Oracle® Al Database
Oracle Text Reference

26ali
(G43188-01
October 2025

ORACLE"

Oracle Al Database Oracle Text Reference, 26ai
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.
Primary Author: Minal Agashe

Contributing Authors: Doug Williams, Prakash Jashnani

Contributors: Ajay Sunnyhith Chidurala, Aleksandra Czarlinska, Asha Makur, Bonnie Xia, Ce Wei, Denis Mukhin, Edwin
Balthes, Gaurav Yadav, George Krupka, Harichandan Roy, Madhupriya Ravishankar, Mohammad Faisal, Nilay Panchal,
Paul Lane, Rahul Kadwe, Rodrigo Fuentes Hernandez, Roger Ford, Sanoop Sethumadhavan, Saurabh Naresh
Netravalkar, Sebastian DeLaHoz, Simona Herdan, Sudhir Kumar, Yiming Qi

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Related Documents i
Conventions i

1 Oracle Text SQL Statements and Operators

1.1 ALTER INDEX 1
1.2 ALTER TABLE: Supported Partitioning Statements 31
1.3 CATSEARCH 36
1.4 CONTAINS 42
1.5 CREATE INDEX 53
1.6 CREATE SEARCH INDEX 80
1.7 CREATE HYBRID VECTOR INDEX 106
1.8 DROP INDEX 118
1.9 MATCHES 118
1.10 MATCH_SCORE 120
1.11 SCORE 120

2 Oracle Text Indexing Elements
2.1 Overview 1
2.2 Creating Preferences 2
2.3 Datastore Types 2
2.3.1 DIRECT_DATASTORE 3
2.3.2 MULTI_COLUMN_DATASTORE 4
2.3.2.1 MULTI_COLUMN_DATASTORE Attributes 4
2.3.2.2 Indexing and DML 5
2.3.2.3 MULTI_COLUMN_DATASTORE Restriction 5
2.3.2.4 MULTI_COLUMN_DATASTORE Example 5
2.3.25 MULTI_COLUMN_DATASTORE Filter Example 5
2.3.2.6 Tagging Behavior 6
2.3.2.7 Indexing Columns as Sections 6
2.3.3 DETAIL_DATASTORE 7

Oracle Text Reference

G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page i of xvii

2331
2.3.3.2
2333

DETAIL_DATASTORE Attributes
Synchronizing Primary/Detail Indexes
Example Primary/Detail Tables

2.3.4 FILE_DATASTORE

234.1
2342
2.3.4.3

FILE_DATASTORE Attributes
FILE_DATASTORE and Security
FILE_DATASTORE Example

2.3.5 DIRECTORY_DATASTORE

2351
2.35.2

DIRECTORY_DATASTORE Attributes
DIRECTORY_DATASTORE Example

2.3.6 URL_DATASTORE

23.6.1
2.3.6.2
2.3.6.3
2364

URL_DATASTORE URL Syntax
URL_DATASTORE Attributes
URL_DATASTORE and Security
URL_DATASTORE Example

2.3.7 NETWORK_DATASTORE

23.7.1
23.7.2
2.3.7.3

NETWORK_DATASTORE URL Syntax
NETWORK_DATASTORE Attributes
NETWORK_DATASTORE Example

2.3.8 USER_DATASTORE

2381
2.3.8.2
2.3.8.3
2384
2.3.85

USER_DATASTORE Attributes

USER_DATASTORE Constraints
USER_DATASTORE Editing Procedure after Indexing
USER_DATASTORE with CLOB Example
USER_DATASTORE with BLOB_LOC Example

2.3.9 NESTED_DATASTORE

2391
2.3.9.2

2.4 Filter Types

NESTED_DATASTORE Attributes
NESTED_DATASTORE Example

241 AUTO_FILTER

2411
24.1.2
24.1.3

2414

AUTO_FILTER Attributes
AUTO_FILTER and Indexing Formatted Documents

AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns

AUTO_FILTER and Character Set Conversion With AUTO_FILTER

242 NULL_FILTER
243 MAIL_FILTER

2431
24.3.2
2433
2434

MAIL_FILTER Attributes
MAIL_FILTER Behavior

About the Mail Filter Configuration File
Mail_Filter Example

244 USER_FILTER

Oracle Text Reference
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

10
10
11
12
12
13
13
14
14
15
16
16
17
17
18
19
20
20
21
21
22
22
23
23
24
25
25
26
26

27
28
28
28
29
30
30
31
32

October 13, 2025
Page ii of xvii

2441 USER_FILTER Attributes 32

2.4.4.2 Using USER_FILTER with Charset and Format Columns 33
2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns 33
2.4.4.4 Character Set Conversion with USER_FILTER 34
2.4.45 User Filter Example 34
2.45 PROCEDURE_FILTER 35
2.45.1 PROCEDURE_FILTER Attributes 35
2.45.2 PROCEDURE_FILTER Parameter Order 37
2.45.3 PROCEDURE_FILTER Execute Requirements 37
2.45.4 PROCEDURE_FILTER Error Handling 37
2455 PROCEDURE_FILTER Preference Example 38
2.5 Lexer Types 38
251 AUTO_LEXER 38
2511 AUTO_LEXER Language Support 39
2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER 41
2.5.1.3 AUTO_LEXER Language-Independent Attributes 41
2.5.1.4 AUTO_LEXER Language-Dependent Attributes 43
2.5.1.5 AUTO_LEXER Dictionary Attribute 46
2.5.2 BASIC_LEXER 46
2.5.2.1 BASIC_LEXER Language Support 47
2.5.2.2 BASIC_LEXER Attributes 48
2.5.2.3 Stemming User-Dictionaries 56
2.5.2.4 BASIC_LEXER Example 58
2.53 MULTI_LEXER 59
2.5.3.1 MULTI_LEXER Restriction 59
2.5.3.2 MULTI_LEXER Multi-language Stoplists 59
2.5.3.3 MULTI_LEXER Example 60
2.5.34 MULTI_LEXER and Querying Multi-Language Tables 60
2,54 CHINESE_VGRAM_LEXER 61
255 CHINESE_LEXER 62
256 JAPANESE_VGRAM_LEXER 62
2.5.7 JAPANESE_LEXER 64
2.5.8 KOREAN_MORPH_LEXER 65
2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries 65
2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support 66
2.5.8.3 KOREAN_MORPH_LEXER Attributes 66
2.5.8.4 KOREAN_MORPH_ LEXER Limitations 67
2.5.85 KOREAN_MORPH_LEXER Example: Setting Composite Attribute 67
259 USER_LEXER 68
2.59.1 USER_LEXER Routines 69
2.59.2 USER_LEXER Limitations 69
Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page iii of xvii

2.59.3 USER_LEXER Attributes
2.5.9.4 INDEX_PROCEDURE
2595 INPUT_TYPE
259.6 QUERY_PROCEDURE
2.5.9.7 Encoding Tokens as XML
2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure
2.5.9.9 XML Schema for User-defined Indexing Procedure with Location
2.5.9.10 XML Schema for User-defined Lexer Query Procedure
2510 WORLD_LEXER
2.6 Wordlist Type
2.6.1 BASIC_WORDLIST
2.6.2 BASIC_WORDLIST Example
2.6.2.1 Enabling Fuzzy Matching and Stemming
2.6.2.2 Enabling Sub-string and Prefix Indexing
2.6.2.3 Setting Wildcard Expansion Limit
2.7 Storage Types
2.7.1 BASIC_STORAGE
2.7.1.1 BASIC_STORAGE Attributes
2.7.1.2 BASIC_STORAGE Default Behavior
2.7.1.3 BASIC_STORAGE Examples
2.8 Section Group Types
2.8.1 Section Group Types for Creating a Section Group

2.8.2 Section Group Examples for HTML, XML, and JSON Enabled Documents

2.8.2.1 Creating Section Groups in HTML Documents
2.8.2.2 Creating Sections Groups in XML Documents
2.8.2.3 Automatic Sectioning in XML Documents
2.8.2.4 Creating JSON Section Groups for JSON Search Index
2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS
2.8.2.6 Using JSON Search Index with JSON_EXISTS
2.9 Classifier Types
2.9.1 RULE_CLASSIFIER
2.9.2 SVM_CLASSIFIER
2.9.3 SENTIMENT_CLASSIFIER
2.10 Cluster Types
2.10.1 KMEAN_CLUSTERING
2.11 Stoplists
2.11.1 Multi-Language Stoplists
2.11.2 Creating Stoplists
2.11.3 Supplied Stoplists
2.11.4 Modifying the Default Stoplist
2.12 System-Defined Preferences
2.12.1 Data Storage Preferences

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

69
70
70
72
73
74
76
78
80
81
81
90
91
91
91
92
92
93
100
101
103
103
104
105
105
105
106
106
106
106
106
107
108
109
109
110
110
111
111
112
112
113

October 13, 2025
Page iv of xvii

2.12.2 Filter Preferences 113
2.12.3 Lexer Preferences 113
2.12.3.1 CTXSYS.DEFAULT_LEXER 113
2.12.3.2 CTXSYS.DEFAULT EXTRACT_LEXER 114
2.12.3.3 CTXSYS.BASIC_LEXER 115

2.12.4 Section Group Preferences 115
2.12.5 Stoplist Preferences 115
2.12.6 Storage Preferences 115
2.12.7 Wordlist Preferences 116
2.13 System Parameters 116
2.13.1 General System Parameters 116
2.13.2 Default Index Parameters 117
2.13.2.1 CONTEXT Index Parameters 117
2.13.2.2 CTXCAT Index Parameters 119
2.13.2.3 CTXRULE Index Parameters 120

2.13.3 Default Policy Parameters 120
2.14 Token Limitations for Oracle Text Indexes 121
2.15 Auditing Oracle Text DR$ Index Tables 122
2.15.1 About Auditing Oracle Text DR$ Index Tables 122
2.15.2 Configuring an Oracle Text DR$ Index Tables Audit Policy 123
2.15.3 Example: Auditing Update Actions on an Oracle Text DR$ Index Table 123
2.15.4 How Oracle Text DR$ Index Table Entries Appear in the Audit Trall 123

3 Oracle Text CONTAINS Query Operators

3.1 Operator Precedence 2
3.1.1 Group 1 Operators 2
3.1.2 Group 2 Operators and Characters 2
3.1.3 Procedural Operators 3
3.1.4 Precedence Examples 3
3.1.5 Altering Precedence 3

3.2 ABOUT 4
3.3 ACCUMulate (,) 6
3.4 AND (&) 8
3.5 Broader Term (BT, BTG, BTP, BTI) 9
3.6 CTXFILTERCACHE 10
3.7 DEFINEMERGE 15
3.8 DEFINESCORE 15
3.9 EQUIValence (=) 19
3.10 Fuzzy 20
3.11 HASPATH 21
3.12 INPATH 23

Oracle Text Reference
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of xvii

3.13 MDATA 28

3.14 MINUS (-) 30
3.15 MNOT 30
3.16 Narrower Term (NT, NTG, NTP, NTI) 31
3.17 NDATA 32
3.18 NEAR() 35
3.19 NEAR2 39
3.20 NOT (~) 40
3.21 OR() 41
3.22 Preferred Term (PT) 41
3.23 Related Term (RT) 42
3.24 SDATA 42
3.25 soundex (1) 45
3.26 stem ($) 45
3.27 Stored Query Expression (SQE) 46
3.28 SYNonym (SYN) 47
3.29 threshold (>) 48
3.30 Translation Term (TR) 48
3.31 Translation Term Synonym (TRSYN) 49
3.32 Top Term (TT) 50
3.33 weight (*) 51
3.34 wildcards (%) 52
3.35 WITHIN 54
3.36 Supported Oracle Text CONTAINS Query Operators for In-Memory Full Text Search 58
4 Special Characters in Oracle Text Queries

4.1 Grouping Characters
4.2 Escape Characters
4.3 Reserved Words and Characters

5 CTX_ADM Package

5.1 About CTX_ADM Package Procedures 1
5.2 MARK_FAILED 1
5.3 RECOVER 3
5.4 RESET_AUTO_OPTIMIZE_STATUS 3
5.5 SET_PARAMETER 3
6 CTX_ANL Package
6.1 About CTX_ANL Package Procedures 1
Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page vi of xvii

6.2
6.3

ADD_DICTIONARY
DROP_DICTIONARY

7 CTX_CLS Package

7.1 About CTX_ CLS Package Procedures 1
7.2 TRAIN 1
7.3 CLUSTERING 5
7.4 SA TRAIN_MODEL 8
7.5 SA DROP_MODEL 9
8 CTX_DDL Package
8.1 ADD_ATTR_SECTION 2
8.2 ADD_AUTO_OPTIMIZE 3
8.3 ADD_FIELD_SECTION 5
8.4 ADD_INDEX 8
8.5 ADD_MDATA 9
8.6 ADD_MDATA _COLUMN 12
8.7 ADD_MDATA_ SECTION 13
8.8 ADD_NDATA_SECTION 14
8.9 ADD_PATH 15
8.10 ADD_SDATA COLUMN 17
8.11 ADD_SDATA SECTION 19
8.12 ADD_SEC_GRP_ATTR_VAL 23
8.13 ADD_SPECIAL_SECTION 23
8.14 ADD_STOPCLASS 25
8.15 ADD_STOP_SECTION 26
8.16 ADD_STOPTHEME 27
8.17 ADD_STOPWORD 28
8.18 ADD_SUB_LEXER 30
8.19 ADD_ZONE_SECTION 32
8.20 COPY_POLICY 35
8.21 CREATE_INDEX_SET 35
8.22 CREATE_PATH_LIST 36
8.23 CREATE_POLICY 39
8.24 CREATE_PREFERENCE 41
8.25 CREATE_SECTION_GROUP 43
8.26 CREATE_SHADOW_INDEX 46
8.27 CREATE_STOPLIST 48
8.28 DROP_INDEX_SET 50
8.29 DROP_PATH_LIST 50

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of xvii

8.30 DROP_POLICY 51
8.31 DROP_PREFERENCE 51
8.32 DROP_SECTION_GROUP 51
8.33 DROP_SHADOW_INDEX 52
8.34 DROP_STOPLIST 52
8.35 EXCHANGE_SHADOW_INDEX 53
8.36 LOAD_STOPLIST 55
8.37 OPTIMIZE_INDEX 56
8.38 POPULATE_PENDING 63
8.39 PREFERENCE_IMPLICIT_COMMIT 63
8.40 RECREATE_INDEX_ ONLINE 64
8.41 REM_SEC_GRP_ATTR_VAL 70
8.42 REMOVE_AUTO_OPTIMIZE 71
8.43 REMOVE_INDEX 71
8.44 REMOVE_MDATA 72
8.45 REMOVE_SECTION 73
8.46 REMOVE_STOPCLASS 74
8.47 REMOVE_STOPTHEME 75
8.48 REMOVE_STOPWORD 75
8.49 REMOVE_SUB_LEXER 76
8.50 REPLACE_INDEX_METADATA 76
851 SET_ATTRIBUTE 77
8.52 SET_SEC_GRP_ATTR 78
8.53 SET_SECTION_ATTRIBUTE 79
8.54 SYNC_INDEX 81
8.55 UNSET_ATTRIBUTE 84
8.56 UNSET_SEC_GRP_ATTR 84
8.57 UPDATE_SUB_LEXER 85
8.58 UPDATE_POLICY 85
8.59 UPDATE_SDATA 86
O CTX _DOC Package
9.1 About CTX_DOC Package Procedures 2
9.2 FILTER 2
9.3 GIST 5
9.4 HIGHLIGHT 8
9.5 IFILTER 12
9.6 MARKUP 13
9.7 PKENCODE 18
9.8 POLICY_FILTER 19
9.9 POLICY_GIST 20

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of xvii

9.10 POLICY_HIGHLIGHT 22
9.11 POLICY_LANGUAGES 23
9.12 POLICY_MARKUP 24
9.13 POLICY_NOUN_PHRASES 26
9.14 POLICY_PART_OF_SPEECH 29
9.15 POLICY_SNIPPET 31
9.16 POLICY_STEMS 33
9.17 POLICY_THEMES 34
9.18 POLICY_TOKENS 35
9.19 SENTIMENT 37
9.20 SENTIMENT_AGGREGATE 38
9.21 SET_KEY_TYPE 39
9.22 SNIPPET 40
9.23 THEMES 44
9.24 TOKENS 46
10 CTX_ENTITY Package
10.1 ADD_EXTRACT_RULE 1
10.2 ADD_STOP_ENTITY 5
10.3 COMPILE 6
10.4 CREATE_EXTRACT_POLICY 7
10.5 DROP_EXTRACT_POLICY 8
10.6 EXTRACT 9
10.7 IMPORT_DICTIONARY 10
10.8 REMOVE_EXTRACT_RULE 12
10.9 REMOVE_STOP_ENTITY 13
11 CTX_OUTPUT Package
11.1 ADD_EVENT 1
11.2 ADD_TRACE 2
11.3 DISABLE_QUERY_STATS 3
11.4 ENABLE_QUERY_STATS 4
11.5 END_LOG 5
11.6 END_QUERY_LOG 5
11.7 GET_TRACE_VALUE 5
11.8 LOG_TRACES 6
11.9 LOGFILENAME 6
11.10 REMOVE_EVENT 7
11.11 REMOVE_TRACE 7
11.12 RESET_TRACE 8

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of xvii

11.13 START_LOG
11.14 START_QUERY_LOG 9

12 CTX_QUERY Package

12.1 BROWSE_WORDS 1
12.2 COUNT_HITS 3
12.3 EXPLAIN 4
12.4 HFEEDBACK 7
12.5 REMOVE_SQE 10
12.6 RESULT_SET 11
12.7 RESULT_SET_CLOB_QUERY 34
12.8 RESULT_SET_DOCUMENT 34
12.9 STORE_SQE 35
12.10 WARM_CACHE 37
13 CTX_REPORT Package
13.1 Description of Procedures in CTX_REPORT 1
13.2 Using the Function Versions 2
13.3 DESCRIBE_INDEX 2
13.4 DESCRIBE_POLICY 3
13.5 CREATE_INDEX_SCRIPT 4
13.6 CREATE_POLICY_SCRIPT 4
13.7 INDEX_SIZE 5
13.8 INDEX_STATS 6
13.9 QUERY_LOG_SUMMARY 13
13.10 SHOW_TOKENS 17
13.11 TOKEN_INFO 20
13.12 TOKEN_TYPE 21
13.13 VALIDATE_INDEX 23
14 CTX_THES Package
141 ALTER_PHRASE 2
14.2 ALTER_THESAURUS 3
14.3 BT 4
144 BTG 6
145 BTI 7
146 BTP 8
14.7 CREATE_PHRASE 9
14.8 CREATE_RELATION 10
Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page x of xvii

14.9 CREATE_THESAURUS

11

1410 CREATE_TRANSLATION 12
14.11 DROP_PHRASE 13
14.12 DROP_RELATION 13
14.13 DROP_THESAURUS 15
14.14 DROP_TRANSLATION 15
14.15 EXPORT_THESAURUS 16
1416 HAS_RELATION 17
14.17 IMPORT_THESAURUS 17
1418 NT 18
1419 NTG 20
14.20 NTI 21
14.21 NTP 23
14.22 OUTPUT_STYLE 24
14.23 PT 24
1424 RT 26
14.25 SN 27
14.26 SYN 27
14.27 THES TT 29
1428 TR 30
14.29 TRSYN 31
1430 TT 33
14.31 UPDATE_TRANSLATION 34
15 CTX_ULEXER Package
15.1 WILDCARD_TAB 1
16 DBMS_SEARCH Package
16.1 CREATE_INDEX 2
16.2 ADD_SOURCE 4
16.3 REMOVE_SOURCE 6
16.4 DROP_INDEX 7
16.5 GET_DOCUMENT 7
16.6 FIND 8

17 Oracle Text Utilities

17.1

Thesaurus Loader (ctxload)

17.1.1 ctxload Text Loading
17.1.2 ctxload Syntax

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xvii

17.1.3 ctxload Examples 3
17.2 Entity Extraction User Dictionary Loader (ctxload) 4
17.2.1 ctxload Syntax 4
17.2.2 Considerations When Creating a User Dictionary 4
17.2.3 XML Schema 5
17.2.4 ctxload Example 6
17.3 Knowledge Base Extension Compiler (ctxkbtc) 6
17.3.1 Knowledge Base Character Set 7
17.3.2 ctxkbtc Syntax 7
17.3.3 ctxkbtc Usage Notes 8
17.3.4 ctxkbtc Limitations 8
17.3.5 ctxkbtc Constraints on Thesaurus Terms 8
17.3.6 ctxkbtc Constraints on Thesaurus Relations 9
17.3.7 Extending the Knowledge Base 9
17.3.8 Example for Extending the Knowledge Base 10
17.3.9 Adding a Language-Specific Knowledge Base 10
17.3.10 Limitations for Adding a Knowledge Base 11
17.3.11 Order of Precedence for Multiple Thesauri 11
17.3.12 Size Limits for Extended Knowledge Base 11
17.4 Lexical Compiler (ctxIc) 11
17.4.1 Syntax of ctxlc 12
17.4.2 ctxlc Performance Considerations 12
17.4.3 ctxlc Usage Notes 13
17.4.4 ctxlc Example 13
18 Oracle Text Alternative Spelling
18.1 Overview of Alternative Spelling Features 1
18.1.1 Alternate Spelling 2
18.1.2 Base-Letter Conversion 2
18.1.3 New German Spelling 2
18.2 Overriding Alternative Spelling Features 3
18.3 Alternative Spelling Conventions 3
18.3.1 German Alternate Spelling Conventions 4
18.3.2 Danish Alternate Spelling Conventions 4
18.3.3 Swedish Alternate Spelling Conventions 4
A Oracle Text Result Tables

Al CTX_QUERY Result Tables A-1
A.1.1 EXPLAIN Table A-1
A.1.1.1 EXPLAIN Table Structure A-1

Oracle Text Reference
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xvii

A.1.1.2 EXPLAIN Table Operation Column Values A-2

A.1.1.3 EXPLAIN Table OPTIONS Column Values A-3

A.1.2 HFEEDBACK Table A-3
A.1.2.1 HFEEDBACK Table Structure A-3

A.1.2.2 HFEEDBACK Table Operation Column Values A-4

A.1.2.3 HFEEDBACK Table OPTIONS Column Values A-4

A.1.2.4 CTX _FEEDBACK_TYPE A-5

A.2 CTX_DOC Result Tables A-6
A.2.1 Filter Table A-6
A.2.2 Gist Table A-6
A.2.3 Highlight Table A-7
A.2.4 Markup Table A-7
A.2.5 Theme Table A-7
A.2.6 Token Table A-8
A.3 CTX_THES Result Tables and Data Types A-8
A.3.1 EXP_TAB Table Type A-8

= Oracle Text Supported Document Formats

B.1 About Document Filtering Technology B-1
B.1.1 Latest Updates for Patch Releases B-1
B.1.2 Restrictions on Format Support B-1
B.1.3 Supported Platforms for AUTO_FILTER Technology B-2
B.1.4 Filtering on PDF Documents and Security Settings B-2
B.1.5 PDF Filtering Limitations B-4
B.1.6 Environment Variables B-4
B.1.7 General Limitations B-4
B.2 Supported Document Formats B-4
B.2.1 Archive File Format B-5
B.2.2 Database Formats B-5
B.2.3 E-Book Formats B-6
B.2.4 Email Formats B-6
B.2.5 Graphic Formats (Raster and Vector Image) B-8
B.2.6 Multimedia Formats B-10
B.2.7 Other Formats B-11
B.2.8 Presentation Formats B-12
B.2.9 Spreadsheet Formats B-12
B.2.10 Text and Markup Formats B-13
B.2.11 Word Processing and Desktop Publishing Formats B-15

Oracle Text Reference
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiii of xvii

C Text Loading Examples for Oracle Text

C.1 SQL INSERT Example C-1
C.2 SQL*Loader Example C-1
C.2.1 Creating the Table C-1
C.2.2 Issuing the SQL*Loader Command C-2
C.2.2.1 Example Control File: loaderl.dat C-2

C.2.2.2 Example Data File: loader2.dat C-2

C.3 Structure of ctxload Thesaurus Import File C-3
C.3.1 Import File Format C-3
C.3.2 Alternate Hierarchy Structure C-5
C.3.3 Usage Notes for Terms in Import Files C-6
C.3.4 Usage Notes for Relationships in Import Files C-6
C.3.5 Examples of Import Files C-7
C.3.5.1 Example 1 (Flat Structure) C-7

C.3.5.2 Example 2 (Hierarchical) C-7

C.3.5.3 Example 3 C-8

D Oracle Text Multilingual Features

D.1 Introduction D-1
D.2 Indexing D-1
D.2.1 Multilingual Features for Text Index Types D-1
D.2.1.1 CONTEXT Index Type D-2

D.2.1.2 CTXCAT Index Type D-2

D.2.1.3 CTXRULE Index Type D-3

D.2.2 Lexer Types D-3
D.2.3 Basic Lexer Features D-4
D.2.3.1 Theme Indexing D-4

D.2.3.2 Alternate Spelling D-4

D.2.3.3 Base Letter Conversion D-5

D.2.3.4 Composite D-5

D.2.3.5 Index Stems D-5

D.2.4 Multi Lexer Features D-6
D.2.5 World Lexer Features D-6
D.3 Querying D-8
D.4 Supplied Stoplists D-8
D.5 Knowledge Base D-9
D.6 Multilingual Features Matrix D-9

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiv of xvii

E The Oracle Text Scoring Algorithm

E.1 Scoring Algorithm for Word Queries E-1
E.2 Word Scoring Example E-2
E.3 DML and Scoring Algorithm E-2
F Oracle Text Views
F1 CTX_ALEXER_DICTS F-3
F2 CTX_AUTO_OPTIMIZE_INDEXES F-3
F.3 CTX_AUTO_OPTIMIZE_STATUS F-3
F4 CTX_AUTOSYNC_JOBS F-4
F5 CTX_AUTOSYNC_STATUS F-4
F.6 CTX_BACKGROUND_EVENTS F-5
F.7 CTX_CLASSES F-7
F.8 CTX_FILTER_BY_COLUMNS F-8
F.9 CTX_FILTER_CACHE_STATISTICS F-8
F.10 CTX_INDEXES F-8
F11 CTX_INDEX_ERRORS F-9
F.12 CTX_INDEX_OBJECTS F-10
F.13 CTX_INDEX_PARTITIONS F-10
F14 CTX_INDEX_SETS F-10
F.15 CTX_INDEX_SET_INDEXES F-10
F.16 CTX_INDEX_SUB_LEXERS F-11
F17 CTX_INDEX_SUB_LEXER_VALUES F-11
F.18 CTX_INDEX_VALUES F-11
F.19 CTX_OBJECTS F-12
F.20 CTX_OBJECT_ATTRIBUTES F-12
F.21 CTX_OBJECT_ATTRIBUTE_LOV F-12
F.22 CTX_ORDER_BY_COLUMNS F-13
F.23 CTX_PARAMETERS F-13
F.24 CTX_PREFERENCES F-14
F.25 CTX_PREFERENCE_VALUES F-15
F.26 CTX_SECTIONS F-15
F.27 CTX_SECTION_GROUPS F-15
F.28 CTX_SQES F-15
F29 CTX_STOPLISTS F-16
F.30 CTX_STOPWORDS F-16
F31 CTX_SUB_LEXERS F-16
F32 CTX_THESAURI F-17
F.33 CTX_THES_PHRASES F-17
F.34 CTX_TRACE_VALUES F-17

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xv of xvii

F.35 CTX USER_ALEXER_DICTS F-17
F36 CTX _USER_AUTO_OPTIMIZE_INDEXES F-18
F.37 CTX_USER_AUTOSYNC_JOBS F-18
F.38 CTX _USER_AUTOSYNC_STATUS F-19
F39 CTX_USER_BACKGROUND_EVENTS F-19
F40 CTX USER_EXTRACT_POLICIES F-22
F41 CTX USER_EXTRACT_POLICY_VALUES F-22
F42 CTX _USER_EXTRACT_RULES F-22
F.43 CTX_USER_EXTRACT_STOP_ENTITIES F-23
F44 CTX USER_EXTRACT_TYPE F-23
F45 CTX _USER_FILTER_BY_COLUMNS F-23
F46 CTX USER_INDEXES F-24
F47 CTX _USER_INDEX_ERRORS F-24
F48 CTX _USER_INDEX_OBJECTS F-25
F49 CTX _USER_INDEX_PARTITIONS F-25
F50 CTX USER_INDEX_SETS F-26
F51 CTX _USER_INDEX_SET_INDEXES F-26
F52 CTX_USER_INDEX_SUB_LEXERS F-26
F.53 CTX_USER_INDEX SUB_LEXER_VALS F-26
F54 CTX _USER_INDEX_VALUES F-27
F.55 CTX_USER_ORDER_BY_COLUMNS F-27
F56 CTX USER_PREFERENCES F-27
F57 CTX_USER_PREFERENCE_VALUES F-27
F.58 CTX_USER_SECTIONS F-28
F59 CTX _USER_SECTION_GROUPS F-28
F.60 CTX_USER_SESSION_SQES F-28
F61 CTX_USER_SQES F-29
F.62 CTX USER_STOPLISTS F-29
F.63 CTX _USER_STOPWORDS F-29
F.64 CTX_USER_SUB_LEXERS F-29
F.65 CTX USER_THESAURI F-30
F.66 CTX USER_THES PHRASES F-30
F.67 CTX VERSION F-30
F.68 ALL_DBMS SEARCH_INDEXES F-30
F.69 ALL DBMS_SEARCH_INDEX_SOURCES F-31
F.70 USER_DBMS_SEARCH_INDEXES F-31
F.71 USER_DBMS_SEARCH_INDEX_SOURCES F-31
G Stopword Transformations in Oracle Text
G.1 Understanding Stopword Transformations G-1
G.2 About Stopwords in Phrase Queries G-2

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvi of xvii

G.3
G4
G.5
G.6
G.7
G.8
G.9
G.10
G.11
G.12
G.13
G.14

Word Transformations

AND Transformations

OR Transformations

ACCUMulate Transformations

MINUS Transformations

MNOT Transformations

NOT Transformations
EQUIValence Transformations
NEAR Transformations
Weight Transformations
Threshold Transformations
WITHIN Transformations

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvii of xvii

ORACLE’

Preface

Oracle Text Reference provides reference information for building applications with Oracle
Text.

e Audience

e Conventions

Audience

This document is intended for application developers and system administrators who maintain
an Oracle Text system in an Oracle environment. To use this document, you need experience
with Oracle Database, SQL, SQL*Plus, and PL/SQL.

Related Documents

For more information about Oracle Text, see:

e Oracle Text Application Developer's Guide

For more information about Oracle Database, see:

e Oracle Database Concepts

e Oracle Database Administrator's Guide

* Oracle Database Utilities

e Oracle Database Performance Tuning Guide
e Oracle Database SQL Tuning Guide

e Oracle Database SQL Language Reference
e Oracle Database Reference

e Oracle Database Development Guide

e Oracle Database Sample Schemas

For more information about PL/SQL, see:

e Oracle Database PL/SQL Language Reference

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page i of ii

ORACLE’

Preface
Convention Meaning
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
monospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ii of ii

Oracle Text SQL Statements and Operators

These are the SQL statements and Oracle Text operators for creating and managing Oracle
Text indexes and performing Oracle Text queries.

e ALTER INDEX

ALTER TABLE: Supported Partitioning Statements
e CATSEARCH

e CONTAINS

e CREATE INDEX

e CREATE HYBRID VECTOR INDEX

e CREATE SEARCH INDEX

e DROP INDEX

« MATCHES
« MATCH SCORE
« SCORE

@® Note

Starting with Oracle Al Database 26ai, you can also use the DBMS_SEARCH PL/SQL
package to create, manage, or query search indexes for a textual and range-based
ubiquitous search.

Starting with Oracle Al Database 26ai (23.9) release, DBMS_SEARCH PL/SQL package
also supports creating, managing, or querying search indexes for hybrid text-vector
search. See DBMS_SEARCH Package.

1.1 ALTER INDEX

Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

® Note

This section describes the ALTER INDEX statement as it pertains to managing an Oracle
Text domain index. For a complete description of the ALTER INDEX statement, see
Oracle Database SQL Language Reference.

ALTER INDEX Purpose

To make changes to or perform maintenance tasks for a CONTEXT, CTXCAT, or CTXRULE index.

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 122

ORACLE

Chapter 1
ALTER INDEX

@® Note

* When you use ALTER INDEX to shift from FAST_DML to FAST_QUERY, you might
encounter the DRG-11380 "operation is not allowed on unsynced index"
error. To overcome this error, run the SYNC command on the index and then retry
ALTER INDEX.

* When you run any DML or query workload during ALTER INDEX, you might
encounter an ORA-00060 or other error that may mark the index UNUSABLE. This is
because ALTER INDEX behaves like a DDL operation and is not performed online
by default. To overcome this error, set the ONLINE parameter in the ALTER INDEX
statement.

e The FAST_DML and FAST _QUERY options are not supported for online operations.

All Index Types

Use ALTER INDEX to perform the following tasks on all Oracle Text index types:

Rename the index or index partition. See ALTER INDEX RENAME Syntax.
Add stopwords to the index. See ALTER INDEX REBUILD Syntax.

Add or remove a sub_lexer, and remove a stopword or set of stopwords for a given symbol
(language or language-independent). See ALTER INDEX Sub_Lexer Syntax.

Rebuild the index using different preferences. Some restrictions apply for the CTXCAT index
type. See ALTER INDEX REBUILD Syntax.

@ Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [ti me- peri od]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

CONTEXT and CTXRULE Index Types

Use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE index types:

Oracle Text Reference
G43188-01
Copyright © 2005, 2025

Resume a failed index operation (creation/optimization).
Add sections and stop sections to the index.

Replace index metadata.

October 13, 2025

, Oracle and/or its affiliates. Page 2 of 122

ORACLE Chapter 1
ALTER INDEX

® See Also
ALTER INDEX REBUILD Syntax to learn more about performing these tasks

Overview of ALTER INDEX Syntax

The syntax for ALTER INDEX is fairly complex. The major divisions are covered in the following
sections:

* ALTER INDEX MODIFY PARTITION Syntax: Use this to modify an index partition's
metadata.

e ALTER INDEX PARAMETERS Syntax: Use this to modify the parameters of a
nonpartitioned index, or to modify all partitions of a local partitioned index, without
rebuilding the index.

 ALTER INDEX RENAME Syntax: Use this to rename an index or index partition.

e ALTER INDEX REBUILD Syntax: Use this to rebuild an index or index partition. With this
statement, you can also replace index metadata; add stopwords, sections, and stop
sections to an index; and resume a failed operation.

The parameters for ALTER INDEX REBUILD have their own syntax, which is a subset of the
syntax for ALTER INDEX. For example, the ALTER INDEX REBUILD PARAMETERS statement
can take either REPLACE or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS
("REPLACE") can take several arguments. Valid examples of ALTER INDEX REBUILD include
the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS ("REPLACE DATASTORE datastore_pref')
ALTER INDEX REBUILD PARAMETERS ("REPLACE WORDLIST wordlist_pref ")

« ALTER INDEX Syntax for JSON Search Index: Use this to modify the JSON search index
preferences, such as DATAGUIDE and SEARCH_ON.

* ALTER INDEX Syntax for XML Search Index: Use this to modify the XML search index
preferences, such as SEARCH_ON.

e« ALTER INDEX Syntax for Hybrid Vector Index: Use this to modify or rebuild an existing
hybrid vector index.

ALTER INDEX MODIFY PARTITION Syntax
Use the following syntax to modify the metadata of an index partition:

ALTER INDEX index_name MODIFY PARTITION partition_nanme PARAMETER (paranstring)

index_name
Specify the name of the index whose partition metadata you want to modify.

partition_name
Specify the name of the index partition whose metadata you want to modify.

paramstring

The only valid argument here is 'REPLACE METADATA'. This follows the same syntax as ALTER
INDEX REBUILD PARTITION PARAMETERS ("REPLACE METADATA®); see the REPLACE METADATA
subsection of the ALTER INDEX REBUILD Syntax section for more information. (The two
statements are equivalent. ALTER INDEX MODIFY PARTITION is offered for ease of use, and is
the recommended syntax.)

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 122

ORACLE Chapter 1
ALTER INDEX

ALTER INDEX PARAMETERS Syntax

The parameter string now supports READ ONLY MDATA. Use the following syntax to modify the
parameters either of nonpartitioned or local partitioned indexes, without rebuilding the index.
For partitioned indexes, this statement works at the index level, not at the partition level. This
statement changes information for the entire index, including all partitions.

ALTER INDEX index_nane PARAMETERS (paranstring)

paramstring

ALTER INDEX PARAMETERS accepts the following arguments for paramstring:
e 'REPLACE METADATA'

Replaces current metadata. See the REPLACE METADATA subsection of the ALTER INDEX
REBUILD Syntax section for more information.

* ‘ADD MDATA SECTION secname TAG sectag READ ONLY’

Creates non-updatable MDATA sections so that queries on these MDATA sections do not
require extra cursors to be opened on $1 table.

e 'ADD STOPWORD'

Dynamically adds a stopword to an index. See the ADD STOPWORD subsection of the
"ALTER INDEX REBUILD Syntax" section for more information.

e 'ADD FIELD SECTION'

Dynamically adds a field section to an index. See the ADD FIELD subsection of the "ALTER
INDEX REBUILD Syntax" section for more information. You can add an unlimited number
of field sections.

e 'ADD ZONE SECTION'

Dynamically adds a zone section to an index. See the ADD ZONE subsection of the "ALTER
INDEX REBUILD Syntax" section for more information.

e 'ADD ATTR SECTION'

Dynamically adds an attribute section to an index. See the ADD ATTR subsection of the
ALTER INDEX REBUILD Syntax section for more information.

e 'ADD SDATA SECTION'

Dynamically adds an SDATA section to an index. An SDATA section can only be added to
BASIC, HTML, XML, and NEWS section groups. It supports both global as well as local
indexes. New documents synchronized into the index reflect this new preference. The
syntax is:

ALTER INDEX i ndex_name PARAMETERS (ADD SDATA SECTION sdata_section_nane TAG
sdat a_section_tag DATATYPE sdata_section_datatype);

The datatype can be VARCHAR2, CHAR, NUMBER, DATE, or RAW.

See Adding an SDATA Section for more information.

@ Note

Documents that were indexed before adding an SDATA section do not reflect this
new preference. Rebuild the index in this case.

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 122

ORACLE

Chapter 1
ALTER INDEX

Each of the above described parameters has an equivalent ALTER INDEX REBUILD PARAMETERS
version, except ADD SDATA SECTION.

For example, ALTER INDEX PARAMETERS ("REPLACE METADATAT) is equivalent to ALTER INDEX
REBUILD PARAMETERS ("REPLACE METADATAT"). However, the ALTER INDEX PARAMETERS
versions work on either partitioned or nonpartitioned indexes, whereas the ALTER INDEX
REBUILD PARAMETERS versions work only on nonpartitioned indexes.

ALTER INDEX RENAME Syntax
Use the following syntax to rename an index or index partition:

ALTER INDEX [schema.]index_name RENAME TO new_i ndex_nane;
ALTER INDEX [schema.]index_name RENAME PARTITION part_name TO new_part_name;

[schema.]index_name
Specify the name of the index to rename.

new_index_name

Specify the new name for schema. index. The new_index_name parameter can be no more
than 25 bytes, and 21 bytes for a partitioned index in earlier releases of Oracle Database that
have not been upgraded to Oracle Database 12¢ Release 2 (12.2). If you specify a name
longer than 25 bytes (or longer than 21 bytes for a partitioned index), then Oracle Text returns
an error and the renamed index is no longer valid.

® Note

When new_index_name is more than 25 bytes (21 for local partitioned index) and less
than 30 bytes, Oracle Text renames the index, even though the system returns an
error. To drop the index and associated tables, you must drop new_index_name with
the DROP INDEX statement and then re-create and drop index_name.

The upgraded databases that do not have the compatible parameter set to 12.2 can have the
new_index_name parameter no more than 30 bytes, and 30 bytes for a partitioned index.

The upgraded databases that have the compatible parameter set to 12.2 or new Oracle
Database 12c Release 2 (12.2) installations can have the new_index_name parameter no more
than 128 bytes, and 128 bytes for a partitioned index.

part_name
Specify the name of the index partition to rename.

new_part_name
Specify the new name for partition.

ALTER INDEX REBUILD Syntax

Use ALTER INDEX REBUILD to rebuild an index, rebuild an index partition, resume a failed
operation, replace index metadata, add stopwords to an index, or add sections and stop
sections to an index.

The ALTER INDEX REBUILD syntax has its own subsyntax. That is, its parameters have their own
syntax. For example, the ALTER INDEX REBUILD PARAMETERS statement can take either REPLACE
or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS ("REPLACE") has several
arguments it can take.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 122

ORACLE

Chapter 1
ALTER INDEX

@® Note

You cannot use the ALTER INDEX REBUILD syntax to add or remove the INMEMORY
option associated Text index tables.

Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS (REPLACE DATASTORE dat ast ore_pref)
ALTER INDEX REBUILD PARAMETERS (REPLACE WORDLIST wordlist_pref)

This is the syntax for ALTER INDEX REBUILD:

ALTER INDEX [schema.]index [REBUILD] [PARTITION partname] [ONLINE]
[PARAMETERS (par anst ri ng)J[PARALLEL N];

PARTITION partname

Rebuilds the index partition partname. Only one index partition can be built at a time.

When you rebuild a partition you can specify only RESUME or REPLACE in paramstring. These
operations work only on the partname you specify.

With the REPLACE operation, you can specify MEMORY, STORAGE, and SYNC for each index
partition.

Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL statement.
When you add a patrtition to an indexed table, Oracle Text automatically creates the metadata
for the new index partition. The new index partition has the same name as the new table
partition. If you must change the index partition name, then use ALTER INDEX RENAME.
Splitting or Merging Partitions Splitting or merging a table partition with ALTER TABLE
renders the index partitions invalid. You must rebuild them with ALTER INDEX REBUILD.

ONLINE

Enables you to continue to perform updates, insertions, and deletions on a base table. It does
not enable you to query the base table. The ONLINE keyword can only be used with the
Enterprise Edition of Oracle Al Database.

@® Note

You can specify REPLACE or RESUME when rebuilding an index or an index partition
ONLINE.

PARAMETERS (paramstring)
Optionally, specify paramstring. If you do not specify paramstring, then Oracle Text rebuilds
the index with existing preference settings.

@ Note

Oracle Text rebuilds the index using metadata values that have been deep-copied into
the index. You can use the CTX_REPORT.CREATE_INDEX_SCRIPT procedure to recreate
the user preferences. This procedure generates a script with the preferences that are
identical to those used in the original Text index. However, the names of the
preferences will be system-generated.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 122

ORACLE Chapter 1
ALTER INDEX

The syntax for paramstring is as follows:

paramstring =

"REPLACE
[DATASTORE dat astore_pref]
[FILTER filter_pref]
[LEXER | exer _pref]
[WORDLIST wordlist_pref]
[STORAGE st orage_pref]
[STOPLIST stoplist]
[SECTION GROUP section_group]
[MEMORY nensi ze
[[POPULATE | NOPOPULATE]
[INDEX SET index_set]

[METADATA preference new_preference]
[METADATA FORMAT COLUMN format_column_name]
[[METADATA] MAINTENANCE AUTO | MAINTENANCE MANUAL]
[[METADATA] SYNC (MANUAL | EVERY “interval-string™ | ON COMMIT)]
[[METADATA] TRANSACTIONAL | NONTRANSACTIONAL
[[METADATA] [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]]

[[METADATA] OPTIMIZE (MANUAL | AUTO_DAILY | EVERY “interval-string™)]

| [DATAGUIDE [ON | OFF | ON CHANGE [ADD_VC|Function_name]]

| [SEARCH_ON (NONE | TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRI NG)]

RESUME [memory nensi ze]

ADD STOPWORD word [language | anguage]

ADD ZONE SECTION section_name tag tag

ADD FIELD SECTION section_nane tag tag [(VISIBLE | INVISIBLE)]

ADD ATTR SECTION section_name tag tag@ttr

ADD STOP SECTION tag'

REPLACE [optional_preference_list]

Rebuilds an index. You can optionally specify your own preferences or system-defined
preferences.

You can replace only the preferences that are supported for that index type. For instance, you
cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the CTXCAT index type,
you can replace lexer, wordlist, storage index set, and memory preferences.

The POPULATE parameter is the default and need not be specified. If you want to empty the
index of its contents, then specify NOPOPULATE. Clear an index of its contents when you must
rebuild your index incrementally. The NOPOPULATE choice is available for a specific partition of
the index, and not just for the entire index.

Note that ALTER INDEX REBUILD creates a populated index by default, unless you explicitly
specify the NOPOPULATE keyword. The outputs of CTX_REPORT.CREATE_INDEX_SCRIPT and
CTX_REPORT .DESCRIBE_INDEX include the NOPOPULATE keyword for such indexes.

If you are rebuilding a partitioned index using the REPLACE parameter, then you can specify
only STORAGE, MEMORY, and NOPOPULATE.

A new wordlist preference SEPARATE_OFFSETS specifies that the token_info in the index is
stored as docids only in one place, and offsets is stored only in another place. Refer to
Oracle Text Application Developer's Guide for information on improved response time using
the SEPARATE_OFFSETS option of CONTEXT index.

If this procedure modifies the existing index tables for only the following storage attributes of
the BASIC_STORAGE type (any one of them), then it will not result in re-indexing of data:

< BIG_IO

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 122

ORACLE

Chapter 1
ALTER INDEX

- 1_INDEX_CLAUSE
« 1_TABLE_CLAUSE
- SEPARATE_OFFSETS

@ Note

* The BIG_I0 attribute of the CONTEXT indextype is deprecated with Oracle Al
Database 26ai, and can be disabled or removed in a future release.

e Oracle recommends that you allow this value to be set to its default value of N.
BIG_10 was introduced to reduce the cost of seeks when index postings
exceeded 4KB in length. However, the internal code is relatively inefficient, and
the attribute cannot be combined with newer index options. Seek cost is much
less relevant for solid state disks or non-volatile memory devices (NVMe), and
seek cost is irrelevant when postings are cached. This setting is therefore of little
benefit for most indexes.

REPLACE METADATA preference new_preference

Replaces the existing preference class settings, including SYNC parameters, of the index with
the settings from new_preference. Only index preferences and attributes are replaced. The
index is not rebuilt.

This statement is useful when you want to replace a preference and its attribute settings after
the index is built, without re-indexing all data. re-indexing data can require significant time and
computing resources.

This statement is also useful for changing the SYNC parameter type, which can be automatic,
manual, or on-commit.

The ALTER INDEX REBUILD PARAMETER ("REPLACE METADATA™) statement does not work for a
local partitioned index at the global level for the index. You cannot, for example, use this
syntax to change a global preference, such as filter or lexer type, without rebuilding the index.
Use ALTER INDEX PARAMETERS instead to change the metadata of an index at the global level,
including all partitions. See ALTER INDEX PARAMETERS Syntax.

@® Note

The ALTER INDEX REPLACE METADATA option is essentially a DDL operation (and not
an ONLINE operation), so it may fail if there are any concurrent DML operations
requesting locks on the underlying table, including queries. You must perform ALTER
INDEX REPLACE METADATA operations during a quiet time on the system when other
user operations are not ongoing on the table or index.

When should | use the METADATA keyword? REPLACE METADATA should be used only when
the change in index metadata will not lead to an inconsistent index, which can lead to incorrect
query results.

For example, use this statement in the following instances:

e To go from a single-language lexer to a multilexer in anticipation of multilingual data. For
an example, see Replacing Index Metadata: Changing Single-Lexer to Multilexer.

e To change the WILDCARD MAXTERMS setting in BASIC_WORDLIST.

* To change the SYNC parameter type, which can be automatic, manual, or on-commit.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 122

ORACLE

Chapter 1
ALTER INDEX

These changes are safe and will not lead to an inconsistent index that might adversely affect
your query results.

s ~

A\ Warning

The REPLACE METADATA statement can result in inconsistent index data, which can lead
to incorrect query results. As such, Oracle does not recommend using this statement,
unless you carefully consider the effect it will have on the consistency of your index
data and subsequent queries.

. J

There can be many instances when changing metadata can result in inconsistent index data.
For example, Oracle recommends against using the METADATA keyword after performing the
following procedures:

e Changing the USER_DATASTORE procedure to a new PL/SQL stored procedure that has
different output.

e Changing the BASIC_WORDLIST attribute PREFIX_INDEX from NO to YES because no
prefixes have been generated for existing documents. Changing it from YES to NO is safe.

e Adding or changing BASIC_LEXER printjoin and skipjoin characters, because new queries
with these characters would be lexed differently from how these characters were lexed at
index time.

e Do not use REPLACE METADATA with FORWARD_INDEX. Instead use REPLACE STORAGE.

In these unsafe cases, Oracle recommends rebuilding the index.

REPLACE [METADATA] MAINTENANCE AUTO | MAINTENANCE MANUAL

Specifies the maintenance type for synchronization of the CONTEXT and search indexes when
there are inserts, updates, or deletes to the base table. The maintenance type specified for an
index applies to all index partitions.

You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC. INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions to follow in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 122

ORACLE

Chapter 1
ALTER INDEX

For guidelines and examples on switching between the MAINTENANCE AUTO and MAINTENANCE
MANUAL methods, see Oracle Text Application Developer's Guide.

REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies the SYNC type for synchronization of the CONTEXT and search indexes when there are
inserts, updates, or deletes to the base table.

These SYNC settings are applicable only to the indexes that are set to manual maintenance.

@® Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the following SYNC methods:

SYNC Type

Description

MANUAL

EVERY interval-string

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

This is the default synchronization method for CONTEXT
index. In this method, automatic synchronization is not
provided. You must manually synchronize the index using
CTX_DDL.SYNC_INDEX.

Use MANUAL to disable ON COMMIT and EVERY
synchronization.

The default synchronization interval is set to 30 seconds.
Automatically synchronize the index at a regular interval
specified by the value of interval-string, which takes the
same syntax as that for scheduler jobs. Automatic
synchronization using EVERY requires that the index creator
have CREATE JOB privileges.

Ensure that interval-string is set to a considerable time
period so that any previous synchronization jobs will have
completed. Otherwise, the synchronization job may stop
responding. The interval-string argument must be enclosed
in double quotation marks (" ").

See Enabling Automatic Index Synchronization at Regular
Intervals for an example of automatic synchronization
syntax.

October 13, 2025
Page 10 of 122

ORACLE Chapter 1
ALTER INDEX

SYNC Type Description

ON COMMIT Synchronize the index immediately after a commit. The
commit does not return until the sync is complete. Before
Oracle Database Release 18c, the synchronization was
performed as a separate transaction. There was a time
period, usually small, when the data was committed but
index changes were not. Starting with Oracle Database
Release 18c, the synchronization is performed as part of
the same transaction.

The operation uses the memory specified with the memory
parameter.

Before Oracle Database Release 18c, the sync operation
had its own transaction context. If the operation failed, the
data transaction still committed. Starting with Oracle
Database Release 18c, if there is an irrecoverable index
synchronization error, the entire data transaction is rolled
back. Recoverable (individual row) synchronization errors
are logged in the CTX_USER_INDEX_ERRORS view but the
transaction still completes. See Viewing Index Errors under
CREATE INDEX.

ON COMMIT sync works best when the STAGE_1TAB index
option is enabled, otherwise it causes significant
fragmentation of the main index, requiring frequent
OPTIMIZE calls.

ON COMMIT sync is the default synchronization method for
SEARCH INDEX and JSON search index.

See Enabling Automatic Index Synchronization at Regular
Intervals for an example of ON COMMIT syntax.

See Oracle Text Application Developer's Guide for more
information about the STAGE_1TAB option of the CONTEXT
index.

Each partition of a locally partitioned index can have its own type of sync: (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. The syntax is:

. EVERY interval _string MEMORY mem size PARALLEL paradegree ...

ON COMMIT synchronizations can only be executed serially and at the same memory size as
what was specified at index creation.

@® Note

This command rebuilds the index. When you want to change the SYNC setting without
rebuilding the index, use the REBUILD REPLACE METADATA SYNC (MANUAL | ON
COMMIT) operation.

REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL
This parameter enables you to turn the TRANSACTIONAL property on or off. For more
information, see TRANSACTIONAL.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 122

ORACLE Chapter 1
ALTER INDEX

Using this parameter only succeeds if there are no rows in the DML pending queue.
Therefore, you may need to sync the index before issuing this command.
To turn on the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS("replace metadata transactional®);

or

ALTER INDEX myidx REBUILD PARAMETERS("replace transactional®);

To turn off the TRANSACTIONAL index property:
ALTER INDEX myidx REBUILD PARAMETERS("replace metadata nontransactional®);

or

ALTER INDEX myidx REBUILD PARAMETERS("replace nontransactional®);

REPLACE [METADATA] [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
When you update the column in a document on which an Oracle Text index is based, that
document is marked as invalid for search operations until index synchronization is performed.
Enabling asynchronous update for an index enables a document to be searchable even
though its index has not yet been synchronized after the index column was updated. Until the
index is synchronized, Oracle Text uses the contents of the old document to answer user
queries.

@ Note

Synchronous update is not supported with the TRANSACTIONAL option and for updates
that cause row movement.

To enable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ("REPLACE METADATA asynchronous_update®);

To disable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ("REPLACE METADATA synchronous_update®);

@® Note

The ASYNCHRONOUS_UPDATE setting of the CONTEXT indextype is deprecated in Oracle
Al Database 26ai, and can be ignored or removed in a future release.

Oracle can ignore or remove this attribute in a future release. Oracle recommends
that you allow this value to be set to its default value, SYNCHRONOUS_UPDATE. To avoid
unexpected loss of results during updates, use SYNC (ON COMMIT) or SYNC(EVERY
[ti me-period]) with a short time period.

The ASYNCHRONOUS_UPDATE setting was introduced as a workaround for the fact that
updates are implemented as "delete followed by insert,” and that deletes are
immediate (on commit), while inserts are only performed during an index sync.
However, this setting is incompatible with several other index options. Oracle
recommends that you discontinue its use.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 122

ORACLE Chapter 1
ALTER INDEX

REPLACE [[METADATA] OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY When you specify OPTIMIZE (AUTQO_DAILY) in the create

index parameter list, a repeatedly running optimize token

job and a repeatedly running optimize full job are scheduled

for each index and partition:

e The Optimize token job is scheduled to run weekly
from 12 A.M. every Saturday night to optimize $S*
tables.

This job runs on tables with non-JSON data type
(VARCHARZ2, CLOB, or BLOB) to optimize the top 10 most
fragmented tokens (determined automatically).

e The Optimize full job is scheduled to run every
midnight from 12 A.M. to 3 A.M. except on Saturday
night. Jobs that are not started before 3 A.M. are
skipped. These skipped jobs are started before the
other jobs that are scheduled to run at 12 A.M. the next
day.

This job runs on tables with JSON data type or the 1S
JSON check constraint.

Existing indexes do not have OPTIMIZE (AUTO_DAILLY) by
default. You must use ALTER INDEX to enable automatic
background index optimization.

EVERY "interval-string" Automatically runs at a regular interval specified by the
value interval-string, which takes the same syntax as
scheduler jobs.

e The Optimize token job is scheduled for tables with
non-JSON data type.
This job runs optimize token for the top 10 most
fragmented tokens at an interval specified by the user.
e The Optimize full job is scheduled for tables with JSON
data type or the IS JSON check constraint.
This job runs optimize full weekly at 12 A.M. every
Saturday night for $S* tables.
Ensure that interval-string is set to a considerable time
period so that any previous optimize jobs are complete. The
interval-string value must be enclosed in double quotes,
and any single quote within interval-string must be
preceded by the escape character with another single
quote.
If multiple indexes use the OPTIMIZE EVERY i nterval -
string" option, then different jobs are created for each
index. These jobs are run concurrently.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 122

ORACLE

Chapter 1
ALTER INDEX

With AUTO_DAILY | EVERY “interval -string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILLY | EVERY “interval -string'™] PARALLEL paradegree ...

RESUME [MEMORY memsize]
Resumes a failed index operation. You can optionally specify the amount of memory to use
with memsize.

@® Note

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not
apply to CTXCAT indexes.

ADD STOPWORD word [language language]

Dynamically adds a stopword word to the index.

Index entries for word that existed before this operation are not deleted. However, subsequent
gueries on word are treated as though it has always been a stopword.

When your stoplist is a multilanguage stoplist, you must specify language.

The index is not rebuilt by this statement.

ADD ZONE SECTION section_name tag tag

Dynamically adds the zone section section_name identified by tag to the existing index.

The added section section_name applies only to documents indexed after this operation. For
the change to take effect, you must manually re-index any existing documents that contain the
tag.

The index is not rebuilt by this statement.

@® Note

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not
apply to CTXCAT indexes.

@® See Also

Notes

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]

Dynamically adds the field section sect i on_nane identified by tag to the existing index. There
is no limit to the number of field sections that can be added.

Optionally specify VISIBLE to make the field sections visible. The default is INVISIBLE.

@® See Also

CTX _DDL.ADD_FIELD_SECTION for more information on visible and invisible field
sections

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 122

ORACLE Chapter 1
ALTER INDEX

The added section sect i on_name applies only to documents indexed after this operation. For
the change to affect previously indexed documents, you must explicitly re-index the
documents that contain the tag.

This statement does not rebuild the index.

@® Note

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not
apply to CTXCAT indexes.

@® See Also

Notes

ADD ATTR SECTION section_name tag tag@attr

Dynamically adds an attribute section secti on_nane to the existing index. You must specify
the XML tag and attribute in the form tag@attr. You can add attribute sections only to XML
section groups.

The added attribute section sect i on_nane applies only to documents indexed after this
operation. For the change to take effect, you must manually re-index any existing documents
that contain the tag.

The index is not rebuilt by this statement.

@® Note

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not
apply to CTXCAT indexes.

@® See Also

Notes

ADD STOP SECTION tag

Dynamically adds the stop section identified by tag to the existing index. As stop sections
apply only to automatic sectioning of XML documents, the index must use the
AUTO_SECTION_GROUP section group. The tag you specify must be case sensitive and unique
within the automatic section group or else ALTER INDEX raises an error.

The added stop section tag applies only to documents indexed after this operation. For the
change to affect previously indexed documents, you must explicitly re-index the documents
that contain the tag.

The text within a stop section can always be searched.

The number of stop sections you can add is unlimited.

The index is not rebuilt by this statement.

@® See Also

Notes

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 122

ORACLE

Chapter 1
ALTER INDEX

@® Note

This ALTER INDEX operation applies only to CONTEXT indexes. It does not apply to
CTXCAT indexes.

PARALLEL n

Using n, you can optionally specify the parallel degree for parallel indexing. This parameter is
supported only when you use SYNC, REPLACE, and RESUME in paramstring. The actual degree
of parallelism might be smaller depending on your resources.

Parallel indexing can speed up indexing when you have large amounts of data to index and
when your operating system supports multiple CPUs.

ALTER INDEX Syntax for JSON Search Index

ALTER INDEX [schema.]index REBUILD
PARAMETERS(

[DATAGUIDE ON [CHANGE (ADD_VC | function_nane)] | OFF]

[SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING)]

[REMOVE SEARCH_ON VALUE(VARCHAR2)]

);

@® Note

e The REPLACE keyword is not required with the ALTER INDEX REBUILD PARAMETERS
statement for changing the JSON search index preferences.

* You cannot change both the JSON and Oracle Text search index preferences in a
single ALTER INDEX statement.

» If you specify the JSON search index preferences (such as DATAGUIDE and
SEARCH_ON), other preferences in the PARAMETERS clause are not updated. Similarly,
if you specify the Oracle Text search index preferences (such as STORAGE and
LEXER), the JSON preferences are not updated.

[schema.]index
Specifies the name of JSON search index that you want to modify.

DATAGUIDE ON | OFF

Modifies data guide support for an existing JSON search index. By default, a JSON search
index is created without data guide support. If you enable the JSON data guide support, then
you can also define change-trigger procedures.

@® Note
You use the DATAGUIDE clause only for JSON search indexes.

Specify one of the following options:

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 122

ORACLE

Chapter 1
ALTER INDEX

e ON: Enables data guide support. If you set the value of DATAGUIDE to ON, then you can also
define your own PL/SQL procedure or use the predefined change-trigger procedure

ADD_VC.

ADD_VC indicates if virtual columns are created based on the data guide.

function_nane specifies the function to be executed when the data guide changes.

e OFF: Disables both the data guide support and change-trigger procedures. Provides only

general search-index functionality.

@® Note

You cannot turn off the DATAGUIDE clause if the SEARCH_ON clause value is set to

NONE.

See Change Triggers For Data Guide-Enabled Search Index in Oracle Al Database JSON

Developer’s Guide.

SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |

TEXT_VALUE_STRING)

Modifies search preferences specified for an existing JSON search index.

@® Note

You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Option

Description

TEXT

Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.

The index is used for JSON_TEXTCONTAINS predicates and
for JSON_VALUE or JSON_EXISTS predicates that manipulate
strings when using JSON search index.

If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.

Example:

ALTER INDEX [schema.]index REBUILD
PARAMETERS ("SEARCH_ON TEXT);

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 122

ORACLE

Oracle Text Reference

G43188-01

Chapter 1
ALTER INDEX

Option

Description

VALUE[(dat a_t ypes)]

Enables range-search component for the specified data
types. This allows the index to be picked up for predicates
using relational operators (>, <, ==, >=, <=, I=). A JSON
search index that is created with only SEARCH_ON VALUE
cannot answer full-text queries by using the
JSON_TEXTCONTAINS operator.

Supported data types:

NUMBER for indexing numeric values.

TIMESTAMP for indexing date-time values.

VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables
range-search indexing on all supported data types.

@® Note

The BINARY_DOUBLE data type
is allowed only for XML search
indexes.

Examples:

This example specifies the default behavior:

ALTER INDEX [schema.]index REBUILD
PARAMETERS ("SEARCH_ON VALUE®);

These examples explicitly specify data types using the
VALUE(dat a_t ypes) syntax:

ALTER INDEX [schema.]index REBUILD
PARAMETERS ("SEARCH_ON VALUE(NUMBER)");

ALTER INDEX [schema.]index REBUILD
PARAMETERS ("SEARCH_ON VALUE(NUMBER,
TIMESTAMP, VARCHAR2)");

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 122

ORACLE

Chapter 1
ALTER INDEX

Option

Description

TEXT_VALUE[(data_ty
pes)]

Enables both the full-text and range-search components for
the specified data types.

Supported data types:

* NUMBER for indexing numeric values.

e TIMESTAMP for indexing date-time values.

« VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables

full-text search and range-search indexing on the NUMBER

and TIMESTAMP data types.

Examples:

* This example specifies the default behavior:

ALTER INDEX [schema.]index REBUILD
PARAMETERS("SEARCH_ON TEXT_VALUE®");

e These examples explicitly specify data types using the
TEXT_VALUE(dat a_t ypes) syntax:

ALTER INDEX [schema.]index REBUILD
PARAMETERS (" SEARCH_ON
TEXT_VALUE(NUMBER) *);

ALTER INDEX [schema.]index REBUILD
PARAMETERS (" SEARCH_ON
TEXT_VALUE(NUMBER, TIMESTAMP)™);

TEXT_VALUE_STRING

Indicates that text and range-based indexes are created for
numeric, date-time, and complete string values. This enables
both the full-text and range-search components on the
NUMBER, TIMESTAMP, and VARCHAR2 data types.

String values are indexed as is without tokenization or other
transformations. All the strings that are smaller than or equal
to 237 bytes are indexed.

Example:

ALTER INDEX [schema.]index REBUILD
PARAMETERS ("SEARCH_ON TEXT_VALUE_STRING");

Guidelines for specifying SEARCH_ON transitions:

When you specify the SEARCH_ON clause in the ALTER INDEX REBUILD statement, the system
determines both your current configuration and the set of components that you want to enable.
The statement then enables any new components and rebuilds the index. If all requested
components have already been enabled, this action is the same as an index rebuild.
Rebuilding allows the JSON search index to be regenerated with newly enabled indexing and

query components.

Note that range-search components of different data types are considered as independent

components.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 122

ORACLE

Chapter 1
ALTER INDEX

You can disable only the VARCHAR2 range-search component. To disable other components,
you must first drop the index using the DROP INDEX statement and then re-create the index
with the required components enabled.

Removing indexing components:

You can remove the VARCHAR2 data type from any range-search components (VALUE,
TEXT_VALUE, or TEXT_VALUE_STRING). Removing the VARCHAR2 data type can save you index
maintenance time and disk space.

The syntax is:

REMOVE SEARCH_ON VALUE(VARCHAR2)

ALTER INDEX Syntax for XML Search Index

ALTER INDEX [schema.]index REBUILD

PARAMETERS(
[SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE (data_types))]
[REMOVE SEARCH_ON VALUE(VARCHAR2)]

);

[schema.]index
Specifies the name of the XML search index that you want to modify.

SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE(data_types))
Modifies search preferences specified for an existing XML search index.

@® Note
You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Option Description

TEXT Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.

The index is used for XMLEXISTS predicates that references
the XQuery Full Text operators and clauses.

If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.

For example:

ALTER INDEX [schema.]index REBUILD
PARAMETERS ("SEARCH_ON TEXT®);

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 20 of 122

ORACLE

Oracle Text Reference

G43188-01

Chapter 1
ALTER INDEX

Option

Description

VALUE(dat a_t ypes)

Enables range-search component for the specified data

types.
This allows the index to be picked up for predicates using
relational operators (>, <, ==, >=, <=, I=). An XML search

index that only has the SEARCH_ON VALUE component

enabled cannot answer full-text queries, if XQuery Full Text

operators are present in an XMLEXISTS predicate.

You must specify one or more data types:

« BINARY_DOUBLE and NUMBER for indexing numeric
values.

« TIMESTAMP for indexing date-time values.

* VARCHARZ for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

For example:

ALTER INDEX [schema.]index REBUILD
PARAMETERS ("SEARCH_ON
VALUE(BINARY_DOUBLE)");

ALTER INDEX [schema.]index REBUILD

PARAMETERS ("SEARCH_ON
VALUE(BINARY_DOUBLE, NUMBER, TIMESTAMP,
VARCHAR2)");

TEXT_VALUE(dat a_t yp
es)

Enables both the full-text and range-search components for
the specified data types. For range-search queries, you must
specify one or more data types, such as NUMBER (for
indexing numeric values) and TIMESTAMP (for indexing date-
time values).

For example:

ALTER INDEX [schema.]index REBUILD
PARAMETERS("SEARCH_ON TEXT_VALUE(NUMBER)*");

ALTER INDEX [schema.]index REBUILD
PARAMETERS("SEARCH_ON TEXT_VALUE(NUMBER,
TIMESTAMP) ") ;

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 122

ORACLE

Chapter 1
ALTER INDEX

@® Note

You cannot use SEARCH_ON NONE and SEARCH_ON TEXT VALUE_STRING for an XML
search index.

You must explicitly specify a data type with the TEXT_VALUE and VALUE options for an
XML search index, otherwise the statement will result in an error.

Guidelines for specifying SEARCH_ON transitions:

When you specify the SEARCH_ON clause in the ALTER INDEX REBUILD statement, the system
determines both your current configuration and the set of components that you want to enable.
The statement then enables any new components and rebuilds the index. If all requested
components have already been enabled, this action is the same as an index rebuild.
Rebuilding allows the XML search index to be regenerated with newly enabled indexing and
guery components.

Note that range-search components of different data types are considered as independent
components.

You can disable only the VARCHAR2 range-search component. To disable other components,
you must first drop the index using the DROP INDEX statement and then re-create the index
with the required components enabled.

Removing indexing components:

You can remove the VARCHAR2 data type from any range-search components (VALUE or
TEXT_VALUE). Removing the VARCHAR2 data type can save you index maintenance time and
disk space.

The syntax is:

REMOVE SEARCH_ON VALUE(VARCHAR2)

ALTER INDEX Syntax for Hybrid Vector Index

ALTER INDEX [schenm.]i ndex_nane REBUILD
PARAMETERS (
["UPDATE VECTOR INDEX [VECTOR_IDXTYPE HNSW/IVF]"]
["REPLACE vectorizer vectorizer_pref name"]

)
[PARALLEL n];

@® Note

e If you do not specify the PARAMETERS clause, then all parts of the hybrid vector
index (both Oracle Text index and vector index) are recreated with existing
preference settings.

* Renaming hybrid vector indexes using the ALTER INDEX RENAME syntax is not
supported.

* The ALTER INDEX parameter UDPATE VECTOR INDEX is not supported for Local HVI
and HNSW vector indexes.

[schema.]index_name
Specifies name of the hybrid vector index that you want to modify.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 22 of 122

ORACLE

Chapter 1
ALTER INDEX

PARAMETERS(UPDATE VECTOR INDEX)

Rebuilds both text part and vector part of the hybrid vector index. For text part, the rebuild
uses the preferences which are specified during the index creation or the default preferences
if not specified. For the vector part (chunking, embedding and vector index creation), rebuild
uses the new vectorizer preference specified in the ALTER INDEX REBUILD syntax. See
CREATE HYBRID VECTOR INDEX for detailed information on the preferences set during the
index creation.

PARAMETERS(REPLACE vectorizer vectorizer_pref_name)
Recreates only the vector index part of a hybrid vector index with the specified vectorizer
preference settings.

@® Note

For non HVI index, replace operation would throw an error, as it cannot replace
something that was not present.

PARALLEL
Specifies parallel indexing, as described for the CREATE HYBRID VECTOR INDEX statement.
For detailed information on the PARALLEL clause, see CREATE HYBRID VECTOR INDEX.

Examples:

Here are some examples on how you can modify existing hybrid vector indexes:
e To rebuild all parts of a hybrid vector index:

Use the following syntax to rebuild all parts of a hybrid vector index (both Oracle Text index
and vector index) with the original preference settings:

Syntax:

ALTER INDEX i ndex_name REBUILD [PARALLEL n];

Note that you do not need to specify any PARAMETERS clause when rebuilding both parts of
a hybrid vector index.

Example:

ALTER INDEX my_hybrid_idx REBUILD;

SELECT (select id from doc_table where rowid = jt.doc_rowid) as doc,
jt.chunk
FROM JSON_TABLE(
DBMS_HYBRID_VECTOR . SEARCH(

Json(
*{ "hybrid_index_name" : "my_hybrid_idx",
"vector" :
{ "search_text" . "vector based search capabilities”,
"'search_mode" > "CHUNK"
}s
"return" :
{ "topN" 10 }
)
).

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 23 of 122

ORACLE Chapter 1
ALTER INDEX

"$[*]1" COLUMNS doc_rowid PATH "$.rowid",
chunk PATH "$.chunk_text") jt;
* To rebuild only the vector index part:

Use the following syntax to rebuild only the vector index part of a hybrid vector index with
the original preference settings:

Syntax:

ALTER INDEX i ndex_nane REBUILD
PARAMETERS("UPDATE VECTOR INDEX") [PARALLEL n];

Example:

ALTER INDEX my_hybrid_idx REBUILD
PARAMETERS("UPDATE VECTOR INDEX") PARALLEL 3;

SELECT (select id from doc_table where rowid = jt.doc_rowid) as doc,
Jt.chunk
FROM JSON_TABLE(
DBMS_HYBRID_VECTOR. SEARCH(

Json(
*{ "hybrid_index_name"™ : "my_hybrid_idx",
"vector" :
{ "search_text" . "vector based search capabilities”,
'search_mode" . "CHUNK"
}s
"return" :
{ "topN" 10 }
by
),
"$[*]" COLUMNS doc_rowid PATH "$.rowid",

chunk PATH "$.chunk_text") jt;

* To recreate indexes with a vectorizer preference:

You can create a vectorizer preference using the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE
PL/SQL function. For detailed information on how to create a vectorizer preference, see
CREATE_PREFERENCE. After creating the preference, use the REPLACE vectorizer
parameter to pass the preference name here.

Syntax:

ALTER INDEX i ndex_name REBUILD
parameters("REPLACE vectorizer vectorizer_pref_name®) [PARALLEL n];

@® Note

For non-HVI index, the REPLACE operation would throw an error.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 24 of 122

https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/CTX_DDL-package.html#GUID-56C4580F-6A43-43F4-BB83-DFAEB72A8DC3

ORACLE

Chapter 1
ALTER INDEX

Example:

ALTER INDEX my_hybrid_idx REBUILD
parameters("REPLACE vectorizer my vectorizer_pref") [PARALLEL n];
To replace only the model and/or vector index type

For an existing HVI index, you can replace the model and/or the index type without
specifying the full vectorizer preference using the following syntax.

Syntax:

ALTER INDEX schema.index_name REBUILD[
parameters("REPLACE MODEL nodel _name VECTOR_IDXTYPE hnsw i vf ")];

Example:

ALTER INDEX schema.my_hybrid_idx REBUILD[
parameters("REPLACE MODEL my model_name VECTOR_IDXTYPE ivf")];

® Note

For non HVI indexes, this syntax would throw an error. If a vectorizer is also
specified alongside the model and/or vector_idxtype, it would lead to an error, as
only one of either vectorizer or model/vector_idxtype is allowed.

For detailed information on managing hybrid vector indexes, see Oracle Al Database Al Vector
Search User's Guide.

ALTER INDEX Sub_Lexer Syntax

New paramstring =
"REPLACE

Oracle Text Reference
G43188-01

[DATASTORE datastore_pref]

[FILTER filter_pref]

[LEXER lexer_pref]

[WORDLIST wordlist_pref]

[STORAGE storage_pref]

[STOPLIST stoplist]

[SECTION GROUP section_group]

[MEMORY memsize

[[POPULATE | NOPOPULATE]

[INDEX SET index_set]

[METADATA preference new_preference]

[[METADATA] MAINTENANCE AUTO | MAINTENANCE MANUAL]
[[METADATA] SYNC (MANUAL | EVERY "interval-string™ | ON COMMIT)]
[[METADATA] TRANSACT IONAL |NONTRANSACT IONAL

RESUME [memory memsize]

OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]
SYNC [memory memsize]

ADD STOPWORD word [language language][LANGUAGE_DEPENDENT(TRUE|FALSE)]
ADD ZONE SECTION section_name tag tag

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]

ADD ATTR SECTION section_name tag tag@attr

ADD STOP SECTION tag

ADD SUB_LEXER sub_lexer_name LANGUAGE language [ALT_VALUE

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 25 of 122

ORACLE

Chapter 1
ALTER INDEX

alternate_value_for_language] [LANGUAGE_DEPENDENT (TRUE|FALSE)]
| REMOVE SUB_LEXER LANGUAGE language

| REMOVE STOPWORD word [LANGUAGE language]

| REMOVE STOPWORDS FOR LANGUAGE language

| MIGRATE to MULTI_STOPLIST [LANGUAGE COLUMN lang]

| MIGRATE FIELD SECTION field_section_name to [READ ONLY] MDATA
| UPDATE SUB_LEXER LANGUAGE language TO sub_lexer_preference

| ADD MDATA SECTION secname TAG sectag READ ONLY

Sub_Lexer Example

ALTER INDEX myidx PARAMETERS("ADD SUB_LEXER mycompany_lexer LANGUAGE mycompany
LANGUAGE_DEPENDENT FALSE™);

ALTER INDEX myidx PARAMETERS("REMOVE STOPWORDS FOR LANGUAGE mycompany®);

Sub_Lexer Notes

The language can be Oracle predefined language symbols (globalization support name or
abbreviation of an Oracle Text-supported language), or user-defined symbols for language
independent sub_lexer or stopword.

ADD SUB_LEXER
The following conditions apply:

e If LANGUAGE_DEPENDENT clause is not provided, it will default TRUE.
e Sync will be blocked (or it will be blocked by sync).
e If adding first language independent sub_lexer, then base table will also be locked.

e Adding first language independent sub_lexer or stopword will take longer to complete.
Otherwise, it should take fraction of a second to complete unless it's being blocked by
ongoing sync process on the same index.

REMOVE SUB_LEXER
Will succeed only if there are no documents with language column set to the symbol for the
sub_lexer being removed.

REMOVE STOPWORD
The following conditions apply:

* If LANGUAGE clause is not specified, it is assumed that the index is using basic_stoplist.
If the index is not using basic_stoplist, an error will be raised.

« Ifthe index is using basic_stoplist (instead of multi_stoplist), then it will succeed only
if the base table is empty.

e Ifthe index is using multi_stoplist, and user specifies "ALL" for LANGUAGE clause, then it
will succeed only if the base table is empty.

e Ifthe index is using multi_stoplist, and user specifies a symbol for LANGUAGE clause,
then it will succeed only if there are no documents with language column set to the symbol
for the stopword being removed.

@® See Also
ALTER INDEX REBUILD Syntax

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 26 of 122

ORACLE

Chapter 1
ALTER INDEX

MIGRATE TO MULTI_STOPLIST [LANGUAGE COLUMN lang]
The following conditions apply:

e Migrate the stoplist of an existing Text index to multi_stoplist. The language of the
existing stopwords will have the value of ALL.

e If LANGUAGE column has already been defined for the index:
— LANGUAGE COLUMN can be skipped (old language column is retained for the index).

— If LANGUAGE COLUMN is specified and there is a mismatch between index language
column and the one specified, an error will be raised.

e LANGUAGE COLUMN must be specified for the index; otherwise, an error is raised.

MIGRATE FIELD SECTION TO MDATA SECTION
The following conditions apply:

* Allow user to convert a field section to MDATA section. Specify READ ONLY if the MDATA
section is meant to be a READ_ONLY MDATA section (ADD and REMOVE not allowed).

e Limitation: Tokens in migrated MDATA sections will not have typical MDATA
characteristics - case information, tokens being stored as it is in the document, etc. To
retain these, those documents need to be reindexed.

UPDATE SUB_LEXER LANGUAGE SUB_LEXER_SYMBOL TO
SUB_LEXER_PREFERENCE

The following conditions apply:
* Allows user to update sublexer dynamically.

e Language, alt_value, language dependency should remain same for the old and new
sublexer preference.

e For updating the default sublexer, the syntax is:

UPDATE SUB_LEXER DEFAULT TO SUB_LEXER_PREFERENCE

ADD MDATA SECTION secname TAG sectag READ ONLY
The following conditions apply:

e Allows users to add MDATA section to the index.
e Cannot be used with NULL/AUTO/PATH section groups.

ALTER INDEX Examples
Resuming Failed Index

The following statement resumes the indexing operation on newsindex with 2 megabytes of
memory:

ALTER INDEX newsindex REBUILD PARAMETERS("resume memory 2M®);
Rebuilding an Index

The following statement rebuilds the index, replacing the stoplist preference with new_stop.

ALTER INDEX newsindex REBUILD PARAMETERS("replace stoplist new_stop®);

Rebuilding a Partitioned Index

The following example creates a partitioned text table, populates it, and creates a partitioned
index. It then adds a new partition to the table and rebuilds the index with ALTER INDEX as
follows:

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 27 of 122

ORACLE

Chapter 1
ALTER INDEX

PROMPT create partitioned table and populate it

create table part_tab (a int, b varchar2(40)) partition by range(a)
(partition p_tabl values less than (10),
partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

insert into part_tab values (1,"Actinidia deliciosa®);
insert into part_tab values (8, "Distictis buccinatoria®);
insert into part_tab values (12, "Actinidia quinata®);
insert into part_tab values (18, "Distictis Rivers");
insert into part_tab values (21, "pandorea jasminoides");
insert into part_tab values (28, "pandorea rosea");

commit;

PROMPT create partitioned index
create index part_idx on part_tab(b) indextype is ctxsys.context
local (partition p_idx1l, partition p_idx2, partition p_idx3);

PROMPT add a partition and populate it

alter table part_tab add partition p_tab4 values less than (40);
insert into part_tab values (32, "passiflora citrina®);

insert into part_tab values (33, "passiflora alatocaerulea®);
commit;

The following statement rebuilds the index in the newly populated partition. In general, the
index partition name for a newly added partition is the same as the table partition nhame, unless
the name has already been used. In this case, Oracle Text generates a new name.

alter index part_idx rebuild partition p_tab4;

The following statement queries the table for the two hits in the newly added patrtition:

select * from part_tab where contains(b, "passiflora®) >0;

The following statement queries the newly added patrtition directly:

select * from part_tab partition (p_tab4) where contains(b, "passiflora®) >;

Replacing Index Metadata: Changing Single-Lexer to Multilexer

The following example demonstrates how an application can migrate from single-language
documents (English) to multilanguage documents (English and Spanish) by replacing the index
metadata for the lexer.

REM creates a simple table, which stores only English (American) text

create table simple (text varchar2(80));
insert into simple values ("the quick brown fox");
commit;

REM create a simple lexer to lex this English text

begin

ctx_ddl .create_preference("us_lexer","basic_lexer");
end;
/

REM create a text index on the simple table
create index simple_idx on simple(text)
indextype is ctxsys.context parameters ("lexer us_lexer®);

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 28 of 122

ORACLE

Chapter 1
ALTER INDEX

REM we can query easily
select * from simple where contains(text, "fox")>0;

REM now suppose we want to start accepting Spanish documents.
REM first we have to extend the table with a language column
alter table simple add (lang varchar2(10) default "us®);

REM now let"s create a Spanish lexer,

begin
ctx_ddl.create_preference("e_lexer","basic_lexer");
ctx_ddl.set_attribute("e_lexer", "base_letter", "yes");

end;

/

REM Then create a multilexer incorporating our English and Spanish lexers.

REM Note that the DEFAULT lexer is the exact same lexer, with which we have

REM have already indexed all the documents.

begin
ctx_ddl.create_preference("m_lexer®, "multi_lexer");
ctx_ddl.add_sub_lexer("m_lexer", "default”, "us_lexer");
ctx_ddl.add_sub_lexer("m_lexer", "spanish”,"e_lexer");

end;

/

REM next replace our metadata

alter index simple_idx rebuild

parameters ("replace metadata language column lang lexer m_lexer®);

REM We are ready for some Spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we did not SYNC.

insert into simple values ("el zorro marréón réápido”, "e");
commit;

exec ctx_ddl.sync_index("simple_idx");

REM now query the Spanish data with base lettering:

select * from simple where contains(text, "rapido”)>0;

Optimizing the Index
To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Synchronizing the Index
To synchronize your index, use CTX_DDL.SYNC_INDEX.
Adding a Zone Section

To add to the index the zone section author identified by the tag <author>, enter the following
statement:

ALTER INDEX myindex REBUILD PARAMETERS("add zone section author tag author®);

Adding a Stop Section

To add a stop section identified by tag <fluff> to the index that uses the AUTO_SECTION_GROUP,
enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS("add stop section Fluff®);
Adding an Attribute Section

Assume that the following text appears in an XML document:

<book title="Tale of Two Cities'">It was the best of times.</book>

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 29 of 122

ORACLE

Chapter 1
ALTER INDEX

Assume also that you want to create a separate section for the title attribute and you want to
name the new attribute section booktitle. To do so, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS("add attr section booktitle tag
title@book™);

Adding an SDATA Section

To add an SDATA section S1 of NUMBER data type and identified by tag T1, to the index, enter
the following statement:

ALTER INDEX myindex PARAMETERS("add sdata section S1 tag T1 datatype NUMBER);

Disabling Automatic Background Index Optimization

The following example disables optimize token and optimize full jobs which are automatically
running in the background:

ALTER INDEX myindex PARAMETERS ("REPLACE METADATA OPTIMIZE (MANUAL)");

Using Flashback Queries

If a Text query is flashed back to a point before an ALTER INDEX statement was issued on the
Text index for which the query is being run, then:

* The query optimizer will not choose the index access path for that given index because the
index is treated according to its creation time with ALTER INDEX. Therefore, to the query
optimizer, the index is perceived not to exist.

e The functional processing of the Text operator will fail with ORA-01466 or ORA-08176
errors if the ALTER INDEX statement involves re-creation of DR$ index tables.

To work around this issue, use the DBMS_FLASHBACK package. For example:

EXEC dbms_flashback.enable_at_system_change_number(:scn);
SELECT id from documents WHERE CONTAINS(text, "oracle®)>0;
EXEC dbms_flashback.disable;

® See Also
Using DBMS_FLASHBACK Package in Oracle Database Development Guide

Notes
Add Section Constraints

Before altering the index section information, Oracle Text checks the new section against the
existing sections to ensure that all validity constraints are met. These constraints are the same
for adding a section to a section group with the CTX_DDL PL/SQL package and are as follows:

* You cannot add zone, field, or stop sections to a NULL_SECTION_GROUP.

e You cannot add zone, field, or attribute sections to an automatic section group.
e You cannot add attribute sections to anything other than XML section groups.
e You cannot have the same tag for two different sections.

e Section names for zone, field, and attribute sections cannot intersect.

e You cannot exceed 64 fields per section.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 30 of 122

ORACLE Chapter 1
ALTER TABLE: Supported Partitioning Statements

* You cannot add stop sections to basic, HTML, XML, or news section groups.
e SENTENCE and PARAGRAPH are reserved section nhames.

¢ You cannot have embedded blanks in section and field names.

Related Topics
e Oracle Text Indexing Elements

e CREATE INDEX
Use the CREATE INDEX statement to create an Oracle Text index.

e ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

e OPTIMIZE_INDEX
Use this procedure to optimize the index. Optimizing an index removes old data and
minimizes index fragmentation, which can improve query response time.

1.2 ALTER TABLE: Supported Partitioning Statements

@ Note

This section describes the ALTER TABLE statement as it pertains to adding and
modifying a partitioned text table with a context domain index.

For a complete description of the ALTER TABLE statement, see Oracle Database SQL
Language Reference.

Purpose

Use the ALTER TABLE statement to add, modify, split, merge, exchange, or drop a partitioned
text table with a context domain index. The following sections describe some of the ALTER
TABLE operations.

Modify Partition Syntax

Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition UNUSABLE LOCAL INDEXES

Marks the index partition corresponding to the given table partition UNUSABLE. You might mark
an index partition unusable before you rebuild the index partition as described in "Rebuild
Unusable Local Indexes".

If the index partition is not marked unusable, then the statement returns without actually
rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition REBUILD UNUSABLE LOCAL
INDEXES

Rebuilds the index partition corresponding to the specified table partition that has an UNUSABLE
status.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 31 of 122

ORACLE

Chapter 1
ALTER TABLE: Supported Partitioning Statements

@® Note

If the index partition status is already VALID before you enter this statement, then this
statement does not rebuild the index partition. Do not depend on this statement to
rebuild the index partition unless the index partition status is UNUSABLE.

Add Partition Syntax

ALTER TABLE [schema.]table ADD PARTITION [partition]
VALUES LESS THAN (value_list) [partition_description]

Adds a new partition to the high end of a range-partitioned table.

To add a partition to the beginning or to the middle of the table, use the ALTER TABLE SPLIT
PARTITION statement.

The newly added table partition is always empty, and the context domain index (if any) status
for this partition is always VALID. After issuing DML, if you want to synchronize or optimize this
newly added index patrtition, then you must look up the index partition name and enter the
ALTER INDEX REBUILD PARTITION statement. For this newly added partition, the index partition
name is usually the same as the table partition name, but if the table partition name is already
used by another index partition, the system assigns a hame in the form of SYS_Pn.

By querying the USER_IND_PARTITIONS view and comparing the HIGH_VALUE field, you can
determine the index partition name for the newly added partition.

Merge Partition Syntax

ALTER TABLE [schema.]table

MERGE PARTITIONS partitionl, partition2

[INTO PARTITION [new_partition] [partition_description]]
[UPDATE GLOBAL INDEXES]

Applies only to a range partition. This statement merges the contents of two adjacent partitions
into a new partition and then drops the original two partitions. If the resulting partition is non-
empty, then the corresponding local domain index partition is marked UNUSABLE. You can use
ALTER TABLE MODIFY PARTITION to rebuild the partition index.

@® Note

For a global, nonpartitioned index, if you perform the merge operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the resulting index partition is the same as in the ALTER TABLE ADD
PARTITION statement.

Split Partition Syntax

ALTER TABLE [schema.]table
SPLIT PARTITION partition_name_old
AT (value_list)

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 32 of 122

ORACLE

Chapter 1
ALTER TABLE: Supported Partitioning Statements

[into (partition_description, partition_description)]
[parallel_clause]
[UPDATE GLOBAL INDEXES]

Applies only to range partitions. This statement divides a table partition into two partitions, thus
adding a new partition to the table. The local corresponding index partitions will be marked
UNUSABLE if the corresponding table partitions are non-empty. Use the ALTER TABLE MODIFY
PARTITION statement to rebuild the partition indexes.

@® Note

For a global, nonpartitioned index, if you perform the split operation without an UPDATE
GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must
be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the operation and
the SYNC type is MANUAL, then the index will be valid, but you still must synchronize the
index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the two resulting index partition is the same as in the ALTER TABLE
ADD PARTITION statement.

Exchange Partition Syntax

ALTER TABLE [schema.]table EXCHANGE PARTITION partition WITH TABLE table
[INCLUDING|EXCLUDING INDEXES}

[WITH|WITHOUT VALIDATION]

[EXCEPTIONS INTO [schema.]table]

[UPDATE GLOBAL INDEXES]

Converts a partition to a nonpartitioned table, and converts a table to a partition of a partitioned
table by exchanging their data segments. Rowids are preserved.

If EXCLUDING INDEXES is specified, all the context indexes corresponding to the partition and all
the indexes on the exchanged table are marked as UNUSABLE. To rebuild the new index partition
in this case, issue an ALTER TABLE MODIFY PARTITION statement.

If INCLUDING INDEXES is specified, then for every local domain index on the partitioned table,
there must be a nonpartitioned domain index on the nonpartitioned table. The local index
partitions are exchanged with the corresponding regular indexes.

@® Note

For a global, nonpartitioned index, if you perform the exchange operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

Field Sections

Field section queries might not work the same way if the nonpartitioned index and local index
use different section IDs for the same field section.

Storage

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 33 of 122

ORACLE

Chapter 1
ALTER TABLE: Supported Partitioning Statements

Storage is not changed. So if the index on the nonpartitioned table $1 table was in tablespace
XYZ, then after the exchange partition, it will still be in tablespace XYZ, but now it is the $1
table for an index partition.

Storage preferences are not switched, so if you switch and then rebuild the index, then the
table may be created in a different location.

Restrictions

Both indexes must be equivalent. They must use the same objects and the same settings for
each object. Note that Oracle Text checks only that the indexes are using the same object. But
they should use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object to
partition the $I, $N tables.

If either index or index partition does not meet all these restrictions an error is raised and both
the index and index partition will be INVALID. You must manually rebuild both index and index
partition using the ALTER INDEX REBUILD statement.

Truncate Partition Syntax

ALTER TABLE [schema.]table TRUNCATE PARTITION [DROP|REUSE STORAGE] [UPDATE GLOBAL
INDEXES]

Removes all rows from a partition in a table. Corresponding CONTEXT index partitions are also
removed.

@® Note

For a global, nonpartitioned index, if you perform the truncate operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation, the index will be valid.

ALTER TABLE Examples
Global Index on Partitioned Table Examples

The following example creates a range-partitioned table with three partitions. Each partition is
populated with two rows. A global, nonpartitioned CONTEXT index is then created. To
demonstrate the UPDATE GLOBAL INDEXES clause, the partitions are split and merged with an
index synchronization.

create table tdrexglb_part(a int, b varchar2(40)) partition by range(a)
(partition pl values less than (10),
partition p2 values less than (20),
partition p3 values less than (30));

insert into tdrexglb_part values (1,"rowl");
insert into tdrexglb_part values (8, row2");
insert into tdrexglb_part values (11, rowll*);
insert into tdrexglb_part values (18, "rowl8");
insert into tdrexglb_part values (21, row21*");
insert into tdrexglb_part values (28, "row28%);

commit;
create index tdrexglb_parti on tdrexglb_part(b) indextype is ctxsys.context;

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 34 of 122

ORACLE

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values(20, "newrow20%);
commit;

PROMPT make sure query works
select * from tdrexglb_part where contains(b,

PROMPT split partition
alter table tdrexglb_part split partition p2
(partition p21, partition p22) update global

PROMPT before sync

select * from tdrexglb_part where contains(b,
select * from tdrexglb_part where contains(b,
exec ctx_ddl.sync_index("tdrexglb_parti®)
PROMPT after sync

select * from tdrexglb_part where contains(b,
select * from tdrexglb_part where contains(b,

PROMPT merge partition

Chapter 1

ALTER TABLE: Supported Partitioning Statements

"rowl8") >0;

at (15) into
indexes;

"rowll®) >0;

"rowl8") >0;

"rowll®) >0;
"rowl8") >0;

alter table tdrexglb_part merge partitions p22, p3

into partition pnew3 update global indexes;

PROMPT before sync

select * from tdrexglb_part where contains(b,
select * from tdrexglb_part where contains(b,
exec ctx_ddl.sync_index("tdrexglb_parti®);

PROMPT after sync
select * from tdrexglb_part where contains(b,
select * from tdrexglb_part where contains(b,

PROMPT drop partition

"rowl8") >0;
"row28") >0;

"rowl8") >0;
"row28") >0;

alter table tdrexglb_part drop partition pl update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,
exec ctx_ddl.sync_index("tdrexglb_parti®);

PROMPT after sync
select * from tdrexglb_part where contains(b,

PROMPT exchange partition
alter table tdrexglb_part exchange partition
tdrexglb update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,
select * from tdrexglb_part where contains(b,

exec ctx_ddl.sync_index("tdrexglb_parti®);
PROMPT after sync

select * from tdrexglb_part where contains(b,
select * from tdrexglb_part where contains(b,

PROMPT move table partition
alter table tdrexglb_part move partition p21

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

"rowl") >0;

"rowl") >0;

pnew3 with table

“newrow20") >0;
"row28") >0;

“newrow20") >0;
"row28") >0;

update global indexes;

October 13, 2025
Page 35 of 122

ORACLE

Chapter 1
CATSEARCH

PROMPT before sync
select * from tdrexglb_part where contains(b,"rowll®) >0;

exec ctx_ddl.sync_index("tdrexglb_parti®);
PROMPT after sync
select * from tdrexglb_part where contains(b, "rowll®) >0;

PROMPT truncate table partition
alter table tdrexglb_part truncate partition p21 update global indexes;

update global indexes;

1.3 CATSEARCH

Use the CATSEARCH operator to search CTXCAT indexes. Use this operator in the WHERE clause of
a SELECT statement.

The CATSEARCH operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Indexing of remote views is not supported.)

The grammar of this operator is called CTXCAT. You can also use the CONTEXT grammar if your
search criteria require special functionality, such as thesaurus, fuzzy matching, proximity
searching, or stemming. To utilize the CONTEXT grammar, use the "Query Template
Specification” in the text_query parameter as described in this section.

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [ti me- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

About Performance

Use the CATSEARCH operator with a CTXCAT index mainly to improve mixed-query
performance. Specify your text query condition with text_query and your structured condition
with the structured_gquery argument.

Internally, Oracle Text uses a combined B-tree index on text and structured columns to quickly
produce results satisfying the query.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 36 of 122

ORACLE

Chapter 1
CATSEARCH

Limitations

If the optimizer chooses to use the functional query invocation, then your query will fail. The
optimizer might choose functional invocation when your structured clause is highly selective.

You can use the INDEX hint to specify the optimizer to use the index and avoid functional
evaluation of CATSEARCH.

The structured_query argument of the CATSEARCH operator must reference columns used
during CREATE INDEX sets; otherwise, error DRG-10845 will be raised. For example, the error
will be raised if you issue a CATSEARCH query on a view created on top of a table with the
CTXCAT index on it, and the name of the logical column on the view is different from the actual
column name on the physical table. The columns referenced by the structured _query
argument of the CATSEARCH operator must be the physical column name used during CREATE
INDEX sets, not the logical column on the view.

Syntax

CATSEARCH(

[schema.]col um,

text_query [VARCHAR2|CLOB],
structured_query VARCHAR2,

RETURN NUMBER;

[schema.]Jcolumn
Specifies the text column to be searched on. This column must have a CTXCAT index
associated with it.

text_query
Specify one of the following to define your search in column:

e CATSEARCH Query Operations

e Query Template Specification (for using CONTEXT grammar)
CATSEARCH Query Operations

The CATSEARCH operator supports only the following query operations:

e Logical AND

e Logical OR (])

e Logical NOT (-)

e ""(quoted phrases)
* Wildcarding

CATSEARCH Query Operations provides the syntax for these operators.

Table 1-6 CATSEARCH Query Operators
]

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b, and c.
Logical OR albj|c Returns rows that contain a, b, or c.
Logical NOT a-b Returns rows that contain a and not b.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 37 of 122

ORACLE

Chapter 1
CATSEARCH

Table 1-6 (Cont.) CATSEARCH Query Operators
]

Operation Syntax Description of Operation

Hyphen with no a-b Hyphen treated as a regular character.

Space For example, if the hyphen is defined as skipjoin, words such
as web-site are treated as the single query term website.
Likewise, if the hyphen is defined as a printjoin, words such
as web-site are treated as web-site in the CTXCAT query
language.

"abc" Returns rows that contain the phrase "a b c".

For example, entering "Sony CD Player" means return all
rows that contain this sequence of words.

O) (AB)|C Parentheses group operations. This query is equivalent to
the CONTAINS query (A &B) | C.

Wildcard term* The wildcard character matches zero or more characters.

(right and double a*b For example, do* matches dog, and gl*s matches glass.

truncated) Left truncation not supported.

Note: Oracle recommends that you create a prefix index if
your application uses wildcard searching. Set prefix indexing
with the BASIC_WORDLIST preference.

The following limitations apply to these operators:

e The left-hand side (the column name) must be a column named in at least one of the

indexes of the index set.

* The left-hand side must be a plain column name. Functions and expressions are not

allowed.

e The right-hand side must be composed of literal values. Functions, expressions, other
columns, and subselects are not allowed.

e Multiple criteria can be combined with AND. Note that OR is not supported.

* When querying a remote table through a database link, the database link must be specified
for CATSEARCH as well as for the table being queried.

For example, these expressions are supported:

catsearch(text, "dog", "foo > 15%)
catsearch(text, "dog", "bar = ""SMITH""")
catsearch(text, "dog", "foo between 1 and 15%)
catsearch(text, "dog", "foo = 1 and abc = 123%)
catsearch@remote(text, "dog", "foo = 1 and abc = 123%)

These expressions are not supported:

catsearch(text, "dog®, “upper(bar) = ""A""")
catsearch(text, "dog®, "bar LIKE ""A%""")

catsearch(text, "dog", "foo
catsearch(text, "dog", "foo

Query Template Specification

abc")

1 or abc = 37)

Specifies a marked-up string that specifies a query template. Specify one of the following

templates:

* Query rewrite, used to expand a query string into different versions

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 122

ORACLE

Chapter 1
CATSEARCH

* Progressive relaxation, used to progressively enter less restrictive versions of a query to
increase recall

e Alternate grammar, used to specify CONTAINS operators (See "CONTEXT Query Grammar
Examples™)

e Alternate language, used to specify alternate query language

* Alternate scoring, used to specify alternate scoring algorithms

@ See Also

The text_query parameter description for CONTAINS for more information about the
syntax for these query templates

structured_query

Specifies the structured conditions and the ORDER BY clause. There must exist an index for any
column you specify. For example, if you specify "category_id=1 order by bid close", you
must have an index for "category_id, bid_close® as specified with the CTX_DDL.ADD_ INDEX
package.

With structured_query, you can use standard SQL syntax only with the following operators:

. <=
. >=

« >

« <

« N

- BETWEEN

* AND (to combine two or more clauses)

@® Note

You cannot use parentheses () in the structured_query parameter.

Examples

1. Create the table.
The following statement creates the table to be indexed:

CREATE TABLE auction (category_id number primary key, title varchar2(20),
bid _close date);

The following statements insert the values into the table:

INSERT INTO auction values(l, "Sony DVD Player®, "20-FEB-2012%);
INSERT INTO auction values(2, "Sony DVD Player®, "24-FEB-2012%);
INSERT INTO auction values(3, "Pioneer DVD Player®, "25-FEB-2012%);
INSERT INTO auction values(4, "Sony DVD Player®, "25-FEB-2012%);
INSERT INTO auction values(5, "Bose Speaker®, "22-FEB-2012%);
INSERT INTO auction values(6, "Tascam CD Burner®, "25-FEB-2012%);

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 39 of 122

ORACLE

Oracle Text Reference

G43188-01

Chapter 1
CATSEARCH

INSERT INTO auction values(7, "Nikon digital camera®, "22-FEB-2012%);
INSERT INTO auction values(8, "Canon digital camera®, "26-FEB-2012");

Create the CTXCAT index.
The following statements create the CTXCAT index:
begin

ctx_ddl.create_index_set("auction_iset");
ctx_ddl.add_index("auction_iset","bid_close®);

end;

/

CREATE INDEX auction_titlex ON auction(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ("index set auction_iset");

Query the table.

A typical query with CATSEARCH might include a structured clause as follows to find all rows
that contain the word camera ordered by bid_close:

SELECT * FROM auction WHERE CATSEARCH(title, "camera®, "order by bid_close desc®)>
0;

CATEGORY_ID TITLE BID_CLOSE

8 Canon digital camera 26-FEB-12
7 Nikon digital camera 22-FEB-12

The following query finds all rows that contain the phrase Sony DVD Player and that have
a bid close date of February 20, 2012:

SELECT * FROM auction WHERE CATSEARCH(title, ""Sony DVD Player"*",
"bid_close=""20-FEB-00""")> 0;

CATEGORY_ID TITLE BID_CLOSE

1 Sony DVD Player 20-FEB-12

The following query finds all rows with the terms Sony and DVD and Player:

SELECT * FROM auction WHERE CATSEARCH(title, "Sony DVD Player®,
"order by bid_close

desc")> 0;

CATEGORY_ID TITLE BID_CLOSE
4 Sony DVD Player 25-FEB-12
2 Sony DVD Player 24-FEB-12
1 Sony DVD Player 20-FEB-12

The following query finds all rows with the term DVD and not Player:

SELECT * FROM auction WHERE CATSEARCH(title, "DVD - Player®, "order by bid_close
desc")> 0;

CATEGORY_ID TITLE BID_CLOSE

6 Tascam CD Burner 25-FEB-12

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH(title, "CD | DVD | Speaker®, "order by
bid_close desc®)> 0;

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 40 of 122

ORACLE

Chapter 1
CATSEARCH
CATEGORY_ID TITLE BID_CLOSE
3 Pioneer DVD Player 25-FEB-12
4 Sony DVD Player 25-FEB-12
6 Tascam CD Burner 25-FEB-12
2 Sony DVD Player 24-FEB-12
5 Bose Speaker 22-FEB-12
1 Sony DVD Player 20-FEB-12

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH(title, "ABOUT(audio equipment)”,
NULL)> 0;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in CATSEARCH queries using
the template feature:

PROMPT
PROMPT fuzzy: query = ?test
PROMPT should match all fuzzy variations of test (for example, text)
select pk||™ ==> "||text from test
where catsearch(text,
"<query>
<textquery grammar="context'>
?test
</textquery>
</query>","")>0
order by pk;

PROMPT
PROMPT fuzzy: query = Isail
PROMPT should match all soundex variations of bot (for example, sell)
select pk||™ ==> "||text from test
where catsearch(text,
"<query>
<textquery grammar="context'>
Isail
</textquery>
</query>","")>0
order by pk;

PROMPT
PROMPT theme (ABOUT) query
PROMPT query: about(California)
select pk||™ ==> "||text from test
where catsearch(text,
"<query>
<textquery grammar="context'>
about(California)
</textquery>
</query>","")>0
order by pk;

The following example shows a field section search against a CTXCAT index using CONTEXT
grammar by means of a query template in a CATSEARCH query:

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(l, "<author>NOAM CHOMSKY</author><subject>CIVIL
RIGHTS</subject><language>ENGL I1SH</language><publisher>MIT

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 41 of 122

ORACLE

Chapter 1
CONTAINS

PRESS</publisher>", "01-NOV-20037);

insert into BOOKS values(2, "<author>NICANOR PARRA</author><subject>POEMS
AND ANTIPOEMS</subject><language>SPANISH</language>
<publisher>VASQUEZ</publisher>", "01-JAN-2001%);

insert into BOOKS values(l, "<author>LUC SANTE</author><subject>XML
DATABASE</subject><language>FRENCH</ language><publisher>FREE
PRESS</publisher>", "15-MAY-2002%);

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set("BOOK_INDEX_SET");
exec ctx_ddl.add_index("BOOKSET", "PUBDATE");

exec ctx_ddl.create_section_group("BOOK_SECTION_GROUP*",
*BASIC_SECTION_GROUP");

exec ctx_ddl.add_field_section("BOOK_SECTION_GROUP®, "AUTHOR", "AUTHOR");

exec ctx_ddl.add_field_section("BOOK_SECTION_GROUP®,"SUBJECT", "SUBJECT");

exec ctx_ddl.add_field_section("BOOK_SECTION_GROUP®, "LANGUAGE", "LANGUAGE");

exec ctx_ddl.add_field_section("BOOK_SECTION_GROUP", *PUBLISHER", "PUBLISHER");

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
parameters("index set book_index_set section group book section_group®);

-- Use the index

-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).

-- We need to use query template with CONTEXT grammar to access field

-- sections with CATSEARCH.

select 1id, info from books
where catsearch(info,
"<query>
<textquery grammar="context'>
NOAM within author and english within language
</textquery>
</query>",
"order by pubdate®)>0;

Related Topics
"Syntax for CTXCAT Index Type"

Oracle Text Application Developer's Guide

1.4 CONTAINS

Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the query
expression for a Text query.

The CONTAINS operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view (querying of remote views is not supported).

CONTAINS returns a relevance score for every row selected. Obtain this score with the SCORE
operator.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 42 of 122

ORACLE Chapter 1
CONTAINS

The grammar for this operator is called the CONTEXT grammar. You can also use CTXCAT
grammar if your application works better with simpler syntax. To do so, use the Query Template
Specification in the text_query parameter as described in this section.

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [ti me- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

@ See Also

e Query Rewrite Template

* Query Result Set Descriptor Template

e Query Relaxation Template

e Alternate Grammar Template

e Language Independent Template

e Alternate Language Template

« Alternative Scoring Template

 The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide

Syntax

CONTAINS(
[schema.]col um,
text_query [VARCHAR2|CLOB]
[,1abel NUMBER])

RETURN NUMBER;

[schema.]Jcolumn
Specify the text column to be searched on. This column must have a Text index associated
with it.

text_query
Specify one of the following (limited to 4000 bytes for a VARCHAR2 or 64000 bytes for a CLOB):

e The query expression that defines your search in column.

e A marked-up document that specifies a query template.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 43 of 122

ORACLE

Chapter 1
CONTAINS

Use one of the following query templates:

— Query Rewrite Template

— Query Result Set Descriptor Template

— Query Relaxation Template

— Alternate Grammar Template

— Language Independent Template

— Alternate Language Template

— Alternative Scoring Template

Query Rewrite Template

Use this template to automatically write different versions of a query before you submit the
query to Oracle Text. This is useful when you need to maximize the recall of a user query. For
example, you can program your application to expand a single phrase query of ‘cat dog' into
the following queries:

{cat} {dog}
{cat} ; {dog}
{cat} AND {dog}
{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no duplication. In this
example, the query returns documents that contain the phrase cat dog as well as documents in
which cat is near dog, and documents that have cat and dog.

This is done with the following template:

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> cat dog
<progression>
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

", " "M))</rewrite></seq>

"y "M)</rewrite></seq>

", " AND "™))</rewrite></seq>
", " ACCUM "™))</rewrite></seq>

e
e e

The operator TRANSFORM is used to specify the rewrite rules and has the following syntax (note
that it uses double parentheses). The parameters are described in the following table.

TRANSFORM((terms, prefix, suffix, connector))

Table 1-7 TRANSFORM Parameters

Parameter Description

term Specifies the type of terms to be produced from the original query. Specify either
TOKENS or THEMES.

prefix Specifies the literal string to be prepended to all terms.

suffix Specifies the literal string to be appended to all terms.

connector Specifies the literal string to connect all terms after applying the prefix and suffix.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 44 of 122

ORACLE

Chapter 1
CONTAINS

@® Note

An error will be raised if the input Text query string specified in the Query Rewrite
Template with TRANSFORM rules contains any Oracle Text query operators (such as AND,
OR, or SOUNDEX). Also, any special characters (such as % or $) in the input Text query
string must be preceded by an escape character, or an error is raised.

Query Result Set Descriptor Template

Use this template to take in a Result Set Descriptor. The element ctx_result_set_descriptor is
added to the query template. This enables the CONTAINS query cursor to take in a group
count query.

The Result Set Interface document is placed in a public variable in the ctx_query package.
(ctx_query.result_set_document.)

The CONTAINS query cursor behavior remains unchanged and the Result Set Document is
available right after closing the cursor

For example, the following query of kukui nut returns a result set with the following template.

<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
<ctx_result_set_descriptor>
<group>
<group_values>
<value id="2"/>
<value id="3"/>
<value id="4"/>
</group_values>
<count/>
</group>
</ctx_result_set_descriptor>
</query>

", " "))</rewrite></seq>

" ")</rewrite></seq>

", " AND "))</rewrite></seq>
", " ACCUM "™))</rewrite></seq>

S S
e T

Query Relaxation Template

Use this template to progressively relax your query. Progressive relaxation is when you
increase recall by progressively issuing less restrictive versions of a query, so that your
application can return an appropriate number of hits to the user.

For example, the query of blue pen can be progressively relaxed to:

blue pen

blue NEAR pen
blue AND pen
blue ACCUM pen

This is done with the following template

<query>
<textquery lang="ENGLISH" grammar="CONTEXT">

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 45 of 122

ORACLE Chapter 1
CONTAINS

<progression>
<seg>blue pen</seq>
<seg>blue NEAR pen</seq>
<segq>blue AND pen</seq>
<seg>blue ACCUM pen</seq>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH. Specifying
an alternate grammar enables you to enter queries using different syntax and operators.

For example, with CATSEARCH, enter ABOUT queries using the CONTEXT grammar. Likewise with
CONTAINS, enter logical queries using the simplified CATSEARCH syntax.

The phrase ‘dog cat mouse'is interpreted as a phrase in CONTAINS. However, with CATSEARCH,
this is equivalent to an AND query of 'dog AND cat AND mouse'. Specify that CONTAINS use the
alternate grammar with the following template:
<query>

<textquery grammar="CTXCAT">dog cat mouse</textquery>

<score datatype="integer"/>
</query>

Language Independent Template

Use this template to specify a lexer that uses user-defined symbols (or abbreviations) and
does not depend on any language.

The following example specifies that the query take a list of language-independent sublexers.

<query>
<textquery grammar="CONTEXT" lang="ENGLISH">
Oracle
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
<sublexers>
<sublexer_label> SESSION LANG </sublexer_label>
<sublexer_label> MAIL </sublexer_label>
<sublexer_label> CALENDER </sublexer_label>
</sublexers>
</query>

The following conditions apply:

e The sublexers element consists of one or more sublexer_label elements.

» Each sublexer_label element contains the symbol for the language independent
sub_lexer.

* When the sublexers element is specified, the query will be processed with the stopwords
and sub_lexers for each of the symbols specified in the sublexers element, and query will
return only the documents indexed by the specified sub_lexers.

e A special reserved symbol called SESSION_LANG can be used for the system to pick a
language-dependent sub_lexer based on the language specified in lang attribute of the
textquery element in the query template. If lang attribute is not specified, then the lang
attribute will be based on session language. Query parsed by the chosen sub_lexer will

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 46 of 122

ORACLE

Chapter 1
CONTAINS

only return documents indexed by that language-dependent sub_lexer. If both
SESSION_LANG and lang attribute are specified, the lang attribute will take priority.

* If sublexers element is specified without SESSION_LANG, then lang attribute of textquery
element will be ignored.

* Default Behavior:

If sublexers element is not present in the query template, then query will be parsed with
one language-dependent sub-lexer (if any), which is chosen based on the specified lang
attribute value or the session language AND all language independent sub-lexers.

Alternate Language Template
Use this template to specify an alternate language:

<query><textquery lang="french">bon soir</textquery></query>
Alternative Scoring Template

Use this template to specify an alternative scoring algorithm.

The following example specifies that the query use the CONTEXT grammar and return integer
scores using the COUNT algorithm. This algorithm returns a score as the number of query
occurrences in the document.

<query>
<textquery grammar="CONTEXT" lang="english"> mustang
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

The following example uses the normalization_expr attribute to add SDATA(price) into the
score returned by the query, and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE(dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization_expr ="doc_score+ SDATA(price)"/>
</query>

The normalization_expr attribute is used only with the alternate scoring template, and is an
arithmetic expression that consists of:

* Arithmetic operators: + - * /. The operator precedence is the same as that for SQL operator
precedence.

» Grouping operators: (). Parentheses can be used to alter the precedence of the arithmetic
operators.

* Absolute function: ABS(n) returns the absolute value of n; where n is any expression that
returns a number.

e Logarithmic function: LOG(n): returns the base-10 logarithmic value of n; where n is any
expression that returns a number.

* Predefined components: The doc_score predefined component can be used to return the
initial query score of a particular document.

e SDATA component: SDATA(name) returns the value of the SDATA with the specified name as
the score.

— Only SDATA with a NUMBER or DATE data type is allowed. An error is raised otherwise.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 47 of 122

ORACLE

Chapter 1
CONTAINS

— The sdata string and the SDATA name are case-insensitive.

— Because an SDATA section value can be NULL, any expression with NULL SDATA section
value is evaluated as 0. For example: the normalization_expr "doc_score +
SDATA(price)" will be evaluated to O if SDATA(price) for a given document has a NULL
value.

e Numeric literals: There are any number literal that conforms to the SQL pattern of NUMBER
literal and is within the range of the double-precision floating-point (-3.4e38 to 3.4e38).

e Date literals: Date literals must be enclosed with DATE (). Only the following format is
allowed: YYYY-MM-DD or YYYY-MM-DD HH24:M1:SS. For example: DATE(2005-11-08).

Consistent with SQL, if no time is specified, then 00:00:00 is assumed.

The normalization_expr attribute overrides the algorithm attribute. That is, if algorithm is set
to COUNT, and the user also specifies normal ization_expr, then the score will not be count, but
the calculated score based on the normalization_expr.

If the score (either from algorithm = COUNT or normalization_expr =..)) is internally
calculated to be greater than 100, then it will be set to 100.

If the query relaxation template is used, the score will be further normalized in such a way that
documents returned from higher sequences will always have higher scores than documents
returned from sequence(s) below.

DATE Literal Restrictions

Only the minus (-) operator is allowed between date-type data (DATE literals and date-type
SDATA). Using other operators will result in an error. Subtracting two date-type data will
produce a number (float) that represents the difference in number of days between the two
dates. For example, the following expression is allowed:

SDATA(dob) — DATE(2005-11-08)

The following expression is not allowed:

SDATA(dob) + DATE(2005-11-08)

The plus (+) and minus (-) operators are allowed between numeric data and date type of data.
The number operand is interpreted as the number or fraction of days. For example, the
following expression is allowed:

DATE(2005-11-08) + 1 = 9 NOV 2005

The following expression is not allowed:

DATE(2005-11-08)* 3 = ERROR

Template Attribute Values

Table 1-8 gives the possible values for template attributes.

Table 1-8 Template Attribute Values
]

Tag Attribute Description Possible Values Meaning
grammar= Specifies the grammar CONTEXT The grammar of the query.
of the query. CTXCAT

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 48 of 122

ORACLE Chapter 1
CONTAINS

Table 1-8 (Cont.) Template Attribute Values
]

Tag Attribute Description Possible Values Meaning
datatype= Specifies the type of INTEGER Returns score as integer
number returned as between 0 and 100.
FLOAT o
score. Returns score as its high-

precision floating-point number
between 0 and 100.

algorithm= Specifies the scoring DEFAULT Returns the default.
algorithm to use. COUNT Returns scores as the number
of occurrences in the
document.
lang= Specifies the language Any language supported The language name.
name. by Oracle Database. See

Oracle Database
Globalization Support
Guide.

Template Grammar Definition

The query template interface is an XML document. Its grammar is defined with the following
XML DTD:

<IDOCTYPE query [

<IELEMENT query (textquery, score?, order?)>
<IELEMENT textquery (#PCDATA|progression)*>

<IELEMENT progression (seq)+>

<IELEMENT seq (#PCDATA|rewrite)*>

<IELEMENT rewrite (#PCDATA)>

<IELEMENT score EMPTY>

<IELEMENT order (orderkey+)>

<IELEMENT orderkey (#PCDATA)>

<IATTLIST textquery grammar (CONTEXT | CTXCAT | CTXRULE) #REQUIRED>
<IATTLIST textquery lang CDATA #IMPLIED>

<IATTLIST score datatype (integer | float) "integer'>
<IATTLIST score algorithm (default | count) "default'>
<IATTLIST score normalization_expr CDATA >

Values are case insensitive: integer | float, default | count, context |ctxcat .

@ See Also

Oracle Text CONTAINS Query Operators for more information about the operators in
query expressions

label
Optionally, specifies the label that identifies the score generated by the CONTAINS operator.

Returns

For each row selected, the CONTAINS operator returns a number between 0 and 100 that
indicates how relevant the document row is to the query. The number 0 means that Oracle Text
found no matches in the row.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 49 of 122

ORACLE Chapter 1
CONTAINS

@® Note

You must use the SCORE operator with a label to obtain this number.

Example

The following example searches for all documents in the text column that contain the word
oracle. The score for each row is selected with the SCORE operator using a label of 1:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, "oracle®, 1) > 0;

The CONTAINS operator must be followed by an expression such as > 0, which specifies that
the score value calculated must be greater than zero for the row to be selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause must
reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, “oracle®, 1) > 0 ORDER BY SCORE(1) DESC;

The following example specifies that the query be parsed using the CATSEARCH grammar:

SELECT id FROM test WHERE CONTAINS (text,
"<query>
<textquery lang="ENGLISH" grammar="CATSEARCH">
cheap pokemon
</textquery>
<score datatype="INTEGER"/>
</query>") > 0;

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS query. The
example creates a CTXCAT and a CONTEXT index on the same table, and compares the query
results.

PROMPT create context and ctxcat indexes, both using theme indexing
PROMPT

create index tdrbgcqlOlx on test(text) indextype is ctxsys.context
parameters ("lexer theme_lexer®);

create index tdrbgcqlOlcx on test(text) indextype is ctxsys.ctxcat
parameters ("lexer theme_lexer®);

PROMPT *hkkk San Diego *hkkkhkhkkihkkhkk
PROMPT ***** CONTEXT grammar RIS SAHK
PROMPT ** should be interpreted as phrase query **
select pk||® ==> "||text from test

where contains(text,"San Diego®)>0

order by pk;

PROMPT *khkkk San Diego *hkkhkhhkkhkkikkk

PROMPT ***** CTXCAT grammar ***kxsix

PROMPT ** should be interpreted as AND query ***

select pk||® ==> "||text from test

where contains(text,

"<query>
<textquery grammar="CTXCAT">San Diego</textquery>
<score datatype=""integer"/>

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 50 of 122

ORACLE

Chapter 1
CONTAINS

</query>")>0
order by pk;

PROMPT ***** Hitlist from CTXCAT index **¥***xiiisk
select pk||" ==> "||text from test

where catsearch(text,"San Diego®,"")>0

order by pk;

Alternate Scoring Query Template Example

The following query template adds price SDATA section (or SDATA filter-by column) value into the
score returned by the query and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english'>
DEFINESCORE(dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization_expr ="doc_score+SDATA(price)"/>
</query>

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of blue pen is
entered in sequence as blue pen, then blue NEAR pen, then blue AND pen, and then blue
ACCUM pen. Query hits are returned in this sequence with no duplication as long as the
application requires results.

select id from docs where CONTAINS (text, *
<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg>blue pen</seq>
<seg>blue NEAR pen</seq>
<seg>blue AND pen</seq>
<seg>blue ACCUM pen</seq>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>")>0;

Query relaxation is most effective when your application requires the top n hits to a query,
which you can obtain with the DOMAIN_INDEX_SORT or FIRST_ROWS hint, which is being
deprecated, in a PL/SQL cursor.

Query Rewrite Template Example

The following template defines a query rewrite sequence. The query of kukui nut is rewritten as
follows:

{kukui} {nut}

{kukui} ; {nut}
{kukui} AND {nut}
{kukui} ACCUM {nut}

select id from docs where CONTAINS (text, *

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
<progression>
<seg><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{*, "}", " ; "))</rewrite>/seq>

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 51 of 122

ORACLE

Chapter 1
CONTAINS

<seg><rewrite>transform((TOKENS, "{", "}", " AND "))</rewrite><seq/>
<seg><rewrite>transform((TOKENS, "{", "}", " ACCUM "™))</rewrite><seq/>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>")>0;

Order By SDATA Sections Template Example

The following query template defines a query sequence for ordering by SDATA section values
using the <order> and <orderkey> elements. The first level of ordering is done on the SDATA
section price, which is sorted in the ascending order. The second and third level of ordering is
done by the SDATA section pub_date and score, both of which are sorted in the descending
order.

select id from docs where CONTAINS (text, *
<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> Oracle </textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
<order>
<orderkey> SDATA(price) ASC </orderkey>
<orderkey> SDATA(pub_date) DESC </orderKey>
<orderkey> Score DESC </orderkey>
</order>
</query>", 1)>0;

The <orderkey> element value must have the following format:

<orderkey> SDATA(sdata_section_name) | score [DESC|ASC] </orderkey>

The sort order is ascending by default, if not specified as either DESC or ASC.
The <orderkey> element will be ignored in the following cases:

* when the Oracle Cost-Based Optimizer (CBO) pushes the SQL query level ordering into
the Text index

* when the CONTAINS() predicate is processed functionally
* when the ordering is already specified by the ORDER BY clause in the SQL query
statement

Notes
Querying Multilanguage Tables

With the multilexer preference, you can create indexes from multilanguage tables. At query
time, the multilexer examines the session's language setting and uses the sublexer preference
for that language to parse the query. If the language setting is not mapped, then the default
lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The index
contains tokens from multiple languages, so such a query can return documents in several
languages.

To limit your query to returning documents of a given language, use a structured clause on the
language column.

Query Performance Limitation with a Partitioned Index

Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 52 of 122

ORACLE

Chapter 1
CREATE INDEX

However, for optimal performance when querying a partitioned table with an ORDER BY SCORE
clause, query the partition. If you query the entire table and use an ORDER BY SCORE clause, the
query might not perform optimally unless you include a range predicate that can limit the query
to a single partition.

For example, the following statement queries the partition p_tab4 partition directly:

select * from part_tab partition (p_tab4) where contains(b,"oracle®) > 0 ORDER BY
SCORE DESC;

Limitation with Remote Execution of CONTAINS Query

Oracle Text supports the remote execution of the CONTAINS operator, but with some limitations.
You can invoke the CONTAINS operator in a remote query only if the query is executed
completely in the remote database. You cannot use the CONTAINS operator in a subquery of a
query, which causes the query to run partly on the remote database and partly on the local
database. Doing so will raise the error "ORA-00949: illegal reference to remote database."
However, CONTAINS, when invoked remotely from an inner query might run successfully
sometimes if view merging is enabled and possible on this query, as in this case the query will
be transformed into a single query and, hence, no error will occur.

For example, the following query is correct:

select id from remtab@rdb
where contains@rdb(text,"hello®) > 0;

Related Topics
"Syntax for CONTEXT Index Type"

Oracle Text CONTAINS Query Operators

"The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide
"SCORE"

1.5 CREATE INDEX

Use the CREATE INDEX statement to create an Oracle Text index.

This section describes the CREATE INDEX statement as it pertains to creating an Oracle Text
domain index and composite domain index. See Oracle Database SQL Language Reference
for a complete description of the CREATE INDEX statement.

Purpose

To create an Oracle Text index. An Oracle Text index is an Oracle Al Databasedomain index or
composite domain index of type CONTEXT, CTXCAT, or CTXRULE. A domain index is an
application-specific index. A composite domain index (CDI) is an Oracle Text index that not
only indexes and processes a specified text column, but also indexes and processes FILTER BY
and ORDER BY structured columns, which are specified during index creation.

Example

create table mytab

(item_id number,
item_info varchar2(4000),
item_supplier varchar2(250),
item distributor varchar2(500));

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 53 of 122

ORACLE

Chapter 1
CREATE INDEX

create index idx on mytab(item_info) indextype is ctxsys.context
filter by item_supplier order by item_distributor;

You must create an appropriate Oracle Text index to enter CONTAINS, CATSEARCH, or MATCHES
queries.

You cannot create an Oracle Text index on an index-organized table.
You can create the following types of Oracle Text indexes.
CONTEXT

A CONTEXT index is the basic type of Oracle Text index. This is an index on a text column. A
CONTEXT index is useful when your source text consists of many large, coherent documents.
Query this index with the CONTAINS operator in the WHERE clause of a SELECT statement. This
index requires manual synchronization after DML. See Syntax for CONTEXT Index Type.

CTXCAT

The CTXCAT index is a combined index on a text column and one or more other columns. The
CTXCAT type is typically used to index small documents or text fragments, such as item names,
prices, and descriptions found in catalogs. Query this index with the CATSEARCH operator in the
WHERE clause of a SELECT statement. This type of index is optimized for mixed queries. This
index is transactional, automatically updating itself with DML to the base table. CTXCAT indexes
are generally larger and slower to create and update than CONTEXT indexes, and have a
narrower range of indexing options available. See Syntax for CTXCAT Index Type.

@ Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [ti me- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

CTXRULE

A CTXRULE index is used to build a document classification application. The CTXRULE index is an
index created on a table of queries or a column containing a set of queries, where the queries
serve as rules to define the classification criteria. Query this index with the MATCHES operator in
the WHERE clause of a SELECT statement. See Syntax for CTXRULE Index Type.

Required Privileges

You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle Al
Database privileges to create an index on the text column, you have sufficient privilege to

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 54 of 122

ORACLE

Chapter 1
CREATE INDEX

create a text index. The issuing owner, table owner, and index owner can all be different users,
which is consistent with Oracle standards for creating regular indexes.

® Note

Whenever you create an Oracle Text index, a number of additional internal objects are
created which have names prefixed with DR$. These internal object names usually
contain the index name. In some cases, the index name is shortened to fit in the object
name. In such cases, the index ID is present in the object name to avoid haming
conflicts with objects of other indexes.

Syntax for CONTEXT Index Type

Use a CONTEXT index to create an index on a text column. Query this index with the CONTAINS
operator in the WHERE clause of a SELECT statement. This index requires manual
synchronization after DML.

CREATE INDEX [schema.]i ndex ON [schenm.]tabl e(txt_col um)
INDEXTYPE 1S CTXSYS.CONTEXT [ONLINE]
[FILTER BY filter_colum[, filter_colum]...]
[ORDER BY oby_col um[desc|asc][, oby_col um[desc]asc]]...]
[LOCAL [PARTITION [partition] [PARAMETERS("paranstring)]]
[, PARTITION [partition] [PARAMETERS("paranstring™)]1]D]
[PARAMETERS(par anstri ng)] [PARALLEL n] [UNUSABLE]];

[schema.]index
Specifies the name of the Text index to create.

[schema.]table(txt_column)

Specifies the name of the table and column to index. txt_column is the name of the domain
index column on which the CONTAINS() operator will be invoked.

Your table can optionally contain a primary key if you prefer to identify your rows as such
when you use procedures in CTX_DOC. When your table has no primary key, document
services identifies your documents by ROWID.

@® Note

Primary keys of the following type are supported: NUMBER, VARCHAR2, DATE, CHAR,
VARCHAR, and RAW.

The column that you specify must be one of the following types: CHAR, VARCHAR, VARCHAR2,
BLOB, CLOB (limited to 4294967295 bytes), BFILE, XMLType, or URIType.

@ Note

Starting with Oracle Database 12¢ Release 2 (12.2), an Oracle Text index cannot be
created on a column with a declared collation other than BINARY, USING_NLS_COMP,
USING_NLS_SORT or USING_NLS_SORT_CS. For all the supported collations, the Oracle
Text behavior is the same.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 55 of 122

ORACLE Chapter 1
CREATE INDEX

The table that you specify can be a partitioned table. If you do not specify the LOCAL clause,
then a global, nonpartitioned index is created.

The DATE, NUMBER, and nested table columns cannot be indexed. Object columns also cannot
be indexed, but their attributes can be indexed, provided that they are atomic data types.
Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following criteria is true:

e The VPD policy is created such that it does not apply to the INDEX statement type.
e The policy function returns a NULL predicate for the current user.

e The user (or index owner) is SYS.

e The user has the EXEMPT ACCESS POLICY privilege.

@® Note

If you create a Virtual Private Database (VPD) policy using DBMS_RLS or a Data
Redaction policy using DBMS_REDACT on a base table after you have created a index on
that same base table, the DR$ index tables like $1 will still contain tokens derived from
the data in the indexed column. While these tokens typically do not represent a
complete copy of the data in the indexed column, they can still expose sensitive data.
This occurs despite creating the security policy intended to protect the sensitive data
in that column. The CONTAINS queries also return results accordingly. To prevent
indexing of sensitive data, either create the Data Redaction and VPD policies before
creating a CONTEXT index or rebuild the CONTEXT index whenever security policies are
added.

Indexes on multiple columns are not supported with CONTEXT index type. You must specify only
one column in the column list.

@® Note

With the CTXCAT index type, you can create indexes on text and structured columns.
See "Syntax for CTXCAT Index Type"

® Note

Because a Transparent Data Encryption-enabled column does not support domain
indexes, it cannot be used with Oracle Text. However, you can create an Oracle Text
index on a column in a table stored in a Transparent Data Encryption-enabled
tablespace.

ONLINE

Creates the index while enabling DML insertions/updates/deletions on the base table.
During indexing, Oracle Text enqueues DML requests in a pending queue. At the end of the
index creation, Oracle Text locks the base table. During this time, DML is blocked. You must
synchronize the index in order for DML changes to be available.

Limitations

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 56 of 122

ORACLE

Chapter 1
CREATE INDEX

The following limitations apply to using ONLINE:

* At the very beginning or very end of the ONLINE process, DML might fail.
e ONLINE is supported for CONTEXT index only.

FILTER BY filter_column

This is the structured indexed column on which a range or equality predicate in the WHERE
clause of a mixed query will operate. You can specify one or more structured columns for
filter_column, on which the relational predicates are expected to be specified along with the
CONTAINS() predicate in a query.

The Cost-based Optimizer (CBO) will consider pushing down the structured predicates on
these FILTER BY columns with the following relational operators: <, <=, =, >=, >, between, and
LIKE (for VARCHAR2).

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally, CHAR,
VARCHAR2 and VARCHAR? types are supported only if the maximum length is specified and does
not exceed 249 bytes. If the maximum length of a CHAR or VARCHAR2 column is specified in
characters, for example, VARCHAR2 (50 CHAR), then it cannot exceed FLOOR (249/
max_char_width), where max_char_width is the maximum width of any character in the
database character set. For example, the maximum specified column length cannot exceed 62
characters, if the database character set is AL32UTF8. The ADT attributes of supported types
(CHAR, NUMBER, DATE, VARCHAR2, or RAW) are also allowed. An error is raised for all other data
types. Expressions, for example, func(cola), and virtual columns are not allowed.
txt_column is allowed in the FILTER BY column list.

DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column

This is the structured indexed column on which a structured ORDER BY mixed query will be
based. A list of structured oby_columns can be specified in the ORDER BY clause of a
CONTAINSQ) query.

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. VARCHAR2 and RAW
columns longer than 249 bytes are truncated to the first 249 bytes. Expressions, for example,
func(cola), and virtual columns are not allowed.

The order of the specified columns matters. The Cost-based Optimizer (CBO) will consider
pushing the sort into the composite domain index only if the ORDER BY clause in the text query
contains:

e Entire ordered ORDER BY columns declared by the ORDER BY clause during the CREATE
INDEX statement

e Only the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during
the CREATE INDEX statement

e The score followed by the prefix of the ordered ORDER BY columns declared by the ORDER
BY clause during the CREATE INDEX statement

* The score following the prefix of the ordered ORDER BY columns declared by the ORDER BY
clause during the CREATE INDEX statement

The following example illustrates Cost-based Optimizer (CBO) behavior with regard to ORDER
BY columns:

CREATE INDEX foox ON foo(D) INDEXTYPE IS CTXSYS.CONTEXT
FILTER BY B, C
ORDER BY A, B desc;

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 57 of 122

ORACLE Chapter 1
CREATE INDEX

Consider the following query:

SELECT A, SCORE(L) FROM foo WHERE CONTAINS(D, “oracle®,1)>0
AND C>100 ORDER BY col_list;

@® Note

If you set NLS_SORT or NLS_COMP parameters (that is, alter session set NLS SORT =
<some lang>;), then CBO will not push the sort or related structured predicate into
the CDI. This behavior is consistent with regular optimized for search SDATA indexes.

The Cost-based Optimizer (CBO) will consider pushing the sort into the composite domain
index (CDI) if col_l1ist has the following values:

A
A,B

SCORE(1), A
SCORE(1), A, B
A, SCORE(1)

A, B, SCORE(L)

The CBO will not consider to push the sort into the CDI if col_list has the following values:

B

B,A
SCORE(1), B
B, SCORE(1)
A, B, C

A, B asc

(or simply A, B)

Expressions, for example, func(cola), are not allowed.
txt_column appearing in the ORDER BY column list is allowed.
DML operations on ORDER BY columns are always transactional.

Limitations
The following limitations apply to FILTER BY and ORDER BY:

e A structured column is allowed in FILTER BY and ORDER BY clauses. However, a column that
is mapped to MDATA in a FILTER BY clause cannot also appear in the ORDER BY clause. An
error will be raised in this case.

* The maximum length for CHAR, VARCHAR2, and RAW columns cannot be greater than 249 for
FILTER BY columns. For ORDER BY columns, the data is truncated at 249 characters.

e The total number of CDI (FILTER BY and ORDER BY) is 32.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 58 of 122

ORACLE

Chapter 1
CREATE INDEX

@® Note

In a CDI, if the indexed column is also a FILTER BY or ORDER BY column, then when
you update the main indexed column, the updates to the FILTER BY or ORDER BY
columns are not transactional.

® Note

* As with concatenated optimized for search SDATA indexes or bitmap indexes,
performance degradation may occur in DML as the number of FILTER BY and
ORDER BY columns increases.

e Mapping a FILTER BY column to MDATA is not recommended if the FILTER BY
column contains sequential values or has very high cardinality. Doing so can result
in a very long and narrow $1 table and reduced $X performance. An example is a
column of type DATE. For columns of this type, mapping to SDATA is recommended.

@® Note

An index table with the name DR$indextable$s is created to store FILTER BY and ORDER
BY columns that are mapped to SDATA sections. If nothing is mapped to an SDATA
section, then the $S table will not be created.

$S table contains the following columns:

e SDATA_ID number is the internal SDATA section ID.
e SDATA_LAST number, the last document ID, which is analogous to token_last.

» SDATA_DATA RAW(2000), the compressed SDATA values. Note that if $S is created on
a tablespace with 4K database block size, then it will be defined as RAW(1500).

Restriction: For performance reasons, $S table must be created on a tablespace with
db block size >= 4K without overflow segment and without PCTTHRESHOLD clause. If $S
is created on a tablespace with db block size < 4K, or is created with an overflow
segment or with a PCTTHRESHOLD clause, then appropriate errors will be raised during
the CREATE INDEX statement.

Restrictions on exporting and importing text tables with composite domain index created with
FILTER BY and/or ORDER BY clauses are as follows:

Oracle Text Reference
G43188-01
Copyright © 2005, 2025

Oracle recommends that you use Oracle Data Pump Import (impdp) and Oracle Data
Pump Export (expdp) utilities for importing and exporting Oracle Text indexes.

To export a text table with composite domain index, you must use Data Pump Export and
Import utilities (invoked with the expdp and impdp commands, respectively) or
DBMS_DATAPUMP PL/SQL package.

The original Oracle Database Export (exp) utility is desupported in Oracle Al Database
26ai.

October 13, 2025
, Oracle and/or its affiliates. Page 59 of 122

ORACLE

Chapter 1
CREATE INDEX

@ See Also
ADD SDATA COLUMN in CTX DDL Package

Limitations of using ALTER INDEX and ALTER TABLE with FILTER BY and ORDER BY columns of the
composite domain index, which are imposed by Extensible Indexing Framework in Oracle
Database:

(These limitations are imposed by Extensible Indexing Framework in Oracle Al Database.)

Using ALTER INDEX to add or drop FILTER BY and ORDER BY columns is currently not
supported. You must re-create the index to add or drop FILTER BY or ORDER BY columns.

To use ALTER TABLE MODIFY COLUMN to modify the datatype of a column that has the
composite domain index built on it, you must first drop the composite domain index before
modifying the column.

To use ALTER TABLE DROP COLUMN to drop a column that is part of the composite domain
index, you must first drop the composite domain index before dropping the index column.

The following limitations apply to FILTER BY and ORDER BY when used with PL/SQL packages:

Oracle Text Reference
G43188-01

Mapping FILTER BY columns to sections is optional. If section mapping does not exist for a
FILTER BY column, then it is mapped to an SDATA section by default. The section hame
assumes the name of the FILTER BY column.

If a section group is not specified during the CREATE INDEX clause of a composite domain
index, then system default section group settings are used. An SDATA section is created for
each of the FILTER BY and ORDER BY columns.

® Note

Because a section hame does not allow certain special characters and is case-
insensitive, if the column name is case-sensitive or contains special characters,
then an error will be raised. To work around this problem, you must map the
column to an MDATA or SDATA section before creating the index. See
CTX_DDL.ADD_MDATA_COLUMN or CTX_DDL.ADD_SDATA_COLUMN.

An error is raised if a column that is mapped to an MDATA section also appears in the ORDER
BY column clause.

Column section names are unique to their section group. That is, you cannot have an
MDATA column section named FOO if you already have an MDATA column section hamed FOO.
Nor can you have a field section named FOO if you already have an SDATA column section
named FOO. This is true whether it is implicitly created (by CREATE INDEX for FILTER BY or
ORDER BY clauses) or explicitly created (by CTX_DDL.ADD_SDATA COLUMN).

One section name can be mapped to only one FILTER BY column, and vice versa. Mapping
a section to more than one column, or mapping a column to more than one section is not
allowed.

Column sections can be added to any type of section group, including the NULL section
group.

If a section group with sections added by the CTX_DDL.ADD_MDATA_ COLUMN or
CTX_DDL.ADD_SDATA_COLUMN packages is specified for a CREATE INDEX statement without a
FILTER BY clause, then the mapped column sections will be ignored. However, the index

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 60 of 122

ORACLE Chapter 1
CREATE INDEX

will still get created without those column sections. The same is true for a FILTER BY clause
that does not contain mapped columns in the specified section group.

@ See Also
CTX _DDL.ADD_SDATA_COLUMN

LOCAL [PARTITION [partition] [PARAMETERS('paramstring')]

Specifies a local partitioned context index on a partitioned table. The partitioned table must be
partitioned by range. Hash, composite, and list partitions are not supported.

You can specify the list of index partition names with partition_name. If you do not specify a
partition name, then the system assigns one. The order of the index partition list must
correspond to the table partition order.

The PARAMETERS clause associated with each partition specifies the parameters string specific
to that partition. You can only specify sync (manuallevery |on commit), memory and storage
for each index partition.

The PARAMETERS clause also supports the POPULATE and NOPOPULATE arguments. See
POPULATE | NOPOPULATE.

Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_PARTITIONS to find out
index partition information, such as index partition name, and index partition status.

@® See Also

Creating a Local Partitioned Index

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE clause,
guery the partition. If you query the entire table and use an ORDER BY SCORE clause, the query
might not perform optimally unless you include a range predicate that can limit the query to the
fewest number of partitions, which is optimally a single partition.

@ See Also

Query Performance Limitation with a Partitioned Index

PARALLEL n

Optionally specifies the parallel degree for parallel indexing. The actual degree of parallelism
might be smaller depending on your resources. You can use this parameter on nonpartitioned
tables. However, creating a nonpartitioned index in parallel does not turn on parallel query
processing. Parallel indexing is supported for creating a local partitioned index.

The indexing memory size specified in the parameter clause applies to each parallel worker.
For example, if indexing memory size is specified in the parameter clause as 500M and
parallel degree is specified as 2, then you must ensure that there is at least 1GB of memory
available for indexing.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 61 of 122

ORACLE

Chapter 1
CREATE INDEX

@® See Also

e Parallel Indexing

e Creating a Local Partitioned Index in Parallel

* The "Performance Tuning" chapter in Oracle Text Application Developer's Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to index and
when your operating system supports multiple CPUs.

@® Note

Using PARALLEL to create a local partitioned index that enables parallel queries.
(Creating a nonpartitioned index in parallel does not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily loaded systems.
Because of this, Oracle recommends that you disable parallel querying after creating a
local index. To do so, use the ALTER INDEX NOPARALLEL statement.

For more information on parallel querying, see the "Performance Tuning" chapter in
Oracle Text Application Developer's Guide.

Limitations

Parallel indexing is supported only for the CONTEXT index type.

UNUSABLE

Creates an unusable index. This creates index metadata only and exits immediately.
You might create an unusable index when you need to create a local partitioned index in
parallel.

@ See Also

"Creating a Local Partitioned Index in Parallel"

PARAMETERS(paramstring)

Optionally specify indexing parameters in paramstring. You can specify preferences owned
by another user using the user.preference notation.

The syntax for paramstring is as follows:

paramstring =

"[ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
[DATASTORE dat astore_pref]
[FILTER filter_pref]
[CHARSET COLUMN charset _col um_nane]
[FORMAT COLUMN for mat _col um_nane]
[SAVE_COPY COLUMN save_copy_col urm_nane]
[LEXER | exer _pref]

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 62 of 122

ORACLE

Chapter 1
CREATE INDEX

[LANGUAGE COLUMN I anguage_col um_nane]

[WORDLIST wordlist_pref]

[STORAGE storage_pref]

[STOPLIST stoplist]

[SECTION GROUP section_group]

[MEMORY rmensi ze]

[POPULATE | NOPOPULATE]

[MAINTENANCE AUTO | MAINTENANCE MANUAL]

[SYNC (MANUAL | EVERY “interval-string"™ | ON COMMIT)]
[TRANSACTIONAL]

[OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval -string")]"

Create datastore, filter, lexer, wordlist, and storage preferences with
CTX_DDL.CREATE_PREFERENCE and then specify them in the paramstring.

@® Note

The combination of ASYNCHRONOUS_UPDATE and TRANSACT IONAL parameters is not
supported for context indexes.

@® Note

When you specify no paramstring, Oracle Text uses the system defaults. For more
information about these defaults, see "Default Index Parameters".

ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE

Specifies whether Oracle Text must retain old index entries for documents in which the
indexed column was updated. The default is SYNCHRONOUS_UPDATE which indicates that index
updates are synchronous and that old index entries are unavailable for search operations until
the index is synchronized.

ASYNCHRONOUS_UPDATE indicates that until the index is synchronized, search queries will use
the old index entries to return the old document content. After index synchronization, the
rebuilt index is used to return the updated document content.

Asynchronous updates are not supported for DML operations that cause row movement.
This option cannot be set at the partition level.

The following example creates a CONTEXT index idx for which asynchronous update is
enabled.

CREATE INDEX myidx ON mytabl(item_info) INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS("asynchronous_update®);

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 63 of 122

ORACLE

Chapter 1
CREATE INDEX

@® Note

The ASYNCHRONOUS_UPDATE setting of the CONTEXT indextype is deprecated in Oracle
Al Database 26ai, and can be ignored or removed in a future release.

Oracle can ignore or remove this attribute in a future release. Oracle recommends
that you allow this value to be set to its default value, SYNCHRONOUS_UPDATE. To avoid
unexpected loss of results during updates, use SYNC (ON COMMIT) or SYNC(EVERY
[tine-period]) with a short time period.

The ASYNCHRONOUS_UPDATE setting was introduced as a workaround for the fact that
updates are implemented as "delete followed by insert," and that deletes are
immediate (on commit), while inserts are only performed during an index sync.
However, this setting is incompatible with several other index options. Oracle
recommends that you discontinue its use.

DATASTORE datastore_pref
Specifies the name of your datastore preference. Use the datastore preference to specify
where your text is stored.See "Datastore Types ".

FILTER filter_pref
Specifies the name of your filter preference. Use the filter preference to specify how to filter
formatted documents to plain text or HTML. See "Filter Types".

CHARSET COLUMN charset_column_name

Specifies the name of the character set column. This column must be in the same table as the
text column, and it must be of type CHAR, VARCHAR, or VARCHAR2. Use this column to specify the
document character set for conversion to the database character set. The value is case-
insensitive. You must specify a globalization support character set string, such as JA16EUC.
When the document is plain text or HTML, the AUTO_FILTER and CHARSET filters use this
column to convert the document character set to the database character set for indexing.

Use this column when you have plain text or HTML documents with different character sets or
in a character set different from the database character set.

Setting NLS_LENGTH_SEMANTICS parameter to CHAR is not supported at the database level. This
parameter is supported for the following columns:

e The CHARSET COLUMN, for example:
VARCHAR2 <si ze> CHAR
CHAR <si ze> CHAR
* Anindex created on a VARCHAR2 and CHAR column

e VARCHAR2 and CHAR columns for FILTER BY and ORDER BY clauses of CREATE INDEX
e FORMAT COLUMN

@® Note

e Documents are not marked for re-indexing when only the character set column
changes. The indexed column must be updated to flag the re-index.

e The NLS_LENGTH_SEMANTICS = CHAR parameter is supported at the column level
only, and is not supported at the database level, as described in this section.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 64 of 122

ORACLE Chapter 1
CREATE INDEX

FORMAT COLUMN format_column_name

Specifies the name of the format column. The format column must be in the same table as the
text column and it must be CHAR, VARCHAR, or VARCHAR2 type.

FORMAT COLUMN determines how a document is filtered, or, in the case of the IGNORE value, if it
is to be indexed.

AUTO_FILTER uses the format column when filtering documents. Use this column with
heterogeneous document sets to optionally bypass filtering for plain text or HTML documents.
In the format column, you can specify one of the following options:

 TEXT
e BINARY
* IGNORE

The TEXT option indicates that the document is either plain text or HTML. When TEXT is
specified, the document is not filtered, but may have the character set converted.

The BINARY option indicates that the document is a format supported by the AUTO_FILTER
object other than plain text or HTML, for example PDF. BINARY is the default, if the format
column entry cannot be mapped.

The IGNORE option indicates that the row is to be ignored during indexing. Use this value when
you need to bypass rows that contain data incompatible with text indexing such as image
data, or rows in languages that you do not want to process. The difference between
documents with TEXT and IGNORE format column types is that the former are indexed but
ignored by the filter, while the latter are not indexed at all. Thus, IGNORE can be used with any
filter type.

® Note

Documents are not marked for re-indexing when only the format column changes.
The indexed column must be updated to flag the re-index.

SAVE_COPY COLUMN save_copy_column_name

Specifies the name of the column that contains the preference of whether to save a copy of a
document into the $D index table during a search operation.

You can specify one of the following three options in the SAVE_COPY column: PLAINTEXT,
FILTERED, or NONE.

The PLAINTEXT option indicates that the document should be stored as a plain text in the $D
index table. Specify this value when using the SNIPPET procedure.

The FILTERED option indicates that a filter preference should be applied on the text present in
the document before storing it into the $D index table. Specify this value when using the
MARKUP procedure or the HIGHLIGHT procedure.

The NONE option indicates that a copy of the document should not be saved in the $D index
table. Specify this value for any of the following scenarios:

e when SNIPPET, MARKUP, or HIGHLIGHT procedure is not used.
e when the indexed column is either VARCHAR2 or CLOB.

LEXER lexer_pref
Specifies the name of your lexer or multilexer preference. Use the lexer preference to identify
the language of your text and how text is tokenized for indexing. See "Lexer Types".

LANGUAGE COLUMN Janguage_column_name
Specifies the name of the language column when using a multi-lexer preference. See
"MULTI_LEXER".

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 65 of 122

ORACLE

Chapter 1
CREATE INDEX

This column must exist in the base table. It cannot be the same column as the indexed
column. Only the first 30 bytes of the language column are examined for language
identification.

@® Note

Documents are not marked for re-indexing when only the language column changes.
The indexed column must be updated to flag the re-index.

WORDLIST wordlist_pref
Specifies the name of your wordlist preference. Use the wordlist preference to enable features
such as fuzzy, stemming, and prefix indexing for better wildcard searching. See "Wordlist

Type".

STORAGE storage_pref

Specifies the name of your storage preference for the Text index. Use the storage preference
to specify how the index tables are stored. See "Storage Types".

STOPLIST stoplist
Specifies the name of your stoplist. Use stoplist to identify words that are not to be indexed.
See CTX_DDL.CREATE_STOPLIST .

SECTION GROUP section_group
Specifies the name of your section group. Use section groups to create searchable sections in
structured documents. See CTX_DDL.CREATE_SECTION_GROUP .

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = nunber [K|M]G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.

The default is the value specified for DEFAULT _INDEX MEMORY in CTX_PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

POPULATE | NOPOPULATE

Specifies whether an index should be empty or populated. The default is POPULATE.
The POPULATE and NOPOPULATE parameters are applicable to CONTEXT, CTXRULE, and
SEARCH_INDEX types.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 66 of 122

ORACLE Chapter 1
CREATE INDEX

@® Note

POPULATE | NOPOPULATE is the only option whose default value cannot be set with
CTX_ADM.SET_PARAMETER.

Empty indexes are populated by updates or inserts to the base table. You might create an
empty index when you need to create your index incrementally or to selectively index
documents in the base table. You might also create an empty index when you require only
theme and Gist output from a document set.

Note that a populated index is created by default, unless you explicitly specify the NOPOPULATE
keyword. The outputs of CTX_REPORT.CREATE_INDEX_SCRIPT and CTX_REPORT.DESCRIBE_INDEX
include the NOPOPULATE keyword for such indexes.

MAINTENANCE AUTO | MAINTENANCE MANUAL

Specifies the maintenance type for synchronization of the CONTEXT index when there are
inserts, updates, or deletes to the base table. The maintenance type specified for an index
applies to all index partitions.

You can set one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.

This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.

You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC. INDEX operations by tracking
the DML queue.

Note: Review a list of requirements and restrictions for
indexes in an automatic maintenance mode, as listed in
Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)

Specifies the SYNC type for synchronization of the CONTEXT index when there are inserts,
updates, or deletes to the base table.

These SYNC settings are applicable only to the indexes that are set to manual maintenance.

@® Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 67 of 122

ORACLE Chapter 1
CREATE INDEX

You can specify one of the following SYNC methods:

SYNC Type Description

MANUAL This is the default synchronization method for CONTEXT
index. In this method, automatic synchronization is not

provided. You must manually synchronize the index with
CTX_DDL.SYNC_INDEX.

EVERY "interval-string" The default synchronization interval is set to 30 seconds.
Automatically synchronizes the index at a regular interval
specified by the value of interval-string, which takes the
same syntax as that for scheduler jobs. Automatic
synchronization using EVERY requires that the index creator
have CREATE JOB privileges.

Ensure that interval-string is set to a considerable time
period that any previous sync jobs will have completed;
otherwise, the sync job might stop responding. interval-
string must be enclosed in double quotes, and any single
guote within interval-string must be preceded by the escape
character with another single quote.

See Enabling Automatic Index Synchronization at Regular
Intervals for an example of automatic sync syntax.

ON COMMIT Synchronizes the index immediately after a commit
transaction. The commit transaction does not return until
the sync is complete. Before Oracle Database Release 18c,
the synchronization was performed as a separate
transaction. There was a time period, usually small, when
the data was committed but index changes were not.
Starting with Oracle Database Release 18c, the
synchronization is performed as part of the same
transaction.

The operation uses the memory specified with the memory
parameter.

Before Oracle Database Release 18c, the sync operation
had its own transaction context. If the operation failed, the
data transaction still committed. Starting with Oracle
Database Release 18c, if there is an irrecoverable index
synchronization error, the entire data transaction is rolled
back. Recoverable (individual row) synchronization errors
are logged in the CTX_USER_INDEX_ERRORS view but the
transaction still completes. See Viewing Index Errors.

See Enabling Automatic Index Synchronization at Regular
Intervals for an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

... EVERY interval _string MEMORY nem size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same memory size
that was specified at index creation.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 68 of 122

ORACLE Chapter 1
CREATE INDEX

@® See Also
* Oracle Database Administrator's Guide for information about job scheduling

* Oracle Al Database PL/SQL Packages and Types Reference for information
about DBMS_SCHEDULER

TRANSACTIONAL

Specifies that documents can be searched immediately after they are inserted or updated. If a
text index is created with TRANSACTIONAL enabled, then, in addition to processing the
synchronized rowids already in the index, the CONTAINS operator will process unsynchronized
rowids as well. Oracle Text does in-memory indexing of unsynchronized rowids and processes
the query against the in-memory index.

TRANSACTIONAL is an index-level parameter and does not apply at the partition level.

You must still synchronize your text indexes from time to time (with CTX_DDL.SYNC_INDEX) to
bring pending rowids into the index. Query performance degrades as the number of
unsynchronized rowids increases. For that reason, Oracle recommends setting up your index
to use automatic synchronization with the EVERY or ON COMMIT parameter. (See "SYNC
(MANUAL | EVERY "interval-string" | ON COMMIT)".)

Transactional querying for indexes that have been created with the TRANSACTIONAL parameter
can be turned on and off (for the duration of a user session) with the PL/SQL variable
CTX_QUERY.disable_transactional_query. This is useful, for example, if you find that
querying is slow due to the presence of too many pending rowids. Here is an example of
setting this session variable:

exec ctx_query.disable_transactional_query := TRUE;

If the index uses AUTO_FILTER, queries involving unsynchronized rowids will require filtering of
unsynchronized documents.

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 69 of 122

ORACLE Chapter 1
CREATE INDEX

OPTIMIZE Type Description

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the create
index parameter list, a repeatedly running optimize token
job and a repeatedly running optimize full job are scheduled
for each index and partition:

e The Optimize token job is scheduled to run weekly
from 12 A.M. every Saturday night to optimize $S*
tables.

This job runs on tables with non-JSON data type
(VARCHARZ2, CLOB, or BLOB) to optimize the top 10 most
fragmented tokens (determined automatically).

e The Optimize full job is scheduled to run every
midnight from 12 A.M. to 3 A.M. except on Saturday
night. Jobs that are not started before 3 A.M. are
skipped. These skipped jobs are started before the
other jobs that are scheduled to run at 12 A.M. the next
day.

This job runs on tables with JSON data type or the IS
JSON check constraint.

Existing indexes do not have OPTIMIZE (AUTO_DALLY) by

default. You must use ALTER INDEX to enable automatic

background index optimization.

EVERY "interval-string" Automatically runs at a regular interval specified by the
value interval-string, which takes the same syntax as
scheduler jobs.

e The Optimize token job is scheduled for tables with
non-JSON data type.
This job runs optimize token for the top 10 most
fragmented tokens at an interval specified by the user.
e The Optimize full job is scheduled for tables with JSON
data type or the IS JSON check constraint.
This job runs optimize full weekly at 12 A.M. every
Saturday night for $S* tables.
Ensure that interval-string is set to a considerable time
period so that any previous optimize jobs are complete. The
interval-string value must be enclosed in double quotes,
and any single quote within interval-string must be
preceded by the escape character with another single
quote.
If multiple indexes use the OPTIMIZE EVERY i nterval -
string" option, then different jobs are created for each
index. These jobs are run concurrently.

With AUTO_DAILY | EVERY "interval -string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILY | EVERY "interval -string"™] PARALLEL paradegree ...

CREATE INDEX: CONTEXT Index Examples
The following sections give examples of creating a CONTEXT index.

Creating CONTEXT Index Using Default Preferences

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 70 of 122

ORACLE Chapter 1
CREATE INDEX

The following example creates a CONTEXT index called myindex on the docs column in mytable.
Default preferences are used.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context;

® See Also
* Oracle Text Application Developer's Guide

* For more information about default settings, see "Default Index Parameters"

Creating CONTEXT Index with Custom Preferences

The following example creates a CONTEXT index called myindex on the docs column in mytable.
The index is created with a custom lexer preference called my_lexer and a custom stoplist
called my_stop.

This example also assumes that the preference and stoplist were previously created with
CTX_DDL.CREATE_PREFERENCE for my_lexer, and CTX_DDL.CREATE_STOPLIST for
my_stop. Default preferences are used for the unspecified preferences.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
PARAMETERS("LEXER my_lexer STOPLIST my_stop®);

Any user can use any preference. To specify preferences that exist in another user's schema,
add the user name to the preference name. The following example assumes that the
preferences my_lexer and my_stop exist in the schema that belongs to user kenny:

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
PARAMETERS("LEXER kenny.my lexer STOPLIST kenny.my stop®);

Enabling Automatic Index Synchronization at Regular Intervals

You can create your index and specify that the index be synchronized at regular intervals for
insertions, updates and deletions to the base table. To do so, create the index with the SYNC
(EVERY "interval-string') parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then grant
CREATE JOB privileges.

The following example creates an index and schedules three synchronization jobs for three
index partitions. The first partition uses ON COMMIT synchronization. The other two partitions are
synchronized by jobs that are scheduled to be executed every Monday at 3 P.M.

CONNECT system/passwor d
GRANT CREATE JOB TO dr_test

CREATE INDEX tdrmauto02x ON tdrmauto02(text)
INDEXTYPE 1S CTXSYS.CONTEXT local
(PARTITION tdrmO2x_il1 PARAMETERS("

MEMORY 20m SYNC(ON COMMIT)*®),
PARTITION tdrm02x_i2,
PARTITION tdrm02x_i3) PARAMETERS("

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 71 of 122

ORACLE

Chapter 1
CREATE INDEX

SYNC (EVERY "NEXT_DAY(TRUNC(SYSDATE), ""MONDAY"") + 15/24')
');

See Oracle Database Administrator's Guide for information about job scheduling syntax.
Enabling Automatic Background Index Optimization

The following example creates an index and schedules a repeatedly running optimize token job
at 12 A.M. every midnight and a repeatedly running optimize full job running at 12 A.M. every
Saturday night.

CREATE TABLE mytable (
text VARCHAR2(30)

);

CREATE INDEX myindex ON mytable(text)
INDEXTYPE 1S CTXSYS.CONTEXT
PARAMETERS("OPTIMIZE (EVERY "FREQ=DAILY; BYHOUR=0")");

Creating CONTEXT Index with Multilexer Preference

The multilexer preference decides which lexer to use for each row based on a language
column. This is a character column in the table that stores the language of the document in the
text column. For example, create the table globaldoc to hold documents of different
languages:

CREATE TABLE globaldoc (
doc_id NUMBER PRIMARY KEY,
lang VARCHAR2(10),
text CLOB

);

Assume that global _lexer is a multilexer preference you created. To index the global _doc
table, specify the multilexer preference and the name of the language column as follows:

CREATE INDEX globalx ON globaldoc(text) INDEXTYPE IS ctxsys.context PARAMETERS
("LEXER global_lexer LANGUAGE COLUMN lang®);

@ See Also

"MULTI_LEXER" for more information about creating multilexer preferences

Creating a Local Partitioned Index

The following example creates a text table that is partitioned into three, populates it, and then
creates a partitioned index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)
(partition p_tabl values less than (10),

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 72 of 122

ORACLE

Chapter 1
CREATE INDEX

partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

PROMPT create partitioned index
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT
LOCAL (partition p_idxl, partition p_idx2, partition p_idx3);
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT LOCAL;

Perform either of the following actions if there is going to be more than 10000 partitions:

e If you need to create a CONTEXT index with more than 10000 partitions, then you must
use event 30579, level 2147483648 during index creation.

e Ifanindex is already created and it has more than 10000 partitions, then you must
recreate the index after running the following command:

alter SYSTEM set events "30579 trace name context forever, level
2147483648" ;

@ See Also
MOS note 2671924.1

® Note

The limit for the number of partitions in Oracle Text is the same as the maximum
number of partitions per table in Oracle Al Database.

Using FILTER BY and ORDER BY Clauses

The following example creates an index on table docs and orders the documents by author's
publishing date.

First, create the table:

CREATE TABLE docs (
docid NUMBER,
pub_date DATE,
author VARCHAR2(30),
category VARCHAR2(30),
document CLOB

);
Create the index with FILTER BY and ORDER BY clauses:

CREATE INDEX doc_idx on docs(document) indextype is ctxsys.context
FILTER BY category, author
ORDER BY pub_date desc, docid
PARAMETERS ("memory 500M%);

Parallel Indexing

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 73 of 122

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2671924.1

ORACLE

Chapter 1
CREATE INDEX

Parallel indexing can improve index performance when you have multiple CPUs.

To create an index in parallel, use the PARALLEL clause with a parallel degree. This example
uses a parallel degree of 3:

CREATE INDEX myindex ON mytab(pk) INDEXTYPE IS ctxsys.context PARALLEL 3;

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have multiple
CPUs. With partitioned tables, you can divide the work. You can create a local partitioned index
in parallel in two ways:

e Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In this
case, the maximum parallel degree is limited to the number of partitions you have. See
"Parallelism with CREATE INDEX".

e Create an unusable index first, then run the DBMS_PCLXUTIL.BUILD_PART INDEX utility. This
method can result in a higher degree of parallelism, especially if you have more CPUs than
partitions. See "Parallelism with DBMS_PCLUTIL.BUILD PART_INDEX".

If you attempt to create a local partitioned index in parallel, and the attempt fails, you may see
the following error message:

ORA-29953: error in the execution of the ODClIndexCreate routine for one or
more
of the index partitions

To determine the specific reason why the index creation failed, query the
CTX_USER_INDEX_ERRORS view.

Parallelism with CREATE INDEX

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in the CREATE
INDEX statement. In this case, the maximum parallel degree is limited to the number of
partitions that you have.

The following example creates a table with three partitions, populates them, and then creates
the local indexes in parallel with a degree of 2:

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values less than (2000),

partition p3 values less than (3000));

begin
for 1 in 0..2999
loop
insert into part_tab3 values (i,"oracle®);
end loop;
end;
/

create index part_tab3x on part_tab3(text)
indextype is ctxsys.context local (partition part_tabxl,
partition part_tabx2,

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 74 of 122

ORACLE

Chapter 1
CREATE INDEX

partition part_tabx3)
parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index, and then
running the DBMS_PCLUTIL.BUILD PART _INDEX utility. This method can result in a higher degree
of parallelism, especially when you have more CPUs than partitions.

In this example, the base table has three partitions. We create a local partitioned unusable
index first, then run DBMS_PCLUTIL.BUILD_PART_INDEX, which builds the 3 partitions in parallel
(referred to as inter-partition parallelism). Also, inside each partition, index creation proceeds in
parallel (called intra-partition parallelism) with a parallel degree of 2. Therefore, the total
parallel degree is 6 (3 times 2).

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values less than (2000),

partition p3 values less than (3000));

begin
for 1 in 0..2999
loop
insert into part_tab3 values (i,"oracle®);
end loop;
end;
/

create index part_tab3x on part_tab3(text)

indextype is ctxsys.context local (partition part_tabxl,
partition part_tabx2,
partition part_tabx3)

unusable;

exec dbms_pclxutil.build_part_index(jobs_per_batch=>3,
procs_per_job=>2,
tab_name=>"PART_TAB3",
idx_name=>"PART_TAB3X",
force_opt=>TRUE);

Viewing Index Errors

After a CREATE INDEX or ALTER INDEX operation, you can view index errors with Oracle Text
views. To view errors on your indexes, query the CTX_USER_INDEX ERRORS view. To view
errors on all indexes as CTXSYS, query the CTX_INDEX ERRORS view.

For example, to view the most recent errors on your indexes, enter the following statement:

SELECT err_timestamp, err_text FROM ctx_user_index_errors
ORDER BY err_timestamp DESC;

Deleting Index Errors

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 75 of 122

ORACLE

Chapter 1
CREATE INDEX

To clear the index error view, enter the following statement:

DELETE FROM ctx_user_index_errors;

Syntax for CTXCAT Index Type

Combines an index on a text column and one or more other columns. Query this index with the
CATSEARCH operator in the WHERE clause of a SELECT statement. This type of index is optimized
for mixed queries. This index is transactional, automatically updating itself with DML to the
base table.

CREATE INDEX [schema.]i ndex on [schema.]tabl e(col um) INDEXTYPE IS
ctxsys.ctxcat

[PARAMETERS("[index set index_set]

[lexer | exer_pref]

[storage storage pref]

[stoplist stoplist]

[section group sectiongroup_pref]

[wordlist wordlist_pref]

[memory mensi ze]");

[schema.]table(column)

Specifies the name of the table and column to index.

The column that you specify when you create a CTXCAT index must be of type CHAR or
VARCHAR2. No other types are supported for CTXCAT.

Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following options is true:

e The VPD policy is created such that it does not apply to INDEX statement type, which is the
default

* The policy function returns a null predicate for the current user.

e The user (index owner) is SYS.

e The user has the EXEMPT ACCESS POLICY privilege.

Supported CTXCAT Preferences

index set index_set

Specifies the index set preference to create the CTXCAT index. Index set preferences name the
columns that make up your subindexes. Any column that is named in an index set column list
cannot have a NULL value in any row of the base table, or else you get an error.

Always ensure that your columns have non-null values before and after indexing.

See "Creating a CTXCAT Index".

Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating this type of index has its
costs. The time that it takes Oracle Text to create a CTXCAT index depends on the total size of
the index.

The total size of a CTXCAT index is directly related to:

Total text to be indexed

Number of component indexes in the index set

Number of columns in the base table that make up the component indexes

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 76 of 122

ORACLE

Chapter 1
CREATE INDEX

Having many component indexes in your index set also degrades DML performance because
more indexes must be updated.

Because of these added costs in creating a CTXCAT index, you should carefully consider the
query performance benefit that each component index gives your application before adding it
to your index set.

@ See Also

Oracle Text Application Developer's Guide for more information about creating CTXCAT
indexes and the benefits

Other CTXCAT Preferences
When you create an index of type CTXCAT, you can use the supported index preferences listed
in Table 1-12 in the parameters string.

Table 1-12 Supported CTXCAT Index Preferences

Preference Class Supported Types

Datastore This preference class is not supported for CTXCAT.

Filter This preference class is not supported for CTXCAT.
Lexer BASIC LEXER (index_themes attribute not supported)

CHINESE_LEXER
CHINESE_VGRAM_LEXER
JAPANESE LEXER
JAPANESE VGRAM_LEXER
KOREAN_MORPH_LEXER

Wordlist BASIC_WORDLIST

Storage BASIC_STORAGE

Stoplist Supports single language stoplists only (BASIC_STOPLIST type).
Section Group Only Field Section is supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore and filter preferences. For
section group preferences, only the field section preference is supported. You also cannot
specify language, format, or charset columns as with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete example,
see Oracle Text Application Developer's Guide.

Consider a table called AUCTION with the following schema:

create table auction(item_id number,
title varchar2(100),

category_id number,

price number,

bid _close date);

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 77 of 122

ORACLE

Chapter 1
CREATE INDEX

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on price. Results must be sorted based on bid_close. This means that
an index to support good response time for the structured and sorting criteria is required.

You can create a catalog index to support the different types of structured queries a user might
enter. For structured queries, a CTXCAT index improves query performance over a context
index.

To create the indexes, first, create the index set preference, next, optionally, add the storage
preference, and, finally, add the required indexes to it:

begin

ctx_ddl.create_index_set("auction_iset");
ctx_ddl.add_index("auction_iset","bid _close");
ctx_ddl.add_index("auction_iset","price, bid_close");
end;

Optionally, create the storage preference:

begin
ctx_ddl.create_preference("auction_st pref", "BASIC_STORAGE");
ctx_ddl.set_attribute("auction_st pref", "I _TABLE CLAUSE",
"tablespace TEXT storage (initial 5M)");
ctx_ddl.set_attribute("auction_st pref®, "I _ROWID INDEX CLAUSE",
"tablespace TEXT storage (initial 5M)");
ctx_ddl.set_attribute("auction_st pref®, "I _INDEX_ CLAUSE",
"tablespace TEXT storage (initial 5M) compress 2%);
end;
/

Then, create the CTXCAT index with the CREATE INDEX statement as follows:

create index auction_titlex on AUCTION(title) indextype is CTXSYS.CTXCAT
parameters ("index set auction_iset storage auction_st pref®);

Querying a CTXCAT Index

To query the title column for the word pokemon, enter regular and mixed queries as follows:

select * from AUCTION where CATSEARCH(title, "pokemon®,NULL)> O0;
select * from AUCTION where CATSEARCH(title, “pokemon®, "price < 50 order by
bid_close desc®)> 0;

@ See Also

Oracle Text Application Developer's Guide for a complete CTXCAT example

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 78 of 122

ORACLE

Chapter 1
CREATE INDEX

Syntax for CTXRULE Index Type

The CTXRULE type is an index on a column containing a set of queries. Query this index with the
MATCHES operator in the WHERE clause of a SELECT statement.

CREATE INDEX [schema.]i ndex on [schema.]tabl e(rul e_col) INDEXTYPE IS
ctxsys.ctxrule

[PARAMETERS ("[lexer lexer_pref] [storage storage_pref]

[section group section_pref] [wordlist wordlist pref]

[classifier classifier_pref]);

[PARALLEL n];

[schema.]table(column)

Specifies the name of the table and rule column to index. The rules can be query compatible
strings, query template strings, or binary Support Vector Machine rules.

The column you specify when you create a CTXRULE index must be VARCHAR2, CLOB or BLOB.
No other types are supported for the CTXRULE type.

Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following is true:

e The VPD policy does not have the INDEX statement type turned on (which is the default).
* The policy function returns a null predicate for the current user.

e The user (index owner) is SYS.

e The user has the EXEMPT ACCESS POLICY privilege.

lexer_pref

Specifies the lexer preference to be used for processing queries and later for the documents
to be classified with the MATCHES function.

With both classifiers SYN_CLASSFIER and RULE_CLASSIFIER, you can use the BASIC_LEXER,
CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexer. (See "Classifier Types" and
"Lexer Types".)

For processing queries, these lexers support the following operators: ABOUT, STEM, AND, NEAR,
NOT, OR, and WITHIN.

The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are supported.
However, these operators are expanded using a snapshot of the thesaurus at index time, not
when the MATCHES function is entered. This means that if you change your thesaurus after you
index, you must re-index your query set.

storage_pref
Specify the storage preference for the index on the queries. Use the storage preference to
specify how the index tables are stored. See "Storage Types".

section group

Specify the section group. This parameter does not affect the queries. It applies to sections in
the documents to be classified. The following section groups are supported for the CTXRULE
index type:

- BASIC_SECTION_GROUP
« HTML_SECTION_GROUP
« XML_SECTION_GROUP

« AUTO_SECTION_GROUP

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 79 of 122

ORACLE’

Chapter 1
CREATE SEARCH INDEX

See "Section Group Types".

CTXRULE does not support special sections. It also does not support NDATA sections.

wordlist_pref
Specifies the wordlist preferences. This is used to enable stemming operations on query
terms. See Wordlist Type.

classifier_pref
Specifies the classifier preference. See "Classifier Types". You must use the same preference
name you specify with CTX_CLS.TRAIN.

Example for Creating a CTXRULE Index

See Oracle Text Application Developer's Guide for a complete example of using the CTXRULE
index type in a document routing application.

Related Topics
CTX_DDL.CREATE_PREFERENCE

CTX_DDL.CREATE_STOPLIST

CTX_DDL.CREATE_SECTION_GROUP

"ALTER INDEX "
"CATSEARCH "

1.6 CREATE SEARCH INDEX

Use the CREATE SEARCH INDEX statement to create a search index for indexing and querying
structured, unstructured, or semi-structured data, such as textual, JSON, and XML documents.

Purpose

The SEARCH INDEX is an index type that supports the CONTEXT index functionality along with
sharded databases and system-managed partitioning for index storage. Using the CREATE
SEARCH INDEX syntax, you can create search indexes on textual, JSON, and XML columns.

@® Note

Shadow index is not supported for search indexes.

Overview

The CREATE SEARCH INDEX syntax automatically determines the type of search index to create
based on the data type of the column, as follows:

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 80 of 122

ORACLE’

Chapter 1
CREATE SEARCH INDEX

Column Data Type

FOR Clause

Syntax Description

Text

FOR TEXT

The CREATE SEARCH INDEX statement on a
textual column creates an Oracle Text search
index.

If required, you can explicitly specify the FOR TEXT
clause in the CREATE SEARCH INDEX statement to
create an Oracle Text search index. If you omit the
FOR TEXT clause on a textual column, then the
FOR TEXT settings are automatically picked up.

If a column has the JSON data type, an 1S JSON
check constraint, or an XMLType data type using
TBX, then you can override the settings and create
a full-text search index by specifying the FOR TEXT
clause.

JSON data type
or

Column with an IS
JSON check constraint

FOR JSON

The CREATE SEARCH INDEX statement on a
column with the JSON data type or an IS JSON
check constraint creates a JSON search index.

If required, you can explicitly specify the FOR JSON
clause in the CREATE SEARCH INDEX statement to
create a JSON search index. If you omit the FOR
JSON clause and the column has the JSON data
type or an IS JSON check constraint, then the FOR
JSON settings are automatically picked up.

XMLType data type of
TRANSPORTABLE
BINARY XML

FOR XML

The CREATE SEARCH INDEX statement on an
XMLType column of TRANSPORTABLE BINARY XML
(TBX) creates an XML search index.

If required, you can explicitly specify the FOR XML
clause in the CREATE SEARCH INDEX statement to
create an XML search index. If you omit the FOR
XML clause on an XMLTYPE column that uses the
TBX storage option, then the FOR XML settings are
automatically picked up. If you omit the FOR XML
clause on an XMLTYPE column but the storage
option is not TBX, then it creates an Oracle Text
index. To create an XML search index, you must
ensure that the document is stored as TBX.

XML search indexes also support XQuery Full Text
search features. You can index XML data that is not
stored using the TBX option by creating an XQuery
Full Text CONTEXT index. See Oracle XML DB
Developer’s Guide.

Here is the detailed syntax for each type of search index:

» Syntax for Oracle Text Search Index

* Syntax for JSON Search Index

* Syntax for XML Search Index

Syntax for Oracle Text Search Index

CREATE SEARCH INDEX [schema.]index ON [schema.]table(txt_column)

[ONLINE]

[FILTER BY filter_column[, filter_column]...]
[ORDER BY oby_column[desc|asc][, oby_column[desc]asc]]...]

Oracle Text Reference
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

[LOCAL [PARTITION [partition]]
[, PARTITION [partition] D]
[PARAMETERS(paramstring)] [PARALLEL n] [UNUSABLE]];

ONLINE, FILTER BY, ORDER BY, PARTITION, PARALLEL, and UNUSABLE are described in "Syntax for
CONTEXT Index Type".

[schema.]index
Specifies the name of the Oracle Text search index to create.

[schema.]table(index_column)
Specifies the names of table and column to index. index_column is the name of the column on
which the index is created.

LOCAL

Creates a local partitioned search index on a partitioned table. The index is partitioned using
the partitioning scheme of the base table.

You can partition a table using range, list, hash, interval, range-composite (range, list, and
hash), list-composite (range, list, and hash), hash-composite (range, list, and hash), and
automatic-list partitioning schemes. You can create a local search index using reference
partitioning if the base table of the reference partitioned table is partitioned using any of the
supported schemes.

® Note

You cannot create a local search index on an interval-composite partitioned table.

Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_ PARTITIONS to find out
index partition information, such as index partition name and index partition status.

The following example shows how to create a text table that is partitioned into three, populate
it, and then create a partitioned search index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)
(partition p_tabl values less than (10),
partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

PROMPT create partitioned search index
CREATE SEARCH INDEX part_idx ON part_tab (b) LOCAL;

@® See Also

e Creating a Local Partitioned Index

* System Managed Domain Index - Supported Schemes in Oracle Al Database
Data Cartridge Developer's Guide

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 82 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

PARAMETERS(paramstring)

Optionally specify indexing parameters in paramstring. You can specify preferences owned
by another user using the user .preference notation.

The syntax for paramstring is as follows:

paramstring =
"[DATASTORE dat astore_pref]
[STORAGE storage_pref]
[MEMORY memnsi ze]
[MAINTENANCE AUTO | MAINTENANCE MANUAL]
[SYNC (MANUAL | EVERY "interval-string™ | ON COMMIT)]
[OPTIMIZE (MANUAL | AUTO DAILY | EVERY "interval-string™)]
[STOPLIST stoplist]
[LEXER | exer _pref]
[FILTER filter_pref]
[WORDLIST wordlist_pref]
[SECTION GROUP section_group]*®

@® Note

TRANSACTIONAL and ASYNCHRONOUS_UPDATE parameters are not supported for the
Oracle Text search index type.

DATASTORE datastore_pref

Specifies the name of your data store preference. Use the data store preference to specify
where your text is stored. See Datastore Types .

The default is DIRECT_DATASTORE type.

STORAGE storage_pref
Specifies the name of your storage preference for the Oracle Text search index. Use the
storage preference to specify how the index tables are stored. See Storage Types.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is:

memsize = nunber [K|M|G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.

The default for Oracle Text search index is 500MB.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer 1/0 operations and improves query performance and maintenance,
because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 83 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

MAINTENANCE AUTO | MAINTENANCE MANUAL

Specifies the maintenance type for synchronization of the Oracle Text search index when
there are inserts, updates, or deletes to the base table. The maintenance type specified for an
index applies to all index partitions.

You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC. INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions for indexes in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)

Specifies the SYNC method for synchronization of the Oracle Text search index when there are
inserts, updates, or deletes to the base table.

These SYNC settings are applicable only to the indexes that are set to manual maintenance.

@® Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the SYNC methods as described in Table 1-10.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions. MANUAL sync is the default synchronization method for Oracle Text search indexes.
The ON COMMIT sync can be run only serially and must use the same memory size that was
specified at index creation.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument using
calendaring syntax values. These values are described in Oracle Al Database PL/SQL
Packages and Types Reference.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 84 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

Syntax:

SYNC [EVERY "interval -string"™] MEMORY nem si ze PARALLEL paradegree

Example:

SYNC [EVERY "freg=secondly;interval=20"] MEMORY 500M PARALLEL 2

The following examples create an Oracle Text search index with automatic (EVERY)
synchronization:

e Starting every night at 1:00 A.M.:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(text_document)
PARAMETERS("SYNC (EVERY "freqg=daily; byhour=1")");

e Starting every 5 minutes:

CREATE SEARCH INDEX nightly refreshed ON purchase_orders(text_document)
PARAMETERS("SYNC (EVERY "freg=minutely; interval=5")");

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string)
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY This is the default value.

When you specify OPTIMIZE (AUTO_DAILY) in the
CREATE INDEX PARAMETERS string, the continuously
running optimize token and optimize full jobs are
scheduled.

« The optimize token job is scheduled to run every
midnight from 12 A.M. to 3 A.M. except on Saturday
night, in order to optimize the top 10 most fragmented
tokens. Jobs that are not started before 3 A.M. are
suspended until 12 A.M. the next day. These
suspended jobs are started before the other jobs that
are scheduled to run at 12 A.M. the next day.

» The optimize full job is scheduled to run weekly from
12 A.M. every Saturday night in order to optimize index
tables and clean up $N.

Existing indexes do not have OPTIMIZE (AUTO_DAILLY) by

default. You need to use ALTER INDEX to enable automatic

background index optimization.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 85 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

OPTIMIZE Type Description
EVERY "interval - Automatically runs optimize token at a regular interval
string" specified by the value interval-string, which takes the same

syntax as the scheduler jobs.

Ensure that interval-string is set to a considerable time
period so that the previous optimize jobs are complete;
otherwise, the optimize job might stop responding. interval-
string must be enclosed in double quotes, and any single
guote within interval-string must be preceded by the escape
character with another single quote.

With AUTO_DAILY | EVERY “interval -string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILLY | EVERY “interval -string'™] PARALLEL paradegree ...

STOPLIST stoplist

Specifies the name of your stoplist. Use stoplist to identify words that are not to be indexed.
See CTX_DDL.CREATE_STOPLIST .

The default for Oracle Text search index is CTXSYS.DEFAULT_STOPLIST.

LEXER lexer_pref

Specifies the name of your lexer or multilexer preference. Use the lexer preference to identify
the language of your text and how text is tokenized for indexing. See "Lexer Types".

The default is CTXSYS_DEFAULT _LEXER.

FILTER filter_pref

Specifies the name of your filter preference. Use the filter preference to specify how to filter
formatted documents to plain text or HTML. See "Filter Types".

The default for binary text columns is NULL_FILTER. The default for other text columns is
AUTO_FILTER.

WORDLIST wordlist_pref
Specifies the name of your word list preference. Use the word list preference to enable
features such as fuzzy, stemming, and prefix indexing for better wild card searching. See

"Wordlist Type".

SECTION GROUP section_group

Specifies the name of your section group. Use section groups to create sections in structured
documents. See "CREATE_SECTION_GROUP" in CTX_DDL Package.

The default value for Oracle Text search index is NULL_SECTION_GROUP.

Syntax for JSON Search Index

CREATE SEARCH INDEX [schema.]i ndex ON [schena.]tabl e(j son_col um) FOR JSON
[LOCAL ([PARTITION [partition] J[, PARTITION [partition] D]
PARAMETERS(

[DATAGUIDE ON [CHANGE (ADD_VC | function_nane)] | OFF]

[STORAGE st orage pref]

[SEARCH_ON NONE]

[SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING)

[(path_subsetting clause)]
[MEMORY nensi ze]
[MAINTENANCE AUTO | MAINTENANCE MANUAL]

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 86 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

[SYNC (MANUAL | EVERY "interval-string"™ | ON COMMIT)]
[OPTIMIZE (MANUAL | EVERY "interval -string"™ | AUTO_DAILY)]
[ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
[POPULATE | NOPOPULATE]
[DATASTORE dat astore_pref]
[FILTER filter_pref]
[LEXER | exer _pref]
[WORDLIST wordlist_pref]
)
[PARALLEL N]
[UNUSABLE];

If you omit the PARAMETERS clause, then the default values for DATAGUIDE and SEARCH_ON are
OFF and TEXT_VALUE respectively. The default synchronization method is MAINTENANCE AUTO.
Thus, the index is automatically synchronized in the background, and both text and numeric or
date-time ranges are indexed.

@® Note

e The SECTION GROUP clause is not required for a JSON search index. You use
section groups to define sections in a text column.

e The MULTI_COLUMN_DATASTORE, TRANSACTIONAL, and STOPLIST clauses are not
supported for a JSON search index.

e The ASYNCHRONOQUS_UPDATE, SYNCHRONOUS UPDATE, POPULATE, NOPOPULATE,
DATASTORE, FILTER, LEXER, WORDLIST, PARALLEL, and UNUSABLE parameters are
described in Syntax for CONTEXT Index Type.

[schema.]index
Specifies the name of the JSON search index to create.

[schema.]table(index_column)

Specifies the names of table and column to index. index_column is the name of the column on
which the index is created.

The column must have the JSON data type or an IS JSON check constraint.

LOCAL

Creates a local partitioned JSON search index on a partitioned table. The index is partitioned
using the partitioning scheme of the base table.

You can partition a table using range, list, hash, interval, range-composite (range, list, and
hash), list-composite (range, list, and hash), hash-composite (range, list, and hash), and
automatic-list partitioning schemes. You can create a local JSON search index using
reference partitioning if the base table of the reference partitioned table is partitioned using
any of the supported schemes.

@® Note

You cannot create a local JSON search index on an interval-composite partitioned
table.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 87 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

The following example shows how to create a table that is partitioned into three, populate it,
and then create a partitioned JSON search index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b JSON) PARTITION BY RANGE (a)
(partition p_tabl values less than (10),
partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

PROMPT create partitioned JSON search index
CREATE SEARCH INDEX part_idx ON part_tab (b)
FOR JSON LOCAL;

@® See Also

e Creating a Local Partitioned Index

e System Managed Domain Index - Supported Schemes in Oracle Al Database
Data Cartridge Developer's Guide

DATAGUIDE ON | OFF

Specifies data guide support for a JSON search index. The default behavior is to create a
JSON search index without data guide support. If you enable data guide support, then you can
also define change-trigger procedures.

@® Note
You use the DATAGUIDE parameter only for JSON search indexes.

Specify one of the following options:

e ON: Enables data guide support. If you set the value of DATAGUIDE to ON, then you can also
define your own PL/SQL procedure or use the predefined change-trigger procedure
ADD_VC.

ADD_VC indicates if virtual columns are created based on the data guide.
function_name specifies the function to be executed when the data guide changes.

» OFF: Disables both the data guide support and change-trigger procedures. Provides only
general search-index functionality.

@® Note

You cannot create an index with the SEARCH_ON clause set to NONE when the
DATAGUIDE feature is disabled.

See Change Triggers For Data Guide-Enabled Search Index in Oracle Database JSON
Developer's Guide.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 88 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

STORAGE storage pref
Specifies the name of your storage preference for JSON search index. Use the storage
preference to specify how index tables are stored. See Storage Types.

SEARCH_ON NONE

Does not enable any indexing features, which indicates that the tables used for full-text and
range searches are not populated. Only the index data guide is maintained. The index will not
be used by any JSON query operators, including JSON_TEXTCONTAINS.

For example:

CREATE SEARCH INDEX json_idx ON json_tab (jsondoc)
FOR JSON PARAMETERS ("SEARCH_ON NONE DATAGUIDE ON*®);

SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING) [(path_subsetting_clause)]

Specifies the type of data or attributes to be indexed for efficient searching. You can also
specify a path subsetting clause, as explained in the section that follows.

@® Note
You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Option Description

TEXT Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.

The index is used for JSON_TEXTCONTAINS predicates and
for JSON_VALUE or JSON_EXISTS predicates that manipulate
strings when using JSON search index.

If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.

Example:

CREATE SEARCH INDEX json_idx ON json_tab
(Jsondoc)
FOR JSON PARAMETERS ("SEARCH_ON TEXT®);

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 89 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

Option

Description

VALUE[(dat a_t ypes)]

Enables range-search component for the specified data

types.
This allows the index to be picked up for predicates using
relational operators (>, <, ==, >=, <=, I=). A JSON search

index that is created with only SEARCH_ON VALUE cannot
answer full-text queries by using the JSON_TEXTCONTAINS
operator.

Supported data types:

« NUMBER for indexing numeric values.

« TIMESTAMP for indexing date-time values.

« VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables

range-search indexing on all supported data types.

@® Note

The BINARY_DOUBLE data type
is allowed only for XML search
indexes.

Examples:
e This example specifies the default behavior:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)

FOR JSON PARAMETERS ("SEARCH_ON
VALUE"®);

* These examples explicitly specify data types using the
VALUE(dat a_t ypes) syntax:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)

FOR JSON PARAMETERS ("SEARCH_ON
VALUE(TIMESTAMP) ") ;

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)

FOR JSON PARAMETERS ("SEARCH_ON
VALUE(NUMBER,

TIMESTAMP,

VARCHAR2) ") ;

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 90 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

Option

Description

TEXT_VALUE[(data_ty
pes)]

Enables both the full-text and range-search components for
the specified data types.

Supported data types:

* NUMBER for indexing numeric values.

e TIMESTAMP for indexing date-time values.

« VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables

full-text search and range-search indexing on NUMBER and

TIMESTAMP data types.

Examples:

« This example specifies the default behavior:

CREATE SEARCH INDEX json_idx ON json_tab
(Jsondoc)

FOR JSON PARAMETERS("SEARCH_ON
TEXT_VALUE®);

e These examples explicitly specify data types using the
TEXT_VALUE(dat a_t ypes) syntax:

CREATE SEARCH INDEX json_idx ON json_tab
(Jsondoc)

FOR JSON PARAMETERS("SEARCH_ON
TEXT_VALUE(NUMBER) *);

CREATE SEARCH INDEX json_idx ON json_tab
(Jsondoc)

FOR JSON PARAMETERS("SEARCH_ON
TEXT_VALUE(NUMBER,

TIMESTAMP)*);

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

Option Description

TEXT_VALUE_STRING Indicates that text and range-based indexes are created for
numeric, date-time, and complete string values.
This enables both the full-text and range-search components
on the NUMBER, TIMESTAMP, and VARCHAR2 data types.
String values are indexed as is without tokenization or other
transformations. All the strings that are smaller than or equal
to 237 bytes are indexed.
Example:

CREATE SEARCH INDEX json_idx ON json_tab
(Jsondoc)

FOR JSON PARAMETERS("SEARCH_ON
TEXT_VALUE_STRING™);

Note: For range-search queries, instead of
TEXT_VALUE_STRING, Oracle recommends that you use
either the VALUE[(dat a_t ypes)] or

TEXT_VALUE[(dat a_t ypes)] option.

Creating an index with TEXT_VALUE(NUMBER, TIMESTAMP,
VARCHAR?) is equivalent to TEXT_VALUE_STRING.

path_subsetting_clause

You can use path subsetting with SEARCH_ON to identify the fields in a document that you
want to include or exclude from indexing. The excluded fields are not indexed, and the JSON
search index is not used for them when querying. Filtering out irrelevant paths from
documents can reduce the amount of data indexed, thereby minimizing disk space and the
index creation or rebuild time.

Syntax for SEARCH_ON with path_subsetting clause:

SEARCH_ON (
TEXT | TEXT_VALUE [(data_types)] | VALUE [(data_types)])
[C(INCLUDE | EXCLUDE) *(" paths ")"]

Note the following:
e You cannot specify both the INCLUDE and EXCLUDE clauses for a single index.

* You can specify a path subsetting clause with SEARCH_ON TEXT, TEXT_VALUE,
TEXT_VALUE_STRING, and VALUE (not with NONE).

e As an alternative to specifying the INCLUDE or EXCLUDE clause, you can use the PATHLIST
parameter to specify a list of the paths to be included or excluded. You use PL/SQL
subprograms CTX_DDL.CREATE_PATH_LIST and CTX_DDL.ADD_PATH to specify the list of the
paths. See CREATE_PATH_LIST.

Specifying any SEARCH_ON clause while there is also a PATHLIST parameter results in an
error. Similarly, you cannot specify a PATHLIST parameter for an index that has the
Dataguide feature enabled.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 92 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

Option Path Subsetting Example

TEXT e This example creates a JSON search index with path
subsetting for full-text and string-equality searches. It
indexes only the fields located at
paths $.Special Instructions
and $.Lineltems.Part.Description of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS (("SEARCH_ON
TEXT INCLUDE ($.Speciallnstructions,
$.Lineltems.Part.Descri

ption)*);

e This example creates a JSON search index with path
subsetting for full-text and string-equality searches. It
excludes the field located at path $.User of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("SEARCH_ON
TEXT EXCLUDE ($.User");

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 93 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

Option

Path Subsetting Example

VALUE[(dat a_t ypes)]

This example creates a JSON search index with path
subsetting for full-text and string-equality searches of
fields $.Special Instructions

and $.Lineltems.Part.Description of a purchase
order document. But it also indexes fields $.PONumber
and $.Lineltems.Part.UnitPrice for numeric-value
ranges, and

fields $.Reference, $.User, $.ShippinglInstructi
ons.name,

and $.ShippinglInstructions.Address.zipCode
for string-value ranges.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("SEARCH_ON
TEXT INCLUDE
($-Speciallnstructions, $.Lineltems.Part.
Description)
VALUE(NUMBER) INCLUDE
($.PONumber, $.Lineltems.Part.UnitPrice)
VALUE(VARCHAR2) INCLUDE
($-Reference,
$.User,
$._Shippingln
structions.name,
$._Shippingln
structions._Address.zipCode)*);

Alternatively, you can create the same index using the
PATHLIST parameter, whose value is a named list of the
paths to be included, created using PL/SQL
subprograms CTX_DDL.create_path_list and
CTX_DDL.add_path, as follows:

BEGIN
CTX_DDL.create path list("json pl-,

CTX_DDL .PATHLIST_JSON,

CTX_DDL .PATHLIST_INCLUDE);
CTX_DDL.add_path("json_pl*®,

"TEXT", "$._Speciallnstructions®);
CTX_DDL.add_path("json_pl*®,

"TEXT",

"$.Lineltems.Part.Description®);
CTX_DDL.add_path("json_pl*®,

"NUMBER®, "$.PONumber*);
CTX_DDL.add_path("json_pl*®,

"NUMBER",

"$.Lineltems._Part.UnitPrice");
CTX_DDL.add_path("json_pl*®,

"VARCHAR2", "$.Reference®);

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 94 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

Option Path Subsetting Example

CTX_DDL.add_path("json_pl*©,
"VARCHAR2", "$.User");
CTX_DDL.add_path("json_pl*©,
"VARCHAR2",
"$.ShippinglInstructions.name®);
CTX_DDL.add_path("json_pl*©,
"VARCHAR2",
"$.Shippinglnstructions._Address.zipCode*)

END;
/
CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("PATHLIST

json_pl™);

e This example creates a JSON search index with path
subsetting for numeric-value ranges, where it excludes
the field located at path $.PONumber of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("SEARCH_ON
VALUE(NUMBER) EXCLUDE ($.PONumber)*®);

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 95 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

Option

Path Subsetting Example

TEXT_VALUE[(data_ty

pes)]

This example creates a JSON search index with path
subsetting for full-text and string-equality searches of
fields $."FieldWithNoQuote"

and $."FieldWith\"Quote\'"" of a purchase order
document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("SEARCH ON
TEXT_VALUE INCLUDE
($."FieldWithNoQuote", $."FieldWith\"Quot
e\")");

Alternatively, you can create the same index using the
PATHLIST parameter, whose value is a named list of the
paths to be included, created using PL/SQL
subprograms CTX_DDL.create_path_list and
CTX_DDL.add_path, as follows:

BEGIN
CTX_DDL.create path list("json pl-,

CTX_DDL.PATHLIST_JSON,

CTX_DDL.PATHLIST_INCLUDE);
CTX_DDL.add_path("json_pl-,

"TEXT", "$._Special Instructions®);
CTX_DDL.add_path("json_pl-,
"TEXT",

"$.Lineltems.Part.Description®);
CTX_DDL.add_path("json_pl-,
"NUMBER®", "$.PONumber*");
CTX_DDL.add_path("json_pl-,
"NUMBER",
"$.Lineltems.Part.UnitPrice™);
CTX_DDL.add_path("json_pl-,
"VARCHAR2", "$_Reference®);
CTX_DDL.add_path("json_pl-,
"VARCHAR2", "$.User");
CTX_DDL.add_path("json_pl-,
"VARCHAR2",
"$.Shippinglnstructions.name®);
CTX_DDL.add_path("json_pl*®,
"VARCHAR2",
"$.ShippinglInstructions.Address.zipCode*)

END;
/
CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("PATHLIST

Json_pl*);

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 96 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

Option Path Subsetting Example

e This example creates a JSON search index with path
subsetting for numeric-value ranges, where it excludes
the field located at path $.PONumber of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("SEARCH_ON
TEXT_VALUE(NUMBER) EXCLUDE
($.PONumber)");

TEXT_VALUE_STRING This example creates a JSON search index with path
subsetting, where the paths are indexed according to the
available data types. For example, if the contents of the
field $.PONumber is 145980, then 145980 is indexed as a
token for full-text search, as a numeric value (145980) for
numeric range search, and as a string (*'145980") for string
range search.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
FOR JSON PARAMETERS ("SEARCH_ON
TEXT_VALUE_STRING INCLUDE
($.Special Instructions,
$.Lineltems.Pa
rt.Description,
$.PONumber, $.
Lineltems.Part.UnitPrice,
$.Reference,
$.User,
$.Shippinglnst
ructions._name,
$.Shippinglnst
ructions.Address.zipCode)*);

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = nunber [K|M]G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.

The default for JSON search index is the value specified for DEFAULT_INDEX_MEMORY in
CTX_PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 97 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

MAINTENANCE AUTO | MAINTENANCE MANUAL

Specifies the maintenance type for synchronization of the JSON search index when there are
inserts, updates, or deletes to the base table. The maintenance type specified for an index
applies to all index partitions.

You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC. INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions to follow in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)

Specifies the SYNC type for synchronization of the JSON search index when there are inserts,
updates, or deletes to the base table.

These SYNC settings are applicable only to the indexes that are set to manual maintenance.

@ Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the SYNC methods as described in Table 1-10.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions. ON COMMIT sync is the default synchronization method for JSON search indexes.
The ON COMMIT sync can be run only serially and must use the same memory size that was
specified at index creation.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument using

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 98 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

calendaring syntax values. These values are described in Oracle Al Database PL/SQL
Packages and Types Reference.
Syntax:

SYNC [EVERY "interval -string"™] MEMORY nem si ze PARALLEL paradegree

Example:

SYNC [EVERY "freg=secondly;interval=20"] MEMORY 500M PARALLEL 2

The following examples create a JSON search index with automatic (EVERY) synchronization:
e Starting every night at 1:00 A.M.:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(json_document)
FOR JSON PARAMETERS("SYNC (EVERY "freqg=daily; byhour=1")");

e Starting every 5 minutes:

CREATE SEARCH INDEX nightly refreshed ON purchase_orders(json_document)
FOR JSON PARAMETERS("SYNC (EVERY "freg=minutely; interval=5")");

OPTIMIZE
Specify OPTIMIZE to enable automatic background index optimization. You can specify any of
the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL This is the default value.
Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the
CREATE INDEX PARAMETERS string, the continuously
running optimize TOKEN_TYPE and optimize ful l jobs are
scheduled as follows:

e The optimize TOKEN_TYPE job is scheduled to run
every midnight from 12 A.M. to 3 A.M., except on
Saturday nights, to optimize SDATA sections in the
index. Jobs that are not started before 3 A.M. are
suspended until 12 A.M. the next day. These
suspended jobs are started before the other jobs that
are scheduled to run at 12 A.M. the next day.

e The optimize full job is scheduled to run weekly from
12 A.M. every Saturday night to optimize index tables
and clean up $N.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 99 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

OPTIMIZE Type Description
EVERY "interval - Automatically runs the optimize TOKEN_TYPE job at a
string" regular interval specified by the value interval-string, which

takes the same syntax as scheduler jobs.

Ensure that interval-string is set to a considerable time
period so that the previous optimize jobs are complete;
otherwise, the optimize job might stop responding. interval-
string must be enclosed in double quotes, and any single
guote within interval-string must be preceded by the escape
character with another single quote.

With AUTO_DAILY | EVERY “interval -string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILLY | EVERY “interval -string'™] PARALLEL paradegree ...

Syntax for XML Search Index

Starting with Oracle Al Database 26ai, the XML search index provides a simplified syntax for
creating XML-enabled indexes. You can create indexes on XML documents that are stored
inside an XMLType column or table. This enables you to run textual, path-aware, and range-
search queries over XML documents.

CREATE SEARCH INDEX [schema.]index ON [schema.]table(xml_column)
FOR XML
[LOCAL]
PARAMETERS(
[SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE(data_ types))]
[STORAGE storage_pref]
[PREFIX_NS (prefix_ns_mappi ng)]
[MEMORY mensi ze]
[MAINTENANCE AUTO | MAINTENANCE MANUAL]
[SYNC (MANUAL | EVERY "interval-string” | ON COMMIT)]
[OPTIMIZE (MANUAL | EVERY "interval-string” | AUTO_DAILY)]
)
[PARALLEL N]
[UNUSABLE];

[schema.]index
Specifies the name of the XML search index to create.

[schema.]table(index_column)

Specifies the names of table and column to index. index_column is the name of the column on
which the index is created.

You can create the index only on an XMLType column that stores documents using the
TRANSPORTABLE BINARY XML (TBX) storage option.

LOCAL

Creates a local partitioned XML search index on a partitioned table. The index is partitioned
using the partitioning scheme of the base table.

You can partition a table using range, list, hash, interval, range-composite (range, list, and
hash), list-composite (range, list, and hash), hash-composite (range, list, and hash), and
automatic-list partitioning schemes. You can create a local XML search index using reference

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 100 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

partitioning if the base table of the reference partitioned table is partitioned using any of the
supported schemes.

@® Note

You cannot create a local XML search index on an interval-composite partitioned
table.

The following example shows how to create a table that is partitioned into three, populate it,
and then create a partitioned XML search index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b SYS.XMLType) XMLTYPE b STORE AS
TRANSPORTABLE BINARY XML PARTITION BY RANGE (a)
(partition p_tabl values less than (10),
partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

PROMPT create partitioned XML search index
CREATE SEARCH INDEX part_idx ON part_tab (b)
FOR XML PARAMETERS ("SEARCH_ON TEXT") LOCAL;

STORAGE storage_pref

Specifies the name of your storage preference for XML search index. Use the storage
preference to specify how index tables are stored. See "Storage Types".

If you do not specify a storage preference, then the default storage preference
(CTXSYS.XQFT_MEDIUM) is used.

SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE(data_types))
Specifies the type of data or attributes to be indexed for efficient searching.

@® Note
You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 101 of 122

ORACLE

Oracle Text Reference

G43188-01

Chapter 1
CREATE SEARCH INDEX

Option

Description

TEXT

Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.

The index is used for XMLEXISTS predicates that references
the XQuery Full Text operators and clauses.

If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.

For example:

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)
FOR XML PARAMETERS ("SEARCH_ON TEXT®);

VALUE(dat a_t ypes)

Enables range-search component for the specified data

types.
This allows the index to be picked up for predicates using
relational operators (>, <, ==, >=, <=, I=). An XML search

index that only has the SEARCH_ON VALUE component

enabled cannot answer full-text queries, if XQuery Full Text

operators are present in an XMLEXISTS predicate.

You must specify one or more data types:

* BINARY_DOUBLE and NUMBER for indexing numeric
values.

e TIMESTAMP for indexing date-time values.

* VARCHARZ for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

For example:

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)

FOR XML PARAMETERS ("SEARCH_ON
VALUE(NUMBER) ") ;

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)

FOR XML PARAMETERS ("SEARCH_ON
VALUE(BINARY_DOUBLE,
NUMBER,
TIMESTAMP,

VARCHAR2)");

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 102 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

Option Description

TEXT_VALUE(data_typ Enables both the full-text and range-search components for
es) the specified data types. For range-search queries, you must
specify one or more data types, such as NUMBER (for
indexing numeric values) and TIMESTAMP (for indexing date-
time values).
For example:

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)

FOR XML PARAMETERS("SEARCH_ON
TEXT_VALUE(TIMESTAMP)");

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)

FOR XML PARAMETERS("SEARCH_ON
TEXT_VALUE(NUMBER,

TIMESTAMP) ") ;

@® Note

You cannot use SEARCH_ON NONE and SEARCH_ON TEXT_VALUE_STRING for an XML
search index.

You must explicitly specify a data type with the TEXT_VALUE and VALUE options for an
XML search index, otherwise the statement will result in an error.

PREFIX_NS (prefix_ns_mapping)

Specifies prefix-namespace mapping for an XML search index.

An XMLExists query can include XML namespace declarations. While creating the search
index, you can separately store qualified names belonging to different XML namespaces.
A prefix-namespace mapping uses this syntax:

xmlns:| ocal _name="URI _string"

xmlIns is the default XML namespace declaration attribute. The URI_string value is not
mandatory. You can provide an empty string enclosed in double quotation marks. You can also
specify a qualified-name with the xmlns prefix. If you do not specify a prefix-namespace
mapping, then xmIns is used.

For example:

PREFIX_NS (xmIns="example.com"™ xmlIns:pfx="www.examplel.com"
xmlns:pfx2="example2.com™));

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 103 of 122

ORACLE Chapter 1
CREATE SEARCH INDEX

@® Note

You use the PREFIX_NS clause only for XML search indexes.
You cannot use ALTER INDEX to modify a prefix-namespace mapping specification.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = nunber [K|M]G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

MAINTENANCE AUTO | MAINTENANCE MANUAL

Specifies the maintenance type for synchronization of the XML search index when there are
inserts, updates, or deletes to the base table. The maintenance type specified for an index
applies to all index partitions.

You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC. INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions to follow in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)

Specifies the SYNC method for synchronization of the XML search index when there are
inserts, updates, or deletes to the base table.

These SYNC settings are applicable only to the indexes that are set to manual maintenance.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 104 of 122

ORACLE

Chapter 1
CREATE SEARCH INDEX

@® Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the SYNC methods as described in Table 1-10.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions. ON COMMIT is the default synchronization method for XML search indexes. The ON
COMMIT sync can be run only serially and must use the same memory size that was specified
at index creation.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument using
calendaring syntax values. These values are described in Oracle Al Database PL/SQL
Packages and Types Reference.

Syntax:

SYNC [EVERY "interval -string™] MEMORY nem si ze PARALLEL paradegree

Example:

SYNC [EVERY "freg=secondly;interval=20"] MEMORY 500M PARALLEL 2

The following examples create an XML search index with automatic (EVERY) synchronization:
e Starting every night at 1:00 A.M.:

CREATE SEARCH INDEX nightly refreshed ON purchase_orders(xml_document)
FOR XML PARAMETERS("SYNC (EVERY "freg=daily; byhour=1'")");

e Starting every 5 minutes:

CREATE SEARCH INDEX nightly refreshed ON purchase_orders(xml_document)
FOR XML PARAMETERS("SYNC (EVERY "freg=minutely; interval=5")");

OPTIMIZE
Specify OPTIMIZE to enable automatic background index optimization. You can specify one of
the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL This is the default value.
Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 105 of 122

ORACLE

Chapter 1
CREATE HYBRID VECTOR INDEX

OPTIMIZE Type Description

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the
CREATE INDEX PARAMETERS string, the continuously
running optimize TOKEN_TYPE and optimize ful l jobs are
scheduled as follows:

e The optimize TOKEN_TYPE job is scheduled to run
every midnight from 12 A.M. to 3 A.M., except on
Saturday nights, to optimize SDATA sections in the
index. Jobs that are not started before 3 A.M. are
suspended until 12 A.M. the next day. These
suspended jobs are started before the other jobs that
are scheduled to run at 12 A.M. the next day.

e The optimize full job is scheduled to run weekly from
12 A.M. every Saturday night to optimize index tables
and clean up $N.

EVERY "interval - Automatically runs the optimize TOKEN_TYPE job at a

string" regular interval specified by the value interval-string, which
takes the same syntax as scheduler jobs.
Ensure that interval-string is set to a considerable time
period so that the previous optimize jobs are complete;
otherwise, the optimize job might stop responding. interval-
string must be enclosed in double quotes, and any single
quote within interval-string must be preceded by the escape
character with another single quote.

With AUTO_DAILY | EVERY ™"interval -string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILLY | EVERY "interval -string'"] PARALLEL paradegree ...
Related Topics

* Oracle Al Database Administrator’s Guide
e Oracle Al Database JSON Developer’s Guide

1.7 CREATE HYBRID VECTOR INDEX

Use the CREATE HYBRID VECTOR INDEX SQL statement to create a hybrid vector index, which
allows you to index and query documents using a combination of full-text search and vector
similarity search.

Purpose
To create a class of specialized Domain Index called a hybrid vector index.

A hybrid vector index is an Oracle Text SEARCH INDEX type that combines the existing Oracle
Text indexing data structures and vector indexing data structures into one unified structure. It is
a single domain index that stores both text fields and vector fields for a document. Both text
search and similarity search are performed on tokenized terms and vectors respectively. The
two search results are combined and scored to return a unified result set.

The purpose of a hybrid vector index is to enhance search relevance of an Oracle Text index
by allowing users to search by both vectors and keywords. By integrating traditional keyword-

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 106 of 122

ORACLE

Chapter 1
CREATE HYBRID VECTOR INDEX

based text search with vector-based similarity search, you can improve the overall search
experience and provide users with more accurate information.

Usage Notes
To create a hybrid vector index, you can provide minimal information such as:

e table or column on which you want to create the index
e in-database ONNX embedding model for generating embeddings

For cases where multiple columns or tables need to be indexed together, you can specify the
MULTI_COLUMN_DATASTORE or USER_DATASTORE preference.

All other indexing parameters are predefined to facilitate the indexing of documents without
requiring you to be an expert in any text processing, chunking, or embedding strategies. If
required, you can modify the predefined parameters using:

e Vector search preferences for the vector index part of the index
e Text search preferences for the text index part of the index
¢ Index maintenance preferences for DML operations on the combined index

For detailed information on the creation process of a hybrid vector index or in general about
what hybrid vector indexes are, see Understand Hybrid Vector Indexes.

@® Note

There are some key points to note when creating and using hybrid vector indexes.
See Guidelines and Restrictions for Hybrid Vector Indexes.

Syntax

CREATE HYBRID VECTOR INDEX [schema.]i ndex_name ON
[schema.]t abl e_nane(col um_nane)
[FILTER BY filter_colum[, filter_colum]...]
[ORDER BY oby_col um[desclasc][, oby_col um[desc]asc]]...]
PARAMETERS (“paramstring®)
[LOCAL [PARTITION [partition] J[, PARTITION [partition]]]
[PARALLEL n];

Here is an example DDL specified with only the minimum required parameters.

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
PARAMETERS("MODEL my_embed_model*);

Setting an explicit memory and parallel degree is highly recommended as the default memory
is low and the index will take longer to create.

Here is an example DDL which specifies the memory and the parallel degree.
CREATE HYBRID VECTOR INDEX my_hybrid_idx on

doc_table(text_column)
PARAMETERS("MODEL my_embed_model MEMORY 1G*") PARALLEL 4;

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 107 of 122

ORACLE

Chapter 1
CREATE HYBRID VECTOR INDEX

@® Note

The total PGA memory used will be the value of the MEMORY parameter multiplied by
the PARALLEL degree. In this example, the total PGA memory used would be 1G * 4 =
4GB. This means that up to 4GB of PGA memory can be used by the hybrid vector
index.

More comprehensive examples are given at the end of this section.

Let us explore all the required and optional indexing parameters:

[schema.]lindex_name
Specify the name of the hybrid vector index to create.

[schema.]table_name(column_name)

Specify the name of the table and column on which you want to create the hybrid vector index.
You can create a hybrid vector index on one or more text columns with VARCHAR2, CLOB, and
BLOB data types.

@® Note

You cannot create hybrid vector indexes on a text column that uses the 1S JSON
check constraint.

Because the system can index most document formats, including HTML, PDF, Microsoft
Word, and plain text, you can load a supported type into the text column. For a complete list,
see Supported Document Formats.

For cases where multiple columns or tables need to be indexed together, specify a datastore
preference (described later in Text search preferences).

PARAMETERS (paramstring)
Specify preferences in paramstring:

* Vector Search Preferences:

Configures the "vector index" part of a hybrid vector index, pertaining to processing input
for vector search.

® Note

You can either pass a minimal set of parameters (the required MODEL and the
optional VECTOR_IDXTYPE parameters) directly in the PARAMETERS clause or use a
vectorizer preference to specify a complete set of vector search parameters. You
cannot use both (directly set parameters along with vectorizer) in the PARAMETERS
clause.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 108 of 122

ORACLE Chapter 1
CREATE HYBRID VECTOR INDEX

— With MODEL and VECTOR_IDXTYPE directly specified:

CREATE HYBRID VECTOR INDEX [schema.]i ndex_name ON
[schema.]t abl e_nane(col um_nane)
PARAMETERS ("MODEL <nodel _name>
[VECTOR_IDXTYPE <vector _i ndex_type>]")
[FILTER BY filter_colum[, filter_colum]...]
[ORDER BY oby_col um[desclasc][, oby_col um[desc|asc]]...]
[PARALLEL n];

Here, MODEL specifies the vector embedding model that you import into the database
for generating vector embeddings on your input data.

@® Note

Currently, only ONNX in-database embedding models are supported.

VECTOR_IDXTYPE specifies the type of vector index to create, such as 1VF (default) for
the Inverted File Flat (IVF) vector index and HNSW for the Hierarchical Navigable Small
World (HNSW) vector index. If you omit this parameter, then the IVF vector index is
created by default.

Creating a LOCAL index on an Hybrid Vector Index is supported when the underlying
index_type is IVF. An example is shown below:

CREATE HYBRID VECTOR INDEX my hybrid_idx on

doc_table(text_column)

parameters("MODEL my doc_model
VECTOR_IDXTYPE 1VF*")

LOCAL PARALLEL;

/\ Caution

Creating a LOCAL index on Hybrid Vector Index when the underlying
index_type is HNSW, would throw an error before starting any document
processing (early failure).

— With the vectorizer preference:

A vectorizer preference is a JSON object that collectively holds all indexing
parameters related to chunking (UTL_TO_CHUNKS or VECTOR_CHUNKS), embedding
(UTL_TO_EMBEDDING, UTL_TO_EMBEDDINGS, or VECTOR_EMBEDDING), and vector index
(distance, accuracy, or vector_idxtype).

You use the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE PL/SQL function to create a
vectorizer preference. To create a vectorizer preference, see
DBMS_VECTOR_CHAIN.CREATE_PREFERENCE.

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 109 of 122

ORACLE

Oracle Text Reference
G43188-01

Chapter 1
CREATE HYBRID VECTOR INDEX

After creating a vectorizer preference, you can use the VECTORIZER parameter to pass
the preference name here. For example:

begin
DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
"my_vectorizer_pref®,
dbms_vector_chain.vectorizer,

Json(*{

"vector_idxtype": "hnsw",
"model™ : "my_doc_model™,
"by" : "words",
""max"’ - 100,
"overlap" 10,
"split" : "recursively"

3

));
end;

/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters("VECTORIZER my_vectorizer_pref*);

A vectorizer preference with externally hosted vector embedding models:

DBMS_VECTOR_CHAIN.CREATE_PREFERENCE also lets you use vector embedding models
hosted externally in Oracle Private Al containers, third-party services like Open Al and
Google, or other external services, rather than importing them into the database.
Currently, it lacks support for secure (HTTPS) connections to the Oracle Private Al
container. Only unencrypted HTTP connections to the Oracle Private Al container are
supported at this time.

After creating a vectorizer preference with externally hosted vector embedding model ,
you can use the VECTORIZER parameter to pass the preference name here. For
example:

begin
dbms_vector_chain.create preference("hvi_pref_restapi”,
DBMS_VECTOR_CHAIN.VECTORIZER,
Json(*{
"embedder_spec":
{
"provider": "oracleai",
"url™: "http://myhost.us.example.com:9091/omImodels/
all_mini_l112/score",
"host": "local",
"model™: "all_minilm_112"

}
) B

end;

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 110 of 122

ORACLE

Oracle Text Reference
G43188-01

Chapter 1
CREATE HYBRID VECTOR INDEX

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters("VECTORIZER hvi_pref_restapi®);

Text Search Preferences:

Configures the "Oracle Text index" part of a hybrid vector index, pertaining to processing
input for keyword search.

These parameters define the text processing and tokenization stages of a hybrid vector
indexing pipeline. All these are the same set of parameters that you provide when working
with Oracle Text indexes alone.

[DATASTORE dat astore_pref]
[STORAGE storage_pref]
[MEMORY rensi ze]

[STOPLIST stoplist]

[LEXER | exer _pref]

[FILTER filter_pref]
[WORDLIST wordlist_pref]
[SECTION GROUP section_group]

DATASTORE datastore_pref

Specify the name of your datastore preference. Use the datastore preference to
specify the local or remote location where your source files are stored.

If you want to index multiple columns or tables together, see
MULTI_COLUMN_DATASTORE and USER_DATASTORE.

For a complete list of all datastore preferences, see Datastore Types.
Default: DIRECT_DATASTORE

STORAGE storage_pref

Specify the name of your storage preference for an Oracle Text search index. Use the
storage preference to specify how the index tables are stored. See Storage Types.

MEMORY memsize
Specify the amount of run-time memory to use for indexing.

memsize = nunber [K|M]G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.

The value you specify for memsize must be between 1M and the value of
MAX_INDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger than
the MAX_INDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_PARAMETER to
be larger than or equal to memsize. See CTX_ADM.SET_PARAMETER.

The default for Oracle Text search index is 500 MB.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing
before flushing the index to disk. Specifying a large amount memory improves

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 111 of 122

ORACLE Chapter 1
CREATE HYBRID VECTOR INDEX

indexing performance because there are fewer 1/0O operations and improves query
performance and maintenance, because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

STOPLIST stoplist
Specify the name of your stoplist. Use stoplist to identify words that are not to be
indexed. See CTX_DDL.CREATE_STOPLIST.

Default: CTXSYS.DEFAULT_STOPLIST

LEXER lexer_pref

Specify the name of your lexer or multilexer preference. Use the lexer preference to
identify the language of your text and how text is tokenized for indexing. See Lexer
Types.

Default: CTXSYS.DEFAULT_LEXER

FILTER filter_pref
Specify the name of your filter preference. Use the filter preference to specify how to
filter formatted documents to plain text. See Filter Types.

The default for binary text columns is NULL_FILTER. The default for other text columns
is AUTO_FILTER.

WORDLIST wordlist_pref

Specify the name of your wordlist preference. Use the wordlist preference to enable
features such as fuzzy, stemming, and prefix indexing for better wildcard searching.
See Wordlist Type.

SECTION GROUP section_group
Specify the name of your section group. Use section groups to create sections in
structured documents. See CTX_DDL.CREATE_SECTION_GROUP.
Default: NULL_SECTION_GROUP
* Index Maintenance Preferences:

Configures the DML operations on the entire hybrid vector index, that is, how to
synchronize and optimize the index.

Because a hybrid vector index is basically an Oracle Text search index type, so all
maintenance-specific capabilities of an Oracle Text index are applicable.

[MAINTENANCE AUTO | MAINTENANCE MANUAL]
[SYNC (MANUAL | EVERY "interval-string™ | ON COMMIT)]
[OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval -string™)]

MAINTENANCE AUTO | MAINTENANCE MANUAL

Specify the maintenance type for synchronization of a hybrid vector index when there
are inserts, updates, or deletes to the base table. The maintenance type specified for
an index applies to all index partitions.

You can specify one of the following maintenance types:

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 112 of 122

ORACLE Chapter 1
CREATE HYBRID VECTOR INDEX

Maintenance Type Description

MAINTENANCE AUTO This method sets your index to automatic
maintenance, that is, the index is automatically
synchronized in the background at optimal intervals.
You do not need to manually configure a SYNC type
or set any synchronization interval. The background
mechanism automatically determines the
synchronization interval and schedules background
SYNC. INDEX operations by tracking the DML queue.

MAINTENANCE This method sets your index to manual maintenance.

MANUAL This is a non-automatic maintenance
(synchronization) mode in which you can specify
SYNC types, such as MANUAL, EVERY, or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string” | ON COMMIT)

Specify the SYNC type for synchronization of a hybrid vector index when there are
inserts, updates, or deletes to the base table. These SYNC settings are applicable only
to the indexes that are set to manual maintenance.

@® Note

By default, a hybrid vector index runs in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically
synchronized into the index in the background at optimal intervals. Therefore,
you do not need to manually configure a SYNC type for maintaining a hybrid
vector index. However, if required, you can do so if you want to modify the
default settings for an index.

You can specify one of the SYNC methods:

SYNC Type Description

MANUAL With this method, automatic synchronization is not
provided. You must manually synchronize the index
using CTX_DDL.SYNC_INDEX.

EVERY interval-string Automatically synchronize the index at a regular
interval specified by the value of interval-string, which
takes the same syntax as that for scheduler jobs.
Automatic synchronization using EVERY requires that
the index creator have CREATE JOB privileges.
Ensure that interval-string is set to a considerable
time period so that any previous synchronization jobs
will have completed. Otherwise, the synchronization
job may stop responding. The interval-string
argument must be enclosed in double quotation
marks (").

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 113 of 122

ORACLE

Oracle Text Reference

G43188-01

Chapter 1
CREATE HYBRID VECTOR INDEX

SYNC Type Description

ON COMMIT Synchronize the index immediately after a commit.
The commit does not return until the sync is
complete.

The operation uses the memory specified with the
memory parameter.

This sync type works best when the STAGE_1TAB
index option is enabled, otherwise it causes
significant fragmentation of the main index, requiring
frequent OPTIMIZE calls.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument
using calendaring syntax values. These values are described in Oracle Al Database
PL/SQL Packages and Types Reference.

Syntax:

SYNC [EVERY "interval-string™] MEMORY nmem si ze PARALLEL paradegree

For example, to sync the index at an interval of 20 seconds:

SYNC [EVERY "freg=secondly;interval=20"] MEMORY 500M PARALLEL 2

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string)
Specify OPTIMIZE to enable automatic background index optimization of a hybrid
vector index. You can specify any one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must
manually optimize the index with
CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY This is the default setting. With OPTIMIZE
(AUTO_DAILLY), the optimize FULL job is scheduled
to run midnight from 12 A.M. local time everyday.

EVERY "interval - Automatically runs optimize token at a regular

string" interval specified by the value interval-string, which
takes the same syntax as the scheduler jobs.
Ensure that interval-string is set to a considerable
time period so that the previous optimize jobs are
complete; otherwise, the optimize job might stop
responding. interval-string must be enclosed in
double quotes, and any single quote within interval-
string must be preceded by the escape character
with another single quote.

With AUTO_DAILY | EVERY ™"interval -string" setting, you can specify parallel
optimization.

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 114 of 122

ORACLE

Chapter 1
CREATE HYBRID VECTOR INDEX

Syntax:

OPTIMIZE [AUTO_DAILLY | EVERY "interval -string'™] PARALLEL paradegree ...

For example, to optimize the index at an interval of 20 minutes:

OPTIMIZE [EVERY "freg=minutely;interval=20""] PARALLEL 2

FILTER BY filter_column

Specify the structured indexed column on which a range or equality predicate in the WHERE
clause of a mixed query will operate. You can specify one or more structured columns for
filter_column, on which the relational predicates are expected to be specified along with the
CONTAINS() predicate in a query.

* You can use these relational operators:
<, <=, =, >=, >, between, and LIKE (for VARCHAR2)

e These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally,
CHAR, VARCHAR2 and VARCHAR2 types are supported only if the maximum length is specified
and does not exceed 249 bytes.

If the maximum length of a CHAR or VARCHAR2 column is specified in characters, for
example, VARCHAR2 (50 CHAR), then it cannot exceed FLOOR (249/max_char_width), where
max_char_width is the maximum width of any character in the database character set.

For example, the maximum specified column length cannot exceed 62 characters, if the
database character set is AL32UTF8. The ADT attributes of supported types (CHAR, NUMBER,
DATE, VARCHAR2, or RAW) are also allowed.

An error is raised for all other data types. Expressions, for example, func(cola), and
virtual columns are not allowed.

e txt_column is allowed in the FILTER BY column list.

e DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column[descjasc]

Specify one or more structured indexed columns by which you want to sort query results.

You can specify a list of structured oby_columns. These columns can only be of CHAR, NUMBER,
DATE, VARCHAR2, or RAW type. VARCHAR2 and RAW columns longer than 249 bytes are truncated to
the first 249 bytes. Expressions, for example func(cola), and virtual columns are not allowed.
The order of the specified columns matters. The ORDER BY clause in a query can contain:

e The entire ordered ORDER BY columns
e Only the prefix of the ordered ORDER BY columns
e The score followed by the prefix of the ordered ORDER BY columns

DESC sorts the results in a descending order (from highest to lowest), while ASC (default) sorts
the results in an ascending order (from lowest to highest).

[PARALLEL n]

Parallel indexing can improve index performance when you have multiple CPUs. To create an
index in parallel, use the PARALLEL clause with a parallel degree.

Optionally specifies the parallel degree for parallel indexing. The actual degree of parallelism
might be smaller depending on your resources. You can use this parameter on nonpartitioned
tables. However, creating a nonpartitioned index in parallel does not turn on parallel query
processing. Parallel indexing is supported for creating a local partitioned index.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 115 of 122

ORACLE Chapter 1
CREATE HYBRID VECTOR INDEX

The indexing memory size specified in the parameter clause applies to each parallel worker.
For example, if indexing memory size is specified in the parameter clause as 500M and
parallel degree is specified as 2, then you must ensure that there is at least 1GB of memory
available for indexing.

Examples

* With vector search preferences directly specified:

In this example, only the required parameter model is specified in the PARAMETERS clause:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters("MODEL my_doc_model ") ;

In this example, both the parameters model and vector_idxtype are specified:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters("MODEL my_doc_model
VECTOR_IDXTYPE HNSW®);

* With vector search preferences specified using VECTORIZER:

In this example, the vectorizer parameter is used in the PARAMETERS clause to specify the
my_vectorizer_spec preference:

begin
DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
"my_vectorizer_spec”,
dbms_vector_chain.vectorizer,

Jjson("{"vector_idxtype" : "hnsw",
"model™ : "my_doc_model",
"by" : "words",
“max* : 100,
"overlap" : 10,
"split" : "recursively"}"));
end;

/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters("VECTORIZER my vectorizer_spec”);

* With text search and vector search preferences directly specified:

In this example, only the required Vector Search parameter MODEL is specified in the
PARAMETERS clause. Text Search parameters are also specified:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters("MODEL my_doc_model
DATASTORE my datastore
STORAGE my_storage
STOPLIST my_stoplist

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 116 of 122

ORACLE Chapter 1
CREATE HYBRID VECTOR INDEX

LEXER my_lexer™)
ORDER BY docid asc;

* With text search and index maintenance preferences directly specified and vector
search preferences specified using VECTORIZER:

In this example, the VECTORIZER parameter is used to specify the my vectorizer_spec
preference that holds vector search parameters. All the Text Search and Index
Maintenance preferences are directly specified.

begin
DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
"my_vectorizer_spec”,
dbms_vector_chain.vectorizer,

Json(*{

"vector_idxtype" : "hnsw",
"model™ : "my_doc_model™,
"by" : "words",
""max"’ - 100,
"overlap" : 10,
"split" > "recursively”

%

)):

end;

/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters("VECTORIZER my_vectorizer_spec

DATASTORE my datastore
STORAGE my_storage
MEMORY 128M
MAINTENANCE AUTO
OPTIMIZE AUTO_DAILY
STOPLIST my_stoplist
LEXER my_lexer
FILTER my_filter
WORDLIST my_wordlist
SECTION GROUP my_section_group®)
FILTER BY category, author
ORDER BY score(10), score(20) desc
PARALLEL 3;

Related Topics

e Perform Hybrid Search
e Query Hybrid Vector Indexes End-to-End Example

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 117 of 122

ORACLE Chapter 1
DROP INDEX

1.8 DROP INDEX

@® Note

This section describes the DROP INDEX statement as it pertains to dropping a Text
domain index.

For a complete description of the DROP INDEX statement, see Oracle Database SQL
Language Reference.

Purpose

Use DROP INDEX to drop a specified Text index.

Syntax

DROP INDEX [schema.]index [force];

[force]

Optionally forces the index to be dropped. Use the force option when Oracle Text cannot
determine the state of the index, such as when an indexing operation fails.

Oracle recommends against using this option by default. Use it only when a regular call to
DROP INDEX fails.

Example

The following example drops an index named doc_index in the current user's database
schema:

DROP INDEX doc_index;

Related Topics
"ALTER INDEX "
"CREATE INDEX"

1.9 MATCHES

Use the MATCHES operator to find all rows in a query table that match a given document. The
document must be a plain text, HTML, or XML document.

The MATCHES operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER classifier type is used, MATCHES returns a score in the range 0 to
100; a higher number indicates a greater confidence in the match. Use the label parameter
and MATCH_SCORE to obtain this number. Then use the matching score to apply a category-
specific threshold to a particular category.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 118 of 122

ORACLE

Chapter 1
MATCHES

If the SVM_CLASSIFIER type is not used, then this operator returns either 100 (the document
matches the criteria) or 0 (the document does not match).

Limitation

If the optimizer chooses to use the functional query invocation with a MATCHES query, your
query will fail.

Syntax

MATCHES(

[schema.]column,
document VARCHAR2 or CLOB
[, 1abel INTEGER])

RETURN NUMBER;

column
Specifies the column containing the indexed query set.

document
Specifies the document to be classified. The document can be plain text, HTML, or XML.
Binary formats are not supported.

label
Optionally specifies the label that identifies the score generated by the MATCHES operator. Use
this label with MATCH_SCORE.

Matches Example

The following example creates a table querytable, and populates it with classification names
and associated rules. It then creates a CTXRULE index.

The example enters the MATCHES query with a document string to be classified. The SELECT
statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));
insert into querytable values (“common names®, "smith OR jones OR brown®);
insert into querytable values ("countries”, "United States OR Great Britain OR
France®);

insert into querytable values ("Oracle DB", "oracle NEAR database®);

create index query_rule on querytable(text) indextype is ctxsys.ctxrule;

SELECT classification FROM querytable WHERE MATCHES(text, "Smith is a common name
in the United States®) > 0;

CLASSIFICATION

common names
countries

Related Topics
"MATCH_SCORE"

"Syntax for CTXRULE Index Type"

CTX_CLS.TRAIN

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 119 of 122

ORACLE Chapter 1
MATCH_SCORE

Oracle Text Application Developer's Guide contains extended examples of simple and
supervised classification, which make use of the MATCHES operator.

1.10 MATCH_SCORE

Use the MATCH_SCORE operator in a statement to return scores produced by a MATCHES query.

The MATCH_SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

When the SVM_CLASSIFIER classifier type is used, this operator returns a score in the range 0
to 100. Use the matching score to apply a category-specific threshold to a particular category.

If the SVM_CLASSIFIER classifier is not used, then this operator returns either 100 (the
document matches the criteria) or 0 (the document does not match).

Syntax
MATCH_SCORE(label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to identify the
MATCHES clause that returns this score.

Example
To get the matching score, use:

select cat_id, match_score(l) from training_result where matches(profile,
text,1)>0;

Related Topics
"MATCHES "

1.11 SCORE

Use the SCORE operator in SELECT statements to return the score values produced by CONTAINS
and JSON_TEXTCONTAINS queries.

The SCORE operator can be used in a SELECT, ORDER BY, or GROUP BY clause.

The SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

Syntax
SCORE(label NUMBER)

Here, label specifies a number to identify the score produced by the query. Use this number to
identify the CONTAINS clause that returns this score.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 120 of 122

ORACLE

Chapter 1
SCORE

Notes

For nested queries, you must specify an alias to avoid errors. For example, here an alias "s" is
used in the inner SELECT query to identify the outer SELECT query:

SELECT s FROM (

);

SELECT SCORE(L) AS s FROM mytable
WHERE CONTAINS(text, *oracle®, 1) > 0

Examples

Oracle Text Reference

G43188-01

With a single CONTAINS clause:

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause
must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, "oracle®, 1) > 0
ORDER BY SCORE(1) DESC;

With multiple CONTAINS clauses:

Assume that a news database stores and indexes the title and body of news articles
separately. The following query returns all the documents that include the words Oracle in
their title and java in their body. The articles are sorted by the scores for the first CONTAINS
(Oracle) and then by the scores for the second CONTAINS (java).

SELECT title, body, SCORE(10), SCORE(20)
FROM news
WHERE CONTAINS (news.title, "Oracle”, 10) > 0 OR
CONTAINS (news.body, "java®, 20) > 0
ORDER BY SCORE(10), SCORE(20);

With a single JSON_TEXTCONTAINS clause:

This query selects the PO numbers of purchase orders whose descriptions contain the text
run. It orders the results by relevance using an optional scoring-label argument. The query
returns also the relevance score for each purchase order.

The scoring label passed to json_textcontains must be the same as the label used with
SCORE. In this case the label is 1.

SELECT po.po_document.PONumber, SCORE(1)
FROM j_purchaseorder po
WHERE json_textcontains (po.po_document,
"$.Lineltems.Part.Description”,
"run®,
1)
ORDER BY SCORE(1) DESC;

Results (some elided):

The first 17 purchase orders listed have score 18; the remaining 85 purchase orders have
score 9. The former group match pattern run better than the latter (they match it twice per
purchase order instead of once):

PONUMBER SCORE(1)

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 121 of 122

ORACLE Chapter 1
SCORE

118
9958 18

1388 18
36 9
22 9

8637 9
102 rows selected.

Related Topics

e CONTAINS
Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the query
expression for a Text query.

e JSON_TEXTCONTAINS
 The Oracle Text Scoring Algorithm

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 122 of 122

Oracle Text Indexing Elements

Oracle provides indexing types for storage, filtering, and lexers, and preferences and stoplists
that you can use to create an Oracle Text index.

The chapter includes the following topics:

« Overview

e Creating Preferences

« Datastore Types

» Filter Types

* Lexer Types

* Wordlist Type

» Storage Types

* Section Group Types
» Classifier Types

e Cluster Types

e Stoplists
 System-Defined Preferences

 System Parameters

* Token Limitations for Oracle Text Indexes

e Auditing Oracle Text DR$ Index Tables

2.1 Overview

When you use the CREATE INDEX statement to create an index or the ALTER INDEX
statement to manage an index, you can optionally specify indexing preferences, stoplists, and
section groups in the parameter string. Specifying a preference, stoplist, or section group
answers one of the following questions about the way Oracle Text indexes text:

Preference Class Answers the Question

Datastore How are your documents stored?

Filter How can the documents be converted to plain text?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index tables be stored?

Stop List What words or themes are not to be indexed?

Section Group Is querying within sections enabled, and how are the document sections
defined?

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 123

ORACLE Chapter 2
Creating Preferences

This chapter describes how to set each preference. Enable an option by creating a preference
with one of the types described in this chapter.

2.2 Creating Preferences

To create a datastore, lexer, filter, classifier, wordlist, or storage preference, use the

CTX _DDL.CREATE_PREFERENCE procedure and specify one of the types described in this
chapter. For some types, you can also set attributes with the CTX_DDL.SET_ATTRIBUTE
procedure.

An indexing type names a class of indexing objects that you can use to create an index
preference. A type, therefore, is an abstract ID, while a preference is an entity that corresponds
to a type. Many system-defined preferences have the same name as types (for example,
BASIC_LEXER), but exact correspondence is not guaranteed. Be careful in assuming the
existence or nature of either indexing types or system preferences.

You specify indexing preferences with the CREATE INDEX and ALTER INDEX statements. Indexing
preferences determine how your index is created. For example, lexer preferences indicate the
language of the text to be indexed. You can create and specify your own user-defined
preferences, or you can use system-defined preferences.

To create a stoplist, use the CTX_DDL.CREATE_STOPLIST procedure. Add stopwords to a
stoplist with CTX_DDL .ADD_STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a section
group type. Add sections to section groups with the CTX_DDL.ADD_ZONE_SECTION or
CTX_DDL.ADD_FIELD_SECTION procedures.

2.3 Datastore Types

Use the datastore types to create a datastore preference. This helps you specify how your text
is stored.

Table 2-1 Datastore Types
]

Datastore Type Use When

DIRECT DATASTORE Data is stored internally in the text column. Each row is
indexed as a single document.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one column.

Columns are concatenated to create a virtual document,
one for each row.

DETAIL_DATASTORE Data is stored internally in the text column. Document
consists of one or more rows stored in a text column in a
detail table, with header information stored in the primary
table.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 123

ORACLE Chapter 2
Datastore Types

Table 2-1 (Cont.) Datastore Types

. __|]
Datastore Type Use When

FILE_DATASTORE Data is stored externally in operating system files. File
names are stored in the text column, one for each row.

@ Note

Starting with Oracle
Database 19c, the Oracle
Text type FILE_DATASTORE
is deprecated. Use
DIRECTORY_DATASTORE

instead.
DIRECTORY DATASTORE Data is stored in Oracle directory objects. File names are
stored in the text column, one for each row.
NESTED DATASTORE Data is stored in a nested table.
URL_DATASTORE Data is stored externally in files located on an intranet or

the Internet. Uniform Resource Locators (URLS) are
stored in the text column.

@ Note

Starting with Oracle
Database 19c, the Oracle
Text type URL_DATASTORE is
deprecated. Use
NETWORK_DATASTORE
instead.

NETWORK DATASTORE Data is stored externally in files located on an intranet or
the Internet. Uniform Resource Locators (URLS) are
stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a user-
defined stored procedure.

2.3.1 DIRECT_DATASTORE

Use the DIRECT_DATASTORE type for text stored directly in the text column, one document for
each row. The DIRECT_DATASTORE type has no attributes.

The following column types are supported: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB, BFILE,
XMLType, and URIType.

@® Note

If your column is a BFILE, then the index owner must have read permission on all
directories used by the BFILEs.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 123

ORACLE

Chapter 2
Datastore Types

The following example creates a table with a CLOB column to store text data. It then populates
two rows with text data and indexes the table using the system-defined preference
CTXSYS.DEFAULT_DATASTORE.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555, "this text will be indexed");
insert into mytable values(111556, "this is a direct_datastore example®);
commit;

create index myindex on mytable(docs)
indextype is ctxsys.context
parameters ("DATASTORE CTXSYS.DEFAULT_DATASTORE®");

2.3.2 MULTI_COLUMN_DATASTORE

Use the MULTI_COLUMN_DATASTORE datastore when your text is stored in more than one column.
During indexing, the system concatenates the text columns, tags the column text, and indexes
the text as a single document. The XML-like tagging is optional. You can also set the system to
filter and concatenate binary columns.

e MULTI_COLUMN_DATASTORE Attributes

* Indexing and DML

e MULTI_COLUMN_DATASTORE Restriction

e MULTI_COLUMN_DATASTORE Example

e MULTI_COLUMN_DATASTORE Filter Example

e Tagging Behavior

e |ndexing Columns as Sections

2.3.2.1 MULTI_COLUMN_DATASTORE Attributes

The data store MULTI_COLUMN_DATASTORE has the attributes shown in Table 2-2.

Table 2-2 MULTI_COLUMN_DATASTORE Attributes

|
Attribute Attribute Value

columns Specify a comma-delimited list of columns to be concatenated during indexing.
You can also specify any allowed expression for the SELECT statement column
list for the base table. This includes expressions, PL/SQL functions, column
aliases, and so on.
The NUMBER and DATE column types are supported. They are converted to text
before indexing using the default format mask. The TO_CHAR function can be
used in the column list for formatting.
The RAW and BLOB columns are directly concatenated as binary data.

The LONG, LONG RAW, NCHAR, and NCLOB data types, nested table columns, and
collections are not supported.

The column list is limited to 500 bytes.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 123

ORACLE Chapter 2
Datastore Types

Table 2-2 (Cont.) MULTI_COLUMN_DATASTORE Attributes

Attribute Attribute Value

filter Specify a comma-delimited list of Y/N flags. Each flag corresponds to a column
in the COLUMNS list and denotes whether to filter the column using the
AUTO_FILTER.

Specify one of the following allowed values:

Y: Column is to be filtered with AUTO_FILTER

N or no value: Column is not to be filtered (default)
delimiter Specify the delimiter that separates column text as follows:

COLUMN_NAME_TAG: Column text is set off by XML-like open and close tags
(default).

NEWLINE: Column text is separated with a newline.

2.3.2.2 Indexing and DML

To index, you must create a dummy column to specify in the CREATE INDEX statement. This
column's contents are not made part of the virtual document, unless its name is specified in the
columns attribute.

The index is synchronized only when the dummy column is updated. You can create triggers to
propagate changes if needed.

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction

You cannot create a multicolumn datastore with XMLType columns. MULTI_COLUMN_DATA_STORE
does not support XMLType. You can create a CONTEXT index with an XMLType column, as
described in Oracle Text SQL Statements and Operators .

2.3.2.4 MULTI_COLUMN_DATASTORE Example

The following example creates a multicolumn datastore preference called my_multi with three
text columns:

begin

ctx_ddl.create_preference("my_multi®, “MULTI_COLUMN_DATASTORE");
ctx_ddl.set_attribute("my_multi®, “columns®, "columnl, column2, column3*);

end;

2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example

The following example creates a multicolumn datastore preference and denotes that the bar
column is to be filtered with the AUTO_FILTER.

ctx_ddl.create_preference("MY_MULTI", "MULTI_COLUMN_DATASTORE");
ctx_ddl.set_attribute(*MY_MULTI", "COLUMNS","foo,bar");
ctx_ddl.set_attribute("MY_MULTI","FILTER","N,Y");

The multicolumn datastore fetches the content of the foo and bar columns, filters bar, then
composes the compound document as:

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 123

ORACLE

Chapter 2
Datastore Types

<F00>

foo contents

</F00>

<BAR>

bar filtered contents (probably originally HTML)
</BAR>

The N flags do not need not be specified, and there does not need to be a flag for every
column. Only the Y flags must be specified, with commas to denote which column they apply
to. For example:

ctx_ddl.create_preference("MY_MULTI", *"MULTI_COLUMN_DATASTORE");
ctx_ddl.set_attribute("MY_MULTI", "COLUMNS®,*foo,bar,zoo,jar");
ctx_ddl.set_attribute("MY_MULTI","FILTER",",,Y");

This example filters only the column zoo.

2.3.2.6 Tagging Behavior

During indexing, the system creates a virtual document for each row. The virtual document is
composed of the contents of the columns concatenated in the listing order with column name
tags automatically added.

For example:

create table mc(id number primary key, name varchar2(10), address varchar2(80));
insert into mc values(l, "John Smith®, "123 Main Street");

exec ctx_ddl.create_preference("mymds®, "MULTI_COLUMN_DATASTORE");
exec ctx_ddl.set_attibute("mymds®, "columns®, "name, address");

This produces the following virtual text for indexing:

<NAME>

John Smith
</NAME>
<ADDRESS>

123 Main Street
</ADDRESS>

2.3.2.7 Indexing Columns as Sections

To index tags as sections, you can optionally create field sections with BASIC_SECTION_GROUP.

@® Note

No section group is created when you use the MULTI_COLUMN_DATASTORE. To create
sections for these tags, you must create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters of the
expression unless a column alias is used.

For example, if your expression is as follows:

exec ctx_ddl.set attibute("mymds®, "columns®, "4 + 177);

then it produces the following virtual text:

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 123

ORACLE

Chapter 2
Datastore Types

<4 + 17>
21
</4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute("mymds®, “"columns®, "4 + 17 coll");

then it produces the following virtual text:

<coll>
21
<coll>

The tags are in uppercase unless the column name or column alias is in lowercase and
surrounded by double quotation marks. For example:

exec ctx_ddl.set_attibute("mymds®, "COLUMNS®, "foo");

This produces the following virtual text:

<F00>
content of foo
</F00>

For lowercase tags, use the following:

exec ctx_ddl.set_attibute("mymds®, "COLUMNS®, "foo "foo"");

This expression produces:

<foo>
content of foo
</foo>

2.3.3 DETAIL_DATASTORE

Use the DETAIL_DATASTORE type for text stored directly in the database in detail tables, with the
indexed text column located in the primary table.

 DETAIL_DATASTORE Attributes

e Synchronizing Primary/Detail Indexes

« Example Primary/Detail Tables

2.3.3.1 DETAIL_DATASTORE Attributes

The DETAIL_DATASTORE type has the attributes described in Table 2-3.

Table 2-3 DETAIL_DATASTORE Attributes
|

Attribute Attribute Value
binary Specify TRUE for Oracle Text to add no newline character after each detail
row.

Specify FALSE for Oracle Text to add a newline character (\n) after each detail
row automatically.

detail_table Specify the name of the detail table (OWNER. TABLE if necessary).

detail_key Specify the name of the detail table foreign key column.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 123

ORACLE Chapter 2
Datastore Types

Table 2-3 (Cont.) DETAIL_DATASTORE Attributes
|

Attribute Attribute Value
detail_lineno Specify the name of the detail table sequence column.
detail_text Specify the name of the detail table text column.

2.3.3.2 Synchronizing Primary/Detail Indexes

Changes to the detail table do not trigger re-indexing when you synchronize the index. Only
changes to the indexed column in the primary table triggers a re-index when you synchronize
the index.

You can create triggers on the detail table to propagate changes to the indexed column in the
primary table row.

2.3.3.3 Example Primary/Detail Tables

This example illustrates how primary and detail tables are related to each other.

e Primary Table Example

e Detail Table Example

e Detail Table Example Attributes

e Primary/Detail Index Example

2.3.3.3.1 Primary Table Example

Primary tables define the documents in a primary/detail relationship. Assign an identifying
number to each document. The following table is an example primary table, called my_primary:

Column Name Column Type Description
article_id NUMBER Document ID, unique for each document (primary
key)
author VARCHAR2(30) Author of document
title VARCHAR2(50) Title of document
body CHAR(2) Dummy column to specify in CREATE INDEX
® Note

Your primary table must include a primary key column when you use the
DETAIL_DATASTORE type.

2.3.3.3.2 Detail Table Example

Detail tables contain the text for a document, whose content is usually stored across a number
of rows.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 123

ORACLE

Chapter 2
Datastore Types

The following detail table my_detail is related to the primary table my _primary with the
article_id column. This column identifies the primary document to which each detail row
(sub-document) belongs.

Column Name Column Type Description

article_id NUMBER Document ID that relates to primary table

seq NUMBER Sequence of document in the primary document
defined by article_id

text VARCHAR2 Document text

2.3.3.3.3 Detail Table Example Attributes

In this example, the DETAIL_DATASTORE attributes have the following values:

Attribute Attribute Value
binary TRUE
detail_table my_detail
detail_key article_id
detail _lineno seq
detail_text text

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE. Use
CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference as described earlier. The
following example shows how this is done:

begin

ctx_ddl.create_preference("my_detail_pref", "DETAIL_DATASTORE");
ctx_ddl.set_attribute("my_detail_pref®, "binary", "true®);
ctx_ddl.set_attribute("my_detail_pref", "detail_table®, "my detail”);
ctx_ddl.set_attribute("my_detail_pref", "detail_key", "article_id");
ctx_ddl.set_attribute("my_detail_pref", "detail_lineno", "seq");
ctx_ddl.set_attribute("my_detail_pref®, "detail_text®, “text");

end;

2.3.3.3.4 Primary/Detail Index Example

To index the document defined in this primary/detail relationship, specify a column in the
primary table using the CREATE INDEX statement.

The column you specify must be one of the allowed types.

This example uses the body column, whose function is to enable the creation of the primary/
detail index and to improve readability of the code. The my_detail_pref preference is set to
DETAIL_DATASTORE with the required attributes:

CREATE INDEX myindex on my_primary(body) indextype is ctxsys.context
parameters(“datastore my_detail_pref®);

In this example, you can also specify the title or author column to create the index.
However, if you do so, changes to these columns will trigger a re-index operation.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 123

ORACLE Chapter 2
Datastore Types

2.3.4 FILE_DATASTORE

The FILE_DATASTORE type is used for text stored in files accessed through the local file system.

@® Note

Starting with Oracle Database 19c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

Oracle recommends that you replace FILE_DATASTORE text indexes with the
DIRECTORY_DATASTORE index type, which is available starting with Oracle Database
19c. DIRECTORY_DATASTORE provides greater security because it enables file access to
be based on directory objects.

® Note
e The FILE_DATASTORE type may not work with certain types of remote-mounted file
systems.

* The character set of the file datastore is assumed to be the character set of the
database.

e FILE DATASTORE Attributes
e FILE DATASTORE and Security
e FILE DATASTORE Example

2.3.4.1 FILE_DATASTORE Attributes

The FILE_DATASTORE type has the attributes described Table 2-4.

Table 2-4 FILE_DATASTORE Attributes
|

Attribute Attribute Value
path pathl:path2:pathn
filename_charset name

path

Specifies the full directory path name of the files stored externally in a file system. When you
specify the full directory path as such, you need to include only file names in your text column.
You can specify multiple paths for the path attribute, with each path separated by a colon (:)
on UNIX and semicolon(;) on Windows. File names are stored in the text column in the text
table.

If you do not specify a path for external files with this attribute, then Oracle Text requires that
the path be included in the file names stored in the text column.

The PATH attribute has the following limitations:

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 123

ORACLE

Chapter 2
Datastore Types

* If you specify a PATH attribute, then you can only use a simple file name in the indexed
column. You cannot combine the PATH attribute with a path as part of the file name. If the
files exist in multiple folders or directories, you must leave the PATH attribute unset, and
include the full file name, with PATH, in the indexed column.

e On Windows systems, the files must be located on a local drive. They cannot be on a
remote drive, whether the remote drive is mapped to a local drive letter.

filename_charset

Specifies a valid Oracle character set name (maximum length 30 characters) to be used by
the file datastore for converting file names. In general, the Oracle Al Database can use a
different character set than the operating system. This can lead to problems in finding files
(which may raise DRG-11513 errors) when the indexed column contains characters that are
not convertible to the operating system character set. By default, the file datastore will convert
the file name to WE81SO8859p1 for ASCII platforms or WES8EBCDIC1047 for EBCDIC
platforms.

However, this may not be sufficient for applications with multibyte character sets for both the
database and the operating system, because neither WE81SO8859p1 nor WES8EBCDIC1047
supports multibyte characters. The attribute filename_charset rectifies this problem. If
specified, then the datastore will convert from the database character set to the specified
character set rather than to 1ISO8859 or EBCDIC.

If the filename_charset attribute is the same as the database character set, then the file
name is used as is. If Filename_charset is not a valid character set, then the error
"DRG-10763: value %s is not a valid character set" is raised.

2.3.4.2 FILE_DATASTORE and Security

File and URL datastores enable access to files on the actual database disk. This may be
undesirable when security is an issue since any user can browse the file system that is
accessible to the Oracle user. Any user attempting to create an index using FILE or URL
datastores must have the TEXT DATASTORE ACCESS system privilege granted to the user
directly, or the index creation will fail. Granting the user TEXT DATASTORE ACCESS privilege
indirectly by granting it to the user’s role does not work and the index creation will still fail.
Thus, by default, users are not able to create indexes that use the FILE or URL datastores.
Granting TEXT DATASTORE ACCESS to PUBLIC gives any user the privilege to index either an
arbitrary file in the file system in the case of FILE datastore and an arbitrary URL in the case of
URL datastore and is not recommended.

For example, the following statement grants TEXT DATASTORE ACCESS to the user SCOTT:

grant TEXT DATASTORE ACCESS to SCOTT;

The CREATE INDEX operation will fail when a user that does not have TEXT DATASTORE
ACCESS privilege tries to create an index on a FILE or URL datastore. For example:

CREATE INDEX myindex ON mydocument(TEXT) INDEXTYPE IS ctxsys.context
PARAMETERS("DATASTORE ctxsys.file_datastore®)

In this case, if the user does not have the TEXT DATASTORE ACCESS privilege granted directly to
it, then index creation will fail and returns an error. For users who have the TEXT DATASTORE
ACCESS privilege, the index creation will proceed normally.

The user’s privilege is checked any time the datastore is accessed. This includes index
creation, index sync, and calls to document services, such as CTX_DOC.HIGHLIGHT.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 123

ORACLE

Chapter 2
Datastore Types

2.3.4.3 FILE_DATASTORE Example

This example creates a file datastore preference called COMMON_DIR that has a path of /mydocs:

begin
ctx_ddl.create_preference("COMMON_DIR", "FILE_DATASTORE");
ctx_ddl.set_attribute("COMMON_DIR", "PATH","/mydocs”);
end;

When you populate the table mytable, you need only insert file names. The path attribute tells
the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555, "first.txt");

insert into mytable values(111556, "second.txt");

commit;

Create the index as follows:

create index myindex on mytable(docs)
indextype is ctxsys.context
parameters ("datastore COMMON_DIR™);

2.3.5 DIRECTORY_DATASTORE

Use the DIRECTORY_DATASTORE type during indexing to access the text stored in files which can
be accessed through Oracle directory objects.

Starting with Oracle Database 19c, the Oracle Text type FILE_DATASTORE is deprecated. Use
DIRECTORY_DATASTORE instead.

Oracle recommends that you replace FILE_DATASTORE text indexes with the
DIRECTORY_DATASTORE index type, which is available starting with Oracle Database 19c.
DIRECTORY_DATASTORE provides greater security because it enables file access to be based on
directory objects.

A directory object specifies an alias for a directory on the server file system where external
binary file LOBs (BFILES) and external table data are located. When you use
DIRECTORY_DATASTORE type, another PDB user can not access directory objects in your PDB
without read access to the directory objects.

Use the DIRECTORY_DATASTORE type to use an Oracle directory object as an attribute for the
CTX_DDL.SET_ATTRIBUTE procedure. You must have read access to the Oracle directory object
to access the files stored within the directory. If you have access, then during index creation,
you can use the path stored in the Oracle directory object to access the files stored in the file
system.

o DIRECTORY_DATASTORE Attributes
« DIRECTORY_DATASTORE Example

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 123

ORACLE

@® Note

Chapter 2
Datastore Types

» To create an Oracle directory object, you must have the CREATE ANY DIRECTORY
privilege. Typically, a system administrator user creates the directory and provides
read access to the directory for an Oracle Text user.

e DIRECTORY_DATASTORE can be used with a context index on CHAR datatype column
only if the file name fills the column.

2.3.5.1 DIRECTORY_DATASTORE Attributes

DIRECTORY_DATASTORE has the following attributes:

Table 2-5 DIRECTORY_DATASTORE Attributes

Attribute

Attribute Values

directory

filename_charset

Specify the name of the directory object where the data to be indexed
is stored. The default is NULL .

If you have access to the Oracle directory object, then you can also
access the files in its sub-directories.

Specify a valid Oracle character set name (maximum length 30
characters) to be used by the directory datastore for converting file
names.

In general, the Oracle Al Database can use a different character set
than the operating system. This can lead to problems in finding files
(which may raise DRG-11513 errors) when the indexed column
contains characters that are not convertible to the operating system
character set. By default, the directory datastore will convert the file
name to WE8IS0O8859p1 for ASCII platforms or WESEBCDIC1047 for
EBCDIC platforms.

However, this may not be sufficient for applications with multibyte
character sets for both the database and the operating system,
because neither WE81SO8859p1 nor WESBEBCDIC1047 supports
multibyte characters. The attribute Filename_charset rectifies this
problem. If specified, then the datastore will convert from the database
character set to the specified character set rather than to 1ISO8859 or
EBCDIC.

If the Filename_charset attribute is the same as the database
character set, then the file name is used as is. If filename_charset
is not a valid character set, then the error "DRG-10763: value %s is not
a valid character set" is raised.

2.3.5.2 DIRECTORY_DATASTORE Example

This example shows you how to create an index with DIRECTORY_DATASTORE type by securely
accessing files under an Oracle directory object.

Create an Oracle directory object to store the path of the files. You must have the CREATE ANY
DIRECTORY privilege to create an Oracle directory object.

create directory myhome as "directory_path®;

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 123

ORACLE

Chapter 2
Datastore Types

Create a directory datastore preference called MYDS and set the directory attribute with myhome,
which is the Oracle directory object:

exec ctx_ddl.create_preference(*MYDS®, "DIRECTORY_DATASTORE")
exec ctx_ddl.set_attribute(*MYDS", "DIRECTORY", "myhome™)

Create a table named mytable and populate it with file names only. The directory attribute
tells the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555, "first.txt");
insert into mytable values(111556, "second.txt");

Create the index as follows:

create index myindex on mytable(docs)
indextype is ctxsys.context
parameters ("datastore MYDS");

2.3.6 URL_DATASTORE

Use the URL_DATASTORE type for text stored in files on the World Wide Web (accessed through
HTTP or FTP) and local file system (accessed through the file protocol).

Store each URL in a single text field.

@® Note

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated.
Use NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed
through HTTP or FTP), and for text stored in local file system files (accessed through
the file protocol). It is replaced with NETWORK _DATASTORE, which uses ACLs to allow
access to specific servers. This change aligns Oracle Text more closely with the
standard operating and security model for accessing URLs from the database.

« URL_DATASTORE URL Syntax
* URL_DATASTORE Attributes
* URL_DATASTORE and Security
« URL_DATASTORE Example

2.3.6.1 URL_DATASTORE URL Syntax

The syntax of a URL you store in a text field is as follows (with brackets indicating optional
parameters):

[URL:]<access_scheme>://<host_name>[:<port_number>]/[<url_path>]

The access_scheme string can be either ftp, http, or file. For example:

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 123

ORACLE Chapter 2
Datastore Types

http://mycomputer.us.example.com/home._html

® Note

The login:password@ syntax within the URL is supported only for the ftp access
scheme.

Because this syntax is partially compliant with the RFC 1738 specification, the following
restriction holds for the URL syntax: The URL must contain only printable ASCII characters.
Non-printable ASCII characters and multibyte characters must be escaped with the %xx
notation, where xx is the hexadecimal representation of the special character.

2.3.6.2 URL_DATASTORE Attributes

URL_DATASTORE has the following attributes:

Table 2-6 URL_DATASTORE Attributes

Attribute Attribute Value

timeout The value of this attribute is ignored. This is provided for backward
compatibility.

maxthreads The value of this attribute is ignored. URL_DATASTORE is single-threaded.
This is provided for backward compatibility.

urlsize The value of this attribute is ignored. This is provided for backward
compatibility.

maxurls The value of this attribute is ignored. This is provided for backward
compatibility.

maxdocsize The value of this attribute is ignored. This is provided for backward
compatibility.

http_proxy Specify the host name of http proxy server. Optionally specify port number

with a colon in the form hostname:port.

ftp_proxy Specify the host name of ftp proxy server. Optionally specify port number
with a colon in the form hostname:port.

Nno_proxy Specify the domain for no proxy server. Use a comma-delimited string of up
to 16 domain names.

timeout
The value of this attribute is ignored. This is provided for backward compatibility.

maxthreads
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is provided for
backward compatibility.

urlsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxdocsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxurls
The value of this attribute is ignored. This is provided for backward compatibility.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 123

ORACLE

Chapter 2
Datastore Types

http_proxy

Specify the fully qualified name of the host computer that serves as the HTTP proxy (gateway)
for the computer on which Oracle Text is installed. You can optionally specify port number with
a colon in the form hostname:port.

You must set this attribute if the computer is in an intranet that requires authentication through
a proxy server to access Web files located outside the firewall.

ftp_proxy

Specify the fully qualified name of the host computer that serves as the FTP proxy (gateway)
for the server on which Oracle Text is installed. You can optionally specify a port number with
a colon in the form hostname:port.

This attribute must be set if the computer is in an intranet that requires authentication through
a proxy server to access Web files located outside the firewall.

no_proxy

Specify a string of domains (up to sixteen, separated by commas) that are found in most, if not
all, of the computers in your intranet. When one of the domains is encountered in a host
name, no request is sent to the server(s) specified for ftp_proxy and http_proxy. Instead, the
request is processed directly by the host computer identified in the URL.

For example, if the string us.example.com, uk.example.com is entered for no_proxy, any URL
requests to computers that contain either of these domains in their host names are not
processed by your proxy server(s).

2.3.6.3 URL_DATASTORE and Security

For a discussion of how to control file access security for file and URL datastores, refer to
"FILE_DATASTORE and Security".

2.3.6.4 URL_DATASTORE Example

This example creates a URL_DATASTORE preference called URL_PREF for which the http_proxy,
no_proxy, and timeout attributes are set. The defaults are used for the attributes that are not
set.

begin

ctx_ddl.create_preference("URL_PREF*", "URL_DATASTORE");
ctx_ddl.set_attribute("URL_PREF", "HTTP_PROXY ", "www-proxy.us.example_com®);
ctx_ddl.set_attribute("URL_PREF", *NO_PROXY", "us.example.com®);
ctx_ddl.set_attribute("URL_PREF", "Timeout","300");

end;

Create the table and insert values into it:

create table urls(id number primary key, docs varchar2(2000));
insert into urls values(111555, "http://context.us.example.com®);
insert into urls values(111556, "http://www.sun.com");

commit;

To create the index, specify URL_PREF as the datastore:

create index datastores_text on urls (docs)
indextype is ctxsys.context
parameters ("Datastore URL_PREF");

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 123

ORACLE

Chapter 2
Datastore Types

2.3.7 NETWORK_DATASTORE

Use the NETWORK_DATASTORE type during indexing to access the files stored on the World Wide
Web through HTTP and HTTPS.

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated. Use
NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed through HTTP
or FTP), and for text stored in local file system files (accessed through the file protocol). It is
replaced with NETWORK_DATASTORE, which uses ACLs to allow access to specific servers. This
change aligns Oracle Text more closely with the standard operating and security model for
accessing URLs from the database.

When you use NETWORK_DATASTORE type, you can access a URL after the website certificate is
verified in Oracle wallet and ACL package.

FTP and file protocol are not supported in NETWORK_DATASTORE type. To access the files stored
in the local file system, use the DIRECTORY_DATASTORE type.

During index creation, the URL stored in the datastore is used to access the files stored in the
World Wide Web. The access is granted after verifying the website certificate in Oracle wallet.

« NETWORK_DATASTORE URL Syntax
* NETWORK_DATASTORE Attributes
* NETWORK_DATASTORE Example

@® Note

NETWORK_DATASTORE can be used with a context index on CHAR datatype column only if
the file name fills the column.

2.3.7.1 NETWORK_DATASTORE URL Syntax

The syntax of a URL you store in a datastore is as follows (with brackets indicating optional
parameters):

[URL:]<access_scheme>://<host_name>[:<port_number>]/[<url_path>]

The access_scheme string can be either http or https. For example:

https://mycomputer.us.example.com/home._html

Because this syntax is partially compliant with the RFC 1738 specification, the following
restriction holds for the URL syntax: The URL must contain only printable ASCII characters.
Non-printable ASCII characters and multibyte characters must be escaped with the %xx
notation, where xx is the hexadecimal representation of the special character.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 17 of 123

ORACLE

Chapter 2
Datastore Types

2.3.7.2 NETWORK_DATASTORE Attributes

Use these attributes with the NETWORK_DATASTORE type during indexing, for text stored in files
on the internet or in local file system files.

Table 2-7 NETWORK_DATASTORE Attributes

Attribute

Attribute Value

timeout

http_proxy

https_proxy

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

Specify the time out value for all future HTTP requests that use the
UTL_HTTP package to read the HTTP response from a web or proxy server.
This attribute can be used to avoid being blocked by busy web servers or
heavy network traffic when retrieving web pages.

The default value is 30 seconds. The minimum value is 1 second and the
maximum value is 3600 seconds.

Specify the fully qualified name of the host computer that serves as the
HTTP proxy (gateway) for the computer on which Oracle Text is installed.
You can optionally specify port number with a colon in the form
hostname:port.

You must set this attribute if the computer is in an intranet that requires
authentication through a proxy server to access Web files located outside
the firewall.

For HTTP network connection, an ACL package is required so that the
UTL_HTTP package can interact with the external host. You must have
EXECUTE privilege for the DBMS_NETWORK_ACL_ADMIN package to grant the
CONNECT privilege on the ACL to a user.

Specify the fully qualified name of the host computer that serves as the
HTTPS proxy (gateway) for the computer on which Oracle Text is installed.
You can optionally specify port number with a colon in the form
hostname:port.

You must set this attribute if the computer is in an intranet that requires
authentication through a proxy server to access Web files located outside
the firewall.

For HTTPS network connection, in addition to the ACL package, an Oracle
wallet is also required. You can create an Oracle wallet using the orapki
command-line utility.

To create an Oracle wallet using the orapki command-line utility, use the
orapki wallet create command:

orapki wallet create -wallet wall et | ocation -pwd
password -auto_login

To add a trusted certificate to an Oracle wallet, use the orapki wallet
add command:

orapki wallet add -wallet wal |l et | ocation -trusted cert
-cert certificate_|location -pwd password

Use the UTL_HTTP.SET_WALLET procedure to configure the request to hold
the wallet:

EXEC UTL_HTTP.SET_WALLET(wal | et _I ocati on, password);

October 13, 2025
Page 18 of 123

ORACLE Chapter 2
Datastore Types

Table 2-7 (Cont.) NETWORK_DATASTORE Attributes

|
Attribute Attribute Value

no_proxy Specify a string of domains (up to sixteen, separated by commas) that are
found in most, if not all, of the computers in your intranet. When one of the
domains is encountered in a host name, no request is sent to the server(s)
specified for http_proxy and https_proxy. Instead, the request is
processed directly by the host computer identified in the URL.
For example, if the string us.example.com, uk.example.com is entered for
no_proxy, any URL requests to computers that contain either of these
domains in their host names are not processed by your proxy server(s).

Related Topics
e DBMS_NETWORK_ACL_ADMIN
e UTL_HTTP

2.3.7.3 NETWORK_DATASTORE Example

This example shows you how to configure HTTP and HTTPS network connections and create
an index based on the NETWORK_DATASTORE type to access the files stored on the World Wide
Web.

Create a user and grant the necessary privileges:

CREATE USER myuser IDENTIFIED by password;
GRANT connect, resource, unlimited tablespace, ctxapp to myuser;

Append an access control entry (ACE) to the ACL of a network host. The ACL controls access
to the given host from the database and the ACE specifies the privileges granted to or denied
from the specified principal. When host is specified as "*", you can access any host through
the network datastore which uses UTL_HTTP package internally to access data from websites
through HTTP.

begin
DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
host => ***,

ace => xs$ace_type(privilege_list => xs$name_list("connect”, "resolve"),
principal_name => "MYUSER",
principal_type => xs_acl.ptype_db));
end;
/

Create a network datastore preference called NETWORK_PREF:

begin

ctx_ddl.create_preference("NETWORK_PREF®, *"NETWORK_DATASTORE");
ctx_ddl.set_attribute("NETWORK_PREF", "HTTP_PROXY", "www-
proxy.us.example.com®);
ctx_ddl.set_attribute("NETWORK_ PREF®, *NO_PROXY", "us.example.com®);
ctx_ddl.set_attribute("NETWORK_PREF*®, "TIMEOUT","300%);

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 123

ORACLE Chapter 2
Datastore Types

end;

Create a table named mytable and populate it with URLSs:

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555, "http://context.example.com®);
insert into mytable values(111556, "http://www.johndoe.com™);

Create the index as follows:

create index myindex on mytable(docs)
indextype is ctxsys.context
parameters ("datastore NETWORK PREF");

@ See Also

e Oracle Al Database PL/SQL Packages and Types Reference for more information
about DBMS_NETWORK_ACL_ADMIN package

* Oracle Al Database PL/SQL Packages and Types Reference for more information
about UTL_HTTP package

2.3.8 USER_DATASTORE

Use the USER_DATASTORE type to define stored procedures that synthesize documents during
indexing. For example, a user procedure might synthesize author, date, and text columns into
one document to have the author and date information be part of the indexed text.

e USER_DATASTORE Attributes

* USER_DATASTORE Constraints

* USER_DATASTORE Editing Procedure after Indexing
e USER_DATASTORE with CLOB Example

e USER_DATASTORE with BLOB_LOC Example

2.3.8.1 USER_DATASTORE Attributes

USER_DATASTORE has the following attributes:

Table 2-8 USER_DATASTORE Attributes
]

Attribute Attribute Value

procedure Specify the procedure that synthesizes the document to be indexed.
This procedure can be owned by any user and must be executable by the index
owner.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 20 of 123

ORACLE

Chapter 2
Datastore Types

Table 2-8 (Cont.) USER_DATASTORE Attributes

|
Attribute Attribute Value

output_type Specify the data type of the second argument to procedure. Valid values are
CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHARZ2. The default is CLOB.

When you specify CLOB_LOC, BLOB_LOC, you indicate that no temporary CLOB or
BLOB is needed, because your procedure copies a locator to the IN/OUT second
parameter.

procedure

Specify the name of the procedure that synthesizes the document to be indexed. This
specification must be in the form PROCEDURENAME or PACKAGENAME . PROCEDURENAME. You can
also specify the schema owner name.

The procedure you specify must have two arguments defined as follows:

procedure (r IN ROWID, c IN OUT NOCOPY output_type)

The first argument r must be of type ROWID. The second argument ¢ must be of the type
specified in the output_type attribute. NOCOPY is a compiler hint that instructs Oracle Text to
pass parameter c by reference if possible.

@® Note

Procedure names should not include the semicolon character.

The stored procedure is called once for each row indexed. Given the rowid of the current row,
procedure must write the text of the document into its second argument, whose type you
specify with output_type.

2.3.8.2 USER_DATASTORE Constraints

The following constraints apply to procedure:

e It can be owned by any user, but the user must have database permissions to execute
procedure correctly

e It must be executable by the index owner

e |t must not enter DDL or transaction control statements, like COMMIT

2.3.8.3 USER_DATASTORE Editing Procedure after Indexing

When you change or edit the stored procedure, indexes based on it will not be notified, so you
must manually re-create such indexes. So if the stored procedure makes use of other columns,
and those column values change, the row will not be re-indexed. The row is re-indexed only
when the indexed column changes.

output_type
Specify the datatype of the second argument to procedure. You can use either CLOB, BLOB,
CLOB_LOC, BLOB_LOC, or VARCHAR2.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 21 of 123

ORACLE Chapter 2
Datastore Types

2.3.8.4 USER_DATASTORE with CLOB Example

Consider a table in which the author, title, and text fields are separate, as in the articles table
defined as follows:

create table articles(
id number,
author varchar2(80),
title varchar2(120),
text clob);

The author and title fields are to be part of the indexed document text. Assume user appowner
writes a stored procedure with the user datastore interface that synthesizes a document from
the text, author, and title fields:

create procedure myproc(rid in rowid, tlob in out clob nocopy) is
begin
for cl in (select author, title, text from articles
where rowid = rid)
loop

dbms_lob.writeappend(tlob, length(cl.title), cl.title);
dbms_lob.writeappend(tlob, length(cl.author), cl.author);
dbms_lob.writeappend(tlob, length(cl.text), cl.text);

end loop;
end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all the article's
columns into the temporary CLOB. The for loop executes only once.

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference("myud”, “user_datastore®);
ctx_ddl.set_attribute("myud®, "procedure®, "myproc®);
ctx_ddl.set_attribute("myud®, "output_type®, "CLOB");

end;

When appowner creates the index on articles(text) using this preference, the indexing
operation sees author and title in the document text.

2.3.8.5 USER_DATASTORE with BLOB_LOC Example

The following procedure might be used with OUTPUT_TYPE BLOB_LOC:

procedure myds(rid in rowid, dataout in out nocopy blob)
is
I_dtype varchar2(10);
1_pk number;
begin
select dtype, pk into 1_dtype, I_pk from mytable where rowid = rid;
if (I_dtype = "MOVIE") then
select movie_data into dataout from movietab where fk = I_pk;
elsif (I_dtype = "SOUND") then
select sound_data into dataout from soundtab where fk

1_pk;

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 22 of 123

ORACLE

Chapter 2
Datastore Types

end if;
end;

The user appowner creates the preference as follows:
begin

ctx_ddl.create_preference("myud®, “user_datastore®);
ctx_ddl.set_attribute("myud®, "procedure®”, "myproc®);

ctx_ddl.set_attribute("myud®, "output_type", "blob_loc");

end;

2.3.9 NESTED_DATASTORE

Use the nested datastore type to index documents stored as rows in a nested table.

e NESTED_ DATASTORE Attributes
e NESTED DATASTORE Example

2.3.9.1 NESTED_DATASTORE Attributes

NESTED DATASTORE has the following attributes:

Table 2-9 NESTED_DATASTORE Attributes

|
Attribute Attribute Value

nested_column Specify the name of the nested table column. This attribute is required. Specify
only the column name. Do not specify schema owner or containing table name.

nested_type Specify the type of nested table. This attribute is required. You must provide
owner name and type.

nested_lineno Specify the name of the attribute in the nested table that orders the lines. This
is like DETAIL_LINENO in detail datastore. This attribute is required.

nested_text Specify the name of the column in the nested table type that contains the text
of the line. This is like DETAIL_TEXT in detail datastore. This attribute is
required. LONG column types are not supported as nested table text columns.

binary Specify FALSE for Oracle Text to automatically insert a newline character when
synthesizing the document text. If you specify TRUE, Oracle Text does not do
this. This attribute is not required. The default is FALSE.

When using the nested table datastore, you must index a dummy column, because the
extensible indexing framework disallows indexing the nested table column. See
"NESTED DATASTORE Example".

DML on the nested table is not automatically propagated to the dummy column used for
indexing. For DML on the nested table to be propagated to the dummy column, your
application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nested_text column.

During validation, Oracle Text checks that the type exists and that the attributes you specify for
nested_lineno and nested_text exist in the nested table type. Oracle Text does not check
that the named nested table column exists in the indexed table.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 23 of 123

ORACLE Chapter 2
Datastore Types

2.3.9.2 NESTED_DATASTORE Example

This section shows an example of using the NESTED DATASTORE type to index documents stored
as rows in a nested table.

* Create the Nested Table

* Insert Values into Nested Table

* Create Nested Table Preferences

* Create Index on Nested Table

e Query Nested Datastore

2.3.9.2.1 Create the Nested Table

The following code creates a nested table and a storage table mytab for the nested table:

create type nt_rec as object (
Ino number, -- line number
Itxt varchar2(80) -- text of line

);

create type nt_tab as table of nt_rec;

create table mytab (
id number primary key, -- primary key
dummy char(1), -- dummy column for indexing
doc nt_tab -- nested table

nested table doc store as myntab;

2.3.9.2.2 Insert Values into Nested Table

The following code inserts values into the nested table for the parent row with ID equal to 1.

insert into mytab values (1, null, nt_tab());

insert into table(select doc from mytab where id=1) values (1, "the dog");
insert into table(select doc from mytab where id=1) values (2, "sat on mat *);
commit;

2.3.9.2.3 Create Nested Table Preferences

The following code sets the preferences and attributes for the NESTED _DATASTORE according to
the definitions of the nested table type nt_tab and the parent table mytab:

begin
-- create nested datastore pref
ctx_ddl.create_preference("ntds”", "nested_datastore®);

-- nest tab column in main table
ctx_ddl.set_attribute("ntds", "nested_column®, “doc");

-- nested table type
ctx_ddl.set_attribute("ntds", "nested_type", "scott.nt_tab");

-- lineno column in nested table
ctx_ddl.set_attribute("ntds”", "nested_lineno","Ino");

--text column in nested table

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 24 of 123

ORACLE Chapter 2
Filter Types

ctx_ddl.set_attribute("ntds”, "nested_text", "ltxt");
end;

2.3.9.2.4 Create Index on Nested Table

The following code creates the index using the nested table datastore:

create index myidx on mytab(dummy) -- index dummy column, not nest table
indextype is ctxsys.context parameters ("datastore ntds®);

2.3.9.2.5 Query Nested Datastore

The following select statement queries the index built from a nested table:

select * from mytab where contains(dummy, "dog and mat®)>0;
-- returns document 1, because it has dog in line 1 and mat in line 2.

2.4 Filter Types

Use the filter types to create preferences that determine how text is filtered for indexing. Filters
enable word processor documents, formatted documents, plain text, HTML, and XML
documents to be indexed.

For formatted documents, Oracle Text stores documents in their native format and uses filters
to build interim plain text or HTML versions of the documents. Oracle Text indexes the words
derived from the plain text or HTML version of the formatted document.

To create a filter preference, you must use one of the filter types shown in Table 2-10.

Table 2-10 Filter Types

Filter When Used

AUTO_FILTER Auto filter for filtering formatted documents.

NULL FILTER No filtering required. Use for indexing plain text, HTML, or XML
documents.

MAIL_FILTER Use the MAIL_FILTER to transform RFC-822, RFC-2045 messages in to
text that can be indexed.

USER_FILTER User-defined external filter to be used for custom filtering.

PROCEDURE_FILTER User-defined stored procedure filter to be used for custom filtering.

2.4.1 AUTO_FILTER

The AUTO_FILTER is a universal filter that filters most document formats, including PDF and
Microsoft Word documents. Use it for indexing both single-format and mixed-format columns.
This filter automatically bypasses plain text, HTML, XHTML, SGML, and XML documents.

* AUTO_FILTER Attributes

* AUTO_FILTER and Indexing Formatted Documents

* AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
* AUTO_FILTER and Character Set Conversion With AUTO_FILTER

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 25 of 123

ORACLE Chapter 2
Filter Types

@ See Also

Oracle Text Supported Document Formats, for a list of the formats supported by
AUTO_FILTER, and to learn more about how to set up your environment

@® Note

The AUTO_FILTER replaces the INSO_FILTER, which has been deprecated. While every
effort has been made to ensure maximal backward compatibility between the two
filters, so that applications using INSO_FILTER will continue to work without
modification, some differences may arise. Users should therefore use AUTO_FILTER in
their new programs and, when possible, replace instances of INSO_FILTER, and any
system preferences or constants that make use of it, in older applications.

2.4.1.1 AUTO_FILTER Attributes

The AUTO_FILTER preference has the attributes shown in Table 2-11.

Table 2-11 AUTO_FILTER Attributes

|
Attribute Attribute Value

timeout Specify the AUTO_FILTER timeout in seconds. Use a number between 0
and 42,949,672. Default is 120. Setting this value to 0 disables the feature.

How this wait period is used depends on how you set timeout_type.

This feature is disabled for rows for which the corresponding charset and
format column cause the AUTO_FILTER to bypass the row, such as when
format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation from waiting
indefinitely on a hanging filter operation.

timeout_type Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT seconds if
output from Outside In HTML Export has increased. The operation
terminates for the document if output has not increased. An error is
recorded in the CTX_USER_INDEX_ERRORS view and Oracle Text moves to
the next document row to be indexed.

Specify FIXED to terminate the Outside In HTML Export processing after
TIMEOUT seconds regardless of whether filtering was progressing normally
or just hanging. This value is useful when indexing throughput is more
important than taking the time to successfully filter large documents.

output_formatting Setting this attribute has no effect on filter performance or filter output. It is
maintained for backward compatibility.

2.4.1.2 AUTO_FILTER and Indexing Formatted Documents

Use AUTO_FILTER to index a text column containing formatted documents, such as Microsoft
Word. This filter automatically detects the document format.

Use the CTXSYS.AUTO_FILTER system-defined preference in the parameter clause as follows:

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 26 of 123

ORACLE Chapter 2
Filter Types

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ("datastore ctxsys.directory datastore
filter ctxsys.auto_filter®);

@® Note

The CTXSYS_.AUTO_FILTER replaces CTXSYS. INSO_FILTER, which has been deprecated.
Programs making use of CTXSYS. INSO_FILTER should still work. New programs should
use CTXSYS.AUTO_FILTER.

2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns

The AUTO_FILTER can index mixed-format columns, automatically bypassing plain text, HTML,
and XML documents. However, if you prefer not to depend on the built-in bypass mechanism,
you can explicitly tag your rows as text and cause the AUTO_FILTER to ignore the row and not
process the document in any way.

A mixed-format column is a text column containing more than one document format, such as a
column that contains Microsoft Word, PDF, plain text, and HTML documents.

The format column in the base table enables you to specify the type of document contained in
the text column. You can specify the following document types: TEXT, BINARY, and I1GNORE.
During indexing, the AUTO_FILTER ignores any document typed TEXT, assuming the charset
column is not specified. The difference between a document with a TEXT format column type
and one with an IGNORE type is that the TEXT document is indexed, but ignored by the filter,
while the IGNORE document is not indexed at all. Use 1GNORE to overlook documents such as
image files, or documents in a language that you do not want to index. IGNORE can be used
with any filter type.

To set up the AUTO_FILTER bypass mechanism, you must create a format column in your base
table.

For example:

create table hdocs (
id number primary key,
fmt varchar2(10),
text varchar2(80)

);

Assuming you are indexing mostly Word documents, you specify BINARY in the format column
to filter the Word documents. Alternatively, to have the AUTO_FILTER ignore an HTML
document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one
format as BINARY and the other TEXT:

insert into hdocs values(l1, "binary®, "/docs/myword.doc*®);
insert in hdocs values (2, "text®, "/docs/index_html®);
commit;

To create the index, use CREATE INDEX and specify the format column name in the parameter
string:

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 27 of 123

ORACLE Chapter 2
Filter Types

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ("datastore ctxsys.directory datastore
filter ctxsys.auto_filter
format column fmt");

If you do not specify TEXT or BINARY for the format column, BINARY is used.

® Note
You need not specify the format column in CREATE INDEX when using the AUTO_FILTER.

2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER

The AUTO_FILTER converts documents to the database character set when the document
format column is set to TEXT. In this case, the AUTO_FILTER looks at the charset column to
determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed
through without any character set conversion.

@® Note

You need not specify the charset column when using the AUTO_FILTER.

2.4.2 NULL_FILTER

Use the NULL_FILTER type when plain text or HTML is to be indexed and no filtering needs to
be performed. NULL_FILTER has no attributes.

NULL_FILTER and Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the NULL_FILTER in
your filter preference.

For example, to index an HTML document set, specify the system-defined preferences for
NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context

parameters("filter ctxsys.null_filter
section group ctxsys.html_section_group®);

@ See Also

For more information on section groups and indexing HTML documents, see "Section
Group Types".

2.4.3 MAIL_FILTER

Use MAIL_FILTER to transform RFC-822, RFC-2045 messages into indexable text.

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 28 of 123

ORACLE

Chapter 2
Filter Types

The following limitations apply to the input:

e Documents must be US-ASCII

e Lines must not be longer than 1024 bytes

e Documents must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by the filter
without error. Others may result in a fetch-time or filter-time error.

* MAIL_FILTER Attributes
* MAIL_FILTER Behavior

« About the Mail Filter Configuration File

* Mail Filter Example

@ Note

Starting with Oracle Database 18c, the use of MAIL_FILTER in Oracle Text is
deprecated. Before adding email to the database, filter e-mails to indexable plain text,
or to HTML.MAIL_FILTER is based on an obsolete email protocol, RFC-822. Modern
email systems do not support RFC-822. There is no replacement.

2.4.3.1 MAIL_FILTER Attributes

The MAIL_FILTER has the attributes shown in Table 2-12.

Table 2-12 MAIL_FILTER Attributes

Attribute

Attribute Value

INDEX_FIELDS

AUTO_FILTER_TIMEOUT

AUTO_FILTER_OUTPUT_FORMATTING

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

Specify a colon-separated list of fields to preserve in the output.
These fields are transformed to tag markup. For example, if
INDEX_FIELDS is set to "FROM":

From: Scott Tiger

becomes:

<FROM>Scott Tiger</FROM>

Only top-level fields are transformed in this way.

Specify a timeout value for the AUTO_FILTER filtering invoked by
the mail filter. Default is 60. (Replaces the INSO_TIMEOUT attribute
and is backward compatible with INSO_TIMEOUT.)

Specify either TRUE or FALSE. Default is TRUE.

This attribute replaces the previous INSO_OUTPUT_FORMATTING
attribute. However, it has no effect in the current release.

October 13, 2025
Page 29 of 123

ORACLE Chapter 2
Filter Types

Table 2-12 (Cont.) MAIL_FILTER Attributes

|
Attribute Attribute Value

PART_FIELD_STYLE Specify how fields occurring in lower-level parts and identified by
the INDEX_FIELDS attribute should be transformed. The fields of
the top-level message part identified by INDEX_FIELDS are always
transformed to tag markup (see the previous description of
INDEX_FIELDS); PART_FIELD_STYLE controls the transformation
of subsequent parts; for example, attached e-mails.

Possible values include IGNORE (the default), in which the part
fields are not included for indexing; TAG, in which the part field
names are transformed to tags, as occurs with top-level part fields;
FIELD, in which the part field names are preserved as fields, not as
tags; and TEXT, in which the part field names are eliminated and
only the field content is preserved for indexing. See "Mail_Filter
Example" for an example of how PART_FIELD_STYLE works.

2.4.3.2 MAIL_FILTER Behavior

This filter behaves in the following way for each document:

* Read and remove header fields
» Decode message body if needed, depending on Content-transfer-encoding field

* Take action depending on the Content-Type field value and the user-specified behavior
specified in a malil filter configuration file. (See "About the Mail Filter Configuration File".)
The possible actions are:

— produce the body in the output text (INCLUDE). If no character set is encountered in the
INCLUDE parts in the Content-Type header field, then Oracle defaults to the value
specified in the character set column in the base table. Name your populated character
set column in the parameter string of the CREATE INDEX command.

— AUTO_FILTER the body contents (AUTO_FILTER directive).
— remove the body contents from the output text (1GNORE)

* If no behavior is specified for the type in the configuration file, then the defaults are as
follows:

text/*: produce body in the output text
application/*: AUTO_FILTER the body contents

image/*, audio/*, video/*, model/*: ignore

Multipart messages are parsed, and the mail filter applied recursively to each part. Each
part is appended to the output.

All text produced will be charset-converted to the database character set, if needed.

2.4.3.3 About the Mail Filter Configuration File

The MAIL_FILTER filter makes use of a mail filter configuration file, which contains directives
specifying how a mail document should be filtered.

The mail filter configuration file is a editable text file. Here you can override default behavior for
each Content-Type. The configuration file also contains IANA-to-Oracle Globalization Support
character set name mappings.

Oracle Text Reference
G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 30 of 123

ORACLE

Chapter 2
Filter Types

The location of the file must be in ORACLE_HOME/ctx/config. The name of the file to use is stored
in the new system parameter MAIL_FILTER_CONFIG_FILE. On install, this is set to drmailfl.txt,
which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid overwrite by
the installation of a new version or patch set. The mail filter configuration file should be in the
database character set.

Mail File Configuration File Structure

The file has two sections, BEHAVIOR and CHARSETS. Indicate the start of the behavior section as
follows:

[behavior]

Each line following starts with a mime type, then whitespace, then behavior specification. The
MIME type can be a full TYPE/SUBTYPE or just TYPE, which will apply to all subtypes of that type.
TYPE/SUBTYPE specification overrides TYPE specification, which overrides default behavior.
Behavior can be INCLUDE, AUTO_FILTER, or IGNORE (see "MAIL_FILTER Behavior" for
definitions). For instance:

application/zip IGNORE
application/msword AUTO_FILTER
model 1GNORE

You cannot specify behavior for "multipart” or "message” types. If you do, such lines are
ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the # symbol.
The charset mapping section begins with

[charsets]

Lines consist of an IANA name, then whitespace, then an Oracle Globalization Support charset
name, like:

US-ASCII US7ASCI
1SO-8859-1 WE81S08859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents indexed after
that point. You must flush the shared pool after changing the file.

2.4.3.4 Mail_Filter Example

Suppose there is an e-mail with the following form, in which other e-mails with different subject
lines are attached to this e-mail:

To: somebody@someplace
Subject: mainheader
Content-Type: multipart/mixed

Content-Type: text/plain
X-Ref: some value
Subject: subheader 1

Content-Type: text/plain
X-Control: blah blah blah

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 31 of 123

ORACLE’

Chapter 2
Filter Types

Subject: subheader 2

Set INDEX_FIELDS to be "Subject" and, initially, PART_FIELD_STYLE to IGNORE.

CTX_DDL.CREATE_PREFERENCE("my_mail filt®, *mail_filter");
CTX_DDL_SET_ATTRIBUTE(my_mail_filt", "INDEX_FILES®, "subject”);
CTX_DDL.SET ATTRIBUTE ("my_mail_filt®, "PART FIELD STYLE", "ignore");

Now when the index is created, the file will be indexed as follows:

<SUBJECT>mainheader</SUBJECT>

If PART_FIELD_STYLE is instead set to TAG, this becomes:

<SUBJECT>mainheader</SUBJECT>
<SUBJECT>subheader1</SUBJECT>
<SUBJECT>subheader2</SUBJECT>

If PART_FIELD_STYLE is set to FIELD instead, this is the result:

<SUBJECT>mainheader<SUBJECT>
SUBJECT : subheaderl
SUBJECT : subheader2

Finally, if PART_FIELD_STYLE is instead set to TEXT, then the result is:

<SUBJECT>mainheader</SUBJECT>
subheaderl
subheader?

2.4.4 USER_FILTER

Use the USER_FILTER type to specify an external filter for filtering documents in a column.
This section contains the following topics.

« USER FILTER Attributes
e Using USER FILTER with Charset and Format Columns

e USER FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
e Character Set Conversion with USER_FILTER

* User Filter Example

2.4.4.1 USER_FILTER Attributes

USER_FILTER has the following attribute:

Table 2-13 USER_FILTER Attribute

|
Attribute Attribute Value

command Specify the name of the filter executable.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 32 of 123

ORACLE

Chapter 2
Filter Types

(N

A\ Warning

The USER_FILTER type introduces the potential for security threats. A database user
granted the CTXAPP role could potentially use USER_FILTER to load a malicious
application. Therefore, the DBA must safeguard against any combination of input and
output file parameters that would enable the named filter executable to compromise
system security.

\ J

command

Specify the executable for the single external filter that is used to filter all text stored in a
column. If more than one document format is stored in the column, then the external filter
specified for command must recognize and handle all such formats.

The executable that you specify must exist in the $0RACLE_HOME/ctx/bin directory on UNIX,
and in the %ORACLE_HOME%/ctx/bin directory on Windows.

You must create your user-filter command with two parameters:

e The first parameter is the name of the input file to be read.
* The second parameter is the name of the output file to be written to.

If all the document formats are supported by AUTO_FILTER, then use AUTO_FILTER instead of
USER_FILTER, unless additional tasks besides filtering are required for the documents.

2.4.4.2 Using USER_FILTER with Charset and Format Columns

USER_FILTER bypasses documents that do not need to be filtered. Its behavior is sensitive to
the values of the format and charset columns. In addition, USER_FILTER performs character set
conversion according to the charset column values.

2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format

Columns

A mixed-format column is a text column containing more than one document format, such as a
column that contains Microsoft Word, PDF, plain text, and HTML documents.

The USER_FILTER executable can index mixed-format columns, automatically bypassing textual
documents. However, if you prefer not to depend on the built-in bypass mechanism, you can
explicitly tag your rows as text and cause the USER_FILTER executable to ignore the row and
not process the document in any way.

The format column in the base table enables you to specify the type of document contained in
the text column. You can specify the following document types: TEXT, BINARY, and I1GNORE.
During indexing, the USER_FILTER executable ignores any document typed TEXT, assuming the
charset column is not specified. (The difference between a document with a TEXT format
column type and one with an IGNORE type is that the TEXT document is indexed, but ignored by
the filter, while the IGNORE document is not indexed at all. Use IGNORE to overlook documents
such as image files, or documents in a language that you do not want to index. 1GNORE can be
used with any filter type.

To set up the USER_FILTER bypass mechanism, you must create a format column in your base
table. For example:

create table hdocs (
id number primary key,
fmt varchar2(10),

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 33 of 123

ORACLE Chapter 2
Filter Types

text varchar2(80)
);

Assuming you are indexing mostly Word documents, you specify BINARY in the format column
to filter the Word documents. Alternatively, to have the USER_FILTER executable ignore an
HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one
format as BINARY and the other TEXT:

insert into hdocs values(l1, "binary®, "/docs/myword.doc®);
insert into hdocs values(2, "text", "/docs/index.html®);
commit;

Assuming that this file is named upcase.pl, create the filter preference as follows:

ctx_ddl.create_preference

(

preference_name => "USER_FILTER_PREF",
object_name => "USER_FILTER"

);

ctx_ddl.set_attribute ("USER_FILTER_PREF", "COMMAND®, “upcase.pl®);

To create the index, use CREATE INDEX and specify the format column name in the parameter
string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ("datastore ctxsys.directory_datastore
filter "USER_FILTER_PREF*"
format column fmt");

If you do not specify TEXT or BINARY for the format column, BINARY is used.

2.4.4.4 Character Set Conversion with USER_FILTER

The USER_FILTER executable converts documents to the database character set when the
document format column is set to TEXT. In this case, the USER_FILTER executable looks at the
charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed
through without any character set conversion.

2.4.4.5 User Filter Example

The following example shows a Perl script to be used as the user filter. This script converts the
input text file specified in the first argument to uppercase and writes the output to the location
specified in the second argument.

#1/usr/local/bin/perl

open(IN, $ARGV[O]);
open(OUT, ™>"_$ARGV[1]);

while (<IN>)

tr/a-z/A-7/;
print OUT;
}

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 34 of 123

ORACLE’

Chapter 2
Filter Types

close (IN);
close (OUT);

Assuming that this file is named upcase.pl, create the filter preference as follows:

begin
ctx_ddl.create_preference
(
preference_name => "USER_FILTER_PREF",
object_name => "USER_FILTER"

ctx_ddl.set_attribute
("USER_FILTER_PREF", "COMMAND", "upcase.pl®);
end;

Create the index in SQL*Plus as follows:

create index user_filter_idx on user_filter (docs)
indextype is ctxsys.context
parameters ("FILTER USER_FILTER_PREF®);

2.4.5 PROCEDURE_FILTER

Use the PROCEDURE_FILTER type to filter your documents with a stored procedure. The stored
procedure is called each time a document needs to be filtered.

This section contains the following topics.

e PROCEDURE_FILTER Attributes

« PROCEDURE_FILTER Parameter Order

+ PROCEDURE_FILTER Execute Requirements
e PROCEDURE_FILTER Error Handling

« PROCEDURE_FILTER Preference Example

2.4.5.1 PROCEDURE_FILTER Attributes

Table 2-14 lists the attributes for PROCEDURE_FILTER.

Table 2-14 PROCEDURE_FILTER Attributes
]

Attribute Purpose Allowable Values
procedure Name of the filter stored Any procedure. The procedure can be a PL/SQL
procedure. stored procedure.
input_type Type of input argument ~ VARCHAR2, BLOB, CLOB, FILE
for stored procedure.
output_type Type of output argument VARCHAR2, CLOB, FILE
for stored procedure.
rowid_parameter Include rowid parameter? TRUE/FALSE
format_parameter Include format TRUE/FALSE
parameter?
charset_parameter Include charset TRUE/FALSE
parameter?

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 35 of 123

ORACLE Chapter 2
Filter Types

procedure

Specify the name of the stored procedure to use for filtering. The procedure can be a PL/SQL
stored procedure. The procedure can be a safe callout, or call a safe callout.

With the rowid_parameter, format_parameter, and charset_parameter set to FALSE, the
procedure can have one of the following signatures:

PROCEDURE(IN BLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN CLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN VARCHAR, IN OUT NOCOPY CLOB)
PROCEDURE(IN BLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN CLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN VARCHAR2, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN BLOB, IN VARCHAR2)

PROCEDURE(IN CLOB, IN VARCHAR2)

PROCEDURE(IN VARCHAR2, IN VARCHAR2)

The first argument is the content of the unfiltered row, output by the datastore. The second
argument is for the procedure to pass back the filtered document text.
The procedure attribute is mandatory and has no default.

input_type
Specify the type of the input argument of the filter procedure. You can specify one of the
following types:

Type Description

procedure Name of the filter stored procedure.
input_type Type of input argument for stored procedure.
output_type Type of output argument for stored procedure.
rowid_parameter Include rowid parameter?

The input_type attribute is not mandatory. If not specified, then BLOB is the default.

output_type
Specify the type of output argument of the filter procedure. You can specify one of the
following types:

Type Description

CLOB The output argument is IN OUT NOCOPY CLOB. Your procedure
must write the filtered content to the CLOB passed in.

VARCHAR2 The output argument is IN OUT NOCOPY VARCHARZ. Your

procedure must write the filtered content to the VARCHAR2
variable passed in.

FILE The output argument must be IN VARCHAR2. On entering the filter
procedure, the output argument is the name of a temporary file.
The filter procedure must write the filtered contents to this named
file.
Using a FILE output type is useful only when the procedure is a
safe callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, then CLOB is the default.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 36 of 123

ORACLE Chapter 2
Filter Types

rowid_ parameter

When you specify TRUE, the rowid of the document to be filtered is passed as the first
parameter, before the input and output parameters.

For example, with INPUT_TYPE BLOB, OUTPUT_TYPE CLOB, and ROWID_PARAMETER TRUE, the filter
procedure must have the signature as follows:

procedure(in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or tables.
This attribute is not mandatory. The default is FALSE.

format_parameter

When you specify TRUE, the value of the format column of the document being filtered is
passed to the filter procedure before input and output parameters, but after the rowid
parameter, if enabled.

Specify the name of the format column at index time in the parameters string, using the
keyword "format column <columnname>". The parameter type must be IN VARCHAR2.
The format column value can be read by means of the rowid parameter, but this attribute
enables a single filter to work on multiple table structures, because the format attribute is
abstracted and does not require the knowledge of the name of the table or format column.
FORMAT_PARAMETERIs not mandatory. The default is FALSE.

charset_parameter

When you specify TRUE, the value of the charset column of the document being filtered is
passed to the filter procedure before input and output parameters, but after the rowid and
format parameter, if enabled.

Specify the name of the charset column at index time in the parameters string, using the
keyword "charset column <columnname>". The parameter type must be IN VARCHAR2.
The CHARSET PARAMETER attribute is not mandatory. The default is FALSE.

2.4.5.2 PROCEDURE_FILTER Parameter Order

ROWID_PARAMETER, FORMAT_PARAMETER, and CHARSET_PARAMETER are all independent. The order
is rowid, the format, then charset. However, the filter procedure is passed only the minimum
parameters required.

For example, assume that INPUT_TYPE is BLOB and OUTPUT_TYPE is CLOB. If your filter procedure
requires all parameters, then the procedure signature must be:

(id IN ROWID, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
OUT NOCOPY CLOB)

If your procedure requires only the ROWID, then the procedure signature must be:

(id IN ROWID,input IN BLOB, output IN OUT NOCOPY CLOB)

2.4.5.3 PROCEDURE_FILTER Execute Requirements

To create an index using a PROCEDURE_FILTER preference, the index owner must have execute
permission on the procedure.

2.4.5.4 PROCEDURE_FILTER Error Handling

The filter procedure can raise any errors needed through the normal PL/SQL
raise_application_error facility. These errors are propagated to the

CTX _USER_INDEX ERRORS view or reported to the user, depending on how the filter is
invoked.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 37 of 123

ORACLE Chapter 2
Lexer Types

2.4.5.5 PROCEDURE_FILTER Preference Example

Consider a filter procedure CTXSYS.NORMALIZE that you define with the following signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, set up your filter preference as follows:

begin

ctx_ddl.create_preference("myfilt®, "procedure_filter");
ctx_ddl.set_attribute("myfilt®, "procedure®, "normalize®);
ctx_ddl.set_attribute("myfilt®, "input_type", "clob®);
ctx_ddl.set_attribute("myfilt", “output_type®, "varchar2®);
ctx_ddl.set_attribute("myfilt", “rowid_parameter®, "TRUE");
ctx_ddl.set_attribute("myfilt®, “charset_parameter®, “"TRUE®);
end;

2.5 Lexer Types

Use the lexer preference to specify the language of the text to be indexed. To create a lexer
preference, you must use one of these lexer types.

« AUTO_LEXER

« BASIC LEXER

* MULTI_LEXER

« CHINESE_VGRAM_LEXER
« CHINESE_LEXER

« JAPANESE_VGRAM_LEXER
« JAPANESE_LEXER

« KOREAN_MORPH_LEXER
« USER_LEXER

* WORLD _LEXER

2.5.1 AUTO_LEXER

Identifies the language being indexed by examining the content, and applies suitable options
(including stemming) for that language. Works best where each document contains a single-
language, and has at least a couple of paragraphs of text to aid identification.

Use the AUTO_LEXER type to index columns that contain documents of different languages. It
performs language identification, word segmentation, document analysis, and stemming. The
AUTO_LEXER also enables customization of these components. Although parts-of-speech
information that is generated by the AUTO_LEXER is not exposed for your use, AUTO_LEXER uses
it for context-sensitive or tagged stemming.

e AUTO_LEXER Language Support

° AUTO_LEXER Attributes Inherited from BASIC_LEXER
*« AUTO_LEXER Language-Independent Attributes

*« AUTO_LEXER Language-Dependent Attributes

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 38 of 123

ORACLE’

Chapter 2
Lexer Types

« AUTO LEXER Dictionary Attribute

2.5.1.1 AUTO_LEXER Language Support

At index time, AUTO_LEXER automatically detects the language of the document, and tokenizes
and stems the document appropriately.

AUTO_LEXER Dictionary

To specify an AUTO_LEXER dictionary, use the name of the dictionary you created instead of the
file name for the dictionary.

At query time, the language of the query is inherited from the query template. If the query
template is not used, or if no language is specified in the query template, then the language of
the query is inherited from the session language.

@® Note

The dictionary data is not processed until the index or policy creation time or until the
ALTER INDEX time. Errors in dictionary data format are caught at the index or policy
creation time or at the ALTER INDEX time, and are reported as the "DRG-13710: Syntax
Error in Dictionary" error.

AUTO_LEXER Component Versions

Starting with Oracle Al Database 26ai, the AUTO_LEXER component supports version ANLG,
which is shipped with the Oracle Al Database installation by default.

The earlier version (ANL1) of the AUTO_LEXER component is available as an optional download
patch. If you want to use version ANL1 to retain the prior language behavior for backward
compatibility, then you can download ANL1 from My Oracle Support. After downloading the
component, you must set Event 30579 Level 1048576 at the SYSTEM level.

Languages Distribution Model

e By default, Oracle Text ships language data files for only some of the languages supported
for the AUTO_LEXER component. You can download data files for all other languages on
demand from My Oracle Support using optional download patches. This language patch
mechanism helps you control the installed languages and thus reduce the size of the
database distribution for on-premises deployments.

* These language data files are included with the Oracle Database installation by default:

Arabic Korean

Bokmal (Norwegian) Nynorsk (Norwegian)
Catalan Persian

Croatian Polish

Czech Portuguese

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 39 of 123

ORACLE’

Chapter 2
Lexer Types

Danish Romanian
Dutch Russian
English Serbian
Finnish Simplified Chinese (see Note)
French Slovak
German Slovenian
Greek Spanish
Hebrew Swedish
Hungarian Thai
Italian Traditional Chinese (see Note)
Japanese Turkish
® Note

Due to the limitation of 30 characters for the string, Traditional Chinese must be
specified as trad_chinese. Simplified Chinese must be specified as

simp_chinese.

* You can download these language data files from My Oracle Support using optional

download patches:

Afrikaans Indonesian
Basque Latvian
Belarusian Lithuanian
Bulgarian Macedonian
Estonian Malay
Galician Ukrainian
Hindi Urdu
Icelandic -

Oracle Text Reference
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 123

ORACLE

Chapter 2
Lexer Types

2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER

The following attributes are used in the same way and have the same effect on the AUTO_LEXER
as their corresponding attributes in BASIC_LEXER:

e printjoins

e skipjoins

e base_letter

e base_letter_type

e override_base_letter
e mixed_case

e alternate_spelling

@ See Also

"BASIC_LEXER" and Table 2-19

2.5.1.3 AUTO_LEXER Language-Independent Attributes

These are the language-independent attributes that are supported for the AUTO_LEXER

component.

Table 2-15 AUTO_LEXER Language-Independent Attributes
|

Attribute Attribute Value

Description

language characters (space-delimited

string)

deriv_stems YES (default)

NO (disabled)

german_decompound YES (default, enabled for

German only)
NO (disabled)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

Specifies the possible languages of the input documents.

If no language is specified, then AUTO_LEXER performs auto
detection.

If one language is specified, then the language is set
manually and AUTO_LEXER does not perform auto detection.

If more than one language is specified, then AUTO_LEXER
performs auto detection but limits the detected language to
be among the language set.

Note: The automatic detection of language is statistically
based and, thus, inherently imperfect.

Specifies whether the derivational stemming should be used
or not. Currently, derivational stemming is only available for
English. Hence, the DERIV_STEMS has no effect in other
languages.

Also, when derivational stemming is performed, tagging and
tag stemming is not used. As a result, the tagging and
tagged stemming client dictionary has no effect on the
stemming result.

Specifies whether German de-compounding should be
performed in the stemmer or not.

October 13, 2025
Page 41 of 123

ORACLE

Chapter 2
Lexer Types

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes
|

Attribute

Attribute Value

Description

index_stems

base letter

base letter_type

override_base letter

mixed_case

alternate_spelling

printjoins

skipjoins

Oracle Text Reference
G43188-01

YES (default)
NO (disabled)

YES (enabled)
NO (disabled)

SPECIFIC
GENERIC (default)

TRUE
FALSE (default)

YES (enabled)
NO (disabled)

GERMAN (German alternate
spelling)

SWEDISH (Swedish alternate
spelling)

NONE (No alternate spelling,
default)

characters

characters

Copyright © 2005, 2025, Oracle and/or its affiliates.

Specifies whether an index stemmer should be used.

When set to YES, compound word stemming is automatically
performed and compounds are always separated into their
component stems. The stemmer that corresponds to the
document language is used and the stemmer is always
configured to maximize document recall. Note that this
means that the stemmer attribute of BASIC_WORDLIST is
ignored, and the stemmer used by the AUTO_LEXER is used
during query to determine the stem of the given query term.

When set to NO, queries with stem operators use the word
list stemming to stem the tokens. If word list stemming is not
available, then the stem operator is ignored.

Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are converted
to their base form before being stored in the Text index.

The GENERIC value is the default and means that base letter
transformation uses one transformation table that applies to
all languages.

When base_letter is enabled at the same time as
alternate_spelling, it is sometimes necessary to
override base_letter to prevent unexpected results from
serial transformations.

Specify whether the lexer leaves the tokens exactly as they
appear in the text or converts the tokens to all uppercase.
The default is NO (tokens are converted to all uppercase).

Specifies whether alternate spelling should be used or not.
The default is NONE. No alternate spelling is specified.

Specify the non alphanumeric characters that, when they
appear anywhere in a word (beginning, middle, or end), are
processed as alphanumeric and included with the token in
the Text index. This includes printjoins that occur
consecutively. See Basic Lexer "printjoins".

Specify the non-alphanumeric characters that, when they
appear within a word, identify the word as a single token;
however, the characters are not stored with the token in the
Text index. See Basic Lexer "skipjoins".

October 13, 2025
Page 42 of 123

ORACLE Chapter 2
Lexer Types

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes
|

Attribute Attribute Value Description
composite YES (default) Specify whether compound word stemming is enabled or
NO disabled for the supported languages text. The default value

is YES (compound word stemming enabled). You can use
this feature for all languages that are supported for
AUTO_LEXER.

When set to NO, words that are usually one entry in a
dictionary are not split into composite stems, while words
that are not dictionary entries are split into composite stems.
To retrieve the indexed composite stems, you must enter a
stem query. For example, $bahnhof in German. The
language of the wordlist stemmer must match the language
of the composite stems.

timeout nunber Specify the timeout value in seconds for auto_lexer
tokenization.

Use a number between 0 and 600. The default value is 300.

Related Topics

e AUTO_LEXER Language Support
At index time, AUTO_LEXER automatically detects the language of the document, and
tokenizes and stems the document appropriately.

2.5.1.4 AUTO_LEXER Language-Dependent Attributes

These are the language-dependent attributes available in the AUTO_LEXER. The <language>
variable in the attribute name refers to any of the supported language names.

@® Note

Attribute names must not exceed 30 characters. Therefore, where the <language>
variable is specified, the language hame may need to be abbreviated in certain
instances. For example, traditional_chinese should be abbreviated to
trad_chinese and simplified_chinese should be abbreviated to simp_chinese.

Table 2-16 AUTO_LEXER Language-Dependent Attributes
C___ |

Attribute Attribute Value Description

<language>_prefix_mor characters (space-delimited Specifies the list of inflectional prefixes that, when enclosed

phemes string) by parentheses, are kept together with the base word. For
example, (re) analyze.

<language>_suffix_mor characters (space-delimited Specifies the list of inflectional suffixes that, when enclosed

phemes string) by parentheses are kept together with the base word. For
example, file(s).

<language>_punctuatio characters (space-delimited Specifies punctuation that breaks sentences.

ns string)

<language>_non_sent_e characters (space-delimited Specifies abbreviations that do not end sentences.

nd_abbr string)

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 43 of 123

ORACLE

Chapter 2
Lexer Types

Table 2-17 Default Values for AUTO_LEXER Language-Dependent Attributes
|

Attribute

Language

Default Value

<language>_prefix_morphemes
<language>_suffix_morphemes
<language>_suffix_morphemes
<language>_suffix_morphemes
<language>_suffix_morphemes
<language>_suffix_morphemes
<language>_suffix_morphemes
<language>_punctuations

<language>_punctuations

<language>_punctuations

<language>_punctuations

<language>_punctuations

<language>_punctuations

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr
<language>_non_sent_end_abbr
<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

Oracle Text Reference
G43188-01

All languages
English

Spanish
Portuguese
German

French

All other languages
English

Catalan, Czech, Dutch, Greek,
Hungarian, Polish, Romanian,
Russian, Turkish

French, German, Italian,
Korean, Portuguese, Spanish,
Swedish

Japanese

Simplified Chinese
Abbreviate to: simp_chinese

Traditional Chinese
Abbreviate to: trad_chinese

Polish, Romanian, Russian,
Turkish

Catalan
Czech, Greek, Hungarian
Dutch

English, Japanese, Simplified
Chinese (abbreviate to
simp_chinese), Traditional
Chinese (abbreviate to
trad_chinese)

French

Copyright © 2005, 2025, Oracle and/or its affiliates.

None
seser
banses
ses

in innen
ne e
None
L2

-

P 7

L2y 2

o o

a a

A R

e.g.i.e.viz. ak.a.

R.D. pp.
e.g.i.e.viz. ak.a.

f.eks. f. eks. inkl. sr. skuesp. sekr. prof. mus. Irs.
logr. kgl. insp. hr. hrs. gdr. frk. fr. forst. forf. fm.
fmd. esq. d.ae d.2e. d.y. dr. dir. dept.chef
civiling. bibl. ass. admn. adj. Skt. H.K.H.

e.g. i.e. viz. a.k.a. Adm. Br. Capt. Cdr. Cmdr.
Col. Comdr. Comdt. Dr. Drs. Fr. Gen. Gov. Hon.
Ins. Lieut. Lt. Maj. Messrs. Mdm. Mlle. Mlles.
Mme. Mmes. Mr. Mrs. Ms. Pres. Prof. Profs.
Pvt. Rep. Rev. Revd. Secy. Sen. Sgt. Sra. Srta.
St. Ste.

c.-a-d. cf. e.g. ex. i.e. Pr. Prof. M. Mr. Mrs. Mme
Mmes Mlle Mlles Mgr. MM. Lieut. Gén. Dr. Col.

October 13, 2025
Page 44 of 123

ORACLE Chapter 2
Lexer Types

Table 2-17 (Cont.) Default Values for AUTO_LEXER Language-Dependent Attributes

Attribute Language Default Value

<language>_non_sent_end_abbr German ca. bzw. e.g. i.e. inkl. Fr. Frl. Mme. Mile. Mag.
Stud. Tel. Hr. Hrn. apl.Prof. Prof.

<language>_non_sent_end_abbr Italian e.g. i.e. pag. pagg. tel. T.V. N.H. N.D. comm.

col. cav. cap. geom. gen. ing. jr. mr. mons. mar.
magg. prof. prof.ssa prof.sse proff. pres. perito
ind. p. p.i. sr. s.ten. sottoten. sig. serg. sen.
segr. sac. ten. uff. vicepres. vesc. S.S. S.E. avw.
app. amm. arch. on. dir. dott. dott.ssa dr. rag.

<language>_non_sent_end_abbr Korean e.g.i.e. a.k.a. Dr. Mr. Mrs. Ms. Prof.

<language>_non_sent_end_abbr Portuguese cf. Cf. e.g. E.g. i.6. l.é. p.ex. P.ex. pag. pag.
Péag. Pag. tel. telef. Tel. Telef. sr. srs. sra. mr.
eng. dr. dra. Dr. Dra. V.Ex. V.Exa. S. N. S. Mrs.
Eng. Ex. Exa.

<language>_non_sent_end_abbr Spanish e.g. i.e. ej. p.ej. pag. pags. tel. tfno. Fr. Ldo.
Lda. Lic. Pbro. D. Dfia. Dr. Dres. Dra. Dras. Dn.
Mons. Rvdo. Sto. Sta. Sr. Srs. Srta. Srtas.
Sres. Sra. Sras. Excmo. Excma. limo. lima. Sto.
Sta.

<language>_non_sent_end_abbr Swedish inkl. prof. hrr. hr. Hrr. Hr. dr. Dr.

Examples for AUTO_LEXER Language-Dependent Attributes

Example 2-1 ctx_ddl.create_preference to associate a dictionary with an index

exec CTX_DDL.CREATE_PREFERENCE("A_LEX", "AUTO LEXER");

exec CTX_ANL. ADD_DICTIONARY("MY_ENGLISH", “"ENGLISH", lobloc);

select * from CTX_USR_ANL_DICTS;

exec CTX_DDL.SET_ATTRIBUTE("A_LEX", "english_dictionary”, *MY_ENGLISH"

):
Example 2-2 <language>_prefix_morphemes

ctx_ddl.set_attribute(
"a_lex", "english_prefix_morphemes”®,

re

);
Example 2-3 <language>_suffix_morphemes

ctx_ddl.set_attribute(
"a_lex", "english_suffix_morphemes”®,

S €es

):
Example 2-4 <language>_punctuations

ctx_ddl.set_attribute(
"a_lex", "english_punctuations®, . ? I*

):
Example 2-5 <language>_non_sentence_ending_abbrev

ctx_ddl.set_attribute(
"a_lex", "english_non_sentence_ending_abbrev®, "e.g. a.k.a. Dr."

);

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 45 of 123

ORACLE Chapter 2
Lexer Types

2.5.1.5 AUTO_LEXER Dictionary Attribute

The dictionary attribute is language-specific and is used to set the name of the language
dictionary. The <language>_dictionary attribute specifies one language dictionary for the
supported languages as listed in Table 2-18.

The <language>_dictionary attribute has the following behavior:

* The <language> value of the attribute specifies only the dictionary name, not the location.
For example, dutch_dictionary specifies that the Dutch dictionary is to be used.

e The set_attribute method does not load the dictionary; it only records the dictionary
name. Therefore, the dictionary must be at the specified location when the dictionary is
needed. Otherwise, an error will be raised.

Table 2-18 Supported Languages for AUTO_LEXER Dictionary Attribute
]

Language Attribute Language Attribute
Catalan Korean

Czech Polish

Dutch Portuguese
English Romanian

French Russian

German Simplified Chinese
Greek Spanish

Hungarian Swedish

Italian Traditional Chinese
Japanese Turkish

2.5.2 BASIC_LEXER

Extracts tokens from text in languages, such as English and most of the western European
languages that use whitespace-delimited words.

Use the BASIC_LEXER type to identify tokens for creating Text indexes for English and all other
supported whitespace-delimited languages. The BASIC_LEXER also enables base-letter
conversion, composite word indexing, case-sensitive indexing and alternate spelling for
whitespace-delimited languages that have extended character sets.

In English and French, you can use the BASIC_LEXER to enable theme indexing.

@® Note

Any processing that the lexer does to tokens before indexing (for example, removal of
characters, and base-letter conversion) are also performed on query terms at query
time. This ensures that the query terms match the form of the tokens in the Text index.

BASIC_LEXER supports any database character set.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 46 of 123

ORACLE’

This section contains the following topics.

e BASIC LEXER Language Support
« BASIC LEXER Attributes

e Stemming User-Dictionaries
e BASIC LEXER Example

2.5.2.1 BASIC_LEXER Language Support

Oracle Text installs language data files for English by default. You can download data files for
all other supported languages on demand from My Oracle Support.

Languages Distribution Model

Chapter 2
Lexer Types

Oracle Text utilizes installed data files for each supported language. Through cloud services,
Oracle Text provides access to full versions of all supported languages. To reduce the
installation footprint on disk for on-premises deployments, Oracle Text provides the following
mechanism to control the number of downloaded languages:

e By default, full version of the English language data file is included with the Oracle Al
Database installation. All other supported languages (apart from English) are distributed as

optional download patches.

e Sample versions of some of the language data files are also included with the installation.
You can utilize full versions of all these sample languages by downloading the required

patches from My Oracle Support.

These languages are provided as both sample versions and download patches:

Catalan Polish
Czech Portuguese
Dutch Romanian
French Russian
German Spanish
Greek Swedish
Hungarian Turkish
Italian -

* Some of the supported languages are distributed only as download patches with no
sample included. You can utilize full versions of all these languages by downloading the

required patches from My Oracle Support.

These languages are provided only as download patches:

Afrikaans

Icelandic

Arabic

Indonesian

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 123

ORACLE’

2.5.2.2 BASIC_LEXER Attributes

These are the attributes supported for the BASIC_LEXER component.

Oracle Text Reference

G43188-01

Chapter 2
Lexer Types

Basque Latvian
Belarusian Lithuanian
Bokmal (Norwegian) Macedonian
Bulgarian Malay
Croatian Nynorsk (Norwegian)
Danish Persian (Farsi)
Estonian Serbian
Finnish Slovak
Galician Slovenian
Hebrew Ukrainian
Hindi Urdu

Table 2-19 BASIC_LEXER Attributes
|

Attribute Attribute Value

continuation characters

numgroup characters

numjoin characters

printjoins characters

punctuations characters

skipjoins characters

startjoins non alphanumeric characters that occur at the beginning of a token
(string)

endjoins non alphanumeric characters that occur at the end of a token (string)

whitespace characters (string)

newline NEWLINE (\n)

base letter

base letter_type

Copyright © 2005, 2025, Oracle and/or its affiliates.

CARRIAGE_RETURN (\r)

NO (disabled)

YES (enabled)
GENERIC (default)
SPECIFIC

October 13, 2025
Page 48 of 123

ORACLE Chapter 2
Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes
]

Attribute Attribute Value
override_base_letter TRUE

FALSE (default)
mixed_case NO (disabled)

YES (enabled)

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 49 of 123

ORACLE Chapter 2
Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes

-
Attribute Attribute Value

composite YES (default; composite word indexing enabled)
Afrikaans
Arabic
Basque
Belarusian
Bokmal (Norwegian)
Bulgarian
Catalan
Croatian
Czech
Danish
Dutch
English
Estonian
Finnish
French
Galician
German
Greek
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Italian
Latvian
Lithuanian
Macedonian
Malay
Nynorsk (Norwegian)
Persian (Farsi)
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swedish
Turkish
Ukrainian

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 50 of 123

ORACLE Chapter 2
Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes

|
Attribute Attribute Value

Urdu

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 51 of 123

ORACLE Chapter 2
Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes
.
Attribute Attribute Value

index_stems NONE

Use the numeric value in a Afrikaans
string or the string value. Arabic

Basque
Belarusian
Bokmal (Norwegian)
Bulgarian
Catalan
Croatian
Czech
Danish
Derivational
Dutch
English
Estonian
Finnish
French
Galician
German
Greek
Hebrew

Hindi
Hungarian
Icelandic
Indonesian
Italian
Latvian
Lithuanian
Macedonian
Malay
Nynorsk (Norwegian)
Persian (Farsi)
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swedish
Turkish
Ukrainian

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 52 of 123

ORACLE Chapter 2
Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes
]

Attribute Attribute Value
Urdu
® Note

e Apart from English, all other
languages are either provided in
sample sizes (with full data files
available for download) or as optional
download patches.

e De-compounding word stemming is
automatically performed when
index_stems is set to Swedish or
Dutch values.

¢ In previous releases, index_stems
attributes with the _New suffix used to
enable a new stemmer for maintaining
backward compatibility with the old
stemmer. Starting with Oracle Al
Database 26ai, the old stemmer has
been removed, making the _New suffix
redundant. For example,
English_New is equivalent to
English.

index_themes YES (enabled)
NO (disabled, default)
index_text YES (enabled, default)
NO (disabled)
prove_themes YES (enabled, default)
NO (disabled)
theme_language AUTO (default)

(any Globalization Support language)
alternate_spelling German (German alternate spelling)

Danish (Danish alternate spelling)

Swedish (Swedish alternate spelling)

NONE (No alternate spelling, default)
new_german_spelling YES

NO (default)

continuation
Specify the characters that indicate a word continues on the next line and should be indexed
as a single token. The most common continuation characters are hyphen '-' and backslash '\'.

numgroup
Specify a single character that, when it appears in a string of digits, indicates that the digits
are groupings within a larger single unit.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 53 of 123

ORACLE

Chapter 2
Lexer Types

For example, comma '," might be defined as a numgroup character because it often indicates a
grouping of thousands when it appears in a string of digits.

numjoin

Specify the characters that, when they appear in a string of digits, cause Oracle Text to index
the string of digits as a single unit or word.

For example, period '.' can be defined as a numjoin character because it often serves as a
decimal point when it appears in a string of digits.

@ Note

The default values for numjoin and numgroup are determined by the globalization
support initialization parameters that are specified for the database.

In general, a value need not be specified for either numjoin or numgroup when
creating a lexer preference for BASIC_LEXER.

printjoins

Specify the non alphanumeric characters that, when they appear anywhere in a word

(beginning, middle, or end), are processed as alphanumeric and included with the token in the

Text index. This includes printjoins that occur consecutively.

For example, if the hyphen '-' and underscore ' ' characters are defined as printjoins, terms

such as pseudo-intellectual and _file_ are stored in the Text index as pseudo-intellectual and
file_.

@ Note

If a printjoins character is also defined as a punctuations character, the character
is only processed as an alphanumeric character if the character immediately following
it is a standard alphanumeric character or has been defined as a printjoins or
skipjoins character.

punctuations

Specify a list of non-alphanumeric characters that, when they appear at the end of a word,
indicate the end of a sentence. The defaults are period ., question mark '?', and exclamation
point '!".

Characters that are defined as punctuations are removed from a token before text indexing.
However, if a punctuations character is also defined as a printjoins character, then the
character is removed only when it is the last character in the token.

For example, if the period (.) is defined as both a printjoins and a punctuations character,
then the following transformations take place during indexing and querying as well:

Token Indexed Token
.doc .doc

dog.doc dog.doc
dog..doc dog..doc

dog. dog

dog... dog..

In addition, BASIC_LEXER use punctuations characters in conjunction with newline and
whitespace characters to determine sentence and paragraph delimiters for sentence/
paragraph searching.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 54 of 123

ORACLE

Chapter 2
Lexer Types

skipjoins

Specify the non-alphanumeric characters that, when they appear within a word, identify the
word as a single token; however, the characters are not stored with the token in the Text
index.

For example, if the hyphen character '-' is defined as a skipjoins, then the word pseudo-
intellectual is stored in the Text index as pseudointellectual.

@® Note

Printjoins and skipjoins are mutually exclusive. The same characters cannot be
specified for both attributes.

startjoins/endjoins

For startjoins, specify the characters that when encountered as the first character in a token
explicitly identify the start of the token. The character, as well as any other startjoins
characters that immediately follow it, is included in the Text index entry for the token. In
addition, the first startjoins character in a string of startjoins characters implicitly ends the
previous token.

For endjoins, specify the characters that when encountered as the last character in a token
explicitly identify the end of the token. The character, as well as any other startjoins
characters that immediately follow it, is included in the Text index entry for the token.

The following rules apply to both startjoins and endjoins:

e The characters specified for startjoins/endjoins cannot occur in any of the other
attributes for BASIC_LEXER.

e startjoins/endjoins characters can occur only at the beginning or end of tokens

Printjoins differ from endjoins and startjoins in that position does not matter. For example, $35
will be indexed as one token if $ is a startjoin or a printjoin, but as two tokens if it is
defined as an endjoin.

whitespace

Specify the characters that are treated as blank spaces between tokens. BASIC_LEXER uses
whitespace characters in conjunction with punctuations and newl ine characters to identify
character strings that serve as sentence delimiters for sentence and paragraph searching.
The predefined default values for whitespace are space and tab. These values cannot be
changed. Specifying characters as whitespace characters adds to these defaults.

newline

Specify the characters that indicate the end of a line of text. BASIC_LEXER uses newline
characters in conjunction with punctuations and whitespace characters to identify character
strings that serve as paragraph delimiters for sentence and paragraph searching.

The only valid values for newline are NEWLINE and CARRIAGE_RETURN (for carriage returns).
The default is NEWLINE.

base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute accents, and
S0 on) are converted to their base form before being stored in the Text index. The default is
NO (base-letter conversion disabled). For more information on base-letter conversions and
base letter_type, see Base-Letter Conversion.

base_letter_type
Specify GENERIC or SPECIFIC.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 55 of 123

ORACLE

Chapter 2
Lexer Types

The GENERIC value is the default and means that base letter transformation uses one
transformation table that applies to all languages. For more information on base-letter
conversions and base_letter_type, see "Base-Letter Conversion".

override_base_letter

When base_letter is enabled at the same time as alternate_spelling, it is sometimes
necessary to override base_letter to prevent unexpected results from serial transformations.
See "Overriding Alternative Spelling Features". Default is FALSE.

mixed_case
Specify whether the lexer leaves the tokens exactly as they appear in the text or converts the
tokens to all uppercase. The default is NO (tokens are converted to all uppercase).

@® Note

Oracle Text ensures that word queries match the case sensitivity of the index being
queried. As a result, if you enable case sensitivity for your Text index, queries against
the index are always case sensitive.

composite

Specify whether composite word indexing is disabled or enabled for the supported languages
text. The default value is YES (composite word indexing enabled). You can use this feature for
all languages that are supported for BASIC_LEXER.

Words that are usually one entry in a dictionary are not split into composite stems, while words
that are not dictionary entries are split into composite stems.

To retrieve the indexed composite stems, you must enter a stem query. For

example, $bahnhof in German. The language of the wordlist stemmer must match the
language of the composite stems.

Related Topics

« BASIC_LEXER Language Support
Oracle Text installs language data files for English by default. You can download data files
for all other supported languages on demand from My Oracle Support.

2.5.2.3 Stemming User-Dictionaries

You can create a user-dictionary for your own language to customize how words are
decomposed.

Table 2-20 Stemming User-Dictionaries
]

Dictionary

Stemmer

$ORACLE_HOME/ctx/data/frix/drfr._dct
$ORACLE_HOME/ctx/data/delx/drde.dct
$ORACLE_HOME/ctx/data/nlIx/drnl._dct
$ORACLE_HOME/ctx/data/itlx/drit.dct
$ORACLE_HOME/ctx/data/eslx/dres.dct
$ORACLE_HOME/ctx/data/enlx/dren._dct

French

German

Dutch

Italian

Spanish
English and Derivational

Stemming user-dictionaries are not supported for languages other than those listed in
Table 2-20.

Oracle Text Reference

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 123

ORACLE

Chapter 2
Lexer Types

The format for the user dictionary is as follows:

output term <tab> input term

The individual parts of the decomposed word must be separated by the # character. The
following example entries are for the German word Hauptbahnhof:

Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhofes<tab>Haupt#Bahnhof
Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhoefe<tab>Haupt#Bahnhof

index_themes

Specify YES to index theme information in English or French. This makes ABOUT queries more
precise. The index_themes and index_text attributes cannot both be NO. The default is NO.
You can set this parameter to TRUE for any index type. To enter an ABOUT query with
CATSEARCH, use the query template with CONTEXT grammar.

prove_themes

Specify YES to prove themes. Theme proving attempts to find related themes in a document.
When no related themes are found, parent themes are eliminated from the document.

While theme proving is acceptable for large documents, short text descriptions with a few
words rarely prove parent themes, resulting in poor recall performance with ABOUT queries.
Theme proving results in higher precision and less recall (less rows returned) for ABOUT
gueries. For higher recall in ABOUT queries and possibly less precision, you can disable theme
proving. Default is YES.

The prove_themes attribute is supported for CONTEXT and CTXRULE indexes.

theme_language

Specify which knowledge base to use for theme generation when index_themes is set to YES.
When index_themes is NO, setting this parameter has no effect on anything.

Specify any globalization support language or AUTO. You must have a knowledge base for the
language you specify. This release provides a knowledge base in only English and French. In
other languages, you can create your own knowledge base.

@® See Also

"Adding a Language-Specific Knowledge Base" in Oracle Text Utilities .

The default is AUTO, which instructs the system to set this parameter according to the language
of the environment.

index_stems

Specify the stemmer to use for stem indexing. Choose one of the following stemmers:

NONE, Arabic, Bokmal (Norwegian), Catalan, Croatian, Czech, Danish, Derivational, Dutch,
English, Finnish, French, German, Hebrew, Hungarian, Italian, Nynorsk (Norwegian),
Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, and Swedish

Tokens are stemmed to a single base form at index time in addition to the normal forms.
Indexing stems enables better query performance for stem ($) queries, such as $computed.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 57 of 123

ORACLE

Chapter 2
Lexer Types

@® Note

If the index_stems attribute is set to one of the languages with ID 8 to 33, which are
listed Table 2-19, then the stemmer attribute of BASIC_WORDLIST will be ignored and the
stemmer used by the BASIC_LEXER will be used during query to determine the stem of
the given query term.

index_text

Specify YES to index word information. The index_themes and index_text attributes
cannot both be NO.

The default is YES.

alternate_spelling

Specify either German, Danish, or Swedish to enable the alternate spelling in one of these
languages. Enabling alternate spelling enables you to query a word in any of its alternate
forms.

Alternate spelling is off by default; however, in the language-specific scripts that Oracle
provides in admin/defaults (drdefd.sql for German, drdefdk.sql for Danish, and
drdefs.sql for Swedish), alternate spelling is turned on. If your installation uses these scripts,
then alternate spelling is on. However, you can specify NONE for no alternate spelling. For more
information about the alternate spelling conventions Oracle Text uses, see Alternate Spelling.

new_german_spelling

Specify whether the queries using the BASIC_LEXER return both traditional and reformed (new)
spellings of German words. If new_german_spelling is set to YES, then both traditional and
new forms of words are indexed. If it is set to NO, then the word will be indexed only as it as
provided in the query. The default is NO.

@® See Also

"New German Spelling”

2.5.2.4 BASIC_LEXER Example

The following example sets printjoin characters and disables theme indexing with the
BASIC_LEXER:

begin

ctx_ddl.create_preference("mylex®, "BASIC_LEXER");
ctx_ddl.set_attribute("mylex®, "printjoins®, " -%);
ctx_ddl.set_attribute ("mylex", "index_themes®, "NO");
ctx_ddl.set_attribute ("mylex", "index_text", "YES");
end;

To create the index with no theme indexing and with printjoin characters set as described,
enter the following statement:

create index myindex on mytable (docs)
indextype is ctxsys.context
parameters ("LEXER mylex");

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 58 of 123

ORACLE Chapter 2
Lexer Types

2.5.3 MULTI_LEXER

Requires a LANGUAGE column in the table that identifies the language for each document. Each
language has an associated sub-lexer, defined by the user. This lexer has no attributes.

Use MULTI_LEXER to index text columns that contain documents of different languages. For
example, use this lexer to index a text column that stores English, German, and Japanese
documents.

You must have a LANGUAGE column in your base table. To index multi-language tables, specify
the LANGUAGE column when you create the index. You must also specify the language at query
time (through Session settings or a Language settings in a query template), and the queries
only look for documents that are indexed using the current language.

Create a multi-lexer preference with CTX_DDL.CREATE_PREFERENCE. Add language-specific
lexers to the multi-lexer preference with the CTX_DDL.ADD_SUB_LEXER procedure.

During indexing, the MULTI_LEXER examines each row's language column value and switches
in the language-specific lexer to process the document.

@® Note

If you drop the language column from a multi-lexer indexed table, you must also drop
the index and rebuild it.

The WORLD_LEXER lexer also performs multi-language indexing, but without the need for
separate LANGUAGE columns (that is, it has automatic language detection). For more on
WORLD_LEXER, see "WORLD LEXER".

This section contains the following topics.

e MULTI_LEXER Restriction

¢ MULTI_LEXER Multi-language Stoplists

e MULTI_LEXER Example

e MULTI_LEXER and Querying Multi-Language Tables

2.5.3.1 MULTI_LEXER Restriction

MULTI_LEXER must have a sublexer specified for different languages. If you already know the
language, you can use BASIC_LEXER as the sublexer. If the language is not known, then you
use AUTO_LEXER instead of MULTI_LEXER. Hence, using AUTO_LEXER as a sublexer of
MULTI_LEXER is not useful and it is disabled.

Thus, the following statements will not work and throw error DRG-13003.

exec ctx_ddl.create_preference ("multilexer®, "MULTI_LEXER");
exec ctx_ddl..create_preference("autolexer®, AUTO_LEXER);
exec ctx_ddl.add_sub_lexer("multilexer®, "GERMAN", "autolexer®);

2.5.3.2 MULTI_LEXER Multi-language Stoplists

When you use the MULTI_LEXER, you can also use a multi-language stoplist for indexing.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 59 of 123

ORACLE Chapter 2
Lexer Types

@ See Also

"Multi-Language Stoplists".

2.5.3.3 MULTI_LEXER Example

Create the multi-language table with a primary key, a text column, and a language column as
follows:

create table globaldoc (
doc_id number primary key,
lang varchar2(3),
text clob

);

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers, one for
English, one for German, and one for Japanese:

ctx_ddl.create_preference("english_lexer®,"basic_lexer");
ctx_ddl.set_attribute("english_lexer", "index_themes”, "yes");
ctx_ddl.set_attribute("english_lexer", "theme_language®, "english®);

ctx_ddl.create_preference("german_lexer", "basic_lexer");
ctx_ddl.set_attribute("german_lexer", "composite”, "german®);
ctx_ddl.set_attribute("german_lexer®, "mixed_case","yes");
ctx_ddl.set_attribute("german_lexer*", "alternate_spelling”, "german®);
ctx_ddl.create_preference("japanese_lexer", "japanese_vgram_lexer");

Create the multi-lexer preference:

ctx_ddl.create_preference("global_lexer®, "multi_lexer®);

Because the stored documents are mostly English, make the English lexer the default using
CTX_DDL.ADD_SUB_LEXER :

ctx_ddl.add_sub_lexer("global_lexer","default”, "english_lexer");

Now add the German and Japanese lexers in their respective languages with
CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed
in the standard ISO 639-2 language codes, so add those as alternative values.

ctx_ddl.add_sub_lexer("global_lexer*®,"german®, "german_lexer","ger");
ctx_ddl.add_sub_lexer("global_lexer", "japanese”, " japanese_lexer®,"jpn");

Now create the index globalx, specifying the multi-lexer preference and the language column
in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ("lexer global_lexer language column lang®);

2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables

At query time, the multi-lexer examines the language setting and uses the sub-lexer preference
for that language to parse the query.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 60 of 123

ORACLE

Chapter 2
Lexer Types

If the language is not set, then the default lexer is used. Otherwise, the query is parsed and run
as usual. The index contains tokens from multiple languages, so such a query can return
documents in several languages. To limit your query to a given language, use a structured
clause on the language column.

If the language column is set to AUTO, then the multi-lexer detects the language of the
document for the supported languages shown in Table 2-21.

Table 2-21 Languages Supported for MULTI_LEXER Auto-detection
]

Language Language

Arabic Japanese

Bokmal (Norwegian) Korean

Catalan Latin Serbian
Croatian Nynorsk (Norwegian)
Czech Polish

Danish Portuguese

Dutch Romanian

English Russian

German Slovak

Greek Swedish

Hebrew Thai

Hungarian Traditional Chinese
Italian Turkish

2.5.4 CHINESE_VGRAM_LEXER

Extracts tokens in Chinese text for creating Oracle Text indexes.

Table 2-22 CHINESE_VGRAM_LEXER Attributes

|
Attribute Attribute Value

mixed_case ASCII17 Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for
example, cat and Cat). Allowable values are YES and NO (default).

You can use this lexer if your database uses one of the following character sets:

 AL32UTF8

« ZHS16CGB231280
e ZHS16GBK

e ZHS32GB18030

« ZHT32EUC

« ZHT16BIGS5

« ZHT32TRIS

« ZHT16HKSCS
e ZHT16MSWIN950

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 61 of 123

ORACLE Chapter 2
Lexer Types

« UTF8

2.5.5 CHINESE_LEXER

Identifies tokens in traditional and simplified Chinese text for creating Oracle Text indexes.
The CHINESE_LEXER type offers the following benefits over the CHINESE_VGRAM LEXER:

e generates a smaller index

e better query response time

e generates real word tokens resulting in better query precision
e supports stop words

Because the CHINESE_LEXER uses a different algorithm to generate tokens, indexing time is
longer than with CHINESE_VGRAM_LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode character
sets supported by Oracle.

The CHINESE_LEXER has the following attribute:

Table 2-23 CHINESE_LEXER Attributes

]
Attribute Attribute Value

mixed_case ASCI 17 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create your own
Chinese lexicon, with the ctxlc command.

@ See Also

"Lexical Compiler (ctxlc)" in Oracle Text Utilities

2.5.6 JAPANESE_VGRAM_LEXER

Identifies tokens in Japanese for creating Oracle Text indexes. This lexer supports the stem ($)
operator.

Table 2-24 JAPANESE_VGRAM_LEXER Attributes

|
Attribute Attribute Value

delimiter Specify whether to consider certain Japanese blank characters, such
as a full-width forward slash or a full-width middle dot, as part of the
indexed token. ALL considers these characters as part of the token
while NONE ignores them. The default is NONE.

mixed_case_ ASCI 17 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 62 of 123

ORACLE

Chapter 2
Lexer Types

Table 2-24 (Cont.) JAPANESE_VGRAM_LEXER Attributes

Attribute Attribute Value

bigram Specify TRUE to enable the bigram mode for the Japanese VGRAM

lexer. In the bigram mode, the Japanese queries run faster because
only 2-gram tokens are generated, thus avoiding the internal wildcard
search. But, in the bigram mode, the index size needs to be increased
to accommodate the large number of tokens. Enable the bigram mode,
if the performance of queries is of higher importance to you than the
disk space. Default is FALSE.

printjoins Specify the non alphanumeric characters that, when they appear

anywhere in a word (beginning, middle, or end), are processed as
alphanumeric and included with the token in the Text index. This
includes printjoins that occur consecutively. See Basic Lexer

"printjoins”.

skipjoins Specify the non-alphanumeric characters that, when they appear within

a word, identify the word as a single token; however, the characters are
not stored with the token in the Text index. See Basic Lexer "skipjoins".

You can use this lexer if your database uses one of the following character sets:

JA16SJIS
JA16EUC

UTF8
AL32UTF8
JA16EUCTILDE
JA16EUCYEN
JA16SJISTILDE
JA16SJISYEN

Rules for PRINTJOIN and SKIPJOIN Characters

Only non-alphanumeric ASCII characters that do not include any Chinese, Japanese, or
Korean characters or any full-width non-alphanumeric characters are accepted.

You can specify a single non-alphanumeric character or multiple non-alphanumeric
characters at a time.

The printjoin/skipjoin will be ignored if you enter any characters that are not allowed. This
includes alphanumeric characters, CJK — Chinese, Japanese, Korean — characters or full-
width non-alphanumeric characters.

In case of duplicate non-alphanumeric characters, duplicate entries will be ignored.

Examples

Example 2-6 Using Printjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as printjoins thereby indicating
that these characters must be included with the token in the Text index. Therefore, words such

Oracle Text Reference
G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 63 of 123

ORACLE

Chapter 2
Lexer Types

as web-site or web_site as indexed as web-site and web_site. Queries that search for website
will not return documents containing web-site or web_site.

ctx_ddl.create_preference("mylex”, "JAPANESE VGRAM LEXER");
ctx_ddl.set_attribute("mylex®, "printjoins™, " -%);

Example 2-7 Using Skipjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as skipjoins thereby indicating
that these characters must not be included with the token in the Text index. Therefore, words
such as web-site or web_site as indexed as website. Queries that search for website will return
documents containing web-site or web_site.

ctx_ddl.create_preference("mylex®, “JAPANESE VGRAM_LEXER®);
ctx_ddl.set_attribute("mylex®, "skipjoins®, * -%);

2.5.7 JAPANESE_LEXER

Identifies tokens in Japanese for creating Oracle Text indexes. Offers advantages over
JAPANESE_VGRAM_LEXER, such as generates a smaller index, has a better query response time,
and generates real word tokens resulting in better query precision.

The JAPANESE_LEXER type supports the stem ($) operator. Because the JAPANESE_LEXER uses a
new algorithm to generate tokens, indexing time is longer than with JAPANESE_VGRAM_LEXER.

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create your own
Japanese lexicon, with the ctxlc command.

@ See Also

"Lexical Compiler (ctxlc)" in Oracle Text Utilities

This lexer has the following attributes:

Table 2-25 JAPANESE_LEXER Attributes

]
Attribute Attribute Value

delimiter Specify NONE or ALL to ignore certain Japanese blank characters, such
as a full-width forward slash or a full-width middle dot. Default is NONE.

mixed_case_ASCI17 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

The JAPANESE_LEXER supports the following character sets:

 JA16SJIS
« JAIGEUC
- UTF8
 AL32UTF8

 JA16EUCTILDE

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 64 of 123

ORACLE Chapter 2
Lexer Types

« JALI6EUCYEN
* JAL6SJISTILDE
* JA16SJISYEN

When you specify JAPANESE_LEXER for creating text index, the JAPANESE_LEXER resolves a
sentence into words.

For example, the following compound word (natural language institute)

BREENE

is indexed as three tokens:

B, 58, NE

To resolve a sentence into words, the internal dictionary is referenced. When a word cannot be
found in the internal dictionary, Oracle Text uses the JAPANESE VGRAM_LEXER to resolve it.

2.5.8 KOREAN_MORPH_LEXER

Identifies tokens in Korean text for creating Oracle Text indexes.

This section contains the following topics.

« KOREAN_MORPH_ LEXER Dictionaries

e KOREAN_MORPH_ LEXER Unicode Support

e KOREAN_MORPH_LEXER Attributes

e KOREAN_MORPH_ LEXER Limitations

« KOREAN_MORPH_LEXER Example: Setting Composite Attribute

2.5.8.1 KOREAN_MORPH__ LEXER Dictionaries

The KOREAN_MORPH_LEXER uses four dictionaries:

Table 2-26 KOREAN_MORPH_LEXER Dictionaries

Dictionary File

System $ORACLE_HOME/ctx/data/kolx/drk2sdic.dat
Grammar $ORACLE_HOME/ctx/data/kolx/drk2gram.dat
Stopword $ORACLE_HOME/ctx/data/kolx/drk2xdic.dat

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 65 of 123

ORACLE

Chapter 2
Lexer Types

Table 2-26 (Cont.) KOREAN_MORPH_LEXER Dictionaries

. ___|
Dictionary File

User-defined $ORACLE_HOME/ctx/data/kolx/drk2udic.dat

The grammar, user-defined, and stopword dictionaries should be written using the KSC 5601
or MSWIN949 character sets. You can modify these dictionaries using the defined rules. The
system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for specifying new
words are in the file.

You can use KOREAN_MORPH_LEXER if your database uses one of the following character sets:

« KO16KSC5601

e KO16MSWIN949

e UTF8

e AL32UTF8

The KOREAN_MORPH_LEXER enables mixed-case searches.

2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support

The KOREAN_MORPH_LEXER has the following Unicode support:

* Words in non-KSC5601 Korean characters defined in Unicode

e Supplementary characters

@ See Also

For information on supplementary characters, see the Oracle Database Globalization
Support Guide

Some Korean documents may have non-KSC5601 characters in them. As the
KOREAN_MORPH_LEXER can recognize all possible 11,172 Korean (Hangul) characters, such
documents can also be interpreted by using the UTF8 or AL32UTF8 character sets.

Use the AL32UTF8 character set for your database to extract surrogate characters. By default,
the KOREAN_MORPH_LEXER extracts all series of surrogate characters in a document as one
token for each series.

Limitations on Korean Unicode Support

For conversion from Hanja to Hangul (Korean), the KOREAN_MORPH_LEXER supports only the
4,888 Hanja characters defined in KSC5601.

2.5.8.3 KOREAN_MORPH_LEXER Attributes

When you use the KOREAN_MORPH_LEXER, you can specify the following attributes:

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 66 of 123

ORACLE Chapter 2
Lexer Types

Table 2-27 KOREAN_MORPH_LEXER Attributes
]

Attribute Attribute Value

verb_adjective Specify TRUE or FALSE to index verbs, adjectives, and adverbs. Default is
FALSE.

one_char_word Specify TRUE or FALSE to index one syllable. Default is FALSE.

number Specify TRUE or FALSE to index number. Default is FALSE.

user_dic Specify TRUE or FALSE to index user dictionary. Default is TRUE.

stop_dic Specify TRUE of FALSE to use stop-word dictionary. Default is TRUE. The
stop-word dictionary belongs to KOREAN_MORPH_LEXER.

composite Specify indexing style of composite noun.

Specify COMPOSITE_ONLY to index only composite nouns.
Specify NGRAM to index all noun components of a composite noun.

Specify COMPONENT_WORD to index single noun components of composite
nouns as well as the composite noun itself. Default is COMPONENT_WORD.

"KOREAN_MORPH_LEXER Example: Setting Composite Attribute"
describes the difference between NGRAM and COMPONENT_WORD.

morpheme Specify TRUE or FALSE for morphological analysis. If set to FALSE, tokens
are created from the words that are divided by delimiters such as white
space in the document. Default is TRUE.

to_upper Specify TRUE or FALSE to convert English to uppercase. Default is TRUE.

hanja Specify TRUE to index hanja characters. If set to FALSE, hanja characters
are converted to hangul characters. Default is FALSE.

long_word Specify TRUE to index long words that have more than 16 syllables in
Korean. Default is FALSE.

japanese Specify TRUE to index Japanese characters in Unicode (only in the 2-byte
area). Default is FALSE.

english Specify TRUE to index alphanumeric strings. Default is TRUE.

2.5.8.4 KOREAN_MORPH_ LEXER Limitations

Sentence and paragraph sections are not supported with the KOREAN_MORPH_LEXER.

2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute

Use the composite attribute to control how composite nouns are indexed.

NGRAM Example

When you specify NGRAM for the composite attribute, composite nouns are indexed with all
possible component tokens. For example, the following composite noun (information
processing institute)

HEAT| =R

is indexed as six tokens:

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 67 of 123

ORACLE Chapter 2
Lexer Types

FHE AR, =E, HH AR

‘Hel=E), A Ml =E)

Specify NGRAM indexing as follows:
begin
ctx_ddl.create_preference("my_lexer®, "KOREAN_MORPH_LEXER");

ctx_ddl.set_attribute("my_lexer®, "COMPOSITE", "NGRAM™) ;
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ("lexer my_lexer*);

COMPONENT_WORD Example

When you specify COMPONENT_WORD for the composite attribute, composite nouns and their
components are indexed. For example, the following composite noun (information processing
institute)

T H A =E
is indexed as four tokens:
AR, A,

Specify COMPONENT_WORD indexing as follows:

begin

ctx_ddl.create_preference("my_lexer*®, "KOREAN_MORPH_LEXER");
ctx_ddl.set_attribute("my_lexer®, "COMPOSITE", "COMPONENT_WORD");
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ("lexer my_lexer*);

2.5.9 USER_LEXER

Lexer you create to index a particular user-defined language.

Use USER_LEXER to plug in your own language-specific lexing solution. This enables you to
define lexers for languages that are not supported by Oracle Text. It also enables you to define
a new lexer for a language that is supported but whose lexer is inappropriate for your
application.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 68 of 123

ORACLE Chapter 2
Lexer Types

This section contains the following topics.
 USER_LEXER Routines
 USER_LEXER Limitations

+ USER_LEXER Attributes
 INDEX_PROCEDURE

« INPUT_TYPE

* QUERY_PROCEDURE

* Encoding Tokens as XML

XML Schema for No-Location User-defined Indexing Procedure

XML Schema for User-defined Indexing Procedure with Location

XML Schema for User-defined Lexer Query Procedure

2.5.9.1 USER_LEXER Routines

The user-defined lexer you register with Oracle Text is composed of two routines that you must
supply:

Table 2-28 User-Defined Routines for USER_LEXER

___|]
User-Defined Routine Description

Indexing Procedure Stored procedure (PL/SQL) which implements the tokenization of
documents and stop words. Output must be an XML document as
specified in this section.

Query Procedure Stored procedure (PL/SQL) which implements the tokenization of
query words. Output must be an XML document as specified in this
section.

2.5.9.2 USER_LEXER Limitations

The following features are not supported with the USER_LEXER:
< CTX_DOC.GIST and CTX_DOC.THEMES

e CTX_QUERY_HFEEDBACK

e ABOUT query operator

e CTXRULE index type

e VGRAM indexing algorithm

2.5.9.3 USER_LEXER Attributes

USER_LEXER has the following attributes:

Table 2-29 USER_LEXER Attributes

]
Attribute Attribute Value

INDEX_PROCEDURE Name of a stored procedure. No default provided.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 69 of 123

ORACLE Chapter 2
Lexer Types

Table 2-29 (Cont.) USER_LEXER Attributes

Attribute Attribute Value
INPUT_TYPE VARCHAR2, CLOB. Default is CLOB.
QUERY_PROCEDURE Name of a stored procedure. No default provided.

2.5.9.4 INDEX_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize a document or a
stop word found in the stoplist object.

Requirements
This procedure can be a PL/SQL stored procedure.
The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or dropped after the index is created. You can
replace or drop this stored procedure after the index is dropped.

Parameters
Two different interfaces are supported for the user-defined lexer indexing procedure:

« VARCHARZ2 Interface
e CLOB Interface

Restrictions
This procedure must not perform any of the following operations:

* Rollback

e Explicitly or implicitly commit the current transaction
e Enter any other transaction control statement

e Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be in the
same order as the tokens occur in the document or stop word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all parameters.

2.5.9.5 INPUT_TYPE

Two different interfaces are supported for the User-defined lexer indexing procedure. One
interface enables the document or stop word and the corresponding tokens encoded as XML
to be passed as VARCHAR2 datatype whereas the other interface uses the CLOB datatype. This
attribute indicates the interface implemented by the stored procedure specified by the
INDEX_PROCEDURE attribute.

« VARCHAR?2 Interface
e CLOB Interface

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 70 of 123

ORACLE

2.5.9.5.1 VARCHAR? Interface

Table 2-30 describes the interface that enables the document or stop word from stoplist object
to be tokenized to be passed as VARCHAR2 from Oracle Text to the stored procedure and for the
tokens to be passed as VARCHAR2 as well from the stored procedure back to Oracle Text.

Chapter 2
Lexer Types

Your user-defined lexer indexing procedure should use this interface when all documents in the
column to be indexed are smaller than or equal to 32512 bytes and the tokens can be
represented by less than or equal to 32512 hytes. In this case the CLOB interface given in

Table 2-31 can also be used, although the VARCHAR?2 interface will generally perform faster than
the CLOB interface.

This procedure must be defined with the following parameters:

Table 2-30 VARCHAR?2 Interface for INDEX_ PROCEDURES
]

Parameter Parameter
Position Mode

Parameter
Datatype

Description

1 IN

2 IN OUT

VARCHAR2

VARCHAR2

BOOLEAN

Document or stop word from stoplist object to be tokenized.

If the document is larger than 32512 bytes then Oracle Text will
report a document level indexing error.

Tokens encoded as XML.

If the document contains no tokens, then either NULL must be
returned or the tokens element in the XML document returned
must contain no child elements.

Byte length of the data must be less than or equal to 32512.

To improve performance, use the NOCOPY hint when declaring this
parameter. This passes the data by reference, rather than passing
data by value.

The XML document returned by this procedure should not include
unnecessary whitespace characters (typically used to improve
readability). This reduces the size of the XML document which in
turn minimizes the transfer time.

To improve performance, index_procedure should not validate the
XML document with the corresponding XML schema at run-time.

Note that this parameter is IN OUT for performance purposes. The
stored procedure has no need to use the IN value.

Oracle Text sets this parameter to TRUE when Oracle Text needs
the character offset and character length of the tokens as found in
the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of the tokens
as found in the document being tokenized. This implies that the
XML attributes off and len must not be used.

2.5.9.5.2 CLOB Interface

Table 2-31 describes the CLOB interface that enables the document or stop word from stoplist
object to be tokenized to be passed as CLOB from Oracle Text to the stored procedure and for
the tokens to be passed as CLOB as well from the stored procedure back to Oracle Text.

The user-defined lexer indexing procedure should use this interface when at least one of the
documents in the column to be indexed is larger than 32512 bytes or the corresponding tokens
are represented by more than 32512 bytes.

Oracle Text Reference
G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 123

ORACLE Chapter 2
Lexer Types

Table 2-31 CLOB Interface for INDEX_ PROCEDURE
]

Parameter Parameter Parameter Datatype Description

Position Mode

1 IN CLOB Document or stop word from stoplist object to be
tokenized.

2 INOUT CLOB Tokens encoded as XML.

If the document contains no tokens, then either NULL
must be returned or the tokens element in the XML
document returned must contain no child elements.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by
reference, rather than passing data by value.

The XML document returned by this procedure should not
include unnecessary whitespace characters (typically
used to improve readability). This reduces the size of the
XML document which in turn minimizes the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding XML
schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use the
IN value. The IN value will always be a truncated CLOB.

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text
needs the character offset and character length of the
tokens as found in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of
the tokens as found in the document being tokenized. This
implies that the XML attributes off and len must not be
used.

The first and second parameters are temporary CLOBS. Avoid assigning these CLOB locators to
other locator variables. Assigning the formal parameter CLOB locator to another locator variable
causes a new copy of the temporary CLOB to be created resulting in a performance hit.

2.5.9.6 QUERY_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize words in the
query. A space-delimited group of characters (excluding the query operators) in the query will
be identified by Oracle Text as a word.

Requirements
This procedure can be a PL/SQL stored procedure.
The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or be dropped after the index is created. You can
replace or drop this stored procedure after the index is dropped.

Restrictions

This procedure must not perform any of the following operations:

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 72 of 123

ORACLE

Chapter 2
Lexer Types

* Rollback

* Explicitly or implicitly commit the current transaction
* Enter any other transaction control statement

« Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be in the
same order as the tokens occur in the query word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all parameters.

Parameters

Table 2-32 describes the interface for the user-defined lexer query procedure:

Table 2-32 User-defined Lexer Query Procedure XML Schema Attributes
|

Parameter
Position

Parameter Parameter Datatype Description
Mode

1
2

IN VARCHAR2 Query word to be tokenized.
IN CTX_ULEXER.WILDCARD_TAB Character offsets of wildcard characters (% and _)

in the query word. If the query word passed in by
Oracle Text does not contain any wildcard
characters then this index-by table will be empty.

The wildcard characters in the query word must be
preserved in the tokens returned in order for the
wildcard query feature to work properly.

The character offset is 0 (zero) based. Offset
information follows USC-2 codepoint semantics.

IN OUT VARCHAR2 Tokens encoded as XML.

If the query word contains no tokens then either
NULL must be returned or the tokens element in
the XML document returned must contain no child
elements.

The length of the data must be less-than or equal
to 32512 bytes.

2.5.9.7 Encoding Tokens as XML

The sequence of tokens returned by your stored procedure must be represented as an XML
1.0 document. The XML document must be valid with respect to the XML Schemas given in
the following sections.

« XML Schema for No-Location User-defined Indexing Procedure

« XML Schema for User-defined Indexing Procedure with Location

« XML Schema for User-defined Lexer Query Procedure

Limitations

To boost performance of this feature, the XML parser in Oracle Text will not perform validation
and will not be a full-featured XML compliant parser. This implies that only minimal XML
features will be supported. The following XML features are not supported:

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 73 of 123

ORACLE

Chapter 2
Lexer Types

Document Type Declaration (for example, <IDOCTYPE [...]>) and therefore entity
declarations. Only the following built-in entities can be referenced: It, gt, amp, quot, and
apos.

CDATA sections.

Comments.

Processing Instructions.

XML declaration (for example, <?xml version="1.0" ...?>).
Namespaces.

Use of elements and attributes other than those defined by the corresponding XML
Schema.

Character references (for example ট).
xml:space attribute.

xml:lang attribute

2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure

This section describes additional constraints imposed on the XML document returned by the
user-defined lexer indexing procedure when the third parameter is FALSE. The XML document
returned must be valid with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www._w3.0rg/2001/XMLSchema'>

<xsd:element name="tokens'>

<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="'xsd:token"/>
<xsd:group ref="IndexCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!--

Enforce constraint that compMem element must be preceded by word element
or compMem element for indexing

-—>

<xsd:group name="IndexCompositeGroup">

<xsd:sequence>
<xsd:element name="word" type="xsd:token"/>
<xsd:element name="compMem™ type=""xsd:token" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:group>

<I-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

Oracle Text Reference
G43188-01

The root element is tokens. This is mandatory. It has no attributes.

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 74 of 123

ORACLE

Chapter 2
Lexer Types

e The root element can have zero or more child elements. The child elements can be one of
the following elements: eos, eop, num, word, and compMem. Each of these represent a
specific type of token.

e The compMem element must be preceded by a word element or a compMem element.

* The eos and eop elements have no attributes and must be empty elements.

e The num, word, and compMem elements have no attributes. Oracle Text will normalize the
content of these elements as follows: convert whitespace characters to space characters,
collapse adjacent space characters to a single space character, remove leading and
trailing spaces, perform entity reference replacement, and truncate to 255 bytes.

Table 2-33 describes the element names defined in the preceding XML Schema.

Table 2-33 User-defined Lexer Indexing Procedure XML Schema Element Names

Element

Description

word

num

eos

eop

compMem

This element represents a simple word token. The content of the element is the word
itself. Oracle Text does the work of identifying this token as being a stop word or non-
stop word and processing it appropriately.

This element represents an arithmetic number token. The content of the element is
the arithmetic number itself. Oracle Text treats this token as a stop word if the stoplist
preference has NUMBERS added as the stopclass. Otherwise this token is treated the
same way as the word token.

Supporting this token type is optional. Without support for this token type, adding the
NUMERBS stopclass will have no effect.

This element represents end-of-sentence token. Oracle Text uses this information so
that it can support WITHIN SENTENCE queries.

Supporting this token type is optional. Without support for this token type, queries
against the SENTENCE section will not work as expected.

This element represents end-of-paragraph token. Oracle Text uses this information so
that it can support WITHIN PARAGRAPH queries.

Supporting this token type is optional. Without support for this token type, queries
against the PARAGRAPH section will not work as expected.

Same as the word element, except that the implicit word offset is the same as the
previous word token.

Support for this token type is optional.

Examples

Document: Vom Nordhauptbahnhof und aus der Innenstadt zum Messegelande.

Tokens:

<tokens>

<word> VOM </word>

<word> NORDHAUPTBAHNHOF </word>
<compMem>NORD</compMem>
<compMem>HAUPT </compMem>
<compMem>BAHNHOF </compMem>
<compMem>HAUPTBAHNHOF </compMem>
<word> UND </word>

<word> AUS </word>

<word> DER </word>

<word> INNENSTADT </word>
<word> ZUM </word>

<word> MESSEGELANDE </word>

Oracle Text Reference
G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 75 of 123

ORACLE Chapter 2
Lexer Types

<eos/>
</tokens>

Document: Oracle Database 11g Release 1
Tokens:

<tokens>
<word> ORACLE11G</word>
<word> RELEASE </word>
<num> 1 </num>
</tokens>

Document: WHERE salary<25000.00 AND job = 'F&B Manager'
Tokens:

<tokens>
<word> WHERE </word>
<word> salary<2500.00 </word>
<word> AND </word>
<word> job </word>
<word> F&B </word>
<word> Manager </word>
</tokens>

2.5.9.9 XML Schema for User-defined Indexing Procedure with Location

This section describes additional constraints imposed on the XML document returned by the
user-defined lexer indexing procedure when the third parameter is TRUE. The XML document
returned must be valid according to the following XML schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'>

<xsd:element name="‘tokens'>
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="DocServiceTokenType"/>
<xsd:group ref="DocServiceCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<!--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for document service
-—>
<xsd:group name="DocServiceCompositeGroup">
<xsd:sequence>
<xsd:element name="word" type="DocServiceTokenType"/>
<xsd:element name="compMem™ type="DocServiceTokenType"™ minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

<I-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 76 of 123

ORACLE

Chapter 2
Lexer Types

<l--
DocServiceTokenType defines an element with content and mandatory attributes
—-—>
<xsd:complexType name="DocServiceTokenType'>
<xsd:simpleContent>
<xsd:extension base='"xsd:token">
<xsd:attribute name="off" type="0ffsetType" use="required"/>
<xsd:attribute name="len" type="xsd:unsignedShort" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="0ffsetType'>
<xsd:restriction base="xsd:unsignedInt'>
<xsd:maxInclusive value="2147483647"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Some of the constraints imposed by this XML Schema are as follows:

The root element is tokens. This is mandatory. It has no attributes.

The root element can have zero or more child elements. The child elements can be one of
the following elements: eos, eop, num, word, and compMem. Each of these represent a
specific type of token.

The compMem element must be preceded by a word element or a compMem element.
The eos and eop elements have no attributes and must be empty elements.

The num, word, and compMem elements have two mandatory attributes: off and len. Oracle
Text will normalize the content of these elements as follows: convert whitespace characters
to space characters, collapse adjacent space characters to a single space character,
remove leading and trailing spaces, perform entity reference replacement, and truncate to
255 bytes.

The off attribute value must be an integer between 0 and 2147483647 inclusive.

The len attribute value must be an integer between 0 and 65535 inclusive.

Table 2-33 describes the element types defined in the preceding XML Schema.

Table 2-34 describes the attributes defined in the preceding XML Schema.

Table 2-34 User-defined Lexer Indexing Procedure XML Schema Attributes

Attribute Description

Oracle Text Reference

G43188-01

off This attribute represents the character offset of the token as it appears in the
document being tokenized.

The offset is with respect to the character document passed to the user-defined
lexer indexing procedure, not the document fetched by the datastore. The
document fetched by the datastore may be pre-processed by the filter object or
the section group object, or both, before being passed to the user-defined lexer
indexing procedure.

The offset of the first character in the document being tokenized is 0 (zero).
Offset information follows USC-2 codepoint semantics.

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 77 of 123

ORACLE

Chapter 2
Lexer Types

Table 2-34 (Cont.) User-defined Lexer Indexing Procedure XML Schema Attributes

___|
Attribute Description

len This attribute represents the character length (same semantics as SQL function
LENGTH) of the token as it appears in the document being tokenized.

The length is with respect to the character document passed to the user-defined
lexer indexing procedure, not the document fetched by the datastore. The
document fetched by the datastore may be pre-processed by the filter object or
the section group object before being passed to the user-defined lexer indexing
procedure.

Length information follows USC-2 codepoint semantics.

Sum of off attribute value and len attribute value must be less than or equal to the total
number of characters in the document being tokenized. This is to ensure that the document
offset and characters being referenced are within the document boundary.

Example
Document: User-defined Lexer.
Tokens:

<tokens>
<word off="0" len="4"> USE </word>
<word off="5" len="7'"> DEF </word>
<word off="13" len="5"> LEX </word>
<eos/>

</tokens>

2.5.9.10 XML Schema for User-defined Lexer Query Procedure

This section describes additional constraints imposed on the XML document returned by the
user-defined lexer query procedure. The XML document returned must be valid with respect to
the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'">

<xsd:element name=""tokens'>
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="num" type="QueryTokenType"/>
<xsd:group ref="QueryCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<I--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for query
-—>
<xsd:group name="QueryCompositeGroup'>
<xsd:sequence>
<xsd:element name="word" type="QueryTokenType"/>
<xsd:element name="'compMem" type="QueryTokenType" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 78 of 123

ORACLE Chapter 2
Lexer Types

</xsd:group>

<l--
QueryTokenType defines an element with content and with an optional attribute
—-—>
<xsd:complexType name="QueryTokenType'>
<xsd:simpleContent>
<xsd:extension base='"xsd:token">
<xsd:attribute name="wildcard" type="WildcardType" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="WildcardType">
<xsd:restriction base="WildcardBaseType'>
<xsd:minLength value="1"/>
<xsd:maxLength value="64"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="WildcardBaseType">
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort'>
<xsd:maxInclusive value="378"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:list>
</xsd:simpleType>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

e The root element is tokens. This is mandatory. It has no attributes.

e The root element can have zero or more child elements. The child elements can be one of
the following elements: num and word. Each of these represent a specific type of token.

e The compMem element must be preceded by a word element or a compMem element.

The purpose of compMem is to enable USER_LEXER queries to return multiple forms for a
single query. For example, if a user-defined lexer indexes the word bank as
BANK(FINANCIAL) and BANK(RIVER), the query procedure can return the first term as a
word and the second as a compMem element:

<tokens>
<word>BANK(RIVER)</word>
<compMem>BANK(FINANCIAL)</compMem>
</tokens>

See Table 2-35, "Table 2-35" for more on the compMem element.

e The num and word elements have a single optional attribute: wildcard. Oracle Text will
normalize the content of these elements as follows: convert whitespace characters to
space characters, collapse adjacent space characters to a single space character, remove
leading and trailing spaces, perform entity reference replacement, and truncate to 255
bytes.

* The wildcard attribute value is a white-space separated list of integers. The minimum
number of integers is 1 and the maximum number of integers is 64. The value of the
integers must be between 0 and 378 inclusive. The intriguers in the list can be in any order.

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 79 of 123

ORACLE

Chapter 2
Lexer Types

Table 2-33 describes the element types defined in the preceding XML Schema.
Table 2-35 describes the attribute defined in the preceding XML Schema.

Table 2-35 User-defined Lexer Query Procedure XML Schema Attributes

|
Attribute Description

compMem Same as the word element, but its implicit word offset is the same as the previous
word token. Oracle Text will equate this token with the previous word token and with
subsequent compMem tokens using the query EQUIV operator.

wildcard Any % or _ characters in the query which are not escaped by the user are considered
wildcard characters because they are replaced by other characters. These wildcard
characters in the query must be preserved during tokenization in order for the wildcard
query feature to work properly. This attribute represents the character offsets (same
semantics as SQL function LENGTH) of wildcard characters in the content of the
element. Oracle Text will adjust these offsets for any hormalization performed on the
content of the element. The characters pointed to by the offsets must either be % or _
characters.

The offset of the first character in the content of the element is 0. Offset information
follows USC-2 codepoint semantics.

If the token does not contain any wildcard characters then this attribute must not be
specified.

Examples
Query word: pseudo-%morph%
Tokens:

<tokens>

<word> PSEUDO </word>

<word wildcard="1 7'> %MORPH% </word>
</tokens>

Query word: <%>
Tokens:

<tokens>
<word wildcard="5"> <%> </word>
</tokens>

2.5.10 WORLD_LEXER

A simple lexer that can index documents in any language or mixed languages. Works with
short strings and long documents. Does not support stemming or other lexer-related attributes.

Use the WORLD_LEXER to index text columns that contain documents of different languages. For
example, use this lexer to index a text column that stores English, Japanese, and German
documents.

WORLD_LEXER differs from MULTI_LEXER in that WORLD _LEXER automatically detects the
language(s) of a document. Unlike MULTI_LEXER, WORLD_LEXER does not require you to have a
language column in your base table nor to specify the language column when you create the
index. Moreover, it is not necessary to use sub-lexers, as with MULTI_LEXER. (See
"MULTI_LEXER".)

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 80 of 123

ORACLE

Chapter 2
Wordlist Type

WORLD_LEXER supports all database character sets, and for languages whose character sets are
Unicode-based, it supports the Unicode 5.0 standard. For a list of languages that WORLD LEXER
can work with, see "World Lexer Features".

The WORLD_LEXER has the following attributes:

Table 2-36 WORLD_LEXER Attributes

|
Attribute Attribute Value

mixed_case Enables mixed-case (upper- and lower-case) searches of text (for
example, cat and Cat). Allowable values are YES and NO (default).

printjoins Specify the non alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed as
alphanumeric and included with the token in the Text index. This
includes printjoins that occur consecutively. See Basic Lexer
"printjoins".

skipjoins Specify the non-alphanumeric characters that, when they appear within
a word, identify the word as a single token; however, the characters are
not stored with the token in the Text index. See Basic Lexer "skipjoins".

Rules for PRINTJOIN and SKIPJOIN Characters
Refer to "Rules for PRINTJOIN and SKIPJOIN Characters” in JAPANESE VGRAM LEXER.

WORLD_LEXER Example
The following is an example of creating an index using WORLD_LEXER.

exec ctx_ddl.create_preference("MYLEXER", “world_lexer");
create index doc_idx on doc(data)
indextype is CONTEXT
parameters ("lexer MYLEXER
stoplist CTXSYS.EMPTY_STOPLIST");

2.6 Wordlist Type

Use the wordlist preference to enable the query options such as stemming, fuzzy matching for
your language. You can also use the wordlist preference to enable substring and prefix
indexing, which improves performance for wildcard queries with CONTAINS and CATSEARCH.

To create a wordlist preference, you must use BASIC_WORDLIST, which is the only type
available.

« BASIC_WORDLIST
* BASIC_WORDLIST Example

2.6.1 BASIC_WORDLIST

Use BASIC_WORDLIST to enable stemming and fuzzy matching or to create prefix indexes with
Text indexes.

Oracle Text Reference

G43188-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 81 of 123

ORACLE

Table 2-37 BASIC_WORDLIST Attributes

Chapter 2
Wordlist Type

|
Attribute Attribute Values

stemmer Specify which language stemmer to use. You can specify one of the
following stemmers:

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

NULL (no stemming)

AUTO (Automatic language-detection for stemming, derived from the
database session language. For example, if the database session
language is American or English, then the English stemmer is used.
Note that the STEMMER=AUTO attribute value resolves the environment
language (NLS_LANG) to the supported languages. Does not auto-
detect Japanese.)

Afrikaans

Arabic

Basque

Belarusian

Bokmal (Norwegian)

Bulgarian

Catalan

Croatian

Czech

Danish

Derivational (English derivational)

Dutch

English (English inflectional)

Estonian

Finnish

French

Galician

German

Greek

Hebrew

Hindi

Hungarian

Icelandic

Indonesian

Italian

Japanese

Latvian

Lithuanian

Macedonian

Malay

Nynorsk (Norwegian)

Persian (Farsi)

Polish

Portuguese

Romanian

Russian

Serbian

Slovak

Slovenian

October 13, 2025
Page 82 of 123

ORACLE Chapter 2
Wordlist Type

Table 2-37 (Cont.) BASIC_WORDLIST Attributes

Attribute Attribute Values
« Spanish
- Swedish
e Turkish
« Ukrainian
e Urdu
fuzzy match Specify which fuzzy matching cluster to use. You can specify one of the

following types:
AUTO (Automatic language detection for stemming)
CHINESE_VGRAM
Dutch
English
French
GENERIC
German
Italian
JAPANESE_VGRAM
Korean
OCR
Spanish
fuzzy score Specify a default lower limit of fuzzy score. Specify a number between 1
and 80. Text with scores below this number is not returned. Default is 60.

fuzzy numresults Specify the maximum number of fuzzy expansions. Use a nhumber between
0 and 5,000. Default is 100.

substring_index Specify TRUE for Oracle Text to create a substring index. A substring index
improves left-truncated and double-truncated wildcard queries such as
%ing or %benz%. Default is FALSE.

prefix_index Specify TRUE to enable prefix indexing. Prefix indexing improves
performance for right truncated wildcard searches such as TO%. Default is
FALSE.

prefix_min_length Specify the minimum length of indexed prefixes. Default is 1. Length

information must follow USC-2 codepoint semantics.

prefix_max_length Specify the maximum length of indexed prefixes. Default is 64. Length
information must follow USC-2 codepoint semantics.

wildcard_maxterms Specify the maximum number of terms in a wildcard expansion. The
maximum value is 50000 and the default value is 20000. If you specify a
value of 0, then the number of wildcard expansions will be unbounded. Note
that when set to 0, the system may run out of memory due to the high
number of wildcard expansions.

ndata_base letter Specify whether characters that have diacritical marks are converted to
their base form before being stored in the Text index or queried by the
NDATA operator.

FALSE (default) or TRUE
When set to FALSE, no base lettering is used.

Oracle Text Reference
G43188-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 83 of 123

ORACLE Chapter 2
Wordlist Type

Table 2-37 (Cont.) BASIC_WORDLIST Attributes

|
Attribute Attribute Values

ndata_alternate_spelling Specify whether to enable alternate spelling for German, Danish, and
Swedish. Enabling alternate spelling allows you to index NDATA section data
and query using the NDATA operator in alternate form.
FALSE (default) or TRUE

When set to FALSE, no alternate spelling is used.

ndata_thesaurus Name of the thesaurus used for alternate name expansion.

ndata_join_particles A list of colon-separated name particles that can be joined with a name that
follows them.

reverse_index Specify whether to enable the creation of another index on $1 to provide

better performance for left truncated queries. These are queries where one
or more tokens have a leading wildcard and no trailing wildcard, for
example, the %racle %atabase.

When set to TRUE, it creates a new index $V on $1 on reverse
(token_text). Default is FALSE.

wildcard_index Specify TRUE to enable wildcard indexing. Wildcard indexing supports fast
and efficient wildcard search for all wildcard expressions. The default value
is FALSE.

wildcard_index_k Specify the size of grams for the K-gram index. The value can range

between 2 and 5 and the default value is 3.

stemmer

Specify the stemmer used for word stemming in Text queries. When you do not specify a
value for STEMMER, the default is ENGLISH.

Specify AUTO for the system to automatically set the stemming language according to the
language setting of the database session. If the database language is American or English,
then the ENGLISH stemmer is automatically used. Otherwise, the stemmer that maps to the
database session language is used.

When there is no stemmer for a language, the default is NULL. With the NULL stemmer, the
stem operator is ignored in queries.

You can create your own stemming user-dictionary.

® Note

The STEMMER attribute of BASIC_WORDLIST preference is ignored if the INDEX_STEMS
attribute of the AUTO_LEXER preference is set to YES. In this case, the same stemmer
that is used by AUTO_LEXER during indexing is used to determine the stem of the query
term during query.

fuzzy_match
Sspecify which fuzzy matching routines are used for the column. Fuzzy matching is currently
supported for English, Japanese, and, to a lesser extent, the Western European languages.

Oracle Text Reference
G43188-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 84 of 123

ORACLE Chapter 2
Wordlist Type

@® Note

The fuzzy match attributes value for Chinese and Korean are dummy attribute values
that prevent the English and Japanese fuzzy matching routines from being used on
Chinese and Korean text.

The default for fuzzy_match is GENERIC.
Specify AUTO for the system to automatically set the fuzzy matching language according to
language setting of the session.

fuzzy_score

Specify a default lower limit of fuzzy score. Specify a number between 1 and 80. Text with
scores below this number are not returned. The default is 60.

Fuzzy score is a measure of how close the expanded word is to the query word. The higher
the score the better the match. Use this parameter to limit fuzzy expansions to the best
matches.

fuzzy_numresults

Specify the maximum number of fuzzy expansions. Use a number between 0 and 5000. The
default is 100.

Setting a fuzzy expansion limits the expansion to a specified number of the best matching
words.

substring_index

Specify TRUE for Oracle Text to create a substring index. A substring index improves
performance for left-truncated or double-truncated wildcard queries such as %ing or %benz%.
The default is false.

Limitations of substring_index:

Oracle recommends using the wildcard_index attribute over substring_index. See
wildcard_index. Substring indexing has the following impact on indexing and disk resources:

e Index creation and DML processing is up to 4 times slower.

e Index creation with substring_index enabled requires more rollback segments during
index flushes than with substring_index off. Do either of the following when creating a
substring index:

— Make available double the usual rollback.

— Decrease the index memory to reduce the size of the index flushes