Oracle® Al Database
Graph Developer's Guide for RDF Graph

ORACLE"

Oracle Al Database Graph Developer's Guide for RDF Graph, 26ai
G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Contributors: Lavanya Jayapalan

Contributors: Melliyal Annamalai , Maitreyee Chaliha, Chuck Murray, Eugene Inseok Chong, Souripriya Das, Matthew
Perry, Siva Ravada, Joao Paiva, Jags Srinivasan, Seema Sundara, Zhe (Alan) Wu, Aravind Yalamanchi

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience

Related Documents

Conventions

Changes in This Release for This Guide

Changes in Oracle Al Database Release 26ai

How to Use This Book

Part |

Conceptual and Usage Information

1 RDF Graph Overview

1.1
1.2
1.3
1.4

Introduction to Oracle Semantic Technologies Support

Key Terms and Concepts for Working with RDF Graphs
RDF Data Modeling
RDF Data in the Database

1.4.1 RDF Networks

1411
1.4.1.2
1.4.13
1414
1.4.15
1.4.1.6
1.4.1.7

Schema-Private RDF Networks

Types of RDF Network Users

Naming Conventions for RDF Network Objects
RDF_PARAMETER Table in RDF Networks

Migrating from MDSYS to Schema-Private RDF Networks
Sharing Schema-Private RDF Networks

Migrating from Escaped to Unescaped Storage Form

1.4.2 RDF Graphs
1.4.3 Statements

1431

Triple Uniqueness and Data Types for Literals

1.4.4 Subjects and Objects
1.4.5 Blank Nodes

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

© © © © 0 o o1 o b~ W

e i e el i e
0 N O U W w o

October 13, 2025
Page i of xxi

1.4.6 Properties 18

1.4.7 Inferencing: Rules and Rulebases 18
1.4.8 Inferred Graphs 21
1.4.9 RDF Graph Collections 22
1.4.10 Named Graphs 26
1.4.10.1 Data Formats Related to Named Graph Support 26
1.4.11 RDF Data Security Considerations 27
1.4.12 RDF Privilege Considerations 28
1.5 RDF Metadata Tables and Views 28
1.6 RDF Data Types, Constructors, and Methods 29
1.6.1 Constructors for Inserting Triples 31
1.7 Using the SEM_MATCH Table Function to Query RDF Data 32
1.7.1 Performing Queries with Incomplete or Invalid Inferred Graphs 39
1.7.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER,
UNION, and GRAPH Keywords 40
1.7.2.1 GRAPH Keyword Support 50
1.7.3 Graph Patterns: Support for SPARQL ASK Syntax 51
1.7.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax 52
1.7.4.1 Typical SPARQL CONSTRUCT Workflow 56
1.7.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax 57
1.7.6 Graph Patterns: Support for SPARQL SELECT Syntax 58
1.7.7 Graph Patterns: Support for SPARQL 1.1 Constructs 62
1.7.7.1 Expressions in the SELECT Clause 63
1.7.7.2 Subqueries 64
1.7.7.3 Grouping and Aggregation 64
1.7.7.4 Negation 67
1.7.7.5 Value Assignment 69
1.7.7.6 Property Paths 71
1.7.8 Graph Patterns: Support for SPARQL 1.1 Federated Query 74
1.7.8.1 Privileges Required to Execute Federated SPARQL Queries 75
1.7.8.2 SPARQL SERVICE Join Push Down 75
1.7.8.3 SPARQL SERVICE SILENT 76
1.7.8.4 Using a Proxy Server with SPARQL SERVICE 76
1.7.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication 77
1.7.9 Inline Query Optimizer Hints 77
1.7.10 Full-Text Search 79
1.7.11 Spatial Support 82
1.7.11.1 OGC GeoSPARQL Support 82
1.7.11.2 Representing Spatial Data in RDF 83
1.7.11.3 Validating Geometries 85
1.7.11.4 Indexing Spatial Data 85
1.7.11.5 Querying Spatial Data 88

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ii of xxi

1.7.11.6 Using Long Literals with GeoSPARQL Queries 89

1.7.12 Flashback Query Support 90
1.7.13 Best Practices for Query Performance 91
1.7.13.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time 91
1.7.13.2 Indexes for FILTER Constructs Involving Typed Literals 92
1.7.13.3 FILTER Constructs Involving Relational Expressions 92
1.7.13.4 Optimizer Statistics and Dynamic Sampling 92
1.7.13.5 Multi-Partition Queries 93
1.7.13.6 Compression on Systems with OLTP Index Compression 93
1.7.13.7 Unbounded Property Path Expressions 93
1.7.13.8 Nested Loop Pushdown for Property Paths 93
1.7.13.9 Grouping and Aggregation 94
1.7.13.10 Use of Bind Variables to Reduce Compilation Time 95
1.7.13.11 Non-Null Expression Hints 97
1.7.13.12 Automatic JOIN Hints 97
1.7.13.13 RDF Network Indexes 98
1.7.13.14 Using RDF with Oracle Al Database In-Memory 98
1.7.13.15 Using Language Tags in FILTER Expressions 99
1.7.13.16 Type Casting for More Efficient FILTER Evaluation 99
1.7.13.17 Spatial Indexing for GeoSPARQL Queries 99
1.7.14 Special Considerations When Using SEM_MATCH 100
1.8 Speeding up Query Execution with Result Tables 101
1.8.1 Types of Result Tables 102
1.8.1.1 Star-Pattern Tables 103
1.8.1.2 Triple-Pattern Tables 105
1.8.1.3 Chain-Pattern Tables 106
1.8.2 Creating and Managing Result Tables 108
1.8.2.1 Including Lexical Values in Result Tables 108
1.8.2.2 Creating and Dropping Secondary Indexes on Result Tables 110
1.8.2.3 Dropping Result Tables 111
1.8.2.4 In-Memory Result Tables 111
1.8.2.5 Metadata for Result Tables 112
1.8.2.6 Utility Subprogram for Computing Per-Subject Cardinality Aggregates for
Individual Properties 113
1.8.2.7 Performing DML Operations on RDF Graphs with Result Tables 133
1.8.2.8 Performing Bulk Load Operations on RDF Graphs with Result Tables 134
1.8.2.9 Gathering Statistics on Result Tables 134
1.8.3 SPARQL Query Options for Result Tables 134
1.8.4 Special Considerations when Using Result Tables 135
1.9 Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data 135
1.9.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL 136
1.9.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared 139

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page iii of xxi

1.10 Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF

Data 140

1.11 Loading and Exporting RDF Data 147
1.11.1 Bulk Loading RDF Data Using a Staging Table 148
1.11.1.1 Loading the Staging Table 149
1.11.1.2 Recording Event Traces During Bulk Loading 150

1.11.2 Loading RDF Data Using INSERT Statements 151
1.11.2.1 Loading Data into Named Graphs Using INSERT Statements 151

1.11.3 Exporting RDF Data 152
1.11.3.1 Retrieving RDF Data from an Application Table 152
1.11.3.2 Retrieving RDF Data from an RDF Graph 153
1.11.3.3 Removing RDF Graph Information from Retrieved Blank Node Identifiers 154

1.11.4 Exporting or Importing an RDF Network Using Oracle Data Pump 155
1.11.5 Moving, Restoring, and Appending an RDF Network 155
1.11.6 Purging Unused Values 158
1.12 Using RDF Network Indexes 158
1.12.1 SEM_NETWORK_INDEX_INFO View 159
1.13 Using Data Type Indexes 160
1.14 Managing Statistics for the RDF Graphs and RDF Network 161
1.14.1 Saving Statistics at the RDF Graph Level 162
1.14.2 Restoring Statistics at the RDF Graph Level 163
1.14.3 Saving Statistics at the Network Level 163
1.14.4 Dropping Extended Statistics at the Network Level 164
1.14.5 Restoring Statistics at the Network Level 164
1.14.6 Setting Statistics at the RDF Graph Level 164
1.14.7 Deleting Statistics at the RDF Graph Level 164
1.15 Support for SPARQL Update Operations on an RDF Graph 165
1.15.1 Tuning the Performance of SPARQL Update Operations 175
1.15.2 Transaction Management with SPARQL Update Operations 176
1.15.2.1 Transaction Isolation Levels 179

1.15.3 Support for Bulk Operations 180
1.15.3.1 Materialization of Intermediate Data (STREAMING=F) 180
1.15.3.2 Using SEM_APIS.BULK_LOAD_RDF_GRAPH 180
1.15.3.3 Using Delete as Insert (DEL_AS _INS=T) 181

1.15.4 Setting UPDATE_RDF_GRAPH Options at the Session Level 181
1.15.5 Load Operations: Special Considerations for SPARQL Update 182
1.15.6 Long Literals: Special Considerations for SPARQL Update 183
1.15.7 Blank Nodes: Special Considerations for SPARQL Update 183
1.16 RDF Support for Oracle Al Database In-Memory 184
1.16.1 Enabling Oracle Al Database In-Memory for RDF 185
1.16.2 Using In-Memory Virtual Columns with RDF 186
1.16.3 Using Invisible Indexes with Oracle Al Database In-Memory 186

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of xxi

1.17 RDF Support for Materialized Join Views 187

1.18 RDF Support in Oracle SQL Developer 188
1.19 Enhanced RDF ORDER BY Query Processing 188
1.20 Applying Oracle Machine Learning Algorithms to RDF Data 189
1.21 RDF Graph Management Examples (PL/SQL and Java) 190

1.21.1 Example: Journal Article Information 190

1.21.2 Example: Family Information 191
1.22 Software Naming Changes Since Release 11.1 196
1.23 For More Information About RDF Graph 196
1.24 Required Migration of Pre-12.2 RDF Data 197
1.25 Oracle RDF Graph Features that Support Accessibility 197

2 Quick Start for Using RDF Data

2.1 Getting Started with RDF Data in a Schema-Private Network 1
2.2 Quick Start for Using RDF Data in Oracle Autonomous Al Database 2
2.2.1 Getting Started with RDF Data in Oracle Autonomous Al Database 2
2.2.2 Deploying RDF Graph Server and Query Ul from Oracle Cloud Marketplace 5
3 OWL Concepts

3.1 Ontologies 1
3.1.1 Example: Disease Ontology 1
3.1.2 Supported OWL Subsets 2

3.2 Using OWL Inferencing 5
3.2.1 Creating a Simple OWL Ontology 6
3.2.2 Performing Native OWL Inferencing 6
3.2.3 Performing OWL and User-Defined Rules Inferencing 6
3.2.4 Generating OWL Inferencing Proofs 8
3.2.5 Validating OWL RDF Graphs and Inferred Graphs 9
3.2.6 Using SEM_APIS.CREATE_INFERRED_GRAPH for RDFS Inference 10
3.2.7 Enhancing Inference Performance 11
3.2.8 Optimizing owl:sameAs Inference 11
3.2.8.1 Querying owl:sameAs Consolidated Inference Graphs 13

3.2.9 Performing Incremental Inference 13
3.2.10 Using Parallel Inference 15
3.2.11 Using Named Graph Based Inferencing (Global and Local) 15
3.2.11.1 Named Graph Based Global Inference (NGGI) 16
3.2.11.2 Named Graph Based Local Inference (NGLI) 16
3.2.11.3 Using NGGI and NGLI Together 18

3.2.12 Performing Selective Inferencing (Advanced Information) 18

3.3 Using Semantic Operators to Query Relational Data 19

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page v of xxi

3.3.1 Using the SEM_RELATED Operator 20
3.3.2 Using the SEM_DISTANCE Ancillary Operator 21
3.3.2.1 Computation of Distance Information 22
3.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE 23

3.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not
the First Parameter 23
3.3.5 Using URIPREFIX When Values Are Not Stored as URIs 24

4 Simple Knowledge Organization System (SKOS) Support
4.1 Supported and Unsupported SKOS Semantics 2
4.1.1 Supported SKOS Semantics 2
4.1.2 Unsupported SKOS Semantics 3
4.2 Performing Inference on SKOS RDF Graphs 3
4.2.1 Validating SKOS RDF Graphs and Inferred Graphs 3
4.2.2 Property Chain Handling 4
5 Semantic Indexing for Documents
5.1 Information Extractors for Semantically Indexing Documents 2
5.2 Extractor Policies 4
5.3 Semantically Indexing Documents 5
5.4 SEM_CONTAINS and Ancillary Operators 6
5.4.1 SEM_CONTAINS_ SELECT Ancillary Operator 7
5.4.2 SEM_CONTAINS_COUNT Ancillary Operator 7
5.5 Searching for Documents Using SPARQL Query Patterns 8
5.6 Bindings for SPARQL Variables in Matching Subgraphs in a Document

(SEM_CONTAINS_SELECT Ancillary Operator) 9
5.7 Improving the Quality of Document Search Operations 10
5.8 Indexing External Documents 10
5.9 Configuring the Calais Extractor type 12
5.10 Working with General Architecture for Text Engineering (GATE) 12
5.11 Creating a New Extractor Type 13
5.12 Creating a Local Semantic Index on a Range-Partitioned Table 15
5.13 Altering a Semantic Index 15
5.13.1 Rebuilding Content for All Existing Policies in a Semantic Index 16
5.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index 16
5.13.3 Rebuilding Content for an Existing Policy from a Semantic Index 16
5.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic Index 16
5.14 Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX 16
5.15 Performing Document-Centric Inference 17
5.16 Metadata Views for Semantic Indexing 17
5.16.1 RDFCTX_POLICIES View 18

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of xxi

5.16.2 RDFCTX_INDEX_POLICIES View 18
5.16.3 RDFCTX_INDEX_EXCEPTIONS View 19
5.17 Default Style Sheet for GATE Extractor Output 19
Fine-Grained Access Control for RDF Data
6.1 Triple-Level Security
6.1.1 Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI)
6.1.2 Extended Example: Applying OLS Triple-Level Security on RDF Data
6.2 Triple-and-Values Security 23
6.2.1 Extended Example: Applying OLS Triple-and-Values Security on RDF Data 24
RDF Graph Support for Apache Jena
7.1 Setting Up the Software Environment 3
7.1.1 If You Used a Previous Version of the Support for Apache Jena 3
7.2 Setting Up the SPARQL Service 4
7.2.1 Client Identifiers 6
7.2.2 Using OLTP Compression for Application Tables and Staging Tables 7
7.2.3 N-Triples Encoding for Non-ASCII Characters 7
7.3 Setting Up the RDF Graph Environment 7
7.4 SEM_MATCH and RDF Graph Support for Apache Jena Queries Compared 8
7.5 Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query
Results 9
7.6 Optimized Handling of SPARQL Queries 13
7.6.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call 13
7.6.2 Optimized Handling of Property Paths 13
7.7 Additions to the SPARQL Syntax to Support Other Features 15
7.7.1 SQL Hints 15
7.7.2 Using Bind Variables in SPARQL Queries 15
7.7.3 Additional WHERE Clause Predicates 17
7.7.4 Additional Query Options 18
7.7.4.1 JOIN Option and Federated Queries 19
7.7.4.2 S2S Option Benefits and Usage Information 20
7.7.5 Midtier Resource Caching 21
7.8 Functions Supported in SPARQL Queries through RDF Graph Support for Apache
Jena 21
7.8.1 Functions in the ARQ Function Library 21
7.8.2 Native Oracle Al Database Functions for Projected Variables 22
7.8.3 User-Defined Functions 23
7.9 SPARQL Update Support 26
7.10 Analytical Functions for RDF Data 27
7.10.1 Generating Contextual Information about a Path in a Graph 33

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of xxi

7.11 Support for Server-Side APls 34

7.11.1 RDF Graph Collections Support 34
7.11.2 Connection Pooling Support 36
7.11.3 RDF Graph PL/SQL Interfaces 37
7.11.4 Inference Options 37
7.11.5 PelletinfGraph Class Support Deprecated 40
7.12 Bulk Loading Using RDF Graph Support for Apache Jena 40
7.12.1 Using prepareBulk in Parallel (Multithreaded) Mode 42
7.12.2 Handling lllegal Syntax During Data Loading 45
7.13 Automatic Variable Renaming 46
7.14 JavaScript Object Notation (JSON) Format Support 46
7.15 Other Recommendations and Guidelines 48
7.15.1 BOUND or IBOUND Instead of EXISTS or NOT EXISTS 49
7.15.2 SPARQL 1.1 SELECT Expressions 49
7.15.3 Syntax Involving Bnodes (Blank Nodes) 49
7.15.4 Limit in the SERVICE Clause 49
7.16 Example Queries Using RDF Graph Support for Apache Jena 50
7.16.1 Query Family Relationships 51
7.16.2 Load OWL Ontology and Perform OWLPrime Inference 52
7.16.3 Bulk Load OWL Ontology and Perform OWLPrime Inference 54
7.16.4 SPARQL OPTIONAL Query 55
7.16.5 SPARQL Query with LIMIT and OFFSET 56
7.16.6 SPARQL Query with TIMEOUT and DOP 58
7.16.7 Query Involving Named Graphs 59
7.16.8 SPARQL ASK Query 61
7.16.9 SPARQL DESCRIBE Query 62
7.16.10 SPARQL CONSTRUCT Query 63
7.16.11 Query Multiple Models and Specify "Allow Duplicates" 64
7.16.12 SPARQL Update 65
7.16.13 SPARQL Query with ARQ Built-In Functions 66
7.16.14 SELECT Cast Query 68
7.16.15 Instantiate Oracle Al Database Using OracleConnection 69
7.16.16 Oracle Al Database Connection Pooling 70
7.17 SPARQL Gateway and RDF Data 71
7.17.1 SPARQL Gateway Features and Benefits Overview 72
7.17.2 Installing and Configuring SPARQL Gateway 72
7.17.2.1 Download the RDF Graph Support for Apache Jena .zip File (if Not
Already Done) 73
7.17.2.2 Deploy SPARQL Gateway in WebLogic Server 73
7.17.2.3 Modify Proxy Settings, if Necessary 73
7.17.2.4 Configure the OracleSGDS Data Source, if Necessary 74
7.17.2.5 Add and Configure the SparglGatewayAdminGroup Group, if Desired 74

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page viii of xxi

7.17.3 Using SPARQL Gateway with RDF Data 74

7.17.3.1 Storing SPARQL Queries and XSL Transformations 75
7.17.3.2 Specifying a Timeout Value 76
7.17.3.3 Specifying Best Effort Query Execution 77
7.17.3.4 Specifying a Content Type Other Than text/xml 77

7.17.4 Customizing the Default XSLT File 78
7.17.5 Using the SPARQL Gateway Java API 78
7.17.6 Using the SPARQL Gateway Graphical Web Interface 81
7.17.6.1 Main Page (index.html) 81
7.17.6.2 Navigation and Browsing Page (browse.jsp) 82
7.17.6.3 XSLT Management Page (xslt.jsp) 84
7.17.6.4 SPARQL Management Page (spargl.jsp) 85

7.17.7 Using SPARQL Gateway as an XML Data Source to OBIEE 86
7.18 Deploying Fuseki in Apache Tomcat 89
7.19 ORARDFLDR Utility for Bulk Loading RDF Data 90
7.19.1 Using ORARDFLDR with Oracle Autonomous Al Database 90

8 RDF Graph Support for Eclipse RDF4J

8.1 Oracle RDF Graph Support for Eclipse RDF4J Overview 2
8.2 Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J 3
8.3 Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J 4
8.3.1 Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java 4

8.3.2 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J
Server and Workbench 6
8.3.2.1 Using the Adapter for Eclipse RFD4J Through RDF4J Workbench 13

8.3.3 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As SPARQL

Service 14
8.3.3.1 Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench 15

8.4 Using Oracle RDF Graph Adapter for Eclipse RDF4J with Oracle Autonomous Al
Database 16
8.5 Database Connection Management 16
8.6 SPARQL Query Execution Model 17
8.6.1 Using BIND Values 18
8.6.2 Using JDBC BIND Values 18
8.6.2.1 Limitations for JDBC Bind Value Support 19
8.6.3 Additions to the SPARQL Query Syntax to Support Other Features 20
8.6.3.1 Query Execution Options 20
8.6.3.2 SPARQL_TO_SQL (SEM_MATCH) Options 20
8.6.4 Special Considerations for SPARQL Query Support 21
8.7 SPARQL Update Execution Model 21
8.7.1 Transaction Management for SPARQL Update 22
8.7.2 Additions to the SPARQL Syntax to Support Other Features 22

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ix of xxi

8.7.2.1 UPDATE_RDF_GRAPH Options 22

8.7.2.2 UPDATE_RDF_GRAPH Match Options 23

8.7.3 Special Considerations for SPARQL Update Support 23

8.8 Efficiently Loading RDF Data 24
8.9 \Validating RDF Data with SHACL Constraints 24
8.9.1 SHACL Features Supported by Oracle Adapter for Eclipse RDF4J 26
8.9.2 Restrictions on the use of RDF4J SHACL Features 28
8.10 ORARDFLDR Utility for Bulk Loading RDF Data 28
8.11 Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J 29
8.12 Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J 30
8.13 Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J 31
8.14 Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J 31
8.14.1 Example 1: Basic Operations 32
8.14.2 Example 2: Add a Data File in TRIG Format 34
8.14.3 Example 3: Simple Query 37
8.14.4 Example 4: Simple Bulk Load 39
8.14.5 Example 5: Bulk Load RDF/XML 41
8.14.6 Example 6: SPARQL Ask Query 43
8.14.7 Example 7: SPARQL CONSTRUCT Query 45
8.14.8 Example 8: Named Graph Query 46
8.14.9 Example 9: Get COUNT of Matches 49
8.14.10 Example 10: Specify Bind Variable for Constant in Query Pattern 51
8.14.11 Example 11: SPARQL Update 54
8.14.12 Example 12: Oracle Hint 58
8.14.13 Example 13: Using JDBC Bind Values 61
8.14.14 Example 14: Simple Inference 63
8.14.15 Example 15: Simple Graph Collection 66
8.14.16 Example 16: Graph Validation with SHACL 70

o User-Defined Inferencing and Querying

9.1 User-Defined Inferencing 1
9.1.1 Problem Solved and Benefit Provided by User-Defined Inferencing 2
9.1.2 API Support for User-Defined Inferencing 2
9.1.2.1 User-Defined Inference Function Requirements 3

9.1.3 User-Defined Inference Extension Function Examples 4
9.1.3.1 Example 1: Adding Static Triples 5

9.1.3.2 Example 2: Adding Dynamic Triples 7

9.1.3.3 Example 3: Optimizing Performance 10

9.1.3.4 Example 4: Temporal Reasoning (Several Related Examples) 12

9.1.3.5 Example 5: Spatial Reasoning 21

9.1.3.6 Example 6: Calling a Web Service 25

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page x of xxi

9.2 User-Defined Functions and Aggregates 28
9.2.1 Data Types for User-Defined Functions and Aggregates 29
9.2.2 API Support for User-Defined Functions 30

9.2.2.1 PL/SQL Function Implementation 30
9.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern 30
9.2.2.3 User-Defined Function Examples 30
9.2.3 API Support for User-Defined Aggregates 32
9.2.3.1 ODCIAggregate Interface 33
9.2.3.2 Invoking User-Defined Aggregates 33
9.2.3.3 User-Defined Aggregate Examples 34

9.3 SPARQL Rule-Based Inference 36
9.3.1 Storing SPARQL Rules 36
9.3.2 Setting Up Sample Data to Create a SPARQL Inferred Graph 37
9.3.3 Example Workflow to Create and Query a SPARQL Inferred Graph 38

10 RDF Views: Relational Data as RDF

10.1 Why Use RDF Views on Relational Data? 1

10.2 API Support for RDF Views 2
10.2.1 Creating an RDF View Graph with Direct Mapping 2
10.2.2 Creating an RDF View Graph with R2RML Mapping 3
10.2.3 Dropping an RDF View Graph 5
10.2.4 Exporting Virtual Content of an RDF View Graph into a Staging Table 6

10.3 Example: Using an RDF View Graph with Direct Mapping 6

10.4 Combining Native RDF Data with Virtual RDB2RDF Data 8
10.4.1 Nested Loop Pushdown with Overloaded Service 10

11 Creating Property Graphs from RDF Graphs

Part |l RDF Graph Server and Query Ul

12 Introduction to RDF Graph Server and Query Ul

13 RDF Graph Server and Query Ul Concepts

13.1 Data Sources
13.1.1 Oracle Data Sources
13.1.2 Endpoint URL Data Sources

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xxi

13.2 RDF Datasets

13.3 REST Services 4
14 Oracle RDF Graph Query Ul

14.1 Installing RDF Graph Query Ul 1
14.2 Managing User Roles for RDF Graph Query Ul 2
14.2.1 Managing Groups and Users in WebLogic Server 2
14.2.1.1 Creating User Groups in WebLogic Server 3
14.2.1.2 Creating RDF and Guest Users in WebLogic Server 4

14.2.2 Managing Users and Roles in Tomcat Server 6
14.3 Getting Started with RDF Graph Query Ul 7
14.3.1 Data Sources Page 7
14.3.1.1 Creating a JDBC URL Data Source 8
14.3.1.2 Creating an Oracle Container Data Source 9
14.3.1.3 Creating an Oracle Wallet Data Source 13
14.3.1.4 Creating an Endpoint URL Data Source 14

14.3.2 RDF Data Page 16
14.3.2.1 Data Source Selection 17
14.3.2.2 RDF Network Actions 18
14.3.2.3 Importing Data 18
14.3.2.4 SPARQL Query Cache Manager 19
14.3.2.5 RDF Objects Navigator 20
14.3.2.6 Data Source Published Datasets Navigator 22
14.3.2.7 Performing SPARQL Query and SPARQL Update Operations 22
14.3.2.8 Publishing Oracle RDF Models 24
14.3.2.9 Published Dataset Playground 27
14.3.2.10 Support for Result Tables 29
14.3.2.11 Advanced Graph View 39
14.3.2.12 RDF Views from Relational Data 46
14.3.2.13 Database Views from RDF Models 54

14.3.3 Configuration Files for RDF Server and Client 59
14.3.3.1 Data Sources JSON Configuration File 60
14.3.3.2 General JSON configuration file 61
14.3.3.3 Proxy JSON Configuration File 62
14.3.3.4 Logging JSON Configuration File 62

14.4 Accessibility 63

Part Ill Reference Information

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xxi

15 SEM_APIS Package Subprograms

15.1 SEM_APIS.ADD_DATATYPE_INDEX 6
15.2 SEM_APIS.ADD_NETWORK_INDEX 7
15.3 SEM_APIS.ADD_SEM_INDEX 8
154 SEM_APIS.ALTER_DATATYPE_INDEX 9
155 SEM_APIS.ALTER_ENTAILMENT 10
15.6 SEM_APIS.ALTER_INDEX_ON_INFERRED_ GRAPH 11
15.7 SEM_APIS.ALTER_INDEX_ON_RDF_GRAPH 12
15.8 SEM_APIS.ALTER_INFERRED GRAPH 13
15.9 SEM_APIS.ALTER_MODEL 14
15.10 SEM_APIS.ALTER_RDF_GRAPH 15
15.11 SEM_APIS.ALTER_RDF_INDEXES 16
15.12 SEM_APIS.ALTER_RESULT_TAB 17
15.13 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT 18
15.14 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL 20
15.15 SEM_APIS.ALTER_SEM_INDEXES 21
15.16 SEM_APIS.ALTER_SPM_TAB 22
15.17 SEM_APIS.ANALYZE_ENTAILMENT 24
15.18 SEM_APIS.ANALYZE_INFERRED_GRAPH 26
15.19 SEM_APIS.ANALYZE_MODEL 28
1520 SEM_APIS.ANALYZE_RDF_GRAPH 30
15.21 SEM_APIS.APPEND_RDF_NETWORK_DATA 31
15.22 SEM_APIS.APPEND_SEM_NETWORK_DATA 32
15.23 SEM_APIS.BUILD_RESULT TAB 33
15.24 SEM_APIS.BUILD_SPM_TAB 36
15.25 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE 38
15.26 SEM_APIS.BULK_LOAD_RDF_GRAPH 40
15.27 SEM_APIS.CLEANUP_BNODES 42
15.28 SEM_APIS.CLEANUP_FAILED 43
15.29 SEM_APIS.COMPOSE_RDF_TERM 44
15.30 SEM_APIS.CONVERT _TO_GML311_LITERAL 46
15.31 SEM_APIS.CONVERT _TO_WKT_LITERAL 47
15.32 SEM_APIS.CREATE_ENTAILMENT 48
15.33 SEM_APIS.CREATE_INDEX_ON_RESULT_TAB 56
15.34 SEM_APIS.CREATE_INDEX_ON_SPM_TAB 58
15.35 SEM_APIS.CREATE_INFERRED_GRAPH 60
15.36 SEM_APIS.CREATE_MATERIALIZED_VIEW 68
15.37 SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX 70
15.38 SEM_APIS.CREATE_RDF_GRAPH 71
15.39 SEM_APIS.CREATE_RDF_GRAPH_COLLECTION 72
1540 SEM_APIS.CREATE_RDF_NETWORK 75

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page xiii of xxi

15.41
15.42
15.43
15.44
15.45
15.46
15.47
15.48
15.49
15.50
15.51
15.52
15.53
15.54
15.55
15.56
15.57
15.58
15.59
15.60
15.61
15.62
15.63
15.64
15.65
15.66
15.67
15.68
15.69
15.70
15.71
15.72
15.73
15.74
15.75
15.76
15.77
15.78
15.79
15.80
15.81
15.82

SEM_APIS.CREATE_RDFVIEW_GRAPH
SEM_APIS.CREATE_RDFVIEW_MODEL
SEM_APIS.CREATE_RULEBASE
SEM_APIS.CREATE_SEM_MODEL
SEM_APIS.CREATE_SEM_NETWORK
SEM_APIS.CREATE_SEM_SQL
SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE
SEM_APIS.CREATE_SPARQL_INFERRED_GRAPH
SEM_APIS.CREATE_SPARQL_UPDATE_TABLES
SEM_APIS.CREATE_VIRTUAL_MODEL
SEM_APIS.DELETE_ENTAILMENT_STATS
SEM_APIS.DELETE_MODEL_STATS
SEM_APIS.DISABLE_CHANGE_TRACKING
SEM_APIS.DISABLE_INC_INFERENCE
SEM_APIS.DISABLE_INMEMORY
SEM_APIS.DISABLE_INMEMORY_FOR_ENT
SEM_APIS.DISABLE_INMEMORY_FOR_MODEL

SEM_APIS.DISABLE_INMEMORY_FOR_INF_GRAPH
SEM_APIS.DISABLE_INMEMORY_FOR_RDF_GRAPH

SEM_APIS.DISABLE_NETWORK_SHARING
SEM_APIS.DROP_DATATYPE_INDEX
SEM_APIS.DROP_ENTAILMENT
SEM_APIS.DROP_INFERRED_GRAPH
SEM_APIS.DROP_MATERIALIZED_VIEW
SEM_APIS.DROP_MV_BITMAP_INDEX
SEM_APIS.DROP_NETWORK_INDEX
SEM_APIS.DROP_RDF_GRAPH
SEM_APIS.DROP_RDF_GRAPH_COLLECTION
SEM_APIS.DROP_RDF_NETWORK
SEM_APIS.DROP_RDFVIEW_GRAPH
SEM_APIS.DROP_RDFVIEW_MODEL
SEM_APIS.DROP_RESULT_TAB
SEM_APIS.DROP_RULEBASE
SEM_APIS.DROP_SEM_INDEX
SEM_APIS.DROP_SEM_MODEL
SEM_APIS.DROP_SEM_NETWORK
SEM_APIS.DROP_SEM_SQL
SEM_APIS.DROP_SPARQL_UPDATE_TABLES
SEM_APIS.DROP_SPM_TAB
SEM_APIS.DROP_USER_INFERENCE_OBJS
SEM_APIS.DROP_VIRTUAL_MODEL
SEM_APIS.ENABLE_CHANGE_TRACKING

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

77
80
84
85
87
89
89
91
92
93
96
97
97
98
99
100
100
101
102
103
103
104
105
106
107
108
108
109
110
111
112
113
114
115
116
117
118
118
119
120
121
122

October 13, 2025
Page xiv of xxi

15.83
15.84
15.85
15.86
15.87
15.88
15.89
15.90
15.91
15.92
15.93
15.94
15.95
15.96
15.97
15.98
15.99
15.100
15.101
15.102
15.103
15.104
15.105
15.106
15.107
15.108
15.109
15.110
15.111
15.112
15.113
15.114
15.115
15.116
15.117
15.118
15.119
15.120
15.121
15.122
15.123
15.124

SEM_APIS.ENABLE_INC_INFERENCE
SEM_APIS.ENABLE_INMEMORY
SEM_APIS.ENABLE_INMEMORY_FOR_ENT
SEM_APIS.ENABLE_INMEMORY_FOR_INF_GRAPH
SEM_APIS.ENABLE_INMEMORY_FOR_MODEL

SEM_APIS.ENABLE_INMEMORY_FOR_RDF_GRAPH

SEM_APIS.ENABLE_NETWORK_SHARING
SEM_APIS.ESCAPE_CLOB_TERM
SEM_APIS.ESCAPE_CLOB_VALUE
SEM_APIS.ESCAPE_RDF_TERM
SEM_APIS.ESCAPE_RDF_VALUE
SEM_APIS.EXPORT_ENTAILMENT_STATS
SEM_APIS.EXPORT_MODEL_STATS
SEM_APIS.EXPORT_RDFVIEW_GRAPH
SEM_APIS.EXPORT_RDFVIEW_MODEL
SEM_APIS.GATHER_SPM_INFO
SEM_APIS.GET_CHANGE_TRACKING_INFO
SEM_APIS.GET_INC_INF_INFO
SEM_APIS.GET_MODEL_ID
SEM_APIS.GET_MODEL_NAME
SEM_APIS.GET_PLAN_COST
SEM_APIS.GET_SQL
SEM_APIS.GET_TRIPLE_ID
SEM_APIS.GETV$DATETIMETZVAL
SEM_APIS.GETV$DATETZVAL
SEM_APIS.GETV$GEOMETRYVAL
SEM_APIS.GETV$NUMERICVAL
SEM_APIS.GETV$STRINGVAL
SEM_APIS.GETVS$TIMETZVAL
SEM_APIS.GRANT_MODEL_ACCESS_PRIV
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS
SEM_APIS.GRANT_NETWORK_SHARING_PRIVS
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIV
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS
SEM_APIS.IMPORT_ENTAILMENT_STATS
SEM_APIS.IMPORT_MODEL_STATS
SEM_APIS.IS_TRIPLE
SEM_APIS.LOAD_INTO_STAGING_TABLE
SEM_APIS.LOOKUP_ENTAILMENT
SEM_APIS.MERGE_MODELS
SEM_APIS.MERGE_RDF_GRAPHS

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

123
123
124
125
126
127
127
128
129
130
131
132
132
133
134
136
137
138
139
140
140
141
142
143
144
145
146
147
148
149
150
152
153
153
155
156
157
158
159
160
161
162

October 13, 2025
Page xv of xxi

15.125
15.126
15.127
15.128
15.129
15.130
15.131
15.132
15.133
15.134
15.135
15.136
15.137
15.138
15.139
15.140
15.141
15.142
15.143
15.144
15.145
15.146
15.147
15.148
15.149
15.150
15.151
15.152
15.153
15.154
15.155
15.156
15.157
15.158
15.159
15.160
15.161
15.162
15.163
15.164
15.165

SEM_APIS.MIGRATE_DATA_TO_CURRENT
SEM_APIS.MIGRATE_DATA_TO_STORAGE_V?2
SEM_APIS.MOVE_RDF_NETWORK_DATA
SEM_APIS.MOVE_SEM_NETWORK_DATA
SEM_APIS.PURGE_UNUSED_VALUES
SEM_APIS.REFRESH_MATERIALIZED_VIEW
SEM_APIS.REFRESH_NETWORK_INDEX_INFO
SEM_APIS.REFRESH_QUERY_STATE
SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO
SEM_APIS.RENAME_ENTAILMENT
SEM_APIS.RENAME_INFERRED_GRAPH
SEM_APIS.RENAME_MODEL
SEM_APIS.RENAME_RDF_GRAPH
SEM_APIS.RES2VID
SEM_APIS.RESTORE_RDF_NETWORK_DATA
SEM_APIS.RESTORE_SEM_NETWORK_DATA
SEM_APIS.REVOKE_MODEL_ACCESS_PRIV
SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS
SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS
SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS
SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV
SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIVS
SEM_APIS.SEM_SQL_COMPILE
SEM_APIS.SET_ENTAILMENT_STATS
SEM_APIS.SET_MODEL_STATS
SEM_APIS.SPARQL_TO_SQL
SEM_APIS.SWAP_NAMES
SEM_APIS.TRUNCATE_SEM_MODEL
SEM_APIS.TRUNCATE_RDF_GRAPH
SEM_APIS.UNESCAPE_CLOB_TERM
SEM_APIS.UNESCAPE_CLOB_VALUE
SEM_APIS.UNESCAPE_RDF_TERM
SEM_APIS.UNESCAPE_RDF_VALUE
SEM_APIS.UPDATE_MODEL
SEM_APIS.UPDATE_RDF_GRAPH
SEM_APIS.VALIDATE_ENTAILMENT
SEM_APIS.VALIDATE_GEOMETRIES
SEM_APIS.VALIDATE_INFERRED_GRAPH
SEM_APIS.VALIDATE_MODEL
SEM_APIS.VALIDATE_RDF_GRAPH
SEM_APIS.VALUE_NAME_PREFIX

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

164
165
166
167
168
169
170
170
171
172
172
173
174
175
176
177
178
180
181
182
183
184
186
186
187
188
189
190
191
192
192
193
194
195
197
199
201
203
204
206
207

October 13, 2025
Page xvi of xxi

15.166 SEM_APIS.VALUE_NAME_SUFFIX 208

16 SEM_PERF Package Subprograms

16.1 SEM_PERF.ANALYZE_AUX_TABLES 1
16.2 SEM_PERF.DELETE_NETWORK_STATS 2
16.3 SEM_PERF.DROP_EXTENDED_STATS 3
16.4 SEM_PERF.EXPORT_NETWORK_STATS 4
16.5 SEM_PERF.GATHER_STATS 5
16.6 SEM_PERFIMPORT_NETWORK_STATS 7
17 SEM_RDFCTX Package Subprograms
17.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY 1
17.2 SEM_RDFCTX.CREATE_POLICY 2
17.3 SEM_RDFCTX.DROP_POLICY 4
17.4 SEM_RDFCTX.MAINTAIN_TRIPLES 4
17.5 SEM_RDFCTX.SET_DEFAULT_POLICY 6
17.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM 7
18 SEM_RDFSA Package Subprograms
18.1 SEM_RDFSA.APPLY_OLS_POLICY 1
18.2 SEM_RDFSA.DISABLE_OLS_POLICY 4
18.3 SEM_RDFSA.ENABLE_OLS_POLICY 5
184 SEM_RDFSA.REMOVE_OLS_POLICY 5
18,5 SEM_RDFSA.RESET_MODEL_LABELS 6
18.6 SEM_RDFSA.SET_PREDICATE_LABEL 7
18.7 SEM_RDFSA.SET_RDFS_LABEL 8
18.8 SEM_RDFSA.SET_RESOURCE_LABEL 10
18.9 SEM_RDFSA.SET_RULE_LABEL 11
Part IV Appendixes
A Enabling, Downgrading, or Removing RDF Graph Support
A.3 Removing RDF Graph Support A-1
A.1 Enabling RDF Graph Support A-2
A.1.1 Enabling RDF Semantic Graph Support in a New Database Installation A-2
A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1 A-2
A.1.2.1 Required Data Migration After Upgrade A-4
A.1.2.2 Handling of Empty RDF Literals A-6

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page xvii of xxi

A.1.3 Workspace Manager and Virtual Private Database Desupport A-6
A.2 Downgrading RDF Graph Support to a Previous Release A-7
A.2.1 Downgrading to Release 12.1 Semantic Graph Support A-7

= SEM_MATCH Support for Spatial Queries

B.1 GeoSPARQL Functions for Spatial Support B-1
B.1.1 ogcf.aggBoundingBox B-3
B.1.2 ogcf:aggBoundingCircle B-4
B.1.3 ogcf:aggCentroid B-4
B.1.4 ogcf.aggConcaveHull B-5
B.1.5 ogcf:aggConvexHull B-6
B.1.6 ogcf:aggUnion B-7
B.1.7 ogcf:Area B-7
B.1.8 ogcf:asGeoJSON B-8
B.1.9 ogcf:asGML B-9
B.1.10 ogcf:asKML B-10
B.1.11 ogcf:asWKT B-11
B.1.12 ogcf:boundary B-12
B.1.13 ogcf:boundingCircle B-13
B.1.14 ogcf:buffer B-13
B.1.15 ogcf:concaveHull B-15
B.1.16 ogcf:.convexHull B-15
B.1.17 ogcf:coordinateDimension B-16
B.1.18 ogcf:.difference B-17
B.1.19 ogcf:dimension B-18
B.1.20 ogcf:distance B-19
B.1.21 ogcf:envelope B-20
B.1.22 ogcf.geometryN B-21
B.1.23 ogcf:geometryType B-22
B.1.24 ogcf:getSRID B-23
B.1.25 ogcf:intersection B-24
B.1.26 ogcf:is3D B-25
B.1.27 ogcfisEmpty B-25
B.1.28 ogcf.isMeasured B-26
B.1.29 ogcf:isSimple B-27
B.1.30 ogcf:length B-28
B.1.31 ogcf:maxX B-29
B.1.32 ogcf:maxyY B-29
B.1.33 ogcf:maxZ B-30
B.1.34 ogcf:metricArea B-31
B.1.35 ogcf:metricBuffer B-32

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page xviii of xxi

B.1.36
B.1.37
B.1.38
B.1.39
B.1.40
B.1.41
B.1.42
B.1.43
B.1.44
B.1.45
B.1.46
B.1.47
B.1.48
B.1.49
B.1.50
B.1.51
B.1.52
B.1.53
B.1.54
B.1.55

B.2 Oracle-Specific Functions for Spatial Support

B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6
B.2.7
B.2.8
B.2.9
B.2.10
B.2.11
B.2.12
B.2.13
B.2.14
B.2.15
B.2.16
B.2.17
B.2.18
B.2.19
B.2.20

ogcf:metricLength
ogcf:metricPerimeter
ogcf:minX

ogcf:minY

ogcf:minZ
ogcf:numGeometries
ogcf:perimeter
ogcf:relate
ogcf:sfContains
ogcf:sfCrosses
ogcf:sfDisjoint
ogcf:sfEquals
ogcf:sflntersects
ogcf:sfOverlaps
ogcf:sfTouches
ogcf:sfWithin
ogcf:spatialDimension
ogcf:symDifference
ogcf:transform
ogcf:union

orageo:aggrCentroid
orageo:aggrConvexHull
orageo:aggrMBR
orageo:aggrUnion
orageo:area
orageo:buffer
orageo:centroid
orageo:convexHull
orageo:difference
orageo:distance
orageo:getSRID
orageo:intersection
orageo:length
orageo:mbr
orageo:nearestNeighbor
orageo:relate
orageo:sdoDistJoin
orageo:sdoJoin
orageo:union
orageo:withinDistance

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

B-33
B-33
B-34
B-35
B-35
B-36
B-37
B-38
B-39
B-40
B-41
B-42
B-43
B-44
B-45
B-47
B-48
B-48
B-49
B-50
B-51
B-52
B-53
B-53
B-54
B-55
B-55
B-56
B-57
B-58
B-59
B-60
B-61
B-62
B-62
B-63
B-64
B-66
B-67
B-68
B-69

October 13, 2025
Page xix of xxi

B.2.21 orageo:xor B-70
C RDF Support in SQL Developer

C.1 About RDF Support in SQL Developer C-1
C.2 Setting Up the RDF Semantic Graph Support In SQL Developer C-1
C.3 Working with RDF Semantic Networks Using SQL Developer C-4
C.3.1 Creating an RDF Semantic Network Using SQL Developer C-4
C.3.1.1 Creating Tablespaces for Semantic Networks Using SQL Developer C-6

C.3.2 Refreshing Semantic Network Indexes Using SQL Developer C-7
C.3.3 Gathering RDF Statistics Using SQL Developer C-8
C.3.4 Purging Unused Values from a Network Using SQL Developer C-8
C.3.5 Dropping a Semantic Network Using SQL Developer C-9
C.4 Bulk Loading RDF Data Using SQL Developer C-9

D MDSYS-Owned Semantic Network

D.1 Creating an MDSYS-owned Semantic Network D-1
D.2 Getting Started with Semantic Data in an MDSY S-Owned Network D-2
D.3 Example Queries Using Graph Support for Apache Jena D-4
D.3.1 Test.java: Query Family Relationships D-5
D.3.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference D-5
D.3.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference D-7
D.3.4 Test8.java: SPARQL OPTIONAL Query D-8
D.3.5 Test9.java: SPARQL Query with LIMIT and OFFSET D-10
D.3.6 Testl0.java: SPARQL Query with TIMEOUT and DOP D-11
D.3.7 Testll.java: Query Involving Named Graphs D-12
D.3.8 Testl2.java: SPARQL ASK Query D-14
D.3.9 Testl3.java: SPARQL DESCRIBE Query D-14
D.3.10 Testl4.java: SPARQL CONSTRUCT Query D-15
D.3.11 Testl5.java: Query Multiple Models and Specify "Allow Duplicates" D-16
D.3.12 Testl6.java: SPARQL Update D-18
D.3.13 Testl7.java: SPARQL Query with ARQ Built-In Functions D-18
D.3.14 Testl8.java: SELECT Cast Query D-19
D.3.15 Testl9.java: Instantiate Oracle Database Using OracleConnection D-20
D.3.16 Test20.java: Oracle Database Connection Pooling D-22
D.4 Example Queries Using Graph Adapter for Eclipse RDF4J D-23
D.5 Reference Information (MDSYS_Owned Semantic Network Only) D-24
D.5.1 SEM_OLS Package Subprograms D-24
D.5.1.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB D-24

D.5.1.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB D-25
D.5.2 SEM_APIS.PRIVILEGE_ON_APP_TABLES D-26

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xx of xxi

D.5.3 SEM_APIS.REMOVE_DUPLICATES D-27
D.6 Migrating an MDSYS-Owned Network to a Schema-Private Network D-29

E Changes in Terminology and Subprograms

Glossary

Index

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page xxi of xxi

List of Figures

1-1
1-2
1-3
2-1
3-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
8-1
8-2
8-3
8-4
8-5
8-6
11-1
12-1
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12

Oracle RDF Capabilities

Inferencing
Family Tree for RDF Example

Running SPARQL Query in RDF Graph Query Ul

Disease Ontology Example

Visual Representation of Analytical Function Output

Graphical Interface Main Page (index.html)
SPARQL Query Main Page Response

Graphical Interface Navigation and Browsing Page (browse.jsp)

Browsing and Navigation Page: Response

Query and Response from Clicking URI Link

XSLT Management Page
SPARQL Management Page

Import Metadata - Select Data Source

Import Metadata - Select Metadata Types

Import Metadata - Select Metadata Objects

Data Source Repository in RDF4J Workbench
RDF4J Workbench Repository

RDF4J Workbench New Repository

Create New Repository in RDF4J Workbench

Summary of New Repository in RDF4J Workbench

List of Repositories

RDF Data Visualization
RDF Graph Server and Query Ul

Oracle Graph Webapps deployment
User Roles for RDF Graph Query

WebLogic Server Administration Console

Creating new user groups in Webl ogic Server

Created User Groups in Weblogic Server

Create new users in WebLogic Server

New RDF and Guest users
RDF User
RDF Guest User

Query Ul Main Page

Data Sources Page
Creating a JDBC URL Data Source

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

=
N E E e o EEEER BER SRR EBRRR N w8 w

October 13, 2025
Page xxii of xxi

14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30
14-31
14-32
14-33
14-34
14-35
14-36
14-37
14-38
14-39
14-40
14-41
14-42
14-43
14-44
14-45
14-46
14-47
14-48
14-49

Create Container Data Source

Generic Data Source
JDBC Data Source and JNDI
Create JDBC Data Source

Validate connection

Create JDBC Data Source
Cloud Wallet

Wallet Data Source from cloud zip

DBpedia Data Source

Apache Jena Fuseki Data Source
RDF Data Page

RDF Network

RDF Network Actions

RDF Import Data Actions

SPARQL Query Cache Manager
Manage SPARQL Query Cache
RDF Objects for Oracle Data Source

RDF Objects from capabilities
Default RDF Object

RDF Navigator - Context Menu

Data Source Published Datasets Navigator

SPARQL Query Page

SQL EXPLAIN PLAN for SPARQL Translation

Map Visualization for GeoSPARQL Data Types in a SPARQL Query
Publish Menu

Publish RDF Model

GET URL Endpoint

Open an RDF Dataset Definition

RDF Dataset Definition
Public Web Page

Opening a Published Dataset on the Public Page

Result Tables

Predicate Info Table

Select the Type of Result Table

Stepl: Name of the Result Table

Step2: Select the Properties

Step3: Reorder and Configure Properties

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

W W (W (W W NININNININ NN INNIN NN INDNDDNN PR R, e
KREEREEEBREEBEERBEBERERREBEEEREEREERRKREREB B

October 13, 2025
Page xxiii of xxi

14-50
14-51
14-52
14-53
14-54
14-55
14-56
14-57
14-58
14-59
14-60
14-61
14-62
14-63
14-64
14-65
14-66
14-67
14-68
14-69
14-70
14-71
14-72
14-73
14-74
14-75
14-76
14-77
14-78
14-79
14-80
14-81
14-82
14-83
14-84
14-85
14-86

Step4: Review the Selections

Configuring Inverse property path

Configuring Multi-Occurrence
Edit Result Table

Deleting a Result table

Viewing Secondary Indexes

Stepl: Defining the Index Name

Step2: Selecting the Properties

Step2: Selecting Accessory Columns

Step3: Reordering Properties

Step3: Reordering All the Columns

Step4: Reviewing the Selections

Advanced Graph View Components

Visualize Menu

Query Selector

Graph Visualization Toolbar

Graph Legend Panel

Managing the Graph Display Size

Layout Selector
Viewing Vertex Properties

Viewing Edge Properties

Expanding a Vertex
Create RDF View Wizard

Create Resource Maps

Viewing Resource Map Details

Create Triple Map: Name

Create Triple Map: Select

Create Triple Map: Define

Create Triple Map: Summary

Viewing Triple Map Details

Downloading R2RML

Create RDF View

Executing SPARQL Queries on an RDF View
Visualizing SPARQL Queries on an RDF View Graph

Create Graph View Option
RDF Classes

Sample Graph Definition

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

SERERBERRIEBEBBEBEEERBERREEBEERREBBEREEBLRKEERE KRR IEIE
o o1 o1 | W W NIN PO O o N o oI B wlw NN PO o N N o oo o o |Id [W

October 13, 2025
Page xxiv of xxi

14-87
14-88
14-89
14-90
14-91
14-92
14-93
14-94
14-95
14-96
14-97
14-98
14-99
14-100
14-101
14-102
c-1
C-2
C-3

Action Menu Options

Graph Visualization for RDF Database Views

Create Views
RDF Database Graph Views

Creating a Vertex View

Vertex View Definitions

Edge Views

Edge View Definition

General SPARQL Parameters

General JDBC Parameters

General File Upload Parameters

Proxy JSON Configuration File

Logging JSON Configuration File

Disabled Accessibility

Enabled Accessibility
Disabled Graph View
RDF Semantic Graph Setup

Apply RDF Semantic Graph Setup

Create Semantic Network

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

REBBBERRBRRIEEREREBREKIE IS
AW W w NN PO O 0NN O o

o
N

X
w

Q
o

October 13, 2025
Page xxv of xxi

List of Tables

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31
1-32
3-1
3-2
3-3
5-1

Mapping Oracle and W3C RDF 1.1 Terms

network_owner and network_name Parameters

SEM_MODELS$ View Columns

SEMM_<rdf graph_name> View Columns

RDF_VALUES$ Table Columns

SEMR_rulebase-name View Columns

SEM_RULEBASE_INFO View Columns

SEM_RULES_INDEX_INFO View Columns

SEM_RULES_INDEX_DATASETS View Columns

SEM_MODEL$ View Column Explanations for RDF graph collections

SEM_VMODEL_INFO View Columns

SEM_VMODEL_DATASETS View Columns

RDF Metadata Tables and Views

Built-in Functions Available for FILTER Clause

Oracle-Specific Query Functions

SEM_MATCH graphs and named_graphs Values, and Resulting Dataset Configurations

Built-in Aggregates

Property Path Syntax Constructs

Example Star-Pattern Table Structure

Extended Star-Pattern Table Including a Reversed Property

Example Triple-Pattern Table Structure

Example Chain-Pattern Table Structure

Multiple Occurrences of a Single Property in a Chain-Pattern Table

Reversed Property in a Chain-Pattern Table

Mapping from Suffix of Lexical Value Component Column Names to Component Code

Predicate Information Table Columns

Predicate Information Table Columns

Sample Cardinality Information in the Predicate Table
SEM_NETWORK INDEX INFO View Columns (Partial List)

Data Types for Data Type Indexing
SEM_DTYPE_INDEX INFO View Columns

Semantic Technology Software Objects: Old and New Names
PATIENTS Table Example Data
RDFS/OWL Vocabulary Constructs Included in Each Supported Rulebase

SEMC inferred_graph_name View Columns
RDFCTX_POLICIES View Columns

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxvi of xxi

5-2
5-3
7-1
7-2

13-1
15-1
15-2
15-3
15-4
18-1
C-1
C-2
C-3
E-1
E-2

RDFECTX_INDEX_POLICIES View Columns

RDFCTX_INDEX_EXCEPTIONS View Columns

Functions and Return Values for my_strlen Example

PL/SQL Subprograms and Corresponding RDF graph support for Apache Jena Java Class

and Methods

External Data source Parameters

Inferencing Keywords for inf _components_in Parameter

SEM_RDFSA Package Constants for label_gen Parameter

Inferencing Keywords for inf_components_in Parameter

SEM_RDFSA Package Constants for label_gen Parameter

SEM_RDFSA Package Constants for rdfsa_options Parameter

RDF Semantic Graph Setup Specific To SQL Developer and Oracle DB Version

Recommended Semantic Network Type

Release Specific Instructions to Create a Semantic Network

Changes in Terminology

Changes to the Subprogram Names in the SEM_APIS Package

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

& o &
w [© [0

o 188w

o
N

Q
A

Q
A

ik
|

ik
|

October 13, 2025
Page xxvii of xxi

ORACLE’

Preface

Audience

Oracle Al Database Graph Developer's Guide for RDF Graph provides usage and reference
information about Oracle Al Database Enterprise Edition support for semantic technologies,
including storage, inference, and query capabilities for data and ontologies based on Resource
Description Framework (RDF), RDF Schema (RDFS), and Web Ontology Language (OWL).
The RDF Graph feature is licensed with the Oracle Spatial and Graph option to Oracle Al
Database Enterprise Edition, and it requires the Oracle Partitioning option to Oracle Al
Database Enterprise Edition.

@® Note

You must perform certain actions and meet prerequisites before you can use any
types, synonyms, or PL/SQL packages related to RDF Graph support. These actions
and prerequisites are explained in Enabling RDF Semantic Graph Support.

 Audience

¢ Related Documents

e Conventions

This guide is intended for those who need to use semantic technology to store, manage, and
guery semantic data in the database.

You should be familiar with at least the main concepts and techniques for the Resource
Description Framework (RDF) and the Web Ontology Language (OWL).

Related Documents

For an excellent explanation of RDF concepts, see the World Wide Web Consortium (W3C)
RDF Primer at http: // ww. w3. org/ TR/ rdf - primer/.

For information about OWL, see the OWL Web Ontology Language Reference at http://
www. W3. or g/ TR/ owl -ref /.

Conventions

The following text conventions are used in this document:

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page i of ii

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

ORACLE’

Preface
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLSs, code in

examples, text that appears on the screen, or text that you enter.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ii of ii

ORACLE’

Changes in This Release for This Guide

This topic contains the following.

* Changes in Oracle Al Database Release 26ai

Changes in Oracle Al Database Release 26ai

The following are the changes in Oracle Al Database Graph Developer's Guide for RDF Graph
for Oracle Al Database Release 26ai.

Enhanced Support for Querying Semantic Data

In addition to the SEM_MATCH table function, you can also query semantic data in the
following order:

* Usethe SEM_APIS.GET_SQL function to obtain the SQL translation for a SPARQL query.

* Runthe SEM_APIS.CREATE_SEM_SQL as a one-time setup procedure to create the
SEM_SQL SQL Macro.

e Compile the SQL (SEM_APIS.SEM_SQL_COMPILE) and query the semantic data using
the SEM_SQL SQL Macro.

See Using the SEM_APIS.GET SOL Function and SEM_SQL SQL Macro to Query RDF Data
for more information.

Support for In-Memory Subject-Property-Matrix Tables

You can create in-memory Subject-Property-Matrix (SPM) tables by using the | NVEMORY=T
option in SEM_APIS.BUILD_SPM_TAB.

See In-Memory Result Tables for more information.

Support for GeoSPARQL 1.1

The Open Geospatial Consortium (OGC) has proposed GeoSPARQL 1.1 as an update to the
original OGC GeoSPARQL standard. This update includes new literal data types based on
GeoJSON and KML geometry serializations and several new spatial query functions and
spatial aggregates.

These new GeoSPARQL 1.1 geometry literals, query functions and aggregates can be used in
SPARQL queries through SPARQL APIs provided by the RDF feature of Oracle Al Database.

See Spatial Support for more information.

Support for Auto-List Subpartitioning of RDF_LINKS$ table

To improve the performance of SPARQL update (CLEAR, MOVE, COPY, or DROP query constructs,
using keywords such as, DEFAULT, NAMED, GRAPH, and ALL), you can create the RDF_LINK$
table as a list-list composite partitioned table where subpartitions are automatically maintained

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page i of ii

https://github.com/opengeospatial/ogc-geosparql

ORACLE’

Changes in This Release for This Guide

on the graph I D. You can create the auto-list subpartitioned table by using the
MODEL_PARTI TI ONI NG=BY_LI ST_Goption in SEM_APIS.CREATE_SEM_NETWORK.

See RDF Networks for more information.

Support for Retrieving Query Execution Plan Cost

You can use the SEM_APIS.GET_PLAN_COST API procedure to get the cost of a query
execution plan.

See SEM_APIS.GET PLAN_COST for more information.

Support for 32K VARCHAR RDF Values

You can now store RDF values up to 32767 bytes in length as VARCHAR values in your RDF
network if your database has extended VARCHAR support enabled

(MAX_STRI NG_SI ZE=EXTENDED). In previous releases, only RDF values up to 4000 bytes in
length were stored as VARCHAR values. RDF values larger than this limit (4K or 32K bytes),
are stored as CLOBs. A 32K VARCHAR network results in less values being stored as CLOBs,
which increases performance for queries, DMLSs, and bulk load operations on large RDF
literals.

To control the maximum VARCHAR size in your RDF network, you can pass
NETWORK_MAX_STRI NG_SI ZE=EXTENDED for 32K VARCHAR or

NETWORK_MAX_STRI NG_SI ZE=STANDARD (default) for 4K VARCHAR in the options argument of
SEM_APIS.CREATE_RDF NETWORK.

A pre-existing 4K VARCHAR RDF network cannot be migrated to a 32K VARCHAR RDF
network. You must create a new RDF network using NETWORK _MAX_STRI NG_SI ZE=EXTENDED and
reload your data into the new network.

Deprecation of MDSYS-Owned RDF Network

Creation of RDF graph networks in the MDSYS schema is deprecated. Oracle recommends
that you create RDF graph networks in a user schema, which was enabled in Oracle Database
19c.

An existing MDSYS-owned network can be migrated to a shared schema-private RDF network
by using the SEM_APIS.MOVE_RDF_NETWORK_DATA and
SEM_APIS.APPEND_RDF_NETWORK_DATA procedures.

See MDSYS-Owned Semantic Network in Appendix D for more information on MDSY S-owned
semantic networks.

Running Graph Analytics Algorithms with RDF Graphs

You can create property graph views from an RDF graph. You can first run SEM_MATCH
queries to create database views that represent vertex and edge tables, and then create a
PGQL property graph from those views. This property graph can be loaded into the graph
server for running graph analytics algorithms.

See Creating Property Graphs from RDF Graphs for more information.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ii of ii

ORACLE’

How to Use This Book

This book is organized into three parts:

e Part | provides conceptual and usage information about RDF Graph.
e Part Il provides information about using RDF Graph Server and Query UL.
e Part Ill provides reference information about RDF Graph subprograms.

All supplementary information is provided in Appendixes and specialized terms are defined in
the Glossary.

However, the following summary provides an outline of some of the main ideas in the book that
will help you to develop an understanding of RDF Graph support in Oracle Al Database and
how to store, load, query, infer and visualize RDF data.

Learn About Oracle RDF Graph Get Started With Oracle RDF Graph

=\

Introduction to Oracle Semantic Technologies [Enabling RDF Graph Support
Support

RDF Data in the Database

Quick Start for Using Semantic Data

Loading and Exporting RDF Data

OWL Concepts) .
Performing SPARQL Query operations

RDF Views))
Performing SPARQL Update operations
Performance Tuning for SPARQL Queries
Tuning the Performance of SPARQL Update
Operations
What's New In Oracle RDF Graph Additional Oracle RDF Graph Features
s@o —0)
{3
. O ®
Speeding up Query Execution with Result RDF Graph Support for Apache Jena
Tables

RDF Support in SOL Developer

RDF Graph Support for Eclipse RDF4J

Using RDF with Oracle Al Database In-
RDF Graph Server and Query Ul Memory

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page i of ii

ORACLE
How to Use This Book

Applying Oracle Machine Learning Algorithms
to RDF Data

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ii of ii

Conceptual and Usage Information

Part | provides conceptual and usage information about RDF Graph.

This part contains the following chapters:

RDF Graph Overview

Oracle Graph support for semantic technologies consists mainly of Resource Description
Framework (RDF) and a subset of the Web Ontology Language (OWL). These capabilities
are referred to as the RDF Graph feature of Oracle Graph.

Quick Start for Using RDF Data
This section provides the steps to help you get started on working with RDF data in an
Oracle Al Database.

OWL Concepts
You should understand key concepts related to the support for a subset of the Web

Ontology Language (OWL).

Simple Knowledge Organization System (SKOS) Support

You can perform inferencing based on a core subset of the Simple Knowledge
Organization System (SKOS) data model, which is especially useful for representing
thesauri, classification schemes, taxonomies, and other types of controlled vocabulary.

Semantic Indexing for Documents

Information extractors locate and extract meaningful information from unstructured
documents. The ability to search for documents based on this extracted information is a
significant improvement over the keyword-based searches supported by the full-text
search engines.

Fine-Grained Access Control for RDF Data

The default control of access to the RDF data stored in a given RDF network, shared
among select users in an Oracle Al Database, is at the RDF graph level: the owner of a
graph in that network can grant select, delete, and insert privileges on the graph to the
other users (with shared access to the network), by granting appropriate privileges on the
view named RDFM_<rdf_graph_name>. However, for applications with stringent security
requirements, you can enforce a fine-grained access control mechanism by using the
Oracle Label Security option of Oracle Al Database.

RDF Graph Support for Apache Jena

RDF Graph support for Apache Jena (also referred to here as support for Apache Jena)
provides a Java-based interface to Oracle Graph RDF Graph by implementing the well-
known Jena Graph, RDF graph, and DatasetGraph APIs.

RDF Graph Support for Eclipse RDF4J

Oracle RDF Graph Adapter for Eclipse RDF4J utilizes the popular Eclipse RDF4J
framework to provide Java developers support to use the RDF graph feature of Oracle Al
Database.

User-Defined Inferencing and Querying
RDF graph extension architectures enable the addition of user-defined capabilities.

RDF Views: Relational Data as RDF
You can create and use RDF views over relational data in RDF Graph.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 2

e Creating Property Graphs from RDF Graphs
Oracle Graph supports the property graph data model in addition to the RDF graph data
model.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 2

RDF Graph Overview

Oracle Graph support for semantic technologies consists mainly of Resource Description
Framework (RDF) and a subset of the Web Ontology Language (OWL). These capabilities are
referred to as the RDF Graph feature of Oracle Graph.

The RDF Graph feature enables you to create one or more RDF networks in an Oracle Al
Database. Each network contains RDF data.

This chapter assumes that you are familiar with the major concepts associated with RDF and
OWL, such as {subject, predicate, object} triples, {subject, predicate, object, graph} quads,
URIs, blank nodes, plain and typed literals, and ontologies. It does not explain these concepts
in detail, but focuses instead on how the concepts are implemented in Oracle.

* For an excellent explanation of RDF concepts, see the World Wide Web Consortium
(W3C) RDF Primer at htt p: / / www. W3. org/ TR/ rdf - pri ner/.

* For information about OWL, see the OWL Web Ontology Language Reference at http://
www. W3. or g/ TR owl -ref /.

The PL/SQL subprograms for working with RDF data are in the SEM_APIS package, which is
documented in SEM_APIS Package Subprograms.

The RDF and OWL support are features of Oracle Graph, which must be installed for these
features to be used. However, the use of RDF and OWL is not restricted to spatial data.

@® Note

If you have any RDF data created using an Oracle Database release before 12.2, see
Required Migration of Pre-12.2 RDF Data.

For information about OWL concepts and the Oracle Al Database support for OWL
capabilities, see OWL Concepts .

@® Note

Before performing any operations described in this guide, you must enable RDF
Graph support in the database and meet other prerequisites, as explained in Enabling
RDF Semantic Graph Support.

e Introduction to Oracle Semantic Technologies Support
Oracle Al Database enables you to store RDF data and ontologies, to query RDF data and
to perform ontology-assisted query of enterprise relational data, and to use supplied or
user-defined inferencing to expand the power of querying on RDF data.

» Key Terms and Concepts for Working with RDF Graphs
Learn the Oracle terminology and the concepts for working with the RDF graph feature in
Oracle Al Database.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 197

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

ORACLE’

Chapter 1

RDF Data Modeling

In addition to its formal semantics, RDF data has a simple data structure that is effectively
modeled using a directed graph.

RDF Data in the Database

RDF data in Oracle Al Database is stored in one or more RDF networks.
RDF Metadata Tables and Views

Oracle Al Database maintains several tables and views in the network owner’s schema to
hold metadata related to RDF data.

RDF Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE_S object type is used for representing the edges (that is, triples
and quads) of RDF graphs.

Using the SEM_MATCH Table Function to Query RDF Data
To query RDF data, use the SEM_MATCH table function.

Speeding up Query Execution with Result Tables
Result tables are auxiliary tables that store the results for generic patterns of SPARQL
gueries executed against an RDF graph or RDF graph collection.

Using the SEM_APIS.SPARQL_TO_SQL Function to Query RDF Data
You can use the SEM_APIS.SPARQL_TO_SQL function as an alternative to the
SEM_MATCH table function to query RDF data.

Using the SEM_APIS.GET_SQL Function and SEM_SQL SQL Macro to Query RDF Data
You can use the SEM_APIS.GET_SQL function as an alternative to the SEM_MATCH
table function to query RDF data.

Loading and Exporting RDF Data
You can load RDF data into an RDF graph in the database and export that data from the
database into a staging table.

Using RDF Network Indexes
RDF network indexes are nonunique B-tree indexes that you can add, alter, and drop for
use with RDF graphs and inferred graphs in a RDF network.

Using Data Type Indexes
Data type indexes are indexes on the values of typed literals stored in an RDF network.

Managing Statistics for the RDF Graphs and RDF Network
Statistics are critical to the performance of SPARQL queries and OWL inference against
RDF data stored in an Oracle Al Database.

Support for SPARQL Update Operations on an RDF Graph
Effective with Oracle Database Release 12.2, you can perform SPARQL Update
operations on an RDF graph.

RDF Support for Oracle Al Database In-Memory

RDF can use the in-memory Oracle Al Database In-Memory suite of features, including in-
memory column store, to improve performance for real-time analytics and mixed
workloads.

RDF Support for Materialized Join Views

The most frequently used joins in RDF queries are subject-subject and subject-object joins.
To enhance the RDF query performance, you can create materialized join views on those
two columns.

RDF Support in Oracle SQL Developer
You can use Oracle SQL Developer to perform operations related to the RDF Knowledge
Graph feature of Oracle Graph.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 197

ORACLE’

Chapter 1
Introduction to Oracle Semantic Technologies Support

Enhanced RDF ORDER BY Query Processing
Effective with Oracle Database Release 12.2, queries on RDF data that use SPARQL
ORDER BY semantics are processed more efficiently than in previous releases.

Applying Oracle Machine Learning Algorithms to RDF Data
You can apply Oracle Machine Learning algorithms to RDF data.

RDF Graph Management Examples (PL/SQL and Java)
PL/SQL examples are provided in this topic.

Software Naming Changes Since Release 11.1

Because the support for RDF data has been expanded beyond the original focus on RDF,
the names of many software objects (PL/SQL packages, functions and procedures, system
tables and views, and so on) have been changed as of Oracle Database Release 11.1.

For More Information About RDF Graph
More information is available about RDF graph support and related topics.

Required Migration of Pre-12.2 RDF Data
If you have any RDF data created using Oracle Database 11.1. 11.2, or 12.1, then before
you use it in an Oracle Database 12.2 environment, you must migrate this data.

Oracle RDF Graph Features that Support Accessibility
This section describes the accessibility support provided by Oracle RDF Graph features.

1.1 Introduction to Oracle Semantic Technologies Support

Oracle Al Database enables you to store RDF data and ontologies, to query RDF data and to

perform ontology-assisted query of enterprise relational data, and to use supplied or user-
defined inferencing to expand the power of querying on RDF data.

Figure 1-1 shows how these capabilities interact.

Figure 1-1 Oracle RDF Capabilities

INFER
QUERY
—— °©
3 2
2 $ 5 Query RDF/OWL Ontology-assisted
“ o ? data and query of
= o 2 ontologies enterprise data
o]
\]
STORE A4 4 \ 4
RDF/OWL Enterprise
Bulk Load data and (relational)
ontologies data
Incremental
Load & DML
Database

As shown in Figure 1-1, the database contains RDF data and ontologies (RDF/OWL graphs),
as well as traditional relational data. To load RDF data, bulk loading is the most efficient
approach, although you can load data incrementally using transactional INSERT statements.

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 197

ORACLE Chapter 1
Key Terms and Concepts for Working with RDF Graphs

@® Note

If you want to use existing RDF data from a release before Oracle Database 11.1, the
data must be upgraded as described in Enabling RDF Semantic Graph Support.

You can query RDF data and ontologies, and you can also perform ontology-assisted queries
of RDF and traditional relational data to find semantic relationships. To perform ontology-
assisted queries, use the SEM_RELATED operator, which is described in Using Semantic
Operators to Query Relational Data.

You can expand the power of queries on RDF data by using inferencing, which uses rules in
rulebases. Inferencing enables you to make logical deductions based on the data and the
rules. For information about using rules and rulebases for inferencing, see Inferencing: Rules
and Rulebases.

1.2 Key Terms and Concepts for Working with RDF Graphs

Learn the Oracle terminology and the concepts for working with the RDF graph feature in
Oracle Al Database.

Although the terminology used in this guide for RDF concepts are very similar to the W3C RDF
1.1 terminology, there are some differences. The most significant difference is that the term
RDF Graph in this document corresponds to RDF Dataset in W3C RDF 1.1 terminology.

The following table lists the Oracle RDF terminology and their corresponding mapping to the
W3C RDF 1.1 terminology.

Table 1-1 Mapping Oracle and W3C RDF 1.1 Terms

__|
Oracle Terminology Description W3C RDF 1.1 Terminology

RDF Network Zero or more RDF Graphs and built-in ~ None
(such as OWL, RDFS, and so on) and
any user-defined rulebases.

RDF Graph Single Default Graph and zero or more RDF Dataset
Named Graphs.

Default Graph Set of triples that are not associated with Default (RDF) Graph
any graph name. It is a part of an RDF
Graph.

Named Graph Set of triples, each associated with the ~ Named (RDF) Graph

same graph name. Each named graph is
part of an RDF Graph.

RDF Graph Collection Set of RDF Graphs. Merged RDF Datasets

Inferred Graph RDF Graph comprising only the triples Entailed Graph, but excludes
inferred using specified RDF Graphs the triples asserted in the
and rulebases. dataset.

RDFview Graph Relational data (in one or more tables) = RDF Dataset obtained from
viewed as RDF Graph using W3C relational tables using W3C
RDB2RDF mapping. RDB2RDF mapping.

The following diagram shows the structural representation of the Oracle RDF concepts
described in the preceding table:

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 197

ORACLE

Chapter 1
RDF Data Modeling

RDF Network: NET1

RDF Graph: RG;

Default Graph

Set of RDF triples. No
associated graph names.

Named Graph: NG Named Graph: NGk

Set of RDF triples, each having NG1

as its associated graph name. - NGy as ... graph name

RDF Graph: RGn

1.3 RDF Data Modeling

In addition to its formal semantics, RDF data has a simple data structure that is effectively
modeled using a directed graph.

The metadata statements are represented as triples: nodes are used to represent two parts of
the triple, and the third part is represented by a directed link that describes the relationship
between the nodes. The triples are stored in an RDF data network. In addition, information is
maintained about specific RDF graphs created by database users. A user-created RDF Graph
has a graph name, and refers to triples stored in a specified table column.

Statements are expressed in triples: {subject or resource, predicate or property, object or
value}. In this manual, {subject, property, object} is used to describe a triple, and the terms
Statement and triple may sometimes be used interchangeably. Each triple is a complete and
unigue fact about a specific domain, and can be represented by a link in a directed graph.

1.4 RDF Data in the Database

RDF data in Oracle Al Database is stored in one or more RDF networks.

All triples are parsed and stored in the system as entries in tables is an RDF network, and
each RDF network is under a regular database user schema. A triple {subject, property, object}
is treated as one database object. As a result, a single document containing multiple triples
results in multiple database objects.

All the subjects and objects of triples are mapped to nodes in a RDF data network, and
properties are mapped to network links that have their start node and end node as subject and
object, respectively. The possible node types are blank nodes, URIs, plain literals, and typed
literals.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 197

ORACLE’

Chapter 1
RDF Data in the Database

The following requirements apply to the specifications of URIs and the storage of RDF data in
the database:

e A subject must be a URI or a blank node.
e A property must be a URI.

e An object can be any type, such as a URI, a blank node, or a literal. (However, null values
and null strings are not supported.)

* RDF Networks

* RDF Graphs

* Statements

* Subjects and Objects
* Blank Nodes

* Properties
« Inferencing: Rules and Rulebases

* Inferred Graphs
« RDEF Graph Collections

* Named Graphs
« RDF Data Security Considerations

« RDE Privilege Considerations

1.4.1 RDF Networks

An RDF network is a set of tables and views that holds RDF data. An RDF network is not
created during installation. A database user must explicitly call

SEM_APIS.CREATE_RDF NETWORK to create an RDF network before any RDF data can be
stored in the database.

@ Note

RDF Networks were called as Semantic Networks in the previous book versions
(prior to Oracle Al Database Release 26ai). See Changes in Terminology and
Subprograms for more information.

An RDF network contains, among other things, an RDF_LINK$ table for storing RDF triples or
quads. By default, the RDF_LINKS$ table is list-partitioned into a set of RDF Graphs, which are
user-created containers for storing RDF triples or quads.

The RDF_LINK$ table can optionally use list-hash composite partitioning, where each RDF
graph partition is subpartitioned by a hash of the predicate. Composite partitioning can improve
SPARQL query performance on larger data sets through better parallelization and improved
query optimizer statistics.

The RDF_LINK$ table can also optionally use list-list composite partitioning, where each RDF
graph partition is subpartitioned by the graph | D. The subpartition is automatically maintained
on the graph | D. This configuration is highly recommended for quad data as it will drastically
improve the performance of SPARQL update (CLEAR, MOVE, DROP, or COPY) graph operations.

For more information about how to enable composite partitioning, see:

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 197

ORACLE

Chapter 1
RDF Data in the Database

e The options parameter descriptions for SEM_APIS.CREATE_RDF_GRAPH and
SEM_APIS.CREATE_RDF_NETWORK.

* The usage notes for the opt i ons parameter for
SEM_APIS.CREATE_INFERRED_GRAPH, specifically for the MODEL_PARTI TI ONS=n
option.

An RDF_VALUES$ table is used to store a mapping of RDF values to internal numeric
identifiers. Starting with version 21c, values stored in the RDF_VALUES$ table can be stored
using an unescaped storage form; that is, Unicode characters and special characters are
stored as a single character instead of being stored as an ASCII escape sequence (such as
the single character 'fi' instead of the ASCII escape sequence "uOOF1"). This unescaped
storage form reduces storage costs and increases query performance.

The network storage form can be specified in the opt i ons parameter of the
SEM_APIS.CREATE_RDF NETWORK procedure at network creation time. Unescaped
storage form is the default in version 21c and later. Existing RDF networks can be migrated
using the SEM_APIS.MIGRATE_DATA_TO STORAGE_V2 procedure.. Existing applications
should not be affected by any changes in network storage form.

Starting with Oracle Al Database 26ai, the following are the two options for the maximum size
of VARCHAR values stored in RDF_VALUES$ table:

e 4000 bytes: This is the default maximum size.

« 32767 bytes: If the database has extended VARCHAR enabled (see Extended Data
Types), then the default maximum size can optionally be extended to 32767 bytes.

RDF values smaller than or equal to this maximum size of 4K or 32K will be stored as
VARCHARSs, and larger values will be stored as CLOBSs. Using a 32K maximum VARCHAR
size results in fewer values being stored as CLOBs, which increases performance of query,
DML, and bulk load of large RDF values.

The maximum VARCHAR size for a network can be specified in the opt i ons parameter of the
SEM_APIS.CREATE_RDF_NETWORK procedure at network creation time.

e NETWORK_MAX_STRING_SIZE=STANDARD: Indicates a maximum size of 4000 bytes and is the
default.

o NETWORK_MAX_STRING_SIZE=EXTENDED: Indicates a maximum size of 32767 bytes.

The NETWORK_MAX_STRI NG_SI ZE setting for an RDF network is recorded in the network’s
RDF_PARAMETER table.

One or more RDF networks can be created and owned by a regular database user schema.
Each such network is called a schema-private RDF network. You can have such a network in
a single database or pluggable database.

@® Note

Starting from Oracle Al Database Release 26ai, MDSY S-owned RDF networks are
deprecated. It is recommended that you create schema-private RDF networks.

An existing MDSY S-owned RDF network can be migrated to a shared schema-private
RDF network by using the SEM_APIS.MOVE_RDF_NETWORK_DATA and
SEM_APIS.APPEND_RDF_NETWORK_DATA procedures. Also, see Moving,
Restoring, and Appending an RDF Network for more information.

e Schema-Private RDF Networks

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 197

ORACLE

Chapter 1
RDF Data in the Database

 Types of RDF Network Users

Naming Conventions for RDF Network Objects
« RDF PARAMETER Table in RDF Networks
* Migrating from MDSYS to Schema-Private RDF Networks

* Sharing Schema-Private RDF Networks

* Migrating from Escaped to Unescaped Storage Form

1.4.1.1 Schema-Private RDF Networks

In a schema-private RDF network, the associated database objects are created in the network

owner’s schema, and the network owner has exclusive privileges to those objects. (DBA users

also have such privileges, and the network owner or a DBA can grant and revoke the privileges
for other users.)

Schema-private RDF networks have several benefits:

* They provide better security and isolation because multiple users do not share tables and
indexes.

The network owner’s schema contains all RDF network database objects, and the network
owner has exclusive privileges to those objects by default.

Schema-private RDF networks provide better isolation because database objects are not
shared among multiple database users by default. However, after granting appropriate
privileges, a network owner may share their schema-private RDF network with other users.

* Regular users can perform administration operations on their own networks, for example,
index creation or network-wide statistics gathering.

The network owner can perform administration operations on the network without needing
DBA privileges.

Several schema-private RDF networks can coexist in a single database, PDB, or even
schema, which allows custom data type indexing schemes for different sets of RDF data.
For example, NETWORK1 can have only a spatial data type index while NETWORK2 has
only a text data type index.

Most SEM_APIS package subprograms now have net wor k_owner and net wor k_nane
parameters to support schema-private RDF networks. Schema-private RDF networks are
identified by the two-element combination of network owner and network name, which is
specified in the last two parameters of the SEM_APIS.CREATE_SEM_NETWORK call that
created the network.

The following table describes the usage of the net wor k_owner and net wor k_name parameters
in subprograms that include them.

Table 1-2 network _owner and network_name Parameters

]
Parameter Name Description

net wor k_owner Name of the schema that owns the network.
The network owner must be a non-NULL value that specifies a regular database
user.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 197

ORACLE

Chapter 1
RDF Data in the Database

Table 1-2 (Cont.) network_owner and network_name Parameters

. ___|
Parameter Name Description

net wor k_nare Name of the network.

* The network name must be a non-NULL value.

* The network name must be unique within the schema of the network owner.
For example, schema SCOTT cannot have two networks named NET1; but
schemas SCOTT and ANNA can each have a network named NET1.

1.4.1.2 Types of RDF Network Users

The following three key types of RDF network users are supported:

Network Creator: A user that invokes SEM_APIS.CREATE_RDF_NETWORK. The
network creator is either a database user with DBA privileges or it is the same as the
network owner.

Network Owner: A user whose schema will hold the tables, triggers and views that make
up the RDF network.

Network User: A database user that performs operations on the RDF network.

In many examples in this book, the name RDFUSER is given as a sample network user
name. There is nothing special about that name string; it could be the name of any
database user such as SCOTT, ANNA, or MARKETI NG.

The network owner is initially the only network user. (However, other database users can
be granted privileges on the network, thus making them additional potential network
users.)

1.4.1.3 Naming Conventions for RDF Network Objects

RDF network database objects follow specific naming conventions.

All RDF network database objects in a schema-private network are prefixed with
NETWORK_NAME#, for example, USER3.MYNET#SEM_MODELS$. This book uses the
portion of the database object name after the prefix to refer to the object. That is,
SEM_MODELS$ refers to NETWORK_OWNER.NETWORK_NAME#SEM_MODELS$ for a
schema-private RDF network.

1.4.1.4 RDF_PARAMETER Table in RDF Networks

The MDSYS.RDF_PARAMETER table holds database-wide RDF Graph installation
information. This table is created during installation and always exists.

In schema-private RDF networks, a NETWORK_NAME#RDF_PARAMETER table holds
network-specific information such as network compression settings and any RDFCTX or
RDFOLS policies used in the schema-private network.

A schema-private NETWORK_NAME#RDF_PARAMETER table is dependent on the existence
of the NETWORK_NAME RDF network. This table is created during schema-private RDF
network creation and is dropped when the schema-private network is dropped.

1.4.1.5 Migrating from MDSYS to Schema-Private RDF Networks

An existing MDSYS-owned RDF network can be migrated to a shared schema-private RDF
network by using the SEM_APIS.MOVE_RDF_NETWORK_DATA and

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 197

ORACLE

Chapter 1
RDF Data in the Database

SEM_APIS.APPEND_RDF NETWORK_DATA procedures. See Migrating an MDSYS-Owned

Network to a Schema-Private Network for details.

1.4.1.6 Sharing Schema-Private RDF Networks

After a schema-private network is created, it can optionally be shared, that is, made available
for use by other database users besides the network owner. Other users can be allowed to
have either of the following access capabilities:

Read-only access to RDF data, which provides the ability to query the RDF data in the
network.
Granting read-only or query-only access to an RDF network can be done by:

1.

The network owner by using the single command
SEM_APIS.GRANT_NETWORK_ACCESS PRIVS with QUERY_ONLY=T included in the
OPTI ONS parameter.

The network owner or the RDF graph owner by using
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS with appropriate privileges such
as QUERY or SELECT for the individual RDF graphs in the network.

See Example 1-1 for more details.

Read/write access to RDF objects and data in the network, such as the ability to create,
alter, or drop RDF graphs and inferred graphs, and to read, insert, modify, or delete RDF
data.

The logical sequence of steps for granting both read and write access is as follows:

1.

A DBA must grant network sharing privileges to the network owner. This needs to be
done only once for a given network owner. However, you can skip this step if you are
using Oracle Al Database 26ai.

The network owner must enable the specific network for sharing. This needs to be
done only once for a given network.

The network owner must grant network access privileges to the user(s) that will be
allowed to access the network.
Each of these grants can subsequently be revoked, if necessary.

See Example 1-2 for more details.

@® Note

Having the above access capabilities for a network allows a user to access only the
dictionary and metadata tables for the network. RDF graphs and inferred graphs not
owned by the user are not accessible unless the network owner or the owner of the
individual RDf graphs use the SEM_APIS.REVOKE_RDF_GRAPH_ACCESS_PRIV or
SEM_APIS.GRANT_RDF_GRAPH_ACCESS_PRIVS subprogram to grant
appropriate privilege(s) for individual RDF graphs or inferred graphs in the network to
the user.

Example 1-1 Sharing a Network and Granting Query Only Privilege to Another User

The following example shares a network named NET1, owned by user RDFUSER. RDFUSER
grants query-only access on NET1 with user RDFQ.

-- As RDFUSER, create a schema-private network owned by RDFUSER named NET1
CONNECT r df user/ <passwor d>;
EXECUTE

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 197

ORACLE Chapter 1
RDF Data in the Database

SEM API S. CREATE_RDF_NETWORK(' RDFTBS' , net wor k_owner =>' RDFUSER' , net wor k_name=>' N
ET1');

-- As RDFUSER, grant query only network access privilege for NET1 to RDFQ
EXECUTE

SEM API' S. GRANT_NETWORK_ACCESS PRI VS(net wor k_owner =>' RDFUSER , net wor k_name=>' NE
T1', network_user=>" RDFQ , options=> QUERY_ONLY=T ');

-- As RDFUSER, create an RDF graph ML in network NET1

EXECUTE

SEM API' S. CREATE_RDF_GRAPH(' ML' , nul I, nul I, net wor k_owner =>' RDFUSER' , net wor k_name
=>' NET1');

-- Check netadata
SELECT *
FROM r df user . net 1#sem nodel $;

-- Insert some data

I NSERT I NTO rdf user. net 1#rdft _mi(triple)

VALUES

(SDO_RDF_TRIPLE_S(' ML', ' <urn: personl>', ' <urn:name>,'"Peter"',' RDFUSER ,' NET1'

));
COWM T;

-- Allow RDFQ to select and query an RDF graph that RDFUSER owns

EXECUTE

SEM API S. GRANT_RDF_GRAPH_ACCESS PRI VS(' ML', ' RDFQ , sys. odci var char 2l i st (' SELECT
", " QUERY"), net wor k_owner =>' RDFUSER' , net wor k_name=>' NET1') ;

-- As RDFQ verify that RDF graph ML is visible for querying
CONNECT r df g/ <passwor d>;

SELECT *

FROM r df user . net 1#r df _nodel $

VWHERE nodel _name="ML' ;

-- Query with SEM MATCH

SELECT s$rdfterm p$rdfterm o$rdfterm
FROM TABLE(SEM MATCH(

"SELECT ?s ?p ?0

WHERE { ?s ?p ?0 }'

, SEM MODELS(' ML')

,null,null,null,null

," PLUS RDFT=VC '

,null, null

, " RDFUSER' , ' NET1'));

Example 1-2 Sharing a Network and Granting Read and Write Privileges to Another
User

The following example shares a network named NET1, owned by user RDFUSER, with user
RDFUSER2. Also RDFUSER grants query-only access on NET1 with user RDFUSERS3.

-- As RDFUSER, create a schema-private network owned by RDFUSER named NET1
CONNECT r df user/ <passwor d>;

EXECUTE

SEM API S. CREATE_RDF_NETWORK(' RDFTBS' , net wor k_owner =>' RDFUSER , net wor k_nane=>' N

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 197

ORACLE Chapter 1
RDF Data in the Database

ETL');

-- As RDFUSER, enable sharing for NET1

CONNECT r df user/ <passwor d>;

EXECUTE

SEM API S. ENABLE_NETWORK_SHARI NG(net wor k_owner =>' RDFUSER' , net wor k_name=>' NET1')

-- As RDFUSER, grant network access privileges for NET1 to RDFUSER2

EXECUTE

SEM API' S. GRANT_NETWORK_ACCESS PRI VS(net wor k_owner =>' RDFUSER , net wor k_name=>' NE
T1', networ k_user=>' RDFUSER2") ;

-- As RDFUSER2, create a RDF graph M2 in network NET1

CONNECT r df user 2/ <passwor d>;

EXECUTE

SEM API' S. CREATE_RDF_GRAPH(' M2' , nul I, nul |, net wor k_owner =>' RDFUSER' , net wor k_name
=>'NET1');

-- Check netadata
SELECT *
FROM r df user . net 1#sem nodel $;

-- Insert some data

I NSERT I NTO rdf user. net 1#rdft _n2(triple)

VALUES

(SDO_RDF_TRIPLE_S(' M2', ' <urn: personl>',' <urn:nanme>','"John"',' RDFUSER ,' NET1')
);
COWM T,

-- Query with SEM MATCH

SELECT s$rdfterm p$rdfterm o$rdfterm
FROM TABLE(SEM MATCH(

"SELECT ?s ?p ?0

WHERE { ?s ?p ?0 }'

, SEM MODELS(' M2')

,null,null,null, null

," PLUS RDFT=VC '

,null, null

, " RDFUSER' , ' NET1'));

-- As RDFUSER, grant query only network access privileges for NET1 to RDFUSER3
CONNECT r df user/ <passwor d>

EXECUTE

SEM APl S. GRANT_NETWORK_ACCESS_PRI VS(net wor k_owner =>' RDFUSER' , net wor k_nanme=>"' NE
T1', networ k_user=>" RDFUSER3', options=>" QUERY_ONLY=T ');

-- As RDFUSER2, allow RDFUSER3 to select and query an RDF graph that RDFUSER2
owns

CONNECT r df user 2/ <passwor d>

EXECUTE

SEM APl S. GRANT_RDF_GRAPH_ACCESS_PRI VS(' M2' , ' RDFUSER3' , sys. odci var char 2l i st (' SE
LECT', " QUERY'), net wor k_owner =>' RDFUSER' , net wor k_nanme=>' NET1') ;

-- As RDFUSER3, verify that RDF graph M2 is visible for querying
CONNECT r df user 3/ <passwor d>

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 197

ORACLE

Chapter 1
RDF Data in the Database

SELECT *
FROM r df user . net 1#r df _nodel $
WHERE nodel _name=' M2' ;

-- Query with SEM MATCH

SELECT s$rdfterm p$rdfterm o$rdfterm
FROM TABLE(SEM MATCH(

"SELECT ?s ?p ?0

WHERE { ?s ?p ?0 }'

, SEM MODELS(' M2')

,null,null,null, null

," PLUS RDFT=VC '

,null, null

, " RDFUSER' , ' NET1'));

1.4.1.7 Migrating from Escaped to Unescaped Storage Form

You can migrate an existing RDF network from escaped storage form to unescaped storage
form by using the SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 procedure. This procedure
must be called by a DBA or the network owner.

Note that migration in the reverse direction is not possible. That is, you cannot migrate an RDF
network from unescaped storage form to escaped storage form.

1.4.2 RDF Graphs

An RDF graph is a user-created container for storing RDF triples or quads. An RDF network
contains zero or more RDF graphs. You can use the SEM_APIS.CREATE_RDF GRAPH
procedure to create an RDF graph. Each graph is physically stored as a partition in the
network’s RDF_LINKS$ table. Besides the corresponding RDF_LINK$ partition, each graph is
associated with two other database objects.

@® Note

RDF graphs were called as Semantic Models in the previous book versions (prior to
Oracle Al Database Release 26ai). See Changes in Terminology and Subprograms for
more information.

In a schema-private RDF network, each graph is associated with (1) a
SEMM_<rdf_graph_name> view of the graph’s RDF_LINKS$ partition, and (2) an
RDFT_<rdf_graph_name> application view for the graph.

The application view is created automatically in the network owner’s schema and has one
column named TRIPLE with type SDO_RDF_TRIPLE_S. It is an updatable view that can be
used to perform SQL DMLs on the associated RDF graph. The graph owner is given SELECT,
INSERT, UPDATE, and DELETE privileges WITH GRANT OPTION on
RDFT_<rdf_graph_name>.

You can truncate a graph using SEM_APIS.TRUNCATE_RDF_GRAPH.

The SEM_MODELS$ view contains information about all RDF graphs defined in an RDF
network. When you create a graph using the SEM_APIS.CREATE_RDF_GRAPH procedure,
you specify a name for the graph, as well as a table and column to hold references to the RDF
data, and the system automatically generates a graph ID.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 197

ORACLE

Chapter 1
RDF Data in the Database

Oracle maintains the SEM_MODEL$ view automatically when you create and drop graphs.
Users should never modify this view directly. For example, do not use SQL INSERT, UPDATE,
or DELETE statements with this view.

The SEM_MODELS$ view contains the columns shown in Table 1-3.

Table 1-3 SEM_MODELS$ View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the RDF graph.

MODEL_ID NUMBER Unique model ID number, automatically generated.
MODEL_NAME VARCHAR2(25) Name of the RDF graph.

TABLE_NAME VARCHAR2(30) This value will be NULL for a schema-private network.
COLUMN_NAME VARCHARZ2(30) This value will be NULL for a schema-private network.
MODEL_TABLESPA VARCHAR2(30) Name of the tablespace to be used for storing the triples for
CE_NAME this RDF graph.

MODEL_TYPE VARCHARZ2(40) A value indicating the type of graph: Mfor regular RDF

graph; V for RDF graph collection; X for RDF graph created
to store the contents of the semantic index; or D for RDF
graph created on relational data.

INMEMORY VARCHAR2(1) String value indicating if the i is an Oracle Al Database In-
Memory RDF graph collection: T for in-memory, or F for not
in-memory.

When you create an RDF graph, a view for the triples associated with the graph is also created
under the network owner’s schema. This view has a name in the format
SEMM_<rdf_graph_name>, and it is visible only to the owner of the graph and to users with
suitable privileges. Each SEMM_<rdf _graph_name> view contains a row for each triple (stored
as a link in a network), and it has the columns shown in Table 1-4.

Table 1-4 SEMM_<rdf_graph_name> View Columns

Column Name Data Type Description

P_VALUE_ID NUMBER The VALUE_ID for the text value of the predicate of
the triple. Part of the primary key.

START_NODE_ID NUMBER The VALUE_ID for the text value of the subject of the
triple. Also part of the primary key.

CANON_END_NODE_| NUMBER The VALUE_ID for the text value of the canonical form

D of the object of the triple. Also part of the primary key.

END_NODE_ID NUMBER The VALUE_ID for the text value of the object of the
triple

MODEL_ID NUMBER The ID for the RDF graph to which the triple belongs.

COST NUMBER (Reserved for future use)

CTXT1 NUMBER (Reserved column; can be used for fine-grained
access control)

CTXT2 VARCHARZ2(4000) (Reserved for future use)

DISTANCE NUMBER (Reserved for future use)

EXPLAIN VARCHARZ2(4000) (Reserved for future use)

PATH VARCHARZ2(4000) (Reserved for future use)

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 197

ORACLE Chapter 1
RDF Data in the Database

Table 1-4 (Cont.) SEMM_<rdf_graph_name> View Columns
]

Column Name Data Type Description

G_ID NUMBER The VALUE_ID for the text value of the graph name for
the triple. Null indicates the default graph (see Named
Graphs).

LINK_ID VARCHAR2(71) Unique triple identifier value. (It is currently a

computed column, and its definition may change in a
future release.)

@ Note

In Table 1-4, for columns P_VALUE_ID, START_NODE_ID, END_NODE_ID,
CANON_END_NODE_ID, and G_ID, the actual ID values are computed from the
corresponding lexical values. However, a lexical value may not always map to the
same ID value.

1.4.3 Statements

The RDF_VALUES$ table contains information about the subjects, properties, and objects used
to represent RDF statements. It uniquely stores the text values (URIs or literals) for these three
pieces of information, using a separate row for each part of each triple.

Oracle maintains the RDF_VALUES$ table automatically. Users should never modify this view
directly. For example, do not use SQL INSERT, UPDATE, or DELETE statements with this
view.

The RDF_VALUES$ table contains the columns shown in Table 1-5.

Table 1-5 RDF_VALUES$ Table Columns
[]

Column Name Data Type Description
VALUE_ID NUMBER Unique value ID number, automatically generated.
VALUE_TYPE VARCHARZ2(10) The type of text information stored in the VALUE_NAME

column. Possible values: UR for URI, BN for blank node, PL
for plain literal, PL@for plain literal with a language tag, PLL
for plain long literal, PLL@for plain long literal with a
language tag, TL for typed literal, or TLL for typed long
literal. A long literal is a literal with more than 4000 bytes.

VNAME_PREFIX VARCHAR2(NETWOR If the length of the lexical value is

K_MAX_STRI NG Sl Z NETWORK_MAX_STRI NG_SI ZE bytes or less, this column

E) stores a prefix of a portion of the lexical value. The
SEM_APIS.VALUE_NAME_PREFIX function can be used
for prefix computation. For example, the prefix for the portion
of the lexical value <ht t p: / / www. wW3. or g/ 1999/ 02/ 22-
rdf - synt ax- ns#t ype> without the angle brackets is
http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 197

ORACLE

Column Name

Data Type

Chapter 1
RDF Data in the Database

Table 1-5 (Cont.) RDF_VALUE$ Table Columns
|

Description

VNAME_SUFFIX

LITERAL_TYPE

LANGUAGE_TYPE

CANON_ID

COLLISION_EXT

CANON_COLLISIO

N_EXT
ORDER_TYPE

VARCHAR2(512)

VARCHAR2(4000)

VARCHAR2(80)

NUMBER

VARCHAR2(64)

VARCHAR2(64)

NUMBER

If the length of the lexical value is

NETWORK_MAX_STRI NG _SI ZE bytes or less, this column
stores a suffix of a portion of the lexical value. The
SEM_APIS.VALUE_NAME_SUFFIX function can be used
for suffix computation. For the lexical value mentioned in the
description of the VNAME_PREFIX column, the suffix is

type.

For typed literals, the type information; otherwise, null. For
example, for a row representing a creation date of
1999-08-16, the VALUE_TYPE column can contain TL, and
the LITERAL_TYPE column can contain htt p: //

www. w3. or g/ 2001/ XM_Schenma#dat e.

Language tag (for example, f r for French) for a literal with a
language tag (that is, if VALUE_TYPE is PL@or PLL@.
Otherwise, this column has a null value.

The ID for the canonical lexical value for the current lexical
value. (The use of this column may change in a future
release.)

Used for collision handling for the lexical value. (The use of
this column may change in a future release.)

Used for collision handling for the canonical lexical value.
(The use of this column may change in a future release.)

Represents order based on data type. Used to improve

performance on ORDER BY queries.

ORDER_NUM NUMBER Represents order for number type. Used to improve

performance on ORDER BY queries.

ORDER_DATE TIMESTAMP WITH

TIME ZONE
CLOB

Represents order based on date type Used to improve
performance on ORDER BY queries.

LONG_VALUE The character string if the length of the lexical value is

greater than NETWORK_MAX_STRI NG_SI ZE bytes.
Otherwise, this column has a null value.

GEOM
VALUE_NAME

SDO_GEOMETRY

VARCHAR2(NETWOR This is a computed column. If length of the lexical value is

K_MAX_STRI NG Sl Z NETWORK_MAX_STRI NG_SI ZE bytes or less, the value of this

E) column is the concatenation of the values of
VNAME_PREFIX column and the VNAME_SUFFIX column.

A geometry value when a spatial index is defined.

e Triple Unigueness and Data Types for Literals

1.4.3.1 Triple Uniqueness and Data Types for Literals

Duplicate triples are not stored in an RDF network. To check if a triple is a duplicate of an
existing triple, the subject, property, and object of the incoming triple are checked against triple
values in the specified RDF graph. If the incoming subject, property, and object are all URIs, an
exact match of their values determines a duplicate. However, if the object of incoming triple is a
literal, an exact match of the subject and property, and a value (canonical) match of the object,
determine a duplicate. For example, the following two triples are duplicates:

<eg: a> <eg: b> <"123""http:// ww. w3. or g/ 2001/ XM_Schenma#i nt >
<eg: a> <eg: b> <"123" M http:// ww. w3. or g/ 2001/ XM_Schenma#unsi gnedByt e>

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 197

ORACLE

Chapter 1
RDF Data in the Database

The second triple is treated as a duplicate of the first, because " 123" <ht t p: / / www. W3. or g/
2001/ XM_Schema#i nt > has an equivalent value (is canonically equivalent) to " 123" <http://
www. W3. or g/ 2001/ XM_Schenma#unsi gnedByt e>. Two entities are canonically equivalent if they

can be reduced to the same value.

To use a hon-RDF example, A*(B-C), A*B-C*A, (B-C) *A, and - A* C+A* B all convert into the
same canonical form.

@® Note

Although duplicate triples and quads are not stored in the underlying table partition for
the RDFM_<rdf_graph_name> view, it is possible to have duplicate rows in an
application table. For example, if a triple is inserted multiple times into an application
table, it will appear once in the RDFM_<rdf_graph_name> view, but will occupy
multiple rows in the application table.

Value-based matching of lexical forms is supported for the following data types:

e STRING: plain literal, xsd:string and some of its XML Schema subtypes

« NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double.
(Support is not provided for float/double INF, -INF, and NaN values.)

e DATETIME: xsd:datetime, with support for time zone. (Without time zone there are still
multiple representations for a single value, for example, "2004- 02- 18T15: 12: 54" and
"2004- 02- 18T15: 12: 54. 0000".)

* DATE: xsd:date, with or without time zone
 OTHER: Everything else. (No attempt is made to match different representations).

Canonicalization is performed when the time zone is present for literals of type xsd:time and
xsd:dateTime.

The following namespace definition is used: xm ns: xsd="ht t p: / / www. w3. or g/ 2001/
XM.Schema"

The first occurrence of a long literal in the RDF_VALUES$ table is taken as the canonical form
and given the VALUE_TYPE value of CPLL, CPLL@ or CTLL as appropriate; that is, a C for
canonical is prefixed to the actual value type. If a long literal with the same canonical form (but
a different lexical representation) as a previously inserted long literal is inserted into the
RDF_VALUES$ table, the VALUE_TYPE value assigned to the new insertion is PLL, PLL@ or TLL
as appropriate.

Canonically equivalent text values having different lexical representations are thus stored in
the RDF_VALUES table; however, canonically equivalent triples are not stored in the database.

1.4.4 Subjects and Objects

RDF subjects and objects are mapped to nodes in an RDF network. Subject nodes are the

start nodes of links, and object nodes are the end nodes of links. Non-literal nodes (that is,

URIs and blank nodes) can be used as both subject and object nodes. Literals can be used
only as object nodes.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 17 of 197

ORACLE

Chapter 1
RDF Data in the Database

1.4.5 Blank Nodes

Blank nodes can be used as subject and object nodes in the RDF network. Blank node
identifiers are different from URIs in that they are scoped within an RDF graph. Thus, although
multiple occurrences of the same blank node identifier within a single RDF graph necessarily
refer to the same resource, occurrences of the same blank node identifier in two different RDF
graphs do not refer to the same resource.

In an Oracle RDF network, this behavior is modeled by requiring that blank nodes are always
reused (that is, are used to represent the same resource if the same blank node identifier is
used) within an RDF graph, and never reused between two different RDF graphs. Thus, when
inserting triples involving blank nodes into an RDF graph, you must use the
SDO_RDF_TRIPLE_S constructor that supports reuse of blank nodes.

1.4.6 Properties

Properties are mapped to links that have their start node and end node as subjects and
objects, respectively. Therefore, a link represents a complete triple.

When a triple is inserted into an RDF graph, the subject, property, and object text values are
checked to see if they already exist in the database. If they already exist (due to previous
statements in other RDF graphs), no new entries are made; if they do not exist, three new rows
are inserted into the RDF_VALUES table (described in Statements).

1.4.7 Inferencing: Rules and Rulebases

Inferencing is the ability to make logical deductions based on rules. Inferencing enables you to
construct queries that perform semantic matching based on meaningful relationships among
pieces of data, as opposed to just syntactic matching based on string or other values.
Inferencing involves the use of rules, either supplied by Oracle or user-defined, placed in
rulebases.

Figure 1-2 shows triple sets being inferred from RDF graph data and the application of rules in
one or more rulebases. In this illustration, the database can have any number of RDF graphs,

rulebases, and inferred triple sets, and an inferred triple set can be derived using rules in one

or more rulebases.

Figure 1-2 Inferencing

Rulebase 1 Rulebase 2 .

l

Inferred
Model T fmmp| 11icle Set 1

Inferred

Mode! 2 Triple Set 2

A 4

A rule is an object that can be applied to draw inferences from RDF data. A rule is identified by
a name and consists of:

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 18 of 197

ORACLE

Chapter 1
RDF Data in the Database

* An IF side pattern for the antecedents
A THEN side pattern for the consequents

For example, the rule that a chairperson of a conference is also a reviewer of the conference
could be represented as follows:

(' chairpersonRule', -- rule name

"(?r :ChairPersonO ?c)', -- |F side pattern

NULL, ~-- filter condition

"(?r :ReviewerO ?c)', -- THEN side pattern

SEM ALI ASES (SEM ALIAS('', '"http://sone.org/test/"))

)

For best performance, use a single-triple pattern on the THEN side of the rule. If a rule has
multiple triple patterns on the THEN side, you can easily break it into multiple rules, each with
a single-triple pattern, on the THEN side.

A rulebase is an object that contains rules. The following Oracle-supplied rulebases are
provided:

- RDFS

* RDF (a subset of RDFS)
* OWLSIF (empty)

* RDFS++ (empty)

* OWLZEL (empty)

° OWL2RL (empty)

* OWLPrime (empty)

* SKOSCORE (empty)

The RDFS and RDF rulebases are created when you call the

SEM_APIS.CREATE_RDF NETWORK procedure to add RDF support to the database. The
RDFS rulebase implements the RDFS inference rules, as described in the World Wide Web
Consortium (W3C) RDF Semantics document at htt p: // ww. w3. org/ TR/ rdf - nt /. The RDF
rulebase represents the RDF inference rules, which are a subset of the RDFS entailment rules.
You can see the contents of these rulebases by examining the SEMR_RDFS and SEMR_RDF
views.

You can also create user-defined rulebases using the SEM_APIS.CREATE_RULEBASE
procedure. User-defined rulebases enable you to provide additional specialized inferencing
capabilities.

For each rulebase, a table is created to hold rules in the rulebase, along with a view with a
name in the format SEMR_rulebase-name (for example, SEMR_FAMILY_RB for a rulebase
named FAM LY_RB). You must use this view to insert, delete, and modify rules in the rulebase.
Each SEMR_rulebase-name view has the columns shown in Table 1-6.

Table 1-6 SEMR_rulebase-name View Columns

Column Name Data Type Description

RULE_NAME VARCHARZ2(30) Name of the rule

ANTECEDENTS VARCHAR2(4000) IF side pattern for the antecedents
FILTER VARCHAR2(4000) (Not supported.)

CONSEQUENTS VARCHAR2(4000) THEN side pattern for the consequents

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 197

http://www.w3.org/TR/rdf-mt/

ORACLE

Chapter 1
RDF Data in the Database

Table 1-6 (Cont.) SEMR_rulebase-name View Columns

___|
Column Name Data Type Description
ALIASES SEM_ALIASES One or more namespaces to be used. (The SEM_ALIASES

data type is described in Using the SEM_MATCH Table
Function to Query RDF data.)

Information about all rulebases is maintained in the SEM_RULEBASE_INFO view, which has
the columns shown in Table 1-7 and one row for each rulebase.

Table 1-7 SEM_RULEBASE_INFO View Columns
]

Column Name Data Type Description

OWNER VARCHARZ2(30) Owner of the rulebase

RULEBASE_NAME VARCHARZ2(25) Name of the rulebase

RULEBASE_VIEW_ VARCHARZ2(30) Name of the view that you must use for any SQL statements
NAME that insert, delete, or modify rules in the rulebase

STATUS VARCHAR2(30) Contains VALI Dif the rulebase is valid, | NPROGRESS if the

rulebase is being created, or FAlI LED if a system failure
occurred during the creation of the rulebase.

Example 1-3 Inserting a Rule into a Rulebase

Example 1-3 creates a rulebase named fani | y_rb, and then inserts a rule named
grandparent _rul e into the fami | y_rb rulebase. This rule says that if a person is the parent of
a child who is the parent of a child, that person is a grandparent to (that is, has the

grandPar ent O relationship with respect to) the child's child. It also specifies a namespace to
be used. (This example is an excerpt from Example 1-130 in Example: Family Information.)

EXECUTE SEM API S. CREATE_RULEBASE(' fami |y_rb', network_owner =>" RDFUSER ,
net wor k_nanme=>' NET1');

I NSERT | NTO rdf user. net 1#senr _fam |y_rb VALUES(
" grandparent _rule',
"(?x sparentOf ?y) (?y :parentOX ?z)',
NULL,
"(?x :grandParentCf ?z)',
SEM ALI ASES(SEM ALI AS(" ', ' http://ww. exanpl e.org/famly/")));

Note that the kind of grandparent rule shown in Example 1-3 can be implemented using the
OWL 2 property chain construct. For information about property chain handling, see Property

Chain Handling.

Example 1-4 Using Rulebases for Inferencing

You can specify one or more rulebases when calling the SEM_MATCH table function
(described in Using the SEM_MATCH Table Function to Query RDF data), to control the
behavior of queries against RDF data. Example 1-4 refers to the fani | y_rb rulebase and to
the grandPar ent O relationship created in Example 1-3, to find all grandfathers (grandparents
who are male) and their grandchildren. (This example is an excerpt from Example 1-130 in
Example: Family Information.)

- Select all grandfathers and their grandchildren fromthe fanmily RDF graph.
- Use inferencing fromboth the RDFS and fam |y _rb rul ebases.
SELECT x$rdfterm grandfather, y$rdfterm grandchild

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 20 of 197

ORACLE Chapter 1
RDF Data in the Database

FROM TABLE(SEM MATCH(
"PREFI X rdf: <http://ww. w3.org/ 1999/ 02/ 22-rdf - synt ax- ns#>
PREFI X rdfs: <http://wwmv. w3. org/ 2000/ 01/ r df - schema#>
PREFI X . <http://ww. exanple.org/famly/>
SELECT ?x ?y
WHERE {?x :grandParentCf ?y . ?x rdf:type :Male}',
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),

null, null, null,
PLUS_RDFT=VC ',
null, null,

'RDFUSER , 'NET1'));

For information about support for native OWL inferencing, see Using OWL Inferencing.

1.4.8 Inferred Graphs

An inferred graph is an object containing precomputed triples that can be inferred from
applying a specified set of rulebases to a specified set of RDF graphs. If a SEM_MATCH query
refers to any rulebases, an inferred graph must exist for each rulebase-RDF graph combination
in the query.

@® Note

Inferred graphs were called as Entailments in the previous book versions (prior to
Oracle Al Database Release 26ai). See Changes in Terminology and Subprograms for
more information.

To create an inferred graph, use the SEM_APIS.CREATE_INFERRED_GRAPH procedure. To
drop (delete) an inferred graph, use the SEM_APIS.DROP_INFERRED_GRAPH procedure.

When you create an inferred graph, a view for the triples associated with the inferred graph is
also created under the network owner’s schema. This view has a name in the format
SEMI_inferred-graph-name, and it is visible only to the owner of the inferred graph and to
users with suitable privileges. Each SEMI_inferred-graph-name view contains a row for each
triple (stored as a link in a network), and it has the same columns as the SEMM_rdf-graph-
name view, which is described in Table 1-4 in Metadata for Models.

Information about all inferred graphs is maintained in the SEM_RULES_INDEX_INFO view,
which has the columns shown in Table 1-8 and one row for each inferred graph.

Table 1-8 SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the inferred graph.

INDEX_NAME VARCHAR2(25) Name of the inferred graph.

INDEX_VIEW_NAM VARCHARZ2(30) Name of the view that you must use for any SQL statements
E that insert, delete, or modify rules in the inferred graph.
STATUS VARCHAR2(30) Contains VALI Dif the inferred graph is valid, | NVALI D if the

inferred graph is not valid, | NCOVPLETE if the inferred graph
is incomplete (similar to | NVALI D but requiring less time to
re-create), | NPROGRESS if the inferred graph is being
created, or FAI LED if a system failure occurred during the
creation of the inferred graph.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 21 of 197

ORACLE

Chapter 1
RDF Data in the Database

Table 1-8 (Cont.) SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

MODEL_COUNT NUMBER Number of RDF graphs included in the inferred graph.
RULEBASE_COUN NUMBER Number of rulebases included in the inferred graph.

T

Information about all database objects, such as RDF graphs and rulebases, related to inferred
graphs is maintained in the SEM_RULES_INDEX_ DATASETS view. This view has the
columns shown in Table 1-9 and one row for each unique combination of values of all the
columns.

Table 1-9 SEM_RULES_INDEX_DATASETS View Columns

Column Name Data Type Description

INDEX_NAME VARCHAR2(25) Name of the inferred graph

DATA_TYPE VARCHAR2(8) Type of data included in the inferred graph. Examples:
MODEL for an RDF graph and RULEBASE for a rulebase

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE column

Example 1-5 creates an inferred graph named fam |y rb_rix_fam |y, using the fanm |y graph
and the RDFS and fani | y_r b rulebases. (This example is an excerpt from Example 1-130 in
Example: Family Information.)

Example 1-5 Creating an inferred graph

BEG N
SEM API S. CREATE_| NFERRED_GRAPH(

"rdfs_rix_famly',

sem nodel s('fanily'),

sem Rul ebases(' RDFS','fanmily rb'),

net wor k_owner =>' RDFUSER , networ k_name=>' NET1');
END,;
/

1.4.9 RDF Graph Collections

An RDF graph collection is a logical graph that can be used in a SEM_MATCH query. An RDF
graph collection is the result of a UNION or UNION ALL operation on one or more RDF graphs
and/or inferred graphs. Using RDF graph collections can help simplify the development
process. However, for operational workloads in production, it is recommended you use single
RDF graphs where possible.

® Note

RDF Graph Collections were called as Virtual Models in the previous book versions
(prior to Oracle Al Database Release 26ai). See Changes in Terminology and
Subprograms for more information.

Queries against a single RDF graph can more effectively use partition pruning and are able to
use local optimizer statistics for the single-graph's partition, compared to queries against an

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 22 of 197

ORACLE

Chapter 1
RDF Data in the Database

RDF graph collection. Queries against an RDF graph collection use global optimizer statistics
for the entire RDF network, which can be less accurate than local, graph-level statistics.
Hence, where possible you must combine the datasets that are queried together into a single
RDF graph.

Besides using RDF graph collections for development, you can also use them if you need to
access data across multiple RDF graphs in a single query, and also need to keep the individual
RDF graphs separate for other queries. However, if possible, you must combine the datasets
that are queried together into a single RDF graph.

Using an RDF graph collection, during the development phase of a project, provides the
following benefits:

* It can simplify management of access privileges for RDF data. For example, assume that
you have created three RDF graphs and one inferred graph based on the three graphs and
the OWLPrime rulebase. Without an RDF graph collection, you must individually grant and
revoke access privileges for each RDf graph and the inferred graph. However, if you create
an RDF graph collection that contains the three RDF graphs and the inferred graph, you
will only need to grant and revoke access privileges for the single RDF graph collection.

e It can facilitate rapid updates to RDF graphs. For example, assume that RDF graph
collection VM1 contains RDF graph M1 and inferred graph R1 (that is, VM1 = M1 UNION
ALL R1), and assume that RDF graph M1_UPD is a copy of M1 that has been updated
with additional triples and that R1_UPD is an inferred graph created for M1_UPD. Now, to
have user queries over VM1 go to the updated RDF graph and inferred graph, you can
redefine RDF graph collection VM1 (that is, VM1 = M1_UPD UNION ALL R1_UPD).

* It can simplify query specification because querying an RDF graph collection is equivalent
to querying multiple RDF graphs in a SEM_MATCH query. For example, assume that RDF
graphs m1, m2, and m3 already exist, and that an inferred graph has been created for m1,
m2 ,and m3 using the OWLPrime rulebase. You could create an RDF graph collection vm1
as follows:

EXECUTE sem api s. create_rdf _graph_col lection('vml', semmodels('ml', 'n2', 'nB"),
sem rul ebases(' OALPRI ME'),
net wor k_owner =>' RDFUSER' ,
net wor k_name=>' NET1');

To query the RDF graph collection, use the RDF graph collection name as if it were a RDF
graph in a SEM_MATCH query. For example, the following query on the RDF graph
collection:

SELECT * FROM TABLE (sem match('{.}', semnodels('vml'), null, .));

is equivalent to the following query on all the individual RDF graphs:

SELECT * FROM TABLE (sem match('{.}', semnodels('nl', 'n2', 'nB'),
sem rul ebases(' OLPRIME'), .));

A SEM_MATCH query over an RDF graph collection will query either the SEMV or SEMU
view (SEMU by default and SEMV if the 'ALLOW_DUP=T" option is specified) rather than
querying the UNION or UNION ALL of each RDF graph and inferred graph. For information
about these views and options, see the reference section for the
SEM_APIS.CREATE_RDF _GRAPH_COLLECTION procedure.

RDF graph collections use views (described later in this section) and add some metadata
entries, but do not significantly increase system storage requirements.

To create an RDF graph collection, use the
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION procedure. To drop (delete) an RDF graph
collection, use the SEM_APIS.DROP_RDF_GRAPH_COLLECTION procedure. an RDF graph

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 23 of 197

ORACLE

Chapter 1
RDF Data in the Database

collection is dropped automatically if any of its component RDF graphs, rulebases, or inferred
graph are dropped. To replace an RDF graph collection without dropping it, use the
SEM_APIS.CREATE_RDF_GRAPH_COLLECTION procedure with the REPLACE=T option.
Replacing an RDF graph collection allows you to redefine it while maintaining any access
privileges.

To query an RDF graph collection, specify the RDF graph collection name in the nodel s
parameter of the SEM_MATCH table function, as shown in Example 1-6.

For information about the SEM_MATCH table function, see Using the SEM_MATCH Table
Function to Query RDF data, which includes information using certain attributes when querying
an RDF graph collection.

When you create an RDF graph collection, an entry is created for it in the SEM_MODELS$ view,
which is described in Table 1-3 in RDF Graphs. However, the values in several of the columns
are different for RDF graph collections as opposed to RDF graphs, as explained in Table 1-10.

Table 1-10 SEM_MODELS$ View Column Explanations for RDF graph collections
]

Column Name Data Type Description

OWNER VARCHARZ2(30) Schema of the owner of the RDF graph collection

MODEL_ID NUMBER Unique model ID number, automatically generated. Will be a
negative number, to indicate that this is an RDF graph
collection.

MODEL_NAME VARCHARZ2(25) Name of the RDF graph collection

TABLE_NAME VARCHARZ2(30) Null for an RDF graph collection

COLUMN_NAME VARCHAR2(30) Null for an RDF graph collection

MODEL_TABLESPA VARCHAR2(30) Null for an RDF graph collection
CE_NAME

Information about all RDF graph collections is maintained in the SEM_VMODEL_INFO view,
which has the columns shown in Table 1-11 and one row for each RDF graph collection.

Table 1-11 SEM_VMODEL_INFO View Columns
]

Column Name Data Type Description

OWNER VARCHARZ2(30) Owner of the RDF graph collection

VIRTUAL_MODEL__ VARCHARZ2(25) Name of the RDF graph collection

NAME

UNIQUE_VIEW_NA VARCHAR2(30) Name of the view that contains unique triples in the RDF
ME graph collection, or null if the view was not created
DUPLICATE_VIEW VARCHAR2(30) Name of the view that contains duplicate triples (if any) in
_NAME the RDF graph collection

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 24 of 197

ORACLE

Chapter 1
RDF Data in the Database

Table 1-11 (Cont.) SEM_VMODEL_INFO View Columns
]

Column Name Data Type

Description

STATUS VARCHAR2(30)

MODEL_COUNT NUMBER

RULEBASE_COUN NUMBER
T

RULES_INDEX_CO NUMBER
UNT

Contains VALI Dif the associated inferred graph is valid,

I NVALI Dif the inferred graph is not valid, | NCOVPLETE if the
inferred graph is incomplete (similar to | NVALI D but
requiring less time to re-create), | NPROGRESS if the inferred
graph is being created, FAI LED if a system failure occurred
during the creation of the inferred graph, or NORI DX if no
inferred graph is associated with the RDF graph collection.

In the case of multiple inferred graphs, the lowest status
among all of the component inferred graphs is used as the
RDF graph collection's status (I NVALI D < | NCOVPLETE <
VALI D).

Number of RDF graphs in the RDF graph collection

Number of rulebases used for the RDF graph collection

Number of inferred graphs in the RDF graph collection

Information about all objects (RDF graphs, rulebases, and inferred graphs) related to RDF
graph collections is maintained in the SEM_VMODEL_DATASETS view. This view has the
columns shown in Table 1-12 and one row for each unique combination of values of all the

columns.

Table 1-12 SEM_VMODEL_DATASETS View Columns
]

Column Name Data Type Description

VIRTUAL_MODEL_ VARCHARZ2(25) Name of the RDF graph collection

NAME

DATA_TYPE VARCHAR2(8) Type of object included in the RDF graph collection.
Examples: MODEL for an RDF graph, RULEBASE for a
rulebase, or RULEI DX for an inferred graph

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE column

Example 1-6 Querying an RDF Graph Collection

SELECT COUNT(pr ot ei n)
FROM TABLE (SEM MATCH (
" SELECT ?protein
VHERE {

?protein rdf:type :Protein .
?protein :citation ?citation .

?citation :author "Bairoch A "}',

RDF_MODELS(' UNIPROT_WM'),
NULL,

SEM ALI ASES(SEM ALIAS("', 'http://purl.uniprot.org/corel')),

NULL,
NULL,

* ALLOW DUP=T"

NULL,

NULL,

' RDFUSER , ' NET1')) ;

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 197

ORACLE Chapter 1
RDF Data in the Database

1.4.10 Named Graphs

RDF Graph supports the use of named graphs, which are described in the "RDF Dataset"
section of the W3C SPARQL Query Language for RDF recommendation (http://
wwv. W3. or ¢/ TR/ r df - spar gl - quer y/ #r df Dat aset).

This support is provided by extending an RDF triple consisting of the traditional subject,
predicate, and object, to include an additional component to represent a graph name. The
extended RDF triple, despite having four components, will continue to be referred to as an
RDF triple in this document. In addition, the following terms are sometimes used:

* N-Triple is a format that does not allow extended triples. Thus, n-triples can include only
triples with three components.

* N-Quad is a format that allows both "regular"” triples (three components) and extended
triples (four components, including the graph name). For more information, see http://
www. W3. or g/ TR/ 2013/ NOTE- n- quads- 20130409/ .

To load a file containing extended triples (possibly mixed with regular triples) into an Oracle
Al Database, the input file must be in N-Quad format.

The graph name component of an RDF triple must either be null or a URI. If it is null, the RDF
triple is said to belong to a default graph; otherwise it is said to belong to a named graph
whose name is designated by the URI.

Additionally, to support named graphs in SDO_RDF_TRIPLE_S object type (described in
Semantic Data Types Constructors__and Methods), a new syntax is provided for specifying a
model-graph, that is, a combination of model (RDF graph) and named graph (if any) together,
and the RDF_M_ID attribute holds the identifier for a model-graph: a combination of model
(RDF graph) ID and value ID for the named graph (if any). The name of a model-graph is
specified as rdf_graph_name, and if a named graph is present, followed by the colon (;)
separator character and the name of the named graph (which must be a URI and enclosed
within angle brackets < >).

For example, in a medical data set the named graph component for each RDF triple might be a
URI based on patient identifier, so there could be as many named graphs as there are unique
patients, with each named graph consisting of data for a specific patient.

For information about performing specific operations with named graphs, see the following:

e Using constructors and methods: Semantic Data Types_ Constructors_ and Methods

e Loading: Loading N-Quad Format Data into a Staging Table Using an External Table and
Loading Data into Named Graphs Using INSERT Statements

* Querying: GRAPH Keyword Support and Expressions in the SELECT Clause

* Inferencing: Using Named Graph Based Inferencing (Global and Local)

« Data Formats Related to Named Graph Support

1.4.10.1 Data Formats Related to Named Graph Support

TriG and N-QUADS are two popular data formats that provide graph names (or context) to
triple data. The graph names (context) can be used in a variety of different ways. Typical usage
includes, but is not limited to, the grouping of triples for ease of management, localized query,
localized inference, and provenance.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 26 of 197

http://www.w3.org/TR/rdf-sparql-query/#rdfDataset
http://www.w3.org/TR/rdf-sparql-query/#rdfDataset
http://www.w3.org/TR/2013/NOTE-n-quads-20130409/
http://www.w3.org/TR/2013/NOTE-n-quads-20130409/
https://www.w3.org/TR/trig/
http://www.w3.org/TR/n-quads/.

ORACLE

Chapter 1
RDF Data in the Database

Example 1-7 RDF Data Encoded in TriG Format

Example 1-7 shows an RDF data set encoded in TriG format. It contains a default graph and a
named graph.

@refix foaf: <http://xmns.conffoaf/0.1/> .
@refix dc: <http://purl.org/dc/elements/1.1/> .

Default graph

<http://ny.com John> dc: publisher <http://publisher/Xyz> .
}

A nanmed graph
<http://ny.com John> {
<http://ny.com John> foaf:name "John Doe" .

}

When loading the TriG file from Example 1-7 into a Dat aset G aphOr acl eSemobject (for
example, using Example 7-12 in Bulk Loading Using RDF Semantic Graph Support for Apache
Jena, but replacing the constant " N QUADS" with " TRI G'), the triples in the default graph will be
loaded into Oracle Al Database as triples with null graph names, and the triples in the named
graphs will be loaded into the database with the designated graph names.

Example 1-8 N-QUADS Format Representation

N-QUADS format is a simple extension of the existing N-TRIPLES format by adding an
optional fourth column (graph name or context). Example 1-8 shows the N-QUADS format
representation of the TriG file from Example 1-7.

<http://ny.com John> <http://purl.org/dc/elements/ 1. 1/ publisher> <http://publisher/Xyz> .
<http://ny.com John> <http://xm ns. con foaf/0. 1/ name> "John Doe" <http://ny.conm John>

When loading an N-QUADS file into a Dat aset G aphOr acl eSemobject (see Example 7-12),
lines without the fourth column will be loaded into Oracle Al Database as triples with null graph
names, and lines with a fourth column will be loaded into the database with the designated
graph names.

1.4.11 RDF Data Security Considerations

The following database security considerations apply to the use of RDF data:

* When an RDF graph or inferred graph is created, the owner gets the SELECT privilege
with the GRANT option on the associated view. Users that have the SELECT privilege on
these views can perform SEM_MATCH queries against the associated RDF graph or
inferred graph.

* When arulebase is created, the owner gets the SELECT, INSERT, UPDATE, and DELETE
privileges on the rulebase, with the GRANT option. Users that have the SELECT privilege
on a rulebase can create an inferred graph that includes the rulebase. The INSERT,
UPDATE, and DELETE privileges control which users can modify the rulebase and how
they can modify it.

* To perform data manipulation language (DML) operations on an RDF graph, a user must
have DML privileges for the corresponding base table.

e The creator of the base table corresponding to an RDF graph can grant privileges to other
users.

* To perform data manipulation language (DML) operations on a rulebase, a user must have
the appropriate privileges on the corresponding database view.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 27 of 197

ORACLE’

Chapter 1
RDF Metadata Tables and Views

e The creator of an RDF graph can grant SELECT privileges on the corresponding database
view to other users.

e A user can query only those RDF graphs for which that user has SELECT privileges to the
corresponding database views.

e Only the creator of an RDF graph or a rulebase can drop it.

1.4.12 RDF Privilege Considerations

The following database privilege-related considerations apply to the use of RDF networks:

* The network owner user whose schema will hold the tables and views for the RDF network

must have the following roles and priviliges:

GRANT CONNECT, RESQURCE, CREATE VI EW TO <networ k_owner _user >;

e The network owner requires quota on the tablespace that will contain the network.

1.5 RDF Metadata Tables and Views

Oracle Al Database maintains several tables and views in the network owner’s schema to hold
metadata related to RDF data.

Some of these tables and views are created by the SEM_APIS.CREATE_RDF_NETWORK
procedure, as explained in Quick Start for Using Semantic Data, and some are created only as
needed.Table 1-13 lists the tables and views in alphabetical order. (In addition, several tables
and views are created for Oracle internal use, and these are accessible only by network
owners of the schema-private RDF networks).

Table 1-13 RDF Metadata Tables and Views

Name

Contains Information About

Described In

RDF_CRS_URI$

RDF_VALUES$

SEM_DTYPE_IND
EX_INFO

SEM_MODEL$

SEM_NETWORK_
INDEX_INFO$

SEM_RULEBASE_
INFO

SEM_RULES_IND
EX_DATASETS

SEM_RULES_IND
EX_INFO

SEM_VMODEL_IN
FO

SEM_VMODEL_D
ATASETS

SEMCL _inferred-
graph-name

Graph Developer's Guide for RDF Graph
G43351-01

Available EPSG spatial
reference system URIs

Subjects, properties, and objects

used to represent statements

All data type indexes in the
network

All RDF graphs defined in the
database

RDF network indexes
Rulebases

Database objects used in
inferred graphs

Inferred graphs
RDF graph collections

Database objects used in RDF
graph collections

ow : sameAs cliqgue members
and canonical representatives

Copyright © 2005, 2025, Oracle and/or its affiliates.

Spatial Support

Statements

Using Data Type Indexes

RDF Graphs

SEM_NETWORK_INDEX_INFO View

Inferencing: Rules and Rulebases

Inferred Graphs

Inferred Graphs

RDF Graph Collections

RDF Graph Collections

Optimizing owl:sameAs Inference

October 13, 2025
Page 28 of 197

ORACLE’

Chapter 1
RDF Data Types, Constructors, and Methods

Table 1-13 (Cont.) RDF Metadata Tables and Views

|
Name Contains Information About Described In

SEMI_inferred- Triples in the specified inferred Inferred Graphs

graph-name graph
SEMM_rdf-graph- Triples in the specified RDF RDF Graphs
name graph

SEMR_rulebase- Rules in the specified rulebase Inferencing: Rules and Rulebases
name

SEMU_rdf- Unique triples in the RDF graph RDF Graph Collections
collection-name collection
SEMV_rdf- Triples in the RDF graph RDF Graph Collections

collection-name collection

1.6 RDF Data Types, Constructors, and Methods

The SDO_RDF_TRIPLE_S object type is used for representing the edges (that is, triples and
guads) of RDF graphs.

The SDO_RDF_TRIPLE_S object type (the _S for storage) stores persistent RDF data in the
database.

The SDO_RDF_TRIPLE_S type has references to the data, because the actual RDF data is
stored only in the central RDF schema. This type has methods to retrieve the entire triple or
part of the triple.

® Note

Blank nodes are always reused within an RDF graph and cannot be reused across
graphs.

The SDO_RDF_TRIPLE_S type is used to store the triples in database tables.

The SDO_RDF_TRIPLE_S object type has the following attributes:

SDO RDF_TRI PLE_S (
RDF_C_ I D NUMBER, -- Canonical object value ID
RDF_M | D NUMBER, -- Mbdel (or Model -G aph) ID
RDF_S I D NUMBER, -- Subject value ID
RDF_P_I D NUMBER, -- Property value ID
RDF_O | D NUMBER) -- (bject value ID

The SDO_RDF_TRIPLE_S type has the following methods that retrieve the name of the RDF
graph (or model-graph), or a part (subject, property, or object) of a triple:

GET_MODEL(

NETWORK_OWKER VARCHAR? DEFAULT NULL,

NETWORK_NAME VARCHAR? DEFAULT NULL) RETURNS VARCHAR?
GET_SUBJECT(

NETWORK_OWKER VARCHAR? DEFAULT NULL,

NETWORK_NAME VARCHAR? DEFAULT NULL) RETURNS VARCHAR2
GET_PROPERTY(

NETWORK_OWKER VARCHAR? DEFAULT NULL,

NETWORK_NAME VARCHAR? DEFAULT NULL) RETURNS VARCHAR2

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 29 of 197

ORACLE Chapter 1
RDF Data Types, Constructors, and Methods

GET_OBJECT(

NETWORK_OWKER VARCHAR? DEFAULT NULL,

NETWORK_NAME VARCHAR? DEFAULT NULL) RETURNS CLOB
GET_0BJ_VALUE(

NETWORK_OWKER VARCHAR? DEFAULT NULL,

NETWORK_NAME VARCHAR? DEFAULT NULL) RETURNS VARCHAR2

Example 1-9 shows some of the SDO_RDF_TRIPLE_S methods.
Example 1-9 SDO_RDF_TRIPLE_S Methods

- Find all articles that reference Article2.
SELECT a.triple.GET_SUBJECT(' RDFUSER ,' NET1') AS subj ect
FROM RDFUSER. NET1#RDFT_ARTI CLES a
WHERE a. triple. GET_PROPERTY(' RDFUSER ,' NET1') = '<http://purl.org/dc/terns/
references>'
AND a.triple. GET_OBJ_VALUE(' RDFUSER ,' NET1') = '<http://nature.exanple.com
Article2>';

<http://nature.exanpl e.com Articlel>

- Find all triples with Articlel as subject.
SELECT a.triple. GET_SUBJECT(' RDFUSER ,' NET1') AS subj ect,
a.triple. GET_PROPERTY(' RDFUSER ,' NET1') AS property,
a.triple. GET_OBJ_VALUE(' RDFUSER ,' NET1') AS obj ect
FROM RDFUSER. NET1#RDFT_ARTI CLES a
WHERE a. triple. GET_SUBJECT(' RDFUSER ,' NET1') = '<http://nature.exanple.com
Articlel>;

<http://nature.exanpl e.comArticlel>
<http://purl.org/dc/elenments/1. 1/title>
"“All about Xyz"

<http://nature. exanpl e.com Articlel>
<http://purl.org/dc/el ements/ 1.1/ creator>
"Jane Smith"

<http://nature. exanple.comArticlel>
<http://purl.org/dc/terms/references>
<http://nature.exanpl e.com Article2>

<http://nature. exanple.comArticlel>
<http://purl.org/dc/terms/references>
<http://nature. exanpl e. comf Articl e3

- Find all objects where the subject is Articlel.
SELECT a.triple. GET_OBJ_VALUE(' RDFUSER ,' NET1') AS obj ect
FROM RDFUSER. NET1#RDFT_ARTI CLES a
WHERE a. triple. GET_SUBJECT(' RDFUSER ,' NET1') = '<http://nature.exanple.com
Articlel>;

"Al about XYz"
"Jane Smth"

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 30 of 197

ORACLE

Chapter 1

RDF Data Types, Constructors, and Methods

<http://nature.exanpl e.com Article2>
<http://nature. exanple.comArticle3>

- Find all triples where Jane Smith is the object.

SELECT a.triple. GET_SUBJECT(' RDFUSER , ' NET1') AS subj ect,
a.triple. GET_PROPERTY(' RDFUSER ,' NET1') AS property,
a.triple. GET_OBJ_VALUE(' RDFUSER ,' NET1') AS obj ect

FROM RDFUSER. NET1#RDFT_ARTI CLES a

WHERE a.triple. GET_OBJ_VALUE(' RDFUSER ,' NET1') = '"Jane Smith"';

<http://nature. exanple.comArticlel>
<http://purl.org/dc/el ements/ 1.1/ creator>
"Jane Smith"

» Constructors for Inserting Triples

1.6.1 Constructors for Inserting Triples

The following constructor formats are available for inserting triples into a model table. The only
difference is that in the second format the data type for the object is CLOB, to accommodate

very long literals.

SDO RDF_TRIPLE S (
nmodel _name VARCHAR2, -- Mbdel nane

subj ect VARCHAR2, -- Subj ect
property VARCHAR2, -- Property
obj ect VARCHAR2, -- (bject

net wor k_owner VARCHAR2 DEFAULT NULL,
net wor k_name VARCHAR2 DEFAULT NULL)
RETURN SELF;

SDO RDF_TRIPLE S (
nmodel _narme VARCHAR2, -- Mbdel nane

subj ect VARCHAR2, -- Subject
property VARCHAR2, -- Property
obj ect CLCB, -- vj ect

net wor k_owner VARCHAR2 DEFAULT NULL,
networ k_name VARCHAR2 DEFAULT NULL)
RETURN SELF;

Example 1-10 uses the first constructor format to insert several triples.

Example 1-10 SDO_RDF_TRIPLE_S Constructor to Insert Triples

I NSERT | NTO RDFUSER. NET1#RDFT_ARTI CLES VALUES (

SDO RDF_TRIPLE S ("articles','<http://nature.exanmple.com Articlel>",

"<http://purl.org/dc/el ements/ 1. 1/ creator>",
""Jane Smth"',

' RDFUSER' ,

"NET1'));

| NSERT | NTO RDFUSER. NET1#RDFT_ARTI CLES VALUES (

SDO RDF_TRIPLE S ("articles:<http://exanpl es. con ns#G aphl>',
"<http://nature.exanple.com Articlel02>,
"<http://purl.org/dc/elements/ 1. 1/ creator>",

' _:bl',

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 197

ORACLE’

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

' RDFUSER
"NETL'));

| NSERT | NTO RDFUSER. NET1#RDFT_ARTI CLES VALUES (
SDO RDF_TRIPLE S ("articles:<http://exanpl es. con ns#G aphl>',
' b2',
"<http://purl.org/dc/elements/ 1. 1/ creator>",
" _:bl',
' RDFUSER' ,
"NETL'));

1.7 Using the SEM_MATCH Table Function to Query RDF Data

To query RDF data, use the SEM_MATCH table function.

@® Note

The SEM_MATCH table function is supported only if Oracle JVM is enabled on your
Oracle Autonomous Al Database Serverless deployments. To enable Oracle JVM, see
Use Oracle Java in Using Oracle Autonomous Al Database Serverless for more
information.

This function has the following attributes:

SEM_MATCH(
query VARCHAR2,
nodel s SEM _MODELS,
rul ebases SEM_RULEBASES,
al i ases SEM ALI ASES,
filter VARCHARZ2,
i ndex_status VARCHAR2 DEFAULT NULL,
options VARCHAR2 DEFAULT NULL,
graphs SEM GRAPHS DEFAULT NULL,

named_graphs SEM GRAPHS DEFAULT NULL,
net wor k_owner VARCHAR2 DEFAULT NULL,
networ k_name VARCHAR2 DEFAULT NULL
) RETURN ANYDATASET;

The query and nodel s attributes are required. The other attributes are optional (that is, each
can be a null value).

The query attribute is a string literal (or concatenation of string literals) with one or more triple
patterns, usually containing variables. (The query attribute cannot be a bind variable or an
expression involving a bind variable.) A triple pattern is a triple of atoms followed by a period.
Each atom can be a variable (for example, ?x), a qualified name (for example, r df : t ype) that
is expanded based on the default namespaces and the value of the aliases attribute, or a full
URI (for example, <htt p: //wwv. exanpl e. or g/ fani | y/ Mal e>). In addition, the third atom can
be a numeric literal (for example, 3. 14), a plain literal (for example, " Her man"), a language-
tagged plain literal (for example, " Her man" @n), or a typed literal (for example,
"123"Mxsd:int).

For example, the following query attribute specifies three triple patterns to find grandfathers
(that is, grandparents who are also male) and the height of each of their grandchildren:

"SELECT * WHERE { ?x :grandParentCf ?y . ?x rdf:type :Male . ?y :height ?h }'

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 32 of 197

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

The model s attribute identifies the RDF graphs to use. Its data type is SEM_MODELS, which
has the following definition: TABLE OF VARCHAR2(25) . If you are querying an RDF graph
collection, specify only the name of the RDF graph collection and no other RDF graphs. (RDF
graph collections are explained in RDF Graph Collections.)

The r ul ebases attribute identifies one or more rulebases whose rules are to be applied to the
query. Its data type is SEM_RULEBASES, which has the following definition: TABLE OF
VARCHAR2(25) . If you are querying an RDF graph collection, this attribute must be null.

The al i ases attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. Its data type is
SEM_ALIASES, which has the following definition: TABLE OF SEM ALI AS, where each
SEM_ALIAS element identifies a namespace ID and namespace value. The SEM_ALIAS data
type has the following definition: (namespace_i d VARCHAR2(30), namespace_val

VARCHAR2(4000))

The following default namespaces (hamespace_i d and nanespace_val attributes) are used by
the SEM_MATCH table function and the SEM_CONTAINS and SEM_RELATED operators:

("ogc', "http://ww.opengis.net/ont/geosparql#')

("ogcf', "http://wmw. opengis.net/def/function/geosparql/")
("ogcgm ', "http://ww. opengis.net/ont/gm#)

("ogesf', 'http://ww. opengis.net/ont/sf#")

("orardf', "http://xmns.oracle.comrdf/")

("orageo', "http://xnns.oracle.comrdf/geo/")

(

(

(

(

"ow ', "http://ww w3. org/ 2002/ 07/ o #')

"rdf', "http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#')
"rdfs', "http://ww. w3. org/ 2000/ 01/ r df - schema#')
"xsd', "http://ww. w3. or g/ 2001/ XM_Schena#')

You can override any of these defaults by specifying the namespace_i d value and a different
namespace_val value in the al i ases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not null, it
should be a string in the form of a WHERE clause without the WHERE keyword. For example: ' (h
>='"6"")" to limit the result to cases where the height of the grandfather's grandchild is 6 or
greater (using the example of triple patterns earlier in this section).

@® Note

Instead of using the fil t er attribute, you are encouraged to use the FILTER keyword
inside your query pattern whenever possible (as explained in Graph Patterns: Support
for Curly Brace Syntax_and OPTIONAL_FILTER__UNION__and GRAPH Keywords).
Using the FILTER keyword is likely to give better performance because of internal
optimizations. The fi | t er argument, however, can be useful if you require SQL
constructs that cannot be expressed with the FILTER keyword.

The i ndex_st at us attribute lets you query RDF data even when the relevant inferred graph
does not have a valid status. (If you are querying an RDF graph collection, this attribute refers
to the inferred graph associated with the RDF graph collection.) If this attribute is null, the
query returns an error if the inferred graph does not have a valid status. If this attribute is not
null, it must be the string | NCOWPLETE or | NVALI D. For an explanation of query behavior with
different i ndex_st at us values, see Performing Queries with Incomplete or Invalid Entailments.

The opti ons attribute identifies options that can affect the results of queries. Options are
expressed as keyword-value pairs. The following options are supported:

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 33 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

ALL_AJ HASH, ALL_AJ MERGE, and ALL_BGP_NL are global query optimizer hints that specify
that all anti joins for NOT EXISTS and MINUS operations should use the specified join
type.

ALL_BGP_HASHand ALL_BGP_NL are global query optimizer hints that specify that all inter-
BGP joins (for example. the join between the root BGP and an OPTIONAL BGP) should
use the specified join type. (BGP stands for basic graph pattern. From the W3C SPARQL
Query Language for RDF Recommendation: "SPARQL graph pattern matching is defined
in terms of combining the results from matching basic graph patterns. A sequence of triple
patterns interrupted by a filter comprises a single basic graph pattern. Any graph pattern
terminates a basic graph pattern."

The BGP_JO N(USE_NL) and BGP_JO N(USE_HASH) HINTO query optimizer hints can be used
to control the join type with finer granularity.

Example 1-17 shows the ALL_BGP_HASH option used in a SEM_MATCH query.

AUTO_HI NTS=T automatically detects and generates USE_HASH hints for unselective
SPARQL queries.

ALL_LINK HASHand ALL_LI NK_NL are global query optimizer hints that specify the join type
for all RDF_LINKS joins (that is, all joins between triple patterns within a BGP).

ALL_LI NK_HASHand ALL_LI NK_NL can also be used within a HINTO query optimizer hint for
finer granularity.

ALL_MAX PP_DEPTH(n) is a global query optimizer hint that sets the maximum depth to use
when evaluating * and + property path operators. The default value is 10. The
MAX_PP_DEPTH(n) HINTO hint can be used to specify maximum depth with finer granularity.

ALL_NO MERGE is a global query optimizer hint that adds NO_MERGE to each subquery in the
generated SQL for a SPARQL query. This hint is used to ensure that a selective subquery
in a SPARQL query is not merged with the other parts of the SPARQL query.

ALL_ORDERED is a global query optimizer hint that specifies that the triple patterns in each
BGP in the query should be evaluated in order.

Example 1-17 shows the ALL_ORDERED option used in a SEM_MATCH query.

ALL_USE PP_HASHand ALL_USE_PP_NL are global query optimizer hints that specify the join
type to use when evaluating property path expressions. The USE PP_HASHand USE PP_NL
HINTO hints can be used for specifying join type with finer granularity.

ALLOW DUP=T generates an underlying SQL statement that performs a "union all" instead of
a union of the RDF graphs and inferred data (if applicable). This option may introduce
more rows (duplicate triples) in the result set, and you may need to adjust the application
logic accordingly. If you do not specify this option, duplicate triples are automatically
removed across all the RDF graphs and inferred data to maintain the set semantics of
merged RDF graphs; however, removing duplicate triples increases query processing time.
In general, specifying ' ALLON DUP=T' improves performance significantly when multiple
RDF graphs are involved in a SEM_MATCH query.

If you are querying an RDF graph collection, specifying ALLOW DUP=T causes the
SEMV_vm_name view to be queried; otherwise, the SEMU_vm_name view is queried.

ALLOW PP_DUP=T allows duplicate results for + and * property path queries. Allowing
duplicate results may return the first result rows faster.

AS OF [SCN, <SCN VALUE>] , where <SCN_VALUE> is a valid system change number,
indicates that Flashback Query should be used to query the state of the RDF network as of
the specified SCN.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 34 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

AS OF [TI MESTAMP, <TI MESTAMP_VALUE>] , where <TIMESTAMP_VALUE> is a valid
timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF', indicates that Flashback
Query should be used to query the state of the RDF network as of the specified timestamp.

CLOB_AGG_SUPPORT=T enables support for CLOB values for the following aggregates: MIN,
MAX, GROUP_CONCAT, SAMPLE. Note that enabling CLOB support incurs a significant
performance penalty.

CLOB_EXP_SUPPORT=T enables support for CLOB values for some built-in SPARQL
functions. Note that enabling CLOB support incurs a significant performance penalty.

CONSTRUCT_STRI CT=T eliminates invalid RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries. RDF triples with literals in the
subject position or literals or blank nodes in the predicate position are considered invalid.

CONSTRUCT _UNI QUE=T eliminates duplicate RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries.

DI SABLE_| M VI RTUAL_CCL specifies that the query compiler should not use in-memory
virtual columns.

Dl SABLE_MWI EWspecifies that the query compiler should not use materialized views.

DI SABLE_NULL_EXPR _JO N specifies that the query compiler should assume that all
SELECT expressions produce non-null output.

Dl SABLE_SAMEAS BLOOMspecifies that the query compiler should not use a Bloom filter
when owl : sameAs triples are joined. (For detailed information, see the explanation of
Bloom filters in Oracle Al Database SQL Tuning Guide.)

DO_UNESCAPE=T causes characters in the following return columns to be unescaped
according to the W3C N-Triples specification (ht t p: // www. w3. or g/ TR/ r df - t est cases/
#ntripl es): var, var$_PREFIX, var$_ SUFFIX, var$RDFCLOB, var$RDFLTYP,
var$RDFLANG, and var$RDFTERM.

See also the reference information for SEM_APIS.ESCAPE_CLOB TERM,
SEM_APIS.ESCAPE_CLOB VALUE, SEM_APIS.ESCAPE_RDF TERM,
SEM_APIS.ESCAPE_RDF VALUE, SEM_APIS.UNESCAPE CLOB TERM,
SEM_APIS.UNESCAPE CLOB VALUE, SEM_APIS.UNESCAPE_RDF TERM, and
SEM_APIS.UNESCAPE RDF VALUE.

FI NAL_VALUE_HASH and FI NAL_VALUE_NL are global query optimizer hints that specify the
join method that should be used to obtain the lexical values for any query variables that are
not used in a FILTER clause.

GRAPH_MATCH_UNNAMED=T allows unnamed triples (null G_I D) to be matched inside GRAPH
clauses. That is, two triples will satisfy the graph join condition if their graphs are equal or if
one or both of the graphs are null. This option may be useful when your dataset includes
unnamed TBOX triples or unnamed entailed triples.

H NTO={ <hi nt - st ri ng>} (pronounced and written "hint" and the number zero) specifies
one or more keywords with hints to influence the execution plan and results of queries.
Conceptually, a graph pattern with n triple patterns and referring to m distinct variables
results in an (n+m)-way join: n-way self-join of the target RDFgraphs and optionally the
corresponding inferred graph, and then m joins with RDF_VALUES for looking up the
values for the m variables. A hint specification affects the join order and join type used for
the query execution.

The hint specification, <hint-string>, uses keywords, some of which have parameters
consisting of a sequence or set of aliases, or references, for individual triple patterns and
variables used in the query. Aliases for triple patterns are of the form ti where i refers to the
0-based ordinal numbers of triple patterns in the query. For example, the alias for the first
triple pattern in a query is t 0, the alias for the second one is t 1, and so on. Aliases for the

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 35 of 197

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

variables used in a query are simply the names of those variables. Thus, ?x will be used in
the hint specification as the alias for a variable ?x used in the graph pattern.

Hints used for influencing query execution plans include LEADING(<sequence of
aliases>), USE_NL(<set of aliases>), USE_HASH(<set of aliases>), and INDEX(<alias>
<index_name>). These hints have the same format and basic meaning as hints in SQL
statements, which are explained in Oracle Al Database SQL Language Reference.

Example 1-12 shows the HINTO option used in a SEM_MATCH query.

HTTP_METHOD=POST_PAR indicates that the HTTP POST method with URL-encoded
parameters pass should be used for the SERVICE request. The default option for requests
is the HTTP GET method. For more information about SPARQL protocol, see http: //

www. W3. or g/ TR/ 2013/ REC- spar gl 11- pr ot ocol - 20130321/ #pr ot ocol .

I NF_ONLY=T queries only the entailed graph for the specified RDF graphs and rulebases.

OVERLOADED NL=T specifies that a procedural nested loop execution should be used to join
with an overloaded SERVICE clause.

PLUS_RDFT=T can be used with SPARQL SELECT syntax (see Expressions in the SELECT
Clause) to additionally return a var$RDFTERM CLOB column for each projected query
variable. The value for this column is equivalent to the result of
SEM_APIS.COMPOSE_RDF_TERM(var, var$RDFVTYP, var$RDFLTYP, var$RDFLANG,
var$RDFCLOB). When using this option, the return columns for each variable var will be
var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB,
var$RDFLTYP, var$RDFLANG, and var$RDFTERM.

PLUS_RDFT=VC can be used with SPARQL SELECT syntax (see Expressions in the
SELECT Clause) to additionally return a var$RDFTERM

VARCHAR2(NETWORK_MAX_STRI NG_SI ZE) column for each projected query variable. The
value for this column is equivalent to the result of SEM_APIS.COMPOSE_RDF_TERM(var,
var$RDFVTYP, var$RDFLTYP, var$RDFLANG). When using this option, the return
columns for each variable var will be var, var$RDFVID, var$_PREFIX, var$_SUFFIX,
var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, varSRDFLANG, and var$RDFTERM. Note
that when your RDF network is using NETWORK _STORAGE_FORMEUNESC, special characters in
var$RDFTERM are automatically escaped to form syntactically valid RDF values. This may
cause the size of var$SRDFTERM to exceed NETWORK_MAX_STRI NG_SI ZE and hence an error
will be raised in such cases. To avoid the error, you can use PLUS_RDFT=T to return a CLOB
instead.

PRQJ_EXACT _VALUES=T disables canonicalization of values returned from functions and of
constant values used in value assignment statements. Such values are canonicalized by
default.

SERVI CE_CLOB=F sets the column values of var6RDFCLOB to null instead of saving values
when calling the service. If CLOB data is not needed in your application, performance can
be improved by using this option to skip CLOB processing.

SERVI CE_ESCAPE=F disables character escaping for RDF literal values returned by SPARQL
SERVICE calls. RDF literal values are escaped by default. If character escaping is not
relevant for your application, performance can be improved by disabling character
escaping.

SERVI CE_JPDWN=T is a query optimizer hint for using nested loop join in SPARQL SERVICE.
Example 1-73 shows the SERVI CE_JPDWN=T option used in a SEM_MATCH query.

SERVI CE_PROXY=<pr oxy- st ri ng> sets a proxy address to be used when performing http
connections. The given proxy-string will be used in SERVICE queries. Example 1-76
shows a SEM_MATCH query including a proxy address.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 36 of 197

http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

e STRICT_AGG_CARD=T uses SPARQL semantics (one null row) instead of SQL semantics
(zero rows) for aggregate queries with graph patterns that fail to match. This option incurs
a slight performance penalty.

e STRI CT_DEFAULT=T restricts the default graph to unnamed triples when no dataset
information is specified.

The graphs attribute specifies the set of named graphs from which to construct the default
graph for a SEM_MATCH query. Its data type is SEM_GRAPHS, which has the following
definition: TABLE OF VARCHAR2(4000) . The default value for this attribute is NULL. When gr aphs
is NULL, the "union all" of all default graphs in the set of RDF graphs specified in the nodel s
attribute is used as the default graph.

The named_gr aphs attribute specifies the set of named graphs that can be matched by a
GRAPH clause. Its data type is SEM_GRAPHS, which has the following definition: TABLE OF
VARCHAR2(4000) . The default value for this attribute is NULL. When named_graphs is NULL, all
named graphs in the set of RDF graphs specified in the nodel s attribute can be matched by a
GRAPH clause.

The net wor k_owner attribute specifies the schema that owns the RDF network that contains
the RDF graph or RDF graph collection specified in the models attribute. This attribute should
be non-null to query a schema-private RDF network.

The net wor k_nane attribute specifies the name of the RDF network that contains the RDF
graph or graph collection specified in the models attribute. This attribute should be non-null to
query a schema-private RDF network.

The SEM_MATCH table function returns an object of type ANYDATASET, with elements that
depend on the input variables. In the following explanations, var represents the name of a
variable used in the query. For each variable var, the result elements have the following
attributes: var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB,
var$RDFLTYP, and var$RDFLANG.

In such cases, var has the lexical value bound to the variable, var$RDFVID has the VALUE_ID
of the value bound to the variable, var$_PREFIX and var$_SUFFIX are the prefix and suffix of
the value bound to the variable, varSRDFVTYP indicates the type of value bound to the
variable (URI, LI T [literal], or BLN [blank node]), var$RDFCLOB has the lexical value bound to
the variable if the value is a long literal, var6RDFLTYP indicates the type of literal bound if a
literal is bound, and var$RDFLANG has the language tag of the bound literal if a literal with
language tag is bound. var$RDFCLOB is of type CLOB, while all other attributes are of type
VARCHAR?2.

For a literal value or a blank node, its prefix is the value itself and its suffix is null. For a URI
value, its prefix is the left portion of the value up to and including the rightmost occurrence of
any of the three characters / (slash), # (pound), or : (colon), and its suffix is the remaining
portion of the value to the right. For example, the prefix and suffix for the URI value http://
www. exanpl e. or g/ fam | y/ grandParent O are http://ww. exanpl e.org/fanmi|y/ and
grandPar ent OF , respectively.

Along with columns for variable values, a SEM_MATCH query that uses SPARQL SELECT
syntax returns one additional NUMBER column, SEM$ROWNUM, which can be used to
ensure the correct result ordering for queries that involve a SPARQL ORDER BY clause.

A SEM_MATCH query that uses SPARQL ASK syntax returns the columns ASK,
ASK$RDFVID, ASK$_PREFIX, ASK$_SUFFIX, ASK$RDFVTYP, ASK$RDFCLOB,
ASK$RDFLTYP, ASK$RDFLANG, and SEM$ROWNUM. This is equivalent to a SPARQL
SELECT syntax query that projects a single ?ask variable.

A SEM_MATCH query that uses SPARQL CONSTRUCT or SPARQL DESCRIBE syntax
returns columns that contain RDF triple data rather than query result bindings. Such queries

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 37 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

return values for subject, predicate and object components. See Graph Patterns: Support for
SPARQL CONSTRUCT Syntaxfor details.

To use the SEM_RELATED operator to query an OWL ontology, see Using Semantic
Operators to Query Relational Data.

When you are querying multiple RDF graphs, or querying one or more RDF graphs and the
corresponding inferred graph, consider using RDF graph collections (explained in RDE Graph
Collections) because of the potential performance benefits.

Example 1-11 SEM_MATCH Table Function

Example 1-11 selects all grandfathers (grandparents who are male) and their grandchildren
from the fani | y RDF graph, using inferencing from both the RDFS and f ami | y_r b rulebases.
(This example is an excerpt from Example 1-130 in Example: Family Information.)

SELECT x$rdfterm grandfather, y$rdftermgrandchild
FROM TABLE(SEM_MATCH(

"PREFI X rdf: <http://ww. w3.org/ 1999/ 02/ 22-r df - synt ax- ns#>
PREFI X rdfs: <http://ww.w3. org/ 2000/ 01/ r df - schema#>

PREFI X . <http://ww. exanpl e.org/ famly/>

SELECT ?x ?y

WHERE {?x :grandParentCf ?y . ?x rdf:type :Mle}',
SEM Model s(* fam ly'),
SEM Rul ebases(' RDFS', 'fam ly_rb'),

null, null, null,
PLUS RDFT=VC ',
null, null,

'RDFUSER , ' NET1'));

Example 1-12 HINTO Option with SEM_MATCH Table Function
Example 1-12 is functionally the same as Example 1-11, but it adds the H NTO option.

SELECT x$rdfterm grandfather, y$rdfterm grandchild
FROM TABLE(SEM MATCH(
"PREFI X rdf: <http://ww:. w3.org/ 1999/ 02/ 22-rdf - synt ax- ns#>
PREFI X rdfs: <http://ww. w3. org/ 2000/ 01/ r df - schema#>
PREFI X : <http://ww. exanpl e.org/famly/>
SELECT ?x ?y
WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
SEM Model s(' fanmily'),
SEM Rul ebases(' RDFS' , "' famly_rb'),

null, null, null,
PLUS_RDFT=VC HINTO={LEADING(tO t1) USE_NL(?x ?y)}',
null, null,

'RDFUSER , ' NET1'));

Example 1-13 DISABLE_SAMEAS_BLOOM Option with SEM_MATCH Table Function

Example 1-12 specifies that the query compiler should not use a Bloom filter when ow : saneAs
triples are joined.

SELECT select s, o

FROM t abl e(sem mat ch(' { # H NTO={LEADING(t1 t0) USE_HASH(t0 t1)}

?s ow :sameAs ?0. ?0 ow :sameAs ?s}', semnodel s('M'"), null,null,null,null,
DISABLE_SAMEAS BLOOM ')) order by 1,2;

Example 1-14 SEM_MATCH Table Function

Example 1-14 uses the Pathway/Genome Bi oPax ontology to get all chemical compound types
that belong to both Pr ot ei ns and Conpl exes:

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 38 of 197

ORACLE’

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SELECT t.r

FROM TABLE (SEM MATCH (

"PREFI X : <http://wwv. bi opax. org/rel easel/ bi opax-rel easel. owl >
SELECT ?r
WHERE {
?r rdfs:subd assOf :Proteins .
?r rdfs:subC assOf : Conpl exes}',
SEM Model s (' Bi oPax'),
SEM Rul ebases ('rdfs'),
NULL, NULL, NULL, "', NULL, NULL,
"RDFUER ,' NET1')) t;

As shown in Example 1-14, the search pattern for the SEM_MATCH table function is specified
using SPARQL syntax where the variable starts with the question-mark character (?). In this
example, the variable ?r must match to the same term, and thus it must be a subclass of both
Prot ei ns and Conpl exes.

Performing Queries with Incomplete or Invalid Inferred Graphs

Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER, UNION, and
GRAPH Keywords

Graph Patterns: Support for SPARQL ASK Syntax

Graph Patterns: Support for SPARQL CONSTRUCT Syntax
Graph Patterns: Support for SPARQL DESCRIBE Syntax
Graph Patterns: Support for SPARQL SELECT Syntax
Graph Patterns: Support for SPARQL 1.1 Constructs

Graph Patterns: Support for SPARQL 1.1 Federated Query

Inline Query Optimizer Hints
Full-Text Search

Spatial Support
Flashback Query Support

Best Practices for Query Performance
Special Considerations When Using SEM_MATCH

1.7.1 Performing Queries with Incomplete or Invalid Inferred Graphs

You can query RDF data even when the relevant inferred graph does not have a valid status if
you specify the string value | NCOWPLETE or | NVALI D for the i ndex_st at us attribute of the
SEM_MATCH table function. (The inferred graph status is stored in the STATUS column of the
SEM_RULES_INDEX_INFO view, which is described in Inferred Graphs. The SEM_MATCH
table function is described in Using the SEM_MATCH Table Function to Query RDF Data.)

The index_status attribute value affects the query behavior as follows:

If the inferred graph has a valid status, the query behavior is not affected by the value of
the i ndex_st at us attribute.

If you provide no value or specify a null value for i ndex_st at us, the query returns an error
if the inferred graph does not have a valid status.

If you specify the string | NCOVPLETE for the i ndex_st at us attribute, the query is performed
if the status of the inferred graph is incomplete or valid.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 39 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

* If you specify the string | NVALI D for the i ndex_st at us attribute, the query is performed
regardless of the actual status of the inferred graph (invalid, incomplete, or valid).

However, the following considerations apply if the status of the inferred graph is incomplete or
invalid:

« If the status is incomplete, the content of an inferred graph may be approximate, because
some triples that are inferable (due to the recent insertions into the underlying RDF
graphs) may not actually be present in the inferred graph, and therefore results returned by
the query may be inaccurate.

e If the status is invalid, the content of the inferred graph may be approximate, because
some triples that are no longer inferable (due to recent modifications to the underlying RDF
graphs or rulebases, or both) may still be present in the inferred graph, and this may affect
the accuracy of the result returned by the query. In addition to possible presence of triples
that are no longer inferable, some inferable rows may not actually be present in the
inferred graph.

1.7.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL,
FILTER, UNION, and GRAPH Keywords

The SEM_MATCH table function accepts the syntax for the graph pattern in which a sequence
of triple patterns is enclosed within curly braces. The period is usually required as a separator
unless followed by the OPTIONAL, FILTER, UNION, or GRAPH keyword. With this syntax, you
can do any combination of the following:

« Use the OPTIONAL construct to retrieve results even in the case of a partial match

e Use the FILTER construct to specify a filter expression in the graph pattern to restrict the
solutions to a query

« Use the UNION construct to match one of multiple alternative graph patterns

« Use the GRAPH construct (explained in GRAPH Keyword Support) to scope graph pattern
matching to a set of named graphs

In addition to arithmetic operators (+, -, *, /), Boolean operators and logical connectives (||,

&&, "), and comparison operators (<, >, <=, >=, =, I=), several built-in functions are available for
use in FILTER clauses. Table 1-14 lists built-in functions that you can use in the FILTER
clause. In the Description column of Table 1-14, x, y, and z are arguments of the appropriate

types.

Table 1-14 Built-in Functions Available for FILTER Clause
]

Function Description

ABS(RDF term) Returns the absolute value of t erm If t er mis a
non-numerical value, returns null.

BNODE (literal) or BNODE() Constructs a blank node that is distinct from all

blank nodes in the dataset of the query, and those
created by this function in other queries. The form
with no arguments results in a distinct blank node
in every call. The form with a simple literal results in
distinct blank nodes for different simple literals, and
the same blank node for calls with the same simple
literal.

BOUND(variable) BOUND(x) returns t r ue if X is bound (that is, non-
null) in the result, f al se otherwise.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 40 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause
]

Function

Description

CEIL(RDF term)

COALESCE(term list)

CONCAT (term list)

CONTAINS(literal, match)

DATATYPE(literal)

DAY (argument)

ENCODE_FOR_URiI(literal)

EXISTS(pattern)

FLOOR(RDF term)

HOURS(argument)

IF(condition , expressionl, expression2)

IRI(RDF term)

iISBLANK(RDF term)

isIRI(RDF term)

iSLITERAL(RDF term)

IsSNUMERIC(RDF term)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

Returns the closest number with no fractional part
which is not less than term. If term is a non-
numerical value, returns null.

Returns the first element on the argument list that
is evaluated without raising an error. Unbound
variables raise an error if evaluated. Returns null if
there are no valid elements in the term list.

Returns an xsd: St ri ng value resulting of the
concatenation of the string values in the term list.

Returns t r ue if the string mat ch is found anywhere
inliteral.Itreturns f al se otherwise.

DATATYPE(x) returns a URI representing the
datatype of x.

Returns an integer corresponding to the day part of
argument. If the argument is not a dat eTi ne or
dat e data type, it returns a null value.

Returns a string where the reserved characters in
l'iteral are escaped and converted to its percent-
encode form.

Returns t r ue if the pattern matches the query data
set, using the current bindings in the containing
group graph pattern and the current active graph. If
there are no matches, it returns f al se.

Returns the closest number with no fractional part
which is less than t er m If t er mis a non-numerical
value, returns null.

Returns an integer corresponding to the hours part
of ar gunment . If the argument is not a dat eTi ne or
dat e data type, it returns a null value.

Evaluates the condition and obtains the effective
Boolean value. If true, the first expression is
evaluated and its value returned. If false, the
second expression is used. If the condition raises
an error, the error is passed as the result of the IF
statement.

Returns an IRI resolving the string representation
of argument t er m If there is a base IRI defined in
the query, the IR is resolve against it, and the result
must result in an absolute IRI.

iSBLANK(x) returns t r ue if X is a blank node,
f al se otherwise.

isIRI(x) returns t r ue if X is an IRI, f al se
otherwise.

isLiteral(x) returns t r ue if x is a literal, f al se
otherwise.

Returns t r ue if t er mis a numeric value, f al se
otherwise.

October 13, 2025
Page 41 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause
]

Function

Description

iISURI(RDF term)

LANG(literal)

LANGMATCHES(literal, literal)

LCASE (literal)

MD5(literal)

isURI(x) returns t rue if X is a URI, f al se
otherwise.

LANG(x) returns a plain literal serializing the
language tag of X.

LANGMATCHES(x, y) returns t r ue if language tag
X matches language range Yy, f al se otherwise.

Returns a string where each character in literal is
converted to its lowercase correspondent.

Returns the checksum for | i t eral , corresponding
to the MD5 hash function.

@® Note

MINUTES(argument)

MONTH(argument)

NOT_EXISTS(pattern)

NOW()

RAND()
REGEX(string, pattern)

Graph Developer's Guide for RDF Graph
G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Starting from Oracle
Database 21c
Release, the use of
MD5 algorithm is
deprecated. As this
function will be
desupported in a future
release, it is
recommended to
replace MD5 with one
of the SHA hash
functions.

Returns an integer corresponding to the minutes
part of ar gunent . If the argument is not a
dat eTi ne or dat e data type, it returns a null value.

Returns an integer corresponding to the month part
of ar gunment . If the argument is not a dat eTi ne or
dat e data type, it returns a null value.

Returns t r ue if the pattern does not match the

query data set, using the current bindings in the
containing group graph pattern and the current

active graph. It returns f al se otherwise.

Returns an xsd: dat eTi me value corresponding to
the current time at the moment of the query
execution.

Generates a numeric value in the range of [0,1).

REGEX(x,y) returns t r ue if X matches the regular
expression Y, f al se otherwise. For more
information about the regular expressions
supported, see the Oracle Regular Expression
Support appendix in Oracle Al Database SQL
Language Reference.

October 13, 2025
Page 42 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause
]

Function

Description

REGEX(string, pattern, flags)

REPLACE(string, pattern, replacement)

REPLACE(string, pattern, replacement, flags)

ROUND(RDF term)

sameTerm(RDF term, RDF term)

SECONDS(argument)

SHAZ1(literal)

SHA256(literal)

SHA384(literal)

SHA512(literal)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

REGEX(x,y,z) returns t r ue if X matches the
regular expression y using the options given in z,
f al se otherwise. Available options: ' s' — dot all
mode (' . ' matches any character including the
newline character); ' m — multiline mode (* '
matches the beginning of any line and ' $'
matches the end of any line); ' i ' — case
insensitive mode; ' X' — remove whitespace
characters from the regular expression before
matching.

Returns a string where each match of the regular
expression patterninstring is replaced by
repl acenent . For more information about the
regular expressions supported, see the Oracle
Regular Expression Support appendix in Oracle Al
Database SQL Language Reference.

Returns a string where each match of the regular
expression pat t er n in string is replaced by

repl acenent . Available options: ' s' — dot all
mode (' . ' matches any character including the
newline character); ' m — multiline mode (' '
matches the beginning of any line and ' $'
matches the end of any line); ' i ' — case
insensitive mode; ' X' — remove whitespace
characters from the regular expression before
matching.

For more information about the regular expressions
supported, see the Oracle Regular Expression
Support appendix in Oracle Al Database SQL
Language Reference.

Returns the closest number with no fractional part
tot er m If two values exist, the value closer to
positive infinite is returned. If term is a non-
numerical value, returns null.

sameTerm(x, y) returns t r ue if X and y are the
same RDF term, f al se otherwise.

Returns an integer corresponding to the seconds
part of ar gunent . If the argument is not a
dat eTi ne or dat e data type, it returns a null value.

Returns the checksum for | i t er al , corresponding
to the SHAL hash function.

Returns the checksum for | i t er al , corresponding
to the SHA256 hash function.

Returns the checksum for | i t eral , corresponding
to the SHA384 hash function.

Returns the checksum for | i t er al , corresponding
to the SHA512 hash function.

October 13, 2025
Page 43 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause
]

Function

Description

STR(RDF term)

STRAFTER(literal, literal)

STRBEFORE(literal, literal)

STRDT(string, datatype)

STRENDS(literal, match)

STRLANG (string, languageTag)

STRLEN(literal)

STRSTARTS(literal, match)

STRUUID()

SUBSTR(term, startPos)

SUBSTR(term, startPos, length)

term IN (term list)

term NOT IN (term list)

TIMEZONE (argument)

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

STR(x) returns a plain literal of the string
representation of x (that is, what would be stored in
the VALUE_NAME column of RDF_VALUE$
enclosed within double quotes).

StrAfter (x,y) returns the portion of the string
corresponding to substring that precedes in X the
first match of y, and the end of X. If y cannot be
matched inside X, the empty string is returned.

StrBefore (x,y) returns the portion of the string
corresponding to the start of x and the first match
of y. If y cannot be matched inside X, the empty
string is returned.

Construct a literal term composed by the st ri ng
lexical form and the dat at ype passed as
arguments. dat at ype must be a URI; otherwise,
the function returns a null value.

Returns t r ue if the string | i t eral ends with the
string mat ch. It returns f al se otherwise.

Constructs a string composed by the st ri ng
lexical form and language tag passed as
arguments.

Returns the length of the lexical form of the
literal.

Returns t r ue if the string | i t er al starts with the
string mat ch. It returns f al se otherwise.

Returns a string containing the scheme section of a
new UUID.

Returns the string corresponding to the portion of
t er mthat starts at st art Pos and continues until
term ends. The index of the first character is 1.

Returns the string corresponding to the portion of
term that starts at st ar t Pos and continues for

| engt h characters. The index of the first character
is 1.

The expression x IN(term list) returns t r ue if X can
be found in any of the values int er m i st. Returns
f al se if not found. Zero-length lists are legal. An
error is raised if any of the values int ern i st
raises an error and X is not found.

The expression x NOT IN(term list) returns f al se if
X can be found in any of the values in term list.
Returns t r ue if not found. Zero-length lists are
legal. An error is raised if any of the values in term
list raises an error and X is not found.

Returns the time zones section of ar gunent as an
xsd: dayTi meDur at i on value. If the argument is
not a dat eTi e or dat e data type, it returns a null
value.

October 13, 2025
Page 44 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-14 (Cont.) Built-in Functions Available for FILTER Clause
]

Function

Description

TZ(argument)

UCASE(literal)

URI(RDF term)
UUID()

YEAR(argument)

Returns an integer corresponding to the time zone
part of ar gunent . If the argument is not a
dat eTi ne or dat e data type, it returns a null value.

Returns a string where each characterin | i t eral
is converted to its uppercase correspondent.

(Synonym for IRI(RDF term)

Returns a URI with a new Universal Unique
Identifier. The value and the version correspond to
the PL/SQL function sys_guid ().

Returns an integer corresponding to the year part
of ar gunment .

See also the descriptions of the built-in functions defined in the SPARQL query language
specification (ht t p: / / www. w3. or g/ TR/ spar gl 11- query/), to better understand the built-in

functions available in SEM_MATCH.

In addition, Oracle provides some proprietary query functions that take advantage of Oracle Al
Database features and help improve query performance. The following table lists these Oracle-
specific query functions. Note that the built-in namespace prefix or ar df expands to <http://
xni ns. oracl e. conf rdf/ >.

Table 1-15 Oracle-Specific Query Functions

Function

Description

orardf: concat (RDF
term RDF term .)

orardf: contai ns(RD
Fterm RDF term

orardf:instr(RDF
term RDF term

orardf:instr(RDF
term RDF term
position)

Graph Developer's Guide for RDF Graph
G43351-01

Returns t r ue if the given term matches with the given | i ke pattern.
Otherwise, the function returns f al se.

Returns t r ue if the string representation of the first term contains the string
representation of the second term as a substring. Otherwise, the function
returns f al se.

Searches the string representation of the first term for the string representation
of the second term. Returns an integer indicating the position of the first
character of the occurrence in the first term (the first character in a string is
position 1).

If the search is unsuccessful, then the returned value is 0.

Searches the string representation of the first term for the string representation
of the second term. Returns an integer indicating the position of the first
character of the occurrence in first term (the first character is position 1).

If the search is unsuccessful, then the returned value is 0.

Position is a nonzero interger indicating the character of the string
representation of the first term at which to begin the search (the first character
is position 1). If position is negative, then or ar df : i nstr counts and searches
backwards from the end of the first term.

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 45 of 197

http://www.w3.org/TR/sparql11-query/

ORACLE Chapter 1

Using the SEM_MATCH Table Function to Query RDF Data

Table 1-15 (Cont.) Oracle-Specific Query Functions
]

Function

Description

orardf:instr(RDF
term RDF term
position,
occurrence)

orardf: | case(RDF
term

orardf:|ike(RDF
term pattern)

orardf:|ike(RDF
term pattern,
flags)
orardf:ltrin{ROF
term
orardf:ltrim RDF
term set)
orardf:rtrinm RDF
term

orardf:rtrim RDF
term set)

or ar df : saneCanonTe

rm(RDF term RDF
term

orardf:strafter(RD

Fterm RDF term

orardf:strbefore(R

DF term RDF term

orardf:strends(RDF

term RDF term

orardf:strlen(RDF
term

orardf:strstarts(R

DF term RDF term

orardf: substr (RDF
term start)

Searches the string representation of the first term for the string representation
of the second term. Returns an integer indicating the position of the first
character of the occurrence in first term (the first character is position 1).

If the search is unsuccessful, then the returned value is 0.

Position is a nonzero interger indicating the character of the string
representation of the first term at which to begin the search (the first character
is position 1). If position is negative, then orardf:instr counts and searches
backwards from the end of the first term.

Occurrence is a positive integer indicating which occurrence of the first term
orardf:instr should search for.

Returns a string literal whose lexical form is the lower case of the string
representation of the input term.

Returns t r ue if the given term matches with the given | i ke pattern.
Otherwise, the function returns f al se. See Full-Text Search for more
information.

Returns t r ue if the given term matches with the given | i ke pattern using the
specified flags. Otherwise, the function returns f al se. Available flags: 'i ' —
case insensitive mode. See Full-Text Search for more information.

Returns the string representation of the input term with all blank characters
removed from the left end.

Returns the string representation of the input term with all of the characters
contained in set removed from the left end.

Returns the string representation of the input term with all blank characters
removed from the right end.

Returns the string representation of the input term with all of the characters
contained in set removed from the right end.

Returns t r ue if two terms represent the same canonical RDF term. Otherwise,

the function returns f al se. Allows a VALUE_ID-based comparison, which is
more efficient than saneTer m(?x, ?y) or (?x = ?y).

Returns the part of the string representation of the first term that follows the first
occurrence of the string representation of the second term.

If there is no such occurrence, then an empty string literal is returned.

Returns the part of the string representation of the first term that precedes the
first occurrence of the string representation of the second term.

If there is no such occurrence, then an empty string literal is returned.

Returns t r ue if the string representation of the first term contains the string
representation of the second term as a trailing substring. Otherwise, the
function returns f al se.

Returns the number of characters in the string representation of the input term.

Returns t r ue if the string representation of the first term contains the string
representation of the second term as a leading substring. Otherwise, the
function returns f al se.

Returns a portion of the string representation of the input term beginning at the
position indicated by the start value and continuing to the end of the input term
(the first character is position 1).

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-15 (Cont.) Oracle-Specific Query Functions

Function Description

orardf:substr(RDF Returns a portion of the string representation of the input term beginning at the
term start, position indicated by the start value and continuing for the number of characters
[engt h) indicated by the length value (the first character is position 1).
orardf:textContai n Returnstrue if the given term matches with the given Oracle Text search
s(RDF term pattern. Otherwise, the function returns f al se. See Full-Text Search for more
pattern) information.

orardf:textScore(i Returnsthe score of an orardf:t ext Cont ai ns match. See Full-Text Search
nvocation id) for more information.

orardf : ucase(RDF Returns a string literal whose lexical form is the upper case of the lexical form
term of the input term.

(Spatial built-in (See Spatial Support.)
functions)

The following XML Schema casting functions are available for use in FILTER clauses. These
functions take an RDF term as input and return a new RDF term of the desired type or raise an
error if the term cannot be cast to the desired type. Details of type casting can be found in
Section 17.1 of the XPath query specification: ht t p: / / www. w3. or g/ TR/ xpat h- f unct i ons/
#casting-fromprimtive-to-prinitive. These functions use the XML Namespace xsd :
http: // wwv. w3. or g/ 2001/ XM_Schena#.

e xsd:string (RDF term)

e xsd:dateTime (RDF term)
e xsd:boolean (RDF term)
e xsd:integer (RDF term)

* xsd:float (RDF term)

e xsd:double (RDF term)

e xsd:decimal (RDF term)

If you use the syntax with curly braces to express a graph pattern:

e The query always returns canonical lexical forms for the matching values for the variables.

e Any hints specified in the opt i ons argument using HINTO={<hint-string>} (explained in
Using the SEM_MATCH Table Function to Query RDF Data), should be constructed only
on the basis of the portion of the graph pattern inside the root BGP. For example, the only
valid aliases for use in a hint specification for the query in Example 1-16 are t 0, t 1, ?X,
and ?y. Inline query optimizer hints can be used to influence other parts of the graph
pattern (see Inline Query Optimizer Hints).

e The FILTER construct is not supported for variables bound to long literals.

Example 1-15 Curly Brace Syntax

Example 1-15 uses the syntax with curly braces and a period to express a graph pattern in the
SEM_MATCH table function.

SELECT x, vy
FROM TABLE(SEM_NATCH(
"{?x :grandParentOf ?y . ?x rdf:type :Male}",
SEM Model s(' fanmi ly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 47 of 197

http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive
http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SEM ALI ASES(SEM ALI AS(" ', " http://ww. exanmpl e.org/fanmily/')),
null, null, "', null, null,
"RDFUSER , ' NET1')):

Example 1-16 Curly Brace Syntax and OPTIONAL Construct

Example 1-16 uses the OPTIONAL construct to modify Example 1-15, so that it also returns,
for each grandfather, the names of the games played or null if no games are played.

SELECT x, y, ganme
FROM TABLE(SEM MATCH(

"{?x :grandParentf ?y . ?x rdf:type :Male .
OPTIONAL{?x :plays ?game}
J
SEM Model s(' family'),
SEM Rul ebases(' RDFS' , ' famly_rb'),
SEM ALl ASES(SEM ALI AS(" ', " http://ww. exanmpl e.org/fanmly/")),
nul I,
nul I,
"H NTO={ LEADING(t 0 t1) USE_NL(?x ?y)}',
nul I,
nul I,
"RDFUSER , 'NET1'));

Example 1-17 Curly Brace Syntax and Multi-Pattern OPTIONAL Construct

When multiple triple patterns are present in an OPTIONAL graph pattern, values for optional
variables are returned only if a match is found for each triple pattern in the OPTIONAL graph
pattern. Example 1-17 modifies Example 1-16 so that it returns, for each grandfather, the
names of the games played with the grandchildren, or null if they have no such games in
common. It also uses global query optimizer hints to specify that triple patterns should be
evaluated in order within each BGP and that a hash join should be used to join the root BGP
with the OPTIONAL BGP.

SELECT x, vy, gane
FROM TABLE(SEM_MATCH(
"{?x :grandParentOf ?y . ?x rdf:type :Male .

OPTI ONAL{ ?x :plays ?gane . ?y :plays ?gane}

3
SEM Model s(*' fanmily"),
SEM Rul ebases(' RDFS' , ' famly_rb'),
SEM ALI ASES(SEM ALI AS(" ', " http://ww. exanmpl e.org/famly/")),

null, null,
"ALL_ORDERED ALL_BGP_HASH ,
null, null,

'RDFUSER , ' NET1'));

Example 1-18 Curly Brace Syntax and Nested OPTIONAL Construct

A single query can contain multiple OPTIONAL graph patterns, which can be nested or
parallel. Example 1-18 modifies Example 1-17 with a nested OPTIONAL graph pattern. This
example returns (1) the games each grandfather plays or null if they play no games and (2) if
the grandfather plays games, the ages of the grandchildren that play the same game, or null if
they has no games in common. Note that in Example 1-18 a value is returned for ?gane even if
the nested OPTIONAL graph pattern ?y :plays ?gane . ?y :age ?age is not matched.

SELECT x, y, game, age
FROM TABLE(SEM_MATCH(
"{?x :grandParentOf ?y . ?x rdf:type :Male .
OPTI ONAL{ ?x : pl ays ?gane
OPTIONAL {?y :plays ?game . ?y :age ?age} }

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 48 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SEM Model s(' famly'),

SEM Rul ebases(' RDFS' , ' famly_rb'),

SEM ALI ASES(SEM ALI AS(' ', " http://ww. exanmpl e.org/fanmily/')),
null, null, " ", null, null,

"RDFUSER , ' NET1')):

Example 1-19 Curly Brace Syntax and Parallel OPTIONAL Construct

Example 1-19 modifies Example 1-17 with a parallel OPTIONAL graph pattern. This example
returns (1) the games the each grandfather plays or null if they play no games and (2) the
email address of each grandfather or null if they have no email address. Note that, unlike
nested OPTIONAL graph patterns, parallel OPTIONAL graph patterns are treated
independently. That is, if an email address is found, it will be returned regardless of whether or
not a game was found; and if a game was found, it will be returned regardless of whether an
email address was found.

SELECT x, y, game, email
FROM TABLE(SEM MATCH(
"{?x :grandParentOf ?y . ?x rdf:type :Male .
OPTI ONAL{ ?x :plays ?gane}
OPTI ONAL{ ?x :email ?email}
I
SEM Model s(' fanily'),
SEM Rul ebases(' RDFS' , ' fam |y _rb'),
SEM ALI ASES(SEM ALI AS(" ', " http://ww. exanmpl e.org/fanmly/")),
null, null, " ', null, null,
"RDFUSER , 'NET1'));

Example 1-20 Curly Brace Syntax and FILTER Construct

Example 1-20 uses the FILTER construct to modify Example 1-15, so that it returns
grandchildren information for only those grandfathers who are residents of either NY or CA.

SELECT x, vy
FROM TABLE(SEM_MATCH(
"{?x :grandParentf ?y . ?x rdf:type :Male . ?x :residentO™f ?z
FILTER (?z = "NY"™ || ?z = "CA™)}",
SEM Model s(*' fanmily"),
SEM Rul ebases(' RDFS' , "' famly_rb'),
SEM ALI ASES(SEM ALI AS(" ', " http://ww. exanmpl e.org/famly/')),
null, null, " ', null, null,
"RDFUSER , 'NET1'));

Example 1-21 Curly Brace Syntax and FILTER with REGEX and STR Built-In
Constructs

Example 1-21 uses the REGEX built-in function to select all grandfathers who have an Oracle
email address. Note that backslash (\) characters in the regular expression pattern must be
escaped in the query string; for example, \\. produces the following pattern: \ .

SELECT x, vy, 2z

FROM TABLE(SEM MATCH(

"{?x :grandParentf ?y . ?x rdf:type :Male . ?x :emil ?z
FILTER (REGEX(STR(?z), "@oracle\\.com$"))}"',

SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),
SEM ALI ASES(SEM ALI AS(' ', " http://ww. exanmple.org/fanmily/')),
null, null, " ", null, null,
"RDFUSER , ' NET1'));

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 49 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-22 Curly Brace Syntax and UNION and FILTER Constructs

Example 1-22 uses the UNION construct to modify Example 1-20, so that grandfathers are
returned only if they are residents of NY or CA or own property in NY or CA, or if both
conditions are true (they reside in and own property in NY or CA).

SELECT x, vy
FROM TABLE(SEM_MATCH(

"{?x :grandParentOf ?y . ?x rdf:type : Male
{{?x :residentOF ?z} UNION {?x :ownsPropertyln ?z}}
FILTER (?z = "NY" || ?z = "CA™)}",

SEM Model s(" fanily'),

SEM Rul ebases(' RDFS', ' fami ly_rb'),

SEM ALI ASES(SEM ALIAS(" ', " http://ww. exanmple.org/fanmly/")),

null, null, " ', null, null,

"RDFUSER , ' NET1'));

¢ GRAPH Keyword Support

1.7.2.1 GRAPH Keyword Support

A SEM_MATCH query is executed against an RDF Dataset. An RDF Dataset is a collection of
graphs that includes one unnamed graph, known as the default graph, and one or more named
graphs, which are identified by a URI. Graph patterns that appear inside a GRAPH clause are
matched against the set of named graphs, and graph patterns that do not appear inside a
graph clause are matched against the default graph. The gr aphs and named_gr aphs
SEM_MATCH parameters are used to construct the default graph and set of named graphs for
a given SEM_MATCH query. A summary of possible dataset configurations is shown in

Table 1-16.

Table 1-16 SEM_MATCH graphs and named_graphs Values, and Resulting Dataset Configurations

___|]
Parameter Values Default Graph Set of Named Graphs

graphs: NULL

named_graphs: NULL

Union All of all unnamed triples and all named graph triples. All named graphs
(But if the opt i ons parameter contains STRI CT_DEFAULT=T,
only unnamed triples are included in the default graph.)

graphs: NULL Empty set {91,..., gn}
named_gr aphs: {g1,..., gn}

graphs: {g1,..., gm} Union All of {g1,..., gm} Empty set
naned_graphs: NULL

graphs: {g1,..., gm} Union All of {g1,..., gm} {gn,..., gz}

named_gr aphs: {gn,..., gz}

See also the W3C SPARQL specification for more information on RDF data sets and the
GRAPH construct, specifically: ht t p: / / www. W3. or g/ TR/ r df - spar gl - quer y/ #r df Dat aset

Example 1-23 Named Graph Construct

Example 1-23 uses the GRAPH construct to scope graph pattern matching to a specific named
graph. This example finds the names and email addresses of all people in the <http://
www. exanpl e. or g/ fami | y/ Smi t h> named graph.

SELECT nane, emmil
FROM TABLE(SEM MATCH(
"{GRAPH :Smith {
?X :nane ?nane . ?x :email ?emil } }',

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 50 of 197

http://www.w3.org/TR/rdf-sparql-query/#rdfDataset

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SEM Model s(' famly'),

SEM Rul ebases(' RDFS' , ' famly_rb'),

SEM ALI ASES(SEM ALI AS(' ', " http://ww. exanmpl e.org/fanmily/')),
null, null, " ", null, null,

"RDFUSER , ' NET1')):

Example 1-24 Using the named_graphs Parameter

In addition to URIs, variables can appear after the GRAPH keyword. Example 1-24 uses a
variable, ?g, with the GRAPH keyword, and uses the naned_gr aphs parameter to restrict the
possible values of ?g to the <htt p: // www. exanpl e. org/ fami | y/ Smith>and <http://

www. exanpl e. or g/ fami | y/ Jones> named graphs. Aliases specified in SEM_ALIASES
argument can be used in the gr aphs and nanmed_gr aphs parameters.

SELECT nane, enuil

FROM TABLE(SEM MATCH(

"{GRAPH ?g {
?X :nane ?nane . ?x :enmail ?email } }',
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' fam |y _rb'),
SEM ALI ASES(SEM ALI AS(' ', " http://ww. exanmpl e.org/fanmily/')),
null,null,null,null,
SEM GRAPHS(' <ht t p: // www. exanpl e. org/ fam [y/ Smth>'",
':Jones'),

"RDFUSER , ' NET1'));

Example 1-25 Using the graphs Parameter

Example 1-25 uses the default graph to query the union of the <ht t p: / / www. exanpl e. or g/
fam | y/ Smith>and <http://ww. exanpl e. or g/ fani | y/ Jones> named graphs.

FROM TABLE(SEM MATCH(

"{?x :name ?name . ?x :email ?email }',

SEM Model s(' fanily'),

SEM Rul ebases(' RDFS' , ' famly_rb'),

SEM ALI ASES(SEM ALIAS(" ', " http://ww. exanmple.org/famly/')),

null,null,null,

SEM GRAPHS(' <ht t p: // www. exanpl e. org/ fam [y/ Smth>',
':Jones'),

nul I,

"RDFUSER , 'NET1'));

1.7.3 Graph Patterns: Support for SPARQL ASK Syntax

SEM_MATCH allows fully-specified SPARQL ASK queries in the query parameter.

ASK queries are used to test whether or not a solution exists for a given query pattern. In
contrast to other forms of SPARQL queries, ASK queries do not return any information about
solutions to the query pattern. Instead, such queries return "t rue"**xsd: bool ean if a solution
exists and "f al se"**xsd: bool ean if no solution exists.

All SPARQL ASK queries return the same columns: ASK, ASK$SRDFVID, ASK$ PREFIX,
ASK$_SUFFIX, ASK$RDFVTYP, ASKSRDFCLOB, ASK$RDFLTYP, ASK$RDFLANG,
SEM$ROWNUM. Note that these columns are the same as a SPARQL SELECT syntax query
that projects a single ?ask variable.

SPARQL ASK queries will generally give better performance than an equivalent SPARQL
SELECT syntax query because the ASK query does not have to retrieve lexical values for
query variables, and query execution can stop after a single result has been found.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 51 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SPARQL ASK queries use the same syntax as SPARQL SELECT queries, but the topmost
SELECT clause must be replaced with the keyword ASK.

Example 1-26 SPARQL ASK

Example 1-26 shows a SPARQL ASK query that determines whether or not any cameras are
for sale with more than 10 megapixels that cost less than 50 dollars.

SELECT ask
FROM TABLE(SEM MATCH(

"PREFI X : <http://ww.exanpl e.org/ el ectronics/>

ASK

WHERE

{?x :price ?p .
?X :negapi xels ?m.

FILTER (?p < 50 & ?m > 10)
|
SEM Model s(' el ectronics'),
null, null, null, " ', null,
"RDFUSER , ' NET1'));

nul I,

See also the W3C SPARQL specification for more information on SPARQL ASK queries,
specifically: ht t p: / / www. W3. or g/ TR/ spar gl 11- quer y/ #ask

1.7.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax

SEM_MATCH allows fully-specified SPARQL CONSTRUCT queries in the query parameter.

CONSTRUCT queries are used to build RDF graphs from stored RDF data. In contrast to
SPARQL SELECT queries, CONSTRUCT queries return a set of RDF triples rather than a set
of query solutions (variable bindings).

All SPARQL CONSTRUCT queries return the same columns from SEM_MATCH. These
columns correspond to the subject, predicate and object of an RDF triple, and there are 10
columns for each triple component. In addition, a SEM$ROWNUM column is returned. More
specifically, the following columns are returned:

SUBJ
SUBJ$RDFVI D
SUBJ$_PREFI X
SUBJ$_SUFFI X
SUBJ$RDFVTYP
SUBJ$RDFCLOB
SUBJ$RDFLTYP
SUBJ$RDFLANG
SUBJ$RDFTERM
SUBJ$RDFCLBT
PRED
PREDSRDFVI D
PREDS_PREFI X
PREDS_SUFFI X
PREDSRDFVTYP
PREDSRDFCLOB
PREDSRDFLTYP
PREDSRDFLANG
PREDSRDFTERM
PREDSRDFCLBT
0BJ

OBJ$RDFVI D
OBJ$_PREFI X
OBJ$_SUFFI X

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 197

http://www.w3.org/TR/sparql11-query/#ask

ORACLE

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

OBJ$RDFVTYP
OBJ$RDFCLOB
OBJ$RDFLTYP
OBJ$RDFLANG
OBJ$RDFTERM
OBJ$RDFCLBT
SEMBROANUM

For each component, COMP, COMP$RDFVID, COMP$_PREFIX, COMP$_SUFFIX,
COMP$RDFVTYP, COMP$RDFCLOB, COMP$RDFLTYP, and COMP$RDFLANG correspond
to the same values as those from SPARQL SELECT queries. COMP$RDFTERM holds a
VARCHAR2(NETWORK _MAX_STRI NG _SI ZE) RDF term in N-Triple syntax, and COMP$RDFCLBT
holds a CLOB RDF term in N-Triple syntax.

SPARQL CONSTRUCT queries use the same syntax as SPARQL SELECT queries, except the
topmost SELECT clause is replaced with a CONSTRUCT template. The CONSTRUCT
template determines how to construct the result RDF graph using the results of the query
pattern defined in the WHERE clause. A CONSTRUCT template consists of the keyword
CONSTRUCT followed by sequence of SPARQL triple patterns that are enclosed within curly
braces. The keywords OPTIONAL, UNION, FILTER, MINUS, BIND, VALUES, and GRAPH are
not allowed within CONSTRUCT templates, and property path expressions are not allowed
within CONSTRUCT templates. These keywords, however, are allowed within the query
pattern inside the WHERE clause.

SPARQL CONSTRUCT queries build result RDF graphs in the following manner. For each
result row returned by the WHERE clause, variable values are substituted into the
CONSTRUCT template to create one or more RDF triples. Suppose the graph pattern in the
WHERE clause of Example 1-27 returns the following result rows.

E$RDFTERM FNAME$RDFTERM LNAME$RDFTERM
ent:employeel "Fred" "Smith"
ent:employee2 "Jane" "Brown"
ent:employee3 "Bill" "Jones"

The overall SEM_MATCH CONSTRUCT query in Example 1-27 would then return the
following rows, which correspond to six RDF triples (two for each result row of the query
pattern).

SUBJ$RDFTERM PRED$RDFTERM OBJ$RDFTERM
ent:employeel foaf:givenName "Fred"
ent:employeel foaf:familyName "Smith"
ent:employee2 foaf:givenName "Jane"
ent:employee2 foaf:familyName "Brown"
ent:employee3 foaf:givenName "Bill"
ent:employee3 foaf:familyName "Jones"

There are two SEM_MATCH query options that influence the behavior of SPARQL
CONSTRUCT: CONSTRUCT _UNI QUE=T and CONSTRUCT_STRI CT=T. Using the CONSTRUCT _UNI QUE=T
guery option ensures that only unique RDF triples are returned from the CONSTRUCT query.
Using the CONSTRUCT_STRI CT=T query option ensures that only valid RDF triples are returned
from the CONSTRUCT query. Valid RDF triples are those that have (1) a URI or blank node in
the subject position, (2) a URI in the predicate position, and (3) a URI, blank node or RDF

October 13, 2025
Page 53 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

literal in the object position. Both of these query options are turned off by default for improved
query performance.

Example 1-27 SPARQL CONSTRUCT

Example 1-27 shows a SPARQL CONSTRUCT query that builds an RDF graph of employee
names using the foaf vocabulary.

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(

"PREFI X ent: <http://ww.exanple.org/enterprisel/>
PREFI X foaf: <http://xmns.comfoaf/0.1/>
CONSTRUCT

{?e foaf:givenNane ?fnane .
?e foaf:fanilyNane ?l name
}
WHERE
{?e ent:fname ?fnane .
?e ent:lname ?l nane
|

SEM Model s(' enterprise'),

SEM Rul ebases(' RDFS'),

null, null, null, " ', null, null,

"RDFUSER , ' NET1'));

Example 1-28 CONSTRUCT with Solution Modifiers

SPARQL SOLUTION modifiers can be used with CONSTRUCT queries. Example 1-28 shows
the use of ORDER BY and LIMIT to build a graph about the top two highest-paid employees.
Note that the LIMIT 2 clause applies to the query pattern not to the overall CONSTRUCT
query. That is, the query pattern will return two result rows, but the overall CONSTRUCT query
will return 6 RDF triples (three for each of the two employees bound to ?e).

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(
"PREFI X ent: <http://ww.exanple.org/enterprise/>
PREFI X foaf: <http://xm ns.conl foaf/0.1/>

CONSTRUCT

{ ?e ent:fname ?fnanme .
?e ent:lnanme ?l nane .
?e ent:dateCfBirth ?dob }

WHERE

{ ?e ent:fname ?fpame .
?e ent:Iname ?l nane .
?e ent:salary ?sal
}
ORDER BY DESC(?sal)
LIMT 2,
SEM Model s(" enterprise'),
SEM Rul ebases(' RDFS'),
null, null, null, * ', null, null,
"RDFUSER , ' NET1'));

Example 1-29 SPARQL 1.1 Features with CONSTRUCT

SPARQL 1.1 features are supported within CONSTRUCT query patterns. Example 1-29 shows
the use of subqueries and SELECT expressions within a CONSTRUCT query.

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(
"PREFI X ent: <http://ww:.exanple.org/enterprise/>
PREFI X foaf: <http://xm ns.com foaf/0.1/>
CONSTRUCT

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 54 of 197

ORACLE

Chapter 1

Using the SEM_MATCH Table Function to Query RDF Data

{ ?e foaf:nane ?name }
WHERE
{ SELECT ?e (CONCAT(?fnane," ",?lname) AS ?nanme)
WHERE { ?e ent:fnane ?fname .
?e ent:lname ?l nane }

SEM Model s(' enterprise'),

SEM Rul ebases(' RDFS'),

null, null, null, " ', null, null,
"RDFUSER , ' NET1'));:

Example 1-30 SPARQL CONSTRUCT with Named Graphs

Named graph data cannot be returned from SPARQL CONSTRUCT queries because, in
accordance with the W3C SPARQL specification, only RDF triples are returned, not RDF
guads. The FROM, FROM NAMED and GRAPH keywords, however, can be used when

matching the query pattern defined in the WHERE clause.

Example 1-30 constructs an RDF graph with ent : nane triples from the UNION of named
graphs ent: gl and ent: g2, ent: dat e Bi rt h triples from named graph ent : g3, and ent : ssn

triples from named graph ent: g4.

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(

"PREFI X ent: <http://ww:.exanple.org/enterprisel/>
PREFI X foaf: <http://xm ns.com foaf/0.1/>
CONSTRUCT

{ ?e ent:nane ?nanme .
?e ent:dateOBirth 2dob .
?e ent:ssn ?ssn
}
FROM ent : g1
FROM ent : g2
FROM NAMED ent: g3
FROM NAMED ent: g4
\HERE
{ ?e foaf:name ?name .
CGRAPH ent: g3 { ?e ent:dateOBirth ?dob }
CRAPH ent: g4 { ?e ent:ssn ?ssn }
|

SEM Model s(' enterprise'),

SEM Rul ebases(' RDFS'),

null, null, null, * ', null, null,

"RDFUSER , 'NET1'));

Example 1-31 SPARQL CONSTRUCT Normal Form

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(

"PREFI X ent: <http://ww.exanple.org/enterprisel>
PREFI X foaf: <http://xmns.comfoaf/0.1/>
CONSTRUCT

{?e foaf:givenNane ?fnane .
?e foaf:fanmilyNane ?l name
}
WHERE
{?e ent:fname ?fnane .
?e ent:lname ?l nane
|
SEM Model s(' enterprise'),
SEM Rul ebases(' RDFS'),

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

null, null, null, " ', null, null,
"RDFUSER , ' NET1')):

Example 1-32 SPARQL CONSTRUCT Short Form

A short form of CONSTRUCT is supported when the CONSTRUCT template is exactly the
same as the WHERE clause. In this case, only the keyword CONSTRUCT is needed, and the
graph pattern in the WHERE clause will also be used as a CONSTRUCT template.

Example 1-32 shows the short form of Example 1-31.

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM _MATCH(

"PREFI X ent: <http://ww:.exanple.org/enterprise/>
PREFI X foaf: <http://xm ns.com foaf/0.1/>
CONSTRUCT
\HERE

{?e ent:fnane ?fname .
?e ent: |l nane ?l name
|

SEM Model s(' enterprise'),

SEM Rul ebases(' RDFS'),

null, null, null, * ", null, null,

"RDFUSER , 'NET1'));

* Typical SPARQL CONSTRUCT Workflow

1.7.4.1 Typical SPARQL CONSTRUCT Workflow

A typical workflow for SPARQL CONSTRUCT would be to execute a CONSTRUCT query to
extract and/or transform RDF triple data from an existing RDF graph and then load this data
into an existing or new RDF graph. The data loading can be accomplished through simple
INSERT statements or executing the SEM_APIS.BULK LOAD_RDF_GRAPH procedure.

Example 1-33 SPARQL CONSTRUCT Workflow

Example 1-33 constructs f oaf : nane triples from existing ent : f name and ent : | nane triples and
then bulk loads these new triples back into the original RDF graph. Afterward, you can query
the original graph for f oaf : nane values.

- Use create table as select to build a staging table
CREATE TABLE STAB(RDF$STC sub, RDF$STC pred, RDF$STC obj) AS
SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM _MATCH(

"PREFI X ent: <http://ww.exanple.org/enterprisel/>

PREFI X foaf: <http://xm ns.com foaf/0.1/>
CONSTRUCT
{ ?e foaf:name ?nane }
VHERE
{ SELECT ?e (CONCAT(?fnane," ",?l nane) AS ?nane)
VWHERE { ?e ent:fname ?fnanme .
?e ent:lname ?l nane }
e

SEM Model s(' enterprise'),

null, null, null, null, " ', null, null,

"RDFUSER , 'NET1'));

- Bulk load data back into the enterprise nodel
BEG N
SEM API S. BULK_LOAD_RDF_GRAPH(

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 56 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

rdf _graph_nane=>'enterprise',
tabl e_owner =>' rdf user"',
t abl e_name=>'stab',
flags=>" parallel _create_index parallel=4",
net wor k_owner =>' RDFUSER',
net wor k_name=>' NET1') ;
END;
/

-- Query for foaf:nane data
SELECT e$rdfterm name$rdfterm
FROM TABLE(SEM MATCH(
"PREFI X foaf: <http://xmns.com foaf/0.1/>
SELECT ?e ?nane
WHERE { ?e foaf:nane ?nane }',
SEM Model s(' enterprise'),
null, null, null, null, " ', null, null,
" RDFUSER , ' NET1'));

See also the W3C SPARQL specification for more information on SPARQL CONSTRUCT
queries, specifically: htt p: / / www. w3. or g/ TR/ spar gl 11- quer y/ #const r uct

1.7.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax

SEM_MATCH allows fully-specified SPARQL DESCRIBE queries in the query parameter.

SPARQL DESCRIBE queries are useful for exploring RDF data sets. You can easily find
information about a given resource or set of resources without knowing information about the
exact RDF properties used in the data set. A DESCRIBE query returns a "description” of a
resource r, where a "description” is the set of RDF triples in the query data set that contain r in
either the subject or object position.

Like CONSTRUCT queries, DESCRIBE queries return an RDF graph instead of result
bindings. Each DESCRIBE query, therefore, returns the same columns as a CONSTRUCT
query (see Graph Patterns: Support for SPARQL CONSTRUCT Syntax for a listing of return
columns).

SPARQL DESCRIBE queries use the same syntax as SPARQL SELECT queries, except the
topmost SELECT clause is replaced with a DESCRIBE clause. A DESCRIBE clause consists
of the DESCRIBE keyword followed by a sequence of URIs and/or variables separated by
whitespace or the DESCRIBE keyword followed by a single * (asterisk).

Two SEM_MATCH query options affect SPARQL DESCRIBE queries: CONSTRUCT _UNI QUE=T
and CONSTRUCT_STRI CT=T. CONSTRUCT_UNI QUE=T ensures that duplicate triples are eliminated
from the result, and CONSTRUCT_STRI CT=T ensures that invalid triples are eliminated from the
result. Both of these options are turned off by default. These options are described in more
detail in Graph Patterns: Support for SPARQL CONSTRUCT Syntax.

See also the W3C SPARQL specification for more information on SPARQL DESCRIBE
queries, specifically: htt p: / / ww. w3. or g/ TR/ spar gl 11- quer y/ #descri be

Example 1-34 SPARQL DESCRIBE Short Form

A short form of SPARQL DESCRIBE is provided to describe a single constant URI. In the short
form, only a DESCRIBE clause is heeded. Example 1-34 shows a short form SPARQL
DESCRIBE query.

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(
' DESCRI BE <http://ww. exanpl e. org/ enterprise/enmp_1>",

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 57 of 197

http://www.w3.org/TR/sparql11-query/#construct
http://www.w3.org/TR/sparql11-query/#describe

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SEM Model s(' enterprise'),
null, null, null, null, " ', null, null,
"RDFUSER , ' NET1'));

Example 1-35 SPARQL DESCRIBE Normal Form

The normal form of SPARQL DESCRIBE specifies a DESCRIBE clause and a SPARQL query
pattern, possibly including solution modifiers. Example 1-35 shows a SPARQL DESCRIBE
query that describes all employees whose departments are located in New Hampshire.

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(

"PREFI X ent: <http://ww.exanple.org/enterprise/>

DESCRI BE ?e
WHERE
{ ?e ent:department ?dept .
?dept ent:locatedln "New Hanpshire" }',

SEM Model s(' enterprise'),

null, null, null, null, " ", null, null,

"RDFUSER , 'NET1'));

Example 1-36 DESCRIBE *

With the normal form of DESCRIBE, as shown in Example 1-35, all resources bound to
variables listed in the DESCRIBE clause are described. In Example 1-35, all employees
returned from the query pattern and bound to ?e will be described. When DESCRIBE * is used,
all visible variables in the query are described.

Example 1-36 shows a modified version of Example 1-35 that describes both employees
(bound to ?e) and departments (bound to ?dept).

SELECT subj $rdfterm pred$rdfterm obj$rdfterm
FROM TABLE(SEM MATCH(

"PREFI X ent: <http://ww.exanple.org/enterprise/>

DESCRI BE *
WHERE
{ ?e ent:department ?dept .
?dept ent:locatedln "New Hanpshire" }',

SEM Model s(' enterprise'),

null, null, null, null, " ", null, null,

"RDFUSER , 'NET1')):

1.7.6 Graph Patterns: Support for SPARQL SELECT Syntax

In addition to curly-brace graph patterns, SEM_MATCH allows fully-specified SPARQL
SELECT queries in the query parameter. When using the SPARQL SELECT syntax option,
SEM_MATCH supports the following query constructs: BASE, PREFIX, SELECT, SELECT
DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT, and OFFSET. Each SPARQL
SELECT syntax query must include a SELECT clause and a graph pattern.

A key difference between curly-brace and SPARQL SELECT syntax when using SEM_MATCH
is that only variables appearing in the SPARQL SELECT clause are returned from
SEM_MATCH when using SPARQL SELECT syntax.

One additional column, SEM$ROWNUM, is returned from SEM_MATCH when using SPARQL
SELECT syntax. This NUMBER column can be used to order the results of a SEM_MATCH
guery so that the result order matches the ordering specified by a SPARQL ORDER BY clause.

The SPARQL ORDER BY clause can be used to order the results of SEM_MATCH queries.
This clause specifies a sequence of comparators used to order the results of a given query. A
comparator consists of an expression composed of variables, RDF terms, arithmetic operators

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 58 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

(+, -, *, /), Boolean operators and logical connectives (||, &&, !), comparison operators (<, >, <=,
>=, =, I=), and any functions available for use in FILTER expressions.

The following order of operations is used when evaluating SPARQL SELECT queries:

1. Graph pattern matching

2. Grouping (see Grouping and Aggregation.)
3. Aggregates (see Grouping and Aggregation)
4. Having (see Grouping and Aggregation)

5. Values (see Value Assignment)

6. Select expressions

7. Order by

8. Projection

9. Distinct

10. Offset

11. Limit

See also the W3C SPARQL specification for more information on SPARQL BASE, PREFIX,
SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT, and
OFFSET constructs, specifically: ht t p: / / www. w3. or g/ TR/ spar gl 11- query/

Example 1-37 SPARQL PREFIX, SELECT, and WHERE Clauses
Example 1-37 uses the following SPARQL constructs:

* SPARQL PREFIX clause to specify an abbreviation for the htt p: / / www. exanpl e. or g/
fam ly/ and http://xm ns. conm foaf/0. 1/ namespaces

e SPARQL SELECT clause to specify the set of variables to project out of the query
SPARQL WHERE clause to specify the query graph pattern

SELECT y, nane
FROM TABLE(SEM_MATCH(

"PREFI X : <http://wm. exanpl e.org/famly/>
PREFI X foaf: <http://xm ns.com foaf/0.1/>
SELECT ?y ?nane
VHERE
{?x :grandParentOf ?y .

?x foaf:name ?nane }',

SEM Model s(' fanmily'),

SEM Rul ebases(' RDFS' , ' famly_rb'),

null, null, null, " ', null, null,

"RDFUSER , ' NET1'));

Example 1-37 returns the following columns: y, y$RDFVID, y$_PREFIX, y$ SUFFIX,
y$RDFVTYP, y$RDFCLOB, y$RDFLTYP, y$RDFLANG, name, name$RDFVID,
name$_PREFIX, name$_SUFFIX, name$RDFVTYP, name$RDFCLOB, name$RDFLTYP,
name$RDFLANG, and SEM$SROWNUM.

Example 1-38 SPARQL SELECT * (All Variables in Triple Pattern)

The SPARQL SELECT clause specifies either (A) a sequence of variables and/or expressions
(see Expressions in the SELECT Clause), or (B) * (asterisk), which projects all variables that
appear in a specified triple pattern. Example 1-38 uses the SPARQL SELECT clause to select
all variables that appear in a specified triple pattern.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 59 of 197

http://www.w3.org/TR/sparql11-query/

ORACLE

Chapter 1

Using the SEM_MATCH Table Function to Query RDF Data

SELECT x, y, nane
FROM TABLE(SEM MATCH(

"PREFI X : <http://ww.exanple.org/famly/>
PREFI X foaf: <http://xmns.comfoaf/0.1/>
SELECT *

WHERE
{?x :grandParentOf ?y .
?x foaf:nane ?nane }',

SEM Model s(' famly'),

SEM Rul ebases(' RDFS' , ' famly_rb'),

null, null, null, " ', null, null,

"RDFUSER , ' NET1')):

Example 1-39 SPARQL SELECT DISTINCT

SELECT nane
FROM TABLE(SEM_MATCH(

"PREFI X : <http://ww. exanpl e.org/famly/>
PREFI X foaf: <http://xm ns.com foaf/0.1/>
SELECT DISTINCT ?name
VHERE
{?x :grandParentOf ?y .

?x foaf:name ?nanme }',

SEM Model s(' family'),

SEM Rul ebases(' RDFS', ' famly_rb'),

null, null, nutl, * ", null, null,

"RDFUSER , 'NET1'));

Example 1-40 RDF Dataset Specification Using FROM and FROM NAMED

SELECT x, vy, z, emil

FROM TABLE(SEM MATCH(

"PREFI X : <http://ww.exanple.org/famly/>
PREFI X foaf: <http://xmns.comfoaf/0.1/>
PREFI X friends: <http://ww.friends.conl >
PREFI X contacts: <http://ww. contacts.com >

SELECT *

FROM friends:friends

FROM contacts:contacts

FROM NAMED :Smith

FROM NAMED :Jones

VWHERE

{?x foaf:frendCf ?y .

?X email ?emil

GRAPH ?g {

?x :grandParentr ?z }

J
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),
null, null, null, " ', null, null,
"RDFUSER , 'NET1'));

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

The DISTINCT keyword can be used after SELECT to remove duplicate result rows.
Example 1-39 uses SELECT DISTINCT to select only the distinct names.

SPARQL FROM and FROM NAMED are used to specify the RDF dataset for a query. FROM
clauses are used to specify the set of graphs that make up the default graph, and FROM
NAMED clauses are used to specify the set of graphs that make up the set of named graphs.
Example 1-40 uses FROM and FROM NAMED to select email addresses and friend of
relationships from the union of the <htt p: // ww. fri ends. conl fri ends> and <http://

WM. cont act s. cont cont act s> graphs and grandparent information from the <http://

www. exanpl e. org/ fam |y/ Smith>and <http://ww. exanpl e. org/ fanily/ Jones> graphs.

October 13, 2025
Page 60 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-41 SPARQL ORDER BY
In a SPARQL ORDER BY clause:

* Single variable ordering conditions do not require enclosing parenthesis, but parentheses
are required for more complex ordering conditions.

* An optional ASC() or DESC() order modifier can be used to indicate the desired order
(ascending or descending, respectively). Ascending is the default order.

* When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query should be
ordered by SEM$ROWNUM to ensure that the desired ordering is maintained through any
enclosing SQL blocks.

Example 1-41 uses a SPARQL ORDER BY clause to select all cameras, and it specifies
ordering by descending type and ascending total price (price * (1 - discount) * (1 +
tax)).

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww. exanpl e.org/el ectronics/>
SELECT *
VHERE
{?x :price ?p .
?x :discount ?d .
?X itax ?t .
?x :caneraType ?cType .
}
ORDER BY DESC(?cType) ASC(?p * (1-2d) * (1+?t))",
SEM Model s(" el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, * ', null, null,
" RDFUSER , ' NET1'))
ORDER BY SEM$ROWNUM,;

Example 1-42 SPARQL LIMIT

SPARQL LIMIT and SPARQL OFFSET can be used to select different subsets of the query
solutions. Example 1-42 uses SPARQL LIMIT to select the five cheapest cameras, and
Example 1-43 uses SPARQL LIMIT and OFFSET to select the fifth through tenth cheapest
cameras.

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww.exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?p
\HERE
{?x :price ?p .
?x :cameraType ?cType .

}
ORDER BY ASC(?p)
LIMT 5,
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, " ', null, null,
"RDFUSER , ' NET1'))
ORDER BY SEMSROANUM

Example 1-43 SPARQL OFFSET

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://wm. exanpl e. org/ el ectronics/>

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 61 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SELECT ?x ?cType ?p
VWHERE
{?x :price ?p .
?x :caneraType ?cType .
}
ORDER BY ASC(?p)
LIMT5
OFFSET 5',
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, " ', null, null,
"RDFUSER , 'NET1'))
ORDER BY SEMSROANUM

Example 1-44 Query Using Full URIs

The SPARQL BASE keyword is used to set a global prefix. All relative IRIs will be resolved with
the BASE IRI using the basic algorithm described in Section 5.2 of the Uniform Resource
Identifier (URI): Generic Syntax (RFC3986) (http: //www.ietf.org/rfc/rfc3986.txt).
Example 1-44 is a simple query using full URIs, and Example 1-45 is an equivalent query using
a base IRI.

SELECT *
FROM TABLE(SEM MATCH(
" SELECT ?enpl oyee ?position
VHERE
{?x <http://ww. exanpl e. or g/ enpl oyee> ?p .

?p <http://ww:. exanpl e. org/ enpl oyee/ name> ?enpl oyee .

?p <http://ww. exanpl e. org/ enpl oyee/ positi on> ?pos .
?pos <http://ww. exanpl e. org/ posi tions/name> ?position

|
SEM Model s(' enterprise'),
nul I,
null, null, null, " ", null, null,
"RDFUSER , 'NET1'))
ORDER BY 1, 2;

Example 1-45 Query Using a Base IRI

SELECT *
FROM TABLE(SEM MATCH(

' BASE <http://www.example.org/>

SELECT ?enpl oyee ?position

WHERE
{?x <employee> ?p .
?p <employee/name> ?employee .
?p <employee/position> ?pos .
?pos <positions/name> ?position

A
SEM Model s(" enterprise'),
nul I,
null, null, null, * ", null, null,
"RDFUSER , ' NET1'))
ORDER BY 1, 2;

1.7.7 Graph Patterns: Support for SPARQL 1.1 Constructs

SEM_MATCH supports the following SPARQL 1.1 constructs:

* An expanded set of functions (all items in Table 1-14 in Graph Patterns: Support for Curly
Brace Syntax_ and OPTIONAL_FILTER__UNION_ and GRAPH Keywords)

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 62 of 197

http://www.ietf.org/rfc/rfc3986.txt

ORACLE’

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

» Expressions in the SELECT Clause
e Subqueries

e Grouping and Aggregation

* Negation

* Value Assignment

e Property Paths

1.7.7.1 Expressions in the SELECT Clause

Expressions can be used in the SELECT clause to project the value of an expression from a
query. A SELECT expression is composed of variables, RDF terms, arithmetic operators (+, -,
*, /), Boolean operators and logical connectives (||, &&, !), comparison operators (<, >, <=, >=,
=, I=), and any functions available for use in FILTER expressions. The expression must be
aliased to a single variable using the AS keyword, and the overall <expression> AS <alias>
fragment must be enclosed in parentheses. The alias variable cannot already be defined in the
query. A SELECT expression may reference the result of a previous SELECT expression (that
is, an expression that appears earlier in the SELECT clause).

Example 1-46 SPARQL SELECT Expression
Example 1-46 uses a SELECT expression to project the total price for each camera.

SELECT *
FROM TABLE(SEM MATCH(

"PREFI X : <http://ww.exanpl e.org/ el ectronics/>
SELECT ?2x ((?p * (1-?d) * (1+?t)) AS ?totalPrice)
\HERE

{?x :price ?p .

?x :discount ?d .

?X itax ?t .

?x :caneraType ?cType .
|

SEM Model s(' el ectronics'),

SEM Rul ebases(' RDFS'),

null, null, null, " ', null, null,

"RDFUSER , 'NET1'));

Example 1-47 SPARQL SELECT Expressions (2)

Example 1-47 uses two SELECT expressions to project the discount price with and without
sales tax.

SELECT *
FROM TABLE(SEM MATCH(

"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?2x ((?p * (1-?2d)) AS ?preTaxPrice) ((?preTaxPrice * (1+?t)) AS ?finalPrice)
\HERE

{?x :price ?p .

?x :discount ?d .

?X rtax ?t .

?x :caneraType ?cType .
e

SEM Model s(' el ectronics'),

SEM Rul ebases(' RDFS'),

null, null, nutl, * ', null, null,

"RDFUSER , 'NET1'));

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 63 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

1.7.7.2 Subqueries

Subqueries are allowed with SPARQL SELECT syntax. That is, fully-specified SPARQL
SELECT queries may be embedded within other SPARQL SELECT queries. Subqueries have
many uses, for example, limiting the number of results from a subcomponent of a query.

Example 1-48 SPARQL SELECT Subquery

Example 1-48 uses a subquery to find the manufacturer that makes the cheapest camera and
then finds all other cameras made by this manufacturer.

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww.exanpl e.org/ el ectronics/>
SELECT ?cl
WHERE {?cl rdf:type :Camera .
?cl :manufacturer ?m.

{
SELECT 2m

WHERE {?c2 rdf:Type :Camera .
?c2 :price ?p .
?c2 :manufacturer ?m .

}
ORDER BY ASC(?p)
LIMIT 1

}
|
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, " ', null, null,
"RDFUSER , ' NET1'));

Subqueries are logically evaluated first, and the results are projected up to the outer query.
Note that only variables projected in the subquery's SELECT clause are visible to the outer

query.

1.7.7.3 Grouping and Aggregation

The GROUP BY keyword used to perform grouping. Syntactically, the GROUP BY keyword
must appear after the WHERE clause and before any solution modifiers such as ORDER BY
or LIMIT.

Aggregates are used to compute values across results within a group. An aggregate operates
over a collection of values and produces a single value as a result. SEM_MATCH supports the
following built-in Aggregates: COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT and
SAMPLE. These aggregates are described in Table 1-17.

Table 1-17 Built-in Aggregates
]

Aggregate Description

AVG(expression) Returns the numeric average of expression over the values within a
group.

COUNT(* | expression) Counts the number of times expression has a bound, non-error value

within a group; asterisk (*) counts the number of results within a group.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 64 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-17 (Cont.) Built-in Aggregates

. ___|
Aggregate Description

GROUP_CONCAT (expression Performs string concatenation of expression over the values within a
[; SEPARATOR ="STRING"]) group. If provided, an optional separator string will be placed between

each value.

MAX(expression) Returns the maximum value of expression within a group based on the
ordering defined by SPARQL ORDER BY.

MIN(expression) Returns the minimum value of expression within a group based on the
ordering defined by SPARQL ORDER BY.

SAMPLE(expression) Returns expression evaluated for a single arbitrary value from a group.

SUM(expression) Calculates the numeric sum of expression over the values within a
group.

Certain restrictions on variable references apply when using grouping and aggregation. Only
group-by variables (single variables in the GROUP BY clause) and alias variables from
GROUP BY value assignments can be used in non-aggregate expressions in the SELECT or
HAVING clauses.

Example 1-49 Simple Grouping Query

Example 1-49 shows a query that uses the GROUP BY keyword to find all the different types of
cameras.

SELECT *
FROM TABLE(SEM_NATCH(
"PREFI X : <http://ww.exanpl e.org/ el ectronics/>
SELECT ?cType
VWHERE
{?x rdf:type :Canera .
?x . cameraType ?cType .
}
GROUP BY ?cType*,
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, "', null, null,
"RDFUSER , ' NET1'));

A grouping query partitions the query results into a collection of groups based on a grouping
expression (?cType in Example 1-49) such that each result within a group has the same values
for the grouping expression. The final result of the grouping operation will include one row for
each group.

Example 1-50 Complex Grouping Expression

A grouping expression consists of a sequence of one or more of the following: a variable, an
expression, or a value assignment of the form (<expr essi on> as <al i as>). Example 1-50
shows a grouping query that uses one of each type of component in the grouping expression.

SELECT *
FROM TABLE(SEM MATCH(

"PREFI X : <http://ww.exanpl e.org/ el ectronics/>

SELECT ?cType ?total Price

V\HERE
{?x rdf:type :Canera .
?x :caneraType ?cType .
?x :manufacturer ?m.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 65 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

?X .price ?p .
?X itax ?t .
}
GROUP BY ?cType (STR(?m)) ((?p*(1+?t)) AS ?totalPrice)”,
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, " ', null, null,
"RDFUSER , ' NET1')):

Example 1-51 Aggregation

Example 1-51 uses aggregates to select the maximum, minimum, and average price for each
type of camera.

SELECT *
FROM TABLE(SEM _MATCH(
"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?cType
(MAX(?p) AS ?maxPrice)
(MIN(?p) AS ?minPrice)
(AVG(?p) AS ?avgPrice)
\HERE
{?x rdf:type :Canera .
?x :cameraType ?cType .
?x :manufacturer ?m.
?X price ?p .
}
GROUP BY ?cType',
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, "'
"RDFUSER , 'NET1'));

null, null,

Example 1-52 Aggregation Without Grouping

If an aggregate is used without a grouping expression, then the entire result set is treated as a
single group. Example 1-52 computes the total number of cameras for the whole data set.

SELECT *
FROM TABLE(SEM MATCH(

"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT (COUNT(?x) as ?caneraCnt)
VHERE

{ ?x rdf:type :Canera
b
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, nult, " ", null, null,
"RDFUSER , 'NET1'));

Example 1-53 Aggregation with DISTINCT

The DISTINCT keyword can optionally be used as a modifier for each aggregate. When
DISTINCT is used, duplicate values are removed from each group before computing the
aggregate. Syntactically, DISTINCT must appear as the first argument to the aggregate.
Example 1-53 uses DISTINCT to find the number of distinct camera manufacturers. In this
case, duplicate values of STR(?m are removed before counting.

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://wm. exanpl e. org/ el ectronics/>
SELECT (COUNT(DISTINCT STR(?m)) as ?nnt)
VHERE

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 66 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

{ ?x rdf:type :Canera .
?x manufacturer ?m

SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),

null, null, null, " ', null, null,
"RDFUSER , ' NET1')):

Example 1-54 HAVING Clause

The HAVING keyword can be used to filter groups based on constraints. HAVING expressions
can be composed of variables, RDF terms, arithmetic operators (+, -, *, /), Boolean operators
and logical connectives (||, &&, !), comparison operators (<, >, <=, >=, =, |=), aggregates, and
any functions available for use in FILTER expressions. Syntactically, the HAVING keyword
appears after the GROUP BY clause and before any other solution modifiers such as ORDER
BY or LIMIT.

Example 1-54 uses a HAVING expression to find all manufacturers that sell cameras for less
than $200.

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww.exanpl e.org/ el ectronics/>
SELECT ?m
WHERE
{ ?x rdf:type :Canera .
?x :manufacturer ?m.
?x :price ?p
}
GROUP BY ?m
HAVING (MIN(?p) < 200)
ORDER BY ASC(?m)',
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, " ', null, null,
"RDFUSER , ' NET1'));

1.7.7.4 Negation

SEM_MATCH supports two forms of negation in SPARQL query patterns: NOT EXISTS and
MINUS. NOT EXISTS can be used to filter results based on whether or not a graph pattern
matches, and MINUS can be used to remove solutions based on their relation to another graph
pattern.

Example 1-55 Negation with NOT EXISTS

Example 1-55 uses a NOT EXISTS FILTER to select those cameras that do not have any user
reviews.

SELECT *
FROM TABLE(SEM_MATCH(
"PREFI X : <http://ww.exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?p
\HERE
{?x :price ?p .
?x :caneraType ?cType .

FI LTER(NOT EXISTS({?x :userReview ?r}))
H
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, " ', null, null,
"RDFUSER , 'NET1'));

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 67 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-56 EXISTS

Conversely, the EXISTS operator can be used to ensure that a pattern matches. Example 1-56
uses an EXISTS FILTER to select only those cameras that have a user review.

SELECT *
FROM TABLE(SEM _MATCH(
"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?p
WHERE
{?x :price ?p .
?x :cameraType ?cType .

FILTER(EXISTS({?x :userReview ?r}))
e
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, "'
RDFUSER , 'NET1'));

null, null,

Example 1-57 Negation with MINUS

Example 1-57 uses MINUS to arrive at the same result as Example 1-55. Only those solutions
that are not compatible with solutions from the MINUS pattern are included in the result. That
is, if a solution has the same values for all shared variables as a solution from the MINUS
pattern, it is removed from the result.

SELECT *

FROM TABLE(SEM MATCH(

"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?p
VHERE
{?x :price ?p .
?x :caneraType ?cType .

MINUS {?x :userReview ?r}

b
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, nullt, " ", null, null,
"RDFUSER , 'NET1'));

Example 1-58 Negation with NOT EXISTS (2)

NOT EXISTS and MINUS represent two different styles of negation and have different results
in certain cases. One such case occurs when no variables are shared between the negation
pattern and the rest of the query. For example, the NOT EXISTS query in Example 1-58
removes all solutions because { ?subj ?prop ?obj} matches any triple, but the MINUS query
in Example 1-59 removes no solutions because there are no shared variables.

SELECT *
FROM TABLE(SEM_MATCH(
"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?p
V\HERE
{?x :price ?p .
?x :caneraType ?cType .
FILTER(NOT EXISTS({?subj ?prop ?obj}))
b
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, " ', null, null,
"RDFUSER , ' NET1'));

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 68 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-59 Negation with MINUS (2)

SELECT *

FROM TABLE(SEM_MATCH(

"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?p
V\HERE
{?x :price ?p .
?x :caneraType ?cType .

MINUS {?subj ?prop ?obj}

b
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, nult, " ', null, null,
"RDFUSER , 'NET1'));

1.7.7.5 Value Assignment

SEM_MATCH provides a variety of ways to assign values to variables in a SPARQL query.

The value of an expression can be assigned to a new variable in three ways: (1) expressions in
the SELECT clause, (2) expressions in the GROUP BY clause, and (3) the BIND keyword. In
each case, the new variable must not already be defined in the query. After assignment, the
new variable can be used in the query and returned in results. As discussed in Expressions in
the SELECT Clause, the syntax for value assignment is (<expression> AS <alias>) where alias
is the new variable, for example, ((?price * (1+?tax)) AS ?total Price).

Example 1-60 Nested SELECT Expression

Example 1-60 uses a nested SELECT expression to compute the total price of a camera and
assign the value to a variable (?t ot al Pri ce). This variable is then used in a FILTER in the
outer query to find cameras costing less than $200.

SELECT *
FROM TABLE(SEM _MATCH(
"PREFI X : <http://ww. exanpl e. org/ el ectronics/ >
SELECT ?x ?cType ?total Price
VWHERE
{?x :canmeraType ?cType .
{ SELECT ?x (((?price*(1+?tax)) AS ?totalPrice)
WHERE { ?x :price ?price .
?x -tax ?tax }
}
FILTER (?totalPrice < 200)
I
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, * ', null, null,
"RDFUSER , 'NET1'));

Example 1-61 BIND

The BIND keyword can be used inside a basic graph pattern to assign a value and is
syntactically more compact than an equivalent nested SELECT expression. Example 1-61
uses the BIND keyword to expresses a query that is logically equivalent to Example 1-60.

SELECT *
FROM TABLE(SEM_MATCH(
"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?total Price
VHERE
{?x :cameraType ?cType .

Graph Developer's Guide for RDF Graph

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 69 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

?X . price ?price .

?x itax ?tax .

BIND (((?price*(1+?tax)) AS ?totalPrice)
FILTER (?total Price < 200)

SEM Model s(' el ectronics'),

SEM Rul ebases(' RDFS'),

null, null, null, " ', null, null,
"RDFUSER , ' NET1')):

Example 1-62 GROUP BY Expression

Value assignments in the GROUP BY clause can subsequently be used in the SELECT clause,
the HAVING clause, and the outer query (in the case of a nested grouping query).

Example 1-62 uses a GROUP BY expression to find the maximum number of megapixels for
cameras at each price point less than $1000.

SELECT *
FROM TABLE(SEM _MATCH(
"PREFI X : <http://ww. exanpl e. org/ el ectronics/>
SELECT ?total Price (MAX(?nmp) as ?maxMP)
\HERE
{?x rdf:type :Canera .
?X iprice ?price .
?x tax ?tax .
GROUP BY (((?price*(1+?tax)) AS ?totalPrice)
HAVING (?totalPrice < 1000)
e
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null));

Example 1-63 VALUES

In addition to the preceding three ways to assign the value of an expression to a new variable,
the VALUES keyword can be used to introduce an unordered solution sequence that is
combined with the query results through a join operation. A VALUES block can appear inside a
query pattern or at the end of a SPARQL SELECT query block after any solution modifiers. The
VALUES construct can be used in subqueries.

Example 1-63 uses the VALUES keyword to constrain the query results to DSLR cameras
made by : Conpanyl or any type of camera made by : Conpany2. The keyword UNDEF is used
to represent an unbound variable in the solution sequence.

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww. exanpl e.org/el ectronics/>
SELECT ?x ?cType ?m
VHERE
{ ?x rdf:type :Canera .
?x :caneraType ?cType .
?x :manufacturer ?m
}
VALUES (?cType ?m)
{ ("DSLR"™ :Companyl)
(UNDEF :Company?2)
¥
SEM Model s(" el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, null, * ', null, null,
"RDFUSER , 'NET1'));

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 70 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-64 Simplified VALUES Syntax

A simplified syntax can be used for the common case of a single variable. Specifically, the
parentheses around the variable and each solution can be omitted. Example 1-64 uses the
simplified syntax to constrain the query results to cameras made by : Conpanyl or : Conpany?2.

SELECT *
FROM TABLE(SEM_MATCH(
"PREFI X : <http://wm. exanpl e. org/ el ectronics/>
SELECT ?x ?cType ?m
V\HERE
{ ?x rdf:type :Canera .
?x :canmeraType ?cType .
?x :manufacturer ?m
}
VALUES ?m
{ :Companyl
-Company?2
¥,
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),
null, null, nult, " ', null, null,
"RDFUSER , 'NET1'));

Example 1-65 Inline VALUES Block

Example 1-65 also constrains the query results to any camera made by : Conpany1
or : Conpany2, but specifies the VALUES block inside the query pattern.

SELECT *
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww. exanpl e.org/ el ectronics/>
SELECT ?x ?cType ?m
\HERE
{ VALUES ?m { :Companyl :Company2 }
?x rdf:type :Camera .
?x -cameraType ?cType .
?x :manufacturer ?m
¥,
SEM Model s(' el ectronics'),
SEM Rul ebases(' RDFS'),

null, null, null, " ', null, null,
"RDFUSER , ' NET1'));
1.7.7.6 Property Paths

A SPARQL Property Path describes a possible path between two RDF resources (nodes) in an
RDF graph. A property path appears in the predicate position of a triple pattern and uses a
regular expression-like syntax to place constraints on the properties (edges) making up a path
from the subject of the triple pattern to the object of a triple pattern. Property paths allow
SPARQL queries to match arbitrary length paths in the RDF graph and also provide a more
concise way to express other graph patterns.

Table 1-18 describes the syntax constructs available for constructing SPARQL Property Paths.
Note that iri is either an IRI or a prefixed name, and elt is a property path element, which may
itself be composed of other property path elements.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 71 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Table 1-18 Property Path Syntax Constructs
]

Syntax Construct Matches

iri An IRI or a prefixed name. A path of length 1 (one).

~elt Inverse path (object to subject).

liri or I(iril | ... | irin) Negated property set. An IRI that is not one of irii.

INrior I(iril | ... | irij | Nirij+1 Negated property set with some inverse properties. An IRI that is not one
| ... | Nirin) of irii, nor one of irij+1...irin as reverse paths. iri is short for !("iri). The

order of properties and inverse properties is not important. They can occur
in mixed order.

(elt) A group path elt; brackets control precedence.

elt; / elt, A sequence path of elty, followed by elt,.

elt | elt, An alternative path of elty, or elt, (all possibilities are tried).
elt* A path of zero or more occurrences of elt.

elt+ A path of one or more occurrences of elt.

elt? A path of zero or one occurrence of elt.

The precedence of the syntax constructs is as follows (from highest to lowest):

e IRI, prefixed names

¢ Negated property sets
Groups

e Unary operators *, ?, +
e Unary " inverse links

e Binary operator /

e Binary operator |

Precedence is left-to-right within groups.

Special Considerations for Property Path Operators + and *

In general, truly unbounded graph traversals using the + (plus sign) and * (asterisk) operator
can be very expensive. For this reason, a depth-limited version of the + and * operator is used
by default, and the default depth limit is 10. In addition, the depth-limited implementation can
be run in parallel. The ALL_MAX_PP_DEPTH(n) SEM_MATCH query option or the
MAX_PP_DEPTH(n) inline HINTO query optimizer hint can be used to change the depth-limit
setting. To achieve a truly unbounded traversal, you can set a depth limit of less than 1 to fall
back to a CONNECT BY-based implementation.

Query Hints for Property Paths

Other query hints are available to influence the performance of property path queries. The
ALLOW PP_DUP=T query option can be used with * and + queries to allow duplicate results.
Allowing duplicate results may return the first rows from a query faster. In addition,

ALL_USE PP_HASHand ALL_USE_PP_NL query options are available to influence the join types
used when evaluating property path expressions. Analogous USE_PP_HASH and USE_PP_NL
inline HINTO query optimizer hints can also be used.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 72 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-66 SPARQL Property Path (Using rdfs:subClassOf Relations)

Example 1-66 uses a property path to find all Males based on transitivity of the
rdf s: subCl assO rel ati onshi p. A property path allows matching an arbitrary number of
consecutive rdf s: subC assO relations.

SELECT x, name
FROM TABLE(SEM_NATCH(
"{ ?x foaf:name ?name .
?x rdf:type ?t .
?t rdfs:subClassOf* : Male }',
SEM Model s(' fanmily'),
nul I,
SEM ALI ASES(SEM ALI AS(" ', " http://ww. exanpl e.org/famly/")
SEM ALI AS(' foaf'," http://xmns.com foaf/0.1/")),
null, null, " ', null, null,
"RDFUSER , ' NET1'));

Example 1-67 SPARQL Property Path (Using foaf:friendOf or foaf:knows
Relationships)

Example 1-67 uses a property path to find all of Scott's close friends (those people reachable
within two hops using foaf : fri endOf or f oaf : knows relationships).

SELECT nane
FROM TABLE(SEM MATCH(

"{ { :Scott (foaf:friendOf | foaf:knows) ?f }
UNI ON
{ :Scott (foaf:friendOf | foaf:knows)/(foaf:friendOf | foaf:knows) ?f }
?f foaf:name ?nane .
FILTER (!saneTern(?f, :Scott)) }',

SEM Model s(' famly'),

nul I,

SEM ALI ASES(SEM ALI AS(" ', " http://ww. exanple.org/fanmily/"'),

SEM ALI AS(' foaf'," http://xmns.com foaf/0.1/")),
null, null, " ", null, null,
"RDFUSER , ' NET1'));

Example 1-68 Specifying Property Path Maximum Depth Value

Example 1-68 specifies a maximum depth of 12 for all property path expressions with the
ALL_MAX PP_DEPTH(n) query option value.

SELECT x, nane
FROM TABLE(SEM_MATCH(

"{ ?x foaf:name ?name .
?x rdf:type ?t .
?t rdfs:subC assO* :Male }',

SEM Model s(' fanmily"),

nul I,

SEM ALI ASES(SEM ALI AS(" ', " http://ww. exanmpl e.org/famly/")

SEM ALI AS(' foaf'," http://xmns.com foaf/0.1/")),

nul I,

nul I,

" ALL_MAX PP_DEPTH(12) ',
null, null,

'RDFUSER , ' NET1'));

Example 1-69 Specifying Property Path Join Hint

Example 1-69 shows an inline HINTO query optimizer hint that requests a nested loop join for
evaluating the property path expression.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 73 of 197

ORACLE’

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SELECT x, nane
FROM TABLE(SEM MATCH(
"{ # HNTO={ USE_PP_NL }
?x foaf:name ?nane .
?x rdf:type ?t .
?t rdfs:subCassOf* :Male }',
SEM Model s(' famly'),
nul I,
SEM ALI ASES(SEM ALI AS(" ', " http://wwmv. exanmpl e.org/fanmily/")
SEM ALI AS(' foaf'," http://xmns.com foaf/0.1/")),
null, null, " ", null, null,
"RDFUSER , ' NET1')):

1.7.8 Graph Patterns: Support for SPARQL 1.1 Federated Query

SEM_MATCH supports SPARQL 1.1 Federated Query (see http: //ww. w3. org/ TR/

spargl 11-f eder at ed- quer y/ #SPROT). The SERVICE construct can be used to retrieve results
from a specified SPARQL endpoint URL. With this capability, you can combine local RDF data
(native RDF data or RDF views of relational data) with other, possibly remote, RDF data
served by a W3C standards-compliant SPARQL endpoint.

Example 1-70 SPARQL SERVICE Clause to Retrieve All Triples

Example 1-70 shows a query that uses a SERVICE clause to retrieve all triples from the
SPARQL endpoint available at ht t p: / / wwv. exanpl el. or g/ sparql .

SELECT s, p, ©
FROM TABLE(SEM _MATCH(
" SELECT ?s ?p ?0
WHERE {
SERVI CE <http://ww. exanpl el. org/spargl >{ ?s ?p ?0 }

H
SEM Model s(' el ectronics'),
null, null, null, nutl, ' ",
null, null,
"RDFUSER , 'NET1'));

Example 1-71 SPARQL SERVICE Clause to Join Remote and Local RDF Data

Example 1-71 joins remote RDF data with local RDF data. This example joins camera types ?
cType from local RDF graph el ect r oni cs with the camera names ?nane from the SPARQL
endpoint at htt p: / / www. exanpl el. or g/ sparql .

SELECT cType, nane
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww. exanpl e.org/ el ectronics/>
SELECT ?cType ?nane
VHERE {
?s :caneraType ?cType
SERVI CE <http://ww. exanpl el. org/spargl >{ ?s :name ?name }

|
SEM Model s(" el ectronics'),
null, null, null, nutl, ' ",
null, null,

'RDFUSER , ' NET1'));

* Privileges Required to Execute Federated SPARQL Queries
e SPARQL SERVICE Join Push Down
« SPAROL SERVICE SILENT

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 74 of 197

http://www.w3.org/TR/sparql11-federated-query/#SPROT
http://www.w3.org/TR/sparql11-federated-query/#SPROT

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

* Using a Proxy Server with SPARQL SERVICE
Accessing SPARQL Endpoints with HTTP Basic Authentication

1.7.8.1 Privileges Required to Execute Federated SPARQL Queries

You need certain database privileges to use the SERVICE construct within SEM_MATCH
gueries. You should be granted EXECUTE privilege on the SPARQL_SERVICE function by a
user with DBA privileges. The following example grants this access to a user named
RDFUSER:

grant execute on sparql_service to rdfuser;

Also, an Access Control List (ACL) should be used to grant the CONNECT privilege to the user
attempting a federated query. Example 1-72 creates a hew ACL to grant the user RDFUSER
the CONNECT privilege and assigns the domain * to the ACL. For more information about
ACLs, see Oracle Al Database PL/SQL Packages and Types Reference.

Example 1-72 Access Control List and Host Assignment

dbns_network_acl _adnmin. create_acl (
acl => "rdfuser.xm"',
description => "Alow rdfuser to query SPARQL endpoints',
principal => 'RDFUSER ,
is_grant => true,
privilege => 'connect’

)

dbns_network_acl _admi n. assi gn_acl (
acl =>'rdfuser.xm",
host => '*'

)i

After the necessary privileges are granted, you are ready to execute federated queries from
SEM_MATCH

1.7.8.2 SPARQL SERVICE Join Push Down

The SPARQL SERVICE Join Push Down (SERVI CE_JPDWN=T) feature can be used to improve
the performance of certain SPARQL SERVICE queries. By default, the query pattern within the
SERVICE clause is executed first on the remote SPARQL endpoint. The full result of this
remote execution is then joined with the local portion of the query. This strategy can result in
poor performance if the local portion of the query is very selective and the remote portion of the
query is very unselective.

The SPARQL SERVICE Join Push Down feature cannot be used in a query that contains more
than one SERVICE clause.

Example 1-73 SPARQL SERVICE Join Push Down

Example 1-73 shows the SPARQL SERVICE Join Push Down feature.

SELECT s, prop, obj
FROM TABLE(SEM _NATCH(
"PREFI X : <http://ww.exanpl e.org/ el ectronics/>
SELECT ?s ?prop ?obj
WHERE {
?s rdf:type :Canera .
?s :nodel Name "Canera 12345"
SERVI CE <http://ww. exanpl el. org/sparqgl > { ?s ?prop ?obj }
|

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 75 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SEM Model s(' el ectronics'),

null, null, null, null, ' SERVICE_JPDWN=T ',
null, null,

"RDFUSER , ' NET1')):

In Example 1-73, the local portion of the query will return a very small number of rows, but the
remote portion of the query is completely unbound and will return the entire remote dataset.
When the SERVI CE_JPDWN=T option is specified, SEM_MATCH performs a nested-loop style
evaluation by first executing the local portion of the query and then executing a modified
version of the remote query once for each row returned by the local portion. The remote query
is modified with a FILTER clause that effectively performs a substitution for the join variable ?s.
For example, if <ur n: camer al> and <ur n: camer a2> are returned from the local portion of
Example 1-73 as bindings for ?s, then the following two queries are sent to the remote
endpoint: { ?s ?prop ?0bj FILTER (?s = <urn:caneral>) } and{ s ?prop ?obj FILTER
(?s = <urn:camera2>) }.

1.7.8.3 SPARQL SERVICE SILENT

When the SILENT keyword is used in federated queries, errors while accessing the specified
remote SPARQL endpoint will be ignored. If the SERVICE SILENT request fails, a single
solution with no bindings will be returned.

Example 1-74 uses SERVICE with the SILENT keyword inside an OPTIONAL clause, so that,
when connection errors accessing ht t p: / / ww. exanpl el. or g/ spar gl appear, such errors will
be ignored and all the rows retrieved from triple ?s : canerat ype ?k will be combined with a
null value for ?n.

Example 1-74 SPARQL SERVICE with SILENT Keyword

SELECT s, n
FROM TABLE(SEM MATCH(
"PREFI X : <http://wm. exanpl e. org/ el ectronics/>
SELECT ?s ?n
VHERE {
?s :caneraType ?k
OPTI ONAL { SERVI CE SILENT <http://ww:. exanpl el. org/sparqgl >{ ?k :name ?n } }
b
SEM Model s(' el ectronics'),
null, null, null, null, * ', null, null,
"RDFUSER , 'NET1'));

1.7.8.4 Using a Proxy Server with SPARQL SERVICE

The following methods are available for sending SPARQL SERVICE requests through an
HTTP proxy:

* Specifying the HTTP proxy that should be used for requests in the current session. This
can be done through the SET_PROXY function of UTL_HTTP package. Example 1-75 sets
the proxy pr oxy. exanpl e. comto be used for HTTP requests, excluding those to hosts in
the domain exanpl e2. com (For more information about the SET_PROXY procedure, see
Oracle Al Database PL/SQL Packages and Types Reference.)

e Using the SERVICE_PROXY SEM_MATCH option, which allows setting the proxy address
for SPARQL SERVICE request. However, in this case no exceptions can be specified, and
all requests are sent to the given proxy server. Example 1-76 shows a SEM_MATCH query
where the proxy address pr oxy. exanpl e. comat port 80 is specified.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 76 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-75 Setting Proxy Server with UTL_HTTP.SET_PROXY

BEG N

UTL_HTTP. SET_PROXY(' proxy. exanpl e.com 80", 'exanpl e2.coni);
END;
/

Example 1-76 Setting Proxy Server in SPARQL SERVICE

SELECT *
FROM TABLE(SEM MATCH(
" SELECT *
VHERE {
SERVI CE <http://ww. exanpl el. org/spargl >{ ?s ?p ?0 }
|

SEM Model s(' el ectronics'),
null, null, null, null, ' SERVI CE_PROXY=proxy.exanpl e.com80 ',
null, null,

'RDFUSER , 'NET1')):

1.7.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication

To allow accessing of SPARQL endpoints with HTTP Basic Authentication, user credentials
should be saved in Session Context SDO_SEM_HTTP_CTX. A user with DBA privileges must
grant EXECUTE on this context to the user that wishes to use basic authentication. The
following example grants this access to a user named RDFUSER:

grant execute on nusys.sdo_semhttp_ctx to rdfuser;

After the privilege is granted, the user should save the user name and password for each
SPARQL Endpoint with HTTP Authentication through functions

mdsys. sdo_sem http_ctx. set_usr and ndsys. sdo_sem http_ctx. set _pwd. The following
example sets a user name and password for the SPARQL endpoint at http://

www. exanpl el. org/ sparql :

BEG N
mdsys. sdo_sem http_ctx.set _usr(' http://ww.exanpl el.org/sparql','user');
mdsys. sdo_sem http_ctx.set _pwd(' http://ww. exanpl el. org/sparqgl',' pwd');
END,;
/

1.7.9 Inline Query Optimizer Hints

In SEM_MATCH, the SPARQL comment construct has been overloaded to allow inline HINTO
guery optimizer hints. In SPARQL, the hash (#) character indicates that the remainder of the
line is a comment. To associate an inline hint with a particular BGP, place a HINTO hint string
inside a SPARQL comment and insert the comment between the opening curly bracket ({) and
the first triple pattern in the BGP. Inline hints enable you to influence the execution plan for
each BGP in a query.

Inline optimizer hints override any hints passed to SEM_MATCH through the options argument.
For example, a global ALL_ORDERED hint applies to each BGP that does not specify an inline
optimizer hint, but those BGPs with an inline hint use the inline hint instead of the
ALL_ORDERED hint.

Example 1-77 Inline Query Optimizer Hints (BGP_JOIN)

The following example shows a query with inline query optimizer hints.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 77 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SELECT x, y, hp, cp
FROM TABLE(SEM MATCH(
"{ # HINTO={ LEADING(t0) USE_NL(?x ?y ?bd) }
?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?hd
OPTI ONAL { # HINTO={ LEADING(tO t1) BGP_JO N(USE_HASH) }
?x :honepage ?hp . ?x :cellPhoneNum ?cp }

|
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),
SEM ALI ASES(SEM ALI AS(' ', " http://ww. exanmpl e.org/fanmily/')),
null, null, " ", null, null,
"RDFUSER , ' NET1')):

The BGP_JOIN hint influences inter-BGP joins and has the following syntax:

BGP_JO N(<j oi n_t ype>) , where <join_type>is USE_HASH or USE_NL. Example 1-77 uses
the BGP_JOIN(USE_HASH) hint to specify that a hash join should be used when joining the
OPTIONAL BGP with its parent BGP.

Inline optimizer hints override any hints passed to SEM_MATCH through the opti ons
argument. For example, a global ALL_ORDERED hint applies to each BGP that does not
specify an inline optimizer hint, but those BGPs with an inline hint use the inline hint instead of
the ALL_ORDERED hint.

Example 1-78 Inline Query Optimizer Hints (ANTI_JOIN)

The ANTI_JOIN hint influences the evaluation of NOT EXISTS and MINUS clauses. This hint
has the syntax ANTI _JO N(<j oi n_t ype>), where <join_type> is HASH_AJ, NL_AJ, or
MERGE_AJ. The following example uses a hint to indicate that a hash anti join should be
used. Global ALL_AJ_HASH, ALL_AJ NL, ALL_AJ MERGE can be used in the options
argument of SEM_MATCH to influence the join type of all NOT EXISTS and MINUS clauses in
the entire query.

SELECT x, vy
FROM TABLE(SEM MATCH(
" SELECT ?x ?y
WHERE {
?x :grandParentr ?y . ?x rdf:type :Male . ?x :birthDate ?hd
FI LTER (
NOT EXI STS {# HI NTO={ ANTI_JOIN(HASH_AJ) }
?x :honepage ?hp . ?x :cellPhoneNum ?cp })
|
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' fam |y _rb'),
SEM ALI ASES(SEM ALI AS(' ', " http://ww. exampl e.org/fanmily/')),
null, null, " ", null, null,
"RDFUSER , ' NET1'));

Example 1-79 Inline Query Optimizer Hints (NON_NULL)

H NTO={ NON_NULL} is supported in SPARQL SELECT clauses to signify that a particular
variable is always bound (that is, has a non-null value in each result row). This hint allows the
query compiler to optimize joins for values produced by SELECT expressions. These
optimizations cannot be applied by default because it cannot be guaranteed that expressions
will produce non-null values for all possible input. If you know that a SELECT expression will
not produce any null values for a particular query, using this NON_NULL hint can significantly
increase performance. This hint should be specified in the comment in a line before the 'AS'
keyword of a SELECT expression.

The following example shows the NON_NULL hint option used in a SEM_MATCH query,
specifying that variable ?f ul | _nane is definitely bound.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 78 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SELECT s, t
FROM TABLE(SEM MATCH(
" SELECT * WHERE {
?s :nane ?full_name
{ SELECT (CONCAT(?fname, " ", ?lnane) # H NTO={ NON NULL }
AS ?ful | _nane)
WHERE {

?t :fname ?fnane .
?t :lname ?lnane }

}

|
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),
SEM ALI ASES(SEM ALI AS(' ', " http://ww. exanmpl e.org/fanmily/')),
null, null, " ", null, null,
"RDFUSER , ' NET1')):

1.7.10 Full-Text Search

The Oracle-specific or ar df : t ext Cont ai ns SPARQL FILTER function uses full-text indexes on
the RDF_VALUES table. This function has the following syntax (where or ar df is a built-in
prefix that expands to <htt p://xm ns. oracl e. coni rdf / >):

orardf:textContains(variable, pattern)

The first argument to or ar df : t ext Cont ai ns must be a local variable (that is, a variable present
in the BGP that contains the or ar df : t ext Cont ai ns filter), and the second argument must be a
constant plain literal.

For example, orardf : t ext Cont ai ns(x, y) returns true if x matches the expression y, where y
is a valid expression for the Oracle Text SQL operator CONTAINS. For more information about
such expressions, see Oracle Text Reference.

Before using or ar df : t ext Cont ai ns, you must create an Oracle Text index for the RDF
network. To create such an index, invoke the SEM_APIS.ADD_DATATYPE_INDEX procedure
as follows:

EXECUTE SEM API S. ADD_DATATYPE | NDEX(' http://xm ns. oracl e.com rdf /text",
net wor k_owner =>' RDFUSER , networ k_name=>' NET1');

Performance for wildcard searches like or ar df ; t ext Cont ai ns(?x, "%abc%) can be improved
by using prefix and substring indexes. You can include any of the following options to the
SEM_APIS.ADD_DATATYPE INDEX procedure:

e PREFI X_I NDEX=TRUE — for adding prefix index

* PREFI X_M N_LENGTH=<nunber > — minimum length for prefix index tokens
e PREFI X_MAX_LENGTH=<nunber > — maximum length for prefix index tokens
e SUBSTRI NG_I NDEX=TRUE — for adding substring index

e LOGE NG=T — to enable logging for text index

For more information about Oracle Text indexing elements, see Oracle Text Reference.

When performing large bulk loads into a RDF network with a text index, the overall load time
may be faster if you drop the text index, perform the bulk load, and then re-create the text
index. See Using Data Type Indexes for more information about data type indexing.

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 79 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

After creating a text index, you can use the or ar df : t ext Cont ai ns FILTER function in
SEM_MATCH queries. Example 1-80 uses or ar df : t ext Cont ai ns to find all grandfathers
whose names start with the letter A or B.

Example 1-80 Full-Text Search

SELECT x, y, n
FROM TABLE(SEM_NATCH(
"PREFI X : <http://ww.exanple.org/famly/>
SELECT *
WHERE {
?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n
FILTER (orardf:textContains(?n, " A% | B% ")) }',
SEM Model s(' fanmi ly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),
null, null, null, * ', null, null,
"RDFUSER , 'NET1')):

Example 1-81 orardf:textScore

The ancillary operator or ar df : t ext Scor e can be used in combination with

or ar df : t ext Cont ai ns to rank results by the goodness of their text match. There are, however,
limitations when using or ar df ; t ext Scor e. The orar df : t ext Scor e invocation must appear as a
SELECT expression in the SELECT clause immediately surrounding the basic graph pattern
that contains the corresponding or ar df : t ext Cont ai ns FILTER. The alias for this SELECT
expression can then be used in other parts of the query. In addition, a REWRI TEEF' query hint
must be used in the opti ons argument of SEM_MATCH.

The following example finds text matches with score greater than 0.5. Notice that an additional
invocation id argument is required for or ar df : t ext Cont ai ns, so that it can be linked to the
orar df : t ext Scor e invocation with the same invocation id. The invocation ID is an arbitrary
integer constant used to match a primary operator with its ancillary operator.

SELECT x, y, n, scr
FROM TABLE(SEM MATCH(
" PREFI X <http://ww. exanmpl e.org/fam |y/>
SELECT *
VHERE {
{ SELECT ?x ?y ?n (orardf:textScore(123) AS ?scr)
WHERE {
?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n
FILTER (orardf:textContains(?n, " A%| B%", 123)) }
}
FILTER (?scr > 0.5)
|
SEM Model s(' fam ly'),
SEM Rul ebases(' RDFS', ' fanm |y rb'),

nul |,

nul |,

nul |,

" REWRITE=F ',
null, null,

'RDFUSER , 'NET1'));

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 80 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Example 1-82 orardf:like

For a lightweight text search, you can use the orardf: | i ke function, which performs simple
test for pattern matching using the Oracle SQL operator LI KE. The orar df : | i ke function has
the following syntax:

e orardf:like(string, pattern)
e orardf:like(string, pattern, flags)

The first argument of or ar df : | i ke can be any variable or RDF term, as opposed to

orar df : Cont ai ns, which requires the first argument to be a local variable. When the first
argument to orar df : | i ke is a URI, the match is performed against the URI suffix only. The
second argument must be a pattern expression, which can contain the following special
pattern-matching characters:

e The percent sign (%) can match zero or more characters.
e The underscore () matches exactly one character.

The flags argument must be a constant string. The flag "i " is supported to allow a case-
insensitive search.

The following example shows a percent sign (%) wildcard search to find all grandparents
whose URIs start with Ja.

SELECT x, y, n
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww.exanple.org/fanly/>
SELECT *
VHERE {
?x :grandParentOf ?y . ?y :name ?n
FILTER (orardf:like(?x, "Ja%")) }',
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' ,'fanmily_rb'),
null, null, null, " ", null, null,
"RDFUSER , "NET1'));

The following example shows an underscore (_) wildcard search to find all the grandchildren
whose names start with J followed by two characters and end with k. The case-insensitive flag
"i " is used to make the search case-insensitive.

SELECT X, y, n
FROM TABLE(SEM MATCH(
"PREFI X : <http://ww.exanmple.org/fanmly/>
SELECT *
VHERE {
?x :grandParentOf ?y . ?y :nanme ?n
FILTER (orardf:like(?n, "j__ k", "i'))
H
SEM Model s(' fam ly'),
SEM Rul ebases(' RDFS', ' fanmily rb'),
null, null, null, " ', null, null,
"RDFUSER , 'NET1'));

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 81 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

For efficient execution of orar df : | i ke, you can create an index using the
SEM_APIS.ADD_DATATYPE_INDEX procedure with http://xm ns. oracl e.com rdf/like as
the data type URI. This index can speed up queries when the first argument is a local variable
and the leading character of the search pattern is not a wildcard. The underlying index is a
simple function-based B-Tree index on a varchar function, which has lower maintenance and
storage costs than a full Oracle Text index. The index for orardf:|i ke is created as follows:

EXECUTE SEM API S. ADD DATATYPE | NDEX(' http://xm ns.oracle.comrdf/like",
net wor k_owner =>' RDFUSER , networ k_name=>' NET1') ;

1.7.11 Spatial Support

RDF Graph supports storage and querying of spatial geometry data through the OGC
GeoSPARQL standard and through Oracle-specific SPARQL extensions. Geometry data can
be stored as orageo: WKTLiteral , ogc: wkt Literal, ogc: g Literal, ogc: geoJSONLi teral , or
ogc: km Li teral typed literals, and geometry data can be queried using several query
functions for spatial operations. Spatial indexing for increased performance is also supported.

orageo is a built-in prefix that expands to <http: //xm ns. oracl e. com r df / geo/ >, ogc is a
built-in prefix that expands to <htt p: / / www. opengi s. net/ ont / geospar gl #>, and ogcf is a built-
in prefix that expands to <htt p: / / ww. opengi s. net/ def / f unct i on/ geospar gl >.

e OGC GeoSPARQL Support
* Representing Spatial Data in RDF

* Validating Geometries

* Indexing Spatial Data

* Querying Spatial Data
* Using Long Literals with GeoSPAROQL Queries

1.7.11.1 OGC GeoSPARQL Support

RDF Graph supports the following conformance classes for the OGC GeoSPARQL standard
(http: // www. opengeospati al . or g/ st andar ds/ geospar gl) using well-known text (WKT)
serialization and the Simple Features relation family.

« Core

e Topology Vocabulary Extension (Simple Features)

* Geometry Extension (WKT, 1.2.0)

e Geometry Topology Extension (Simple Features, WKT, 1.2.0)
* RDFS Entailment Extension (Simple Features, WKT, 1.2.0)

RDF Graph supports the following conformance classes for OGC GeoSPARQL using
Geography Markup Language (GML) serialization and the Simple Features relation family.

« Core

e Topology Vocabulary Extension (Simple Features)

* Geometry Extension (GML, 3.1.1)

e Geometry Topology Extension (Simple Features, GML, 3.1.1)
* RDFS Entailment Extension (Simple Features, GML, 3.1.1)

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 82 of 197

http://www.opengeospatial.org/standards/geosparql

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

RDF Graph supports the following conformance classes for OGC GeoSPARQL using
Geographic JavaScript Object Notation (GeoJSON) serialization and the Simple Features
relation family.

« Core

e Topology Vocabulary Extension (Simple Features)

e Geometry Extension (GeoJSON, 1.0)

e Geometry Topology Extension (Simple Features, GeoJSON, 1.0)
e RDFS Entailment Extension (Simple Features, GeoJSON, 1.0)

RDF Graph supports the following conformance classes for OGC GeoSPARQL using Keyhole
Markup Language (KML) serialization and the Simple Features relation family.

 Core

* Topology Vocabulary Extension (Simple Features)

e Geometry Extension (KML, 2.1)

e Geometry Topology Extension (Simple Features, KML, 2.1)
* RDFS Entailment Extension (Simple Features, KML, 2.1)

Specifics for representing and querying spatial data using GeoSPARQL are covered in
sections that follow this one.

1.7.11.2 Representing Spatial Data in RDF

Spatial geometries can be represented in RDF as or ageo: VKTLi t eral , ogc: wkt Li teral,
ogc: gm Literal, ogc: geoJSONLi teral , or ogc: knl Li teral typed literals. In this document, the
term geometry literal is used to refer to an RDF literal that is any one of these five literal

types.
Example 1-83 Spatial Point Geometry Represented as orageo:WKTLiteral

The following example shows the or ageo: VIKTLi t er al encoding for a simple point geometry.

"Point(-83.4 34.3)""<http://xm ns.oracle.conm rdf/geo/ WKTLi teral >

Example 1-84 Spatial Point Geometry Represented as ogc:wktLiteral

The following example shows the ogc: wkt Li t eral encoding for the same point as in the
preceding example.

"Point(-83.4 34.3)""<http://ww.opengis. net/ont/geosparql #wktLi teral >

Both or ageo: WKTLi t eral and ogc: wkt Lit eral encodings consist of an optional spatial
reference system URI, followed by a Well-Known Text (WKT) string that encodes a geometry
value. The spatial reference system URI and the WKT string should be separated by a
whitespace character.

Supported spatial reference system URIs have the following form <http://

www. opengi s. net/ def / crs/ EPSG 0/ {sri d} >, where {sri d} is a valid spatial reference system
ID defined by the European Petroleum Survey Group (EPSG). For URIs that are not in the
EPSG Geodetic Parameter Dataset, the spatial reference system URIs used have the form
<http://xmns.oracle.com rdf/geo/srid/{srid}>, where {srid} isa valid spatial reference
system ID from Oracle Spatial. If a geometry literal value does not include a spatial reference

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 83 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

system URI, then the default spatial reference system, WGS84 Longitude-Latitude (URI
<http://ww. opengis. net/def/crs/ OG0 1. 3/ CRS84>), is used. The same default spatial
reference system is used when geometry literal values are encountered in a query string.

Example 1-85 Spatial Point Geometry Represented as ogc:gmilLiteral

The following example shows the ogc: gn Li t eral encoding for a point geometry.

"<gn : Poi nt srsName=\"urn: ogc: def: crs: EPSG : 8307\" xm ns:gm =\"http://
Www. opengi s. net/ gm \"><gm : posLi st srsDinension=\"2\">-83.4 34, 3</
gn : posLi st ></ gnl : Poi nt >"A<htt p: // www. opengi s. net/ont/ geospar gl #gnl Li teral >

ogc: gm Literal encodings consist of a valid element from the GML schema that implements a
subtype of GM_Obiject. In contrast to WKT literals, A GML encoding explicitly includes spatial
reference system information, so a spatial reference system URI prefix is not needed.

Example 1-86 Spatial Polygon Geometry Represented as ogc:geoJSONLiteral

The following example shows a valid ogc: geoJSONLi t eral encoding for a polygon geometry.

“{ \"type\": \"Polygon\", \"coordinates\": [[[-75, 44], [-75, 42], [-72,
42],

[-72, 45], [-74, 45], [-75, 44] 1] }"~<http://ww. opengis.net/ont/
geospar ql #geoJSO\Li t er al >

ogc: geoJSONLi t eral encodings consist of a valid GeoJSON serialization of a geometry object.
ogc: geoJSONLI t er al s are always interpreted using WGS84 geodetic longitude-latitude spatial
reference system.

Example 1-87 Spatial Polygon Geometry Represented as ogc:kmlLiteral

The following example shows the ogc: kn Li t eral encoding for a polygon geometry.

" <Pol ygon><ext r ude>0</ ext rude><t essel | at e>0</

tessel | at e><al titudeMode>rel ativeToG ound</al titudeMde>

<out er Boundar yI s><Li near Ri ng><coor di nat es>-73.0,44.0 -71.0,44.0 -71.0,47.0
-73.0,47.0 -73.0,44.0 </coordi nat es>

</ Li near Ri ng></ out er Boundar yl s></ Pol ygon>""~<htt p: / / ww. opengi s. net/ont/
geospar gl #km Literal >

ogc: kmi Li teral encodings consist of a valid KML geometry serialization. ogc: km Literal s
are always interpreted using WGS84 geodetic longitude-latitude spatial reference system.

Several geometry types can be represented as geometry literal values, including point,
linestring, polygon, polyhedral surface, triangle, TIN, multipoint, multi-linestring, multipolygon,
and geometry collection. Up to 500,000 vertices per geometry are supported for two-
dimensional geometries.

Example 1-88 Spatial Data Encoded Using ogc:wktLiteral Values

The following example shows some RDF spatial data (in N-triple format) encoded using
ogc: wkt Li teral values. In this example, the first two geometries (in lotl) use the default
WGS84 coordinate system (SRID 4326), but the other two geometries (in lot2) specify SRID
4269.

spatial data for lotl using the default WGS84 Longitude-Latitude spatial
reference system

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 84 of 197

http://www.opengis.net/def/crs/EPSG/0/4326
http://www.opengis.net/def/crs/EPSG/0/4326
http://www.opengis.net/def/crs/EPSG/0/4326
http://www.opengis.net/def/crs/EPSG/0/4269
http://www.opengis.net/def/crs/EPSG/0/4269

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

<urn:lot1> <urn:hasExact Geonmetry> "Pol ygon((-83.6 34.1, -83.6 34.5, -83.2
34.5, -83.2 34.1, -83.6 34.1))""<http://wwv. opengi s. net/ont/

geospar ql #wkt Literal > .

<urn:lot1> <urn:hasPoi nt Geometry> "Point (-83.4 34.3)"*<http://

WM. opengi s. net/ont/ geospar gl #wktLiteral > .

spatial data for lot2 using the NAD83 Longitude-Latitude spatial reference
system

<urn:lot2> <urn: hasExact Geomet ry> "<http://wwv. opengi s. net/def/crs/

EPSG 0/ 4269> Pol ygon((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6
34.1))"~<http:// ww opengi s. net/ont/geospar gl #wkt Literal > .

<urn:lot2> <urn:hasPoi nt Georret ry> "<http://wwv. opengi s. net/def/crs/

EPSG 0/ 4269> Poi nt (-83.5 34.2)"A<http://ww. opengis. net/ont/

geospar ql #wkt Literal > .

For more information, see the chapter about coordinate systems (spatial reference systems) in
Oracle Spatial Developer's Guide. See also the material about the WKT geometry
representation in the Open Geospatial Consortium (OGC) Simple Features document,
available at: htt p: // www. opengeospati al . org/ st andards/sfa

1.7.11.3 Validating Geometries

Before manipulating spatial data, you should check that there are no invalid geometry literals
stored in your RDF graph. The procedure SEM_APIS.VALIDATE GEOMETRIES allows
verifying geometries in an RDF graph. The geometries are validated using an input SRID and
tolerance value. (SRID and tolerance are explained in Indexing Spatial Data.)

If there are invalid geometries, a table with name {graph_name} IVGS$, is created in the user
schema, where {graph_name} is the name of the RDF graph specified. Such table contains, for
each invalid geometry literal, the value_id of the geometry literal in the RDF_VALUES table, the
error message explaining the reason the geometry is not valid and a corrected geometry literal
if the geometry can be rectified. For more information about geometry validation, see the
reference information for the Oracle Spatial subprograms
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT and
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT.

Example 1-89 Validating Geometries in an RDF Graph
The following example validates an RDF graph m using SRI D=8307 and t ol er ance=0. 1.

- Validate
EXECUTE sem api s. val i date_geonetri es(RDF graph_name=>'m , SRI D=>8307, t ol erance=>0. 1,
net wor k_owner =>' RDFUSER , networ k_nane=>' NET1');-- Check for invalid geonetries

SELECT original _vid, error_msg, corrected_wkt_|iteral FROM M| VGS;

1.7.11.4 Indexing Spatial Data

Before you can use any of the SPARQL extension functions (introduced in Querying Spatial
Data) to query spatial data, you must create a spatial index on the RDF network by calling the
SEM_APIS.ADD_DATATYPE_INDEX procedure.

When you create the spatial index, you must specify the following information:

* SRID - The ID for the spatial reference system in which to create the spatial index. Any
valid spatial reference system ID from Oracle Spatial and Graph can be used as an SRID
value.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 85 of 197

http://www.opengeospatial.org/standards/sfa

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

@® Note

If you plan to use geospatial RDF data in web-based mapping applications like
Oracle Spatial Studio, it is recommended to pre-transform your data to WGS84
longitude-latitude (SRID 4326 or 8307) and also use SRID 4326 or 8307 for your
spatial index. This will improve performance by avoiding repeated coordinate
transformations to WG S84 longitude-latitude for display on a map.

¢ TOLERANCE - The tolerance value for the spatial index. Tolerance is a positive number
indicating how close together two points must be to be considered the same point. The
units for this value are determined by the default units for the SRID used (for example,
meters for WGS84 Long-Lat). Tolerance is explained in detail in Oracle Spatial Developer's
Guide.

 DIMENSIONS - A text string encoding dimension information for the spatial index. Each
dimension is represented by a sequence of three comma-separated values: name,
minimum value, and maximum value. Each dimension is enclosed in parentheses, and the
set of dimensions is enclosed by an outer parenthesis.

Example 1-90 Adding a Spatial Data Type Index on RDF Data

Example 1-90 adds a spatial data type index on the RDF network, specifying the WGS84
Longitude-Latitude spatial reference system, a tolerance value of 0.1, and the recommended
dimensions for the indexing of spatial data that uses this coordinate system. The
TOLERANCE, SRID, and DIMENSIONS keywords are case sensitive, and creating a data type
index for any supported geometry literal type (<http://xm ns. oracl e. com rdf / geo/

VKTLi teral >, <http://ww. opengi s. net/ont/geosparql #wkt Literal >, <http://

WM. opengi s. net/ ont/ geospar gl #gml Li teral >, <http: //wwv. opengi s. net/ont/

geospar gl #geoJSONLi t eral >, or <htt p: / / www. opengi s. net/ ont/ geospar gl #km Li t er al >) will
create an index for all the supported geometry literal types. For example, if you create an index
for ogc: wkt Literal , any orageo: WKTLi teral , ogc: gnl Literal, ogc: geoJSONLi teral , and

ogc: kml Li teral geometry literals will also be indexed.

EXECUTE sem api s. add_dat at ype_i ndex(' http://ww. opengi s. net/ont/geosparql #wkt Literal ',
opti ons=> TOLERANCE=0. 1 SRI D=8307 DI MENSI ONS=((LONG TUDE, - 180, 180)
(LATI TUDE, - 90, 90)) ',
net wor k_owner =>' RDFUSER , net wor k_nanme=>' NET1');

No more than one spatial data type index is supported for an RDF network. Geometry literal
values stored in the RDF network are automatically normalized to the spatial reference system
used for the index, so a single spatial index can simultaneously support geometry literal values
from different spatial reference systems. This coordinate transformation is done transparently
for indexing and spatial computations. When geometry literal values are returned from a
SEM_MATCH query, the original, untransformed geometry is returned.

For more information about spatial indexing, see the chapter about indexing and querying
spatial data in Oracle Spatial Developer's Guide.

Example 1-91 Adding a Spatial Data Type Materialized Index on RDF Data

When you manipulate spatial data, conversions from geometry literals to geometry objects may
be needed, but several conversions may lead to poor performance. To avoid this situation, all
the stored geometry literals can be transformed into SDO_GEOMETRY objects and
materialized at index creation time.

This can be achieved using the MATERI ALI ZE=T option when adding a spatial data type index. If
the amount of geometry literals to be indexed is very large, using the option | NS_AS SEL=T may
help to speed up the materialized index creation.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 86 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

The following example shows the creation of a materialized spatial index.

EXECUTE sem api s. add_dat at ype_i ndex(' http://ww. opengi s. net/ont/
geospar gl #wktLiteral ',

opti ons=>' TOLERANCE=0. 1 SRI D=8307
DI MENSI ONS=((LONG TUDE, - 180, 180) (LATI TUDE, - 90, 90)) MATERIALIZE=T ');

Example 1-92 Adding a 3D Spatial Data Type Index on RDF Data

Spatial indexes with three coordinates can be created in Oracle Spatial. To create a 3D index,
you must specify SDO_INDX_DIMS=3 option in the options argument of the
SEM_APIS.ADD_DATATYPE_INDEX procedure.

The following example shows creation and indexing of 3D data. Note that coordinates are
specified in (X, Y, Z) order, and linear rings for outer polygon boundaries are given in counter-
clockwise order.

Note: For information about support for geometry operations with 3D data, including any
restrictions, see Three Dimensional Spatial Objects.

conn rdf user/ <passwor d>;
create table geo3d_tab(tri sdo_rdf triple_s);
exec sem apis.create_sem nodel (' geo3d', ' geo3d_tab',"tri");

-- 3D Pol ygon
insert into geo3d_tab(tri) values(sdo_rdf triple_s('geo3d ,'<http://
exanpl e. or g/ Appl i cati onSchema#A>' ,
"<http://exanple.org/
Appl i cati onSchena#hasExact Geonet ry>',
"<http://exanple.org/
Appl i cati onSchena#AExact Geonp')) ;
insert into geo3d_tab(tri) values(sdo_rdf triple_s('geo3d ,'<http://
exanpl e. or g/ Appl i cati onSchema#AExact Geonp' ,
"<http://ww. opengis. net/ont/
geospar gl #asV\KT>'
""<http://xmns. oracl e.conm rdf/geo/srid/
31468> Pol ygon ((4467504.578 5333958. 396 513. 9,
4467508. 939
5333956. 379 513.9,
4467509. 736
5333958. 101 513.9,
4467505. 374
5333960. 118 513. 9,
4467504. 578
5333958. 396 513.9)) "~ <http://ww. opengi s. net/ont/geosparql #wktLiteral >'));

-- 3D Point at sane el evation as Pol ygon
insert into geo3d_tab(tri) values(sdo_rdf triple_s('geo3d ,'<http://
exanpl e. or g/ Appl i cati onSchema#B>' ,

"<http://exanmple.org/
Appl i cati onSchena#hasExact Geonet ry>'

"<http://exanmple.org/
Appl i cati onSchena#BExact Geonp')) ;
insert into geo3d_tab(tri) values(sdo_rdf triple_s('geo3d ,'<http://

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 87 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

exanpl e. or g/ Appl i cat i onSchema#BExact Geomp' ,
"<http://
WWW. opengi s. net/ ont/ geospar gl #asVKT>'
""<http://
xm ns. oracl e. com rdf/ geo/ sri d/ 31468> Poi nt (4467505. 000 5333959. 000
513.9) "~ <http:// www. opengi s. net/ont/ geospar gl #wkt Literal >'));

- 3D Point at different elevation from Polygon

insert into geo3d tab(tri) values(sdo_rdf triple_s('geo3d,'<http://
exanpl e. or g/ Appl i cati onSchema#C>'

"<http://exanple.org/
Appl i cati onSchema#hasExact Geonet ry>' |

"<http://exanple.org/
Appl i cationSchema#CExact Geons'));
insert into geo3d tab(tri) values(sdo_rdf triple_s('geo3d,'<http://
exanpl e. or g/ Appl i cat i onSchema#CExact Geonmp' ,

"<http://
WMV, opengi S. net/ ont / geospar gl #asVKT>',

""<http://
xm ns. oracl e. com rdf/ geo/ sri d/ 31468> Poi nt (4467505. 000 5333959. 000
13.9)"AM<http: // www. opengi s. net/ont/ geospar ql #wkt Li teral >'));
commit;

- Create 3D index
conn systent manager ;
exec sem api s. add_dat at ype_i ndex(' http://wwv. opengi s. net/ont/
geosparql #wkt Literal ' ,
opti ons=>' TOLERANCE=0. 1 SRI D=3148
DI MENSI ONS=((x, 4386596. 4101, 4613610. 5843)
(y,5237914. 5325, 6104496. 9694) (z, 0, 10000))
SDO | NDX_DI M8=3 ');

conn rdfuser/rdfuser;
- Find geonetries within 200 Mof ny: A
- Returns only one point because of 3D index
SELECT aGeom f, fGeom aVWKT, fWKT
FROM TABLE(SEM MATCH(
“{ my: A ny: hasExact Geonetry ?aGeom .
?aGeom ogc: asVKT ?aVKT .
?f nmy: hasExact Geonetry ?f Geom .
?f Geom ogc: asVKT ?f WKT .
FILTER (orageo: w t hi nDi stance(?aVKT, ?fWKT, 200,"M') &&
I sameTer nm(?aGeom ?f Geon))

H
SEM Model s(' geo3d'),
nul I,
SEM ALI ASES(
SEM ALI AS(' ny', " http://exanpl e.org/ ApplicationSchema#')),
null));

1.7.11.5 Querying Spatial Data

Several SPARQL extension functions are available for performing spatial queries in
SEM_MATCH. For example, for spatial RDF data, you can find the area and perimeter (length)
of a geometry, the distance between two geometries, and the centroid and the minimum

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 88 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

bounding rectangle (MBR) of a geometry, and you can check various topological relationships
between geometries.

SEM_MATCH Support for Spatial Queries contains reference and usage information about the

available functions, including:

* GeoSPARQL functions

e Oracle-specific functions

1.7.11.6 Using Long Literals with GeoSPARQL Queries

Geometry literals can become very long, which make the use of CLOBs necessary to
represent them when using a SQL interface. CLOB constants cannot be used directly in a
SEM_MATCH query. However, a user-defined SPARQL function can be used to bind CLOB
constants into SEM_MATCH queries. Note that long geometry literals can be used directly in
SPARQL query strings when using Java or REST interfaces for SPARQL execution.

The following example uses a user-defined SPARQL function in combination with a temporary
table to allow CLOB geometries in a SEM_MATCH query.

Example 1-93 Binding a CLOB Constant into a SPARQL Query

conn rdf user/<passwor d>;

-- Create tenporary table

create global tenporary table |ocal _val ue$(
VALUE_TYPE VARCHAR2(10) ,
VALUE_NAME VARCHAR2(4000) ,
LI TERAL_TYPE VARCHAR2('1000) ,
LANGUAGE_TYPE VARCHAR2(80) ,
LONG_VALUE CLOB)

on commt preserve rows;

-- Create user-defined function to transforma CLOB into an RDF term
CREATE OR REPLACE FUNCTI ON myGet Cl obTerm
RETURN SDO RDF TERM

AS
t erm SDO_RDF_TERM
BEG N
sel ect sdo_rdf _tern
val ue_type,
val ue_nane,
literal _type,
| anguage_t ype,
| ong_val ue)
into term

fromlocal val ue$
where rownum < 2;

RETURN term
END;
/

-- Insert arowwth CLOB geonetry
insert into local val ue$
(val ue_type, val ue_nane, literal _type,|anguage_type, | ong_val ue)

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 89 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

values ("LIT ,""," " http://ww. opengi s. net/ont/
geospargl #wktLiteral',""," Some_CLOB_VKT');

-- Use the CLOB constant in a SEM MATCH query
SELECT cdi st
FROM t abl e(sem mat ch(
"{ 7?cdist ogc:asVKT ?cgeom

FILTER (

orageo: wi t hi nDi st ance(?cgeom oraextf:nyGetd obTern(), 200, "M)) }'

, sem nmodel s(' gov_al |l _vni)
,null, null, null, null, " ALLONDUP=T ', null, null
, " RDFUSER' , 'NET1'));

1.7.12 Flashback Query Support

You can perform SEM_MATCH queries that return past data using Flashback Query. A
TIMESTAMP or a System Change Number (SCN) value is passed to SEM_MATCH through
the AS_OF hint. The AS_OF hint can have one of the following forms:

e AS_OF[TI MESTAMP, <TI MESTAMP_VALUE>] , where <TIMESTAMP_VALUE> is a valid
timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF'.

e AS_OF[SCN, <SCN_VALUE>] , where <SCN_VALUE> is a valid SCN.

The AS_OF hint is internally transformed to perform a Flashback Query (SELECT AS OF)
against the queried table or view containing triples of the specified RDF graph. This allows you
to query the graph as it existed in a prior time. For this feature to work, the invoker needs a
flashback privilege on the queried metadata table or view (RDFM_rdf-graph-name view for
native RDF graphs, SEMU_rdf-collection--name and SEMV _rdf-collection-name for RDF graph
collections, and underlying relational tables for RDF view graphs). For example: gr ant
flashback on RDFUSER NET1#RDFM FAM LY to scott

Restrictions on Using Flashback Query with RDF Data

Adding or removing a partition from a partitioned table disables Flashback Query for previous

versions of the partitioned table. As a consequence, creating or dropping a native RDF graph

or creating or dropping an inferred graph will disable Flashback Query for previous versions of
all native RDF graphs in an RDF network. Therefore, be sure to control such operations when
using Flashback Query in an RDF network.

Example 1-94 Flashback Query Using TIMESTAMP
The following example shows the use of the AS_OF clause defining a TIMESTAMP.

SELECT x, nane
FROM TABLE(SEM_MATCH(
"PREFI X : <http://ww.exanple.org/famly/>
SELECT *
WHERE { ?x :name ?nane }',
SEM Model s(' famly'),

null, null,
null,null," AS_OF=[TIMESTAMP,2016/05/02 13:06:03.979546]",
null, null,

'RDFUSER , 'NET1'));

Example 1-95 Flashback Query Using SCN

The following example shows the use of the AS_OF clause specifying an SCN.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 90 of 197

ORACLE’

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

SELECT x, nane
FROM TABLE(SEM_MATCH(
"PREFI X : <http://ww.exanple.org/famly/>
SELECT *
WHERE { ?x :nanme ?nane }',
SEM Model s(' famly'),

null, null,
null,null," AS_OF=[SCN,1429849]",
null, null,

'RDFUSER , 'NET1'));

1.7.13 Best Practices for Query Performance

This section describes some recommended practices for using the SEM_MATCH table function
to query RDF data. It includes the following subsections:

* FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time

» Indexes for FILTER Constructs Involving Typed Literals

* FILTER Constructs Involving Relational Expressions

e Optimizer Statistics and Dynamic Sampling

e Multi-Partition Queries

e Compression on Systems with OLTP Index Compression

e Unbounded Property Path Expressions

* Nested Loop Pushdown for Property Paths

e Grouping and Aggregation

» Use of Bind Variables to Reduce Compilation Time

e Non-Null Expression Hints
e Automatic JOIN Hints

RDF Network Indexes

* Using RDF with Oracle Al Database In-Memory

e Using Language Tags in FILTER Expressions

* Type Casting for More Efficient FILTER Evaluation
e Spatial Indexing for GeoSPARQL Queries

1.7.13.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time

By default, SEM_MATCH complies with the XML Schema standard for comparison of xsd:date,
xsd:time, and xsd:dateTime values. According to this standard, when comparing two calendar
values c1 and c2 where c1 has an explicitly specified time zone and c2 does not have a
specified time zone, c2 is converted into the interval [c2-14:00, c2+14:00]. If c2-14:00 <=cl <=
€2+14:00, then the comparison is undefined and will always evaluate to false. If c1 is outside
this interval, then the comparison is defined.

However, the extra logic required to evaluate such comparisons (value with a time zone and
value without a time zone) can significantly slow down queries with FILTER constructs that
involve calendar values. For improved query performance, you can disable this extra logic by
specifying FAST_DATE_FI LTER=T in the opt i ons parameter of the SEM_MATCH table function.
When FAST_DATE_FI LTER=T is specified, all calendar values without time zones are assumed to
be in Greenwich Mean Time (GMT).

Graph Developer's Guide for RDF Graph
G43351-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Note that using FAST_DATE_FI LTER=T does not affect query correctness when either (1) all
calendar values in the data set have a time zone or (2) all calendar values in the data set do
not have a time zone.

1.7.13.2 Indexes for FILTER Constructs Involving Typed Literals

The evaluation of SEM_MATCH queries involving the FILTER construct often uses order
columns on the RDF_VALUES$ table. For example, the filter (?x < "1929-11-16Z"*"xsd: dat e)
uses the ORDER_DATE column.

Indexes can be used to improve the performance of queries that contain a filter condition
involving a typed literal. For example, an xsd: dat e index may speed up evaluation of the filter
(?x < "1929-11-16Z"""xsd: date).

Convenient interfaces are provided for creating, altering, and dropping these indexes for order
columns. For more information, see Using Data Type Indexes.

Note, however, that the existence of these indexes on the RDF_VALUES table can significantly
slow down bulk load operations. In many cases it may be faster to drop the indexes, perform
the bulk load, and then re-create the indexes, as opposed to doing the bulk load with the
indexes in place.

1.7.13.3 FILTER Constructs Involving Relational Expressions

The following recommendations apply to FILTER constructs involving relational expressions:

e The orardf: sameCanonTer mextension function is the most efficient way to compare two
RDF terms for equality because it allows an id-based comparison in all cases.

* When using standard SPARQL features, the sanmeTer mbuilt-in function is more efficient
than using = or | = when comparing two variables in a FILTER clause, so (for example) use
saneTern(?a, ?b) instead of (?a = ?b) and use (! saneTernm(?a, ?b)) instead of (?a !
= ?b) whenever possible.

* When comparing values in FILTER expressions, you may get better performance by
reducing the use of negation. For example, it is more efficient to evaluate (?x <=
"10"Mxsd: i nt) thanitis to evaluate the expression (! (?x > "10"*xsd:int)).

1.7.13.4 Optimizer Statistics and Dynamic Sampling

Having sufficient statistics for the query optimizer is critical for good query performance. In
general, you should ensure that you have gathered basic statistics for the RDF network using
the SEM_PERF.GATHER_STATS procedure (described in SEM_PERF Package

Subprograms).

Due to the inherent flexibility of the RDF graph, static information may not produce optimal
execution plans for SEM_MATCH queries. Dynamic sampling can often produce much better
query execution plans. Dynamic sampling levels can be set at the session or system level
using the opti m zer _dynami ¢c_sanpl i ng parameter, and at the individual query level using the
dynani c_sanpl i ng(!l evel) SQL query hint. In general, it is good to experiment with dynamic
sampling levels between 3 and 6. For information about estimating statistics with dynamic
sampling, see Oracle Al Database SQL Tuning Guide.

Example 1-96 uses a SQL hint for a dynamic sampling level of 6.
Example 1-96 SQL Hint for Dynamic Sampling

SELECT /*+ DYNAMIC_SAMPLING(6) */ x, Yy
FROM TABLE(SEM_MATCH(

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 92 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

"PREFI X : <http://ww.exanple.org/famly/>
SELECT *
WHERE {
?x :grandParentOf ?y .
?x rdf:type :Male .
?x :birthDate ?bd }',
SEM Model s(' famly'),
SEM Rul ebases(' RDFS' , ' famly_rb'),
null, null, null, "", null, null,
"RDFUSER , ' NET1')):

1.7.13.5 Multi-Partition Queries

The following recommendations apply to the use of multiple RDF graphs, RDF graphs plus
inferred graphs, and RDF graph collections:

e If you execute SEM_MATCH queries against multiple RDF graphs or against RDF graphs
plus inferred graphs, you can probably improve query performance if you create a RDF
graph collection (see RDF Graph Collections) that contains all the RDF graphs and
inferred graphs you are querying and then query this single RDF graph collection.

e Use the ALLOW DUP=T query option. If you do not use this option, then an expensive (in
terms of processing) duplicate-elimination step is required during query processing, in
order to maintain set semantics for RDF data. However, if you use this option, the
duplicate-elimination step is not performed, and this results in significant performance
gains.

1.7.13.6 Compression on Systems with OLTP Index Compression

On systems where OLTP index compression is supported (such as Exadata). you can take
advantage of the feature to improve the compression ratio for some of the B-tree indexes used
by the RDF network.

For example, a DBA or the owner of a schema-private network can use the following command
to change the compression scheme on the RDF_VAL_NAMETYLITLNG_IDX index from prefix
compression to OLTP index compression:

SQL> al ter index rdfuser.net 1#RDF_VAL_NAMVETYLI TLNG_ | DX rebuil d conmpress for oltp high;

1.7.13.7 Unbounded Property Path Expressions

A depth-limited search should be used for + and * property path operators whenever possible.
The depth-limited implementation for * and + is likely to significantly outperform the CONNECT
BY-based implementation in large and/or highly connected graphs. A depth limit of 10 is used
by default. For a given graph, depth limits larger than the graph's diameter are not useful. See
Property Paths for more information on setting depth limits.

A backward chaining style inference using r df s: subCl assOf + for ontologies with very deep
class hierarchies may be an exception to this rule. In such cases, unbounded CONNECT BY-
based evaluations may perform better than depth-limited evaluations with very high depth
limits (for example, 50).

1.7.13.8 Nested Loop Pushdown for Property Paths

If an unbounded CONNECT BY evaluation is performed for a property path, and if the subject
of the property path triple pattern is a variable, a CONNECT BY WITHOUT FILTERING
operation will most likely be used. If this subject variable is only bound to a small number of
values during query execution, a nested loop strategy (see Nested Loop Pushdown with

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 93 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

Overloaded Service) could be a good option to run the query. In this case, the property path
can be pushed down into an overloaded SERVICE clause and the OVERLOADED_NL=T hint
can be used.

For example, consider the following query where there is an unbounded property path search
{ ?s :hasManager+ ?x }, butthe triple{ ?s :ename "ADAMS' } only has a small number of
possible values for ?s.

select s, x
fromtabl e(sem mat ch(
"PREFI X : <http://scott-hr.org#>
SELECT *
VHERE {
?s :enane "ADAMS' .
?s :hasManager+ ?x .

}I)
sem nodel s(' scott_hr_data'),
null,null,null,null," ALL_ MAX PP_DEPTH(0) ', null, null,

'RDFUSER , ' NET1'));

The query can be transformed to force the nested-loop strategy. Notice that the RDF graph
specified in the SERVICE graph is the same as the RDF graph specified in the SEM_MATCH
call.

select s, x
fromtabl e(sem mat ch(
"PREFI X : <http://scott-hr.org#>
SELECT *
WHERE {
?s :enane "ADAMS' .
service oram:scott_hr_data { ?s :hasManager+ ?x . }

}I il
sem nodel s(' scott_hr _data'),
null,null,null,null," ALL_MAX_PP_DEPTH(0) OVERLOADED_NL=T ', null, null,

' RDFUSER , ' NET1')):

With this nested-loop strategy, { ?s :hasManager _ ?x } is evaluated once for each value of ?
s, and in each evaluation, a constant value is substituted for ?s. This constant in the subject
position allows a CONNECT BY WITH FILTERING operation, which usually provides a
substantial performance improvement.

1.7.13.9 Grouping and Aggregation

M N, MAX and GROUP_CONCAT aggregates require special logic to fully capture SPARQL
semantics for input of non-uniform type (for example, MAX(?x)). For certain cases where a
uniform input type can be determined at compile time (for example, MAX(STR(?x)) - plain
literal input), optimizations for built-in SQL aggregates can be used. Such optimizations
generally give an order of magnitude increase in performance. The following cases are
optimized:

e MIN/MAX(<plain literal>)
e MIN/MAX(<numeric>)
* MIN/MAX(<dateTime>)

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 94 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

e GROUP_CONCAT(<plain literal>)
Example 1-97 uses MIN/MAX(<numeric>) optimizations.

Example 1-97 Aggregate Optimizations

SELECT dept, minSal, maxSal
FROM TABLE(SEM MATCH(
' SELECT ?dept (MIN(xsd:decimal(?sal)) AS ?minSal) (MAX(xsd:decimal(?sal)) AS ?maxSal)
VHERE
{?x :salary ?y .
?x :departnent ?dept }

GROUP BY ?dept’,
SEM Model s(' hr _data'),
null, null, null, null, "', null, null,

'RDFUSER , 'NET1')):

1.7.13.10 Use of Bind Variables to Reduce Compilation Time

For some queries, query compilation can be more expensive than query execution, which can
limit throughput on workloads of small queries. If the queries in your workload differ only in the
constants used, then session context-based bind variables can be used to skip the compilation
step for SEM_MATCH queries. See also Using Bind Variables with

SEM_APIS.SPARQL_TO_ SQL for a description of how to use JDBC bind variables and
PL/SQL bind variables with SPARQL queries.

The following example shows how to use a session context in combination with a user-defined
SPARQL function to compile a SEM_MATCH query once and then run it with different
constants. The basic idea is to create a user-defined function that reads an RDF term value
from the session context and returns it. A SEM_MATCH query with this function will read the
RDF term value at run time; so when the session context variable changes, the same exact
SEM_MATCH query will see a different value.

conn / as sysdba;
grant create any context to testuser;

conn testuser/testuser;

create or replace package MY_CTXT_PKG as
procedure set _attribute(nane varchar2, val ue varchar?2);
function get _attribute(nane varchar2) return varchar2;
end MY_CTXT_PKG
/

create or replace package body MY _CTXT PKG as
procedure set _attribute(
name varchar2,
val ue varchar?2
) as
begin
dbns_sessi on. set _cont ext (nanespace => ' MY_CTXT',
attribute => nane,
val ue => val ue);
end;

function get _attribute(
name varchar 2
) return varchar2 as

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 95 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

begin
return sys_context (' MW_CTXT', nane);
end,
end MY_CTXT_PKG
/

create or replace function myC xFunc(
params in SDO RDF_TERM LI ST
) return SDO RDF_TERM
as
nane varchar 2(4000);
arg SDO RDF_TERM
begi n
arg := parans(1);
name := arg.val ue_nane;
return SDO RDF TERM ny_ct xt _pkg. get _attribute(nane));
end;
/

CREATE OR REPLACE CONTEXT MY_CTXT using TESTUSER MY_CTXT_PKG

-- Set a val ue
exec MY_CTXT PKG set _attribute('value','<http://wwm. exanple.org/famly/
Martha>');

-- Query using the function
-- Note the use of HINTO={ NON_NULL } to allow the nost efficient join
SELECT s, p, ©
FROM TABLE(SEM MATCH(
"SELECT ?s ?p ?0

WHERE {
BI ND (oraextf:nyCt xFunc("val ue") # H NTO={ NON_NULL }
AS 7?s)
?s ?p 70 }',
SEM Model s(' family'),
nul I,
nul I,
null, null, "', null, null,

"RDFUSER , ' NET1'));

-- Set another val ue
exec MY_CTXT PKG set _attribute('value','<http://wwm. exanple.org/famly/

Samy>') ;

-- Now the same query runs for Sammy without reconpiling
SELECT s, p, ©
FROM TABLE(SEM MATCH(
"SELECT ?s ?p ?0
VWHERE {
BI ND (oraextf:nyCt xFunc("val ue") # H NTO={ NON_NULL }
AS 7?s)
?s ?p 70 }',
SEM Model s(' fam ly'),
nul I,
nul I,

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 96 of 197

ORACLE Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

null, null, "', null, null,
"RDFUSER , 'NET1'));

1.7.13.11 Non-Null Expression Hints

When performing a join of several graph patterns with common variables that can be unbound,
a more complex join condition is needed to handle null values to avoid performance
degradation. Unbound values can be introduced through SELECT expressions, binds,
OPTIONAL clauses, and unions. In many cases, SELECT expressions are not expected to
produce NULL values. In such cases, query performance can be substantially improved
through use of an inline HINTO={ NON_NULL } hint to mark a specific SELECT expression as
definitely non-null or through use of a DISABLE_NULL_EXPR_JOIN query option to signify
that all SELECT expressions produce only non-null values.

The following example includes the global DISABLE_NULL_EXPR_JOIN hint to signify that
variable ?ful I titl e is always bound on both sides of the join. (See also Inline Query
Optimizer Hints.)

SELECT s, t
FROM TABLE(SEM MATCH(

"PREFI X : <http://ww.exanmple.org/famly/>

SELECT * WHERE {
{ SELECT ?s (CONCAT(?title, ". ", ?fullname) AS ?fulltitle)

WHERE { ?s :fullnane ?ful |l nane .
?s :title ?title }

}

{ SELECT ?t (CONCAT(?title, ". ", ?fname, " ", ?lnane) AS ?fulltitle)
VWHERE {
?t :fnane ?fnane .
?t :lInane ?lnane .
?t ctitle ?title }
}
.
SEM Model s(' family'),
SEM Rul ebases(' RDFS', ' fanmily rb'),
nul |,
nul |,
nul |,
" DISABLE_NULL EXPR _JOIN ', null, null,
"RDFUSER , 'NET1'));

1.7.13.12 Automatic JOIN Hints

SEM_MATCH queries that are very unselective usually execute faster if the SQL engine uses
HASH joins to evaluate joins between triple patterns. The SPARQL-to-SQL query translator
used by SEM_MATCH will attempt to auto detect such queries and automatically add
appropriate USE_HASH hints if the string AUTO_HI NTS=T appears in the options argument string.

The following SEM_MATCH query uses AUTO_HI NTS=T to automatically generate USE_HASH
hints.

SELECT f, I, n, e
FROM t abl e(sem_mat ch(
"PREFI X : <http://ww. exanpl e. com#>
SELECT ?2f 2?1 ?n ?e

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 97 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

WHERE { ?s :fname ?f . ?s :lname ?I . ?s :nickNane ?n . ?s :emil ?e }',
sem nodel s(' ml'),
null,null,null,null,
' AUTO HINTS=T ')

)

1.7.13.13 RDF Network Indexes

RDF Network Indexes (described in Using RDF Network Indexes) are nonunique B-tree
indexes on the RDF_LINK$ table. Network owners and DBAs can manage these indexes with
various SEM_APIS procedures. Columns to index in RDF_LINK$ are identified by an index
code, which is a sequence of the following letters (without repetition): P, C, S, G M H. These
letters used in the i ndex_code correspond to the following columns in RDF_LINK$:
P_VALUE_ID (predicate), CANON_END_NODE_ID (object), START_NODE_ID (subject),
G_ID (graph), MODEL_ID, and H - a function-based index on (MODEL_ID, GID).

It is important to have the proper set of RDF Network Indexes for your query workload. In
versions 19c¢ and earlier, the default index setup is PCSGV PSCGM In versions 21c and later the
default index setup is PCSGV SPCGV, CM H.

The following are a few general recommendations for RDF Network Indexes:

e Most SPARQL queries have triple patterns with bound predicates, so it is a good idea to
have P, PC, and PS combinations covered as leading columns in your overall index set.
Such a combination is captured by the default index setup (PCSGV, PSCGMin 19¢, and PCSGM
SPCGMin 21c).

« If you have queries with unbound predicates (for example, { ?s :ssn 1234 . ?s ?p ?
0 }), then a network index with a leading column other than P may be needed. An SPCGM
index would be more suitable for this example because of the join on subject variable ?s.

* If you are running DESCRIBE queries or DESCRIBE-style patterns such as
{ { <urn:abc> ?pl 201 } UNION { ?s2 ?p2 <urn:abc> } }, then a network index with a
leading C column (for example, CM in addition to an index with a leading S column may be
needed.

* If you have named graph queries with selective FROM, FROM NAMED, or GRAPH
clauses, then a network index with a leading G column may be needed (for example,
GPCSM.

e AnHindex is needed for efficient SPARQL Update GRAPH operations (for example,
DROP GRAPH) on schema-private networks.

e A PSCGVindex is usually smaller than an SPCGMindex due to better prefix compression, so if
your workload does not include queries with unbound predicates, replacing an SPCGMindex
with a PSCGMindex may give better performance.

1.7.13.14 Using RDF with Oracle Al Database In-Memory

RDF data stored in the RDF_LINK$ and RDF_VALUES$ tables can be loaded into memory
using Oracle Al Database In-Memory. See RDF Support for Oracle Al Database In-Memory for
details on how to load RDF data into memory using SEM_APIS procedures.

In general, for the best and most consistent performance with Oracle Al Database In-Memory,
it is recommended to make indexes on the RDF_LINK$ (RDF network indexes) and
RDF_VALUES tables invisible, with the exception of <NETWORK_NAME>#C_PK_VID and
<NETWORK_NAME>#RDF_VAL_NAMETYLITLNG_IDX indexes on RDF_VALUE$. These

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 98 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

index settings can be achieved with the following SQL commands (assuming a RDF network
named NET1 owned by RDFUSER).

exec semapis.alter_rdf indexes('VISIBILITY ,'N, network _owner=>" RDFUSER ,
net wor k_name=>' NET1');

alter index NET1#C PK VID visible;

alter index NET1#RDF VAL NAMETYLI TLNG I DX vi sibl e;

Note that the performance of very selective queries may suffer with RDF_LINK$ indexes
invisible, so you may need to experiment with index visibility depending on your query
workload.

In addition to these index settings, it is recommended to use parallel query execution with
Oracle Al Database In-Memory, as the speedup from parallelization can be significant in many
cases.

For larger datasets (100 M triples or more), it is also recommended to use a hash-
subpartitioned RDF network with Oracle Al Database In-Memory. Hash subpartitioning is
described in RDF Networks.

1.7.13.15 Using Language Tags in FILTER Expressions

When filtering query results based on language tags, it is more efficient to use LANG instead of
LANGMATCHES whenever possible. For example, the simple filter | angMat ches(| ang(?x),
"en") could be replaced with | ang(?x) = "en" for a more efficient evaluation. Language tags
in stored RDF literals are canonicalized to lower case, so a lower case language tag constant
should be used in such filters.

1.7.13.16 Type Casting for More Efficient FILTER Evaluation

SPARQL FILTERSs that compare two variables using operators other than equality, for
example ?x < ?y, can have poor performance in some cases because of weak typing in
SPARQL. Because datatypes for ?x and ?y cannot be determined at query compilation time,
complex logic for comparisons of multiple datatypes must be used at run time.

If you know the datatypes of the values to which ?x and ?y will be bound, then it is best to
cast ?x and ?y to those datatypes in your FILTER expression, so that the types will be known
at query compilation time. For example, the following query casts salary values to xsd: deci nmal
in the FILTER clause for a more efficient single-datatype comparison.

SELECT ?y
VWHERE {

cenpl :salary ?sl .

?y :salary ?s2 .

FI LTER (xsd: deci mal (?s2) < xsd: deci mal (?s1))
}

1.7.13.17 Spatial Indexing for GeoSPARQL Queries

Options used during spatial index creation can have significant effects on the performance of
GeoSPARQL queries.

The two most important options are:

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 99 of 197

ORACLE

Chapter 1
Using the SEM_MATCH Table Function to Query RDF Data

* Type of index: function-based or materialized
- Spatial reference system: SRID used for the index

SEM_APIS.ADD_DATATYPE_INDEX creates a function-based spatial index by default. A
function-based index is adequate for simple point geometries, but you should use a
materialized spatial index if your dataset contains polygon or line geometries. You can create a
materialized spatial index by specifying MATERI ALI ZE=T in the options argument of
SEM_APIS.ADD_DATATYPE_INDEX.

The SRID used for a spatial index is also important for performance. Oracle's GeoSPARQL
implementation is very flexible in that it allows you to load geometry literals that have been
encoded in different spatial reference systems. These geometries must be canonicalized to a
single SRID for indexing and query evaluation. You can specify this canonical SRID at index
creation time. For best performance, you must choose the SRID that is most common among
your geometry literals to minimize required coordinate transformations.

See Indexing Spatial Data for more information on spatial index creation.

1.7.14 Special Considerations When Using SEM_MATCH

The following considerations apply to SPARQL queries executed using SEM_MATCH:

e Value assignment

— A compile-time error is raised when undefined variables are referenced in the source
of a value assignment.

* Grouping and aggregation

— Non-grouping variables (query variables not used for grouping and therefore not valid
for projection) cannot be reused as a target for value assignment.

— Non-numeric values are ignored by the AVG and SUM aggregates.

— By default, SEM_MATCH returns no rows for an aggregate query with a graph pattern
that fails to match. The W3C specification requires a single, null row for this case.
W3C-compliant behavior can be obtained with the STRI CT_AGG_CARD=T query option for
a small performance penalty.

« ORDER BY

— When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query should
be ordered by SEM$ROWNUM to ensure that the desired ordering is maintained
through any enclosing SQL blocks.

e Numeric computations

— The native Oracle NUMBER type is used internally for all arithmetic operations, and
the results of all arithmetic operations are serialized as xsd: deci mal . Note that the
native Oracle NUMBER type is more precise than both BINARY_FLOAT and
BINARY_DOUBLE. See Oracle Al Database SQL Language Reference for more
information on the NUMBER built-in data type.

— Division by zero causes a runtime error instead of producing an unbound value.
* Negation

— EXISTS and NOT EXISTS filters that reference potentially unbound variables are not
supported in the following contexts:

* Non-aliased expressions in GROUP BY

* Input to aggregates

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 100 of 197

ORACLE Chapter 1
Speeding up Query Execution with Result Tables

* Expressions in ORDER BY

* FILTER expressions within OPTIONAL graph patterns that also reference
variables that do not appear inside of the OPTIONAL graph pattern

The first three cases can be realized by first assigning the result of the EXISTS or NOT
EXISTS filter to a variable using a BIND clause or SELECT expression.

These restrictions do not apply to EXISTS and NOT EXISTS filters that only reference
definitely bound variables.

* Blank nodes
— Blank nodes are not supported within graph patterns.

— The BNODE(literal) function returns the same blank node value every time it is called
with the same literal argument.

e Property paths

— Unbounded operators + and * use a 10-hop depth limit by default for performance
reasons. This behavior can be changed to a truly unbounded search by setting a depth
limit of 0. See Property Paths for details.

e Long literals (CLOBS)
— SPARQL functions and aggregates do not support long literals by default.

— Specifying the CLOB_EXP_SUPPORT=T query option enables long literal support for the
following SPARQL functions: IF, COALESCE, STRLANG, STRDT, SUBSTR,
STRBEFORE, STRAFTER, CONTAINS, STRLEN, STRSTARTS, STRENDS.

— Specifying the CLOB_AGG _SUPPORT=T query option enables long literal support for the
following aggregates: MIN, MAX, SAMPLE, GROUP_CONCAT.

e Canonicalization of RDF literals

— By default, RDF literals returned from SPARQL functions and constant RDF literals
used in value assignment statements (BIND, SELECT expressions, GROUP BY
expressions) are canonicalized. This behavior is consistent with the SPARQL 1.1 D-
Entailment Regime.

— Canonicalization can be disabled with the PRQJ_EXACT_VALUES=T query option.

1.8 Speeding up Query Execution with Result Tables

Result tables are auxiliary tables that store the results for generic patterns of SPARQL queries
executed against an RDF graph or RDF graph collection.

@® Note

Result tables were called as Subject-Property-Matrix (SPM) tables in the previous
book versions (prior to Oracle Al Database Release 26ai). See Changes in
Terminology and Subprograms for more information.

Generic pattern queries include star-pattern, chain-pattern, and single-triple-pattern queries.
Improvement of performance with result tables is derived from the use of:

* Pre-materialized joins in these tables to reduce joins at query processing time

Graph Developer's Guide for RDF Graph
G43351-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 101 of 197

ORACLE

Chapter 1
Speeding up Query Execution with Result Tables

« Compact representation of triples for individual properties in separate tables for faster
access

* More accurate RDF data statistics obtained from these tables to arrive at better query
execution plans

The following sections provide in-depth information on result tables.

e Types of Result Tables
There are three types of result tables that can be defined on an RDF graph or an RDF
graph collection.

e Creating and Managing Result Tables
The following sections explain the steps for creating and managing result tables.

e SPARQL Query Options for Result Tables
SPARQL queries will automatically use result tables if they are present.

e Special Considerations when Using Result Tables
This section describes a few limitations to be considered when using result tables.

1.8.1 Types of Result Tables

There are three types of result tables that can be defined on an RDF graph or an RDF graph
collection.

The different result tables are as follows:

e Star-Pattern Tables: These tables hold the results for star-pattern queries (with restriction
that each property must be single-valued) such as:
?x :fname ?fnm. ?x miname ?m. ?x :lnane ?lnm.

* Triple-Pattern Tables: These tables hold the results for single triple-pattern queries such
as:
?x :hasHobby ?y .

This is same as an RDF triple, but for a specific property.

e Chain-Pattern Tables: These tables hold the results for chain-pattern queries such as:
?child :hasParent ?parent . ?parent :hasBrother ?uncle .

A chain is stored only if all the links exist.

@® Note

Star-Pattern, Triple-Pattern, and Chain-Pattern tables were called as Single-
Valued Property (SVP), Multi-Valued Property (MVP), and Property Chain (PCN)
tables respectively in the previous book versions (prior to Oracle Al Database
Release 26ai). See Changes in Terminology and Subprograms for more information.

Consider an RDF graph containing the following sample data.

:john :fname "John" ; :lname "Brown" ; :height 72 ; :email "john@nmuail -

exanpl e. cont', "johnnyB@nuail - exanpl e. cont' .

cmary :fname "Mary" ; :lname "Snith" ; :height 68 ; :email "Mry.Smth@nail-
exampl e. cont' .

:bob :fname "Robert" ; :lname "Brown" ; :height

70 ; :fatherf :john, :mary ; :email "bobBrown@nail -exanmple.con .

;alice :fname "Alice" ; :lname "Brown" ; :height 68 ; :notherOf :john, :mary .

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 102 of 197

ORACLE

Chapter 1
Speeding up Query Execution with Result Tables

‘henry :fatherOf :bob .
:kathy :notherOf :bob .

Note that for simplicity, /d(rdfterm) will be used instead of the actual numeric identifier
(available in the RDF_VALUES$ table) for each rdfterm. A complete example with additional data is

included in Example 1-107.
« Star-Pattern Tables

Each row in a star-pattern table holds values for one or more single-valued RDF properties
for a resource in an RDF graph.

e Triple-Pattern Tables
Each row in a triple-pattern table, created for a given property, holds a value for the
property.

e Chain-Pattern Tables
Each row in a chain-pattern table holds a fixed-length path in the RDF graph.

1.8.1.1 Star-Pattern Tables

Each row in a star-pattern table holds values for one or more single-valued RDF properties for
a resource in an RDF graph.

In the best case, a star-pattern table defined for n properties may be used during query
processing to replace an n-way join of the RDF_LI NK$ table with simple table lookups.

A property p is single-valued in an RDF graph if each resource in the graph has at most one
value for p regardless of named graphs. In the sample RDF dataset (described in Types of
Result Tables), the properties : first_nane, : | ast _name, and : hei ght are single-valued, but
the property : emai | is multi-valued.

To speed up execution of a query pattern such as{ ?s :first_name ?fname ; :last_nane ?
I nane ; :height ?height },involving use of single-valued properties only, a star-pattern
table may be created on the RDF graph to include the preceding three single-valued properties
by using the string * : first_nane :last_name : hei ght’ as the value for the key_string
parameter in a call to the SEM_APIS.BUILD RESULT_ TAB subprogram.

Table 1-19 describes the structure and content for such a star-pattern table corresponding to
the preceding sample data. Also, note that:

* The table shows only a subset of the actual set of columns. Specifically, not shown are the
columns with name like G<ld(property)> that are used to store the named graph
component of the corresponding RDF statements.

e The table describes values in the columns as | d(rdft ern) instead of the actual numeric
identifiers that get stored.

Table 1-19 Example Star-Pattern Table Structure
]

START_NODE_ID ... P<Id(:first_name)> ... P<Id(:last_name)> ... P<Id(:height)>
[d(:john) ... 1d(*John") ... 1d(“Brown”) oo 1d(72)
[d(: mary) . [d(“Mary”) .o ld(*Smth") ... 1d(68)
[d(: bob) ... ld("Robert”) ... 1d("Brown") ... 1d(70)
[d(:alice) [d(“Alice") [d(“Brown") [d(68)

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 103 of 197

ORACLE

Chapter 1
Speeding up Query Execution with Result Tables

The availability of this star-pattern table allows the preceding query pattern to be processed
simply by accessing the rows in the star-pattern table and avoids the three-way self-join of the
RDF_LINKS$ table that would otherwise be necessary.

It is also possible to include reversed-properties that are single-valued. In the sample RDF
data (described in Types of Result Tables), the property : f at her O is not single-valued, but its
reversed version which is denoted as *: f at her O (intuitively equivalent to a : hasFat her
property), is indeed single-valued. To speed up execution of a query pattern such as{ ?

s :fnane ?fname; :lname ?l nane; :height ?height; ”:fatherOf ?father }, an extended
version of the preceding star-pattern table may be created, by using ‘' : f name : | nane : hei ght
A fatherf' asthe key_string value.

Table 1-20 describes the structure and content of this extended version of the star-pattern table
that includes a reversed property. The use of the letter R, instead of P, as the first character in
the column name, R<I d(: f at her O) >, indicates that this is a reversed property. As mentioned
earlier, availability of this star-pattern table allows avoiding a (four-way) self-join of the

RDF_LI NK$ table.

Table 1-20 Extended Star-Pattern Table Including a Reversed Property

START_NODE ... P<Id(:first_na P<Id(:last_na P<Id(:height)> ... R<ld(:fatherOf
_ID me)> me)>)>

[d(:]john) [d(“John") [d(“Brown") 1d(72) ... ibob

[d(: mary) [d(“Mary") [d(“Smth") 1 d(68) ... :bob

[d(: bob) Id(“Robert”) ... [d(“Brown”) I d(70) “henry

Example 1-98 Creating a Star-Pattern Table

The following code creates an extended star-pattern table on an RDF graph named M.:

BEG N
SEM API S. BUI LD_RESULT_TAB(
query_pattern_type => SEM API S. SPM TYPE_SVP

, result_tab _name => ' FLHF

, rdf _graph_name = "'M'

, key_string => "' :fname :lname :height *: fatherOf '

, prefixes => "' PREFI X : <http://ww.exanmpl e.com#> '
, network_owner => ' RDFUSER

, network_nane => ' NETL'

END;

The name, structure, and default indexes for a star-pattern table may be described as follows:

* The name of a star-pattern table is created based on the following template:
<NETWORK_NAVE>#RDF XT$SVP_<MODEL NAME>+ <SPM NAME>

e The NUMBER column, START _NCDE _| D, stores the subject id or, if reversed, the object id, of
the matching triple for the first property in the list of properties in the star-pattern table.

» For each property covered in a star-pattern table, the following columns are created for
storing the numeric identifiers for the lexical values in a triple: :

— NUMBER column (G<I d(pr operty) >) for storing the named graph id.

Graph Developer's Guide for RDF Graph

G43351-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 104 of 197

ORACLE

Chapter 1
Speeding up Query Execution with Result Tables

— NUMBER column (P<I d(pr oper t y) > for storing the object id or if reversed
R<I d(property)>), the subject id.

— (Optional) additional columns for internal use.

e The START_NODE | D column is defined as the primary key of the star-pattern table and a
unigue index named using the template:
<NETWORK_NAME>#RDF_XX$SVP_<MODEL_NAME> UQ _<SPM NAME>, is created on this column
when the star-pattern table is created.

1.8.1.2 Triple-Pattern Tables

Each row in a triple-pattern table, created for a given property, holds a value for the property.

A triple-pattern table stores the values for a given property in a separate table and in a
compact fashion, thus allowing faster access and better statistics. Unlike a star-pattern table,
the (single) property included in a triple-pattern table does not have to be, but could be, single-
valued.

A property p is multi-valued in an RDF graph if there exist two or more triples (regardless of
named graphs), (s p o0l) and (s p 02) with ol not equal to 02. That is, s has more than one
distinct object values for the property p.

In the sample RDF dataset (described in Types of Result Tables), the
properties : emai |, : fat her O , and : mot her O are multi-valued.

Table 1-21 shows the structure and content of a triple-pattern table for the : not her O property
for the preceding sample data. The two columns shown here store the numeric identifiers for
lexical values for variables ?nomand ?c, respectively, in a pattern { ?mom : motherOf ?c }. The
triple-pattern table contains another column, G<i d<: not her Of >) , not shown here, to store the
numeric identifier of the named graph in case the matching RDF statement is a quad.

Table 1-21 Example Triple-Pattern Table Structure

START_NODE_ID .. P<ld(:motherOf)>
[d(:alice) [d(:]john)
[d(:alice) [d(: mary)

[d(: kat hy) [d(: bob)

Example 1-99 Creating a Triple-Pattern Table

To create the preceding triple-pattern table on an RDF graph named M1, you can use the
following SQL command.

BEG N
SEM API S. BUI LD RESULT TAB(
query_pattern_type => SEM API S. SPM TYPE_MWP

, result_tab_name => null /* nust be NULL (the name is auto-generated
based on id(property) */

, rdf _graph_nane = "M

, key string => "' :motherd ' /* must have exactly one property */

, prefixes => "' PREFI X : <http://ww. exanpl e.com#> '

, hetwork_owner => ' RDFUSER

, hetwork_narme => ' NET1'

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 105 of 197

ORACLE

Chapter 1
Speeding up Query Execution with Result Tables

END;
/

The name, structure, and default indexes for a triple-pattern table may be described as follows:

e The naming convention for a triple-pattern table is created based on the following template:
<NETWORK_NAME>#RDF_XT$MVP_<MODEL_NAME>+__P<i d(property)>

e The NUMBER column, START_NCDE _| D, stores the subject id of the matching triples that use
the target property as the predicate.

e For the property covered in a triple-pattern table, the following columns are created for
storing the numeric identifiers for the lexical values in a triple:

— NUMBER column G<I d(pr operty) > for storing the named graph id
— NUMBER column P<I d(pr oper t y) > for storing the object id
— Optional additional columns for internal use

e A nonunique index is created on the START_NODE_| D column using the following naming
convention: <NETWORK_NAME>#RDF_XX$MVP_<MODEL_NAME>_P<i d(property)> .

1.8.1.3 Chain-Pattern Tables

Each row in a chain-pattern table holds a fixed-length path in the RDF graph.

A path is a sequence of two or more triples where, except for the last triple in the sequence,
object of a triple is the same as the subject of the next triple. A chain-pattern table that stores
paths of length n can be used during query processing to replace an n-way join of type
current_triple.object = next_triple.subject, of the RDF_LI NK$ table with simple table lookups.

For example, to speed up the execution of the following query pattern - { ?gnma : notherOf ?
f . ?f :father™f ?c }, you can create a chain-pattern table using the following sequence of
properties, specified as the key_string:* :mtherO :fatherOf .

Table 1-22 shows the structure and content of the chain-pattern table for the preceding sample
data. The three columns here store the numeric identifiers for lexical values for variables ?
gma, ?f, and ?c, respectively, for the two paths that satisfy the property chain: (: kat hy) -
[:motherOF]-> (:bob) —[:fatherOf]-> (:john) and (:alice) —[:mtherO]-> (:bob) -
[:fatherO]-> (:mary).

Table 1-22 Example Chain-Pattern Table Structure
]

START_NODE_ID ... P<ld(:motherOf)> ... P<Id(:fatherOf)>
[d(: kat hy) ... 1d(: bob) ... ld(:john)
[d(: kat hy) ... 1d(: bob) oo Hd(:mary)

A property chain can include multiple occurrences of the same property. Consider the following
guery pattern to connect a grandfather to the children:

{ ?9fa :fatherOf ?2f . ?f :fatherOf ?c }

You can create a chain-pattern table using the following sequence of properties, specified as
the key_string-* :fatherOf :fatherO ’. The following table describes the structure and
content for such a chain-pattern table. The column name with ‘#2’ as suffix corresponds to the
second occurrence of the : f at her O property in the specified chain. It stores two paths that

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 106 of 197

ORACLE

Chapter 1
Speeding up Query Execution with Result Tables

satisfy the property chain - (: henry) —[:fatherOf]-> (:bob) —[:fatherCf]-> (:john) and
(:henry) —[:fatherOf]-> (:bob) —[:fatherOi]-> (:mary).

Table 1-23 Multiple Occurrences of a Single Property in a Chain-Pattern Table
]

START_NODE_ID ... P<ld(:fatherOf)> ... P<Id(:fatherOf)>#2
I d(: henry) ... 1d(:bob) ... ld(:john)
[d(:henry) ... 1d(:bob) ... ld(:mary)

A property chain may involve reversed properties as well. For example, consider the following
query pattern { ?nom :motherOf ?c . ?c ~:fatherOf ?dad } to connect the siblings. You
can create a Chain-Pattern table with the following key _string-‘:mtherOf *:fatherOf *

Table 1-24 shows the structure and content of this chain-pattern table. Note that the letter ‘R’ in
the rightmost column name R<i d(: f at her Of) > indicates that the column corresponds to the
reversed property. The availability of this chain-pattern table allows the preceding query pattern
to be processed simply by accessing the rows in the chain-pattern table and avoids the two-
way join of the RDF_LI NK$ table that would otherwise be necessary.

Table 1-24 Reversed Property in a Chain-Pattern Table
]

START_NODE_ID ... P<id(:motherOf)> ... R<Id(:fatherOf)>
[d(:alice) [d(:]john) [d(: bob)
[d(:alice) [d(: mary) [d(: bob)

[d(: kat hy) [d(: bob) [d(:henry)

Example 1-100 Creating a Chain-Pattern Table

The following example creates a chain-pattern table representing the grandfather chain using
two occurrences of the : f at her Of property on an RDF graph named M.

BEG N
SEM API S. BUI LD_RESULT_TAB(
result _tab_nane => ' GRANDPA'
, query_pattern_type => SEM API S. SPM TYPE_PCN

, rdf _graph_nane = "M’

, key_string ="' S :fatherO :fatherOf '

, prefixes => "' PREFI X : <http://ww. exanpl e.com#> '
, network_owner => ' RDFUSER

, network_nane => ' NETI'

END;

The name, structure, and default indexes for a chain-pattern table may be described as
follows:

e The name of a chain-pattern table is based on the following template:
<NETWORK_NAME>#RDF_XT$PCN_<MODEL_NAME>+ <SPM NAME>

e The NUMBER column, START_NODE | D, stores the subject id or, if reversed, the object id, of
the matching triple for the first property in the sequence of properties in the chain-pattern
table.

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 107 of 197

ORACLE’

Chapter 1
Speeding up Query Execution with Result Tables

For each property’s n-th occurrence in a chain-pattern table, the following columns are
created for storing the numeric identifiers for the lexical values in a triple: (note that the #n
suffix is used only if n > 1):

— NUMBER column G<I d(property)> (or GI d(property) >#n) for storing the named graph
id
— NUMBER column P<I d(property)> (or P<I d(property) >#n) or, if reversed,

R<I d(property)> (or RId(property)>#n), for storing the object id or, if reversed, the
subject id

— (Optional) additional columns for internal use

A nonunique index, named using the template
<NETWORK_NAME>#RDF_XX$PCN_<MODEL_NAME>__<SPM NAME>, is created on the
START_NODE_| D column.

Additionally, a nonunique index is created on each of the property columns.

1.8.2 Creating and Managing Result Tables

The following sections explain the steps for creating and managing result tables.

Including Lexical Values in Result Tables
You can also include lexical values for objects in result tables.

Creating and Dropping Secondary Indexes on Result Tables
You can create and drop secondary indexes on result tables.

Dropping Result Tables
You can drop a specific result table.

In-Memory Result Tables
Taking advantage of Oracle Al Database In-Memory, you can create in-memory result
tables using the | NVEMORY=T flag in the options parameter.

Metadata for Result Tables
You can use the RDF_SPM_INFO view to retrieve metadata information for the result
tables defined on an RDF graph.

Utility Subprogram for Computing Per-Subject Cardinality Aggregates for Individual
Properties

You can use the SEM_APIS.GATHER_SPM_INFO procedure to create and populate a
table to store the per-subject cardinality information for each property in an RDF graph,
based on its use as predicate of triples.

Performing DML Operations on RDF Graphs with Result Tables
All star-pattern, triple-pattern, and chain-pattern tables are automatically maintained for
DML operations.

Performing Bulk Load Operations on RDF Graphs with Result Tables

Gathering Statistics on Result Tables
Having up-to-date statistics on result tables is critical for good query performance.

1.8.2.1 Including Lexical Values in Result Tables

You can also include lexical values for objects in result tables.

Result tables include numeric identifiers for object values by default. Additionally, by storing the
lexical values (RDF terms) in the SPM tables, retrieval of lexical values during SPARQL query

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 108 of 197

ORACLE

Chapter 1
Speeding up Query Execution with Result Tables

processing can be made faster by avoiding the lookups involving joins with the RDF_VALUE$
table.

If you choose to include lexical values for the subject or values of any of the properties stored
in a result table, new columns for the lexical property values are added to the star-pattern and
chain-pattern tables. Note that these columns correspond exactly to the columns with the same
name in RDF_VALUE$. Specifically, when including lexical values for a non-reversed property
into a result table, the following columns get added to the result table:

e P<ld(property)>_VALUE TYPE

e P<ld(property)> VNAVE PREFI X
e P<Id(property)>_VNAME SUFFI X
e P<ld(property)> LI TERAL TYPE
e P<ld(property)> LANGUAGE TYPE
e P<ld(property)>_ORDER_NUM

e P<ld(property)> ORDER DATE

e P<Id(property)> LONG VALUE

For reversed properties, the column names use ‘' R as the first character instead of the
character ‘' P' . Names for the additional columns added for including the lexical values for the
subject (that is, corresponding to the numeric identifiers stored in the START_NODE | D column),
use the prefix * S', instead of P<I d(property) > or Rl d(property)>.

The following example is a variation of Example 1-98, in that the lexical values for the subject
and the reversed : f at her O property are included. The ' +' symbol is used to indicate that
lexical values needed to be stored in the result table. Here, use of * +S' and ‘' +": fatherOf’ in
the key_stri ng parameter causes the additional columns to get added for the subject and the
(reversed) : f at her O property, respectively.

Example 1-101 Including Lexical Values for the Subject and for the Reversed Property

BEG N
SEM API S. BUI LD RESULT TAB(
query_pattern_type => SEM API S. SPM TYPE_SVP

, result_tab nane => ' FLHF

, rdf _graph_nane = "M

, key_string => "' +S :fpame :|nane :height +*:fatherOf
, prefixes => "' PREFI X : <http://ww. exanpl e.com#> '

, hetwork_owner => ' RDFUSER

, hetwork_narme => ' NET1'

If a result table is already present, you can use the SEM_APIS.ALTER_RESULT TAB
subprogram to include lexical values for either the subject or any one of the properties by using
the string * ADD_S VALUE' or‘ ADD VALUE' , respectively, as value for the command parameter.
The following example results in inclusion of the lexical values for the : | name property. (The
command DROP_S VALUE or DROP_VALUE, not shown in this example, can be used to remove the
lexical value columns for the subject or a property, respectively.)

Graph Developer's Guide for RDF Graph

G43351-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 109 of 197

ORACLE Chapter 1
Speeding up Query Execution with Result Tables

Example 1-102 Altering a Star-Pattern Table to Add Lexical Values for a Property

BEG N
SEM API S. ALTER_RESULT_TAB(
query_pattern_type => SEM API S. SPM TYPE_SVP

, result_tab _nane => ' FLHF

, rdf _graph_nane = "M

, command => ' ADD VALUE

, pred_nanme => '<http://wwv. exanpl e. con#l nane>'
, hetwork_owner => ' RDFUSER

, hetwork_name => ' NETL'

END;

1.8.2.2 Creating and Dropping Secondary Indexes on Result Tables

You can create and drop secondary indexes on result tables.

If for a given workload, accessing the content of a result table through access paths other than
those already provided by the default indexes on the result table are needed, corresponding
secondary (B+-tree) indexes may be created by using the
SEM_APIS.CREATE_INDEX_ON_RESULT_ TAB subprogram.

The following example shows creation of such an index, named nane_i dx, on the star-pattern
table created in Example 1-101. The key_stri ng parameter, ' 2P 1P S, indicates that the key
should be the (numeric id) value from the column corresponding to the second property in the
table, namely, : | nanme, followed by that from the first property in the table, namely, : f nane,
followed by the subject (that is, the START_NODE_| D column). Note that the reference to the n-th
property is always <n>P regardless whether the corresponding column name in the result table
is of the form P<I d(property)> or Rl d(property).

If the lexical values for a property are included in the result table, then the index key may also
include one or more of the columns that store the comp