERT INTO m_named_graphs_tpl
VALUES(sdo_rdf_triple_s('m_named_graphs:<urn:G2>','<urn:g2_s>','<urn:g2_p>'
,'<urn:g2_o>'));
SQL> COMMIT;

5. Go to the autodeploy directory of WebLogic Server and copy files, as follows. (For
information about automatically deploying applications in development domains, see:
http://docs.oracle.com/cd/E24329_01/web.1211/e24443/autodeploy.htm)

cd <domain_name>/autodeploy
cp -rf /tmp/jena_adapter/fuseki_web_app/fuseki.war <domain_name>/autodeploy

In the preceding example, <domain_name> is the name of a WebLogic Server domain.

Note that while you can run a WebLogic Server domain in two different modes,
development and production, only development mode allows you use the autodeploy
feature.

6. Verify your deployment by using your Web browser to connect to a URL in the following
format (assume that the Web application is deployed at port 7001): http://
<hostname>:7001/fuseki

You should see a page titled Apache Jena Fuseki, and a list of datasets on the server. This
example should show the /oracle dataset.

7. Execute the query by clicking on the Query button on the /oracle dataset and entering the
following query:

SELECT ?g ?s ?p ?o
WHERE
{ GRAPH ?g { ?s ?p ?o} }

The result should be an HTML table with four columns and two sets of result bindings.

• Client Identifiers

• Using OLTP Compression for Application Tables and Staging Tables

• N-Triples Encoding for Non-ASCII Characters

7.2.1 Client Identifiers
For every database connection created or used by the support for Apache Jena, a client
identifier is associated with the connection. The client identifier can be helpful, especially in a
Real Application Cluster (Oracle RAC) environment, for isolating RDF Graph support for

Chapter 7
Setting Up the SPARQL Service

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 91

http://docs.oracle.com/cd/E24329_01/web.1211/e24443/autodeploy.htm

Apache Jena-related activities from other database activities when you are doing performance
analysis and tuning.

By default, the client identifier assigned is JenaAdapter. However, you can specify a different
value by setting the Java VM clientIdentifier property using the following format:

-Doracle.spatial.rdf.client.jena.clientIdentifier=<identificationString>

To start the tracing of only RDF Graph support for Apache Jena-related activities on the
database side, you can use the DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE procedure.
For example:

SQL> EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE('JenaAdapter', true, true);

7.2.2 Using OLTP Compression for Application Tables and Staging Tables
By default, the support for Apache Jena creates the application tables and any staging tables
(the latter used for bulk loading, as explained in Bulk Loading Using RDF Graph Support for
Apache Jena) using basic table compression with the following syntax:

CREATE TABLE (... column definitions ...) ... compress;

However, if you are licensed to use the Oracle Advanced Compression option no the database,
you can set the following JVM property to turn on OLTP compression, which compresses data
during all DML operations against the underlying application tables and staging tables:

-Doracle.spatial.rdf.client.jena.advancedCompression="compress for oltp"

7.2.3 N-Triples Encoding for Non-ASCII Characters
For any non-ASCII characters in the lexical representation of RDF resources, \uHHHH N-Triples
encoding is used when the characters are inserted into the Oracle AI Database. (For details
about N-Triples encoding, see http://www.w3.org/TR/rdf-testcases/#ntrip_grammar.)
Encoding of the constant resources in a SPARQL query is handled in a similar fashion.

Using \uHHHH N-Triples encoding enables support for international characters, such as a mix of
Norwegian and Swedish characters, in the Oracle AI Database even if a supported Unicode
character set is not being used.

7.3 Setting Up the RDF Graph Environment
To use the support for Apache Jena to perform queries, you can connect as any user (with
suitable privileges) and use any RDF graphs in the RDF network.

If your RDF Graph environment already meets the requirements, you can go directly to
compiling and running Java code that uses the support for Apache Jena. If your RDF Graph
environment is not yet set up to be able to use the support for Apache Jena, you can perform
actions similar to the following example steps:

1. Connect as SYSTEM:

sqlplus system/<password-for-system>

2. Create a tablespace for the system tables. For example:

CREATE TABLESPACE rdf_users datafile 'rdf_users01.dbf'
 size 128M reuse autoextend on next 64M
 maxsize unlimited segment space management auto;

Chapter 7
Setting Up the RDF Graph Environment

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 91

http://www.w3.org/TR/rdf-testcases/#ntrip_grammar

3. Create a database user (for connecting to the database to use the RDF network and the
support for Apache Jena). For example:

CREATE USER rdfusr IDENTIFIED BY <password-for-udfusr>
 DEFAULT TABLESPACE rdf_users;

4. Grant the necessary privileges to this database user. For example:

GRANT connect, resource TO rdfusr;

5. Create the RDF network. For example:

EXECUTE sem_apis.create_RDF_network('RDF_USERS', network_owner=>'RDFUSR',
network_name=>'LOCALNET');

6. To use the support for Apache Jena with your own RDF data, perform the appropriate
steps to store data, create an RDF graph, and create database indexes, as explained in
Quick Start for Using RDF Data. Then perform queries by compiling and running Java
code; see Example Queries Using RDF Graph Support for Apache Jena for information
about example queries.

To use the support for Apache Jena with supplied example data, see Example Queries
Using RDF Graph Support for Apache Jena.

7.4 SEM_MATCH and RDF Graph Support for Apache Jena
Queries Compared

There are two ways to query RDF data stored in Oracle AI Database: SEM_MATCH-based
SQL statements and SPARQL queries through the support for Apache Jena.

Queries using each approach are similar in appearance, but there are important behavioral
differences. To ensure consistent application behavior, you must understand the differences
and use care when dealing with query results coming from SEM_MATCH queries and SPARQL
queries.

The following simple examples show the two approaches.

Query 1 (SEM_MATCH-based)

select s, p, o
 from table(sem_match('{?s ?p ?o}', sem_models('Test_Model'),))

Query 2 (SPARQL query through Support for Apache Jena)

select ?s ?p ?o
where {?s ?p ?o}

These two queries perform the same kind of functions; however, there are some important
differences. Query 1 (SEM_MATCH-based):

• Reads all triples out of Test_Model.

• Does not differentiate among URI, bNode, plain literals, and typed literals, and it does not
handle long literals.

• Does not unescape certain characters (such as '\n').

Query 2 (SPARQL query executed through the support for Apache Jena) also reads all triples
out of Test_Model (assume it executed a call to ModelOracleSem referring to the same
underlying Test_Model). However, Query 2:

Chapter 7
SEM_MATCH and RDF Graph Support for Apache Jena Queries Compared

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 91

• Reads out additional columns (as opposed to just the s, p, and o columns with the
SEM_MATCH table function), to differentiate URI, bNodes, plain literals, typed literals, and
long literals. This is to ensure proper creation of Jena Node objects.

• Unescapes those characters that are escaped when stored in Oracle AI Database

Blank node handling is another difference between the two approaches:

• In a SEM_MATCH-based query, blank nodes are always treated as constants.

• In a SPARQL query, a blank node that is not wrapped inside < and > is treated as a
variable when the query is executed through the support for Apache Jena. This matches
the SPARQL standard semantics. However, a blank node that is wrapped inside < and > is
treated as a constant when the query is executed, and the support for Apache Jena adds a
proper prefix to the blank node label as required by the underlying data modeling.

The maximum length for the name of an RDF graph created using the support for Apache Jena
API is 22 characters.

7.5 Retrieving User-Friendly Java Objects from SEM_MATCH or
SQL-Based Query Results

You can query an RDF graph using any of the following approaches.

• SPARQL (through Java methods or web service end point)

• SEM_MATCH (table function that has SPARQL queries embedded)

• SQL (by querying the <user>.<network_name>#RDFM<model> view and joining with
<user>.<network_name>#RDF_VALUE$ and/or other tables)

For Java developers, the results from the first approach are easy to consume. The results from
the second and third approaches, however, can be difficult for Java developers because you
must parse various columns to get properly typed Java objects that are mapped from typed
RDF literals. RDF graph support for Apache Jena supports several methods and helper
functions to simplify the task of getting properly typed Java objects from a JDBC result set.
These methods and helper functions are shown in the following examples:

• Example 7-1

• Example 7-2

• Example 7-3

These examples use an RDF graph TGRAPH into which a set of typed literals is added
through inserts into the RDF graph’s RDFT view, as in the following code:

exec sem_apis.create_rdf_graph('tgraph',null,null,network_owner=>'RDFUSR',network_name=>'LOCALNET');
exec sem_apis.truncate_rdf_graph('tgraph', network_owner=>'RDFUSR',network_name=>'LOCALNET');

-- Add some triples
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s1>','<urn:p1>',
'<urn:o1>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s2>','<urn:p2>', '"hello
world"','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s3>','<urn:p3>', '"hello
world"@en','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s4>','<urn:p4>', '" o1o
"^^<http://www.w3.org/2001/XMLSchema#string>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s4>','<urn:p4>',
'"xyz"^^<http://mytype>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s5>','<urn:p5>',

Chapter 7
Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 91

'"123"^^<http://www.w3.org/2001/XMLSchema#integer>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s5>','<urn:p5>',
'"123.456"^^<http://www.w3.org/2001/XMLSchema#double>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE) values(sdo_rdf_triple_s('tgraph','<urn:s6>','<urn:p6>',
'_:bn1','RDFUSR','LOCALNET'));

-- Add some quads
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g1>','<urn:s1>','<urn:p1>', '<urn:o1>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s1>','<urn:p1>', '<urn:o1>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s2>','<urn:p2>', '"hello world"','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s3>','<urn:p3>', '"hello
world"@en','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s4>','<urn:p4>', '" o1o "^^<http://www.w3.org/2001/
XMLSchema#string>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s4>','<urn:p4>', '"xyz"^^<http://
mytype>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s5>','<urn:p5>', '"123"^^<http://www.w3.org/2001/
XMLSchema#integer>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s5>','<urn:p5>', '"123.456"^^<http://www.w3.org/2001/
XMLSchema#double>','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s6>','<urn:p6>', '_:bn1','RDFUSR','LOCALNET'));
insert into LOCALNET#RDFT_TGRAPH(TRIPLE)
values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s7>','<urn:p7>', '"2002-10-10T12:00:00-05:00"^^<http://
www.w3.org/2001/XMLSchema#dateTime>','RDFUSR','LOCALNET'));
commit;

Example 7-1 SQL-Based Graph Query

Example 7-1 runs a pure SQL-based graph query and constructs Jena objects.

iTimeout = 0; // no time out
iDOP = 1; // degree of parallelism
iStartColPos = 2;

queryString = "select 'hello'||rownum as extra,
o.VALUE_TYPE,o.LITERAL_TYPE,o.LANGUAGE_TYPE,o.LONG_VALUE,o.VALUE_NAME "
 + " from rdfusr.localnet#rdfm_tgraph g, rdfusr.localnet#rdf_value$ o where
g.canon_end_node_id = o.value_id";

rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);

while (rs.next()) {
 node = OracleSemIterator.retrieveNodeFromRS(rs, iStartColPos,
OracleSemQueryPlan.CONST_FIVE_COL, translator);
 System.out.println("Result " + node.getClass().getName() + " = " + node + " " +
rs.getString(1));
}

Example 7-1 might generate the following output:

Result org.apache.jena.graph.Node_Literal = "123"^^http://www.w3.org/2001/
XMLSchema#decimal hello1
Result org.apache.jena.graph.Node_Literal = "123"^^http://www.w3.org/2001/
XMLSchema#decimal hello2

Chapter 7
Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 91

Result org.apache.jena.graph.Node_URI = urn:o1 hello3
Result org.apache.jena.graph.Node_URI = urn:o1 hello4
Result org.apache.jena.graph.Node_URI = urn:o1 hello5
Result org.apache.jena.graph.Node_Literal = "hello world" hello6
Result org.apache.jena.graph.Node_Literal = "hello world" hello7
Result org.apache.jena.graph.Node_Literal = "hello world"@en hello8
Result org.apache.jena.graph.Node_Literal = "hello world"@en hello9
Result org.apache.jena.graph.Node_Literal = " o1o " hello10
Result org.apache.jena.graph.Node_Literal = " o1o " hello11
Result org.apache.jena.graph.Node_Literal = "xyz"^^http://mytype hello12
Result org.apache.jena.graph.Node_Literal = "xyz"^^http://mytype hello13
Result org.apache.jena.graph.Node_Literal = "1.23456E2"^^http://www.w3.org/2001/
XMLSchema#double hello14
Result org.apache.jena.graph.Node_Literal = "1.23456E2"^^http://www.w3.org/2001/
XMLSchema#double hello15
Result org.apache.jena.graph.Node_Blank = m15mbn1 hello16
Result org.apache.jena.graph.Node_Blank = m15g3C75726E3A67323Egmbn1 hello17
Result org.apache.jena.graph.Node_Literal = "2002-10-10T17:00:00Z"^^http://www.w3.org/
2001/XMLSchema#dateTime hello18

Example 7-2 Hybrid Query Mixing SEM_MATCH with Regular SQL Constructs

Example 7-2 uses the OracleSemIterator.retrieveNodeFromRS API to construct a Jena
object by reading the five consecutive columns (in the exact order of value type, literal type,
language type, long value, and value name), and by performing the necessary unescaping and
object instantiations.

iStartColPos = 1;
queryString = "select g$RDFVTYP, g, count(1) as cnt "
 + " from table(sem_match('{ GRAPH ?g { ?s ?p ?
o . } }',sem_models('tgraph'),null,null,null,null,null,null,null,'RDFUSR','LOCALNET')) "
 + " group by g$RDFVTYP, g";

rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);
while (rs.next()) {
 node = OracleSemIterator.retrieveNodeFromRS(rs, iStartColPos,
OracleSemQueryPlan.CONST_TWO_COL, translator);
 System.out.println("Result " + node.getClass().getName() + " = " + node + " " +
rs.getInt(iStartColPos + 2));
}

Example 7-2 might generate the following output:

Result org.apache.jena.graph.Node_URI = urn:g2 9
Result org.apache.jena.graph.Node_URI = urn:g1 1

In Example 7-2:

• The helper function executeQuery in the Oracle class is used to run the SQL statement,
and the OracleSemIterator.retrieveNodeFromRS API (also used in Example 7-1) is used
to construct Jena objects.

• Only two columns are used in the output: value type (g$RDFVTYP) and value name (g), it
is known that this g variable can never be a literal RDF resource.

• The column order is significant. For a two-column variable, the first column must be the
value type and the second column must be the value name.

Example 7-3 SEM_MATCH Query

Example 7-3 runs a SEM_MATCH query and constructs an iterator (instance of
OracleSemIterator) that returns a list of Jena objects.

Chapter 7
Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 91

queryString = "select g$RDFVTYP, g, s$RDFVTYP, s, p$RDFVTYP, p,
o$RDFVTYP,o$RDFLTYP,o$RDFLANG,o$RDFCLOB,o "
 + " from table(sem_match('{ GRAPH ?g { ?s ?p ?
o . } }',sem_models('tgraph'),null,null,null,null,null,null,null,'RDFUSR','LOCALNET'))";
guide = new ArrayList<String>();
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_FIVE_COL);

rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);
osi = new OracleSemIterator(rs);
osi.setGuide(guide);
osi.setTranslator(translator);

while (osi.hasNext()) {
 result = osi.next();
 System.out.println("Result " + result.getClass().getName() + " = " + result);
}

Example 7-3 might generate the following output:

Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s5 2:urn:p5
3:"123"^^http://www.w3.org/2001/XMLSchema#decimal>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s5 2:urn:p5
3:"1.23456E2"^^http://www.w3.org/2001/XMLSchema#double>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s7 2:urn:p7
3:"2002-10-10T17:00:00Z"^^http://www.w3.org/2001/XMLSchema#dateTime>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s2 2:urn:p2
3:"hello world">
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s4 2:urn:p4 3:"
o1o ">
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s4 2:urn:p4
3:"xyz"^^http://mytype>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s6 2:urn:p6
3:m15g3C75726E3A67323Egmbn1>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s1 2:urn:p1
3:urn:o1>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g1 1:urn:s1 2:urn:p1
3:urn:o1>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s3 2:urn:p3
3:"hello world"@en>

In Example 7-3:

• OracleSemIterator takes in a JDBC result set. OracleSemIterator needs guidance on
parsing all the columns that represent the bind values of SPARQL variables. A guide is
simply a list of string values. Two constants have been defined to differentiate a 2-column
variable (for subject or predicate position) from a 5-column variable (for object position). A
translator is also required.

• Four variables are used in the output. The first three variables are not RDF literal
resources, so CONST_TWO_COL is used as their guide. The last variable can be an RDF
literal resource, so CONST_FIVE_COL is used as its guide.

• The column order is significant, and it must be as shown in the example.

Chapter 7
Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 91

7.6 Optimized Handling of SPARQL Queries
This section describes some performance-related features of the support for Apache Jena that
can enhance SPARQL query processing. These features are performed automatically by
default.

It assumes that you are familiar with SPARQL, including the CONSTRUCT feature and
property paths.

• Compilation of SPARQL Queries to a Single SEM_MATCH Call

• Optimized Handling of Property Paths

7.6.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call
SPARQL queries involving DISTINCT, OPTIONAL, FILTER, UNION, ORDER BY, and LIMIT
are converted to a single Oracle SEM_MATCH table function. If a query cannot be converted
directly to SEM_MATCH because it uses SPARQL features not supported by SEM_MATCH
(for example, CONSTRUCT), the support for Apache Jena employs a hybrid approach and
tries to execute the largest portion of the query using a single SEM_MATCH function while
executing the rest using the Jena ARQ query engine.

For example, the following SPARQL query is directly translated to a single SEM_MATCH table
function:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?name
 WHERE {
 {?alice foaf:knows ?person . }
 UNION {
 ?person ?p ?name. OPTIONAL { ?person ?x ?name1 }
 }
 }

However, the following example query is not directly translatable to a single SEM_MATCH
table function because of the CONSTRUCT keyword:

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?obj }
 WHERE { { ?x <http://pred/a> ?obj.}
 UNION
 { ?x <http://pred/b> ?obj.} }

In this case, the support for Apache Jena converts the inner UNION query into a single
SEM_MATCH table function, and then passes on the result set to the Jena ARQ query engine
for further evaluation.

7.6.2 Optimized Handling of Property Paths
As defined in Jena, a property path is a possible route through an RDF graph between two
graph nodes. Property paths are an extension of SPARQL and are more expressive than basic
graph pattern queries, because regular expressions can be used over properties for pattern
matching RDF graphs. For more information about property paths, see the documentation for
the Jena ARQ query engine.

Chapter 7
Optimized Handling of SPARQL Queries

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 91

RDF graph support for Apache Jena supports all Jena property path types through the
integration with the Jena ARQ query engine, but it converts some common path types directly
to native SQL hierarchical queries (not based on SEM_MATCH) to improve performance. The
following types of property paths are directly converted to SQL by the support for Apache Jena
when dealing with triple data:

• Predicate alternatives: (p1 | p2 | … | pn) where pi is a property URI

• Predicate sequences: (p1 / p2 / … / pn) where pi is a property URI

• Reverse paths : (^ p) where p is a predicate URI

• Complex paths: p+, p*, p{0, n} where p could be an alternative, sequence, reverse path, or
property URI

Path expressions that cannot be captured in this grammar are not translated directly to SQL by
the support for Apache Jena, and they are answered using the Jena query engine.

The following example contains a code snippet using a property path expression with path
sequences:

String m = "PROP_PATH";

ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, m);

GraphOracleSem graph = new GraphOracleSem(oracle, m);

// populate the RDF Graph
 graph.add(Triple.create(Node.createURI("http://a"),
 Node.createURI("http://p1"),
 Node.createURI("http://b")));

graph.add(Triple.create(Node.createURI("http://b"),
 Node.createURI("http://p2"),
 Node.createURI("http://c")));

graph.add(Triple.create(Node.createURI("http://c"),
 Node.createURI("http://p5"),
 Node.createURI("http://d")));

String query =
" SELECT ?s " +
" WHERE {?s (<http://p1>/<http://p2>/<http://p5>)+ <http://d>.}";

QueryExecution qexec =
 QueryExecutionFactory.create(QueryFactory.create(query,
 Syntax.syntaxARQ), model);

try {
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results);
}
finally {
 if (qexec != null)
 qexec.close();
}

OracleUtils.dropSemanticModel(oracle, m);
model.close();

Chapter 7
Optimized Handling of SPARQL Queries

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 91

7.7 Additions to the SPARQL Syntax to Support Other Features
RDF Graph support for Apache Jena allows you to pass in hints and additional query options.
It implements these capabilities by overloading the SPARQL namespace prefix syntax by using
Oracle-specific namespaces that contain query options.

The namespaces are in the form PREFIX ORACLE_SEM_xx_NS, where xx indicates the type of
feature (such as HT for hint or AP for additional predicate)

• SQL Hints

• Using Bind Variables in SPARQL Queries

• Additional WHERE Clause Predicates

• Additional Query Options

• Midtier Resource Caching

7.7.1 SQL Hints
SQL hints can be passed to a SEM_MATCH query including a line in the following form:

PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#hint>

Where hint can be any hint supported by SEM_MATCH. For example:

PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#leading(t0,t1)>
SELECT ?book ?title ?isbn
WHERE { ?book <http://title> ?title. ?book <http://ISBN> ?isbn }

In this example, t0,t1 refers to the first and second patterns in the query.

Note the slight difference in specifying hints when compared to SEM_MATCH. Due to
restrictions of namespace value syntax, a comma (,) must be used to separate t0 and t1 (or
other hint components) instead of a space.

For more information about using SQL hints, see Using the SEM_MATCH Table Function to
Query RDF Data, specifically the material about the HINT0 keyword in the options attribute.

7.7.2 Using Bind Variables in SPARQL Queries
In Oracle AI Database, using bind variables can reduce query parsing time and increase query
efficiency and concurrency. Bind variable support in SPARQL queries is provided through
namespace pragma specifications similar to ORACLE_SEM_FS_NS.

Consider a case where an application runs two SPARQL queries, where the second (Query 2)
depends on the partial or complete results of the first (Query 1). Some approaches that do not
involve bind variables include:

• Iterating through results of Query 1 and generating a set of queries. (However, this
approach requires as many queries as the number of results of Query 1.)

• Constructing a SPARQL filter expression based on results of Query 1.

• Treating Query 1 as a subquery.

Another approach in this case is to use bind variables, as in the following sample scenario:

Query 1:

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 91

 SELECT ?x
 WHERE { ... <some complex query> ... };

Query 2:

 SELECT ?subject ?x
 WHERE {?subject <urn:related> ?x .};

The following example shows Query 2 with the syntax for using bind variables with the support
for Apache Jena:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/semtech#x$RDFVID%20in(?,?,?)>
PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#x$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/semtech#1,2,3>
SELECT ?subject ?x
WHERE {
 ?subject <urn:related> ?x
};

This syntax includes using the following namespaces:

• ORACLE_SEM_UEAP_NS is like ORACLE_SEM_AP_NS, but the value portion of
ORACLE_SEM_UEAP_NS is URL Encoded. Before the value portion is used, it must be
URL decoded, and then it will be treated as an additional predicate to the SPARQL query.

In this example, after URL decoding, the value portion (following the # character) of this
ORACLE_SEM_UEAP_NS prefix becomes "x$RDFVID in(?,?,?)". The three question
marks imply a binding to three values coming from Query 1.

• ORACLE_SEM_UEPJ_NS specifies the additional projections involved. In this case,
because ORACLE_SEM_UEAP_NS references the x$RDFVID column, which does not
appear in the SELECT clause of the query, it must be specified. Multiple projections are
separated by commas.

• ORACLE_SEM_UEBV_NS specifies the list of bind values that are URL encoded first, and
then concatenated and delimited by commas.

Conceptually, the preceding example query is equivalent to the following non-SPARQL syntax
query, in which 1, 2, and 3 are treated as bind values:

SELECT ?subject ?x
 WHERE {
 ?subject <urn:related> ?x
 }
 AND ?x$RDFVID in (1,2,3);

In the preceding SPARQL example of Query 2, the three integers 1, 2, and 3 come from Query
1. You can use the oext:build-uri-for-id function to generate such internal integer IDs for
RDF resources. The following example gets the internal integer IDs from Query 1:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT ?x (oext:build-uri-for-id(?x) as ?xid)
WHERE { ... <some complex query> ... };

The values of ?xid have the form of <rdfvid:integer-value>. The application can strip out the
angle brackets and the "rdfvid:" strings to get the integer values and pass them to Query 2.

Consider another case, with a single query structure but potentially many different constants.
For example, the following SPARQL query finds the hobby for each user who has a hobby and

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 91

who logs in to an application. Obviously, different users will provide different <uri> values to
this SPARQL query, because users of the application are represented using different URIs.

SELECT ?hobby
 WHERE { <uri> <urn:hasHobby> ?hobby };

One approach, which would not use bind variables, is to generate a different SPARQL query
for each different <uri> value. For example, user Jane Doe might trigger the execution of the
following SPARQL query:

SELECT ?hobby WHERE {
<http://www.example.com/Jane_Doe> <urn:hasHobby> ?hobby };

However, another approach is to use bind variables, as in the following example specifying
user Jane Doe:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/
semtech#subject$RDFVID%20in(ORACLE_ORARDF_RES2VID(?))>
PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#subject$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/
semtech#http%3a%2f%2fwww.example.com%2fJohn_Doe>
SELECT ?subject ?hobby
 WHERE {
 ?subject <urn:hasHobby> ?hobby
 };

Conceptually, the preceding example query is equivalent to the following non-SPARQL syntax
query, in which http://www.example.com/Jane_Doe is treated as a bind variable:

SELECT ?subject ?hobby
WHERE {
 ?subject <urn:hasHobby> ?hobby
}
AND ?subject$RDFVID in (ORACLE_ORARDF_RES2VID('http://www.example.com/Jane_Doe'));

In this example, ORACLE_ORARDF_RES2VID is a function that translates URIs and literals
into their internal integer ID representation. This function is created automatically when the
support for Apache Jena is used to connect to an Oracle AI Database.

7.7.3 Additional WHERE Clause Predicates
The SEM_MATCH filter attribute can specify additional selection criteria as a string in the
form of a WHERE clause without the WHERE keyword. Additional WHERE clause predicates
can be passed to a SEM_MATCH query including a line in the following form:

PREFIX ORACLE_SEM_AP_NS: <http://oracle.com/semtech#pred>

Where pred reflects the WHERE clause content to be appended to the query. For example:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ORACLE_SEM_AP_NS:<http://www.oracle.com/semtech#label$RDFLANG='fr'>
SELECT DISTINCT ?inst ?label
 WHERE { ?inst a <http://someCLass>. ?inst rdfs:label ?label . }
 ORDER BY (?label) LIMIT 20

In this example, a restriction is added to the query that the language type of the label variable
must be 'fr'.

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 91

7.7.4 Additional Query Options
Additional query options can be passed to a SEM_MATCH query including a line in the
following form:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#option>

Where option reflects a query option (or multiple query options delimited by commas) to be
appended to the query. For example:

PREFIX ORACLE_SEM_FS_NS:
<http://oracle.com/semtech#timeout=3,dop=4,INF_ONLY,ORDERED,ALLOW_DUP=T>
SELECT * WHERE {?subject ?property ?object }

The following query options are supported:

• ALLOW_DUP=t chooses a faster way to query multiple RDF graphs, although duplicate
results may occur.

• BEST_EFFORT_QUERY=t, when used with the TIMEOUT=n option, returns all matches found in
n seconds for the SPARQL query.

• DEGREE=n specifies, at the statement level, the degree of parallelism (n) for the query. With
multi-core or multi-CPU processors, experimenting with different DOP values (such as 4 or
8) may improve performance.

Contrast DEGREE with DOP, which specifies parallelism at the session level. DEGREE is
recommended over DOP for use with the support for Apache Jena, because DEGREE
involves less processing overhead.

• DOP=n specifies, at the session level, the degree of parallelism (n) for the query. With multi-
core or multi-CPU processors, experimenting with different DOP values (such as 4 or 8)
may improve performance.

• FETCH_SIZE=n specifies the JDBC fetch size parameter (the number of rows to be read
from the result set and put in memory on one trip to the database). This parameter can be
used to improve performance. A higher value means fewer trips to the database to retrieve
all results. The default value is 1000.

• INF_ONLY causes only the inferred model to be queried.

• JENA_EXECUTOR disables the compilation of SPARQL queries to SEM_MATCH (or native
SQL); instead, the Jena native query executor will be used.

• JOIN=n specifies how results from a SPARQL SERVICE call to a federated query can be
joined with other parts of the query. For information about federated queries and the JOIN
option, see JOIN Option and Federated Queries.

• NO_FALL_BACK causes the underlying query execution engine not to fall back on the Jena
execution mechanism if a SQL exception occurs.

• ODS=n specifies, at the statement level, the level of dynamic sampling. (For an explanation
of dynamic sampling, see the section about estimating statistics with dynamic sampling in
Oracle AI Database SQL Tuning Guide.). Valid values for n are 1 through 10. For example,
you could try ODS=3 for complex queries.

• ORDERED is translated to a LEADING SQL hint for the query triple pattern joins, while
performing the necessary RDF_VALUE$ joins last.

• PLAIN_SQL_OPT=F disables the native compilation of queries directly to SQL.

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 91

• QID=n specifies a query ID number; this feature can be used to cancel the query if it is not
responding.

• RESULT_CACHE uses the Oracle RESULT_CACHE directive for the query.

• REWRITE=F disables ODCI_Table_Rewrite for the SEM_MATCH table function.

• S2S (SPARQL to pure SQL) causes the underlying SEM_MATCH-based query or queries
generated based on the SPARQL query to be further converted into SQL queries without
using the SEM_MATCH table function. The resulting SQL queries are executed by the
Oracle cost-based optimizer, and the results are processed by the support for Apache
Jena before being passed on to the client. For more information about the S2S option,
including benefits and usage information, see S2S Option Benefits and Usage Information.

S2S is enabled by default for all SPARQL queries. If you want to disable S2S, set the
following JVM system property:

-Doracle.spatial.rdf.client.jena.defaultS2S=false

• SKIP_CLOB=T causes CLOB values not to be returned for the query.

• STRICT_DEFAULT=F allows the default graph to include triples in named graphs. (By default,
STRICT_DEFAULT=T restricts the default graph to unnamed triples when no data set
information is specified.)

• TIMEOUT=n (query timeout) specifies the number of seconds (n) that the query will run until
it is terminated. The underlying SQL generated from a SPARQL query can return many
matches and can use features like subqueries and assignments, all of which can take
considerable time. The TIMEOUT and BEST_EFFORT_QUERY=t options can be used to prevent
what you consider excessive processing time for the query.

• JOIN Option and Federated Queries

• S2S Option Benefits and Usage Information

7.7.4.1 JOIN Option and Federated Queries
A SPARQL federated query, as described in W3C documents, is a query "over distributed data"
that entails "querying one source and using the acquired information to constrain queries of the
next source." For more information, see SPARQL 1.1 Federation Extensions (http://
www.w3.org/2009/sparql/docs/fed/service).

You can use the JOIN option (described in Additional Query Options) and the SERVICE
keyword in a federated query that uses the support for Apache Jena. For example, assume the
following query:

SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

If the local query portion (?s1 ?p1 ?s,) is very selective, you can specify join=2, as shown in
the following query:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#join=2>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 91

http://www.w3.org/2009/sparql/docs/fed/service
http://www.w3.org/2009/sparql/docs/fed/service

In this case, the local query portion (?s1 ?p1 ?s,) is executed locally against the Oracle AI
Database. Each binding of ?s from the results is then pushed into the SERVICE part (remote
query portion), and a call is made to the service endpoint specified. Conceptually, this
approach is somewhat like nested loop join.

If the remote query portion (?s ?s1 ?o) is very selective, you can specify join=3, as shown in
the following query, so that the remote portion is executed first and results are used to drive the
execution of local portion:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#join=3>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

In this case, a single call is made to the remote service endpoint and each binding of ?s
triggers a local query. As with join=2, this approach is conceptually a nested loop based join,
but the difference is that the order is switched.

If neither the local query portion nor the remote query portion is very selective, then we can
choose join=1, as shown in the following query:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#join=1>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

In this case, the remote query portion and the local portion are executed independently, and
the results are joined together by Jena. Conceptually, this approach is somewhat like a hash
join.

For debugging or tracing federated queries, you can use the HTTP Analyzer in Oracle
JDeveloper to see the underlying SERVICE calls.

7.7.4.2 S2S Option Benefits and Usage Information
The S2S option, described in Additional Query Options, provides the following potential
benefits:

• It works well with the RESULT_CACHE option to improve query performance. Using the S2S
and RESULT_CACHE options is especially helpful for queries that are executed frequently.

• It reduces the parsing time of the SEM_MATCH table function, which can be helpful for
applications that involve many dynamically generated SPARQL queries.

• It eliminates the limit of 4000 bytes for the query body (the first parameter of the
SEM_MATCH table function), which means that longer, more complex queries are
supported.

The S2S option causes an internal in-memory cache to be used for translated SQL query
statements. The default size of this internal cache is 1024 (that is, 1024 SQL queries);
however, you can adjust the size by using the following Java VM property:

-Doracle.spatial.rdf.client.jena.queryCacheSize=<size>

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 91

7.7.5 Midtier Resource Caching
When RDF data is stored, all of the resource values are hashed into IDs, which are stored in
the triples table. The mappings from value IDs to full resource values are stored in the
RDF_VALUE$ table. At query time, for each selected variable, Oracle AI Database must
perform a join with the RDF_VALUE$ table to retrieve the resource.

However, to reduce the number of joins, you can use the midtier cache option, which causes
an in-memory cache on the middle tier to be used for storing mappings between value IDs and
resource values. To use this feature, include the following PREFIX pragma in the SPARQL
query:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#midtier_cache>

To control the maximum size (in bytes) of the in-memory cache, use the
oracle.spatial.rdf.client.jena.cacheMaxSize system property. The default cache
maximum size is 1GB.

Midtier resource caching is most effective for queries using ORDER BY or DISTINCT (or both)
constructs, or queries with multiple projection variables. Midtier cache can be combined with
the other options specified in Additional Query Options.

If you want to pre-populate the cache with all of the resources in an RDF graph, use the
GraphOracleSem.populateCache or DatasetGraphOracleSem.populateCache method. Both
methods take a parameter specifying the number of threads used to build the internal midtier
cache. Running either method in parallel can significantly increase the cache building
performance on a machine with multiple CPUs (cores).

7.8 Functions Supported in SPARQL Queries through RDF
Graph Support for Apache Jena

SPARQL queries through the support for Apache Jena can use the following kinds of functions.

• Functions in the function library of the Jena ARQ query engine

• Native Oracle AI Database functions for projected variables

• User-defined functions

• Functions in the ARQ Function Library

• Native Oracle AI Database Functions for Projected Variables

• User-Defined Functions

7.8.1 Functions in the ARQ Function Library
SPARQL queries through the support for Apache Jena can use functions in the function library
of the Jena ARQ query engine. These queries are executed in the middle tier.

The following examples use the upper-case and namespace functions. In these examples, the
prefix fn is <http://www.w3.org/2005/xpath-functions#> and the prefix afn is <http://
jena.hpl.hp.com/ARQ/function#>.

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT (fn:upper-case(?object) as ?object1)

Chapter 7
Functions Supported in SPARQL Queries through RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 91

WHERE { ?subject dc:title ?object }

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?subject (afn:namespace(?object) as ?object1)
WHERE { ?subject <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?object }

7.8.2 Native Oracle AI Database Functions for Projected Variables
SPARQL queries through the support for Apache Jena can use native Oracle AI Database
functions for projected variables. These queries and the functions are executed inside the
database. Note that the functions described in this section should not be used together with
ARQ functions (described in Functions in the ARQ Function Library).

This section lists the supported native functions and provides some examples. In the
examples, the prefix oext is <http://oracle.com/semtech/jena-adaptor/ext/function#>.

Note

In the preceding URL, note the spelling jena-adaptor, which is retained for
compatibility with existing applications and which must be used in queries. The
adapter spelling is used in regular text, to follow Oracle documentation style
guidelines.

• oext:upper-literal converts literal values (except for long literals) to uppercase. For
example:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:upper-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }

• oext:lower-literal converts literal values (except for long literals) to lowercase. For
example:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:lower-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }

• oext:build-uri-for-id converts the value ID of a URI, bNode, or literal into a URI form.
For example:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:build-uri-for-id(?object) as ?object1)
WHERE { ?subject dc:title ?object }

An example of the output might be: <rdfvid:1716368199350136353>

One use of this function is to allow Java applications to maintain in memory a mapping of
those value IDs to the lexical form of URIs, bNodes, or literals. The RDF_VALUE$ table
provides such a mapping in Oracle AI Database.

For a given variable ?var, if only oext:build-uri-for-id(?var) is projected, the query
performance is likely to be faster because fewer internal table join operations are needed
to answer the query.

• oext:literal-strlen returns the length of literal values (except for long literals). For
example:

Chapter 7
Functions Supported in SPARQL Queries through RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 91

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:literal-strlen(?object) as ?objlen)
WHERE { ?subject dc:title ?object }

7.8.3 User-Defined Functions
SPARQL queries through the support for Apache Jena can use user-defined functions that are
stored in the database.

In the following example, assume that you want to define a string length function (my_strlen)
that handles long literals (CLOB) as well as short literals. On the SPARQL query side, this
function can be referenced under the namespace of ouext, which is http://oracle.com/
semtech/jena-adaptor/ext/user-def-function#.

PREFIX ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT ?subject ?object (ouext:my_strlen(?object) as ?obj1)
WHERE { ?subject dc:title ?object }

Inside the database, functions including my_strlen, my_strlen_cl, my_strlen_la,
my_strlen_lt, and my_strlen_vt are defined to implement this capability. Conceptually, the
return values of these functions are mapped as shown in Table 7-1.

Table 7-1 Functions and Return Values for my_strlen Example

Function Name Return Value

my_strlen <VAR>

my_strlen_cl <VAR>$RDFCLOB

my_strlen_la <VAR>$RDFLANG

my_strlen_lt <VAR>$RDFLTYP

my_strlen_vt <VAR>$RDFVTYP

A set of functions (five in all) is used to implement a user-defined function that can be
referenced from SPARQL, because this aligns with the internal representation of an RDF
resource (in RDF_VALUE$). There are five major columns describing an RDF resource in
terms of its value, language, literal type, long value, and value type, and these five columns
can be selected out using SEM_MATCH. In this context, a user-defined function simply
converts one RDF resource that is represented by five columns to another RDF resource.

These functions are defined as follows:

create or replace function my_strlen(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2
 as
 ret_val varchar2(4000);
 begin
 -- value
 if (rdfvtyp = 'LIT') then
 if (rdfclob is null) then
 return length(value);
 else
 return dbms_lob.getlength(rdfclob);
 end if;
 else

Chapter 7
Functions Supported in SPARQL Queries through RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 91

 -- Assign -1 for non-literal values so that application can
 -- easily differentiate
 return '-1';
 end if;
 end;
 /

 create or replace function my_strlen_cl(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return clob
 as
 begin
 return null;
 end;
 /

 create or replace function my_strlen_la(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2
 as
 begin
 return null;
 end;
 /

 create or replace function my_strlen_lt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2
 as
 ret_val varchar2(4000);
 begin
 -- literal type
 return 'http://www.w3.org/2001/XMLSchema#integer';
 end;
 /

 create or replace function my_strlen_vt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2
 as
 ret_val varchar2(3);
 begin
 return 'LIT';
 end;
 /

User-defined functions can also accept a parameter of VARCHAR2 type. The following five
functions together define a my_shorten_str function that accepts an integer (in VARCHAR2
form) for the substring length and returns the substring. (The substring in this example is 12
characters, and it must not be greater than 4000 bytes.)

Chapter 7
Functions Supported in SPARQL Queries through RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 91

-- SPARQL query that returns the first 12 characters of literal values.
--
PREFIX ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT (ouext:my_shorten_str(?object, "12") as ?obj1) ?subject
WHERE { ?subject dc:title ?object }

create or replace function my_shorten_str(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return varchar2
as
 ret_val varchar2(4000);
begin
 -- value
 if (rdfvtyp = 'LIT') then
 if (rdfclob is null) then
 return substr(value, 1, to_number(arg));
 else
 return dbms_lob.substr(rdfclob, to_number(arg), 1);
 end if;
 else
 return null;
 end if;
end;
/

create or replace function my_shorten_str_cl(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return clob
as
 ret_val clob;
begin
 -- lob
 return null;
end;
/

create or replace function my_shorten_str_la(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return varchar2
as
 ret_val varchar2(4000);
begin
 -- lang
 if (rdfvtyp = 'LIT') then
 return rdflang;
 else
 return null;
 end if;
end;
/

Chapter 7
Functions Supported in SPARQL Queries through RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 91

create or replace function my_shorten_str_lt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return varchar2
as
 ret_val varchar2(4000);
begin
 -- literal type
 ret_val := rdfltyp;
 return ret_val;
end;
/

create or replace function my_shorten_str_vt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return varchar2
as
 ret_val varchar2(3);
begin
 return 'LIT';
end;
/

7.9 SPARQL Update Support
RDF Graph support for Apache Jena supports SPARQL Update (http://www.w3.org/TR/
sparql11-update/), also referred to as SPARUL.

The primary programming APIs involve the Jena class
org.apache.jena.update.UpdateAction and RDF Graph support for Apache Jena classes
GraphOracleSem and DatasetGraphOracleSem. Example 7-4 shows a SPARQL Update
operation removes all triples in named graph <http://example/graph> from the relevant RDF
graph stored in the database.

Example 7-4 Simple SPARQL Update

GraphOracleSem graphOracleSem = ;
DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graphOracleSem);

// SPARQL Update operation
String szUpdateAction = "DROP GRAPH <http://example/graph>";

// Execute the Update against a DatasetGraph instance (can be a Jena Model as well)
UpdateAction.parseExecute(szUpdateAction, dsgos);

Note that Oracle AI Database does not keep any information about an empty named graph.
This implies if you invoke CREATE GRAPH <graph_name> without adding any triples into this
graph, then no additional rows in the application table or the underlying RDF_LINK$ table will
be created. In an Oracle AI Database, you can safely skip the CREATE GRAPH step, as is the
case in Example 7-4.

Chapter 7
SPARQL Update Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 91

Example 7-5 SPARQL Update with Insert and Delete Operations

Example 7-5 shows a SPARQL Update operation (from ARQ 2.8.8) involving multiple insert
and delete operations.

PREFIX : <http://example/>
CREATE GRAPH <http://example/graph> ;
INSERT DATA { :r :p 123 } ;
INSERT DATA { :r :p 1066 } ;
DELETE DATA { :r :p 1066 } ;
INSERT DATA {
 GRAPH <http://example/graph> { :r :p 123 . :r :p 1066 }
} ;
DELETE DATA {
 GRAPH <http://example/graph> { :r :p 123 }
}

After running the update operation in Example 7-5 against an empty DatasetGraphOracleSem,
running the SPARQL query SELECT ?s ?p ?o WHERE {?s ?p ?o} generates the following
response:

| s | p |
o |
===
======
| <http://example/r> | <http://example/p> | "123"^^<http://www.w3.org/2001/
XMLSchema#decimal>

Using the same data, running the SPARQL query SELECT ?g ?s ?p ?o where {GRAPH ?g {?
s ?p ?o}} generates the following response:

| g | s | p |
o |
===
================================
| <http://example/graph> | <http://example/r> | <http://example/p> | "1066"^^<http://
www.w3.org/2001/XMLSchema#decimal>

7.10 Analytical Functions for RDF Data
You can perform analytical functions on RDF data by using the SemNetworkAnalyst class in the
oracle.spatial.rdf.client.jena package.

This support integrates the Network Data Model Graph logic with the underlying RDF data
structures. Therefore, to use analytical functions on RDF data, you must be familiar with the
Network Data Model Graph feature, which is documented in Oracle Spatial Topology and
Network Data Model Developer's Guide.

The required NDM Java libraries, including sdonm.jar and sdoutl.jar, are under the
directory $ORACLE_HOME/md/jlib. Note that xmlparserv2.jar (under $ORACLE_HOME/xdk/lib)
must be included in the classpath definition.

Chapter 7
Analytical Functions for RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 91

Example 7-6 Performing Analytical functions on RDF Data

Example 7-6 uses the SemNetworkAnalyst class, which internally uses the NDM
NetworkAnalyst API

Oracle oracle = new Oracle(jdbcUrl, user, password);
GraphOracleSem graph = new GraphOracleSem(oracle, modelName);

Node nodeA = Node.createURI("http://A");
Node nodeB = Node.createURI("http://B");
Node nodeC = Node.createURI("http://C");
Node nodeD = Node.createURI("http://D");
Node nodeE = Node.createURI("http://E");
Node nodeF = Node.createURI("http://F");
Node nodeG = Node.createURI("http://G");
Node nodeX = Node.createURI("http://X");

// An anonymous node
Node ano = Node.createAnon(new AnonId("m1"));

Node relL = Node.createURI("http://likes");
Node relD = Node.createURI("http://dislikes");
Node relK = Node.createURI("http://knows");
Node relC = Node.createURI("http://differs");

graph.add(new Triple(nodeA, relL, nodeB));
graph.add(new Triple(nodeA, relC, nodeD));
graph.add(new Triple(nodeB, relL, nodeC));
graph.add(new Triple(nodeA, relD, nodeC));

graph.add(new Triple(nodeB, relD, ano));
graph.add(new Triple(nodeC, relL, nodeD));
graph.add(new Triple(nodeC, relK, nodeE));
graph.add(new Triple(ano, relL, nodeD));
graph.add(new Triple(ano, relL, nodeF));
graph.add(new Triple(ano, relD, nodeB));

// X only likes itself
graph.add(new Triple(nodeX, relL, nodeX));

graph.commitTransaction();
HashMap<Node, Double> costMap = new HashMap<Node, Double>();
costMap.put(relL, Double.valueOf((double)0.5));
costMap.put(relD, Double.valueOf((double)1.5));
costMap.put(relC, Double.valueOf((double)5.5));

graph.setDOP(4); // this allows the underlying LINK/NODE tables
 // and indexes to be created in parallel.

SemNetworkAnalyst sna = SemNetworkAnalyst.getInstance(
 graph, // network data source
 true, // directed graph
 true, // cleanup existing NODE and LINK table
 costMap
);

psOut.println("From nodeA to nodeC");
Node[] nodeArray = sna.shortestPathDijkstra(nodeA, nodeC);
printNodeArray(nodeArray, psOut);

psOut.println("From nodeA to nodeD");
nodeArray = sna.shortestPathDijkstra(nodeA, nodeD);

Chapter 7
Analytical Functions for RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 91

printNodeArray(nodeArray, psOut);

psOut.println("From nodeA to nodeF");
nodeArray = sna.shortestPathAStar(nodeA, nodeF);
printNodeArray(nodeArray, psOut);

psOut.println("From ano to nodeC");
nodeArray = sna.shortestPathAStar(ano, nodeC);
printNodeArray(nodeArray, psOut);

psOut.println("From ano to nodeX");
nodeArray = sna.shortestPathAStar(ano, nodeX);
printNodeArray(nodeArray, psOut);

graph.close();
oracle.dispose();
...
...

// A helper function to print out a path
public static void printNodeArray(Node[] nodeArray, PrintStream psOut)
{
 if (nodeArray == null) {
 psOut.println("Node Array is null");
 return;
 }
 if (nodeArray.length == 0) {psOut.println("Node Array is empty"); }
 int iFlag = 0;
 psOut.println("printNodeArray: full path starts");
 for (int iHops = 0; iHops < nodeArray.length; iHops++) {
 psOut.println("printNodeArray: full path item " + iHops + " = "
 + ((iFlag == 0) ? "[n] ":"[e] ") + nodeArray[iHops]);
 iFlag = 1 - iFlag;
 }
}

In Example 7-6:

• A GraphOracleSem object is constructed and a few triples are added to the GraphOracleSem
object. These triples describe several individuals and their relationships including likes,
dislikes, knows, and differs.

• A cost mapping is constructed to assign a numeric cost value to different links/predicates
(of the RDF graph). In this case, 0.5, 1.5, and 5.5 are assigned to predicates likes, dislikes,
and differs, respectively. This cost mapping is optional. If the mapping is absent, then all
predicates will be assigned the same cost 1. When cost mapping is specified, this mapping
does not need to be complete; for predicates not included in the cost mapping, a default
value of 1 is assigned.

The output of Example 7-6 is as follows. In this output, the shortest paths are listed for the
given start and end nodes. Note that the return value of sna.shortestPathAStar(ano, nodeX)
is null because there is no path between these two nodes.

From nodeA to nodeC
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A ## "n" denotes
Node
printNodeArray: full path item 1 = [e] http://likes ## "e" denotes Edge (Link)
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C

Chapter 7
Analytical Functions for RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 91

From nodeA to nodeD
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A
printNodeArray: full path item 1 = [e] http://likes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C
printNodeArray: full path item 5 = [e] http://likes
printNodeArray: full path item 6 = [n] http://D

From nodeA to nodeF
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A
printNodeArray: full path item 1 = [e] http://likes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://dislikes
printNodeArray: full path item 4 = [n] m1
printNodeArray: full path item 5 = [e] http://likes
printNodeArray: full path item 6 = [n] http://F

From ano to nodeC
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] m1
printNodeArray: full path item 1 = [e] http://dislikes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C

From ano to nodeX
Node Array is null

The underlying RDF graph view (SEMM_<rdf_graph_name> or RDFM_<rdf_graph_name>)
cannot be used directly by NDM functions, and so SemNetworkAnalyst creates necessary
tables that contain the nodes and links that are derived from a given RDF graph. These tables
are not updated automatically when the RDF graph changes; rather, you can set the cleanup
parameter in SemNetworkAnalyst.getInstance to true, to remove old node and link tables and
to rebuild updated tables.

Example 7-7 Implementing NDM nearestNeighbors Function on Top of RDF Data

Example 7-7 implements the NDM nearestNeighbors function on top of RDF data. This gets a
NetworkAnalyst object from the SemNetworkAnalyst instance, gets the node ID, creates
PointOnNet objects, and processes LogicalSubPath objects.

%cat TestNearestNeighbor.java

import java.io.*;
import java.util.*;
import org.apache.jena.graph.*;
import org.apache.jena.update.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.spatial.rdf.client.jena.SemNetworkAnalyst;
import oracle.spatial.network.lod.LODGoalNode;
import oracle.spatial.network.lod.LODNetworkConstraint;
import oracle.spatial.network.lod.NetworkAnalyst;
import oracle.spatial.network.lod.PointOnNet;
import oracle.spatial.network.lod.LogicalSubPath;

/**
 * This class implements a nearestNeighbors function on top of RDF data
 * using public APIs provided in SemNetworkAnalyst and Oracle Spatial NDM
 */

Chapter 7
Analytical Functions for RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 91

public class TestNearestNeighbor
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 PrintStream psOut = System.out;

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 String szModelName = "test_nn";
 // First construct a TBox and load a few axioms
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 String insertString =
 " PREFIX my: <http://my.com/> " +
 " INSERT DATA " +
 " { my:A my:likes my:B . " +
 " my:A my:likes my:C . " +
 " my:A my:knows my:D . " +
 " my:A my:dislikes my:X . " +
 " my:A my:dislikes my:Y . " +
 " my:C my:likes my:E . " +
 " my:C my:likes my:F . " +
 " my:C my:dislikes my:M . " +
 " my:D my:likes my:G . " +
 " my:D my:likes my:H . " +
 " my:F my:likes my:M . " +
 " } ";
 UpdateAction.parseExecute(insertString, model);

 GraphOracleSem g = model.getGraph();
 g.commitTransaction();
 g.setDOP(4);

 HashMap<Node, Double> costMap = new HashMap<Node, Double>();
 costMap.put(Node.createURI("http://my.com/likes"), Double.valueOf(1.0));
 costMap.put(Node.createURI("http://my.com/dislikes"), Double.valueOf(4.0));
 costMap.put(Node.createURI("http://my.com/knows"), Double.valueOf(2.0));

 SemNetworkAnalyst sna = SemNetworkAnalyst.getInstance(
 g, // source RDF graph
 true, // directed graph
 true, // cleanup old Node/Link tables
 costMap
);

 Node nodeStart = Node.createURI("http://my.com/A");
 long origNodeID = sna.getNodeID(nodeStart);

 long[] lIDs = {origNodeID};

 // translate from the original ID
 long nodeID = (sna.mapNodeIDs(lIDs))[0];

 NetworkAnalyst networkAnalyst = sna.getEmbeddedNetworkAnalyst();

 LogicalSubPath[] lsps = networkAnalyst.nearestNeighbors(
 new PointOnNet(nodeID), // startPoint
 6, // numberOfNeighbors
 1, // searchLinkLevel

Chapter 7
Analytical Functions for RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 91

 1, // targetLinkLevel
 (LODNetworkConstraint) null, // constraint
 (LODGoalNode) null // goalNodeFilter
);

 if (lsps != null) {
 for (int idx = 0; idx < lsps.length; idx++) {
 LogicalSubPath lsp = lsps[idx];
 Node[] nodePath = sna.processLogicalSubPath(lsp, nodeStart);
 psOut.println("Path " + idx);
 printNodeArray(nodePath, psOut);
 }
 }

 g.close();
 sna.close();
 oracle.dispose();
 }

 public static void printNodeArray(Node[] nodeArray, PrintStream psOut)
 {
 if (nodeArray == null) {
 psOut.println("Node Array is null");
 return;
 }
 if (nodeArray.length == 0) {
 psOut.println("Node Array is empty");
 }
 int iFlag = 0;
 psOut.println("printNodeArray: full path starts");
 for (int iHops = 0; iHops < nodeArray.length; iHops++) {
 psOut.println("printNodeArray: full path item " + iHops + " = "
 + ((iFlag == 0) ? "[n] ":"[e] ") + nodeArray[iHops]);
 iFlag = 1 - iFlag;
 }
 }
}

The output of Example 7-7 is as follows.

Path 0
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C

Path 1
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/B

Path 2
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/knows
printNodeArray: full path item 2 = [n] http://my.com/D

Path 3
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A

Chapter 7
Analytical Functions for RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 91

printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/E

Path 4
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/F

Path 5
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/knows
printNodeArray: full path item 2 = [n] http://my.com/D
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/H

• Generating Contextual Information about a Path in a Graph

7.10.1 Generating Contextual Information about a Path in a Graph
It is sometimes useful to see contextual information about a path in a graph, in addition to the
path itself. The buildSurroundingSubGraph method in the SemNetworkAnalyst class can
output a DOT file (graph description language file, extension .gv) into the specified Writer
object. For each node in the path, up to ten direct neighbors are used to produce a surrounding
subgraph for the path. The following example shows the usage of generating a DOT file with
contextual information, specifically the output from the analytical functions used in
Example 7-6.

nodeArray = sna.shortestPathDijkstra(nodeA, nodeD);
printNodeArray(nodeArray, psOut);

FileWriter dotWriter = new FileWriter("Shortest_Path_A_to_D.gv");
sna.buildSurroundingSubGraph(nodeArray, dotWriter);

The generated output DOT file from the preceding example is straightforward, as shown in the
following example:

% cat Shortest_Path_A_to_D.gv
digraph { rankdir = LR; charset="utf-8";

"Rhttp://A" [label="http://A" shape=rectangle,color=red,style = filled,];
"Rhttp://B" [label="http://B" shape=rectangle,color=red,style = filled,];
"Rhttp://A" -> "Rhttp://B" [label="http://likes" color=red, style=bold,];
"Rhttp://C" [label="http://C" shape=rectangle,color=red,style = filled,];
"Rhttp://A" -> "Rhttp://C" [label="http://dislikes"];
"Rhttp://D" [label="http://D" shape=rectangle,color=red,style = filled,];
"Rhttp://A" -> "Rhttp://D" [label="http://differs"];
"Rhttp://B" -> "Rhttp://C" [label="http://likes" color=red, style=bold,];
"Rm1" [label="m1" shape=ellipse,color=blue,];
"Rhttp://B" -> "Rm1" [label="http://dislikes"];
"Rm1" -> "Rhttp://B" [label="http://dislikes"];
"Rhttp://C" -> "Rhttp://D" [label="http://likes" color=red, style=bold,];
"Rhttp://E" [label="http://E" shape=ellipse,color=blue,];
"Rhttp://C" -> "Rhttp://E" [label="http://knows"];
"Rm1" -> "Rhttp://D" [label="http://likes"];
}

Chapter 7
Analytical Functions for RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 91

You can also use methods in the SemNetworkAnalyst and GraphOracleSem classes to produce
more sophisticated visualization of the analytical function output.

You can convert the preceding DOT file into a variety of image formats. Figure 7-1 is an image
representing the information in the preceding DOT file.

Figure 7-1 Visual Representation of Analytical Function Output

7.11 Support for Server-Side APIs
This section describes some of the RDF Graph features that are exposed by RDF Graph
support for Apache Jena.

For comprehensive documentation of the API calls that support the available features, see the
RDF Graph support for Apache Jena reference information (Javadoc). For additional
information about the server-side features exposed by the support for Apache Jena, see the
relevant chapters in this manual.

• RDF Graph Collections Support

• Connection Pooling Support

• RDF Graph PL/SQL Interfaces

• Inference Options

• PelletInfGraph Class Support Deprecated

7.11.1 RDF Graph Collections Support
RDF graph collections (explained in RDF Graph Collections) are specified in the
GraphOracleSem constructor, and they are handled transparently. If an RDF graph collection
exists for the model-rulebase combination, it is used in query answering; if such an RDF graph
collection does not exist, it is created in the database.

Note

RDF graph collection support through the support for Apache Jena is available only
with Oracle Database Release 11.2 or later.

The following example reuses an existing RDF graph collection.

String modelName = "EX";
String m1 = "EX_1";

Chapter 7
Support for Server-Side APIs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 91

ModelOracleSem defaultModel =
 ModelOracleSem.createOracleSemModel(oracle, modelName);

// create these RDF graphs in case they don't exist
ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, m1);

String vmName = "VM_" + modelName;

//create an RDF graph collection containing EX and EX_1
oracle.executeCall(
"begin sem_apis.create_virtual_model(?,sem_models('"+ m1 + "','"+ modelName+"'),null);
end;",vmName);

String[] modelNames = {m1};
String[] rulebaseNames = {};

Attachment attachment = Attachment.createInstance(modelNames, rulebaseNames,
InferenceMaintenanceMode.NO_UPDATE, QueryOptions.ALLOW_QUERY_VALID_AND_DUP);

// vmName is passed to the constructor, so GraphOracleSem will use the RDF graph
collection
// named vmname (if the current user has read privileges on it)
GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, vmName);
graph.add(Triple.create(Node.createURI("urn:alice"),
 Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
 Node.createURI("mailto:alice@example")));
ModelOracleSem model = new ModelOracleSem(graph);

String queryString =

 " SELECT ?subject ?object WHERE { ?subject ?p ?object } ";

Query query = QueryFactory.create(queryString) ;
QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

try {
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 psOut.println("soln " + soln);
 }
}
finally {
 qexec.close() ;
}

OracleUtils.dropSemanticModel(oracle, modelName);
OracleUtils.dropSemanticModel(oracle, m1);

oracle.dispose();

You can also use the GraphOracleSem constructor to create an RDF graph collection, as in the
following example:

GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, true);

In this example, the fourth parameter (true) specifies that an RDF graph collection needs to be
created for the specified modelName and attachment.

Chapter 7
Support for Server-Side APIs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 91

7.11.2 Connection Pooling Support
Oracle Connection Pooling is provided through the support for Apache Jena OraclePool class.
Once this class is initialized, it can return Oracle objects out of its pool of available
connections. Oracle objects are essentially database connection wrappers. After dispose is
called on the Oracle object, the connection is returned to the pool. More information about
using OraclePool can be found in the API reference information (Javadoc).

The following example sets up an OraclePool object with five (5) initial connections.

public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 // test with connection properties
 java.util.Properties prop = new java.util.Properties();
 prop.setProperty("MinLimit", "2"); // the cache size is 2 at least
 prop.setProperty("MaxLimit", "10");
 prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
 prop.setProperty("InactivityTimeout", "1800"); // seconds
 prop.setProperty("AbandonedConnectionTimeout", "900"); // seconds
 prop.setProperty("MaxStatementsLimit", "10");
 prop.setProperty("PropertyCheckInterval", "60"); // seconds

 System.out.println("Creating OraclePool");
 OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop,
 "OracleSemConnPool");
 System.out.println("Done creating OraclePool");

 // grab an Oracle and do something with it
 System.out.println("Getting an Oracle from OraclePool");
 Oracle oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"),
 Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.close();
 // return the Oracle back to the pool
 oracle.dispose();

 // grab another Oracle and do something else
 System.out.println("Getting an Oracle from OraclePool");
 oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"),
 Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);

Chapter 7
Support for Server-Side APIs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 91

 // return the Oracle object back to the pool
 oracle.dispose();
}

7.11.3 RDF Graph PL/SQL Interfaces
Several RDF PL/SQL subprograms are available through the support for Apache Jena.
Table 7-2 lists the subprograms and their corresponding Java class and methods.

Table 7-2 PL/SQL Subprograms and Corresponding RDF graph support for Apache
Jena Java Class and Methods

PL/SQL Subprogram Corresponding Java Class and Methods

SEM_APIS.DROP_RDF_GRAPH OracleUtils.dropSemanticModel

SEM_APIS.MERGE_RDF_GRAPHS OracleUtils.mergeModels

SEM_APIS.SWAP_NAMES OracleUtils.swapNames

SEM_APIS.REMOVE_DUPLICATES OracleUtils.removeDuplicates

SEM_APIS.RENAME_RDF_GRAPH OracleUtils.renameModels

For information about these PL/SQL utility subprograms, see the reference information in
SEM_APIS Package Subprograms. For information about the corresponding Java class and
methods, see the RDF graph support for Apache Jena API Reference documentation
(Javadoc).

7.11.4 Inference Options
You can add options to inferred graph calls by using the following methods in the Attachment
class (in package oracle.spatial.rdf.client.jena):

public void setUseLocalInference(boolean useLocalInference)
public boolean getUseLocalInference()

public void setDefGraphForLocalInference(String defaultGraphName)
public String getDefGraphForLocalInference()

public String getInferenceOption()
public void setInferenceOption(String inferenceOption)

Example 7-8 Specifying Inference Options

For more information about these methods, see the Javadoc.

Example 7-8 enables parallel inference (with a degree of 4) and RAW format when creating an
inferred graph. The example also uses the performInference method to create the inferred
graph (comparable to using the SEM_APIS.CREATE_INFERRED_GRAPH PL/SQL
procedure).

import java.io.*;
import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.update.*;
import org.apache.jena.sparql.core.DatasetImpl;

public class TestNewInference
{
 public static void main(String[] args) throws Exception

Chapter 7
Support for Server-Side APIs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 91

 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 PrintStream psOut = System.out;

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 String szTBoxName = "test_new_tbox";
 {
 // First construct a TBox and load a few axioms
 ModelOracleSem modelTBox = ModelOracleSem.createOracleSemModel(oracle, szTBoxName);
 String insertString =
 " PREFIX my: <http://my.com/> " +
 " PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> " +
 " INSERT DATA " +
 " { my:C1 rdfs:subClassOf my:C2 . " +
 " my:C2 rdfs:subClassOf my:C3 . " +
 " my:C3 rdfs:subClassOf my:C4 . " +
 " } ";
 UpdateAction.parseExecute(insertString, modelTBox);
 modelTBox.close();
 }

 String szABoxName = "test_new_abox";
 {
 // Construct an ABox and load a few quads
 ModelOracleSem modelABox = ModelOracleSem.createOracleSemModel(oracle, szABoxName);
 DatasetGraphOracleSem dataset =
DatasetGraphOracleSem.createFrom(modelABox.getGraph());
 modelABox.close();

 String insertString =
 " PREFIX my: <http://my.com/> " +
 " PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 " INSERT DATA " +
 " { GRAPH my:G1 { my:I1 rdf:type my:C1 . " +
 " my:I2 rdf:type my:C2 . " +
 " } " +
 " }; " +
 " INSERT DATA " +
 " { GRAPH my:G2 { my:J1 rdf:type my:C3 . " +
 " } " +
 " } ";
 UpdateAction.parseExecute(insertString, dataset);
 dataset.close();
 }

 String[] attachedModels = new String[1];
 attachedModels[0] = szTBoxName;

 String[] attachedRBs = {"OWL2RL"};

 Attachment attachment = Attachment.createInstance(
 attachedModels, attachedRBs,
 InferenceMaintenanceMode.NO_UPDATE,
 QueryOptions.ALLOW_QUERY_INVALID);

 // We are going to run named graph based local inference
 attachment.setUseLocalInference(true);

Chapter 7
Support for Server-Side APIs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 91

 // Set the default graph (TBox)
 attachment.setDefGraphForLocalInference(szTBoxName);

 // Set the inference option to use parallel inference
 // with a degree of 4, and RAW format.
 attachment.setInferenceOption("DOP=4,RAW8=T");

 GraphOracleSem graph = new GraphOracleSem(
 oracle,
 szABoxName,
 attachment
);
 DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graph);
 graph.close();

 // Invoke create_inferred_graph PL/SQL API
 dsgos.performInference();

 psOut.println("TestNewInference: # of inferred graph " +
 Long.toString(dsgos.getInferredGraphSize()));

 String queryString =
 " SELECT ?g ?s ?p ?o WHERE { GRAPH ?g {?s ?p ?o } } " ;

 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(
 query, DatasetImpl.wrap(dsgos));
 ResultSet results = qexec.execSelect();

 ResultSetFormatter.out(psOut, results);

 dsgos.close();
 oracle.dispose();
 }
}

The output of Example 7-8 is as follows.

TestNewInference: # of inferred graph 9

| g | s |
p | o |
===
===========================
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C2> |
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C1> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C2> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |
| <http://my.com/G2> | <http://my.com/J1> | <http://www.w3.org/1999/02/22-rdf-syntax-

Chapter 7
Support for Server-Side APIs

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 91

ns#type> | <http://my.com/C3> |
| <http://my.com/G2> | <http://my.com/J1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |

For information about using OWL inferencing, see Using OWL Inferencing.

7.11.5 PelletInfGraph Class Support Deprecated
The support for the PelletInfGraph class within the support for Apache Jena is deprecated.
You should instead use the more optimized Oracle/Pellet integration through the PelletDb OWL
2 reasoner for Oracle AI Database.

7.12 Bulk Loading Using RDF Graph Support for Apache Jena
To load thousands to hundreds of thousands of RDF/OWL data files into an Oracle AI
Database, you can use the prepareBulk and completeBulk methods in the
OracleBulkUpdateHandler Java class to simplify the task.

The addInBulk method in the OracleBulkUpdateHandler class can load triples of an RDF
graph into an Oracle AI Database in bulk loading style. If the graph is a Jena in-memory graph,
the operation is limited by the size of the physical memory. The prepareBulk method bypasses
the Jena in-memory graphs and takes a direct input stream to an RDF data file, parses the
data, and load the triples into an underlying staging table. If the staging table and an
accompanying table for storing long literals do not already exist, they are created automatically.

The prepareBulk method can be invoked multiple times to load multiple data files into the
same underlying staging table. It can also be invoked concurrently, assuming the hardware
system is balanced and there are multiple CPU cores and sufficient I/O capacity.

Once all the data files are processed by the prepareBulk method, you can invoke
completeBulk to load all the data into the RDF network.

Example 7-9 Loading Data into the Staging Table (prepareBulk)

Example 7-9 shows how to load all data files in directory dir_1 into the underlying staging
table. Long literals are supported and will be stored in a separate table. The data files can be
compressed using GZIP to save storage space, and the prepareBulk method can detect
automatically if a data file is compressed using GZIP or not.

Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);

PrintStream psOut = System.out;

String dirname = "dir_1";
File fileDir = new File(dirname);
String[] szAllFiles = fileDir.list();

// loop through all the files in a directory
for (int idx = 0; idx < szAllFiles.length; idx++) {
 String szIndFileName = dirname + File.separator + szAllFiles[idx];
 psOut.println("process to [ID = " + idx + "] file " + szIndFileName);
 psOut.flush();

 try {
 InputStream is = new FileInputStream(szIndFileName);
 graph.getBulkUpdateHandler().prepareBulk(

Chapter 7
Bulk Loading Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 91

 is, // input stream
 "http://example.com", // base URI
 "RDF/XML", // data file type: can be RDF/XML, N-TRIPLE, etc.
 "SEMTS", // tablespace
 null, // flags
 null, // listener
 null // staging table name.
);
 is.close();
 }
 catch (Throwable t) {
 psOut.println("Hit exception " + t.getMessage());
 }
}

graph.close();
oracle.dispose();

The code in Example 7-9, starting from creating a new Oracle object and ending with disposing
of the Oracle object, can be executed in parallel. Assume there is a quad-core CPU and
enough I/O capacity on the database hardware system; you can divide up all the data files and
save them into four separate directories: dir_1, dir_2, dir_3, and dir_4. Four Java threads of
processes can be started to work on those directories separately and concurrently. (For more
information, see Using prepareBulk in Parallel (Multithreaded) Mode.)

Example 7-10 Loading Data from the Staging Table into the RDF Network
(completeBulk)

After all data files are processed, you can invoke, just once, the completeBulk method to load
the data from staging table into the RDF network, as shown in Example 7-10. Triples with long
literals will be loaded also.

graph.getBulkUpdateHandler().completeBulk(
 null, // flags for invoking SEM_APIS.bulk_load_from_staging_table
 null // staging table name
);

The prepareBulk method can also take a Jena RDF graph as an input data source, in which
case triples in that Jena RDF graph are loaded into the underlying staging table. For more
information, see the Javadoc.

Example 7-11 Using prepareBulk with RDFa

In addition to loading triples from Jena RDF graphs and data files, the prepareBulk method
supports RDFa, as shown in Example 7-11. (RDFa is explained in http://www.w3.org/TR/
xhtml-rdfa-primer/.)

graph.getBulkUpdateHandler().prepareBulk(
 rdfaUrl, // url to a web page using RDFa
 "SEMTS", // tablespace
 null, // flags
 null, // listener
 null // staging table name
);

To parse RDFa, the relevant java-rdfa libraries must be included in the classpath. No
additional setup or API calls are required. (For information about java-rdfa, see http://
www.rootdev.net/maven/projects/java-rdfa/ and the other topics there under Project
Information.)

Chapter 7
Bulk Loading Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 91

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.rootdev.net/maven/projects/java-rdfa/
http://www.rootdev.net/maven/projects/java-rdfa/

Note that if the rdfaUrl is located outside a firewall, you may need to set the following HTTP
Proxy-related Java VM properties:

-Dhttp.proxyPort=...
-Dhttp.proxyHost=...

Example 7-12 Loading Quads into a DatasetGraph

The preceding examples in this section load triple data into a single graph. Loading quad data
that may span across multiple named graphs (such as data in NQUADS format) requires the
use of the DatasetGraphOracleSem class. The DatasetGraphOracleSem class does not use the
BulkUpdateHandler API, but does provide a similar prepareBulk and completeBulk interface,
as shown in Example 7-12.

Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

// Can only create DatasetGraphOracleSem from an existing GraphOracleSem
GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
DatasetGraphOracleSem dataset = DatasetGraphOracleSem.createFrom(graph);

// Don't need graph anymore, close it to free resources
graph.close();

try {
 InputStream is = new FileInputStream(szFileName);
 // load NQUADS file into a staging table. This file can be gzipp'ed.
 dataset.prepareBulk(
 is, // input stream
 "http://my.base/", // base URI
 "N-QUADS", // data file type; can be "TRIG"
 "SEMTS", // tablespace
 null, // flags
 null, // listener
 null, // staging table name
 false // truncate staging table before load
);
 // Load quads from staging table into the dataset
 dataset.completeBulk(
 null, // flags; can be "PARSE PARALLEL_CREATE_INDEX PARALLEL=4
 // mbv_method=shadow" on a quad core machine
 null // staging table name
);
}
catch (Throwable t) {
 System.out.println("Hit exception " + t.getMessage());
}
finally {
 dataset.close();
 oracle.dispose();
}

• Using prepareBulk in Parallel (Multithreaded) Mode

• Handling Illegal Syntax During Data Loading

7.12.1 Using prepareBulk in Parallel (Multithreaded) Mode
Example 7-9 provided a way to load, sequentially, a set of files under a file system directory to
an Oracle AI Database table (staging table). Example 7-13 loads, concurrently, a set of files to
an Oracle table (staging table). The degree of parallelism is controlled by the input parameter
iMaxThreads.

Chapter 7
Bulk Loading Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 91

On a balanced hardware setup with 4 or more CPU cores, setting iMaxThreads to 8 (or 16) can
improve significantly the speed of prepareBulk operation when there are many data files to be
processed.

Example 7-13 Using prepareBulk with iMaxThreads

public void testPrepareInParallel(String jdbcUrl, String user,
 String password, String modelName,
 String lang,
 String tbs,
 String dirname,
 int iMaxThreads,
 PrintStream psOut)
 throws SQLException, IOException, InterruptedException
 {
 File dir = new File(dirname);
 File[] files = dir.listFiles();

 // create a set of physical Oracle connections and graph objects
 Oracle[] oracles = new Oracle[iMaxThreads];
 GraphOracleSem[] graphs = new GraphOracleSem[iMaxThreads];
 for (int idx = 0; idx < iMaxThreads; idx++) {
 oracles[idx] = new Oracle(jdbcUrl, user, password);
 graphs[idx] = new GraphOracleSem(oracles[idx], modelName);
 }

 PrepareWorker[] workers = new PrepareWorker[iMaxThreads];
 Thread[] threads = new Thread[iMaxThreads];
 for (int idx = 0; idx < iMaxThreads; idx++) {
 workers[idx] = new PrepareWorker(
 graphs[idx],
 files,
 idx,
 iMaxThreads,
 lang,
 tbs,
 psOut
);
 threads[idx] = new Thread(workers[idx], workers[idx].getName());
 psOut.println("testPrepareInParallel: PrepareWorker " + idx + " running");
 threads[idx].start();
 }

 psOut.println("testPrepareInParallel: all threads started");

 for (int idx = 0; idx < iMaxThreads; idx++) {
 threads[idx].join();
 }
 for (int idx = 0; idx < iMaxThreads; idx++) {
 graphs[idx].close();
 oracles[idx].dispose();
 }
 }

 static class PrepareWorker implements Runnable
 {
 GraphOracleSem graph = null;
 int idx;
 int threads;
 File[] files = null;
 String lang = null;
 String tbs = null;

Chapter 7
Bulk Loading Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 91

 PrintStream psOut;

 public void run()
 {
 long lStartTime = System.currentTimeMillis();
 for (int idxFile = idx; idxFile < files.length; idxFile += threads) {
 File file = files[idxFile];
 try {
 FileInputStream fis = new FileInputStream(file);
 graph.getBulkUpdateHandler().prepareBulk(
 fis,
 "http://base.com/",
 lang,
 tbs,
 null, // flags
 new MyListener(psOut), // listener
 null // table name
);
 fis.close();
 }
 catch (Exception e) {
 psOut.println("PrepareWorker: thread ["+getName()+"] error "+ e.getMessage());
 }
 psOut.println("PrepareWorker: thread ["+getName()+"] done to "
 + idxFile + ", file = " + file.toString()
 + " in (ms) " + (System.currentTimeMillis() - lStartTime));
 }
 }

 public PrepareWorker(GraphOracleSem graph,
 File[] files,
 int idx,
 int threads,
 String lang,
 String tbs,
 PrintStream psOut)
 {
 this.graph = graph;
 this.files = files;
 this.psOut = psOut;
 this.idx = idx;
 this.threads = threads;
 this.files = files;
 this.lang = lang;
 this.tbs = tbs ;
 }

 public String getName()
 {
 return "PrepareWorker" + idx;
 }
 }

 static class MyListener implements StatusListener
 {
 PrintStream m_ps = null;
 public MyListener(PrintStream ps) { m_ps = ps; }
 long lLastBatch = 0;

 public void statusChanged(long count)
 {
 if (count - lLastBatch >= 10000) {

Chapter 7
Bulk Loading Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 91

 m_ps.println("process to " + Long.toString(count));
 lLastBatch = count;
 }
 }

 public int illegalStmtEncountered(Node graphNode, Triple triple, long count)
 {
 m_ps.println("hit illegal statement with object " + triple.getObject().toString());
 return 0; // skip it
 }
 }

7.12.2 Handling Illegal Syntax During Data Loading
You can skip illegal triples and quads when using prepareBulk. This feature is useful if the
source RDF data may contain syntax errors. In Example 7-14, a customized implementation of
the StatusListener interface (defined in package oracle.spatial.rdf.client.jena) is
passed as a parameter to prepareBulk. In this example, the illegalStmtEncountered method
prints the object field of the illegal triple, and returns 0 so that prepareBulk can skip that illegal
triple and move on.

Example 7-14 Skipping Triples with Illegal Syntax

....

Oracle oracle = new Oracle(jdbcUrl, user, password);
GraphOracleSem graph = new GraphOracleSem(oracle, modelName);
PrintStream psOut = System.err;

graph.getBulkUpdateHandler().prepareBulk(
 new FileInputStream(rdfDataFilename),
 "http://base.com/", // base
 lang, // data format, can be "N-TRIPLES" "RDF/XML" ...
 tbs, // tablespace name
 null, // flags
 new MyListener(psOut), // call back to show progress and also process illegal triples/
quads
 null, // tableName, if null use default names
 false // truncate existing staging tables
);

 graph.close();
 oracle.dispose();

 // A customized StatusListener interface implementation
 public class MyListener implements StatusListener
 {
 PrintStream m_ps = null;
 public MyListener(PrintStream ps) { m_ps = ps; }

 public void statusChanged(long count)
 {
 // m_ps.println("process to " + Long.toString(count));
 }

 public int illegalStmtEncountered(Node graphNode, Triple triple, long count)
 {
 m_ps.println("hit illegal statement with object " + triple.getObject().toString());
 return 0; // skip it

Chapter 7
Bulk Loading Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 91

 }
 }

7.13 Automatic Variable Renaming
Automatic variable renaming can enable certain queries that previously failed to run
successfully.

Previously, variable names used in SPARQL queries were passed directly on to Oracle AI
Database as a part of a SQL statement. If the variable names included a SQL or PL/SQL
reserved keyword, the query failed to execute. For example, the following SPARQL query used
to fail because the word date as a special meaning to Oracle AI Database SQL processing
engine.

select ?date { :event :happenedOn ?date }

Currently, this query does not fail, because a "smart scan" is performed and automatic
replacement is done on certain reserved variable names (or variable names that are very long)
before the query is sent to Oracle AI Database for execution. The replacement is based on a
list of reserved keywords that are stored in the following file embedded in sdordfclient.jar:

oracle/spatial/rdf/client/jena/oracle_sem_reserved_keywords.lst

This file contains over 100 entries, and you can edit the file to add entries if necessary.

The following are examples of SPARQL queries that use SQL or PL/SQL reserved keywords
as variables, and that will succeed because of automatic variable renaming:

• Query using SELECT as a variable name:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
select ?SELECT ?z
where
{ ?SELECT foaf:name ?y.
 optional {?SELECT foaf:knows ?z.}
}

• Query using ARRAY and DATE as variable names:

PREFIX x: <http://example.com#>
construct {
 ?ARRAY x:date ?date .
}
where {
 ?ARRAY x:happenedOn ?date .
}

7.14 JavaScript Object Notation (JSON) Format Support
JavaScript Object Notation (JSON) format is supported for SPARQL query responses. JSON
data format is simple, compact, and well suited for JavaScript programs.

For example, assume the following Java code snippet, which calls the
ResultSetFormatter.outputAsJSON method:

Oracle oracle = new Oracle(jdbcUrl, user, password);

GraphOracleSem graph = new GraphOracleSem(oracle, modelName);
ModelOracleSem model = new ModelOracleSem(graph);

graph.add(new Triple(

Chapter 7
Automatic Variable Renaming

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 91

 Node.createURI("http://ds1"),
 Node.createURI("http://dp1"),
 Node.createURI("http://do1")
)
);

graph.add(new Triple(
 Node.createURI("http://ds2"),
 Node.createURI("http://dp2"),
 Node.createURI("http://do2")
)
);
graph.commitTransaction();

Query q = QueryFactory.create("select ?s ?p ?o where {?s ?p ?o}",
 Syntax.syntaxARQ);
QueryExecution qexec = QueryExecutionFactory.create(q, model);

ResultSet results = qexec.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results);

The JSON output is as follows:

{
 "head": {
 "vars": ["s" , "p" , "o"]
 } ,
 "results": {
 "bindings": [
 {
 "s": { "type": "uri" , "value": "http://ds1" } ,
 "p": { "type": "uri" , "value": "http://dp1" } ,
 "o": { "type": "uri" , "value": "http://do1" }
 } ,
 {
 "s": { "type": "uri" , "value": "http://ds2" } ,
 "p": { "type": "uri" , "value": "http://dp2" } ,
 "o": { "type": "uri" , "value": "http://do2" }
 }
]
 }
}

The preceding example can be changed as follows to query a remote SPARQL endpoint
instead of directly against an Oracle AI Database. (If the remote SPARQL endpoint is outside a
firewall, then the HTTP Proxy probably needs to be set.)

Query q = QueryFactory.create("select ?s ?p ?o where {?s ?p ?o}",
 Syntax.syntaxARQ);
QueryExecution qe = QueryExecutionFactory.sparqlService(sparqlURL, q);

ResultSet results = qexec.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results);

To extend the first example in this section to named graphs, the following code snippet adds
two quads to the same Oracle model, executes a named graph-based SPARQL query, and
serializes the query output into JSON format:

DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graph);
graph.close();

dsgos.add(new Quad(Node.createURI("http://g1"),

Chapter 7
JavaScript Object Notation (JSON) Format Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 91

 Node.createURI("http://s1"),
 Node.createURI("http://p1"),
 Node.createURI("http://o1")
)
);
dsgos.add(new Quad(Node.createURI("http://g2"),
 Node.createURI("http://s2"),
 Node.createURI("http://p2"),
 Node.createURI("http://o2")
)
);

Query q1 = QueryFactory.create(
 "select ?g ?s ?p ?o where { GRAPH ?g {?s ?p ?o} }");

QueryExecution qexec1 = QueryExecutionFactory.create(q1,
 DatasetImpl.wrap(dsgos));

ResultSet results1 = qexec1.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results1);

dsgos.close();
oracle.dispose();

The JSON output is as follows:

{
 "head": {
 "vars": ["g" , "s" , "p" , "o"]
 } ,
 "results": {
 "bindings": [
 {
 "g": { "type": "uri" , "value": "http://g1" } ,
 "s": { "type": "uri" , "value": "http://s1" } ,
 "p": { "type": "uri" , "value": "http://p1" } ,
 "o": { "type": "uri" , "value": "http://o1" }
 } ,
 {
 "g": { "type": "uri" , "value": "http://g2" } ,
 "s": { "type": "uri" , "value": "http://s2" } ,
 "p": { "type": "uri" , "value": "http://p2" } ,
 "o": { "type": "uri" , "value": "http://o2" }
 }
]
 }
}

You can also get a JSON response through HTTP against a Fuseki-based SPARQL endpoint,
as in the following example. Normally, when executing a SPARQL query against a SPARQL
Web service endpoint, the Accept request-head field is set to be application/sparql-
results+xml. For JSON output format, replace the Accept request-head field with
application/sparql-results+json.

http://hostname:7001/fuseki/oracle?query=<URL_ENCODED_SPARQL_QUERY>&output=json

7.15 Other Recommendations and Guidelines
This section contains various recommendations and other information related to SPARQL
queries.

Chapter 7
Other Recommendations and Guidelines

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 91

• BOUND or !BOUND Instead of EXISTS or NOT EXISTS

• SPARQL 1.1 SELECT Expressions

• Syntax Involving Bnodes (Blank Nodes)

• Limit in the SERVICE Clause

7.15.1 BOUND or !BOUND Instead of EXISTS or NOT EXISTS
For better performance, use BOUND or !BOUND instead of EXISTS or NOT EXISTS.

7.15.2 SPARQL 1.1 SELECT Expressions
You can use SPARQL 1.1 SELECT expressions without any significant performance overhead,
even if the function is not currently supported within Oracle AI Database. Examples include the
following:

-- Query using SHA1 function
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX eg: <http://biometrics.example/ns#>
SELECT ?name ?email (sha1(?email) as ?sha1)
WHERE
{
 ?x foaf:name ?name ; eg:email ?email .
}

-- Query using CONCAT function
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT (CONCAT(?G, " ", ?S) AS ?name)
WHERE
{
 ?P foaf:givenName ?G ; foaf:surname ?S
}

7.15.3 Syntax Involving Bnodes (Blank Nodes)
Syntax involving bnodes can be used freely in query patterns. For example, the following
bnode-related syntax is supported at the parser level, so each is equivalent to its full triple-
query-pattern-based version.

:x :q [:p "v"] .

(1 ?x 3 4) :p "w" .

(1 [:p :q] (2)) .

7.15.4 Limit in the SERVICE Clause
When writing a SPARQL 1.1 federated query, you can set a limit on returned rows in the
subquery inside the SERVICE clause. This can effectively constrain the amount of data to be
transported between the local repository and the remote SPARQL endpoint.

For example, the following query specifies limit 100 in the subquery in the SERVICE clause:

PREFIX : <http://example.com/>
SELECT ?s ?o
 WHERE
 {

Chapter 7
Other Recommendations and Guidelines

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 91

 ?s :name "CA"
 SERVICE <http://REMOTE_SPARQL_ENDPOINT_HERE>
 {
 select ?s ?o
 {?s :info ?o}
 limit 100
 }
 }

7.16 Example Queries Using RDF Graph Support for Apache
Jena

This section includes example queries using the support for Apache Jena. Each example is
self-contained: it typically creates a model, creates triples, performs a query that may involve
inference, displays the result, and drops the RDF graph.

The example queries perform the following:

• Count asserted triples and asserted plus inferred triples in an example "university"
ontology, both by referencing the ontology by a URL and by bulk loading the ontology from
a local file.

• Run several SPARQL queries using a "family" ontology, including features such as LIMIT,
OFFSET, TIMEOUT, DOP (degree of parallelism), ASK, DESCRIBE, CONSTRUCT,
GRAPH, ALLOW_DUP (duplicate triples with multiple models), SPARUL (inserting data)

• Use the ARQ built-in function

• Use a SELECT cast query

• Instantiate Oracle AI Database using OracleConnection

• Use Oracle connection pooling

To run a query, you must do the following:

1. Include the code in a Java source file. The examples used in this section are supplied in
files in the examples directory of the support for Apache Jena download.

2. Compile the Java source file. For example:

> javac -classpath ../jar/'*' Test.java

Note

The javac and java commands must each be on a single command line.

3. Run the compiled file. For example:

java -classpath ./:../jar/'*' Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> TestModel NET1

• Query Family Relationships

• Load OWL Ontology and Perform OWLPrime Inference

• Bulk Load OWL Ontology and Perform OWLPrime Inference

• SPARQL OPTIONAL Query

• SPARQL Query with LIMIT and OFFSET

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 91

• SPARQL Query with TIMEOUT and DOP

• Query Involving Named Graphs

• SPARQL ASK Query

• SPARQL DESCRIBE Query

• SPARQL CONSTRUCT Query

• Query Multiple Models and Specify "Allow Duplicates"

• SPARQL Update

• SPARQL Query with ARQ Built-In Functions

• SELECT Cast Query

• Instantiate Oracle AI Database Using OracleConnection

• Oracle AI Database Connection Pooling

7.16.1 Query Family Relationships
Example 7-15 Query Family Relationships

The following example specifies that John is the father of Mary, and it selects and displays the
subject and object in each fatherOf relationship

import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.graph.*;
import org.apache.jena.query.*;

public class Test_privnet {

 public static void main(String[] args) throws Exception
 {

 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 Model model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);

 model.getGraph().add(Triple.create(
 NodeFactory.createURI("http://example.com/John"),
 NodeFactory.createURI("http://example.com/fatherOf"),
 NodeFactory.createURI("http://example.com/Mary")));

 Query query = QueryFactory.create(
 "select ?f ?k WHERE {?f <http://example.com/fatherOf> ?k .}");
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 91

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test_privnet.java
java -classpath ./:../jar/'*' Test_privnet jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1 NET1

| f | k |
===
| <http://example.com/John> | <http://example.com/Mary> |

7.16.2 Load OWL Ontology and Perform OWLPrime Inference
The following example loads an OWL ontology and performs OWLPrime inference. Note that
the OWL ontology is in RDF/XML format, and after it is loaded into Oracle it will be serialized
out in N-TRIPLE form. The example also queries for the number of asserted and inferred
triples.

The ontology in this example can be retrieved from http://swat.cse.lehigh.edu/onto/univ-
bench.owl, and it describes roles, resources, and relationships in a university environment.

Example 7-16 Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;

public class Test6_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 Model model = ModelOracleSem.createOracleSemModel(oracle, szModelName, szUser,
szNetworkName);

 // load UNIV ontology
 InputStream in = FileManager.get().open("./univ-bench.owl");

 model.read(in, null);

 OutputStream os = new FileOutputStream("./univ-bench.nt");
 model.write(os, "N-TRIPLE");
 os.close();

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 91

http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://swat.cse.lehigh.edu/onto/univ-bench.owl

 String queryString =
 " SELECT ?subject ?prop ?object WHERE { ?subject ?prop ?object } ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 int iTriplesCount = 0;
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 iTriplesCount++;
 }
 System.out.println("Asserted triples count: " + iTriplesCount);
 }
 finally {
 qexec.close() ;
 }

 Attachment attachment = Attachment.createInstance(
 new String[] {}, "OWLPRIME",
 InferenceMaintenanceMode.NO_UPDATE,
 QueryOptions.DEFAULT);

 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName, attachment, szUser,
szNetworkName);
 graph.analyze();
 graph.performInference();

 query = QueryFactory.create(queryString) ;
 qexec = QueryExecutionFactory.create(query,new ModelOracleSem(graph)) ;

 try {
 int iTriplesCount = 0;
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 iTriplesCount++;
 }
 System.out.println("Asserted + Infered triples count: " + iTriplesCount);
 }
 finally {
 qexec.close() ;
 }

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test6_privnet.java
java -classpath ./:../jar/'*' Test6_privnet jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1 NET1
Asserted triples count: 293
Asserted + Infered triples count: 340

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 91

Note that this output reflects an older version of the LUBM ontology. The latest version of the
ontology has more triples.

7.16.3 Bulk Load OWL Ontology and Perform OWLPrime Inference
The following example loads the same OWL ontology as in Example 7-16, but stored in a local
file using Bulk Loader. Ontologies can also be loaded using an incremental and batch loader;
these two methods are also listed in the example for completeness.

Example 7-17 Bulk Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import org.apache.jena.query.*;
import org.apache.jena.graph.*;
import org.apache.jena.rdf.model.*;
import org.apache.jena.util.*;
import oracle.spatial.rdf.client.jena.*;

public class Test7_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 // in memory Jena Model
 Model model = ModelFactory.createDefaultModel();
 InputStream is = FileManager.get().open("./univ-bench.owl");
 model.read(is, "", "RDF/XML");
 is.close();

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem modelDest = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);

 GraphOracleSem g = modelDest.getGraph();
 g.dropApplicationTableIndex();

 int method = 2; // try bulk loader
 String tbs = "SYSAUX"; // can be customized
 if (method == 0) {
 System.out.println("start incremental");
 modelDest.add(model);
 System.out.println("end size " + modelDest.size());
 }
 else if (method == 1) {
 System.out.println("start batch load");
 g.getBulkUpdateHandler().addInBatch(
 GraphUtil.findAll(model.getGraph()), tbs);
 System.out.println("end size " + modelDest.size());
 }
 else {
 System.out.println("start bulk load");
 g.getBulkUpdateHandler().addInBulk(
 GraphUtil.findAll(model.getGraph()), tbs);
 System.out.println("end size " + modelDest.size());

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 91

 }
 g.rebuildApplicationTableIndex();

 long lCount = g.getCount(Triple.ANY);
 System.out.println("Asserted triples count: " + lCount);

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test7_privnet.java
java -classpath ./:../jar/'*' Test7_privnet jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1 NET1
start bulk load
end size 293
Asserted triples count: 293

Note that this output reflects an older version of the LUBM ontology. The latest version of the
ontology has more triples.

7.16.4 SPARQL OPTIONAL Query
The following example shows a SPARQL OPTIONAL query. It inserts triples that postulate the
following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.

It then finds parent-child relationships, optionally including any grandchild (gkid) relationships.

Example 7-18 SPARQL OPTIONAL Query

import java.io.*;
import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test8_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String networkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, networkName);
 GraphOracleSem g = model.getGraph();

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 91

 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 g.add(Triple.create(
 NodeFactory.createURI("u:Mary"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jill")));

 String queryString =
 " SELECT ?s ?o ?gkid WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?
gkid }} ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 }
 finally {
 qexec.close() ;
 }

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, networkName);

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test8_privnet.java
java -classpath ./:../jar/'*' Test8_privnet jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1 NET1

| s | o | gkid |
==================================
<u:John>	<u:Mary>	<u:Jill>
<u:Mary>	<u:Jill>	
<u:John>	<u:Jack>	

7.16.5 SPARQL Query with LIMIT and OFFSET
The following example shows a SPARQL query with LIMIT and OFFSET. It inserts triples that
postulate the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.

It then finds one parent-child relationship (LIMIT 1), skipping the first two parent-child
relationships encountered (OFFSET 2), and optionally includes any grandchild (gkid)
relationships for the one found.

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 91

Example 7-19 SPARQL Query with LIMIT and OFFSET

import java.io.*;
import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test9_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 g.add(Triple.create(
 NodeFactory.createURI("u:Mary"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jill")));

 String queryString =
 " SELECT ?s ?o ?gkid WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?
gkid }} "
 + " LIMIT 1 OFFSET 2";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 }
 finally {
 qexec.close() ;
 }

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 91

javac -classpath ../jar/'*' Test9_privnet.java
java -classpath ./:../jar/'*' Test9_privnet jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1 NET1

| s | o | gkid |
==============================
| <u:John> | <u:Jack> | |

7.16.6 SPARQL Query with TIMEOUT and DOP
The following example shows the SPARQL query from Example 7-19 with additional features,
including a timeout setting (TIMEOUT=1, in seconds) and parallel execution setting (DOP=4).

Example 7-20 SPARQL Query with TIMEOUT and DOP

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test10_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 g.add(Triple.create(
 NodeFactory.createURI("u:Mary"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jill")));

 String queryString =
 " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=4,timeout=1> "
 + " SELECT ?s ?o ?gkid WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?
gkid }} "
 + " LIMIT 1 OFFSET 2";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 }
 finally {
 qexec.close() ;

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 91

 }

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test10_privnet.java
java -classpath ./:../jar/'*' Test10_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1

| s | o | gkid |
==============================
| <u:John> | <u:Jack> | |

7.16.7 Query Involving Named Graphs
The following example shows a query involving named graphs. It involves a default graph that
has information about named graph URIs and their publishers. The query finds graph names,
their publishers, and within each named graph finds the mailbox value using the foaf:mbox
predicate.

Example 7-21 Named Graph Based Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test11_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 Dataset ds = DatasetFactory.create();

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 model.getGraph().add(Triple.create(NodeFactory.createURI("http://example.org/bob"),
 NodeFactory.createURI("http://purl.org/dc/elements/1.1/publisher"),
 NodeFactory.createLiteral("Bob Hacker")));
 model.getGraph().add(Triple.create(NodeFactory.createURI("http://example.org/alice"),
 NodeFactory.createURI("http://purl.org/dc/elements/1.1/publisher"),
 NodeFactory.createLiteral("alice Hacker")));

 ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, szModelName+"1",
szUser, szNetworkName);

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 91

 model1.getGraph().add(Triple.create(NodeFactory.createURI("urn:bob"),
 NodeFactory.createURI("http://xmlns.com/foaf/0.1/
name"),
 NodeFactory.createLiteral("Bob")
));
 model1.getGraph().add(Triple.create(NodeFactory.createURI("urn:bob"),
 NodeFactory.createURI("http://xmlns.com/foaf/0.1/
mbox"),
 NodeFactory.createURI("mailto:bob@example")
));

 ModelOracleSem model2 = ModelOracleSem.createOracleSemModel(oracle, szModelName+"2",
szUser, szNetworkName);
 model2.getGraph().add(Triple.create(NodeFactory.createURI("urn:alice"),
 NodeFactory.createURI("http://xmlns.com/foaf/0.1/
name"),
 NodeFactory.createLiteral("Alice")
));
 model2.getGraph().add(Triple.create(NodeFactory.createURI("urn:alice"),
 NodeFactory.createURI("http://xmlns.com/foaf/0.1/
mbox"),
 NodeFactory.createURI("mailto:alice@example")
));

 ds.setDefaultModel(model);
 ds.addNamedModel("http://example.org/bob",model1);
 ds.addNamedModel("http://example.org/alice",model2);

 String queryString =
 " PREFIX foaf: <http://xmlns.com/foaf/0.1/> "
 + " PREFIX dc: <http://purl.org/dc/elements/1.1/> "
 + " SELECT ?who ?graph ?mbox "
 + " FROM NAMED <http://example.org/alice> "
 + " FROM NAMED <http://example.org/bob> "
 + " WHERE "
 + " { "
 + " ?graph dc:publisher ?who . "
 + " GRAPH ?graph { ?x foaf:mbox ?mbox } "
 + " } ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, ds) ;

 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);

 qexec.close();
 model.close();
 model1.close();
 model2.close();

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);
 OracleUtils.dropSemanticModel(oracle, szModelName + "1", szUser, szNetworkName);
 OracleUtils.dropSemanticModel(oracle, szModelName + "2", szUser, szNetworkName);
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 91

javac -classpath ./:./jena-2.6.4.jar:./sdordfclient.jar:./ojdbc6.jar:./slf4j-
api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.8.jar:./xercesImpl-2.7.1.jar
Test11_privnet.java
java -classpath ./:../jar/'*' Test11_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1
--
| who | graph | mbox |
==
| "alice Hacker" | <http://example.org/alice> | <mailto:alice@example> |
| "Bob Hacker" | <http://example.org/bob> | <mailto:bob@example> |
--

7.16.8 SPARQL ASK Query
The following example shows a SPARQL ASK query. It inserts a triple that postulates that John
is a parent of Mary. It then finds whether John is a parent of Mary.

Example 7-22 SPARQL ASK Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test12_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 String queryString = " ASK { <u:John> <u:parentOf> <u:Mary> } ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 boolean b = qexec.execAsk();
 System.out.println("ask result = " + ((b)?"TRUE":"FALSE"));
 qexec.close() ;

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 91

javac -classpath ../jar/'*' Test12_privnet.java
java -classpath ./:../jar/'*' Test12_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1
ask result = TRUE

7.16.9 SPARQL DESCRIBE Query
The following example shows a SPARQL DESCRIBE query. It inserts triples that postulate the
following:

• John is a parent of Mary.

• John is a parent of Jack.

• Amy is a parent of Jack.

It then finds all relationships that involve any parents of Jack.

Example 7-23 SPARQL DESCRIBE Query

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test13_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 g.add(Triple.create(
 NodeFactory.createURI("u:Amy"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 String queryString = " DESCRIBE ?x WHERE {?x <u:parentOf> <u:Jack>}";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execDescribe();
 System.out.println("describe result = " + m.toString());

 qexec.close() ;
 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 91

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test13_privnet.java
java -classpath ./:../jar/'*' Test13_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1
describe result = <ModelCom {u:Amy @u:parentOf u:Jack;
 u:John @u:parentOf u:Jack; u:John @u:parentOf u:Mary} | [u:Amy, u:parentOf,
u:Jack] [u:John, u:parentOf,
 u:Jack] [u:John, u:parentOf, u:Mary]>

7.16.10 SPARQL CONSTRUCT Query
The following example shows a SPARQL CONSTRUCT query. It inserts triples that postulate
the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Amy is a parent of Jack.

• Each parent loves their children.

It then constructs an RDF graph with information about who loves whom.

Example 7-24 SPARQL CONSTRUCT Query

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test14_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 91

NodeFactory.createURI("u:Jack")));
 g.add(Triple.create(
 NodeFactory.createURI("u:Amy"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execConstruct();
 System.out.println("Construct result = " + m.toString());

 qexec.close() ;
 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);
 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test14_privnet.java
java -classpath ./:../jar/'*' Test14_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1
Construct result = <ModelCom {u:Amy @u:loves u:Jack;
 u:John @u:loves u:Jack; u:John @u:loves u:Mary} | [u:Amy, u:loves, u:Jack] [u:John,
u:loves,
 u:Jack] [u:John, u:loves, u:Mary]>

7.16.11 Query Multiple Models and Specify "Allow Duplicates"
The following example queries multiple models and uses the "allow duplicates" option. It
inserts triples that postulate the following:

• John is a parent of Jack (in Model 1)

• Mary is a parent of Jack (in Model 2)

• Each parent loves their children.

It then finds out who loves whom. It searches both models and allows for the possibility of
duplicate triples in the models (although there are no duplicates in this example).

Example 7-25 Query Multiple Models and Specify "Allow Duplicates"

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test15_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName1 = args[3];
 String szModelName2 = args[4];

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 91

 String szNetworkName = args[5];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, szModelName1,
szUser, szNetworkName);
 model1.getGraph().add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 model1.close();

 ModelOracleSem model2 = ModelOracleSem.createOracleSemModel(oracle, szModelName2,
szUser, szNetworkName);
 model2.getGraph().add(Triple.create(
 NodeFactory.createURI("u:Mary"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 model2.close();

 String[] modelNamesList = {szModelName2};
 String[] rulebasesList = {};

 Attachment attachment = Attachment.createInstance(modelNamesList, rulebasesList,
 InferenceMaintenanceMode.NO_UPDATE,
QueryOptions.ALLOW_QUERY_VALID_AND_DUP);

 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName1, attachment, szUser,
szNetworkName);
 ModelOracleSem model = new ModelOracleSem(graph);

 String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execConstruct();
 System.out.println("Construct result = " + m.toString());

 qexec.close() ;
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName1, szUser, szNetworkName);
 OracleUtils.dropSemanticModel(oracle, szModelName2, szUser, szNetworkName);
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test15_privnet.java
java -classpath ./:../jar/'*' Test15_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 M2 NET1
Construct result = <ModelCom {u:Mary @u:loves u:Jack; u:John @u:loves u:Jack} |
[u:Mary, u:loves, u:Jack] [u:John, u:loves, u:Jack]>

7.16.12 SPARQL Update
The following example inserts two triples into a model.

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 91

Example 7-26 SPARQL Update

import org.apache.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;
import org.apache.jena.update.*;

public class Test16_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " INSERT DATA " +
 " { <http://example/book3> dc:title \"A new book\" ; " +
 " dc:creator \"A.N.Other\" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);

 ExtendedIterator<Triple> ei = GraphUtil.findAll(g);
 while (ei.hasNext()) {
 System.out.println("Triple " + ei.next().toString());
 }
 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);
 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test16_privnet.java
java -classpath ./:../jar/'*' Test16_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1
Triple http://example/book3 @dc:title "A new book"
Triple http://example/book3 @dc:creator "A.N.Other"

7.16.13 SPARQL Query with ARQ Built-In Functions
The following example inserts data about two books, and it displays the book titles in all
uppercase characters and the length of each title string.

Example 7-27 SPARQL Query with ARQ Built-In Functions

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.update.*;

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 91

public class Test17_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " INSERT DATA " +
 " { <http://example/book3> dc:title \"A new book\" ; " +
 " dc:creator \"A.N.Other\" . " +
 " <http://example/book4> dc:title \"Semantic Web Rocks\" ; " +
 " dc:creator \"TB\" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);

 String queryString = "PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " PREFIX fn: <http://www.w3.org/2005/xpath-functions#> " +
 " SELECT ?subject (fn:upper-case(?object) as ?object1) (fn:string-length(?object)
as ?strlen) " +
 "WHERE { ?subject dc:title ?object } "
 ;

 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();

 ResultSetFormatter.out(System.out, results, query);

 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test17_privnet.java
java -classpath ./:../jar/'*' Test17_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1
--
| subject | object1 | strlen |
==
| <http://example/book3> | "A NEW BOOK" | 10 |
| <http://example/book4> | "SEMANTIC WEB ROCKS" | 18 |
--

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 91

7.16.14 SELECT Cast Query
The following example "converts" two Fahrenheit temperatures (18.1 and 32.0) to Celsius
temperatures.

Example 7-28 SELECT Cast Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.update.*;

public class Test18_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 " INSERT DATA " +
 " { <u:Object1> <u:temp> \"18.1\"^^xsd:float ; " +
 " <u:name> \"Foo... \" . " +
 " <u:Object2> <u:temp> \"32.0\"^^xsd:float ; " +
 " <u:name> \"Bar... \" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);

 String queryString =
 " PREFIX fn: <http://www.w3.org/2005/xpath-functions#> " +
 " SELECT ?subject ((?temp - 32.0)*5/9 as ?celsius_temp) " +
 "WHERE { ?subject <u:temp> ?temp } "
 ;

 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();

 ResultSetFormatter.out(System.out, results, query);

 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test18_privnet.java
java -classpath ./:../jar/'*' Test18_privnet jdbc:oracle:thin:@localhost:1521:orcl

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 91

scott <password-for-scott> M1 NET1
--
| subject | celsius_temp |
==
| <u:Object1> | "-7.7222223"^^<http://www.w3.org/2001/XMLSchema#float> |
| <u:Object2> | "0.0"^^<http://www.w3.org/2001/XMLSchema#float> |
--

7.16.15 Instantiate Oracle AI Database Using OracleConnection
The following example shows a different way to instantiate an Oracle object using a given
OracleConnection object. (In a J2EE Web application, users can normally get an
OracleConnection object from a J2EE data source.)

Example 7-29 Instantiate Oracle AI Database Using OracleConnection

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

import org.apache.jena.query.*;
import org.apache.jena.graph.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.*;

public class Test19_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 OracleDataSource ds = new OracleDataSource();
 ds.setURL(szJdbcURL);
 ds.setUser(szUser);
 ds.setPassword(szPasswd);

 OracleConnection conn = (OracleConnection) ds.getConnection();
 Oracle oracle = new Oracle(conn);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName,
szUser, szNetworkName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 g.add(Triple.create(
 NodeFactory.createURI("u:Mary"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jill")));

 String queryString =
 " SELECT ?s ?o WHERE { ?s <u:parentOf> ?o .} ";

 Query query = QueryFactory.create(queryString) ;

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 91

 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 qexec.close() ;

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);

 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test19_privnet.java
java -classpath ./:../jar/'*' Test19_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1

| s | o |
=======================
<u:John>	<u:Mary>
<u:John>	<u:Jack>
<u:Mary>	<u:Jill>

7.16.16 Oracle AI Database Connection Pooling
The following example uses Oracle AI Database connection pooling.

Example 7-30 Oracle AI Database Connection Pooling

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

import org.apache.jena.graph.*;
import oracle.spatial.rdf.client.jena.*;

public class Test20_privnet
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 String szModelName = args[3];
 String szNetworkName = args[4];

 // test with connection properties (taken from some example)
 java.util.Properties prop = new java.util.Properties();
 prop.setProperty("MinLimit", "2"); // the cache size is 2 at least
 prop.setProperty("MaxLimit", "10");
 prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
 prop.setProperty("InactivityTimeout", "1800"); // seconds
 prop.setProperty("AbandonedConnectionTimeout", "900"); // seconds
 prop.setProperty("MaxStatementsLimit", "10");
 prop.setProperty("PropertyCheckInterval", "60"); // seconds

 System.out.println("Creating OraclePool");
 OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop,

Chapter 7
Example Queries Using RDF Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 91

"OracleSemConnPool");
 System.out.println("Done creating OraclePool");

 // grab an Oracle and do something with it
 System.out.println("Getting an Oracle from OraclePool");
 Oracle oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 GraphOracleSem g = new GraphOracleSem(oracle, szModelName, szUser, szNetworkName);
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Mary")));
 g.close();
 // return the Oracle back to the pool
 oracle.dispose();

 // grab another Oracle and do something else
 System.out.println("Getting an Oracle from OraclePool");
 oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 g = new GraphOracleSem(oracle, szModelName, szUser, szNetworkName);
 g.add(Triple.create(
 NodeFactory.createURI("u:John"), NodeFactory.createURI("u:parentOf"),
NodeFactory.createURI("u:Jack")));
 g.close();

 OracleUtils.dropSemanticModel(oracle, szModelName, szUser, szNetworkName);

 // return the Oracle back to the pool
 oracle.dispose();
 }
}

The following are the commands to compile and run the preceding code along with the
expected output of the java command.

javac -classpath ../jar/'*' Test20_privnet.java
java -classpath ./:../jar/'*' Test20_privnet jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 NET1
Creating OraclePool
Done creating OraclePool
Getting an Oracle from OraclePool
Done
Is logical connection:true
Getting an Oracle from OraclePool
Done
Is logical connection:true

7.17 SPARQL Gateway and RDF Data
SPARQL Gateway is a J2EE web application that is included with the support for Apache Jena.
It is designed to make RDF data (RDF/OWL/SKOS) easily available to applications that
operate on relational and XML data, including Oracle Business Intelligence Enterprise Edition
(OBIEE) 11g.

• SPARQL Gateway Features and Benefits Overview

• Installing and Configuring SPARQL Gateway

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 91

• Using SPARQL Gateway with RDF Data

• Customizing the Default XSLT File

• Using the SPARQL Gateway Java API

• Using the SPARQL Gateway Graphical Web Interface

• Using SPARQL Gateway as an XML Data Source to OBIEE

7.17.1 SPARQL Gateway Features and Benefits Overview
SPARQL Gateway handles several challenges in exposing RDF data to a non-semantic
application:

• RDF syntax, SPARQL query syntax and SPARQL protocol must be understood.

• The SPARQL query response syntax must be understood.

• A transformation must convert a SPARQL query response to something that the
application can consume.

To address these challenges, SPARQL Gateway manages SPARQL queries and XSLT
operations, executes SPARQL queries against any arbitrary standard-compliant SPARQL
endpoints, and performs necessary XSL transformations before passing the response back to
applications. Applications can then consume RDF data as if it is coming from an existing data
source.

Different triple stores or quad stores often have different capabilities. For example, the
SPARQL endpoint supported by Oracle AI Database, with RDF Graph support for Apache
Jena, allows parallel execution, query timeout, dynamic sampling, result cache, and other
features, in addition to the core function of parsing and answering a given standard-compliant
SPARQL query. However, these features may not be available from another given RDF data
store.

With the RDF Graph SPARQL Gateway, you get certain highly desirable capabilities, such as
the ability to set a timeout on a long running query and the ability to get partial results from a
complex query in a given amount of time. Waiting indefinitely for a query to finish is a challenge
for end users, as is an application with a response time constraint. SPARQL Gateway provides
both timeout and best effort query functions on top of a SPARQL endpoint. This effectively
removes some uncertainty from consuming RDF data through SPARQL query executions.
(See Specifying a Timeout Value and Specifying Best Effort Query Execution.)

7.17.2 Installing and Configuring SPARQL Gateway
To install and configure SPARQL Gateway, follow these major steps, which are explained in
their own topics:

1. Download the RDF Graph Support for Apache Jena .zip File (if Not Already Done)

2. Deploy SPARQL Gateway in WebLogic Server

3. Modify Proxy Settings_ if Necessary

4. Configure the OracleSGDS Data Source_ if Necessary

5. Add and Configure the SparqlGatewayAdminGroup Group_ if Desired

• Download the RDF Graph Support for Apache Jena .zip File (if Not Already Done)

• Deploy SPARQL Gateway in WebLogic Server

• Modify Proxy Settings, if Necessary

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 91

• Configure the OracleSGDS Data Source, if Necessary

• Add and Configure the SparqlGatewayAdminGroup Group, if Desired

7.17.2.1 Download the RDF Graph Support for Apache Jena .zip File (if Not Already
Done)

If you have not already done so, download the RDF Graph support for Apache Jena file from
the RDF Graph page and unzip it into a temporary directory, as explained in Setting Up the
Software Environment.

Note that the SPARQL Gateway Java class implementations are embedded in
sdordfclient.jar (see Using the SPARQL Gateway Java API).

7.17.2.2 Deploy SPARQL Gateway in WebLogic Server
Deploy SPARQL Gateway in Oracle WebLogic Server, as follows:

1. Go to the autodeploy directory of WebLogic Server, and copy over the prebuilt
sparqlgateway.war file as follows. (For information about auto-deploying applications in
development domains, see: http://docs.oracle.com/cd/E11035_01/wls100/
deployment/autodeploy.html)

cp -rf /tmp/jena_adapter/sparqlgateway_web_app/sparqlgateway.war <domain_name>/
autodeploy/sparqgateway.war

In this example, <domain_name> is the name of a WebLogic Server domain.

You can customize the prebuilt application in the following ways:

• Modify the WEB-INF/web.xml file embedded in sparqlgateway_web_app/
sparqlgateway.war as needed. Be sure to specify appropriate values for the
sparql_gateway_repository_filedir and sparql_gateway_repository_url
parameters.

• Add XSLT files or SPARQL query files to the top-level directory of
sparqlgateway_web_app/sparqlgateway.war, if necessary.

The following files are provided by Oracle in that directory: default.xslt, noop.xslt,
and qb1.sparql. The default.xslt file is intended mainly for transforming SPARQL
query responses (XML) to a format acceptable to Oracle.

(These files are described in Storing SPARQL Queries and XSL Transformations;
using SPARQL Gateway with OBIEE is explained in Using SPARQL Gateway as an
XML Data Source to OBIEE.)

2. Verify your deployment by using your Web browser to connect to a URL in the following
format (assume that the Web application is deployed at port 7001):

http://<hostname>:7001/sparqlgateway

7.17.2.3 Modify Proxy Settings, if Necessary
If your SPARQL Gateway is behind a firewall and you want SPARQL Gateway to communicate
with SPARQL endpoints on the Internet as well as those inside the firewall, you probably need
to use the following JVM settings:

-Dhttp.proxyHost=<your_proxy_host>
-Dhttp.proxyPort=<your_proxy_port>
-Dhttp.nonProxyHosts=127.0.0.1|<hostname_1_for_sparql_endpoint_inside_firewall>|

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 91

http://docs.oracle.com/cd/E11035_01/wls100/deployment/autodeploy.html
http://docs.oracle.com/cd/E11035_01/wls100/deployment/autodeploy.html

<hostname_2_for_sparql_endpoint_inside_firewall>|...|
<hostname_n_for_sparql_endpoint_inside_firewall>

You can specify these settings in the startWebLogic.sh script.

7.17.2.4 Configure the OracleSGDS Data Source, if Necessary
If an Oracle AI Database is used for storage of and access to SPARQL queries and XSL
transformations for SPARQL Gateway, then a data source named OracleSGDS must be
available.

If the OracleSGDS data source is configured and available, SPARQL Gateway servlet will
automatically create all the necessary tables and indexes upon initialization.

7.17.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired
The following JSP files in SPARQL Gateway can help you to view, edit, and update SPARQL
queries and XSL transformations that are stored in an Oracle AI Database:

http://<host>:7001/sparqlgateway/admin/sparql.jsp
http://<host>:7001/sparqlgateway/admin/xslt.jsp

These files are protected by HTTP Basic Authentication. In WEB-INF/weblogic.xml, a principal
named SparqlGatewayAdminGroup is defined.

To be able to log in to either of these JSP pages, you must use the WebLogic Server to add a
group named SparqlGatewayAdminGroup, and create a new user or assign an existing user to
this group.

7.17.3 Using SPARQL Gateway with RDF Data
The primary interface for an application to interact with SPARQL Gateway is through a URL
with the following format:

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>

In the preceding format:

• <SPARQL_ENDPOINT> specifies the ee parameter, which contains a URL encoded form
of a SPARQL endpoint.

For example, ee=http%3A%2F%2Fsparql.org%2Fbooks is the URL encoded string for
SPARQL endpoint http://sparql.org/books. It means that SPARQL queries are to be
executed against endpoint http://sparql.org/books.

• <SPARQL_QUERY> specifies either the SPARQL query, or the location of the SPARQL
query.

If it is feasible for an application to accept a very long URL, you can encode the whole
SPARQL query and set eq=<encoded_SPARQL_query> in the URL If it is not feasible for an
application to accept a very long URL, you can store the SPARQL queries and make them
available to SPARQL Gateway using one of the approaches described in Storing SPARQL
Queries and XSL Transformations.

• <XSLT> specifies either the XSL transformation, or the location of the XSL transformation.

If it is feasible for an application to accept a very long URL, you can encode the whole XSL
transformation and set ex=<encoded_XSLT> in the URL If it is not feasible for an application
to accept a very long URL, you can store the XSL transformations and make them

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 91

available to SPARQL Gateway using one of the approaches described in Storing SPARQL
Queries and XSL Transformations.

• Storing SPARQL Queries and XSL Transformations

• Specifying a Timeout Value

• Specifying Best Effort Query Execution

• Specifying a Content Type Other Than text/xml

7.17.3.1 Storing SPARQL Queries and XSL Transformations
If it is not feasible for an application to accept a very long URL, you can specify the location of
the SPARQL query and the XSL transformation in the <SPARQL_QUERY> and <XSLT>
portions of the URL format described in Using SPARQL Gateway with Semantic Data, using
any of the following approaches:

• Store the SPARQL queries and XSL transformations in the SPARQL Gateway Web
application itself.

To do this, unpack the sparqlgateway.war file, and store the SPARQL queries and XSL
transformations in the top-level directory; then pack the sparqlgateway.war file and
redeploy it.

The sparqlgateway.war file includes the following example files: qb1.sparql (SPARQL
query) and default.xslt (XSL transformation).

Tip

Use the file extension .sparql for SPARQL query files, and the file
extension .xslt for XSL transformation files.

The syntax for specifying these files (using the provided example file names) is
wq=qb1.sparql for a SPARQL query file and wx=default.xslt for an XSL transformation
file.

If you want to customize the default XSL transformations, see the examples in Customizing
the Default XSLT File.

If you specify wx=noop.xslt, XSL transformation is not performed and the SPARQL
response is returned "as is" to the client.

• Store the SPARQL queries and XSL transformations in a file system directory, and make
sure that the directory is accessible for the deployed SPARQL Gateway Web application.

By default, the directory is set to /tmp, as shown in the following <init-param> setting:

<init-param>
 <param-name>sparql_gateway_repository_filedir</param-name>
 <param-value>/tmp/</param-value>
</init-param>

It is recommended that you customize this directory before deploying the SPARQL
Gateway. To change the directory setting, edit the text in between the <param-value> and
</param-value> tags.

The following example specifies a SPARQL query file and an XSL transformation file that
are in the directory specified in the <init-param> element for
sparql_gateway_repository_filedir:

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 75 of 91

fq=qb1.sparql
fx=myxslt1.xslt

• Make the SPARQL queries and XSL transformations accessible from a website.

By default, the website directory is set to http://127.0.0.1/queries/, as shown in the
following <init-param> setting:

<init-param>
 <param-name>sparql_gateway_repository_url</param-name>
 <param-value>http://127.0.0.1/queries/</param-value>
</init-param>

Customize this directory before deploying the SPARQL Gateway. To change the website
setting, edit the text in between the <param-value> and </param-value> tags.

The following example specifies a SPARQL query file and an XSL transformation file that
are in the URL specified in the <init-param> element for
sparql_gateway_repository_url.

uq=qb1.sparql
ux=myxslt1.xslt

Internally, SPARQL Gateway computes the appropriate complete URL, fetches the
content, starts query execution, and applies the XSL transformation to the query response
XML.

• Store the SPARQL queries and XSL transformations in an Oracle AI Database.

This approach requires that the J2EE data source OracleSGDS be defined. After SPARQL
Gateway retrieves a database connection from the OracleSGDS data source, a SPARQL
query is read from the database table ORACLE_ORARDF_SG_QUERY using the integer
ID provided.

The syntax for fetching a SPARQL query from an Oracle AI Database is dq=<integer-id>,
and the syntax for fetching an XSL transformation from an Oracle AI Database is
dx=<integer-id>.

Upon servlet initialization, the following tables are created automatically if they do not
already exist (you do not need to create them manually):

– ORACLE_ORARDF_SG_QUERY with a primary key of QID (integer type)

– ORACLE_ORARDF_SG_XSLT with a primary key of XID (integer type)

7.17.3.2 Specifying a Timeout Value
When you submit a potentially long-running query using the URL format described in Using
SPARQL Gateway with Semantic Data, you can limit the execution time by specifying a timeout
value in milliseconds. For example, the following shows the URL format and a timeout
specification that the SPARQL query execution started from SPARQL Gateway is to be ended
after 1000 milliseconds (1 second):

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000

If a query does not finish when timeout occurs, then an empty SPARQL response is
constructed by SPARQL Gateway.

Note that even if SPARQL Gateway times out a query execution at the HTTP connection level,
the query may still be running on the server side. The actual behavior will be vendor-
dependent.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 76 of 91

7.17.3.3 Specifying Best Effort Query Execution

Note

You can specify best effort query execution only if you also specify a timeout value
(described in Specifying a Timeout Value).

When you submit a potentially long-running query using the URL format described in Using
SPARQL Gateway with Semantic Data, if you specify a timeout value, you can also specify a
"best effort" limitation on the query. For example, the following shows the URL format with a
timeout specification of 1000 milliseconds (1 second) and a best effort specification (&b=t):

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000&b=t

The web.xml file includes two parameter settings that affect the behavior of the best effort
option: sparql_gateway_besteffort_maxrounds and
sparql_gateway_besteffort_maxthreads. The following show the default definitions:

<init-param>
 <param-name>sparql_gateway_besteffort_maxrounds</param-name>
 <param-value>10</param-value>
</init-param>

<init-param>
 <param-name>sparql_gateway_besteffort_maxthreads</param-name>
 <param-value>3</param-value>
</init-param>

When a SPARQL SELECT query is executed in best effort style, a series of queries will be
executed with an increasing LIMIT value setting in the SPARQL query body. (The core idea is
based on the observation that a SPARQL query runs faster with a smaller LIMIT setting.)
SPARQL Gateway starts query execution with a "LIMIT 1" setting. Ideally, this query can finish
before the timeout is due. Assume that is the case, the next query will have its LIMIT setting is
increased, and subsequent queries have higher limits. The maximum number of query
executions is controlled by the sparql_gateway_besteffort_maxrounds parameter.

If it is possible to run the series of queries in parallel, the
sparql_gateway_besteffort_maxthreads parameter controls the degree of parallelism.

7.17.3.4 Specifying a Content Type Other Than text/xml
By default, SPARQL Gateway assumes that XSL transformations generate XML, and so the
default content type set for HTTP response is text/xml. However, if your application requires a
response format other than XML, you can specify the format in an additional URL parameter
(with syntax &rt=), using the following format:

http://host:port/sparqlgateway/sg?
<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&rt=<content_type>

Note that <content_type> must be URL encoded.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 77 of 91

7.17.4 Customizing the Default XSLT File
You can customize the default XSL transformation file (the one referenced using
wx=default.xslt). This section presents some examples of customizations.

The following example implements this namespace prefix replacement logic: if a variable
binding returns a URI that starts with http://purl.org/goodrelations/v1#, that portion is
replaced by gr:; and if a variable binding returns a URI that starts with http://www.w3.org/
2000/01/rdf-schema#, that portion is replaced by rdfs:.

<xsl:when test="starts-with(text(),'http://purl.org/goodrelations/v1#')">
 <xsl:value-of select="concat('gr:',substring-after(text(),'http://purl.org/
goodrelations/v1#'))"/>
</xsl:when>
...
<xsl:when test="starts-with(text(),'http://www.w3.org/2000/01/rdf-schema#')">
 <xsl:value-of select="concat('rdfs:',substring-after(text(),'http://www.w3.org/
2000/01/rdf-schema#'))"/>
</xsl:when>

The following example implements logic to trim a leading http://localhost/ or a leading
http://127.0.0.1/.

<xsl:when test="starts-with(text(),'http://localhost/')">
 <xsl:value-of select="substring-after(text(),'http://localhost/')"/>
</xsl:when>
<xsl:when test="starts-with(text(),'http://127.0.0.1/')">
 <xsl:value-of select="substring-after(text(),'http://127.0.0.1/')"/>
</xsl:when>

7.17.5 Using the SPARQL Gateway Java API
In addition to a Web interface, the SPARQL Gateway administration service provides a
convenient Java application programming interface (API) for managing SPARQL queries and
their associated XSL transformations. The Java API is included in the RDF Graph support for
Apache Jena library, sdordfclient.jar.

Java API reference information is available in the javadoc_sparqlgateway.zip file that is
included in the SPARQL Gateway .zip file (described in Download the RDF Graph Support for
Apache Jena .zip File (if Not Already Done)).

The main entry point for this API is the oracle.spatial.rdf.client.jena.SGDBHandler class
(SPARQL Gateway Database Handler), which provides the following static methods for
managing queries and transformations:

• deleteSparqlQuery(Connection, int)

• deleteXslt(Connection, int)

• insertSparqlQuery(Connection, int, String, String, boolean)

• insertXslt(Connection, int, String, String, boolean)

• getSparqlQuery(Connection, int, StringBuilder, StringBuilder)

• getXslt(Connection, int, StringBuilder, StringBuilder)

These methods manipulate and retrieve entries in the SPARQL Gateway associated tables that
are stored in an Oracle AI Database instance. To use these methods, the necessary

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 78 of 91

associated tables must already exist. If the tables do not exist, deploy the SPARQL Gateway
on a Web server and access a URL in the following format:

http://<host>:<port>/sparqlgateway/sg?

where <host> is the host name of the Web server and <port> is the listening port of the Web
server. Accessing this URL will automatically create the necessary tables if they do not already
exist.

Any changes made through the Java API affect the SPARQL Gateway Web service in the
same way as changes made through the administration Web interface. This provides the
flexibility to manage queries and transformations using the interface you find most convenient.

Note that the insert methods provided by the Java API will not replace existing queries or
transformations stored in the tables. Attempting to replace an existing query or transformation
will fail. To replace a query or transformation, you must remove the existing entry in the table
using one of the delete methods, and then insert the new query or transformation using one of
the insert methods.

The following examples demonstrate how to perform common management tasks using the
Java API. The examples assume a connection has already been established to the underlying
Oracle AI Database instance backing the SPARQL Gateway.

Example 7-31 Storing a SPARQL Query and an XSL Transformation

Example 7-31 adds a query and an XSL transformation to the database backing the SPARQL
Gateway. After the query and transformation are added, other programs can use the query and
transformation through the gateway by specifying the appropriate query ID (qid) and XSL
transformation ID (xid) in the request URL.

Note that Although Example 7-31 inserts both a query and transformation, the query and
transformation are not necessarily related and do not need to be used together when
accessing SPARQL Gateway. Any query in the database can be used with any transformation
in the database when submitting a request to SPARQL Gateway.

String query = "PREFIX ... SELECT ..."; // full SPARQL query text
String xslt = "<?xml ...> ..."; // full XSLT transformation text

String queryDesc = "Conference attendee information"; // description of SPARQL query
String xsltDesc = "BIEE table widget transformation"; // description of XSLT
transformation

int queryId = queryIdCounter++; // assign a unique ID to this query
int xsltId = xsltIdCounter++; // assign a unique ID to this transformation

// Inserting a query or transformation will fail if the table already contains
// an entry with the same ID. Setting this boolean to true will ignore these
// exceptions (but the table will remain unchanged). Here we specify that we
// want an exception thrown if we encounter a duplicate ID.
boolean ignoreDupException = false;

// add the query
try {
 // Delete query if one already exists with this ID (this will not throw an
 // error if no such entry exists)
 SGDBHandler.deleteSparqlQuery(connection, queryId);
 SGDBHandler.insertSparqlQuery(connection, queryId, query, queryDesc,
ignoreDupException);
} catch(SQLException sqle) {
 // Handle exception
} catch(QueryException qe) {
 // Handle query syntax exception

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 79 of 91

}

// add the XSLT
try {
 // Delete xslt if one already exists with this ID (this will not throw an
 // error if no such entry exists)
 SGDBHandler.deleteXslt(connection, xsltId);
 SGDBHandler.insertXslt(connection, xsltId, xslt, xsltDesc, ignoreDupException);
} catch(SQLException sqle) {
 // Handle database exception
} catch(TransformerConfigurationException tce) {
 // Handle XSLT syntax exception
}

Example 7-32 Modifying a Query

Example 7-32 retrieves an existing query from the database, modifies it, then stores the
updated version of the query back in the database. These steps simulate editing a query and
saving the changes. (Note that if the query does not exist, an exception is thrown.)

StringBuilder query;
StringBuilder description;

// Populate these with the query text and description from the database
query = new StringBuilder();
description = new StringBuilder();

// Get the query from the database
try {
 SGDBHandler.getSparqlQuery(connection, queryId, query, description);
} catch(SQLException sqle) {
 // Handle exception
 // NOTE: exception is thrown if query with specified ID does not exist
}

// The query and description should be populated now

// Modify the query
String updatedQuery = query.toString().replaceAll("invite", "attendee");

// Insert the query back into the database
boolean ignoreDup = false;
try {
 // First must delete the old query
 SGDBHandler.deleteSparqlQuery(connection, queryId);
 // Now we can add
 SGDBHandler.insertSparqlQuery(connection, queryId, updatedQuery,
description.toString(), ignoreDup);
} catch(SQLException sqle) {
 // Handle exception
} catch(QueryException qe) {
 // Handle query syntax exception
}

Example 7-33 Retrieving and Printing an XSL Transformation

Example 7-33 retrieves an existing XSL transformation and prints it to standard output. (Note
that if the transformation does not exist, an exception is thrown.)

StringBuilder xslt;
StringBuilder description;

// Populate these with the XSLT text and description from the database

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 80 of 91

xslt = new StringBuilder();
description = new StringBuilder();

try {
 SGDBHandler.getXslt(connection, xsltId, xslt, description);
} catch(SQLException sqle) {
 // Handle exception
 // NOTE: exception is thrown if transformation with specified ID does not exist
}

// Print it to standard output
System.out.printf("XSLT description: %s\n", description.toString());
System.out.printf("XSLT body:\n%s\n", xslt.toString());

7.17.6 Using the SPARQL Gateway Graphical Web Interface
SPARQL Gateway provides several browser-based interfaces to help you test queries,
navigate RDF data, and manage SPQARQL query and XSLT files.

• Main Page (index.html)

• Navigation and Browsing Page (browse.jsp)

• XSLT Management Page (xslt.jsp)

• SPARQL Management Page (sparql.jsp)

7.17.6.1 Main Page (index.html)
http://<host>:<port>/sparqlgateway/index.html provides a simple interface for executing
SPARQL queries and then applying the transformations in the default.xslt file to the response.
Figure 7-2 shows this interface for executing a query.

Figure 7-2 Graphical Interface Main Page (index.html)

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 91

Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body, and press
Submit Query.

For example, if you specify http://dbpedia.org/sparql as the SPARQL endpoint and use the
SPARQL query body from Figure 7-2, the response will be similar to Figure 7-3. Note that the
default transformations (in default.xslt) have been applied to the XML output in this figure.

Figure 7-3 SPARQL Query Main Page Response

7.17.6.2 Navigation and Browsing Page (browse.jsp)
http://<host>:<port>/sparqlgateway/browse.jsp provides navigation and browsing
capabilities for RDF data. It works against any standard compliant SPARQL endpoint.
Figure 7-4 shows this interface for executing a query.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 82 of 91

Figure 7-4 Graphical Interface Navigation and Browsing Page (browse.jsp)

Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body, optionally
specify a Timeout (ms) value in milliseconds and the Best Effort option, and press Submit
Query.

The SPARQL response is parsed and then presented in table form, as shown in Figure 7-5.

Figure 7-5 Browsing and Navigation Page: Response

In Figure 7-5, note that URIs are clickable to allow navigation, and that when users move the
cursor over a URI, tool tips are shown for the URIs which have been shortened for readability
(as in http://purl.org.dc/elements/1.1/title being displayed as the tool tip for dc:title
in the figure).

If you click the URI http://example.org/book/book5 in the output shown in Figure 7-5, a new
SPARQL query is automatically generated and executed. This generated SPARQL query has
three query patterns that use this particular URI as subject, predicate, and object, as shown in

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 83 of 91

Figure 7-6. Such a query can give you a good idea about how this URI is used and how it is
related to other resources in the data set.

Figure 7-6 Query and Response from Clicking URI Link

When there are many matches of a query, the results are organized in pages and you can click
on any page. The page size by default is 50 results. To display more (or fewer) than 50 rows
per page in a response with the Browsing and Navigation Page (browse.jsp), you can specify
the &resultsPerPage parameter in the URL. For example, to allow 100 rows per page, include
the following in the URL:

&resultsPerPage=100

7.17.6.3 XSLT Management Page (xslt.jsp)
http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple XSLT
management interface. You can enter an XSLT ID (integer) and click Get XSLT to retrieve both
the Description and XSLT Body. You can modify the XSLT Body text and then save the
changes by clicking Save XSLT. Note that there is a previewer to help you navigate among
available XSLT definitions.

Figure 7-7 shows the XSLT Management Page.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 84 of 91

Figure 7-7 XSLT Management Page

7.17.6.4 SPARQL Management Page (sparql.jsp)
http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple SPARQL
management interface. You can enter a SPARQL ID (integer) and click Get SPARQL to
retrieve both the Description and SPARQL Body. You can modify the SPARQL Body text and
then save the changes by clicking Save SPARQL. Note that there is a previewer to help you
navigate among available SPARQL queries.

Figure 7-8 shows the SPARQL Management Page.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 85 of 91

Figure 7-8 SPARQL Management Page

7.17.7 Using SPARQL Gateway as an XML Data Source to OBIEE
This section explains how to create an XML Data source for Oracle Business Intelligence
Enterprise Edition (OBIEE), by integrating OBIEE with RDF using SPARQL Gateway as a
bridge. (The specific steps and illustrations reflect the Oracle BI Administration Tool Version
11.1.1.3.0.100806.0408.000.)

1. Start the Oracle BI Administration Tool.

2. Click File, then Import Metadata. The first page of the Import Metadata wizard is
displayed, as shown in Figure 7-9.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 86 of 91

Figure 7-9 Import Metadata - Select Data Source

Connection Type: Select XML.

URL: URL for an application to interact with SPARQL Gateway, as explained in Using
SPARQL Gateway with Semantic Data. You can also include the timeout and best effort
options.

Ignore the User Name and Password fields.

3. Click Next. The second page of the Import Metadata wizard is displayed, as shown in
Figure 7-10.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 87 of 91

Figure 7-10 Import Metadata - Select Metadata Types

Select the desired metadata types to be imported. Be sure that Tables is included in the
selected types.

4. Click Next. The third page of the Import Metadata wizard is displayed, as shown in
Figure 7-11.

Chapter 7
SPARQL Gateway and RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 88 of 91

Figure 7-11 Import Metadata - Select Metadata Objects

In the Data Source View, expand the node that has the table icon, select the column
names (mapped from projected variables defined in the SPARQL SELECT statement), and
click the right-arrow (>) button to move the selected columns to the Repository View.

5. Click Finish.

6. Complete the remaining steps for the usual BI Business Model work and Mapping and
Presentation definition work, which are not specific to SPARQL Gateway or RDF data.

7.18 Deploying Fuseki in Apache Tomcat
To deploy Fuseki in Apache Tomcat, you can use the Tomcat admin web page, or you can just
copy the Fuseki .war file into the webapps folder of Tomcat and it will be automatically
deployed.

This topic describe the auto-deploy steps. It assumes that the $FUSEKI_BASE setup is done
and the configuration files exist (by default, Fuseki uses /etc/fuseki as the directory to store
its configuration files).

1. Download and install the latest version of Apache Tomcat.

The directory root for Apache Tomcat installation will be referred to in these instructions
as $CATALINA_HOME.

2. Copy the fuseki.war into the Tomcat webapps folder. For example:

cd $CATALINA_HOME/webapps
cp /tmp/jena_adapter/fuseki_web_app/fuseki.war .

3. Start Tomcat:

Chapter 7
Deploying Fuseki in Apache Tomcat

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 89 of 91

$CATALINA_HOME/bin/startup.sh

If this file does not have executable permission, enter the following command and then
again attempt to start Tomcat:

chmod u+x $CATALINA_HOME/bin/startup.sh

4. In a browser go to: http://hostname:8080/fuseki

7.19 ORARDFLDR Utility for Bulk Loading RDF Data
This section describes using the ORARDFLDR utility program for Bulk Loading RDF Data.

This utility program loads all files in a directory into an RDF graph in Oracle AI Database. It
supports several RDF serializations like RDF/XML, Turtle, N-Triple, N-Quads and Trig. Files
compressed with gzip can be directly loaded without uncompressing the gzip file. In addition,
Unicode character escaping and long literals (CLOBs) are handled automatically.

Running ORARDFLDR Utility Program

The following describes the commands to execute ORARDFLDR:

Prerequisite: Ensure that the environment variable ${ORACLE_JENA_HOME} is pointing to the
directory where the OTN kit is stored.

Usage:

java -cp ${ORACLE_JENA_HOME}/jar/'*' oracle.spatial.rdf.client.jena.utilities.RDFLoader
<command_line_arguments>

For help details:

java -cp ${ORACLE_JENA_HOME}/jar/'*' oracle.spatial.rdf.client.jena.utilities.RDFLoader
--help

For convenience, a shell script in the bin directory can also be executed. The following
describes the commands to use this script

Prerequisite: Set ${ORACLE_JENA_HOME} and ensure ${ORACLE_JENA_HOME}/bin is in your Unix
PATH environment variable.

Usage:

orardfldr <command_line_arguments>

For help details:

orardfldr --help

• Using ORARDFLDR with Oracle Autonomous AI Database

7.19.1 Using ORARDFLDR with Oracle Autonomous AI Database

This section describes using the ORARDFLDR utility with Oracle Autonomous AI Database.

The ORARDFLDR utility included with support for Apache Jena can be used to bulk load RDF
files from your client computer to Oracle Autonomous AI Database. The connection with the
database is based on a cloud wallet.

General instructions for connecting to an Oracle Autonomous AI Database with JDBC can be
found in Java connectivity to ATP.

Chapter 7
ORARDFLDR Utility for Bulk Loading RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 90 of 91

https://www.oracle.com/database/technologies/java-connectivity-to-atp.html

The following example describes establishing a JDBC connection to Oracle Autonomous AI
Database following the Plain JDBC using JKS files procedure.

Example 7-34 JDBC connectivity to Oracle Autonomous AI Database

Prerequisite: Ensure you have the following Oracle jar files: ojdbc8.jar, ucp.jar,
oraclepki.jar, osdt_core.jar, and osdt_cert.jar.

1. Unzip your wallet_<dbname>.zip file. You should see something similar to the listing
below after unzipping the file.

[oracle@localhost Wallet_Info]$ ls
cwallet.sso keystore.jks README tnsnames.ora
ewallet.p12 ojdbc.properties sqlnet.ora truststore.jks

2. Modify ojdbc.properties to add JKS related connection properties. The final version of
your ojdbc.properties file should be similar as shown below:

Connection property while using Oracle wallets.
#oracle.net.wallet_location=(SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=$
{TNS_ADMIN})))
FOLLOW THESE STEPS FOR USING JKS
(1) Uncomment the following properties to use JKS.
(2) Comment out the oracle.net.wallet_location property above
(3) Set the correct password for both trustStorePassword and keyStorePassword.
It's the password you specified when downloading the wallet from OCI Console or
the Service Console.
javax.net.ssl.trustStore=${TNS_ADMIN}/truststore.jks
javax.net.ssl.trustStorePassword=password
javax.net.ssl.keyStore=${TNS_ADMIN}/keystore.jks
javax.net.ssl.keyStorePassword=password

Use the following JDBC URL:

jdbc:oracle:thin:@dbname_alias?TNS_ADMIN=<path_to_wallet_directory>

The following examples loads the RDF files using the ORAFLDR utility for a database named
rdfdb and having a wallet directory as /home/oracle/RDF/Wallet_Info/ .

Example 7-35 Using ORAFLDR Utility to load RDF Data files

Prerequisite: Ensure you have copied the prerequisite jars listed in Example 7-34
to $ORACLE_JENA_HOME/jar/.

Invoke ORARDFLDR to load RDF files from your client computer to an Autonomous AI Database.

orardfldr --modelName=M1 --fileDir=./data --lang=N-TRIPLE
 --jdbcUrl=jdbc:oracle:thin:@rdfdb_medium?TNS_ADMIN=/home/oracle/RDF/Wallet_Info/
 --user="RDFUSER" --password=password --networkOwner="RDFUSER" --networkName=NET1

It loads RDF data in N-Triple format into a model named M1 in a network named NET1 owned
by RDFUSER. RDFUSER is also used for the database connection.

Chapter 7
ORARDFLDR Utility for Bulk Loading RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 91

https://www.oracle.com/database/technologies/java-connectivity-to-atp.html

8
RDF Graph Support for Eclipse RDF4J

Oracle RDF Graph Adapter for Eclipse RDF4J utilizes the popular Eclipse RDF4J framework to
provide Java developers support to use the RDF graph feature of Oracle AI Database.

Note

• This feature was previously referred to as the Sesame Adapter for Oracle
Database and the Sesame Adapter.

• Some optional features of RDF graph support for Eclipse RDF4J are supported
only if Oracle JVM is enabled on your Oracle Autonomous AI Database Serverless
deployments. To enable Oracle JVM, see Use Oracle Java in Using Oracle
Autonomous AI Database Serverless for more information. Specifically, database
stored procedure based execution of SPARQL-to-SQL query translation and
SPARQL Update require Oracle JVM. These options are further discussed in
SPARQL Query Execution Model and SPARQL Update Execution Model.

The Eclipse RDF4J is a powerful Java framework for processing and handling RDF data. This
includes creating, parsing, scalable storage, reasoning and querying with RDF and Linked
Data. See https://rdf4j.org for more information.

This chapter assumes that you are familiar with major concepts explained in RDF Graph
Overview and OWL Concepts . It also assumes that you are familiar with the overall
capabilities and use of the Eclipse RDF4J Java framework. See https://rdf4j.org for more
information.

The Oracle RDF Graph Adapter for Eclipse RDF4J extends the RDF data management
capabilities of Oracle AI Database RDF/OWL by providing a popular standards based API for
Java developers.

• Oracle RDF Graph Support for Eclipse RDF4J Overview
The Oracle RDF Graph Adapter for Eclipse RDF4J API provides a Java-based interface to
Oracle RDF data through an API framework and tools that adhere to the Eclipse RDF4J
SAIL API.

• Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J
Before you start using the Oracle RDF Graph Adapter for Eclipse RDF4J, you must ensure
that your system environment meets certain prerequisites.

• Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J
To use the Oracle RDF Graph Adapter for Eclipse RDF4J, you must first setup and
configure the system environment.

• Using Oracle RDF Graph Adapter for Eclipse RDF4J with Oracle Autonomous AI Database
To use Oracle RDF Graph Adapter for Eclipse RDF4J with Autonomous AI Database, you
can use a JDBC connection to connect to your Autonomous AI Database instance.

• Database Connection Management
The Oracle RDF Graph Adapter for Eclipse RDF4J provides support for Oracle Connection
Pooling.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 74

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B
https://rdf4j.org/
https://rdf4j.org/

• SPARQL Query Execution Model
SPARQL queries executed through the Oracle RDF Graph Adapter for Eclipse RDF4J API
run as SQL queries against Oracle’s relational schema for storing RDF data.

• SPARQL Update Execution Model
This section explains the SPARQL Update Execution Model for Oracle RDF Graph Adapter
for Eclipse RDF4J.

• Efficiently Loading RDF Data
The Oracle RDF Graph Adapter for Eclipse RDF4J provides additional or improved Java
methods for efficiently loading a large amount of RDF data from files or collections.

• Validating RDF Data with SHACL Constraints
This section explains how to validate RDF graphs with SHACL (Shapes Constraint
Language) constraints using Oracle RDF Graph Adapter for Eclipse RDF4J.

• ORARDFLDR Utility for Bulk Loading RDF Data
This section describes using the ORARDFLDR utility program for bulk loading RDF data
serialized in various standard formats such as RDF/XML, N-Triples, Turtle, JSON-LD, and
so on.

• Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J
This section explains the performance best practices for Oracle RDF Graph Adapter for
Eclipse RDF4J.

• Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J

• Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J
The unsupported features in the current version of Oracle RDF Graph Adapter for Eclipse
RDF4J are discussed in this section.

• Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8.1 Oracle RDF Graph Support for Eclipse RDF4J Overview
The Oracle RDF Graph Adapter for Eclipse RDF4J API provides a Java-based interface to
Oracle RDF data through an API framework and tools that adhere to the Eclipse RDF4J SAIL
API.

The RDF Graph support for Eclipse RDF4J is similar to the RDF Graph support for Apache
Jena as described in RDF Graph Support for Apache Jena.

The adapter for Eclipse RDF4J provides a Java API for interacting with RDF data stored in
Oracle AI Database. It also provides integration with the following Eclipse RDF4J tools:

• Eclipse RDF4J Server, which provides an HTTP SPARQL endpoint.

• Eclipse RDF4J Workbench, which is a web-based client UI for managing databases and
executing queries.

The features provided by the adapter for Eclispe RDF4J include:

• Loading (bulk and incremental), exporting, and removing statements, with and without
context

• Querying data, with and without context

• Updating data, with and without context

• Validating data with SHACL constraints

Oracle RDF Graph Adapter for Eclipse RDF4J implements various interfaces of the Eclipse
RDF4J Storage and Inference Layer (SAIL) API.

Chapter 8
Oracle RDF Graph Support for Eclipse RDF4J Overview

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 74

For example, the class OracleSailConnection is an Oracle implementation of the Eclipse
RDF4J SailConnection interface, and the class OracleSailStore extends AbstractSail
which is an Oracle implementation of the Eclipse RDF4J Sail interface.

The following example demonstrates a typical usage flow for the RDF Graph support for
Eclipse RDF4J.

Example 8-1 Sample Usage flow for RDF Graph Support for Eclipse RDF4J Using a
Schema-Private RDF Network

String networkOwner = "SCOTT";
String networkName = "NET1";
String modelName = "UsageFlow";
OraclePool oraclePool = new OraclePool(jdbcurl, user, password);
SailRepository sr = new SailRepository(new OracleSailStore(oraclePool, modelName,
networkOwner, networkName));
SailRepositoryConnection conn = sr.getConnection();

//A ValueFactory factory for creating IRIs, blank nodes, literals and statements
ValueFactory vf = conn.getValueFactory();
IRI alice = vf.createIRI("http://example.org/Alice");
IRI friendOf = vf.createIRI("http://example.org/friendOf");
IRI bob = vf.createIRI("http://example.org/Bob");
Resource context1 = vf.createIRI("http://example.org/");

// Data loading can happen here.
conn.add(alice, friendOf, bob, context1);
String query =
 " PREFIX foaf: <http://xmlns.com/foaf/0.1/> " +
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " select ?s ?p ?o ?name WHERE {?s ?p ?o . OPTIONAL {?o foaf:name ?name .} } ";
TupleQuery tq = conn.prepareTupleQuery(QueryLanguage.SPARQL, query);
TupleQueryResult tqr = tq.evaluate();
while (tqr.hasNext()) {
 System.out.println((tqr.next().toString()));
}
tqr.close();
conn.close();
sr.shutDown();

8.2 Prerequisites for Using Oracle RDF Graph Adapter for
Eclipse RDF4J

Before you start using the Oracle RDF Graph Adapter for Eclipse RDF4J, you must ensure that
your system environment meets certain prerequisites.

The following are the prerequisites required for using the adapter for Eclipse RDF4J:

• Oracle Database Standard Edition 2 (SE2) or Enterprise Edition (EE) for version 18c or
later (user managed database in the cloud or on-premise), or Oracle Autonomous AI
Database version 19c or later.

• Eclipse RDF4J version 4.3.14

• JDK 11

Chapter 8
Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 74

8.3 Setup and Configuration for Using Oracle RDF Graph
Adapter for Eclipse RDF4J

To use the Oracle RDF Graph Adapter for Eclipse RDF4J, you must first setup and configure
the system environment.

The adapter can be used in the following three environments:

• Programmatically through Java code

• Accessed over HTTP as a SPARQL Service

• Used within the Eclipse RDF4J workbench environment

The following sections describe the actions for using the adapter for Eclipse RDF4J in the
above mentioned environments:

• Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java

• Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J Server and
Workbench

• Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As SPARQL Service

8.3.1 Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with
Java

To use the Oracle RDF Graph Adapter for Eclipse RDF4J programmatically through Java code,
you must first ensure that the system environment meets all the prerequisites as explained in
Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J.

Before you can start using the adapter to store, manage, and query RDF graphs in Oracle AI
Database, you need to create an RDF network. An RDF network acts like a folder that can hold
multiple RDF graphs created by database users. RDF networks can be created in a user
schema (referred to as a schema-private network).

A network can be created by invoking the following command:

sem_apis.create_RDF_network(<tablespace_name>, network_owner=><network_owner>,
network_name=><network_name>)

See RDF Networks for more information.

See Also

• Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java for
Oracle Database 19c and later

• Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java for
Oracle Database 18c

Creating a Schema-Private RDF Network

You can create a schema-private RDF network by performing the following actions from a SQL
based interface such as SQL Developer, SQLPLUS, or from a Java program using JDBC:

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 74

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19&id=GUID-FFFB137D-8ED0-44A0-A220-28B5A6B7BBD0
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/18&id=GUID-FFFB137D-8ED0-44A0-A220-28B5A6B7BBD0

1. Connect to Oracle AI Database as a SYSTEM user with a DBA privilege (or as ADMIN user on
Autonomous AI Database Serverless).

CONNECT system/<password-for-system-user>

2. Create a tablespace for storing the user data. Use a suitable operating system folder and
filename.
If you are using Autonomous AI Database, then use the pre-created DATA tablespace.

CREATE TABLESPACE usertbs
 DATAFILE 'usertbs.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 64M
 MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

3. Create a database user to create and own the RDF network. This user can create or use
RDF graphs or do both within this schema-private network using the adapter.

CREATE USER rdfuser
 IDENTIFIED BY <password-for-rdfuser>
 DEFAULT TABLESPACE usertbs
 QUOTA 5G ON usertbs;

4. Grant the necessary privileges to the new database user.

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;

5. Connect to the database as rdfuser.

CONNECT rdfuser/<password-for-rdf-user>

6. Create a schema-private RDF network named NET1.

EXECUTE SEM_APIS.CREATE_RDF_NETWORK(tablespace_name =>'usertbs',
network_owner=>'RDFUSER', network_name=>'NET1');

7. Verify that schema-private RDF network has been created successfully.

SELECT table_name
 FROM sys.all_tables
 WHERE table_name = 'NET1#RDF_VALUE$' AND owner='RDFUSER';

Presence of <NETWORK_NAME>#RDF_VALUE$ table in the network owner’s schema shows that
the schema-private RDF network has been created successfully.

TABLE_NAME

NET1#RDF_VALUE$

You can now set up the Oracle RDF Graph Adapter for Eclipse RDF4J for use with Java code
by performing the following actions:

1. Download and configure Eclipse RDF4J Release 4.3.14 from RDF4J Downloads page.

2. Download the adapter for Eclipse RDF4J, (Oracle Adapter for Eclipse RDF4J) from Oracle
Software Delivery Cloud.

3. Unzip the downloaded kit (V1047295-01.zip) into a temporary directory, such as /tmp/
oracle_adapter, on a Linux system. If this temporary directory does not already exist,
create it before the unzip operation.

4. Include the Oracle Adapter for Eclipse RDF4J jar files from the /jar directory of the kit in
your CLASSPATH:

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 74

https://www.eclipse.org/downloads/download.php?file=/rdf4j/eclipse-rdf4j-4.2.1-sdk.zip
https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=o7SOt_nhVgyg7wPozwTIoO0wvr28wPQU1z05mcWxvjl2mVAwMM40!-762490782
https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=o7SOt_nhVgyg7wPozwTIoO0wvr28wPQU1z05mcWxvjl2mVAwMM40!-762490782

• oracle-rdf4j-adapter-4.3.14-20250106.jar

• sdordf-23.6.0-20241122.jar

• sdordf-client-23.6.0-20241122.jar

• sdoutl-23.6.0-20241122.jar

5. Include the following supporting libraries in your CLASSPATH, in order to run your Java code
through your IDE:

• eclipse-rdf4j-4.3.14-onejar.jar: Download this Eclipse RDF4J jar library from
RDF4J Downloads page.

• ojdbc8.jar: Download this JDBC thin driver for your database version from JDBC
Downloads page.

• ucp.jar: Download this Universal Connection Pool jar file for your database version
from JDBC Downloads page.

• log4j-api-2.24.2.jar, log4j-core-2.24.2.jar, log4j-slf4j-impl-2.24.2.jar,
slf4j-api-1.7.36.jar, and commons-io-2.14.0.jar: Download from Apache
Software Foundation.

6. If you want to use JSON-LD support, include the following additional libraries in you
CLASSPATH:

• httpclient-4.5.14.jar, httpclient-cache-4.5.14.jar, httpclient-
osgi-4.5.13.jar: Download from Apache Software Foundation.

• httpcore-4.4.16.jar, httpcore-nio-4.4.14.jar, httpcore-osgi-4.4.14.jar:
Download from Apache Software Foundation.

• jackson-annotations-2.13.5.jar, jackson-core-2.13.5.jar, jackson-
databind-2.13.5.jar: Download from GitHub

• jsonld-java-0.13.4.jar: Download from GitHub

• rdf4j-rio-jsonld-4.3.14.jar, rdf4j-rio-rdfjson-4.3.14.jar: Download from
RDF4J Downloads

7. Install JDK 11 if it is not already installed.

8. Set the JAVA_HOME environment variable to refer to the JDK 11 installation. Define and
verify the setting by executing the following command:

echo $JAVA_HOME

8.3.2 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in
RDF4J Server and Workbench

This section describes the installation and configuration of the Oracle RDF Graph Adapter for
Eclipse RDF4J in RDF4J Server and RDF4J Workbench.

The RDF4J Server is a database management application that provides HTTP access to
RDF4J repositories, exposing them as SPARQL endpoints. RDF4J Workbench provides a web
interface for creating, querying, updating and exploring the repositories of an RDF4J Server.

Prerequisites

Ensure the following prerequisites are configured to use the adapter for Eclipse RDF4J in
RDF4J Server and Workbench:

1. Java 11 runtime environment.

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 74

https://www.eclipse.org/downloads/download.php?file=/rdf4j/eclipse-rdf4j-4.3.14-onejar.jar
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://github.com/FasterXML
https://github.com/jsonld-java
https://rdf4j.org/download/

2. Download the supporting libraries as explained in Include Supporting Libraries.

3. A Java Servlet Container that supports Java Servlet API 4.0 and Java Server Pages (JSP)
2.3, or newer.

Note

All examples in this chapter are executed on a recent, stable version of Apache
Tomcat (9.0.97).

4. Standard installation of the RDF4J Server, RDF4J Workbench, and RDF4J Console . See
RDF4J Server and Workbench Installation and RDF4J Console installation for more
information.

5. Verify that Oracle is not listed as a default repository in the drop-down in the following
Figure 8-1.

Figure 8-1 Data Source Repository in RDF4J Workbench

Note

If the Oracle data source repository is already set up in the RDF4J Workbench
repository, then it will appear in the preceding drop-down list.

Adding the Oracle Data Source Repository in RDF4J Workbench

To add the Oracle data source repository in RDF4J Workbench, you must execute the following
steps:

1. Add the Data Source to context.xml in Tomcat main $CATALINA_HOME/conf/context.xml
directory, by updating the following highlighted fields.

- Using JDBC driver
 <Resource name="jdbc/OracleSemDS" auth="Container"

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 74

https://rdf4j.org/documentation/tools/server-workbench
https://rdf4j.org/documentation/tools/console/

 driverClassName="oracle.jdbc.OracleDriver"
 factory="oracle.jdbc.pool.OracleDataSourceFactory"
 scope="Shareable"
 type="oracle.jdbc.pool.OracleDataSource"
 user="<<username>>"
 password="<<pwd>>"
 url="jdbc:oracle:thin:@<< host:port:sid >>"
 maxActive="100"
 minIdle="15"
 maxIdel="15"
 initialSize="15"
 removeAbandonedTimeout="30"
 validationQuery="select 1 from dual"
 />

- Using UCP
 <Resource name="jdbc/OracleSemDS" auth="Container"
 factory="oracle.ucp.jdbc.PoolDataSourceImpl"
 type="oracle.ucp.jdbc.PoolDataSource"
 connectionFactoryClassName="oracle.jdbc.pool.OracleDataSource"
 minPoolSize="15"
 maxPoolSize="100"
 inactiveConnectionTimeout="60"
 abandonedConnectionTimeout="30"
 initialPoolSize="15"
 user="<<username>>"
 password="<<pwd>>"
 url="jdbc:oracle:thin:@<< host:port:sid >>"
 />

2. Copy Oracle jdbc and ucp driver to Tomcat lib folder.

cp -f ojdbc8.jar $CATALINA_HOME/lib
cp -f ucp.jar $CATALINA_HOME/lib

3. Copy the oracle-rdf4j-adapter-4.3.14-20250106.jar, sdordf-23.6.0-20241122.jar,
sdordf-client-23.6.0-20241122.jar, sdoutl-23.6.0-20241122.jar to RDF4J Server
lib folder.

cp -f oracle-rdf4j-adapter-4.3.14-20250106.jar $CATALINA_HOME/webapps/rdf4j-server/
WEB-INF/lib
cp -f sdordf-23.6.0-20241122.jar $CATALINA_HOME/webapps/rdf4j-server/WEB-INF/lib
cp -f sdordf-client-23.6.0-20241122.jar $CATALINA_HOME/webapps/rdf4j-server/WEB-
INF/lib
cp -f sdoutl-23.6.0-20241122.jar $CATALINA_HOME/webapps/rdf4j-server/WEB-INF/lib

4. Copy the oracle-rdf4j-adapter-4.3.14-20250106.jar, sdordf-23.6.0-20241122.jar,
sdordf-client-23.6.0-20241122.jar, sdoutl-23.6.0-20241122.jar to RDF4J
Workbench lib folder.

cp -f oracle-rdf4j-adapter-4.3.14-20250106.jar $CATALINA_HOME/webapps/rdf4j-
workbench/WEB-INF/lib
cp -f sdordf-23.6.0-20241122.jar $CATALINA_HOME/webapps/rdf4j-workbench/WEB-INF/lib
cp -f sdordf-client-23.6.0-20241122.jar $CATALINA_HOME/webapps/rdf4j-workbench/WEB-
INF/lib
cp -f sdoutl-23.6.0-20241122.jar $CATALINA_HOME/webapps/rdf4j-workbench/WEB-INF/lib

5. Create the configuration file create-oracle.xsl within the Tomcat $CATALINA_HOME/
webapps/rdf4j-workbench/transformations folder.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 74

 xmlns:sparql="http://www.w3.org/2005/sparql-results#"
 xmlns="http://www.w3.org/1999/xhtml">
 <xsl:include href="../locale/messages.xsl" />
 <xsl:variable name="title">
 <xsl:value-of select="$repository-create.title" />
 </xsl:variable>
 <xsl:include href="template.xsl" />
 <xsl:template match="sparql:sparql">

 <form action="create" method="post">
 <table class="dataentry">
 <tbody>
 <tr>
 <th>
 <xsl:value-of select="$repository-type.label" />
 </th>
 <td>
 <select id="type" name="type">
 <option value="oracle"> Oracle Sail Store </option>
 </select>
 </td>
 <td></td>
 </tr>
 <tr>
 <th>
 <xsl:value-of select="$repository-id.label" />
 </th>
 <td>
 <input type="text" id="id" name="Repository ID"
 size="16" value="native" />
 </td>
 <td></td>
 </tr>
 <tr>
 <th>
 <xsl:value-of select="$repository-title.label" />
 </th>
 <td>
 <input type="text" id="title" name="Repository title" size="50"
 value="Native store" />
 </td>
 <td></td>
 </tr>
 <tr>
 <th> Model Name <strong style="color:Red">* </th>
 <td>
 <input type="text" id="oracleSemModelName" name="Model Name" size="50"
value="" />
 </td>
 <td></td>
 </tr>
 <tr>
 <th> Network Owner </th>
 <td>
 <input type="text" id="oracleSemNetworkOwner" name="Network Owner"
size="50" value="" />
 </td>
 <td></td>
 </tr>
 <tr>
 <th> Network Name </th>
 <td>

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 74

 <input type="text" id="oracleSemNetworkName" name="Network Name"
size="50" value="" />
 </td>
 <td></td>
 </tr>
 <tr>
 <th> DataSource Name </th>
 <td>
 <input type="text" id="oracleSemDataSourceName" name="DataSource Name"
size="30" value="OracleSemDS" />
 </td>
 <td></td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="button" value="{$cancel.label}"
 style="float:right" data-href="repositories"
 onclick="document.location.href=this.getAttribute('data-href')" />
 <input id="create" type="button" value="{$create.label}"
 onclick="checkOverwrite()" />
 </td>
 </tr>
 </tbody>
 </table>
 </form>
 <script src="../../scripts/create.js" type="text/javascript"></script>
 </xsl:template>
</xsl:stylesheet>

6. Replace the configuration file create.xsl within the Tomcat $CATALINA_HOME/webapps/
rdf4j-workbench/transformations transformation folder.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xsl:stylesheet [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sparql="http://www.w3.org/2005/sparql-results#"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:include href="../locale/messages.xsl" />

 <xsl:variable name="title">
 <xsl:value-of select="$repository-create.title" />
 </xsl:variable>

 <xsl:include href="template.xsl" />

 <xsl:template match="sparql:sparql">
 <form action="create">
 <table class="dataentry">
 <tbody>
 <tr>
 <th>
 <xsl:value-of select="$repository-type.label" />
 </th>
 <td>
 <select id="type" name="type">
 <option value="memory">
 Memory Store
 </option>

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 74

 <option value="memory-lucene">
 Memory Store + Lucene
 </option>
 <option value="memory-rdfs">
 Memory Store + RDFS
 </option>
 <option value="memory-rdfs-dt">
 Memory Store + RDFS and Direct Type
 </option>
 <option value="memory-rdfs-lucene">
 Memory Store + RDFS and Lucene
 </option>
 <option value="memory-customrule">
 Memory Store + Custom Graph Query Inference
 </option>
 <option value="memory-shacl">
 Memory Store + SHACL
 </option>
 <option value="native">
 Native Store
 </option>
 <option value="native-lucene">
 Native Store + Lucene
 </option>
 <option value="native-rdfs">
 Native Store + RDFS
 </option>
 <option value="native-rdfs-dt">
 Native Store + RDFS and Direct Type
 </option>
 <option value="memory-rdfs-lucene">
 Native Store + RDFS and Lucene
 </option>
 <option value="native-customrule">
 Native Store + Custom Graph Query Inference
 </option>
 <option value="native-shacl">
 Native Store + SHACL
 </option>
 <option value="remote">
 Remote RDF Store
 </option>
 <option value="sparql">
 SPARQL endpoint proxy
 </option>
 <option value="federate">Federation</option>
 <option value="lmdb">LMDB Store</option>
 <option value="oracle">Oracle</option>
 </select>
 </td>
 <td></td>
 </tr>
 <tr>
 <th>
 <xsl:value-of select="$repository-id.label" />
 </th>
 <td>
 <input type="text" id="id" name="id" size="16" />
 </td>
 <td></td>
 </tr>
 <tr>

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 74

 <th>
 <xsl:value-of select="$repository-title.label" />
 </th>
 <td>
 <input type="text" id="title" name="title" size="48" />
 </td>
 <td></td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="button" value="{$cancel.label}" style="float:right"
 data-href="repositories"
 onclick="document.location.href=this.getAttribute('data-href')" />
 <input type="submit" name="next" value="{$next.label}" />
 </td>
 </tr>
 </tbody>
 </table>
 </form>
 </xsl:template>

</xsl:stylesheet>

7. Restart Tomcat and navigate to https://localhost:8080/rdf4j-workbench.

Note

The configuration files, create-oracle.xsl and create.xsl contain the word "Oracle",
which you can see in the drop-down in Figure 8-2

"Oracle" appears as an option in the drop-down list in RDF4J Workbench.

Figure 8-2 RDF4J Workbench Repository

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 74

• Using the Adapter for Eclipse RFD4J Through RDF4J Workbench
You can use RDF4J Workbench for creating and querying repositories.

8.3.2.1 Using the Adapter for Eclipse RFD4J Through RDF4J Workbench
You can use RDF4J Workbench for creating and querying repositories.

RDF4J Workbench provides a web interface for creating, querying, updating and exploring
repositories in RDF4J Server.

Creating a New Repository using RDF4J Workbench

1. Start RDF4J Workbench by entering the url https://localhost:8080/rdf4j-workbench
in your browser.

2. Click New Repository in the sidebar menu and select the new repository Type as
"Oracle".

3. Enter the new repository ID and Title as shown in the following figure and click Next.

Figure 8-3 RDF4J Workbench New Repository

4. Enter your Model (RDF graph) details and click Create to create the new repository.

Figure 8-4 Create New Repository in RDF4J Workbench

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 74

The newly created repository summary is display as shown:

Figure 8-5 Summary of New Repository in RDF4J Workbench

You can also view the newly created repository in the List of Repositories page in RDF4J
Workbench.

Figure 8-6 List of Repositories

8.3.3 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As
SPARQL Service

In order to use the SPARQL service via the RDF4J Workbench, ensure that the Eclipse RDF4J
server is installed and the Oracle Data Source repository is configured as explained in Setting
Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J Server and Workbench

The Eclipse RDF4J server installation provides a REST API that uses the HTTP Protocol and
covers a fully compliant implementation of the SPARQL 1.1 Protocol W3C Recommendation.

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 74

This ensures that RDF4J server functions as a fully standards-compliant SPARQL endpoint.
See The RDF4J REST API for more information on this feature.

The following section presents the examples of usage:

• Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench

8.3.3.1 Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench
This section provides a few examples of using the adapter for Eclipse RDF4J through a
SPARQL Endpoint served by the Eclipse RDF4J Workbench.

Example 8-2 Request to Perform a SPARQL Update

The following example inserts some simple triples using HTTP POST. Assume that the content
of the file sparql_update.rq is as follows:

PREFIX ex: <http://example.oracle.com/>
INSERT DATA {
 ex:a ex:value "A" .
 ex:b ex:value "B" .
}

You can then run the preceding SPARQL update using the curl command line tool as shown:

curl -X POST --data-binary "@sparql_update.rq" \
-H "Content-Type: application/sparql-update" \
"http://localhost:8080/rdf4j-server/repositories/MyRDFRepo/statements"

Example 8-3 Request to Execute a SPARQL Query Using HTTP GET

This curl example executes a SPARQL query using HTTP GET.

curl -X GET -H "Accept: application/sparql-results+json" \
"http://localhost:8080/rdf4j-server/repositories/MyRDFRepo?
query=SELECT%20%3Fs%20%3Fp%20%3Fo%0AWHERE%20%7B%20%3Fs%20%3Fp%20%3Fo%20%7D%0ALIMIT%2010"

Assuming that the previous SPARQL update example was executed on an empty repository,
this REST request should return the following response.

{
 "head" : {
 "vars" : [
 "s",
 "p",
 "o"
]
 },
 "results" : {
 "bindings" : [
 {
 "p" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/value"
 },
 "s" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/b"
 },
 "o" : {
 "type" : "literal",
 "value" : "B"

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 74

https://rdf4j.org/documentation/reference/rest-api/

 }
 },
 {
 "p" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/value"
 },
 "s" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/a"
 },
 "o" : {
 "type" : "literal",
 "value" : "A"
 }
 }
]
 }
}

8.4 Using Oracle RDF Graph Adapter for Eclipse RDF4J with
Oracle Autonomous AI Database

To use Oracle RDF Graph Adapter for Eclipse RDF4J with Autonomous AI Database, you can
use a JDBC connection to connect to your Autonomous AI Database instance.

Refer to Connect with JDBC Thin Driver in Using Oracle Autonomous AI Database Serverless
for more information on how to obtain the JDBC URL to connect to the Autonomous AI
Database.

8.5 Database Connection Management
The Oracle RDF Graph Adapter for Eclipse RDF4J provides support for Oracle Connection
Pooling.

Instances of OracleSailStore use a connection pool to manage connections to an Oracle AI
Database. Oracle Connection Pooling is provided through the OraclePool class. Usually,
OraclePool is initialized with a DataSource, using the OraclePool (DataSource ods)
constructor. In this case, OraclePool acts as an extended wrapper for the DataSource, while
using the connection pooling capabilities of the data source. When you create an
OracleSailStore object, it is sufficient to specify the OraclePool object in the store
constructor, the database connections will then be managed automatically by the adapter for
Eclipse RDF4J. Several other constructors are also provided for OraclePool, which, for
example, allow you to create an OraclePool instance using a JDBC URL and database
username and password. See the Javadoc included in the Oracle RDF Graph Adapter for
Eclipse RDF4J download for more details.

If you need to retrieve Oracle connection objects (which are essentially database connection
wrappers) explicitly, you can invoke the OraclePool.getOracle method. After finishing with the
connection, you can invoke the OraclePool.returnOracleDBtoPool method to return the
object to the connection pool.

When you get an OracleSailConnection from OracleSailStore or an
OracleSailRepositoryConnection from an OracleRepository, a new OracleDB object is
obtained from the OraclePool and used to create the RDF4J connection object.

Chapter 8
Using Oracle RDF Graph Adapter for Eclipse RDF4J with Oracle Autonomous AI Database

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 74

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E

READ_COMMITTED transaction isolation is maintained between different RDF4J connection
objects.

The one exception to this behavior occurs when you obtain an
OracleSailRepositoryConnection by calling the asRepositoryConnection method on an
existing instance of OracleSailConnection. In this case, the original OracleSailConnection
and the newly obtained OracleSailRepositoryConnection will use the same OracleDB object.
When you finish using an OracleSailConnection or OracleSailRepositoryConnection object,
you should call its close method to return the OracleDB object to the OraclePool. Failing to do
so will result in connection leaks in your application.

8.6 SPARQL Query Execution Model
SPARQL queries executed through the Oracle RDF Graph Adapter for Eclipse RDF4J API run
as SQL queries against Oracle’s relational schema for storing RDF data.

Utilizing Oracle’s SQL engine allows SPARQL query execution to take advantage of many
performance features such as parallel query execution, in-memory columnar representation,
and Exadata smart scan.

There are two ways to execute a SPARQL query:

• You can obtain an implementation of Query or one of its subinterfaces from the
prepareQuery functions of a RepositoryConnection that has an underlying
OracleSailConnection.

• You can obtain an Oracle-specific implementation of TupleExpr from OracleSPARQLParser
and call the evaluate method of OracleSailConnection.

The following code snippet illustrates the first approach.

//run a query against the repository
String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {?x ex:name ?y} LIMIT 1 ";
TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL, queryString);

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
}

When an OracleSailConnection evaluates a query, it first translates the SPARQL query to an
equivalent SQL query, which is then executed on the database server. By default, the query is
translated using Java code on the client. However, this SPARQL-to-SQL translation can
instead use the SEM_APIS.SPARQL_TO_SQL stored procedure on the database server if the
system property oracle.rdf4j.adapter.sparqlInClient is set to the value F. Using
SEM_APIS.SPARQL_TO_SQL reduces database roundtrips and may result in better performance
when there is a high latency between the client and database server. The results of the SQL
query are processed and returned through one of the standard RDF4J query result interfaces.

• Using BIND Values

• Using JDBC BIND Values

• Additions to the SPARQL Query Syntax to Support Other Features

• Special Considerations for SPARQL Query Support

Chapter 8
SPARQL Query Execution Model

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 74

8.6.1 Using BIND Values
Oracle RDF Graph Adapter for Eclipse RDF4J supports bind values through the standard
RDF4J bind value APIs, such as the setBinding procedures defined on the Query interface.
Oracle implements bind values by adding SPARQL BIND clauses to the original SPARQL query
string.

For example, consider the following SPARQL query:

SELECT * WHERE { ?s <urn:fname> ?fname }

In the above query, you can set the value <urn:john> for the query variable ?s. The
tansformed query in that case would be:

SELECT * WHERE { BIND (<urn:john> AS ?s) ?s <urn:fname> ?fname }

Note

This approach is subject to the standard variable scoping rules of SPARQL. So query
variables that are not visible in the outermost graph pattern, such as variables that are
not projected out of a subquery, cannot be replaced with bind values.

8.6.2 Using JDBC BIND Values
Oracle RDF Graph Adapter for Eclipse RDF4J allows the use of JDBC bind values in the
underlying SQL statement that is executed for a SPARQL query. The JDBC bind value
implementation is much more performant than the standard RDF4J bind value support
described in the previous section.

JDBC bind value support uses the standard RDF4J setBinding API, but bind variables must
be declared in a specific way, and a special query option must be passed in with the
ORACLE_SEM_SM_NS namespace prefix. To enable JDBC bind variables for a query, you must
include USE_BIND_VAR=JDBC in the ORACLE_SEM_SM_NS namespace prefix (for example, PREFIX
ORACLE_SEM_SM_NS: <http://oracle.com/semtech#USE_BIND_VAR=JDBC>). When a SPARQL
query includes this query option, all query variables that appear in a simple SPARQL BIND
clause will be treated as JDBC bind values in the corresponding SQL query. A simple SPARQL
BIND clause is one with the form BIND (<constant> as ?var), for example BIND("dummy"
AS ?bindVar1).

The following code snippet illustrates how to use JDBC bind values.

Example 8-4 Using JDBC Bind Values

// query that uses USE_BIND_VAR=JDBC option and declares ?name as a JDBC bind
variable
String queryStr =
 "PREFIX ex: <http://example.org/>\n"+
 "PREFIX foaf: <http://xmlns.com/foaf/0.1/>\n"+
 "PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#USE_BIND_VAR=JDBC>\n"+
 "SELECT ?friend\n" +
 "WHERE {\n" +
 " BIND(\"\" AS ?name)\n" +
 " ?x foaf:name ?name\n" +
 " ?x foaf:knows ?y\n" +

Chapter 8
SPARQL Query Execution Model

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 74

 " ?y foaf:name ?friend\n" +
 "}";

// prepare the TupleQuery with JDBC bind var option
TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryStr);

// find friends for Jack
tupleQuery.setBinding("name", vf.createLiteral("Jack");

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println(bindingSet.getValue("friend").stringValue());
 }
}

// find friends for Jill
tupleQuery.setBinding("name", vf.createLiteral("Jill");

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println(bindingSet.getValue("friend").stringValue());
 }
}

Note

The JDBC bind value capability of Oracle RDF Graph Adapter for Eclipse RDF4J
utilizes the bind variables feature of SEM_APIS.SPARQL_TO_SQL described in Using
Bind Variables with SEM_APIS.SPARQL_TO_SQL.

• Limitations for JDBC Bind Value Support

8.6.2.1 Limitations for JDBC Bind Value Support
Only SPARQL SELECT and ASK queries support JDBC bind values.

The following are the limitations for JDBC bind value support:

• JDBC bind values are not supported in:

– SPARQL CONSTRUCT queries

– DESCRIBE queries

– SPARQL Update statements

• Long RDF literal values of more than 4000 characters in length cannot be used as JDBC
bind values.

• Blank nodes cannot be used as JDBC bind values.

Chapter 8
SPARQL Query Execution Model

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 74

8.6.3 Additions to the SPARQL Query Syntax to Support Other Features
The Oracle RDF Graph Adapter for Eclipse RDF4J allows you to pass in options for query
generation and execution. It implements these capabilities by overloading the SPARQL
namespace prefix syntax by using Oracle-specific namespaces that contain query options. The
namespaces are in the form PREFIX ORACLE_SEM_xx_NS, where xx indicates the type of feature
(such as SM - SEM_MATCH).

• Query Execution Options

• SPARQL_TO_SQL (SEM_MATCH) Options

8.6.3.1 Query Execution Options
You can pass query execution options to the database server by including a SPARQL PREFIX
of the following form:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#option>

The option in the above SPARQL PREFIX reflects a query option (or multiple options separated
by commas) to be used during query execution.

The following options are supported:

• DOP=n: specifies the degree of parallelism (n) to use during query execution.

• ODS=n: specifies the level of optimizer dynamic sampling to use when generating an
execution plan.

The following example query uses the ORACLE_SEM_FS_NS prefix to specify that a degree of
parallelism of 4 should be used for query execution.

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=4>
PREFIX ex: <http://www.example.com/>
SELECT *
WHERE {?s ex:fname ?fname ;
 ex:lname ?lname ;
 ex:dob ?dob}

8.6.3.2 SPARQL_TO_SQL (SEM_MATCH) Options
You can pass SPARQL_TO_SQL options to the database server to influence the SQL generated
for a SPARQL query by including a SPARQL PREFIX of the following form:

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#option>

The option in the above PREFIX reflects a SPARQL_TO_SQL option (or multiple options separated
by commas) to be used during query execution.

The available options are detailed in Using the SEM_MATCH Table Function to Query RDF
Data. Any valid keywords or keyword – value pairs listed as valid for the options argument of
SEM_MATCH or SEM_APIS.SPARQL_TO_SQL can be used with this prefix.

The following example query uses the ORACLE_SEM_SM_NS prefix to specify that HASH join
should be used to join all triple patterns in the query.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_link_hash>
PREFIX ex: <http://www.example.org/>
SELECT *

Chapter 8
SPARQL Query Execution Model

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 74

WHERE {?s ex:fname ?fname ;
 ex:lname ?lname ;
 ex:dob ?dob}

8.6.4 Special Considerations for SPARQL Query Support
This section explains the special considerations for SPARQL Query Support.

Unbounded Property Path Queries

By default Oracle RDF Graph Adapter for Eclipse RDF4J limits the evaluation of the
unbounded SPARQL property path operators + and * to at most 10 repetitions. This can be
controlled with the all_max_pp_depth(n) SPARQL_TO_SQL option, where n is the maximum
allowed number of repetitions when matching + or *. Specifying a value of zero results in
unlimited maximum repetitions.

The following example uses all_max_pp_depth(0) for a fully unbounded search.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_max_pp_depth(0)>
PREFIX ex: <http://www.example.org/>
SELECT (COUNT(*) AS ?cnt)
WHERE {ex:a ex:p1* ?y}

SPARQL Dataset Specification

The adapter for Eclipse RDF4J does not allow dataset specification outside of the SPARQL
query string. Dataset specification through the setDataset() method of Operation and its
subinterfaces is not supported, and passing a Dataset object into the evaluate method of
SailConnection is also not supported. Instead, use the FROM and FROM NAMED SPARQL clauses
to specify the query dataset in the SPARQL query string itself.

Query Timeout

Query timeout through the setMaxExecutionTime method on Operation and its subinterfaces
is not supported.

Long RDF Literals

Large RDF literal values greater than 4000 bytes in length are not supported by some SPARQL
query functions. See Special Considerations When Using SEM_MATCH for more information.

8.7 SPARQL Update Execution Model
This section explains the SPARQL Update Execution Model for Oracle RDF Graph Adapter for
Eclipse RDF4J.

The adapter for Eclipse RDF4J implements SPARQL update operations by executing a
sequence of SQL DML statements. By default, the logic to manage these SQL executions runs
on the client, and JDBC is used to submit the SQL statements to the database server.
However, setting the system property oracle.rdf4j.adapter.sparqlInClient to the value F
will instead use a single invocation of the SEM_APIS.UPDATE_RDF_GRAPH stored procedure on
the database server to execute the SPARQL update operation. Using
SEM_APIS.UPDATE_RDF_GRAPH reduces database roundtrips and may result in better
performance when there is a high latency between the client and database server. You can
execute a SPARQL update operation by getting an Update object from the prepareUpdate
function of an instance of OracleSailRepositoryConnection.

Chapter 8
SPARQL Update Execution Model

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 74

Note

You must have an OracleSailRepositoryConnection instance. A plain
SailRepository instance created from an OracleSailStore will not run the update
properly.

The following example illustrates how to update an Oracle RDF graph through the RDF4J API:

String updString =
 "PREFIX people: <http://www.example.org/people/>\n"+
 "PREFIX ont: <http://www.example.org/ontology/>\n"+
 "INSERT DATA { GRAPH <urn:g1> { \n"+
 " people:Sue a ont:Person; \n"+
 " ont:name \"Sue\" . } }";
 Update upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();

• Transaction Management for SPARQL Update

• Additions to the SPARQL Syntax to Support Other Features

• Special Considerations for SPARQL Update Support

8.7.1 Transaction Management for SPARQL Update
SPARQL update operations executed through the RDF4J API follow standard RDF4J
transaction management conventions. SPARQL updates are committed automatically by
default. However, if an explicit transaction is started on the SailRepositoryConnection with
begin, then subsequent SPARQL update operations will not be committed until the active
transaction is explicitly committed with commit. Any uncommitted update operations can be
rolled back with rollback.

8.7.2 Additions to the SPARQL Syntax to Support Other Features
Just as it does with SPARQL queries, Oracle RDF Graph Adapter for Eclipse RDF4J allows
you to pass in options for SPARQL update execution. It implements these capabilities by
overloading the SPARQL namespace prefix syntax by using Oracle-specific namespaces that
contain SEM_APIS.UPDATE_RDF_GRAPH options. These options apply to both client-based
SPARQL Update execution and SEM_APIS.UPDATE_RDF_GRAPH-based execution.

• UPDATE_RDF_GRAPH Options

• UPDATE_RDF_GRAPH Match Options

8.7.2.1 UPDATE_RDF_GRAPH Options
You can pass options to SPARQL Update execution by including a PREFIX declaration with the
following form:

PREFIX ORACLE_SEM_UM_NS: <http://oracle.com/semtech#option>

The option in the above PREFIX reflects an UPDATE_RDF_GRAPH option (or multiple options
separated by commas) to be used during update execution.

See SEM_APIS.UPDATE_RDF_GRAPH for more information on available options. Any valid
keywords or keyword – value pairs listed as valid for the options argument of
UPDATE_RDF_GRAPH can be used with this PREFIX.

Chapter 8
SPARQL Update Execution Model

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 74

The following example query uses the ORACLE_SEM_UM_NS prefix to specify a degree of
parallelism of 2 for the update.

PREFIX ORACLE_SEM_UM_NS: <http://oracle.com/semtech#parallel(2)>
PREFIX ex: <http://www.example.org/>
INSERT {GRAPH ex:g1 {ex:a ex:reachable ?y}}
WHERE {ex:a ex:p1* ?y}

8.7.2.2 UPDATE_RDF_GRAPH Match Options
You can pass match options to SPARQL Update execution by including a PREFIX declaration
with the following form:

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#option>

The option reflects an UPDATE_RDF_GRAPH match option (or multiple match options separated
by commas) to be used during SPARQL update execution.

The available options are detailed in SEM_APIS.UPDATE_RDF_GRAPH. Any valid keywords
or keyword – value pairs listed as valid for the match_options argument of UPDATE_RDF_GRAPH
can be used with this PREFIX.

The following example uses the ORACLE_SEM_SM_NS prefix to specify a maximum unbounded
property path depth of 5.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_max_pp_depth(5)>
PREFIX ex: <http://www.example.org/>
INSERT {GRAPH ex:g1 {ex:a ex:reachable ?y}}
WHERE {ex:a ex:p1* ?y}

8.7.3 Special Considerations for SPARQL Update Support
Unbounded Property Paths in Update Operations

As mentioned in the previous section, Oracle RDF Graph Adapter for Eclipse RDF4J limits the
evaluation of the unbounded SPARQL property path operators + and * to at most 10
repetitions. This default setting will affect SPARQL update operations that use property paths in
the WHERE clause. The max repetition setting can be controlled with the all_max_pp_depth(n)
option, where n is the maximum allowed number of repetitions when matching + or *.
Specifying a value of zero results in unlimited maximum repetitions.

The following example uses all_max_pp_depth(0) as a match option for a fully unbounded
search during SPARQL Update execution.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_max_pp_depth(0)>
PREFIX ex: <http://www.example.org/>
INSERT { GRAPH ex:g1 { ex:a ex:reachable ?y}}
WHERE { ex:a ex:p1* ?y}

SPARQL Dataset Specification

Oracle RDF Graph Adapter for Eclipse RDF4J does not allow dataset specification outside of
the SPARQL update string. Dataset specification through the setDataset method of Operation
and its subinterfaces is not supported. Instead, use the WITH, USING and USING NAMED SPARQL
clauses to specify the dataset in the SPARQL update string itself.

Bind Values

Bind values are not supported for SPARQL update operations.

Chapter 8
SPARQL Update Execution Model

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 74

Long RDF Literals

As noted in the previous section, large RDF literal values greater than 4000 bytes in length are
not supported by some SPARQL query functions. This limitation will affect SPARQL update
operations using any of these functions on long literal data. See Special Considerations When
Using SEM_MATCH for more information.

Update Timeout

Update timeout through the setMaxExecutionTime method on Operation and its subinterfaces
is not supported.

8.8 Efficiently Loading RDF Data
The Oracle RDF Graph Adapter for Eclipse RDF4J provides additional or improved Java
methods for efficiently loading a large amount of RDF data from files or collections.

Bulk Loading of RDF Data

The bulk loading capability of the adapter involves the following two steps:

1. Loading RDF data from a file or collection of statements to a staging table.

2. Loading RDF data from the staging table to the RDF storage tables.

The OracleBulkUpdateHandler class in the adapter provides methods that allow two different
pathways for implementing a bulk load:

1. addInBulk: These methods allow performing both the steps mentioned in Bulk Loading of
RDF Data with a single invocation. This pathway is better when you have only a single file
or collection to load from.

2. prepareBulk and completeBulk: You can use one or more invocations of prepareBulk.
Each call implements the step 1 of Bulk Loading of RDF Data.
Later, a single invocation of completeBulk can be used to perform step 2 of Bulk Loading
of RDF Data to load staging table data obtained from those multiple prepareBulk calls.
This pathway works better when there are multiple files to load from.

In addition, the OracleSailRepositoryConnection class in the adapter provides bulk loading
implementation for the following method in SailRepositoryConnection class: .

public void add(InputStream in,
 String baseURI,
 RDFFormat dataFormat,
 Resource... contexts)

Bulk loading from compressed file is supported as well, but currently limited to gzip files only.

See Also

ORARDFLDR Utility for Bulk Loading RDF Data

8.9 Validating RDF Data with SHACL Constraints
This section explains how to validate RDF graphs with SHACL (Shapes Constraint Language)
constraints using Oracle RDF Graph Adapter for Eclipse RDF4J.

Chapter 8
Efficiently Loading RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 74

SHACL is a W3C standard for specifying constraints for RDF graphs. For example, SHACL
allows you to specify that all instances of the ex:Person class must have a value for the
ex:name property. SHACL defines an RDF vocabulary that allows you to specify constraints. An
RDF graph that contains SHACL constraints is referred to as a shapes graph, and the RDF
graph to be validated is referred to as a data graph.

RDF4J supports SHACL through its ShaclSail class. The SHACL engine in RDF4J validates a
graph when changes to the graph are committed through RDF4J’s transaction mechanism.
See the RDF4J Documentation for general information about RDF4J’s SHACL support.

When using ShaclSail with Oracle Adapter for Eclipse RDF4J through the OracleShaclSail
class, a full SHACL validation runs when a transaction is committed. Incremental validation
targeted at a subset of data is not supported. You should therefore avoid committing many
small changes through an OracleShaclSail object, and use OracleShaclSail for large, bulk
validation operations. The RDF4J SHACL engine sends a series of SPARQL queries to Oracle
AI Database to check for constraint violations. A typical workflow for bulk validation is shown
below:

1. Create an OracleSailStore object for an RDF data graph stored in Oracle AI Database.

2. Create an OracleShaclSail object that wraps the OracleSailStore.

3. Create a SailRepository from the OracleShaclSail object.

4. Begin a transaction on the SailRepository.

5. Add a shapes graph to the RDF4J.SHACL_SHAPE_GRAPH context as a part of the transaction
(this shapes graph can be loaded from a variety of sources).

6. Commit the transaction.

7. A RepositoryException will be raised if a constraint is violated.

8. Check the validation report if an exception was raised.

These steps are illustrated in the following code fragment:

// Get an OracleSailStore instance for the stored data graph to validate
OraclePool op = new OraclePool(jdbcURL, user, password);
NotifyingSail store = new OracleSailStore(op, "DATA_GRAPH", "SCOTT", "NET1");

// Create an OracleShaclSail on top of the underlying OracleSailStore
ShaclSail shaclSail = new OracleShaclSail(store);
SailRepository sailRepository = new SailRepository(shaclSail);
sailRepository.init();

// Get a connection from the repository, start a transaction,
// load a shapes graph and commit the transaction to validate the data graph
try (SailRepositoryConnection conn = sailRepository.getConnection()) {
 conn.begin();
 // clear any existing shapes graph
 conn.clear(RDF4J.SHACL_SHAPE_GRAPH);
 // Add current shapes graph
 // Every person must have a name property
 StringReader shaclRules = new StringReader(
 String.join(
 "\n", "",
 "@prefix ex: <http://oracle.example.com/ns#> .",
 "@prefix sh: <http://www.w3.org/ns/shacl#> .",
 "@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .",
 "@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .",

Chapter 8
Validating RDF Data with SHACL Constraints

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 74

https://www.w3.org/TR/shacl/
https://rdf4j.org/documentation/programming/shacl/

 "@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .",

 "ex:MinCountShape",
 " a sh:NodeShape ;",
 " sh:targetClass ex:Person ;",
 " sh:property [",
 " sh:path ex:name ;",
 " sh:minCount 1 ;",
 "] ."
)
);

 try {
 conn.add(shaclRules, null, RDFFormat.TURTLE, RDF4J.SHACL_SHAPE_GRAPH);
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 // Commit transaction to validate the data graph with the current shapes
graph
 try {
 conn.commit();
 }
 catch (RepositoryException e) {
 Throwable cause = e.getCause();
 if (cause instanceof ValidationException) {
 Model validationReportModel = ((ValidationException)
cause).validationReportAsModel();

 WriterConfig writerConfig = new WriterConfig()
 .set(BasicWriterSettings.INLINE_BLANK_NODES, true)
 .set(BasicWriterSettings.XSD_STRING_TO_PLAIN_LITERAL, true)
 .set(BasicWriterSettings.PRETTY_PRINT, true);

 Rio.write(validationReportModel, System.out, RDFFormat.TURTLE,
writerConfig);
 }
 else {
 e.printStackTrace();
 }
 }
}

• SHACL Features Supported by Oracle Adapter for Eclipse RDF4J
This section lists the SHACL core constraints supported by Oracle Adapter for Eclipse
RDF4J.

• Restrictions on the use of RDF4J SHACL Features
This section describes the restrictions on the use of RDF4J SHACL features.

8.9.1 SHACL Features Supported by Oracle Adapter for Eclipse RDF4J
This section lists the SHACL core constraints supported by Oracle Adapter for Eclipse RDF4J.

• http://www.w3.org/ns/shacl#alternativePath

Chapter 8
Validating RDF Data with SHACL Constraints

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 74

• http://www.w3.org/ns/shacl#class

• http://www.w3.org/ns/shacl#datatype

• http://www.w3.org/ns/shacl#deactivated

• http://www.w3.org/ns/shacl#flags

• http://www.w3.org/ns/shacl#hasValue

• http://www.w3.org/ns/shacl#in

• http://www.w3.org/ns/shacl#inversePath

• http://www.w3.org/ns/shacl#languageIn

• http://www.w3.org/ns/shacl#maxCount

• http://www.w3.org/ns/shacl#maxExclusive

• http://www.w3.org/ns/shacl#maxInclusive

• http://www.w3.org/ns/shacl#maxLength

• http://www.w3.org/ns/shacl#minCount

• http://www.w3.org/ns/shacl#minExclusive

• http://www.w3.org/ns/shacl#minInclusive

• http://www.w3.org/ns/shacl#minLength

• http://www.w3.org/ns/shacl#node

• http://www.w3.org/ns/shacl#nodeKind

• http://www.w3.org/ns/shacl#path

• http://www.w3.org/ns/shacl#pattern

• http://www.w3.org/ns/shacl#property

• http://www.w3.org/ns/shacl#severity

• http://www.w3.org/ns/shacl#target

• http://www.w3.org/ns/shacl#targetClass

• http://www.w3.org/ns/shacl#targetNode

• http://www.w3.org/ns/shacl#targetObjectsOf

• http://www.w3.org/ns/shacl#targetSubjectsOf

• http://www.w3.org/ns/shacl#uniqueLang

The following features are not enabled by default but can be enabled by setting the system
property oracle.rdf4j.adapter.restrictShaclFeatures to the value F. These features
should only be used with smaller RDF datasets because the RDF4J SHACL engine’s
implementation reads the set of target nodes into the client program’s memory when evaluating
constraints with these features.

• http://www.w3.org/ns/shacl#and

• http://www.w3.org/ns/shacl#not

• http://www.w3.org/ns/shacl#or

• http://www.w3.org/ns/shacl#qualifiedMaxCount

• http://www.w3.org/ns/shacl#qualifiedMinCount

Chapter 8
Validating RDF Data with SHACL Constraints

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 74

• http://www.w3.org/ns/shacl#qualifiedValueShape

• http://www.w3.org/ns/shacl#sparql

8.9.2 Restrictions on the use of RDF4J SHACL Features
This section describes the restrictions on the use of RDF4J SHACL features.

Oracle Adapter for Eclipse RDF4J only supports SHACL Shapes stored in the reserved named
graph (context) http://rdf4j.org/schema/rdf4j#SHACLShapeGraph. In general, ShaclSail
allows you to load shapes graphs from arbitrary named graphs identified with the
setShapesGraph method. However, setShapesGraph is not supported by Oracle Adapter for
Eclipse RDF4J.

8.10 ORARDFLDR Utility for Bulk Loading RDF Data
This section describes using the ORARDFLDR utility program for bulk loading RDF data
serialized in various standard formats such as RDF/XML, N-Triples, Turtle, JSON-LD, and so
on.

The Java class oracle.rdf4j.adapter.utils.RDFLoader is included with Oracle Adapter for
Eclipse RDF4J. It uses Eclipse RDF4J’s RDF parsers in combination with Oracle AI
Database’s scalable bulk loading capabilities to parse and load RDF files into the database.

This utility program loads all files in a directory into an RDF graph in Oracle AI Database. It
supports several RDF serializations like RDF/XML, Turtle, N-Triple, N-Quads, Trig, and JSON-
LD. Files compressed with gzip can be directly loaded without uncompressing the gzip file. In
addition, Unicode characters, special characters, and long literals (CLOBs) are handled
automatically.

Running ORARDFLDR Utility Program

The following describes the commands to execute ORARDFLDR. The commands assume that
all Oracle support for Eclipse RDF4J jars and required supporting jars are located in /tmp/
oracle_adapter/jar as explained previously in Setup and Configuration for Using Oracle RDF
Graph Adapter for Eclipse RDF4J.

• Usage:

java -cp /tmp/oracle_adapter/jar/'*' oracle.rdf4j.adapter.utils.RDFLoader
<command_line_arguments>

• For help details:

java -cp /tmp/oracle_adapter/jar/'*' oracle.rdf4j.adapter.utils.RDFLoader --help

For convenience, a shell script in the bin directory can also be executed. Proper set up of the
CLASSPATH environment variable is required for execution of this shell script. The following
describes the prerequisites and the commands to use this script:

Prerequisite: Set the CLASSPATH environment variable and ensure the /bin directory of the kit
is in your Unix PATH environment variable.

• Setup (assuming C shell command line interface):

export CLASSPATH=/tmp/oracle_adapter/jar/'*'
export PATH=/tmp/oracle_adapter/bin:$PATH

• Usage:

orardfldr <command_line_arguments>

Chapter 8
ORARDFLDR Utility for Bulk Loading RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 74

• For help details:

orardfldr --help

8.11 Best Practices for Oracle RDF Graph Adapter for Eclipse
RDF4J

This section explains the performance best practices for Oracle RDF Graph Adapter for
Eclipse RDF4J.

Closing Resources

Application programmers should take care to avoid resource leaks. For Oracle RDF Graph
Adapter for Eclipse RDF4J, the two most important types of resource leaks to prevent are
JDBC connection leaks and database cursor leaks.

Preventing JDBC Connection Leaks

A new JDBC connection is obtained from the OraclePool every time you call getConnection on
an OracleRepository or OracleSailStore to create an OracleSailConnection or
OracleSailRepositoryConnection object. You must ensure that these JDBC connections are
returned to the OraclePool by explicitly calling the close method on the OracleSailConnection
or OracleSailRepositoryConnection objects that you create.

Preventing Database Cursor Leaks

Several RDF4J API calls return an Iterator. When using the adapter for Eclipse RDF4J, many
of these iterators have underlying JDBC ResultSets that are opened when the iterator is
created and therefore must be closed to prevent database cursor leaks.

Oracle’s iterators can be closed in two ways:

1. By creating them in try-with-resources statements and relying on Java Autoclosable to
close the iterator.

String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n"+
 "SELECT * WHERE {?x ex:name ?y}\n" +
 "ORDER BY ASC(STR(?y)) LIMIT 1 ";

TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println("value of x: " + bindingSet.getValue("x"));
 System.out..println("value of y: " + bindingSet.getValue("y"))
 }
}

2. By explicitly calling the close method on the iterator.

String queryString =

Chapter 8
Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 74

 "PREFIX ex: <http://example.org/ontology/>\n"+
 "SELECT * WHERE {?x ex:name ?y}\n" +
 "ORDER BY ASC(STR(?y)) LIMIT 1 ";
TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);
TupleQueryResult result = tupleQuery.evaluate();
try {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println("value of x: " +
bindingSet.getValue("x"));
 System.out..println("value of y: " + bindingSet.getValue("y"))
 }
}
finally {
 result.close();
}

Gathering Statistics

It is strongly recommended that you analyze the application table, RDF graph, and inferred
graph in case it exists before performing inference and after loading a significant amount of
RDF data into the database. Performing the analysis operations causes statistics to be
gathered, which will help the Oracle optimizer select efficient execution plans when answering
queries.

To gather relevant statistics, you can use the following methods in the OracleSailConnection:

• OracleSailConnection.analyze

• OracleSailConnection.analyzeApplicationTable

For information about these methods, including their parameters, see the RDF Graph Support
for Eclipse RDF4J Javadoc.

JDBC Bind Values

It is strongly recommended that you use JDBC bind values whenever you execute a series of
SPARQL queries that differ only in constant values. Using bind values saves significant query
compilation overhead and can lead to much higher throughput for your query workload.

For more information about JDBC bind values, see Using JDBC BIND Values and Example 13:
Using JDBC Bind Values.

8.12 Blank Nodes Support in Oracle RDF Graph Adapter for
Eclipse RDF4J

In a SPARQL query, a blank node that is not wrapped inside < and > is treated as a variable
when the query is executed through the support for the adapter for Eclipse RDF4J. This
matches the SPARQL standard semantics.

However, a blank node that is wrapped inside < and > is treated as a constant when the query
is executed, and the support for Eclipse RDF4J adds a proper prefix to the blank node label as
required by the underlying data modeling. Do not use blank nodes for the CONTEXT column in
the application table, because blank nodes in named graphs from two different RDF graphs will
be treated as the same resource if they have the same label. This is not the case for blank
nodes in triples, where they are stored separately if coming from different RDF graphs.

Chapter 8
Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 74

https://rdf4j.org/javadoc/5.0.0-M2/index.html

The blank node when stored in Oracle AI Database is embedded with a prefix based on the
RDF graph ID and graph name. Therefore, a conversion is needed between blank nodes used
in RDF4J API’s and Oracle AI Database. This can be done using the following methods:

• OracleUtils.addOracleBNodePrefix

• OracleUtils.removeOracleBNodePrefix

8.13 Unsupported Features in Oracle RDF Graph Adapter for
Eclipse RDF4J

The unsupported features in the current version of Oracle RDF Graph Adapter for Eclipse
RDF4J are discussed in this section.

The following features of Oracle RDF Graph are not supported in this version of the adapter for
Eclipse RDF4J:

• RDF View graphs

• Native Unicode Storage (available in Oracle Database version 21c and later)

• Managing RDF graphs in Oracle Autonomous AI Database

The following features of the Eclipse RDF4J API are not supported in this version of the
adapter for Eclipse RDF4J:

• SPARQL Dataset specification using the setDataset method of Operation and its
subinterfaces is not supported. The dataset should be specified in the SPARQL query or
update string itself.

• Specifying Query and Update timeout through the setMaxExecutionTime method on
Operation and its subinterfaces is not supported.

• A TupleExpr that does not implement OracleTuple cannot be passed to the evaluate
method in OracleSailConnection.

• An Update object created from a RepositoryConnection implementation other than
OracleSailRepositoryConnection cannot be executed against Oracle RDF

8.14 Example Queries Using Oracle RDF Graph Adapter for
Eclipse RDF4J

This section includes the example queries for using Oracle RDF Graph Adapter for Eclipse
RDF4J.

To run these examples, ensure that all the supporting libraries mentioned in Supporting
libraries for using adapter with Java code are included in the CLASSPATH definition.

To run a query, you must execute the following actions:

1. Include the example code in a Java source file.

2. Define a CLASSPATH environment variable named CP to include the relevant jar files. For
example, it may be defined as follows:

setenv CP .:ojdbc8.jar:ucp.jar:oracle-rdf4j-
adapter-4.3.14-20250106.jar:sdordf-23.6.0-20241122.jar:
sdordf-client-23.6.0-20241122.jar:sdoutl-23.6.0-20241122.jar:log4j-
api-2.24.2.jar:log4j-core-2.24.2.jar:

Chapter 8
Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 74

log4j-slf4j-impl-2.24.2.jar:slf4j-api-1.7.36.jar:eclipse-rdf4j-4.3.14-
onejar.jar:commons-io-2.14.0.jar

Note

The preceding setenv command assumes that the jar files are located in the
current directory. You may need to alter the command to indicate the location of
these jar files in your environment.

3. Compile the Java source file. For example, to compile the source file Test.java, run the
following command:

javac -classpath $CP Test.java

4. Run the compiled file on an RDF graph named TestModel in an existing schema-private
network whose owner is SCOTT and name is NET1 by executing the following command:

java -classpath $CP Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> TestModel scott net1

• Example 1: Basic Operations

• Example 2: Add a Data File in TRIG Format

• Example 3: Simple Query

• Example 4: Simple Bulk Load

• Example 5: Bulk Load RDF/XML

• Example 6: SPARQL Ask Query

• Example 7: SPARQL CONSTRUCT Query

• Example 8: Named Graph Query

• Example 9: Get COUNT of Matches

• Example 10: Specify Bind Variable for Constant in Query Pattern

• Example 11: SPARQL Update

• Example 12: Oracle Hint

• Example 13: Using JDBC Bind Values

• Example 14: Simple Inference

• Example 15: Simple Graph Collection

• Example 16: Graph Validation with SHACL

8.14.1 Example 1: Basic Operations
Example 8-5 shows the BasicOper.java file, which performs some basic operations such as
add and remove statements.

Example 8-5 Basic Operations

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 74

import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.common.iteration.CloseableIteration;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Statement;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.sail.SailException;

public class BasicOper {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;
 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 OracleSailConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);

 ValueFactory f = sr.getValueFactory();
 conn = store.getConnection();

 // create some resources and literals to make statements out of
 IRI p = f.createIRI("http://p");
 IRI domain = f.createIRI("http://www.w3.org/2000/01/rdf-schema#domain");
 IRI cls = f.createIRI("http://cls");
 IRI a = f.createIRI("http://a");
 IRI b = f.createIRI("http://b");
 IRI ng1 = f.createIRI("http://ng1");

 conn.addStatement(p, domain, cls);
 conn.addStatement(p, domain, cls, ng1);
 conn.addStatement(a, p, b, ng1);
 psOut.println("size for given contexts " + ng1 + ": " + conn.size(ng1));

 // returns OracleStatements
 CloseableIteration < ?extends Statement, SailException > it;
 int cnt;

 // retrieves all statements that appear in the repository(regardless of
context)
 cnt = 0;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 74

 it = conn.getStatements(null, null, null, false);
 while (it.hasNext()) {
 Statement stmt = it.next();
 psOut.println("getStatements: stmt#" + (++cnt) + ":" +
stmt.toString());
 }
 it.close();
 conn.removeStatements(null, null, null, ng1);
 psOut.println("size of context " + ng1 + ":" + conn.size(ng1));
 conn.removeAll();
 psOut.println("size of store: " + conn.size());
 }

 finally {
 if (conn != null && conn.isOpen()) {
 conn.close();
 }
 if (op != null && op.getOracleDB() != null)

 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 if (sr != null) sr.shutDown();
 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP BasicOper.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP BasicOper jdbc:oracle:thin:@localhost:1521:ORCL scott
<password-for-scott> TestModel scott net1

The expected output of the java command might appear as follows:

size for given contexts http://ng1: 2
getStatements: stmt#1: (http://a, http://p, http://b) [http://ng1]
getStatements: stmt#2: (http://p, http://www.w3.org/2000/01/rdf-
schema#domain, http://cls) [http://ng1]
getStatements: stmt#3: (http://p, http://www.w3.org/2000/01/rdf-
schema#domain, http://cls) [null]
size of context http://ng1:0
size of store: 0

8.14.2 Example 2: Add a Data File in TRIG Format
Add a Data File in TRIG Format shows the LoadFile.java file, which demonstrates how to
load a file in TRIG format.

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 74

Example 8-6 Add a Data File in TRIG Format

import java.io. * ;
import java.sql.SQLException;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import org.eclipse.rdf4j.repository.RepositoryException;
import org.eclipse.rdf4j.rio.RDFParseException;
import org.eclipse.rdf4j.sail.SailException;
import org.eclipse.rdf4j.rio.RDFFormat;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;

public class LoadFile {
 public static void main(String[] args) throws ConnectionSetupException,
 SQLException, SailException, RDFParseException, RepositoryException,
 IOException {

 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String trigFile = args[4];
 String networkOwner = (args.length > 6) ? args[5] : null;
 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection repConn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 repConn = sr.getConnection();
 psOut.println("testBulkLoad: start: before-load Size=" +
repConn.size());
 repConn.add(new File(trigFile), "http://my.com/", RDFFormat.TRIG);
 repConn.commit();
 psOut.println("size " + Long.toString(repConn.size()));
 }
 finally {
 if (repConn != null) {
 repConn.close();
 }
 if (op != null)
OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null, null,
networkOwner, networkName);
 if (sr != null) sr.shutDown();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 74

 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

For running this example, assume that a sample TRIG data file named test.trig was created
as:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix swp: <http://www.w3.org/2004/03/trix/swp-1/>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix ex: <http://example.org/>.
@prefix : <http://example.org/>.
default graph
{
 <http://example.org/bob> dc:publisher "Bob Hacker".
 <http://example.org/alice> dc:publisher "Alice Hacker".
}
:bob{
 _:a foaf:mbox <mailto:bob@oldcorp.example.org>.
 }
:alice{
 _:a foaf:name "Alice".
 _:a foaf:mbox <mailto:alice@work.example.org>.
 }
:jack {
 _:a foaf:name "Jack".
 _:a foaf:mbox <mailto:jack@oracle.example.org>.
 }

To compile this example, execute the following command:

javac -classpath $CP LoadFile.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP LoadFile jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel ./test.trig scott net1

The expected output of the java command might appear as follows:

testBulkLoad: start: before-load Size=0
size 7

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 74

8.14.3 Example 3: Simple Query
Example 3: Simple Query shows the SimpleQuery.java file, which demonstrates how to
perform a simple query.

Example 8-7 Simple Query

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SimpleQuery {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);

 ValueFactory f = sr.getValueFactory();
 conn = sr.getConnection();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 74

 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");

 conn.clear(); // to start from scratch
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);
 conn.commit();

 //run a query against the repository
 String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {?x ex:name ?y}\n" +
 "ORDER BY ASC(STR(?y)) LIMIT 1 ";
 TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SimpleQuery.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP SimpleQuery jdbc:oracle:thin:@localhost:1521:ORCL scott
<password-for-scott> TestModel scott net1

The expected output of the java command might appear as follows:

value of x: http://example.org/people/alice
value of y: "Alice"

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 74

8.14.4 Example 4: Simple Bulk Load
Example 8-8 shows the SimpleBulkLoad.java file, which demonstrates how to do a bulk load
from NTriples data.

Example 8-8 Simple Bulk Load

import java.io. * ;
import java.sql.SQLException;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.Resource;
import org.eclipse.rdf4j.repository.RepositoryException;
import org.eclipse.rdf4j.rio.RDFParseException;
import org.eclipse.rdf4j.sail.SailException;
import org.eclipse.rdf4j.rio.RDFFormat;
import org.eclipse.rdf4j.repository.Repository;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;

public class SimpleBulkLoad {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException,
 SailException, RDFParseException, RepositoryException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String filename = args[4]; // N-TRIPLES file
 String networkOwner = (args.length > 6) ? args[5] : null;
 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = new OraclePool(jdbcUrl, user, password);
 OracleSailStore store = new OracleSailStore(op, model, networkOwner,
networkName);
 OracleSailConnection osc = store.getConnection();
 Repository sr = new OracleRepository(store);
 ValueFactory f = sr.getValueFactory();

 try {
 psOut.println("testBulkLoad: start");

 FileInputStream fis = new
 FileInputStream(filename);

 long loadBegin = System.currentTimeMillis();
 IRI ng1 = f.createIRI("http://QuadFromTriple");
 osc.getBulkUpdateHandler().addInBulk(

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 74

 fis, "http://abc", // baseURI
 RDFFormat.NTRIPLES, // dataFormat
 null, // tablespaceName
 50, // batchSize
 null, // flags
 ng1 // Resource... for contexts
);

 long loadEnd = System.currentTimeMillis();
 long size_no_contexts = osc.size((Resource) null);
 long size_all_contexts = osc.size();

 psOut.println("testBulkLoad: " + (loadEnd - loadBegin) +
 "ms. Size:" + " NO_CONTEXTS=" + size_no_contexts + " ALL_CONTEXTS="
+ size_all_contexts);
 // cleanup
 osc.removeAll();
 psOut.println("size of store: " + osc.size());

 }
 finally {
 if (osc != null && osc.isOpen()) osc.close();
 if (op != null)
OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null, null,
networkOwner, networkName);
 if (sr != null) sr.shutDown();
 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

For running this example, assume that a sample ntriples data file named test.ntriples was
created as:

<urn:JohnFrench> <urn:name> "John".
<urn:JohnFrench> <urn:speaks> "French".
<urn:JohnFrench> <urn:height> <urn:InchValue>.
<urn:InchValue> <urn:value> "63".
<urn:InchValue> <urn:unit> "inch".
<http://data.linkedmdb.org/movie/onto/genreNameChainElem1> <http://www.w3.org/
1999/02/22-rdf-syntax-ns#first> <http://data.linkedmdb.org/movie/genre>.

To compile this example, execute the following command:

javac -classpath $CP SimpleBulkLoad.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP SimpleBulkLoad jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel ./test.ntriples scott net1

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 74

The expected output of the java command might appear as follows:

testBulkLoad: start
testBulkLoad: 8222ms.
Size: NO_CONTEXTS=0 ALL_CONTEXTS=6
size of store: 0

8.14.5 Example 5: Bulk Load RDF/XML
Example 5: Bulk Load RDF/XML shows the BulkLoadRDFXML.java file, which demonstrates
how to do a bulk load from RDF/XML file.

Example 8-9 Bulk Load RDF/XML

import java.io. * ;
import java.sql.SQLException;
import org.eclipse.rdf4j.model.Resource;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import org.eclipse.rdf4j.repository.RepositoryException;
import org.eclipse.rdf4j.rio.RDFParseException;
import org.eclipse.rdf4j.sail.SailException;
import org.eclipse.rdf4j.rio.RDFFormat;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;

public class BulkLoadRDFXML {
 public static void main(String[] args) throws
 ConnectionSetupException, SQLException, SailException,
 RDFParseException, RepositoryException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String rdfxmlFile = args[4]; // RDF/XML-format data file
 String networkOwner = (args.length > 6) ? args[5] : null;
 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 OracleSailConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = store.getConnection();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 74

 FileInputStream fis = new FileInputStream(rdfxmlFile);
 psOut.println("testBulkLoad: start: before-load Size=" + conn.size());
 long loadBegin = System.currentTimeMillis();
 conn.getBulkUpdateHandler().addInBulk(
 fis,
 "http://abc", // baseURI
 RDFFormat.RDFXML, // dataFormat
 null, // tablespaceName
 null, // flags
 null, // StatusListener
 (Resource[]) null // Resource...for contexts
);

 long loadEnd = System.currentTimeMillis();
 psOut.println("testBulkLoad: " + (loadEnd - loadBegin) + "ms. Size="
+ conn.size() + "\n");
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.close();
 }
 if (op != null)
OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null, null,
networkOwner, networkName);
 if (sr != null) sr.shutDown();
 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

For running this example, assume that a sample file named RdfXmlData.rdfxml was created
as:

<?xml version="1.0"?>
<!DOCTYPE owl [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>
<rdf:RDF
 xmlns = "http://a/b#" xml:base = "http://a/b#" xmlns:my =
"http://a/b#"
 xmlns:owl = "http://www.w3.org/2002/07/owl#"
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">
 <owl:Class rdf:ID="Color">
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:ID="Red"/>
 <owl:Thing rdf:ID="Blue"/>
 </owl:oneOf>
 </owl:Class>
</rdf:RDF>

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 74

To compile this example, execute the following command:

javac -classpath $CP BulkLoadRDFXML.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP BulkLoadRDFXML jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel ./RdfXmlData.rdfxml scott net1

The expected output of the java command might appear as follows:

testBulkLoad: start: before-load Size=0
testBulkLoad: 6732ms. Size=8

8.14.6 Example 6: SPARQL Ask Query
Example 6: SPARQL Ask Query shows the SparqlASK.java file, which demonstrates how to
perform a SPARQL ASK query.

Example 8-10 SPARQL Ask Query

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.BooleanQuery;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SparqlASK {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 74

 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();
 OracleSailConnection osc =
 (OracleSailConnection)((OracleSailRepositoryConnection)
conn).getSailConnection();

 ValueFactory vf = sr.getValueFactory();
 IRI p = vf.createIRI("http://p");
 IRI cls = vf.createIRI("http://cls");

 conn.clear();
 conn.add(p, RDFS.DOMAIN, cls);
 conn.commit();

 osc.analyze(); // analyze the semantic model
 osc.analyzeApplicationTable(); // and then the application table
 BooleanQuery tq = null;
 tq = conn.prepareBooleanQuery(QueryLanguage.SPARQL, "ASK { ?x ?p
<http://cls> }");
 boolean b = tq.evaluate();
 psOut.println("\nAnswer is " + Boolean.toString(b));
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SparqlASK.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP SparqlASK jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel scott net1

The expected output of the java command might appear as follows:

Answer is true

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 74

8.14.7 Example 7: SPARQL CONSTRUCT Query
Example 8-11 shows the SparqlConstruct.java file, which demonstrates how to perform a
SPARQL CONSTRUCT query.

Example 8-11 SPARQL CONSTRUCT Query

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Statement;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.GraphQuery;
import org.eclipse.rdf4j.query.GraphQueryResult;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SparqlConstruct {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 ValueFactory vf = sr.getValueFactory();
 IRI p = vf.createIRI("http://p");
 IRI cls = vf.createIRI("http://cls");

 conn.clear();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 74

 conn.add(p, RDFS.DOMAIN, cls);
 conn.commit();
 OracleSailConnection osc =
 (OracleSailConnection)((OracleSailRepositoryConnection)
conn).getSailConnection();
 osc.analyze(); // analyze the RDF graph
 osc.analyzeApplicationTable(); // and then the application table

 GraphQuery tq = null; // Construct Query
 tq = conn.prepareGraphQuery(QueryLanguage.SPARQL,
 "CONSTRUCT {?x <http://new_eq_p> ?o } WHERE { ?x ?p ?o }");
 psOut.println("Start construct query");

 try (GraphQueryResult result = tq.evaluate()) {
 while (result.hasNext()) {
 Statement stmt = (Statement) result.next();
 psOut.println(stmt.toString());
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SparqlConstruct.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP SparqlConstruct jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel scott net1

The expected output of the java command might appear as follows:

Start construct query
(http://p, http://new_eq_p, http://cls)

8.14.8 Example 8: Named Graph Query
Example 8-12 shows the NamedGraph.java file, which demonstrates how to perform a Named
Graph query.

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 74

Example 8-12 Named Graph Query

import java.io.File;
import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import org.eclipse.rdf4j.rio.RDFFormat;

public class NamedGraph {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String trigFile = args[4]; // TRIG-format data file
 String networkOwner = (args.length > 6) ? args[5] : null;
 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 conn.begin();
 conn.clear();

 // load the data incrementally since it is very small file
 conn.add(new File(trigFile), "http://my.com/", RDFFormat.TRIG);
 conn.commit();

 OracleSailConnection osc = (OracleSailConnection)
((OracleSailRepositoryConnection) conn).getSailConnection();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 74

 osc.analyze(); // analyze the RDF graph
 osc.analyzeApplicationTable(); // and then the application table
 TupleQuery tq = null;
 tq = conn.prepareTupleQuery(QueryLanguage.SPARQL,
 "PREFIX : <http://purl.org/dc/elements/1.1/>\n" +
 "SELECT ?g ?s ?p ?o\n" +
 "WHERE {?g :publisher ?o1 . GRAPH ?g {?s ?p ?o}}\n" +
 "ORDER BY ?g ?s ?p ?o");
 try (TupleQueryResult result = tq.evaluate()) {
 int idx = 0;
 while (result.hasNext()) {
 idx++;
 BindingSet bindingSet = result.next();
 psOut.print("\nsolution " + bindingSet.toString());
 }
 psOut.println("\ntotal # of solution " + Integer.toString(idx));
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

For running this example, assume that the test.trig file in TRIG format has been created as
follows:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix swp: <http://www.w3.org/2004/03/trix/swp-1/>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix : <http://example.org/>.
default graph
{
 :bobGraph dc:publisher "Bob Hacker" .
 :aliceGraph dc:publisher "Alice Hacker" .
}

:bobGraph {
 :bob foaf:mbox <mailto:bob@oldcorp.example.org> .
}

:aliceGraph {
 :alice foaf:name "Alice" .
 :alice foaf:mbox <mailto:alice@work.example.org> .

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 74

}

:jackGraph {
 :jack foaf:name "Jack" .
 :jack foaf:mbox <mailto:jack@oracle.example.org> .
}

To compile this example, execute the following command:

javac -classpath $CP NamedGraph.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP NamedGraph jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel ./test.trig scott net1

The expected output of the java command might appear as follows:

solution
[p=http://xmlns.com/foaf/0.1/mbox;s=http://example.org/alice;g=http://
example.org/aliceGraph;o=mailto:alice@work.example.org]
solution
[p=http://xmlns.com/foaf/0.1/name;s=http://example.org/alice;g=http://
example.org/aliceGraph;o="Alice"]
solution
[p=http://xmlns.com/foaf/0.1/mbox;s=http://example.org/bob;g=http://
example.org/bobGraph;o=mailto:bob@oldcorp.example.org]
total # of solution 3

8.14.9 Example 9: Get COUNT of Matches
Example 8-13 shows the CountQuery.java file, which demonstrates how to perform a query
that returns the total number (COUNT) of matches.

Example 8-13 Get COUNT of Matches

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 74

import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class CountQuery {
 public static void main(String[] args) throws
 ConnectionSetupException, SQLException
 {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 ValueFactory f = conn.getValueFactory();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");
 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");

 conn.begin();
 // clear model to start fresh
 conn.clear();
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);
 conn.commit();

 OracleSailConnection osc =
 (OracleSailConnection)((OracleSailRepositoryConnection)
conn).getSailConnection();
 osc.analyze();
 osc.analyzeApplicationTable();

 // Run a query and only return the number of matches (the count !)
 String queryString = " SELECT (COUNT(*) AS ?totalCount) WHERE {?s ?p ?
y} ";

 TupleQuery tupleQuery = conn.prepareTupleQuery(
 QueryLanguage.SPARQL, queryString);

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 74

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 String totalCount = bindingSet.getValue("totalCount").stringValue();
 psOut.println("number of matches: " + totalCount);
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP CountQuery.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP CountQuery jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel scott net1

The expected output of the java command might appear as follows:

number of matches: 2

8.14.10 Example 10: Specify Bind Variable for Constant in Query Pattern
Example 8-13 shows the BindVar.java file, which demonstrates how to perform a query that
specifies a bind variable for a constant in the SPARQL query pattern.

Example 8-14 Specify Bind Variable for Constant in Query Pattern

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 74

import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class BindVar {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();
 ValueFactory f = conn.getValueFactory();

 conn.begin();
 conn.clear();

 // create some resources and literals to make statements out of

 // Alice
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");
 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);

 //Bob
 IRI bob = f.createIRI("http://example.org/people/bob");
 Literal bobsName = f.createLiteral("Bob");
 conn.add(bob, RDF.TYPE, person);
 conn.add(bob, name, bobsName);

 conn.commit();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 74

 String queryString =
 " PREFIX ex: <http://example.org/ontology/> " +
 " Select ?name \n" + " WHERE \n" + " { SELECT * WHERE { ?person
ex:name ?name} }\n" +
 " ORDER BY ?name";

 TupleQuery tupleQuery = conn.prepareTupleQuery(
 QueryLanguage.SPARQL, queryString);

 // set binding for ?person = Alice
 tupleQuery.setBinding("person", alice);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }

 // re-run with ?person = Bob
 tupleQuery.setBinding("person", bob);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP BindVar.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP BindVar jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel scott net1

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 74

The expected output of the java command might appear as follows:

solution [name="Alice";person=http://example.org/people/alice]
solution [name="Bob";person=http://example.org/people/bob]

8.14.11 Example 11: SPARQL Update
Example 8-15 shows the SparqlUpdate.java file, which demonstrates how to perform
SPARQL Update statements.

Example 8-15 SPARQL Update

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.query.Update;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SparqlUpdate {
 private static final String DATA_1 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y=\"Sue\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static final String DATA_2 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static final String DATA_3 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]" +
 "[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/
Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static final String DATA_4 =
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]" +
 "[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 74

Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static final String DATA_5 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]" +
 "[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/
Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static String getRepositoryData(RepositoryConnection conn,
PrintStream out)
 {
 String dataStr = "";
 String queryString = "SELECT * WHERE { GRAPH ?g { ?x ?p ?y } } ORDER BY ?
g ?x ?p ?y";
 TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 out.println(bindingSet.toString());
 dataStr += bindingSet.toString();
 }
 }
 return dataStr;
 }
 public static void main(String[] args) throws
 ConnectionSetupException, SQLException
 {
 PrintStream out = new PrintStream(System.out);
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;
 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 conn.clear(); // to start from scratch

 // Insert some initial data

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 74

 String updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "INSERT DATA { GRAPH <urn:g1> { \n" +
 " people:Sue a ont:Person; \n" +
 " ont:name \"Sue\" . } }";
 Update upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 String repositoryData = getRepositoryData(conn, out);
 if (! (DATA_1.equals(repositoryData))) out.println("DATA_1 mismatch");
 // Change Sue's name to Susan
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "DELETE { GRAPH ?g { ?s ont:name ?n } }\n" +
 "INSERT { GRAPH ?g { ?s ont:name \"Susan\" } }\n" +
 "WHERE { GRAPH ?g { ?s ont:name ?n FILTER (?n =
\"Sue\") }}";
 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_2.equals(repositoryData))) out.println("DATA_2 mismatch");

 // Copy to contents of g1 to a new graph g2
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "COPY <urn:g1> TO <urn:g2>";
 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();

 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_3.equals(repositoryData))) out.println("DATA_3 mismatch");

 // Delete ont:name triple from graph g1
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "DELETE DATA { GRAPH <urn:g1> { people:Sue ont:name
\"Susan\" } }";
 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_4.equals(repositoryData))) out.println("DATA_4 mismatch");

 // Add contents of g2 to g1
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "ADD <urn:g2> TO <urn:g1>";
 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_5.equals(repositoryData))) out.println("DATA_5 mismatch");
 }
 finally {

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 74

 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SparqlUpdate.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP SparqlUpdate jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel scott net1

The expected output of the java command might appear as follows:

[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y="Sue"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/
Sue;y="Susan"]

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 74

[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]

8.14.12 Example 12: Oracle Hint
Example 8-16 shows the OracleHint.java file, which demonstrates how to use Oracle hint in
a SPARQL query or a SPARQL update.

Example 8-16 Oracle Hint

import java.sql.SQLException;
import oracle.rdf4j.adapter.OracleDB;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.query.Update;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class OracleHint {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 conn.clear(); // to start from scratch

 // Insert some initial data
 String updString =
 "PREFIX ex: <http://example.org/>\n" +
 "INSERT DATA { " +
 " ex:a ex:p1 ex:b . " +
 " ex:b ex:p1 ex:c . " +

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 74

 " ex:c ex:p1 ex:d . " +
 " ex:d ex:p1 ex:e . " +
 " ex:e ex:p1 ex:f . " +
 " ex:f ex:p1 ex:g . " +
 " ex:g ex:p1 ex:h . " +
 " ex:h ex:p1 ex:i . " +
 " ex:i ex:p1 ex:j . " +
 " ex:j ex:p1 ex:k . " +
 "}";
 Update upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();

 // default behavior for property path is 10 hop max, so we get 11
results
 String sparql =
 "PREFIX ex: <http://example.org/>\n" +
 "SELECT (COUNT(*) AS ?cnt)\n" +
 "WHERE { ex:a ex:p1* ?y }";

 TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
sparql);

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 if (11 !=
Integer.parseInt(bindingSet.getValue("cnt").stringValue()))
System.out.println("cnt mismatch: expecting 11");
 }
 }

 // ORACLE_SEM_FS_NS prefix hint to use parallel(2) and
dynamic_sampling(6)
 // ORACLE_SEM_SM_NS prefix hint to use a 5 hop max and to use CONNECT
BY instead of simple join
 sparql =
 "PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=2,ods=6>\n" +
 "PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/
semtech#all_max_pp_depth(5),all_disable_pp_sj>\n" +
 "PREFIX ex: <http://example.org/>\n" +
 "SELECT (COUNT(*) AS ?cnt)\n" +
 "WHERE { ex:a ex:p1* ?y }";

 tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL, sparql,
"http://example.org/");

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 if (6 !=
Integer.parseInt(bindingSet.getValue("cnt").stringValue()))
System.out.println("cnt mismatch: expecting 6");
 }
 }

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 74

 // query options for SPARQL Update
 sparql =
 "PREFIX ORACLE_SEM_UM_NS: <http://oracle.com/semtech#parallel(2)>\n" +
 "PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/
semtech#all_max_pp_depth(5),all_disable_pp_sj>\n" +
 "PREFIX ex: <http://example.org/>\n" +
 "INSERT { GRAPH ex:g1 { ex:a ex:reachable ?y } }\n" +
 "WHERE { ex:a ex:p1* ?y }";

 Update u = conn.prepareUpdate(sparql);
 u.execute();

 // graph ex:g1 should have 6 results because of all_max_pp_depth(5)
 sparql =
 "PREFIX ex: <http://example.org/>\n" +
 "SELECT (COUNT(*) AS ?cnt)\n" +
 "WHERE { GRAPH ex:g1 { ?s ?p ?o } }";

 tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL, sparql,
"http://example.org/");

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 if (6 !=
Integer.parseInt(bindingSet.getValue("cnt").stringValue()))
System.out.println("cnt mismatch: expecting 6");
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP OracleHint.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP OracleHint jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel scott net1

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 74

8.14.13 Example 13: Using JDBC Bind Values
Example 8-17 shows the JDBCBindVar.java file, which demonstrates how to use JDBC bind
values.

Example 8-17 Using JDBC Bind Values

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OracleDB;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class JDBCBindVar {

 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 PrintStream psOut = System.out;

 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;
 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = (networkName == null) ? new OracleSailStore(op, model) : new
OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 ValueFactory f = conn.getValueFactory();

 conn.begin();
 conn.clear();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 74

 // create some resources and literals to make statements out of
 // Alice
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");
 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);

 //Bob
 IRI bob = f.createIRI("http://example.org/people/bob");
 Literal bobsName = f.createLiteral("Bob");
 conn.add(bob, RDF.TYPE, person);
 conn.add(bob, name, bobsName);

 conn.commit();

 // Query using USE_BIND_VAR=JDBC option for JDBC bind values
 // Simple BIND clause for ?person marks ?person as a bind variable
 String queryString =
 " PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/
semtech#USE_BIND_VAR=JDBC>\n" +
 " PREFIX ex: <http://example.org/ontology/>\n" +
 " Select ?name \n" +
 " WHERE \n" +
 " { SELECT * WHERE { \n" +
 " BIND (\"\" AS ?person) \n" +
 " ?person ex:name ?name } \n" +
 " }\n" +
 " ORDER BY ?name";
 TupleQuery tupleQuery = conn.prepareTupleQuery(
 QueryLanguage.SPARQL, queryString);

 // set binding for ?person = Alice
 tupleQuery.setBinding("person", alice);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }

 // re-run with ?person = Bob
 tupleQuery.setBinding("person", bob);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 74

 if (op != null) {
 OracleDB oracleDB = op.getOracleDB();
 if (networkName == null)
 OracleUtils.dropSemanticModelAndTables(oracleDB, model);
 else
 OracleUtils.dropSemanticModelAndTables(oracleDB, model, null, null,
networkOwner, networkName);
 op.returnOracleDBtoPool(oracleDB);
 }
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP JDBCBindVar.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP JDBCBindVar jdbc:oracle:thin:@localhost:1521:ORCL scott
<password-for-scott> TestModel scott net1

The expected output of the Java command might appear as follows:

solution [name="Alice";person=http://example.org/people/alice]
solution [name="Bob";person=http://example.org/people/bob]

8.14.14 Example 14: Simple Inference
Example 8-18 shows the SimpleInference.java file, which shows inference for a single RDF
graph using the OWL2RL rule base.

Example 8-18 Simple Inference

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.BindingSet;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 74

import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import oracle.rdf4j.adapter.Attachment;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;

public class SimpleInference {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);

 // create a single-model, single-rulebase OracleSailStore object
 Attachment attachment =
Attachment.createInstance(Attachment.NO_ADDITIONAL_MODELS, new String[]
{"OWL2RL"});
 store = new OracleSailStore(op, model, attachment, networkOwner,
networkName);
 sr = new OracleRepository(store);

 ValueFactory f = sr.getValueFactory();
 conn = sr.getConnection();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI bob = f.createIRI("http://example.org/people/bob");
 IRI friendOf = f.createIRI("http://example.org/ontology/friendOf");
 IRI Person = f.createIRI("http://example.org/ontology/Person");
 IRI Engineer = f.createIRI("http://example.org/ontology/Engineer");
 IRI Doctor = f.createIRI("http://example.org/ontology/Doctor");

 conn.clear(); // to start from scratch

 // add some statements to the RDF graph
 conn.add(alice, RDF.TYPE, Engineer);
 conn.add(bob, RDF.TYPE, Doctor);
 conn.add(alice, friendOf, bob);
 conn.commit();

 OracleSailConnection osc = (OracleSailConnection)

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 74

((OracleSailRepositoryConnection)conn).getSailConnection();

 // perform inference (this will not generate any inferred triples)
 osc.performInference();

 // prepare a query to run against the repository
 String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {?x ex:friendOf ?y . ?x a ex:Person . ?y a ex:Person}
\n" ;
 TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);

 // run the query: no results will be returned because nobody is a Person
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 int resultCount = 0;
 while (result.hasNext()) {
 resultCount++;
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
 psOut.println("number of results: " + resultCount);
 }

 // add class hierarchy
 conn.add(Doctor, RDFS.SUBCLASSOF, Person);
 conn.add(Engineer, RDFS.SUBCLASSOF, Person);
 conn.commit();

 // perform inference again
 osc.performInference();

 // run the same query again: returns some results because alice and bob
now belong to superclass Person
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 74

To compile this example, execute the following command:

javac -classpath $CP SimpleInference.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP SimpleInference jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel scott net1

The expected output of the Java command might appear as follows:

number of results: 0
value of x: http://example.org/people/alice
value of y: http://example.org/people/bob

8.14.15 Example 15: Simple Graph Collection
Example 8-19 shows the SimpleVirtualModel.java file, which shows the creation and use of
an RDF graph collection consisting of two RDF graphs.

Example 8-19 Simple Graph Collection

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import oracle.rdf4j.adapter.Attachment;

public class SimpleVirtualModel {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String model2 = args[4];
 String virtualModelName = args[5];
 String networkOwner = (args.length > 7) ? args[6] : null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 74

 String networkName = (args.length > 7) ? args[7] : null;

 OraclePool op = null;

 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 OracleSailStore store2 = null;
 Repository sr2 = null;
 RepositoryConnection conn2 = null;

 OracleSailStore vmStore = null;
 Repository vmSr = null;
 RepositoryConnection vmConn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);

 // create two RDF graphs and then an RDF graph collection that uses
those two graphs

 // create the first RDF grapj
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 ValueFactory f = sr.getValueFactory();
 conn = sr.getConnection();

 // create the second RDF graph (this one will be used as an additional
graph in the attachment object)
 store2 = new OracleSailStore(op, model2, networkOwner, networkName);
 sr2 = new OracleRepository(store2);
 conn2 = sr2.getConnection();

 // create a two-graph RDF graph collection OracleSailStore object
 Attachment attachment = Attachment.createInstance(model2);
 vmStore = new OracleSailStore(op, model, /*ignored*/true, /
useVirtualModel/true, virtualModelName, attachment, networkOwner,
networkName);
 vmSr = new OracleRepository(vmStore);
 vmConn = vmSr.getConnection();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI bob = f.createIRI("http://example.org/people/bob");
 IRI friendOf = f.createIRI("http://example.org/ontology/friendOf");
 IRI Person = f.createIRI("http://example.org/ontology/Person");
 IRI Engineer = f.createIRI("http://example.org/ontology/Engineer");
 IRI Doctor = f.createIRI("http://example.org/ontology/Doctor");

 // clear any data (in case any of the two non-virtual models were
already present)
 conn.clear();
 conn2.clear();

 // add some statements to the first RDF model

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 74

 conn.add(alice, RDF.TYPE, Engineer);
 conn.add(bob, RDF.TYPE, Doctor);
 conn.add(alice, friendOf, bob);
 conn.commit();

 // prepare a query to run against the virtual model repository
 String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {" +
 "?x ex:friendOf ?y . ?x rdf:type/rdfs:subClassOf* ?xC . ?y rdf:type/
rdfs:subClassOf* ?yC" +
 "} ORDER BY ?x ?xC ?y ?yC\n" ;
 ;
 TupleQuery tupleQuery = vmConn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);

 // run the query: no results will be returned because nobody is a Person
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 int resultCount = 0;
 while (result.hasNext()) {
 resultCount++;
 BindingSet bindingSet = result.next();
 psOut.println("values of x | xC | y | yC: " +
 bindingSet.getValue("x") + " | " +
bindingSet.getValue("xC") + " | " +
 bindingSet.getValue("y") + " | " +
bindingSet.getValue("yC"));
 }
 psOut.println("number of results: " + resultCount);
 }

 // add class hierarchy info to the second model
 conn2.add(Doctor, RDFS.SUBCLASSOF, Person);
 conn2.add(Engineer, RDFS.SUBCLASSOF, Person);
 conn2.commit();

 // run the same query again: returns some additional info in the results
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 int resultCount = 0;
 while (result.hasNext()) {
 resultCount++;
 BindingSet bindingSet = result.next();
 psOut.println("values of x | xC | y | yC: " +
 bindingSet.getValue("x") + " | " +
bindingSet.getValue("xC") + " | " +
 bindingSet.getValue("y") + " | " +
bindingSet.getValue("yC"));
 }
 psOut.println("number of results: " + resultCount);
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 74

 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();

 if (conn2 != null && conn2.isOpen()) {
 conn2.clear();
 conn2.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model2, null,
null, networkOwner, networkName);
 sr2.shutDown();
 store2.shutDown();

 vmSr.shutDown();
 vmStore.shutDown();

 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SimpleVirtualModel.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP SimpleVirtualModel jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel TestOntology TestVM scott net1

The expected output of the Java command might appear as follows:

values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Engineer | http://example.org/people/bob | http://
example.org/ontology/Doctor
number of results: 1
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Person | http://example.org/people/bob | http://
example.org/ontology/Doctor
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Person | http://example.org/people/bob | http://
example.org/ontology/Person
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Engineer | http://example.org/people/bob | http://
example.org/ontology/Doctor
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Engineer | http://example.org/people/bob | http://
example.org/ontology/Person
number of results: 4

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 74

8.14.16 Example 16: Graph Validation with SHACL
Example 8-20 shows the ShaclExample.java file, which loads a data graph into RDF graph
DATA_GRAPH1 and then validates this data against SHACL shape ex:AgeCountShape.

Example 8-20 SHACL Validation

import java.io.IOException;
import java.io.PrintStream;
import java.io.StringReader;
import java.sql.SQLException;

import org.eclipse.rdf4j.common.exception.ValidationException;
import org.eclipse.rdf4j.model.Model;
import org.eclipse.rdf4j.model.vocabulary.RDF4J;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import org.eclipse.rdf4j.repository.RepositoryException;
import org.eclipse.rdf4j.repository.sail.SailRepository;
import org.eclipse.rdf4j.repository.sail.SailRepositoryConnection;
import org.eclipse.rdf4j.rio.RDFFormat;
import org.eclipse.rdf4j.rio.RDFParseException;
import org.eclipse.rdf4j.rio.Rio;
import org.eclipse.rdf4j.rio.WriterConfig;
import org.eclipse.rdf4j.rio.helpers.BasicWriterSettings;
import org.eclipse.rdf4j.sail.shacl.ShaclSail;

import oracle.rdf4j.adapter.OracleDB;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.shacl.OracleShaclSail;
import oracle.rdf4j.adapter.utils.OracleUtils;

public class ShaclExample {

 public static void main(String[] args) {
 PrintStream psOut = System.out;

 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String networkOwner = args[3];
 String networkName = args[4];

 String model = "DATA_GRAPH1";

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 74

 // load sample data graph
 try {
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 StringReader sampleData = new StringReader(
 String.join(
 "\n", "",
 "@prefix ex: <http://oracle.example.com/ns#> .",

 "ex:Alice a ex:Person .",

 "ex:Bob a ex:Person ;",
 " ex:age 20 .",

 "ex:Fred a ex:Person ;",
 " ex:age 30 ;",
 " ex:age 32 ."
)
);

 conn.begin();
 conn.add(sampleData, null, RDFFormat.TURTLE);
 conn.commit();
 }
 catch (IOException e) {
 e.printStackTrace(psOut);
 }
 finally {
 conn.close();
 sr.shutDown();
 }

 // load SHACL shapes graph and validate data
 ShaclSail shaclSail = null;
 SailRepository shaclRepo = null;
 SailRepositoryConnection shaclConn = null;
 try {
 shaclSail = new OracleShaclSail(store);
 shaclRepo = new SailRepository(shaclSail);
 shaclRepo.init();

 shaclConn = shaclRepo.getConnection();

 // add SHACL shapes in a transaction
 // All instances of ex:Person should have exactly one value for ex:age
 StringReader sampleShape = new StringReader(
 String.join(
 "\n", "",
 "@prefix ex: <http://oracle.example.com/ns#> .",
 "@prefix sh: <http://www.w3.org/ns/shacl#> .",

 "ex:AgeCountShape",
 " a sh:NodeShape ;",
 " sh:targetClass ex:Person ;",

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 74

 " sh:property [",
 " sh:path ex:age ;",
 " sh:maxCount 1 ;",
 " sh:minCount 1 ;",
 "] ."
)
);

 shaclConn.begin();
 // add shape to the reserved named graph http://rdf4j.org/schema/
rdf4j#SHACLShapeGraph
 // clear any existing shapes
 shaclConn.clear(RDF4J.SHACL_SHAPE_GRAPH);
 // add new shapes graph
 shaclConn.add(sampleShape, null, RDFFormat.TURTLE,
RDF4J.SHACL_SHAPE_GRAPH);
 // commit runs bulk validation against the data graph
 shaclConn.commit();
 }
 catch (RDFParseException | IOException e) {
 e.printStackTrace(psOut);
 }
 // SHACL violation will throw a Repository Exception
 catch (RepositoryException e) {
 Throwable cause = e.getCause();
 // Handle validation exception
 if (cause instanceof ValidationException) {
 // Get validation report and print it out
 Model validationReportModel = ((ValidationException)
cause).validationReportAsModel();

 WriterConfig writerConfig = new WriterConfig()
 .set(BasicWriterSettings.INLINE_BLANK_NODES, true)
 .set(BasicWriterSettings.XSD_STRING_TO_PLAIN_LITERAL, true)
 .set(BasicWriterSettings.PRETTY_PRINT, true);

 Rio.write(validationReportModel, psOut, RDFFormat.TURTLE,
writerConfig);
 }
 else {
 e.printStackTrace(psOut);
 }
 }
 finally {
 shaclConn.close();
 shaclRepo.shutDown();
 shaclSail.shutDown();
 }
 }
 catch (SQLException e) {
 e.printStackTrace(psOut);
 }
 finally {
 if (op != null) {
 try {
 OracleDB oracleDB = op.getOracleDB();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 74

 OracleUtils.dropSemanticModelAndTables(oracleDB, model, null, null,
networkOwner, networkName);
 op.returnOracleDBtoPool(oracleDB);
 }
 catch (SQLException e) {
 e.printStackTrace(psOut);
 }
 }

 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP ShaclExample.java

To run this example for an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP ShaclExample jdbc:oracle:thin:@localhost:1521:ORCL scott
<password-for-scott> scott net1

The expected output of the Java command might appear as shown. Note that in this case,
ex:Alice violates the constraint as there is no ex:age property, and ex:Fred violates the
constraint because there are two distinct values for ex:age.

@prefix dash: <http://datashapes.org/dash#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rsx: <http://rdf4j.org/shacl-extensions#> .
@prefix rdf4j: <http://rdf4j.org/schema/rdf4j#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

[] a sh:ValidationReport;
 sh:conforms false;
 rdf4j:truncated false;
 sh:result [a sh:ValidationResult;
 sh:focusNode <http://oracle.example.com/ns#Alice>;
 rsx:shapesGraph rdf4j:SHACLShapeGraph;
 sh:resultPath <http://oracle.example.com/ns#age>;
 sh:sourceConstraintComponent sh:MinCountConstraintComponent;
 sh:resultSeverity sh:Violation;
 sh:sourceShape _:c0d709142bb44448ad347272955741bc9
], [a sh:ValidationResult;
 sh:focusNode <http://oracle.example.com/ns#Fred>;
 rsx:shapesGraph rdf4j:SHACLShapeGraph;
 sh:resultPath <http://oracle.example.com/ns#age>;
 sh:sourceConstraintComponent sh:MaxCountConstraintComponent;
 sh:resultSeverity sh:Violation;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 74

 sh:sourceShape _:c0d709142bb44448ad347272955741bc9
] .

_:c0d709142bb44448ad347272955741bc9 a sh:PropertyShape;
 sh:path <http://oracle.example.com/ns#age>;
 sh:minCount 1;
 sh:maxCount 1 .

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 74

9
User-Defined Inferencing and Querying

RDF graph extension architectures enable the addition of user-defined capabilities.

Note

User-defined inferencing and querying capabilities is supported only if Oracle JVM is
enabled on your Oracle Autonomous AI Database Serverless deployments. To enable
Oracle JVM, see Use Oracle Java in Using Oracle Autonomous AI Database
Serverless for more information.

Effective with Oracle Database 12c Release 1 (12.1):

• The inference extension architecture enables you to add user-defined inferencing to the
presupplied inferencing support.

• The query extension architecture enables you to add user-defined functions and
aggregates to be used in SPARQL queries, both through the SEM_MATCH table function
and through the support for Apache Jena.

Note

The capabilities described in this chapter are intended for advanced users. You are
assumed to be familiar with the main concepts and techniques described in RDF
Graph Overview and OWL Concepts .

• User-Defined Inferencing
The RDF Graph inference extension architecture enables you to add user-defined
inferencing to the presupplied inferencing support.

• User-Defined Functions and Aggregates
The RDF Graph query extension architecture enables you to add user-defined functions
and aggregates to be used in SPARQL queries, both through the SEM_MATCH table
function and through the support for Apache Jena.

• SPARQL Rule-Based Inference
The RDF Graph inference extension architecture enables you to add SPARQL rule-based
inference.

9.1 User-Defined Inferencing
The RDF Graph inference extension architecture enables you to add user-defined inferencing
to the presupplied inferencing support.

• Problem Solved and Benefit Provided by User-Defined Inferencing

• API Support for User-Defined Inferencing

• User-Defined Inference Extension Function Examples

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 40

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

9.1.1 Problem Solved and Benefit Provided by User-Defined Inferencing
Before Oracle Database 12c Release 1 (12.1), the database inference engine provided native
support for OWL 2 RL,RDFS, SKOS, SNOMED (core EL), and user-defined rules, which
covered a wide range of applications and requirements. However, there was the limitation that
no new RDF resources could be created as part of the rules deduction process.

As an example of the capabilities and the limitation before Oracle Database 12c Release 1
(12.1), consider the following straightforward inference rule:

?C rdfs:subClassOf ?D .
?x rdf:type ?C . ==> ?x rdf:type ?D

The preceding rule says that any instance x of a subclass C will be an instance of C's
superclass, D. The consequent part of the rule mentions two variables ?x and ?D. However,
these variables must already exist in the antecedents of the rule, which further implies that
these RDF resources must already exist in the knowledge base. In other words, for example,
you can derive that John is a Student only if you know that John exists as a GraduateStudent
and if an axiom specifies that the GraduateStudent class is a subclass of the Student class.

Another example of a limitation is that before Oracle Database 12c Release 1 (12.1), the
inference functions did not support combining a person's first name and last name to produce a
full name as a new RDF resource in the inference process. Specifically, this requirement can
be captured as a rule like the following:

?x :firstName ?fn
?x :lastName ?ln ==> ?x :fullName concatenate(?fn ?ln)

Effective with Oracle Database 12c Release 1 (12.1), the RDF Graph inference extension
architecture opens the inference process so that users can implement their own inference
extension functions and integrate them into the native inference process. This architecture:

• Supports rules that require the generation of new RDF resources.

Examples might include concatenation of strings or other string operations, mathematical
calculations, and web service callouts.

• Allows implementation of certain existing rules using customized optimizations.

Although the native OWL inference engine has optimizations for many rules and these
rules work efficiently for a variety of large-scale ontologies, for some new untested
ontologies a customized optimization of a particular inference component may work even
better. In such a case, you can disable a particular inference component in the
SEM_APIS.CREATE_INFERRED_GRAPH call and specify a customized inference
extension function (using the inf_ext_user_func_name parameter) that implements the
new optimization.

• Allows the inference engine to be extended with sophisticated inference capabilities.

Examples might include integrating geospatial reasoning, time interval reasoning, and text
analytical functions into the native database inference process.

9.1.2 API Support for User-Defined Inferencing
The primary application programming interface (API) for user-defined inferencing is the
SEM_APIS.CREATE_INFERRED_GRAPH procedure, specifically the last parameter:

inf_ext_user_func_name IN VARCHAR2 DEFAULT NULL

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 40

The inf_ext_user_func_name parameter, if specified, identifies one or more user-defined
inference functions that implement the specialized logic that you want to use.

• User-Defined Inference Function Requirements

9.1.2.1 User-Defined Inference Function Requirements
Each user-defined inference function that is specified in the inf_ext_user_func_name
parameter in the call to the SEM_APIS.CREATE_INFERRED_GRAPH procedure must:

• Have a name that starts with the following string: SEM_INF_

• Be created with definer's rights, not invoker's rights. (For an explanation of definer's rights
and invoker's rights, see Oracle AI Database Security Guide.)

The format of the user-defined inference function must be that shown in the following example
for a hypothetical function named SEM_INF_EXAMPLE:

create or replace function sem_inf_example(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 pragma autonomous_transaction;
begin
 if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_START) then
 <... preparation work ...>
 end if;
 if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_RUN) then
 <... actual inference logic ...>
 commit;
 end if;
 if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_END) then
 <... clean up ...>
 end if;
return true; -- succeed
end;
/
grant execute on sem_inf_example to <network_owner>;

In the user-defined function format, the optimization_flag output parameter can specify one
or more Oracle-defined names that are associated with numeric values. You can specify one or
more of the following:

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NONE indicates that the inference engine should
not enable any optimizations for the extension function. (This is the default behavior of the
inference engine when the optimization_flag parameter is not set.)

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS indicates that all triples/quads inferred by
the extension function use only resource IDs. In other words, the output_tab table only
contains resource IDs (columns gid, sid, pid, and oid) and does not contain any lexical
values (columns g, s, p, and o are all null). Enabling this optimization flag allows the
inference engine to skip resource ID lookups.

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 40

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY indicates that all the triples/quads
inferred by the extension function are new and do not already exist in src_tab_view.
Enabling this optimization flag allows the inference engine to skip checking for duplicates
between the output_tab table and src_tab_view. Note that the src_tab_view contains
triples/quads from previous rounds of reasoning, including triples/quads inferred from
extension functions.

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY indicates that all the triples/quads
inferred by the extension function are unique and do not already exist in the output_tab
table. Enabling this optimization flag allows the inference engine to skip checking for
duplicates within the output_tab table (for example, no need to check for the same triple
inferred twice by an extension function). Note that the output_tab table is empty at the
beginning of each round of reasoning for an extension function, so uniqueness of the data
must only hold for the current round of reasoning.

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_IGNORE_NULL indicates that the inference engine
should ignore an inferred triple or quad if the subject, predicate, or object resource is null.
The inference engine considers a resource null if both of its columns in the output_tab
table are null (for example, subject is null if the s and sid columns are both null). Enabling
this optimization flag allows the inference engine to skip invalid triples/quads in the
output_tab table. Note that the inference engine interprets null graph columns (g and gid)
as the default graph.

To specify more than one value for the optimization_flag output parameter, use the plus sign
(+) to concatenate the values. For example:

optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

For more information about using the optimization_flag output parameter, see Example 3:
Optimizing Performance.

9.1.3 User-Defined Inference Extension Function Examples
The following examples demonstrate how to use user-defined inference extension functions to
create inferred graphs.

• Example 1: Adding Static Triples, Example 2: Adding Dynamic Triples, and Example 3:
Optimizing Performance cover the basics of user-defined inference extensions.

Example 1: Adding Static Triples and Example 2: Adding Dynamic Triples focus on adding
new, inferred triples.

Example 3: Optimizing Performance focuses on optimizing performance.

• Example 4: Temporal Reasoning (Several Related Examples) and Example 5: Spatial
Reasoning demonstrate how to handle special data types efficiently by leveraging native
Oracle types and operators.

Example 4: Temporal Reasoning (Several Related Examples) focuses on the
xsd:dateTime data type.

Example 5: Spatial Reasoning focuses on geospatial data types.

• Example 6: Calling a Web Service makes a web service call to the Oracle Geocoder
service.

The first three examples assume that the RDF graph EMPLOYEES exists and contains the
following RDF data, displayed in Turtle format:

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 40

:John :firstName "John" ;
 :lastName "Smith" .

:Mary :firstName "Mary" ;
 :lastName "Smith" ;
 :name "Mary Smith" .

:Alice :firstName "Alice" .

:Bob :firstName "Bob" ;
 :lastName "Billow" .

For requirements and guidelines for creating user-defined inference extension functions, see
API Support for User-Defined Inferencing.

• Example 1: Adding Static Triples

• Example 2: Adding Dynamic Triples

• Example 3: Optimizing Performance

• Example 4: Temporal Reasoning (Several Related Examples)

• Example 5: Spatial Reasoning

• Example 6: Calling a Web Service

9.1.3.1 Example 1: Adding Static Triples
The most basic method to infer new data in a user-defined inference extension function is
adding static data. Static data does not depend on any existing data in an RDF graph. This is
not a common case for a user-defined inference extension function, but it demonstrates the
basics of adding triples to an inferred graph. Inserting static data is more commonly done
during the preparation phase (that is, action='START') to expand on the existing ontology.

The following user-defined inference extension function (sem_inf_static) adds three static
triples to an inferred graph:

-- this user-defined rule adds static triples
create or replace function sem_inf_static(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 query varchar2(4000);
 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- generic query we use to insert triples
 query :=
 'insert /*+ parallel append */ into ' || output_tab ||
 ' (s, p, o) VALUES ' ||
 ' (:1, :2, :3) ';

 -- execute the query with different values

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 40

 execute immediate query using
 '<http://example.org/S1>', '<http://example.org/P2>', '"O1"';

 execute immediate query using
 '<http://example.org/S2>', '<http://example.org/P2>', '"2"^^xsd:int';

 -- duplicate quad
 execute immediate query using
 '<http://example.org/S2>', '<http://example.org/P2>', '"2"^^xsd:int';

 execute immediate query using
 '<http://example.org/S3>', '<http://example.org/P3>', '"3.0"^^xsd:double';

 -- commit our changes
 commit;
 end if;

 -- return true to indicate success
 return true;
end sem_inf_static;
/
show errors;

The sem_inf_static function inserts new data by executing a SQL insert query, with
output_tab as the target table for insertion. The output_tab table will only contain triples
added by the sem_inf_static function during the current call (see the num_calls parameter).
The inference engine will always call a user-defined inference extension function at least three
times, once for each possible value of the action parameter ('START', 'RUN', and 'END').
Because sem_inf_static does not need to perform any preparation or cleanup, the function
only adds data during the RUN phase. The extension function can be called more than once
during the RUN phase, depending on the data inferred during the current round of reasoning.

Although the sem_inf_static function makes no checks for existing triples (to prevent
duplicate triples), the inference engine will not generate duplicate triples in the resulting
inferred graph. The inference engine will filter out duplicates from the output_tab table (the
data inserted by the extension function) and from the final inferred graph (the RDF graph or
RDF graphs and other inferred data). Setting the appropriate optimization flags (using the
optimization_flag parameter) will disable this convenience feature and improve
performance. (See Example 3: Optimizing Performance for more information about
optimization flags.)

Although the table definition for output_tab shows a column for graph names, the inference
engine will ignore and override all graph names on triples added by extension functions when
performing Global Inference (default behavior of SEM_APIS.CREATE_INFERRED_GRAPH)
and Named Graph Global Inference (NGGI). To add triples to specific named graphs in a user-
defined extension function, use NGLI (Named Graph Local Inference). During NGLI, all triples
must belong to a named graph (that is, the gid and g columns of output_tab cannot both be
null).

The network owner must have execute privileges on the sem_inf_static function to use the
function for reasoning. The following example shows how to grant the appropriate privileges on
the sem_inf_static function and create an inferred graph using the function (along with
OWLPRIME inference logic):

-- grant appropriate privileges
grant execute on sem_inf_static to RDFUSER;

-- create the inferred graph
begin
 sem_apis.create_inferred_graph(

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 40

 'EMPLOYEES_INF'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_static'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'
);
end;
/

The following example displays the newly entailed data:

-- formatting
column s format a23;
column p format a23;
column o format a23;
set linesize 100;

-- show results
select s, p, o from table(SEM_MATCH(
 'select ?s ?p ?o where { ?s ?p ?o } order by ?s ?p ?o'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , null, null, null
 , 'INF_ONLY=T'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'));

The preceding query returns the three unique static triples added by sem_inf_static, with no
duplicates:

S P O
---------------------- ---------------------- -----------------------
http://example.org/S1 http://example.org/P2 O1
http://example.org/S2 http://example.org/P2 2
http://example.org/S3 http://example.org/P3 3E0

9.1.3.2 Example 2: Adding Dynamic Triples
Adding static data is useful, but it is usually done during the preparation (that is,
action='START') phase. Adding dynamic data involves looking at existing data in the RDF
graph and generating new data based on the existing data. This is the most common case for
a user-defined inference extension function.

The following user-defined inference extension function (sem_inf_dynamic) concatenates the
first and last names of employees to create a new triple that represents the full name.

-- this user-defined rule adds static triples
create or replace function sem_inf_dynamic(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 40

 firstNamePropertyId number;
 lastNamePropertyId number;
 fullNamePropertyId number;

 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);
 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist). These will improve
 -- performance of our SQL queries.
 firstNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
firstName');
 lastNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
lastName');
 fullNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
name');

 -- SQL query to find all employees and their first and last names
 sqlStmt :=
 'select ids1.sid employeeId,
 values1.value_name firstName,
 values2.value_name lastName
 from ' || resource_id_map_view || ' values1,
 ' || resource_id_map_view || ' values2,
 ' || src_tab_view || ' ids1,
 ' || src_tab_view || ' ids2
 where ids1.sid = ids2.sid
 AND ids1.pid = ' || to_char(firstNamePropertyId,'TM9') || '
 AND ids2.pid = ' || to_char(lastNamePropertyId,'TM9') || '
 AND ids1.oid = values1.value_id
 AND ids2.oid = values2.value_id
 /* below ensures we have NEWDATA (a no duplicate optimization flag) */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = ids1.sid AND
 pid = ' || to_char(fullNamePropertyId,'TM9') || ')';

 -- create the insert statement that concatenates the first and
 -- last names from our sqlStmt into a new triple.
 insertStmt :=
 'insert /*+ parallel append */
 into ' || output_tab || ' (sid, pid, o)
 select employeeId, ' || to_char(fullNamePropertyId,'TM9') || ', ''"'' ||
firstName || '' '' || lastName || ''"''
 from (' || sqlStmt || ')';

 -- execute the insert statement
 execute immediate insertStmt;

 -- commit our changes
 commit;

 -- set our optimization flags indicating we already checked for
 -- duplicates in the RDF graph (src_tab_view)
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY;
 end if;

 -- return true to indicate success
 return true;

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 40

end sem_inf_dynamic;
/
show errors;

The sem_inf_dynamic function inserts new data using two main steps. First, the function builds
a SQL query that collects all first and last names from the existing data. The sqlStmt variable
stores this SQL query. Next, the function inserts new triples based on the first and last names it
collects, to form a full name for each employee. The insertStmt variable stores this SQL
query. Note that the insertStmt query includes the sqlStmt query because it is performing an
INSERT with a subquery.

The sqlStmt query performs a join across two main views: the resource view
(resource_id_map_view) and the existing data view (src_tab_view). The existing data view
contains all existing triples but stores the values of those triples using numeric IDs instead of
lexical values. Because the sqlStmt query must extract the lexical values of the first and last
names of an employee, it joins with the resource view twice (once for the first name and once
for the last name).

The sqlStmt query contains the PARALLEL SQL hint to help improve performance. Parallel
execution on a balanced hardware configuration can significantly improve performance. (See
Example 3: Optimizing Performance for more information.)

The insertStmt query also performs a duplicate check to avoid adding a triple if it already
exists in the existing data view (src_tab_view). The function indicates it has performed this
check by enabling the INF_EXT_OPT_FLAG_NEWDATA_ONLY optimization flag. Doing the check
inside the extension function improves overall performance of the reasoning. Note that the
existing data view does not contain the new triples currently being added by the
sem_inf_dynamic function, so duplicates may still exist within the output_tab table. If the
sem_inf_dynamic function additionally checked for duplicates within the output_tab table, then
it could also enable the INF_EXT_OPT_FLAG_UNIQUEDATA_ONLY optimization flag.

Both SQL queries use numeric IDs of RDF resources to perform their joins and inserts. Using
IDs instead of lexical values improves the performance of the queries. The sem_inf_dynamic
function takes advantage of this performance benefit by looking up the IDs of the lexical values
it plans to use. In this case, the function looks up three URIs representing the first name, last
name, and full name properties. If the sem_inf_dynamic function inserted all new triples purely
as IDs, then it could enable the INF_EXT_OPT_FLAG_ALL_IDS optimization flag. For this
example, however, the new triples each contain a single, new, lexical value: the full name of
the employee.

To create an inferred graph with the sem_inf_dynamic function, grant execution privileges to
the network owner, then pass the function name to the
SEM_APIS.CREATE_INFERRED_GRAPH procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_dynamic to RDFUSER;

-- create the inferred graph
begin
 sem_apis.create_inferred_graph(
 'EMPLOYEES_INF'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_dynamic'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'
);

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 40

end;
/

The inferred graph should contain the following two new triples added by sem_inf_dynamic:

S P O
------------------------ ------------------------ -----------------------
http://example.org/Bob http://example.org/name Bob Billow
http://example.org/John http://example.org/name John Smith

Note that the sem_inf_dynamic function in the preceding example did not infer a full name for
Mary Smith, because Mary Smith already had their full name specified in the existing data.

9.1.3.3 Example 3: Optimizing Performance
Several techniques can improve the performance of an inference extension function. One such
technique is to use the numeric IDs of resources rather than their lexical values in queries. By
only using resource IDs, the extension function avoids having to join with the resource view
(resource_id_map_view), and this can greatly improve query performance. Inference extension
functions can obtain additional performance benefits by also using resource IDs when adding
new triples to the output_tab table (that is, using only using the gid, sid, pid, and oid
columns of the output_tab table).

The following user-defined inference extension function (sem_inf_related) infers a new
property, :possibleRelative, for employees who share the same last name. The SQL queries
for finding such employees use only resource IDs (no lexical values, no joins with the resource
view). Additionally, the inference extension function in this example inserts the new triples
using only resource IDs, allowing the function to enable the INF_EXT_OPT_FLAG_ALL_IDS
optimization flag.

-- this user-defined rule adds static triples
create or replace function sem_inf_related(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 lastNamePropertyId number;
 relatedPropertyId number;

 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);
 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 lastNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
lastName');

 -- retreive ID of resource or generate a new ID if resource does
 -- not already exist
 relatedPropertyId := sdo_sem_inference.oracle_orardf_add_res('http://example.org/

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 40

possibleRelative');

 -- SQL query to find all employees that share a last name
 sqlStmt :=
 'select ids1.sid employeeId,
 ids2.sid relativeId
 from ' || src_tab_view || ' ids1,
 ' || src_tab_view || ' ids2
 where ids1.pid = ' || to_char(lastNamePropertyId,'TM9') || '
 AND ids2.pid = ' || to_char(lastNamePropertyId,'TM9') || '
 AND ids1.oid = ids2.oid
 /* avoid employees related to themselves */
 AND ids1.sid != ids2.sid
 /* below ensures we have NEWDATA (a no duplicate optimization flag) */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = ids1.sid
 AND pid = ' || to_char(relatedPropertyId,'TM9') || '
 AND oid = ids2.sid)
 /* below ensures we have UNIQDATA (a no duplicate optimization flag) */
 AND not exists
 (select 1
 from ' || output_tab || '
 where sid = ids1.sid
 AND pid = ' || to_char(relatedPropertyId,'TM9') || '
 AND oid = ids2.sid)';

 -- create the insert statement that only uses resource IDs
 insertStmt :=
 'insert /*+ parallel append */
 into ' || output_tab || ' (sid, pid, oid)
 select employeeId, ' || to_char(relatedPropertyId,'TM9') || ', relativeId
 from (' || sqlStmt || ')';

 -- execute the insert statement
 execute immediate insertStmt;

 -- commit our changes
 commit;

 -- set flag indicating our new triples
 -- 1) are specified using only IDs
 -- 2) produce no duplicates with the RDF graph (src_tab_view)
 -- 3) produce no duplicates in the output (output_tab)
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;
 end if;

 -- return true to indicate success
 return true;
end sem_inf_related;
/
show errors;

The sem_inf_related function has a few key differences from previous examples. First, the
sem_inf_related function queries purely with resource IDs and inserts new triples using only
resource IDs. Because all the added triples in the output_tab table only use resource IDs, the
function can enable the INF_EXT_OPT_FLAG_ALL_IDS optimization flag. For optimal
performance, functions should try to use resource IDs over lexical values. However, sometimes
this is not possible, as in Example 2: Adding Dynamic Triples, which concatenates lexical

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 40

values to form a new lexical value. Note that in cases like Example 2: Adding Dynamic Triples,
it is usually better to join with the resource view (resource_id_map_view) than to embed calls
to oracle_orardf_res2vid within the SQL query. This is due to the overhead of calling the
function for each possible match as opposed to joining with another table.

Another key difference in the sem_inf_related function is the use of the
oracle_orardf_add_res function (compared to oracle_orardf_res2vid). Unlike the res2vid
function, the add_res function will add a resource to the resource view
(resource_id_map_view) if the resource does not already exist. Inference extensions functions
should use the add_res function if adding the resource to the resource view is not a concern.
Calling the function multiple times will not generate duplicate entries in the resource view.

The last main difference is the additional NOT EXISTS clause in the SQL query. The first NOT
EXISTS clause avoids adding any triples that may be duplicates of triples already in the RDF
graph or triples inferred by other rules (src_tab_view). Checking for these duplicates allows
sem_inf_related to enable the INF_EXT_OPT_FLAG_NEWDATA_ONLY optimization flag. The
second NOT EXISTS clause avoids adding triples that may be duplicates of triples already
added by the sem_inf_related function to the output_tab table during the current round of
reasoning (see the num_calls parameter). Checking for these duplicates allows
sem_inf_related to enable the INF_EXT_OPT_FLAG_UNIQDATA_ONLY optimization flag.

Like the sem_inf_dynamic example, sem_inf_related example uses a PARALLEL SQL query
hint in its insert statement. Parallel execution on a balanced hardware configuration can
significantly improve performance. For a data-intensive application, a good I/O subsystem is
usually a critical component to the performance of the whole system.

To create an inferred graph with the sem_inf_dynamic function, grant execution privileges to
the network owner, then pass the function name to the
SEM_APIS.CREATE_INFERRED_GRAPH procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_related to RDFUSER;

-- create the inferred graph
begin
 sem_apis.create_inferred_graph(
 'EMPLOYEES_INF'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_related'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'
);
end;
/

The inferred graph should contain the following two new triples added by sem_inf_related:

S P O
------------------------ ------------------------------------ ------------------------
http://example.org/John http://example.org/possibleRelative http://example.org/Mary
http://example.org/Mary http://example.org/possibleRelative http://example.org/John

9.1.3.4 Example 4: Temporal Reasoning (Several Related Examples)
User-defined extension functions enable you to better leverage certain data types (like
xsd:dateTime) in the triples. For example, with user-defined extension functions, it is possible
to infer relationships between triples based on the difference between two xsd:dateTime

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 40

values. The three examples in this section explore two different temporal reasoning rules and
how to combine them into one inferred graph. The examples assume the models EVENT and
EVENT_ONT exist and contain the following RDF data:

EVENT_ONT

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix : <http://example.org/event/> .

we model two types of events
:Meeting rdfs:subClassOf :Event .
:Presentation rdfs:subClassOf :Event .

events have topics
:topic rdfs:domain :Event .

events have start and end times
:startTime rdfs:domain :Event ;
 rdfs:range xsd:dateTime .
:endTime rdfs:domain :Event ;
 rdfs:range xsd:dateTime .

duration (in minutes) of an event
:lengthInMins rdfs:domain :Event ;
 rdfs:range xsd:integer .

overlaps property identifies conflicting events
:overlaps rdfs:domain :Event ;
 rdf:type owl:SymmetricProperty .
:noOverlap rdfs:domain :Event ;
 rdf:type owl:SymmetricProperty .

EVENT_TBOX

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix : <http://example.org/event/> .

:m1 rdf:type :Meeting ;
 :topic "Beta1 launch" ;
 :startTime "2012-04-01T09:30:00-05:00"^^xsd:dateTime ;
 :endTime "2012-04-01T11:00:00-05:00"^^xsd:dateTime .

:m2 rdf:type :Meeting ;
 :topic "Standards compliance" ;
 :startTime "2012-04-01T12:30:00-05:00"^^xsd:dateTime ;
 :endTime "2012-04-01T13:30:00-05:00"^^xsd:dateTime .

:p1 rdf:type :Presentation ;
 :topic "OWL Reasoners" ;
 :startTime "2012-04-01T11:00:00-05:00"^^xsd:dateTime ;
 :endTime "2012-04-01T13:00:00-05:00"^^xsd:dateTime .

The examples are as follow.

• Example 4a: Duration Rule

• Example 4b: Overlap Rule

• Example 4c: Duration and Overlap Rules

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 40

9.1.3.4.1 Example 4a: Duration Rule
The following user-defined inference extension function (sem_inf_durations) infers the
duration in minutes of events, given the start and end times of an event. For example, an event
starting at 9:30 AM and ending at 11:00 AM has duration of 90 minutes. The following
extension function extracts the start and end times for each event, converts the xsd:dateTime
values into Oracle timestamps, then computes the difference between the timestamps. Notice
that this extension function can handle time zones.

create or replace function sem_inf_durations(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 eventClassId number;
 rdfTypePropertyId number;
 startTimePropertyId number;
 endTimePropertyId number;
 durationPropertyId number;

 xsdTimeFormat varchar2(100);
 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);

 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 eventClassId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/Event',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 startTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/startTime',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 endTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/endTime',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 durationPropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/lengthInMins',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 rdfTypePropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');

 -- set the TIMESTAMP format we will use to parse XSD times
 xsdTimeFormat := 'YYYY-MM-DD"T"HH24:MI:SSTZH:TZM';

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 40

 -- query we use to extract the event ID and start/end times.
 sqlStmt :=
 'select ids1.sid eventId,
 TO_TIMESTAMP_TZ(values1.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
startTime,
 TO_TIMESTAMP_TZ(values2.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
endTime
 from ' || resource_id_map_view || ' values1,
 ' || resource_id_map_view || ' values2,
 ' || src_tab_view || ' ids1,
 ' || src_tab_view || ' ids2,
 ' || src_tab_view || ' ids3
 where ids1.sid = ids3.sid
 AND ids3.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND ids3.oid = ' || to_char(eventClassId,'TM9') || '
 AND ids1.sid = ids2.sid
 AND ids1.pid = ' || to_char(startTimePropertyId,'TM9') || '
 AND ids2.pid = ' || to_char(endTimePropertyId,'TM9') || '
 AND ids1.oid = values1.value_id
 AND ids2.oid = values2.value_id
 /* ensures we have NEWDATA */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = ids3.sid
 AND pid = ' || to_char(durationPropertyId,'TM9') || ')
 /* ensures we have UNIQDATA */
 AND not exists
 (select 1
 from ' || output_tab || '
 where sid = ids3.sid
 AND pid = ' || to_char(durationPropertyId,'TM9') || ')';

 -- compute the difference (in minutes) between the two Oracle
 -- timestamps from our sqlStmt query. Store the minutes as
 -- xsd:integer.
 insertStmt :=
 'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, o)
 select eventId,
 ' || to_char(durationPropertyId,'TM9') || ',
 ''"'' || minutes || ''"^^xsd:integer''
 from (
 select eventId,
 (extract(day from (endTime - startTime))*24*60 +
 extract(hour from (endTime - startTime))*60 +
 extract(minute from (endTime - startTime))) minutes
 from (' || sqlStmt || '))';

 -- execute the query
 execute immediate insertStmt;

 -- commit our changes
 commit;
 end if;

 -- we already checked for duplicates in src_tab_view (NEWDATA) and
 -- in output_tab (UNIQDATA)
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

 -- return true to indicate success

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 40

 return true;

 -- handle any exceptions
 exception
 when others then
 diag_message := 'error occurred: ' || SQLERRM;
 return false;
end sem_inf_durations;
/
show errors;

The sem_inf_durations function leverages built-in Oracle temporal functions to compute the
event durations. First, the function converts the xsd:dateTime literal value to an Oracle
TIMESTAMP object using the TO_TIMESTAMP_TZ function. Taking the difference between two
Oracle TIMESTAMP objects produces an INTERVAL object that represents a time interval. Using
the EXTRACT operator, the sem_inf_durations function computes the duration of each event in
minutes by extracting the days, hours, and minutes out of the duration intervals.

Because the sem_inf_durations function checks for duplicates against both data in the
existing model (src_tab_view) and data in the output_tab table, it can enable the
INF_EXT_OPT_FLAG_NEWDATA_ONLY and INF_EXT_OPT_FLAG_UNIQDATA_ONLY optimization flags.
(See Example 3: Optimizing Performance for more information about optimization flags.)

Notice that unlike previous examples, sem_inf_durations contains an exception handler.
Exception handlers are useful for debugging issues in user-defined inference extension
functions. To produce useful debugging messages, catch exceptions in the extension function,
set the diag_message parameter to reflect the error, and return FALSE to indicate that an error
occurred during execution of the extension function. The sem_inf_durations function catches
all exceptions and sets the diag_message value to the exception message.

To create an inferred graph with the sem_inf_durations function, grant execution privileges to
RDFUSER, then pass the function name to the SEM_APIS.CREATE_INFERRED_GRAPH
procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_durations to RDFUSER;

-- create the inferred graph
begin
 sem_apis.create_inferred_graph(
 'EVENT_INF'
 , sem_models('EVENT', 'EVENT_ONT')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_durations'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'
);
end;
/

In addition to the triples inferred by OWLPRIME, the inferred graph should contain the
following three new triples added by sem_inf_durations:

S P O
---------------------------- -------------------------------------- ---------
http://example.org/event/m1 http://example.org/event/lengthInMins 90
http://example.org/event/m2 http://example.org/event/lengthInMins 60
http://example.org/event/p1 http://example.org/event/lengthInMins 120

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 40

9.1.3.4.2 Example 4b: Overlap Rule
The following user-defined inference extension function (sem_inf_overlap) infers whether two
events overlap. Two events overlap if one event starts while the other event is in progress. The
function extracts the start and end times for every pair of events, converts the xsd:dateTime
values into Oracle timestamps, then computes whether one event starts within the other.

create or replace function sem_inf_overlap(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 eventClassId number;
 rdfTypePropertyId number;
 startTimePropertyId number;
 endTimePropertyId number;
 overlapsPropertyId number;
 noOverlapPropertyId number;

 xsdTimeFormat varchar2(100);
 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);

 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 eventClassId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/Event',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 startTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/startTime',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 endTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/endTime',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 overlapsPropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/overlaps',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 noOverlapPropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/event/noOverlap',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 rdfTypePropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 40

 -- set the TIMESTAMP format we will use to parse XSD times
 xsdTimeFormat := 'YYYY-MM-DD"T"HH24:MI:SSTZH:TZM';

 -- query we use to extract the event ID and start/end times.
 sqlStmt :=
 'select idsA1.sid eventAId,
 idsB1.sid eventBId,
 TO_TIMESTAMP_TZ(valuesA1.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
startTimeA,
 TO_TIMESTAMP_TZ(valuesA2.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
endTimeA,
 TO_TIMESTAMP_TZ(valuesB1.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
startTimeB,
 TO_TIMESTAMP_TZ(valuesB2.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
endTimeB
 from ' || resource_id_map_view || ' valuesA1,
 ' || resource_id_map_view || ' valuesA2,
 ' || resource_id_map_view || ' valuesB1,
 ' || resource_id_map_view || ' valuesB2,
 ' || src_tab_view || ' idsA1,
 ' || src_tab_view || ' idsA2,
 ' || src_tab_view || ' idsA3,
 ' || src_tab_view || ' idsB1,
 ' || src_tab_view || ' idsB2,
 ' || src_tab_view || ' idsB3
 where idsA1.sid = idsA3.sid
 AND idsA3.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsA3.oid = ' || to_char(eventClassId,'TM9') || '
 AND idsB1.sid = idsB3.sid
 AND idsB3.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsB3.oid = ' || to_char(eventClassId,'TM9') || '
 /* only do half the checks, our TBOX ontology will handle symmetries */
 AND idsA1.sid < idsB1.sid
 /* grab values of startTime and endTime for event A */
 AND idsA1.sid = idsA2.sid
 AND idsA1.pid = ' || to_char(startTimePropertyId,'TM9') || '
 AND idsA2.pid = ' || to_char(endTimePropertyId,'TM9') || '
 AND idsA1.oid = valuesA1.value_id
 AND idsA2.oid = valuesA2.value_id
 /* grab values of startTime and endTime for event B */
 AND idsB1.sid = idsB2.sid
 AND idsB1.pid = ' || to_char(startTimePropertyId,'TM9') || '
 AND idsB2.pid = ' || to_char(endTimePropertyId,'TM9') || '
 AND idsB1.oid = valuesB1.value_id
 AND idsB2.oid = valuesB2.value_id
 /* ensures we have NEWDATA */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = idsA1.sid
 AND oid = idsB1.sid
 AND pid in (' || to_char(overlapsPropertyId,'TM9') || ',' ||
 to_char(noOverlapPropertyId,'TM9') || '))
 /* ensures we have UNIQDATA */
 AND not exists
 (select 1
 from ' || output_tab || '
 where sid = idsA1.sid
 AND oid = idsB1.sid
 AND pid in (' || to_char(overlapsPropertyId,'TM9') || ',' ||
 to_char(noOverlapPropertyId,'TM9') || '))';

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 40

 -- compare the two event times
 insertStmt :=
 'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, oid)
 select eventAId, overlapStatusId, eventBId
 from (
 select eventAId,
 (case
 when (startTimeA < endTimeB and
 startTimeA > startTimeB) then
 ' || to_char(overlapsPropertyId,'TM9') || '
 when (startTimeB < endTimeA and
 startTimeB > startTimeA) then
 ' || to_char(overlapsPropertyId,'TM9') || '
 else
 ' || to_char(noOverlapPropertyId,'TM9') || '
 end) overlapStatusId,
 eventBId
 from (' || sqlStmt || '))';

 -- execute the query
 execute immediate insertStmt;

 -- commit our changes
 commit;
 end if;

 -- we only use ID values in the output_tab and we check for
 -- duplicates with our NOT EXISTS clause.
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

 -- return true to indicate success
 return true;

 -- handle any exceptions
 exception
 when others then
 diag_message := 'error occurred: ' || SQLERRM;
 return false;
end sem_inf_overlap;
/
show errors;

The sem_inf_overlap function is similar to the sem_inf_durations function in Example 4b:
Overlap Rule. The main difference between the two is that the query in sem_inf_overlap
contains more joins and enables the INF_EXT_OPT_FLAG_ALL_IDS optimization flag
because it does not need to generate new lexical values. (See Example 3: Optimizing
Performance for more information about optimization flags.)

To create an inferred graph with the sem_inf_overlap function, grant execution privileges to
RDFUSER, then pass the function name to the SEM_APIS.CREATE_INFERRED_GRAPH
procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_overlap to RDFUSER;

-- create the inferred graph
begin
 sem_apis.create_inferred_graph(
 'EVENT_INF'
 , sem_models('EVENT', 'EVENT_ONT')

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 40

 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_overlap'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'
);
end;
/

In addition to the triples inferred by OWLPRIME, the inferred graph should contain the
following six new triples added by sem_inf_overlap:

S P O
---------------------------- -----------------------------------

http://example.org/event/m1 http://example.org/event/noOverlap http://example.org/
event/m2
http://example.org/event/m1 http://example.org/event/noOverlap http://example.org/
event/p1
http://example.org/event/m2 http://example.org/event/noOverlap http://example.org/
event/m1
http://example.org/event/m2 http://example.org/event/overlaps http://example.org/
event/p1
http://example.org/event/p1 http://example.org/event/noOverlap http://example.org/
event/m1
http://example.org/event/p1 http://example.org/event/overlaps http://example.org/
event/m2

9.1.3.4.3 Example 4c: Duration and Overlap Rules
The example in this section uses the extension functions from Example 4a: Duration Rule
(sem_inf_durations) and Example 4b: Overlap Rule (sem_inf_overlap) together to produce a
single inferred graph. The extension functions are left unmodified for this example.

To create an inferred graph using multiple extension functions, use a comma to separate each
extension function passed to the inf_ext_user_func_name parameter of
SEM_APIS.CREATE_INFERRED_GRAPH. The following example assumes that the
RDFUSER has already been granted the appropriate privileges on the extension functions.

-- use multiple user-defined inference functions
begin
 sem_apis.create_inferred_graph(
 'EVENT_INF'
 , sem_models('EVENT', 'EVENT_ONT')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_durations,sem_inf_overlap'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'
);
end;
/

In addition to the triples inferred by OWLPRIME, the inferred graph should contain the
following nine new triples added by sem_inf_durations and sem_inf_overlap:

S P O
---------------------------- --------------------------------------

http://example.org/event/m1 http://example.org/event/lengthInMins 90
http://example.org/event/m1 http://example.org/event/noOverlap http://example.org/
event/m2

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 40

http://example.org/event/m1 http://example.org/event/noOverlap http://example.org/
event/p1
http://example.org/event/m2 http://example.org/event/lengthInMins 60
http://example.org/event/m2 http://example.org/event/noOverlap http://example.org/
event/m1
http://example.org/event/m2 http://example.org/event/overlaps http://example.org/
event/p1
http://example.org/event/p1 http://example.org/event/lengthInMins 120
http://example.org/event/p1 http://example.org/event/noOverlap http://example.org/
event/m1
http://example.org/event/p1 http://example.org/event/overlaps http://example.org/
event/m2

Notice that the extension functions, sem_inf_durations and sem_inf_overlap, did not need to
use the same optimization flags. It is possible to use extension functions with contradictory
optimization flags (for example, one function using INF_EXT_OPT_FLAG_ALL_IDS and another
function inserting all new triples as lexical values).

9.1.3.5 Example 5: Spatial Reasoning
User-defined inference extension functions can also leverage geospatial data types, like WKT
(well-known text), to perform spatial reasoning. For example, with user-defined extension
functions, it is possible to infer a "contains" relationship between geometric entities, such as
states and cities.

The example in this section demonstrates how to infer whether a geometry (a US state)
contains a point (a US city). This example assumes the RDF network already has a spatial
index (described in section 1.6.6.2). This example also assumes the RDF graph STATES exists
and contains the following RDF data:

@prefix orageo: <http://xmlns.oracle.com/rdf/geo/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://example.org/geo/> .

:Colorado rdf:type :State ;
 :boundary "Polygon((-109.0448 37.0004, -102.0424 36.9949, -102.0534 41.0006,
-109.0489 40.9996, -109.0448 37.0004))"^^orageo:WKTLiteral .
:Utah rdf:type :State ;
 :boundary "Polygon((-114.0491 36.9982, -109.0462 37.0026, -109.0503 40.9986,
-111.0471 41.0006, -111.0498 41.9993, -114.0395 41.9901, -114.0491
36.9982))"^^orageo:WKTLiteral .
:Wyoming rdf:type :State ;
 :boundary "Polygon((-104.0556 41.0037, -104.0584 44.9949, -111.0539 44.9998,
-111.0457 40.9986, -104.0556 41.0037))"^^orageo:WKTLiteral

:StateCapital rdfs:subClassOf :City ;

:Denver rdf:type :StateCapital ;
 :location "Point(-104.984722 39.739167)"^^orageo:WKTLiteral .
:SaltLake rdf:type :StateCaptial ;
 :location "Point(-111.883333 40.75)"^^orageo:WKTLiteral .
:Cheyenne rdf:type :StateCapital ;
 :location "Point(-104.801944 41.145556)"^^orageo:WKTLiteral .

The following user-defined inference extension function (sem_inf_capitals) searches for
capital cities within each state using the WKT geometries. If the function finds a capital city, it
infers the city is the capital of the state containing it.

create or replace function sem_inf_capitals(
 src_tab_view in varchar2,

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 40

 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 stateClassId number;
 capitalClassId number;

 boundaryPropertyId number;
 locationPropertyId number;
 rdfTypePropertyId number;
 capitalPropertyId number;

 defaultSRID number := 8307;

 xsdTimeFormat varchar2(100);
 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);

 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 stateClassId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/geo/State',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 capitalClassId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/geo/StateCapital',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 boundaryPropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/geo/boundary',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 locationPropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://example.org/geo/location',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 rdfTypePropertyId := sdo_sem_inference.oracle_orardf_res2vid(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');

 -- retreive ID of resource or generate a new ID if resource does
 -- not already exist
 capitalPropertyId := sdo_sem_inference.oracle_orardf_add_res(
 'http://example.org/geo/capital',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');

 -- query we use to extract the capital cities contained within state boundaries
 sqlStmt :=
 'select idsA1.sid stateId,
 idsB1.sid cityId

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 40

 from ' || resource_id_map_view || ' valuesA,
 ' || resource_id_map_view || ' valuesB,
 ' || src_tab_view || ' idsA1,
 ' || src_tab_view || ' idsA2,
 ' || src_tab_view || ' idsB1,
 ' || src_tab_view || ' idsB2
 where idsA1.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsA1.oid = ' || to_char(stateClassId,'TM9') || '
 AND idsB1.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsB1.oid = ' || to_char(capitalClassId,'TM9') || '
 /* grab geometric lexical values */
 AND idsA2.sid = idsA1.sid
 AND idsA2.pid = ' || to_char(boundaryPropertyId,'TM9')|| '
 AND idsA2.oid = valuesA.value_id
 AND idsB2.sid = idsB1.sid
 AND idsB2.pid = ' || to_char(locationPropertyId,'TM9')|| '
 AND idsB2.oid = valuesB.value_id
 /* compare geometries to see if city is contained by state */
 AND SDO_RELATE(
 SDO_RDF.getV$GeometryVal(
 valuesA.value_type,
 valuesA.vname_prefix,
 valuesA.vname_suffix,
 valuesA.literal_type,
 valuesA.language_type,
 valuesA.long_value,
 ' || to_char(defaultSRID,'TM9') || '),
 SDO_RDF.getV$GeometryVal(
 valuesB.value_type,
 valuesB.vname_prefix,
 valuesB.vname_suffix,
 valuesB.literal_type,
 valuesB.language_type,
 valuesB.long_value,
 ' || to_char(defaultSRID,'TM9') || '),
 ''mask=CONTAINS'') = ''TRUE''
 /* ensures we have NEWDATA and only check capitals not assigned to a state */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where pid = ' || to_char(capitalPropertyId,'TM9') || '
 AND (sid = idsA1.sid OR oid = idsB1.sid))
 /* ensures we have UNIQDATA and only check capitals not assigned to a state */
 AND not exists
 (select 1
 from ' || output_tab || '
 where pid = ' || to_char(capitalPropertyId,'TM9') || '
 AND (sid = idsA1.sid OR oid = idsB1.sid))';

 -- insert new triples using only IDs
 insertStmt :=
 'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, oid)
 select stateId, ' || to_char(capitalPropertyId,'TM9') || ', cityId
 from (' || sqlStmt || ')';

 -- execute the query
 execute immediate insertStmt;

 -- commit our changes
 commit;
 end if;

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 40

 -- we only use ID values in the output_tab and we check for
 -- duplicates with our NOT EXISTS clauses.
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

 -- return true to indicate success
 return true;

 -- handle any exceptions
 exception
 when others then
 diag_message := 'error occurred: ' || SQLERRM;
 return false;
end sem_inf_capitals;
/
show errors;

The sem_inf_capitals function is similar to the sem_inf_durations function in Example 4a:
Duration Rule, in that both functions must convert the lexical values of some triples into Oracle
types to leverage native Oracle operators. In the case of sem_inf_capitals, the function
converts the WKT lexical values encoding polygons and points into the Oracle Spatial
SDO_GEOMETRY type, using the SDO_RDF.getV$GeometryVal function. The
getV$GeometryVal function requires arguments mostly provided by the resource view
(resource_id_map_view) and an additional argument, an ID to a spatial reference system
(SRID). The getV$GeometryVal function will convert the geometry into the spatial reference
system specified by SRID. The sem_inf_capitals function uses the default Oracle Spatial
reference system, WGS84 Longitude-Latitude, specified by SRID value 8307. (For more
information about support in RDF Graph for spatial references systems, see Spatial Support.)

After converting the WKT values into SDO_GEOMETRY types using the getV$GeometryVal
function, the sem_inf_capitals function compares the state geometry with the city geometry to
see if the state contains the city. The SDO_RELATE operator performs this comparison and
returns the literal value 'TRUE' when the state contains the city. The SDO_RELATE operator can
perform various different types of comparisons. (See Oracle Spatial Developer's Guide for
more information about SDO_RELATE and other spatial operators.)

To create an inferred graph with the sem_inf_capitals function, grant execution privileges to
the RDFUSER, then pass the function name to the SEM_APIS.CREATE_INFERRED_GRAPH
procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_capitals to RDFUSER;

-- create the inferred graph
begin
 sem_apis.create_inferred_graph(
 'STATES_INF'
 , sem_models('STATES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_capitals'
 , network_owner=>'RDFUSER'
 , network_name=>'NET1'
);
end;
/

In addition to the triples inferred by OWLPRIME, the inferred graph should contain the
following three new triples added by sem_inf_capitals:

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 40

S P O
-------------------------------- -------------------------------

http://example.org/geo/Colorado http://example.org/geo/capital http://example.org/geo/
Denver
http://example.org/geo/Utah http://example.org/geo/capital http://example.org/geo/
SaltLake
http://example.org/geo/Wyoming http://example.org/geo/capital http://example.org/geo/
Cheyenne

9.1.3.6 Example 6: Calling a Web Service
This section contains a user-defined inference extension function (sem_inf_geocoding) and a
related helper procedure (geocoding), which enable you to make a web service call to the
Oracle Geocoder service. The user-defined inference extension function looks for the object
values of triples using predicate <urn:streetAddress>, makes callouts to the Oracle public
Geocoder service endpoint at http://maps.oracle.com/geocoder/gcserver, and inserts the
longitude and latitude information as two separate triples.

For example, assume that the RDF graph contains the following assertion:

<urn:NEDC> <urn:streetAddress> "1 Oracle Dr., Nashua, NH"

In this case, an inference call using sem_inf_geocoding will produce the following new
assertions:

<urn:NEDC> <http://www.w3.org/2003/01/geo/wgs84_pos#long> "-71.46421"
<urn:NEDC> <http://www.w3.org/2003/01/geo/wgs84_pos#lat> "42.75836"
<urn:NEDC> <http://www.opengis.net/geosparql#asWKT> "POINT(-71.46421
42.75836)"^^<http://www.opengis.net/geosparql#wktLiteral>
<urn:NEDC> <http://xmlns.oracle.com/rdf/geo/asWKT> "POINT(-71.46421
42.75836)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>

The sem_inf_geocoding function is defined as follows:

create or replace function sem_inf_geocoding(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 pragma autonomous_transaction;
 iCount integer;

 nLong number;
 nLat number;
 nWKT number;
 nOWKT number;
 nStreetAddr number;

 sidTab dbms_sql.number_table;
 oidTab dbms_sql.number_table;

 vcRequestBody varchar2(32767);

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 40

 vcStmt varchar2(32767);
 vcStreeAddr varchar2(3000);

 type cur_type is ref cursor;
 cursorFind cur_type;
 vcLong varchar2(100);
 vcLat varchar2(100);
begin
 if (action = 'START') then
 nLat := sdo_sem_inference.oracle_orardf_add_res(
 'http://www.w3.org/2003/01/geo/wgs84_pos#lat',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 nLong := sdo_sem_inference.oracle_orardf_add_res(
 'http://www.w3.org/2003/01/geo/wgs84_pos#long',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 nWKT := sdo_sem_inference.oracle_orardf_add_res(
 'http://www.opengis.net/geosparql#asWKT',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 nOWKT := sdo_sem_inference.oracle_orardf_add_res(
 'http://xmlns.oracle.com/rdf/geo/asWKT',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 end if;

 if (action = 'RUN') then
 nStreetAddr := sdo_sem_inference.oracle_orardf_res2vid(
 '<urn:streetAddress>',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 nLat := sdo_sem_inference.oracle_orardf_res2vid(
 'http://www.w3.org/2003/01/geo/wgs84_pos#lat',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 nLong := sdo_sem_inference.oracle_orardf_res2vid(
 'http://www.w3.org/2003/01/geo/wgs84_pos#long',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 nWKT := sdo_sem_inference.oracle_orardf_res2vid(
 'http://www.opengis.net/geosparql#asWKT',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 nOWKT := sdo_sem_inference.oracle_orardf_res2vid(
 'http://xmlns.oracle.com/rdf/geo/asWKT',
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');

 vcStmt := '
 select /*+ parallel */ distinct s1.sid as s_id, s1.oid as o_id
 from ' || src_tab_view || ' s1
 where s1.pid = :1
 and not exists (select 1
 from ' || src_tab_view || ' x
 where x.sid = s1.sid
 and x.pid = :2
) ';
 open cursorFind for vcStmt using nStreetAddr, nLong;

 loop
 fetch cursorFind bulk collect into sidTab, oidTab limit 10000;

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 40

 for i in 1..sidTab.count loop
 vcStreeAddr := sdo_sem_inference.oracle_orardf_vid2lit(
 oidTab(i),
 p_network_owner=>'RDFUSER',
 p_network_name=>'NET1');
 -- dbms_output.put_line('Now processing street addr ' || vcStreeAddr);
 geocoding(vcStreeAddr, vcLong, vcLat);
 execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nLong, '"'||vcLong||'"';
 execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nLat, '"'||vcLat||'"';
 execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nWKT, '"POINT('|| vcLong || ' ' ||vcLat ||')"^^<http://
www.opengis.net/geosparql#wktLiteral>';
 execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nOWKT, '"POINT('|| vcLong || ' ' ||vcLat ||')"^^<http://
xmlns.oracle.com/rdf/geo/WKTLiteral>';
 end loop;
 exit when cursorFind%notfound;
 end loop;
 commit;
 end if;
 return true;
end;
/
grant execute on sem_inf_geocoding to RDFUSER;

The sem_inf_geocoding function makes use of the following helper procedure named
geocoding, which does the actual HTTP communication with the Geocoder web service
endpoint. Note that proper privileges are required to connect to the web server.

create or replace procedure geocoding(addr varchar2,
 vcLong out varchar2,
 vcLat out varchar2
)
as
 httpReq utl_http.req;
 httpResp utl_http.resp;

 vcRequestBody varchar2(32767);

 vcBuffer varchar2(32767);
 idxLat integer;
 idxLatEnd integer;
begin
 vcRequestBody := utl_url.escape('xml_request=<?xml version="1.0" standalone="yes"?>
 <geocode_request vendor="elocation">
 <address_list>
 <input_location id="27010">
 <input_address match_mode="relax_street_type">
 <unformatted country="US">
 <address_line value="'|| addr ||'"/>
 </unformatted>
 </input_address>
 </input_location>
 </address_list>
 </geocode_request>
 ');

Chapter 9
User-Defined Inferencing

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 40

 dbms_output.put_line('request ' || vcRequestBody);

 -- utl_http.set_proxy('<your_proxy_here_if_necessary>', null);
 httpReq := utl_http.begin_request (
 'http://maps.oracle.com/geocoder/gcserver', 'POST');

 utl_http.set_header(httpReq, 'Content-Type', 'application/x-www-form-urlencoded');
 utl_http.set_header(httpReq, 'Content-Length', lengthb(vcRequestBody));

 utl_http.write_text(httpReq, vcRequestBody);

 httpResp := utl_http.get_response(httpReq);

 utl_http.read_text(httpResp, vcBuffer, 32767);
 utl_http.end_response(httpResp);

 -- dbms_output.put_line('response ' || vcBuffer);
 -- Here we are doing some simple string parsing out of an XML.
 -- It is more robust to use XML functions instead.
 idxLat := instr(vcBuffer, 'longitude="');
 idxLatEnd := instr(vcBuffer, '"', idxLat + 12);
 vcLong := substr(vcBuffer, idxLat + 11, idxLatEnd - idxLat - 11);
 dbms_output.put_line('long = ' || vcLong);

 idxLat := instr(vcBuffer, 'latitude="');
 idxLatEnd := instr(vcBuffer, '"', idxLat + 11);
 vcLat := substr(vcBuffer, idxLat + 10, idxLatEnd - idxLat - 10);
 dbms_output.put_line('lat = ' || vcLat);
exception
 when others then
 dbms_output.put_line('geocoding: error ' || dbms_utility.format_error_backtrace || '
'
 || dbms_utility.format_error_stack);
end;
/

9.2 User-Defined Functions and Aggregates
The RDF Graph query extension architecture enables you to add user-defined functions and
aggregates to be used in SPARQL queries, both through the SEM_MATCH table function and
through the support for Apache Jena.

The SPARQL 1.1 Standard provides several functions used mainly for filtering and categorizing
data obtained by a query. However, you may need specialized functions not supported by the
standard.

Some simple examples include finding values that belong to a specific type, or obtaining
values with a square sum value that is greater than a certain threshold. Although this can be
done by means of combining functions, it may be useful to have a single function that handles
the calculations, which also allows for a simpler and shorter query.

The RDF Graph query extension allows you to include your own query functions and
aggregates. This architecture allows:

• Custom query functions that can be used just like built-in SPARQL query functions, as
explained in API Support for User-Defined Functions

• Custom aggregates that can be used just like built-in SPARQL aggregates, as explained in
API Support for User-Defined Aggregates

• Data Types for User-Defined Functions and Aggregates

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 40

• API Support for User-Defined Functions

• API Support for User-Defined Aggregates

9.2.1 Data Types for User-Defined Functions and Aggregates
The SDO_RDF_TERM object type is used to represent an RDF term when creating user-
defined functions and aggregates.

SDO_RDF_TERM has the following attributes, which correspond to columns in the
RDF_VALUE$ table (see Table 1-5 in Statements for a description of these attributes). The
CTX1 and FLAGS attributes are reserved for future use and do not have corresponding
columns in RDF_VALUE$.

SDO_RDF_TERM(
 VALUE_TYPE VARCHAR2(10),
 VALUE_NAME CLOB,
 VNAME_PREFIX CLOB,
 VNAME_SUFFIX VARCHAR2(512),
 LITERAL_TYPE VARCHAR2(1000),
 LANGUAGE_TYPE VARCHAR2(80),
 LONG_VALUE CLOB,
 CTX1 VARCHAR2(4000),
 FLAGS INTEGER)

The following constructors are available for creating SDO_RDF_TERM objects. The first
constructor populates each attribute from a single, lexical RDF term string. The second, third,
and fourth constructors receive individual attribute values as input. Only the first RDF term
string constructor sets values for VNAME_PREFIX and VNAME_SUFFIX. These values are
initialized to null by the other constructors.

SDO_RDF_TERM (
 rdf_term_str VARCHAR2)
 RETURN SELF;

SDO_RDF_TERM (
 value_type VARCHAR2,
 value_name VARCHAR2,
 literal_type VARCHAR2,
 language_type VARCHAR2,
 long_value CLOB)
 RETURN SELF;

SDO_RDF_TERM (
 value_type VARCHAR2,
 value_name VARCHAR2,
 literal_type VARCHAR2,
 language_type VARCHAR2,
 long_value CLOB,
 ctx1 VARCHAR2)
 RETURN SELF;

SDO_RDF_TERM (
 value_type VARCHAR2,
 value_name VARCHAR2,
 literal_type VARCHAR2,
 language_type VARCHAR2,
 long_value CLOB,
 ctx1 VARCHAR2,
 flags INTEGER)
 RETURN SELF;

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 40

The SDO_RDF_TERM_LIST type is used to hold a list of SDO_RDF_TERM objects and is
defined as VARRAY(32767) of SDO_RDF_TERM.

9.2.2 API Support for User-Defined Functions
A user-defined function is created by implementing a PL/SQL function with a specific signature,
and a specific URI is used to invoke the function in a SPARQL query pattern.

After each successful inference extension function call, a commit is executed to persist
changes made in the inference extension function call. If an inference extension function is
defined as autonomous by specifying pragma autonomous_transaction, then it should either
commit or roll back at the end of its implementation logic. Note that the inference engine may
call an extension function multiple times when creating an inferred graph (once per round).
Commits and rollbacks from one call will not affect other calls.

• PL/SQL Function Implementation

• Invoking User-Defined Functions from a SPARQL Query Pattern

• User-Defined Function Examples

9.2.2.1 PL/SQL Function Implementation
Each user-defined function must be implemented by a PL/SQL function with a signature in the
following format:

FUNCTION user_function_name (params IN SDO_RDF_TERM_LIST)
 RETURN SDO_RDF_TERM

This signature supports an arbitrary number of RDF term arguments, which are passed in
using a single SDO_RDF_TERM_LIST object, and returns a single RDF term as output, which
is represented as a single SDO_RDF_TERM object. Type checking or other verifications for
these parameters are not performed. You should take steps to validate the data according to
the function goals.

Note that PL/SQL supports callouts to functions written in other programming languages, such
as C and Java, so the PL/SQL function that implements a user-defined query function can
serve only as a wrapper for functions written in other programming languages.

9.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern
After a user-defined function is implemented in PL/SQL, it can be invoked from a SPARQL
query pattern using a function URI constructed from the prefix <http://
xmlns.oracle.com/rdf/extensions/> followed by schema.package_name.function_name if the
corresponding PL/SQL function is part of a PL/SQL package, or schema.function_name if the
function is not part of a PL/SQL package. The following are two example function URIs:

<http://xmlns.oracle.com/rdf/extensions/my_schema.my_package.my_function>(arg_1, …,
arg_n)

<http://xmlns.oracle.com/rdf/extensions/my_schema.my_function>(arg_1, …, arg_n)

9.2.2.3 User-Defined Function Examples
This section presents examples of the implementation of a user-defined function and the use of
that function in a FILTER clause, in a SELECT expression, and in a BIND operation.

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 40

For the examples, assume that the following data, presented here in N-triple format, exists
inside a model called MYMODEL:

<a> <p> "1.0"^^xsd:double .
 <p> "1.5"^^xsd:float .
<c> <p> "3"^^xsd:decimal .
<d> <p> "4"^^xsd:string .

Example 9-1 User-Defined Function to Calculate Sum of Two Squares

Example 9-1 shows the implementation of a simple function that receives two values and
calculates the sum of the squares of each value.

CREATE OR REPLACE FUNCTION sum_squares (params IN SDO_RDF_TERM_LIST)
 RETURN SDO_RDF_TERM
 AS
 retTerm SDO_RDF_TERM;
 sqr1 NUMBER;
 sqr2 NUMBER;
 addVal NUMBER;
 val1 SDO_RDF_TERM;
 val2 SDO_RDF_TERM;
 BEGIN
 –- Set the return value to null.
 retTerm := SDO_RDF_TERM(NULL,NULL,NULL,NULL,NULL);
 –- Obtain the data from the first two parameters.
 val1 := params(1);
 val2 := params(2);
 –- Convert the value stored in the sdo_rdf_term to number.
 –- If any exception occurs, return the null value.
 BEGIN
 sqr1 := TO_NUMBER(val1.value_name);
 sqr2 := TO_NUMBER(val2.value_name);
 EXCEPTION WHEN OTHERS THEN RETURN retTerm;
 END;
 –- Compute the square sum of both values.
 addVal := (sqr1 * sqr1) + (sqr2 * sqr2);
 –- Set the return value to the desired rdf term type.
 retTerm := SDO_RDF_TERM('LIT',to_char(addVal),
 'http://www.w3.org/2001/XMLSchema#integer','',NULL);
 – Return the new value.
 RETURN retTerm;
END;
/
SHOW ERRORS;

Note that the sum_squares function in Example 9-1 does not verify the data type of the value
received. It is intended as a demonstration only, and relies on TO_NUMBER to obtain the
numeric value stored in the VALUE_NAME field of SDO_RDF_TERM.

Example 9-2 User-Defined Function Used in a FILTER Clause

Example 9-2 shows the sum_squares function (from Example 9-1) used in a FILTER clause.

SELECT s, o
FROM table(sem_match(
'SELECT ?s ?o
 WHERE { ?s ?p ?o
 FILTER (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) > 2)}',
sem_models('MYMODEL'),null,null,null,null,'',null,null,'RDFUSER','NET1'));

The query in Example 9-2 returns the following result:

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 40

s o
-------------------- --------------------
b 1.5
c 3
d 4

Example 9-3 User-Defined Function Used in a SELECT Expression

Example 9-3 shows the sum_squares function (from Example 9-1) used in an expression in the
SELECT clause.

SELECT s, o, sqr_sum
FROM table(sem_match(
'SELECT ?s ?o
 (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) AS
 ?sqr_sum)
 WHERE { ?s ?p ?o }',
sem_models('MYMODEL'),null,null,null,null,'',null,null,'RDFUSER','NET1'));

The query in Example 9-3 returns the following result:

s o sqr_sum
-------------------- -------------------- --------------------
a 1 2
b 1.5 4.5
c 3 18
d 4 32

Example 9-4 User-Defined Function Used in a BIND Operation

Example 9-4 shows the sum_squares function (from Example 9-1) used in a BIND operation.

SELECT s, o, sqr_sum
FROM table(sem_match(
'SELECT ?s ?o ?sqr_sum
 WHERE { ?s ?p ?o .
 BIND (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) AS
 ?sqr_sum)}',
sem_models('MYMODEL'),null,null,null,null,'',null,null,'RDFUSER','NET1'));

The query in Example 9-4 returns the following result:

s o sqr_sum
-------------------- -------------------- --------------------
a 1 2
b 1.5 4.5
c 3 18
d 4 32

9.2.3 API Support for User-Defined Aggregates
User-defined aggregates are implemented by defining a PL/SQL object type that implements a
set of interface methods. After the user-defined aggregate is created, a specific URI is used to
invoke it.

• ODCIAggregate Interface

• Invoking User-Defined Aggregates

• User-Defined Aggregate Examples

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 40

9.2.3.1 ODCIAggregate Interface
User-defined aggregates use the ODCIAggregate PL/SQL interface. For more detailed
information about this interface, see the chapter about user-defined aggregate functions in
Oracle AI Database Data Cartridge Developer's Guide.

The ODCIAggregate interface is implemented by a PL/SQL object type that implements four
main functions:

• ODCIAggregateInitialize

• ODCIAggregateIterate

• ODCIAggregateMerge

• ODCIAggregateTerminate

As with user-defined functions (described in API Support for User-Defined Functions), user-
defined aggregates receive an arbitrary number of RDF term arguments, which are passed in
as an SDO_RDF_TERM_LIST object, and return a single RDF term value, which is
represented as an SDO_RDF_TERM object.

This scheme results in the following signatures for the PL/SQL ODCIAggregate interface
functions (with my_aggregate_obj_type representing the actual object type name):

STATIC FUNCTION ODCIAggregateInitialize(
 sctx IN OUT my_aggregate_obj_type)
RETURN NUMBER

MEMBER FUNCTION ODCIAggregateIterate(
 self IN OUT my_aggregate_obj_type
 ,value IN SDO_RDF_TERM_LIST)
RETURN NUMBER

MEMBER FUNCTION ODCIAggregateMerge(
 self IN OUT my_aggregate_obj_type
 ,ctx2 IN my_aggregate_obj_type)
RETURN NUMBER

MEMBER FUNCTION ODCIAggregateTerminate (
 self IN my_aggregate_obj_type
 ,return_value OUT SDO_RDF_TERM
 ,flags IN NUMBER)
RETURN NUMBER

9.2.3.2 Invoking User-Defined Aggregates
After a user-defined aggregate is implemented in PL/SQL, it can be invoked from a SPARQL
query by referring to an aggregate URI constructed from the prefix <http://
xmlns.oracle.com/rdf/aggExtensions/> followed by schema_name.aggregate_name. The
following is an example aggregate URI:

<http://xmlns.oracle.com/rdf/aggExtensions/schema.my_aggregate>(arg_1, …, arg_n)

The DISTINCT modifier can be used with user-defined aggregates, as in the following
example:

<http://xmlns.oracle.com/rdf/aggExtensions/schema.my_aggregate>(DISTINCT arg_1)

In this case, only distinct argument values are passed to the aggregate. Note, however, that
the DISTINCT modifier can only be used with aggregates that have exactly one argument.

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 40

9.2.3.3 User-Defined Aggregate Examples
This section presents examples of implementing and using a user-defined aggregate. For the
examples, assume that the following data, presented here in N-triple format, exists inside a
model called MYMODEL:

<a> <p> "1.0"^^xsd:double .
 <p> "1.5"^^xsd:float .
<c> <p> "3"^^xsd:decimal .
<c> <p> "4"^^xsd:decimal .
<d> <p> "4"^^xsd:string .

Example 9-5 User-Defined Aggregate Implementation

Example 9-5 shows the implementation of a simple user-defined aggregate (countSameType).
This aggregate has two arguments: the first is any RDF term, and the second is a constant
data type URI. The aggregate counts how many RDF terms from the first argument position
have a data type equal to the second argument.

-- Aggregate type creation
CREATE OR REPLACE TYPE countSameType authid current_user AS OBJECT(

count NUMBER, –- Variable to store the number of same-type terms.

–- Mandatory Functions for aggregates
STATIC FUNCTION ODCIAggregateInitialize(
 sctx IN OUT countSameType)
RETURN NUMBER,

MEMBER FUNCTION ODCIAggregateIterate(
 self IN OUT countSameType
 , value IN SDO_RDF_TERM_LIST)
RETURN NUMBER,

MEMBER FUNCTION ODCIAggregateMerge(
 self IN OUT countSameType
 ,ctx2 IN countSameType)
RETURN NUMBER,

MEMBER FUNCTION ODCIAggregateTerminate (
 self IN countSameType
 ,return_value OUT SDO_RDF_TERM
 ,flags IN NUMBER)
RETURN NUMBER
);
/
SHOW ERRORS;

–- Interface function for the user-defined aggregate
CREATE OR REPLACE FUNCTION countSameAs (input SDO_RDF_TERM_LIST) RETURN SDO_RDF_TERM
PARALLEL_ENABLE AGGREGATE USING countSameType;
/
show errors;

–- User-defined aggregate body
CREATE OR REPLACE TYPE BODY countSameType IS

STATIC FUNCTION ODCIAggregateInitialize(
 sctx IN OUT countSameType)
RETURN NUMBER IS
BEGIN

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 40

 sctx := countSameType (0); –- Aggregate initialization
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateIterate(
 self IN OUT countSameType
 , value IN SDO_RDF_TERM_LIST)
RETURN NUMBER IS
BEGIN
 -- Increment count if the first argument has a literal type
 -- URI equal to the value of the second argument
 IF (value(1).literal_type = value(2).value_name) THEN
 self.count := self.count + 1;
 END IF;
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateMerge(
 self IN OUT countSameType
 ,ctx2 IN countSameType)
RETURN NUMBER IS
BEGIN
 –- Sum count to merge parallel threads.
 self.count := self.count + ctx2.count;
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateTerminate(
 self IN countSameType
 ,return_value OUT SDO_RDF_TERM
 ,flags IN NUMBER)
RETURN NUMBER IS
BEGIN
 -- Set the return value
 return_value := SDO_RDF_TERM('LIT',to_char(self.count),
 'http://www.w3.org/2001/XMLSchema#decimal',NULL,NULL); RETURN ODCIConst.Success;
END;

END;
/
SHOW ERRORS;

Example 9-6 User-Defined Aggregate Used Without a GROUP BY Clause

Example 9-6 shows the countSameType aggregate (from Example 9-5) used over an entire
query result group.

FROM o
from table(sem_match(
'SELECT
 (<http://xmlns.oracle.com/rdf/aggExtensions/schema.countSameType>(?o,xsd:decimal)
 AS ?o)
 WHERE { ?s ?p ?o }',
sem_models('MYMODEL'),null,null,null,null,'',null,null,'RDFUSER','NET1'));

The query in Example 9-6 returns the following result:

o

2

Chapter 9
User-Defined Functions and Aggregates

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 40

Example 9-7 User-Defined Aggregate Used With a GROUP BY Clause

Example 9-7 shows the countSameType aggregate (from Example 9-5) used over a set of
groups formed from a GROUP BY clause.

select s, o
from table(sem_match(
'SELECT ?s
 (<http://xmlns.oracle.com/rdf/aggExtensions/schema.countSameType>(?o,xsd:decimal)
 AS ?o)
 WHERE { ?s ?p ?o } GROUP BY ?s',
sem_models('MYMODEL'),null,null,null,null,'',null,null,'RDFUSER','NET1'));

The query in Example 9-7 returns the following result:

s o
-------------------- --------------------
a 0
b 0
c 2
d 0

9.3 SPARQL Rule-Based Inference
The RDF Graph inference extension architecture enables you to add SPARQL rule-based
inference.

You can avail the full power of the SPARQL query language by specifying matching conditions
for inferring new RDF triples. Unlike the limitations of normal inference, the inferred triples
created using this process may even contain new RDF terms that were not originally present in
the RDF network prior to the start of the inference task.

You can define your own rules using SPARQL update INSERT statements.

• Storing SPARQL Rules

• Setting Up Sample Data to Create a SPARQL Inferred Graph

• Example Workflow to Create and Query a SPARQL Inferred Graph

9.3.1 Storing SPARQL Rules
You can store any number of your own rules in any column of VARCHAR or CLOB type in your own
tables along with match options and update options. The match options and update options are
the same as match_options and options, respectively, used in
SEM_APIS.UPDATE_RDF_GRAPH. They are used for hints that optimize SPARQL update
operations and can be NULL.

All these rules are applied to an RDF triple store during inference by the
SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH API.

User rules can be represented as INSERT WHERE (or INSERT DATA) statements. For
example:

PREFIX ex: <http://my.org/>
INSERT { ?x a ex:Employee }
WHERE { ?x ex:hours ?hrs FILTER (?hrs >= 40) }

Chapter 9
SPARQL Rule-Based Inference

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 40

Due to the nature of arbitrary rules, it cannot be guaranteed that the inference will reach the
transitive closure. Hence, the maximum number of iterations should be specified. In addition,
user rules can violate open world assumption which RDF inference is based on. The use of
SPARQL features that depend on a closed world assumption (that is, NOT EXISTS) may lead to
inconsistent inferred graph results. As such, their use should be avoided if possible.

9.3.2 Setting Up Sample Data to Create a SPARQL Inferred Graph
To run the example described in Example Workflow to Create and Query a SPARQL Inferred
Graph, you must prepare the database as described in the following steps:

1. Connect to Oracle AI Database as a SYSTEM user with a DBA privilege (or as ADMIN user on
Autonomous AI Database Serverless).

CONNECT system/<password-for-system-user>

2. Create a database user to create and own the RDF network.

create user RDFUSER identified by <password_for_rdfuser>;

3. Grant the necessary privileges to the new database user.

GRANT CONNECT, RESOURCE, CREATE VIEW, UNLIMITED TABLESPACE TO rdfuser;

4. Connect to the database as rdfuser.

CONNECT rdfuser/<password-for-rdf-user>;

5. Create a schema-private RDF network named NET1.

EXEC SEM_APIS.CREATE_RDF_NETWORK(tablespace_name =>'tbs_3',
network_owner=>'RDFUSER', network_name=>'NET1');

6. Create an RDF graph m1 in RDF network NET1.

EXEC SEM_APIS.CREATE_RDF_GRAPH('m1', null, null,
network_owner=>'RDFUSER',network_name=>'NET1');

7. Insert the RDF triples into the RDF graph .

BEGIN
 SEM_APIS.UPDATE_RDF_GRAPH('m1',
 'PREFIX ex: <http://my.org/>
 INSERT DATA {
 ex:adam ex:hours 20 .
 ex:bill ex:hours 25 .
 ex:carl ex:hours 30 .
 ex:drew ex:hours 35 .
 ex:eric ex:hours 40 .
 }',
 network_owner=>'rdfuser', network_name=>'net1');
END;
/
COMMIT;

Chapter 9
SPARQL Rule-Based Inference

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 40

9.3.3 Example Workflow to Create and Query a SPARQL Inferred Graph
The example describes the steps for storing SPARQL rules, creating a SPARQL inferred graph
by applying the stored rules, querying the graph, and finally dropping the inferred graph.

Before you begin, set up the sample data as described in Setting Up Sample Data to Create a
SPARQL Inferred Graph.

1. Store the SPARQL rules as shown in the following steps:

a. Create a table to store the SPARQL rules.

SQL> CREATE TABLE sparql_tab(rule varchar2(4000));
Table created.

b. Define the SPARQL rules using INSERT statements.

SQL> INSERT INTO sparql_tab values ('PREFIX ex: <http://my.org/>
 2 INSERT { ?x a ex:Employee }
 3 WHERE { ?x ex:hours ?hrs FILTER (?hrs >= 40) }');

1 row created.

SQL> INSERT INTO sparql_tab values ('PREFIX ex: <http://my.org/>
 2 INSERT { ?x a ex:Consultant }
 3 WHERE { ?x ex:hours ?hrs FILTER (?hrs <= 20) }');

1 row created.

SQL> INSERT INTO sparql_tab values ('PREFIX ex: <http://my.org/>
 2 INSERT { ?x a ex:PartTimer }
 3 WHERE { ?x ex:hours ?hrs FILTER (?hrs > 20 && ?hrs <
40) }');

1 row created.

SQL> INSERT INTO sparql_tab values ('PREFIX ex: <http://my.org/>
 2 INSERT { ?x ex:similarPartTimerAs ?y }
 3 WHERE { ?x a ex:PartTimer ; ex:hours ?xhrs .
 4 ?y a ex:PartTimer ; ex:hours ?yhrs .
 5 FILTER ((?x != ?y) && (ABS(?xhrs - ?yhrs) <= 5)) }');

1 row created.

SQL> COMMIT;
Commit complete

See also Storing SPARQL Rules for more information.

2. Create a SPARQL inferred graph X1 by calling the
SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH procedure.

SQL> EXEC
SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH('X1',sem_models('M1'),'rdfuser','spar
ql_tab','Rule', null, null, 3,
network_owner=>'rdfuser',network_name=>'NET1');

Chapter 9
SPARQL Rule-Based Inference

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 40

PL/SQL procedure successfully completed.

3. Query the SPARQL inferred graph just like querying any other standard inferred graphs.

For instance, the following example creates an RDF graph collection with only the inferred
triples.

SQL> EXEC
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION('VM_X1_ONLY',inferred_graphs=>SEM_Enta
ilments('X1'),network_owner=>'rdfuser',network_name=>'NET1');

PL/SQL procedure successfully completed.

You can use a SEM_MATCH query to verify the contents of the inferred graph.

SQL> SELECT s$rdfterm, p$rdfterm, o$rdfterm FROM TABLE(
 2 SEM_MATCH('
 3 SELECT * WHERE {
 4 ?s ?p ?o }
 5 ', sem_models('VM_X1_ONLY'),null,null,null,null,' PLUS_RDFT=VC
',network_owner=>'rdfuser',network_name=>'NET1'))
 6 ORDER BY 1,2,3;

The following shows the output of the preceding SEM_MATCH query.

S$RDFTERM
P$RDFTERM
O$RDFTERM

--

<http://my.org/adam> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://my.org/
Consultant>
<http://my.org/bill> <http://my.org/
similarPartTimerAs> <http://my.org/
carl>
<http://my.org/bill> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://my.org/
PartTimer>
<http://my.org/carl> <http://my.org/
similarPartTimerAs> <http://my.org/
bill>
<http://my.org/carl> <http://my.org/
similarPartTimerAs> <http://my.org/
drew>
<http://my.org/carl> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://my.org/
PartTimer>
<http://my.org/drew> <http://my.org/
similarPartTimerAs> <http://my.org/
carl>

Chapter 9
SPARQL Rule-Based Inference

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 40

<http://my.org/drew> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://my.org/
PartTimer>
<http://my.org/eric> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://my.org/
Employee>

9 rows selected.

4. Optionally, drop the SPARQL inferred graph by calling
SEM_APIS.DROP_INFERRED_GRAPH.

SQL> EXEC SEM_APIS.DROP_INFERRED_GRAPH('X1',
network_owner=>'RDFUSER',network_name=>'NET1');

PL/SQL procedure successfully completed.

Chapter 9
SPARQL Rule-Based Inference

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 40

10
RDF Views: Relational Data as RDF

You can create and use RDF views over relational data in RDF Graph.

Relational data is viewed as virtual RDF triples using one of the two forms of RDB2RDF
mapping described in W3C documents on Direct Mapping and R2RML mapping:

• R2RML: RDB to RDF Mapping Language, W3C Recommendation (http://
www.w3.org/TR/r2rml/)

• A Direct Mapping of Relational Data to RDF, W3C Recommendation (http://
www.w3.org/TR/rdb-direct-mapping/)

Note

If you are using RDF Graph Server and Query UI application, then you can easily
create an RDF view using the RDF View Wizard. You can also run SPARQL queries
on the RDF view and visualize the query output. See RDF Views from Relational Data
for more information.

This chapter explains the following topics:

• Why Use RDF Views on Relational Data?
Using RDF views on relational data enables you to query relational data using SPARQL
and integrate data available from different sources.

• API Support for RDF Views
Subprograms are included in the SEM_APIS package for creating, dropping, and exporting
(that is, materializing the content of) RDF views.

• Example: Using an RDF View Graph with Direct Mapping
This section shows an example of using an RDF view graph with direct mapping.

• Combining Native RDF Data with Virtual RDB2RDF Data
You can combine native triple data with virtual RDB2RDF triple data (from an RDF view
graph) in a single SEM_MATCH query by means of the SERVICE keyword.

10.1 Why Use RDF Views on Relational Data?
Using RDF views on relational data enables you to query relational data using SPARQL and
integrate data available from different sources.

You can exploit the advantages of relational data without the need for physical storage of the
RDF triples that correspond to the relational data.

The simplest way to create a mapping of relational data to RDF data is by calling the
SEM_APIS.CREATE_RDFVIEW_GRAPH procedure to create an RDF view graph, supplying
the list of tables or views whose content you would like to be viewed as RDF. This provides a
direct mapping of those relational tables or views.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 11

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/

To get a more customized mapping, you can call the SEM_APIS.CREATE_RDFVIEW_GRAPH
procedure to create an RDF view graph, supplying the R2RML mapping (using Turtle or N-
Triple syntax) with the r2rml_string parameter.

10.2 API Support for RDF Views
Subprograms are included in the SEM_APIS package for creating, dropping, and exporting
(that is, materializing the content of) RDF views.

An RDF view graph is created as an RDF graph, but the RDF graph physically contains only
the mapping metadata. The actual data remains in the relational tables for which the RDF view
graph has been created. (The SEM_APIS subprograms are documented in SEM_APIS
Package Subprograms.)

Once an RDF view graph is created, you can also materialize the RDF triples into a staging
table by using the SEM_APIS.EXPORT_RDFVIEW_GRAPH subprogram.

For the examples throughout this chapter, assume that the relational tables, EMP and DEPT, are
present in the TESTUSER schema (see Section 10.3 for the definitions of these two tables). Also,
assume that a schema-private network, named NET1 and owned by the RDFUSER schema,
already exists and RDFUSER has READ privilege on these two tables.

For the example illustrating the use of exporting of RDF triples, assume that the staging table
to which the materialized RDF triples will be stored are owned by TESTUSER and the network
owner has INSERT privilege on that table.

• Creating an RDF View Graph with Direct Mapping

• Creating an RDF View Graph with R2RML Mapping

• Dropping an RDF View Graph

• Exporting Virtual Content of an RDF View Graph into a Staging Table

10.2.1 Creating an RDF View Graph with Direct Mapping
Example 10-1 creates an RDF view graph using direct mapping of two tables, EMP and DEPT
(see Section 10.3 for the definitions of these two tables), with a base prefix of http://empdb/
in a schema-private network. The (virtual) RDF terms are generated according to A Direct
Mapping of Relational Data to RDF, W3C Recommendation.

Example 10-1 Creating an RDF View Graph with Direct Mapping in a Schema-Private
Network

BEGIN
 sem_apis.create_rdfview_graph(
 rdf_graph_name => 'empdb_model',
 tables => SYS.ODCIVarchar2List('"TESTUSER"."EMP"', '"TESTUSER"."DEPT"'),
 prefix => 'http://empdb/',
 options => 'KEY_BASED_REF_PROPERTY=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

Chapter 10
API Support for RDF Views

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 11

https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/rdb-direct-mapping/

To see the properties that are generated, enter the following query:

SELECT p
 FROM TABLE(SEM_MATCH(
 'SELECT DISTINCT ?p {?s ?p ?o} ORDER BY ?p',
 SEM_Models('empdb_model'),
 NULL, NULL, NULL, NULL,
 NULL, NULL, NULL,
 'RDFUSER', 'NET1'));
P
--
--
http://empdb/TESTUSER.EMP#EMPNO
http://empdb/TESTUSER.EMP#JOB
http://empdb/TESTUSER.EMP#ENAME
http://empdb/TESTUSER.EMP#DEPTNO
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://empdb/TESTUSER.EMP#ref-DEPTNO
http://empdb/TESTUSER.DEPT#DEPTNO
http://empdb/TESTUSER.DEPT#DNAME
http://empdb/TESTUSER.DEPT#LOC

9 rows selected.

10.2.2 Creating an RDF View Graph with R2RML Mapping
You can create an RDF view graph using the two tables EMP and DEPT, but with your own
customizations, by creating an R2RML mapping document specified using Turtle, as shown:

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix ex: <http://example.com/ns#>.

ex:TriplesMap_Dept
 rr:logicalTable [rr:tableName "TESTUSER.DEPT"];
 rr:subjectMap [
 rr:template "http://data.example.com/department/{DEPTNO}";
 rr:class ex:Department;
];
 rr:predicateObjectMap [
 rr:predicate ex:deptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptName;
 rr:objectMap [rr:column "DNAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptLocation;
 rr:objectMap [rr:column "LOC"];
].

ex:TriplesMap_Emp
 rr:logicalTable [rr:tableName "TESTUSER.EMP"];
 rr:subjectMap [

Chapter 10
API Support for RDF Views

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 11

 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;
];
 rr:predicateObjectMap [
 rr:predicate ex:empNum;
 rr:objectMap [rr:column "EMPNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:empName;
 rr:objectMap [rr:column "ENAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:jobType;
 rr:objectMap [rr:column "JOB"];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDeptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:dataType xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDept;
 rr:objectMap [
 rr:parentTriplesMap ex:TriplesMap_Dept ;
 rr:joinCondition [rr:child "DEPTNO"; rr:parent "DEPTNO"]]].

Example 10-2 Creating an RDF View Graph with an R2RML Mapping String

The following example creates an RDF view graph directly from an R2RML string, using the
preceding R2RML mapping:

DECLARE
 r2rmlStr CLOB;

BEGIN

 r2rmlStr :=
 '@prefix rr: <http://www.w3.org/ns/r2rml#>. '||
 '@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. '||
 '@prefix ex: <http://example.com/ns#>. '||'

 ex:TriplesMap_Dept
 rr:logicalTable [rr:tableName "TESTUSER.DEPT"];
 rr:subjectMap [
 rr:template "http://data.example.com/department/{DEPTNO}";
 rr:class ex:Department;
];
 rr:predicateObjectMap [
 rr:predicate ex:deptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptName;
 rr:objectMap [rr:column "DNAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptLocation;

Chapter 10
API Support for RDF Views

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 11

 rr:objectMap [rr:column "LOC"];
].'||'

 ex:TriplesMap_Emp
 rr:logicalTable [rr:tableName "TESTUSER.EMP"];
 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;
];
 rr:predicateObjectMap [
 rr:predicate ex:empNum;
 rr:objectMap [rr:column "EMPNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:empName;
 rr:objectMap [rr:column "ENAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:jobType;
 rr:objectMap [rr:column "JOB"];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDeptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:dataType xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDept;
 rr:objectMap [
 rr:parentTriplesMap ex:TriplesMap_Dept ;
 rr:joinCondition [rr:child "DEPTNO"; rr:parent "DEPTNO"]]].';

 sem_apis.create_rdfview_graph(
 rdf_graph_name => 'empdb_model',
 tables => NULL,
 r2rml_string => r2rmlStr,
 r2rml_string_fmt => 'TURTLE',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

END;
/

10.2.3 Dropping an RDF View Graph
An RDF view graph can be dropped using the SEM_APIS.DROP_RDFVIEW_GRAPH
procedure, as shown in Example 10-3.

Example 10-3 Dropping an RDF View graph

BEGIN
 sem_apis.drop_rdfview_model(
 rdf_graph_name => 'empdb_model',
 network_owner =>'RDFUSER',
 network_name =>'NET1'

Chapter 10
API Support for RDF Views

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 11

);
END;
/

10.2.4 Exporting Virtual Content of an RDF View Graph into a Staging Table
The content of an RDF view graph is virtual; that is, the RDF triples corresponding to the
underlying relational data, as mapped by direct mapping or R2RML mapping, are not
materialized and stored anywhere. The SEM_APIS.EXPORT_RDFVIEW_GRAPH subprogram
lets you materialize the virtual RDF triples of an RDF view graph into a staging table. The
staging table can then be used for loading into an RDF graph.

Example 10-4 Exporting an RDF View Graph in a Schema-Private Network

Example 10-4 materializes (in N-Triples format) the content of RDF view empdb_model into the
staging table TESTUSER.R2RTAB.

BEGIN
 sem_apis.export_rdfview_graph(
 rdf_graph_name => 'empdb_model',
 rdf_table_owner => 'TESTUSER',
 rdf_table_name => 'R2RTAB',
 network_owner => 'RDFUSER',
 network_name => 'NET1'
);
END;
PL/SQL procedure successfully completed.

10.3 Example: Using an RDF View Graph with Direct Mapping
This section shows an example of using an RDF view graph with direct mapping.

Perform the following steps for creating and using an RDF view graph with direct mapping.

1. Create two relational tables, EMP and DEPT, in the TESTUSER schema and grant READ
privilege on these two tables to RDFUSER.

-- Use the following relational tables.
CREATE TABLE TESTUSER.dept (
 deptno NUMBER CONSTRAINT pk_DeptTab_deptno PRIMARY KEY,
 dname VARCHAR2(30),
 loc VARCHAR2(30)
);

CREATE TABLE TESTUSER.emp (
 empno NUMBER PRIMARY KEY,
 ename VARCHAR2(30),
 job VARCHAR2(20),
 deptno NUMBER REFERENCES dept (deptno)
);

GRANT READ ON TESTUSER.dept TO RDFUSER;

GRANT READ ON TESTUSER.emp TO RDFUSER;

Chapter 10
Example: Using an RDF View Graph with Direct Mapping

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 11

2. Insert data into the tables.

-- Insert some data.

INSERT INTO TESTUSER.dept (deptno, dname, loc)
 VALUES (1, 'Sales', 'Boston');
INSERT INTO TESTUSER.dept (deptno, dname, loc)
 VALUES (2, 'Manufacturing', 'Chicago');
INSERT INTO TESTUSER.dept (deptno, dname, loc)
 VALUES (3, 'Marketing', 'Boston');

INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (1, 'Alvarez', 'SalesRep', 1);
INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (2, 'Baxter', 'Supervisor', 2);
INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (3, 'Chen', 'Writer', 3);
INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (4, 'Davis', 'Technician', 2);

3. Connect as RDFUSER and create an RDF view graph, empdb_model, using direct mapping of
the two tables created and populated in the preceding steps.

-- Create an RDF view graph using direct mapping of two tables, EMP and
DEPT,
-- with a base prefix of http://empdb/.
-- Specify KEY_BASED_REF_PROPERTY=T for the options parameter.

BEGIN
 sem_apis.create_rdfview_graph(
 rdf_graph_name => 'empdb_model',
 tables => SYS.ODCIVarchar2List('"TESTUSER"."EMP"',
'"TESTUSER"."DEPT"'),
 prefix => 'http://empdb/',
 options => 'KEY_BASED_REF_PROPERTY=T'
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

4. Query the newly created RDF view graph using a SEM_MATCH-based SQL query.

SELECT emp
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 SELECT ?emp {?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC "Boston"}',
 SEM_Models('empdb_model'),
 NULL,
 NULL,
 NULL, NULL,NULL, NULL,NULL, 'RDFUSER', 'NET1'));

EMP

Chapter 10
Example: Using an RDF View Graph with Direct Mapping

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 11

http://empdb/TESTUSER.EMP/EMPNO=1
http://empdb/TESTUSER.EMP/EMPNO=3

The query shown in this step is functionally comparable to:

SQL> SELECT e.empno FROM emp e, dept d WHERE e.deptno = d.deptno AND d.loc
= 'Boston';

 EMPNO

 1
 3

10.4 Combining Native RDF Data with Virtual RDB2RDF Data
You can combine native triple data with virtual RDB2RDF triple data (from an RDF view graph)
in a single SEM_MATCH query by means of the SERVICE keyword.

The SERVICE keyword (explained in Graph Patterns: Support for SPARQL 1.1 Federated
Query) is overloaded through the use of special SERVICE URLs that signify local (virtual) RDF
data. The following prefixes are used to denote special SERVICE URLs:

• Native RDF graphs - oram: <http://xmlns.oracle.com/models/>

• Native RDF graph collections - oravm: <http://xmlns.oracle.com/virtual_models/>

• RDB2RDF models - orardbm: <http://xmlns.oracle.com/rdb_models/>

Example 10-5 Querying Multiple Data Sets

Example 10-5 queries multiple data sets. In this query, the first triple pattern { ?x
rdf:type :Person } will go against an RDF graph m1 as usual, but { ?x :name ?name } will
go against the local RDF graph m2, and { ?x emp:JOB ?job } will go against the local
RDB2RDF model empdb_model.

SELECT * FROM TABLE (SEM_MATCH(
'PREFIX : <http://people.org/>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 SELECT ?x ?name ?job
 WHERE {
 ?x rdf:type :Person .
 OPTIONAL { SERVICE oram:m2 { ?x :name ?name } }
 OPTIONAL { SERVICE orardbm:empdb_model { ?x emp:JOB ?job } }
 }',
 SEM_MODELS('m1'), NULL, NULL, NULL, NULL, ' ', NULL, NULL, 'RDFUSER',
'NET1'));

Overloaded SERVICE use is only allowed with a single RDF graph specified in the models
argument of SEM_MATCH. Overloaded SERVICE queries do not allow multiple RDF graphs or
a rulebase as input. An RDF graph collection that contains multiple RDF graphs and/or inferred
graphs should be used instead for such combinations. In addition, the index_status argument
for SEM_MATCH will only check the inferred graph contained in the RDF graph collection
passed as input in the models parameter. This means the status of inferred graphs that are
referenced in overloaded SERVICE calls will not be checked.

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 11

Example 10-6 queries two data sets: the empdb_model from Example: Using an RDF View
Graph with Direct Mapping and a native RDF graph named people.

Example 10-6 Querying Virtual RDB2RDF Data and Native RDF Data in a Schema-
Private Network

-- Create native model people --
 EXECUTE SEM_APIS.CREATE_RDF_GRAPH('people', NULL, NULL,
network_owner=>'rdfuser', network_name=>'net1');

BEGIN
 SEM_APIS.UPDATE_RDF_GRAPH('people',
 'PREFIX peop: <http://people.org/>
 INSERT DATA {
 <http://empdb/TESTUSER.EMP/EMPNO=1> peop:age 35 .
 <http://empdb/TESTUSER.EMP/EMPNO=2> peop:age 39 .
 <http://empdb/TESTUSER.EMP/EMPNO=3> peop:age 30 .
 <http://empdb/TESTUSER.EMP/EMPNO=4> peop:age 42 .
 } ');
END;
/
COMMIT;

-- Querying multiple datasets --
SELECT emp, age
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 PREFIX peop: <http://people.org/>
 SELECT ?emp ?age WHERE {
 ?emp peop:age ?age
 SERVICE orardbm:empdb_model { ?emp emp:ref-DEPTNO ?dept . ?dept
dept:LOC "Boston" }
 }',
 SEM_Models('people'),
 NULL,
 NULL,
 NULL, NULL, NULL, NULL, NULL, 'RDFUSER', 'NET1'));

The query produces the following output:

EMP AGE
--
--
http://empdb/TESTUSER.EMP/EMPNO=1 35
http://empdb/TESTUSER.EMP/EMPNO=3 30

• Nested Loop Pushdown with Overloaded Service

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 11

10.4.1 Nested Loop Pushdown with Overloaded Service
Using a nested loop service can improve performance is some scenarios. Consider the
following example queries against multiple data sets for a schema-private network. The query
finds the properties of all the departments with people who are 35 years old.

–- Query example for a schema-private network.

SELECT emp, dept, p, o
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 PREFIX peop: <http://people.org/>
 SELECT * WHERE{
 ?emp peop:age 35
 SERVICE orardbm:empdb_model{ ?emp emp:ref-DEPTNO ?dept . ?dept ?p ?o }
 }',
 SEM_Models('people'),
 NULL,
 NULL,
 NULL, NULL, NULL, NULL, NULL, 'RDFUSER', 'NET1'));

The preceding query produces the following output:

EMP DEPT
P O
---------------------------------- -----------------------------------
-- --------------------------
http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/DEPTNO=1
http://empdb/TESTUSER.DEPT#DEPTNO 1
http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/DEPTNO=1
http://empdb/TESTUSER.DEPT#DNAME Sales
http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/DEPTNO=1
http://empdb/TESTUSER.DEPT#LOC Boston
http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/DEPTNO=1
http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://empdb/TESTUSER.DEPT

To get all the results that match for given graph pattern, first the triple pattern { ?emp peop:age
35 } is matched against the RDF graph people, then the triple patterns { ?emp emp:ref-
DEPTNO ?d . ?d dept:DNAME ?dept } are matched against the RDF graph empdb_model, and
finally the results are joined. Assume that there is only one 35-year-old person in the RDF
graph people, but there are 100,000 triples with information about departments. Obviously, a
strategy that retrieves all the results is not the most efficient, and query may have poor
performance because a large number of results that need to be processed before being joined
with the rest of the query.

An nested-loop service can improve performance in this case. If the hint OVERLOADED_NL=T is
used, the results of the first part of the query are computed and the SERVICE pattern is
executed procedurally in a nested loop once for each ?emp value from the root triple pattern.
The ?emp subject variable in the SERVICE pattern is replaced with a constant from the root
triple pattern in each execution. This effectively pushes the join condition down into the
SERVICE clause.

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 11

The following example shows the use of the OVERLOADED_NL=T hint for the preceding query.

SELECT emp, dept, p, o
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 PREFIX peop: <http://people.org/>
 SELECT * WHERE{
 ?emp peop:age 35
 SERVICE orardbm:empdb_model { ?emp emp:ref-DEPTNO ?dept . ?dept ?p ?o }
 }',
 SEM_Models('people'),
 NULL,
 NULL,
 NULL, NULL,' OVERLOADED_NL=T ', NULL, NULL, 'RDFUSER', 'NET1'));

The hint OVERLOADED_NL=T can be specified among SEM_MATCH options or among inline
comments for a given SERVICE graph.

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 11

11
Creating Property Graphs from RDF Graphs

Oracle Graph supports the property graph data model in addition to the RDF graph data
model.

The property graph data model is simpler than the RDF data model in that it has no concept of
global resource identification (that is, no URIs) or formal semantics and inference. In addition,
property graphs allow direct association of properties (key-value pairs) with edges. RDF, by
contrast, needs reification or a quad data model to associate properties with edges (RDF
triples).

The property graph feature (see Introduction to Property Graphs in Oracle AI Database Graph
Developer's Guide for Property Graph) of Oracle AI Database supports analytics capabilities
with over 80 pre-built algorithms. You can avail this feature with RDF graphs by creating
property graphs on the RDF graphs.

Using the CREATE PROPERTY GRAPH DDL statement supported by SQL (see SQL Property
Graphs) and the Property Graph Query Language (PGQL) (see Creating a Property Graph
Using PGQL), you can create a SQL or PGQL property graph, respectively, with relational data
from the database. The vertices and edges of the property graph are derived from the vertex
and edge tables provided in the DDL statement. Therefore, you can run SEM_MATCH queries
on your RDF data to create database views or tables to represent vertex and edge tables for
property graph creation.

Also, note the following:

• The vertex and edge tables need a primary key and attributes. If your SPARQL pattern
uses a multi-valued property, then you may have repeated rows with the same primary key
(usually a repeated subject in a vertex table). For such properties, you need to make them
edges or use some aggregate like JSON_ARRAYAGG to collapse the multi-valued property
into a single row.

• The graph server (PGX) which runs the graph algorithms cannot handle composite primary
keys. Therefore, you need to build a single key column for edge tables instead of simply
using (sourceId, destinationId) as key.

Example 11-1 Creating a SQL or PGQL Property Graph from RDF Data

Prerequisites: The following example uses the Moviestream RDF data and assumes that this
data is loaded into an RDF graph called MOVIESTREAM in a network named
RDF_NETWORK owned by RDFUSER. See Bulk Loading RDF Data Using SQL Developer for
using SQL Developer to bulk load RDF data.

Perform the following steps to create a SQL or PGQL property graph using RDF data:

1. Run SEM_MATCH queries to create the vertex and edge tables.
It is recommended that you create indexes on these tables for better SQL property graph
query performance. If creating a PGQL property graph, either views or tables can be
created for the vertices and edges. The following example code generates the database
tables corresponding to the vertex and edge tables as shown.

• Vertex Tables: MOVIE, GENRE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 5

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=pg_overview
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=sql_pg
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=sql_pg
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pgql_on_rdbms
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pgql_on_rdbms

• Edge Table: HAS_GENRE

/* Vertex Table: Movie
http://www.example.com/moviestream/Movie
 - http://www.example.com/moviestream/title
 - http://www.example.com/moviestream/sku
 - http://www.example.com/moviestream/year
 - http://www.example.com/moviestream/views
 - http://www.example.com/moviestream/summary
 - http://www.example.com/moviestream/runtimeInMin
 - http://www.example.com/moviestream/grossInUSD
 - http://www.example.com/moviestream/budgetInUSD
 - http://www.example.com/moviestream/openingDate
*/

create table movie(id, title, summary, year, openingDate, runtimeinMin,
grossInUSD, budgetInUSD, views) as
select movie$rdfvid id,
 title,
 summary,
 cast(year as number default null on conversion error) year,
 to_timestamp(openingDate default null on conversion error, 'SYYYY-
MM-DD') openingDate,
 cast(runtimeInMin as number default null on conversion error)
runtimeinMin,
 cast(grossInUSD as number default null on conversion error)
grossInUSD,
 cast(budgetInUSD as number default null on conversion error)
budgetInUSD,
 cast(views as number default null on conversion error) views
from table(sem_match(
'PREFIX ms: <http://www.example.com/moviestream/>
 SELECT *
 WHERE {
 ?movie ms:title ?title .
 OPTIONAL { ?movie ms:summary ?summary }
 OPTIONAL { ?movie ms:sku ?sku }
 OPTIONAL { ?movie ms:year ?year }
 OPTIONAL { ?movie ms:openingDate ?openingDate }
 OPTIONAL { ?movie ms:runtimeInMin ?runtimeInMin }
 OPTIONAL { ?movie ms:grossInUSD ?grossInUSD }
 OPTIONAL { ?movie ms:budgetInUSD ?budgetInUSD }
 OPTIONAL { ?movie ms:views ?views }
 }',
sem_models('moviestream'),
null,null,null,null,
' DO_UNESCAPE=T ',
null,null,
'RDFUSER','RDF_NETWORK'));

/* Vertex Table: Genre

http://www.example.com/moviestream/Genre
 - http://www.example.com/moviestream/genreName
*/
create table genre(id, genreName) as

Chapter 11

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 5

select genre$rdfvid id, genreName
from table(sem_match(
'PREFIX ms: <http://www.example.com/moviestream/>
 SELECT ?genre ?genreName
 WHERE {
 ?genre ms:genreName ?genreName . }',
sem_models('moviestream'),
null,null,null,null,
' DO_UNESCAPE=T ',
null,null,
'RDFUSER','RDF_NETWORK'));

/*
Edge Table: has_genre
(:Movie) -[http://www.example.com/moviestream/genre]-> (:Genre)
*/
create table has_genre(has_genre_id, movieId, genreId) as
select (to_char(movie$rdfvid)||to_char(genre$rdfvid)) as has_genre_id,
movie$rdfvid movieId, genre$rdfvid genreId
from table(sem_match(
'PREFIX ms: <http://www.example.com/moviestream/>
 SELECT *
 WHERE {
 ?movie ms:genre ?genre .
 }',
sem_models('moviestream'),
null,null,null,null,
' DO_UNESCAPE=T ',
null,null,
'RDFUSER','RDF_NETWORK'));

2. Create a SQL or PGQL property graph using the tables.
To create a SQL Property Graph:

The following example creates the MOVIES SQL property graph. You can use one of the
SQL Client Tools to create a SQL property graph.

CREATE PROPERTY GRAPH MOVIES
VERTEX TABLES (
 MOVIE KEY(ID) LABEL MOVIE PROPERTIES ARE ALL COLUMNS,
 GENRE KEY(ID) LABEL GENRE PROPERTIES ARE ALL COLUMNS
)
EDGE TABLES (
 HAS_GENRE KEY(HAS_GENRE_ID)
 SOURCE KEY (MOVIEID) REFERENCES MOVIE(ID)
 DESTINATION KEY (GENREID) REFERENCES GENRE(ID)
 LABEL HAS_GENRE PROPERTIES ARE ALL COLUMNS
)

To create a PGQL Property Graph:

The following example creates the MOVIES property graph using the PGQL Worksheet in
SQL Developer.

CREATE PROPERTY GRAPH MOVIES
VERTEX TABLES (

Chapter 11

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 5

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/property-graph/24.1&id=SPGDG-GUID-EFEB959D-670C-4F37-975C-79CDA11707C1
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/property-graph/25.2&id=GUID-73BC1F60-199F-402F-B7E0-C7CF8E6F1AA5

 MOVIE KEY(ID) LABEL MOVIE PROPERTIES ARE ALL COLUMNS,
 GENRE KEY(ID) LABEL GENRE PROPERTIES ARE ALL COLUMNS
)
EDGE TABLES (
 HAS_GENRE KEY(HAS_GENRE_ID)
 SOURCE KEY (MOVIEID) REFERENCES MOVIE(ID)
 DESTINATION KEY (GENREID) REFERENCES GENRE(ID)
 LABEL HAS_GENRE PROPERTIES ARE ALL COLUMNS
) OPTIONS (PG_PGQL)

You can now query, visualize, and run graph algorithms on the property graph.

Using the Graph Server (PGX) to Run Graph Algorithms on RDF Graph and RDF Data
Visualization

The graph server (PGX) of Oracle Graph allows you to run graph algorithms on property
graphs. Hence, you can load the property graph, which is created using the RDF data in the
views (as explained in Example 11-1), into the graph server (PGX) and run graph analytics. In
addition, you can also visualize the RDF data using the Graph Visualization web client. Note
that you must install the graph server (PGX) for performing these operations.

See Also

• Oracle Graph Server Installation for installing the graph server (PGX)

• Oracle Graph Clients

• Graph Visualization Web Client for running the graph visualization client

• Executing Built-in Algorithms for the supported built-in algorithms

Example 11-2 Running Graph Algorithms on RDF Graphs and RDF Data Visualization

Prerequisites: Ensure that you meet the following prerequisites for running this example:

1. Create a SQL property graph by creating database views on RDF data (see
Example 11-1).

2. As a SYSDBA user grant the GRAPH_DEVELOPER role to RDFUSER.

The following example uses the Java client to load the SQL property graph into the graph
server (PGX) and then runs the PageRank algorithm to list the top 10 movies.

For an introduction type: /help intro
Oracle Graph Server Shell 25.3.0
Variables instance, session, and analyst ready to use.
opg4j> var graph = session.readGraphByName("MOVIES",
GraphSource.PG_SQL,ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE
_LOG_ONCE))
graph ==> PgxGraph[name=MOVIES,N=3823,E=7617,created=1751789231753]
opg4j> analyst.pagerank(graph)
$3 ==> VertexProperty[name=pagerank,type=double,graph=MOVIES]
opg4j> session.queryPgql("SELECT a.title, a.pagerank FROM MATCH (a:movie) ON
MOVIES ORDER BY a.pagerank DESC LIMIT 10").print()
+--+
| title | pagerank |
+--+

Chapter 11

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 5

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/property-graph/24.1&id=SPGDG-GUID-AEED18CC-1363-470E-9422-1151204B63A5
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/property-graph/24.1&id=SPGDG-GUID-93A4FD88-DB01-4302-B46E-E44079296508
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/property-graph/24.1&id=SPGDG-GUID-1B0E49C5-5967-448D-8645-660DC7DB6C3B
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=pg_built_in_algorithms%20

Mortuary	3.9236201935652636E-5
Karla	3.9236201935652636E-5
Thor: The Dark World	3.9236201935652636E-5
August: Osage County	3.9236201935652636E-5
Schoolgirl Apocalypse	3.9236201935652636E-5
Talk Radio	3.9236201935652636E-5
Frozen River	3.9236201935652636E-5
Raising Buchanan	3.9236201935652636E-5
The Stand Up	3.9236201935652636E-5
Chronically Metropolitan	3.9236201935652636E-5
+--+
$3 ==> PgqlResultSetImpl[graph=MOVIES,numResults=10]

Alternatively, Using the Graph Visualization Application, you can load the SQL property graph
into the graph server (PGX) and run PGQL queries as shown in the following figure. The
example visualization shows all the movies that belong to Sci-Fi genre.

Figure 11-1 RDF Data Visualization

Chapter 11

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 5

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=graphviz

Part II
RDF Graph Server and Query UI

Part II provides information about using RDF Graph Server and Query UI.

This part contains the following chapters:

• Introduction to RDF Graph Server and Query UI
The RDF Graph Server and Query UI allows you to run SPARQL queries and perform
advanced RDF graph data management operations using a REST API and an Oracle JET
based query UI.

• RDF Graph Server and Query UI Concepts
Learn the key concepts for using the RDF Graph Server and Query UI.

• Oracle RDF Graph Query UI
The Oracle RDF Graph Query UI is an Oracle JET based client that can be used to
manage RDF objects from different data sources, and to perform SPARQL queries and
updates.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 1

12
Introduction to RDF Graph Server and Query
UI

The RDF Graph Server and Query UI allows you to run SPARQL queries and perform
advanced RDF graph data management operations using a REST API and an Oracle JET
based query UI.

The RDF Graph Server and Query UI consists of RDF RESTful services and a Java EE client
application called RDF Graph Query UI. This client serves as an administrative console for
Oracle RDF and can be deployed to a Java EE container.

The RDF Graph Server and RDF RESTful services can be used to create a SPARQL endpoint
for RDF graphs in Oracle AI Database.

The following figure shows the RDF Graph Server and Query UI architecture:

Figure 12-1 RDF Graph Server and Query UI

The salient features of the RDF Graph Query UI are as follows:

• Uses RDF RESTful services to communicate with RDF data stores, which can be an
Oracle RDF data source or an external RDF data source.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 2

• Allows you to perform CRUD operations on various RDF objects such as private networks,
models, rule bases, entailments, network indexes and data types for Oracle data sources.

• Allows you to execute SPARQL queries and update RDF data.

• Provides a graph view of SPARQL query results.

• Uses Oracle JET for user application web pages.

Chapter 12

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 2

13
RDF Graph Server and Query UI Concepts

Learn the key concepts for using the RDF Graph Server and Query UI.

• Data Sources
Data sources are repositories of RDF objects.

• RDF Datasets
Each RDF data source contains metadata information that describe the avaliable RDF
objects.

• REST Services
An RDF REST API allows communication between client and backend RDF data stores.

13.1 Data Sources
Data sources are repositories of RDF objects.

A data source can refer to an Oracle AI Database, or to an external RDF service that can be
accessed by an endpoint URL such as Dbpedia or Jena Apache Fuseki. The data source can
be defined by generic and as well as specific parameters. Some of the generic parameters are
name, type, and description. Specific parameters are JDBC properties (for database data
sources) and endpoint base URL (for external data sources).

• Oracle Data Sources

• Endpoint URL Data Sources

13.1.1 Oracle Data Sources

Oracle data sources are defined using JDBC connections. Three types of Oracle JDBC data
sources can be defined:

• A JDBC URL data source with standard Oracle JDCB parameters, which include SID or
service name, host, port, and user credentials.

• A container JDBC data source that can be defined inside the application Server
(WebLogic, Tomcat, or others).

• An Oracle wallet data source that contains the files needed to make the database
connection.

The parameters that define an Oracle AI Database data source include:

• name: A generic name of the data source.

• type: The data source type. For databases, it must be ‘DATABASE’.

• description (optional): A generic description of the data source.

• properties: Specific mapping parameters with values for data source properties:

– For a JDBC URL:

* Database SID or service name

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 6

* Host machine

* Database listening port

* User name and password credentials

– For a container data source:

* JNDI name - Java naming and directory interface (JNDI) name

– For a wallet data source:

* A string describing the wallet service

* User name and password credentials (required if the user credentials are not
stored in the wallet)

* Optional proxy details

For a cloud wallet it is usually an alias name stored in the tnsnames.ora file, but for a
simple wallet it contains the host, port, and service name information.

The following example shows the JSON representation of a JDBC URL data source.

{
 "name" : "rdfuser_jdbc_sid",
 "type" : "DATABASE",
 "description" : "",
 "properties" : {
 "host" : "127.0.0.1"
 "sid" : "orcl193"
 "port" : "1524",
 "user" : "rdfuser",
 "password" : "<password>"
 }
}

The following example shows the JSON representation of a container data source:

{
 "name": "rdfuser_ds_ct",
 "type": "DATABASE",
 "description": "Database Container connection",
 "properties": {
 "jndiName": "jdbc/RDFUSER193c"
 }
}

The following example shows the JSON representation of a wallet data source where the
credentials are stored in the wallet:

{
 "name": "rdfuser_ds_wallet",
 "type": "DATABASE",
 "description": "Database wallet connection",
 "properties": {
 "walletService": "db202002041627_medium"

Chapter 13
Data Sources

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 6

 }
}

13.1.2 Endpoint URL Data Sources

External RDF data sources are defined using an endpoint URL. In general, each RDF store
has a generic URL that accepts SPARQL queries and SPARQL updates. Depending on the
RDF store service, it may also provide some capabilities request to retrieve available datasets.

Table 13-1 External Data source Parameters

Parameters Description

name A generic name of the data source.

type The type of the data source. For external data sources, the type must be
‘ENDPOINT’.

description A generic description of the data source.

properties Specific mapping parameters with values for data source properties:

• base URL: the base URL to issue SPARQL queries to RDF store.
This is the default URL.

• query URL (optional): the URL to execute SPARQL queries. If
defined, it will overwrite the base URL value.

• update URL (optional): the URL to execute SPARQL updates. If
defined, it will overwrite the base URL value.

• capabilities (optional): Some RDF stores (like Apache Jena Fuseki)
may provide a capabilities URL that returns the datasets available in
service. A JSON response is expected in this case.

• get URL: the get capabilities URL.
• datasets parameter: defines the JSON parameter that contains the

RDF datasets information.
• dataset parameter name: defines the JSON parameter that contains

the RDF dataset name.

The following example shows the JSON representation of a Dbpedia external data source :

{
 "name": "dbpedia",
 "type": "ENDPOINT",
 "description": "Dbpedia RDF data - Dbpedia.org",
 "properties": {
 "baseUrl": "http://dbpedia.org/sparql",
 "provider": "Dbpedia"
 }
}

The following example shows the JSON representation of a Apache Jena Fuseki external data
source. The ${DATASET} is a parameter that is replaced at run time with the Fuseki dataset
name:

{
 "name": "Fuseki",
 "type": "ENDPOINT",
 "description": "Jena Fuseki server",
 "properties": {
 "queryUrl": "http://localhost:8080/fuseki/${DATASET}/query",
 "baseUrl": "http://localhost:8080/fuseki",

Chapter 13
Data Sources

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 6

 "capabilities": {
 "getUrl": "http://localhost:8080/fuseki/$/server",
 "datasetsParam": "datasets",
 "datasetNameParam": "ds.name"
 },
 "provider": "Apache",
 "updateUrl": "http://localhost:8080/fuseki/${DATASET}/update"
 }
}

13.2 RDF Datasets
Each RDF data source contains metadata information that describe the avaliable RDF objects.

The following describes the metadata information defined by each provider.

• Oracle RDF data sources: The RDF metadata includes information about the following
RDF objects: private networks, models (real, virtual, view), rulebases, entailments, network
indexes and datatypes.

• External RDF providers: For Apache Jena Fuseki, the metadata includes dataset names.
Other external providers may not have a metadata concept, in which case the base URL
points to generic (default) metadata.

RDF datasets point to one or more RDF objects available in the RDF data source. A dataset
definition is used in SPARQL query requests. Each provider has its own set of properties to
describe the RDF dataset.

The following are a few examples of a JSON representation of a dataset.

Oracle RDF dataset definition:

[
 {
 "networkOwner": "RDFUSER",
 "networkName": "MYNET",
 "models": ["M1"]
 }
]

Apache RDF Jena Fuseki dataset definition:

[
 {
 "name": "dataset1"
 }
]

For RDF stores that do not have a specific dataset, a simple JSON {} or a 'Default' name as
shown for Apache Jena Fuseki in the above example can be used.

13.3 REST Services
An RDF REST API allows communication between client and backend RDF data stores.

The REST services can be divided into the following groups:

• Server generic services: allows access to available data sources, and configuration
settings for general, proxy, and logging parameters.

• Oracle RDF services: allows CRUD operations on Oracle RDF objects.

Chapter 13
RDF Datasets

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 6

• SPARQL services: allows execution of SPARQL queries and updates on the data
sources.

Assuming the deployment of RDF web application with context-root set to orardf, on
localhost machine and port number 7101, the base URL for REST requests is http://
localhost:7101/orardf/api/v1.

Most of the REST services are protected with Form-based authentication. Administrator users
can define a public RDF data source using the RDF Graph Server and Query UI web
application. The public REST endpoints will then be available to perform SPARQL queries on
published datasets.

Note

The examples in this section and throughout this chapter reference host machine as
localhost and port number as 7101. These values can vary depending on your
application deployment.

The following are some RDF REST examples:

• Get the server information:
The following is a public endpoint URL. It can be used to test if the server is up and
running.

http://localhost:7101/orardf/api/v1/utils/version

• Get a list of data sources:
http://localhost:7101/orardf/api/v1/datasources

• Get general configuration parameters:
http://localhost:7101/orardf/api/v1/configurations/general

• Get a list of RDF semantic networks for Oracle RDF:
http://localhost:7101/orardf/api/v1/networks?datasource=rdfuser_ds_193c

• Get a list of all Oracle RDF real models for a private semantic network (applies from 19c
databases):
http://localhost:7101/orardf/api/v1/models?
datasource=rdfuser_ds_193c&networkOwner=RDFUSER&networkName=LOCALNET&type=real

• Post request for SPARQL query:
http://localhost:7101/orardf/api/v1/datasets/query?
datasource=rdfuser_ds_193c&datasetDef={"metadata":[{"networkOwner":"RDFUSER",
"networkName":"LOCALNET","models":["UNIV_BENCH"]}] }

Query Payload: select ?s ?p ?o where { ?s ?p ?o} limit 10

• Get request for SPARQL query:
http://localhost:7101/orardf/api/v1/datasets/query?
datasource=rdfuser_ds_193c&query=select ?s ?p ?o where { ?s ?p ?o} limit
10&datasetDef={"metadata":[{"networkOwner":"RDFUSER",
"networkName":"LOCALNET","models":["UNIV_BENCH"]}] }

• Put request to publish an RDF model:
http://localhost:7101/orardf/api/v1/datasets/publish/DSETNAME?
datasetDef={"metadata":[{"networkOwner":"RDFUSER", "networkName":"LOCALNET"
"models":["UNIV_BENCH"]}]}

Default SPARQL Query Payload: select ?s ?p ?o where { ?s ?p ?o} limit 10

Chapter 13
REST Services

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 6

This default SPARQL can be overwritten when requesting the contents of a published
dataset. The datasource parameter in the preceding request is optional. However, if you
define this parameter on the URL, it must match the current publishing data source name
because this API version supports just one publishing data source. Otherwise, the
published data source name is automatically used.

• Get request for a published dataset:
The following is a public endpoint URL. It is using the default parameters (SPARQL query,
output format, and others) that are stored in dataset definition. However, these default
parameters can be overwritten in REST request by passing new parameter values.

http://localhost:7101/orardf/api/v1/datasets/query/published/DSETNAME

A detailed list of available REST services can be found in the Swagger json file,
orardf_swagger.json, which is packaged in the application documentation directory.

Chapter 13
REST Services

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 6

14
Oracle RDF Graph Query UI

The Oracle RDF Graph Query UI is an Oracle JET based client that can be used to manage
RDF objects from different data sources, and to perform SPARQL queries and updates.

This Java EE application helps to build application webpages that query and display RDF
graphs. It supports queries across multiple data sources.

• Installing RDF Graph Query UI

• Managing User Roles for RDF Graph Query UI

• Getting Started with RDF Graph Query UI

• Accessibility

14.1 Installing RDF Graph Query UI
In order to get started on Oracle RDF Graph Query UI, you must download and install the
application.

You can download RDF Graph Query UI using one of the following options:

• Download Oracle Property Graph and Oracle RDF Graph Webapps from Oracle Graph
Server and Client Downloads page on Oracle Technology Network.

• Download the Oracle Graph Webapps component in Oracle Graph Server and Client
deployment from Oracle Software Delivery Cloud.

The downloaded oracle-graph-webapps-<version>.zip deployment contains the files as
shown in the following figure:

Figure 14-1 Oracle Graph Webapps deployment

The deployment of the RDF .war file provides the Oracle RDF Graph Query UI console.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 64

https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://edelivery.oracle.com/osdc/faces/Home.jspx

Note

Starting from Release 24.1.0, the RDF Graph Query UI web application is based on
JDK 11. Therefore, ensure that the application servers (WebLogic or Tomcat) support
JDK 11. In the case of the WebLogic server, use version 14.1.1.0.

The rdf-doc folder contains the User Guide documentation.

This deployment also includes the REST API running on the application server to handle
communication between users and backend RDF data stores.

14.2 Managing User Roles for RDF Graph Query UI
Users will have access to the application resources based on their role level. In order to access
the Query UI application, you need to enable a role for the user.

The following describes the different user roles and their privileges:

• Administrator: An administrator has full access to the Query UI application and can
update configuration files, manage RDF objects and can execute SPARQL queries and
SPARQL updates.

• RDF: A RDF user can read or write Oracle RDF objects and can execute SPARQL queries
and SPARQL updates. But, cannot modify configuration files.

• Guest: A guest user can only read Oracle RDF objects and can only execute SPARQL
queries.

Figure 14-2 User Roles for RDF Graph Query

Application servers, such as WebLogic Server, Tomcat, and others, allow you to define and
assign users to user groups. Administrators are set up at the time of the RDF Graph server
installation, but the RDF and guest users must be created to access the application console.

• Managing Groups and Users in WebLogic Server

• Managing Users and Roles in Tomcat Server

14.2.1 Managing Groups and Users in WebLogic Server

The security realms in WebLogic Server ensures that the user information entered as a part of
installation is added by default to the Administrators group. Any user assigned to this group will
have full access to the RDF Graph Query UI application.

Chapter 14
Managing User Roles for RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 64

To open the WebLogic Server Administration Console, enter http://localhost:7101/console
in your browser and logon using your administrative credentials. Click on Security Realms as
shown in the following figure:

Figure 14-3 WebLogic Server Administration Console

• Creating User Groups in WebLogic Server

• Creating RDF and Guest Users in WebLogic Server

14.2.1.1 Creating User Groups in WebLogic Server
To create new user groups in WebLogic Server:

1. Select the security realm from the listed Realms in Figure 14-3.

2. Click Users and Groups and then Groups.

3. Click New to create new RDF user groups in Weblogic as shown below:

Figure 14-4 Creating new user groups in WebLogic Server

The following example creates the following two user groups:

• RDFreadUser: for guest users with just read access to application.

• RDFreadwriteUser: for users with read and write access to RDF objects.

Chapter 14
Managing User Roles for RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 64

Figure 14-5 Created User Groups in WebLogic Server

14.2.1.2 Creating RDF and Guest Users in WebLogic Server
In order to have RDF and guest users in the user groups you must first create the RDF and
guest users and then assign them to their respective groups.

To create new RDF and guest users in WebLogic server:

Prerequisites: RDF and guest users groups must be available or they must be created. See
Creating User Groups in WebLogic Server for creating user groups.

1. Select the security realm from the listed Realms as seen in Figure 14-3

2. Click Users and Groups tab and then Users.

3. Click New to create the RDF and guest users.

Figure 14-6 Create new users in WebLogic Server

The following example creates two new users :

• rdfuser: user to be assigned to group with read and write privileges.

• nonrdfuser: guest user to be assigned to group with just read privileges.

Figure 14-7 New RDF and Guest users

Chapter 14
Managing User Roles for RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 64

4. Select a user name and click Groups to assign the user to a specific group.

5. Assign rdfuser to RDFreadwriteUser group.

Figure 14-8 RDF User

6. Assign nonrdfuser to RDFreadUser group.

Chapter 14
Managing User Roles for RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 64

Figure 14-9 RDF Guest User

14.2.2 Managing Users and Roles in Tomcat Server

For Apache Tomcat, edit the Tomcat users file conf/tomcat-users.xml to include the RDF
user roles. For example:

<tomcat-users xmlns="http://tomcat.apache.org/xml" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" version="1.0" xsi:schemaLocation="http://tomcat.apache.org/xml
tomcat-users.xsd">

 <role rolename="rdf-admin-user"/>

 <role rolename="rdf-read-user"/>

 <role rolename="rdf-readwrite-user"/>

 <user password="adminpassword" roles="manager-script,admin,rdf-admin-user"
username="admin"/>

Chapter 14
Managing User Roles for RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 64

 <user password="rdfuserpassword" roles="rdf-readwrite-user" username="rdfuser"/>

 <user password="notrdfuserpassword" roles="rdf-read-user" username="notrdfuser"/>

</tomcat-users>

14.3 Getting Started with RDF Graph Query UI
The Oracle Graph Query UI contains a main page with RDF graph feature details and links to
get started.

Figure 14-10 Query UI Main Page

The main page includes the following:

• Home: Get an overview of the Oracle RDF Graph features.

• Data sources: Manage your data sources.

• Data: Manage, query or update RDF objects.

• Settings: Set your configuration parameters.

• Data Sources Page

• RDF Data Page

• Configuration Files for RDF Server and Client

14.3.1 Data Sources Page
The Data Sources page allows you to create different types of data sources. Only administrator
users can manage data sources. The RDF store can be linked to an Oracle AI Database or to
an external RDF data provider. For Oracle data sources, there are three types of connections:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 64

• JDBC data source defined with database parameters

• JDBC data source defined on an application server

• Oracle wallet connection defined in a zip file

These database connections must be available in order to link the RDF web application to the
data source.

To create a data source, click Data Sources, then Create.

Figure 14-11 Data Sources Page

• Creating a JDBC URL Data Source

• Creating an Oracle Container Data Source

• Creating an Oracle Wallet Data Source

• Creating an Endpoint URL Data Source

14.3.1.1 Creating a JDBC URL Data Source
Oracle JDBC URL is defined using the standard database parameters with user credentials.
You can perform the following steps to create a JDBC URL data source:

1. Click JDBC URL in Figure 14-11.

Create JDBC URL Data source dialog opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 64

Figure 14-12 Creating a JDBC URL Data Source

2. Enter the Name of the data source.

3. Optionally, enter Description.

4. Select the JDBC Type.

5. Enter SID/Service Name as appropriate.

6. Enter the Host and Port details.

7. Enter the User and Password credentials.

8. Click OK to create the data source.

14.3.1.2 Creating an Oracle Container Data Source
As a prerequisite to create a container data source in the RDF Graph Server and Query UI
application, the JDBC data source must exist in the application server. See Creating a JDBC
Data Source in WebLogic Server and Creating a JDBC Data Source in Tomcat for more
information.

You can then perform the following steps to create an Oracle Container data source:

1. Click Container in Figure 14-11.

Create Container Data source dialog opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 64

Figure 14-13 Create Container Data Source

2. Enter the Name of the data source.

3. Optionally, enter Description.

4. Select the JNDI Name that exists on the application server.

5. Click OK to create the data source.

• Creating a JDBC Data Source in WebLogic Server

• Creating a JDBC Data Source in Tomcat

14.3.1.2.1 Creating a JDBC Data Source in WebLogic Server
To create a JDBC data source in WebLogic Server:

1. Log in to the WebLogic administration console as an administrator: http://
localhost:7101/console.

2. Click Services, then JDBC Data sources.

3. Click New and select the Generic data source menu option to create a JDBC data
source.

Figure 14-14 Generic Data Source

4. Enter the JDBC data source information (name and JNDI name), then click Next.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 64

Figure 14-15 JDBC Data Source and JNDI

5. Accept the defaults on the next two pages.

6. Enter the database connection information: service name, host, port, and user
credentials.

Figure 14-16 Create JDBC Data Source

7. Click Next to continue.

8. Click the Test Configuration button to validate the connection and click Next to continue.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 64

Figure 14-17 Validate connection

9. Select the server target and click Finish.

Figure 14-18 Create JDBC Data Source

The JDBC data gets added to the data source table and the JNDI name is added to the combo
box list in the create container dialog.

14.3.1.2.2 Creating a JDBC Data Source in Tomcat
There are different ways to create a JDBC data source in Tomcat. See Tomcat documentaion
for more details.

The following examples denote creation of JDBC data source in Tomcat by modifying the
configuration files conf/server.xml and conf/content.xml.

• Add global JNDI resources on conf/server.xml.

<GlobalNamingResources>
 <Resource name="jdbc/RDFUSER19c" auth="Container" global="jdbc/RDFUSER19c"
 type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
 url="jdbc:oracle:thin:@host.name:db_port_number:db_sid"
 username="rdfuser" password="rdfuserpwd" maxTotal="20" maxIdle="10"
 maxWaitMillis="-1"/>
 </GlobalNamingResources>

• Add the resource link to global JNDI’s on conf/context.xml:

<Context>
 <ResourceLink name="jdbc/RDFUSER19c"
 global="jdbc/RDFUSER19c"
 auth="Container"
 type="javax.sql.DataSource" />
</Context>

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 64

http://tomcat.apache.org/tomcat-3.2-doc/index.html

14.3.1.3 Creating an Oracle Wallet Data Source
To create a wallet data source in the Query UI application, you must have a wallet zip file. It
can be a simple wallet zip file created with Oracle orapki utility, or a wallet downloaded from
Oracle Autonomous AI Database.

In general, wallets are obtained from the Autonomous AI Database. See Download Client
Credentials (Wallets) for more information to download a wallet from Oracle Autonomous AI
Database.

The following figure displays the contents of the wallet zip file:

Figure 14-19 Cloud Wallet

Note that the tnsnames.ora file in the wallet zip file contains the wallet service alias names,
and TCPS information. It does not contain the user credentials for each service.

Using this wallet zip file, you can define an RDF wallet data source in the Query UI web
application by directly entering the user credentials. Optionally, you can also have the user
credentials stored inside the wallet for each desired service. If you choose to store the user
credentials in the wallet, then see Storing User Credentials in a Wallet for more information.

The following describes the steps to create a wallet data source:

1. Click Wallet in Figure 14-11.

Create Wallet Data source dialog opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 64

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-B06202D2-0597-41AA-9481-3B174F75D4B1
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-B06202D2-0597-41AA-9481-3B174F75D4B1

Figure 14-20 Wallet Data Source from cloud zip

2. Click the upload icon and select the wallet zip file.

The zip file gets uploaded to the server.

3. Enter the data source Name.

4. Optionally, enter the Description.

5. Select the required Wallet Service name.

6. Provide the user credentials using one of the following options as it applies to you.

• Enable Use wallet credentials if you have stored the user credentials in the wallet.

• Otherwise, enter directly the User and Password credentials.

7. Optionally, enter the proxy details.

• Storing User Credentials in a Wallet

14.3.1.3.1 Storing User Credentials in a Wallet
The following steps describe the process for adding the credentials to the wallet zip file. It is
important that you store this wallet file along with the credentials in a safe location for security
reasons.

1. Unzip the cloud wallet zip file in a temporary directory.

2. Use the service name alias in the tnsnames.ora to store credentials by running the
following command:
For example, if the service name alias is db202002041627_medium:

${ORACLE_HOME}/bin/orapki secretstore create_credential -wallet /tmp/cloudwallet
 -connect_string db202002041627_medium -username username -password
password

3. Zip the cloud wallet files into a new zip file.

14.3.1.4 Creating an Endpoint URL Data Source
External data sources are connected to the RDF data store using the endpoint URL.

You can execute SPARQL queries and updates to the RDF data store using a base URL. In
some cases, such as Apache Jena Fuseki, there are specific URLs based on the dataset
name. For example:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 64

• DBpedia Base URL: http://dbpedia.org/sparql

• Apache Jena Fuseki (assuming a dataset name dset):

– Query URL: http://localhost:8080/fuseki/dset/query

– Update URL: http://localhost:8080/fuseki/dset/update

The RDF web application issues SPARQL queries to RDF datasets. These datasets can be
retrieved from provider if a get capabilities request is available. For DBpedia, there is a single
base URL to be used, and therefore a default single dataset is handled in application. For
Apache Jena Fuseki, there is a request that returns the available RDF datasets in server:
http://localhost:8080/fuseki/$/server. Using this request, the list of available datasets
can be retrieved for specific use in an application.

You can perform the following steps to create an external RDF data source:

1. Click Endpoint in Figure 14-11.

Create Endpoint URL Datasource dialog opens as shown. The following figure shows an
example for creating a Dbpedia data source.

Figure 14-21 DBpedia Data Source

2. Enter the Name of the data source.

3. Optionally, enter Description.

4. Optionally, enter the Provider name.

5. Enter the Base URL to access the RDF service.

6. Optionally, enter the Query URL to run SPARQL queries.

Note that if the Query URL is not defined, then the Base URL is used.

7. Optionally, enter the Update URL to run SPARQL updates.

Note that if the Update URL is not defined, then the Base URL is used.

8. Provide the Capabilities Datasets parameter properties to retrieve the dataset
information from the RDF server.

9. Enter the Get URL address that should return a JSON response with information about the
dataset.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 64

http://dbpedia.org/sparql

10. Enter the Datasets parameter property in JSON response that contains the dataset
information.

11. Enter the Dataset name parameter property in datasets parameter that contains the
dataset name.

Note

For Jena Fuseki, the expression ${DATASET} will be replaced by the dataset
name at runtime when SPARQL queries or SPARQL updates are being executed.

12. Click OK to create the data source.

The following figure shows an example for creating an Apache Jena Fuseki data source.

Figure 14-22 Apache Jena Fuseki Data Source

14.3.2 RDF Data Page
You can manage and query RDF objects in the RDF Data page.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 64

Figure 14-23 RDF Data Page

The left panel contains information on the available RDF data in the data source. The right
panel is used for opening properties of a RDF object. Depending on the property type,
SPARQL queries and SPARQL updates can be executed.

• Data Source Selection

• RDF Network Actions

• Importing Data

• SPARQL Query Cache Manager

• RDF Objects Navigator

• Data Source Published Datasets Navigator

• Performing SPARQL Query and SPARQL Update Operations

• Publishing Oracle RDF Models

• Published Dataset Playground

• Support for Result Tables

• Advanced Graph View

• RDF Views from Relational Data

• Database Views from RDF Models

14.3.2.1 Data Source Selection
The data source can be selected from the list of available data sources present in
Figure 14-11.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 64

Figure 14-24 RDF Network

Select the desired Oracle RDF semantic network for the selected data source. Each network is
identified by a network owner and network name.

14.3.2.2 RDF Network Actions
You can execute the following semantic network actions:

Figure 14-25 RDF Network Actions

• Create an RDF network.

• Delete an RDF network.

• Gather statistics for a network.

• Refresh network indexes.

• Purge values not in use.

14.3.2.3 Importing Data
For Oracle RDF networks, the process of importing data into an RDF model is generally done
by bulk loading the RDF triples that are available in the staging table.

Figure 14-26 RDF Import Data Actions

The available actions include:

• Upload one or more RDF files into a couple of Oracle RDF Graph staging tables. The
staging table with suffix _CLOB will contain records with object values having length greater
than 4k. These staging tables can be reused in other bulk load operations. Files with

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 64

extensions .nt (N-triples), .nq (N-quads), .ttl (Turtle), .trig (TriG), and .jsonld
(JsonLD) are supported for import. There is a limit of file size to be imported, which can be
tuned by administrator.

Also, zip files can be used to import multiple files at once. However, the zip file is validated
first, and will be rejected if any of the following conditions occur:

– Zip file contains directories

– Zip entry name extension is not a known RDF format (.nt, .nq, .ttl, .trig, .jsonld)

– Zip entry size or compressed size is undefined

– Zip entry size does exceed maximum unzipped entry size

– Inflate ratio between compressed size and file size is lower than minimum inflate ratio

– Zip entries total size does exceed maximum unzipped total size

• Bulk load the staging table records into an Oracle RDF model.

• View the status of bulk load events.

14.3.2.4 SPARQL Query Cache Manager
SPARQL queries are cached data source, and they apply to Oracle data sources. The
translations of the SPARQL queries into SQL expressions are cached for Oracle RDF network
models. Each model can stores up to 64 different SPARQL queries translations. The Query
Cache Manager dialog, allows you to browse data source network cache for queries executed
in models.

Figure 14-27 SPARQL Query Cache Manager

You can clear cache at different levels. The following describes the cache cleared against each
level:

• Data source: All network caches are cleared.

• Network: All model caches are cleared.

• Model: All cached queries for model are cleared.

• Model Cache Identifier: Selected cache identifier is cleared.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 64

Figure 14-28 Manage SPARQL Query Cache

14.3.2.5 RDF Objects Navigator
The navigator tree shows the available RDF objects for the selected data source.

• For Oracle data sources, it will contain the different concept types like models, virtual
models, view models, RDF view models, rule bases, entailments, network indexes, and
datatype indexes.

Figure 14-29 RDF Objects for Oracle Data Source

• For endpoint RDF data sources, the RDF navigator will have a list of names representing
the available RDF datasets in the RDF store.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 64

Figure 14-30 RDF Objects from capabilities

• If an external RDF data source does not have a capabilities URL, then just a default
dataset is shown.

Figure 14-31 Default RDF Object

To execute SPARQL queries and SPARQL updates, open the selected RDF object in the RDF
objects navigator. For Oracle RDF objects, SPARQL queries are available for models (regular
models, virtual models, and view models).

Different actions can be performed on the navigator tree nodes. Right-clicking on a node under
RDF objects will bring the context menu options (such as Open, Rename, Analyze, Manage
auxiliary tables, Delete, Create Graph Views, Visualize, and Publish) for that specific node.

It is important to note the following:

• Publish menu item will be enabled only if the selected RDF data source is public.

• Guest users cannot perform actions that require a write privilege.

Figure 14-32 RDF Navigator - Context Menu

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 64

14.3.2.6 Data Source Published Datasets Navigator
If the selected RDF data source is public, a navigator node with the public datasets is
displayed on the menu tree as shown in the following figure:

Figure 14-33 Data Source Published Datasets Navigator

14.3.2.7 Performing SPARQL Query and SPARQL Update Operations
To execute SPARQL queries and updates, open the selected RDF object in the RDF objects
navigator. For Oracle RDF objects, SPARQL queries are available for regular models, virtual
models, and view models.

You can define the following parameters for SPARQL queries:

• SPARQL: The query string.

• RDF options: Oracle RDF options to be used when processing a query (See Additional
Query Options for more information.).

• Runtime parameters: Fetch size, query timeout and others (this is applied to Oracle RDF
data sources).

• Rulebases: Rulebase names associated with RDF model in an entailment. If none, then
the selection box will be empty.

• Binding parameters: The expression ?ora__bind is used as a binding parameter in a
SPARQL string. Each binding parameter is defined by a type (uri or literal) and a value. For
example:

SELECT ?s ?p ?o WHERE { ?s ?p ?ora__bind } LIMIT 500

An example of JSON representation of a binding parameter that can be passed to a REST
query service is: { "type" : "literal", "value" : "abcdef" }

The following figure shows the SPARQL query page, containing the graph view.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 64

Figure 14-34 SPARQL Query Page

The number of results on the SPARQL query is determined by the limit parameter in SPARQL
string, or by the maximum number of rows that can be fetched from server. As an administrator
you can set the maximum number of rows to be fetched in the settings page.

A graph view can be displayed for the query results. On the graph view, you must map the
columns for the triple values (subject, predicate, and object). In a table view, the columns that
represent URI values have hyperlinks.

Besides the Execute button to run the SPARQL query, there is also the Explain Plan button to
retrieve the SQL query plan for the SPARQL. This basically displays a dialog with the EXPLAIN
PLAN results and the SPARQL translation.

Figure 14-35 SQL EXPLAIN PLAN for SPARQL Translation

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 64

For Oracle data sources, if the SPARQL query selects an RDF object value that represents a
GeoSPARQL data type (such as WKT, GML, KML, or GeoJSON), a map visualization can be
displayed by switching on Map view result. In this case, the SPARQL query must select the
geometry attribute which is an RDF literal of a GeoSPARQL data type. On execution, this
query will produce a GeoJSON result which is then passed to the map component for
visualization. For example:

Figure 14-36 Map Visualization for GeoSPARQL Data Types in a SPARQL Query

14.3.2.8 Publishing Oracle RDF Models
Oracle RDF models can be published as datasets. These are then available through a public
REST endpoint for SPARQL queries. Administrator users can define a public RDF data source
for publishing data by configuring the application general parameters (see General JSON
configuration file).

Note

It is important to be aware that by enabling RDF data publishing and defining a public
RDF data source, your public URL endpoints for RDF datasets are exposed. This
endpoint URL can be used directly in applications without entering credentials.

However, public endpoints have some security constraints related to execution of SPARQL
queries. SPARQL updates, SPARQL SERVICE, and SPARQL user-defined functions are not
allowed.

To publish an Oracle RDF model as a dataset:

1. Right-click on the RDF model and select Publish from the menu as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 64

Figure 14-37 Publish Menu

2. Enter the Dataset name (mandatory), Description, and Default SPARQL. This default
SPARQL can be overwritten on the REST request.

Figure 14-38 Publish RDF Model

3. Click OK.
The public endpoint GET URL for the dataset is displayed. Note that the POST request
can also be used to access the endpoint.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 64

Figure 14-39 GET URL Endpoint

This URL uses the default values defined for the dataset and follows the pattern shown:

http://${hostname}:${port_number}/orardf/api/v1/datasets/query/published/$
{dataset_name}

You can override the default parameters stored in the dataset by modifying the URL to
include one or more of the following parameters:

• query: SPARQL query

• format: Output format (JSON, XML, CSV, TSV, GeoJSON, N-Triples, Turtle)

• options: String with Oracle RDF options

• rulebases: Rulebase names associated with dataset RDF model in an entailment

• params: JSON string with runtime parameters (timeout, fetchSize, and others)

• bindings: JSON string with binding parameters (URI or literal values)

The following shows the general pattern of the REST request to query published datasets
(assuming the context root as orardf):

http://${hostname}:${port_number}/orardf/api/v1/datasets/query/published/$
{dataset_name}?datasource=${datasource_name}&query=${sparql}&format=$
{format}&options=${rdf_options}¶ms=${runtime_params}&bindings=$
{binding_params}

In order to modify the default parameters, you must open the RDF dataset definition by
selecting Open from the menu options shown in the following figure or by double clicking
the published dataset:

Figure 14-40 Open an RDF Dataset Definition

The RDF dataset definition for the selected published dataset opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 64

Figure 14-41 RDF Dataset Definition

You can update the default parameters and preview the results.

Note

• RDF user with administrator privileges can update and unpublish any dataset.

• RDF user with read and write privileges can only manage the datasets that the
user created.

• RDF user with read privileges can only query the dataset.

14.3.2.9 Published Dataset Playground
You can explore the published RDF datasets from a public web page.

You can access the page using the following URL format:

{protocol}://{host}:{port}/{app_name}/public.html

For example:

http://localhost:7101/orardf/public.html

The public web page is displayed as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 64

Figure 14-42 Public Web Page

The main components of this public page are:

• Published Datasets: contains the names of the published RDF datasets for public RDF
data source. To open the RDF dataset double click it or right click the tree dataset and
execute the Open menu item as shown:

Figure 14-43 Opening a Published Dataset on the Public Page

• The tab panel on the right allows you to execute SPARQL queries against the published
RDF dataset. SPARQL query results are displayed in tabular as well as graph view
formats. However, if the Accessibility switch on the top right corner of the page is
switched ON, then the results are only displayed in tabular format.
The following options are supported in the tab panel:

– Templates: SPARQL template queries to use.

– Add prefix: click to add the selected prefix in the combo box to a SPARQL query.

– SPARQL: enter the SPARQL to be executed in the text area.

– select/ask: select the output format for SPARQL SELECT and SPARQL ASK queries.

– construct/describe: select the output format for SPARQL CONSTRUCT and SPARQL
DESCRIBE queries.

– Execute: click this button to execute the SPARQL query against the RDF public
endpoint.

– Table: shows the result in a tabular format.

– Raw: shows the raw SPARQL result on specified format returned from server.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 64

– Download: click to download the raw response.

14.3.2.10 Support for Result Tables
Result tables (also known as Subject-Property-Matrix (SPM) auxiliary tables) can be used to
speed up SPARQL query execution. It is recommended you first refer to Speeding up Query
Execution with Result Tables, for a detailed description of result tables. These auxiliary tables
are associated with individual RDF graphs. Once they are created, they are automatically used
during execution of SPARQL queries, unless specific options (see SPARQL Query Options for
Result Tables) are passed in to indicate otherwise (note that the query cache may need to be
cleared if the same SPARQL query is to be executed right after creating a result table).

There are three types of result tables based on the type of the query pattern used for
producing the results to be stored:

• Star-Pattern tables (also known as Single-Valued Property or SVP tables) hold values for
single-valued RDF properties. A property p is single-valued in an RDF model if each
resource in the model has at most one value for p.

• Triple-Pattern tables (also known as Multi-Valued Property (MVP) tables) hold values for
individual RDF properties.The property used for a triple-pattern table may be single-valued
or multi-valued. (A property p is multi-valued in an RDF graph if it contains two triples (s p
o1) and (s p o2) with o1 not equal to o2.)

• Chain-Pattern tables (also known as Property Chain (PCN) tables) hold paths in the RDF
graph. A sequence of triples form a path if for each consecutive pair of triples, Ti and Tj,
the object value of Ti is equal to the subject value of Tj.

Star-pattern and chain-pattern tables can be used to reduce joins during SPARQL query
execution, while triple-pattern tables allow for more compact representation for triples involving
individual properties. Additionally, if lexical values are included in the result tables, then joins
needed for looking up lexical values can be avoided as well.

The RDF Server and Query UI web application provides support for creation and management
of result tables. You can manage these auxiliary tables by right clicking the RDF graph and
selecting the Manage Result Tables menu item as shown:

Figure 14-44 Result Tables

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 64

The Result Tables page displays a table which lists the result tables present in the RDF graph.
If you are a first time user, then this table list will be empty. In such a case, you need to create
the Predicate Info Table that is required for creating and managing the result tables. The
predicate info table stores information about each property used as predicate in the RDF
graph. For each property (or its inverse), the stored information includes its id (or negative id,
for the inverse), name, and statistics on cardinality (that is, the number of triples that use this
property) per distinct subject (or, object, for the inverse). A value of one in the MAX_CNT column
indicates that the property was single-valued when the statistics were last computed.

To create the predicate info table, click See predicate info table in the table menu bar and
then select Create info table. Note that you also have the option to recreate the table at a later
time as shown in the following image:

Figure 14-45 Predicate Info Table

Once the predicate info table is created, you can then create and manage the result tables.

• Creating Result Tables

• Managing Result Tables

14.3.2.10.1 Creating Result Tables
You can create a result table by performing the following steps:

1. Click the + Create table menu in the Result Tables menu bar, and select the type of the
result table to be created.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 64

Figure 14-46 Select the Type of Result Table

The Create table wizard opens and displays the first (Name) step of the workflow as
shown:

Figure 14-47 Step1: Name of the Result Table

2. Enter the Table name.

3. Optionally, select the Degree of parallelism.

4. Click → to move to the next step.

The second (Select) step of the workflow opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 64

Figure 14-48 Step2: Select the Properties

5. Select the result table properties from the Model properties dropdown or alternatively, you
can type in a custom property.

The dropdown contains all the properties present in the RDF graph.

6. Click → to move to the next step.

The third (Set/Reorder) step of the workflow opens as shown:

Figure 14-49 Step3: Reorder and Configure Properties

7. Drag and drop each property to reorder them as desired, include or exclude value columns
and optionally configure any property inverse (not available for triple-pattern tables).

This step leverages the all new complete flexibility present in 26ai to create your auxiliary
table as desired.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 64

8. Click → to move to the next step.

The final (Summary) step of the workflow opens as shown:

Figure 14-50 Step4: Review the Selections

9. Review your selections and click Build table to create the result table.

The preceding workflow steps are common when creating any type of result table. However,
the following 26ai features are available only for certain types of tables:

• Inverse Property Path: This feature is only available for chain-pattern or star-pattern
tables. It can be enabled individually for each property, directly from the Set/Reorder
properties step. In the following example, the property http://purl.org/dc/
elements/1.1/date is shown Reversed. This implies that the subject and object of the
triple switch places. See the W3C documentation for more information on inverse property
path.

Figure 14-51 Configuring Inverse property path

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 64

https://www.w3.org/TR/sparql11-property-paths/

• Multi-Occurrence : This new feature in which the same property can be replicated
multiple times is only available for chain-pattern tables. To duplicate a property, click the
Duplicate property button under the Actions column on the Set/Reorder step. Note that
once the table is created, for ease of differentiation, each replicated property is appended
an identifier consisting of a “#” followed by a cardinal number.

Figure 14-52 Configuring Multi-Occurrence

14.3.2.10.2 Managing Result Tables
You can manage all your result tables directly from the Result Tables page which displays the
list of the result tables. You can edit or delete result tables, and also view or create indexes on
individual result tables. Make sure the result table view is set to Tables only to enable the
Actions column, which displays the supported actions:

You can then choose to perform any of the following actions:

• Click the edit action icon if you wish to edit a result table.

This initiates the edit result table workflow which is similar to the workflow for creating a
result table. You can add or remove any property, edit the order of the properties, or
change the settings for value columns or inverse property path.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 64

Figure 14-53 Edit Result Table

• Click the delete action icon if you wish to delete a result table.

A delete confirmation dialog is displayed as shown:

Figure 14-54 Deleting a Result table

• Click the view indexes action icon to view the secondary indexes for a result table as
shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 64

Figure 14-55 Viewing Secondary Indexes

You can perform the following actions on this page:

– Delete a specific index.

– Create a new index. See Creating an Index on a Result Table for more information.

• Creating an Index on a Result Table

14.3.2.10.2.1 Creating an Index on a Result Table

You can create an index on a result table by performing the following steps:

1. Click + Create Index on the top right corner of the Secondary Indexes page.

The Secondary indexes wizard opens and displays the first (Name) step of the workflow
as shown:

Figure 14-56 Step1: Defining the Index Name

2. Enter the Index Name.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 64

3. Optionally, select the Degree of parallelism and the Number of compressed columns.

4. Click → to move to the next step.

The second (Select) step of the workflow opens as shown:

Figure 14-57 Step2: Selecting the Properties

5. Select the required properties, graph values, or accessory columns.

In contrast to previous versions, 26ai allows you to include any accessory column or the
graph value without the need to include the property itself. This gives you complete
flexibility and control when creating an index for a result table.

If any one of the properties in the table have accessory columns, then you can optionally
switch ON the Show accessory columns to display all the columns as shown:

Figure 14-58 Step2: Selecting Accessory Columns

6. Click → to move to the next step.

The third (Reorder) step of the workflow opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 64

Figure 14-59 Step3: Reordering Properties

7. Drag and drop each property to reorder the selected columns as desired.

If you added accessory columns in the preceding step, then in addition to the properties,
you can also reorder the accessory columns as shown:

Figure 14-60 Step3: Reordering All the Columns

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 64

8. Click → to move to the next step.

The final (Summary) step of the workflow opens as shown:

Figure 14-61 Step4: Reviewing the Selections

9. Review the summary and click Create Index to create the new index for the result table.

14.3.2.11 Advanced Graph View
The RDF Graph Query UI supports an advanced graph view feature that allows users to
interact directly with the graph visualization. This is unlike the graph displayed on the RDF
model editor or public component where the graph view is just an output of the SPARQL
results on the paging table.

This section describes the advanced graph view component, starting from the execution of a
SPARQL CONSTRUCT or SPARQL DESCRIBE query to advanced interaction with the graph
visualization.

The main user interface (UI) elements of the advanced graph view component are as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 64

Figure 14-62 Advanced Graph View Components

The following describes the UI components seen in the preceding figure:

• SPARQL Query selector contains a text area with the SPARQL query (must be SPARQL
CONSTRUCT or SPARQL DESCRIBE).

• A Graphviz area that displays the graph with the RDF vertices and edges.

To access the advanced graph view feature, right-click on the RDF model and select Visualize
as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 64

Figure 14-63 Visualize Menu

• Query Selector Panel

• Graphviz

14.3.2.11.1 Query Selector Panel
To start using the advanced graph view feature, you must first execute a SPARQL CONSTRUCT
or SPARQL DESCRIBE query. The resulting query output is displayed as an interactive graph in
the Graphviz component.

The system may automatically run additional queries to build the graph before it is displayed. A
SPARQL query is executed for each resource in the initial query result set to retrieve values for
its datatype properties. These additional queries ensure that each vertex in the graph is fully
populated with its attributes. The maximum number of resources that can be expanded in a
result set is 2,000. The application will raise an error if this limit is exceeded. In which case,
you can reduce the result set size by using a more selective SPARQL query or using a LIMIT
clause.

The following figure shows an example SPARQL CONSTRUCT query that describes the person
named George in a PEOPLE dataset. The Query Selector Panel can be collapsed to provide
more space for interacting with the graph.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 64

Figure 14-64 Query Selector

14.3.2.11.2 Graphviz
The graph is displayed in the Graphviz panel and the visualization is based on the Graph
Visualization Library. See Graph Visualization Library Reference in Property Graph
Visualization Developer's Guide and Reference for more information.

The displayed graph is constructed from an RDF graph as follows.

• URI and blank node resources are shown as vertices and hold their rdf:type class
membership information in a labels array, which is used for the graph legend. Each vertex
has a shortName property that shows the local name portion of its URI or its blank node
label. This shortName property is used to label the vertex in the display graph. Data type
properties for these URIs and blank nodes are shown as vertex properties.

• Object properties are shown as edges connecting two vertices. These edges use the local
name portion of the RDF predicate URI as the edge label for both the graph legend and
the edge display label. Edges hold properties for full predicate URI, source (subject) RDF
term and destination (object) RDF term.

The Graphviz panel consists of the following components:

• A toolbar with the following options (described in order from left to right):

Figure 14-65 Graph Visualization Toolbar

– Move/Zoom: This mode allows you to zoom in and out, as well as to move to another
part of the visualization.

– Fit to Screen: This mode fits the resulting graph in the graph visualization view.

– Toggles Sticky Mode: This mode allows you to cancel the action of moving the nodes
around.

– Graph Manipulation: This mode allows you to interact with your graph visualization.
The following actions are supported:

* Expand: To expand selected vertices from the visualization.

* Drop: To remove selected vertices from the visualization. Alternatively, you can
also execute this from the tooltip.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 64

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=js_interface

* Group: To group selected multiple vertices and collapse them into a single one.

* Ungroup: To select a group of collapsed vertices and ungroup them.

* Undo: To undo the last action.

* Redo: To redo the last action.

* Reset: To reset the visualization to the original state after the query.

• A drawing area with the RDF nodes and edges.

• A graph legend on the right side of the panel that displays vertex and edge types and their
associated styles in the graph.

Figure 14-66 Graph Legend Panel

• A slider along the bottom of the display area that allows you to control the display size of
the current graph.

Figure 14-67 Managing the Graph Display Size

• A layout selector at the bottom of the display panel that provides various layout options for
positioning vertices and edges on the display.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 64

Figure 14-68 Layout Selector

You can interact with the edges and vertices of the graph displayed in the graph view area.

You can right-click on a vertex to view its datatype properties. The following figure shows the
datatype property values for the vertex representing the person Craig.

Figure 14-69 Viewing Vertex Properties

You can also right-click on an edge to show its properties. The following figure shows the edge
properties for the worksFor edge:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 64

Figure 14-70 Viewing Edge Properties

To expand a vertex in the graph, right-click on the vertex and then click the expand icon. New
vertices and edges directly connected to the expanded vertex will be added to the graph. For
example, in the following figure, vertex Julie is shown expanded:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 64

Figure 14-71 Expanding a Vertex

14.3.2.12 RDF Views from Relational Data
Starting from Graph Server and Client Release 25.3, you can easily create an RDF view graph
using the RDF View Wizard in RDF Graph Server and Query UI. You can then run SPARQL
queries on the RDF view graph and visualize the query output.

The wizard provides a structured step-by-step approach guiding you to create an R2RML
mapping for viewing the contents of the relational tables as RDF triples. However, note that the
mapping currently supports the generation of RDF triples only, not RDF quads. Also, the
predicates in the mapping must be constants and cannot be based on the content of a row.
Additionally, viewing resources as blank nodes is not supported in mappings that are created
using the wizard.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 64

Note

Oracle Graph also provides subprograms to create, export, and drop RDF Views. See
API Support for RDF Views for more information. An RDF view graph can be queried
using SPARQL queries.

The RDF View Wizard is based on the following concepts:

• Resource Maps: These represent the mapping for obtaining the resources (nodes) in the
graph structure. Each resource map contains the mapping for viewing the content of each
row in a given entity table as a set of RDF triples. These triples use as subject the same
resource, representing the entity corresponding to the row, along with all its properties.

• Triple Maps: These represent the mapping for obtaining the relationships (edges) between
two resources (nodes) in the graph structure. Each triple map contains the mapping for
viewing each binary relationship, captured in a row of the relationship table, as an RDF
triple whose predicate reflects the type of relationship and whose subject and object are
resources obtained using the referenced (source and target) resource maps.

The following section explains the steps to create, query, and visualize an RDF view graph
using the wizard:

• Getting Started with the RDF View Wizard

14.3.2.12.1 Getting Started with the RDF View Wizard
Perform the following steps to create an RDF view graph using the RDF View Wizard.

The instructions assume that the application is connected to a data source. The required
relational tables and RDF network exist in the database.

1. Navigate to the Data page.

2. Select the Data source and RDF network.

3. Right click RDF Views under RDF Objects in the RDF Network tab.

4. Click Create using Wizard from the context menu.

The Create RDF View Wizard page opens on the right panel as shown:

Figure 14-72 Create RDF View Wizard

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 64

5. Create the Resource Maps (nodes) for the RDF view graph in the Designer tab.

a. Click the Add new Resource Map (+) icon.

The Create Resource Maps dialog opens.

Figure 14-73 Create Resource Maps

b. Select the required input tables and move the selection to the right.

c. Select a prefix value from the Using prefix drop-down.

d. Click Create.

The selected tables are added and displayed in the Resource Maps section.
You can click on a specific resource map to view the details as shown:

Figure 14-74 Viewing Resource Map Details

Also, note the following:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 64

• If the underlying database table for the resource map does not have a primary key,
then the first table column will be considered as the resource map Key by default.

• You can choose to edit the key, class, and template (subject) of the resource map
in the Resource Map Details section.

• You can choose to edit the mapping for the predicate and object of the properties
in the Resource Map Properties section.

6. Create the Triple Maps (edges) for the RDF view graph in the Designer tab.

a. Click the Triple Map (+) icon.

The Create Triple Map workflow opens and the Name step is displayed.

Figure 14-75 Create Triple Map: Name

b. Enter the Triple Map name.

c. Click the Next arrow icon.

The Select step opens as shown.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 64

Figure 14-76 Create Triple Map: Select

d. Select the Relationship table from the drop-down.

e. Click the Next arrow icon.

The Define step opens displaying the Source tab.

Figure 14-77 Create Triple Map: Define

f. Select the source References RMAP and Key in the Source tab.

g. Select the Prefix and Suffix values in the Edge tab.

h. Select the destination References RMAP and Key in the Target tab.

i. Click the Next arrow icon.

The Summary of the designed graph structure is displayed. For example:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 64

Figure 14-78 Create Triple Map: Summary

j. Click Create.

The configured triple is added and displayed in the Triple Maps section.

k. Optionally, repeat step-6 to add as many triple maps as required.

You can click on a specific triple map to view or edit the details as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 64

Figure 14-79 Viewing Triple Map Details

7. Optionally, review and click Download to download the mapping details in the R2RML tab.

Figure 14-80 Downloading R2RML

8. Click Create (Create RDF View button) on the top right of the Create RDF View Wizard
page.

The Create RDF View window opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 64

Figure 14-81 Create RDF View

9. Enter RDF View name and click Create.

10. Refresh RDF Views in the left pane under RDF Objects.

The newly created view is successfully added to the list.
Optionally, you can right click on an RDF view graph and click Open to view the RDF view
graph details. You can execute SPARQL queries in the SPARQL tab. The results of the
SPARQL query can be viewed either as a tabular output, graph, or both.

Figure 14-82 Executing SPARQL Queries on an RDF View

You can also right click on an RDF view graph and select Visualize. This opens the RDF
view visualization page in a new tab. You can enter a SPARQL query in the Query
selector section and click Execute. The output of the query is displayed as a graph in the
Graphviz section. For example, consider running the following SPARQL query to find the
department in which the employees work:

PREFIX ex: <http://www.example.oracle.com/>
construct { ?s ex:worksIn ?o }
where {
 ?s ex:worksIn ?o
}
LIMIT 25

The query visualization output gets displayed as shown:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 64

Figure 14-83 Visualizing SPARQL Queries on an RDF View Graph

14.3.2.13 Database Views from RDF Models
You can create relational views from RDF models. These views can represent a vertex or an
edge view of a graph.

SPARQL query patterns can be used as a declarative language for specifying how to build
vertex and edge views from RDF data.

It is important to note the following when creating the vertex and edge views from an RDF
model:

• The RDF model must have classes defined and the application uses a SPARQL query to
retrieve the distinct classes defined on an RDF model. For example:

SELECT DISTINCT ?o
WHERE { ?s a ?o } order by ?o

• One or more RDF classes can define a vertex view. A vertex view consists of:

– Database vertex view name

– Key attribute name

– Vertex properties from RDF class

• One or two vertex views can define an edge view. An edge view consists of:

– Database edge view name

– Source and destination vertex keys

– Label property from RDF classes

The following sections explain the steps to create a database graph view:

• Creating a Graph View

• Creating a Vertex View

• Creating an Edge View

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 64

14.3.2.13.1 Creating a Graph View
Perform the following steps to create a database graph view:

1. Right-click the RDF model to open the context menu as shown:

Figure 14-84 Create Graph View Option

2. Click Create Graph Views.

The application opens an editor with the available RDF classes populated from a SPARQL
query as shown:

Figure 14-85 RDF Classes

Note that the database graph views cannot be created if there are no RDF classes.

3. Add Vertex Views as required.

See Creating a Vertex View for more information.

4. Add Edge Views as required.

See Creating an Edge View for more information.

5. Review and verify the graph representation of the Database Views.

The following figure shows a sample graph representation:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 64

Figure 14-86 Sample Graph Definition

6. Optionally, you can hover over a table row and click the action menu icon to Remove,
Edit, or Preview a specific vertex or an edge view.

Figure 14-87 Action Menu Options

7. Click Graph View to visualize the sample graph.

Note that in a graph view, each node represents a vertex view and the link between nodes
have an edge label. The following figure shows a sample graph visualization containing
two vertex views with key attributes movieId and entityId which are linked by the actor
edge label.

Figure 14-88 Graph Visualization for RDF Database Views

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 64

8. Click Create to create the RDF graph view in the database.

The Create Views dialog opens as shown:

Figure 14-89 Create Views

a. Optionally, switch ON the Overwrite option to replace any existing view definition.

b. Click Create.

The database graph view gets created.
The following figure shows the views that are created in the database for the sample graph
definition shown in step-5:

Figure 14-90 RDF Database Graph Views

14.3.2.13.2 Creating a Vertex View
Perform the following steps to create a vertex view:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 64

1. Click Add in the Vertex Views panel shown in the following figure:

Figure 14-91 Creating a Vertex View

2. Configure the Vertex View Definition.

Provide the following parameter values to define the vertex view:

• Vertex view: Name of the vertex view. This will be used for querying the vertex.

• Vertex key: Vertex key attribute.

• RDF classes: One or more RDF classes. When RDF classes are added, the
application retrieves the available properties for the class and lists them in the dialog.
You can choose the properties to be added to the view. The Vertex Properties table
has the following columns:

– Include: At least one property must be included

– Label: Property label

– Data type: Displays the property data type

– Nullable: At least one FALSE property must be included

* TRUE: Vertices with NULL (missing) values for the property will be included.

* FALSE: Vertices with NULL (missing) values for the property will be excluded.

The following figure shows two examples of vertex view definitions (movie and actor
entities):

Figure 14-92 Vertex View Definitions

14.3.2.13.3 Creating an Edge View
An edge view can be defined using one or two vertex views.
To create an edge view:

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 64

1. Click Add in the Edge Views panel shown in the following figure:

Figure 14-93 Edge Views

2. Configure the Edge View Definition.

Provide the following parameter values to define the edge view:

• Edge view: Name of the edge view. This will be used for querying the edge.

• Source Vertex key: Source vertex key attribute.

• Edge label: Edge label value.

• Destination Vertex key: Destination vertex key attribute.

In the following figure, the edge links the movie and actor entities:

Figure 14-94 Edge View Definition

14.3.3 Configuration Files for RDF Server and Client
The Graph Query UI application settings are determined by the JSON files that are included in
the RDF Server and Client installation.

• datasource.json: File with RDF data source definitions.

• general.json: General configuration parameters.

• proxy.json: Proxy server parameters.

• logging.json: Logging settings.

• seed.json: Master seed key value generated at first deployment of the application. This is
a unique value to be used for encrypting and decrypting passwords for Oracle data
sources defined with credentials. This is an important file, and losing it will not allow you to
encrypt or to decrypt passwords values.

On the server side, the directory WEB-INF/workspace is the default directory to store
configuration information, logs, and temporary files. The configuration files are stored by
default in WEB-INF/workspace/config.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 64

Note

If the RDF Graph Query application is deployed from an unexploded .war file, and if
no JVM parameter is defined for the workspace folder location, then the default
workspace location for the application is WEB-INF/workspace. However, any updates to
the configuration, log, and temp files done by the application may be lost if the
application is redeployed. Also, wallet data source files and published dataset files can
be lost.

To overcome this, you must start the application server, such as Weblogic or Tomcat,
with the JVM parameter oracle.rdf.workspace.dir set. For example:
=Doracle.rdf.workspace.dir=/rdf/server/workspace. The workspace folder must
exist on the file system. Otherwise, the workspace folder defaults to WEB-INF/
workspace.

It is recommended to have a backup of the workspace folder, in case of redeploying
the application on a different location. Copying the workspace folder contents to the
location of the JVM parameter, allows to restore all configurations in new deployment.

• Data Sources JSON Configuration File

• General JSON configuration file

• Proxy JSON Configuration File

• Logging JSON Configuration File

14.3.3.1 Data Sources JSON Configuration File

The JSON file for data sources stores the general attributes of a data source, including specific
properties associated with data source.

The following example shows a data source JSON file with two data sources: one an Oracle
container data source defined on the application server, and the other an external data source.

{
 "datasources" : [
 {
 "name" : "rdfuser193c",
 "type" : "DATABASE",
 "description" : "19.3 Oracle database",
 "properties" : {
 "jndiName" : "jdbc/RDFUSER193c"
 }
 },
 {
 "name" : "dbpedia",
 "type" : "ENDPOINT",
 "description" : "Dbpedia RDF data - Dbpedia.org",
 "properties" : {
 "baseUrl" : "http://dbpedia.org/sparql",
 "provider" : "Dbpedia"
 }
 }
]
}

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 64

14.3.3.2 General JSON configuration file
The general JSON configuration file stores information related to SPARQL queries, JBDC
parameters and upload parameters.

The JSON file includes the following parameters:

• Maximum SPARQL rows: Defines the limit of rows to be fetched for a SPARQL query. If a
query returns more than this limit, the fetching process is stopped.

• SPARQL Query Timeout: Defines the time in seconds to wait for a query to complete.

• Allow publishing: Flag to enable public data source selection for using with SPARQL
query endpoints.

• Publishing data source: The RDF data source to publish datasets.

• JDBC Fetch size: The fetch size parameter for JDBC queries.

• JDBC CLOB Prefetch size: Number of characters to be prefetched when retrieving large
object values.

• JDBC Batch size: The batch parameter for JDBC updates.

• Maximum file size to upload: The maximum file size to be uploaded into server.

• Maximum unzipped item size: The maximum size for an item in a zip file.

• Maximum unzipped total size: The size limit for all entries in a zip file.

• Maximum zip inflate multiplier: Maximum allowed multiplier when inflating files.

These parameters can be updated as shown in the following figures

Figure 14-95 General SPARQL Parameters

Figure 14-96 General JDBC Parameters

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 64

Figure 14-97 General File Upload Parameters

14.3.3.3 Proxy JSON Configuration File
The Proxy JSON configuration file contains proxy information for your enterprise network.

Figure 14-98 Proxy JSON Configuration File

The file includes the following parameters:

• Use proxy: flag to define if proxy parameters should be used.

• Host: proxy host value.

• Port: proxy port value.

14.3.3.4 Logging JSON Configuration File
The Logging JSON configuration file contains the logging settings. You can specify the logging
level.

For Administrators and RDF users, it is also possible to load the logs for further analysis.

Chapter 14
Getting Started with RDF Graph Query UI

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 64

Figure 14-99 Logging JSON Configuration File

14.4 Accessibility
You can turned on or off the accessibility during the user session.

To disable accessibility, click on the username drop-down menu on the top right of the page,
and turn off the Accessibility option.

Figure 14-100 Disabled Accessibility

To enable accessibility, click on the username drop-down menu on the top right of the page,
and turn on the Accessibility option.

Figure 14-101 Enabled Accessibility

Chapter 14
Accessibility

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 64

When accessibility is turned on, the graph view of SPARQL queries is disabled.

Figure 14-102 Disabled Graph View

Chapter 14
Accessibility

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 64

Part III
Reference Information

Part III provides reference information about RDF Semantic Graph subprograms.

This part contains the following chapters with reference information. To understand the
examples in the reference chapters, you must understand the conceptual and data type
information in RDF Semantic Graph Overview and OWL Concepts.

• SEM_APIS Package Subprograms
The SEM_APIS package contains subprograms (functions and procedures) for working
with the Resource Description Framework (RDF) and Web Ontology Language (OWL) in
an Oracle AI Database.

• SEM_PERF Package Subprograms
The SEM_PERF package contains subprograms for examining and enhancing the
performance of the Resource Description Framework (RDF) and Web Ontology Language
(OWL) support in an Oracle AI Database.

• SEM_RDFCTX Package Subprograms
The SEM_RDFCTX package contains subprograms (functions and procedures) to manage
extractor policies and semantic indexes created for documents.

• SEM_RDFSA Package Subprograms
The SEM_RDFSA package contains subprograms (functions and procedures) for providing
fine-grained access control to RDF data using Oracle Label Security (OLS).

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 1

15
SEM_APIS Package Subprograms

The SEM_APIS package contains subprograms (functions and procedures) for working with
the Resource Description Framework (RDF) and Web Ontology Language (OWL) in an Oracle
AI Database.

To use the subprograms in this chapter, you must understand the conceptual and usage
information in RDF Graph Overview and OWL Concepts

Note

If you are using an Autonomous AI Database Serverless instance, then all the
subprograms related to the following features require Oracle JVM to be enabled:

• Querying RDF data using SEM_APIS.SPARQL_TO_SQL

• Querying RDF data using the SEM_MATCH table function

• Performing SPARQL update operations on an RDF graph

• Using the RDF graph adapter for Eclipse RDF4J

• User-defined inferencing and querying

See Use Oracle Java in Using Oracle Autonomous AI Database Serverless to enable
Oracle JVM on your Autonomous AI Database instance.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_APIS.ADD_DATATYPE_INDEX

• SEM_APIS.ADD_NETWORK_INDEX

• SEM_APIS.ADD_SEM_INDEX

• SEM_APIS.ALTER_DATATYPE_INDEX

• SEM_APIS.ALTER_ENTAILMENT

• SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH

• SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH

• SEM_APIS.ALTER_INFERRED_GRAPH

• SEM_APIS.ALTER_MODEL

• SEM_APIS.ALTER_RDF_GRAPH

• SEM_APIS.ALTER_RDF_INDEXES

• SEM_APIS.ALTER_RESULT_TAB

• SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

• SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

• SEM_APIS.ALTER_SEM_INDEXES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 208

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

• SEM_APIS.ALTER_SPM_TAB

• SEM_APIS.ANALYZE_ENTAILMENT

• SEM_APIS.ANALYZE_INFERRED_GRAPH

• SEM_APIS.ANALYZE_MODEL

• SEM_APIS.ANALYZE_RDF_GRAPH

• SEM_APIS.APPEND_RDF_NETWORK_DATA

• SEM_APIS.APPEND_SEM_NETWORK_DATA

• SEM_APIS.BUILD_RESULT_TAB

• SEM_APIS.BUILD_SPM_TAB

• SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

• SEM_APIS.BULK_LOAD_RDF_GRAPH

• SEM_APIS.CLEANUP_BNODES

• SEM_APIS.CLEANUP_FAILED

• SEM_APIS.COMPOSE_RDF_TERM

• SEM_APIS.CONVERT_TO_GML311_LITERAL

• SEM_APIS.CONVERT_TO_WKT_LITERAL

• SEM_APIS.CREATE_ENTAILMENT

• SEM_APIS.CREATE_INDEX_ON_RESULT_TAB

• SEM_APIS.CREATE_INDEX_ON_SPM_TAB

• SEM_APIS.CREATE_INFERRED_GRAPH

• SEM_APIS.CREATE_MATERIALIZED_VIEW

• SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX

• SEM_APIS.CREATE_RDF_GRAPH

• SEM_APIS.CREATE_RDF_GRAPH_COLLECTION

• SEM_APIS.CREATE_RDF_NETWORK

• SEM_APIS.CREATE_RDFVIEW_GRAPH

• SEM_APIS.CREATE_RDFVIEW_MODEL

• SEM_APIS.CREATE_RULEBASE

• SEM_APIS.CREATE_SEM_MODEL

• SEM_APIS.CREATE_SEM_NETWORK

• SEM_APIS.CREATE_SEM_SQL

• SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE

• SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH

• SEM_APIS.CREATE_SPARQL_UPDATE_TABLES

• SEM_APIS.CREATE_VIRTUAL_MODEL

• SEM_APIS.DELETE_ENTAILMENT_STATS

• SEM_APIS.DELETE_MODEL_STATS

• SEM_APIS.DISABLE_CHANGE_TRACKING

Chapter 15

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 208

• SEM_APIS.DISABLE_INC_INFERENCE

• SEM_APIS.DISABLE_INMEMORY

• SEM_APIS.DISABLE_INMEMORY_FOR_ENT

• SEM_APIS.DISABLE_INMEMORY_FOR_MODEL

• SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH

• SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH

• SEM_APIS.DISABLE_NETWORK_SHARING

• SEM_APIS.DROP_DATATYPE_INDEX

• SEM_APIS.DROP_ENTAILMENT

• SEM_APIS.DROP_INFERRED_GRAPH

• SEM_APIS.DROP_MATERIALIZED_VIEW

• SEM_APIS.DROP_MV_BITMAP_INDEX

• SEM_APIS.DROP_NETWORK_INDEX

• SEM_APIS.DROP_RDF_GRAPH

• SEM_APIS.DROP_RDF_GRAPH_COLLECTION

• SEM_APIS.DROP_RDF_NETWORK

• SEM_APIS.DROP_RDFVIEW_GRAPH

• SEM_APIS.DROP_RDFVIEW_MODEL

• SEM_APIS.DROP_RESULT_TAB

• SEM_APIS.DROP_RULEBASE

• SEM_APIS.DROP_SEM_INDEX

• SEM_APIS.DROP_SEM_MODEL

• SEM_APIS.DROP_SEM_NETWORK

• SEM_APIS.DROP_SEM_SQL

• SEM_APIS.DROP_SPARQL_UPDATE_TABLES

• SEM_APIS.DROP_SPM_TAB

• SEM_APIS.DROP_USER_INFERENCE_OBJS

• SEM_APIS.DROP_VIRTUAL_MODEL

• SEM_APIS.ENABLE_CHANGE_TRACKING

• SEM_APIS.ENABLE_INC_INFERENCE

• SEM_APIS.ENABLE_INMEMORY

• SEM_APIS.ENABLE_INMEMORY_FOR_ENT

• SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH

• SEM_APIS.ENABLE_INMEMORY_FOR_MODEL

• SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH

• SEM_APIS.ENABLE_NETWORK_SHARING

• SEM_APIS.ESCAPE_CLOB_TERM

• SEM_APIS.ESCAPE_CLOB_VALUE

Chapter 15

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 208

• SEM_APIS.ESCAPE_RDF_TERM

• SEM_APIS.ESCAPE_RDF_VALUE

• SEM_APIS.EXPORT_ENTAILMENT_STATS

• SEM_APIS.EXPORT_MODEL_STATS

• SEM_APIS.EXPORT_RDFVIEW_GRAPH

• SEM_APIS.EXPORT_RDFVIEW_MODEL

• SEM_APIS.GATHER_SPM_INFO

• SEM_APIS.GET_CHANGE_TRACKING_INFO

• SEM_APIS.GET_INC_INF_INFO

• SEM_APIS.GET_MODEL_ID

• SEM_APIS.GET_MODEL_NAME

• SEM_APIS.GET_PLAN_COST

• SEM_APIS.GET_SQL

• SEM_APIS.GET_TRIPLE_ID

• SEM_APIS.GETV$DATETIMETZVAL

• SEM_APIS.GETV$DATETZVAL

• SEM_APIS.GETV$GEOMETRYVAL

• SEM_APIS.GETV$NUMERICVAL

• SEM_APIS.GETV$STRINGVAL

• SEM_APIS.GETV$TIMETZVAL

• SEM_APIS.GRANT_MODEL_ACCESS_PRIV

• SEM_APIS.GRANT_MODEL_ACCESS_PRIVS

• SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS

• SEM_APIS.GRANT_NETWORK_SHARING_PRIVS

• SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV

• SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS

• SEM_APIS.IMPORT_ENTAILMENT_STATS

• SEM_APIS.IMPORT_MODEL_STATS

• SEM_APIS.IS_TRIPLE

• SEM_APIS.LOAD_INTO_STAGING_TABLE

• SEM_APIS.LOOKUP_ENTAILMENT

• SEM_APIS.MERGE_MODELS

• SEM_APIS.MERGE_RDF_GRAPHS

• SEM_APIS.MIGRATE_DATA_TO_CURRENT

• SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2

• SEM_APIS.MOVE_RDF_NETWORK_DATA

• SEM_APIS.MOVE_SEM_NETWORK_DATA

• SEM_APIS.PURGE_UNUSED_VALUES

Chapter 15

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 208

• SEM_APIS.REFRESH_MATERIALIZED_VIEW

• SEM_APIS.REFRESH_NETWORK_INDEX_INFO

• SEM_APIS.REFRESH_QUERY_STATE

• SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO

• SEM_APIS.RENAME_ENTAILMENT

• SEM_APIS.RENAME_INFERRED_GRAPH

• SEM_APIS.RENAME_MODEL

• SEM_APIS.RENAME_RDF_GRAPH

• SEM_APIS.RES2VID

• SEM_APIS.RESTORE_RDF_NETWORK_DATA

• SEM_APIS.RESTORE_SEM_NETWORK_DATA

• SEM_APIS.REVOKE_MODEL_ACCESS_PRIV

• SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS

• SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS

• SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS

• SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV

• SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS

• SEM_APIS.SEM_SQL_COMPILE

• SEM_APIS.SET_ENTAILMENT_STATS

• SEM_APIS.SET_MODEL_STATS

• SEM_APIS.SPARQL_TO_SQL

• SEM_APIS.SWAP_NAMES

• SEM_APIS.TRUNCATE_SEM_MODEL

• SEM_APIS.TRUNCATE_RDF_GRAPH

• SEM_APIS.UNESCAPE_CLOB_TERM

• SEM_APIS.UNESCAPE_CLOB_VALUE

• SEM_APIS.UNESCAPE_RDF_TERM

• SEM_APIS.UNESCAPE_RDF_VALUE

• SEM_APIS.UPDATE_MODEL

• SEM_APIS.UPDATE_RDF_GRAPH

• SEM_APIS.VALIDATE_ENTAILMENT

• SEM_APIS.VALIDATE_GEOMETRIES

• SEM_APIS.VALIDATE_INFERRED_GRAPH

• SEM_APIS.VALIDATE_MODEL

• SEM_APIS.VALIDATE_RDF_GRAPH

• SEM_APIS.VALUE_NAME_PREFIX

• SEM_APIS.VALUE_NAME_SUFFIX

Chapter 15

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 208

15.1 SEM_APIS.ADD_DATATYPE_INDEX
Format

SEM_APIS.ADD_DATATYPE_INDEX(
 datatype IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 parallel IN PLS_INTEGER DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Adds a data type index for the specified data type to an RDF network.

Parameters

datatype
URI of the data type to index.

tablespace_name
Destination tablespace for the index.

parallel
Degree of parallelism to use when building the index.

online
TRUE allows DML operations affecting the index during creation of the index; FALSE (the
default) does not allow DML operations affecting the index during creation of the index.

options
String specifying options for index creation using the form OPTION_NAME=option_value.
Supported options associated with spatial index creation are SRID, TOLERANCE, and
DIMENSIONS. For materialized spatial index creation, use MATERIALIZE=T. Supported options
associated with text index creation are PREFIX_INDEX, PREFIX_MIN_LENGTH,
PREFIX_MAX_LENGTH, SUBSTRING_INDEX and LOGGING. For function-based numeric or dateTime
index creation, use FUNCTION=T. The option name keywords are case sensitive and must be
specified in uppercase.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

For more information about data type indexing, see Using Data Type Indexes.

For information about creating a like index, see the lightweight text search material in Full-Text
Search.

For information about creating a data type index on RDF spatial data, see Indexing Spatial
Data.

Chapter 15
SEM_APIS.ADD_DATATYPE_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 208

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates an index on xsd:string typed literals and plain literals in the
MY_TBS tablespace.

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string',
tablespace_name=>'MY_TBS', parallel=>4);

15.2 SEM_APIS.ADD_NETWORK_INDEX
Format

SEM_APIS.ADD_NETWORK_INDEX(
 index_code IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 compression_length IN NUMBER(38) DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an RDF network index that results in creation of a non-unique B-tree index in
UNUSABLE status for each of the existing RDF graphs and inferred RDF graphs of the RDF
network.

Parameters

index_code
Index code string.

tablespace_name
Destination tablespace for the index.

compression_length

options

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of RDF network indexes, see Using RDF Network Indexes.

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates an RDF network index with the index code string CSPGM on the
RDF graphs and inferred RDF graphs of the RDF network.

EXECUTE SEM_APIS.ADD_NETWORK_INDEX('CSPGM');

Chapter 15
SEM_APIS.ADD_NETWORK_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 208

15.3 SEM_APIS.ADD_SEM_INDEX
Format

SEM_APIS.ADD_SEM_INDEX(
 index_code IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 compression_length IN NUMBER(38) DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ADD_NETWORK_INDEX subprogram instead.

Description

Creates a semantic network index that results in creation of a non-unique B-tree index in
UNUSABLE status for each of the existing models and entailments of the semantic network.

Parameters

index_code
Index code string.

tablespace_name
Destination tablespace for the index.

compression_length

options

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of semantic network indexes, see Using Semantic Network Indexes.

For information about semantic network types and options, see RDF Networks.

Examples

The following example creates a semantic network index with the index code string CSPGM on
the models and entailments of the semantic network.

EXECUTE SEM_APIS.ADD_SEM_INDEX('CSPGM');

Chapter 15
SEM_APIS.ADD_SEM_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 208

15.4 SEM_APIS.ALTER_DATATYPE_INDEX
Format

SEM_APIS.ALTER_DATATYPE_INDEX(
 datatype IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 parallel IN PLS_INTEGER DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters a data type index.

Parameters

datatype
URI of the data type to index.

command
String specifying the command to be performed: REBUILD to rebuild the data type index, or
UNUSABLE to marks the data type index as unusable. The value for this parameter is not case-
sensitive.

tablespace_name
Destination tablespace for the index.

parallel
Degree of parallelism to use when rebuilding the index.

online
TRUE allows DML operations affecting the index during rebuilding of the index; FALSE (the
default) does not allow DML operations affecting the index during rebuilding of the index.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Using Data Type Indexes.

For information about RDF network types and options, see RDF Networks.

Examples

The following example rebuilds the index on xsd:string typed literals and plain literals in the
MY_TBS tablespace.

EXECUTE SEM_APIS.ALTER_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string',
command=>'REBUILD', tablespace_name=>'MY_TBS', parallel=>4);

Chapter 15
SEM_APIS.ALTER_DATATYPE_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 208

15.5 SEM_APIS.ALTER_ENTAILMENT
Format

SEM_APIS.ALTER_ENTAILMENT(
 entailment_name IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2,
 parallel IN NUMBER(38) DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ALTER_INFERRED_GRAPH subprogram instead.

Description

Alters an entailment (rules index). Currently, the only action supported is to move the
entailment to a specified tablespace.

Parameters

entailment_name
Name of the entailment.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For an explanation of entailments, see Entailments (Rules Indexes).

For information about semantic network types and options, see RDF Networks.

Examples

The following example moves the entailment named rdfs_rix_family to the tablespace
named my_tbs.

EEXECUTE SEM_APIS.ALTER_ENTAILMENT('rdfs_rix_family', 'MOVE', 'my_tbs');

Chapter 15
SEM_APIS.ALTER_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 208

15.6 SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH
Format

SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH(
 inferred_graph_name IN VARCHAR2,
 index_code IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 use_compression IN BOOLEAN DEFAULT NULL,
 parallel IN NUMBER(38) DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE),
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters an RDF network index on an inferred graph.

Parameters

inferred_graph_name
Name of the inferred graph.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the RDF network
index on the inferred graph, or UNUSABLE marks as unusable the RDF network index on the
inferred graph. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

online
TRUE allows DML operations affecting the index during the rebuilding of the index; FALSE (the
default) does not allow DML operations affecting the index during the rebuilding of the index.

options
(Not currently used.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 208

Usage Notes

For an explanation of RDF network indexes, see Using Semantic Network Indexes.

For information about RDF network types and options, see RDF Networks.

Examples

The following example rebuilds (and makes usable if it is unusable) the RDF network index on
the inferred graph named rdfs_rix_family.

EXECUTE SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH('rdfs_rix_family', 'pscm', 'rebuild');

15.7 SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH
Format

SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 index_code IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 use_compression IN BOOLEAN DEFAULT NULL,
 parallel IN NUMBER(38) DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE),
 options IN VARCHAR2 DEFAULT NULL),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters an RDF network index on an RDF graph.

Parameters

rdf_graph_name
Name of the RDF graph.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the RDF network
index on the RDF graph, or UNUSABLE marks as unusable the RDF network index on the RDF
graph. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

Chapter 15
SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 208

online
TRUE allows DML operations affecting the index during the rebuilding of the index; FALSE (the
default) does not allow DML operations affecting the index during the rebuilding of the index.

options
(Not currently used.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For an explanation of RDF network indexes, see Using Semantic Network Indexes.

For information about RDF network types and options, see RDF Networks.

Examples

The following example rebuilds (and makes usable if it is unusable) the RDF network index on
the RDF graph named family.

EXECUTE SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH('family', 'pscm', 'rebuild');

15.8 SEM_APIS.ALTER_INFERRED_GRAPH
Format

SEM_APIS.ALTER_INFERRED_GRAPH(
 inferred_graph_name IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2,
 parallel IN NUMBER(38) DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters an inferred graph (rules index). Currently, the only action supported is to move the
inferred graph to a specified tablespace.

Parameters

inferred_graph_name
Name of the inferred graph.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

Chapter 15
SEM_APIS.ALTER_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 208

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For an explanation of inferred graphs, see Inferred Graphs.

For information about RDF network types and options, see RDF Networks.

Examples

The following example moves the inferred graph named rdfs_rix_family to the tablespace
named my_tbs.

EEXECUTE SEM_APIS.ALTER_INFERRED_GRAPH('rdfs_rix_family', 'MOVE', 'my_tbs');

15.9 SEM_APIS.ALTER_MODEL
Format

SEM_APIS.ALTER_MODEL(
 model_name IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2,
 parallel IN NUMBER(38) DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ALTER_RDF_GRAPH subprogram instead.

Description

Alters a model. Currently, the only action supported is to move the model to a specified
tablespace.

Parameters

model_name
Name of the model.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

Chapter 15
SEM_APIS.ALTER_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 208

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For an explanation of models, see Semantic Data Modeling and Semantic Data in the
Database.

For information about semantic network types and options, see RDF Networks.

Examples

The following example moves the model named family to the tablespace named my_tbs.

EEXECUTE SEM_APIS.ALTER_MODEL('family', 'MOVE', 'my_tbs');

15.10 SEM_APIS.ALTER_RDF_GRAPH
Format

SEM_APIS.ALTER_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2,
 parallel IN NUMBER(38) DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters an RDF graph. Currently, the only supported action is to move the graph to a specified
tablespace.

Parameters

rdf_graph_name
Name of the RDF graph.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.ALTER_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 208

Usage Notes

• See RDF Data in the Database for more information on sematic data.

• See RDF Networks for more information about RDF network types and options.

Examples

The following example moves the RDF graph named family to the tablespace named my_tbs.

EEXECUTE SEM_APIS.ALTER_RDF_GRAPH('family', 'MOVE', 'my_tbs');

15.11 SEM_APIS.ALTER_RDF_INDEXES
Format

SEM_APIS.ALTER_RDF_INDEXES(
 attr_name IN VARCHAR2,
 new_val IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters an attribute of all indexes on RDF_VALUE$ and RDF_LINK$ tables.

Parameters

attr_name
Attribute to be altered..

new_val
New value for the attribute.

options
(Not currently used.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

Currently, the only attr_name value supported is VISIBILITY, and the only new_val values
supported are Y (visible indexes) and N (invisible indexes).

For an explanation of RDF network indexes, see Using Semantic Network Indexes, including
the subtopic about using invisible indexes.

For information about RDF network types and options, see RDF Networks.

Examples

The following example makes all RDF network indexes invisible.

Chapter 15
SEM_APIS.ALTER_RDF_INDEXES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 208

EXECUTE SEM_APIS.ALTER_RDF_INDEXES(‘VISIBILITY’, 'N');

15.12 SEM_APIS.ALTER_RESULT_TAB
Format

SEM_APIS.ALTER_RESULT_TAB (
 query_pattern_type IN NUMBER,
 result_tab_name IN VARCHAR2,
 rdf_graph_name IN VARCHAR2,
 command IN VARCHAR2,
 pred_name IN VARCHAR2,
 occurrence IN NUMBER DEFAULT NULL,
 reversed IN BOOLEAN DEFAULT FALSE,
 degree IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters the presence or extent of presence of the columns corresponding to a predicate in a
given result table. Also, allows controlling the visibility of a result table to either allow or prevent
its use in processing SPARQL queries against the RDF graph.

Parameters

query_pattern_type
Type of the SPM table.
The value can be one of the following:

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

result_tab_name
String for use as part of the name of the result table. If the target is an MVP table, then specify
the name of the property.

rdf_graph_name
Name of the RDF graph.

command
Determines the type of alteration.
The supported commands are:

• ADD_PREDICATE: Adds columns for the target predicate to a result table, where the target
predicate is found. Applies to SVP tables only and succeeds only if the target predicate is
single-valued in the given RDF graph.

• DROP_PREDICATE: Drops columns for the target predicate from the result table, where the
target predicate is found. Note that this applies to SVP tables only.

• ADD_VALUE: Adds value columns for the target predicate to a result table, where the target
predicate is found.

• DROP_VALUE: Drops value columns for the target predicate from a result table, where the
target predicate is found.

Chapter 15
SEM_APIS.ALTER_RESULT_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 208

• ADD_S_VALUE: Includes lexical values for the subject.

• DROP_S_VALUE: Drops lexical values for the subject.

• VISIBLE: Makes the specified result table visible for possible use in processing SPARQL
queries against the RDF graph. Note that this is the default setting.

• INVISIBLE: Makes the specified result table invisible to prevent its use in processing
SPARQL queries against the RDF graph.

pred_name
Name of the target predicate if the result table is of type SVP or PCN. Must be NULL for an
MVP type table.

occurrence
Applies only to a result table of type PCN and when the command is ADD_VALUE or
DROP_VALUE.

reversed
Applies only to a result table of type SVP and when the command is ADD_PREDICATE.

degree
Degree of parallelism to use.

options
Reserved for future use.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Examples

The following example adds in-line lexical value for the <http://www.example.com#lname>
property:

BEGIN
 SEM_APIS.ALTER_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , command => 'ADD_VALUE'
 , pred_name => '<http://www.example.com#lname>'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

15.13 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT
Format

SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT(
 entailment_name IN VARCHAR2,
 index_code IN VARCHAR2,

Chapter 15
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 208

 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 use_compression IN BOOLEAN DEFAULT NULL,
 parallel IN NUMBER(38) DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE),
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH subprogram instead.

Description

Alters a semantic network index on an entailment.

Parameters

entailment_name
Name of the entailment.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the semantic
network index on the entailment, or UNUSABLE marks as unusable the semantic network index
on the entailment. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

online
TRUE allows DML operations affecting the index during the rebuilding of the index; FALSE (the
default) does not allow DML operations affecting the index during the rebuilding of the index.

options
(Not currently used.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network Indexes.

Chapter 15
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 208

For information about semantic network types and options, see RDF Networks.

Examples

The following example rebuilds (and makes usable if it is unusable) the semantic network
index on the entailment named rdfs_rix_family.

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT('rdfs_rix_family', 'pscm', 'rebuild');

15.14 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL
Format

SEM_APIS.ALTER_SEM_INDEX_ON_MODEL(
 model_name IN VARCHAR2,
 index_code IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 use_compression IN BOOLEAN DEFAULT NULL,
 parallel IN NUMBER(38) DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE),
 options IN VARCHAR2 DEFAULT NULL),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH subprogram instead.

Description

Alters a semantic network index on a model.

Parameters

model_name
Name of the model.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the semantic
network index on the model, or UNUSABLE marks as unusable the semantic network index on
the model. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

Chapter 15
SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 208

online
TRUE allows DML operations affecting the index during the rebuilding of the index; FALSE (the
default) does not allow DML operations affecting the index during the rebuilding of the index.

options
(Not currently used.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network Indexes.

For information about semantic network types and options, see RDF Networks.

Examples

The following example rebuilds (and makes usable if it is unusable) the semantic network
index on the model named family.

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_MODEL('family', 'pscm', 'rebuild');

15.15 SEM_APIS.ALTER_SEM_INDEXES
Format

SEM_APIS.ALTER_SEM_INDEXES(
 attr_name IN VARCHAR2,
 new_val IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ALTER_RDF_INDEXES subprogram instead.

Description

Alters an attribute of all indexes on RDF_VALUE$ and RDF_LINK$ tables.

Parameters

attr_name
Attribute to be altered..

new_val
New value for the attribute.

options
(Not currently used.)

Chapter 15
SEM_APIS.ALTER_SEM_INDEXES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 208

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

Currently, the only attr_name value supported is VISIBILITY, and the only new_val values
supported are Y (visible indexes) and N (invisible indexes).

For an explanation of semantic network indexes, see Using Semantic Network Indexes,
including the subtopic about using invisible indexes.

For information about semantic network types and options, see RDF Networks.

Examples

The following example makes all semantic network indexes invisible.

EXECUTE SEM_APIS.ALTER_SEM_INDEXES(‘VISIBILITY’, 'N');

15.16 SEM_APIS.ALTER_SPM_TAB
Format

SEM_APIS.ALTER_SPM_TAB (
 spm_type IN NUMBER,
 spm_name IN DBMS_ID,
 model_name IN VARCHAR2,
 command IN VARCHAR2,
 pred_name IN VARCHAR2,
 occurrence IN NUMBER DEFAULT NULL,
 reversed IN BOOLEAN DEFAULT FALSE,
 degree IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ALTER_RESULT_TAB subprogram instead.

Description

Alters the presence or extent of presence of the columns corresponding to a predicate in a
given SPM table.

Parameters

spm_type
Type of the SPM table.
The value can be one of the following:

Chapter 15
SEM_APIS.ALTER_SPM_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 208

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

spm_name
String for use as part of the name of the SPM table. If the target is an MVP table, then specify
the name of the property.

model_name
Name of the RDF model.

command
Determines the type of alteration.
The supported commands are:

• ADD_PREDICATE: Adds columns for the target predicate to an SPM table, where the target
predicate is found. Applies to SVP tables only and succeeds only if the target predicate is
single-valued in the given RDF model.

• DROP_PREDICATE: Drops columns for the target predicate from the SPM table, where the
target predicate is found. Note that this applies to SVP tables only.

• ADD_VALUE: Adds value columns for the target predicate to an SPM table, where the target
predicate is found.

• DROP_VALUE: Drops value columns for the target predicate from an SPM table, where the
target predicate is found.

• ADD_S_VALUE: Includes lexical values for the subject.

• DROP_S_VALUE: Drops lexical values for the subject.

pred_name
Name of the target predicate if the SPM table is of type SVP or PCN. Must be NULL for an
MVP type table.

occurrence
Applies only to an SPM table of type PCN and when the command is ADD_VALUE or
DROP_VALUE.

reversed
Applies only to an SPM table of type SVP and when the command is ADD_PREDICATE.

degree
Degree of parallelism to use.

options
Reserved for future use.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.ALTER_SPM_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 208

Usage Notes

Examples

The following example adds in-line lexical value for the <http://www.example.com#lname>
property:

BEGIN
 SEM_APIS.ALTER_SPM_TAB(
 spm_type => SEM_APIS.SPM_TYPE_SVP
 , spm_name => 'FLHF'
 , model_name => 'M1'
 , command => 'ADD_VALUE'
 , pred_name => '<http://www.example.com#lname>'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

15.17 SEM_APIS.ANALYZE_ENTAILMENT
Format

SEM_APIS.ANALYZE_ENTAILMENT(
 entailment_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT to_estimate_percent_type
(get_param('ESTIMATE_PERCENT')),
 method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type
(get_param('NO_INVALIDATE')),
 force IN BOOLEAN DEFAULT FALSE),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ANALYZE_INFERRED_GRAPH subprogram instead.

Description

Collects statistics for a specified entailment (rules index).

Parameters

entailment_name
Name of the entailment.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information about the
entailment (NULL means compute). The valid range is [0.000001,100]. Use the constant

Chapter 15
SEM_APIS.ANALYZE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 208

DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good
statistics. This is the usual default.

method_opt
Accepts either of the following options, or both in combination, for the internal table partition
containing information about the entailment:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as column := column_name | (extension)

- integer : Number of histogram buckets. Must be in the range [1,254].
- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data distribution
and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the data
distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

degree
Degree of parallelism for the internal table partition containing information about the
entailment. The usual default for degree is NULL, which means use the table default value
specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the
constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This
is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number of
CPUs and initialization parameters) according to size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information about
the entailment. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine
whether index statistics are to be collected or not. This is the usual default.

no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the
dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the entailment is locked; FALSE (the default) does not gather
statistics if the entailment is locked.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

Chapter 15
SEM_APIS.ANALYZE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 208

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure, which
collects statistics for the internal table partition that contains information about the entailment.
The DBMS_STATS.GATHER_TABLE_STATS procedure is documented in Oracle AI Database
PL/SQL Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about entailments, see Entailments (Rules Indexes).

For information about semantic network types and options, see RDF Networks.

Examples

The following example collects statistics for the entailment named rdfs_rix_family.

EXECUTE SEM_APIS.ANALYZE_ENTAILMENT('rdfs_rix_family');

15.18 SEM_APIS.ANALYZE_INFERRED_GRAPH
Format

SEM_APIS.ANALYZE_INFERRED_GRAPH(
 inferred_graph_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT to_estimate_percent_type
(get_param('ESTIMATE_PERCENT')),
 method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type
(get_param('NO_INVALIDATE')),
 force IN BOOLEAN DEFAULT FALSE),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Collects statistics for a specified inferred graph (rules index).

Parameters

inferred_graph_name
Name of the inferred graph.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information about the
inferred graph (NULL means compute). The valid range is [0.000001,100]. Use the constant
DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good
statistics. This is the usual default.

method_opt
Accepts either of the following options, or both in combination, for the internal table partition
containing information about the inferred graph:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as column := column_name | (extension)

Chapter 15
SEM_APIS.ANALYZE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 208

- integer : Number of histogram buckets. Must be in the range [1,254].
- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data distribution
and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the data
distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

degree
Degree of parallelism for the internal table partition containing information about the inferred
graph. The usual default for degree is NULL, which means use the table default value specified
by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant
DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This
is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number of
CPUs and initialization parameters) according to size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information about
the inferred graph. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine
whether index statistics are to be collected or not. This is the usual default.

no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the
dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the inferred graph is locked; FALSE (the default) does not gather
statistics if the inferred graph is locked.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure, which
collects statistics for the internal table partition that contains information about the inferred
graph. The DBMS_STATS.GATHER_TABLE_STATS procedure is documented in Oracle AI
Database PL/SQL Packages and Types Reference.

See also Managing Statistics for the RDF Graphs and RDF Network.

For information about inferred graphs, see Inferred Graphs.

For information about RDF network types and options, see RDF Networks.

Chapter 15
SEM_APIS.ANALYZE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 208

Examples

The following example collects statistics for the inferred graph named rdfs_rix_family.

EXECUTE SEM_APIS.ANALYZE_INFERRED_GRAPH('rdfs_rix_family');

15.19 SEM_APIS.ANALYZE_MODEL
Format

SEM_APIS.ANALYZE_MODEL(
 model_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT to_estimate_percent_type
(get_param('ESTIMATE_PERCENT')),
 method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type
(get_param('NO_INVALIDATE')),
 force IN BOOLEAN DEFAULT FALSE),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ANALYZE_RDF_GRAPH subprogram instead.

Description

Collects optimizer statistics for a specified model.

Parameters

model_name
Name of the model.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information about the
model (NULL means compute). The valid range is [0.000001,100]. Use the constant
DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good
statistics. This is the usual default.

method_opt
Accepts either of the following options, or both in combination, for the internal table partition
containing information about the model:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as column := column_name | (extension)

- integer : Number of histogram buckets. Must be in the range [1,254].

Chapter 15
SEM_APIS.ANALYZE_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 208

- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data distribution
and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the data
distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

degree
Degree of parallelism for the internal table partition containing information about the model.
The usual default for degree is NULL, which means use the table default value specified by the
DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant
DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This
is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number of
CPUs and initialization parameters) according to size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information about
the model. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether
index statistics are to be collected or not. This is the usual default.

no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the
dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the model is locked; FALSE (the default) does not gather
statistics if the model is locked.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure, which
collects optimizer statistics for the internal table partition that contains information about the
model. The DBMS_STATS.GATHER_TABLE_STATS procedure is documented in Oracle AI
Database PL/SQL Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see RDF Networks.

Examples

The following example collects statistics for the semantic model named family.

EXECUTE SEM_APIS.ANALYZE_MODEL('family');

Chapter 15
SEM_APIS.ANALYZE_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 208

15.20 SEM_APIS.ANALYZE_RDF_GRAPH
Format

SEM_APIS.ANALYZE_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT to_estimate_percent_type
(get_param('ESTIMATE_PERCENT')),
 method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type
(get_param('NO_INVALIDATE')),
 force IN BOOLEAN DEFAULT FALSE),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Collects optimizer statistics for a specified RDF graph.

Parameters

rdf_graph_name
Name of the RDF graph.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information about the
RDF graph (NULL means compute). The valid range is [0.000001,100]. Use the constant
DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good
statistics. This is the usual default.

method_opt
Accepts either of the following options, or both in combination, for the internal table partition
containing information about the RDF graph:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as column := column_name | (extension)

- integer : Number of histogram buckets. Must be in the range [1,254].
- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data distribution
and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the data
distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

Chapter 15
SEM_APIS.ANALYZE_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 208

degree
Degree of parallelism for the internal table partition containing information about the RDF
graph. The usual default for degree is NULL, which means use the table default value specified
by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant
DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This
is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number of
CPUs and initialization parameters) according to size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information about
the RDF graph. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine
whether index statistics are to be collected or not. This is the usual default.

no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the
dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the RDF graph is locked; FALSE (the default) does not gather
statistics if the graph is locked.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure, which
collects optimizer statistics for the internal table partition that contains information about the
RDF graph. The DBMS_STATS.GATHER_TABLE_STATS procedure is documented in Oracle
AI Database PL/SQL Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example collects statistics for the RDF graph named family.

EXECUTE SEM_APIS.ANALYZE_RDF_GRAPH('family');

15.21 SEM_APIS.APPEND_RDF_NETWORK_DATA
Format

SEM_APIS.APPEND_RDF_NETWORK_DATA(
 from_schema IN DBMS_ID,
 degree IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.APPEND_RDF_NETWORK_DATA

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 208

Description

Appends moved RDF network data from a staging schema into an RDF network.

Parameters

from_schema
The staging schema that contains moved RDF network data to be appended.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is no
parallel execution.

options
String specifying any options to use during the append operation. Supported options are:

• PURGE=T – drop all remaining RDF network data in the staging schema after the append
operation completes.

network_owner
Owner of the destination RDF network for the append operation. (See Table 1-2.)

network_name
Name of the destination RDF network for the append operation. (See Table 1-2.)

Usage Notes

Partition exchange operations rather than SQL INSERT statements are used to move most of
the data during the append operation, so the staging schema will no longer contain complete
RDF network data after the operation is complete.

You must have DBA privileges to call this procedure.

For more information and examples, see Moving, Restoring, and Appending an RDF Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example appends an RDF network from the RDFEXPIMPU staging schema into
the MYNET RDF network owned by RDFADMIN.

EXECUTE
sem_apis.append_rdf_network_data(from_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',netw
ork_name=>'MYNET'):

15.22 SEM_APIS.APPEND_SEM_NETWORK_DATA
Format

SEM_APIS.APPEND_SEM_NETWORK_DATA(
 from_schema IN DBMS_ID,
 degree IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.APPEND_SEM_NETWORK_DATA

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 208

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.APPEND_RDF_NETWORK_DATA subprogram instead.

Description

Appends moved semantic network data from a staging schema into a semantic network.

Parameters

from_schema
The staging schema that contains moved semantic network data to be appended.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is no
parallel execution.

options
String specifying any options to use during the append operation. Supported options are:

• PURGE=T – drop all remaining semantic network data in the staging schema after the
append operation completes.

network_owner
Owner of the destination semantic network for the append operation. (See Table 1-2.)

network_name
Name of the destination semantic network for the append operation. (See Table 1-2.)

Usage Notes

Partition exchange operations rather than SQL INSERT statements are used to move most of
the data during the append operation, so the staging schema will no longer contain complete
semantic network data after the operation is complete.

You must have DBA privileges to call this procedure.

For more information and examples, see Moving, Restoring, and Appending an RDF Network.

For information about semantic network types and options, see RDF Networks.

Examples

The following example appends a semantic network from the RDFEXPIMPU staging schema
into the MYNET semantic network owned by RDFADMIN.

EXECUTE
sem_apis.append_sem_network_data(from_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',netw
ork_name=>'MYNET'):

15.23 SEM_APIS.BUILD_RESULT_TAB
Format

SEM_APIS.BUILD_RESULT_TAB (
 query_pattern_type IN NUMBER,
 result_tab_name IN VARCHAR2,

Chapter 15
SEM_APIS.BUILD_RESULT_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 208

 rdf_graph_name IN VARCHAR2,
 key_string IN VARCHAR2,
 prefixes IN VARCHAR2 DEFAULT NULL,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a result table of the specified type for the specified RDF graph.

More information on these parameters are described in the following Parameters section.

Parameters

query_pattern_type
Type of the result table.
The value can be one of the following:

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

result_tab_name
String for use as part of the name of the result table.
Must be NULL for an MVP table because the name is auto-generated as Id(<property>) for
the (single) property specified in the key_string parameter.

rdf_graph_name
Name of the RDF graph.

key_string
Specifies the list of properties to be included. Each of the properties must be single-valued
based on the data in the RDF graph. If a property is preceded by a ‘+’ then the table will
include the columns for the lexical values. To include a reversed property, use a ‘^’ before the
property. Use of +^:fatherOf, for example, includes lexical value information for the reversed
property (intuitively equivalent to a :hasFather property with lexical value information).

prefixes
Specifies the prefixes relevant to properties used in the key_string parameter. Syntax is
same as PREFIX syntax used in SPARQL queries.

tablespace_name
Name of the target tablespace for the result table.

degree
Degree of parallelism to use during the operation.

options
String specifying any options to use during the operation.
Supported option is:

• INMEMORY=T: Builds the in-memory SVP table with all predicates or in-memory MVP table.

• S_INDEX=F: Skips creation of the nonunique index on the START_NODE_ID column of
MVP and PCN tables.

Chapter 15
SEM_APIS.BUILD_RESULT_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 208

• P_INDEXES=F: Skips creation of the nonunique indexes on the individual property columns
of PCN tables.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

• This operation has a DDL semantics.

• The invoker must be the owner of the RDF graph or the RDF network or both.

Examples

The following example creates an SVP table:

BEGIN
 SEM_APIS.BUILD_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , key_string => ' :fname :lname :height ^:fatherOf '
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

The following example creates a PCN table:

BEGIN
 SEM_APIS.BUILD_RESULT_TAB(
 result_tab_name => ‘GRANDPA’
 , query_pattern_type => SEM_APIS.SPM_TYPE_PCN
 , rdf_graph_name => 'M1'
 , key_string => ' S :fatherOf :fatherOf '
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

The following example creates an MVP table:

BEGIN
 SEM_APIS.BUILD_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_MVP
 , result_tab_name => null /* must be NULL (the name is auto-generated based on
id(property) */
 , rdf_graph_name => 'M1'
 , key_string => ' :motherOf ' /* must have exactly one property */
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

Chapter 15
SEM_APIS.BUILD_RESULT_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 208

15.24 SEM_APIS.BUILD_SPM_TAB
Format

SEM_APIS.BUILD_SPM_TAB (
 spm_type IN NUMBER,
 spm_name IN DBMS_ID,
 model_name IN VARCHAR2,
 key_string IN VARCHAR2,
 prefixes IN VARCHAR2 DEFAULT NULL,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.BUILD_RESULT_TAB subprogram instead.

Description

Creates an SPM table of the specified type for the specified RDF model.

More information on these parameters are described in the following Parameters section.

Parameters

spm_type
Type of the SPM table.
The value can be one of the following:

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

spm_name
String for use as part of the name of the SPM table.
Must be NULL for an MVP table because the name is auto-generated as Id(<property>) for
the (single) property specified in the key_string parameter.

model_name
Name of the RDF model.

key_string
Specifies the list of properties to be included. Each of the properties must be single-valued
based on the data in the RDF model. If a property is preceded by a ‘+’ then the table will
include the columns for the lexical values. To include a reversed property, use a ‘^’ before the
property. Use of +^:fatherOf, for example, includes lexical value information for the reversed
property (intuitively equivalent to a :hasFather property with lexical value information).

Chapter 15
SEM_APIS.BUILD_SPM_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 208

prefixes
Specifies the prefixes relevant to properties used in the key_string parameter. Syntax is
same as PREFIX syntax used in SPARQL queries.

tablespace_name
Name of the target tablespace for the SPM table.

degree
Degree of parallelism to use during the operation.

options
String specifying any options to use during the operation.
Supported option is:

• INMEMORY=T: Builds the in-memory SVP table with all predicates or in-memory MVP table.

• S_INDEX=F: Skips creation of the nonunique index on the START_NODE_ID column of
MVP and PCN tables.

• P_INDEXES=F: Skips creation of the nonunique indexes on the individual property columns
of PCN tables.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

• This operation has a DDL semantics.

• The invoker must be the owner of the RDF model or the RDF network or both.

Examples

The following example creates an SVP table:

BEGIN
 SEM_APIS.BUILD_SPM_TAB(
 spm_type => SEM_APIS.SPM_TYPE_SVP
 , spm_name => 'FLHF'
 , model_name => 'M1'
 , key_string => ' :fname :lname :height ^:fatherOf '
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

The following example creates a PCN table:

BEGIN
 SEM_APIS.BUILD_SPM_TAB(
 spm_name => ‘GRANDPA’
 , spm_type => SEM_APIS.SPM_TYPE_PCN
 , model_name => 'M1'
 , key_string => ' S :fatherOf :fatherOf '
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'

Chapter 15
SEM_APIS.BUILD_SPM_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 208

);
END;
/

The following example creates an MVP table:

BEGIN
 SEM_APIS.BUILD_SPM_TAB(
 spm_type => SEM_APIS.SPM_TYPE_MVP
 , spm_name => null /* must be NULL (the name is auto-generated based on
id(property) */
 , model_name => 'M1'
 , key_string => ' :motherOf ' /* must have exactly one property */
 , prefixes => ' PREFIX : <http://www.example.com#> '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

15.25 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
Format

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE(
 model_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL,
 debug IN INTEGER DEFAULT NULL,
 start_comment IN VARCHAR2 DEFAULT NULL,
 end_comment IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.BULK_LOAD_RDF_GRAPH subprogram instead.

Description

Loads semantic data from a staging table.

Parameters

model_name
Name of the model.

table_owner
Name of the schema that owns the staging table that holds semantic data to be loaded.

table_name
Name of the staging table that holds semantic data to be loaded.

flags
An optional quoted string with one or more of the following keyword specifications:

Chapter 15
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 208

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ partition for the model.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ partition for the model.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$
partition for the model.

• COMPRESS=RSCAB uses ROW STORE COMPRESS BASIC on the RDF_LINK$
partition for the model.

• DEL_BATCH_DUPS=USE_INSERT allows the use of an insertion-based strategy for duplicate
elimination that may lead to faster processing if the input data contains many duplicates.

• MBV_METHOD=SHADOW allows the use of a different value loading strategy that may lead to
faster processing for large loads.

• PARALLEL_CREATE_INDEX allows internal indexes to be created in parallel, which may
improve the performance of the bulk load processing.

• PARALLEL=<integer> allows much of the processing used during bulk load to be done in
parallel using the specified degree of parallelism to be associated with the operation.

• PARSE allows parsing of triples retrieved from the staging table (also parses triples
containing graph names).

• <task>_JOIN_HINT=<join_type>, where <task> can be any of the following internal tasks
performed during bulk load: IZC (is zero collisions), MBV (merge batch values), or MBT
(merge batch triples, used when adding triples to a non-empty model), and where
<join_type> can be USE_NL and USE_HASH.

debug
(Reserved for future use)

start_comment
Optional comment about the start of the load operation.

end_comment
Optional comment about the end of the load operation.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You must first load semantic data into a staging table before calling this procedure. See Bulk
Loading Semantic Data Using a Staging Table for more information.

Using BULK_LOAD_FROM_STAGING_TABLE with Fine Grained Access Control (OLS)

When fine-grained access control (explained in Fine-Grained Access Control for RDF Data) is
enabled for the entire network using OLS, only a user with FULL access privileges to the
associated policy may perform the bulk load operation. When OLS is enabled, full access
privileges to the OLS policy are granted using the SA_USER_ADMIN.SET_USER_PRIVS
procedure.

When the OLS is used, the label column in the tables storing the RDF triples must be
maintained. By default, with OLS enabled, the label column in the tables storing the RDF

Chapter 15
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 208

triples is set to null. If you have FULL access, you can reset the labels for the newly inserted
triples as well as any resources introduced by the new batch of triples by using appropriate
subprograms (SEM_RDFSA.SET_RESOURCE_LABEL and
SEM_RDFSA.SET_PREDICATE_LABEL).

Optionally, you can define a numeric column named RDF$STC_CTXT1 in the staging table
and the application table, to assign the sensitivity label of the triple before the data is loaded
into the desired model. Such labels are automatically applied to the corresponding triples
stored in the RDF_LINK$ table. The labels for the newly introduced resources may still have to
be applied separately before or after the load, and the system does not validate the labels
assigned during bulk load operation.

The RDF$STC_CTXT1 column in the application table has no significance, and it may be
dropped after the bulk load operation.

By default, SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE uses the semantic network
compression setting (stored in RDF_PARAMETER table) for the model.

Examples

The following example loads semantic data stored in the staging table named STAGE_TABLE
in schema SCOTT into the semantic model named family. The example includes some join
hints.

EXECUTE SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE('family', 'scott', 'stage_table', flags =>
'IZC_JOIN_HINT=USE_HASH MBV_JOIN_HINT=USE_HASH');

15.26 SEM_APIS.BULK_LOAD_RDF_GRAPH
Format

SEM_APIS.BULK_LOAD_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL,
 debug IN INTEGER DEFAULT NULL,
 start_comment IN VARCHAR2 DEFAULT NULL,
 end_comment IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Loads semantic data from a staging table.

Parameters

rdf_graph_name
Name of the RDF graph.

table_owner
Name of the schema that owns the staging table that holds semantic data to be loaded.

table_name
Name of the staging table that holds semantic data to be loaded.

Chapter 15
SEM_APIS.BULK_LOAD_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 208

flags
An optional quoted string with one or more of the following keyword specifications:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ partition for the RDF graph.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ partition for the RDF graph.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$
partition for the RDF graph.

• COMPRESS=RSCAB uses ROW STORE COMPRESS BASIC on the RDF_LINK$
partition for the RDF graph.

• DEL_BATCH_DUPS=USE_INSERT allows the use of an insertion-based strategy for duplicate
elimination that may lead to faster processing if the input data contains many duplicates.

• MBV_METHOD=SHADOW allows the use of a different value loading strategy that may lead to
faster processing for large loads.

• PARALLEL_CREATE_INDEX allows internal indexes to be created in parallel, which may
improve the performance of the bulk load processing.

• PARALLEL=<integer> allows much of the processing used during bulk load to be done in
parallel using the specified degree of parallelism to be associated with the operation.

• PARSE allows parsing of triples retrieved from the staging table (also parses triples
containing graph names).

• <task>_JOIN_HINT=<join_type>, where <task> can be any of the following internal tasks
performed during bulk load: IZC (is zero collisions), MBV (merge batch values), or MBT
(merge batch triples, used when adding triples to a non-empty RDF graph), and where
<join_type> can be USE_NL and USE_HASH.

debug
(Reserved for future use)

start_comment
Optional comment about the start of the load operation.

end_comment
Optional comment about the end of the load operation.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must first load semantic data into a staging table before calling this procedure. See Bulk
Loading Semantic Data Using a Staging Table for more information.

Using BULK_LOAD_RDF_GRAPH with Fine Grained Access Control (OLS)

When fine-grained access control (explained in Fine-Grained Access Control for RDF Data) is
enabled for the entire network using OLS, only a user with FULL access privileges to the
associated policy may perform the bulk load operation. When OLS is enabled, full access
privileges to the OLS policy are granted using the SA_USER_ADMIN.SET_USER_PRIVS
procedure.

Chapter 15
SEM_APIS.BULK_LOAD_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 208

When the OLS is used, the label column in the tables storing the RDF triples must be
maintained. By default, with OLS enabled, the label column in the tables storing the RDF
triples is set to null. If you have FULL access, you can reset the labels for the newly inserted
triples as well as any resources introduced by the new batch of triples by using appropriate
subprograms (SEM_RDFSA.SET_RESOURCE_LABEL and
SEM_RDFSA.SET_PREDICATE_LABEL).

Optionally, you can define a numeric column named RDF$STC_CTXT1 in the staging table
and the application table, to assign the sensitivity label of the triple before the data is loaded
into the desired RDF graph. Such labels are automatically applied to the corresponding triples
stored in the RDF_LINK$ table. The labels for the newly introduced resources may still have to
be applied separately before or after the load, and the system does not validate the labels
assigned during bulk load operation.

The RDF$STC_CTXT1 column in the application table has no significance, and it may be
dropped after the bulk load operation.

By default, SEM_APIS.BULK_LOAD_RDF_GRAPH uses the RDF network compression
setting (stored in RDF_PARAMETER table) for the RDF graph.

Examples

The following example loads semantic data stored in the staging table named STAGE_TABLE
in schema SCOTT into the RDF graph named family. The example includes some join hints.

EXECUTE SEM_APIS.BULK_LOAD_RDF_GRAPH('family', 'scott', 'stage_table', flags =>
'IZC_JOIN_HINT=USE_HASH MBV_JOIN_HINT=USE_HASH');

15.27 SEM_APIS.CLEANUP_BNODES
Format

SEM_APIS.CLEANUP_BNODES(
 model_name IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Corrects blank node identifiers for blank nodes in a specified model.

Parameters

model_name
Name of the model.

tablespace_name
Name of the tablespace to use for storing intermediate data.

options
String specifying one or more options to influence the behavior of the procedure. See the
Usage Notes for available option values.

Usage Notes

See Blank Nodes: Special Considerations for SPARQL Update.

The options parameter can contain one or more of the following keywords:

Chapter 15
SEM_APIS.CLEANUP_BNODES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 208

• APPEND: Uses the APPEND hint when populating tables during blank node correction.

• PARALLEL(n): Uses n as the degree of parallelism during blank node correction.

• RECOVER_FAILED=T: Include this option when a previous attempt to correct blank nodes has
been interrupted, and transient tables with intermediate data have not been deleted.

Examples

The following example corrects blank node identifiers for the electronics semantic model.

EXECUTE SEM_APIS.CLEANUP_BNODES('electronics');

15.28 SEM_APIS.CLEANUP_FAILED
Format

SEM_APIS.CLEANUP_FAILED(
 rdf_object_type IN VARCHAR2,
 rdf_object_name IN VARCHAR2),
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 default NULL);

Description

Drops (deletes) a specified rulebase or entailment if it is in a failed state.

Parameters

rdf_object_type
Type of the RDF object: RULEBASE for a rulebase or RULES_INDEX for an entailment (rules
index).

rdf_object_name
Name of the RDF object of type rdf_object_type.

options
(Not currently used.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure checks to see if the specified RDF object is in a failed state; and if the object is
in a failed state, the procedure deletes the object.

A rulebase or entailment is in a failed state if a system failure occurred during the creation of
that object. You can check if a rulebase or entailment is in a failed state by checking to see if
the value of the STATUS column is FAILED in the SDO_RULEBASE_INFO view (described in
Inferencing: Rules and Rulebases) or the SDO_RULES_INDEX_INFO view (described in
Inferred Graphs), respectively.

If the rulebase or entailment is not in a failed state, this procedure performs no action and
returns a successful status.

Chapter 15
SEM_APIS.CLEANUP_FAILED

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 208

An exception is generated if the RDF object is currently being used.

For information about RDF network types and options, see RDF Networks.

Examples

The following example deletes the rulebase named family_rb if (and only if) that rulebase is in
a failed state.

EXECUTE SEM_APIS.CLEANUP_FAILED('RULEBASE', 'family_rb');

15.29 SEM_APIS.COMPOSE_RDF_TERM
Format

SEM_APIS.COMPOSE_RDF_TERM(
 value_name IN VARCHAR2,
 value_type IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2
) RETURN VARCHAR2;

or

SEM_APIS.COMPOSE_RDF_TERM(
 value_name IN VARCHAR2,
 value_type IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
 long_value IN CLOB,
 options IN VARCHAR2 DEFAULT NULL,
) RETURN CLOB;

Description

Creates and returns an RDF term using the specified parameters.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the RDF_VALUE$ table
(described in Statements) or in the var attribute returned from SEM_MATCH table function.

value_type
The type of text information. Must match a value in the VALUE_TYPE column in the
RDF_VALUE$ table (described in Statements) or in the var$RDFVTYP attribute returned from
SEM_MATCH table function.

literal_type
For typed literals, the type information; otherwise, null. Must either be a null value or match a
value in the LITERAL_TYPE column in the RDF_VALUE$ table (described in Statements) or
in the var$RDFLTYP attribute returned from SEM_MATCH table function.

language_type
Language tag. Must match a value in the LANGUAGE_TYPE column in the RDF_VALUE$
table (described in Statements) or in the var$RDFLANG attribute returned from SEM_MATCH
table function.

Chapter 15
SEM_APIS.COMPOSE_RDF_TERM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 208

long_value
The character string if the length of the lexical value is greater than 4000 bytes. Must match a
value in the LONG_VALUE column in the RDF_VALUE$ table (described in Statements) or in
the var$RDFCLOB attribute returned from SEM_MATCH table function.

options
(Reserved for future use.)

Usage Notes

If you specify an inconsistent combination of values for the parameters, this function returns a
null value. If a null value is returned but you believe that the values for the parameters are
appropriate (reflecting columns from the same row in the RDF_VALUE$ table or from a
SEM_MATCH query for the same variable), contact Oracle Support.

Examples

The following example returns, for each member of the family whose height is known, the RDF
term for the height and also just the value portion of the height.

SELECT x, SEM_APIS.COMPOSE_RDF_TERM(h, h$RDFVTYP, h$RDFLTYP, h$RDFLANG)
 h_rdf_term, h
 FROM TABLE(SEM_MATCH(
 '{?x :height ?h}',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null))
ORDER BY x;
X
--
H_RDF_TERM
--
H
--
http://www.example.org/family/Cathy
"5.8"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.8

http://www.example.org/family/Cindy
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6

http://www.example.org/family/Jack
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6

http://www.example.org/family/Tom
"5.75"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.75

4 rows selected.

The following example returns the RDF terms for a few of the values stored in the
RDF_VALUE$ table.

SELECT SEM_APIS.COMPOSE_RDF_TERM(value_name, value_type, literal_type,
 language_type)
 FROM RDF_VALUE$ WHERE ROWNUM < 5;

SEM_APIS.COMPOSE_RDF_TERM(VALUE_NAME,VALUE_TYPE,LITERAL_TYPE,LANGUAGE_TYPE)
--

Chapter 15
SEM_APIS.COMPOSE_RDF_TERM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 208

<http://www.w3.org/1999/02/22-rdf-syntax-ns#object>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#subject>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property>

15.30 SEM_APIS.CONVERT_TO_GML311_LITERAL
Format

SEM_APIS.CONVERT_TO_GML311_LITERAL(
 geom IN SDO_GEOMETRY,
 options IN VARCHAR2 default NULL
)RETURN CLOB;

Description

Serializes an SDO_GEOMETRY object into an ogc:gmlLiteral value.

Parameters

geom
SDO_GEOMETRY object to be serialized.

options
(Reserved for future use.)

Usage Notes

The procedure SDO_UTIL.TO_GML311GEOMETRY is used internally to create the geometry
literal with a certain spatial reference system URI.

For more information about geometry serialization, see SDO_UTIL.TO_GML311GEOMETRY.

Examples

The following example shows the use of this function for a geometry with SRID 8307 The
COLA_MARKETS table is the one from the simple example in Oracle Spatial Developer's
Guide.

INSERT INTO cola_markets VALUES(
 10,
 'cola_x',
 SDO_GEOMETRY(
 2003,
 8307, -- SRID
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 6,13)
)
);
commit;

SELECT
sem_apis.convert_to_gml311_literal(shape) as gml1
FROM cola_markets;

"<gml:Polygon srsName=\"SDO:8307\" xmlns:gml=\"http://www.opengis.net/gml\"><gml
:exterior><gml:LinearRing><gml:posList srsDimension=\"2\">1.0 1.0 6.0 1.0 6.0 13.0 1.0
13.0 1.0 1.0 </gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
"^^<http://www.opengis.net/ont/geosparql#gmlLiteral>

Chapter 15
SEM_APIS.CONVERT_TO_GML311_LITERAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 208

15.31 SEM_APIS.CONVERT_TO_WKT_LITERAL
Format

SEM_APIS.CONVERT_TO_WKT_LITERAL(
 geom IN SDO_GEOMETRY,
 srid_prefix IN VARCHAR2 default NULL,
 options IN VARCHAR2 default NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 default NULL
)RETURN CLOB;

Description

Serializes an SDO_GEOMETRY object into an ogc:wktLiteral value.

Parameters

geom
SDO_GEOMETRY object to be serialized.

srid_prefix
Spatial reference system URI prefix that should be used in the ogc:wktLiteral instead of the
default. The resulting SRID URI will be of the form <srid_prefix/{srid}>.

options
String specifying options for transformation. Available options are:

• ORACLE_PREFIX=T. Generate SRID URIs of the form <http://
xmlns.oracle.com/rdf/geo/srid/{srid}>.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

The procedure SDO_UTIL.TO_WKTGEOMETRY is used internally to create the geometry
literal with a certain spatial reference system URI.

Standard SRID URIs are used by default (<http://www.opengis.net/def/crs/EPSG/0/
{srid}> or (<http://www.opengis.net/def/crs/OGC/1.3/CRS84>>).

For more information about geometry serialization, see SDO_UTIL.TO_WKTGEOMETRY.

For information about RDF network types and options, see RDF Networks.

Examples

The following example shows three different uses of this function for a geometry with SRID
8307. The COLA_MARKETS table is the one from the simple example in Oracle Spatial
Developer's Guide.

INSERT INTO cola_markets VALUES(
 10,
 'cola_x',
 SDO_GEOMETRY(

Chapter 15
SEM_APIS.CONVERT_TO_WKT_LITERAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 208

 2003,
 8307, -- SRID
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 6,13)
)
);
commit;

SELECT
sem_apis.convert_to_wkt_literal(shape) as wkt1,
sem_apis.convert_to_wkt_literal(shape,'http://my.org/') as wkt2,
sem_apis.convert_to_wkt_literal(shape,null,' ORACLE_PREFIX=T ') as wkt3
FROM cola_markets;

"<http://www.opengis.net/def/crs/OGC/1.3/CRS84> POLYGON ((1.0 1.0, 6.0 1.0, 6.0 13.0,
1.0 13.0, 1.0 1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>
"<http://my.org/8307> POLYGON ((1.0 1.0, 6.0 1.0, 6.0 13.0, 1.0 13.0, 1.0
1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>
"<http://xmlns.oracle.com/rdf/geo/srid/8307> POLYGON ((1.0 1.0, 6.0 1.0, 6.0 13.0, 1.0
13.0, 1.0 1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>

15.32 SEM_APIS.CREATE_ENTAILMENT
Format

SEM_APIS.CREATE_ENTAILMENT(
 index_name_in IN VARCHAR2,
 models_in IN SEM_MODELS,
 rulebases_in IN SEM_RULEBASES,
 passes IN NUMBER DEFAULT SEM_APIS.REACH_CLOSURE,
 inf_components_in IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 delta_in IN SEM_MODELS DEFAULT NULL,
 label_gen IN RDFSA_LABELGEN DEFAULT NULL,
 include_named_g IN SEM_GRAPHS DEFAULT NULL,
 include_default_g IN SEM_MODELS DEFAULT NULL,
 include_all_g IN SEM_MODELS DEFAULT NULL,
 inf_ng_name IN VARCHAR2 DEFAULT NULL,
 inf_ext_user_func_name IN VARCHAR2 DEFAULT NULL,
 ols_ladder_inf_lbl_sec IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.CREATE_INFERRED_GRAPH subprogram instead.

Description

Creates an entailment (rules index) that can be used to perform OWL or RDFS inferencing,
and optionally use user-defined rules.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 208

Parameters

index_name_in
Name of the entailment to be created.

models_in
One or more model names. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Inferencing: Rules
and Rulebases.

passes
The number of rounds that the inference engine should run. The default value is
SEM_APIS.REACH_CLOSURE, which means the inference engine will run till a closure is reached.
If the number of rounds specified is less than the number of actual rounds needed to reach a
closure, the status of the entailment will then be set to INCOMPLETE.

inf_components_in
A comma-delimited string of keywords representing inference components, for performing
selective or component-based inferencing. If this parameter is null, the default set of inference
components is used. See the Usage Notes for more information about inference components.

options
A comma-delimited string of options to control the inference process by overriding the default
inference behavior. To enable an option, specify option-name=T; to disable an option, you can
specify option-name=F (the default). The available option-name values are COL_COMPRESS,
DEST_MODEL, DISTANCE,DOP, ENTAIL_ANYWAY, HASH_PART, INC, LOCAL_NG_INF, OPT_SAMEAS,
RAW8, PROOF, and USER_RULES. See the Usage Notes for explanations of each value.

delta_in
If incremental inference is in effect, specifies one or more models on which to perform
incremental inference. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)
The triples in the first model in delta_in are copied to the first model in models_in, and the
entailment (rules index) in rules_index_in is updated; then the triples in the second model (if
any) in delta_in are copied to the second model (if any) in models_in, and the entailment in
rules_index_in is updated; and so on until all triples are copied and the entailment is
updated. (The delta_in parameter has no effect if incremental inference is not enabled for the
entailment.)

label_gen
An instance of RDFSA_LABELGEN or a subtype of it, defining the logic for generating Oracle
Label Security (OLS) labels for inferred triples. What you specify for this parameter depends
on whether you use the default label generator or a custom label generator:

• If you use the default label generator, specify one of the following constants:
SEM_RDFSA.LABELGEN_RULE for Use Rule Label, SEM_RDFSA.LABELGEN_SUBJECT for Use
Subject Label, SEM_RDFSA.LABELGEN_PREDICATE for Use Predicate Label,
SEM_RDFSA.LABELGEN_OBJECT for Use Object Label, SEM_RDFSA.LABELGEN_DOMINATING for
Use Dominating Label, SEM_RDFSA.LABELGEN_ANTECED for Use Antecedent Labels.

• If you use a custom label generator, specify the custom label generator type.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 208

include_named_g
Causes all triples from the specified named graphs (across all source models) to participate in
named graph based global inference (NGGI, explained in Named Graph Based Global
Inference (NGGI)). For example, include_named_g => sem_graphs('<urn:G1>','<urn:G2>')
implies that triples from named graphs G1 and G2 will be included in NGGI.
Its data type is SEM_GRAPHS, which has the following definition: TABLE OF VARCHAR2(4000).

include_default_g
Causes all triples with a null graph name in the specified models to participate in named graph
based global inference (NGGI, explained in Named Graph Based Global Inference (NGGI)).
For example, include_default_g => sem_models('m1') causes all triples with a null graph
name from model M1 to be included in NGGI.

include_all_g
Causes all triples, regardless of their graph name values, in the specified models to participate
in named graph based global inference (NGGI, explained in Named Graph Based Global
Inference (NGGI)). For example, include_all_g => sem_models('m2')causes all triples in
model M2 to be included in NGGI.

inf_ng_name
Assigns the specified graph name to all the new triples inferred by the named graph based
global inference (NGGI, explained in Named Graph Based Global Inference (NGGI)).

inf_ext_user_func_name
The name of a user-defined inference function, or a comma-delimited list of names of user-
defined functions. For information about creating user-defined inference functions, including
format requirements and options for certain parameters, see API Support for User-Defined
Inferencing. (For information about user-defined inferencing, including examples, see User-
Defined Inferencing and Querying.)

ols_ladder_inf_lbl_sec

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For the inf_components_in parameter, you can specify any combination of the following
keywords: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH,
IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, SAM, CHAIN, HASKEY, ONEOF,
INTERSECT, INTERSECTSCOH, MBRLST, PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM,
UNION, RDFP1, RDFP2, RDFP3, RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11,
RDFP12A, RDFP12B, RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16,
RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12,
RDFS13. For an explanation of the meaning of these keywords, see Table 15-1, where the
keywords are listed in alphabetical order.

The default set of inference components for the OWLPrime vocabulary includes the following:
SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, SAMH, DOM, RAN,
SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, RDFP14A, RDFP14BX, RDFP15, RDFP16.
However, note the following:

• Component SAM is not in this default OWLPrime list, because it tends to generate many
new triples for some ontologies.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 208

• Effective with Release 11.2, the native OWL inference engine supports the following new
inference components: CHAIN, HASKEY, INTERSECT, INTERSECTSCOH, MBRLST, ONEOF,
PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION. However, for backward
compatibility, the OWLPrime rulebase and any existing rulebases do not include these new
components by default; instead, to use these new inference components, you must specify
them explicitly, and they are included in Table 15-1 The following example creates an
OWLPrime entailment for two OWL ontologies named LUBM and UNIV. Because of the
additional inference components specified, this entailment will include the new semantics
introduced in those inference components.

EXECUTE sem_apis.create_entailment('lubm1000_idx',sem_models('lubm','univ'),
 sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE,
 'INTERSECT,INTERSECTSCOH,SVFH,THINGH,THINGSAM,UNION');

Table 15-1 Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

CHAIN Captures the property chain semantics defined in OWL 2. Only chains of length 2
are supported. By default, this is included in the SKOSCORE rulebase. Subproperty
chaining is an OWL 2 feature, and for backward compatibility this component is
not by default included in the OWLPrime rulebase. (For information about property
chain handling, see Property Chain Handling.) (New as of Release 11.2.)

COMPH Performs inference based on owl:complementOf assertions and the interaction of
owl:complementOf with other language constructs.

DIF Generates owl:differentFrom assertions based on the symmetricity of
owl:differentFrom.

DISJ Infers owl:differentFrom relationships at instance level using owl:disjointWith
assertions.

DISJH Performs inference based on owl:disjointWith assertions and their interactions
with other language constructs.

DOM Performs inference based on RDFS2.

DOMH Performs inference based on rdfs:domain assertions and their interactions with
other language constructs.

EQCH Performs inference that are relevant to owl:equivalentClass.

EQPH Performs inference that are relevant to owl:equivalentProperty.

FP Performs instance-level inference using instances of owl:FunctionalProperty.

FPH Performs inference using instances of owl:FunctionalProperty.

HASKEY Covers the semantics behind "keys" defined in OWL 2. In OWL 2, a collection of
properties can be treated as a key to a class expression. For efficiency, the size
of the collection must not exceed 3. (New as of Release 11.2.)

IFP Performs instance-level inference using instances of
owl:InverseFunctionalProperty.

IFPH Performs inference using instances of owl:InverseFunctionalProperty.

INTERSECT Handles the core semantics of owl:intersectionOf. For example, if class C is the
intersection of classes C1, C2 and C3, then C is a subclass of C1, C2, and C3. In
addition, common instances of all C1, C2, and C3 are also instances of C. (New
as of Release 11.2.)

INTERSECTSCOH Handles the fact that an intersection is the maximal common subset. For
example, if class C is the intersection of classes C1, C2, and C3, then any
common subclass of all C1, C2, and C3 is a subclass of C. (New as of Release
11.2.)

INV Performs instance-level inference using owl:inverseOf assertions.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 208

Table 15-1 (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

INVH Performs inference based on owl:inverseOf assertions and their interactions with
other language constructs.

MBRLST Captures the semantics that for any resource, every item in the list given as the
value of the skos:memberList property is also a value of the skos:member
property. (See S36 in the SKOS detailed specification.) By default, this is included
in the SKOSCORE rulebase. (New as of Release 11.2.)

ONEOF Generates classification assertions based on the definition of the enumeration
classes. In OWL, class extensions can be enumerated explicitly with the
owl:oneOf constructor. (New as of Release 11.2.)

PROPDISJH Captures the interaction between owl:propertyDisjointWith and
rdfs:subPropertyOf. By default, this is included in SKOSCORE rulebase.
propertyDisjointWith is an OWL 2 feature, and for backward compatibility this
component is not by default included in the OWLPrime rulebase. (New as of
Release 11.2.)

RANH Performs inference based on rdfs:range assertions and their interactions with
other language constructs.

RDFP* (The rules corresponding to components with a prefix of RDFP can be found in
Completeness, decidability and complexity of entailment for RDF Schema and a
semantic extension involving the OWL vocabulary, by H.J. Horst.)

RDFS2, ... RDFS13 RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9,
RDFS10, RDFS11, RDFS12, and RDFS13 are described in Section 7.3 of RDF
Semantics (http://www.w3.org/TR/rdf-mt/). Note that many of the RDFS
components are not relevant for OWL inference.

SAM Performs inference about individuals based on existing assertions for those
individuals and owl:sameAs.

SAMH Infers owl:sameAs assertions using transitivity and symmetricity of owl:sameAs.

SCO Performs inference based on RDFS9.

SCOH Generates the subClassOf hierarchy based on existing rdfs:subClassOf
assertions. Basically, C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3 will infer
C1 rdfs:subClassOf C3 based on transitivity. SCOH is also an alias of RDFS11.

SKOSAXIOMS Captures most of the axioms defined in the SKOS detailed specification. By
default, this is included in the SKOSCORE rulebase. (New as of Release 11.2.)

SNOMED Performs inference based on the semantics of the OWL 2 EL profile, which
captures the expressiveness of SNOMED CT (Systematized Nomenclature of
Medicine - Clinical Terms), which is one of the most expressive and complex
medical terminologies. (New as of Release 11.2.)

SPIH Performs inference based on interactions between rdfs:subPropertyOf and
owl:inverseOf assertions.

SPO Performs inference based on RDFS7.

SPOH Generates rdfs:subPropertyOf hierarchy based on transitivity of
rdfs:subPropertyOf. It is an alias of RDFS5.

SVFH Handles the following semantics that involves the interaction between
owl:someValuesFrom and rdfs:subClassOf. Consider two existential restriction
classes C1 and C2 that both use the same restriction property. Assume further
that the owl:someValuesFrom constraint class for C1 is a subclass of that for C2.
Then C1 can be inferred as a subclass of C2. (New as of Release 11.2.)

SYMM Performs instance-level inference using instances of owl:SymmetricProperty.

SYMH Performs inference for properties of type owl:SymmetricProperty.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 208

http://www.w3.org/TR/rdf-mt/

Table 15-1 (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

THINGH Handles the semantics that any defined OWL class is a subclass of owl:Thing.
The consequence of this rule is that instances of all defined OWL classes will
become instances of owl:Thing. The size of the inferred graph will very likely be
bigger with this component selected. (New as of Release 11.2.)

THINGSAM Handles the semantics that instances of owl:Thing are equal to (owl:sameAs)
themselves. This component is provided for the convenience of some
applications. Note that an application does not have to select this inference
component to figure out an individual is equal to itself; this kind of information can
easily be built in the application logic. (New as of Release 11.2.)

TRANS Calculates transitive closure for instances of owl:TransitiveProperty.

UNION Captures the core semantics of the owl:unionOf construct. Basically, the union
class is a superclass of all member classes. For backward compatibility, this
component is not by default included in the OWLPrime rulebase. (New as of
Release 11.2.)

To deselect a component, use the component name followed by a minus (-) sign. For example,
SCOH- deselects inference of the subClassOf hierarchy.

For the options parameter, you can enable the following options to override the default
inferencing behavior:

• COL_COMPRESS=T creates temporary, intermediate working tables. This option can reduce
the space required for such tables, and can improve the performance of the
CREATE_ENTAILMENT operation with large data sets.

By default COL_COMPRESS=T uses the "compress for query level low" setting; however, you
can add CPQH=T to change to the "compress for query level high" setting.

Note

You can specify COL_COMPRESS=T only on systems that support Hybrid Columnar
Compression (HCC). For information about HCC, see Oracle AI Database
Concepts.

• DEST_MODEL=<model_name> specifies, for incremental inference, the destination model to
which the delta_in model or models are to be added. The specified destination model
must be one of the models specified in the models_in parameter.

• DISTANCE=T generates ancillary distance information that is useful for semantic operators.

• DOP=n specifies the degree of parallelism for parallel inference, which can improve
inference performance. For information about parallel inference, see Using Parallel
Inference.

• ENTAIL_ANYWAY=T forces OWL inferencing to proceed and reuse existing inferred data
(entailment) when the entailment has a valid status. By default,
SEM_APIS.CREATE_ENTAILMENT quits immediately if there is already a valid entailment
for the combination of models and rulebases.

• HASH_PART=n creates the specified number of hash partitions for internal working tables.
(The number must be a power of 2: 2, 4, 8, 16, 32, and so on.) You may want to specify a

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 208

value if there are many distinct predicates in the semantic data model. In Oracle internal
testing on benchmark ontologies, HASH_PART=32 worked well.

• INC=T enables incremental inference for the entailment. For information about incremental
inference, see Performing Incremental Inference.

• LOCAL_NG_INF=T causes named graph based local inference (NGLI) to be used instead of
named graph based global inference (NGGI). For information about NGLI, see Named
Graph Based Local Inference (NGLI).

• MODEL_PARTITIONS=n overrides the default number of subpartitions in a composite
partitioned semantic network and creates the specified number (n) of subpartitions in the
final entailment partition in RDF_LINK$.

• OPT_SAMEAS=T uses consolidated owl:sameAs entailment for the entailment. If you specify
this option, you cannot specify PROOF=T. For information about optimizing owl:sameAs
inference, see Optimizing owl:sameAs Inference.

• RAW8=T uses RAW8 data types for the auxiliary inference tables. This option can improve
entailment performance by up to 30% in some cases.

• PROOF=T generates proof for inferred triples. Do not specify this option unless you need to;
it slows inference performance because it causes more data to be generated. If you
specify this option, you cannot specify OPT_SAMEAS=T.

• USER_RULES=T causes any user-defined rules to be applied. If you specify this option, you
cannot specify PROOF=T or DISTANCE=T, and you must accept the default value for the
passes parameter.

For the delta_in parameter, inference performance is best if the value is small compared to
the overall size of those models. In a typical scenario, the best results might be achieved when
the delta contains fewer than 10,000 triples; however, some tests have shown significant
inference performance improvements with deltas as large as 100,000 triples.

For the label_gen parameter, if you want to use the default OLS label generator, specify the
appropriate SEM_RDFSA package constant value fromTable 15-2.

Table 15-2 SEM_RDFSA Package Constants for label_gen Parameter

Constant Description

SEM_RDFSA.LABELGEN_S
UBJECT

Label generator that applies the label associated with the inferred triple's
subject as the triple's label.

SEM_RDFSA.LABELGEN_P
REDICATE

Label generator that applies the label associated with the inferred triple's
subject as the triple's label.

SEM_RDFSA.LABELGEN_O
BJECT

Label generator that applies the label associated with the inferred triple's
subject as the triple's label.

SEM_RDFSA.LABELGEN_R
ULE

Label generator that applies the label associated with the rule that
directly produced the inferred triple as the triple's label. If you specify
this option, you must also specify PROOF=T in the options parameter.

SEM_RDFSA.LABELGEN_D
OMINATING

Label generator that computes a dominating label of all the available
labels for the triple's components (subject, predicate, object, and rule),
and applies it as the label for the inferred triple.

Fine-Grained Access Control (OLS) Considerations

When fine-grained access control is enabled for the entire network using OLS, only a user with
FULL access privileges to the associated policy may create an entailment. When OLS is
enabled, full access privileges to the OLS policy are granted using the
SA_USER_ADMIN.SET_USER_PRIVS procedure.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 208

Inferred triples accessed through generated labels might not be same as conceptual triples
inferred directly from the user accessible triples and rules. The labels generated using a subset
of triple components may be weaker than intended. For example, one of the antecedents for
the inferred triple may have a higher label than any of the components of the triple. When the
label is generated based on just the triple components, end users with no access to one of the
antecedents may still have access to the inferred triple. Even when the antecedents are used
for custom label generation, the generated label may be stronger than intended. The inference
process is not exhaustive, and information pertaining to any alternate ways of inferring the
same triple is not available. So, the label generated using a given set of antecedents may be
too strong, because the user with access to all the triples in the alternate path could infer the
triple with lower access.

Even when generating a label that dominates all its components and antecedents, the label
may not be precise. This is the case when labels considered for dominating relationship have
non-overlapping group information. For example, consider two labels L:C:NY and L:C:NH
where L is a level, C is a component and NY and NH are two groups. A simple label that
dominates these two labels is L:C:NY,NH, and a true supremum for the two labels is L:C:US,
where US is parent group for both NY and NH. Unfortunately, neither of these two dominating
labels is precise for the triple inferred from the triples with first two labels. If L:C:NY,NH is used
for the inferred triple, a user with membership in either of these groups has access to the
inferred triple, whereas the same user does not have access to one of its antecedents. On the
other hand, if L:C:US is used for the inferred triple, a user with membership in both the groups
and not in the US group will not be able to access the inferred triple, whereas that user could
infer the triple by directly accessing its components and antecedents.

Because of these unique challenges with inferred triples, extra caution must be taken when
choosing or implementing the label generator.

See also the OLS example in the Examples section.

For information about semantic network types and options, see RDF Networks.

Note

If the SEM_APIS.CREATE_ENTAILMENT procedure with OWL2RL reasoning takes a long
time to execute , then the create entailment procedure needs to be executed with
options as shown for the OWL2RL rulebase example in the Examples section.

Examples

The following example creates an entailment named OWLTST_IDX using the OWLPrime
rulebase, and it causes proof to be generated for inferred triples.

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'),
sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, null, 'PROOF=T');

The following example assumes an OLS environment. It creates a rulebase with a rule, and it
creates an entailment.

-- Create an entailment with a rule. --
exec sdo_rdf_inference.create_entailment('contracts_rb');

insert into rdfr_contracts_rb values (
 'projectLedBy', '(?x :drivenBy ?y) (?y :hasVP ?z)', NULL,
 '(?x :isLedBy ?z)',
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.myorg.com/pred/')));

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 208

-- Assign sensitivity label for the predicate to be inferred. --
-- Yhe predicate label may be set globally or it can be assign to --
-- the one or the models used to infer the data – e.g: CONTRACTS.
begin
 sem_rdfsa.set_predicate_label(
 model_name => 'rdf$global',
 predicate => 'http://www.myorg.com/pred/isLedBy',
 label_string => 'TS:US_SPCL');
end;
/

-- Create index with a specific label generator. --
begin
 sem_apis.create_entailment(
 index_name_in => 'contracts_inf',
 models_in => SDO_RDF_Models('contracts'),
 rulebases_in => SDO_RDF_Rulebases('contracts_rb'),
 options => 'USER_RULES=T',
 label_gen => sem_rdfsa.LABELGEN_PREDICATE);
end;
/

-- Check for any label exceptions and update them accordingly. --
update rdfi_contracts_inf set ctxt1 = 1100 where ctxt1 = -1;

-- The new entailment is now ready for use in SEM_MATCH queries. --

The following example shows the steps to overcome long execution time when creating
entailments with OWL2RL rulebase.

ALTER SESSION SET "_OPTIMIZER_GENERATE_TRANSITIVE_PRED"=FALSE;
EXECUTE SEM_APIS.CREATE_ENTAILMENT
 ('m1_inf',SEM_MODELS('m1'),SEM_RULEBASES('OWL2RL'),NULL,NULL,
 'RAW8=T,DOP=8,HINTS=[rule:SCM-CLS,use_hash(m1),rule:SCM-OP-
DP,use_hash(m1)],PROCSVF=F,PROCAVF=F,PROCSCMHV=F,PROCSVFH=F,PROCAVFH=F,PROCDOM=F,PROCRAN=
F'
);

15.33 SEM_APIS.CREATE_INDEX_ON_RESULT_TAB
Format

SEM_APIS.create_index_on_result_tab (
 index_name IN VARCHAR2,
 query_pattern_type IN NUMBER,
 result_tab_name IN VARCHAR2,
 rdf_graph_name IN VARCHAR2,
 key_string IN VARCHAR2 DEFAULT NULL,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 prefix_length IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a unique or a nonunique B-tree index on a result table.

Chapter 15
SEM_APIS.CREATE_INDEX_ON_RESULT_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 208

Parameters

index_name
Name of the index.

query_pattern_type
Type of the result table.
The value can be one of the following:

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

result_tab_name
String for use as part of the name of the result table. If the target is an MVP table, then specify
the name of the property.

rdf_graph_name
Name of the RDF graph.

key_string
The index key is a sequence whose elements are columns included in the target result table. It
uses an ordinal number based on an ordering, starting from 1, of the properties in the result
table structure. The subject (or START_NODE_ID) is in the zeroth position. To include the subject
(that is, the START_NODE_ID column), use S.
To include the object or named graph for the n-th property, use nP or nG, respectively. Thus,
2P and 2G would refer to the columns storing the object id and named graph id of the second
property in the result table, respectively.
If the subject or a property has in-line lexical values, then they are referred using the format
<n><component-code>, where n=0 for the subject. Thus, 0VP and 2VT, for example, would refer
to the S_VNAME_PREFIX and <2nd_property>_VALUE_TYPE columns in the result table,
respectively.

tablespace_name
Destination tablespace for the index.

degree
Degree of parallelism to use.

prefix_length
Number of leading index key columns to be compressed.

options
Reserved for future use.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.CREATE_INDEX_ON_RESULT_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 208

Usage Notes

Examples

The following example creates the index name_idx on the result table FLHF defined on the RDF
graph M1. The key_string parameter, ‘2P 1P S’, indicates that the key should be the (numeric
id) value from the column corresponding to the second property in the table, followed by that
from the first property in the table, followed by the subject (that is, the START_NODE_ID column).
See Example 1-103 for more details.

BEGIN
 SEM_APIS.CREATE_INDEX_ON_RESULT_TAB(
 index_name => ‘name_idx’
 , query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , key_string => ' 2P 1P S '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

15.34 SEM_APIS.CREATE_INDEX_ON_SPM_TAB
Format

SEM_APIS.create_index_on_spm_tab (
 index_name IN VARCHAR2,
 spm_type IN NUMBER,
 spm_name IN VARCHAR2,
 model_name IN VARCHAR2,
 key_string IN VARCHAR2 DEFAULT NULL,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 prefix_length IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.CREATE_INDEX_ON_RESULT_TAB subprogram instead.

Description

Creates a unique or a nonunique B-tree index on Subject-Predicate Matrix table.

Parameters

index_name
Name of the index.

Chapter 15
SEM_APIS.CREATE_INDEX_ON_SPM_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 208

spm_type
Type of the SPM table.
The value can be one of the following:

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

spm_name
String for use as part of the name of the SPM table. If the target is an MVP table, then specify
the name of the property.

model_name
Name of the RDF model.

key_string
The index key is a sequence whose elements are columns included in the target SPM table. It
uses an ordinal number based on an ordering, starting from 1, of the properties in the SPM
table structure. The subject (or START_NODE_ID) is in the zeroth position. To include the subject
(that is, the START_NODE_ID column), use S.
To include the object or named graph for the n-th property, use nP or nG, respectively. Thus,
2P and 2G would refer to the columns storing the object id and named graph id of the second
property in the SPM table, respectively.
If the subject or a property has in-line lexical values, then they are referred using the format
<n><component-code>, where n=0 for the subject. Thus, 0VP and 2VT, for example, would refer
to the S_VNAME_PREFIX and <2nd_property>_VALUE_TYPE columns in the SPM table,
respectively.

tablespace_name
Destination tablespace for the index.

degree
Degree of parallelism to use.

prefix_length
Number of leading index key columns to be compressed.

options
Reserved for future use.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Examples

The following example creates the index name_idx on the SVP table FLHF defined on model M1.
The key_string parameter, ‘2P 1P S’, indicates that the key should be the (numeric id) value
from the column corresponding to the second property in the table, followed by that from the
first property in the table, followed by the subject (that is, the START_NODE_ID column). See
Example 1-103 for more details.

BEGIN
 SEM_APIS.CREATE_INDEX_ON_SPM_TAB(

Chapter 15
SEM_APIS.CREATE_INDEX_ON_SPM_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 208

 index_name. => ‘name_idx’
 , spm_type => SEM_APIS.SPM_TYPE_SVP
 , spm_name => 'FLHF'
 , model_name => 'M1'
 , key_string => ' 2P 1P S '
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

15.35 SEM_APIS.CREATE_INFERRED_GRAPH
Format

SEM_APIS.CREATE_INFERRED_GRAPH(
 inferred_graph_name IN VARCHAR2,
 rdf_graphs_in IN SEM_MODELS,
 rulebases_in IN SEM_RULEBASES,
 passes IN NUMBER DEFAULT SEM_APIS.REACH_CLOSURE,
 inf_components_in IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 delta_in IN SEM_MODELS DEFAULT NULL,
 label_gen IN RDFSA_LABELGEN DEFAULT NULL,
 include_named_g IN SEM_GRAPHS DEFAULT NULL,
 include_default_g IN SEM_MODELS DEFAULT NULL,
 include_all_g IN SEM_MODELS DEFAULT NULL,
 inf_ng_name IN VARCHAR2 DEFAULT NULL,
 inf_ext_user_func_name IN VARCHAR2 DEFAULT NULL,
 ols_ladder_inf_lbl_sec IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an inferred graph (rules index) that can be used to perform OWL or RDFS inferencing,
and optionally use user-defined rules.

Parameters

inferred_graph_name
Name of the inferred graph to be created.

rdf_graphs_in
One or more RDF graph names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Inferencing: Rules
and Rulebases.

passes
The number of rounds that the inference engine should run. The default value is
SEM_APIS.REACH_CLOSURE, which means the inference engine will run till a closure is reached.
If the number of rounds specified is less than the number of actual rounds needed to reach a
closure, the status of the inferred graph will then be set to INCOMPLETE.

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 208

inf_components_in
A comma-delimited string of keywords representing inference components, for performing
selective or component-based inferencing. If this parameter is null, the default set of inference
components is used. See the Usage Notes for more information about inference components.

options
A comma-delimited string of options to control the inference process by overriding the default
inference behavior. To enable an option, specify option-name=T; to disable an option, you can
specify option-name=F (the default). The available option-name values are COL_COMPRESS,
DEST_MODEL, DISTANCE,DOP, ENTAIL_ANYWAY, HASH_PART, INC, LOCAL_NG_INF, OPT_SAMEAS,
RAW8, PROOF, and USER_RULES. See the Usage Notes for explanations of each value.

delta_in
If incremental inference is in effect, specifies one or more RDF graphs on which to perform
incremental inference. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)
The triples in the first RDF graph in delta_in are copied to the first RDF graph in
rdf_graphs_in, and the inferred graph (rules index) in rules_index_in is updated; then the
triples in the second RDF graph (if any) in delta_in are copied to the second RDF graph (if
any) in rdf_graphs_in, and the inferred graph in rules_index_in is updated; and so on until
all triples are copied and the inferred graph is updated. (The delta_in parameter has no effect
if incremental inference is not enabled for the inferred graph.)

label_gen
An instance of RDFSA_LABELGEN or a subtype of it, defining the logic for generating Oracle
Label Security (OLS) labels for inferred triples. What you specify for this parameter depends
on whether you use the default label generator or a custom label generator:

• If you use the default label generator, specify one of the following constants:
SEM_RDFSA.LABELGEN_RULE for Use Rule Label, SEM_RDFSA.LABELGEN_SUBJECT for Use
Subject Label, SEM_RDFSA.LABELGEN_PREDICATE for Use Predicate Label,
SEM_RDFSA.LABELGEN_OBJECT for Use Object Label, SEM_RDFSA.LABELGEN_DOMINATING for
Use Dominating Label, SEM_RDFSA.LABELGEN_ANTECED for Use Antecedent Labels.

• If you use a custom label generator, specify the custom label generator type.

include_named_g
Causes all triples from the specified named graphs (across all source RDF graphs) to
participate in named graph based global inference (NGGI, explained in Named Graph Based
Global Inference (NGGI)). For example, include_named_g =>
sem_graphs('<urn:G1>','<urn:G2>') implies that triples from named graphs G1 and G2 will
be included in NGGI.
Its data type is RDF_GRAPHS, which has the following definition: TABLE OF VARCHAR2(4000).

include_default_g
Causes all triples with a null graph name in the specified SEM_MODELS to participate in
named graph based global inference (NGGI, explained in Named Graph Based Global
Inference (NGGI)). For example, include_default_g => sem_models('m1') causes all triples
with a null graph name from M1 to be included in NGGI.

include_all_g
Causes all triples, regardless of their graph name values, in the specified models to participate
in named graph based global inference (NGGI, explained in Named Graph Based Global
Inference (NGGI)). For example, include_all_g => sem_models('m2') causes all triples in M2
to be included in NGGI.

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 208

inf_ng_name
Assigns the specified graph name to all the new triples inferred by the named graph based
global inference (NGGI, explained in Named Graph Based Global Inference (NGGI)).

inf_ext_user_func_name
The name of a user-defined inference function, or a comma-delimited list of names of user-
defined functions. For information about creating user-defined inference functions, including
format requirements and options for certain parameters, see API Support for User-Defined
Inferencing. (For information about user-defined inferencing, including examples, see User-
Defined Inferencing and Querying.)

ols_ladder_inf_lbl_sec

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For the inf_components_in parameter, you can specify any combination of the following
keywords: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH,
IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, SAM, CHAIN, HASKEY, ONEOF,
INTERSECT, INTERSECTSCOH, MBRLST, PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM,
UNION, RDFP1, RDFP2, RDFP3, RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11,
RDFP12A, RDFP12B, RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16,
RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12,
RDFS13. For an explanation of the meaning of these keywords, see Table 15-1, where the
keywords are listed in alphabetical order.

The default set of inference components for the OWLPrime vocabulary includes the following:
SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, SAMH, DOM, RAN,
SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, RDFP14A, RDFP14BX, RDFP15, RDFP16.
However, note the following:

• Component SAM is not in this default OWLPrime list, because it tends to generate many
new triples for some ontologies.

• Effective with Release 11.2, the native OWL inference engine supports the following new
inference components: CHAIN, HASKEY, INTERSECT, INTERSECTSCOH, MBRLST, ONEOF,
PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION. However, for backward
compatibility, the OWLPrime rulebase and any existing rulebases do not include these new
components by default; instead, to use these new inference components, you must specify
them explicitly, and they are included in Table 15-1 The following example creates an
OWLPrime inferred graph for two OWL ontologies named LUBM and UNIV. Because of the
additional inference components specified, this inferred graph will include the new
semantics introduced in those inference components.

EXECUTE sem_apis.create_inferred_rdf_graph('lubm1000_idx',sem_models('lubm','univ'),
 sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE,
 'INTERSECT,INTERSECTSCOH,SVFH,THINGH,THINGSAM,UNION');

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 208

Table 15-3 Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

CHAIN Captures the property chain semantics defined in OWL 2. Only chains of length 2
are supported. By default, this is included in the SKOSCORE rulebase. Subproperty
chaining is an OWL 2 feature, and for backward compatibility this component is
not by default included in the OWLPrime rulebase. (For information about property
chain handling, see Property Chain Handling.) (New as of Release 11.2.)

COMPH Performs inference based on owl:complementOf assertions and the interaction of
owl:complementOf with other language constructs.

DIF Generates owl:differentFrom assertions based on the symmetricity of
owl:differentFrom.

DISJ Infers owl:differentFrom relationships at instance level using owl:disjointWith
assertions.

DISJH Performs inference based on owl:disjointWith assertions and their interactions
with other language constructs.

DOM Performs inference based on RDFS2.

DOMH Performs inference based on rdfs:domain assertions and their interactions with
other language constructs.

EQCH Performs inference that are relevant to owl:equivalentClass.

EQPH Performs inference that are relevant to owl:equivalentProperty.

FP Performs instance-level inference using instances of owl:FunctionalProperty.

FPH Performs inference using instances of owl:FunctionalProperty.

HASKEY Covers the semantics behind "keys" defined in OWL 2. In OWL 2, a collection of
properties can be treated as a key to a class expression. For efficiency, the size
of the collection must not exceed 3. (New as of Release 11.2.)

IFP Performs instance-level inference using instances of
owl:InverseFunctionalProperty.

IFPH Performs inference using instances of owl:InverseFunctionalProperty.

INTERSECT Handles the core semantics of owl:intersectionOf. For example, if class C is the
intersection of classes C1, C2 and C3, then C is a subclass of C1, C2, and C3. In
addition, common instances of all C1, C2, and C3 are also instances of C. (New
as of Release 11.2.)

INTERSECTSCOH Handles the fact that an intersection is the maximal common subset. For
example, if class C is the intersection of classes C1, C2, and C3, then any
common subclass of all C1, C2, and C3 is a subclass of C. (New as of Release
11.2.)

INV Performs instance-level inference using owl:inverseOf assertions.

INVH Performs inference based on owl:inverseOf assertions and their interactions with
other language constructs.

MBRLST Captures the semantics that for any resource, every item in the list given as the
value of the skos:memberList property is also a value of the skos:member
property. (See S36 in the SKOS detailed specification.) By default, this is included
in the SKOSCORE rulebase. (New as of Release 11.2.)

ONEOF Generates classification assertions based on the definition of the enumeration
classes. In OWL, class extensions can be enumerated explicitly with the
owl:oneOf constructor. (New as of Release 11.2.)

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 208

Table 15-3 (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

PROPDISJH Captures the interaction between owl:propertyDisjointWith and
rdfs:subPropertyOf. By default, this is included in SKOSCORE rulebase.
propertyDisjointWith is an OWL 2 feature, and for backward compatibility this
component is not by default included in the OWLPrime rulebase. (New as of
Release 11.2.)

RANH Performs inference based on rdfs:range assertions and their interactions with
other language constructs.

RDFP* (The rules corresponding to components with a prefix of RDFP can be found in
Completeness, decidability and complexity of entailment for RDF Schema and a
semantic extension involving the OWL vocabulary, by H.J. Horst.)

RDFS2, ... RDFS13 RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9,
RDFS10, RDFS11, RDFS12, and RDFS13 are described in Section 7.3 of RDF
Semantics (http://www.w3.org/TR/rdf-mt/). Note that many of the RDFS
components are not relevant for OWL inference.

SAM Performs inference about individuals based on existing assertions for those
individuals and owl:sameAs.

SAMH Infers owl:sameAs assertions using transitivity and symmetricity of owl:sameAs.

SCO Performs inference based on RDFS9.

SCOH Generates the subClassOf hierarchy based on existing rdfs:subClassOf
assertions. Basically, C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3 will infer
C1 rdfs:subClassOf C3 based on transitivity. SCOH is also an alias of RDFS11.

SKOSAXIOMS Captures most of the axioms defined in the SKOS detailed specification. By
default, this is included in the SKOSCORE rulebase. (New as of Release 11.2.)

SNOMED Performs inference based on the semantics of the OWL 2 EL profile, which
captures the expressiveness of SNOMED CT (Systematized Nomenclature of
Medicine - Clinical Terms), which is one of the most expressive and complex
medical terminologies. (New as of Release 11.2.)

SPIH Performs inference based on interactions between rdfs:subPropertyOf and
owl:inverseOf assertions.

SPO Performs inference based on RDFS7.

SPOH Generates rdfs:subPropertyOf hierarchy based on transitivity of
rdfs:subPropertyOf. It is an alias of RDFS5.

SVFH Handles the following semantics that involves the interaction between
owl:someValuesFrom and rdfs:subClassOf. Consider two existential restriction
classes C1 and C2 that both use the same restriction property. Assume further
that the owl:someValuesFrom constraint class for C1 is a subclass of that for C2.
Then C1 can be inferred as a subclass of C2. (New as of Release 11.2.)

SYMM Performs instance-level inference using instances of owl:SymmetricProperty.

SYMH Performs inference for properties of type owl:SymmetricProperty.

THINGH Handles the semantics that any defined OWL class is a subclass of owl:Thing.
The consequence of this rule is that instances of all defined OWL classes will
become instances of owl:Thing. The size of the inferred graph will very likely be
bigger with this component selected. (New as of Release 11.2.)

THINGSAM Handles the semantics that instances of owl:Thing are equal to (owl:sameAs)
themselves. This component is provided for the convenience of some
applications. Note that an application does not have to select this inference
component to figure out an individual is equal to itself; this kind of information can
easily be built in the application logic. (New as of Release 11.2.)

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 208

http://www.w3.org/TR/rdf-mt/

Table 15-3 (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

TRANS Calculates transitive closure for instances of owl:TransitiveProperty.

UNION Captures the core semantics of the owl:unionOf construct. Basically, the union
class is a superclass of all member classes. For backward compatibility, this
component is not by default included in the OWLPrime rulebase. (New as of
Release 11.2.)

To deselect a component, use the component name followed by a minus (-) sign. For example,
SCOH- deselects inference of the subClassOf hierarchy.

For the options parameter, you can enable the following options to override the default
inferencing behavior:

• COL_COMPRESS=T creates temporary, intermediate working tables. This option can reduce
the space required for such tables, and can improve the performance of the
CREATE_INFERRED_GRAPH operation with large data sets.

By default COL_COMPRESS=T uses the "compress for query level low" setting; however, you
can add CPQH=T to change to the "compress for query level high" setting.

Note

You can specify COL_COMPRESS=T only on systems that support Hybrid Columnar
Compression (HCC). For information about HCC, see Oracle AI Database
Concepts.

• DEST_MODEL=<rdf_graph_name> specifies, for incremental inference, the destination graph
to which the delta_in RDF graphs are to be added. The specified destination graph must
be one of the graphs specified in the rdf_graphs_in parameter.

• DISTANCE=T generates ancillary distance information that is useful for semantic operators.

• DOP=n specifies the degree of parallelism for parallel inference, which can improve
inference performance. For information about parallel inference, see Using Parallel
Inference.

• ENTAIL_ANYWAY=T forces OWL inferencing to proceed and reuse existing inferred data
(inferred graph) when the inferred graph has a valid status. By default,
SEM_APIS.CREATE_INFERRED_GRAPH quits immediately if there is already a valid
inferred graph for the combination of RDF graphs and rulebases.

• HASH_PART=n creates the specified number of hash partitions for internal working tables.
(The number must be a power of 2: 2, 4, 8, 16, 32, and so on.) You may want to specify a
value if there are many distinct predicates in the RDF graph. In Oracle internal testing on
benchmark ontologies, HASH_PART=32 worked well.

• INC=T enables incremental inference for the inferred graph. For information about
incremental inference, see Performing Incremental Inference.

• LOCAL_NG_INF=T causes named graph based local inference (NGLI) to be used instead of
named graph based global inference (NGGI). For information about NGLI, see Named
Graph Based Local Inference (NGLI).

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 208

• MODEL_PARTITIONS=n overrides the default number of subpartitions in a composite
partitioned RDF network and creates the specified number (n) of subpartitions in the final
inferred graph partition in RDF_LINK$.

• OPT_SAMEAS=T uses consolidated owl:sameAs inferred graph for the inferred graph. If you
specify this option, you cannot specify PROOF=T. For information about optimizing
owl:sameAs inference, see Optimizing owl:sameAs Inference.

• RAW8=T uses RAW8 data types for the auxiliary inference tables. This option can improve
inferred graph performance by up to 30% in some cases.

• PROOF=T generates proof for inferred triples. Do not specify this option unless you need to;
it slows inference performance because it causes more data to be generated. If you
specify this option, you cannot specify OPT_SAMEAS=T.

• USER_RULES=T causes any user-defined rules to be applied. If you specify this option, you
cannot specify PROOF=T or DISTANCE=T, and you must accept the default value for the
passes parameter.

For the delta_in parameter, inference performance is best if the value is small compared to
the overall size of those RDF graphs. In a typical scenario, the best results might be achieved
when the delta contains fewer than 10,000 triples; however, some tests have shown significant
inference performance improvements with deltas as large as 100,000 triples.

For the label_gen parameter, if you want to use the default OLS label generator, specify the
appropriate SEM_RDFSA package constant value fromTable 15-2.

Table 15-4 SEM_RDFSA Package Constants for label_gen Parameter

Constant Description

SEM_RDFSA.LABELGEN_S
UBJECT

Label generator that applies the label associated with the inferred triple's
subject as the triple's label.

SEM_RDFSA.LABELGEN_P
REDICATE

Label generator that applies the label associated with the inferred triple's
subject as the triple's label.

SEM_RDFSA.LABELGEN_O
BJECT

Label generator that applies the label associated with the inferred triple's
subject as the triple's label.

SEM_RDFSA.LABELGEN_R
ULE

Label generator that applies the label associated with the rule that
directly produced the inferred triple as the triple's label. If you specify
this option, you must also specify PROOF=T in the options parameter.

SEM_RDFSA.LABELGEN_D
OMINATING

Label generator that computes a dominating label of all the available
labels for the triple's components (subject, predicate, object, and rule),
and applies it as the label for the inferred triple.

Fine-Grained Access Control (OLS) Considerations

When fine-grained access control is enabled for the entire network using OLS, only a user with
FULL access privileges to the associated policy may create an inferred graph. When OLS is
enabled, full access privileges to the OLS policy are granted using the
SA_USER_ADMIN.SET_USER_PRIVS procedure.

Inferred triples accessed through generated labels might not be same as conceptual triples
inferred directly from the user accessible triples and rules. The labels generated using a subset
of triple components may be weaker than intended. For example, one of the antecedents for
the inferred triple may have a higher label than any of the components of the triple. When the
label is generated based on just the triple components, end users with no access to one of the
antecedents may still have access to the inferred triple. Even when the antecedents are used
for custom label generation, the generated label may be stronger than intended. The inference

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 208

process is not exhaustive, and information pertaining to any alternate ways of inferring the
same triple is not available. So, the label generated using a given set of antecedents may be
too strong, because the user with access to all the triples in the alternate path could infer the
triple with lower access.

Even when generating a label that dominates all its components and antecedents, the label
may not be precise. This is the case when labels considered for dominating relationship have
non-overlapping group information. For example, consider two labels L:C:NY and L:C:NH
where L is a level, C is a component and NY and NH are two groups. A simple label that
dominates these two labels is L:C:NY,NH, and a true supremum for the two labels is L:C:US,
where US is parent group for both NY and NH. Unfortunately, neither of these two dominating
labels is precise for the triple inferred from the triples with first two labels. If L:C:NY,NH is used
for the inferred triple, a user with membership in either of these groups has access to the
inferred triple, whereas the same user does not have access to one of its antecedents. On the
other hand, if L:C:US is used for the inferred triple, a user with membership in both the groups
and not in the US group will not be able to access the inferred triple, whereas that user could
infer the triple by directly accessing its components and antecedents.

Because of these unique challenges with inferred triples, extra caution must be taken when
choosing or implementing the label generator.

See also the OLS example in the Examples section.

For information about RDF network types and options, see RDF Networks.

Note

If the SEM_APIS.CREATE_INFERRED_GRAPH procedure with OWL2RL reasoning takes a
long time to execute , then the create inferred graph procedure needs to be executed
with options as shown for the OWL2RL rulebase example in the Examples section.

Examples

The following example creates an inferred graph named OWLTST_IDX using the OWLPrime
rulebase, and it causes proof to be generated for inferred triples.

EXECUTE sem_apis.create_inferred_graph('owltst_idx', sem_models('owltst'),
sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, null, 'PROOF=T');

The following example assumes an OLS environment. It creates a rulebase with a rule, and it
creates an inferred graph.

-- Create an inferred graph with a rule. --
exec sdo_rdf_inference.create_inferred_graph('contracts_rb');

insert into rdfr_contracts_rb values (
 'projectLedBy', '(?x :drivenBy ?y) (?y :hasVP ?z)', NULL,
 '(?x :isLedBy ?z)',
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.myorg.com/pred/')));

-- Assign sensitivity label for the predicate to be inferred. --
-- Yhe predicate label may be set globally or it can be assign to --
-- the one or the RDF graphs used to infer the data – e.g: CONTRACTS.
begin
 sem_rdfsa.set_predicate_label(
 model_name => 'rdf$global',
 predicate => 'http://www.myorg.com/pred/isLedBy',
 label_string => 'TS:US_SPCL');

Chapter 15
SEM_APIS.CREATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 208

end;
/

-- Create index with a specific label generator. --
begin
 sem_apis.create_inferred_graph(
 inferred_graph_name => 'contracts_inf',
 rdf_graphs_in => sem_models('contracts'),
 rulebases_in => sem_Rulebases('contracts_rb'),
 options => 'USER_RULES=T',
 label_gen => sem_rdfsa.LABELGEN_PREDICATE);
end;
/

-- Check for any label exceptions and update them accordingly. --
update rdfi_contracts_inf set ctxt1 = 1100 where ctxt1 = -1;

-- The new inferred graph is now ready for use in SEM_MATCH queries. --

The following example shows the steps to overcome long execution time when creating
inferred graphs with OWL2RL rulebase.

ALTER SESSION SET "_OPTIMIZER_GENERATE_TRANSITIVE_PRED"=FALSE;
EXECUTE SEM_APIS.CREATE_INFERRED_GRAPH
 ('m1_inf',SEM_MODELS('m1'),SEM_RULEBASES('OWL2RL'),NULL,NULL,
 'RAW8=T,DOP=8,HINTS=[rule:SCM-CLS,use_hash(m1),rule:SCM-OP-
DP,use_hash(m1)],PROCSVF=F,PROCAVF=F,PROCSCMHV=F,PROCSVFH=F,PROCAVFH=F,PROCDOM=F,PROCRAN=
F'
);

15.36 SEM_APIS.CREATE_MATERIALIZED_VIEW
Format

SEM_APIS.CREATE_MATERIALIZED_VIEW (
 mv_name IN VARCHAR2,
 model_name IN VARCHAR2,
 compression IN BOOLEAN DEFAULT TRUE,
 inmemory IN BOOLEAN DEFAULT FALSE,
 values_as_vc IN BOOLEAN DEFAULT FALSE,
 refresh IN VARCHAR2 DEFAULT 'C',
 pred_list IN SYS.ODCIVARCHAR2LIST DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Creates a materialized view for an RDF graph stored in Oracle AI Database.

Parameters

mv_name
Name of the materialized view to create.

model_name
Name of the model on which to create the materialized view.

Chapter 15
SEM_APIS.CREATE_MATERIALIZED_VIEW

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 208

compression
Specifies whether the materialized view is compressed.

inmemory
Specifies whether the materialized view is created in IMC format.

values_as_vc
Specifies whether the values of G,S,P,O are created as virtual columns.

refresh
The materialized view refresh method.

pred_list
Specifies the predicates list.

options
String specifying any options to use during the create materialized view operation.
Supported options are:

• TABLESPACE= <name>: materialized view is created in the named tablespace.

• PARALLEL= <degree>: materialized view is created with the parallel degree <degree>.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For conceptual and usage information, see RDF Support for Materialized Join Views.

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates the materialized view MVX for the RDF model M0.

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVX', 'M0');

The following example creates the materialized view MVX for the RDF virtual model VM0.

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVX', 'VM0');

The following example creates the materialized view MVY for the RDF model M1 using the
following supported options:

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVY','M1',options=>'
TABLESPACE=TBS_3 PARALLEL=2 ');

The following example creates the materialized view MVX for the RDF model M0 using a list of
predicates.

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVX','M0',
pred_list=>sys.odcivarchar2list('http://www.w3.org/2002/07/owl#sameAs',
'http://foo-example.com/name/hasSSN'));

Chapter 15
SEM_APIS.CREATE_MATERIALIZED_VIEW

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 208

15.37 SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX
Format

SEM_APIS.CREATE_MV_BITMAP_INDEX (
 mv_name IN VARCHAR2,
 idx_columns IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Creates a bitmap index on a materialized join view for an RDF graph stored in Oracle AI
Database.

Parameters

mv_name
Name of the materialized view on which to create the bitmap index.

idx_columns
Name of the columns on which to create the bitmap index.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates two bitmap indexes on columns T0P and T1O for the
materialized view MVX.

EXECUTE SEM_APIS.CREATE_MV_BITMAP_INDEX('MVX', 'T0P T1O');

The following example creates five bitmap indexes for the materialized view MVX..

EXECUTE SEM_APIS.CREATE_MV_BITMAP_INDEX('MVX', 'T0P T1O T0SV T1OV
T1P$RDFVTYP');

Chapter 15
SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 208

15.38 SEM_APIS.CREATE_RDF_GRAPH
Format

SEM_APIS.CREATE_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_name IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an RDF graph.

Parameters

rdf_graph_name
Name of the RDF graph.

table_name
Name of the table to hold references to semantic technology data for this graph.
This parameter must be NULL for a schema-private network.

column_name
Name of the column of type SDO_RDF_TRIPLE_S in table_name.
This parameter must be NULL for a schema-private network.

tablespace_name
Name of the tablespace for the tables and other database objects used by Oracle to support
this graph. The default value is the tablespace that was specified in the call to the
SEM_APIS.CREATE_RDF_NETWORK procedure.

options
An optional quoted string with one or more of the following graph creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ partition for the graph.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ partition for the graph.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$ partition
for the graph.

• COMPRESS=RSCB uses ROW STORE COMPRESS BASIC on the RDF_LINK$ partition for
the graph.

• MODEL_PARTITIONS=n overrides the default number of subpartitions in a composite
partitioned semantic network and creates the specified number (n) of subpartitions in the
RDF_LINK$ partition for the graph.

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.CREATE_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure adds the RDF graph to the SEM_MODEL$ view, which is described in RDF
Graphs.

This procedure is the only supported way to create an RDF graph. Do not use SQL INSERT
statements with the SEM_MODEL$ view.

To delete a graph, use the SEM_APIS.DROP_RDF_GRAPH procedure.

The options COMPRESS=CSCQH, COMPRESS=CSCQL, and COMPRESS=RSCA should be used only if you
have the appropriate licenses.

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates an RDF graph named articles in the schema-private network.
(This example is an excerpt from Example 1-129 in Example: Journal Article Information.)

EXECUTE SEM_APIS.CREATE_RDF_GRAPH('articles', NULL, NULL,
network_owner=>'RDFUSER', network_name=>'NET1');

As part of this operation, a new updatable view, RDFUSER.NET1#RDFT_articles, gets created
automatically. You can use this view for any SQL DML statements affecting the data. The
following example uses the SDO_RDF_TRIPLE_S constructor to insert data into the graph:

INSERT INTO RDFUSER.NET1#RDFT_articles VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"Jane Smith"',
 'RDFUSER',
 'NET1'));

15.39 SEM_APIS.CREATE_RDF_GRAPH_COLLECTION
Format

SEM_APIS.CREATE_RDF_GRAPH_COLLECTION(
 rdf_graph_collection_name IN VARCHAR2,
 rdf_graphs IN SEM_MODELS,
 rulebases IN SEM_RULEBASES DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 inferred_graphs IN SEM_ENTAILMENTS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an RDF graph collection containing the specified RDF graphs and/or inferred graphs.
Inferred graphs can be specified in one of the following ways:

• By specifying one or more RDF graphs and one or more rulebases. In this case, an RDF
graph collection will be created using the single entailment that corresponds to the exact

Chapter 15
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 208

combination of graphs and rulebases specified. An error is raised if no such entailment
exists.

• By specifying zero or more graphs and one or more entailments. In this case, the contents
of the graphs and entailments will be combined regardless of their relationship.

The first method ensures a sound and complete dataset, whereas the second method relaxes
the sound and complete constraints for more flexibility.

Parameters

rdf_graph_collection_name
Name of the RDF graph collection to be created.

rdf_graphs
One or more RDF graph names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25). If this parameter is null, no graphs are included in the
RDF graph collection.

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). If this parameter is null, no rulebases are included in the
RDF graph collection. Rules and rulebases are explained in Inferencing: Rules and
Rulebases.
If you specify this parameter, you cannot also specify the inferred_graphs parameter.

options
Options for creation:

• PXN=T forces a UNION ALL-based view definition for the RDF graph collection. This is the
default for RDF graph collections with 16 or fewer components.

• PXN=F forces an IN LIST-based view definition for the RDF graph collection. This is the
default for RDF graph collections with more than 16 components.

• PXN=F INMEMORY=T (in combination) let you to create an in-memory RDF graph collection.

If you specify INMEMORY=T but not PXN=F, then the in-memory virtual columns are created,
but the performance will suffer. If you do not specify INMEMORY=T, the RDF graph collection
is not created in-memory. (See also Using In-Memory Virtual Columns with RDF.)

• REPLACE=T lets you to replace an RDF graph collection without dropping it. (Using this
option is analogous to using CREATE OR REPLACE VIEW with a view.)

inferred_graphs
One or more inferred graph names. Its data type is SEM_ENTAILMENTS, which has the
following definition: TABLE OF VARCHAR2(25). If this parameter is null, no inferred graphs are
included in the RDF graph collection. Inferred graphs are explained in Using OWL Inferencing.
If you specify this parameter, you cannot also specify the rulebases parameter.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For an explanation of RDF graph collections, including usage information, see RDF Graph
Collections.

Chapter 15
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 208

An inferred graph must exist for each specified combination of RDF graph and rulebase.

To create an RDF graph collection, you must either be (A) the owner of each specified graph
and any corresponding inferred graphs, or (B) a user with DBA privileges.

To replace an RDF graph collection, you must be the owner of the graph or a user with DBA
privileges.

The option INMEMORY=T should be used only if you have the appropriate licenses.

This procedure creates views with names in the following format:

• SEMV_vm_name, which corresponds to a UNION ALL of the triples in each graph and
inferred graph. This view may contain duplicates.

• SEMU_vm_name, which corresponds to a UNION of the triples in each graph and inferred
graph. This view will not contain duplicates (thus, the U in SEMU indicates unique).

To use the example in RDF Graph Collections of an RDF graph collection vm1 created from
graphs m1, m2, m3, and with an entailment created for m1, m2 ,and m3 using the OWLPrime
rulebase, this procedure will create the following two views (assuming that m1, m2, and m3,
and the OWLPRIME entailment have internal model_id values 1, 2, 3, 4):

CREATE VIEW RDFUSER.NET1#.SEMV_VM1 AS
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_1)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_2)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_3)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_4);

CREATE VIEW RDFUSER.NET1#.SEMU_VM1 AS
 SELECT p_value_id, start_node_id, canon_end_node_id, MIN(end_node_id) end_node_id,
g_id, MIN(model_id) model_id
 FROM RDFUSER.NET1#.rdf_link$
 WHERE model_id in (1, 2, 3, 4)
 GROUP BY p_value_id, start_node_id, canon_end_node_id, g_id;

The user that invokes this procedure will be the owner of the RDF graph collection and will
have SELECT WITH GRANT privileges on the SEMU_vm_name and SEMV_vm_name views.
To query the corresponding RDF graph collection, a user must have select privileges on these
views.

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates an RDF graph collection named VM1.

EXECUTE sem_apis.create_rdf_graph_collection('VM1',
 sem_models('model_1', 'model_2'),
 sem_rulebases('OWLPRIME'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');

The following example creates an RDF graph collection named VM1 using the relaxed
entailment specification.

Chapter 15
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 208

EXECUTE sem_apis.create_rdf_graph_collection('VM1',
 rdf_graphs=>sem_models('model_1', 'model_2'),

inferred_graphs=>sem_entailments('entailment1','entailment2'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');

The following example effectively redefines RDF graph collection VM1 by using the REPLACE=T
option.

EXECUTE sem_apis.create_rdf_graph_collection('VM1',
 rdf_graphs=>sem_models('model_1', 'model_2'),

inferred_graphs=>sem_entailments('entailment1'),
 options=>'REPLACE=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1');

15.40 SEM_APIS.CREATE_RDF_NETWORK
Format

SEM_APIS.CREATE_RDF_NETWORK(
 tablespace_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates structures for persistent storage of semantic data.

Parameters

tablespace_name
Name of the tablespace to be used for tables created by this procedure. This tablespace will
be the default for all the RDF graphs that you create, although you can override the default
when you create a graph by specifying the model_tablespace parameter in the call to the
SEM_APIS.CREATE_RDF_GRAPH procedure.

options
An optional quoted string with one or more of the following network creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ and RDF_VALUE$ tables.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ and RDF_VALUE$ tables.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$ and
RDF_VALUE$ tables.

• COMPRESS=RSCB uses ROW STORE COMPRESS BASIC on the RDF_LINK$ and
RDF_VALUE$ tables. This is the default compression level.

• MODEL_PARTITIONING=BY_HASH_P uses list-hash composite partitioning to partition
RDF_LINK$ by the graph ID and further subpartition each graph by a hash of the
predicate ID.

Chapter 15
SEM_APIS.CREATE_RDF_NETWORK

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 75 of 208

• MODEL_PARTITIONS=n sets the default number (n) of subpartitions to use for each RDF
graph. This value should be greater than 1. A default value of 32 will be used when
MODEL_PARTITIONS is omitted or set to a value less than or equal to 1. This option is used
in conjunction with MODEL_PARTITIONING=BY_HASH_P.

• MODEL_PARTITIONING=BY_LIST_G uses list-list composite partitioning to partition
RDF_LINK$ by RDF graph ID and further subpartition each model by graph ID. This
subpartition is automatically maintained as data is inserted into the graph.

• NETWORK_MAX_STRING_SIZE=EXTENDED specifies a maximum VARCHAR size of 32767
bytes for storing RDF values. Values larger than 32767 bytes will be stored as CLOBs.

• NETWORK_MAX_STRING_SIZE=STANDARD specifies a maximum VARCHAR size of 4000 bytes
for storing RDF values. Values larger than 4000 bytes will be stored as CLOBs. This is the
default.

• NETWORK_STORAGE_FORM=ESC specifies use of escaped storage form for lexical values in
RDF_VALUE$. Unicode characters and special characters will be stored using ASCII
escape sequences. (You cannot specify both the escaped and unescaped storage forms.)

• NETWORK_STORAGE_FORM=UNESC specifies use of unescaped storage form for lexical values
in RDF_VALUE$. Unicode characters and special characters will be stored as single
characters. This is the default.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure creates system tables and other database objects used for semantic
technology support.

You should create a tablespace for the semantic technology system tables and specify the
tablespace name in the call to this procedure. (You should not specify the SYSTEM tablespace.)
The size needed for the tablespace that you create will depend on the amount of semantic
technology data you plan to store.

You must connect to the database as a user with DBA privileges or as the intended network
owner in order to call this procedure, and you should call the procedure only once for the
database.

To drop these structures for persistent storage of semantic data, you must connect as a user
with DBA privileges or as the owner of the schema-private network, and call the
SEM_APIS.DROP_RDF_NETWORK procedure.

The options COMPRESS=CSCQH, COMPRESS=CSCQL, and COMPRESS=RSCA should be used only if you
have the appropriate licenses.

After the RDF network is created, a row in the RDF_PARAMETER table with NAMESPACE =
'NETWORK' and ATTRIBUTE = 'COMPRESSION' will indicate the type of compression used
for the RDF network.

NETWORK_MAX_STRING_SIZE=EXTENDED can only be used if your database has extended
VARCHAR support enabled (see Extended Data Types).

For information about RDF network types and options, see RDF Networks.

Chapter 15
SEM_APIS.CREATE_RDF_NETWORK

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 76 of 208

Examples

The following example creates a tablespace for semantic technology system tables and
creates structures for persistent storage of semantic data in this tablespace. Advanced
compression is used for the RDF network.

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;
. . .
EXECUTE SEM_APIS.CREATE_RDF_NETWORK('rdf_tblspace',
options=>'MODEL_PARTITIONING=BY_HASH_P MODEL_PARTITIONS=16');

15.41 SEM_APIS.CREATE_RDFVIEW_GRAPH
Format

SEM_APIS.CREATE_RDFVIEW_GRAPH(
 rdf_graph_name IN VARCHAR2,
 tables IN SYS.ODCIVarchar2List,
 prefix IN VARCHAR2 DEFAULT NULL,
 r2rml_table_owner IN VARCHAR2 DEFAULT NULL,
 r2rml_table_name IN VARCHAR2 DEFAULT NULL,
 schema_table_owner IN VARCHAR2 DEFAULT NULL,
 schema_table_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 r2rml_string IN CLOB DEFAULT NULL,
 r2rml_string_fmt IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an RDF view using direct mapping for the specified list of tables or views or using
R2RML mapping.

Parameters

rdf_graph_name
Name of the RDF view to be created.

tables
List of tables or views that are the sources of relational data for the RDF view to be created
using direct mapping. This parameter must be null if you want to use R2RML mapping.

prefix
Base prefix to be added at the beginning of the URIs in the RDF view.

r2rml_table_owner
For R2ML mapping, this parameter is required and specifies the name of the schema that
owns the staging table that holds the R2RML mapping (in N-triple format) to be used for
creating the RDF view.
For direct mapping, this parameter is optional and specifies the name of the schema that owns
the staging table into which the R2RML mapping (in N-triple format) generated from the direct
mapping will be stored.

Chapter 15
SEM_APIS.CREATE_RDFVIEW_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 77 of 208

r2rml_table_name
For R2ML mapping, this parameter is required and specifies the name of the staging table that
holds the R2RML mapping (in N-triple format) to be used for creating the RDF view.
For direct mapping, this parameter is optional and specifies the name of the staging table into
which the R2RML mapping (in N-triple format) generated from the direct mapping will be
stored.

schema_table_owner
Name of the schema that owns the staging table where the RDF schema generated for the
RDF view will be stored.

schema_table_name
Name of the staging table where the RDF schema generated for the RDF view will be stored.

options
For direct mapping, you can optionally specify any combination (including none) of the
following:

• CONFORMANCE=T suppresses some of the information that would otherwise get included by
default, including use of database constraint names and schema-qualified table or view
names for constructing RDF predicate names.

• GENERATE_ONLY=T only generates the R2RML mapping for the specified tables and stores
it in the specified r2rml_table_name, but the underlying RDF view graph is not created. If
you specify this option, the r2rml_table_name parameter must not be null.

• KEY_BASED_REF_PROPERTY=T uses the foreign key column names to construct the RDF
predicate name. If this option is not specified, then the database constraint name is used
for constructing the RDF predicate name.

For direct mapping, RDF predicate names are derived from the corresponding database
names; therefore, preserving the name for the foreign key constraint is the default
behavior.

For an example that uses KEY_BASED_REF_PROPERTY=T , see Example 10-1 in Creating an
RDF View with Direct Mapping.

• SCALAR_COLUMNS_ONLY=T generates the R2RML mapping for only the scalar columns in the
specified tables or views. Other non-scalar columns in the tables or views are ignored.
Without this option, if you attempt to create a direct mapping on a table with user-defined
types or LOB columns, an error is raised.

r2rml_string
An R2RML mapping string in Turtle or N-Triple format to be used for creating the RDF view.

r2rml_string_fmt
The format of the R2RML mapping string specified in r2rml_string. Possible values are
TURTLE and N-TRIPLE.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must grant the SELECT and INSERT privileges on r2rml_table_name and
schema_table_name to the network owner.

For more information about RDF views, see RDF Views: Relational Data as RDF.

Chapter 15
SEM_APIS.CREATE_RDFVIEW_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 78 of 208

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates an RDF view using direct mapping for tables EMP and DEPT.
The prefix used for the URIs is http://empdb/.

BEGIN
 sem_apis.create_rdfview_graph(
 rdf_graph_name => 'empdb_model_direct',
 tables => sem_models('EMP', 'DEPT'),
 prefix => 'http://empdb/',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

The following example creates an RDF view using R2RML mapping as specified by the RDF
triples in the staging table SCOTT.R2RTAB.

BEGIN
 sem_apis.create_rdfview_graph(
 rdf_graph_name => 'empdb_model_R2RML',
 tables => NULL,
 r2rml_table_owner => 'SCOTT',
 r2rml_table_name => 'R2RTAB',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

The following example creates an RDF view using an R2RML mapping specified directly as a
string.

DECLARE
 r2rmlStr CLOB;
BEGIN

 r2rmlStr :=
 '@prefix rr: <http://www.w3.org/ns/r2rml#>. '||
 '@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. '||
 '@prefix ex: <http://example.com/ns#>. '||'

 ex:TriplesMap_Emp
 rr:logicalTable [rr:tableName "EMP"];
 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;
];
 rr:predicateObjectMap [
 rr:predicate ex:empNum;
 rr:objectMap [rr:column "EMPNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:empName;
 rr:objectMap [rr:column "ENAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:jobType;
 rr:objectMap [rr:column "JOB"];

Chapter 15
SEM_APIS.CREATE_RDFVIEW_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 79 of 208

];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDeptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:dataType xsd:integer];
].';

 sem_apis.create_rdfview_graph(
 rdf_graph_name => 'empdb_model_R2RML',
 tables => NULL,
 r2rml_string => r2rmlStr,
 r2rml_string_fmt => 'TURTLE',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

END;
/

The following example creates an RDF view using direct mapping as specified by the RDF
triples in the tables EMP and DEPT in the schema-private network owned by RDFUSER. It
also selects information about employees who work at the Boston location.

BEGIN
 sem_apis.create_rdfview_graph(
 rdf_graph_name => 'empdb_model',
 tables => SYS.ODCIVarchar2List('EMP', 'DEPT'),
 prefix => 'http://empdb/',
 options => 'KEY_BASED_REF_PROPERTY=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

SELECT e.empno FROM emp e, dept d WHERE e.deptno = d.deptno AND d.loc =
'Boston';

SELECT emp
FROM TABLE(SEM_MATCH('{?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC
"Boston"}',SEM_Models('empdb_model'),NULL,SEM_ALIASES(
SEM_ALIAS('dept','http://empdb/RDFUSER.DEPT#'),SEM_ALIAS('emp','http://empdb/
RDFUSER.EMP#')),null,null,null,null,null,'RDF_USER','NET1'));

15.42 SEM_APIS.CREATE_RDFVIEW_MODEL
Format

SEM_APIS.CREATE_RDFVIEW_MODEL(
 model_name IN VARCHAR2,
 tables IN SYS.ODCIVarchar2List,
 prefix IN VARCHAR2 DEFAULT NULL,
 r2rml_table_owner IN VARCHAR2 DEFAULT NULL,
 r2rml_table_name IN VARCHAR2 DEFAULT NULL,
 schema_table_owner IN VARCHAR2 DEFAULT NULL,
 schema_table_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 r2rml_string IN CLOB DEFAULT NULL,
 r2rml_string_fmt IN VARCHAR2 DEFAULT NULL,

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 80 of 208

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.CREATE_RDFVIEW_GRAPH subprogram instead.

Description

Creates an RDF view using direct mapping for the specified list of tables or views or using
R2RML mapping.

Parameters

model_name
Name of the RDF view to be created.

tables
List of tables or views that are the sources of relational data for the RDF view to be created
using direct mapping. This parameter must be null if you want to use R2RML mapping.

prefix
Base prefix to be added at the beginning of the URIs in the RDF view.

r2rml_table_owner
For R2ML mapping, this parameter is required and specifies the name of the schema that
owns the staging table that holds the R2RML mapping (in N-triple format) to be used for
creating the RDF view.
For direct mapping, this parameter is optional and specifies the name of the schema that owns
the staging table into which the R2RML mapping (in N-triple format) generated from the direct
mapping will be stored.

r2rml_table_name
For R2ML mapping, this parameter is required and specifies the name of the staging table that
holds the R2RML mapping (in N-triple format) to be used for creating the RDF view.
For direct mapping, this parameter is optional and specifies the name of the staging table into
which the R2RML mapping (in N-triple format) generated from the direct mapping will be
stored.

schema_table_owner
Name of the schema that owns the staging table where the RDF schema generated for the
RDF view will be stored.

schema_table_name
Name of the staging table where the RDF schema generated for the RDF view will be stored.

options
For direct mapping, you can optionally specify any combination (including none) of the
following:

• CONFORMANCE=T suppresses some of the information that would otherwise get included by
default, including use of database constraint names and schema-qualified table or view
names for constructing RDF predicate names.

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 208

• GENERATE_ONLY=T only generates the R2RML mapping for the specified tables and stores
it in the specified r2rml_table_name, but the underlying RDF view model is not created. If
you specify this option, the r2rml_table_name parameter must not be null.

• KEY_BASED_REF_PROPERTY=T uses the foreign key column names to construct the RDF
predicate name. If this option is not specified, then the database constraint name is used
for constructing the RDF predicate name.

For direct mapping, RDF predicate names are derived from the corresponding database
names; therefore, preserving the name for the foreign key constraint is the default
behavior.

For an example that uses KEY_BASED_REF_PROPERTY=T , see Example 10-1 in Creating an
RDF View with Direct Mapping.

• SCALAR_COLUMNS_ONLY=T generates the R2RML mapping for only the scalar columns in the
specified tables or views. Other non-scalar columns in the tables or views are ignored.
Without this option, if you attempt to create a direct mapping on a table with user-defined
types or LOB columns, an error is raised.

r2rml_string
An R2RML mapping string in Turtle or N-Triple format to be used for creating the RDF view.

r2rml_string_fmt
The format of the R2RML mapping string specified in r2rml_string. Possible values are
TURTLE and N-TRIPLE.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must grant the SELECT and INSERT privileges on r2rml_table_name and
schema_table_name to the network owner.

For more information about RDF views, see RDF Views: Relational Data as RDF.

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates an RDF view using direct mapping for tables EMP and DEPT.
The prefix used for the URIs is http://empdb/.

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model_direct',
 tables => sem_models('EMP', 'DEPT'),
 prefix => 'http://empdb/',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

The following example creates an RDF view using R2RML mapping as specified by the RDF
triples in the staging table SCOTT.R2RTAB.

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 82 of 208

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model_R2RML',
 tables => NULL,
 r2rml_table_owner => 'SCOTT',
 r2rml_table_name => 'R2RTAB',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

The following example creates an RDF view using an R2RML mapping specified directly as a
string.

DECLARE
 r2rmlStr CLOB;
BEGIN

 r2rmlStr :=
 '@prefix rr: <http://www.w3.org/ns/r2rml#>. '||
 '@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. '||
 '@prefix ex: <http://example.com/ns#>. '||'

 ex:TriplesMap_Emp
 rr:logicalTable [rr:tableName "EMP"];
 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;
];
 rr:predicateObjectMap [
 rr:predicate ex:empNum;
 rr:objectMap [rr:column "EMPNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:empName;
 rr:objectMap [rr:column "ENAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:jobType;
 rr:objectMap [rr:column "JOB"];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDeptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:dataType xsd:integer];
].';

 sem_apis.create_rdfview_model(
 model_name => 'empdb_model_R2RML',
 tables => NULL,
 r2rml_string => r2rmlStr,
 r2rml_string_fmt => 'TURTLE',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

END;
/

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 83 of 208

The following example creates an RDF view using direct mapping as specified by the RDF
triples in the tables EMP and DEPT in the schema-private network owned by RDFUSER. It
also selects information about employees who work at the Boston location.

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model',
 tables => SYS.ODCIVarchar2List('EMP', 'DEPT'),
 prefix => 'http://empdb/',
 options => 'KEY_BASED_REF_PROPERTY=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

SELECT e.empno FROM emp e, dept d WHERE e.deptno = d.deptno AND d.loc =
'Boston';

SELECT emp
FROM TABLE(SEM_MATCH('{?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC
"Boston"}',SEM_Models('empdb_model'),NULL,SEM_ALIASES(
SEM_ALIAS('dept','http://empdb/RDFUSER.DEPT#'),SEM_ALIAS('emp','http://empdb/
RDFUSER.EMP#')),null,null,null,null,null,'RDF_USER','NET1'));

15.43 SEM_APIS.CREATE_RULEBASE
Format

SEM_APIS.CREATE_RULEBASE(
 rulebase_name IN VARCHAR2),
 options IN VARCHAR2 DEFAULT NULL),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a rulebase.

Parameters

rulebase_name
Name of the rulebase.

options
(Not currently used.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.CREATE_RULEBASE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 84 of 208

Usage Notes

This procedure creates a user-defined rulebase. After creating the rulebase, you can add rules
to it. To cause the rules in the rulebase to be applied in a query of RDF data, you can specify
the rulebase in the call to the SEM_MATCH table function.

Rules and rulebases are explained in Inferencing: Rules and Rulebases. The SEM_MATCH
table function is described in Using the SEM_MATCH Table Function to Query Semantic Data,

For information about RDF network types and options, see RDF Networks.

Examples

The following example creates a rulebase named family_rb. (It is an excerpt from
Example 1-130 in Example: Family Information.)

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

15.44 SEM_APIS.CREATE_SEM_MODEL
Format

SEM_APIS.CREATE_SEM_MODEL(
 model_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_name IN VARCHAR2,
 model_tablespace IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.CREATE_RDF_GRAPH subprogram instead.

Description

Creates a semantic technology model.

Parameters

model_name
Name of the model.

table_name
Name of the table to hold references to semantic technology data for this model.
This parameter must be NULL for a schema-private network.

column_name
Name of the column of type SDO_RDF_TRIPLE_S in table_name.
This parameter must be NULL for a schema-private network.

Chapter 15
SEM_APIS.CREATE_SEM_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 85 of 208

model_tablespace
Name of the tablespace for the tables and other database objects used by Oracle to support
this model. The default value is the tablespace that was specified in the call to the
SEM_APIS.CREATE_SEM_NETWORK procedure.

options
An optional quoted string with one or more of the following model creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ partition for the model.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ partition for the model.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$ partition
for the model.

• COMPRESS=RSCB uses ROW STORE COMPRESS BASIC on the RDF_LINK$ partition for
the model.

• MODEL_PARTITIONS=n overrides the default number of subpartitions in a composite
partitioned semantic network and creates the specified number (n) of subpartitions in the
RDF_LINK$ partition for the model.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This procedure adds the model to the SEM_MODEL$ view, which is described in Metadata for
Models.

This procedure is the only supported way to create a model. Do not use SQL INSERT
statements with the SEM_MODEL$ view.

To delete a model, use the SEM_APIS.DROP_SEM_MODEL procedure.

The options COMPRESS=CSCQH, COMPRESS=CSCQL, and COMPRESS=RSCA should be used only if you
have the appropriate licenses.

For information about semantic network types and options, see RDF Networks.

Examples

The following example creates a semantic technology model named articles in the schema-
private network. (This example is an excerpt from Example 1-129 in Example: Journal Article
Information.)

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', NULL, NULL,
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 15
SEM_APIS.CREATE_SEM_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 86 of 208

As part of this operation, a new updatable view, RDFUSER.NET1#RDFT_articles, gets created
automatically. You can use this view for any SQL DML statements affecting the data. The
following example uses the SDO_RDF_TRIPLE_S constructor to insert data into the model:

INSERT INTO RDFUSER.NET1#RDFT_articles VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"Jane Smith"',
 'RDFUSER',
 'NET1'));

15.45 SEM_APIS.CREATE_SEM_NETWORK
Format

SEM_APIS.CREATE_SEM_NETWORK(
 tablespace_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.CREATE_RDF_NETWORK subprogram instead.

Description

Creates structures for persistent storage of semantic data.

Parameters

tablespace_name
Name of the tablespace to be used for tables created by this procedure. This tablespace will
be the default for all models that you create, although you can override the default when you
create a model by specifying the model_tablespace parameter in the call to the
SEM_APIS.CREATE_SEM_MODEL procedure.

options
An optional quoted string with one or more of the following network creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ and RDF_VALUE$ tables.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ and RDF_VALUE$ tables.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$ and
RDF_VALUE$ tables.

• COMPRESS=RSCB uses ROW STORE COMPRESS BASIC on the RDF_LINK$ and
RDF_VALUE$ tables. This is the default compression level.

Chapter 15
SEM_APIS.CREATE_SEM_NETWORK

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 87 of 208

• MODEL_PARTITIONING=BY_HASH_P uses list-hash composite partitioning to partition
RDF_LINK$ by model ID and further subpartition each model by a hash of the predicate
ID.

• MODEL_PARTITIONS=n sets the default number (n) of subpartitions to use for each model.
This value should be greater than 1. A default value of 32 will be used when
MODEL_PARTITIONS is omitted or set to a value less than or equal to 1. This option is used
in conjunction with MODEL_PARTITIONING=BY_HASH_P.

• MODEL_PARTITIONING=BY_LIST_G uses list-list composite partitioning to partition
RDF_LINK$ by model ID and further subpartition each model by graph ID. This
subpartition is automatically maintained as data is inserted into the model.

• NETWORK_MAX_STRING_SIZE=EXTENDED specifies a maximum VARCHAR size of 32767
bytes for storing RDF values. Values larger than 32767 bytes will be stored as CLOBs.

• NETWORK_MAX_STRING_SIZE=STANDARD specifies a maximum VARCHAR size of 4000 bytes
for storing RDF values. Values larger than 4000 bytes will be stored as CLOBs. This is the
default.

• NETWORK_STORAGE_FORM=ESC specifies use of escaped storage form for lexical values in
RDF_VALUE$. Unicode characters and special characters will be stored using ASCII
escape sequences. (You cannot specify both the escaped and unescaped storage forms.)

• NETWORK_STORAGE_FORM=UNESC specifies use of unescaped storage form for lexical values
in RDF_VALUE$. Unicode characters and special characters will be stored as single
characters. This is the default.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This procedure creates system tables and other database objects used for semantic
technology support.

You should create a tablespace for the semantic technology system tables and specify the
tablespace name in the call to this procedure. (You should not specify the SYSTEM tablespace.)
The size needed for the tablespace that you create will depend on the amount of semantic
technology data you plan to store.

You must connect to the database as a user with DBA privileges or as the intended network
owner in order to call this procedure, and you should call the procedure only once for the
database.

To drop these structures for persistent storage of semantic data, you must connect as a user
with DBA privileges or as the owner of the schema-private network, and call the
SEM_APIS.DROP_SEM_NETWORK procedure.

The options COMPRESS=CSCQH, COMPRESS=CSCQL, and COMPRESS=RSCA should be used only if you
have the appropriate licenses.

After the semantic network is created, a row in the RDF_PARAMETER table with
NAMESPACE = 'NETWORK' and ATTRIBUTE = 'COMPRESSION' will indicate the type of
compression used for the semantic network.

NETWORK_MAX_STRING_SIZE=EXTENDED can only be used if your database has extended
VARCHAR support enabled (see Extended Data Types).

Chapter 15
SEM_APIS.CREATE_SEM_NETWORK

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 88 of 208

For information about semantic network types and options, see RDF Networks.

Examples

The following example creates a tablespace for semantic technology system tables and
creates structures for persistent storage of semantic data in this tablespace. Advanced
compression is used for the semantic network.

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;
. . .
EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace',
options=>'MODEL_PARTITIONING=BY_HASH_P MODEL_PARTITIONS=16');

15.46 SEM_APIS.CREATE_SEM_SQL
Format

SEM_APIS.CREATE_SEM_SQL;

Description

Creates SEM_SQL SQL Macro.

Parameters

Usage Notes

Examples

The following example creates SEM_SQL SQL Macro.

EXECUTE SEM_APIS.CREATE_SEM_SQL;

15.47 SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE
Format

SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE(
 source_table IN VARCHAR2,
 def_directory IN VARCHAR2,
 log_directory IN VARCHAR2 DEFAULT NULL,
 bad_directory IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bad_file IN VARCHAR2 DEFAULT NULL,
 parallel IN INTEGER DEFAULT NULL,
 source_table_owner IN VARCHAR2 DEFAULT NULL,
 flags IN VARCHAR2 DEFAULT NULL);

Description

Creates an external table to map an N-Triple or N-Quad format file into a table.

Chapter 15
SEM_APIS.CREATE_SEM_SQL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 89 of 208

Parameters

source_table
Name of the external table to be created.

def_directory
Database directory where the input files are located. To load from this staging table, you must
have READ privilege on this directory.

log_directory
Database directory where the log files will be generated when loading from the external table.
If not specified, the value of the def_directory parameter is used. When loading from the
external table, you must have WRITE privilege on this directory.

bad_directory
Database directory where the bad files will be generated when loading from the external table.
If not specified, the value of the def_directory parameter is used. When loading from the
external table, you must have WRITE privilege on this directory.

log_file
Name of the log file. If not specified, the name will be generated automatically during a load
operation.

bad_file
Name of the bad file. If not specified, the name will be generated automatically during a load
operation.

parallel
Degree of parallelism to associate with the external table being created.

source_table_owner
Owner for the external table being created. If not specified, the invoker becomes the owner.

flags
(Reserved for future use)

Usage Notes

For more information and an example, see Loading N-Quad Format Data into a Staging Table
Using an External Table.

Examples

The following example creates a source external table. (This example is an excerpt from
Example 1-109 in Loading N-Quad Format Data into a Staging Table Using an External Table.)

BEGIN
 sem_apis.create_source_external_table(
 source_table => 'stage_table_source'
 ,def_directory => 'DATA_DIR'
 ,bad_file => 'CLOBrows.bad'
);
END;

Chapter 15
SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 90 of 208

15.48 SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH
Format

SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH(
 inferred_graph_name IN VARCHAR2,
 rdf_graphs_in IN SEM_MODELS,
 sparql_rule_tab_owner IN VARCHAR2,
 sparql_rule_tab IN VARCHAR2,
 sparql_rule_col IN VARCHAR2,
 match_options_col IN VARCHAR2,
 update_options_col IN VARCHAR2,
 sparql_rule_maxiter IN PLS_INTEGER,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a SPARQL inferred graph (rules index).

Parameters

inferred_graph_name
Name of the inferred graph to be created.

rdf_graphs_in
One or more RDF graph names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

sparql_rule_tab_owner
Owner of the table that contains SPARQL rules.

sparql_rule_tab
Name of the table that contains SPARQL rules.

sparql_rule_col
Name of the column that contains SPARQL rules.

match_options_col
Name of the column that contains match options.

update_options_col
Name of the column that contains SPARQL update options.

sparql_rule_maxiter
The maximum number of iterations that the inference engine should run. If the transitive
closure is reached before the specified max iterations, the inference stops. If the value 0 is
specified, the inference engine will run until the transitive closure is reached or the maximum
2G iterations have been executed.

options
A string of options to control the inference process by overriding the default inference
behavior.
To enable an option, specify <option-name>=T; to disable the option, you can specify
<option-name>=F (the default).

Chapter 15
SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 208

The available option name value is NO_SPARQL_RULE_CHECK. See the Usage Notes for more
explanation of the value.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For the options parameter, you can specify NO_SPARQL_RULE_CHECK=T to bypass the SPARQL
rule check for rules stored in a user’s table. The SPARQL rules are checked to make sure they
are conformant to INSERT DATA or INSERT WHERE specification.

Examples

The following example creates a SPARQL inferred graph named SI1 using the SPARQL rules
stored in the SPARQL_TAB table.

SQL> exec sem_apis.create_sparql_inferred_graph('SI1',
sem_models('M1'),'RDFUSER','sparql_tab','Rule', 'matchOpt', 'updOpt', 3,
network_owner=>'RDFUSER', network_name=>'NET1');
PL/SQL procedure successfully completed.

15.49 SEM_APIS.CREATE_SPARQL_UPDATE_TABLES
Format

SEM_APIS.CREATE_SPARQL_UPDATE_TABLES();

Description

Creates global temporary tables in the caller’s schema for use with SPARQL Update
operations.

Parameters

None.

Usage Notes

Invoking SEM_APIS.UPDATE_MODEL with STREAMING=F, FORCE_BULK=T, or DEL_AS_INS=T
option requires that the following temporary tables exist in the caller’s schema:
RDF_UPD_DEL$, RDF_UPD_INS$, and RDF_UPD_INS_CLOB$. These tables are created
with the following definitions , where MAX_STRING_SIZE is the maximum VARCHAR size for the
database:

 CREATE GLOBAL TEMPORARY TABLE RDF_UPD_DEL$ (
 RDF$STC_GRAPH VARCHAR2(4000),
 RDF$STC_SUB VARCHAR2(4000),
 RDF$STC_PRED VARCHAR2(4000),
 RDF$STC_OBJ VARCHAR2(MAX_STRING_SIZE),
 RDF$STC_CLOB CLOB
) ON COMMIT PRESERVE ROWS';
 CREATE GLOBAL TEMPORARY TABLE RDF_UPD_INS$ (
 RDF$STC_GRAPH VARCHAR2(4000),
 RDF$STC_SUB VARCHAR2(4000),

Chapter 15
SEM_APIS.CREATE_SPARQL_UPDATE_TABLES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 92 of 208

 RDF$STC_PRED VARCHAR2(4000),
 RDF$STC_OBJ VARCHAR2(MAX_STRING_SIZE)
) ON COMMIT PRESERVE ROWS';
 CREATE GLOBAL TEMPORARY TABLE RDF_UPD_INS_CLOB$ (
 RDF$STC_GRAPH VARCHAR2(4000),
 RDF$STC_SUB VARCHAR2(4000),
 RDF$STC_PRED VARCHAR2(4000),
 RDF$STC_OBJ VARCHAR2(MAX_STRING_SIZE),
 RDF$STC_CLOB CLOB
) ON COMMIT PRESERVE ROWS';

If you need to drop these tables, use the SEM_APIS.DROP_SPARQL_UPDATE_TABLES.

For more information, see Support for SPARQL Update Operations on an RDF Graph.

Examples

The following example creates the necessary global temporary tables in the caller’s schema for
use with SPARQL Update operations.

EXECUTE SEM_APIS.CREATE_SPARQL_UPDATE_TABLES;

15.50 SEM_APIS.CREATE_VIRTUAL_MODEL
Format

SEM_APIS.CREATE_VIRTUAL_MODEL(
 vm_name IN VARCHAR2,
 models IN SEM_MODELS,
 rulebases IN SEM_RULEBASES DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 entailments IN SEM_ENTAILMENTS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.CREATE_RDF_GRAPH_COLLECTION subprogram instead.

Description

Creates a virtual model containing the specified semantic models and/or entailments.
Entailments can be specified in one of the following ways:

• By specifying one or more models and one or more rulebases. In this case, a virtual model
will be created using the single entailment that corresponds to the exact combination of
models and rulebases specified. An error is raised if no such entailment exists.

• By specifying zero or more models and one or more entailments. In this case, the contents
of the models and entailments will be combined regardless of their relationship.

The first method ensures a sound and complete dataset, whereas the second method relaxes
the sound and complete constraints for more flexibility.

Chapter 15
SEM_APIS.CREATE_VIRTUAL_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 93 of 208

Parameters

vm_name
Name of the virtual model to be created.

models
One or more semantic model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25). If this parameter is null, no models are included in the
virtual model definition.

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). If this parameter is null, no rulebases are included in the
virtual model definition. Rules and rulebases are explained in Inferencing: Rules and
Rulebases.
If you specify this parameter, you cannot also specify the entailments parameter.

options
Options for creation:

• PXN=T forces a UNION ALL-based view definition for the virtual model. This is the default
for virtual models with 16 or fewer components.

• PXN=F forces an IN LIST-based view definition for the virtual model. This is the default for
virtual models with more than 16 components.

• PXN=F INMEMORY=T (in combination) let you to create an in-memory virtual model.

If you specify INMEMORY=T but not PXN=F, then the in-memory virtual columns are created,
but the performance will suffer. If you do not specify INMEMORY=T, the virtual model is not
created in-memory. (See also Using In-Memory Virtual Columns with RDF.)

• REPLACE=T lets you to replace a virtual model without dropping it. (Using this option is
analogous to using CREATE OR REPLACE VIEW with a view.)

entailments
One or more entailment names. Its data type is SEM_ENTAILMENTS, which has the following
definition: TABLE OF VARCHAR2(25). If this parameter is null, no entailments are included in the
virtual model definition. Entailments are explained in Using OWL Inferencing.
If you specify this parameter, you cannot also specify the rulebases parameter.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For an explanation of virtual models, including usage information, see Virtual Models.

An entailment must exist for each specified combination of semantic model and rulebase.

To create a virtual model, you must either be (A) the owner of each specified model and any
corresponding entailments, or (B) a user with DBA privileges.

To replace a virtual model, you must be the owner of the virtual model or a user with DBA
privileges.

The option INMEMORY=T should be used only if you have the appropriate licenses.

Chapter 15
SEM_APIS.CREATE_VIRTUAL_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 94 of 208

This procedure creates views with names in the following format:

• SEMV_vm_name, which corresponds to a UNION ALL of the triples in each model and
entailment. This view may contain duplicates.

• SEMU_vm_name, which corresponds to a UNION of the triples in each model and
entailment. This view will not contain duplicates (thus, the U in SEMU indicates unique).

To use the example in Virtual Models of a virtual model vm1 created from models m1, m2, m3,
and with an entailment created for m1, m2 ,and m3 using the OWLPrime rulebase, this
procedure will create the following two views (assuming that m1, m2, and m3, and the
OWLPRIME entailment have internal model_id values 1, 2, 3, 4):

CREATE VIEW RDFUSER.NET1#.SEMV_VM1 AS
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_1)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_2)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_3)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id, model_id
 FROM RDFUSER.NET1#.rdf_link$ partition (MODEL_4);

CREATE VIEW RDFUSER.NET1#.SEMU_VM1 AS
 SELECT p_value_id, start_node_id, canon_end_node_id, MIN(end_node_id) end_node_id,
g_id, MIN(model_id) model_id
 FROM RDFUSER.NET1#.rdf_link$
 WHERE model_id in (1, 2, 3, 4)
 GROUP BY p_value_id, start_node_id, canon_end_node_id, g_id;

The user that invokes this procedure will be the owner of the virtual model and will have
SELECT WITH GRANT privileges on the SEMU_vm_name and SEMV_vm_name views. To
query the corresponding virtual model, a user must have select privileges on these views.

For information about semantic network types and options, see RDF Networks.

Examples

The following example creates a virtual model named VM1.

EXECUTE sem_apis.create_virtual_model('VM1',
 sem_models('model_1', 'model_2'),
 sem_rulebases('OWLPRIME'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');

The following example creates a virtual model named VM1 using the relaxed entailment
specification.

EXECUTE sem_apis.create_virtual_model('VM1',
 models=>sem_models('model_1', 'model_2'),

entailments=>sem_entailments('entailment1','entailment2'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');

The following example effectively redefines virtual model VM1 by using the REPLACE=T option.

EXECUTE sem_apis.create_virtual_model('VM1',
 models=>sem_models('model_1', 'model_2'),

Chapter 15
SEM_APIS.CREATE_VIRTUAL_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 95 of 208

 entailments=>sem_entailments('entailment1'),
 options=>'REPLACE=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1');

15.51 SEM_APIS.DELETE_ENTAILMENT_STATS
Format

SEM_APIS.DELETE_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 cascade_parts IN BOOLEAN DEFAULT TRUE,
 cascade_columns IN BOOLEAN DEFAULT TRUE,
 cascade_indexes IN BOOLEAN DEFAULT TRUE,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 force IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes statistics for a specified entailment.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
entailment statistics.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the RDF network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example deletes statistics for an entailment named OWLTST_IDX.

EXECUTE SEM_APIS.DELETE_ENTAILMENT_STATS('owltst_idx');

Chapter 15
SEM_APIS.DELETE_ENTAILMENT_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 96 of 208

15.52 SEM_APIS.DELETE_MODEL_STATS
Format

SEM_APIS.DELETE_MODEL_STATS (
 model_name IN VARCHAR2,
 cascade_parts IN BOOLEAN DEFAULT TRUE,
 cascade_columns IN BOOLEAN DEFAULT TRUE,
 cascade_indexes IN BOOLEAN DEFAULT TRUE,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 force IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes statistics for a specified model.

Parameters

model_name
Name of the model.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
model statistics.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Only the model owner or a users with DBA privileges can execute this procedure.

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the RDF network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example deletes statistics for a model named FAMILY.

EXECUTE SEM_APIS.DELETE_MODEL_STATS('family');

15.53 SEM_APIS.DISABLE_CHANGE_TRACKING
Format

SEM_APIS.DISABLE_CHANGE_TRACKING(
 models_in IN SEM_MODELS,

Chapter 15
SEM_APIS.DELETE_MODEL_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 97 of 208

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables change tracking for a specified set of models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Disabling change tracking on a model automatically disables incremental inference on all
entailment that use the model.

To use this procedure, you must be the owner of the specified model, and incremental
inference must have been previously enabled.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about RDF network types and options, see RDF Networks.

Examples

The following example disables change tracking for the family model.

EXECUTE sem_apis.disable_change_tracking(sem_models('family'));

15.54 SEM_APIS.DISABLE_INC_INFERENCE
Format

SEM_APIS.DISABLE_INC_INFERENCE(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables incremental inference for a specified entailment (rules index).

Parameters

entailment_name
Name of the entailment for which to disable incremental inference.

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.DISABLE_INC_INFERENCE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 98 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must be the owner of the specified entailment, and incremental
inference must have been previously enabled by the SEM_APIS.ENABLE_INC_INFERENCE
procedure.

Calling this procedure automatically disables change tracking for all models owned by the
invoking user that were having changes tracked only because of this particular inference.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables incremental inference for the entailment named
RDFS_RIX_FAMILY.

EXECUTE sem_apis.disable_inc_inference('rdfs_rix_family');

15.55 SEM_APIS.DISABLE_INMEMORY
Format

SEM_APIS.DISABLE_INMEMORY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables in-memory population of RDF data in an RDF network.

Parameters

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about RDF network types and options, see RDF Networks.

Examples

The following example disables in-memory population of RDF data in the RDF network.

EXECUTE SEM_APIS.DISABLE_INMEMORY;

Chapter 15
SEM_APIS.DISABLE_INMEMORY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 99 of 208

15.56 SEM_APIS.DISABLE_INMEMORY_FOR_ENT
Format

SEM_APIS.DISABLE_INMEMORY_FOR_ENT(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH subprogram instead.

Description

Disables in-memory population of RDF data for an entailment in a semantic network.

Parameters

entailment_name
Name of the entailment.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about semantic network types and options, see RDF Networks.

Examples

The following example disables in-memory population of RDF data for entailment RIDX1 in the
semantic network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.DISABLE_INMEMORY_FOR_ENT('RIDX1', network_owner=>'RDFUSER',
network_name=>'NET1');

15.57 SEM_APIS.DISABLE_INMEMORY_FOR_MODEL
Format

SEM_APIS.DISABLE_INMEMORY_FOR_MODEL(
 model_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.DISABLE_INMEMORY_FOR_ENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 100 of 208

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH subprogram instead.

Description

Disables in-memory population of RDF data for a model in a semantic network.

Parameters

model_name
Name of the model.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about semantic network types and options, see RDF Networks.

Examples

The following example disbles in-memory population of RDF data for model M1 in the semantic
network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.DISABLE_INMEMORY_FOR_MODEL('M1', network_owner=>'RDFUSER',
network_name=>'NET1');

15.58 SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH
Format

SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH(
 inferred_graph_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables in-memory population of RDF data for an inferred graph in an RDF network.

Parameters

inferred_graph_name
Name of the inferred graph.

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 101 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about RDF network types and options, see RDF Networks.

Examples

The following example disables in-memory population of RDF data for inferred graph RIDX1 in
the RDF network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH('RIDX1', network_owner=>'RDFUSER',
network_name=>'NET1');

15.59 SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH
Format

SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables in-memory population of RDF data for a graph in an RDF network.

Parameters

rdf_graph_name
Name of the RDF graph.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about RDF network types and options, see RDF Networks.

Examples

The following example disbles in-memory population of RDF data for graph M1 in the RDF
network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH('M1', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 15
SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 102 of 208

15.60 SEM_APIS.DISABLE_NETWORK_SHARING
Format

SEM_APIS.DISABLE_NETWORK_SHARING(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Disables sharing of an RDF network.

Parameters

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

options
(Reserved for future use)

Usage Notes

To use this procedure, you must have DBA privileges or be the owner of the specified network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables sharing of the mynetwork schema-private network owned by
database user scott.

EXECUTE SEM_APIS.DISABLE_NETWORK_SHARING('scott', 'mynetwork');

15.61 SEM_APIS.DROP_DATATYPE_INDEX
Format

SEM_APIS.DROP_DATATYPE_INDEX(
 datatype IN VARCHAR2,
 force_drop IN BOOLEAN default FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an existing data type index.

Parameters

datatype
URI of the data type for the index to drop.

Chapter 15
SEM_APIS.DISABLE_NETWORK_SHARING

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 103 of 208

force_drop
TRUE forces the index to be dropped if an error occurs during the processing of the statement;
FALSE (the default) does not drop the index if an error occurs during the processing of the
statement.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Using Data Type Indexes.

For information about RDF network types and options, see RDF Networks.

Examples

The following example drops the data type index for xsd:string typed literals and plain literals.

EXECUTE SEM_APIS.DROP_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string');

15.62 SEM_APIS.DROP_ENTAILMENT
Format

SEM_APIS.DROP_ENTAILMENT(
 index_name_in IN VARCHAR2,
 named_g_in IN SEM_GRAPHS DEFAULT NULL,
 dop IN INT DEFAULT 1,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DROP_INFERRED_GRAPH subprogram instead.

Description

Drops (deletes) an entailment (rules index).

Parameters

index_name_in
Name of the entailment to be deleted.

named_g_in
Causes only the triples with the specified graph names in the entailment to be deleted. A null
value (the default) drops the entire entailment.
For example, named_g_in => sem_graphs('<urn:G1>','<urn:G2>') drops only the triples in
entailment with graph names G1 and G2; the rest of the entailment graph is not dropped.

Chapter 15
SEM_APIS.DROP_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 104 of 208

dop
Degree of parallelism for a parallel execution of triple deletion. Applies only if the named_g_in
parameter is not null.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You can use this procedure to delete an entailment that you created using the
SEM_APIS.CREATE_ENTAILMENT procedure.

If you drop only a subset of the entailment with specified named graphs (that is, when
named_g_in is not null) on an entailment with a VALID or INCOMPLETE status, then the resulting
status of the entailment after the drop is set to INCOMPLETE.

For information about semantic network types and options, see RDF Networks.

Examples

The following example deletes a entailment named OWLTST_IDX.

EXECUTE sem_apis.drop_entailment('owltst_idx');

The following example deletes only inferred triples with graph names G1 and G2 that belong to
the entailment named OWLNG_IDX. Any inferred triples in the default graph and other named
graphs remain in the entailment.

EXECUTE sem_apis.drop_entailment('owlng_idx',sem_graphs('<urn:G1>','<urn:G2>'));

15.63 SEM_APIS.DROP_INFERRED_GRAPH
Format

SEM_APIS.DROP_INFERRED_GRAPH(
 inferred_graph_name IN VARCHAR2,
 named_g_in IN SEM_GRAPHS DEFAULT NULL,
 dop IN INT DEFAULT 1,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an inferred graph (rules index).

Parameters

inferred_graph_name
Name of the inferred graph to be deleted.

named_g_in
Causes only the triples with the specified graph names in the inferred graph to be deleted. A
null value (the default) drops the entire inferred graph.
For example, named_g_in => sem_graphs('<urn:G1>','<urn:G2>') drops only the triples in
an inferred graph with graph names G1 and G2; the rest of the inferred graph is not dropped.

Chapter 15
SEM_APIS.DROP_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 105 of 208

dop
Degree of parallelism for a parallel execution of triple deletion. Applies only if the named_g_in
parameter is not null.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You can use this procedure to delete an inferred graph that you created using the
SEM_APIS.CREATE_INFERRED_GRAPH procedure.

If you drop only a subset of the inferred graph with specified named graphs (that is, when
named_g_in is not null) on an inferred graph with a VALID or INCOMPLETE status, then the
resulting status of the inferred graph after the drop is set to INCOMPLETE.

For information about RDF network types and options, see RDF Networks.

Examples

The following example deletes an inferred graph named OWLTST_IDX.

EXECUTE sem_apis.drop_inferred_graph('owltst_idx');

The following example deletes only inferred triples with graph names G1 and G2 that belong to
the inferred graph named OWLNG_IDX. Any inferred triples in the default graph and other named
graphs remain in the inferred graph.

EXECUTE sem_apis.drop_inferred_graph('owlng_idx',sem_graphs('<urn:G1>','<urn:G2>'));

15.64 SEM_APIS.DROP_MATERIALIZED_VIEW
Format

SEM_APIS.DROP_MATERIALIZED_VIEW (
 mv_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Drops a materialized join view for an RDF graph stored in Oracle AI Database.

Parameters

mv_name
Name of the materialized view to drop.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.DROP_MATERIALIZED_VIEW

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 106 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about RDF network types and options, see RDF Networks.

Examples

The following example drops the materialized view MVX.

EXECUTE SEM_APIS.DROP_MATERIALIZED_VIEW('MVX');

15.65 SEM_APIS.DROP_MV_BITMAP_INDEX
Format

SEM_APIS.DROP_MV_BITMAP_INDEX (
 mv_name IN VARCHAR2,
 idx_columns IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Drops a bitmap index on a materialized join view for an RDF graph stored in Oracle AI
Database.

Parameters

mv_name
Name of the materialized view from which to drop the bitmap index.

idx_columns
Name of the columns on which to drop the bitmap index.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about RDF network types and options, see RDF Networks.

Chapter 15
SEM_APIS.DROP_MV_BITMAP_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 107 of 208

Examples

The following example drops two bitmap indexes on columns T1O and T0SV for the
materialized view MVX.

EXECUTE SEM_APIS.DROP_MV_BITMAP_INDEX('MVX', 'T1O T0SV');

15.66 SEM_APIS.DROP_NETWORK_INDEX
Format

SEM_APIS.DROP_NETWORK_INDEX(
 index_code IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops an RDF network index on the RDF graphs and inferred graphs of the RDF network.

Parameters

index_code
Index code string. Must match the index_code value that was specified in an earlier call to the
SEM_APIS.ADD_SEM_INDEX procedure.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For an explanation of RDF network indexes, see Using Semantic Network Indexes.

For information about RDF network types and options, see RDF Networks.

Examples

The following example drops an RDF network index with the index code string pcsm on the
RDF graphs and inferred graphs of the RDF network.

EXECUTE SEM_APIS.DROP_NETWORK_INDEX('pscm');

15.67 SEM_APIS.DROP_RDF_GRAPH
Format

SEM_APIS.DROP_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,

Chapter 15
SEM_APIS.DROP_NETWORK_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 108 of 208

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an RDF graph.

Parameters

rdf_graph_name
Name of the RDF graph.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure deletes the RDF graph from the SEM_MODEL$ view, which is described in
RDF Graphs.

This procedure is the only supported way to delete an RDF graph. Do not use SQL DELETE
statements with the SEM_MODEL$ view.

Only the creator of the RDF graph can delete the graph.

To truncate an RDF graph instead of deleting it, use the
SEM_APIS.TRUNCATE_RDF_GRAPH procedure.

For information about RDF network types and options, see RDF Networks.

Examples

The following example drops the RDF graph named articles.

EXECUTE SEM_APIS.DROP_RDF_GRAPH('articles');

15.68 SEM_APIS.DROP_RDF_GRAPH_COLLECTION
Format

SEM_APIS.DROP_RDF_GRAPH_COLLECTION(
 rdf_graph_collection_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an RDF graph collection.

Chapter 15
SEM_APIS.DROP_RDF_GRAPH_COLLECTION

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 109 of 208

Parameters

rdf_graph_collection_name
Name of the RDF graph collection to be deleted.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You can use this procedure to delete an RDF graph collection that you created using the
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION procedure. An RDF graph collection is
deleted automatically if any of its component graphs, rulebases, or inferred graph are deleted.

To use this procedure, you must be the owner of the specified RDF graph collection.

For an explanation of RDF graph collections, including usage information, see RDF Graph
Collections.

For information about RDF network types and options, see RDF Networks.

Examples

The following example deletes an RDF graph collection named VM1.

EXECUTE sem_apis.drop_rdf_graph_collection('VM1');

15.69 SEM_APIS.DROP_RDF_NETWORK
Format

SEM_APIS.DROP_RDF_NETWORK(
 cascade IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Removes structures used for persistent storage of semantic data.

Parameters

cascade
TRUE drops any existing RDF graphs and rulebases, and removes structures used for
persistent storage of semantic data; FALSE (the default) causes the operation to fail if any
graphs or rulebases exist.

options
(Reserved for future use.)

Chapter 15
SEM_APIS.DROP_RDF_NETWORK

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 110 of 208

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To remove structures used for persistent storage of semantic data, you must connect as a user
with DBA privileges or as the owner of the schema-private network, and call this procedure.

If any version-enabled RDF graphs exist, this procedure will fail regardless of the value of the
cascade parameter.

For information about RDF network types and options, see RDF Networks.

Examples

The following example removes structures used for persistent storage of semantic data.

EXECUTE SEM_APIS.DROP_RDF_NETWORK;

15.70 SEM_APIS.DROP_RDFVIEW_GRAPH
Format

SEM_APIS.DROP_RDFVIEW_GRAPH(
 rdf_graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an RDF view.

Parameters

rdf_graph_name
Name of the RDF view to be dropped.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must be the owner of the RDF view to be dropped.

For more information about RDF views, see RDF Views: Relational Data as RDF.

For information about RDF network types and options, see RDF Networks.

Chapter 15
SEM_APIS.DROP_RDFVIEW_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 111 of 208

Examples

The following example drops an RDF view.

BEGIN
 sem_apis.drop_rdfview_graph(
 rdf_graph_name => 'empdb_model'
);
END;
/

15.71 SEM_APIS.DROP_RDFVIEW_MODEL
Format

SEM_APIS.DROP_RDFVIEW_MODEL(
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DROP_RDFVIEW_GRAPH subprogram instead.

Description

Drops (deletes) an RDF view.

Parameters

model_name
Name of the RDF view to be dropped.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must be the owner of the RDF view to be dropped.

For more information about RDF views, see RDF Views: Relational Data as RDF.

For information about RDF network types and options, see RDF Networks.

Examples

The following example drops an RDF view.

Chapter 15
SEM_APIS.DROP_RDFVIEW_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 112 of 208

BEGIN
 sem_apis.drop_rdfview_model(
 model_name => 'empdb_model'
);
END;
/

15.72 SEM_APIS.DROP_RESULT_TAB
Format

SEM_APIS.DROP_RESULT_TAB (
 query_pattern_type IN NUMBER,
 result_tab_name IN VARCHAR2,
 rdf_graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops result table(s) defined on a given RDF graph.

Parameters

query_pattern_type
Type of the result table.
The value can be one of the following:

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

• SEM_APIS.SPM_TYPE_ALL

Use of SEM_APIS.SPM_TYPE_ALL indicates that the target result tables can be of any type.

result_tab_name
String for use as part of the name of the result table. If the target is an MVP table, then specify
the name of the property. Use of the value ‘*’ indicates that the target is the set of all the result
tables of the type specified by the spm_type parameter.

rdf_graph_name
Name of the RDF graph.

options
Reserved for future use.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

• This operation has a DDL semantics.

• The invoker must be the owner of the target RDF graph or the RDF network or both.

Chapter 15
SEM_APIS.DROP_RESULT_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 113 of 208

Examples

The following example drops a specific SVP table named FLHF:

BEGIN
 SEM_APIS.DROP_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_SVP
 , result_tab_name => 'FLHF'
 , rdf_graph_name => 'M1'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

The following example drops all the currently existing result tables on RDF graph M1:

BEGIN
 SEM_APIS.DROP_RESULT_TAB(
 query_pattern_type => SEM_APIS.SPM_TYPE_ALL
 , rdf_graph_name => 'M1'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

15.73 SEM_APIS.DROP_RULEBASE
Format

SEM_APIS.DROP_RULEBASE(
 rulebase_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes a rulebase.

Parameters

rulebase_name
Name of the rulebase.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.DROP_RULEBASE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 114 of 208

Usage Notes

This procedure deletes the specified rulebase, making it no longer available for use in calls to
the SEM_MATCH table function. For information about rulebases, see Inferencing: Rules and
Rulebases.

Only the creator of a rulebase can delete the rulebase.

For information about RDF network types and options, see RDF Networks.

Examples

The following example drops the rulebase named family_rb.

EXECUTE SEM_APIS.DROP_RULEBASE('family_rb');

15.74 SEM_APIS.DROP_SEM_INDEX
Format

SEM_APIS.DROP_SEM_INDEX(
 index_code IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DROP_NETWORK_INDEX subprogram instead.

Description

Drops a semantic network index on the models and entailments of the semantic network.

Parameters

index_code
Index code string. Must match the index_code value that was specified in an earlier call to the
SEM_APIS.ADD_SEM_INDEX procedure.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network Indexes.

For information about semantic network types and options, see RDF Networks.

Chapter 15
SEM_APIS.DROP_SEM_INDEX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 115 of 208

Examples

The following example drops a semantic network index with the index code string pcsm on the
models and entailments of the semantic network.

EXECUTE SEM_APIS.DROP_SEM_INDEX('pscm');

15.75 SEM_APIS.DROP_SEM_MODEL
Format

SEM_APIS.DROP_SEM_MODEL(
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DROP_RDF_GRAPH subprogram instead.

Description

Drops (deletes) a semantic technology model.

Parameters

model_name
Name of the model.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This procedure deletes the model from the SEM_MODEL$ view, which is described in
Metadata for Models.

This procedure is the only supported way to delete a model. Do not use SQL DELETE
statements with the SEM_MODEL$ view.

Only the creator of a model can delete the model.

To truncate a model instead of deleting it, use the SEM_APIS.TRUNCATE_SEM_MODEL
procedure.

For information about semantic network types and options, see RDF Networks.

Chapter 15
SEM_APIS.DROP_SEM_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 116 of 208

Examples

The following example drops the semantic technology model named articles.

EXECUTE SEM_APIS.DROP_SEM_MODEL('articles');

15.76 SEM_APIS.DROP_SEM_NETWORK
Format

SEM_APIS.DROP_SEM_NETWORK(
 cascade IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DROP_RDF_NETWORK subprogram instead.

Description

Removes structures used for persistent storage of semantic data.

Parameters

cascade
TRUE drops any existing semantic technology models and rulebases, and removes structures
used for persistent storage of semantic data; FALSE (the default) causes the operation to fail if
any semantic technology models or rulebases exist.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To remove structures used for persistent storage of semantic data, you must connect as a user
with DBA privileges or as the owner of the schema-private network, and call this procedure.

If any version-enabled models exist, this procedure will fail regardless of the value of the
cascade parameter.

For information about semantic network types and options, see RDF Networks.

Examples

The following example removes structures used for persistent storage of semantic data.

EXECUTE SEM_APIS.DROP_SEM_NETWORK;

Chapter 15
SEM_APIS.DROP_SEM_NETWORK

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 117 of 208

15.77 SEM_APIS.DROP_SEM_SQL
Format

SEM_APIS.DROP_SEM_SQL;

Description

Drops SEM_SQL SQL Macro.

Parameters

Usage Notes

Examples

The following example drops SEM_SQL SQL Macro.

EXECUTE SEM_APIS.DROP_SEM_SQL;

15.78 SEM_APIS.DROP_SPARQL_UPDATE_TABLES
Format

SEM_APIS.DROP_SPARQL_UPDATE_TABLES();

Description

Drops the global temporary tables in the caller’s schema for use with SPARQL Update
operations.

Parameters

None.

Usage Notes

This procedure drops the global temporary tables that were created by the
SEM_APIS.CREATE_SPARQL_UPDATE_TABLES procedure.

For more information, see Support for SPARQL Update Operations on an RDF Graph.

Examples

The following example drops the global temporary tables that had been created in the caller’s
schema for use with SPARQL Update operations.

EXECUTE SEM_APIS.DROP_SPARQL_UPDATE_TABLES;

Chapter 15
SEM_APIS.DROP_SEM_SQL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 118 of 208

15.79 SEM_APIS.DROP_SPM_TAB
Format

SEM_APIS.DROP_SPM_TAB (
 spm_type IN NUMBER,
 spm_name IN VARCHAR2,
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DROP_RESULT_TAB subprogram instead.

Description

Drops SPM table(s) defined on a given RDF model.

Parameters

spm_type
Type of the SPM table.
The value can be one of the following:

• SEM_APIS.SPM_TYPE_SVP

• SEM_APIS.SPM_TYPE_MVP

• SEM_APIS.SPM_TYPE_PCN

• SEM_APIS.SPM_TYPE_ALL

Use of SEM_APIS.SPM_TYPE_ALL indicates that the target SPM tables can be of any type.

spm_name
String for use as part of the name of the SPM table. If the target is an MVP table, then specify
the name of the property. Use of the value ‘*’ indicates that the target is the set of all the SPM
tables of the type specified by the spm_type parameter.

model_name
Name of the RDF model.

options
Reserved for future use.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

• This operation has a DDL semantics.

Chapter 15
SEM_APIS.DROP_SPM_TAB

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 119 of 208

• The invoker must be the owner of the target RDF model or the RDF network or both.

Examples

The following example drops a specific SVP table named FLHF:

BEGIN
 SEM_APIS.DROP_SPM_TAB(
 spm_type => SEM_APIS.SPM_TYPE_SVP
 , spm_name => 'FLHF'
 , model_name => 'M1'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

The following example drops all the currently existing SPM tables on model M1:

BEGIN
 SEM_APIS.DROP_SPM_TAB(
 spm_type => SEM_APIS.SPM_TYPE_ALL
 , spm_name => '*'
 , model_name => 'M1'
 , network_owner => 'RDFUSER'
 , network_name => 'NET1'
);
END;
/

15.80 SEM_APIS.DROP_USER_INFERENCE_OBJS
Format

SEM_APIS.DROP_USER_INFERENCE_OBJS(
 uname IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) all rulebases and entailments owned by a specified database user.

Parameters

uname
Name of a database user. (This value is case-sensitive; for example, HERMAN and herman are
considered different users.)

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.DROP_USER_INFERENCE_OBJS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 120 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must have sufficient privileges to delete rules and rulebases for the specified user.

This procedure does not delete the database user. It deletes only RDF rulebases and
entailments owned by that user.

For information about RDF network types and options, see RDF Networks.

Examples

The following example deletes all rulebases and entailments owned by user SCOTT.

EXECUTE SEM_APIS.DROP_USER_INFERENCE_OBJS('SCOTT');

PL/SQL procedure successfully completed.

15.81 SEM_APIS.DROP_VIRTUAL_MODEL
Format

SEM_APIS.DROP_VIRTUAL_MODEL(
 vm_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.DROP_RDF_GRAPH_COLLECTION subprogram instead.

Description

Drops (deletes) a virtual model.

Parameters

vm_name
Name of the virtual model to be deleted.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You can use this procedure to delete a virtual model that you created using the
SEM_APIS.CREATE_VIRTUAL_MODEL procedure. A virtual model is deleted automatically if
any of its component models, rulebases, or entailment are deleted.

Chapter 15
SEM_APIS.DROP_VIRTUAL_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 121 of 208

To use this procedure, you must be the owner of the specified virtual model.

For an explanation of virtual models, including usage information, see Virtual Models.

For information about semantic network types and options, see RDF Networks.

Examples

The following example deletes a virtual model named VM1.

EXECUTE sem_apis.drop_virtual_model('VM1');

15.82 SEM_APIS.ENABLE_CHANGE_TRACKING
Format

SEM_APIS.ENABLE_CHANGE_TRACKING(
 models_in IN SEM_MODELS,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables change tracking for a specified set of models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Change tracking must be enabled on a model before incremental inference can be enabled on
any entailments that use the model.

To use this procedure, you must be the owner of the specified model or models.

If the owner of an entailment is also an owner of any underlying models, then enabling
incremental inference on the entailment (by calling the
SEM_APIS.ENABLE_INC_INFERENCE procedure) automatically enables change tracking on
those models owned by that user.

To disable change tracking for a set of models, use the
SEM_APIS.DISABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables change tracking for the family model.

Chapter 15
SEM_APIS.ENABLE_CHANGE_TRACKING

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 122 of 208

EXECUTE sem_apis.enable_change_tracking(sem_models('family'));

15.83 SEM_APIS.ENABLE_INC_INFERENCE
Format

SEM_APIS.ENABLE_INC_INFERENCE(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables incremental inference for a specified entailment (rules index).

Parameters

entailment_name
Name of the entailment for which to enable incremental inference.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must be the owner of the specified entailment.

Before this procedure is executed, all underlying models involved in the entailment must have
change tracking enabled. If the owner of the entailment is also an owner of any underlying
models, calling this procedure automatically enables change tracking on those models.
However, if some underlying model are not owned by the owner of the entailment, the
appropriate model owners must first call the SEM_APIS.ENABLE_CHANGE_TRACKING
procedure to enable change tracking on those models.

To disable incremental inference for an entailment, use the
SEM_APIS.DISABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables incremental inference for the entailment named
RDFS_RIX_FAMILY.

EXECUTE sem_apis.enable_inc_inference('rdfs_rix_family');

15.84 SEM_APIS.ENABLE_INMEMORY
Format

SEM_APIS.ENABLE_INMEMORY(
 populate_wait IN BOOLEAN,
 options IN VARCHAR2 DEFAULT NULL,

Chapter 15
SEM_APIS.ENABLE_INC_INFERENCE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 123 of 208

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Loads RDF data for the RDF network into memory.

Parameters

populate_wait
Boolean value to indicate whether to wait until all RDF data is loaded into memory before
finishing:

• true: Wait until all RDF data is loaded into memory.

• false: Do not wait for RDF data loading into memory.

options
Options for in-memory data population:

• The string POPULATE_TRIPLES=F disables populating RDF_LINK$ table data in memory.
(RDF_VALUE$ table data is still populated in memory.) If this option is not specified,
RDF_LINK$ table data is populated in memory by default.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

To disable in-memory population of RDF data in the RDF network, use the
SEM_APIS.DISABLE_INMEMORY.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables in-memory population of RDF data, and waits until all RDF data
is loaded into memory before finishing.

EXECUTE SEM_APIS.ENABLE_INMEMORY(true);

15.85 SEM_APIS.ENABLE_INMEMORY_FOR_ENT
Format

SEM_APIS.ENABLE_INMEMORY_FOR_ENT(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.ENABLE_INMEMORY_FOR_ENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 124 of 208

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH subprogram instead.

Description

Enables in-memory population of RDF data for an entailment in a semantic network.

Parameters

entailment_name
Name of the entailment.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about semantic network types and options, see RDF Networks.

Examples

The following example enables in-memory population of RDF data for entailment RIDX1 in the
semantic network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.ENABLE_INMEMORY_FOR_ENT('RIDX1', network_owner=>'RDFUSER',
network_name=>'NET1');

15.86 SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH
Format

SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH(
 inferred_graph_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables in-memory population of RDF data for an inferred graph in an RDF network.

Parameters

inferred_graph_name
Name of the inferred graph.

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 125 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables in-memory population of RDF data for the inferred graph
RIDX1 in the RDF network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH('RIDX1', network_owner=>'RDFUSER',
network_name=>'NET1');

15.87 SEM_APIS.ENABLE_INMEMORY_FOR_MODEL
Format

SEM_APIS.ENABLE_INMEMORY_FOR_MODEL(
 model_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH subprogram instead.

Description

Enables in-memory population of RDF data for a model in a semantic network.

Parameters

model_name
Name of the model.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about semantic network types and options, see RDF Networks.

Chapter 15
SEM_APIS.ENABLE_INMEMORY_FOR_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 126 of 208

Examples

The following example enables in-memory population of RDF data for model M1 in the
semantic network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.ENABLE_INMEMORY_FOR_MODEL('M1', network_owner=>'RDFUSER',
network_name=>'NET1');

15.88 SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH
Format

SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables in-memory population of RDF data for a graph in an RDF network.

Parameters

rdf_graph_name
Name of the RDF graph.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle AI Database In-Memory.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables in-memory population of RDF data for graph M1 in the RDF
network named NET1 owned by RDFUSER.

EXECUTE SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH('M1', network_owner=>'RDFUSER',
network_name=>'NET1');

15.89 SEM_APIS.ENABLE_NETWORK_SHARING
Format

SEM_APIS.ENABLE_NETWORK_SHARING(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 127 of 208

Description

Enables sharing of an RDF network.

Parameters

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

options
(Reserved for future use)

Usage Notes

To use this procedure, you must have DBA privileges or be the owner of the specified network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example enables sharing of the mynetwork schema-private network owned by
database user scott.

EXECUTE SEM_APIS.ENABLE_NETWORK_SHARING('scott', 'mynetwork');

15.90 SEM_APIS.ESCAPE_CLOB_TERM
Format

SEM_APIS.ESCAPE_CLOB_TERM(
 term IN CLOB CHARACTER SET ANY_CS,
 utf_encode IN NUMBER DEFAULT 1,
 options IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN CLOB CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters escaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

term
The RDF term to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters other than
chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise, such characters
will not be escaped.

options
Reserved for future use.

Chapter 15
SEM_APIS.ESCAPE_CLOB_TERM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 128 of 208

http://www.w3.org/TR/rdf-testcases/#ntriples

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query RDF Data.

Examples

The following example escapes an input RDF term containing TAB and NEWLINE characters.

SELECT SEM_APIS.ESCAPE_CLOB_TERM('"abc' || chr(9) || 'def' || chr(10) || 'hij"^^<http://
www.w3.org/2001/XMLSchema#string>')
 FROM DUAL;

15.91 SEM_APIS.ESCAPE_CLOB_VALUE
Format

SEM_APIS.ESCAPE_CLOB_VALUE(
 val IN CLOB CHARACTER SET ANY_CS,
 start_offset IN NUMBER DEFAULT 1,
 end_offset IN NUMBER DEFAULT 0,
 utf_encode IN NUMBER DEFAULT 1,
 include_start IN NUMBER DEFAULT 0,
 options IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters escaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

val
The CLOB text to escape.

start_offset
The offset in val from which to start character escaping. The default (1) causes escaping to
start at the first character of val.

end_offset
The offset in val from which to end character escaping. The default (0) causes escaping to
continue through the end of val.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters other than
chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise, such characters
will not be escaped.

include_start
Set to 1 if the characters in val from 1 to start_offset should be prefixed (prepended) to the
return value. Otherwise, no such characters will be prefixed to the return value.

Chapter 15
SEM_APIS.ESCAPE_CLOB_VALUE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 129 of 208

http://www.w3.org/TR/rdf-testcases/#ntriples

options
Reserved for future use.

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query RDF Data.

Examples

The following example escapes an input character string containing TAB and NEWLINE
characters.

SELECT SEM_APIS.ESCAPE_CLOB_VALUE('abc' || chr(9) || 'def' || chr(10) || 'hij')
 FROM DUAL;

15.92 SEM_APIS.ESCAPE_RDF_TERM
Format

SEM_APIS.ESCAPE_RDF_TERM(
 term IN VARCHAR2 CHARACTER SET ANY_CS,
 utf_encode IN NUMBER DEFAULT 1,
 options IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters escaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

term
The RDF term to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters other than
chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise, such characters
will not be escaped.

options
Reserved for future use.

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query RDF Data.

Examples

The following example escapes an input RDF term containing TAB and NEWLINE characters.

Chapter 15
SEM_APIS.ESCAPE_RDF_TERM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 130 of 208

http://www.w3.org/TR/rdf-testcases/#ntriples

SELECT SEM_APIS.ESCAPE_RDF_TERM('"abc' || chr(9) || 'def' || chr(10) || 'hij"^^<http://
www.w3.org/2001/XMLSchema#string>')
 FROM DUAL;

15.93 SEM_APIS.ESCAPE_RDF_VALUE
Format

SEM_APIS.ESCAPE_RDF_VALUE(
 val IN VARCHAR2 CHARACTER SET ANY_CS,
 utf_encode IN NUMBER DEFAULT 1,
 allow_long IN NUMBER DEFAULT 0,
 options IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters escaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

val
The text to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters other than
chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise, such characters
will not be escaped.

allow_long
Set to 1 (default 0) if values longer than 4000 bytes should be allowed.

options
Reserved for future use.

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query RDF Data.

Examples

The following example escapes an input character string containing TAB and NEWLINE
characters.

SELECT SEM_APIS.ESCAPE_RDF_VALUE('abc' || chr(9) || 'def' || chr(10) || 'hij')
 FROM DUAL;

Chapter 15
SEM_APIS.ESCAPE_RDF_VALUE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 131 of 208

http://www.w3.org/TR/rdf-testcases/#ntriples

15.94 SEM_APIS.EXPORT_ENTAILMENT_STATS
Format

SEM_APIS.EXPORT_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULTNULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Exports statistics for a specified entailment and stores them in the user statistics table.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
entailment statistics.
Specifying cascade also exports all index statistics associated with the entailment.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example exports statistics for an entailment named OWLTST_IDX and stores them
in a table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_ENTAILMENT_STATS('owltst_idx', 'stat_table');

15.95 SEM_APIS.EXPORT_MODEL_STATS
Format

SEM_APIS.EXPORT_MODEL_STATS (
 model_name IN VARCHAR2,
 stattab IN VARCHAR2,

Chapter 15
SEM_APIS.EXPORT_ENTAILMENT_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 132 of 208

 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Exports statistics for a specified model and stores them in the user statistics table.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference.
Specifying cascade also exports all index statistics associated with the model.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example exports statistics for a model named FAMILY and stores them in a table
named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_MODEL_STATS('family', 'stat_table');

15.96 SEM_APIS.EXPORT_RDFVIEW_GRAPH
Format

SEM_APIS.EXPORT_RDFVIEW_GRAPH(
 rdf_graph_name IN VARCHAR2,
 rdf_table_owner IN VARCHAR2 DEFAULT NULL,
 rdf_table_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Exports (materializes) the virtual RDF triples of an RDF view to a staging table.

Chapter 15
SEM_APIS.EXPORT_RDFVIEW_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 133 of 208

Parameters

rdf_graph_name
Name of the RDF view to be exported.

rdf_table_owner
Name of the schema that owns the staging table where the RDF triples obtained from the RDF
view are to be stored.

rdf_table_name
Name of the staging table where the RDF triples obtained from the RDF view are to be stored.

options
(Reserved for future use)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must have the SELECT privilege for the database view SEMM_<model_name>.

For more information about RDF views, see RDF Views: Relational Data as RDF. For
information about exporting RDF views, see Exporting Virtual Content of an RDF View into a
Staging Table.

For information about RDF network types and options, see RDF Networks.

Examples

The following example exports RDF triples from RDF view empdb_model to the staging table
SCOTT.RDFTAB.

BEGIN
 sem_apis.export_rdfview_graph(
 rdf_graph_name => 'empdb_model',
 rdf_table_owner => 'SCOTT',
 rdf_table_name => 'RDFTAB'
);
END;
/

15.97 SEM_APIS.EXPORT_RDFVIEW_MODEL
Format

SEM_APIS.EXPORT_RDFVIEW_MODEL(
 model_name IN VARCHAR2,
 rdf_table_owner IN VARCHAR2 DEFAULT NULL,
 rdf_table_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.EXPORT_RDFVIEW_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 134 of 208

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.EXPORT_RDFVIEW_GRAPH subprogram instead.

Description

Exports (materializes) the virtual RDF triples of an RDF view to a staging table.

Parameters

model_name
Name of the RDF view to be exported.

rdf_table_owner
Name of the schema that owns the staging table where the RDF triples obtained from the RDF
view are to be stored.

rdf_table_name
Name of the staging table where the RDF triples obtained from the RDF view are to be stored.

options
(Reserved for future use)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You must have the SELECT privilege for the database view SEMM_<model_name>.

For more information about RDF views, see RDF Views: Relational Data as RDF. For
information about exporting RDF views, see Exporting Virtual Content of an RDF View into a
Staging Table.

For information about semantic network types and options, see RDF Networks.

Examples

The following example exports RDF triples from RDF view empdb_model to the staging table
SCOTT.RDFTAB.

BEGIN
 sem_apis.export_rdfview_model(
 model_name => 'empdb_model',
 rdf_table_owner => 'SCOTT',
 rdf_table_name => 'RDFTAB'
);
END;
/

Chapter 15
SEM_APIS.EXPORT_RDFVIEW_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 135 of 208

15.98 SEM_APIS.GATHER_SPM_INFO
Format

SEM_APIS.GATHER_SPM_INFO (
 model_name IN VARCHAR2,
 pred_info_tabname IN DBMS_ID,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Gathers information about predicate use in a given RDF model.

For more information on SPM tables content, see Creating and Managing Result Tables.

Parameters

model_name
Name of the RDF model.

pred_info_tabname
Name of the table to be created to contain the information about predicate use.

tablespace_name
Name of the target tablespace for the pred_info_tabname table.

degree
Degree of parallelism.

options
String specifying the options to use during the operation.
Supported option is:
CREATE_ANYWAY=T: Truncate the table specified in pred_info_tabname.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

• The pred_info_tabname table will be created in the invoker’s schema.

• Invoker must have READ privilege for the RDF model.

Examples

The following example creates a new table M1_PRED_INFO in the invoker’s schema. This table
contains predicate use information for the specified model M1 in the RDF network named NET1
owned by RDFUSER.

 begin
 sem_apis.gather_spm_info(

Chapter 15
SEM_APIS.GATHER_SPM_INFO

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 136 of 208

 model_name => 'M1',
 pred_info_tabname => 'M1_PRED_INFO',
 degree => 2,
 network_owner => 'RDFUSER',
 network_name => 'NET1'
);
 end;

15.99 SEM_APIS.GET_CHANGE_TRACKING_INFO
Format

SEM_APIS.GET_CHANGE_TRACKING_INFO(
 model_name IN VARCHAR2,
 enabled OUT BOOLEAN,
 tracking_start_time OUT TIMESTAMP,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Returns change tracking information for a model.

Parameters

model_name
Name of the semantic technology model.

enabled
Boolean value returned by the procedure: TRUE if change tracking is enabled for the model, or
FALSE if change tacking is not enabled for the model.

tracking_start_time
Timestamp indicating when change tracking was enabled for the model (if it is enabled).

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

The model_name value must match a value in the MODEL_NAME column in the
SEM_MODEL$ view, which is described in Metadata for Models.

To enable change tracking for a set of models, use the
SEM_APIS.ENABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about RDF network types and options, see RDF Networks.

Examples

The following example displays change tracking information for a model.

DECLARE
 bEnabled boolean;

Chapter 15
SEM_APIS.GET_CHANGE_TRACKING_INFO

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 137 of 208

 tsEnabled timestamp;

BEGIN
 EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
 sem_apis.create_sem_model('m1','m1','t');

 sem_apis.enable_change_tracking(sem_models('m1'));

 sem_apis.get_change_tracking_info('m1', bEnabled, tsEnabled);
 dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else 'false' end);
 dbms_output.put_line('enabled at:' || tsEnabled);
END;
/

15.100 SEM_APIS.GET_INC_INF_INFO
Format

SEM_APIS.GET_INC_INF_INFO(
 entailment_name IN VARCHAR2,
 enabled OUT BOOLEAN,
 prev_inf_start_time OUT TIMESTAMP,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Returns incremental inference information for an entailment.

Parameters

entailment_name
Name of the entailment.

enabled
Boolean value returned by the procedure: TRUE if incremental inference is enabled for the
entailment, or FALSE if incremental inference is not enabled for the entailment.

prev_inf_start_time
Timestamp indicating when the entailment was most recently updated (if incremental inference
is enabled).

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

To enable incremental inference for an entailment, use the
SEM_APIS.ENABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about RDF network types and options, see RDF Networks.

Chapter 15
SEM_APIS.GET_INC_INF_INFO

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 138 of 208

Examples

The following example displays incremental inference information for an entailment.

DECLARE
 bEnabled boolean;
 tsEnabled timestamp;

DECLARE
 EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
 sem_apis.create_sem_model('m1','m1','t');

 sem_apis.create_entailment('m1_inf',sem_models('m1'),
sem_rulebases('owlprime'),null,null,'INC=T');

 sem_apis.get_inc_inf_info('m1_inf', bEnabled, tsEnabled);
 dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else 'false'
 end);
 dbms_output.put_line('enabled at:' || tsEnabled);
END
/

15.101 SEM_APIS.GET_MODEL_ID
Format

SEM_APIS.GET_MODEL_ID(
 model_name IN VARCHAR2
) RETURN NUMBER;

Description

Returns the model ID number of a semantic technology model.

Parameters

model_name
Name of the semantic technology model.

Usage Notes

The model_name value must match a value in the MODEL_NAME column in the
SEM_MODEL$ view, which is described in RDF Graphs.

Examples

The following example returns the model ID number for the model named articles. (This
example is an excerpt from Example 1-129 in Example: Journal Article Information.)

SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;

 MODEL_ID

 1

Chapter 15
SEM_APIS.GET_MODEL_ID

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 139 of 208

15.102 SEM_APIS.GET_MODEL_NAME
Format

SEM_APIS.GET_MODEL_NAME(
 model_id IN NUMBER
) RETURN VARCHAR2;

Description

Returns the model name of a semantic technology model.

Parameters

model_id
ID number of the semantic technology model.

Usage Notes

The model_id value must match a value in the MODEL_ID column in the SEM_MODEL$ view,
which is described in RDF Graphs.

Examples

The following example returns the model ID number for the model with the ID value of 1. This
example is an excerpt from Example 1-129 in Example: Journal Article Information.)

SQL> SELECT SEM_APIS.GET_MODEL_NAME(1) AS model_name FROM DUAL;

MODEL_NAME
--
ARTICLES

15.103 SEM_APIS.GET_PLAN_COST
Format

SEM_APIS.GET_PLAN_COST(
 query IN CLOB
) RETURN NUMBER;

Description

Gets the cost of the execution plan for the query.

Parameters

query
The input query string.

Chapter 15
SEM_APIS.GET_MODEL_NAME

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 140 of 208

Usage Notes

Examples

The following example gets the execution plan cost of the query.

SQL> SELECT sem_apis.get_plan_cost(q'[SELECT x, y
 2 FROM TABLE(sem_match(
 3 '{?x <email> ?y}',
 4 sem_models('m1'), null, null, null, null
 5 ,' ',null,null,'RDFUSER','MYNET')) order by 1,2]') pcost FROM DUAL;
 PCOST

 3
1 row selected.

15.104 SEM_APIS.GET_SQL
Format

SEM_APIS.GET_SQL(
 sparql_query IN CLOB,
 models IN RDF_MODELS DEFAULT NULL,
 rulebases IN RDF_RULEBASES DEFAULT NULL,
 aliases IN RDF_ALIASES DEFAULT NULL,
 index_status IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
 graphs IN RDF_GRAPHS DEFAULT NULL,
 named_graphs IN RDF_GRAPHS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL) RETURN CLOB;

Description

Translates a SPARQL query into a SQL query string that can be executed by an application
program.

Parameters

sparql_query
A string literal with one or more triple patterns, usually containing variables.

models
The model or models to use.

rulebases
One or more rulebases whose rules are to be applied to the query.

aliases
One or more namespaces to be used for expansion of qualified names in the query pattern.

index_status
The status of the relevant entailment for this query.

Chapter 15
SEM_APIS.GET_SQL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 141 of 208

options
Options that can affect the results of queries.

graphs
The set of named graphs from which to construct the default graph for the query.

named_graphs
The set of named graphs that can be matched by a GRAPH clause.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Before using this procedure, ensure you understand the material in Using the
SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example translates a SPARQL query into a SQL query string.

EXECUTE SEM_APIS.GET_SQL('SELECT ?s ?o { ?s <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> ?o }',
sem_models('m1'),null,null,null,'
',null,null,network_owner=>'RDFUSER',network_name=>'MYNET');

15.105 SEM_APIS.GET_TRIPLE_ID
Format

SEM_APIS.GET_TRIPLE_ID(
 model_id IN NUMBER,
 subject IN VARCHAR2,
 property IN VARCHAR2,
 object IN VARCHAR2
) RETURN VARCHAR2;

or

SEM_APIS.GET_TRIPLE_ID(
 model_name IN VARCHAR2,
 subject IN VARCHAR2,
 property IN VARCHAR2,
 object IN VARCHAR2
) RETURN VARCHAR2;

Description

Returns the ID of a triple in the specified semantic technology model, or a null value if the triple
does not exist.

Chapter 15
SEM_APIS.GET_TRIPLE_ID

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 142 of 208

Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID column
of the SEM_MODEL$ view, which is described in RDF Graphs.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME column of
the SEM_MODEL$ view, which is described in RDF Graphs.

subject
Subject. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which is
described in Statements.

property
Property. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which
is described in Statements.

object
Object. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which is
described in Statements.

Usage Notes

This function has two formats, enabling you to specify the semantic technology model by its
model number or its name.

Examples

The following example returns the ID number of a triple. (This example is an excerpt from
Example 1-129 in Example: Journal Article Information.)

SELECT SEM_APIS.GET_TRIPLE_ID(
 'articles',
 'http://nature.example.com/Article2',
 'http://purl.org/dc/terms/references',
 'http://nature.example.com/Article3') AS RDF_triple_id FROM DUAL;

RDF_TRIPLE_ID
--
2_9F2BFF05DA0672E_90D25A8B08C653A_46854582F25E8AC5

15.106 SEM_APIS.GETV$DATETIMETZVAL
Format

SEM_APIS.GETV$DATETIMETZVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN NUMBER;

Chapter 15
SEM_APIS.GETV$DATETIMETZVAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 143 of 208

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:dateTime typed literals, and returns a
null value for all other RDF terms. Greenwich Mean Time is used as the default time zone for
xsd:dateTime values without time zones.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all xsd:dateTime
literals in the RDF_VALUE$ table:

SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.107 SEM_APIS.GETV$DATETZVAL
Format

SEM_APIS.GETV$DATETZVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:date typed literals, and returns a null
value for all other RDF terms. Greenwich Mean Time is used as the default time zone for
xsd:date values without time zones.

Chapter 15
SEM_APIS.GETV$DATETZVAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 144 of 208

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all xsd:date literals
in the RDF_VALUE$ table:

SELECT SEM_APIS.GETV$DATETZVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.108 SEM_APIS.GETV$GEOMETRYVAL
Format

SEM_APIS.GETV$GEOMETRYVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
 long_value IN CLOB,
 srid IN NUMBER,
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object in the spatial reference system identified by an input
SRID for ogc:wktLiteral or ogc:gmlLiteral typed literals, and returns a null value for all other
RDF terms.

Parameters

value_type
Type of the RDF term.

Chapter 15
SEM_APIS.GETV$GEOMETRYVAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 145 of 208

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

long_value
CLOB value for long literals.

srid
Target coordinate system (spatial reference system) identifier for the SDO_GEOMETRY
object to be returned.

Usage Notes

ogc:wktLiteral and ogc:gmlLiteral values encode spatial reference system information in the
literal value itself (referred to as the source SRID).

If the srid parameter value (the target SRID) is different from the source SRID, the newly
created SDO_GEOMETRY object is transformed to the target SRID before it is returned.

This operation can be expensive in terms of performance.

For information about the SDO_GEOMETRY type (including SRID values), see Oracle Spatial
Developer's Guide.

Examples

The following example returns SDO_GEOMETRY values in the WGS84 (Longitude, Latitude)
spatial reference system (SRID 8307) for all geometry literals in the RDF_VALUE$ table:

SELECT SEM_APIS.GETV$GEOMETRYVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type, long_value, 8307)
 FROM RDF_VALUE$;

15.109 SEM_APIS.GETV$NUMERICVAL
Format

SEM_APIS.GETV$NUMERICVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN NUMBER;

Description

Returns a numeric value for XML Schema numeric typed literals, and returns a null value for all
other RDF terms.

Chapter 15
SEM_APIS.GETV$NUMERICVAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 146 of 208

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Examples

The following example returns numeric values for all numeric literals in the RDF_VALUE$
table:

SELECT SEM_APIS.GETV$NUMERICVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.110 SEM_APIS.GETV$STRINGVAL
Format

SEM_APIS.GETV$STRINGVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a VARCHAR2 string of the lexical form of plain literals and xsd:string typed literals,
and returns a null value for all other RDF terms. CHR(0) is returned for empty literals.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

Chapter 15
SEM_APIS.GETV$STRINGVAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 147 of 208

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Examples

The following example returns lexical values for all plain literals and xsd:string literals in the
RDF_VALUE$ table:

SELECT SEM_APIS.GETV$STRINGVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.111 SEM_APIS.GETV$TIMETZVAL
Format

SEM_APIS.GETV$TIMETZVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:time typed literals, and returns a null
value for all other RDF terms. Greenwich Mean Time is used as the default time zone for
xsd:time values without time zones. 2009-06-26 is used as the default date in all the generated
TIMESTAMP WITH TIME ZONE values.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Chapter 15
SEM_APIS.GETV$TIMETZVAL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 148 of 208

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Because xsd:time values include only a time but not a date, the returned TIMESTAMP WITH
TIME ZONE values (which include a date component) have 2009-06-26 added as the date.
This is done so that the returned values can be indexed internally, and so that the date is the
same for all of them.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values (using the default
2009-06-26 for the date) for all xsd:time literals in the RDF_VALUE$ table. (

SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.112 SEM_APIS.GRANT_MODEL_ACCESS_PRIV
Format

SEM_APIS.GRANT_MODEL_ACCESS_PRIV(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privilege IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV subprogram instead.

Description

Grants access privilege on a model or entailment.

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

privilege
Specifies the type of privilege that is granted. Currently allowed values include the following:

• QUERY: Query the model using SPARQL

Chapter 15
SEM_APIS.GRANT_MODEL_ACCESS_PRIV

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 149 of 208

• SELECT, READ: Retrieve model content using SQL. The source for the content is the
RDFT_<model> view in the network owner's schema or the view name, if any, specified for
the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the model or SQL
DML operations. For SQL DML, the target object is the RDFT_<model> view in the network
owner's schema.

Note

QUERY is the only valid choice if the model is not a regular model (that is, not created
using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model> view at
model creation time using sem_apis.create_sem_model or later, privilege is granted on that
view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index). (Additional words or phrases
may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

The recipient must already have query-only or full access to the semantic network (which
guarantees access to dictionary tables, but not individual models). This operation grants
access to the specified model.

Examples

The following example grants privilege to database user USER1 to use SPARQL query against a
semantic technology model named articles in the schema-private network NET1 owned by
database user RDFUSER. (This example refers to the model described in Example 1-129.)

EXECUTE SEM_APIS.GRANT_MODEL_ACCESS_PRIV('articles', 'USER1', 'QUERY',
network_owner=>'RDFUSER', network_name=>'NET1');

15.113 SEM_APIS.GRANT_MODEL_ACCESS_PRIVS
Format

SEM_APIS.GRANT_MODEL_ACCESS_PRIVS(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 priv_list IN SYS.ODCIVARCHAR2LIST,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 150 of 208

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS subprogram instead.

Description

Grants access privileges on a model or entailment.

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

priv_list
Specifies the list of privileges that are granted. Currently allowed values include the following:

• QUERY: Query the model using SPARQL

• SELECT, READ: Retrieve model content using SQL. The source for the content is the
RDFT_<model> view in the network owner's schema or the view name, if any, specified for
the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the model or SQL
DML operations. For SQL DML, the target object is the RDFT_<model> view in the network
owner's schema.

Note

QUERY is the only valid choice if the model is not a regular model (that is, not created
using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model> view at
model creation time using sem_apis.create_sem_model or later, privileges are granted on that
view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index).(Additional words or phrases
may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

The recipient must already have query-only or full access to the semantic network (which
guarantees access to dictionary tables, but not individual models). This operation grants
access to the specified model.

Chapter 15
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 151 of 208

Examples

The following example grants privileges to perform DML operations against a semantic
technology model named articles in the schema-private network NET1 owned by database
user RDFUSER. (This example refers to the model described in Example 1-129.)

EXECUTE SEM_APIS.GRANT_MODEL_ACCESS_PRIVS('articles', 'USER1',
sys.odcivarchar2list('INSERT','UPDATE','DELETE'), network_owner=>'RDFUSER',
network_name=>'NET1');

15.114 SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS
Format

SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 network_user IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Description

Grants query-only or full access privileges to a database user other than the owner of a
schema-private RDF network.

Parameters

network_owner
Owner of the RDF network. (Cannot be MDSYS.)

network_name
Name of the RDF network. (Must be a schema-private network.)

network_user
Database user (other than the network owner) to which to grant access privileges to the
network.

options
String specifying options for access using the form OPTION_NAME=option_value. By default,
full access privileges are given; but to give query-only access, specify QUERY_ONLY=T for the
option value.

Usage Notes

You must have DBA privileges or be the owner of the specified network to call this procedure.

For information about RDF network types and options, see RDF Networks.

Examples

The following example grants full access on the mynet1 network owned by scott to rdfuser1.

EXECUTE SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS('scott','mynet1','rdfuser1');

The following example grants query-only access on the mynet1 network owned by scott to
rdfuser2.

EXECUTE SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS('scott','mynet1','rdfuser2', options=>'
QUERY_ONLY=T ');

Chapter 15
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 152 of 208

15.115 SEM_APIS.GRANT_NETWORK_SHARING_PRIVS
Format

SEM_APIS.GRANT_NETWORK_SHARING_PRIVS(
 network_owner IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Note

You can skip the GRANT_NETWORK_SHARING_PRIVS procedure in Oracle AI Database
26ai.

Description

Grants to a database user the privileges required for sharing, with other database users, any
schema-private networks owned (currently or in the future) by the database user.

Parameters

network_owner
Owner of the RDF network. (See Table 1-2.)

options
(Reserved for future use)

Usage Notes

You must have DBA privileges to call this procedure.

For information about RDF network types and options, see RDF Networks.

Examples

The following example grants to database user scott the privileges for sharing any schema-
private networks that this user owns or will own.

EXECUTE SEM_APIS.GRANT_NETWORK_SHARING_PRIVS('scott');

15.116 SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV
Format

SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV(
 rdf_graph_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privilege IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Grants access privilege on an RDF graph or inferred graph.

Chapter 15
SEM_APIS.GRANT_NETWORK_SHARING_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 153 of 208

Parameters

rdf_graph_name
Name of the RDF graph.

user_name
Database user that is recipient of this privilege.

privilege
Specifies the type of privilege that is granted. Currently allowed values include the following:

• QUERY: Query the RDF graph using SPARQL

• SELECT, READ: Retrieve the RDF graph content using SQL. The source for the content is
the RDFT_<rdf_graph> view in the network owner's schema or the view name, if any,
specified for the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the RDF graph or
SQL DML operations. For SQL DML, the target object is the RDFT_<rdf_graph_name> view
in the network owner's schema.

Note

QUERY is the only valid choice if the RDF graph is not a regular RDF graph (that is, not
created using sem_apis.create_rdf_graph).

user_view
Applicable to schema-private network only. If a view was created on the
RDFT_<rdf_graph_name> view at RDF graph creation time using sem_apis.create_rdf_graph
or later, privilege is granted on that view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
rdf_graph_name is taken as the name of an inferred graph (rules index). (Additional words or
phrases may be allowed in future.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

The recipient must already have query-only or full access to the RDF network (which
guarantees access to dictionary tables, but not individual RDF graphs). This operation grants
access to the specified RDF graph.

Examples

The following example grants privilege to database user USER1 to use SPARQL query against a
semantic technology RDF graph named articles in the schema-private network NET1 owned
by database user RDFUSER. (This example refers to the RDF graph described in
Example 1-129.)

EXECUTE SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV('articles', 'USER1', 'QUERY',
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 15
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 154 of 208

15.117 SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS
Format

SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS(
 rdf_graph_name IN VARCHAR2,
 user_name IN VARCHAR2,
 priv_list IN SYS.ODCIVARCHAR2LIST,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Grants access privileges on an RDF graph or inferred graph.

Parameters

rdf_graph_name
Name of the RDF graph.

user_name
Database user that is recipient of this privilege.

priv_list
Specifies the list of privileges that are granted. Currently allowed values include the following:

• QUERY: Query the RDF graph using SPARQL

• SELECT, READ: Retrieve the RDF graph content using SQL. The source for the content is
the RDFT_<rdf_graph_name> view in the network owner's schema or the view name, if any,
specified for the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the RDF graph or
SQL DML operations. For SQL DML, the target object is the RDFT_<rdf_graph_name> view
in the network owner's schema.

Note

QUERY is the only valid choice if the RDF graph is not a regular graph (that is, not
created using sem_apis.create_rdf_graph).

user_view
Applicable to schema-private network only. If a view was created on the
RDFT_<rdf_graph_name> view at RDF graph creation time using sem_apis.create_rdf_graph
or later, privileges are granted on that view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
rdf_graph_name is taken as the name of an inferred graph (rules index).(Additional words or
phrases may be allowed in future.)

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 155 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

The recipient must already have query-only or full access to the RDF network (which
guarantees access to dictionary tables, but not individual RDF graphs). This operation grants
access to the specified RDF graph.

Examples

The following example grants privileges to perform DML operations against a semantic
technology RDF graph named articles in the schema-private network NET1 owned by
database user RDFUSER. (This example refers to the RDF graph described in Example 1-129.)

EXECUTE SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS('articles', 'USER1',
sys.odcivarchar2list('INSERT','UPDATE','DELETE'), network_owner=>'RDFUSER',
network_name=>'NET1');

15.118 SEM_APIS.IMPORT_ENTAILMENT_STATS
Format

SEM_APIS.IMPORT_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT FALSE,
 force IN BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Retrieves statistics for an entailment from a user statistics table and stores them in the
dictionary.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
entailment statistics.
Specifying cascade also exports all index statistics associated with the model.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.IMPORT_ENTAILMENT_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 156 of 208

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for the RDF Graphs and RDF Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example imports statistics for an entailment named OWLTST_IDX from a table
named STAT_TABLE.

EXECUTE SEM_APIS.IMPORT_ENTAILMENT_STATS('owltst_idx', 'stat_table');

15.119 SEM_APIS.IMPORT_MODEL_STATS
Format

SEM_APIS.IMPORT_MODEL_STATS (
 model_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT FALSE,
 force IN BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Retrieves statistics for a specified model from a user statistics table and stores them in the
dictionary.

Parameters

model_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference.
Specifying cascade also imports all index statistics associated with the model.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Chapter 15
SEM_APIS.IMPORT_MODEL_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 157 of 208

For information about RDF network types and options, see RDF Networks.

Examples

The following example imports statistics for a model named FAMILY from a table named
STAT_TABLE, and stores them in the dictionary.

EXECUTE SEM_APIS.IMOPRT_MODEL_STATS('family', 'stat_table');

15.120 SEM_APIS.IS_TRIPLE
Format

SEM_APIS.IS_TRIPLE(
 model_id IN NUMBER,
 subject IN VARCHAR2,
 property IN VARCHAR2,
 object IN VARCHAR2) RETURN VARCHAR2;

or

SEM_APIS.IS_TRIPLE(
 model_name IN VARCHAR2,
 subject IN VARCHAR2,
 property IN VARCHAR2,
 object IN VARCHAR2) RETURN VARCHAR2;

Description

Checks if a statement is an existing triple in the specified model in the database.

Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID column
of the SEM_MODEL$ view, which is described in Metadata for Models.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME column of
the SEM_MODEL$ view, which is described in Metadata for Models.

subject
Subject. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which is
described in Statements.

property
Property. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which
is described in Statements.

object
Object. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which is
described in Statements.

Usage Notes

This function returns the string value FALSE, TRUE, or TRUE (EXACT):

• FALSE means that the statement is not a triple in the specified model the database.

Chapter 15
SEM_APIS.IS_TRIPLE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 158 of 208

• TRUE means that the statement matches the value of a triple or is the canonical
representation of the value of a triple in the specified model the database.

• TRUE (EXACT) means that the specified subject, property, and object values have exact
matches in a triple in the specified model in the database.

Examples

The following example checks if a statement is a triple in the database. In this case, there is an
exact match. (This example is an excerpt from Example 1-129 in Example: Journal Article
Information.)

SELECT SEM_APIS.IS_TRIPLE(
 'articles',
 'http://nature.example.com/Article2',
 'http://purl.org/dc/terms/references',
 'http://nature.example.com/Article3') AS is_triple FROM DUAL;

IS_TRIPLE
--
TRUE (EXACT)

15.121 SEM_APIS.LOAD_INTO_STAGING_TABLE
Format

SEM_APIS.LOAD_INTO_STAGING_TABLE(
 stagong_table IN VARCHAR2,
 source_table IN VARCHAR2,
 input_format IN VARCHAR2 DEFAULT NULL,
 parallel IN INTEGER DEFAULT NULL,
 staging_table_owner IN VARCHAR2 DEFAULT NULL,
 source_table_owner IN VARCHAR DEFAULT NULL,
 flags IN VARCHAR DEFAULT NULL);

Description

Loads data into a staging table from an external table mapped to an N-Triple or N-Quad format
input file.

Parameters

staging_table
Name of the staging table.

source_table
Name of the source external table.

input_format
Format of the input file mapped by the source external table: N-TRIPLE or N-QUAD

parallel
Degree of parallelism to use during the load.

staging_table_owner
Owner for the staging table being created. If not specified, the invoker is assumed to be the
owner.

Chapter 15
SEM_APIS.LOAD_INTO_STAGING_TABLE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 159 of 208

source_table_owner
Owner for the source table. If not specified, the invoker is assumed to be the owner.

flags
(Reserved for future use)

Usage Notes

For more information and an example, see Loading N-Quad Format Data into a Staging Table
Using an External Table.

Examples

The following example loads the staging table. (This example is an excerpt from
Example 1-109 in Loading N-Quad Format Data into a Staging Table Using an External Table.)

BEGIN
 sem_apis.load_into_staging_table(
 staging_table => 'STAGE_TABLE'
 ,source_table => 'stage_table_source'
 ,input_format => 'N-QUAD');
END;

15.122 SEM_APIS.LOOKUP_ENTAILMENT
Format

SEM_APIS.LOOKUP_ENTAILMENT (
 models IN SEM_MODELS,
 rulebases IN SEM_RULEBASES
) RETURN VARCHAR2;

Description

Returns the name of the entailment (rules index) based on the specified models and rulebases.

Parameters

models
One or more model names. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25)Rules and rulebases are explained in Inferencing: Rules
and Rulebases.

Usage Notes

For a rulebase index to be returned, it must be based on all specified models and rulebases.

Examples

The following example finds the entailment that is based on the family model and the RDFS
and family_rb rulebases. (It is an excerpt from Example 1-130 in Example: Family
Information.)

SELECT SEM_APIS.LOOKUP_ENTAILMENT(SEM_MODELS('family'),
 SEM_RULEBASES('RDFS','family_rb')) AS lookup_entailment FROM DUAL;

Chapter 15
SEM_APIS.LOOKUP_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 160 of 208

LOOKUP_ENTAILMENT
--
RDFS_RIX_FAMILY

15.123 SEM_APIS.MERGE_MODELS
Format

SEM_APIS.MERGE_MODELS(
 source_model IN VARCHAR2,
 destination_model IN VARCHAR2,
 rebuild_apptab_index IN BOOLEAN DEFAULT TRUE,
 drop_source_model IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.MERGE_RDF_GRAPHS subprogram instead.

Description

Inserts the content from a source model into a destination model, and updates the destination
application table.

Parameters

source_model
Name of the source model.

destination_model
Name of the destination model.

rebuild_apptab_index
TRUE causes indexes on the destination application table to be rebuilt after the models are
merged; FALSE does not rebuild any indexes.

drop_source_model
TRUE causes the source model (source_model) to be deleted after the models are merged;
FALSE (the default) does not delete the source model.

options
A comma-delimited string of options that overrides the default behavior of the procedure.
Currently, only the DOP (degree of parallelism) option is supported, to enable parallel execution
of this procedure and to specify the degree of parallelism to be associated with the operation.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Chapter 15
SEM_APIS.MERGE_MODELS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 161 of 208

Usage Notes

Before you merge any models, if you are using positional parameters, check to be sure that
you are specifying the correct models for the first and second parameters (source model for
the first, destination model for the second). This is especially important if you plan to specify
drop_source_model=TRUE.

If appropriate, make copies of the destination model or both models before performing the
merge. To make a copy of a model, use SEM_APIS.CREATE_SEM_MODEL to create an
empty model with the desired name for the copy, and use SEM_APIS.MERGE_MODELS to
populate the newly created copy as the destination model.

Some common uses for this procedure include the following:

• If you have read-only access to a model that you want to modify, you can clone that model
into an empty model on which you have full access, and then modify this latter model.

• If you want to consolidate multiple models, you can use this procedure as often as
necessary to merge the necessary models. Merging all models beforehand and using only
the merged model simplifies entailment and can improve entailment performance.

On a multi-core or multi-cpu machine, the DOP (degree of parallelism) option can be beneficial.
See Examples for an example that uses the DOP option.

If the source model is large, you may want to update the optimizer statistics on the destination
after the merge operation by calling the SEM_APIS.ANALYZE_MODEL procedure.

The following considerations apply to the use of this procedure:

• You must be the owner of the destination model and have SELECT privilege on the source
model. If drop_second_model=TRUE, you must also be owner of the source model.

• This procedure is not supported on virtual models (explained in Virtual Models).

• No table constraints are allowed on the destination application table.

For information about semantic network types and options, see RDF Networks.

Examples

The following example inserts the contents of model M1 into M2.

EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2');

The following example inserts the contents of model M1 into M2, and it specifies a degree of
parallelism of 4 (up to four parallel threads for execution of the merge operation).

EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2', null, null, 'DOP=4');

15.124 SEM_APIS.MERGE_RDF_GRAPHS
Format

SEM_APIS.MERGE_RDF_GRAPHS(
 source_rdf_graph IN VARCHAR2,
 destination_rdf_graph IN VARCHAR2,
 rebuild_apptab_index IN BOOLEAN DEFAULT TRUE,
 drop_source_rdf_graph IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.MERGE_RDF_GRAPHS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 162 of 208

Description

Inserts the content from a source RDF graph into a destination RDF graph, and updates the
destination application table.

Parameters

source_rdf_graph
Name of the source RDF graph.

destination_model
Name of the destination RDF graph.

rebuild_apptab_index
TRUE causes indexes on the destination application table to be rebuilt after the graphs are
merged; FALSE does not rebuild any indexes.

drop_source_rdf_graph
TRUE causes the source RDF graph (source_rdf_graph) to be deleted after the graphs are
merged; FALSE (the default) does not delete the source graph.

options
A comma-delimited string of options that overrides the default behavior of the procedure.
Currently, only the DOP (degree of parallelism) option is supported, to enable parallel execution
of this procedure and to specify the degree of parallelism to be associated with the operation.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Before you merge any RDF graphs, if you are using positional parameters, check to be sure
that you are specifying the correct graphs for the first and second parameters (source RDF
graph for the first, destination RDF graph for the second). This is especially important if you
plan to specify drop_source_rdf_graph=TRUE.

If appropriate, make copies of the destination graph or both the graphs before performing the
merge. To make a copy of an RDF graph, use SEM_APIS.CREATE_RDF_GRAPH to create an
empty graph with the desired name for the copy, and use SEM_APIS.MERGE_RDF_GRAPHS
to populate the newly created copy as the destination graph.

Some common uses for this procedure include the following:

• If you have read-only access to an RDF graph that you want to modify, you can clone that
graph into an empty graph on which you have full access, and then modify this latter
graph.

• If you want to consolidate multiple RDF graphs, you can use this procedure as often as
necessary to merge the necessary graphs. Merging all graphs beforehand and using only
the merged graph simplifies entailment and can improve entailment performance.

On a multi-core or multi-cpu machine, the DOP (degree of parallelism) option can be beneficial.
See Examples for an example that uses the DOP option.

If the source graph is large, you may want to update the optimizer statistics on the destination
after the merge operation by calling the SEM_APIS.ANALYZE_RDF_GRAPH procedure.

Chapter 15
SEM_APIS.MERGE_RDF_GRAPHS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 163 of 208

The following considerations apply to the use of this procedure:

• You must be the owner of the destination graph and have SELECT privilege on the source
graph. If drop_second_model=TRUE, you must also be owner of the source graph.

• This procedure is not supported on RDF graph collections (explained in RDF Graph
Collections).

• No table constraints are allowed on the destination application table.

For information about RDF network types and options, see RDF Networks.

Examples

The following example inserts the contents of graphl M1 into M2.

EXECUTE SEM_APIS.MERGE_RDF_GRAPHS('M1', 'M2');

The following example inserts the contents of graph M1 into M2, and it specifies a degree of
parallelism of 4 (up to four parallel threads for execution of the merge operation).

EXECUTE SEM_APIS.MERGE_RDF_GRAPHS('M1', 'M2', null, null, 'DOP=4');

15.125 SEM_APIS.MIGRATE_DATA_TO_CURRENT
Format

SEM_APIS.MIGRATE_DATA_TO_CURRENT(
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Migrates RDF data from before Oracle Database Release 21c data format to the format
needed for use with RDF in the current Oracle AI Database release.

Parameters

options
If you specify INS_AS_SEL=T, the migration is performed using a bulk load operation. If you do
not specify that value, then by default update operations are performed. See the Usage Notes
for more information.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

You must use this procedure to migrate RDF data created using versions of Oracle Database
earlier than Release 21c, as explained in Required Migration of Pre-12.2 RDF Data.

This procedure does not perform any operation on RDF data that is already in the current
format. It updates the definition of RDF network triggers, views, and PL/SQL packages in the
network owner’s schema.

Chapter 15
SEM_APIS.MIGRATE_DATA_TO_CURRENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 164 of 208

For the options parameter, if the amount of data to be migrated is small, the default (not
specifying the parameter) probably provides adequate performance. However, for large
amounts of data, specifying INS_AS_SEL=T can improve performance significantly.

This procedure must be run as the network owner.

Examples

The following example migrates Release 19 RDF data in a network named NET1 and owned
by RDFUSER to the format for the current Oracle AI Database version. It performs the
migration using a bulk load operation.

EXECUTE sem_apis.migrate_data_to_current('INS_AS_SEL=T', network_owner=>'RDFUSER',
network_name=>'NET1');

The following example migrates Release 19 RDF data in a network named NET1 and owned
by RDFUSER to the format for the current Oracle AI Database version. It performs the
migration using update operations (the default).

EXECUTE sem_apis.migrate_data_to_current(network_owner=>'RDFUSER', network_name=>'NET1');

15.126 SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2
Format

SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2(
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Migrates RDF data from escaped storage form to unescaped storage form.

Parameters

options
If you specify PARALLEL=<n>, the migration is performed using the specified degree of
parallelism. If you do not specify this option, then by default no parallel processing is used.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

It is strongly recommended that you use unescaped storage form for your RDF network,
because it reduces storage cost and improves query performance, while requiring no changes
to your existing applications.

This procedure must be run as the network owner.

After executing this procedure, a row with the following column values should be present in the
network’s RDF_PARAMETER table (described in RDF_PARAMETER Table in RDF Networks):

• Namespace: NETWORK

• Attribute: STORAGE_FORM

Chapter 15
SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 165 of 208

• Value: UNESC

• Description: Storage form setting for a RDF network.

See also Migrating from Escaped to Unescaped Storage Form.

Examples

The following example migrates an RDF network named NET1 owned by RDFUSER from
escaped storage form to unescaped storage form. A degree of parallelism of 4 is used for the
operation.

EXECUTE sem_apis.migrate_data_to_storage_v2(options=>' PARALLEL=4 ',
network_owner=>'RDFUSER', network_name=>'NET1');

The following example migrates an RDF network named NET1 owned by RDFUSER from
escaped storage form to unescaped storage form.

EXECUTE sem_apis.migrate_data_to_storage_v2(network_owner=>'RDFUSER',
network_name=>'NET1');

15.127 SEM_APIS.MOVE_RDF_NETWORK_DATA
Format

SEM_APIS.MOVE_RDF_NETWORK_DATA(
 dest_schema IN DBMS_ID,
 dest_tbs_name IN DBMS_ID DEFAULT NULL,
 degree IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Moves RDF network data from a source RDF network to a destination (staging) schema.

Parameters

dest_schema
The staging schema to which the RDF network data will be moved.

dest_tbs_name
The tablespace to use for objects created in the destination (staging) schema. If null, the
default tablespace for the destination schema will be used.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is no
parallel execution.

options
(Reserved for future use.)

network_owner
Owner of the source RDF network for the move operation. (See Table 1-2.)

network_name
Name of the source RDF network for the move operation. (See Table 1-2.)

Chapter 15
SEM_APIS.MOVE_RDF_NETWORK_DATA

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 166 of 208

Usage Notes

You must have DBA privileges to call this procedure.

For more information and examples, see Moving, Restoring, and Appending an RDF Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example moves an RDF network from the MYNET RDF network owned by
RDFADMIN to the RDFEXPIMPU staging schema>

EXECUTE
sem_apis.move_rdf_network_data(dest_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',networ
k_name=>'MYNET');

15.128 SEM_APIS.MOVE_SEM_NETWORK_DATA
Format

SEM_APIS.MOVE_SEM_NETWORK_DATA(
 dest_schema IN DBMS_ID,
 dest_tbs_name IN DBMS_ID DEFAULT NULL,
 degree IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.MOVE_RDF_NETWORK_DATA subprogram instead.

Description

Moves semantic network data from a source semantic network to a destination (staging)
schema.

Parameters

dest_schema
The staging schema to which the semantic network data will be moved.

dest_tbs_name
The tablespace to use for objects created in the destination (staging) schema. If null, the
default tablespace for the destination schema will be used.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is no
parallel execution.

options
(Reserved for future use.)

Chapter 15
SEM_APIS.MOVE_SEM_NETWORK_DATA

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 167 of 208

network_owner
Owner of the source semantic network for the move operation. (See Table 1-2.)

network_name
Name of the source semantic network for the move operation. (See Table 1-2.)

Usage Notes

You must have DBA privileges to call this procedure.

For more information and examples, see Moving, Restoring, and Appending an RDF Network.

For information about semantic network types and options, see RDF Networks.

Examples

The following example moves a semantic network from the MYNET semantic network owned
by RDFADMIN to the RDFEXPIMPU staging schema>

EXECUTE
sem_apis.move_sem_network_data(dest_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',networ
k_name=>'MYNET');

15.129 SEM_APIS.PURGE_UNUSED_VALUES
Format

SEM_APIS.PURGE_UNUSED_VALUES(
 flags IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Purges purges invalid geometry literal values from the RDF network.

Parameters

flags
An optional quoted string with one or more of the following keyword specifications:

• MBV_METHOD=SHADOW allows the use of a different value loading strategy that may lead to
faster processing when a large number of values need to be purged.

• PARALLEL=<integer> allows much of the processing to be done in parallel using the
specified integer degree of parallelism to be associated with the operation. If only
PARALLEL is specified without a degree, a default degree will be used.

• PUV_COMPUTE_VIDS_USED allows use of a different strategy that may lead to faster
processing when most of the values are expected to be purged.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.PURGE_UNUSED_VALUES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 168 of 208

Usage Notes

It is recommended that you execute this procedure after using
SEM_APIS.VALIDATE_GEOMETRIES to check that all geometry literals in the specified model
are valid for the provided SRID and tolerance values.

For more usage information and an extended example, see Purging Unused Values.

For information about RDF network types and options, see RDF Networks.

Examples

The following example purges unused values using a degree of parallelism of 4.

EXECUTE SEM_APIS.PURGE_UNUSED_VALUES(flags => 'PARALLEL=4', network_owner=>'RDFUSER',
network_name=>'NET1');

15.130 SEM_APIS.REFRESH_MATERIALIZED_VIEW
Format

SEM_APIS.REFRESH_MATERIALIZED_VIEW (
 mv_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Refreshes a materialized join view for an RDF graph stored in Oracle AI Database.

Parameters

mv_name
Name of the materialized view to refresh.

options
(Reserved for future use.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about RDF network types and options, see RDF Networks.

Examples

The following example refreshes the materialized view MVX.

EXECUTE SEM_APIS.REFRESH_MV_BITMAP_INDEX('MVX');

Chapter 15
SEM_APIS.REFRESH_MATERIALIZED_VIEW

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 169 of 208

15.131 SEM_APIS.REFRESH_NETWORK_INDEX_INFO
Format

SEM_APIS.REFRESH_NETWORK_INDEX_INFO(
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Refreshes the information about RDF network indexes.

Parameters

options
(Reserved for future use)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure updates the information in the SEM_NETWORK_INDEX_INFO view, which is
described in SEM_NETWORK_INDEX_INFO View.

For information about RDF network types and options, see RDF Networks.

Examples

The following example refreshes the information about RDF network indexes.

EXECUTE sem_apis.refresh_network_index_info;

15.132 SEM_APIS.REFRESH_QUERY_STATE
Format

SEM_APIS.REFRESH_QUERY_STATE(
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL
);

Description

Invalidates cursors for SEM_MATCH queries that reference a constant RDF term that does not
exist in the RDF_VALUE$ table of the specified RDF network at the time of query compilation.

Parameters

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.REFRESH_NETWORK_INDEX_INFO

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 170 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure is relevant in the following sequence of operations.

1. A SEM_MATCH query Q that references a constant C that does not exist in RDF_VALUE$ is
executed.

2. An RDF triple that contains the constant C is inserted into the RDF network.

3. The identical SEM_MATCH query Q is executed again.

At step 3, you may not get the results that include the new value C. This problem can be
eliminated by running SEM_APIS.REFRESH_QUERY_STATE between steps 2 and 3.

Examples

The following example invalidates cursors for SEM_MATCH queries that reference a non-
existing constant:

EXECUTE SEM_APIS.REFRESH_QUERY_STATE(network_owner=>'RDFUSER',
network_name=>'RDF_NETWORK');

15.133 SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO
Format

SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO(
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.REFRESH_NETWORK_INDEX_INFO subprogram instead.

Description

Refreshes the information about semantic network indexes.

Parameters

options
(Reserved for future use)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This procedure updates the information in the SEM_NETWORK_INDEX_INFO view, which is
described in SEM_NETWORK_INDEX_INFO View.

Chapter 15
SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 171 of 208

For information about semantic network types and options, see RDF Networks.

Examples

The following example refreshes the information about semantic network indexes.

EXECUTE sem_apis.refresh_sem_network_index_info;

15.134 SEM_APIS.RENAME_ENTAILMENT
Format

SEM_APIS.RENAME_ENTAILMENT(
 old_name IN VARCHAR2,
 new_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.RENAME_INFERRED_GRAPH subprogram instead.

Description

Renames an entailment (rules index).

Parameters

old_name
Name of the existing entailment to be renamed.

new_name
New name for the entailment.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

For information about semantic network types and options, see RDF Networks.

Examples

The following example renames a entailment named OWLTST_IDX to MY_OWLTST_IDX.

EXECUTE sem_apis.rename_entailment('owltst_idx', 'my_owltst_idx');

15.135 SEM_APIS.RENAME_INFERRED_GRAPH
Format

SEM_APIS.RENAME_INFERRED_GRAPH(
 old_name IN VARCHAR2,

Chapter 15
SEM_APIS.RENAME_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 172 of 208

 new_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Renames an inferred graph (rules index).

Parameters

old_name
Name of the existing inferred graph to be renamed.

new_name
New name for the inferred graph.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

For information about RDF network types and options, see RDF Networks.

Examples

The following example renames an inferred graph named OWLTST_IDX to MY_OWLTST_IDX.

EXECUTE sem_apis.rename_inferred_graph('owltst_idx', 'my_owltst_idx');

15.136 SEM_APIS.RENAME_MODEL
Format

SEM_APIS.RENAME_MODEL(
 old_name IN VARCHAR2,
 new_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.RENAME_RDF_GRAPH subprogram instead.

Description

Renames a model.

Parameters

old_name
Name of the existing model to be renamed.

Chapter 15
SEM_APIS.RENAME_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 173 of 208

new_name
New name for the model.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

The following considerations apply to the use of this procedure:

• You must be the owner of the existing model.

• This procedure is not supported on virtual models (explained in Virtual Models).

Contrast this procedure with SEM_APIS.SWAP_NAMES, which swaps (exchanges) the names
of two existing models.

For information about semantic network types and options, see RDF Networks.

Examples

The following example renames a model named MODEL1 to MODEL2.

EXECUTE sem_apis.rename_model('model1', 'model2');

15.137 SEM_APIS.RENAME_RDF_GRAPH
Format

SEM_APIS.RENAME_RDF_GRAPH(
 old_name IN VARCHAR2,
 new_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Renames an RDF graph.

Parameters

old_name
Name of the existing RDF graph to be renamed.

new_name
New name for the RDF graph.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

The following considerations apply to the use of this procedure:

• You must be the owner of the existing RDF graph.

Chapter 15
SEM_APIS.RENAME_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 174 of 208

• This procedure is not supported on RDF graph collections (explained in RDF Graph
Collections).

Contrast this procedure with SEM_APIS.SWAP_NAMES, which swaps (exchanges) the names
of two existing graphs.

For information about RDF network types and options, see RDF Networks.

Examples

The following example renames a graph named G1 to G2.

EXECUTE sem_apis.rename_rdf_graph('g1', 'g2');

15.138 SEM_APIS.RES2VID
Format

SEM_APIS.RES2VID(
 vTab IN VARCHAR2,
 uri IN VARCHAR2,
 lt IN VARCHAR2 DEFAULT NULL,
 lang IN VARCHAR2 DEFAULT NULL,
 lval IN CLOB DEFAULT NULL,
 vtyp IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN NUMBER;

Description

Returns the VALUE_ID for the canonical version of an RDF term, or NULL if the term does not
exist in the values table.

Parameters

vTab
Values table to query for the VALUE_ID value. (Usually RDF_VALUE$)

uri
Prefix value of the RDF term.

lt
Data type URI of a types literal to look up. Do not include the enclosing angle brackets (‘<’ and
‘>’).

lang
Language tag of a language tagged literal to look up.

lval
The plain literal portion of a long literal to look up.

vtyp
The type of value:

• PL: Plain literal

• TL: Typed literal

• UR: URI/IRI

Chapter 15
SEM_APIS.RES2VID

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 175 of 208

• BN: Blank node

• PL@ language: Tagged literal

The value type is determined automatically if this parameter is NULL.

max_vc_len
The maximum allowed length of a VARCHAR RDF term: 32767 or 4000 (the default).

Usage Notes

For information about the components of an RDF term stored in the RDF_VALUE$ table, see
RDF Metadata Tables and Views..

Examples

The following example returns VALUE_ID values for the canonical versions of RDF terms.
Comments before each SQL statement describe the purpose of the statement.

-- Look up the VALUE_ID for the RDF term <http://www.example.com/a>.
SELECT sem_apis.res2vid('RDF_VALUE$','<http://www.example.com/a>') FROM DUAL;

-- Look up the VALUE_ID for the RDF term "abc".
SELECT sem_apis.res2vid('RDF_VALUE$','"abc"') FROM DUAL;

-- Look up the VALUE_ID for the RDF term "10"^^<http://www.w3.org/2001/
XMLSchema#decimal>.
SELECT sem_apis.res2vid('RDF_VALUE$','"10"','http://www.w3.org/2001/XMLSchema#decimal')
FROM DUAL;

-- Look up the VALUE_ID for the RDF term "abc"@en.
SELECT sem_apis.res2vid('RDF_VALUE$','"abc"',lang=>'en') FROM DUAL;

-- Look up the VALUE_ID for the long literal RDF term '"a CLOB literal"'.
SELECT sem_apis.res2vid('RDF_VALUE$',null,lval=>'"a CLOB literal"') FROM DUAL;

15.139 SEM_APIS.RESTORE_RDF_NETWORK_DATA
Format

SEM_APIS.RESTORE_RDF_NETWORK_DATA(
 from_schema DBMS_ID,
 degree INTEGER DEFAULT NULL,
 options VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Restores moved RDF network data from a staging schema back into a source RDF network.

Parameters

from_schema
The staging schema that contains moved RDF network data to be restored.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is no
parallel execution.

Chapter 15
SEM_APIS.RESTORE_RDF_NETWORK_DATA

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 176 of 208

options
String specifying any options to use during the append operation. Supported options are:

• PURGE=T – drop all remaining RDF network data in the staging schema after the append
operation completes.

network_owner
Owner of the destination RDF network for the restore operation. (See Table 1-2.)

network_name
Name of the destination RDF network for the restore operation. (See Table 1-2.)

Usage Notes

Partition exchange operations rather than SQL INSERT statements are used to move most of
the data during the append operation, so the staging schema will no longer contain complete
RDF network data after the restore operation is complete.

Moved RDF network data can only be restored into the original source RDF network from
which it was moved.

You must have DBA privileges to call this procedure.

For more information, see Moving, Restoring, and Appending an RDF Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example restores an RDF network from the RDFEXPIMPU staging schema into
the MYNET RDF network owned by RDFADMIN.

EXECUTE
sem_apis.restore_rdf_network_data(from_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',net
work_name=>'MYNET');

15.140 SEM_APIS.RESTORE_SEM_NETWORK_DATA
Format

SEM_APIS.RESTORE_SEM_NETWORK_DATA(
 from_schema DBMS_ID,
 degree INTEGER DEFAULT NULL,
 options VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.RESTORE_RDF_NETWORK_DATA subprogram instead.

Description

Restores moved semantic network data from a staging schema back into a source semantic
network.

Chapter 15
SEM_APIS.RESTORE_SEM_NETWORK_DATA

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 177 of 208

Parameters

from_schema
The staging schema that contains moved semantic network data to be restored.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is no
parallel execution.

options
String specifying any options to use during the append operation. Supported options are:

• PURGE=T – drop all remaining semantic network data in the staging schema after the
append operation completes.

network_owner
Owner of the destination semantic network for the restore operation. (See Table 1-2.)

network_name
Name of the destination semantic network for the restore operation. (See Table 1-2.)

Usage Notes

Partition exchange operations rather than SQL INSERT statements are used to move most of
the data during the append operation, so the staging schema will no longer contain complete
semantic network data after the restore operation is complete.

Moved semantic network data can only be restored into the original source semantic network
from which it was moved.

You must have DBA privileges to call this procedure.

For more information, see Moving, Restoring, and Appending an RDF Network.

For information about semantic network types and options, see RDF Networks.

Examples

The following example restores a semantic network from the RDFEXPIMPU staging schema
into the MYNET semantic network owned by RDFADMIN.

EXECUTE
sem_apis.restore_sem_network_data(from_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',net
work_name=>'MYNET');

15.141 SEM_APIS.REVOKE_MODEL_ACCESS_PRIV
Format

SEM_APIS.REVOKE_MODEL_ACCESS_PRIV(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privilege IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.REVOKE_MODEL_ACCESS_PRIV

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 178 of 208

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV subprogram instead.

Description

Revokes access privilege on a model or entailment.

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

privilege
Specifies the type of privilege that is granted. Currently allowed values include the following:

• QUERY: Query the model using SPARQL

• SELECT, READ: Retrieve model content using SQL. The source for the content is the
RDFT_<model> view in the network owner's schema or the view name, if any, specified for
the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the model or SQL
DML operations. For SQL DML, the target object is the RDFT_<model> view in the network
owner's schema.

Note

QUERY is the only valid choice if the model is not a regular model (that is, not created
using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model> view at
model creation time using sem_apis.create_sem_model or later, privilege is revoked on that
view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index). (Additional words or phrases
may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This does not affect the recipient's query-only or full access to the semantic network (which
guarantees access to dictionary tables, but not individual models). This operation revokes
access to the specified model only.

Chapter 15
SEM_APIS.REVOKE_MODEL_ACCESS_PRIV

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 179 of 208

Examples

The following example revokes privilege from database user USER1 for use of SPARQL query
against a semantic technology model named articles in the schema-private network NET1
owned by database user RDFUSER. (This example refers to the model described in
Example 1-129.)

EXECUTE SEM_APIS.REVOKE_MODEL_ACCESS_PRIV('articles', 'USER1', 'QUERY',
network_owner=>'RDFUSER', network_name=>'NET1');

15.142 SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS
Format

SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 priv_list IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS subprogram instead.

Description

Revokes access privileges on a model or entailment.

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

priv_list
Specifies the type of privilege that is granted. Currently allowed values include the following:

• QUERY: Query the model using SPARQL

• SELECT, READ: Retrieve model content using SQL. The source for the content is the
RDFT_<model> view in the network owner's schema or the view name, if any, specified for
the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the model or SQL
DML operations. For SQL DML, the target object is the RDFT_<model> view in the network
owner's schema.

Chapter 15
SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 180 of 208

Note

QUERY is the only valid choice if the model is not a regular model (that is, not created
using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model> view at
model creation time using sem_apis.create_sem_model or later, privileges are revoked on that
view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index). (Additional words or phrases
may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This does not affect the recipient's query-only or full access to the semantic network (which
guarantees access to dictionary tables, but not individual models). This operation revokes
access to the specified model only.

Examples

The following example revokes privilege from database user USER1 for performing DML
operations against a semantic technology model named articles in the schema-private
network NET1 owned by database user RDFUSER. (This example refers to the model described in
Example 1-129.)

EXECUTE SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS('articles', 'USER1',
sys.odcivarchar2list('INSERT','UPDATE','DELETE'), network_owner=>'RDFUSER',
network_name=>'NET1');

15.143 SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS
Format

SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 network_user IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Description

Revokes access privileges from a database user other than the owner of a schema-private
RDF network.

Chapter 15
SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 181 of 208

Parameters

network_owner
Owner of the RDF network. (Cannot be MDSYS.)

network_name
Name of the RDF network. (Must be a schema-private network.)

network_user
Database user (other than the network owner) from which to revoke access privileges to the
network.

options
String specifying options for access using the form OPTION_NAME=option_value.
If CASCADE=T is specified, any RDF objects owned by the database user will be dropped as
part of this operation.

Usage Notes

You must have DBA privileges or be the owner of the specified network to call this procedure.

If the database user (network_user) owns any RDF objects in the schema-private network and
if CASCADE=T is not specified, an error will be raised.

For information about RDF network types and options, see RDF Networks.

Examples

The following example revokes full access on the mynet1 network owned by scott from
rdfuser1.

EXECUTE SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS('scott','mynet1','rdfuser1');

15.144 SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS
Format

SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS(
 network_owner IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Note

You can skip the REVOKE_NETWORK_SHARING_PRIVS procedure in Oracle AI Database
26ai.

Description

Revokes from a database user the privileges required for sharing, with other database users,
any schema-private networks owned (currently or in the future) by the database user

Parameters

network_owner
Owner of the network. (Cannot be MDSYS.)

Chapter 15
SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 182 of 208

options
(Reserved for future use)

Usage Notes

You must have DBA privileges to call this procedure.

If the database user owns at least one schema-private network that has sharing enabled, an
exception will be raised. (The user must first disable sharing of any such networks.)

For information about RDF network types and options, see RDF Networks.

Examples

The following example revokes from database user scott the privileges for sharing any
schema-private networks that this user owns or will own.

EXECUTE SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS('scott');

15.145 SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV
Format

SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV(
 rdf_graph_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privilege IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Revokes access privilege on an RDF graph or inferred graph.

Parameters

rdf_graph_name
Name of the RDF graph.

user_name
Database user that is recipient of this privilege.

privilege
Specifies the type of privilege that is granted. Currently allowed values include the following:

• QUERY: Query the RDF graph using SPARQL

• SELECT, READ: Retrieve RDF graph content using SQL. The source for the content is the
RDFT_<model> view in the network owner's schema or the view name, if any, specified for
the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the RDF graph or
SQL DML operations. For SQL DML, the target object is the RDFT_<rdf_graph_name> view
in the network owner's schema.

Chapter 15
SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 183 of 208

Note

QUERY is the only valid choice if the RDF graph is not a regular graph (that is, not
created using sem_apis.create_rdf_graph).

user_view
Applicable to schema-private network only. If a view was created on the
RDFT_<rdf_graph_name> view at RDF graph creation time using sem_apis.create_rdf_graph
or later, privilege is revoked on that view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
rdf_graph_name is taken as the name of an inferred graph (rules index). (Additional words or
phrases may be allowed in future.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This does not affect the recipient's query-only or full access to the RDF network (which
guarantees access to dictionary tables, but not individual RDF graphs). This operation revokes
access to the specified graph only.

Examples

The following example revokes privilege from database user USER1 for use of SPARQL query
against an RDF graph named articles in the schema-private network NET1 owned by
database user RDFUSER. (This example refers to the RDF graph described in Example 1-129.)

EXECUTE SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV('articles', 'USER1', 'QUERY',
network_owner=>'RDFUSER', network_name=>'NET1');

15.146 SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS
Format

SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS(
 rdf_graph_name IN VARCHAR2,
 user_name IN VARCHAR2,
 priv_list IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Revokes access privileges on an RDF graph or inferred graph.

Chapter 15
SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 184 of 208

Parameters

rdf_graph_name
Name of the RDF graph.

user_name
Database user that is recipient of this privilege.

priv_list
Specifies the type of privilege that is granted. Currently allowed values include the following:

• QUERY: Query the RDF graph using SPARQL

• SELECT, READ: Retrieve RDF graph content using SQL. The source for the content is the
RDFT_<rdf_graph_name> view in the network owner's schema or the view name, if any,
specified for the user_view parameter.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the RDF graph or
SQL DML operations. For SQL DML, the target object is the RDFT_<rdf_graph_name> view
in the network owner's schema.

Note

QUERY is the only valid choice if the RDF graph is not a regular RDF graph (that is, not
created using sem_apis.create_rdf_graph).

user_view
Applicable to schema-private network only. If a view was created on the
RDFT_<rdf_graph_name> view at RDF graph creation time using sem_apis.create_rdf_graph
or later, privileges are revoked on that view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
rdf_graph_name is taken as the name of an inferred graph (rules index). (Additional words or
phrases may be allowed in future.)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This does not affect the recipient's query-only or full access to the RDF network (which
guarantees access to dictionary tables, but not individual RDF graphs). This operation revokes
access to the specified RDF graph only.

Examples

The following example revokes privilege from database user USER1 for performing DML
operations against a semantic technology RDF graph named articles in the schema-private
network NET1 owned by database user RDFUSER. (This example refers to the RDF graph
described in Example 1-129.)

Chapter 15
SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 185 of 208

EXECUTE SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS('articles', 'USER1',
sys.odcivarchar2list('INSERT','UPDATE','DELETE'), network_owner=>'RDFUSER',
network_name=>'NET1');

15.147 SEM_APIS.SEM_SQL_COMPILE
Format

SEM_APIS.SEM_SQL_COMPILE;

Description

Compiles SQL inserted into RDF$S2S_SQL$ table to be used by SEM_SQL SQL Macro.

Parameters

Usage Notes

Examples

The following example compiles SQL inserted into RDF$S2S_SQL$ table.

INSERT INTO RDF$S2S_SQL$ SELECT s2s_sql FROM sql_tab WHERE id=1;

EXECUTE SEM_APIS.SEM_SQL_COMPILE;

SELECT count(s), count(o) FROM SEM_SQL();

15.148 SEM_APIS.SET_ENTAILMENT_STATS
Format

SEM_APIS.SET_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 numrows IN NUMBER DEFAULT NULL,
 numblks IN NUMBER DEFAULT NULL,
 avgrlen IN NUMBER DEFAULT NULL,
 flags IN NUMBER DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 cachedblk IN NUMBER DEFAULT NULL,
 cachehit IN NUMBER DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets statistics for a specified entailment.

Parameters

entailment_name
Name of the entailment.

Chapter 15
SEM_APIS.SEM_SQL_COMPILE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 186 of 208

(other parameters)
See the parameter explanations for the DBMS_STATS.SET_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
entailment statistics.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example sets statistics for an entailment named OWLTST_IDX.

EXECUTE SEM_APIS.SET_ENTAILMENT_STATS('owltst_idx', numrows => 100);

15.149 SEM_APIS.SET_MODEL_STATS
Format

SEM_APIS.SET_MODEL_STATS (
 model_name IN VARCHAR2,
 numrows IN NUMBER DEFAULT NULL,
 numblks IN NUMBER DEFAULT NULL,
 avgrlen IN NUMBER DEFAULT NULL,
 flags IN NUMBER DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 cachedblk IN NUMBER DEFAULT NULL,
 cachehit IN NUMBER DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets statistics for a specified model.

Parameters

model_name
Name of the model.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
model statistics.

network_owner
Owner of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.SET_MODEL_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 187 of 208

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about RDF network types and options, see RDF Networks.

Examples

The following example sets statistics for a model named FAMILY.

EXECUTE SEM_APIS.SET_MODEL_STATS('family', numrows => 100);

15.150 SEM_APIS.SPARQL_TO_SQL
Format

SEM_APIS.SPARQL_TO_SQL(
 sparql_query IN CLOB,
 models IN RDF_MODELS DEFAULT NULL,
 rulebases IN RDF_RULEBASES DEFAULT NULL,
 aliases IN RDF_ALIASES DEFAULT NULL,
 index_status IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
 graphs IN RDF_GRAPHS DEFAULT NULL,
 named_graphs IN RDF_GRAPHS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL) RETURN CLOB;

Description

Translates a SPARQL query into a SQL query string that can be executed by an application
program.

Parameters

sparql_query
A string literal with one or more triple patterns, usually containing variables.

models
The model or models to use.

rulebases
One or more rulebases whose rules are to be applied to the query

aliases
One or more namespaces to be used for expansion of qualified names in the query pattern.

index_status
The status of the relevant entailment for this query.

options
Options that can affect the results of queries.

Chapter 15
SEM_APIS.SPARQL_TO_SQL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 188 of 208

graphs
The set of named graphs from which to construct the default graph for the query.

named_graphs
The set of named graphs that can be matched by a GRAPH clause.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Before using this procedure, be sure you understand the material in Using the
SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data.

For information about RDF network types and options, see RDF Networks.

Examples

The following example translates a SPARQL query into a SQL query string.

DECLARE
 sparql_stmt clob;
 sql_stmt clob;
BEGIN
 sparql_stmt := '{?x :grandParentOf ?y . ?x rdf:type :Male}';
 sql_stmt := sem_apis.sparql_to_sql(
 sparql_stmt,
 sem_models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null);
 execute immediate
 'create table gf_table as
 select x grandfather, y grandchild from('|| sql_stmt || ')';
END;
/

15.151 SEM_APIS.SWAP_NAMES
Format

SEM_APIS.SWAP_NAMES(
 model1 IN VARCHAR2,
 model2 IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Swaps (exchanges) the names of two existing models.

Parameters

model1
Name of a model.

Chapter 15
SEM_APIS.SWAP_NAMES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 189 of 208

model2
Name of another model.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

As a result of this procedure, the name of model model1 is changed to the (old) name of
model2, and the name of model model2 is changed to the (old) name of model1.

The order of the names does not affect the result. For example, you could specify TEST for
model1 and PRODUCTION for model2, or PRODUCTION for model1 and TEST for model2, and the
result will be the same.

Contrast this procedure with SEM_APIS.RENAME_MODEL, which renames an existing model.

For information about semantic network types and options, see RDF Networks.

Examples

The following example changes the name of the (old) TEST model to PRODUCTION, and the
name of the (old) PRODUCTION model to TEST.

EXECUTE sem_apis.swap_names('test', 'production');

15.152 SEM_APIS.TRUNCATE_SEM_MODEL
Format

SEM_APIS.TRUNCATE_SEM_MODEL(
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.TRUNCATE_RDF_GRAPH subprogram instead.

Description

Truncates a semantic technology model.

Parameters

model_name
Name of the model.

options
(Reserved for future use)

Chapter 15
SEM_APIS.TRUNCATE_SEM_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 190 of 208

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This procedure removes all triples and quads from the specified semantic model and is the
only supported way to truncate a model.

To delete a model, use the SEM_APIS.DROP_SEM_MODEL procedure.

For information about semantic network types and options, see RDF Networks.

Examples

The following example truncates a semantic technology model named articles. (This
example refers to the model described in Example 1-129.)

EXECUTE SEM_APIS.TRUNCATE_SEM_MODEL('articles', NULL, network_owner=>'RDFUSER',
network_name=>'NET1');

15.153 SEM_APIS.TRUNCATE_RDF_GRAPH
Format

SEM_APIS.TRUNCATE_RDF_GRAPH(
 rdf_graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Truncates an RDF graph.

Parameters

rdf_graph_name
Name of the RDF graph.

options
(Reserved for future use)

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure removes all triples and quads from the specified RDF graph and is the only
supported way to truncate a graph.

To delete an RDF graph, use the SEM_APIS.DROP_RDF_GRAPH procedure.

For information about RDF network types and options, see RDF Networks.

Chapter 15
SEM_APIS.TRUNCATE_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 191 of 208

Examples

The following example truncates an RDF graph named articles. (This example refers to the
graph described in Example 1-129.)

EXECUTE SEM_APIS.TRUNCATE_RDF_GRAPH('articles', NULL, network_owner=>'RDFUSER',
network_name=>'NET1');

15.154 SEM_APIS.UNESCAPE_CLOB_TERM
Format

SEM_APIS.UNESCAPE_CLOB_TERM(
 term IN CLOB CHARACTER SET ANY_CS,
 options IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN CLOB CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters unescaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

term
The RDF term to unescape.

options
Reserved for future use.

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query Semantic
Data.

Examples

The following example unescapes an input RDF term containing TAB and NEWLINE
characters.

SEM_APIS.UNESCAPE_CLOB_TERM('"abc\tdef\nhij"^^<http://www.w3.org/2001/XMLSchema#string>')
 FROM DUAL;

15.155 SEM_APIS.UNESCAPE_CLOB_VALUE
Format

SEM_APIS.UNESCAPE_CLOB_VALUE(
 val IN CLOB CHARACTER SET ANY_CS,
 start_offset IN NUMBER DEFAULT 1,
 end_offset IN NUMBER DEFAULT 0,
 include_start IN NUMBER DEFAULT 0,
 options IN VARCHAR2 DEFAULT NULL,

Chapter 15
SEM_APIS.UNESCAPE_CLOB_TERM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 192 of 208

http://www.w3.org/TR/rdf-testcases/#ntriples

 max_vc_len IN NUMBER DEFAULT 4000
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters unescaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

val
The CLOB text to unescape.

start_offset
The offset in val from which to start character unescaping. The default (1) causes escaping to
start at the first character of val.

end_offset
The offset in val from which to end character unescaping. The default (0) causes escaping to
continue through the end of val.

include_start
Set to 1 if the characters in val from 1 to start_offset should be prefixed (prepended) to the
return value. Otherwise, no such characters will be prefixed to the return value.

options
Reserved for future use.

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query Semantic
Data.

Examples

The following example unescapes an input character string containing TAB and NEWLINE
characters.

SELECT SEM_APIS.UNESCAPE_CLOB_VALUE('abc\tdef\nhij')
 FROM DUAL;

15.156 SEM_APIS.UNESCAPE_RDF_TERM
Format

SEM_APIS.UNESCAPE_RDF_TERM(
 term IN VARCHAR2 CHARACTER SET ANY_CS,
 options IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters unescaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Chapter 15
SEM_APIS.UNESCAPE_RDF_TERM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 193 of 208

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

Parameters

term
The RDF term to unescape.

options
Reserved for future use.

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query Semantic
Data.

Examples

The following example unescapes an input RDF term containing TAB and NEWLINE
characters.

SELECT SEM_APIS.UNESCAPE_RDF_TERM('"abc\tdef\nhij"^^<http://www.w3.org/2001/
XMLSchema#string>')
 FROM DUAL;

15.157 SEM_APIS.UNESCAPE_RDF_VALUE
Format

SEM_APIS.UNESCAPE_RDF_VALUE(
 val IN VARCHAR2 CHARACTER SET ANY_CS,
 options IN VARCHAR2 DEFAULT NULL,
 max_vc_len IN NUMBER DEFAULT 4000
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters unescaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

val
The text to unescape.

options
Reserved for future use.

max_vc_len
The maximum allowed length of a VARCHAR RDF term - 32767 or 4000 (the default).

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query Semantic
Data.

Chapter 15
SEM_APIS.UNESCAPE_RDF_VALUE

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 194 of 208

http://www.w3.org/TR/rdf-testcases/#ntriples

Examples

The following example unescapes an input character string containing TAB and NEWLINE
characters.

SELECT SEM_APIS.UNESCAPE_RDF_VALUE('abc\tdef\nhij')
 FROM DUAL;

15.158 SEM_APIS.UPDATE_MODEL
Format

SEM_APIS.UPDATE_MODEL(
 apply_model IN VARCHAR2,
 update_stmt IN CLOB,
 match_models IN RDF_MODELS DEFAULT NULL,
 match_rulebases IN RDF_RULEBASES DEFAULT NULL,
 match_index_status IN VARCHAR2 DEFAULT NULL,
 match_options IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.UPDATE_RDF_GRAPH subprogram instead.

Description

Executes a SPARQL Update statement on a semantic model.

Parameters

apply_model
Name of the RDF model to be updated. This is the name specified when the model was
created using the SEM_APIS.CREATE_SEM_MODEL procedure.
It cannot be a virtual model (see RDF Graph Collections) or an RDF view).

update_stmt
One or more SPARQL Update commands to be executed on the apply_model model. Use the
semicolon (;) to separate commands.

match_models
A list of models that forms the SPARQL data set to query for graph pattern matching during a
SPARQL Update operation (INSERT WHERE, DELETE WHERE, COPY, MOVE, ADD). Can
include virtual models and/or RDF views If this parameter is not specified, the apply_model
model is used.

match_rulebases
A list of rulebases to use with match_models to provide an entailment that generates additional
triples or quads to use for graph pattern matching during a SPARQL Update operation.

Chapter 15
SEM_APIS.UPDATE_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 195 of 208

match_index_status
The desired status for any entailments used for graph pattern matching during a SPARQL
Update operation.

match_options
String specifying hints to influence graph pattern matching during a SPARQL Update
operation. The set of hints that can be used here is identical to those that can be used in the
options parameter of SEM_MATCH.

options
String specifying hints that affect SPARQL operations. See the Usage Notes for a list of
available options.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

Before using this procedure, be sure you understand the material in Support for SPARQL
Update Operations on an RDF Graph.

The options parameter can specify one or more of the following options:

• APP_TAB_IDX={INDEX_NAME} uses an INDEX optimizer hint for INDEX_NAME when
doing DML operations on the application table.

• APPEND uses the SQL APPEND hint with DML operations.

• AUTOCOMMIT=F avoids starting and committing a transaction for each
SEM_APIS.UPDATE_MODEL call. Instead, this option gives transaction control to the
caller. Each SEM_APIS.UPDATE_MODEL call will execute as part of a main transaction
that is started, committed, or rolled back by the caller.

• BULK_OPTIONS={OPTIONS_STRING} uses OPTIONS_STRING as the flags parameter
when calling SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE.

• CLOB_UPDATE_SUPPORT=T turns on CLOB functionality.

• DEL_AS_INS=T performs a large delete operation by inserting all data that should remain
after the delete operation instead of doing deletions. This option may significantly improve
the performance of large delete operations.

• DYNAMIC_SAMPLING(n) uses DYNAMIC_SAMPLING(n) SQL optimizer hint with query
operations.

• FORCE_BULK=T uses the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
procedure for bulk insertion of triples. This option may provide better performance on large
updates.

• LOAD_CLOB_ONLY=T loads only triples/quads with object values longer than 4000 bytes
in length when executing LOAD operations on N-Triple or N-Quad documents.

• LOAD_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the extra file names
when performing a LOAD operation.

• MM_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the options
parameter for operations calling SEM_APIS.MERGE_MODELS.

• PARALLEL(n) uses the SQL PARALLEL(n) hint for query and DML operations.

• RESUME_LOAD=T allows resuming an interrupted LOAD operation.

Chapter 15
SEM_APIS.UPDATE_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 196 of 208

• SERIALIZABLE=T uses the SERIALIZABLE transaction isolation level for
SEM_APIS.UPDATE_MODEL operations. READ COMMITTED is the default transaction
isolation level.

• STREAMING=F materializes intermediate data and uses INSERT AS SELECT operations
instead of streaming through JDBC Result Sets. This mode may provide better
performance on large updates or updates with complex patterns in the WHERE clause.

• STRICT_BNODE=F enables ID-only operations for ADD, COPY, and MOVE. (ID-only
operations are explained in Blank Nodes: Special Considerations for SPARQL Update.)

You can override some options settings at the session level by using the
MDSYS.SDO_SEM_UPDATE_CTX.SET_PARAM procedure, as explained in Setting
UPDATE_RDF_GRAPH Options at the Session Level.

For information about semantic network types and options, see RDF Networks.

Examples

The following example inserts six triples into a semantic model.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT DATA {
 :camera1 :name "Camera 1" .
 :camera1 :price 120 .
 :camera1 :cameraType :Camera .
 :camera2 :name "Camera 2" .
 :camera2 :price 150 .
 :camera2 :cameraType :Camera .
 } ');
END;
/

15.159 SEM_APIS.UPDATE_RDF_GRAPH
Format

SEM_APIS.UPDATE_RDF_GRAPH(
 apply_rdf_graph IN VARCHAR2,
 update_stmt IN CLOB,
 match_models IN SEM_MODELS DEFAULT NULL,
 match_rulebases IN SEM_RULEBASES DEFAULT NULL,
 match_index_status IN VARCHAR2 DEFAULT NULL,
 match_options IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Executes a SPARQL update statement on an RDF graph.

Parameters

apply_rdf_graph
Name of the RDF graph to be updated. This is the name specified when the graph was
created using the SEM_APIS.CREATE_RDF_GRAPH procedure.
It cannot be an RDF graph collection (see RDF Graph Collections) or an RDF view.

Chapter 15
SEM_APIS.UPDATE_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 197 of 208

update_stmt
One or more SPARQL update commands to be executed on the apply_rdf_graph graph. Use
the semicolon (;) to separate commands.

match_models
A list of RDF graphs that forms the SPARQL data set to query for graph pattern matching
during a SPARQL update operation (INSERT WHERE, DELETE WHERE, COPY, MOVE,
ADD). Can include RDF graph collections and/or RDF views If this parameter is not specified,
the apply_rdf_graph graph is used.

match_rulebases
A list of rulebases to use with match_models to provide an inferred graph that generates
additional triples or quads to use for graph pattern matching during a SPARQL update
operation.

match_index_status
The desired status for any inferred graphs used for graph pattern matching during a SPARQL
update operation.

match_options
String specifying hints to influence graph pattern matching during a SPARQL update
operation. The set of hints that can be used here is identical to those that can be used in the
options parameter of SEM_MATCH.

options
String specifying hints that affect SPARQL operations. See the Usage Notes for a list of
available options.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

Before using this procedure, be sure you understand the material in Support for SPARQL
Update Operations on an RDF Graph.

The options parameter can specify one or more of the following options:

• APP_TAB_IDX={INDEX_NAME} uses an INDEX optimizer hint for INDEX_NAME when
doing DML operations on the application table.

• APPEND uses the SQL APPEND hint with DML operations.

• AUTOCOMMIT=F avoids starting and committing a transaction for each
SEM_APIS.UPDATE_RDF_GRAPH call. Instead, this option gives transaction control to
the caller. Each SEM_APIS.UPDATE_RDF_GRAPH call will execute as part of a main
transaction that is started, committed, or rolled back by the caller.

• BULK_OPTIONS={OPTIONS_STRING} uses OPTIONS_STRING as the flags parameter
when calling SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE.

• CLOB_UPDATE_SUPPORT=T turns on CLOB functionality.

• DEL_AS_INS=T performs a large delete operation by inserting all data that should remain
after the delete operation instead of doing deletions. This option may significantly improve
the performance of large delete operations.

Chapter 15
SEM_APIS.UPDATE_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 198 of 208

• DYNAMIC_SAMPLING(n) uses DYNAMIC_SAMPLING(n) SQL optimizer hint with query
operations.

• FORCE_BULK=T uses the SEM_APIS.BULK_LOAD_RDF_GRAPH procedure for bulk
insertion of triples. This option may provide better performance on large updates.

• LOAD_CLOB_ONLY=T loads only triples/quads with object values longer than 4000 bytes
in length when executing LOAD operations on N-Triple or N-Quad documents.

• LOAD_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the extra file names
when performing a LOAD operation.

• MM_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the options
parameter for operations calling SEM_APIS.MERGE_RDF_GRAPHS.

• PARALLEL(n) uses the SQL PARALLEL(n) hint for query and DML operations.

• RESUME_LOAD=T allows resuming an interrupted LOAD operation.

• SERIALIZABLE=T uses the SERIALIZABLE transaction isolation level for
SEM_APIS.UPDATE_RDF_GRAPH operations. READ COMMITTED is the default
transaction isolation level.

• STREAMING=F materializes intermediate data and uses INSERT AS SELECT operations
instead of streaming through JDBC Result Sets. This mode may provide better
performance on large updates or updates with complex patterns in the WHERE clause.

• STRICT_BNODE=F enables ID-only operations for ADD, COPY, and MOVE. (ID-only
operations are explained in Blank Nodes: Special Considerations for SPARQL Update.)

You can override some options settings at the session level by using the
MDSYS.SDO_SEM_UPDATE_CTX.SET_PARAM procedure, as explained in Setting
UPDATE_RDF_GRAPH Options at the Session Level.

For information about RDF network types and options, see RDF Networks.

Examples

The following example inserts six triples into an RDF graph.

BEGIN
 sem_apis.update_rdf_graph('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT DATA {
 :camera1 :name "Camera 1" .
 :camera1 :price 120 .
 :camera1 :cameraType :Camera .
 :camera2 :name "Camera 2" .
 :camera2 :price 150 .
 :camera2 :cameraType :Camera .
 } ');
END;
/

15.160 SEM_APIS.VALIDATE_ENTAILMENT
Format

SEM_APIS.VALIDATE_ENTAILMENT(
 models_in IN SEM_MODELS,
 rulebases_in IN SEM_RULEBASES,
 criteria_in IN VARCHAR2 DEFAULT NULL,
 max_conflict IN NUMBER DEFAULT 100,

Chapter 15
SEM_APIS.VALIDATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 199 of 208

 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL
) RETURN RDF_LONGVARCHARARRAY;

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.VALIDATE_INFERRED_GRAPH subprogram instead.

Description

Validates entailments (rules indexes) that can be used to perform OWL or RDFS inferencing
for one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Inferencing: Rules
and Rulebases.

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this parameter, by
default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For example,
criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable
classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The default
value is 100.

options
(Not currently used. Reserved for Oracle use.).

network_owner
Owner of the semantic network. (See Table 1-2.)

Chapter 15
SEM_APIS.VALIDATE_ENTAILMENT

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 200 of 208

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This procedure can be used to detect inconsistencies in the original entailment. For more
information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected) an object
of type RDF_LONGVARCHARARRAY, which has the following definition: VARRAY(32767) OF
VARCHAR2(4000)

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure.

For information about semantic network types and options, see RDF Networks.

Examples

For an example of this procedure, see Example 3-5 in Validating OWL Models and
Entailments.

15.161 SEM_APIS.VALIDATE_GEOMETRIES
Format

SEM_APIS.VALIDATE_GEOMETRIES(
 model_name IN VARCHAR2,
 SRID IN NUMBER,
 tolerance IN NUMBER,
 parallel IN PLS_INTEGER DEFAULT NULL,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Determines if all geometry literals in the specified model are valid for the provided SRID and
tolerance values.

Parameters

model_name
Name of the model containing geometry literals to validate. Only native models can be
specified.

SRID
SRID for the spatial reference system.

tolerance
Tolerance value that should be used for validation.

parallel
Degree of parallelism to be associated with the operation. For more information about parallel
execution, see Oracle AI Database VLDB and Partitioning Guide.

Chapter 15
SEM_APIS.VALIDATE_GEOMETRIES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 201 of 208

tablespace_name
Destination tablespace for the tables {model_name}_IVG$, {model_name}_FXT$, and
{model_name}_NFT$.

options
String specifying options for validation. Supported options are:

• RECTIFY=T. Staging tables {model_name}_FXT$ and {model_name}_NFT$ are created,
containing rectifiable and non-rectifiable triples, respectively. You can use these tables to
correct the model.

• AUTOCORRECT=T. Triples containing invalid but rectifiable geometries are corrected.
Also, table {model_name}_NFT$ containing triples with non-rectifiable geometries is
created so that you can correct such triples manually.

• STANDARD_CRS_URI=T. Use standard CRS (coordinate reference systems) URIs.

• GML_LIT_SRL=T. Use ogc:gmlLiteral serialization for corrected geometry literals.
ogc:wktLiteral serialization is the default.

• GEOJSON_LIT_SRL=T. Use ogc:geoJSONLiteral serialization for corrected geometry
literals. ogc:wktLiteral serialization is the default.

• KML_LIT_SRL=T. Use ogc:kmlLiteral serialization for corrected geometry literals.
ogc:wktLiteral serialization is the default.

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure is a wrapper for SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
function.

A table {model_name}_IVG$ containing invalid geometry literals is created. Optionally, staging
tables {model_name}_FXT$ and {model_name}_NFT$ can be created, containing rectifiable
and non-rectifiable triples, respectively. Staging tables allow the user to correct invalid
geometries. Invalid but rectifiable geometry literals in a model can also be rectified
automatically if specified.

After correction of invalid geometries in a model, it is recommended that you execute
SEM_APIS.PURGE_UNUSED_VALUES to purge invalid geometry literal values from the
semantic network.

For an explanation of models, see Semantic Data Modeling and Semantic Data in the
Database.

For information about semantic network types and options, see RDF Networks.

Examples

The following example creates a model with some invalid geometry literals and then validates
the model using the RECTIFY=T and STANDARD_CRS_URI=T options.

-- Create model
EXEC sem_apis.create_sem_model('m', NULL, NULL, network_owner=>'RDFUSER',
network_name=>'NET1');

-- Insert invalid geometries

Chapter 15
SEM_APIS.VALIDATE_GEOMETRIES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 202 of 208

-- Duplicated coordinates - rectifiable
insert into RDFUSER.NET1#RDFT_M(triple) values (sdo_rdf_triple_s('m','<http://my.org/
geom1>', '<http://www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0 2.0, 1.0 4.0, 1.0
2.0, 1.0 2.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'),
network_owner=>'RDFUSER', network_name=>'NET1');
-- Boundary is not closed – rectifiable
insert into RDFUSER.NET1#RDFT_M(triple) values (sdo_rdf_triple_s('m','<http://my.org/
geom2>', '<http://www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0 2.0, 3.0 4.0, 1.0
4.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'), network_owner=>'RDFUSER',
network_name=>'NET1');
-- Less than 4 points – non rectifiable
insert into RDFUSER.NET1#RDFT_M(triple) values (sdo_rdf_triple_s('m:<http://my.org/
g2>','<http://my.org/geom3>', '<http://www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0,
3.0 2.0, 1.0 4.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'),
network_owner=>'RDFUSER', network_name=>'NET1');
commit;

-- Validate
EXEC sem_apis.validate_geometries(model_name=>'m',SRID=>8307,tolerance=>0.1,
options=>'STANDARD_CRS_URI=T RECTIFY=T', network_owner=>'RDFUSER', network_name=>'NET1');

-- Check invalid geometries
SELECT original_vid, error_msg, corrected_geom_literal FROM M_IVG$;

-- Check rectified triples
select RDFSTC_GRAPH, RDFSTC_SUB, RDFSTC_PRED, RDFSTC_OBJ from M_FXT$;

-- Check non-rectified triples
select RDFSTC_GRAPH, RDFSTC_SUB, RDFSTC_PRED, RDFSTC_OBJ, ERROR_MSG from M_NFT$;

15.162 SEM_APIS.VALIDATE_INFERRED_GRAPH
Format

SEM_APIS.VALIDATE_INFERRED_GRAPH(
 rdf_graphs_in IN SEM_MODELS,
 rulebases_in IN SEM_RULEBASES,
 criteria_in IN VARCHAR2 DEFAULT NULL,
 max_conflict IN NUMBER DEFAULT 100,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL
) RETURN RDF_LONGVARCHARARRAY;

Description

Validates inferred graphs (rules indexes) that can be used to perform OWL or RDFS
inferencing for one or more RDF graphs.

Parameters

rdf_graphs_in
One or more RDF graph names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Inferencing: Rules
and Rulebases.

Chapter 15
SEM_APIS.VALIDATE_INFERRED_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 203 of 208

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this parameter, by
default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For example,
criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable
classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The default
value is 100.

options
(Not currently used. Reserved for Oracle use.).

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Usage Notes

This procedure can be used to detect inconsistencies in the original inferred graph. For more
information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected) an object
of type RDF_LONGVARCHARARRAY, which has the following definition: VARRAY(32767) OF
VARCHAR2(4000)

To create an inferred graph, use the SEM_APIS.CREATE_INFERRED_GRAPH procedure.

For information about RDF network types and options, see RDF Networks.

Examples

For an example of this procedure, see Example 3-5 in Validating OWL Models and
Entailments.

15.163 SEM_APIS.VALIDATE_MODEL
Format

SEM_APIS.VALIDATE_MODEL(
 models_in IN SEM_MODELS,
 criteria_in IN VARCHAR2 DEFAULT NULL,
 max_conflict IN NUMBER DEFAULT 100,

Chapter 15
SEM_APIS.VALIDATE_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 204 of 208

 options IN VARCHAR2 DEFAULT NULL
) RETURN RDF_LONGVARCHARARRAY;

Note

This subprogram will be deprecated in a future release. It is recommended that you
use the SEM_APIS.VALIDATE_RDF_GRAPH subprogram instead.

Description

Validates one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following definition:
TABLE OF VARCHAR2(25)

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this parameter, by
default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For example,
criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable
classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The default
value is 100.

options
(Not currently used. Reserved for Oracle use.).

Usage Notes

This procedure can be used to detect inconsistencies in the original data model. For more
information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected) an object
of type RDF_LONGVARCHARARRAY, which has the following definition: VARRAY(32767) OF
VARCHAR2(4000)

Examples

The following example validates the model named family.

Chapter 15
SEM_APIS.VALIDATE_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 205 of 208

SELECT SEM_APIS.VALIDATE_MODEL(SEM_MODELS('family')) FROM DUAL;

15.164 SEM_APIS.VALIDATE_RDF_GRAPH
Format

SEM_APIS.VALIDATE_RDF_GRAPH(
 rdf_graphs_in IN SEM_MODELS,
 criteria_in IN VARCHAR2 DEFAULT NULL,
 max_conflict IN NUMBER DEFAULT 100,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2(128) DEFAULT,
 network_name IN VARCHAR2 DEFAULT
) RETURN RDF_LONGVARCHARARRAY;

Description

Validates one or more RDF graphs.

Parameters

rdf_graphs_in
One or more RDF graph names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this parameter, by
default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For example,
criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable
classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The default
value is 100.

options
(Not currently used. Reserved for Oracle use.).

network_owner
Owner of the RDF network. (See Table 1-2.)

network_name
Name of the RDF network. (See Table 1-2.)

Chapter 15
SEM_APIS.VALIDATE_RDF_GRAPH

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 206 of 208

Usage Notes

This procedure can be used to detect inconsistencies in the original RDF graph. For more
information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected) an object
of type RDF_LONGVARCHARARRAY, which has the following definition: VARRAY(32767) OF
VARCHAR2(4000)

Examples

The following example validates the RDF graph named family.

SELECT SEM_APIS.VALIDATE_RDF_GRAPH(SEM_MODELS('family')) FROM DUAL;

15.165 SEM_APIS.VALUE_NAME_PREFIX
Format

SEM_APIS.VALUE_NAME_PREFIX (
 value_name IN VARCHAR2,
 value_type IN VARCHAR2
) RETURN VARCHAR2;

Description

Returns the value in the VNAME_PREFIX column for the specified value name and value type
pair in the RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the RDF_VALUE$ table,
which is described in Statements.

value_type
Value type. Must match a value in the VALUE_TYPE column in the RDF_VALUE$ table, which
is described in Statements.

Usage Notes

This function usually causes an index on the RDF_VALUE$ table to be used for processing a
lookup for values, and thus can make a query run faster.

Examples

The following query returns value name portions of all the lexical values in RDF_VALUE$ table
with a prefix value same as that returned by the VALUE_NAME_PREFIX function. This query
uses an index on the RDF_VALUE$ table, thereby providing efficient lookup.

SELECT value_name FROM RDF_VALUE$
 WHERE vname_prefix = SEM_APIS.VALUE_NAME_PREFIX(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');

VALUE_NAME
--
http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt
http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag
http://www.w3.org/1999/02/22-rdf-syntax-ns#List

Chapter 15
SEM_APIS.VALUE_NAME_PREFIX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 207 of 208

http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#first
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#value

15 rows selected.

15.166 SEM_APIS.VALUE_NAME_SUFFIX
Format

SEM_APIS.VALUE_NAME_SUFFIX (
 value_name IN VARCHAR2,
 value_type IN VARCHAR2
) RETURN VARCHAR2;

Description

Returns the value in the VNAME_SUFFIX column for the specified value name and value type
pair in the RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the RDF_VALUE$ table,
which is described in Statements.

value_type
Value type. Must match a value in the VALUE_TYPE column in the RDF_VALUE$ table, which
is described in Statements.

Usage Notes

This function usually causes an index on the RDF_VALUE$ table to be used for processing a
lookup for values, and thus can make a query run faster.

Examples

The following query returns value name portions of all the lexical values in RDF_VALUE$ table
with a suffix value same as that returned by the VALUE_NAME_SUFFIX function. This query
uses an index on the RDF_VALUE$ table, thereby providing efficient lookup.

SELECT value_name FROM RDF_VALUE$
 WHERE vname_suffix = SEM_APIS.VALUE_NAME_SUFFIX(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');

VALUE_NAME
--
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Chapter 15
SEM_APIS.VALUE_NAME_SUFFIX

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 208 of 208

16
SEM_PERF Package Subprograms

The SEM_PERF package contains subprograms for examining and enhancing the
performance of the Resource Description Framework (RDF) and Web Ontology Language
(OWL) support in an Oracle AI Database.

To use the subprograms in this chapter, you must understand the conceptual and usage
information in RDF Semantic Graph Overview and OWL Concepts.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_PERF.ANALYZE_AUX_TABLES

• SEM_PERF.DELETE_NETWORK_STATS

• SEM_PERF.DROP_EXTENDED_STATS

• SEM_PERF.EXPORT_NETWORK_STATS

• SEM_PERF.GATHER_STATS

• SEM_PERF.IMPORT_NETWORK_STATS

16.1 SEM_PERF.ANALYZE_AUX_TABLES
Format

SEM_PERF.ANALYZE_AUX_TABLES(
 model_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT DBMS_STATS.AUTO_SAMPLE_SIZE,
 method_opt IN VARCHAR2 DEFAULT NULL,
 degree IN NUMBER DEFAULT DBMS_STATS.AUTO_DEGREE,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Analyzes all the SPM tables currently present for the given RDF model.

Parameters

model_name
Name of the RDF model.

estimate_percent
Determines the percentage of rows to sample. For more information on gathering the
estimate_percent statistics, see DBMS_STATS.GATHER_TABLE_STATS procedure.

method_opt
Determines the column statistics collection. For more information on gathering the column
statistics, see DBMS_STATS.GATHER_TABLE_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 8

degree
Determines the degree of parallelism used for gathering statistics. For more information on
this procedure parameter see DBMS_STATS.GATHER_TABLE_STATS

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

Examples

The following example gathers statistics for SPM auxiliary tables.

EXECUTE SEM_PERF.ANALYZE_AUX_TABLES('m1',network_owner=>'RDFUSER',network_name=>'NET1');

16.2 SEM_PERF.DELETE_NETWORK_STATS
Format

SEM_PERF.DELETE_NETWORK_STATS (
 cascade_parts IN BOOLEAN DEFAULT TRUE,
 cascade_columns IN BOOLEAN DEFAULT TRUE,
 cascade_indexes IN BOOLEAN DEFAULT TRUE,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 force IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes statistics for the semantic network.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the RDF_VALUE$
table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the RDF_LINK$ table.

• If null (the default), the operation applies to both the RDF_VALUE$ and RDF_LINK$
tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
network statistics.

network_owner
Owner of the semantic network. (See Table 1-2.)

Chapter 16
SEM_PERF.DELETE_NETWORK_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 8

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see RDF Networks.

Examples

The following example deletes statistics for the semantic network:

EXECUTE SEM_APIS.DELETE_NETWORK_STATS;

16.3 SEM_PERF.DROP_EXTENDED_STATS
Format

SEM_PERF.DROP_EXTENDED_STATS (
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops column groups used for extended optimizer statistics on the RDF_LINK$ table.

Parameters

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To use this procedure, you must connect as a user with permission to execute it. Network
owners and DBAs have privileges to execute this procedure.

The default column groups that will be dropped from RDF_LINK$ are: (CANON_END_NODE_ID,
START_NODE_ID) (P_VALUE_ID, CANON_END_NODE_ID) (P_VALUE_ID, START_NODE_ID)

See also:

• Dropping Extended Statistics at the Network Level

• The information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference

For information about semantic network types and options, see RDF Networks.

Examples

The following example drops extended statistics for the semantic network named NET1 owned
by RDFUSER:

EXECUTE SEM_PERF.DROP_EXTENDED_STATS(network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 16
SEM_PERF.DROP_EXTENDED_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 8

16.4 SEM_PERF.EXPORT_NETWORK_STATS
Format

SEM_PERF.EXPORT_NETWORK_STATS (
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Exports the statistics for the semantic network and stores them in the user statistics table.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the RDF_VALUE$
table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the RDF_LINK$ table.

• If null (the default), the operation applies to both the RDF_VALUE$ and RDF_LINK$
tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see RDF Networks.

Examples

The following example exports the statistics for the semantic network and stores them in a
table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_NETWORK_STATS('stat_table', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 16
SEM_PERF.EXPORT_NETWORK_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 8

16.5 SEM_PERF.GATHER_STATS
Format

SEM_PERF.GATHER_STATS(
 just_on_values_table IN BOOLEAN DEFAULT FALSE,
 degree IN NUMBER(38) DEFAULT NULL,
 estimate_percent IN NUMBER DEFAULT DBMS_STATS.AUTO_SAMPLE_SIZE,
 value_method_opt IN VARCHAR2 DEFAULT NULL,
 link_method_opt IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Gathers statistics about RDF and OWL tables and their indexes.

Parameters

just_on_values_table
TRUE collects statistics only on the table containing the lexical values of triples; FALSE (the
default) collects statistics on all major tables related to the storage of RDF and OWL data.
A value of TRUE reduces the execution time for the procedure; and it may be sufficient if you
need only to collect statistics on the values table (for example, if you use other interfaces to
collect any other statistics that you might need).

degree
Degree of parallelism. For more information about parallel execution, see Oracle AI Database
VLDB and Partitioning Guide.

estimate_percent
Determines the percentage of rows in RDF_LINK$ and RDF_VALUE$ to sample.
The valid range is between 0.000001 and 100. You can use the constant
DBMS_STATS.AUTO_SAMPLE_SIZE (the default) to enable Oracle AI Database to determine the
appropriate sample size for optimal statistics.

value_method_opt
Accepts either of the following options, or both in combination, for the RDF_VALUE$ table:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as: size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as: column := column_name | (extension)

• integer : Number of histogram buckets. Must be in the range [1, 2048].

• REPEAT : Collects histograms only on the columns that already have histograms.

• AUTO : Oracle AI Database determines the columns to collect histograms based on data
distribution and the workload of the columns.

• SKEWONLY : Oracle AI Database determines the columns to collect histograms based on
the data distribution of the columns.

• column_name : name of a column

Chapter 16
SEM_PERF.GATHER_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 8

• extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is: FOR ALL COLUMNS SIZE 2048

link_method_opt
Accepts either of the following options, or both in combination, for the RDF_LINK$ table:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as: size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as: column := column_name | (extension)

• integer : Number of histogram buckets. Must be in the range [1,2048].

• REPEAT : Collects histograms only on the columns that already have histograms.

• AUTO : Oracle AI Database determines the columns to collect histograms based on data
distribution and the workload of the columns.

• SKEWONLY : Oracle AI Database determines the columns to collect histograms based on
the data distribution of the columns.

• column_name : Name of a column.

• extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is: FOR ALL COLUMNS SIZE AUTO FOR COLUMNS SIZE 2048 P_VALUE_ID
CANON_END_NODE_ID START_NODE_ID G_ID (CANON_END_NODE_ID, START_NODE_ID)
(P_VALUE_ID, CANON_END_NODE_ID) (P_VALUE_ID, START_NODE_ID)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To use this procedure, you must connect as a user with permission to execute it. Network
owners and DBAs have privileges execute this procedure.

This procedure collects statistical information that can help you to improve inferencing
performance, as explained in Enhancing Inference Performance. This procedure internally
calls the DBMS_STATS.GATHER_TABLE_STATS procedure to collect statistics on RDF- and
OWL-related tables and their indexes, and stores the statistics in the Oracle AI Database data
dictionary. For information about using the DBMS_STATS package, see Oracle AI Database
PL/SQL Packages and Types Reference.

Gathering statistics uses significant system resources, so execute this procedure when it
cannot adversely affect essential applications and operations.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example gathers statistics about RDF and OWL related tables and their indexes.

EXECUTE SEM_PERF.GATHER_STATS(network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 16
SEM_PERF.GATHER_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 8

16.6 SEM_PERF.IMPORT_NETWORK_STATS
Format

SEM_PERF.IMPORT_NETWORK_STATS (
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT FALSE,
 force IN BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Retrieves the statistics for the semantic network from a user statistics table and stores them in
the dictionary.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the RDF_VALUE$
table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the RDF_LINK$ table.

• If null (the default), the operation applies to both the RDF_VALUE$ and RDF_LINK$
tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS procedure in
Oracle AI Database PL/SQL Packages and Types Reference, although force here applies to
network statistics.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

See the information about the DBMS_STATS package in Oracle AI Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see RDF Networks.

Examples

The following example imports the statistics for the semantic network in a table named
STAT_TABLE, and stores them in the dictionary.

Chapter 16
SEM_PERF.IMPORT_NETWORK_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 8

EXECUTE SEM_APIS.IMPORT_NETWORK_STATS('stat_table', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 16
SEM_PERF.IMPORT_NETWORK_STATS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 8

17
SEM_RDFCTX Package Subprograms

The SEM_RDFCTX package contains subprograms (functions and procedures) to manage
extractor policies and semantic indexes created for documents.

To use the subprograms in this chapter, you should understand the conceptual and usage
information in Semantic Indexing for Documents.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_RDFCTX.ADD_DEPENDENT_POLICY

• SEM_RDFCTX.CREATE_POLICY

• SEM_RDFCTX.DROP_POLICY

• SEM_RDFCTX.MAINTAIN_TRIPLES

• SEM_RDFCTX.SET_DEFAULT_POLICY

• SEM_RDFCTX.SET_EXTRACTOR_PARAM

17.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY
Format

SEM_RDFCTX.ADD_DEPENDENT_POLICY(
 index_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Adds a dependent policy to an (already created) index or index partition.

Parameters

index_name
Name of the index.

policy_name
Name of the dependent policy.

partition_name
If the specified index is local, the name of the target partition. (Otherwise, must be null.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 8

Usage Notes

The base policy corresponding to the new dependent policy must already be a part of the
index.

For information about semantic network types and options, see RDF Networks.

Examples

The following example adds a new dependent policy SEM_EXTR_PLUS_GEOONT to the index
ArticleIndex.

begin
 sem_rdfctx.add_dependent_policy (index_name => 'ArticleIndex',
 policy_name => 'SEM_EXTR_PLUS_GEOONT');
end;
/

17.2 SEM_RDFCTX.CREATE_POLICY
Format

SEM_RDFCTX.CREATE_POLICY(
 policy_name IN VARCHAR2,
 extractor IN mdsys.rdfctx_extractor,
 preferences IN sys.XMLType DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

or

SEM_RDFCTX.CREATE_POLICY(
 policy_name IN VARCHAR2,
 base_policy IN VARCHAR2,
 user_models IN SEM_MODELS DEFAULT NULL,
 user_entailments IN SEM_MODELS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an extractor policy. (The first format is for a base policy; the second format is for a
policy that is dependent on a base policy.)

Parameters

policy_name
Name of the extractor policy.

extractor
An instance of a subtype of the RDFCTX_EXTRACTOR type that encapsulates the extraction
logic for the information extractor.

preferences
Any preferences associated with the policy.

base_policy
Base extractor policy for a dependent policy.

Chapter 17
SEM_RDFCTX.CREATE_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 8

user_models
List of user models for a dependent policy.

user_entailments
List of user entailments for a dependent policy.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

An extractor policy created using this procedure determines the characteristics of a semantic
index that is created using the policy. Each extractor policy refers to an instance of an extractor
type, either directly or indirectly. An extractor policy with a direct reference to an extractor type
instance can be used to compose other extractor policies that include additional RDF models
for ontologies.

An instance of the extractor type assigned to the extractor parameter must be an instance of a
direct or indirect subtype of type mdsys.rdfctx_extractor.

The RDF models specified in the user_models parameter must be accessible to the user that is
creating the policy.

The RDF entailments specified in the user_entailments parameter must be accessible to the
user that is creating the policy. Note that the RDF models underlying the entailments do not get
automatically included in the dependent policy. To include one or more of those underlying
RDF models, you need to include the models in the user_models parameter.

The preferences specified for extractor policy determine the type of repository used for the
documents to be indexed and other relevant information. For more information, see Indexing
External Documents.

For information about semantic network types and options, see RDF Networks.

Examples

The following example creates an extractor policy using the gatenlp_extractor extractor type,
which is included with the Oracle AI Database support for semantic indexing.

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
 extractor => mdsys.gatenlp_extractor());
end;
/

The following example creates a dependent policy for the previously created extractor policy,
and it adds the user-defined RDF model geo_ontology to the dependent policy.

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
 base_policy => 'SEM_EXTR',
 user_models => SEM_MODELS ('geo_ontology'));
end;
/

Chapter 17
SEM_RDFCTX.CREATE_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 8

17.3 SEM_RDFCTX.DROP_POLICY
Format

SEM_RDFCTX.DROP_POLICY(
 policy_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes (drops) an unused extractor policy.

Parameters

policy_name
Name of the extractor policy.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

An exception is generated if the specified policy being is used for a semantic index for
documents or if a dependent extractor policy exists for the specified policy.

For information about semantic network types and options, see RDF Networks.

Examples

The following example drops the SEM_EXTR_PLUS_GEOONT extractor policy.

begin
 sem_rdfctx.drop_policy (policy_name => 'SSEM_EXTR_PLUS_GEOONT');
end;
/

17.4 SEM_RDFCTX.MAINTAIN_TRIPLES
Format

SEM_RDFCTX.MAINTAIN_TRIPLES(
 index_name IN VARCHAR2,
 where_clause IN VARCHAR2,
 rdfxml_content IN sys.XMLType,
 policy_name IN VARCHAR2 DEFAULT NULL,
 action IN VARCHAR2 DEFAULT 'ADD',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Adds one or more triples to graphs that contain information extracted from specific documents.

Chapter 17
SEM_RDFCTX.DROP_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 8

Parameters

index_name
Name of the semantic index for documents.

where_clause
A SQL predicate (WHERE clause text without the WHERE keyword) on the table in which the
documents are stored, to identify the rows for which to maintain the index.

rdfxml_content
Triples, in the form of an RDF/XML document, to be added to the individual graphs
corresponding to the documents.

policy_name
Name of the extractor policy. If policy_name is null (the default), the triples are added to the
information extracted by the default (or the only) extractor policy for the index; if you specify a
policy name, the triples are added to the information extracted by that policy.

action
Type of maintenance operation to perform on the triples. The only value currently supported in
ADD (the default), which adds the triples that are specified in the rdfxml_content parameter.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

The information extracted from the semantically indexed documents may be incomplete and
lacking in proper context. This procedure enables a domain expect to add triples to individual
graphs pertaining to specific semantically indexed documents, so that all subsequent
SEM_CONTAINS queries can consider these triples in their document search criteria.

This procedure accepts the index name and WHERE clause text to identify the specific
documents to be annotated with the additional triples. For example, the where_clause might be
specified as a simple predicate involving numeric data, such as 'docId IN (1,2,3)'.

For information about semantic network types and options, see RDF Networks.

Examples

The following example annotates a specific document with the semantic index ArticleIndex
by adding triples to the corresponding individual graph.

begin
 sem_rdfctx.maintain_triples(
 index_name => 'ArticleIndex',
 where_clause => 'docid = 15',
 rdfxml_content => sys.xmltype(
 '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pred="http://myorg.com/pred/">
 <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
 <pred:hasShortName
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Example
 </pred:hasShortName>

Chapter 17
SEM_RDFCTX.MAINTAIN_TRIPLES

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 8

 </rdf:Description>
 </rdf:RDF>'));
end;
/

17.5 SEM_RDFCTX.SET_DEFAULT_POLICY
Format

SEM_RDFCTX.SET_DEFAULT_POLICY(
 index_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets the default extractor policy for a semantic index that is configured with multiple extractor
policies.

Parameters

index_name
Name of the semantic index for documents.

policy_name
Name of the extractor policy to be used as the default extractor policy for the specified
semantic index. Must be one of the extractor policies listed in the PARAMETERS clause of the
CREATE INDEX statement that created index_name.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

When you create a semantic index for documents, you can specify multiple extractor policies
as a space-separated list of names in the PARAMETERS clause of the CREATE INDEX
statement. As explained in Semantically Indexing Documents, the first policy from this list is
used as the default extractor policy for all SEM_CONTAINS queries that do not identify an
extractor policy by name. You can use the SEM_RDFCTX.SET_DEFAULT_POLICY procedure
to set a different default policy for the index.

For information about semantic network types and options, see RDF Networks.

Examples

The following example sets CITY_EXTR as the default extractor policy for the ArticleIndex
index.

begin
 sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
 policy_name => 'CITY_EXTR');
end;
/

Chapter 17
SEM_RDFCTX.SET_DEFAULT_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 8

17.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM
Format

SEM_RDFCTX.SET_EXTRACTOR_PARAM(
 param_key IN VARCHAR2,
 patam_value IN VARCHAR2,
 param_desc IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Configures the Oracle AI Database semantic indexing support to work with external information
extractors, such as Calais and GATE.

Parameters

param_key
Key for the parameter to be set.

param_value
Value for the parameter to be set.

param_desc
Short description for the parameter to be set.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

To use this procedure, you must be connected as SYSTEM (not SYS … AS SYSDBA) or
another non-SYS user with the DBA role.

To work with the Calais extractor type (see Configuring the Calais Extractor type), you must
specify values for the following parameters:

• CALAIS_WS_ENDPOINT: Web service end point for Calais.

• CALAIS_KEY: License key for Calais.

• CALAIS_WS_SOAPACTION: SOAP action for the Calais Web service.

To work with the General Architecture for Text Engineering (GATE) extractor type (see Working
with General Architecture for Text Engineering (GATE)), you must specify values for the
following parameters:

• GATE_NLP_HOST: Host for the GATE NLP Listener.

• GATE_NLP_PORT: Port for the GATE NLP Listener.

In addition to these parameters, you may need to specify a value for the HTTP_PROXY parameter
to work with information extractors or index documents that are outside the firewall.

Chapter 17
SEM_RDFCTX.SET_EXTRACTOR_PARAM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 8

A database instance only has one set of values for these parameters, and they are used for all
instances of semantic indexes using the corresponding information extractor. You can use this
procedure if you need to change the existing values of any of the parameters.

For information about semantic network types and options, see RDF Networks.

Examples

For examples, see the following sections:

• Configuring the Calais Extractor type

• Working with General Architecture for Text Engineering (GATE)

Chapter 17
SEM_RDFCTX.SET_EXTRACTOR_PARAM

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 8

18
SEM_RDFSA Package Subprograms

The SEM_RDFSA package contains subprograms (functions and procedures) for providing
fine-grained access control to RDF data using Oracle Label Security (OLS).

To use the subprograms in this chapter, you should understand the conceptual and usage
information in RDF Semantic Graph Overview and Fine-Grained Access Control for RDF Data.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_RDFSA.APPLY_OLS_POLICY

• SEM_RDFSA.DISABLE_OLS_POLICY

• SEM_RDFSA.ENABLE_OLS_POLICY

• SEM_RDFSA.REMOVE_OLS_POLICY

• SEM_RDFSA.RESET_MODEL_LABELS

• SEM_RDFSA.SET_PREDICATE_LABEL

• SEM_RDFSA.SET_RDFS_LABEL

• SEM_RDFSA.SET_RESOURCE_LABEL

• SEM_RDFSA.SET_RULE_LABEL

18.1 SEM_RDFSA.APPLY_OLS_POLICY
Format

SEM_RDFSA.APPLY_OLS_POLICY(
 policy_name IN VARCHAR2,
 rdfsa_options IN NUMBER DEFAULT SEM_RDFSA.SECURE_SUBJECT,
 table_options IN VARCHAR2 DEFAULT 'ALL_CONTROL',
 label_function IN VARCHAR2 DEFAULT NULL,
 predicate IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Applies an OLS policy to the semantic data store.

Parameters

policy_name
Name of an existing OLS policy.

rdfsa_options
Options specifying the mode of fine-grained access control to be enabled for RDF data. The
default option for securing RDF data involves assigning sensitivity labels for the resources
appearing the triples' subject position. You can override the defaults by using the

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 12

rdfsa_options parameter and specifying one of the constants defined in Table 18-1 in the
Usage Notes.

table_options
Policy enforcement options. The default value (ALL_CONTROL) is the only supported value for
this procedure.

label_function
A string invoking a function to return a label value to use as the default.

predicate
An additional predicate to combine with the label-based predicate.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

The OLS policy specified with this procedure must be created with CTXT1 as the column
name, and it should use default policy options. For information about policy options, see Oracle
Label Security Administrator's Guide.

This procedure invokes the sa_policy_admin.apply_table_policy procedure on multiple
tables defined in the semantic network. The parameters table_options, label_function, and
predicate for the SEM_RDFSA.APPLY_OLS_POLICY procedure have same semantics as
the parameters with same names in the sa_policy_admin.apply_table_policy procedure.

For the rdfsa_options parameter, you can specify the package constant for the desired
option. Table 18-1 lists these constants and their descriptions.

Table 18-1 SEM_RDFSA Package Constants for rdfsa_options Parameter

Constant Description

SEM_RDFSA.SECURE_SU
BJECT

Assigns sensitivity labels for the resources appearing the triples' subject
position.

SEM_RDFSA.SECURE_PR
EDICATE

Assigns sensitivity labels for the resources appearing the triples' predicate
position.

SEM_RDFSA.SECURE_OB
JECT

Assigns sensitivity labels for the resources appearing the triples' object
position.

SEM_RDFSA.TRIPLE_LEV
EL_ONLY

Applies triple-level security. Provides good performance, and eliminates
the need to assign labels to individual resources. (Requires that Patch
9819833, available from My Oracle Support, be installed.)

SEM_RDFSA.OPT_DEFINE
_BEFORE_USE

Restricts the use of an RDF resource in a triple before the sensitivity label
is defined for the resource. If this option is not specified, the user's initial
row label is used as the default label for the resource upon first use.

SEM_RDFSA.OPT_RELAX_
TRIPLE_LABEL

Relaxes the dominating relationship that exists between the triple label
and the labels associated with all its components. With this option, a triple
can be defined if the user has READ access to all the triple components
and the triple label may not bear any relationship with the component
labels. Without this option, the triple label should at least cover the label
for all its components.

Chapter 18
SEM_RDFSA.APPLY_OLS_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 12

You can specify a function in the label_function parameter to generate custom labels for
newly inserted triples. The label function is associated with the RDF_LINK$ table, and the
columns in this table may be configured as parameters to the label function as shown in the
following example:

fgac_admin.new_triple_label(:new.model_id,
 :new.start_node_id,
 :new.p_value_id,
 :new.canon_end_node_id)'

Because the OLS policy is applied to more than one table with different structures, the only
valid column reference in any predicates assigned to the predicate parameter is that of the
label column: CTXT1. If OLS is enabled for a semantic data store with existing data, you can
specify a predicate of the form 'OR CTXT1 is null' to be able to continue using this data with
no access restrictions.

An OLS-enabled semantic data store uses sensitivity labels for all the RDF triples organized in
multiple models. User access to such triples, through model views and SEM_MATCH queries,
is restricted by the OLS policy. Additionally, independent of a user owning the semantic model,
access to the triple column (of type SDO_RDF_TRIPLE_S) in the RDFT triple view is restricted
to users with FULL access privileges with the OLS policy.

The triples are inserted into a specific RDF model using the INSERT privileges on the
corresponding RDFT triple view. A sensitivity label for the new triple is generated using the
user's session context (initial row label) or the label function. The triple is validated for any RDF
policy violations using labels associated with the triple components. Although the triple
information may not be accessed through the RDFT triple view, the model view may be queried
to access the triples, while enforcing the OLS policy restrictions. If you have the necessary
policy privileges (such as writeup, writeacross), you can update the CTXT1 column in the
model view to reset the label assigned to the triple. The new label is automatically validated for
any RDF policy violations involving the triple components. Update privilege on the CTXT1
column of the model view is granted to the owner of the model, and this user may selectively
grant this privilege to other users.

If the RDF models are created in schemas other than the user with FULL access, necessary
privileges on the model objects -- specifically, read/write access on the RDFT triple view, read
access to the model view, and write access to the CTXT1 column in the model view -- can be
granted to such users for maintenance operations. These operations include bulk loading into
the model, resetting any sensitivity labels assigned to the triples, and creating entailments
using the model.

To disable the OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example enable secure access to RDF data with secure subject and secure
predicate options.

begin
 sem_rdfsa.apply_ols_policy(
 policy_name => 'defense',
 rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
 sem_rdfsa.SECURE_PREDICATE,
 network_owner => 'RDFUSER',
 network_name => 'NET1');

Chapter 18
SEM_RDFSA.APPLY_OLS_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 12

end;
/

The following example extends the preceding example by specifying a Define Before Use
option, which allows a user to define a triple only if the triple components secured (Subject,
Predicate or Object) are predefined with an associated sensitivity label. This configuration is
effective if the user inserting the triple does not have execute privileges on the SEM_RDFSA
package.

begin
 sem_rdfsa.apply_ols_policy(
 policy_name => 'defense',
 rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
 sem_rdfsa.SECURE_PREDICATE+
 sem_rdfsa.OPT_DEFINE_BEFORE_USE,
 network_owner => 'RDFUSER',
 network_name => 'NET1');
end;
/

18.2 SEM_RDFSA.DISABLE_OLS_POLICY
Format

SEM_RDFSA.DISABLE_OLS_POLICY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables the OLS policy that has been previously applied to or enabled on the semantic data
store.

Parameters

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You can use this procedure to disable temporarily the OLS policy that had been applied to or
enabled for the semantic data store. The user disabling the policy should have the necessary
privileges to administer OLS policies and should also have access to the OLS policy applied to
RDF data.

The sensitivity labels assigned to various RDF resources and triples are preserved and the
OLS policy may be re-enabled to enforce them. New resources with specific labels can be
added, or labels for existing triples and resources can be updated when the OLS policy is
disabled.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure; to enable an
OLS policy that had been disabled, use the SEM_RDFSA.ENABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Chapter 18
SEM_RDFSA.DISABLE_OLS_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 12

Examples

The following example disables the OLS policy for the semantic data store.

begin
 sem_rdfsa.disable_ols_policy;
end;
/

18.3 SEM_RDFSA.ENABLE_OLS_POLICY
Format

SEM_RDFSA.ENABLE_OLS_POLICY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables the OLS policy that has been previously disabled.

Parameters

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You can use this procedure to enable the OLS policy that had been disabled for the semantic
data store. The user enabling the policy should have the necessary privileges to administer
OLS policies and should also have access to the OLS policy applied to RDF data.

To disable an OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

Examples

The following example enables the OLS policy for the semantic data store.

begin
 sem_rdfsa.enable_ols_policy;
end;
/

18.4 SEM_RDFSA.REMOVE_OLS_POLICY
Format

SEM_RDFSA.REMOVE_OLS_POLICY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 18
SEM_RDFSA.ENABLE_OLS_POLICY

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 12

Description

Permanently removes or detaches the OLS policy from the semantic data store.

Parameters

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

You should have the necessary privileges to administer OLS policies, and you should also
have access to the OLS policy applied to RDF data. Once the OLS policy is detached from the
semantic data store, all the sensitivity labels previously assigned to the triples and resources
are lost.

This operation drops objects that are specifically created to maintain the RDF security policies.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example removes the OLS policy that had been previously applied to the
semantic data store.

begin
 sem_rdfsa.remove_ols_policy;
end;
/

18.5 SEM_RDFSA.RESET_MODEL_LABELS
Format

SEM_RDFSA.RESET_MODEL_LABELS(
 model_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Resets the labels associated with a model or with global resources; requires that the
associated model or models be empty.

Parameters

model_name
Name of the model for which the labels should be reset, or the string RDF$GLOBAL to reset the
labels associated with all global resources.

Chapter 18
SEM_RDFSA.RESET_MODEL_LABELS

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 12

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

If you specify a model name, the model must be empty. If you specify RDF$GLOBAL, all the
models must be empty (that is, no triples in the RDF repository).

You must have FULL access privilege with the OLS policy applied to the semantic data store.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example removes all resources and their labels associated with the Contracts
model.

begin
 sem_rdfsa.reset_model_labels(model_name => 'Contracts');
end;
/

18.6 SEM_RDFSA.SET_PREDICATE_LABEL
Format

SEM_RDFSA.SET_PREDICATE_LABEL(
 model_name IN VARCHAR2,
 predicate IN VARCHAR2,
 label_string IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets a sensitivity label for a predicate at the model level or for the whole repository.

Parameters

model_name
Name of the model to which the predicate belongs, or the string RDF$GLOBAL if the same label
should applied for the use of the predicate in all models.

predicate
Predicate for which the label should be assigned.

label_string
OLS row label in string representation.

network_owner
Owner of the semantic network. (See Table 1-2.)

Chapter 18
SEM_RDFSA.SET_PREDICATE_LABEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 12

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

If you specify a model name, you must have read access to the model and execute privileges
on the SEM_RDFSA package to perform this operation. If you specify RDF$GLOBAL, you must
have FULL access privilege with the OLS policy applied to RDF data.

You must have access to the specified label and OLS policy privilege to overwrite an existing
label if a label already exists for the predicate. The SECURE_PREDICATE option must be
enabled for RDF data.

If an existing predicate label is updated with this operation, the labels for the triples using this
predicate must all dominate the new predicate label. The only exception is when the
OPT_RELAX_TRIPLE_LABEL option is chosen for the OLS-enabled RDF data.

If you specify RDF$GLOBAL, a global predicate with a unique sensitivity label across models is
created. If the same predicate is previously defined in one or more models, the global label
dominates all such labels and the model-specific labels are replaced for the given predicate.

After a label for a predicate is set, new triples with the predicate can be added only if the triple
label (which may be initialized from user's initial row label or using a label function) dominates
the predicate's sensitivity label. This dominance relationship can be relaxed with the
OPT_RELAX_TRIPLE_LABEL option, in which case the user should at least have read access
to the predicate to be able to define a new triple using the predicate.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example sets a predicate label for Contracts model and another predicate label
for all models in the database instance.

begin
 sem_rdfsa.set_predicate_label(
 model_name => 'contracts',
 predicate => '<http://www.myorg.com/pred/hasContractValue>',
 label_string => 'TS:US_SPCL');
end;
/

begin
 sem_rdfsa.set_predicate_label(
 model_name => 'rdf$global',
 predicate => '<http://www.myorg.com/pred/hasStatus>',
 label_string => 'SE:US_SPCL:US');
end;
/

18.7 SEM_RDFSA.SET_RDFS_LABEL
Format

SEM_RDFSA.SET_RDFS_LABEL(
 label_string IN VARCHAR2,
 inf_override IN VARCHAR2,

Chapter 18
SEM_RDFSA.SET_RDFS_LABEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 12

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets a sensitivity label for RDFS schema elements.

Parameters

label_string
OLS row label in string representation, to be used as the sensitivity label for all RDF schema
constructs.

inf_override
OLS row label to be used as the override for generating labels for inferred triples.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

This procedure sets or resets the sensitivity label associated with the RDF schema resources,
often recognized by http://www.w3.org/1999/02/22-rdf-syntax-ns# and http://
www.w3.org/2000/01/rdf-schema# prefixes for their URIs. You can assign a sensitivity label
with restricted access to these resources, so that operations such as creating new RDF
classes and adding new properties can be restricted to users with higher privileges.

You must have FULL access privilege with policy applied to RDF data.

RDF schema elements implicitly use the relaxed triple label option, so that the triples using
RDFS and OWL constructs for subject, predicate, or object are not forced to have a sensitivity
label that dominates the labels associated with the schema constructs. Therefore, a user
capable of defining new RDF classes and properties must least have read access to the
schema elements.

When RDF schema elements are referred to in the inferred triples, the system-defined and
custom label generators consider the inference override label in determining the appropriate
label for the inferred triples. If a custom label generator is used, this override label is passed
instead of the actual label when an RDF schema element is involved.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example sets a label with a unique compartment for all RDF schema elements. A
user capable of defining new RDF classes and properties is expected to have an exclusive
membership to the compartment.

begin
 sem_rdfsa.set_rdfs_label(
 label_string => 'SE:RDFS:',
 inf_override => 'SE:US_SPCL:US');
end;
/

Chapter 18
SEM_RDFSA.SET_RDFS_LABEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 12

18.8 SEM_RDFSA.SET_RESOURCE_LABEL
Format

SEM_RDFSA.SET_RESOURCE_LABEL(
 model_name IN VARCHAR2,
 resource_uri IN VARCHAR2,
 label_string IN VARCHAR2,
 resource_pos IN VARCHAR2 DEFAULT 'S',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets a sensitivity label for a resource that may be used in the subject and/or object position of
a triple.

Parameters

model_name
Name of the model to which the resource belongs, or the string RDF$GLOBAL if the same label
should applied for using the resource in all models.

resource_uri
URI for the resource that may be used as subject or object in one or more triples.

label_string
OLS row label in string representation.

resource_pos
Position of the resource within a triple: S, O, or S,O. You can specify up to two separate labels
for the same resource, one to be considered when the resource is used in the subject position
of a triple and the other to be considered when it appears in the object position. The values 'S',
'O' or 'S,O' set a label for the resource in subject, object or both subject and object positions,
respectively.

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

If you specify a model name, you must have read access to the model and execute privileges
on the SEM_RDFSA package to perform this operation. If you specify RDF$GLOBAL, you must
have FULL access privilege with the OLS policy applied to RDF data.

You must have access to the specified label and OLS policy privilege to overwrite an existing
label if a label already exists for the predicate. The SECURE_PREDICATE option must be
enabled for RDF data.

If an existing resource label is updated with this operation, the labels for the triples using this
resource in the specified position must all dominate the new resource label. The only exception
is when the OPT_RELAX_TRIPLE_LABEL option is chosen for the OLS-enabled RDF data.

If you specify RDF$GLOBAL, a global resource with a unique sensitivity label across models is
created. If the same resource is previously defined in one or more models with the same triple

Chapter 18
SEM_RDFSA.SET_RESOURCE_LABEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 12

position, the global label dominates all such labels and the model-specific labels are replaced
for the given resource in that position.

After a label for a predicate is set, new triples using the resource in the specified position can
be added only if the triple label dominates the resource's sensitivity label. This dominance
relationship can be relaxed with OPT_RELAX_TRIPLE_LABEL option, in which case, the user
should at least have read access to the resource.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example sets sensitivity labels for multiple resources based on their position.

begin
 sem_rdfsa.set_resource_label(
 model_name => 'contracts',
 resource_uri => '<http://www.myorg.com/contract/projectHLS>',
 label_string => 'SE:US_SPCL:US',
 resource_pos => 'S,O');
end;
/

begin
 sem_rdfsa.set_resource_label(
 model_name => 'rdf$global',
 resource_uri => '<http://www.myorg.com/contract/status/Complete>',
 label_string => 'SE:US_SPCL:US',
 resource_pos => 'O');
end;
/

18.9 SEM_RDFSA.SET_RULE_LABEL
Format

SEM_RDFSA.SET_RULE_LABEL(
 rule_base IN VARCHAR2,
 rule_name IN VARCHAR2,
 label_string IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets sensitivity label for a rule belonging to a rulebase.

Parameters

rule_base
Name of an existing RDF rulebase.

rule_name
Name of the rule belonging to the rulebase.

label_string
OLS row label in string representation.

Chapter 18
SEM_RDFSA.SET_RULE_LABEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 12

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

The sensitivity label assigned to the rule is used to generate the label for the inferred triples
when an appropriate label generator option is chosen.

You must have access have access to the rulebase, and you must have FULL access privilege
with the OLS policy can assign labels for system-defined rules in the RDFS rulebase.

There is no support for labels assigned to user-defined rules.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see RDF Networks.

Examples

The following example assigns a sensitivity label for an RDFS rule.

begin
sem_rdfsa.set_rule_label (rule_base => 'RDFS',
 rule_name => 'RDF-AXIOMS',
 label_string => 'SE:US_SPCL:');
end;
/

Chapter 18
SEM_RDFSA.SET_RULE_LABEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 12

Part IV
Appendixes

The following appendixes are included.

• Enabling, Downgrading, or Removing RDF Graph Support
You must perform certain steps before you can use any types, synonyms, or PL/SQL
packages related to RDF Graph support in the current Oracle AI Database release.

• SEM_MATCH Support for Spatial Queries
This appendix provides reference information for SPARQL extension functions for
performing spatial queries in SEM_MATCH.

• RDF Support in SQL Developer
You can use Oracle SQL Developer to perform operations related to the RDF Graph
feature of Oracle Graph.

• MDSYS-Owned Semantic Network
A semantic network can be created in and owned by the MDSYS schema.

• Changes in Terminology and Subprograms
This appendix introduces changes to a few RDF terminologies and reference procedure
names (in the SEM_APIS package) that apply from Oracle AI Database Release 26ai
onwards.

A
Enabling, Downgrading, or Removing RDF
Graph Support

You must perform certain steps before you can use any types, synonyms, or PL/SQL packages
related to RDF Graph support in the current Oracle AI Database release.

You must run one or more scripts, and you must ensure that Oracle Spatial is installed and the
Partitioning option is enabled. These requirements are explained in Enabling RDF Graph
Support and its related subtopics.

This appendix also describes the steps if, after enabling RDF Graph support, you need to do
any of the following:

• Downgrade the RDF Graph support to that provided with a previous Oracle AI Database
release, as explained in Downgrading RDF Graph Support to a Previous Release.

• Remove all support for RDF Graph from the database, as explained in Removing RDF
Graph Support.

• Enabling RDF Graph Support
Before you can use any types, synonyms, or PL/SQL packages related to RDF Graph
support in the current Oracle AI Database release, you must either install the capabilities in
a new Oracle AI Database installation or upgrade the capabilities from a previous release.

• Downgrading RDF Graph Support to a Previous Release
You can downgrade the RDF Graph support, in conjunction with an Oracle Database
downgrade to Release 12.1.

• Removing RDF Graph Support
You can remove the RDF Graph support from the database.

A.3 Removing RDF Graph Support
You can remove the RDF Graph support from the database.

However, removing this support is strongly discouraged, unless you have a solid reason for
doing it. After you remove this support, no applications or database users will be able to use
any types, synonyms, or PL/SQL packages related to RDF Graph support.

To remove the RDF Graph support from the database, perform the following steps:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and
enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semremov.sql

• Windows: @%ORACLE_HOME%\md\admin\semremov.sql

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-1 of A-8

Note

If you are in a multitenant environment, run the script with catcon.pl. See
“Running Oracle-Supplied SQL Scripts in a CDB” in Oracle AI Database
Administrator’s Guide.

The semremov.sql script drops the semantic network and removes any RDF Graph types,
tables, and PL/SQL packages.

A.1 Enabling RDF Graph Support
Before you can use any types, synonyms, or PL/SQL packages related to RDF Graph support
in the current Oracle AI Database release, you must either install the capabilities in a new
Oracle AI Database installation or upgrade the capabilities from a previous release.

Install of RDF Graph support is included in install of Oracle Spatial. So you must ensure that
Oracle Spatial is installed. In addition, Partitioning must be enabled. Restricted use of
Partitioning is allowed free of charge for supporting Graph feature of Oracle AI Database. See
Restricted Use Licenses for more information.

• Enabling RDF Semantic Graph Support in a New Database Installation

• Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1

• Workspace Manager and Virtual Private Database Desupport

A.1.1 Enabling RDF Semantic Graph Support in a New Database
Installation

RDF Semantic Graph is automatically enabled when Oracle Spatial Release 12.2 or later is
installed. See Manually Installing Spatial if you do not have Oracle Spatial installed by default
at the time of database installation.

If RDF Semantic Graph was enabled successfully, a row with the following column values will
exist in the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS

• ATTRIBUTE: SEM_VERSION

• VALUE: (string starting with 12.2)

• DESCRIPTION: VALID

A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or
12.1

If you are upgrading from Oracle Database Release 11.1 or 11.2 that includes the semantic
technologies support, the semantic technologies support is automatically upgraded to Release
12.1 or later when the database is upgraded.

However, you may also need to migrate RDF data if you have an existing Release 11.1 or 11.2
RDF network containing triples that include typed literal values of type xsd:float, xsd:double,
xsd:boolean, or xsd:time.

Appendix A
Enabling RDF Graph Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-2 of A-8

To check if you need to migrate RDF data, connect to the database as a user with DBA
privileges and query the MDSYS.RDF_PARAMETER table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
 WHERE namespace='MDSYS'
 AND attribute IN ('FLOAT_DOUBLE_DECIMAL',
 'XSD_TIME', 'XSD_BOOLEAN',
 'DATA_CONVERSION_CHECK');

If the FLOAT_DOUBLE_DECIMAL, XSD_TIME, or XSD_BOOLEAN attributes have the string
value INVALID or if the DATA_CONVERSION_CHECK attribute has the string value
FAILED_UNABLE_TO_LOCK_APPLICATION_TABLES,
FAILED_INSUFFICIENT_WORKSPACE_PRIVILEGES, or FAILED_OLS_POLICIES_ARE_ENABLED, you
need to migrate RDF data.

However, if the FLOAT_DOUBLE_DECIMAL, XSD_TIME, and XSD_BOOLEAN attributes do
not exist or have the string value VALID and if the DATA_CONVERSION_CHECK attribute
does not exist, you do not need to migrate RDF data. However, if your semantic network may
have any empty RDF literals, see Handling of Empty RDF Literals; and if you choose to
migrate existing empty literals to the new format, follow the steps in this section.

To migrate RDF data, follow these steps:

1. Connect to the database as the SYSTEM (not SYS .. AS SYSDBA) user or another non-
SYS user with the DBA role, and enter: SET CURRENT_SCHEMA=MDSYS

2. Ensure that the user MDSYS has the following privileges:

• INSERT privilege on all application tables in the semantic network

• ALTER ANY INDEX privilege (optional: only necessary if Semantic Indexing for
Documents is being used)

• ACCESS privilege for any workspace in which version-enabled application tables have
been modified (optional: only necessary if Workspace Manager is being used for RDF
data)

3. Ensure that any OLS policies for RDF data are temporarily disabled (optional: only
necessary if OLS for RDF Data is being used). OLS policies can be re-enabled after
running convert_old_rdf_data.

4. Start SQL*Plus. If you want to migrate the RDF data without converting existing empty
literals to the new format (see Handling of Empty RDF Literals), enter the following
statement:

EXECUTE sdo_rdf_internal.convert_old_rdf_data;

If you want to migrate the RDF data and also convert existing empty literals to the new
format, call convert_old_rdf_data with the flags parameter set to
'CONVERT_ORARDF_NULL'. In addition, you can use an optional tablespace_name parameter
to specify the tablespace to use when creating intermediate tables during data migration.
For example, the following statement migrates old semantic data, converts existing
"orardf:null " values to "", and uses the MY_TBS tablespace for any intermediate
tables:

EXECUTE sdo_rdf_internal.convert_old_rdf_data(
 flags=>'CONVERT_ORARDF_NULL',
 tablespace_name=>'MY_TBS');

The sdo_rdf_internal.convert_old_rdf_data procedure may take a significant amount
of time to run if the semantic network contains many triples that are using (or affected by
use of) xsd:float, xsd:double, xsd:time, or xsd:boolean typed literals.

Appendix A
Enabling RDF Graph Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-3 of A-8

5. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and
enter the SYS account password when prompted). Then enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semrelod.sql

• Windows: @%ORACLE_HOME%\md\admin\semrelod.sql

Note

You may encounter the ORA-00904 (invalid identifier) error when executing a
SEM_MATCH query if the sdo_rdf_internal.convert_old_rdf_data procedure and
the semrelod.sql script were not run after the upgrade to Release 12.1 or later.

• Required Data Migration After Upgrade

• Handling of Empty RDF Literals

A.1.2.1 Required Data Migration After Upgrade
After the database upgrade completes, if you have existing RDF data from a previous release,
you must migrate the RDF data. If you do not perform the data migration, you will encounter
the following error when running SEM_MATCH queries:

ORA-20000: RDF_VALUE$ Table needs data migration with SEM_APIS.MIGRATE_DATA_TO_CURRENT

Columns were added to the MDSYS.RDF_VALUE$ table in Release 12.2 (see Enhanced RDF
ORDER BY Query Processing). These columns must be populated after upgrading an existing
RDF network. The need for migration will be noted with the following row in the
MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS

• ATTRIBUTE: RDF_VALUE$

• VALUE: INVALID_ORDER_COLUMNS

• DESCRIPTION: RDF_VALUE$ Table needs data migration with
SEM_APIS.MIGRATE_DATA_TO_CURRENT

If migration is needed, the RDF Semantic Graph installation will initially be marked as INVALD,
which is signified with the following row in MDSYS.RDF_PARAMETER:

• NAMESPACE: MDSYS

• ATTRIBUTE: SEM_VERSION

• VALUE: (string starting with 12.2)

• DESCRIPTION: INVALID

To perform data migration by populating new MDSYS.RDF_VALUE$ columns, follow these
steps:

1. 1. Connect to the database as the SYSTEM (not SYS .. AS SYSDBA) user or as another
non-SYS user with the DBA role.

2. Run the following statement:

EXECUTE sem_apis.migrate_data_to_current;

Appendix A
Enabling RDF Graph Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-4 of A-8

If data migration was successful, the INVALID_ORDER_COLUMNS row will be removed from
MDSYS.RDF_PARAMETER and the SEM_VERSION row will have a DESCRIPTION value of
VALID.

Moreover, additional data migration may be required if you are upgrading an existing Release
11.1 or 11.2 RDF network containing triples that include typed literal values of type xsd:float,
xsd:double, xsd:boolean, or xsd:time.

To check if you need to perform this additional RDF data migration, connect to the database as
a user with DBA privileges and query the MDSYS.RDF_PARAMETER table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
 WHERE namespace='MDSYS'
 AND attribute IN ('FLOAT_DOUBLE_DECIMAL',
 'XSD_TIME', 'XSD_BOOLEAN',
 'DATA_CONVERSION_CHECK');

If the FLOAT_DOUBLE_DECIMAL, XSD_TIME, or XSD_BOOLEAN attributes have the string
value INVALID or if the DATA_CONVERSION_CHECK attribute has the string value
FAILED_UNABLE_TO_LOCK_APPLICATION_TABLES,
FAILED_INSUFFICIENT_WORKSPACE_PRIVILEGES, or FAILED_OLS_POLICIES_ARE_ENABLED, you
need to migrate RDF data.

However, if the FLOAT_DOUBLE_DECIMAL, XSD_TIME, and XSD_BOOLEAN attributes do
not exist or have the string value VALID and if the DATA_CONVERSION_CHECK attribute
does not exist, you do not need to migrate RDF data. However, if your semantic network may
have any empty RDF literals, see Handling of Empty RDF Literals; and if you choose to
migrate existing empty literals to the new format, follow the steps in this section.

To migrate the RDF data, follow these steps:

1. Connect to the database as the SYSTEM (not SYS .. AS SYSDBA) user or as another
non-SYS user with the DBA role , and enter: SET CURRENT_SCHEMA=MDSYS

2. Ensure that the user MDSYS has the following privileges:

• INSERT privilege on all application tables in the semantic network

• ALTER ANY INDEX privilege (optional: only necessary if Semantic Indexing for
Documents is being used)

• ACCESS privilege for any workspace in which version-enabled application tables have
been modified (optional: only necessary if Workspace Manager is being used for RDF
data)

3. Ensure that any OLS policies for RDF data are temporarily disabled (optional: only
necessary if OLS for RDF Data is being used). OLS policies can be re-enabled after
running convert_old_rdf_data.

4. Start SQL*Plus. If you want to migrate the RDF data without converting existing empty
literals to the new format (see Handling of Empty RDF Literals), enter the following
statement:

EXECUTE sdo_rdf_internal.convert_old_rdf_data;

If you want to migrate the RDF data and also convert existing empty literals to the new
format, call convert_old_rdf_data with the flags parameter set to
'CONVERT_ORARDF_NULL'. In addition, you can use an optional tablespace_name parameter
to specify the tablespace to use when creating intermediate tables during data migration.
For example, the following statement migrates old semantic data, converts existing
"orardf:null " values to "", and uses the MY_TBS tablespace for any intermediate
tables:

Appendix A
Enabling RDF Graph Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-5 of A-8

EXECUTE sdo_rdf_internal.convert_old_rdf_data(
 flags=>'CONVERT_ORARDF_NULL',
 tablespace_name=>'MY_TBS');

The sdo_rdf_internal.convert_old_rdf_data procedure may take a significant amount
of time to run if the semantic network contains many triples that are using (or affected by
use of) xsd:float, xsd:double, xsd:time, or xsd:boolean typed literals.

5. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA),
and enter the SYS account password when prompted). Then enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semrelod.sql

• Windows: @%ORACLE_HOME%\md\admin\semrelod.sql

Note

You may encounter the ORA-00904 (invalid identifier) error when executing a
SEM_MATCH query if the sdo_rdf_internal.convert_old_rdf_data procedure and
the semrelod.sql script were not run after the upgrade to Release 12.1 or later.

A.1.2.2 Handling of Empty RDF Literals
The way empty-valued RDF literals are handled was changed in Release 11.2. Before this
release, the values of empty-valued literals were converted to "orardf:null". In Release 11.2
and later, such values are stored without modification (that is, as ""). However, whether you
migrate existing "orardf:null" values to "" is optional.

To check if "orardf:null" values exist in your semantic network, connect to the database as a
user with DBA privileges and query the MDSYS.RDF_PARAMETER table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
 WHERE namespace='MDSYS'
 AND attribute = 'NULL_LITERAL';

If the NULL_LITERAL attribute has the value EXISTS, then "orardf:null" values are present
in your semantic network.

A.1.3 Workspace Manager and Virtual Private Database Desupport
Effective with Oracle Database Release 12.2, the following are no longer supported:

• Workspace Manager support for RDF data

• Virtual Private Database (VPD) support for RDF data

If an existing semantic network that contains Workspace Manager (WM) or Virtual Private
Database (VPD) data is upgraded, the RDF Semantic Graph installation will be marked as
INVALID. In addition, the MDSYS.RDF_PARAMETER table will contain a row with description
Feature not supported in current version' for the unsupported component. To correct
this situation, all existing WM and VPD data should be dropped, and the WM and VPD
components should be uninstalled.

To uninstall Workspace Manager support for RDF data:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and
enter the SYS account password when prompted).

Appendix A
Enabling RDF Graph Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-6 of A-8

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/sdordfwm_rm.sql

• Windows: @%ORACLE_HOME%\md\admin\sdordfwm_rm.sql

Note

If you are in a multitenant environment, run the script with catcon.pl. See
“Running Oracle-Supplied SQL Scripts in a CDB” in Oracle AI Database
Administrator’s Guide.

To uninstall Virtual Private Database support for RDF data:

1. Connect to the database as the SYSTEM user (not SYS … AS SYSDBA) or as another
non-SYS user with the DBA role.

2. Start SQL*Plus, and enter the following statement:

EXECUTE mdsys.sem_rdfsa_dr.uninstall_vpd;

After performing the necessary uninstall operations, reset the network validity as follows:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and
enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semvalidate.sql

• Windows: @%ORACLE_HOME%\md\admin\semvalidate.sql

Note

If you are in a multitenant environment, run the script with catcon.pl. See
“Running Oracle-Supplied SQL Scripts in a CDB” in Oracle Database
Administrator’s Guide.

A.2 Downgrading RDF Graph Support to a Previous Release
You can downgrade the RDF Graph support, in conjunction with an Oracle Database
downgrade to Release 12.1.

However, downgrading is strongly discouraged, except for rare cases where it is necessary.
If you downgrade to a previous release, you will not benefit from bug fixes and enhancements
that have been made in intervening releases.

• Downgrading to Release 12.1 Semantic Graph Support

A.2.1 Downgrading to Release 12.1 Semantic Graph Support
If you need to downgrade to Oracle Database Release 12.1, the RDF semantic graph support
component will be downgraded automatically when you downgrade the database. However,
any RDF or OWL data that is specific to Release 12.2 (that is, Release 12.2 or later RDF/OWL

Appendix A
Downgrading RDF Graph Support to a Previous Release

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-7 of A-8

persistent structures that are not supported in previous versions) must be dropped before you
perform the downgrade, so that the database is compatible with Release 12.1.

To check if any Release 12.2 or later RDF data is incompatible with Release 12.1, perform the
following steps:

1. Connect to the database (Release 12.2 or later) as the SYS user with SYSDBA privileges
(SYS AS SYSDBA, and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statements:

SET SERVEROUT ON
EXECUTE SDO_SEM_DOWNGRADE.CHECK_121_COMPATIBLE;

If any RDF data is incompatible with Release 12.1, the procedure generates an error and
displays a list of the incompatible data. In this case, you must perform the following steps:

1. Remove any Release 12.2 or later release-specific RDF or OWL data if you have not
already done so, as explained earlier in this section.

2. Perform the database downgrade.

3. Connect to the Release 12.1 database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted).

4. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/catsem.sql

• Windows: @%ORACLE_HOME%\md\admin\catsem.sql

Note

If you are in a multitenant environment, run the script with catcon.pl. See
“Running Oracle-Supplied SQL Scripts in a CDB” in Oracle Database
Administrator’s Guide.

If the script completes successfully, a row with the following column values is inserted into
the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS

• ATTRIBUTE: SEM_VERSION

• VALUE: (string starting with 12.1)

• DESCRIPTION: VALID

After the catsem.sql script completes successfully, Oracle semantic technologies support
for Release 11.2 is enabled and ready to use, and all Release 12.1-compatible data is
preserved.

Appendix A
Downgrading RDF Graph Support to a Previous Release

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-8 of A-8

B
SEM_MATCH Support for Spatial Queries

This appendix provides reference information for SPARQL extension functions for performing
spatial queries in SEM_MATCH.

Note

The SEM_MATCH table function is supported only if Oracle JVM is enabled on your
Oracle Autonomous AI Database Serverless deployments. To enable Oracle JVM, see
Use Oracle Java in Using Oracle Autonomous AI Database Serverless for more
information.

To use these functions, you must understand the concepts explained in Spatial Support.

Note

Throughout this appendix geomLiteral is used as a placeholder for
orageo:WKTLiteral, ogc:wktLiteral, and ogc:gmlLiteral, which can be used
interchangeably, in format representations and parameter descriptions. (However,
orageo:WKTLiteral or ogc:wktLiteral is used in actual examples.)

This appendix includes the GeoSPARQL and Oracle-specific functions which are explained in
the following sections:

• GeoSPARQL Functions for Spatial Support

• Oracle-Specific Functions for Spatial Support

B.1 GeoSPARQL Functions for Spatial Support
This section provides reference information about the GeoSPARQL functions:

• ogcf:aggBoundingBox

• ogcf:aggBoundingCircle

• ogcf:aggCentroid

• ogcf:aggConcaveHull

• ogcf:aggConvexHull

• ogcf:aggUnion

• ogcf:Area

• ogcf:asGeoJSON

• ogcf:asGML

• ogcf:asKML

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-1 of B-71

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

• ogcf:asWKT

• ogcf:boundary

• ogcf:boundingCircle

• ogcf:buffer

• ogcf:concaveHull

• ogcf:convexHull

• ogcf:coordinateDimension

• ogcf:difference

• ogcf:dimension

• ogcf:distance

• ogcf:envelope

• ogcf:geometryN

• ogcf:geometryType

• ogcf:getSRID

• ogcf:intersection

• ogcf:is3D

• ogcf:isEmpty

• ogcf:isMeasured

• ogcf:isSimple

• ogcf:length

• ogcf:maxX

• ogcf:maxY

• ogcf:maxZ

• ogcf:metricArea

• ogcf:metricBuffer

• ogcf:metricLength

• ogcf:metricPerimeter

• ogcf:minX

• ogcf:minY

• ogcf:minZ

• ogcf:numGeometries

• ogcf:perimeter

• ogcf:relate

• ogcf:sfContains

• ogcf:sfCrosses

• ogcf:sfDisjoint

• ogcf:sfEquals

• ogcf:sfIntersects

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-2 of B-71

• ogcf:sfOverlaps

• ogcf:sfTouches

• ogcf:sfWithin

• ogcf:spatialDimension

• ogcf:symDifference

• ogcf:transform

• ogcf:union

B.1.1 ogcf:aggBoundingBox
Format

ogcf:aggBoundingBox(geom : geomLiteral) : ogc:wktLiteral

Description

Aggregate that returns a single geometry object that is the minimum bounding box (rectangle)
of the input set of geometries.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the aggregate bounding box of U.S. Congressional district
polygons.

SELECT bb
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:aggBoundingBox(?cgeom) AS ?bb)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-3 of B-71

B.1.2 ogcf:aggBoundingCircle
Format

ogcf:aggBoundingCircle(geom : geomLiteral) : ogc:wktLiteral

Description

Aggregate that returns a single geometry object that is the minimum bounding circle of the
input set of geometries.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the aggregate bounding circle of U.S. Congressional district
polygons.

SELECT bc
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:aggBoundingCircle(?cgeom) AS ?bc)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.3 ogcf:aggCentroid
Format

ogcf:aggCentroid(geom : geomLiteral) : ogc:wktLiteral

Description

Aggregate that returns a single geometry object that is the centroid (center point) of the input
set of geometries.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-4 of B-71

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the aggregate centroid of U.S. Congressional district polygons.

SELECT c
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:aggCentroid(?cgeom) AS ?c)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.4 ogcf:aggConcaveHull
Format

ogcf:aggConcaveHull(geom : geomLiteral) : ogc:wktLiteral

Description

Aggregate that returns a single geometry object that is the concave hull of the input set of
geometries. The concave hull is a polygon that represents the area of the input geometry, such
as a collection of points. With complex input geometries, the concave hull is typically
significantly smaller in area than the convex hull.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-5 of B-71

Example

The following example finds the aggregate concave hull of U.S. Congressional district
polygons.

SELECT ch
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:aggConcaveHull(?cgeom) AS ?ch)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.5 ogcf:aggConvexHull
Format

ogcf:aggConvexHull(geom : geomLiteral) : ogc:wktLiteral

Description

Aggregate that returns a single geometry object that is the convex hull of the input set of
geometries. The convex hull is a simple convex polygon that completely encloses the
geometry object, using as few straight-line sides as possible to create the smallest polygon
that completely encloses the geometry object.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the aggregate convex hull of U.S. Congressional district polygons.

SELECT ch
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:aggConvexHull(?cgeom) AS ?ch)
 WHERE

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-6 of B-71

 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.6 ogcf:aggUnion
Format

ogcf:aggUnion(geom : geomLiteral) : ogc:wktLiteral

Description

Aggregate that returns a single geometry object that is the topological union of the input set of
geometries.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the aggregate union of U.S. Congressional district polygons.

SELECT u
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:aggUnion(?cgeom) AS ?u)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.7 ogcf:Area
Format

ogcf:area(geom : geomLiteral, units : xsd:anyURI) : ogc:wktLiteral

Description

Returns the area of a two-dimensional polygon.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-7 of B-71

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

units
Unit of measurement:

• A URI of the form <http://xmlns.oracle.com/rdf/geo/uom/{SDO_UNIT}> (for example,
<http://xmlns.oracle.com/rdf/geo/uom/M>). Any SDO_UNIT value from the
MDSYS.SDO_AREA_UNITS table will be recognized. See the section about Unit Of
Measurement Support in Oracle Spatial Developer's Guide for more information about unit
of measurement specification.

• A URI from the QUDT vocabulary of units that has an equivalent unit in
MDSYS.SDO_AREA_UNITS table. For example, <http://qudt.org/vocab/unit/M2> for
square meter.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the area in square meters of each U.S. Congressional district
polygon.

SELECT name, ca
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name (ogcf:area(?cgeom, <http://qudt.org/vocab/unit/M2>) AS ?ca)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.8 ogcf:asGeoJSON
Format

ogcf:asGeoJSON(geom : geomLiteral) : ogc:geoJSONLiteral

Description

Converts geom to an equivalent GeoJSON representation.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-8 of B-71

https://qudt.org/

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

Converting a geometry to an ogc:geoJSONLiteral will result in a coordinate transformation to
CRS84 Longitude, Latitiude, which is the only coordinate reference system supported by
GeoJSON.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns each U.S. Congressional district polygon as an
ogc:geoJSONLiteral.

SELECT name, gjson
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name (ogcf:asGeoJSON(?cgeom) AS ?gjson)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.9 ogcf:asGML
Format

ogcf:asGML(geom : geomLiteral, gmlProfile : xsd:string) : ogc:gmlLiteral

Description

Converts geom to an equivalent GML representation.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

gmlProfile
This argument is ignored. GML 3.11 profile is used in all cases.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-9 of B-71

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns each U.S. Congressional district polygon as an
ogc:GMLLiteral.

SELECT name, gml
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name (ogcf:asGML(?cgeom, "3.11") AS ?gml)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.10 ogcf:asKML
Format

ogcf:asKML(geom : geomLiteral) : ogc:kmlLiteral

Description

Converts geom to an equivalent KML representation.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

Converting a geometry to an ogc:kmlLiteral will result in a coordinate transformation to
CRS84 Longitude, Latitiude, which is the only coordinate reference system supported by GML.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-10 of B-71

Example

The following example returns each U.S. Congressional district polygon as an
ogc:kmlLiteral.

SELECT name, kml
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name (ogcf:asKML(?cgeom) AS ?kml)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.11 ogcf:asWKT
Format

ogcf:asWKT(geom : geomLiteral) : ogc:wktLiteral

Description

Converts geom to an equivalent WKT representation.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns each U.S. Congressional district polygon as an
ogc:wktLiteral.

SELECT name, wkt
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-11 of B-71

 SELECT ?name (ogcf:asWKT(?cgeom) AS ?wkt)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.12 ogcf:boundary
Format

ogcf:boundary(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the closure of the boundary of geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the boundaries of U.S. Congressional district polygons.

SELECT cb
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:boundary(?cgeom) AS ?cb)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
,null
,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-12 of B-71

B.1.13 ogcf:boundingCircle
Format

ogcf:boundingCircle(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometric object that is the minimum bounding circle around geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns the minimum bounding circle around each U.S. Congressional
district polygon.

SELECT name, bc
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name (ogcf:boundingCircle(?cgeom) AS ?bc)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.14 ogcf:buffer
Format

ogcf:buffer(geom : geomLiteral, radius : xsd:decimal, units : xsd:anyURI) : ogc:wktLiteral

Description

Returns a buffer polygon the specified radius (measured in units) around a geometry.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-13 of B-71

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

radius
Radius value used to define the buffer.

units
Unit of measurement:

• A URI of the form <http://xmlns.oracle.com/rdf/geo/uom/{SDO_UNIT}> (for example,
<http://xmlns.oracle.com/rdf/geo/uom/M>). Any SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table will be recognized. See the section about Unit Of
Measurement Support in Oracle Spatial Developer's Guide for more information about unit
of measurement specification.

• A URI from the QUDT vocabulary of units that has an equivalent unit in
MDSYS.SDO_DIST_UNITS table. For example, <http://qudt.org/vocab/unit/M> for
meter.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons that are within a 100–
kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (
 ogcf:sfWithin(?cgeom,
 ogcf:buffer("POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
 100,
 <http://xmlns.oracle.com/rdf/geo/uom/KM>))) }'
,sem_models('gov_all_vm'), null
,null
,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-14 of B-71

https://qudt.org/

B.1.15 ogcf:concaveHull
Format

ogcf:concaveHull(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometric object that represents the concave hull of geom. The convex hull is a
simple convex polygon that completely encloses the geometry object. Spatial uses as few
straight-line sides as possible to create the smallest polygon that completely encloses the
specified object. A convex hull is a convenient way to get an approximation of a complex
geometry object.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns the concave hull of each U.S. Congressional district polygon.

SELECT name, ch
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name (ogcf:concaveHull(?cgeom) AS ?ch)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.16 ogcf:convexHull
Format

ogcf:convexHull(geom : geomLiteral) : ogc:wktLiteral

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-15 of B-71

Description

Returns a polygon geometry that represents the convex hull of geom. (The convex hull is a
simple convex polygon that completely encloses the geometry object, using as few straight-line
sides as possible to create the smallest polygon that completely encloses the geometry
object.)

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose convex hull
contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfContains(ogcf:convexHull(?cgeom),
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null
,null, null, ' ALLOW_DUP=T '));

B.1.17 ogcf:coordinateDimension
Format

ogcf:coordinateDimension(geom : geomLiteral) : xsd:integer

Description

Returns the coordinate dimension of geom. The coordinate dimension is the number of
measurements or axes needed to describe a position in the coordinate reference system of
geom.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-16 of B-71

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns the coordinate dimension of each U.S. Congressional district
polygon.

SELECT cdist, cd
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:coordinateDimension(?cgeom) AS ?cd)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.18 ogcf:difference
Format

ogcf:difference(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological difference (MINUS operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-17 of B-71

Example

The following example finds the U.S. Congressional district polygons whose centroid is within
the difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:difference(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.19 ogcf:dimension
Format

ogcf:dimension(geom : geomLiteral) : xsd:integer

Description

Returns the dimension of geom. For example, the dimension of a point is 0, a line is 1, and a
polygon is 2.

.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns the dimension of each U.S. Congressional district polygon.

SELECT cdist, cd
FROM table(sem_match(

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-18 of B-71

'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:dimension(?cgeom) AS ?cd)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.20 ogcf:distance
Format

ogcf:distance(geom1 : geomLiteral, geom2 : geomLiteral, units : xsd:anyURI) : xsd:decimal

Description

Returns the distance in units between the two closest points of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

units
Unit of measurement:

• A URI of the form <http://xmlns.oracle.com/rdf/geo/uom/{SDO_UNIT}> (for example,
<http://xmlns.oracle.com/rdf/geo/uom/KM>). Any SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table will be recognized. See the section about unit of
measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

• A URI from the QUDT vocabulary of units that has an equivalent unit in
MDSYS.SDO_DIST_UNITS table. For example, <http://qudt.org/vocab/unit/M> for
meter.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example orders U.S. Congressional districts based on distance from a specified
point.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-19 of B-71

https://qudt.org/

 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 }
 ORDER BY ASC(ogcf:distance(?cgeom,
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
 <http://xmlns.oracle.com/rdf/geo/uom/KM>))'
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '))
ORDER BY sem$rownum;

B.1.21 ogcf:envelope
Format

ogcf:envelope(geom : geomLiteral) : ogc:wktLiteral

Description

Returns the minimum bounding rectangle (MBR) of geom, that is, the single rectangle that
minimally encloses geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose minimum
bounding rectangle contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-20 of B-71

 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfContains(ogcf:envelope(?cgeom),
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.22 ogcf:geometryN
Format

ogcf:geometryN(geom : geomLiteral, geomindex : xsd:integer) : ogc:wktLiteral

Description

Returns the nth geometry of geom if geom is a geometry collection or geom if geom is a single
geometry and n=1.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

geomindex
The position of the desired geometry in the collection. The first geometry has an index of 1.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns the second geometry in the input geometry collection.

SELECT g
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:geometryN("GEOMETRYCOLLECTION(POINT(-75 44), LINESTRING(-75 44,
-75 45),
 POLYGON((-75 44, -75 43, -74 43, -74 44, -75 44)))"^^ogc:wktLiteral,
2) AS ?g)
 WHERE
 { }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-21 of B-71

B.1.23 ogcf:geometryType
Format

ogcf:geometryType(geom : geomLiteral) : xsd:anyURI

Description

Returns the URI of the subtype of <http://www.opengis.net/ont/sf#Geometry> of which geom
is a member. Possible return values are:

• <http://www.opengis.net/ont/sf#Point>

• <http://www.opengis.net/ont/sf#LineString>

• <http://www.opengis.net/ont/sf#Polygon>

• <http://www.opengis.net/ont/sf#GeometryCollection>

• <http://www.opengis.net/ont/sf#MultiPoint>

• <http://www.opengis.net/ont/sf#MultiLineString>

• <http://www.opengis.net/ont/sf#MultiPolygon>

• <http://www.opengis.net/ont/sf#Solid>

• <http://www.opengis.net/ont/sf#MultiSolid>

• <http://www.opengis.net/ont/sf#Unknown>

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns the geometry type of each U.S. Congressional district polygon.

SELECT cdist, gtype
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:geometryType(?cgeom) AS ?gtype)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-22 of B-71

B.1.24 ogcf:getSRID
Format

ogcf:getSRID(geom : geomLiteral) : xsd:anyURI

Description

Returns the spatial reference system URI for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

The URI returned has the form <http://www.opengis.net/def/crs/EPSG/0/{srid}>, where
{srid} is a valid spatial reference system ID from the European Petroleum Survey Group
(EPSG).

For URIs that are not in the EPSG Geodetic Parameter Dataset, the URI returned has the form
<http://xmlns.oracle.com/rdf/geo/srid/{srid}> , where {srid} is a valid spatial reference
system ID from Oracle Spatial and Graph.

For the default spatial reference system, WGS84 Longitude-Latitude, the URI <http://
www.opengis.net/def/crs/OGC/1.3/CRS84> is returned.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds spatial reference system URIs for U.S. Congressional district
polygons.

SELECT csrid
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:getSRID(?cgeom) AS ?csrid)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-23 of B-71

B.1.25 ogcf:intersection
Format

ogcf:intersection (geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological intersection (AND operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is within
the intersection of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:intersection(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-24 of B-71

B.1.26 ogcf:is3D
Format

ogcf:is3D(geom : geomLiteral) : xsd:boolean

Description

Returns true if the spatial dimension of geom is 3.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example checks to see if there are any 3-dimensional U.S. Congressional district
polygons.

SELECT ask
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 ASK
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom
 FILTER(ogcf:is3D(?cgeom)) }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.27 ogcf:isEmpty
Format

ogcf:isEmpty(geom : geomLiteral) : xsd:boolean

Description

Returns true if geom is an empty geometry.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-25 of B-71

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example checks to see if there are any empty U.S. Congressional district
geometries.

SELECT ask
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 ASK
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom
 FILTER(ogcf:isEmpty(?cgeom)) }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.28 ogcf:isMeasured
Format

ogcf:isMeasured(geom : geomLiteral) : xsd:boolean

Description

Returns true if geom has a measure value.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example checks to see if there are any U.S. Congressional district geometries
with measure values.

SELECT ask
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-26 of B-71

 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 ASK
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom
 FILTER(ogcf:isMeasured(?cgeom)) }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.29 ogcf:isSimple
Format

ogcf:isSimple(geom : geomLiteral) : xsd:boolean

Description

Returns true if geom is a simple geometry. That is, the geometry has no inconsistent features
such as self intersection, identical consecutive vertices, and so on.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT is used to determine if a geometry is
simple. The geometry is simple if SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
returns TRUE.

See also the OGC GeoSPARQL specification.

Example

The following example returns any non-simple Congressional district geometries.

SELECT cdist, cgeom
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist ?cgeom
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom
 FILTER(!ogcf:isSimple(?cgeom)) }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-27 of B-71

B.1.30 ogcf:length
Format

ogcf:length(geom : geomLiteral, units : xsd:anyURI) : xsd:double

Description

Returns the length of the geom. The length is the maximum distance between any two points in
the geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

units
Unit of measurement:

• A URI of the form <http://xmlns.oracle.com/rdf/geo/uom/{SDO_UNIT}> (for example,
<http://xmlns.oracle.com/rdf/geo/uom/M>). Any SDO_UNIT value from the
MDSYS.SDO_DISTANCE_UNITS table will be recognized. See the section about Unit Of
Measurement Support in Oracle Spatial Developer's Guide for more information about unit
of measurement specification.

• A URI from the QUDT vocabulary of units that has an equivalent unit in
MDSYS.SDO_DISTANCE_UNITS table. For example, <http://qudt.org/vocab/unit/M>
for meter.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the maximum length in meters of the longest U.S. Congressional
district.

SELECT maxl
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (max(ogcf:length(?cgeom, <http://qudt.org/vocab/unit/M>)) AS ?maxl)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-28 of B-71

https://qudt.org/

B.1.31 ogcf:maxX
Format

ogcf:maxX(geom : geomLiteral) : xsd:double

Description

Returns the maximum X coordinate value for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the maximum X coordinate value for each U.S. Congressional
district.

SELECT cdist, maxX
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:maxX(?cgeom) AS ?maxX)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.32 ogcf:maxY
Format

ogcf:maxY(geom : geomLiteral) : xsd:double

Description

Returns the maximum Y coordinate value for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-29 of B-71

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the maximum Y coordinate value for each U.S. Congressional
district.

SELECT cdist, maxY
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:maxY(?cgeom) AS ?maxY)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.33 ogcf:maxZ
Format

ogcf:maxZ(geom : geomLiteral) : xsd:double

Description

Returns the maximum Z coordinate value for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the maximum Z coordinate value for a constant geometry.

SELECT maxZ
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-30 of B-71

 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:maxZ("<http://www.opengis.net/def/crs/EPSG/0/4327> POLYGON((-75
44 10, -75 43 11,
 -74 43 11, -74 44 11, -75 44 10))"^^ogc:wktLiteral) AS ?maxZ)
 WHERE
 { }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.34 ogcf:metricArea
Format

ogcf:metricArea(geom : geomLiteral) : xsd:double

Description

Returns the area of geom in square meters.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the area in square meters for each U.S. Congressional district.

SELECT name, ma
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name (ogcf:metricArea(?cgeom) AS ?ma)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-31 of B-71

B.1.35 ogcf:metricBuffer
Format

ogcf:metricBuffer(geom : geomLiteral, radius : xsd:double) : ogc:wtkLiteral

Description

Returns a buffer polygon with the specified radius in meters around a geometry.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

radius
Radius value in meters used to define the buffer.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons that are within a 1000–
meter buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (
 ogcf:sfWithin(?cgeom,
 ogcf:metricBuffer("POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
 1000)))
 }'
,sem_models('gov_all_vm'), null
,null
,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-32 of B-71

B.1.36 ogcf:metricLength
Format

ogcf:metricLength(geom : geomLiteral) : xsd:double

Description

Returns the length of geom in meters. The length is the maximum distance between any two
points in geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the maximum length in meters of the longest U.S. Congressional
district.

SELECT cdist, maxl
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (max(ogcf:metricLength(?cgeom)) AS ?maxl)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.37 ogcf:metricPerimeter
Format

ogcf:metricPerimeter(geom : geomLiteral) : xsd:double

Description

Returns the length of the outer boundary of geom in meters.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-33 of B-71

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the maximum perimeter in meters across the set of U.S.
Congressional districts.

SELECT cdist, maxp
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (max(ogcf:metricPerimeter(?cgeom)) AS ?maxp)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.38 ogcf:minX
Format

ogcf:minX(geom : geomLiteral) : xsd:double

Description

Returns the minimum X coordinate value for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the minimum X coordinate value for each U.S. Congressional
district.

SELECT cdist, minX
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-34 of B-71

 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:minX(?cgeom) AS ?minX)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.39 ogcf:minY
Format

ogcf:minY(geom : geomLiteral) : xsd:double

Description

Returns the minimum Y coordinate value for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the minimum Y coordinate value for each U.S. Congressional
district.

SELECT cdist, minY
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:minY(?cgeom) AS ?minY)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.40 ogcf:minZ
Format

ogcf:minZ(geom : geomLiteral) : xsd:double

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-35 of B-71

Description

Returns the minimum Z coordinate value for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the minimum Z coordinate value for a constant geometry.

SELECT minZ
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:minZ("<http://www.opengis.net/def/crs/EPSG/0/4327> POLYGON((-75
44 10, -75 43 11, -74 43 11,
 -74 44 11, -75 44 10))"^^ogc:wktLiteral) AS ?minZ)
 WHERE
 { }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.41 ogcf:numGeometries
Format

ogcf:numGeometries(geom : geomLiteral) : xsd:int

Description

Returns the number of geometries in geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-36 of B-71

Example

The following example finds the number of geometries in a constant geometry collection.

SELECT ng
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (ogcf:numGeometries("GEOMETRYCOLLECTION(POINT(-75 44), LINESTRING(-75
44, -75 45), POLYGON((-75 44, -75 43, -74 43, -74 44, -75
44)))"^^ogc:wktLiteral) AS ?ng)
 WHERE
 { }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.42 ogcf:perimeter
Format

ogcf:perimeter(geom : geomLiteral, units : xsd:anyURI) : xsd:double

Description

Returns the length of the outer boundary of geom measured in units.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

units
Unit of measurement:

• A URI of the form <http://xmlns.oracle.com/rdf/geo/uom/{SDO_UNIT}> (for example,
<http://xmlns.oracle.com/rdf/geo/uom/M>). Any SDO_UNIT value from the
MDSYS.SDO_DISTANCE_UNITS table will be recognized. See the section about Unit Of
Measurement Support in Oracle Spatial Developer's Guide for more information about unit
of measurement specification.

• A URI from the QUDT vocabulary of units that has an equivalent unit in
MDSYS.SDO_DISTANCE_UNITS table. For example, <http://qudt.org/vocab/unit/M>
for meter.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-37 of B-71

https://qudt.org/

Example

The following example finds the maximum perimeter in meters across the set of U.S.
Congressional districts.

SELECT maxp
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT (max(ogcf:perimeter(?cgeom, <http://qudt.org/vocab/unit/M>)) AS ?maxp)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.43 ogcf:relate
Format

ogcf:relate(geom1 : geomLiteral, geom2 : geomLiteral, pattern-matrix : xsd:string) :
xsd:boolean

Description

Returns true if the topological relationship between geom1 and geom2 satisfies the specified
DE-9IM pattern-matrix. Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

pattern-matrix
A dimensionally extended 9-intersection model (DE-9IM) intersection pattern string consisting
of T (true) and F (false) values. A DE-9IM pattern string describes the intersections between
the interiors, boundaries, and exteriors of two geometries.

Usage Notes

When invoking ogcf:relate with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:relate spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:relate spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-38 of B-71

See the OGC Simple Features Specification (OGC 06-103r3) for a detailed description of
DE-9IM intersection patterns. See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district that contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:relate(?cgeom,
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
 "TTTFFTFFT")) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '
));

B.1.44 ogcf:sfContains
Format

ogcf:sfContains(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially contains geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfContains spatial filter).

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-39 of B-71

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfContains spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially contain a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfContains(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.45 ogcf:sfCrosses
Format

ogcf:sfCrosses(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially crosses geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-40 of B-71

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfCrosses spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfCrosses spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially cross a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfCrosses(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.46 ogcf:sfDisjoint
Format

ogcf:fDisjoint(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are spatially disjoint as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-41 of B-71

Usage Notes

The ogcf:sfDisjoint filter cannot use a spatial index for evaluation, so performance will
probably be much worse than with other simple features spatial functions.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially disjoint from
a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfDisjoint(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.47 ogcf:sfEquals
Format

ogcf:sfEquals(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are spatially equal as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-42 of B-71

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfEquals spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfEquals spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially equal to a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfEquals(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.48 ogcf:sfIntersects
Format

ogcf:sfIntersects(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are not disjoint as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-43 of B-71

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfIntersects spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfIntersects spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that intersect a constant
polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfIntersects(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.49 ogcf:sfOverlaps
Format

ogcf:sfOverlaps(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially overlaps geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-44 of B-71

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfOverlaps spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfOverlaps spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially overlap a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfOverlaps(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.50 ogcf:sfTouches
Format

ogcf:sfTouches(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-45 of B-71

Description

Returns true if the two geometries spatially touch as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfTouches spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfTouches spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially touch a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfTouches(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-46 of B-71

B.1.51 ogcf:sfWithin
Format

ogcf:sfWithin(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 is spatially within geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfWithin spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfWithin spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially within a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-47 of B-71

34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.52 ogcf:spatialDimension
Format

ogcf:spatialDimension(geom : geomLiteral) : xsd:integer

Description

Returns the spatial dimension of geom. That is, the number of dimensions used for the spatial
coordinates of geom. It does not include any dimensions used for measure values.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example returns the spatial dimension of each U.S. Congressional district
polygon.

SELECT cdist, sd
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:spatialDimension(?cgeom) AS ?sd)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.53 ogcf:symDifference
Format

ogcf:symDifference(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological symmetric difference (XOR operation) of
geom1 and geom2.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-48 of B-71

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons that are within a 100-
kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:symDifference(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5,
-83.6 34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5,
-83.2 34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.1.54 ogcf:transform
Format

ogcf:transform(geom : geomLiteral, srsIRI xsd:anyURI) : ogc:wktLiteral

Description

Transforms geom to the spatial reference system defined by srsIRI.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-49 of B-71

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

srsIRI
The target spatial reference system IRI.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Supported spatial reference system IRIs have the following form <http://
www.opengis.net/def/crs/EPSG/0/{srid}>, where {srid} is a valid spatial reference system
ID defined by the European Petroleum Survey Group (EPSG). For IRIs that are not in the
EPSG Geodetic Parameter Dataset, spatial reference system IRIs of the following form are
supported <http://xmlns.oracle.com/rdf/geo/srid/{srid}>, where {srid} is a valid spatial
reference system ID from Oracle Spatial.

Example

The following example projects each Congressional distinct polygon to the NH state plane
coordinate reference system (EPSG:3613).

SELECT cdist, nhg
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?cdist (ogcf:transform(?cgeom, <http://www.opengis.net/def/crs/
EPSG/0/3613>) AS ?nhg)
 WHERE
 { ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
, null ,null, null, ' ALLOW_DUP=T '));

B.1.55 ogcf:union
Format

ogcf:union(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological union (OR operation) of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
GeoSPARQL Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-50 of B-71

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is within
the union of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'PREFIX ogc: <http://www.opengis.net/ont/geosparql#>
 PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>
 PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/>
 PREFIX pol: <http://www.rdfabout.com/rdf/schema/politico/>
 PREFIX usgovt: <http://www.rdfabout.com/rdf/schema/usgovt/>
 SELECT ?name ?cdist
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:union(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,null, null, null, ' ALLOW_DUP=T '));

B.2 Oracle-Specific Functions for Spatial Support
This section provides reference information about the Oracle-specific functions:

• orageo:aggrCentroid

• orageo:aggrConvexHull

• orageo:aggrMBR

• orageo:aggrUnion

• orageo:area

• orageo:buffer

• orageo:centroid

• orageo:convexHull

• orageo:difference

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-51 of B-71

• orageo:distance

• orageo:getSRID

• orageo:intersection

• orageo:length

• orageo:mbr

• orageo:nearestNeighbor

• orageo:relate

• orageo:sdoDistJoin

• orageo:sdoJoin

• orageo:union

• orageo:withinDistance

• orageo:xor

B.2.1 orageo:aggrCentroid
Format

orageo:aggrCentroid(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the centroid of the group of specified geometry objects. (The
centroid is also known as the "center of gravity.")

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_AGGR_CENTROID function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the centroid of all the U.S. Congressional district polygons.

SELECT centroid
FROM table(sem_match(
'select (orageo:aggrCentroid(?cgeom) as ?centroid)
 {?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-52 of B-71

B.2.2 orageo:aggrConvexHull
Format

orageo:aggrConvexhull(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the convex hull of the group of specified geometry objects..
(The convex hull is a simple convex polygon that, for this funciton, completely encloses the
group of geometry objects, using as few straight-line sides as possible to create the smallest
polygon that completely encloses the geometry objects.)

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_AGGR_CONVEXHULL function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the convex hull of all the U.S. Congressional district polygons.

SELECT chull
FROM table(sem_match(
'select (orageo:aggrConvexhull(?cgeom) as ?chull)
 {
 ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.3 orageo:aggrMBR
Format

orageo:aggrMBR(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the minimum bounding rectangle (MBR) of the group of
specified geometry objects.

Parameters

geom
Geometry objects. Specified as a query variable.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-53 of B-71

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_AGGR_MBR function in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the MBR of all the U.S. Congressional district polygons.

SELECT mbr
FROM table(sem_match(
'select (orageo:aggrMBR(?cgeom) as ?mbr)
 {
 ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.4 orageo:aggrUnion
Format

orageo:aggrUnion(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the topological union of the group of specified geometry
objects.

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_UNION function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the union of all the U.S. Congressional district polygons.

SELECT u
FROM table(sem_match(
'select (orageo:aggrUnion(?cgeom) as ?u)
 {
 ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-54 of B-71

B.2.5 orageo:area
Format

orageo:area(geom1 : geomLiteral, unit : Literal) : xsd:decimal

Description

Returns the area of geom1 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=SQ_KM"). See the section about unit of
measurement support in Oracle Spatial and Graph Developer's Guide for more information
about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_AREA function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons with areas greater than
10,000 square kilometers.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:area(?cgeom, "unit=SQ_KM") > 10000) }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.6 orageo:buffer
Format

orageo:buffer(geom1 : geomLiteral, distance : xsd:decimal, unit : Literal) : geomLiteral

Description

Returns a buffer polygon at a specified distance around or inside a geometry.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-55 of B-71

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

distance
Distance value. Distance value. If the value is positive, the buffer is generated around geom1; if
the value is negative (valid only for polygons), the buffer is generated inside geom1.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of
measurement support in Oracle Spatial and Graph Developer's Guide for more information
about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_BUFFER function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons that are completely inside
a 100-kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (
 orageo:relate(?cgeom,
 orageo:buffer("POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 100, "unit=KM"),
 "mask=inside")) }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.7 orageo:centroid
Format

orageo:centroid(geom1 : geomLiteral) : geomLiteral

Description

Returns a point geometry that is the centroid of geom1. (The centroid is also known as the
"center of gravity.")

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-56 of B-71

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

For an input geometry consisting of multiple objects, the result is weighted by the area of each
polygon in the geometry objects. If the geometry objects are a mixture of polygons and points,
the points are not used in the calculation of the centroid. If the geometry objects are all points,
the points have equal weight.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_CENTROID function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons with centroids within 200
kilometers of a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:withinDistance(orageo:centroid(?cgeom),
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "distance=200 unit=KM")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.8 orageo:convexHull
Format

orageo:convexHull(geom1 : geomLiteral) : geomLiteral

Description

Returns a polygon-type object that represents the convex hull of geom1. (The convex hull is a
simple convex polygon that completely encloses the geometry object, using as few straight-line
sides as possible to create the smallest polygon that completely encloses the geometry
object.)

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-57 of B-71

Usage Notes

A convex hull is a convenient way to get an approximation of a complex geometry object.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_CONVEX_HULL function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose convex hull
contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:convexHull(?cgeom),
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "mask=contains")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.9 orageo:difference
Format

orageo:difference(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological difference (MINUS operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_DIFFERENCE function in Oracle Spatial and Graph
Developer's Guide.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-58 of B-71

Example

The following example finds the U.S. Congressional district polygons whose centroid is inside
the difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:difference(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^orageo:WKTLiteral),
 "mask=inside")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.10 orageo:distance
Format

orageo:distance(geom1 : geomLiteral, geom2 : geomLiteral, unit : Literal) : xsd:decimal

Description

Returns the distance between the nearest pair of points or segments of geom1 and geom2 in
terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of
measurement support in Oracle Spatial and Graph Developer's Guide for more information
about unit of measurement specification.

Usage Notes

Use orageo:withinDistance instead of orageo:distance whenever possible, because
orageo:withinDistance has a more efficient index-based implementation.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-59 of B-71

See also the SDO_GEOM.SDO_DISTANCE function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the ten nearest U.S. Congressional districts to a specified point
and orders them by distance from the point.

SELECT name, cdist
FROM table(sem_match(
'SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:nearestNeighbor(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "sdo_num_res=10")) }
 ORDER BY ASC(orageo:distance(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "unit=KM"))'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '))
ORDER BY sem$rownum;

B.2.11 orageo:getSRID
Format

orageo:getSRID(geom : geomLiteral) : xsd:anyURI

Description

Returns the oracle spatial reference system (SRID) URI for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

Example

The following example finds spatial reference system URIs for U.S. Congressional district
polygons.

SELECT csrid
FROM table(sem_match(
'SELECT (orageo:getSRID(?cgeom) AS ?csrid)
 WHERE
 { ?person usgovt:name ?name .

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-60 of B-71

 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.2.12 orageo:intersection
Format

orageo:intersection(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological intersection (AND operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_INTERSECTION function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is inside
the intersection of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:intersection(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5,
-83.6 34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5,
-83.2 34.3))"^^orageo:WKTLiteral),
 "mask=inside")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-61 of B-71

 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.13 orageo:length
Format

orageo:length(geom1 : geomLiteral, unit : Literal) : xsd:decimal

Description

Returns the length or perimeter of geom1 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of
measurement support in Oracle Spatial and Graph Developer's Guide for more information
about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_LENGTH function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons with lengths (perimeters)
greater than 1000 kilometers.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:legnth(?cgeom, "unit=KM") > 1000) }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.14 orageo:mbr
Format

orageo:mbr(geom1 : geomLiteral) : geomLiteral

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-62 of B-71

Description

Returns the minimum bounding rectangle of geom1, that is, the single rectangle that minimally
encloses geom1.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_MBR function in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose minimum
bounding rectangle contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:mbr(?cgeom),
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "mask=contains")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.15 orageo:nearestNeighbor
Format

orageo:nearestNeighbor(geom1: geomLiteral, geom2 : geomLiteral, param : Literal) :
xsd:boolean

Description

Returns true if geom1 is a nearest neighbor of geom2, where the size of the nearest neighbors
set is specified by param; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-63 of B-71

param
Determines the behavior of the operator. See the Usage Notes for the available keyword-value
pairs.

Usage Notes

In the param parameter, the available keyword-value pairs are:

• distance=n specifies the maximum allowable distance for the nearest neighbor search.

• sdo_num_res=n specifies the size of the set for the nearest neighbor search.

• unit=unit specifies the unit of measurement to use with distance value. If you do not
specify a value, the unit of measurement associated with the data is used.

geom1 must be a local variable (that is, a variable that appears in the basic graph pattern that
contains the orageo:nearestNeighbor spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a restrictive
orageo:relate spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_NN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the ten nearest U.S. Congressional districts to a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:nearestNeighbor(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "sdo_num_res=10")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.16 orageo:relate
Format

orageo:relate(geom1: geomLiteral, geom2 : geomLiteral, param : Literal) : xsd:boolean

Description

Returns true if geom1 and geom2 satisfy the topological spatial relation specified by the param
parameter; returns false otherwise.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-64 of B-71

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a list of mask relationships to check. See the list of keywords in the Usage Notes.

Usage Notes

The following param values (mask relationships) can be tested:

• ANYINTERACT: Returns TRUE if the objects are not disjoint.

• CONTAINS: Returns TRUE if the second object is entirely within the first object and the
object boundaries do not touch; otherwise, returns FALSE.

• COVEREDBY: Returns TRUE if the first object is entirely within the second object and the
object boundaries touch at one or more points; otherwise, returns FALSE.

• COVERS: Returns TRUE if the second object is entirely within the first object and the
boundaries touch in one or more places; otherwise, returns FALSE.

• DISJOINT: Returns TRUE if the objects have no common boundary or interior points;
otherwise, returns FALSE.

• EQUAL: Returns TRUE if the objects share every point of their boundaries and interior,
including any holes in the objects; otherwise, returns FALSE.

• INSIDE: Returns TRUE if the first object is entirely within the second object and the object
boundaries do not touch; otherwise, returns FALSE.

• ON: Returns ON if the boundary and interior of a line (the first object) is completely on the
boundary of a polygon (the second object); otherwise, returns FALSE.

• OVERLAPBDYDISJOINT: Returns TRUE if the objects overlap, but their boundaries do not
interact; otherwise, returns FALSE.

• OVERLAPBDYINTERSECT: Returns TRUE if the objects overlap, and their boundaries
intersect in one or more places; otherwise, returns FALSE.

• TOUCH: Returns TRUE if the two objects share a common boundary point, but no interior
points; otherwise, returns FALSE.

Values for param can be combined using the logical Boolean operator OR. For example,
'INSIDE + TOUCH' returns TRUE if the relationship between the geometries is INSIDE or
TOUCH or both INSIDE and TOUCH; it returns FALSE if the relationship between the
geometries is neither INSIDE nor TOUCH.

When invoking orageo:relate with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the orageo:relate spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a restrictive
orageo:relate spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-65 of B-71

See also the SDO_RELATE operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the U.S. Congressional district that contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "mask=contains")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '
));

B.2.17 orageo:sdoDistJoin
Format

orageo:sdoDistJoin(geom1 : geomLiteral, geom2 : geomLiteral, param : Literal) : xsd:boolean

Description

Performs a spatial join based on distance between two geometries. Returns true if the
distance between geom1 and geom2 is within the given value specified in param; returns false
otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a distance value and unit of measure to use for the distance-based spatial join. The
distance value is added to the tolerance value of the associated spatial index. For example if
"distance=100 and unit=m" is used with a tolerance value of 10 meters, then
orageo:sdoDistJoin returns true if the distance between two geometries is no more than 110
meters.

Usage Notes

orageo:sdoDistJoin should be used when performing a distance-based spatial join between
two large geometry collections. When performing a distance-based spatial join between one
small geometry collection and one large geometry collection, invoking orageo:withinDistance
with the small geometry collection as the first argument will usually give better performance
than orageo:sdoDistJoin.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-66 of B-71

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_JOIN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds pairs of U.S. Congressional district polygons that are within 100
meters of each other.

SELECT cdist1, cdist2
FROM table(sem_match(
'{ ?cdist1 orageo:hasExactGeometry ?cgeom1 .
 ?cdist2 orageo:hasExactGeometry ?cgeom2
 FILTER (orageo:sdoDistJoin(?cgeom1, ?cgeom2,
 "distance=100 unit=m")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '
));

B.2.18 orageo:sdoJoin
Format

orageo:sdoJoin(geom1 : geomLiteral, geom2 : geomLiteral, param : Literal) : xsd:boolean

Description

Performs a spatial join based on one or more topological relationships. Returns true if geom1
and geom2 satisfy the spatial relationship specified by param; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a list of mask relationships to check. The topological relationship of interest.Valid
values are 'mask=<value>' where <value> is one or more of the mask values that are valid for
the SDO_RELATE operator (TOUCH, OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT,
EQUAL, INSIDE, COVEREDBY, CONTAINS, COVERS, ANYINTERACT, ON). Multiple masks
are combined with the logical Boolean operator OR (for example, "mask=inside+touch").

Usage Notes

orageo:sdoJoin should be used when performing a spatial join between two large geometry
collections. When performing a spatial join between one small geometry collection and one
large geometry collection, invoking orageo:relate with the small geometry collection as the first
argument will usually give better performance than orageo:sdoJoin.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_JOIN operator in Oracle Spatial and Graph Developer's Guide.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-67 of B-71

Example

The following example finds pairs of U.S. Congressional district polygons that have any spatial
interaction.

SELECT cdist1, cdist2
FROM table(sem_match(
'{ ?cdist1 orageo:hasExactGeometry ?cgeom1 .
 ?cdist2 orageo:hasExactGeometry ?cgeom2
 FILTER (orageo:sdoJoin(?cgeom1, ?cgeom2,
 "mask=anyinteract")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '
));

B.2.19 orageo:union
Format

orageo:union(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological union (OR operation) of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_UNION function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is inside
the union of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:union("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-68 of B-71

34.3))"^^orageo:WKTLiteral),
 "mask=inside")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.20 orageo:withinDistance
Format

orageo:withinDistance(geom1 : geomLiteral, geom2 : geomLiteral, distance : xsd:decimal,
unit : Literal) : xsd:boolean

Description

Returns true if the distance between geom1 and geom2 is less than or equal to distance when
measured in unit; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

distance
Distance value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of
measurement support in Oracle Spatial and Graph Developer's Guide for more information
about unit of measurement specification.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the orageo:withinDistance spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a restrictive
orageo:withinDistance spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_WITHIN_DISTANCE operator in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional districts that are within 100 kilometers of a
specified point.

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-69 of B-71

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:withinDistance(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 100, "KM")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.21 orageo:xor
Format

orageo:xor(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological symmetric difference (XOR operation) of
geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_XOR function in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is inside
the symmetric difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:xor(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^orageo:WKTLiteral),

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-70 of B-71

 "mask=inside")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

Appendix B
Oracle-Specific Functions for Spatial Support

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-71 of B-71

C
RDF Support in SQL Developer

You can use Oracle SQL Developer to perform operations related to the RDF Graph feature of
Oracle Graph.

• About RDF Support in SQL Developer
The RDF support in SQL Developer is available through the Connections navigator.

• Setting Up the RDF Semantic Graph Support In SQL Developer
This section applies only if you are using Oracle Database 19c or later. You must execute
a setup procedure to enable RDF Semantic Graph support in SQL Developer for schema-
private networks only.

• Working with RDF Semantic Networks Using SQL Developer
You can create an RDF semantic network to work with RDF data using SQL Developer.

• Bulk Loading RDF Data Using SQL Developer
RDF Bulk load operations can be invoked from SQL Developer.

C.1 About RDF Support in SQL Developer
The RDF support in SQL Developer is available through the Connections navigator.

You can use SQL Developer to create and manage RDF-related objects in an Oracle AI
Database. Oracle Graph support for semantic technologies consists mainly of Resource
Description Framework (RDF) and a subset of the Web Ontology Language (OWL). These
capabilities are referred to as the RDF Knowledge Graph feature of Oracle Graph.

Support for SQL Developer is included in RDF if the following conditions are true:

• The database connection is to Oracle Database release 12.1 or later.

• RDF semantic graph support is enabled in the database. After this support is enabled, the
SDO_RDF_TRIPLE_S type will be available.

If you expand an Oracle AI Database connection that meets these conditions, near the bottom
of the child nodes for the connection is RDF Semantic Graph.

C.2 Setting Up the RDF Semantic Graph Support In SQL
Developer

This section applies only if you are using Oracle Database 19c or later. You must execute a
setup procedure to enable RDF Semantic Graph support in SQL Developer for schema-private
networks only.

Note

This setup is not required for semantic networks in MDSYS schema. Starting from
Oracle Database 19c, it is always recommended to create semantic networks in
database user schemas.

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-1 of C-12

Running this setup creates helper functions that are needed to populate RDF network
dictionary information in SQL Developer.

Note

If you do not perform this one-time setup procedure, you may encounter an error when
trying to expand RDF network metadata nodes (such as REGULAR_MODELS, RDF_VIEWS,
RULEBASES, and so on) in SQL Developer.

To perform this setup:

1. Open SQL Developer.

2. Right-click the RDF Semantic Graph node and select Setup RDF Semantic Graph to
execute the one-time setup procedure.

Figure C-1 RDF Semantic Graph Setup

The following table helps you to determine if you require a DBA privilege to have this
option available.

Table C-1 RDF Semantic Graph Setup Specific To SQL Developer and Oracle DB
Version

Oracle DB
Version

SQL
Developer
Version

Type of User Expected Result

19c or later Earlier to
20.3

To be executed once by a
user with DBA privilege

Required types and functions are
installed in MDSYS schema.

Appendix C
Setting Up the RDF Semantic Graph Support In SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-2 of C-12

Table C-1 (Cont.) RDF Semantic Graph Setup Specific To SQL Developer and
Oracle DB Version

Oracle DB
Version

SQL
Developer
Version

Type of User Expected Result

19c or later 20.3 or later To be executed once
individually by each user

Required types and functions are
installed in the user's schema.

Note

If you have already set up the
RDF Semantic Graph support in
Oracle Database Release 19c
or later with a SQL Developer
version earlier than 20.3, but
you have started using SQL
Developer Release 20.3 or later,
then you will need to perform
the setup again, because the
metadata functions are different
from previous ones that were
installed in the MDSYS schema.

3. Click Apply.
Optionally, you can also click the SQL tab to view the procedure.

Figure C-2 Apply RDF Semantic Graph Setup

The required types and function are installed in the appropriate schema. Once this setup is
executed, the RDF Semantic Graph option appears grayed out.

Appendix C
Setting Up the RDF Semantic Graph Support In SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-3 of C-12

C.3 Working with RDF Semantic Networks Using SQL Developer
You can create an RDF semantic network to work with RDF data using SQL Developer.

You can view the available networks in the database schema associated with your connection
by expanding the Networks node in the RDF Semantic Graph tree.

From Release 19c onwards, an RDF semantic network is supported in both user schema and
MDSYS schema. See the following table to determine the semantic network type
recommended for you depending on your database version.

Table C-2 Recommended Semantic Network Type

Database Release Supported Network(s) Recommended Network

18c or earlier All RDF metadata belongs only to
MDSYS Network.

MDSYS Network

19c or later • MDSYS Network
• Schema-Private Network

Schema-Private Network

• Creating an RDF Semantic Network Using SQL Developer
Under the Networks node, you can create one or more RDF semantic networks.

• Refreshing Semantic Network Indexes Using SQL Developer
RDF uses semantic network indexes (some created automatically), which you can refresh.

• Gathering RDF Statistics Using SQL Developer
You can gather statistics about RDF and OWL tables and their indexes.

• Purging Unused Values from a Network Using SQL Developer
You can purge unused (invalid) geometry literal values from the semantic network.

• Dropping a Semantic Network Using SQL Developer
Dropping a semantic network removes structures used for persistent storage of semantic
data..

C.3.1 Creating an RDF Semantic Network Using SQL Developer
Under the Networks node, you can create one or more RDF semantic networks.

To create a new semantic network:

1. Right-click Networks and select Create Semantic Network.
This operation is available for users depending on the database version and the SQL
Developer version used. See the following table for more information:

Table C-3 Release Specific Instructions to Create a Semantic Network

Oracle DB
Release

SQL
Developer
Version

User Requirement

18c or
earlier

Any Only a user having a DBA role can create an MDSYS network.

For Release
19c- prior
19.3

Any Only a user having a DBA role can create a schema-private network.

Appendix C
Working with RDF Semantic Networks Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-4 of C-12

Table C-3 (Cont.) Release Specific Instructions to Create a Semantic Network

Oracle DB
Release

SQL
Developer
Version

User Requirement

19.3 or later Prior 20.3 Only a user having a DBA role can create a schema-private network.

19.3 or later 20.3 or later Any database user can create a schema-private network directly.

Create Semantic Network window opens as shown:

Figure C-3 Create Semantic Network

2. Select a Network Owner, that is, the database schema that will be the owner of the
network.

• For release 18c and earlier, the owner is always MDSYS.

• For release 19c before 19.3, select the network owner.

• For release 19.3 and later, the network owner is always the connection user schema.

3. Enter a Network Name.

Note

For release 18c and earlier, this field is blank and not editable.

4. Select a Tablespace to be associated with the network. (If the tablespace or tablespaces
necessary for semantic networks do not already exist, see Creating Tablespaces for
Semantic Networks Using SQL Developer.)

Appendix C
Working with RDF Semantic Networks Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-5 of C-12

5. Click Apply.
The RDF semantic network is created.

You can verify the RDF semantic network creation by viewing the following child nodes
under the created Nework:

• REGULAR_MODELS

• VIRTUAL_MODELS

• RDF_VIEWS

• RULEBASES

• ENTAILMENTS

• NETWORK_INDEXES (RDF_LINK$)

• DATATYPE_INDEXES (RDF_VALUE$)

• BULK_LOAD_TRACES

You can now perform the following operations on each created network:

• Gather Statistics

• Refresh semantic network indexes

• Purge unused values

• Drop semantic network

• Creating Tablespaces for Semantic Networks Using SQL Developer
If the tablespace or tablespaces required for semantic networks do not already exist, you
can create them.

C.3.1.1 Creating Tablespaces for Semantic Networks Using SQL Developer
If the tablespace or tablespaces required for semantic networks do not already exist, you can
create them.

You can adjust those that were created automatically as part of the semantic network setup
operation.

The recommended practice is to use three tablespaces for RDF Semantic Graph:

• Tablespace for RDF storage (create a new tablespace named RDFTBS)

• Tablespace for temporary data (create a new tablespace named TEMPTBS)

• Tablespace for other user data (use the existing tablespace named USERS)

In the DBA navigator (not the Connections navigator), for the system connection click Storage,
then Tablespaces. For the new tablespaces (right-click and select Create New), and select
any desired name (the ones listed here are just examples). Accept default values or specified
desired options.

1. Create RDFTBS for storing RDF data.

Name (tablespace name): RDFTBS

Tablespace Type: Permanent

Under File Specification, Name: 'RDFTBS.DBF'

Directory: Desired file system directory. For example: /u01/app/oracle/oradata/
orcl12c/orcl

Appendix C
Working with RDF Semantic Networks Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-6 of C-12

File Size: Desired file initial size. For example: 1 G

Check Reuse and Auto Extend On.

Next Size: Desired size of each extension increment. For example: 512 M

Max Size: Desired file maximum size. For example: 10 G

Click OK.

2. Create TEMPTBS for temporary work space.

Right-click and select Create New.

Name (tablespace name): TEMPTBS

Tablespace Type: Temporary

Under File Specification, Name: 'TEMPTBS.DBF'

Directory: Desired file system directory. For example: /u01/app/oracle/oradata/
orcl12c/orcl

File Size: Desired file initial size. For example: 1 G

Check Reuse and Auto Extend On.

Next Size: Desired size of each extension increment. For example: 256 M

Max Size: Desired file maximum size. For example: 8 G

3. Make TEMPTBS the default temporary tablespace for the database, by using the SQL
Worksheet for the system connection’s SQL Worksheet to execute the following statement:

SQL> alter database default temporary tablespace TEMPTBS;

C.3.2 Refreshing Semantic Network Indexes Using SQL Developer
RDF uses semantic network indexes (some created automatically), which you can refresh.

You can create additional semantic indexes if you wish, and you can adjust those that were
created automatically.

There are multicolumn B-Tree semantic indexes over the following columns:

• S - subject

• P - predicate

• C - canonical object

• G - graph

• M - model

Two indexes are created by default: PCSGM and PSCGM. However, you can use a three-
index setup to better cover more combinations of S, P, and C: PSCGM, SPCGM, and CSPGM.

In the Connections navigator (not the DBA navigator), expand the system connection, expand
RDF Semantic Graph, then click Network Indexes (RDF_LINK).

1. Add the SPCGM index.

Right-click and select Create Semantic Index. Suggested Index code: SPCGM

Click OK.

2. Add the CSPGM index.

Appendix C
Working with RDF Semantic Networks Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-7 of C-12

Right-click and select Create Semantic Index. Suggested Index code: CSPGM

Click OK.

3. Drop the PSCGM index.

Right-click RDF_LINK_PSCGM_IDX and select Drop Semantic Index.

The result will be these three indexes:

• RDF_LINK_PSCGM_IDX

• RDF_LINK_SPCGM_IDX

• RDF_LINK_CSPGM_IDX

C.3.3 Gathering RDF Statistics Using SQL Developer
You can gather statistics about RDF and OWL tables and their indexes.

To gather statistics about a semantic network, right-click the network name and select Gather
Statistics.

The following parameters can be defined in the dialog box:

Network Owner: The connection user (not editable).

Network Name: Name of the network (not editable).

Just on Values: If enabled (checked), collects statistics only on the table containing the lexical
values of triples. If not enabled (unchecked), collects statistics on all major tables related to the
storage of RDF and OWL data.

Degree of Parallelism: Number of parallel execution servers associated with the operation.

To complete the network creation, click Apply.

C.3.4 Purging Unused Values from a Network Using SQL Developer
You can purge unused (invalid) geometry literal values from the semantic network.

Deletion of triples over time may lead to a subset of the values in the RDF_VALUE$ table
becoming unused in any of the RDF triples or rules currently in the semantic network. To delete
such unused values from the RDF_VALUE$ table, right-click the network name and select
Purge Unused Values..

The following parameters can be defined in the dialog box:

Network Owner: The connection user (not editable).

Network Name: Name of the network (not editable).

MBV_METHOD=SHADOW: If enabled (checked), may result faster processing when a large
number of values need to be purged.

Degree of Parallelism: Number of parallel execution servers associated with the operation.

PUV_COMPUTE_VIDS_USED: If enabled (checked), may result faster processing when most
of the values are expected to be purged.

Extra Flags: Specify any additional keywords and values to be added in the flags parameter
for the SEM_APIS.PURGE_UNUSED_VALUES procedure that will be executed (click the SQL
tab to see the complete SQL statement).

Appendix C
Working with RDF Semantic Networks Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-8 of C-12

To perform the operation, click Apply.

C.3.5 Dropping a Semantic Network Using SQL Developer
Dropping a semantic network removes structures used for persistent storage of semantic data..

To drop a semantic network, right-click the network name and select Drop Semantic Network.

The following parameters can be defined in the dialog box:

Network Owner: The connection user (not editable).

Network Name: Name of the network (not editable).

Cascade: If enabled (checked), also drops any existing semantic technology models and
rulebases for the network, and removes structures used for persistent storage of semantic data
for the network. If not enabled (unchecked), the operation will fail if any semantic technology
models or rulebases exist in the network.

To perform the operation, click Apply.

C.4 Bulk Loading RDF Data Using SQL Developer
RDF Bulk load operations can be invoked from SQL Developer.

Two major steps are required after some initial preparation: (1) loading data from the file
system into a “staging“ table and (2) loading data from a “staging“ table into a semantic model.

Do the following to prepare for the actual bulk loading.

1. Prepare the RDF dataset or datasets.

• The data must be on the file system of the Database server – not on the client system.

• The data must be in N-triple or N-quad format. (Apache Jena, for example, can be
used to convert other formats to N-triple/N-quad,)

• A Unix named pipe can be used to decompress zipped files on the fly.

For example, you can download RDF datasets from LinkedGeoData. For an introduction,
see http://linkedgeodata.org/Datasets and http://linkedgeodata.org/RDFMapping.

To download from LinkedGeoData, go to https://hobbitdata.informatik.uni-leipzig.de/
LinkedGeoData/downloads.linkedgeodata.org/releases/ and browse the listed directories.
For a fairly small dataset you can download https://hobbitdata.informatik.uni-leipzig.de/
LinkedGeoData/downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-
ontology.sorted.nt.bz2.

Each .bz2 file is a compressed archive containing a comparable-named .nt file. To specify
an .nt file as a data source, you must extract (decompress) the corresponding .bz2 file,
unless you create a Unix named pipe to avoid having to store uncompressed data.

2. Create a regular, non-DBA user to perform the load.

For example, using the DBA navigator (not the Connections navigator), expand the system
connection, expand Security, right-click Users, and select Create New.

Create a user (for example, named RDFUSER) with CONNECT, RESOURCE, and
UNLIMITED TABLESPACE privileges.

3. Add a connection for this regular, non-DBA user (for example, a connection named
RDFUSER).

Appendix C
Bulk Loading RDF Data Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-9 of C-12

http://linkedgeodata.org/docs/downloads
http://linkedgeodata.org/docs/rdf-mapping.html
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2

Default Tablespace: USERS

Temporary Tablespace: TEMPTBS

4. As the system user, create a directory in the database that points to your RDF data
directory.

Using the Connections navigator (not the DBA navigator), expand the system connection,
right-click Directory and select Create Directory.

Directory Name: Desired directory name. For example: RDFDIR

Database Server Directory: Desired location for the directory. For example: /home/
oracle/RDF/MyData

Click Apply.

5. Grant privileges on the directory to the regular, non-DBA user (for example, RDFUSER).
For example, using the system connection's SQL Worksheet:

SQL> grant read, write on directory RDFDIR to RDFUSER;

Tip: you can use a named pipe to avoid having to store uncompressed data. For example:

$ mkfifo named_pipe.nt
$ bzcat myRdfFile.nt.bz2 > named_pipe.nt

6. Expand the regular, non-DBA user (for example, RDFUSER) connection and click RDF
Semantic Graph.

7. Create a model to hold the RDF data.

Click Model, then New Model.

Model Name: Enter a model name (for example, MY_ONTOLOGY)

Application Table: * Create new <Model_Name>_TPL table * (that is, have an
application table with a triple column named TRIPLE automatically created)

Model Tablespace: tablespace to hold the RDF data (for example, RDFTBS)

Click Apply.

To see the model, expand Models in the object hierarchy, and click the model name to
bring up the SPARQL editor for that model.

You can run a query and see that the model is empty.

Using the Models menu, perform a bulk load from the Models menu. Bulk load has two phases:

• Loading data from the file system into a simple "staging" table in the database. This uses
an external table to read from the file system.

• Loading data from the staging table into the semantic network. Load from the staging table
into the model (for example, MY_ONTOLOGY).

To perform these two phases:

1. Load data into the staging table.

Right-click REGULAR_MODELS (under the network name) and select Load RDF Data into
Staging Table from External Table.

For Source External Table, Source Table: Desired table name (for example,
MY_ONTOLOGY_EXT).

Appendix C
Bulk Loading RDF Data Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-10 of C-12

Log File: Desired file name (for example, my_ontology.log)

Bad File: Desired file name (for example, my_ontology.bad)

Source Table Owner: Schema of the table with RDF data (for example, RDFUSER)

For Input Files, Input Files: Input file (for example, named_pipe.nt).

For Staging Table, Staging table: Name for the staging table (for example,
MY_ONTOLOGY_STAGE).

If the table does not exist, check Create Staging Table.

Input Format: Desired format (for example, N-QUAD)

Staging Table Owner: Schema for the staging table (for example, RDFUSER)

2. Load from the staging table into the model.

Note

Unicode data in the staging table should be escaped as specified in WC3 N-
Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples). You can use the
SEM_APIS.ESCAPE_RDF_TERM function to escape Unicode values in the
staging table. For example:

create table esc_stage_tab(rdfstc_sub, rdfstc_pred, rdf$stc_obj);

insert /*+ append nologging parallel */ into esc_stage_tab
(rdfstc_sub, rdfstc_pred, rdf$stc_obj)
select sem_apis.escape_rdf_term(rdf$stc_sub, options=>’ UNI_ONLY=T
'), sem_apis.escape_rdf_term(rdf$stc_pred, options=>’ UNI_ONLY=T
'), sem_apis.escape_rdf_term(rdf$stc_obj, options=>’ UNI_ONLY=T ')
from stage_tab;

Right-click REGULAR_MODELS (under the network name) and select Bulk Load into Model
from staging Table.

Model: Name for the model (for example, MY_ONTOLOGY).

(If the model does not exist, check Create Model. However, in this example, the model
does already exist.)

Staging Table Owner: Schema of the staging table (for example, RDFUSER)

Staging Table Name: Name of the staging table (for example, MY_ONTOLOGY_STAGE)

Parallel: Degree of parallelism (for example, 2)

Suggestion: Check the following options: MBV_METHOD=SHADOW, Rebuild
application table indexes, Create event trace table

Click Apply.

Do the following after the bulk load operation.

1. Gather statistics for the whole semantic network.

In the Connections navigator for a DBA user, expand the RDF Semantic Graph node for
the connection and select Gather Statistics (DBA)).

2. Run some SPARQL queries on our model.

Appendix C
Bulk Loading RDF Data Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-11 of C-12

http://www.w3.org/TR/rdf-testcases/#ntriples

In the Connections navigator, expand the RDF Semantic Graph node for the connection
and select the model.

Use the SPARQL Query Editor to enter and execute desired SPARQL queries.

3. Optionally, check the bulk load trace to get information about each step.

Expand RDF Semantic Graph and then expand Bulk Load Traces to display a list of bulk
load traces. Clicking one of them will show useful information about the execution time for
the load, number of distinct values and triples, number of duplicate triples, and other
details.

Appendix C
Bulk Loading RDF Data Using SQL Developer

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-12 of C-12

D
MDSYS-Owned Semantic Network

A semantic network can be created in and owned by the MDSYS schema.

If a network is created in the MDSYS schema, it is an unnamed semantic network available to
the entire database.

• Creating an MDSYS-owned Semantic Network
You can create an MDSYS-owned semantic network using a SQL based interface such as
SQL Developer, SQLPLUS, or from a Java program using JDBC.

• Getting Started with Semantic Data in an MDSYS-Owned Network
Get started working with semantic data in an MDSYS-owned network.

• Example Queries Using Graph Support for Apache Jena
This section describes example queries using the support for Apache Jena and is based
on the RDF metadata that is stored in the MDSYS schema.

• Example Queries Using Graph Adapter for Eclipse RDF4J
This section describes example queries for using Oracle RDF Graph Adapter for Eclipse
RDF4J in an existing MDSYS network.

• Reference Information (MDSYS_Owned Semantic Network Only)

• Migrating an MDSYS-Owned Network to a Schema-Private Network
You can migrate an MDSYS-owned semantic network in a database to a schema-private
semantic network in the same database.

D.1 Creating an MDSYS-owned Semantic Network
You can create an MDSYS-owned semantic network using a SQL based interface such as
SQL Developer, SQLPLUS, or from a Java program using JDBC.

1. Connect to Oracle Database as a SYSTEM user with a DBA privilege.

CONNECT system/<password-for-system-user>

2. Create a tablespace for storing the RDF graphs. Use a suitable operating system folder
and filename.

CREATE TABLESPACE rdftbs
 DATAFILE 'rdftbs.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 64M
 MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

3. Grant quota on rdftbs to MDSYS.

ALTER USER MDSYS QUOTA UNLIMITED ON rdftbs;

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-1 of D-30

4. Create a tablespace for storing the user data. Use a suitable operating system folder and
filename.

CREATE TABLESPACE usertbs
 DATAFILE 'usertbs.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 64M
 MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

5. Create a database user to create or use RDF graphs or do both using the adapter.

CREATE USER rdfuser
IDENTIFIED BY <password-for-rdfuser>
DEFAULT TABLESPACE usertbs
QUOTA 5G ON usertbs;

6. Grant quota on rdftbs to RDFUSER.

ALTER USER RDFUSER QUOTA 5G ON rdftbs;

7. Grant the necessary privileges to the new database user.

GRANT CONNECT, RESOURCE TO rdfuser;

8. Create an MDSYS-owned semantic network.

EXECUTE SEM_APIS.CREATE_SEM_NETWORK(tablespace_name =>'rdftbs');

9. Verify that MDSYS-owned semantic network has been created successfully.

SELECT table_name
 FROM sys.all_tables
 WHERE table_name = 'RDF_VALUE$' AND owner='MDSYS';

Presence of RDF_VALUE$ table in the MDSYS schema shows that the MDSYS-owned
semantic network has been created successfully.

TABLE_NAME

RDF_VALUE$

D.2 Getting Started with Semantic Data in an MDSYS-Owned
Network

Get started working with semantic data in an MDSYS-owned network.

1. Create a tablespace for the system tables. You must be connected as a user with
appropriate privileges to create the tablespace. The following example creates a
tablespace named rdf_tblspace:

CREATE TABLESPACE rdf_tblspace
 DATAFILE 'rdf_tblspace.dat' SIZE 1024M REUSE

Appendix D
Getting Started with Semantic Data in an MDSYS-Owned Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-2 of D-30

 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

2. Create an MDSYS-owned semantic network.

Creating a semantic network adds semantic data support to an Oracle database. You must
create a semantic network as a user with DBA privileges.

The following example creates a MDSYS-owned semantic network:

EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');

3. Create a database user under whose schema you will manage your semantic data and
grant the necessary privileges to the database user. You must be connected as a user with
appropriate privileges to create the database user.

The following example creates a database user rdfuser and grants the necessary
privileges to rdfuser:

CREATE USER rdfuser
IDENTIFIED BY <password-for-rdfuser>
QUOTA 5G ON rdf_tblspace;

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;

4. Connect as the database user.

CONNECT rdfuser/<password-for-rdfuser>

Note

You must not perform the following steps while connected as SYS, SYSTEM, or
MDSYS.

5. Create an application table to store references to the semantic data and manage privileges
for insert, update and delete operations. (You do not need to be connected as a user with
DBA privileges for this step and the remaining steps.)

This table must contain a column of type SDO_RDF_TRIPLE_S, which will contain references
to all data associated with a single model.

The following example creates a table named articles_rdf_data with one column to hold
the data for triples:

CREATE TABLE articles_rdf_data (triple SDO_RDF_TRIPLE_S) COMPRESS;

6. Create a model.

When you create a model, you must specify the model name, the table to hold references
to semantic data for the model, and the column of type SDO_RDF_TRIPLE_S in that table.

The following command creates a model named articles in the MDSYS-owned network,
which will use the table created in the preceding step.

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data',
'triple');

Appendix D
Getting Started with Semantic Data in an MDSYS-Owned Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-3 of D-30

After you create the model, you can insert triples into the model, as shown in the examples in
Semantic Data Examples (PL/SQL and Java).

Note

You must omit the network_owner and network_name arguments in the Semantic Data
Examples (PL/SQL and Java) when using an MDSYS-owned semantic network.

D.3 Example Queries Using Graph Support for Apache Jena
This section describes example queries using the support for Apache Jena and is based on the
RDF metadata that is stored in the MDSYS schema.

To run a query, you must do the following:

1. Include the code in a Java source file. The examples used in this section are supplied in
files in the examples directory of the support for Apache Jena download.

2. Compile the Java source file. For example:

> javac -classpath ../jar/'*' Test.java

3. Run the compiled file. For example:

> java -classpath ./:../jar/'*' Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

• Test.java: Query Family Relationships

• Test6.java: Load OWL Ontology and Perform OWLPrime inference

• Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference

• Test8.java: SPARQL OPTIONAL Query

• Test9.java: SPARQL Query with LIMIT and OFFSET

• Test10.java: SPARQL Query with TIMEOUT and DOP

• Test11.java: Query Involving Named Graphs

• Test12.java: SPARQL ASK Query

• Test13.java: SPARQL DESCRIBE Query

• Test14.java: SPARQL CONSTRUCT Query

• Test15.java: Query Multiple Models and Specify "Allow Duplicates"

• Test16.java: SPARQL Update

• Test17.java: SPARQL Query with ARQ Built-In Functions

• Test18.java: SELECT Cast Query

• Test19.java: Instantiate Oracle Database Using OracleConnection

• Test20.java: Oracle Database Connection Pooling

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-4 of D-30

D.3.1 Test.java: Query Family Relationships
Example D-1 Query Family Relationships

Example D-1 specifies that John is the father of Mary, and it selects and displays the subject
and object in each fatherOf relationship

import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.graph.*;
import org.apache.jena.query.*;
public class Test {

 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 Model model = ModelOracleSem.createOracleSemModel(
 oracle, szModelName);

 model.getGraph().add(Triple.create(
 Node.createURI("http://example.com/John"),
 Node.createURI("http://example.com/fatherOf"),
 Node.createURI("http://example.com/Mary")));
 Query query = QueryFactory.create(
 "select ?f ?k WHERE {?f <http://example.com/fatherOf> ?k .}");
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);
 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-1, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test.java
java -classpath ./:../jar/'*' Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| f | k |
===
| <http://example.com/John> | <http://example.com/Mary> |

D.3.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference
Example D-2 loads an OWL ontology and performs OWLPrime inference. Note that the OWL
ontology is in RDF/XML format, and after it is loaded into Oracle it will be serialized out in N-
TRIPLE form. The example also queries for the number of asserted and inferred triples.

The ontology in this example can be retrieved from http://swat.cse.lehigh.edu/onto/univ-
bench.owl, and it describes roles, resources, and relationships in a university environment.

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-5 of D-30

http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://swat.cse.lehigh.edu/onto/univ-bench.owl

Example D-2 Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
public class Test6 {
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 Model model = ModelOracleSem.createOracleSemModel(oracle, szModelName);

 // load UNIV ontology
 InputStream in = FileManager.get().open("./univ-bench.owl");
 model.read(in, null);
 OutputStream os = new FileOutputStream("./univ-bench.nt");
 model.write(os, "N-TRIPLE");
 os.close();

 String queryString =
 " SELECT ?subject ?prop ?object WHERE { ?subject ?prop ?object } ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 int iTriplesCount = 0;
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 iTriplesCount++;
 }
 System.out.println("Asserted triples count: " + iTriplesCount);
 }
 finally {
 qexec.close() ;
 }

 Attachment attachment = Attachment.createInstance(
 new String[] {}, "OWLPRIME",
 InferenceMaintenanceMode.NO_UPDATE, QueryOptions.DEFAULT);

 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName, attachment);
 graph.analyze();
 graph.performInference();

 query = QueryFactory.create(queryString) ;
 qexec = QueryExecutionFactory.create(query,new ModelOracleSem(graph)) ;

 try {
 int iTriplesCount = 0;
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 iTriplesCount++;
 }

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-6 of D-30

 System.out.println("Asserted + Infered triples count: " + iTriplesCount);
 }
 finally {
 qexec.close() ;
 }
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-2, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test6.java
java -classpath ./:../jar/'*' Test6 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
Asserted triples count: 293
Asserted + Infered triples count: 340

Note that this output reflects an older version of the LUBM ontology. The latest version of the
ontology has more triples.

D.3.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime
inference

Example D-3 loads the same OWL ontology as in Test6.java: Load OWL Ontology and Perform
OWLPrime inference, but stored in a local file using Bulk Loader. Ontologies can also be
loaded using an incremental and batch loader; these two methods are also listed in the
example for completeness.

Example D-3 Bulk Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import org.apache.jena.graph.*;
import org.apache.jena.rdf.model.*;
import org.apache.jena.util.*;
import oracle.spatial.rdf.client.jena.*;

public class Test7
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];
 // in memory Jena Model
 Model model = ModelFactory.createDefaultModel();
 InputStream is = FileManager.get().open("./univ-bench.owl");
 model.read(is, "", "RDF/XML");
 is.close();

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem modelDest = ModelOracleSem.createOracleSemModel(oracle,
szModelName);

 GraphOracleSem g = modelDest.getGraph();
 g.dropApplicationTableIndex();

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-7 of D-30

 int method = 2; // try bulk loader
 String tbs = "SYSAUX"; // can be customized
 if (method == 0) {
 System.out.println("start incremental");
 modelDest.add(model);
 System.out.println("end size " + modelDest.size());
 }
 else if (method == 1) {
 System.out.println("start batch load");
 g.getBulkUpdateHandler().addInBatch(
 GraphUtil.findAll(model.getGraph()), tbs);
 System.out.println("end size " + modelDest.size());
 }
 else {
 System.out.println("start bulk load");
 g.getBulkUpdateHandler().addInBulk(
 GraphUtil.findAll(model.getGraph()), tbs);
 System.out.println("end size " + modelDest.size());
 }
 g.rebuildApplicationTableIndex();

 long lCount = g.getCount(Triple.ANY);
 System.out.println("Asserted triples count: " + lCount);
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-3, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test7.java
java -classpath ./:../jar/'*' Test7 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
start bulk load
end size 293
Asserted triples count: 293

Note that this output reflects an older version of the LUBM ontology. The latest version of the
ontology has more triples.

D.3.4 Test8.java: SPARQL OPTIONAL Query
Example D-4 shows a SPARQL OPTIONAL query. It inserts triples that postulate the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.

It then finds parent-child relationships, optionally including any grandchild (gkid) relationships.

Example D-4 SPARQL OPTIONAL Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test8
{

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-8 of D-30

 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(
 Node.createURI("u:John"), Node.createURI("u:parentOf"),
Node.createURI("u:Mary")));
 g.add(Triple.create(
 Node.createURI("u:John"), Node.createURI("u:parentOf"),
Node.createURI("u:Jack")));
 g.add(Triple.create(
 Node.createURI("u:Mary"), Node.createURI("u:parentOf"),
Node.createURI("u:Jill")));

 String queryString =
 " SELECT ?s ?o ?gkid " +
 " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 int iMatchCount = 0;
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 }
 finally {
 qexec.close() ;
 }
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-4, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test8.java
java -classpath ./:../jar/'*' Test8 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| s | o | gkid |
==================================
<u:John>	<u:Mary>	<u:Jill>
<u:Mary>	<u:Jill>	
<u:John>	<u:Jack>	

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-9 of D-30

D.3.5 Test9.java: SPARQL Query with LIMIT and OFFSET
Example D-5 shows a SPARQL query with LIMIT and OFFSET. It inserts triples that postulate
the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.

It then finds one parent-child relationship (LIMIT 1), skipping the first two parent-child
relationships encountered (OFFSET 2), and optionally includes any grandchild (gkid)
relationships for the one found.

Example D-5 SPARQL Query with LIMIT and OFFSET

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;
public class Test9
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Mary"),
Node.createURI("u:parentOf"),
 Node.createURI("u:Jill")));

 String queryString =
 " SELECT ?s ?o ?gkid " +
 " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} " +
 " LIMIT 1 OFFSET 2";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 int iMatchCount = 0;
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 qexec.close() ;
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-10 of D-30

The following are the commands to compile and run Example D-5, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test9.java
java -classpath ./:../jar/'*' Test9 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| s | o | gkid |
==============================
| <u:John> | <u:Jack> | |

D.3.6 Test10.java: SPARQL Query with TIMEOUT and DOP
Example D-6 shows the SPARQL query from Test9.java: SPARQL Query with LIMIT and
OFFSET with additional features, including a timeout setting (TIMEOUT=1, in seconds) and
parallel execution setting (DOP=4).

Example D-6 SPARQL Query with TIMEOUT and DOP

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test10 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jill")));
 String queryString =
 " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=4,timeout=1> "
 + " SELECT ?s ?o ?gkid WHERE { ?s <u:parentOf> ?o . "
 + " OPTIONAL {?o <u:parentOf> ?gkid }} "
 + " LIMIT 1 OFFSET 2";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 int iMatchCount = 0;
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 qexec.close() ;
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-11 of D-30

The following are the commands to compile and run Example D-6, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test10.java
java -classpath ./:../jar/'*' Test10 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| s | o | gkid |
==============================
| <u:John> | <u:Jack> | |

D.3.7 Test11.java: Query Involving Named Graphs
Example D-7 shows a query involving named graphs. It involves a default graph that has
information about named graph URIs and their publishers. The query finds graph names, their
publishers, and within each named graph finds the mailbox value using the foaf:mbox
predicate.

Example D-7 Named Graph Based Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test11
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
 DatasetGraphOracleSem dataset = DatasetGraphOracleSem.createFrom(graph);

 // don't need the GraphOracleSem anymore, release resources
 graph.close();

 // add data to the default graph
 dataset.add(new Quad(
 Quad.defaultGraphIRI, // specifies default graph
 Node.createURI("http://example.org/bob"),
 Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
 Node.createLiteral("Bob Hacker")));
 dataset.add(new Quad(
 Quad.defaultGraphIRI, // specifies default graph
 Node.createURI("http://example.org/alice"),
 Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
 Node.createLiteral("alice Hacker")));

 // add data to the bob named graph
 dataset.add(new Quad(
 Node.createURI("http://example.org/bob"), // graph name
 Node.createURI("urn:bob"),
 Node.createURI("http://xmlns.com/foaf/0.1/name"),
 Node.createLiteral("Bob")));
 dataset.add(new Quad(
 Node.createURI("http://example.org/bob"), // graph name

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-12 of D-30

 Node.createURI("urn:bob"),
 Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
 Node.createURI("mailto:bob@example")));

 // add data to the alice named graph
 dataset.add(new Quad(
 Node.createURI("http://example.org/alice"), // graph name
 Node.createURI("urn:alice"),
 Node.createURI("http://xmlns.com/foaf/0.1/name"),
 Node.createLiteral("Alice")));
 dataset.add(new Quad(
 Node.createURI("http://example.org/alice"), // graph name
 Node.createURI("urn:alice"),
 Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
 Node.createURI("mailto:alice@example")));

 DataSource ds = DatasetFactory.create(dataset);

 String queryString =
 " PREFIX foaf: <http://xmlns.com/foaf/0.1/> "
 + " PREFIX dc: <http://purl.org/dc/elements/1.1/> "
 + " SELECT ?who ?graph ?mbox "
 + " FROM NAMED <http://example.org/alice> "
 + " FROM NAMED <http://example.org/bob> "
 + " WHERE "
 + " { "
 + " ?graph dc:publisher ?who . "
 + " GRAPH ?graph { ?x foaf:mbox ?mbox } "
 + " } ";

 Query query = QueryFactory.create(queryString);
 QueryExecution qexec = QueryExecutionFactory.create(query, ds);

 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);

 qexec.close();
 dataset.close();

 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-7, as well as the expected
output of the java command.

javac -classpath ./:./jena-2.6.4.jar:./sdordfclient.jar:./ojdbc6.jar:./slf4j-
api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.8.jar:./xercesImpl-2.7.1.jar
Test11.java
java -classpath ./:../jar/'*' Test11 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
--
| who | graph | mbox |
==
| "alice Hacker" | <http://example.org/alice> | <mailto:alice@example> |
| "Bob Hacker" | <http://example.org/bob> | <mailto:bob@example> |
--

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-13 of D-30

D.3.8 Test12.java: SPARQL ASK Query
Example D-8 shows a SPARQL ASK query. It inserts a triple that postulates that John is a
parent of Mary. It then finds whether John is a parent of Mary.

Example D-8 SPARQL ASK Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
 szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 String queryString = " ASK { <u:John> <u:parentOf> <u:Mary> } ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 boolean b = qexec.execAsk();
 System.out.println("ask result = " + ((b)?"TRUE":"FALSE"));
 qexec.close() ;

 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-8, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test12.java
java -classpath ./:../jar/'*' Test12 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
ask result = TRUE

D.3.9 Test13.java: SPARQL DESCRIBE Query
Example D-9 shows a SPARQL DESCRIBE query. It inserts triples that postulate the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Amy is a parent of Jack.

It then finds all relationships that involve any parents of Jack.

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-14 of D-30

Example D-9 SPARQL DESCRIBE Query

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test13
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 String queryString = " DESCRIBE ?x WHERE {?x <u:parentOf> <u:Jack>}";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execDescribe();
 System.out.println("describe result = " + m.toString());

 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-9, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test13.java
java -classpath ./:../jar/'*' Test13 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
describe result = <ModelCom {u:Amy @u:parentOf u:Jack;
 u:John @u:parentOf u:Jack; u:John @u:parentOf u:Mary} | [u:Amy, u:parentOf,
u:Jack] [u:John, u:parentOf,
 u:Jack] [u:John, u:parentOf, u:Mary]>

D.3.10 Test14.java: SPARQL CONSTRUCT Query
Example D-10 shows a SPARQL CONSTRUCT query. It inserts triples that postulate the
following:

• John is a parent of Mary.

• John is a parent of Jack.

• Amy is a parent of Jack.

• Each parent loves their children.

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-15 of D-30

It then constructs an RDF graph with information about who loves whom.

Example D-10 SPARQL CONSTRUCT Query

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test14
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execConstruct();
 System.out.println("Construct result = " + m.toString());

 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-10, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test14.java
java -classpath ./:../jar/'*' Test14 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
Construct result = <ModelCom {u:Amy @u:loves u:Jack;
 u:John @u:loves u:Jack; u:John @u:loves u:Mary} | [u:Amy, u:loves, u:Jack] [u:John,
u:loves,
 u:Jack] [u:John, u:loves, u:Mary]>

D.3.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates"
Example D-11 queries multiple models and uses the "allow duplicates" option. It inserts triples
that postulate the following:

• John is a parent of Jack (in Model 1).

• Mary is a parent of Jack (in Model 2).

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-16 of D-30

• Each parent loves their children.

It then finds out who loves whom. It searches both models and allows for the possibility of
duplicate triples in the models (although there are no duplicates in this example).

Example D-11 Query Multiple Models and Specify "Allow Duplicates"

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test15
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName1 = args[3];
 String szModelName2 = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, szModelName1);
 model1.getGraph().add(Triple.create(Node.createURI("u:John"),
 Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
 model1.close();

 ModelOracleSem model2 = ModelOracleSem.createOracleSemModel(oracle, szModelName2);
 model2.getGraph().add(Triple.create(Node.createURI("u:Mary"),
 Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
 model2.close();

 String[] modelNamesList = {szModelName2};
 String[] rulebasesList = {};
 Attachment attachment = Attachment.createInstance(modelNamesList, rulebasesList,
 InferenceMaintenanceMode.NO_UPDATE,
 QueryOptions.ALLOW_QUERY_VALID_AND_DUP);

 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName1, attachment);
 ModelOracleSem model = new ModelOracleSem(graph);

 String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";
 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execConstruct();
 System.out.println("Construct result = " + m.toString());

 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName1);
 OracleUtils.dropSemanticModel(oracle, szModelName2);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-11, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test15.java
java -classpath ./:../jar/'*' Test15 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1 M2

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-17 of D-30

Construct result = <ModelCom {u:Mary @u:loves u:Jack; u:John @u:loves u:Jack} |
[u:Mary, u:loves, u:Jack] [u:John, u:loves, u:Jack]>

D.3.12 Test16.java: SPARQL Update
Example D-12 inserts two triples into a model.

Example D-12 SPARQL Update

import org.apache.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;
import org.apache.jena.update.*;

public class Test16
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " INSERT DATA " +
 " { <http://example/book3> dc:title \"A new book\" ; " +
 " dc:creator \"A.N.Other\" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);
 ExtendedIterator ei = GraphUtil.findAll(g);
 while (ei.hasNext()) {
 System.out.println("Triple " + ei.next().toString());
 }
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-12, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test16.java
java -classpath ./:../jar/'*' Test16 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
Triple http://example/book3 @dc:title "A new book"
Triple http://example/book3 @dc:creator "A.N.Other"

D.3.13 Test17.java: SPARQL Query with ARQ Built-In Functions
Example D-13 inserts data about two books, and it displays the book titles in all uppercase
characters and the length of each title string.

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-18 of D-30

Example D-13 SPARQL Query with ARQ Built-In Functions

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.update.*;

public class Test17 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " INSERT DATA " +
 " { <http://example/book3> dc:title \"A new book\" ; " +
 " dc:creator \"A.N.Other\" . " +
 " <http://example/book4> dc:title \"Semantic Web Rocks\" ; " +
 " dc:creator \"TB\" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);
 String queryString = "PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " PREFIX fn: <http://www.w3.org/2005/xpath-functions#> " +
 " SELECT ?subject (fn:upper-case(?object) as ?object1) " +
 " (fn:string-length(?object) as ?strlen) " +
 " WHERE { ?subject dc:title ?object } "
 ;
 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-13, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test17.java
java -classpath ./:../jar/'*' Test17 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
--
| subject | object1 | strlen |
==
| <http://example/book3> | "A NEW BOOK" | 10 |
| <http://example/book4> | "SEMANTIC WEB ROCKS" | 18 |
--

D.3.14 Test18.java: SELECT Cast Query
Example D-14 "converts" two Fahrenheit temperatures (18.1 and 32.0) to Celsius
temperatures.

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-19 of D-30

Example D-14 SELECT Cast Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.update.*;

public class Test18 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 " INSERT DATA " +
 " { <u:Object1> <u:temp> \"18.1\"^^xsd:float ; " +
 " <u:name> \"Foo... \" . " +
 " <u:Object2> <u:temp> \"32.0\"^^xsd:float ; " +
 " <u:name> \"Bar... \" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);
 String queryString =
 " PREFIX fn: <http://www.w3.org/2005/xpath-functions#> " +
 " SELECT ?subject ((?temp - 32.0)*5/9 as ?celsius_temp) " +
 "WHERE { ?subject <u:temp> ?temp } "
 ;
 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);

 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-14, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test18.java
java -classpath ./:../jar/'*' Test18 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
--
| subject | celsius_temp |
==
| <u:Object1> | "-7.7222223"^^<http://www.w3.org/2001/XMLSchema#float> |
| <u:Object2> | "0.0"^^<http://www.w3.org/2001/XMLSchema#float> |
--

D.3.15 Test19.java: Instantiate Oracle Database Using OracleConnection
Example D-15 shows a different way to instantiate an Oracle object using a given
OracleConnection object. (In a J2EE Web application, users can normally get an
OracleConnection object from a J2EE data source.)

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-20 of D-30

Example D-15 Instantiate Oracle Database Using OracleConnection

import org.apache.jena.query.*;
import org.apache.jena.graph.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.*;

public class Test19 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 OracleDataSource ds = new OracleDataSource();
 ds.setURL(szJdbcURL);
 ds.setUser(szUser);
 ds.setPassword(szPasswd);
 OracleConnection conn = (OracleConnection) ds.getConnection();
 Oracle oracle = new Oracle(conn);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jill")));
 String queryString =
 " SELECT ?s ?o WHERE { ?s <u:parentOf> ?o .} ";
 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example D-15, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test19.java
java -classpath ./:../jar/'*' Test19 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| s | o |
=======================
<u:John>	<u:Mary>
<u:John>	<u:Jack>
<u:Mary>	<u:Jill>

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-21 of D-30

D.3.16 Test20.java: Oracle Database Connection Pooling
Example D-16 uses Oracle Database connection pooling.

Example D-16 Oracle Database Connection Pooling

import org.apache.jena.graph.*;
import oracle.spatial.rdf.client.jena.*;

public class Test20
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 // test with connection properties (taken from some example)
 java.util.Properties prop = new java.util.Properties();
 prop.setProperty("MinLimit", "2"); // the cache size is 2 at least
 prop.setProperty("MaxLimit", "10");
 prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
 prop.setProperty("InactivityTimeout", "1800"); // seconds
 prop.setProperty("AbandonedConnectionTimeout", "900"); // seconds
 prop.setProperty("MaxStatementsLimit", "10");
 prop.setProperty("PropertyCheckInterval", "60"); // seconds

 System.out.println("Creating OraclePool");
 OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop,
 "OracleSemConnPool");
 System.out.println("Done creating OraclePool");

 // grab an Oracle and do something with it
 System.out.println("Getting an Oracle from OraclePool");
 Oracle oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.close();
 // return the Oracle back to the pool
 oracle.dispose();

 // grab another Oracle and do something else
 System.out.println("Getting an Oracle from OraclePool");
 oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);

 // return the Oracle back to the pool
 oracle.dispose();

Appendix D
Example Queries Using Graph Support for Apache Jena

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-22 of D-30

 }
}

The following are the commands to compile and run Example D-16, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test20.java
java -classpath ./:../jar/'*' Test20 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
Creating OraclePool
Done creating OraclePool
Getting an Oracle from OraclePool
Done
Is logical connection:true
Getting an Oracle from OraclePool
Done
Is logical connection:true

D.4 Example Queries Using Graph Adapter for Eclipse RDF4J
This section describes example queries for using Oracle RDF Graph Adapter for Eclipse
RDF4J in an existing MDSYS network.

To run a query, you must do the following:

1. Include any example code described in Example Queries Using Oracle RDF Graph
Adapter for Eclipse RDF4J in a Java source file.

2. Define a CLASSPATH environment variable named CP to include the relevant jar files. For
example, it may be defined as follows:

setenv CP .:ojdbc8.jar:ucp.jar:oracle-rdf4j-adapter-4.2.1.jar:log4j-
api-2.17.2.jar:log4j-core-2.17.2.jar:log4j-slf4j-impl-2.17.2.jar:slf4j-
api-1.7.36.jar:eclipse-rdf4j-4.2.1-onejar.jar:commons-io-2.11.0.jar

Note

The preceding setenv command assumes that the jar files are located in the
current directory. You may need to alter the command to indicate the location of
these jar files in your environment.

3. Compile the Java source file. For example, to compile the source file Test.java, run the
following command:

javac -classpath $CP Test.java

4. Run the compiled file on an RDF graph (model) named TestModel in an existing MDSYS
network by executing the following command:

java -classpath $CP Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> TestModel

Appendix D
Example Queries Using Graph Adapter for Eclipse RDF4J

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-23 of D-30

D.5 Reference Information (MDSYS_Owned Semantic Network
Only)

This section provides reference information about RDF Semantic Graph subprograms that
apply only for MDSYS-owned semantic networks.

• SEM_OLS Package Subprograms
The SEM_OLS package contains subprograms (functions and procedures) related to
triple-level security to RDF data, using Oracle Label Security (OLS).

• SEM_APIS.PRIVILEGE_ON_APP_TABLES

• SEM_APIS.REMOVE_DUPLICATES

D.5.1 SEM_OLS Package Subprograms
The SEM_OLS package contains subprograms (functions and procedures) related to triple-
level security to RDF data, using Oracle Label Security (OLS).

To use the subprograms in this chapter, you should understand the conceptual and usage
information in RDF Semantic Graph Overview and Fine-Grained Access Control for RDF Data.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_OLS.APPLY_POLICY_TO_APP_TAB

• SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

D.5.1.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB

Format

SEM_OLS.APPLY_POLICY_TO_APP_TAB(
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 predicate IN VARCHAR2 DEFAULT NULL);

Description

Applies an OLS policy to an application table in the MDSYS-owned network.

Parameters

policy_name
Name of an existing OLS policy.

schema_name
Name of the schema containing the application table.

table_name
Name of the application table.

predicate
An additional predicate to combine with the label-based predicate.

Appendix D
Reference Information (MDSYS_Owned Semantic Network Only)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-24 of D-30

Usage Notes

When you use triple-level security, OLS is applied to each semantic model in the network. That
is, label security is applied to the relevant internal tables and to all the application tables; there
is no need to manually apply policies to the application tables of existing semantic models.
However, if you need to create additional models after applying the OLS policy, you must use
the SEM_OLS.APPLY_POLICY_TO_APP_TAB procedure to apply OLS to the application
table before creating the model.

You must have the following to execute this procedure: EXECUTE privilege for the
SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the
SEM_RDFSA.APPLY_OLS_POLICY procedure specifying SEM_RDFSA.TRIPLE_LEVEL_ONLY for
the rdfsa_options parameter.

To remove the OLS policy from the application table, use the
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

This procedure applies only to the MDSYS-owned network, not to schema-private networks. (If
you try to apply this procedure to a schema-private network, the error "ORA-20000: No
application tables for schema-private network" is returned.) For information about semantic
network types and options, see RDF Networks.

Examples

The following example applies an OLS policy named defense to the
MY_SCHEMA.MY_APP_TABLE application table.

begin
 sem_ols.apply_policy_to_app_table(
 policy_name => 'defense',
 schema_name => 'my_schema',
 table_name => 'my_app_table');
end;
/

D.5.1.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

Format

SEM_OLS.REMOVE_POLICY_FROM_APP_TAB(
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 check_model IN BOOLEAN DEFAULT TRUE);

Description

Permanently removes or detaches the OLS policy from an application table associated with a
model in the MDSYS-owned network.

Parameters

policy_name
Name of the existing OLS policy.

Appendix D
Reference Information (MDSYS_Owned Semantic Network Only)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-25 of D-30

schema_name
Name of the schema containing the application table.

table_name
Name of the application table.

check_model
TRUE (the default) checks if the model associated with the application table exists (and
generates an exception if the model exists); FALSE does not check if the model exists before
performing the operation.

Usage Notes

If you have dropped a semantic model and you no longer need to protect the application table,
you can use this procedure.

You must have the following to execute this procedure: EXECUTE privilege for the
SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the
SEM_RDFSA.APPLY_OLS_POLICY procedure specifying SEM_RDFSA.TRIPLE_LEVEL_ONLY for
the rdfsa_options parameter.

If check_model is TRUE (the default), an exception is generated if the associated model exists.
In this case, if you want to execute this procedure, you must first drop the model.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

This procedure applies only to the MDSYS-owned network, not to schema-private networks. (If
you try to apply this procedure to a schema-private network, the error "ORA-20000: No
application tables for schema-private network" is returned.) For information about semantic
network types and options, see RDF Networks.

Examples

The following example removes the OLS policy named defense from the
MY_SCHEMA.MY_APP_TABLE application table.

begin
 sem_ols.remove_policy_from_app_table(
 policy_name => 'defense',
 schema_name => 'my_schema',
 table_name => 'my_app_table');
end;
/

D.5.2 SEM_APIS.PRIVILEGE_ON_APP_TABLES
Format

SEM_APIS.PRIVILEGE_ON_APP_TABLES(
 command IN VARCHAR2 DEFAULT 'GRANT',
 privilege IN VARCHAR2 DEFAULT 'SELECT',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Grants (or revokes) SELECT or INSERT privilege to (or from) MDSYS on application tables
corresponding to all the RDF models owned by the invoker.

Appendix D
Reference Information (MDSYS_Owned Semantic Network Only)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-26 of D-30

Parameters

command
SQL statement, with possible values GRANT (the default) or REVOKE (case insensitive).

privilege
Privilege name, with possible values SELECT (the default) or INSERT (case insensitive).

network_owner

Owner of the semantic network. (See Table 1-2.)

network_name

Name of the semantic network. (See Table 1-2.)

Usage Notes

For information about semantic network types and options, see RDF Networks.

Examples

The following example grants SELECT privilege to MDSYS on application tables
corresponding to all the RDF models owned by the invoker.

EXECUTE SEM_APIS.PRIVILEGE_ON_APP_TABLES('grant', 'select');

D.5.3 SEM_APIS.REMOVE_DUPLICATES
Format

SEM_APIS.REMOVE_DUPLICATES(
 model_name IN VARCHAR2,
 threshold IN FLOAT DEFAULT 0.3,
 rebuild_apptab_index IN BOOLEAN DEFAULT TRUE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Removes duplicate triples from a model.

Parameters

model_name
Name of the model.

threshold
A value to determine how numerous triples must be in order for the removal operation to be
performed. This procedure removes triples only if the number of triples in the model exceeds
the following formula: (total-triples - total-unique-triples + 0.01) / (total-unique-triples + 0.01).
For the default value of 0.3 and a model containing 1000 total triples (including duplicates),
duplicate triples would be removed only if the number of duplicates exceeds approximately
230.

Appendix D
Reference Information (MDSYS_Owned Semantic Network Only)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-27 of D-30

The lower the threshold value, the fewer duplicates are needed for the procedure to remove
duplicates; the higher the threshold value, the more duplicates are needed for the procedure
to remove duplicates.

rebuild_apptab_index
TRUE (the default) causes all usable indexes on tables that were affected by this operation to
be rebuilt after the duplicate triples are removed; FALSE does not rebuild any indexes.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-2.)

network_name
Name of the semantic network. (See Table 1-2.)

Usage Notes

When duplicate triples are removed, all information in the removed rows is lost, including
information in columns other than the triple column.

This procedure is not supported on virtual models (explained in Virtual Models).

If the model is empty, or if it contains no duplicate triples or not enough duplicate triples (as
computed using the threshold value), this procedure does not perform any removal
operations.

If there are not enough duplicates (as computed using the threshold value) to perform the
operation, an informational message is displayed.

If unusable indexes are involved, be sure that the SKIP_UNUSABLE_INDEXES system
parameter is set to TRUE. Although TRUE is the default value for this parameter, some
production databases may use the value FALSE; therefore, if you need to change it, enter the
following:

SQL> alter session set skip_unusable_indexes=true;

To use this procedure on an application table with one or more user-defined triggers, you must
connect as a DBA user and grant the ALTER ANY TRIGGER privilege to the MDSYS user, as
follows:

SQL> grant alter any trigger to MDSYS;

For information about semantic network types and options, see RDF Networks.

Examples

The following example removes duplicate triples in the model named family. It accepts the
default threshold value of 0.3 and (by default) rebuilds indexes after the duplicates are
removed.

EXECUTE SEM_APIS.REMOVE_DUPLICATES('family');

Appendix D
Reference Information (MDSYS_Owned Semantic Network Only)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-28 of D-30

D.6 Migrating an MDSYS-Owned Network to a Schema-Private
Network

You can migrate an MDSYS-owned semantic network in a database to a schema-private
semantic network in the same database.

The following example migrates an existing MDSYS semantic network to a shared schema-
private semantic network by using SEM_APIS.MOVE_SEM_NETWORK_DATA and
SEM_APIS.APPEND_SEM_NETWORK_DATA.

Example D-17 Migrating an MDSYS Semantic Network to a Shared Schema-Private
Semantic Network

This example performs the following major actions.

1. Creates a database user (RDFEXPIMPU), if it does not already exist in the database, that
will hold the moved existing MDSYS-owned semantic network.

2. Moves the existing semantic network data to the RDFEXPIMPU schema.

3. Creates a administrative database user (RDFADMIN), if it does not already exist in the
database, that will own the schema-private semantic network.

4. Creates the schema-private semantic network, named MY_NET and owned by
RDFADMIN.

5. Sets up network sharing for this newly created schema-private network.

a. Grants network sharing privileges to RDFADMIN.

b. Enables network sharing for all users of the old MDSYS-owned network.

c. Grants access privileges to two regular database users (UDFUSER and DB_USER1).
privileges to RDFADMIN.

6. Appends the previously moved network data into the shared schema-private semantic
network.

conn sys/<password_for_sys>

-- create a user to hold the moved semantic network
grant connect, resource, unlimited tablespace to rdfexpimpu identified by
rdfexpimpu;

conn system/<password_for_system>

-- move the existing MDSYS semantic network
exec sem_apis.move_sem_network_data(dest_schema=>'RDFEXPIMPU');

-- drop the existing MDSYS semantic network
exec sem_apis.drop_sem_network(cascade=>true);

-- create schema-private semantic network to hold the MDSYS network data
conn sys/<password_for_sys>

-- create an admin user to own the schema-private semantic network
create user rdfadmin identified by rdfadmin;
grant connect,resource,unlimited tablespace to rdfadmin;

Appendix D
Migrating an MDSYS-Owned Network to a Schema-Private Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-29 of D-30

conn system/<password_for_system>

-- create the schema-private semantic network
exec
sem_apis.create_sem_network(tablespace_name=>'rdf_tablespace',network_owner=>'
RDFADMIN',network_name=>'MYNET');

-- setup network sharing for rdfadmin’s schema-private semantic network
-- first grant network sharing privileges to rdfadmin
exec sem_apis.grant_network_sharing_privs(network_owner=>'RDFADMIN');
-- now connect as rdfadmin and enable sharing for all users of the old MDSYS
semantic network
conn rdfadmin/<password>
-- enable sharing for rdfadmin’s network
exec
sem_apis.enable_network_sharing(network_owner=>'RDFADMIN',network_name=>'MYNET
');

-- grant access privileges to RDFUSER
exec
sem_apis.grant_network_access_privs(network_owner=>'RDFADMIN',network_name=>'M
YNET',network_user=>'RDFUSER');
-- grant access privileges to DB_USER1
exec
sem_apis.grant_network_access_privs(network_owner=>'RDFADMIN',network_name=>'M
YNET',network_user=>'DB_USER1');

-- append the exported network into the shared schema-private semantic network
-- after this step, migration will be complete, and the new shared schema-
private semantic network will be ready to use
conn system/<password_for_system>
exec
sem_apis.append_sem_network_data(from_schema=>'RDFEXPIMPU',network_owner=>'RDF
ADMIN',network_name=>'MYNET');

Appendix D
Migrating an MDSYS-Owned Network to a Schema-Private Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-30 of D-30

E
Changes in Terminology and Subprograms

This appendix introduces changes to a few RDF terminologies and reference procedure names
(in the SEM_APIS package) that apply from Oracle AI Database Release 26ai onwards.

The following table describes the RDF terms that have changed in this book.

Table E-1 Changes in Terminology

New Term Old Term

RDF graph Semantic model

RDF network Semantic network

Inferred graph Entailment

RDF graph collection Virtual model

Result table Subject-Property-Matrix (SPM) table

Star-Pattern table Single-Valued Property (SVP) table

Triple-Pattern table Multi-Valued Property (MVP) table

Chain-Pattern table Property Chain (PCN) table

In alignment with the new terms described in Table E-1, the names of a few existing reference
procedures in the SEM_APIS package have changed as described in the following table.
Oracle Graph recommends that you use the new subprograms starting from Oracle AI
Database Release 26ai.

Table E-2 Changes to the Subprogram Names in the SEM_APIS Package

New Subprogram Old Subprogram

SEM_APIS.ADD_NETWORK_INDEX SEM_APIS.ADD_SEM_INDEX

SEM_APIS.ALTER_INDEX_ON_INFERRED_GRA
PH

SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILME
NT

SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

SEM_APIS.ALTER_INFERRED_GRAPH SEM_APIS.ALTER_ENTAILMENT

SEM_APIS.ALTER_RDF_GRAPH SEM_APIS.ALTER_MODEL

SEM_APIS.ALTER_RDF_INDEXES SEM_APIS.ALTER_SEM_INDEXES

SEM_APIS.ALTER_RESULT_TAB SEM_APIS.ALTER_SPM_TAB

SEM_APIS.ANALYZE_INFERRED_GRAPH SEM_APIS.ANALYZE_ENTAILMENT

SEM_APIS.ANALYZE_RDF_GRAPH SEM_APIS.ANALYZE_MODEL

SEM_APIS.APPEND_RDF_NETWORK_DATA SEM_APIS.APPEND_SEM_NETWORK_DATA

SEM_APIS.BUILD_RESULT_TAB SEM_APIS.BUILD_SPM_TAB

SEM_APIS.BULK_LOAD_RDF_GRAPH SEM_APIS.BULK_LOAD_FROM_STAGING_TABL
E

SEM_APIS.CREATE_INDEX_ON_RESULT_TAB SEM_APIS.CREATE_INDEX_ON_SPM_TAB

SEM_APIS.CREATE_INFERRED_GRAPH SEM_APIS.CREATE_ENTAILMENT

SEM_APIS.CREATE_RDF_GRAPH SEM_APIS.CREATE_SEM_MODEL

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-1 of E-2

Table E-2 (Cont.) Changes to the Subprogram Names in the SEM_APIS Package

New Subprogram Old Subprogram

SEM_APIS.CREATE_RDF_GRAPH_COLLECTIO
N

SEM_APIS.CREATE_VIRTUAL_MODEL

SEM_APIS.CREATE_RDF_NETWORK SEM_APIS.CREATE_SEM_NETWORK

SEM_APIS.CREATE_RDFVIEW_GRAPH SEM_APIS.CREATE_RDFVIEW_MODEL

SEM_APIS.DISABLE_INMEMORY_FOR_INF_GR
APH

SEM_APIS.DISABLE_INMEMORY_FOR_ENT

SEM_APIS.DISABLE_INMEMORY_FOR_RDF_G
RAPH

SEM_APIS.DISABLE_INMEMORY_FOR_MODEL

SEM_APIS.DROP_NETWORK_INDEX SEM_APIS.DROP_SEM_INDEX

SEM_APIS.DROP_INFERRED_GRAPH SEM_APIS.DROP_ENTAILMENT

SEM_APIS.DROP_RDF_GRAPH SEM_APIS.DROP_SEM_MODEL

SEM_APIS.DROP_RDF_GRAPH_COLLECTION SEM_APIS.DROP_VIRTUAL_MODEL

SEM_APIS.DROP_RDF_NETWORK SEM_APIS.DROP_SEM_NETWORK

SEM_APIS.DROP_RDFVIEW_GRAPH SEM_APIS.DROP_RDFVIEW_MODEL

SEM_APIS.DROP_RESULT_TAB SEM_APIS.DROP_SPM_TAB

SEM_APIS.ENABLE_INMEMORY_FOR_INF_GR
APH

SEM_APIS.ENABLE_INMEMORY_FOR_ENT

SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GR
APH

SEM_APIS.ENABLE_INMEMORY_FOR_MODEL

SEM_APIS.EXPORT_RDFVIEW_GRAPH SEM_APIS.EXPORT_RDFVIEW_MODEL

SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRI
V

SEM_APIS.GRANT_MODEL_ACCESS_PRIV

SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRI
VS

SEM_APIS.GRANT_MODEL_ACCESS_PRIVS

SEM_APIS.MERGE_RDF_GRAPHS SEM_APIS.MERGE_MODELS

SEM_APIS.MOVE_RDF_NETWORK_DATA SEM_APIS.MOVE_SEM_NETWORK_DATA

SEM_APIS.REFRESH_NETWORK_INDEX_INFO SEM_APIS.REFRESH_SEM_NETWORK_INDEX_
INFO

SEM_APIS.RENAME_INFERRED_GRAPH SEM_APIS.RENAME_ENTAILMENT

SEM_APIS.RENAME_RDF_GRAPH SEM_APIS.RENAME_MODEL

SEM_APIS.RESTORE_RDF_NETWORK_DATA SEM_APIS.RESTORE_SEM_NETWORK_DATA

SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PR
IV

SEM_APIS.REVOKE_MODEL_ACCESS_PRIV

SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PR
IVS

SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS

SEM_APIS.TRUNCATE_RDF_GRAPH SEM_APIS.TRUNCATE_SEM_MODEL

SEM_APIS.UPDATE_RDF_GRAPH SEM_APIS.UPDATE_MODEL

SEM_APIS.VALIDATE_INFERRED_GRAPH SEM_APIS.VALIDATE_ENTAILMENT

SEM_APIS.VALIDATE_RDF_GRAPH SEM_APIS.VALIDATE_MODEL

Appendix E

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-2 of E-2

Glossary

apply pattern
Part of a data access constraint defines additional graph patterns to be applied on the
resources that match the match pattern before they can be used to construct the query results.
See also: match pattern

basic graph pattern (BGP)
A set of triple patterns. From the W3C SPARQL Query Language for RDF Recommendation:
"SPARQL graph pattern matching is defined in terms of combining the results from matching
basic graph patterns. A sequence of triple patterns interrupted by a filter comprises a single
basic graph pattern. Any graph pattern terminates a basic graph pattern."

clique
A graph in which every node of it is connected to, bidirectionally, every other node in the same
graph.

Cytoscape
An open source bioinformatics software platform for visualizing molecular interaction networks
and integrating these interactions with gene expression profiles and other state data. (See
http://www.cytoscape.org/.) An RDF viewer (available for download) is provided as a
Cytoscape plug-in.

entailment
An object containing precomputed triples that can be inferred from applying a specified set of
rulebases to a specified set of models. See also: rulebase

extractor policy
A named dictionary entity that determines the characteristics of a semantic index that is
created using the policy. Each extractor policy refers, directly or indirectly, to an instance of an
extractor type.

graph pattern
A combination of triples constructed by combining triple patterns in various ways, including
conjunction of triple patterns into groups, optionally using filter conditions, and then combining

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-1 of Glossary-3

http://www.cytoscape.org/

such groups using connectors similar to disjunctions, outer-joins, and so on. SPARQL querying
is based around graph pattern matching.

inferencing
The ability to make logical deductions based on rules. Inferencing enables you to construct
queries that perform semantic matching based on meaningful relationships among pieces of
data, as opposed to just syntactic matching based on string or other values. Inferencing
involves the use of rules, either supplied by Oracle or user-defined, placed in rulebases.

information extractor
An application that processes unstructured documents and extract meaningful information from
them, often using natural-language processing engines with the aid of ontologies.

match pattern
Part of a constraint that determines the type of access restriction it enforces and binds one or
more variables to the corresponding data instances accessed in the user query. See also:
apply pattern

model
A user-created semantic structure that has a model name, and refers to triples stored in a
specified table column. Examples in this manual are the Articles and Family models.

ontology
A shared conceptualization of knowledge in a particular domain. It consists of a collection of
classes, properties, and optionally instances. Classes are typically related by class hierarchy
(subclass/ superclass relationship). Similarly, the properties can be related by property
hierarchy (subproperty/ superproperty relationship). Properties can be symmetric or transitive,
or both. Properties can also have domain, ranges, and cardinality constraints specified for
them.

OWLPrime
An Oracle-defined subset of OWL capabilities; refers to the elements of the OWL standard
supported by the RDF Semantic Graph native inferencing engine.

RDF Semantic Graph support for Apache Jena
An Oracle-supplied adapter (available for download) for Apache Jena, which is a Java
framework for building Semantic Web applications.

Glossary

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-2 of Glossary-3

reasoning
See inferencing

rule
An object that can be applied to draw inferences from semantic data.

rulebase
An object that can contain rules. See also: rule

rules index
See: entailment

semantic index
An index of type MDSYS.SEMCONTEXT, created on textual documents stored in a column of
a table, and used with information extractors to locate and extract meaningful information from
unstructured documents. See also: information extractor

Simple Knowledge Organization System (SKOS)
A data model that is especially useful for representing thesauri, classification schemes,
taxonomies, and other types of controlled vocabulary. SKOS is based on standard semantic
web technologies including RDF and OWL, which makes it easy to define the formal semantics
for those knowledge organization systems and to share the semantics across applications.

triple pattern
Similar to an RDF triple, but allows use of a variable in place of any of the three components
(subject, predicate, or object). Triple patterns are basic elements in graph patterns used in
SPARQL queries. A triple pattern used in a query against an RDF graph is said to match if,
substitution of RDF terms for the variables present in the triple pattern, creates a triple that is
present in the RDF graph. See also: graph pattern

Glossary

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-3 of Glossary-3

Index

Symbols
.gv files (DOT files)

outputting, 33

A
ADD_DATATYPE_INDEX procedure, 6
ADD_DEPENDENT_POLICY procedure, 1
ADD_NETWORK_INDEX procedure, 7
ADD_SEM_INDEX procedure, 8
Advanced Compression, 7
aggregates

user-defined, 28
aliases

SEM_ALIASES and SEM_ALIAS data types,
33, 6

ALL_AJ_HASH
query option for SEM_MATCH, 34

ALL_AJ_MERGE
query option for SEM_MATCH, 34

ALL_AJ_NL
query option for SEM_MATCH, 34

ALL_BGP_HASH
query option for SEM_MATCH, 34

ALL_BGP_NL
query option for SEM_MATCH, 34

ALL_LINK_HASH
query option for SEM_MATCH, 34

ALL_LINK_NL
query option for SEM_MATCH, 34

ALL_MAX_PP_DEPTH(n)
query option for SEM_MATCH, 34

ALL_NO_MERGE
query option for SEM_MATCH, 34

ALLOW_DUP=T
query option for SEM_MATCH, 34

ALTER_DATATYPE_INDEX procedure, 9
ALTER_ENTAILMENT procedure, 10
ALTER_INDEX_ON_INFERRED_GRAPH

procedure, 11
ALTER_INDEX_ON_RDF_GRAPH procedure, 12
ALTER_INFERRED_GRAPH procedure, 13
ALTER_MODEL procedure, 14
ALTER_RDF_GRAPH procedure, 15
ALTER_RDF_INDEXES procedure, 16

ALTER_SEM_INDEX_ON_ENTAILMENT
procedure, 18

ALTER_SEM_INDEX_ON_MODEL procedure, 20
ALTER_SEM_INDEXES procedure, 21
ANALYZE_AUX_TABLES procedure, 1
ANALYZE_ENTAILMENT procedure, 24
ANALYZE_INFERRED_GRAPH procedure, 26
ANALYZE_MODEL procedure, 28
ANALYZE_RDF_GRAPH procedure, 30
APPEND_RDF_NETWORK_DATA procedure, 31
APPEND_SEM_NETWORK_DATA procedure, 32
APPLY_OLS_POLICY procedure, 1
APPLY_POLICY_TO_APP_TAB procedure, D-24
AUTO_HINTS=T

query option for SEM_MATCH, 34

B
BASE keyword

global prefix, 62
basic graph pattern (BGP), 34
batch (bulk) loading, 38, 40, 159
best effort

specifying for SPARQL query, 77
BGP (basic graph pattern), 34
bind variables

using with the SEM_APIS.SPARQL_TO_SQL
function, 136

blank nodes, 18
CLEANUP_BNODES procedure, 42
SPARQL update considerations, 183

bulk loading, 38, 40, 159
bulk loading RDF data, 148
BULK_LOAD_FROM_STAGING_TABLE

procedure, 38
BULK_LOAD_RDF_GRAPH procedure, 40

C
Calais

configuring the Calais extractor type, 12
canonical forms, 16
catsem.sql script, A-2
chain-pattern tables, 106
change tracking

disabling, 97

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-1 of Index-13

change tracking (continued)
enabling, 122
getting information, 137

CLEANUP_BNODES procedure, 42
CLEANUP_FAILED procedure, 43
client identifiers, 6
cliques (sameAs), 11
COMPOSE_RDF_TERM function, 44
connection pooling

support in RDF graph support for Apache
Jena, 36

CONSTRUCT_STRICT=T
query option for SEM_MATCH, 35

CONSTRUCT_UNIQUE=T
query option for SEM_MATCH, 35

constructors for RDF data, 29
convert_old_rdf_data procedure, A-3, A-5
CONVERT_TO_GML311_LITERAL procedure, 46
CONVERT_TO_WKT_LITERAL procedure, 47
corpus-centric inference, 17
cost of query execution plan

getting, 140
CREATE_ENTAILMENT procedure, 48
CREATE_INDEX_ON_RESULT_TAB procedure,

56
CREATE_INDEX_ON_SPM_TAB procedure, 58
CREATE_INFERRED_GRAPH procedure, 60
CREATE_MATERIALIZED_VIEW procedure, 68
CREATE_POLICY procedure, 2
CREATE_RDF_GRAPH procedure, 71
CREATE_RDF_GRAPH_COLLECTION

procedure, 72
CREATE_RDF_NETWORK procedure, 75
CREATE_RDFVIEW_GRAPH procedure, 77
CREATE_RDFVIEW_MODEL procedure, 80
CREATE_RULEBASE procedure, 84
CREATE_SEM_MODEL procedure, 85
CREATE_SEM_NETWORK procedure, 87
CREATE_SEM_SQL procedure, 89
CREATE_SOURCE_EXTERNAL_TABLE

procedure, 89
CREATE_SPARQL_INFERRED_GRAPH

procedure, 91
CREATE_VIRTUAL_MODEL procedure, 93

D
data migration

required after upgrade, A-4
data type indexes

adding, 6
altering, 9
dropping, 103
SEM_DTYPE_INDEX_INFO view, 161
using, 160

data types
for literals, 16

data types for RDF data, 29
default.xslt file

customizing, 78
DELETE_ENTAILMENT_STATS procedure, 96
DELETE_MODEL_STATS procedure, 97
DELETE_NETWORK_STATS procedure, 2
DISABLE_CHANGE_TRACKING procedure, 97
DISABLE_IM_VIRTUAL_COL

query option for SEM_MATCH, 35
DISABLE_INC_INFERENCE procedure, 98
DISABLE_INMEMORY procedure, 99
DISABLE_INMEMORY_FOR_ENT procedure,

100
DISABLE_INMEMORY_FOR_INF_GRAPH

procedure, 101
DISABLE_INMEMORY_FOR_MODEL procedure,

100
DISABLE_INMEMORY_FOR_RDF_GRAPH

procedure, 102
DISABLE_MVIEW

query option for SEM_MATCH, 35
DISABLE_NETWORK_SHARING procedure, 103
DISABLE_NULL_EXPR_JOIN

query option for SEM_MATCH, 35
DISABLE_OLS_POLICY procedure, 4
DISABLE_ORDER_COL option, 188
DISABLE_SAMEAS_BLOOM

query option for SEM_MATCH, 35
discussion forum

RDF Graph, 196
document-centric inference, 17
documents

semantic indexing for, 1
DOT files

outputting, 33
downgrading

RDF semantic graph support, A-7
downloads

RDF Graph, 196
DROP_DATATYPE_INDEX procedure, 103
DROP_ENTAILMENT procedure, 104
DROP_EXTENDED_STATS procedure, 3
DROP_INFERRED_GRAPH procedure, 105
DROP_NETWORK_INDEX procedure, 108
DROP_POLICY procedure, 4
DROP_RDF_GRAPH procedure, 108
DROP_RDF_GRAPH_COLLECTION procedure,

109
DROP_RDF_NETWORK procedure, 110
DROP_RDFVIEW_GRAPH procedure, 111
DROP_RDFVIEW_MODEL procedure, 112
DROP_RULEBASE procedure, 114
DROP_SEM_INDEX procedure, 115
DROP_SEM_MODEL procedure, 116

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-2 of Index-13

DROP_SEM_NETWORK procedure, 117
DROP_SEM_SQL procedure, 118
DROP_USER_INFERENCE_OBJS procedure,

120
DROP_VIRTUAL_MODEL procedure, 121
duplicate triples

checking for, 16
removing from model, D-26, D-27

E
ENABLE_CHANGE_TRACKING procedure, 122
ENABLE_INC_INFERENCE procedure, 123
ENABLE_INMEMORY procedure, 123
ENABLE_INMEMORY_FOR_ENT procedure, 124
ENABLE_INMEMORY_FOR_INF_GRAPH

procedure, 125
ENABLE_INMEMORY_FOR_MODEL procedure,

126
ENABLE_INMEMORY_FOR_RDF_GRAPH

procedure, 127
ENABLE_NETWORK_SHARING procedure, 127
ENABLE_OLS_POLICY procedure, 5
ENABLE_SYNTAX_CHECKING optimizer hint, 8
entailments

altering, 10
deleting if in failed state, 43

ESCAPE_CLOB_TERM procedure, 128
ESCAPE_CLOB_VALUE procedure, 129
ESCAPE_RDF_TERM procedure, 130
ESCAPE_RDF_VALUE procedure, 131
examples

PL/SQL, 190
EXPORT_ENTAILMENT_STATS procedure, 132
EXPORT_MODEL_STATS procedure, 132
EXPORT_NETWORK_STATS procedure, 4
EXPORT_RDFVIEW_GRAPH procedure, 133
EXPORT_RDFVIEW_MODEL procedure, 134
exporting RDF data, 147
external documents

indexing, 10
external table

creating, 89
extractor policies, 4

RDFCTX_POLICIES view, 18
extractors

information, 2
policies, 4

F
failed state

rulebase or entailment, 43
federated queries, 74, 19
filter

attribute of SEM_MATCH, 33, 7

FINAL_VALUE_HASH
query option for SEM_MATCH, 35

FINAL_VALUE_NL
query option for SEM_MATCH, 35

functions
user-defined, 28

G
GATE (General Architecture for Text Engineering)

sample Java implementation, 13
using, 12

GATHER_STATS procedure, 5
General Architecture for Text Engineering (GATE)

sample Java implementation, 13
using, 12

GET_CHANGE_TRACKING_INFO procedure,
137

GET_INC_INF_INFO procedure, 138
GET_MODEL_ID function, 139
GET_MODEL_NAME function, 140
GET_PLAN_COST function, 140
GET_SQL procedure, 141
GET_TRIPLE_ID function, 142
GETV$DATETIMETZVAL function, 143
GETV$DATETZVAL function, 144
GETV$GEOMETRYVAL function, 145
GETV$NUMERICVAL function, 146
GETV$STRINGVAL function, 147
GETV$TIMETZVAL function, 148
global prefix (BASE keyword), 62
GRANT_MODEL_ACCESS_PRIV procedure, 149
GRANT_MODEL_ACCESS_PRIVS procedure,

150
GRANT_NETWORK_ACCESS_PRIVS

procedure, 152
GRANT_NETWORK_SHARING_PRIVS

procedure, 153
GRANT_RDF_GRAPH_ACCESS_PRIV

procedure, 153
GRANT_RDF_GRAPH_ACCESS_PRIVS

procedure, 155
GRAPH_MATCH_UNNAMED=T

query option for SEM_MATCH, 35
graphs, 5, 13

attribute of SEM_MATCH, 37
creating, 71
deleting (dropping), 108
disabling support in the database, 110
enabling support in the database, 75
merging, 162
renaming, 174
SEMM_model-name view, 14
truncating, 191
updating, 197

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-3 of Index-13

H
HINT0

query option for SEM_MATCH, 35
HTTP_METHOD=POST_PAR

query option for SEM_MATCH, 36

I
IMPORT_ENTAILMENT_STATS procedure, 156
IMPORT_MODEL_STATS procedure, 157
IMPORT_NETWORK_STATS procedure, 7
in-memory column store support in RDF, 184
in-memory result tables, 111
in-memory virtual columns with RDF, 186
incremental inference, 13

disabling, 98
enabling, 123

incremental inferencing
getting information, 138

index_status
attribute of SEM_MATCH, 33, 21

inf_ext_user_func_name parameter, 2
inference rules, 19
inferencing, 18

user-defined, 1
inferred graph

invalid status, 33
inferred graphs, 21

altering, 13
incomplete status, 33, 21
invalid status, 21
SEM_RULES_INDEX_DATASETS view, 22
SEM_RULES_INDEX_INFO view, 21

information extractors, 2
inverseOf keyword

using to force use of semantic index, 23
invisible indexes

with RDF in-memory, 186
invisible RDF network indexes, 16
invisible semantic network indexes, 21
IS_TRIPLE function, 158

J
Java examples

GATE listener, 13
JavaScript Object Notation (JSON) format

support, 46
Join Push Down, 75
JSON format support, 46

L
literals

data types for, 16

load operations
SPARQL update considerations, 182

LOAD_INTO_STAGING_TABLE procedure, 159
loading RDF data, 147
loading semantic data

bulk, 38, 40, 159
long literals

SPARQL update considerations, 183
LOOKUP_ENTAILMENT procedure, 160

M
MAINTAIN_TRIPLES procedure, 4
materialized join views

RDF support for, 187
mdsys.SemContent index type, 5
MERGE_MODELS procedure, 161
MERGE_RDF_GRAPHS procedure, 162
metadata

rdf graphs, 13
metadata tables and views for RDF data, 28
methods for RDF data, 29
MIGRATE_DATA_TO_CURRENT procedure, 164
MIGRATE_DATA_TO_STORAGE_V2 procedure,

165
model ID

getting, 139
model name

getting, 140
models

altering, 14
creating, 85
deleting (dropping), 116
disabling support in the database, 117
enabling support in the database, 87
grant a list of privileges to access a model,

150
grant a privilege to access a model, 149
merging, 161
renaming, 173
revokes access privilege on a model, 178
revokes access privileges on a model, 180
SEM_MODELS data type, 33
swapping names, 189
truncating, 190
updating, 195
validating geometries in, 201

MOVE_RDF_NETWORK_DATA procedure, 166
MOVE_SEM_NETWORK_DATA procedure, 167

N
N-Quad format, 26
N-QUADS data format, 26
N-Triple format, 26

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-4 of Index-13

named graph based inference
global, 15
local, 15

named graphs
support for, 26

named_graphs
attribute of SEM_MATCH, 37

network access privileges
granting, 152
revoking, 181

network indexes
refreshing information, 170, 171
SEM_NETWORK_INDEX_INFO view, 159

network sharing privileges
granting, 153
revoking, 182

network_name
attribute of SEM_MATCH, 37

network_owner
attribute of SEM_MATCH, 37

NGGI (named graph based global inference), 15
NGLI (named graph based local inference), 15

O
OBIEE

using SPARQL Gateway as an XML data
source, 86

objects, 17
ODCIAggregate interface

user-defined aggregates (RDF Semantic
Graph), 33

ogcf
aggregate bounding box function, B-3
aggregate bounding circle function, B-4
aggregate centroid function, B-4
aggregate concave hull function, B-5
aggregate convex hull function, B-6
aggregate union function, B-7
boundary function, B-12
buffer function, B-13
checking 3D geometries, B-25
checking for empty geometry, B-25
concave hull function, B-15
converting geometry to an

ogc:geoJSONLiteral function, B-8
converting geometry to an ogc:GMLLiteral

function, B-9
converting geometry to an ogc:kmlLiteral

function, B-10
converting geometry to an ogc:wktLiteral

function, B-11
convexHull function, B-15
coordinate dimension function, B-16
determining a simple geometry, B-27

ogcf (continued)
determining geometry with measure value,

B-26
determining the geometry length, B-28
difference function, B-17
dimension function, B-18
distance function, B-19
envelope function, B-20
finding area function, B-7
finding area of geometry, B-31
finding buffer polygon, B-32
finding geometry type function, B-22
finding length of geometry, B-33
finding maximum X coordinate value, B-29
finding maximum Y coordinate value, B-29
finding maximum Z coordinate value, B-30
finding minimum bounding circle function,

B-13
finding minimum X coordinate value, B-34
finding minimum Y coordinate value, B-35
finding minimum Z coordinate value, B-35
finding perimeter of geometry, B-33
getSRID function, B-23
intersection function, B-24
nth geometry function, B-21
relate function, B-38
returns number of geometries, B-36
returns perimeter in units, B-37
returns spatial dimension of geometry, B-48
sfContains function, B-39
sfCrosses function, B-40
sfDisjoint function, B-41
sfEquals function, B-42
sfIntersects function, B-43
sfOverlaps function, B-44
sfTouches function, B-45
sfWithin function, B-47
symDifference function, B-48
transforms geometry to spatial reference

system, B-49
union function, B-50

OLTP compression, 7
OLTP index compression, 93
options

attribute of SEM_MATCH, 33
Oracle Advanced Compression

OLTP compression, 7
Oracle AI Database In-Memory support by RDF,

184
enabling, 185
using invisible indexes, 186

Oracle Business Intelligence Enterprise Edition
(OBIEE)

using SPARQL Gateway as an XML data
source, 86

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-5 of Index-13

Oracle Database In-Memory
disabling, 99
disabling for entailment, 100
disabling for graphs, 102
disabling for inferred graph, 101
disabling for model, 100
enabling, 123
enabling for entailment, 124
enabling for inferred graphs, 125
enabling for model, 126
enabling for RDF graph, 127

Oracle Database In-Memory support by RDF
using in-memory virtual columns, 186

Oracle Label Security (OLS)
applying policy, 1, D-24
disabling policy, 4
enabling policy, 5
removing policy, 5, D-25
resetting labels associated with a model, 6
setting sensitivity label for a resource that

may be used in the subject and/or
object position of a triple, 10

setting sensitivity level for a predicate, 7
setting sensitivity level for a rule belonging to

a rulebase, 11
setting sensitivity level for RDFS schema

elements, 8
triple-and-values security, 23
triple-level security, 1
using with RDF data, 1

Oracle Machine Learning
RDF support, 189

orageo
aggrCentroid function, B-52
aggrConvexHull function, B-53
aggrMBR function, B-53
aggrUnion function, B-54
area function, B-55
buffer function, B-55
centroid function, B-56
convexHull function, B-57
difference function, B-58
distance function, B-59
getSRID function, B-60
intersection function, B-61
length function, B-62
mbr function, B-62
nearestNeighbor function, B-63
relate function, B-64
sdoDistJoin function, B-66
sdoJoin function, B-67
union function, B-68
withinDistance function, B-69
xor function, B-70

ORARDFLDR Utility, 90
ORDER BY query processing, 188

OTN page
RDF Graph, 196

OVERLOADED_NL=T
query option for SEM_MATCH, 36

owl
sameAs

SEMCL_inferred-graph-name view, 12
OWL

queries using the SEM_DISTANCE ancillary
operator, 21

queries using the SEM_RELATED operator,
19

SameAs
optimizing inference, 11

OWL 2 EL support, 3
OWL 2 RL support, 3
OWL2EL rulebase, 3
OWL2RL rulebase, 3

P
parallel inference, 15
PelletInfGraph class

support deprecated in RDF graph support for
Apache Jena, 40

privilege considerations for RDF, 28
PRIVILEGE_ON_APP_TABLES procedure, D-26
PROCAVFH=F option, 11
PROCSVFH=F option, 11
properties, 18
property chain handling, 4
property paths

optimized handling by RDF graph support for
Apache Jena, 13

PURGE_UNUSED_VALUES procedure, 168

Q
quality of search, 10
queries

using the SEM_APIS.GET_SQL function, 140
using the SEM_APIS.SPARQL_TO_SQL

function, 135
using the SEM_DISTANCE ancillary operator,

21
using the SEM_MATCH table function, 32
using the SEM_RELATED operator, 19
using the SEM_SQL SQL Macro, 140

R
RDF data

blank nodes, 18
constructors, 29
data types, 29
examples (PL/SQL), 190

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-6 of Index-13

RDF data (continued)
in the database, 5
metadata tables and views, 28
methods, 29
modeling, 5
objects, 17
properties, 18
queries using the SEM_APIS.GET_SQL

Function, 140
queries using the

SEM_APIS.SPARQL_TO_SQL
function, 135

queries using the SEM_MATCH table
function, 32

queries using the SEM_SQL SQL Macro, 140
quick start, 1
security considerations, 27
statements, 15
subjects, 17

rdf graph collections, 22
RDF graph collections

SEM_MODEL$ view entries, 24
SEM_VMODEL_DATASETS view, 25
SEM_VMODEL_INFO view, 24
support in RDF Semantic Graph support for

Apache Jena, 34
RDF Graph support

removing, A-1
RDF graph support for Apache Jena

optimized handling or property paths, 13
support for connection pooling, 36
support for semantic model PL/SQL

interfaces, 37
RDF Graph support for Apache Jena, 1

functions supported in SPARQL queries, 21
query examples, 50
RDFa support with prepareBulk, 41
SEM_MATCH and RDF Graph support for

Apache Jena queries compared, 8
setting up software environment, 3
setting up SPARQL service, 4
support for RDF graph collections, 34

RDF Graph support for Eclipse RDF4J, 1
best Practices for Oracle RDF Graph Adapter

for Eclipse RDF4J, 29
database connection management, 16
query examples, 31
setting up Oracle RDF Graph Adapter for

Eclipse RDF4J for use with Java
program, 4

setting up Oracle RDF Graph Adapter for
Eclipse RDF4J in RDF4J Workbench
and RDF4J Server, 6

setting up SPARQL service for Eclipse
RDF4J, 14

SPARQL Query Execution Model, 17

RDF Graph support for Eclipse RDF4J (continued)
SPARQL Update Execution Model, 21
transaction management for SPARQL

Update, 22
unsupported features in Oracle RDF Graph

Adapter for Eclipse RDF4J, 31
using RDF4J Workbench for creating and

querying repositories., 13
RDF graphs

altering, 15
collection, 22
grant a list of privileges to access an RDF

graph, 155
grant a privilege to access an RDF graph, 153
revokes access privilege on an RDF graph,

183
revokes access privileges on an RDF graph,

184
SEMI_inferred-graph-name view, 21

RDF Knowledge Graph, 1
overview, 1

RDF network, 6
migrating from escaped to unescaped storage

form, 13
migrating from MDSYS to schema-private, 9
naming conventions for objects, 9
RDF_PARAMETER table, 9
schema-private, 8
sharing schema-private networks, 10
types of users, 9

RDF network indexes
adding, 7
altering, 16
altering on RDF graphs, 12
dropping, 108
using, 158

RDF networks
disabling sharing, 103
enabling sharing, 127

RDF rulebase
subset of RDFS rulebase, 19

RDF semantic graph support
downgrading, A-7

RDF Semantic Graph support for Apache Jena
optimized handling of SPARQL queries, 13

RDF support for Oracle Machine Learning, 189
RDF support in SQL Developer, 188
RDF views, 1

creating, 77, 80
dropping, 111, 112
exporting, 133, 134

RDF_PARAMETER table, 9
RDF_VALUE$ table, 15
RDF$ET_TAB table, 150

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-7 of Index-13

RDFa
support with prepareBulk (RDF Graph support

for Apache Jena), 41
RDFCTX_INDEX_EXCEPTIONS view, 19
RDFCTX_POLICIES view, 18
RDFS entailment rules, 19
RDFS rulebase

implements RDFS entailment rules, 19
REFRESH_NETWORK_INDEX_INFO procedure,

170
REFRESH_QUERY_STATE procedure, 170
REFRESH_SEM_NETWORK_INDEX_INFO

procedure, 171
relational data as RDF, 1
REMOVE_DUPLICATES procedure, D-27
REMOVE_OLS_POLICY procedure, 5
REMOVE_POLICY_FROM_APP_TAB procedure,

D-25
removing RDF Graph, A-1
RENAME_ENTAILMENT procedure, 172
RENAME_INFERRED_GRAPH procedure, 172
RENAME_MODEL procedure, 173
RENAME_RDF_GRAPH procedure, 174
REPLACE=T option, 72, 93
RES2VID function, 175
RESET_MODEL_LABELS procedure, 6
Resource Description Framework

See RDF Knowledge Graph
RESTORE_RDF_NETWORK_DATA procedure,

176
RESTORE_SEM_NETWORK_DATA procedure,

177
Result Tables, 101
resultsPerPage parameter, 84
REVOKE_MODEL_ACCESS_PRIV procedure,

178
REVOKE_MODEL_ACCESS_PRIVS procedure,

180
REVOKE_NETWORK_ACCESS_PRIVS

procedure, 181
REVOKE_NETWORK_SHARING_PRIVS

procedure, 182
REVOKE_RDF_GRAPH_ACCESS_PRIV

procedure, 183
REVOKE_RDF_GRAPH_ACCESS_PRIVS

procedure, 184
rulebases, 18

attribute of SEM_MATCH, 21
deleting if in failed state, 43
SEM_RULEBASE_INFO view, 20
SEM_RULEBASES data type, 33
SEMR_rulebase-name view, 19

rules, 18
rules indexes

See inferred graphs

S
sameAs

optimizing inference (OWL), 11
sameCanonTerm built-in function, 92
sameTerm built-in function, 92
schema-private RDF network, 8
AS_OF [SCN, <SCN_VALUE>]

query option for SEM_MATCH, 34
sdo_rdf_internal.convert_old_rdf_data procedure,

A-3, A-5
SDO_RDF_TERM data type, 29
SDO_RDF_TERM_LIST data type, 30
SDO_SEM_PDATE_CTX, 181
search

quality of, 10
security considerations, 27
SEM_ALIAS data type, 33, 6
SEM_ALIASES data type, 33, 6
SEM_APIS package

ADD_DATATYPE_INDEX, 6
ADD_NETWORK_INDEX, 7
ADD_SEM_INDEX, 8
ALTER_DATATYPE_INDEX, 9
ALTER_ENTAILMENT, 10
ALTER_INDEX_ON_INFERRED_GRAPH

RDF network indexes
altering on inferred graphs, 11

ALTER_INDEX_ON_RDF_GRAPH, 12
ALTER_INFERRED_GRAPH, 13
ALTER_MODEL, 14
ALTER_RDF_GRAPH, 15
ALTER_RDF_INDEXES, 16
ALTER_SEM_INDEX_ON_ENTAILMENT

semantic network indexes
altering on entailment, 18

ALTER_SEM_INDEX_ON_MODEL, 20
ALTER_SEM_INDEXES, 21
ANALYZE_ENTAILMENT, 24
ANALYZE_INFERRED_GRAPH, 26
ANALYZE_MODEL, 28
ANALYZE_RDF_GRAPH, 30
APPEND_RDF_NETWORK_DATA, 31
APPEND_SEM_NETWORK_DATA, 32
BULK_LOAD_FROM_STAGING_TABLE, 38
BULK_LOAD_RDF_GRAPH, 40
CLEANUP_BNODES, 42
CLEANUP_FAILED, 43
COMPOSE_RDF_TERM, 44
CONVERT_TO_GML311_LITERAL, 46
CONVERT_TO_WKT_LITERAL, 47
CREATE_ENTAILMENT, 48
CREATE_INDEX_ON_RESULT_TAB, 56
CREATE_INDEX_ON_SPM_TAB, 58
CREATE_INFERRED_GRAPH, 60
CREATE_MATERIALIZED_VIEW, 68

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-8 of Index-13

SEM_APIS package (continued)
CREATE_MV_BITMAP_INDEX, 70
CREATE_RDF_GRAPH, 71
CREATE_RDF_GRAPH_COLLECTION, 72
CREATE_RDF_NETWORK, 75
CREATE_RDFVIEW_GRAPH, 77
CREATE_RDFVIEW_MODEL, 80
CREATE_RULEBASE, 84
CREATE_SEM_MODEL, 85
CREATE_SEM_NETWORK, 87
CREATE_SEM_SQL, 89
CREATE_SOURCE_EXTERNAL_TABLE, 89
CREATE_SPARQL_INFERRED_GRAPH, 91
CREATE_VIRTUAL_MODEL, 93
DELETE_ENTAILMENT_STATS, 96
DELETE_MODEL_STATS, 97
DISABLE_CHANGE_TRACKING, 97
DISABLE_INC_INFERENCE, 98
DISABLE_INMEMORY, 99
DISABLE_INMEMORY_FOR_ENT, 100
DISABLE_INMEMORY_FOR_INF_GRAPH,

101
DISABLE_INMEMORY_FOR_MODEL, 100
DISABLE_INMEMORY_FOR_RDF_GRAPH,

102
DISABLE_NETWORK_SHARING, 103
DROP_DATATYPE_INDEX, 103
DROP_ENTAILMENT, 104
DROP_INFERRED_GRAPH, 105
DROP_MATERIALIZED_VIEW, 106
DROP_MV_BITMAP_INDEX, 107
DROP_NETWORK_INDEX, 108
DROP_RDF_GRAPH, 108
DROP_RDF_GRAPH_COLLECTION, 109
DROP_RDF_NETWORK, 110
DROP_RDFVIEW_GRAPH, 111
DROP_RDFVIEW_MODEL, 112
DROP_RULEBASE, 114
DROP_SEM_INDEX, 115
DROP_SEM_MODEL, 116
DROP_SEM_NETWORK, 117
DROP_SEM_SQL, 118
DROP_USER_INFERENCE_OBJS, 120
DROP_VIRTUAL_MODEL, 121
ENABLE_CHANGE_TRACKING, 122
ENABLE_INC_INFERENCE, 123
ENABLE_INMEMORY, 123
ENABLE_INMEMORY_FOR_ENT, 124
ENABLE_INMEMORY_FOR_INF_GRAPH,

125
ENABLE_INMEMORY_FOR_MODEL, 126
ENABLE_INMEMORY_FOR_RDF_GRAPH,

127
ENABLE_NETWORK_SHARING, 127
ESCAPE_CLOB_TERM, 128
ESCAPE_CLOB_VALUE, 129

SEM_APIS package (continued)
ESCAPE_RDF_TERM, 130
ESCAPE_RDF_VALUE, 131
EXPORT_ENTAILMENT_STATS, 132
EXPORT_MODEL_STATS, 132
EXPORT_RDFVIEW_GRAPH, 133
EXPORT_RDFVIEW_MODEL, 134
GET_CHANGE_TRACKING_INFO, 137
GET_INC_INF_INFO, 138
GET_MODEL_ID, 139
GET_MODEL_NAME, 140
GET_PLAN_COST, 140
GET_SQL, 141
GET_TRIPLE_ID, 142
GETV$DATETIMETZVAL, 143
GETV$DATETZVAL, 144
GETV$GEOMETRYVAL, 145
GETV$NUMERICVAL, 146
GETV$STRINGVAL, 147
GETV$TIMETZVAL, 148
GRANT_MODEL_ACCESS_PRIV, 149
GRANT_MODEL_ACCESS_PRIVS, 150
GRANT_NETWORK_ACCESS_PRIVS, 152
GRANT_NETWORK_SHARING_PRIVS, 153
GRANT_RDF_GRAPH_ACCESS_PRIV, 153
GRANT_RDF_GRAPH_ACCESS_PRIVS,

155
IMPORT_ENTAILMENT_STATS, 156
IMPORT_MODEL_STATS, 157
LOAD_INTO_STAGING_TABLE, 159
LOOKUP_ENTAILMENT, 160
MERGE_MODELS, 161
MERGE_RDF_GRAPHS, 162
MIGRATE_DATA_TO_CURRENT, 164
MIGRATE_DATA_TO_STORAGE_V2, 165
MOVE_RDF_NETWORK_DATA, 166
MOVE_SEM_NETWORK_DATA, 167
PRIVILEGE_ON_APP_TABLES, D-26
PURGE_UNUSED_VALUES, 168
reference information, 1, 1
REFRESH_MATERIALIZED_VIEW, 169
REFRESH_NETWORK_INDEX_INFO, 170
REFRESH_QUERY_STATE, 170
REFRESH_SEM_NETWORK_INDEX_INFO,

171
REMOVE_DUPLICATES, D-27
RENAME_ENTAILMENT, 172
RENAME_INFERRED_GRAPH, 172
RENAME_MODEL, 173
RENAME_RDF_GRAPH, 174
RES2VID, 175
RESTORE_RDF_NETWORK_DATA, 176
RESTORE_SEM_NETWORK_DATA, 177
REVOKE_MODEL_ACCESS_PRIV, 178
REVOKE_MODEL_ACCESS_PRIVS, 180

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-9 of Index-13

SEM_APIS package (continued)
REVOKE_NETWORK_ACCESS_PRIVSS,

181
REVOKE_NETWORK_SHARING_PRIVS,

182
REVOKE_RDF_GRAPH_ACCESS_PRIV,

183
REVOKE_RDF_GRAPH_ACCESS_PRIVS,

184
SEM_APIS.ALTER_RESULT_TAB, 17
SEM_APIS.ALTER_SPM_TAB, 22
SEM_APIS.BUILD_RESULT_TAB, 33
SEM_APIS.BUILD_SPM_TAB, 36
SEM_APIS.CREATE_SPARQL_UPDATE_TA

BLES, 92
SEM_APIS.DROP_RESULT_TAB, 113
SEM_APIS.DROP_SPARQL_UPDATE_TABL

ES, 118
SEM_APIS.DROP_SPM_TAB, 119
SEM_APIS.GATHER_SPM_INFO, 136
SEM_SQL_COMPILE, 186
SET_ENTAILMENT_STATS, 186
SET_MODEL_STATS, 187
SPARQL_TO_SQL, 188
SWAP_NAMES, 189
TRIPLE, 158
TRUNCATE_RDF_GRAPH, 191
TRUNCATE_SEM_MODEL, 190
UNESCAPE_CLOB_TERM, 192
UNESCAPE_CLOB_VALUE, 192
UNESCAPE_RDF_TERM, 193
UNESCAPE_RDF_VALUE, 194
UPDATE_MODEL, 195
UPDATE_RDF_GRAPH, 197
VALIDATE_ENTAILMENT, 199
VALIDATE_GEOMETRIES, 201
VALIDATE_INFERRED_GRAPH, 203
VALIDATE_MODEL, 204
VALIDATE_RDF_GRAPH, 206
VALUE_NAME_PREFIX, 207, 208

SEM_APIS.ALTER_RESULT_TAB, 17
SEM_APIS.ALTER_SPM_TAB, 22
SEM_APIS.BUILD_RESULT_TAB, 33
SEM_APIS.BUILD_SPM_TAB, 36
SEM_APIS.CREATE_MV_BITMAP_INDEX

procedure, 70
SEM_APIS.CREATE_SPARQL_UPDATE_TABLE

S procedure, 92
SEM_APIS.DROP_MATERIALIZED_VIEW

procedure, 106
SEM_APIS.DROP_MV_BITMAP_INDEX

procedure, 107
SEM_APIS.DROP_RESULT_TAB, 113
SEM_APIS.DROP_SPARQL_UPDATE_TABLES

procedure, 118
SEM_APIS.DROP_SPM_TAB, 119

SEM_APIS.GATHER_SPM_INFO, 136
SEM_APIS.REFRESH_MATERIALIZED_VIEW

procedure, 169
SEM_CONTAINS operator

syntax, 6
SEM_CONTAINS_COUNTancillary operator

syntax, 7
SEM_CONTAINS_SELECT ancillary operator

syntax, 7
using in queries, 9

SEM_DISTANCE ancillary operator, 21
SEM_DTYPE_INDEX_INFO view, 161
SEM_GRAPHS data type, 50, 61
SEM_INDEXTYPE index type, 23
SEM_MATCH compared to SPARQL_TO_SQL,

139
SEM_MATCH table function, 32

Flashback Query support, 90
inline query optimizer hints, 77
spatial support, 82

SEM_MODEL$ view, 13
RDF graph collection entries, 24

SEM_MODELS data type, 33
SEM_NETWORK_INDEX_INFO view, 159
SEM_OLS package

APPLY_POLICY_TO_APP_TAB, D-24
REMOVE_POLICY_FROM_APP_TAB, D-25

SEM_PERF package
ANALYZE_AUX_TABLES, 1
DELETE_NETWORK_STATS, 2
DROP_EXTENDED_STATS, 3
EXPORT_NETWORK_STATS, 4
GATHER_STATS, 5
IMPORT_NETWORK_STATS, 7

SEM_RDFCTX package
ADD_DEPENDENT_POLICY, 1
CREATE_POLICY, 2
DROP_POLICY, 4
MAINTAIN_TRIPLES, 4
reference information, 1
SET_DEFAULT_POLICY, 6
SET_EXTRACTOR_PARAM, 7

SEM_RDFSA package
APPLY_OLS_POLICY, 1
DISABLE_OLS_POLICY, 4
ENABLE_OLS_POLICY, 5
reference information, 1, D-24
REMOVE_OLS_POLICY, 5
RESET_MODEL_LABELS, 6
SET_PREDICATE_LABEL, 7
SET_RDFS_LABEL, 8
SET_RESOURCE_LABEL, 10
SET_RULE_LABEL, 11

SEM_RELATED operator, 19
SEM_RULEBASE_INFO view, 20
SEM_RULEBASES data type, 33

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-10 of Index-13

SEM_RULES_INDEX_DATASETS view, 22
SEM_RULES_INDEX_INFO view, 21
SEM_SQL_COMPILE procedure, 186
SEM_VMODEL_DATASETS view, 25
SEM_VMODEL_INFO view, 24
semantic data

privilege considerations, 28
semantic index

creating (MDSYS.SEM_INDEXTYPE), 23
indexing documents, 5
using for documents, 1

semantic indexes
RDFCTX_INDEX_EXCEPTIONS view, 19

semantic network indexes
adding, 8
altering, 21
altering on model, 20
dropping, 115

semantic technologies support
enabling, A-2
upgrading from Release 11.1, 11.2, or 12.1,

A-2
SEMCL_inferred-graph-name view, 12
SemContent

mdsys.SemContent index type, 5
SEMI_inferred-graph-name view, 21
SEMM_model-name view, 14
SEMR_rulebase-name view, 19
semrelod.sql script, A-4, A-6
semremov.sql script, A-1
SERVICE_CLOB=f

query option for SEM_MATCH, 36
SERVICE_ESCAPE=f

query option for SEM_MATCH, 36
SERVICE_JPDWN=t

query option for SEM_MATCH, 36
SERVICE_PROXY

query option for SEM_MATCH, 36
SET_DEFAULT_POLICY procedure, 6
SET_ENTAILMENT_STATS procedure, 186
SET_EXTRACTOR_PARAM procedure, 7
SET_MODEL_STATS procedure, 187
SET_PREDICATE_LABEL procedure, 7
SET_RDFS_LABEL procedure, 8
SET_RESOURCE_LABEL procedure, 10
SET_RULE_LABEL procedure, 11
Simple Knowledge Organization System (SKOS)

property chain handling, 4
support for, 1

SKOS (Simple Knowledge Organization System)
property chain handling, 4
support for, 1

SNOMED CT (Systematized Nomenclature of
Medicine - Clinical Terms)

support for, 52, 64

SPARQL
optimized handling of queries, 13
searching for documents using SPARQL

query pattern, 8
setting up service for RDF Graph support for

Apache Jena, 4
setting up SPARQL service for Oracle RDF

Graph Adapter for Eclipse RDF4J, 14
SPARQL endpoints

accessing with HTTP Basic authentication, 77
SPARQL Gateway, 71

customizing the default XSLT file, 78
features and benefits overview, 72
installing and configuring, 72
Java API, 78
specifying best effort for SPARQL query, 77
specifying content type other than text/xml, 77
specifying timeout value for SPARQL query,

76
using as an XML data source to OBIEE, 86
using with RDF data, 74

SPARQL rule-based inference, 36
SPARQL SERVICE

federated queries, 74
Join Push Down, 75
SILENT keyword, 76
using a proxy server with, 76

SPARQL Update operations on a an RDF graph
STREAMING=F, 180

SPARQL Update operations on an RDF graph,
165

blank nodes, 183
bulk operations, 180
BULK_LOAD_RDF_GRAPH, 180
DEL_AS_INS=T, 181
load, 182
long literals, 183
performance tuning, 175
setting options at session level, 181
transaction isolation levels, 179
transaction management, 176

SPARQL_TO_SQL compared to SEM_MATCH,
139

SPARQL_TO_SQL function, 188
using bind variables with, 136

spatial support
ogcf

aggBoundingBox function, B-3
aggBoundingCircle function, B-4
aggCentroid function, B-4
aggConcaveHull function, B-5
aggConvexHull function, B-6
aggUnion function, B-7
area function, B-7
asGeoJSON function, B-8
asGML function, B-9

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-11 of Index-13

spatial support (continued)
ogcf (continued)
asKML function, B-10
asWKT function, B-11
boundary function, B-12
boundingCircle function, B-13
buffer function, B-13
concaveHull function, B-15
convexHull function, B-15
coordinateDimension function, B-16
difference function, B-17
dimension function, B-18
distance function, B-19
envelope function, B-20
geometryN function, B-21
geometryType function, B-22
getSRID function, B-23
intersection function, B-24
is3D function, B-25
isEmpty function, B-25
isMeasured function, B-26
isSimple function, B-27
length function, B-28
maxX function, B-29
maxY function, B-29
maxZ function, B-30
metricArea function, B-31
metricBuffer function, B-32
metricLength function, B-33
metricPerimeter function, B-33
minX function, B-34
minY function, B-35
minZ function, B-35
numGeometries function, B-36
perimeter function, B-37
relate function, B-38
sfContains function, B-39
sfCrossesfunction, B-40
sfDisjoint function, B-41
sfEquals function, B-42
sfIntersects function, B-43
sfOverlaps function, B-44
sfTouches function, B-45
sfWithin function, B-47
spatial dimension function, B-48
symDifference function, B-48
transform function, B-49
union function, B-50

orageo
aggrCentroid function, B-52
aggrConvexHull function, B-53
aggrMBR function, B-53
aggrUnion function, B-54
area function, B-55
buffer function, B-55
centroid function, B-56

spatial support (continued)
orageo (continued)
convexHull function, B-57
difference function, B-58
distance function, B-59
getSRID function, B-60
intersection function, B-61
length function, B-62
mbr function, B-62
nearestNeighbor function, B-63
relate function, B-64
sdoDistJoin function, B-66
sdoJoin function, B-67
union function, B-68
withinDistance function, B-69
xor function, B-70

SQL Developer
RDF support in, 188

SQL Macro
creating SEM_SQL, 89
dropping SEM_SQL, 118

staging table
loading data from, 38, 40
loading data into, 159

staging table for bulk loading RDF data, 148
star-pattern tables, 103
statements

RDF_VALUE$ table, 15
statistics

gathering for RDF and OWL, 5
gathering for SPM auxiliary tables, 1

storing SPARQL rules, 36
STRICT_AGG_CARD=T

query option for SEM_MATCH, 37
subjects, 17
subproperty chaining, 4
SWAP_NAMES procedure, 189
Systematized Nomenclature of Medicine - Clinical

Terms (SNOMED CT)
support for, 52, 64

T
timeout value

specifying for SPARQL query, 76
TriG data format, 26
triple-and-values security, 23
triple-level security, 1
triple-pattern tables, 105
triples

constructors for inserting, 31
duplication checking, 16
IS_TRIPLE function, 158

TRUNCATE_RDF_GRAPH procedure, 191
TRUNCATE_SEM_MODEL procedure, 190

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-12 of Index-13

U
UNESCAPE_CLOB_TERM procedure, 192
UNESCAPE_CLOB_VALUE procedure, 192
UNESCAPE_RDF_TERM procedure, 193
UNESCAPE_RDF_VALUE procedure, 194
unescaped storage form, 165
uninstalling RDF Graph support, A-1
unused values

purging from RDF network, 168
UPDATE_MODEL procedure, 195
UPDATE_RDF_GRAPH procedure, 197
upgrading

required data migration after upgrade, A-4
semantic technologies support from Release

11.1, 11.2, or 12.1, A-2
URI prefix

using when values are not stored as URIs, 24
URIPREFIX keyword, 24
user-defined aggregates, 28
user-defined functions, 28
user-defined inferencing, 1

user-defined inferencing function, 3
user-defined querying, 1

V
VALIDATE_ENTAILMENT procedure, 199
VALIDATE_GEOMETRIES procedure, 201
VALIDATE_INFERRED_GRAPH procedure, 203
VALIDATE_MODEL procedure, 204
VALIDATE_RDF_GRAPH procedure, 206
VALUE_NAME_PREFIX function, 207, 208
views

RDF, 1
creating, 77, 80
dropping, 111, 112
exporting, 133, 134

X
XSLT file

customizing default for SPARQL Gateway, 78

Index

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-13 of Index-13

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Related Documents
	Conventions

	Changes in This Release for This Guide
	Changes in Oracle AI Database Release 26ai

	How to Use This Book
	Part I Conceptual and Usage Information
	1 RDF Graph Overview
	1.1 Introduction to Oracle Semantic Technologies Support
	1.2 Key Terms and Concepts for Working with RDF Graphs
	1.3 RDF Data Modeling
	1.4 RDF Data in the Database
	1.4.1 RDF Networks
	1.4.1.1 Schema-Private RDF Networks
	1.4.1.2 Types of RDF Network Users
	1.4.1.3 Naming Conventions for RDF Network Objects
	1.4.1.4 RDF_PARAMETER Table in RDF Networks
	1.4.1.5 Migrating from MDSYS to Schema-Private RDF Networks
	1.4.1.6 Sharing Schema-Private RDF Networks
	1.4.1.7 Migrating from Escaped to Unescaped Storage Form

	1.4.2 RDF Graphs
	1.4.3 Statements
	1.4.3.1 Triple Uniqueness and Data Types for Literals

	1.4.4 Subjects and Objects
	1.4.5 Blank Nodes
	1.4.6 Properties
	1.4.7 Inferencing: Rules and Rulebases
	1.4.8 Inferred Graphs
	1.4.9 RDF Graph Collections
	1.4.10 Named Graphs
	1.4.10.1 Data Formats Related to Named Graph Support

	1.4.11 RDF Data Security Considerations
	1.4.12 RDF Privilege Considerations

	1.5 RDF Metadata Tables and Views
	1.6 RDF Data Types, Constructors, and Methods
	1.6.1 Constructors for Inserting Triples

	1.7 Using the SEM_MATCH Table Function to Query RDF Data
	1.7.1 Performing Queries with Incomplete or Invalid Inferred Graphs
	1.7.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER, UNION, and GRAPH Keywords
	1.7.2.1 GRAPH Keyword Support

	1.7.3 Graph Patterns: Support for SPARQL ASK Syntax
	1.7.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax
	1.7.4.1 Typical SPARQL CONSTRUCT Workflow

	1.7.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax
	1.7.6 Graph Patterns: Support for SPARQL SELECT Syntax
	1.7.7 Graph Patterns: Support for SPARQL 1.1 Constructs
	1.7.7.1 Expressions in the SELECT Clause
	1.7.7.2 Subqueries
	1.7.7.3 Grouping and Aggregation
	1.7.7.4 Negation
	1.7.7.5 Value Assignment
	1.7.7.6 Property Paths

	1.7.8 Graph Patterns: Support for SPARQL 1.1 Federated Query
	1.7.8.1 Privileges Required to Execute Federated SPARQL Queries
	1.7.8.2 SPARQL SERVICE Join Push Down
	1.7.8.3 SPARQL SERVICE SILENT
	1.7.8.4 Using a Proxy Server with SPARQL SERVICE
	1.7.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication

	1.7.9 Inline Query Optimizer Hints
	1.7.10 Full-Text Search
	1.7.11 Spatial Support
	1.7.11.1 OGC GeoSPARQL Support
	1.7.11.2 Representing Spatial Data in RDF
	1.7.11.3 Validating Geometries
	1.7.11.4 Indexing Spatial Data
	1.7.11.5 Querying Spatial Data
	1.7.11.6 Using Long Literals with GeoSPARQL Queries

	1.7.12 Flashback Query Support
	1.7.13 Best Practices for Query Performance
	1.7.13.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time
	1.7.13.2 Indexes for FILTER Constructs Involving Typed Literals
	1.7.13.3 FILTER Constructs Involving Relational Expressions
	1.7.13.4 Optimizer Statistics and Dynamic Sampling
	1.7.13.5 Multi-Partition Queries
	1.7.13.6 Compression on Systems with OLTP Index Compression
	1.7.13.7 Unbounded Property Path Expressions
	1.7.13.8 Nested Loop Pushdown for Property Paths
	1.7.13.9 Grouping and Aggregation
	1.7.13.10 Use of Bind Variables to Reduce Compilation Time
	1.7.13.11 Non-Null Expression Hints
	1.7.13.12 Automatic JOIN Hints
	1.7.13.13 RDF Network Indexes
	1.7.13.14 Using RDF with Oracle AI Database In-Memory
	1.7.13.15 Using Language Tags in FILTER Expressions
	1.7.13.16 Type Casting for More Efficient FILTER Evaluation
	1.7.13.17 Spatial Indexing for GeoSPARQL Queries

	1.7.14 Special Considerations When Using SEM_MATCH

	1.8 Speeding up Query Execution with Result Tables
	1.8.1 Types of Result Tables
	1.8.1.1 Star-Pattern Tables
	1.8.1.2 Triple-Pattern Tables
	1.8.1.3 Chain-Pattern Tables

	1.8.2 Creating and Managing Result Tables
	1.8.2.1 Including Lexical Values in Result Tables
	1.8.2.2 Creating and Dropping Secondary Indexes on Result Tables
	1.8.2.3 Dropping Result Tables
	1.8.2.4 In-Memory Result Tables
	1.8.2.5 Metadata for Result Tables
	1.8.2.6 Utility Subprogram for Computing Per-Subject Cardinality Aggregates for Individual Properties
	1.8.2.7 Performing DML Operations on RDF Graphs with Result Tables
	1.8.2.8 Performing Bulk Load Operations on RDF Graphs with Result Tables
	1.8.2.9 Gathering Statistics on Result Tables

	1.8.3 SPARQL Query Options for Result Tables
	1.8.4 Special Considerations when Using Result Tables

	1.9 Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data
	1.9.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL
	1.9.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared

	1.10 Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data
	1.11 Loading and Exporting RDF Data
	1.11.1 Bulk Loading RDF Data Using a Staging Table
	1.11.1.1 Loading the Staging Table
	1.11.1.1.1 Loading N-Triple Format Data into a Staging Table Using SQL*Loader
	1.11.1.1.2 Loading N-Quad Format Data into a Staging Table Using an External Table

	1.11.1.2 Recording Event Traces During Bulk Loading

	1.11.2 Loading RDF Data Using INSERT Statements
	1.11.2.1 Loading Data into Named Graphs Using INSERT Statements

	1.11.3 Exporting RDF Data
	1.11.3.1 Retrieving RDF Data from an Application Table
	1.11.3.2 Retrieving RDF Data from an RDF Graph
	1.11.3.3 Removing RDF Graph Information from Retrieved Blank Node Identifiers

	1.11.4 Exporting or Importing an RDF Network Using Oracle Data Pump
	1.11.5 Moving, Restoring, and Appending an RDF Network
	1.11.6 Purging Unused Values

	1.12 Using RDF Network Indexes
	1.12.1 SEM_NETWORK_INDEX_INFO View

	1.13 Using Data Type Indexes
	1.14 Managing Statistics for the RDF Graphs and RDF Network
	1.14.1 Saving Statistics at the RDF Graph Level
	1.14.2 Restoring Statistics at the RDF Graph Level
	1.14.3 Saving Statistics at the Network Level
	1.14.4 Dropping Extended Statistics at the Network Level
	1.14.5 Restoring Statistics at the Network Level
	1.14.6 Setting Statistics at the RDF Graph Level
	1.14.7 Deleting Statistics at the RDF Graph Level

	1.15 Support for SPARQL Update Operations on an RDF Graph
	1.15.1 Tuning the Performance of SPARQL Update Operations
	1.15.2 Transaction Management with SPARQL Update Operations
	1.15.2.1 Transaction Isolation Levels

	1.15.3 Support for Bulk Operations
	1.15.3.1 Materialization of Intermediate Data (STREAMING=F)
	1.15.3.2 Using SEM_APIS.BULK_LOAD_RDF_GRAPH
	1.15.3.3 Using Delete as Insert (DEL_AS_INS=T)

	1.15.4 Setting UPDATE_RDF_GRAPH Options at the Session Level
	1.15.5 Load Operations: Special Considerations for SPARQL Update
	1.15.6 Long Literals: Special Considerations for SPARQL Update
	1.15.7 Blank Nodes: Special Considerations for SPARQL Update

	1.16 RDF Support for Oracle AI Database In-Memory
	1.16.1 Enabling Oracle AI Database In-Memory for RDF
	1.16.2 Using In-Memory Virtual Columns with RDF
	1.16.3 Using Invisible Indexes with Oracle AI Database In-Memory

	1.17 RDF Support for Materialized Join Views
	1.18 RDF Support in Oracle SQL Developer
	1.19 Enhanced RDF ORDER BY Query Processing
	1.20 Applying Oracle Machine Learning Algorithms to RDF Data
	1.21 RDF Graph Management Examples (PL/SQL and Java)
	1.21.1 Example: Journal Article Information
	1.21.2 Example: Family Information

	1.22 Software Naming Changes Since Release 11.1
	1.23 For More Information About RDF Graph
	1.24 Required Migration of Pre-12.2 RDF Data
	1.25 Oracle RDF Graph Features that Support Accessibility

	2 Quick Start for Using RDF Data
	2.1 Getting Started with RDF Data in a Schema-Private Network
	2.2 Quick Start for Using RDF Data in Oracle Autonomous AI Database
	2.2.1 Getting Started with RDF Data in Oracle Autonomous AI Database
	2.2.2 Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace

	3 OWL Concepts
	3.1 Ontologies
	3.1.1 Example: Disease Ontology
	3.1.2 Supported OWL Subsets

	3.2 Using OWL Inferencing
	3.2.1 Creating a Simple OWL Ontology
	3.2.2 Performing Native OWL Inferencing
	3.2.3 Performing OWL and User-Defined Rules Inferencing
	3.2.4 Generating OWL Inferencing Proofs
	3.2.5 Validating OWL RDF Graphs and Inferred Graphs
	3.2.6 Using SEM_APIS.CREATE_INFERRED_GRAPH for RDFS Inference
	3.2.7 Enhancing Inference Performance
	3.2.8 Optimizing owl:sameAs Inference
	3.2.8.1 Querying owl:sameAs Consolidated Inference Graphs

	3.2.9 Performing Incremental Inference
	3.2.10 Using Parallel Inference
	3.2.11 Using Named Graph Based Inferencing (Global and Local)
	3.2.11.1 Named Graph Based Global Inference (NGGI)
	3.2.11.2 Named Graph Based Local Inference (NGLI)
	3.2.11.3 Using NGGI and NGLI Together

	3.2.12 Performing Selective Inferencing (Advanced Information)

	3.3 Using Semantic Operators to Query Relational Data
	3.3.1 Using the SEM_RELATED Operator
	3.3.2 Using the SEM_DISTANCE Ancillary Operator
	3.3.2.1 Computation of Distance Information

	3.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
	3.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the First Parameter
	3.3.5 Using URIPREFIX When Values Are Not Stored as URIs

	4 Simple Knowledge Organization System (SKOS) Support
	4.1 Supported and Unsupported SKOS Semantics
	4.1.1 Supported SKOS Semantics
	4.1.2 Unsupported SKOS Semantics

	4.2 Performing Inference on SKOS RDF Graphs
	4.2.1 Validating SKOS RDF Graphs and Inferred Graphs
	4.2.2 Property Chain Handling

	5 Semantic Indexing for Documents
	5.1 Information Extractors for Semantically Indexing Documents
	5.2 Extractor Policies
	5.3 Semantically Indexing Documents
	5.4 SEM_CONTAINS and Ancillary Operators
	5.4.1 SEM_CONTAINS_SELECT Ancillary Operator
	5.4.2 SEM_CONTAINS_COUNT Ancillary Operator

	5.5 Searching for Documents Using SPARQL Query Patterns
	5.6 Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)
	5.7 Improving the Quality of Document Search Operations
	5.8 Indexing External Documents
	5.9 Configuring the Calais Extractor type
	5.10 Working with General Architecture for Text Engineering (GATE)
	5.11 Creating a New Extractor Type
	5.12 Creating a Local Semantic Index on a Range-Partitioned Table
	5.13 Altering a Semantic Index
	5.13.1 Rebuilding Content for All Existing Policies in a Semantic Index
	5.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index
	5.13.3 Rebuilding Content for an Existing Policy from a Semantic Index
	5.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic Index

	5.14 Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX
	5.15 Performing Document-Centric Inference
	5.16 Metadata Views for Semantic Indexing
	5.16.1 RDFCTX_POLICIES View
	5.16.2 RDFCTX_INDEX_POLICIES View
	5.16.3 RDFCTX_INDEX_EXCEPTIONS View

	5.17 Default Style Sheet for GATE Extractor Output

	6 Fine-Grained Access Control for RDF Data
	6.1 Triple-Level Security
	6.1.1 Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI)
	6.1.2 Extended Example: Applying OLS Triple-Level Security on RDF Data

	6.2 Triple-and-Values Security
	6.2.1 Extended Example: Applying OLS Triple-and-Values Security on RDF Data

	7 RDF Graph Support for Apache Jena
	7.1 Setting Up the Software Environment
	7.1.1 If You Used a Previous Version of the Support for Apache Jena

	7.2 Setting Up the SPARQL Service
	7.2.1 Client Identifiers
	7.2.2 Using OLTP Compression for Application Tables and Staging Tables
	7.2.3 N-Triples Encoding for Non-ASCII Characters

	7.3 Setting Up the RDF Graph Environment
	7.4 SEM_MATCH and RDF Graph Support for Apache Jena Queries Compared
	7.5 Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results
	7.6 Optimized Handling of SPARQL Queries
	7.6.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call
	7.6.2 Optimized Handling of Property Paths

	7.7 Additions to the SPARQL Syntax to Support Other Features
	7.7.1 SQL Hints
	7.7.2 Using Bind Variables in SPARQL Queries
	7.7.3 Additional WHERE Clause Predicates
	7.7.4 Additional Query Options
	7.7.4.1 JOIN Option and Federated Queries
	7.7.4.2 S2S Option Benefits and Usage Information

	7.7.5 Midtier Resource Caching

	7.8 Functions Supported in SPARQL Queries through RDF Graph Support for Apache Jena
	7.8.1 Functions in the ARQ Function Library
	7.8.2 Native Oracle AI Database Functions for Projected Variables
	7.8.3 User-Defined Functions

	7.9 SPARQL Update Support
	7.10 Analytical Functions for RDF Data
	7.10.1 Generating Contextual Information about a Path in a Graph

	7.11 Support for Server-Side APIs
	7.11.1 RDF Graph Collections Support
	7.11.2 Connection Pooling Support
	7.11.3 RDF Graph PL/SQL Interfaces
	7.11.4 Inference Options
	7.11.5 PelletInfGraph Class Support Deprecated

	7.12 Bulk Loading Using RDF Graph Support for Apache Jena
	7.12.1 Using prepareBulk in Parallel (Multithreaded) Mode
	7.12.2 Handling Illegal Syntax During Data Loading

	7.13 Automatic Variable Renaming
	7.14 JavaScript Object Notation (JSON) Format Support
	7.15 Other Recommendations and Guidelines
	7.15.1 BOUND or !BOUND Instead of EXISTS or NOT EXISTS
	7.15.2 SPARQL 1.1 SELECT Expressions
	7.15.3 Syntax Involving Bnodes (Blank Nodes)
	7.15.4 Limit in the SERVICE Clause

	7.16 Example Queries Using RDF Graph Support for Apache Jena
	7.16.1 Query Family Relationships
	7.16.2 Load OWL Ontology and Perform OWLPrime Inference
	7.16.3 Bulk Load OWL Ontology and Perform OWLPrime Inference
	7.16.4 SPARQL OPTIONAL Query
	7.16.5 SPARQL Query with LIMIT and OFFSET
	7.16.6 SPARQL Query with TIMEOUT and DOP
	7.16.7 Query Involving Named Graphs
	7.16.8 SPARQL ASK Query
	7.16.9 SPARQL DESCRIBE Query
	7.16.10 SPARQL CONSTRUCT Query
	7.16.11 Query Multiple Models and Specify "Allow Duplicates"
	7.16.12 SPARQL Update
	7.16.13 SPARQL Query with ARQ Built-In Functions
	7.16.14 SELECT Cast Query
	7.16.15 Instantiate Oracle AI Database Using OracleConnection
	7.16.16 Oracle AI Database Connection Pooling

	7.17 SPARQL Gateway and RDF Data
	7.17.1 SPARQL Gateway Features and Benefits Overview
	7.17.2 Installing and Configuring SPARQL Gateway
	7.17.2.1 Download the RDF Graph Support for Apache Jena .zip File (if Not Already Done)
	7.17.2.2 Deploy SPARQL Gateway in WebLogic Server
	7.17.2.3 Modify Proxy Settings, if Necessary
	7.17.2.4 Configure the OracleSGDS Data Source, if Necessary
	7.17.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired

	7.17.3 Using SPARQL Gateway with RDF Data
	7.17.3.1 Storing SPARQL Queries and XSL Transformations
	7.17.3.2 Specifying a Timeout Value
	7.17.3.3 Specifying Best Effort Query Execution
	7.17.3.4 Specifying a Content Type Other Than text/xml

	7.17.4 Customizing the Default XSLT File
	7.17.5 Using the SPARQL Gateway Java API
	7.17.6 Using the SPARQL Gateway Graphical Web Interface
	7.17.6.1 Main Page (index.html)
	7.17.6.2 Navigation and Browsing Page (browse.jsp)
	7.17.6.3 XSLT Management Page (xslt.jsp)
	7.17.6.4 SPARQL Management Page (sparql.jsp)

	7.17.7 Using SPARQL Gateway as an XML Data Source to OBIEE

	7.18 Deploying Fuseki in Apache Tomcat
	7.19 ORARDFLDR Utility for Bulk Loading RDF Data
	7.19.1 Using ORARDFLDR with Oracle Autonomous AI Database

	8 RDF Graph Support for Eclipse RDF4J
	8.1 Oracle RDF Graph Support for Eclipse RDF4J Overview
	8.2 Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J
	8.3 Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J
	8.3.1 Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java
	8.3.2 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J Server and Workbench
	8.3.2.1 Using the Adapter for Eclipse RFD4J Through RDF4J Workbench

	8.3.3 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As SPARQL Service
	8.3.3.1 Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench

	8.4 Using Oracle RDF Graph Adapter for Eclipse RDF4J with Oracle Autonomous AI Database
	8.5 Database Connection Management
	8.6 SPARQL Query Execution Model
	8.6.1 Using BIND Values
	8.6.2 Using JDBC BIND Values
	8.6.2.1 Limitations for JDBC Bind Value Support

	8.6.3 Additions to the SPARQL Query Syntax to Support Other Features
	8.6.3.1 Query Execution Options
	8.6.3.2 SPARQL_TO_SQL (SEM_MATCH) Options

	8.6.4 Special Considerations for SPARQL Query Support

	8.7 SPARQL Update Execution Model
	8.7.1 Transaction Management for SPARQL Update
	8.7.2 Additions to the SPARQL Syntax to Support Other Features
	8.7.2.1 UPDATE_RDF_GRAPH Options
	8.7.2.2 UPDATE_RDF_GRAPH Match Options

	8.7.3 Special Considerations for SPARQL Update Support

	8.8 Efficiently Loading RDF Data
	8.9 Validating RDF Data with SHACL Constraints
	8.9.1 SHACL Features Supported by Oracle Adapter for Eclipse RDF4J
	8.9.2 Restrictions on the use of RDF4J SHACL Features

	8.10 ORARDFLDR Utility for Bulk Loading RDF Data
	8.11 Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J
	8.12 Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J
	8.13 Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J
	8.14 Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J
	8.14.1 Example 1: Basic Operations
	8.14.2 Example 2: Add a Data File in TRIG Format
	8.14.3 Example 3: Simple Query
	8.14.4 Example 4: Simple Bulk Load
	8.14.5 Example 5: Bulk Load RDF/XML
	8.14.6 Example 6: SPARQL Ask Query
	8.14.7 Example 7: SPARQL CONSTRUCT Query
	8.14.8 Example 8: Named Graph Query
	8.14.9 Example 9: Get COUNT of Matches
	8.14.10 Example 10: Specify Bind Variable for Constant in Query Pattern
	8.14.11 Example 11: SPARQL Update
	8.14.12 Example 12: Oracle Hint
	8.14.13 Example 13: Using JDBC Bind Values
	8.14.14 Example 14: Simple Inference
	8.14.15 Example 15: Simple Graph Collection
	8.14.16 Example 16: Graph Validation with SHACL

	9 User-Defined Inferencing and Querying
	9.1 User-Defined Inferencing
	9.1.1 Problem Solved and Benefit Provided by User-Defined Inferencing
	9.1.2 API Support for User-Defined Inferencing
	9.1.2.1 User-Defined Inference Function Requirements

	9.1.3 User-Defined Inference Extension Function Examples
	9.1.3.1 Example 1: Adding Static Triples
	9.1.3.2 Example 2: Adding Dynamic Triples
	9.1.3.3 Example 3: Optimizing Performance
	9.1.3.4 Example 4: Temporal Reasoning (Several Related Examples)
	9.1.3.4.1 Example 4a: Duration Rule
	9.1.3.4.2 Example 4b: Overlap Rule
	9.1.3.4.3 Example 4c: Duration and Overlap Rules

	9.1.3.5 Example 5: Spatial Reasoning
	9.1.3.6 Example 6: Calling a Web Service

	9.2 User-Defined Functions and Aggregates
	9.2.1 Data Types for User-Defined Functions and Aggregates
	9.2.2 API Support for User-Defined Functions
	9.2.2.1 PL/SQL Function Implementation
	9.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern
	9.2.2.3 User-Defined Function Examples

	9.2.3 API Support for User-Defined Aggregates
	9.2.3.1 ODCIAggregate Interface
	9.2.3.2 Invoking User-Defined Aggregates
	9.2.3.3 User-Defined Aggregate Examples

	9.3 SPARQL Rule-Based Inference
	9.3.1 Storing SPARQL Rules
	9.3.2 Setting Up Sample Data to Create a SPARQL Inferred Graph
	9.3.3 Example Workflow to Create and Query a SPARQL Inferred Graph

	10 RDF Views: Relational Data as RDF
	10.1 Why Use RDF Views on Relational Data?
	10.2 API Support for RDF Views
	10.2.1 Creating an RDF View Graph with Direct Mapping
	10.2.2 Creating an RDF View Graph with R2RML Mapping
	10.2.3 Dropping an RDF View Graph
	10.2.4 Exporting Virtual Content of an RDF View Graph into a Staging Table

	10.3 Example: Using an RDF View Graph with Direct Mapping
	10.4 Combining Native RDF Data with Virtual RDB2RDF Data
	10.4.1 Nested Loop Pushdown with Overloaded Service

	11 Creating Property Graphs from RDF Graphs

	Part II RDF Graph Server and Query UI
	12 Introduction to RDF Graph Server and Query UI
	13 RDF Graph Server and Query UI Concepts
	13.1 Data Sources
	13.1.1 Oracle Data Sources
	13.1.2 Endpoint URL Data Sources

	13.2 RDF Datasets
	13.3 REST Services

	14 Oracle RDF Graph Query UI
	14.1 Installing RDF Graph Query UI
	14.2 Managing User Roles for RDF Graph Query UI
	14.2.1 Managing Groups and Users in WebLogic Server
	14.2.1.1 Creating User Groups in WebLogic Server
	14.2.1.2 Creating RDF and Guest Users in WebLogic Server

	14.2.2 Managing Users and Roles in Tomcat Server

	14.3 Getting Started with RDF Graph Query UI
	14.3.1 Data Sources Page
	14.3.1.1 Creating a JDBC URL Data Source
	14.3.1.2 Creating an Oracle Container Data Source
	14.3.1.2.1 Creating a JDBC Data Source in WebLogic Server
	14.3.1.2.2 Creating a JDBC Data Source in Tomcat

	14.3.1.3 Creating an Oracle Wallet Data Source
	14.3.1.3.1 Storing User Credentials in a Wallet

	14.3.1.4 Creating an Endpoint URL Data Source

	14.3.2 RDF Data Page
	14.3.2.1 Data Source Selection
	14.3.2.2 RDF Network Actions
	14.3.2.3 Importing Data
	14.3.2.4 SPARQL Query Cache Manager
	14.3.2.5 RDF Objects Navigator
	14.3.2.6 Data Source Published Datasets Navigator
	14.3.2.7 Performing SPARQL Query and SPARQL Update Operations
	14.3.2.8 Publishing Oracle RDF Models
	14.3.2.9 Published Dataset Playground
	14.3.2.10 Support for Result Tables
	14.3.2.10.1 Creating Result Tables
	14.3.2.10.2 Managing Result Tables
	14.3.2.10.2.1 Creating an Index on a Result Table

	14.3.2.11 Advanced Graph View
	14.3.2.11.1 Query Selector Panel
	14.3.2.11.2 Graphviz

	14.3.2.12 RDF Views from Relational Data
	14.3.2.12.1 Getting Started with the RDF View Wizard

	14.3.2.13 Database Views from RDF Models
	14.3.2.13.1 Creating a Graph View
	14.3.2.13.2 Creating a Vertex View
	14.3.2.13.3 Creating an Edge View

	14.3.3 Configuration Files for RDF Server and Client
	14.3.3.1 Data Sources JSON Configuration File
	14.3.3.2 General JSON configuration file
	14.3.3.3 Proxy JSON Configuration File
	14.3.3.4 Logging JSON Configuration File

	14.4 Accessibility

	Part III Reference Information
	15 SEM_APIS Package Subprograms
	15.1 SEM_APIS.ADD_DATATYPE_INDEX
	15.2 SEM_APIS.ADD_NETWORK_INDEX
	15.3 SEM_APIS.ADD_SEM_INDEX
	15.4 SEM_APIS.ALTER_DATATYPE_INDEX
	15.5 SEM_APIS.ALTER_ENTAILMENT
	15.6 SEM_APIS.ALTER_INDEX_ON_INFERRED_GRAPH
	15.7 SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH
	15.8 SEM_APIS.ALTER_INFERRED_GRAPH
	15.9 SEM_APIS.ALTER_MODEL
	15.10 SEM_APIS.ALTER_RDF_GRAPH
	15.11 SEM_APIS.ALTER_RDF_INDEXES
	15.12 SEM_APIS.ALTER_RESULT_TAB
	15.13 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT
	15.14 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL
	15.15 SEM_APIS.ALTER_SEM_INDEXES
	15.16 SEM_APIS.ALTER_SPM_TAB
	15.17 SEM_APIS.ANALYZE_ENTAILMENT
	15.18 SEM_APIS.ANALYZE_INFERRED_GRAPH
	15.19 SEM_APIS.ANALYZE_MODEL
	15.20 SEM_APIS.ANALYZE_RDF_GRAPH
	15.21 SEM_APIS.APPEND_RDF_NETWORK_DATA
	15.22 SEM_APIS.APPEND_SEM_NETWORK_DATA
	15.23 SEM_APIS.BUILD_RESULT_TAB
	15.24 SEM_APIS.BUILD_SPM_TAB
	15.25 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
	15.26 SEM_APIS.BULK_LOAD_RDF_GRAPH
	15.27 SEM_APIS.CLEANUP_BNODES
	15.28 SEM_APIS.CLEANUP_FAILED
	15.29 SEM_APIS.COMPOSE_RDF_TERM
	15.30 SEM_APIS.CONVERT_TO_GML311_LITERAL
	15.31 SEM_APIS.CONVERT_TO_WKT_LITERAL
	15.32 SEM_APIS.CREATE_ENTAILMENT
	15.33 SEM_APIS.CREATE_INDEX_ON_RESULT_TAB
	15.34 SEM_APIS.CREATE_INDEX_ON_SPM_TAB
	15.35 SEM_APIS.CREATE_INFERRED_GRAPH
	15.36 SEM_APIS.CREATE_MATERIALIZED_VIEW
	15.37 SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX
	15.38 SEM_APIS.CREATE_RDF_GRAPH
	15.39 SEM_APIS.CREATE_RDF_GRAPH_COLLECTION
	15.40 SEM_APIS.CREATE_RDF_NETWORK
	15.41 SEM_APIS.CREATE_RDFVIEW_GRAPH
	15.42 SEM_APIS.CREATE_RDFVIEW_MODEL
	15.43 SEM_APIS.CREATE_RULEBASE
	15.44 SEM_APIS.CREATE_SEM_MODEL
	15.45 SEM_APIS.CREATE_SEM_NETWORK
	15.46 SEM_APIS.CREATE_SEM_SQL
	15.47 SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE
	15.48 SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH
	15.49 SEM_APIS.CREATE_SPARQL_UPDATE_TABLES
	15.50 SEM_APIS.CREATE_VIRTUAL_MODEL
	15.51 SEM_APIS.DELETE_ENTAILMENT_STATS
	15.52 SEM_APIS.DELETE_MODEL_STATS
	15.53 SEM_APIS.DISABLE_CHANGE_TRACKING
	15.54 SEM_APIS.DISABLE_INC_INFERENCE
	15.55 SEM_APIS.DISABLE_INMEMORY
	15.56 SEM_APIS.DISABLE_INMEMORY_FOR_ENT
	15.57 SEM_APIS.DISABLE_INMEMORY_FOR_MODEL
	15.58 SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH
	15.59 SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH
	15.60 SEM_APIS.DISABLE_NETWORK_SHARING
	15.61 SEM_APIS.DROP_DATATYPE_INDEX
	15.62 SEM_APIS.DROP_ENTAILMENT
	15.63 SEM_APIS.DROP_INFERRED_GRAPH
	15.64 SEM_APIS.DROP_MATERIALIZED_VIEW
	15.65 SEM_APIS.DROP_MV_BITMAP_INDEX
	15.66 SEM_APIS.DROP_NETWORK_INDEX
	15.67 SEM_APIS.DROP_RDF_GRAPH
	15.68 SEM_APIS.DROP_RDF_GRAPH_COLLECTION
	15.69 SEM_APIS.DROP_RDF_NETWORK
	15.70 SEM_APIS.DROP_RDFVIEW_GRAPH
	15.71 SEM_APIS.DROP_RDFVIEW_MODEL
	15.72 SEM_APIS.DROP_RESULT_TAB
	15.73 SEM_APIS.DROP_RULEBASE
	15.74 SEM_APIS.DROP_SEM_INDEX
	15.75 SEM_APIS.DROP_SEM_MODEL
	15.76 SEM_APIS.DROP_SEM_NETWORK
	15.77 SEM_APIS.DROP_SEM_SQL
	15.78 SEM_APIS.DROP_SPARQL_UPDATE_TABLES
	15.79 SEM_APIS.DROP_SPM_TAB
	15.80 SEM_APIS.DROP_USER_INFERENCE_OBJS
	15.81 SEM_APIS.DROP_VIRTUAL_MODEL
	15.82 SEM_APIS.ENABLE_CHANGE_TRACKING
	15.83 SEM_APIS.ENABLE_INC_INFERENCE
	15.84 SEM_APIS.ENABLE_INMEMORY
	15.85 SEM_APIS.ENABLE_INMEMORY_FOR_ENT
	15.86 SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH
	15.87 SEM_APIS.ENABLE_INMEMORY_FOR_MODEL
	15.88 SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH
	15.89 SEM_APIS.ENABLE_NETWORK_SHARING
	15.90 SEM_APIS.ESCAPE_CLOB_TERM
	15.91 SEM_APIS.ESCAPE_CLOB_VALUE
	15.92 SEM_APIS.ESCAPE_RDF_TERM
	15.93 SEM_APIS.ESCAPE_RDF_VALUE
	15.94 SEM_APIS.EXPORT_ENTAILMENT_STATS
	15.95 SEM_APIS.EXPORT_MODEL_STATS
	15.96 SEM_APIS.EXPORT_RDFVIEW_GRAPH
	15.97 SEM_APIS.EXPORT_RDFVIEW_MODEL
	15.98 SEM_APIS.GATHER_SPM_INFO
	15.99 SEM_APIS.GET_CHANGE_TRACKING_INFO
	15.100 SEM_APIS.GET_INC_INF_INFO
	15.101 SEM_APIS.GET_MODEL_ID
	15.102 SEM_APIS.GET_MODEL_NAME
	15.103 SEM_APIS.GET_PLAN_COST
	15.104 SEM_APIS.GET_SQL
	15.105 SEM_APIS.GET_TRIPLE_ID
	15.106 SEM_APIS.GETV⁠$DATETIMETZVAL
	15.107 SEM_APIS.GETV⁠$DATETZVAL
	15.108 SEM_APIS.GETV⁠$GEOMETRYVAL
	15.109 SEM_APIS.GETV⁠$NUMERICVAL
	15.110 SEM_APIS.GETV⁠$STRINGVAL
	15.111 SEM_APIS.GETV⁠$TIMETZVAL
	15.112 SEM_APIS.GRANT_MODEL_ACCESS_PRIV
	15.113 SEM_APIS.GRANT_MODEL_ACCESS_PRIVS
	15.114 SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS
	15.115 SEM_APIS.GRANT_NETWORK_SHARING_PRIVS
	15.116 SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV
	15.117 SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS
	15.118 SEM_APIS.IMPORT_ENTAILMENT_STATS
	15.119 SEM_APIS.IMPORT_MODEL_STATS
	15.120 SEM_APIS.IS_TRIPLE
	15.121 SEM_APIS.LOAD_INTO_STAGING_TABLE
	15.122 SEM_APIS.LOOKUP_ENTAILMENT
	15.123 SEM_APIS.MERGE_MODELS
	15.124 SEM_APIS.MERGE_RDF_GRAPHS
	15.125 SEM_APIS.MIGRATE_DATA_TO_CURRENT
	15.126 SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2
	15.127 SEM_APIS.MOVE_RDF_NETWORK_DATA
	15.128 SEM_APIS.MOVE_SEM_NETWORK_DATA
	15.129 SEM_APIS.PURGE_UNUSED_VALUES
	15.130 SEM_APIS.REFRESH_MATERIALIZED_VIEW
	15.131 SEM_APIS.REFRESH_NETWORK_INDEX_INFO
	15.132 SEM_APIS.REFRESH_QUERY_STATE
	15.133 SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO
	15.134 SEM_APIS.RENAME_ENTAILMENT
	15.135 SEM_APIS.RENAME_INFERRED_GRAPH
	15.136 SEM_APIS.RENAME_MODEL
	15.137 SEM_APIS.RENAME_RDF_GRAPH
	15.138 SEM_APIS.RES2VID
	15.139 SEM_APIS.RESTORE_RDF_NETWORK_DATA
	15.140 SEM_APIS.RESTORE_SEM_NETWORK_DATA
	15.141 SEM_APIS.REVOKE_MODEL_ACCESS_PRIV
	15.142 SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS
	15.143 SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS
	15.144 SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS
	15.145 SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV
	15.146 SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS
	15.147 SEM_APIS.SEM_SQL_COMPILE
	15.148 SEM_APIS.SET_ENTAILMENT_STATS
	15.149 SEM_APIS.SET_MODEL_STATS
	15.150 SEM_APIS.SPARQL_TO_SQL
	15.151 SEM_APIS.SWAP_NAMES
	15.152 SEM_APIS.TRUNCATE_SEM_MODEL
	15.153 SEM_APIS.TRUNCATE_RDF_GRAPH
	15.154 SEM_APIS.UNESCAPE_CLOB_TERM
	15.155 SEM_APIS.UNESCAPE_CLOB_VALUE
	15.156 SEM_APIS.UNESCAPE_RDF_TERM
	15.157 SEM_APIS.UNESCAPE_RDF_VALUE
	15.158 SEM_APIS.UPDATE_MODEL
	15.159 SEM_APIS.UPDATE_RDF_GRAPH
	15.160 SEM_APIS.VALIDATE_ENTAILMENT
	15.161 SEM_APIS.VALIDATE_GEOMETRIES
	15.162 SEM_APIS.VALIDATE_INFERRED_GRAPH
	15.163 SEM_APIS.VALIDATE_MODEL
	15.164 SEM_APIS.VALIDATE_RDF_GRAPH
	15.165 SEM_APIS.VALUE_NAME_PREFIX
	15.166 SEM_APIS.VALUE_NAME_SUFFIX

	16 SEM_PERF Package Subprograms
	16.1 SEM_PERF.ANALYZE_AUX_TABLES
	16.2 SEM_PERF.DELETE_NETWORK_STATS
	16.3 SEM_PERF.DROP_EXTENDED_STATS
	16.4 SEM_PERF.EXPORT_NETWORK_STATS
	16.5 SEM_PERF.GATHER_STATS
	16.6 SEM_PERF.IMPORT_NETWORK_STATS

	17 SEM_RDFCTX Package Subprograms
	17.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY
	17.2 SEM_RDFCTX.CREATE_POLICY
	17.3 SEM_RDFCTX.DROP_POLICY
	17.4 SEM_RDFCTX.MAINTAIN_TRIPLES
	17.5 SEM_RDFCTX.SET_DEFAULT_POLICY
	17.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM

	18 SEM_RDFSA Package Subprograms
	18.1 SEM_RDFSA.APPLY_OLS_POLICY
	18.2 SEM_RDFSA.DISABLE_OLS_POLICY
	18.3 SEM_RDFSA.ENABLE_OLS_POLICY
	18.4 SEM_RDFSA.REMOVE_OLS_POLICY
	18.5 SEM_RDFSA.RESET_MODEL_LABELS
	18.6 SEM_RDFSA.SET_PREDICATE_LABEL
	18.7 SEM_RDFSA.SET_RDFS_LABEL
	18.8 SEM_RDFSA.SET_RESOURCE_LABEL
	18.9 SEM_RDFSA.SET_RULE_LABEL

	Part IV Appendixes
	A Enabling, Downgrading, or Removing RDF Graph Support
	A.3 Removing RDF Graph Support
	A.1 Enabling RDF Graph Support
	A.1.1 Enabling RDF Semantic Graph Support in a New Database Installation
	A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1
	A.1.2.1 Required Data Migration After Upgrade
	A.1.2.2 Handling of Empty RDF Literals

	A.1.3 Workspace Manager and Virtual Private Database Desupport

	A.2 Downgrading RDF Graph Support to a Previous Release
	A.2.1 Downgrading to Release 12.1 Semantic Graph Support

	B SEM_MATCH Support for Spatial Queries
	B.1 GeoSPARQL Functions for Spatial Support
	B.1.1 ogcf:aggBoundingBox
	B.1.2 ogcf:aggBoundingCircle
	B.1.3 ogcf:aggCentroid
	B.1.4 ogcf:aggConcaveHull
	B.1.5 ogcf:aggConvexHull
	B.1.6 ogcf:aggUnion
	B.1.7 ogcf:Area
	B.1.8 ogcf:asGeoJSON
	B.1.9 ogcf:asGML
	B.1.10 ogcf:asKML
	B.1.11 ogcf:asWKT
	B.1.12 ogcf:boundary
	B.1.13 ogcf:boundingCircle
	B.1.14 ogcf:buffer
	B.1.15 ogcf:concaveHull
	B.1.16 ogcf:convexHull
	B.1.17 ogcf:coordinateDimension
	B.1.18 ogcf:difference
	B.1.19 ogcf:dimension
	B.1.20 ogcf:distance
	B.1.21 ogcf:envelope
	B.1.22 ogcf:geometryN
	B.1.23 ogcf:geometryType
	B.1.24 ogcf:getSRID
	B.1.25 ogcf:intersection
	B.1.26 ogcf:is3D
	B.1.27 ogcf:isEmpty
	B.1.28 ogcf:isMeasured
	B.1.29 ogcf:isSimple
	B.1.30 ogcf:length
	B.1.31 ogcf:maxX
	B.1.32 ogcf:maxY
	B.1.33 ogcf:maxZ
	B.1.34 ogcf:metricArea
	B.1.35 ogcf:metricBuffer
	B.1.36 ogcf:metricLength
	B.1.37 ogcf:metricPerimeter
	B.1.38 ogcf:minX
	B.1.39 ogcf:minY
	B.1.40 ogcf:minZ
	B.1.41 ogcf:numGeometries
	B.1.42 ogcf:perimeter
	B.1.43 ogcf:relate
	B.1.44 ogcf:sfContains
	B.1.45 ogcf:sfCrosses
	B.1.46 ogcf:sfDisjoint
	B.1.47 ogcf:sfEquals
	B.1.48 ogcf:sfIntersects
	B.1.49 ogcf:sfOverlaps
	B.1.50 ogcf:sfTouches
	B.1.51 ogcf:sfWithin
	B.1.52 ogcf:spatialDimension
	B.1.53 ogcf:symDifference
	B.1.54 ogcf:transform
	B.1.55 ogcf:union

	B.2 Oracle-Specific Functions for Spatial Support
	B.2.1 orageo:aggrCentroid
	B.2.2 orageo:aggrConvexHull
	B.2.3 orageo:aggrMBR
	B.2.4 orageo:aggrUnion
	B.2.5 orageo:area
	B.2.6 orageo:buffer
	B.2.7 orageo:centroid
	B.2.8 orageo:convexHull
	B.2.9 orageo:difference
	B.2.10 orageo:distance
	B.2.11 orageo:getSRID
	B.2.12 orageo:intersection
	B.2.13 orageo:length
	B.2.14 orageo:mbr
	B.2.15 orageo:nearestNeighbor
	B.2.16 orageo:relate
	B.2.17 orageo:sdoDistJoin
	B.2.18 orageo:sdoJoin
	B.2.19 orageo:union
	B.2.20 orageo:withinDistance
	B.2.21 orageo:xor

	C RDF Support in SQL Developer
	C.1 About RDF Support in SQL Developer
	C.2 Setting Up the RDF Semantic Graph Support In SQL Developer
	C.3 Working with RDF Semantic Networks Using SQL Developer
	C.3.1 Creating an RDF Semantic Network Using SQL Developer
	C.3.1.1 Creating Tablespaces for Semantic Networks Using SQL Developer

	C.3.2 Refreshing Semantic Network Indexes Using SQL Developer
	C.3.3 Gathering RDF Statistics Using SQL Developer
	C.3.4 Purging Unused Values from a Network Using SQL Developer
	C.3.5 Dropping a Semantic Network Using SQL Developer

	C.4 Bulk Loading RDF Data Using SQL Developer

	D MDSYS-Owned Semantic Network
	D.1 Creating an MDSYS-owned Semantic Network
	D.2 Getting Started with Semantic Data in an MDSYS-Owned Network
	D.3 Example Queries Using Graph Support for Apache Jena
	D.3.1 Test.java: Query Family Relationships
	D.3.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference
	D.3.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference
	D.3.4 Test8.java: SPARQL OPTIONAL Query
	D.3.5 Test9.java: SPARQL Query with LIMIT and OFFSET
	D.3.6 Test10.java: SPARQL Query with TIMEOUT and DOP
	D.3.7 Test11.java: Query Involving Named Graphs
	D.3.8 Test12.java: SPARQL ASK Query
	D.3.9 Test13.java: SPARQL DESCRIBE Query
	D.3.10 Test14.java: SPARQL CONSTRUCT Query
	D.3.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates"
	D.3.12 Test16.java: SPARQL Update
	D.3.13 Test17.java: SPARQL Query with ARQ Built-In Functions
	D.3.14 Test18.java: SELECT Cast Query
	D.3.15 Test19.java: Instantiate Oracle Database Using OracleConnection
	D.3.16 Test20.java: Oracle Database Connection Pooling

	D.4 Example Queries Using Graph Adapter for Eclipse RDF4J
	D.5 Reference Information (MDSYS_Owned Semantic Network Only)
	D.5.1 SEM_OLS Package Subprograms
	D.5.1.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB
	D.5.1.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

	D.5.2 SEM_APIS.PRIVILEGE_ON_APP_TABLES
	D.5.3 SEM_APIS.REMOVE_DUPLICATES

	D.6 Migrating an MDSYS-Owned Network to a Schema-Private Network

	E Changes in Terminology and Subprograms

	Glossary
	apply pattern
	basic graph pattern (BGP)
	clique
	Cytoscape
	entailment
	extractor policy
	graph pattern
	inferencing
	information extractor
	match pattern
	model
	ontology
	OWLPrime
	RDF Semantic Graph support for Apache Jena
	reasoning
	rule
	rulebase
	rules index
	semantic index
	Simple Knowledge Organization System (SKOS)
	triple pattern

	Index

