
Oracle® AI Database
Oracle Text Reference

26ai
G43188-01
October 2025

Oracle AI Database Oracle Text Reference, 26ai

G43188-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Primary Author: Minal Agashe

Contributing Authors: Doug Williams, Prakash Jashnani

Contributors: Ajay Sunnyhith Chidurala, Aleksandra Czarlinska, Asha Makur, Bonnie Xia, Ce Wei, Denis Mukhin, Edwin
Balthes, Gaurav Yadav, George Krupka, Harichandan Roy, Madhupriya Ravishankar, Mohammad Faisal, Nilay Panchal,
Paul Lane, Rahul Kadwe, Rodrigo Fuentes Hernandez, Roger Ford, Sanoop Sethumadhavan, Saurabh Naresh
Netravalkar, Sebastian DeLaHoz, Simona Herdan, Sudhir Kumar, Yiming Qi

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Related Documents i

Conventions i

1 Oracle Text SQL Statements and Operators

1.1 ALTER INDEX 1

1.2 ALTER TABLE: Supported Partitioning Statements 31

1.3 CATSEARCH 36

1.4 CONTAINS 42

1.5 CREATE INDEX 53

1.6 CREATE SEARCH INDEX 80

1.7 CREATE HYBRID VECTOR INDEX 106

1.8 DROP INDEX 118

1.9 MATCHES 118

1.10 MATCH_SCORE 120

1.11 SCORE 120

2 Oracle Text Indexing Elements

2.1 Overview 1

2.2 Creating Preferences 2

2.3 Datastore Types 2

2.3.1 DIRECT_DATASTORE 3

2.3.2 MULTI_COLUMN_DATASTORE 4

2.3.2.1 MULTI_COLUMN_DATASTORE Attributes 4

2.3.2.2 Indexing and DML 5

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction 5

2.3.2.4 MULTI_COLUMN_DATASTORE Example 5

2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example 5

2.3.2.6 Tagging Behavior 6

2.3.2.7 Indexing Columns as Sections 6

2.3.3 DETAIL_DATASTORE 7

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of xvii

2.3.3.1 DETAIL_DATASTORE Attributes 7

2.3.3.2 Synchronizing Primary/Detail Indexes 8

2.3.3.3 Example Primary/Detail Tables 8

2.3.4 FILE_DATASTORE 10

2.3.4.1 FILE_DATASTORE Attributes 10

2.3.4.2 FILE_DATASTORE and Security 11

2.3.4.3 FILE_DATASTORE Example 12

2.3.5 DIRECTORY_DATASTORE 12

2.3.5.1 DIRECTORY_DATASTORE Attributes 13

2.3.5.2 DIRECTORY_DATASTORE Example 13

2.3.6 URL_DATASTORE 14

2.3.6.1 URL_DATASTORE URL Syntax 14

2.3.6.2 URL_DATASTORE Attributes 15

2.3.6.3 URL_DATASTORE and Security 16

2.3.6.4 URL_DATASTORE Example 16

2.3.7 NETWORK_DATASTORE 17

2.3.7.1 NETWORK_DATASTORE URL Syntax 17

2.3.7.2 NETWORK_DATASTORE Attributes 18

2.3.7.3 NETWORK_DATASTORE Example 19

2.3.8 USER_DATASTORE 20

2.3.8.1 USER_DATASTORE Attributes 20

2.3.8.2 USER_DATASTORE Constraints 21

2.3.8.3 USER_DATASTORE Editing Procedure after Indexing 21

2.3.8.4 USER_DATASTORE with CLOB Example 22

2.3.8.5 USER_DATASTORE with BLOB_LOC Example 22

2.3.9 NESTED_DATASTORE 23

2.3.9.1 NESTED_DATASTORE Attributes 23

2.3.9.2 NESTED_DATASTORE Example 24

2.4 Filter Types 25

2.4.1 AUTO_FILTER 25

2.4.1.1 AUTO_FILTER Attributes 26

2.4.1.2 AUTO_FILTER and Indexing Formatted Documents 26

2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns 27

2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER 28

2.4.2 NULL_FILTER 28

2.4.3 MAIL_FILTER 28

2.4.3.1 MAIL_FILTER Attributes 29

2.4.3.2 MAIL_FILTER Behavior 30

2.4.3.3 About the Mail Filter Configuration File 30

2.4.3.4 Mail_Filter Example 31

2.4.4 USER_FILTER 32

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of xvii

2.4.4.1 USER_FILTER Attributes 32

2.4.4.2 Using USER_FILTER with Charset and Format Columns 33

2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns 33

2.4.4.4 Character Set Conversion with USER_FILTER 34

2.4.4.5 User Filter Example 34

2.4.5 PROCEDURE_FILTER 35

2.4.5.1 PROCEDURE_FILTER Attributes 35

2.4.5.2 PROCEDURE_FILTER Parameter Order 37

2.4.5.3 PROCEDURE_FILTER Execute Requirements 37

2.4.5.4 PROCEDURE_FILTER Error Handling 37

2.4.5.5 PROCEDURE_FILTER Preference Example 38

2.5 Lexer Types 38

2.5.1 AUTO_LEXER 38

2.5.1.1 AUTO_LEXER Language Support 39

2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER 41

2.5.1.3 AUTO_LEXER Language-Independent Attributes 41

2.5.1.4 AUTO_LEXER Language-Dependent Attributes 43

2.5.1.5 AUTO_LEXER Dictionary Attribute 46

2.5.2 BASIC_LEXER 46

2.5.2.1 BASIC_LEXER Language Support 47

2.5.2.2 BASIC_LEXER Attributes 48

2.5.2.3 Stemming User-Dictionaries 56

2.5.2.4 BASIC_LEXER Example 58

2.5.3 MULTI_LEXER 59

2.5.3.1 MULTI_LEXER Restriction 59

2.5.3.2 MULTI_LEXER Multi-language Stoplists 59

2.5.3.3 MULTI_LEXER Example 60

2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables 60

2.5.4 CHINESE_VGRAM_LEXER 61

2.5.5 CHINESE_LEXER 62

2.5.6 JAPANESE_VGRAM_LEXER 62

2.5.7 JAPANESE_LEXER 64

2.5.8 KOREAN_MORPH_LEXER 65

2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries 65

2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support 66

2.5.8.3 KOREAN_MORPH_LEXER Attributes 66

2.5.8.4 KOREAN_MORPH_ LEXER Limitations 67

2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute 67

2.5.9 USER_LEXER 68

2.5.9.1 USER_LEXER Routines 69

2.5.9.2 USER_LEXER Limitations 69

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of xvii

2.5.9.3 USER_LEXER Attributes 69

2.5.9.4 INDEX_PROCEDURE 70

2.5.9.5 INPUT_TYPE 70

2.5.9.6 QUERY_PROCEDURE 72

2.5.9.7 Encoding Tokens as XML 73

2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure 74

2.5.9.9 XML Schema for User-defined Indexing Procedure with Location 76

2.5.9.10 XML Schema for User-defined Lexer Query Procedure 78

2.5.10 WORLD_LEXER 80

2.6 Wordlist Type 81

2.6.1 BASIC_WORDLIST 81

2.6.2 BASIC_WORDLIST Example 90

2.6.2.1 Enabling Fuzzy Matching and Stemming 91

2.6.2.2 Enabling Sub-string and Prefix Indexing 91

2.6.2.3 Setting Wildcard Expansion Limit 91

2.7 Storage Types 92

2.7.1 BASIC_STORAGE 92

2.7.1.1 BASIC_STORAGE Attributes 93

2.7.1.2 BASIC_STORAGE Default Behavior 100

2.7.1.3 BASIC_STORAGE Examples 101

2.8 Section Group Types 103

2.8.1 Section Group Types for Creating a Section Group 103

2.8.2 Section Group Examples for HTML, XML, and JSON Enabled Documents 104

2.8.2.1 Creating Section Groups in HTML Documents 105

2.8.2.2 Creating Sections Groups in XML Documents 105

2.8.2.3 Automatic Sectioning in XML Documents 105

2.8.2.4 Creating JSON Section Groups for JSON Search Index 106

2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS 106

2.8.2.6 Using JSON Search Index with JSON_EXISTS 106

2.9 Classifier Types 106

2.9.1 RULE_CLASSIFIER 106

2.9.2 SVM_CLASSIFIER 107

2.9.3 SENTIMENT_CLASSIFIER 108

2.10 Cluster Types 109

2.10.1 KMEAN_CLUSTERING 109

2.11 Stoplists 110

2.11.1 Multi-Language Stoplists 110

2.11.2 Creating Stoplists 111

2.11.3 Supplied Stoplists 111

2.11.4 Modifying the Default Stoplist 112

2.12 System-Defined Preferences 112

2.12.1 Data Storage Preferences 113

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of xvii

2.12.2 Filter Preferences 113

2.12.3 Lexer Preferences 113

2.12.3.1 CTXSYS.DEFAULT_LEXER 113

2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER 114

2.12.3.3 CTXSYS.BASIC_LEXER 115

2.12.4 Section Group Preferences 115

2.12.5 Stoplist Preferences 115

2.12.6 Storage Preferences 115

2.12.7 Wordlist Preferences 116

2.13 System Parameters 116

2.13.1 General System Parameters 116

2.13.2 Default Index Parameters 117

2.13.2.1 CONTEXT Index Parameters 117

2.13.2.2 CTXCAT Index Parameters 119

2.13.2.3 CTXRULE Index Parameters 120

2.13.3 Default Policy Parameters 120

2.14 Token Limitations for Oracle Text Indexes 121

2.15 Auditing Oracle Text DR$ Index Tables 122

2.15.1 About Auditing Oracle Text DR$ Index Tables 122

2.15.2 Configuring an Oracle Text DR$ Index Tables Audit Policy 123

2.15.3 Example: Auditing Update Actions on an Oracle Text DR$ Index Table 123

2.15.4 How Oracle Text DR$ Index Table Entries Appear in the Audit Trail 123

3 Oracle Text CONTAINS Query Operators

3.1 Operator Precedence 2

3.1.1 Group 1 Operators 2

3.1.2 Group 2 Operators and Characters 2

3.1.3 Procedural Operators 3

3.1.4 Precedence Examples 3

3.1.5 Altering Precedence 3

3.2 ABOUT 4

3.3 ACCUMulate (,) 6

3.4 AND (&) 8

3.5 Broader Term (BT, BTG, BTP, BTI) 9

3.6 CTXFILTERCACHE 10

3.7 DEFINEMERGE 15

3.8 DEFINESCORE 15

3.9 EQUIValence (=) 19

3.10 Fuzzy 20

3.11 HASPATH 21

3.12 INPATH 23

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of xvii

3.13 MDATA 28

3.14 MINUS (-) 30

3.15 MNOT 30

3.16 Narrower Term (NT, NTG, NTP, NTI) 31

3.17 NDATA 32

3.18 NEAR (;) 35

3.19 NEAR2 39

3.20 NOT (~) 40

3.21 OR (|) 41

3.22 Preferred Term (PT) 41

3.23 Related Term (RT) 42

3.24 SDATA 42

3.25 soundex (!) 45

3.26 stem ($) 45

3.27 Stored Query Expression (SQE) 46

3.28 SYNonym (SYN) 47

3.29 threshold (>) 48

3.30 Translation Term (TR) 48

3.31 Translation Term Synonym (TRSYN) 49

3.32 Top Term (TT) 50

3.33 weight (*) 51

3.34 wildcards (% _) 52

3.35 WITHIN 54

3.36 Supported Oracle Text CONTAINS Query Operators for In-Memory Full Text Search 58

4 Special Characters in Oracle Text Queries

4.1 Grouping Characters 1

4.2 Escape Characters 1

4.3 Reserved Words and Characters 2

5 CTX_ADM Package

5.1 About CTX_ADM Package Procedures 1

5.2 MARK_FAILED 1

5.3 RECOVER 3

5.4 RESET_AUTO_OPTIMIZE_STATUS 3

5.5 SET_PARAMETER 3

6 CTX_ANL Package

6.1 About CTX_ANL Package Procedures 1

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of xvii

6.2 ADD_DICTIONARY 1

6.3 DROP_DICTIONARY 4

7 CTX_CLS Package

7.1 About CTX_CLS Package Procedures 1

7.2 TRAIN 1

7.3 CLUSTERING 5

7.4 SA_TRAIN_MODEL 8

7.5 SA_DROP_MODEL 9

8 CTX_DDL Package

8.1 ADD_ATTR_SECTION 2

8.2 ADD_AUTO_OPTIMIZE 3

8.3 ADD_FIELD_SECTION 5

8.4 ADD_INDEX 8

8.5 ADD_MDATA 9

8.6 ADD_MDATA_COLUMN 12

8.7 ADD_MDATA_SECTION 13

8.8 ADD_NDATA_SECTION 14

8.9 ADD_PATH 15

8.10 ADD_SDATA_COLUMN 17

8.11 ADD_SDATA_SECTION 19

8.12 ADD_SEC_GRP_ATTR_VAL 23

8.13 ADD_SPECIAL_SECTION 23

8.14 ADD_STOPCLASS 25

8.15 ADD_STOP_SECTION 26

8.16 ADD_STOPTHEME 27

8.17 ADD_STOPWORD 28

8.18 ADD_SUB_LEXER 30

8.19 ADD_ZONE_SECTION 32

8.20 COPY_POLICY 35

8.21 CREATE_INDEX_SET 35

8.22 CREATE_PATH_LIST 36

8.23 CREATE_POLICY 39

8.24 CREATE_PREFERENCE 41

8.25 CREATE_SECTION_GROUP 43

8.26 CREATE_SHADOW_INDEX 46

8.27 CREATE_STOPLIST 48

8.28 DROP_INDEX_SET 50

8.29 DROP_PATH_LIST 50

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of xvii

8.30 DROP_POLICY 51

8.31 DROP_PREFERENCE 51

8.32 DROP_SECTION_GROUP 51

8.33 DROP_SHADOW_INDEX 52

8.34 DROP_STOPLIST 52

8.35 EXCHANGE_SHADOW_INDEX 53

8.36 LOAD_STOPLIST 55

8.37 OPTIMIZE_INDEX 56

8.38 POPULATE_PENDING 63

8.39 PREFERENCE_IMPLICIT_COMMIT 63

8.40 RECREATE_INDEX_ONLINE 64

8.41 REM_SEC_GRP_ATTR_VAL 70

8.42 REMOVE_AUTO_OPTIMIZE 71

8.43 REMOVE_INDEX 71

8.44 REMOVE_MDATA 72

8.45 REMOVE_SECTION 73

8.46 REMOVE_STOPCLASS 74

8.47 REMOVE_STOPTHEME 75

8.48 REMOVE_STOPWORD 75

8.49 REMOVE_SUB_LEXER 76

8.50 REPLACE_INDEX_METADATA 76

8.51 SET_ATTRIBUTE 77

8.52 SET_SEC_GRP_ATTR 78

8.53 SET_SECTION_ATTRIBUTE 79

8.54 SYNC_INDEX 81

8.55 UNSET_ATTRIBUTE 84

8.56 UNSET_SEC_GRP_ATTR 84

8.57 UPDATE_SUB_LEXER 85

8.58 UPDATE_POLICY 85

8.59 UPDATE_SDATA 86

9 CTX_DOC Package

9.1 About CTX_DOC Package Procedures 2

9.2 FILTER 2

9.3 GIST 5

9.4 HIGHLIGHT 8

9.5 IFILTER 12

9.6 MARKUP 13

9.7 PKENCODE 18

9.8 POLICY_FILTER 19

9.9 POLICY_GIST 20

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of xvii

9.10 POLICY_HIGHLIGHT 22

9.11 POLICY_LANGUAGES 23

9.12 POLICY_MARKUP 24

9.13 POLICY_NOUN_PHRASES 26

9.14 POLICY_PART_OF_SPEECH 29

9.15 POLICY_SNIPPET 31

9.16 POLICY_STEMS 33

9.17 POLICY_THEMES 34

9.18 POLICY_TOKENS 35

9.19 SENTIMENT 37

9.20 SENTIMENT_AGGREGATE 38

9.21 SET_KEY_TYPE 39

9.22 SNIPPET 40

9.23 THEMES 44

9.24 TOKENS 46

10

CTX_ENTITY Package

10.1 ADD_EXTRACT_RULE 1

10.2 ADD_STOP_ENTITY 5

10.3 COMPILE 6

10.4 CREATE_EXTRACT_POLICY 7

10.5 DROP_EXTRACT_POLICY 8

10.6 EXTRACT 9

10.7 IMPORT_DICTIONARY 10

10.8 REMOVE_EXTRACT_RULE 12

10.9 REMOVE_STOP_ENTITY 13

11

CTX_OUTPUT Package

11.1 ADD_EVENT 1

11.2 ADD_TRACE 2

11.3 DISABLE_QUERY_STATS 3

11.4 ENABLE_QUERY_STATS 4

11.5 END_LOG 5

11.6 END_QUERY_LOG 5

11.7 GET_TRACE_VALUE 5

11.8 LOG_TRACES 6

11.9 LOGFILENAME 6

11.10 REMOVE_EVENT 7

11.11 REMOVE_TRACE 7

11.12 RESET_TRACE 8

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of xvii

11.13 START_LOG 8

11.14 START_QUERY_LOG 9

12

CTX_QUERY Package

12.1 BROWSE_WORDS 1

12.2 COUNT_HITS 3

12.3 EXPLAIN 4

12.4 HFEEDBACK 7

12.5 REMOVE_SQE 10

12.6 RESULT_SET 11

12.7 RESULT_SET_CLOB_QUERY 34

12.8 RESULT_SET_DOCUMENT 34

12.9 STORE_SQE 35

12.10 WARM_CACHE 37

13

CTX_REPORT Package

13.1 Description of Procedures in CTX_REPORT 1

13.2 Using the Function Versions 2

13.3 DESCRIBE_INDEX 2

13.4 DESCRIBE_POLICY 3

13.5 CREATE_INDEX_SCRIPT 4

13.6 CREATE_POLICY_SCRIPT 4

13.7 INDEX_SIZE 5

13.8 INDEX_STATS 6

13.9 QUERY_LOG_SUMMARY 13

13.10 SHOW_TOKENS 17

13.11 TOKEN_INFO 20

13.12 TOKEN_TYPE 21

13.13 VALIDATE_INDEX 23

14

CTX_THES Package

14.1 ALTER_PHRASE 2

14.2 ALTER_THESAURUS 3

14.3 BT 4

14.4 BTG 6

14.5 BTI 7

14.6 BTP 8

14.7 CREATE_PHRASE 9

14.8 CREATE_RELATION 10

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page x of xvii

14.9 CREATE_THESAURUS 11

14.10 CREATE_TRANSLATION 12

14.11 DROP_PHRASE 13

14.12 DROP_RELATION 13

14.13 DROP_THESAURUS 15

14.14 DROP_TRANSLATION 15

14.15 EXPORT_THESAURUS 16

14.16 HAS_RELATION 17

14.17 IMPORT_THESAURUS 17

14.18 NT 18

14.19 NTG 20

14.20 NTI 21

14.21 NTP 23

14.22 OUTPUT_STYLE 24

14.23 PT 24

14.24 RT 26

14.25 SN 27

14.26 SYN 27

14.27 THES_TT 29

14.28 TR 30

14.29 TRSYN 31

14.30 TT 33

14.31 UPDATE_TRANSLATION 34

15

CTX_ULEXER Package

15.1 WILDCARD_TAB 1

16

DBMS_SEARCH Package

16.1 CREATE_INDEX 2

16.2 ADD_SOURCE 4

16.3 REMOVE_SOURCE 6

16.4 DROP_INDEX 7

16.5 GET_DOCUMENT 7

16.6 FIND 8

17

Oracle Text Utilities

17.1 Thesaurus Loader (ctxload) 1

17.1.1 ctxload Text Loading 1

17.1.2 ctxload Syntax 2

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xvii

17.1.3 ctxload Examples 3

17.2 Entity Extraction User Dictionary Loader (ctxload) 4

17.2.1 ctxload Syntax 4

17.2.2 Considerations When Creating a User Dictionary 4

17.2.3 XML Schema 5

17.2.4 ctxload Example 6

17.3 Knowledge Base Extension Compiler (ctxkbtc) 6

17.3.1 Knowledge Base Character Set 7

17.3.2 ctxkbtc Syntax 7

17.3.3 ctxkbtc Usage Notes 8

17.3.4 ctxkbtc Limitations 8

17.3.5 ctxkbtc Constraints on Thesaurus Terms 8

17.3.6 ctxkbtc Constraints on Thesaurus Relations 9

17.3.7 Extending the Knowledge Base 9

17.3.8 Example for Extending the Knowledge Base 10

17.3.9 Adding a Language-Specific Knowledge Base 10

17.3.10 Limitations for Adding a Knowledge Base 11

17.3.11 Order of Precedence for Multiple Thesauri 11

17.3.12 Size Limits for Extended Knowledge Base 11

17.4 Lexical Compiler (ctxlc) 11

17.4.1 Syntax of ctxlc 12

17.4.2 ctxlc Performance Considerations 12

17.4.3 ctxlc Usage Notes 13

17.4.4 ctxlc Example 13

18

Oracle Text Alternative Spelling

18.1 Overview of Alternative Spelling Features 1

18.1.1 Alternate Spelling 2

18.1.2 Base-Letter Conversion 2

18.1.3 New German Spelling 2

18.2 Overriding Alternative Spelling Features 3

18.3 Alternative Spelling Conventions 3

18.3.1 German Alternate Spelling Conventions 4

18.3.2 Danish Alternate Spelling Conventions 4

18.3.3 Swedish Alternate Spelling Conventions 4

A Oracle Text Result Tables

A.1 CTX_QUERY Result Tables A-1

A.1.1 EXPLAIN Table A-1

A.1.1.1 EXPLAIN Table Structure A-1

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xvii

A.1.1.2 EXPLAIN Table Operation Column Values A-2

A.1.1.3 EXPLAIN Table OPTIONS Column Values A-3

A.1.2 HFEEDBACK Table A-3

A.1.2.1 HFEEDBACK Table Structure A-3

A.1.2.2 HFEEDBACK Table Operation Column Values A-4

A.1.2.3 HFEEDBACK Table OPTIONS Column Values A-4

A.1.2.4 CTX_FEEDBACK_TYPE A-5

A.2 CTX_DOC Result Tables A-6

A.2.1 Filter Table A-6

A.2.2 Gist Table A-6

A.2.3 Highlight Table A-7

A.2.4 Markup Table A-7

A.2.5 Theme Table A-7

A.2.6 Token Table A-8

A.3 CTX_THES Result Tables and Data Types A-8

A.3.1 EXP_TAB Table Type A-8

B Oracle Text Supported Document Formats

B.1 About Document Filtering Technology B-1

B.1.1 Latest Updates for Patch Releases B-1

B.1.2 Restrictions on Format Support B-1

B.1.3 Supported Platforms for AUTO_FILTER Technology B-2

B.1.4 Filtering on PDF Documents and Security Settings B-2

B.1.5 PDF Filtering Limitations B-4

B.1.6 Environment Variables B-4

B.1.7 General Limitations B-4

B.2 Supported Document Formats B-4

B.2.1 Archive File Format B-5

B.2.2 Database Formats B-5

B.2.3 E-Book Formats B-6

B.2.4 Email Formats B-6

B.2.5 Graphic Formats (Raster and Vector Image) B-8

B.2.6 Multimedia Formats B-10

B.2.7 Other Formats B-11

B.2.8 Presentation Formats B-12

B.2.9 Spreadsheet Formats B-12

B.2.10 Text and Markup Formats B-13

B.2.11 Word Processing and Desktop Publishing Formats B-15

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiii of xvii

C Text Loading Examples for Oracle Text

C.1 SQL INSERT Example C-1

C.2 SQL*Loader Example C-1

C.2.1 Creating the Table C-1

C.2.2 Issuing the SQL*Loader Command C-2

C.2.2.1 Example Control File: loader1.dat C-2

C.2.2.2 Example Data File: loader2.dat C-2

C.3 Structure of ctxload Thesaurus Import File C-3

C.3.1 Import File Format C-3

C.3.2 Alternate Hierarchy Structure C-5

C.3.3 Usage Notes for Terms in Import Files C-6

C.3.4 Usage Notes for Relationships in Import Files C-6

C.3.5 Examples of Import Files C-7

C.3.5.1 Example 1 (Flat Structure) C-7

C.3.5.2 Example 2 (Hierarchical) C-7

C.3.5.3 Example 3 C-8

D Oracle Text Multilingual Features

D.1 Introduction D-1

D.2 Indexing D-1

D.2.1 Multilingual Features for Text Index Types D-1

D.2.1.1 CONTEXT Index Type D-2

D.2.1.2 CTXCAT Index Type D-2

D.2.1.3 CTXRULE Index Type D-3

D.2.2 Lexer Types D-3

D.2.3 Basic Lexer Features D-4

D.2.3.1 Theme Indexing D-4

D.2.3.2 Alternate Spelling D-4

D.2.3.3 Base Letter Conversion D-5

D.2.3.4 Composite D-5

D.2.3.5 Index Stems D-5

D.2.4 Multi Lexer Features D-6

D.2.5 World Lexer Features D-6

D.3 Querying D-8

D.4 Supplied Stoplists D-8

D.5 Knowledge Base D-9

D.6 Multilingual Features Matrix D-9

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiv of xvii

E The Oracle Text Scoring Algorithm

E.1 Scoring Algorithm for Word Queries E-1

E.2 Word Scoring Example E-2

E.3 DML and Scoring Algorithm E-2

F Oracle Text Views

F.1 CTX_ALEXER_DICTS F-3

F.2 CTX_AUTO_OPTIMIZE_INDEXES F-3

F.3 CTX_AUTO_OPTIMIZE_STATUS F-3

F.4 CTX_AUTOSYNC_JOBS F-4

F.5 CTX_AUTOSYNC_STATUS F-4

F.6 CTX_BACKGROUND_EVENTS F-5

F.7 CTX_CLASSES F-7

F.8 CTX_FILTER_BY_COLUMNS F-8

F.9 CTX_FILTER_CACHE_STATISTICS F-8

F.10 CTX_INDEXES F-8

F.11 CTX_INDEX_ERRORS F-9

F.12 CTX_INDEX_OBJECTS F-10

F.13 CTX_INDEX_PARTITIONS F-10

F.14 CTX_INDEX_SETS F-10

F.15 CTX_INDEX_SET_INDEXES F-10

F.16 CTX_INDEX_SUB_LEXERS F-11

F.17 CTX_INDEX_SUB_LEXER_VALUES F-11

F.18 CTX_INDEX_VALUES F-11

F.19 CTX_OBJECTS F-12

F.20 CTX_OBJECT_ATTRIBUTES F-12

F.21 CTX_OBJECT_ATTRIBUTE_LOV F-12

F.22 CTX_ORDER_BY_COLUMNS F-13

F.23 CTX_PARAMETERS F-13

F.24 CTX_PREFERENCES F-14

F.25 CTX_PREFERENCE_VALUES F-15

F.26 CTX_SECTIONS F-15

F.27 CTX_SECTION_GROUPS F-15

F.28 CTX_SQES F-15

F.29 CTX_STOPLISTS F-16

F.30 CTX_STOPWORDS F-16

F.31 CTX_SUB_LEXERS F-16

F.32 CTX_THESAURI F-17

F.33 CTX_THES_PHRASES F-17

F.34 CTX_TRACE_VALUES F-17

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xv of xvii

F.35 CTX_USER_ALEXER_DICTS F-17

F.36 CTX_USER_AUTO_OPTIMIZE_INDEXES F-18

F.37 CTX_USER_AUTOSYNC_JOBS F-18

F.38 CTX_USER_AUTOSYNC_STATUS F-19

F.39 CTX_USER_BACKGROUND_EVENTS F-19

F.40 CTX_USER_EXTRACT_POLICIES F-22

F.41 CTX_USER_EXTRACT_POLICY_VALUES F-22

F.42 CTX_USER_EXTRACT_RULES F-22

F.43 CTX_USER_EXTRACT_STOP_ENTITIES F-23

F.44 CTX_USER_EXTRACT_TYPE F-23

F.45 CTX_USER_ FILTER_BY_COLUMNS F-23

F.46 CTX_USER_INDEXES F-24

F.47 CTX_USER_INDEX_ERRORS F-24

F.48 CTX_USER_INDEX_OBJECTS F-25

F.49 CTX_USER_INDEX_PARTITIONS F-25

F.50 CTX_USER_INDEX_SETS F-26

F.51 CTX_USER_INDEX_SET_INDEXES F-26

F.52 CTX_USER_INDEX_SUB_LEXERS F-26

F.53 CTX_USER_INDEX_SUB_LEXER_VALS F-26

F.54 CTX_USER_INDEX_VALUES F-27

F.55 CTX_USER_ORDER_BY_COLUMNS F-27

F.56 CTX_USER_PREFERENCES F-27

F.57 CTX_USER_PREFERENCE_VALUES F-27

F.58 CTX_USER_SECTIONS F-28

F.59 CTX_USER_SECTION_GROUPS F-28

F.60 CTX_USER_SESSION_SQES F-28

F.61 CTX_USER_SQES F-29

F.62 CTX_USER_STOPLISTS F-29

F.63 CTX_USER_STOPWORDS F-29

F.64 CTX_USER_SUB_LEXERS F-29

F.65 CTX_USER_THESAURI F-30

F.66 CTX_USER_THES_PHRASES F-30

F.67 CTX_VERSION F-30

F.68 ALL_DBMS_SEARCH_INDEXES F-30

F.69 ALL_DBMS_SEARCH_INDEX_SOURCES F-31

F.70 USER_DBMS_SEARCH_INDEXES F-31

F.71 USER_DBMS_SEARCH_INDEX_SOURCES F-31

G Stopword Transformations in Oracle Text

G.1 Understanding Stopword Transformations G-1

G.2 About Stopwords in Phrase Queries G-2

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvi of xvii

G.3 Word Transformations G-2

G.4 AND Transformations G-2

G.5 OR Transformations G-3

G.6 ACCUMulate Transformations G-3

G.7 MINUS Transformations G-3

G.8 MNOT Transformations G-4

G.9 NOT Transformations G-4

G.10 EQUIValence Transformations G-4

G.11 NEAR Transformations G-5

G.12 Weight Transformations G-5

G.13 Threshold Transformations G-5

G.14 WITHIN Transformations G-5

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvii of xvii

Preface

Oracle Text Reference provides reference information for building applications with Oracle
Text.

• Audience

• Conventions

Audience
This document is intended for application developers and system administrators who maintain
an Oracle Text system in an Oracle environment. To use this document, you need experience
with Oracle Database, SQL, SQL*Plus, and PL/SQL.

Related Documents
For more information about Oracle Text, see:

• Oracle Text Application Developer's Guide

For more information about Oracle Database, see:

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database Utilities

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database Development Guide

• Oracle Database Sample Schemas

For more information about PL/SQL, see:

• Oracle Database PL/SQL Language Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of ii

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii

1
Oracle Text SQL Statements and Operators

These are the SQL statements and Oracle Text operators for creating and managing Oracle
Text indexes and performing Oracle Text queries.

• ALTER INDEX

• ALTER TABLE: Supported Partitioning Statements

• CATSEARCH

• CONTAINS

• CREATE INDEX

• CREATE HYBRID VECTOR INDEX

• CREATE SEARCH INDEX

• DROP INDEX

• MATCHES

• MATCH_SCORE

• SCORE

Note

Starting with Oracle AI Database 26ai, you can also use the DBMS_SEARCH PL/SQL
package to create, manage, or query search indexes for a textual and range-based
ubiquitous search.
Starting with Oracle AI Database 26ai (23.9) release, DBMS_SEARCH PL/SQL package
also supports creating, managing, or querying search indexes for hybrid text-vector
search. See DBMS_SEARCH Package.

1.1 ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

Note

This section describes the ALTER INDEX statement as it pertains to managing an Oracle
Text domain index. For a complete description of the ALTER INDEX statement, see
Oracle Database SQL Language Reference.

ALTER INDEX Purpose

To make changes to or perform maintenance tasks for a CONTEXT, CTXCAT, or CTXRULE index.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 122

Note

• When you use ALTER INDEX to shift from FAST_DML to FAST_QUERY, you might
encounter the DRG-11380 "operation is not allowed on unsynced index"
error. To overcome this error, run the SYNC command on the index and then retry
ALTER INDEX.

• When you run any DML or query workload during ALTER INDEX, you might
encounter an ORA-00060 or other error that may mark the index UNUSABLE. This is
because ALTER INDEX behaves like a DDL operation and is not performed online
by default. To overcome this error, set the ONLINE parameter in the ALTER INDEX
statement.

• The FAST_DML and FAST_QUERY options are not supported for online operations.

All Index Types

Use ALTER INDEX to perform the following tasks on all Oracle Text index types:

• Rename the index or index partition. See ALTER INDEX RENAME Syntax.

• Add stopwords to the index. See ALTER INDEX REBUILD Syntax.

• Add or remove a sub_lexer, and remove a stopword or set of stopwords for a given symbol
(language or language-independent). See ALTER INDEX Sub_Lexer Syntax.

• Rebuild the index using different preferences. Some restrictions apply for the CTXCAT index
type. See ALTER INDEX REBUILD Syntax.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [time-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

CONTEXT and CTXRULE Index Types

Use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE index types:

• Resume a failed index operation (creation/optimization).

• Add sections and stop sections to the index.

• Replace index metadata.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 122

See Also

ALTER INDEX REBUILD Syntax to learn more about performing these tasks

Overview of ALTER INDEX Syntax

The syntax for ALTER INDEX is fairly complex. The major divisions are covered in the following
sections:

• ALTER INDEX MODIFY PARTITION Syntax: Use this to modify an index partition's
metadata.

• ALTER INDEX PARAMETERS Syntax: Use this to modify the parameters of a
nonpartitioned index, or to modify all partitions of a local partitioned index, without
rebuilding the index.

• ALTER INDEX RENAME Syntax: Use this to rename an index or index partition.

• ALTER INDEX REBUILD Syntax: Use this to rebuild an index or index partition. With this
statement, you can also replace index metadata; add stopwords, sections, and stop
sections to an index; and resume a failed operation.

The parameters for ALTER INDEX REBUILD have their own syntax, which is a subset of the
syntax for ALTER INDEX. For example, the ALTER INDEX REBUILD PARAMETERS statement
can take either REPLACE or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS
('REPLACE') can take several arguments. Valid examples of ALTER INDEX REBUILD include
the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS ('REPLACE DATASTORE datastore_pref')
ALTER INDEX REBUILD PARAMETERS ('REPLACE WORDLIST wordlist_pref')

• ALTER INDEX Syntax for JSON Search Index: Use this to modify the JSON search index
preferences, such as DATAGUIDE and SEARCH_ON.

• ALTER INDEX Syntax for XML Search Index: Use this to modify the XML search index
preferences, such as SEARCH_ON.

• ALTER INDEX Syntax for Hybrid Vector Index: Use this to modify or rebuild an existing
hybrid vector index.

ALTER INDEX MODIFY PARTITION Syntax

Use the following syntax to modify the metadata of an index partition:

ALTER INDEX index_name MODIFY PARTITION partition_name PARAMETER (paramstring)

index_name
Specify the name of the index whose partition metadata you want to modify.

partition_name
Specify the name of the index partition whose metadata you want to modify.

paramstring
The only valid argument here is 'REPLACE METADATA'. This follows the same syntax as ALTER
INDEX REBUILD PARTITION PARAMETERS ('REPLACE METADATA'); see the REPLACE METADATA
subsection of the ALTER INDEX REBUILD Syntax section for more information. (The two
statements are equivalent. ALTER INDEX MODIFY PARTITION is offered for ease of use, and is
the recommended syntax.)

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 122

ALTER INDEX PARAMETERS Syntax

The parameter string now supports READ ONLY MDATA. Use the following syntax to modify the
parameters either of nonpartitioned or local partitioned indexes, without rebuilding the index.
For partitioned indexes, this statement works at the index level, not at the partition level. This
statement changes information for the entire index, including all partitions.

ALTER INDEX index_name PARAMETERS (paramstring)

paramstring
ALTER INDEX PARAMETERS accepts the following arguments for paramstring:

• 'REPLACE METADATA'

Replaces current metadata. See the REPLACE METADATA subsection of the ALTER INDEX
REBUILD Syntax section for more information.

• ‘ADD MDATA SECTION secname TAG sectag READ ONLY’

Creates non-updatable MDATA sections so that queries on these MDATA sections do not
require extra cursors to be opened on $I table.

• 'ADD STOPWORD'

Dynamically adds a stopword to an index. See the ADD STOPWORD subsection of the
"ALTER INDEX REBUILD Syntax" section for more information.

• 'ADD FIELD SECTION'

Dynamically adds a field section to an index. See the ADD FIELD subsection of the "ALTER
INDEX REBUILD Syntax" section for more information. You can add an unlimited number
of field sections.

• 'ADD ZONE SECTION'

Dynamically adds a zone section to an index. See the ADD ZONE subsection of the "ALTER
INDEX REBUILD Syntax" section for more information.

• 'ADD ATTR SECTION'

Dynamically adds an attribute section to an index. See the ADD ATTR subsection of the
ALTER INDEX REBUILD Syntax section for more information.

• 'ADD SDATA SECTION'

Dynamically adds an SDATA section to an index. An SDATA section can only be added to
BASIC, HTML, XML, and NEWS section groups. It supports both global as well as local
indexes. New documents synchronized into the index reflect this new preference. The
syntax is:

ALTER INDEX index_name PARAMETERS (ADD SDATA SECTION sdata_section_name TAG
sdata_section_tag DATATYPE sdata_section_datatype);

The datatype can be VARCHAR2, CHAR, NUMBER, DATE, or RAW.

See Adding an SDATA Section for more information.

Note

Documents that were indexed before adding an SDATA section do not reflect this
new preference. Rebuild the index in this case.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 122

Each of the above described parameters has an equivalent ALTER INDEX REBUILD PARAMETERS
version, except ADD SDATA SECTION.

For example, ALTER INDEX PARAMETERS ('REPLACE METADATA') is equivalent to ALTER INDEX
REBUILD PARAMETERS ('REPLACE METADATA'). However, the ALTER INDEX PARAMETERS
versions work on either partitioned or nonpartitioned indexes, whereas the ALTER INDEX
REBUILD PARAMETERS versions work only on nonpartitioned indexes.

ALTER INDEX RENAME Syntax

Use the following syntax to rename an index or index partition:

ALTER INDEX [schema.]index_name RENAME TO new_index_name;

ALTER INDEX [schema.]index_name RENAME PARTITION part_name TO new_part_name;

[schema.]index_name
Specify the name of the index to rename.

new_index_name
Specify the new name for schema.index. The new_index_name parameter can be no more
than 25 bytes, and 21 bytes for a partitioned index in earlier releases of Oracle Database that
have not been upgraded to Oracle Database 12c Release 2 (12.2). If you specify a name
longer than 25 bytes (or longer than 21 bytes for a partitioned index), then Oracle Text returns
an error and the renamed index is no longer valid.

Note

When new_index_name is more than 25 bytes (21 for local partitioned index) and less
than 30 bytes, Oracle Text renames the index, even though the system returns an
error. To drop the index and associated tables, you must drop new_index_name with
the DROP INDEX statement and then re-create and drop index_name.

The upgraded databases that do not have the compatible parameter set to 12.2 can have the
new_index_name parameter no more than 30 bytes, and 30 bytes for a partitioned index.
The upgraded databases that have the compatible parameter set to 12.2 or new Oracle
Database 12c Release 2 (12.2) installations can have the new_index_name parameter no more
than 128 bytes, and 128 bytes for a partitioned index.

part_name
Specify the name of the index partition to rename.

new_part_name
Specify the new name for partition.

ALTER INDEX REBUILD Syntax

Use ALTER INDEX REBUILD to rebuild an index, rebuild an index partition, resume a failed
operation, replace index metadata, add stopwords to an index, or add sections and stop
sections to an index.

The ALTER INDEX REBUILD syntax has its own subsyntax. That is, its parameters have their own
syntax. For example, the ALTER INDEX REBUILD PARAMETERS statement can take either REPLACE
or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS ('REPLACE') has several
arguments it can take.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 122

Note

You cannot use the ALTER INDEX REBUILD syntax to add or remove the INMEMORY
option associated Text index tables.

Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS (REPLACE DATASTORE datastore_pref)
ALTER INDEX REBUILD PARAMETERS (REPLACE WORDLIST wordlist_pref)

This is the syntax for ALTER INDEX REBUILD:

ALTER INDEX [schema.]index [REBUILD] [PARTITION partname] [ONLINE]
 [PARAMETERS(paramstring)][PARALLEL N];

PARTITION partname
Rebuilds the index partition partname. Only one index partition can be built at a time.
When you rebuild a partition you can specify only RESUME or REPLACE in paramstring. These
operations work only on the partname you specify.
With the REPLACE operation, you can specify MEMORY, STORAGE, and SYNC for each index
partition.
Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL statement.
When you add a partition to an indexed table, Oracle Text automatically creates the metadata
for the new index partition. The new index partition has the same name as the new table
partition. If you must change the index partition name, then use ALTER INDEX RENAME.
Splitting or Merging Partitions Splitting or merging a table partition with ALTER TABLE
renders the index partitions invalid. You must rebuild them with ALTER INDEX REBUILD.

ONLINE
Enables you to continue to perform updates, insertions, and deletions on a base table. It does
not enable you to query the base table. The ONLINE keyword can only be used with the
Enterprise Edition of Oracle AI Database.

Note

You can specify REPLACE or RESUME when rebuilding an index or an index partition
ONLINE.

PARAMETERS (paramstring)
Optionally, specify paramstring. If you do not specify paramstring, then Oracle Text rebuilds
the index with existing preference settings.

Note

Oracle Text rebuilds the index using metadata values that have been deep-copied into
the index. You can use the CTX_REPORT.CREATE_INDEX_SCRIPT procedure to recreate
the user preferences. This procedure generates a script with the preferences that are
identical to those used in the original Text index. However, the names of the
preferences will be system-generated.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 122

The syntax for paramstring is as follows:

paramstring =
'REPLACE
 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [LEXER lexer_pref]
 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize
 [[POPULATE | NOPOPULATE]
 [INDEX SET index_set]

 [METADATA preference new_preference]
 [METADATA FORMAT COLUMN format_column_name]
 [[METADATA] MAINTENANCE AUTO | MAINTENANCE MANUAL]
 [[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [[METADATA] TRANSACTIONAL | NONTRANSACTIONAL
 [[METADATA] [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]]

 [[METADATA] OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]

|[DATAGUIDE [ON | OFF | ON CHANGE [ADD_VC|Function_name]]
|[SEARCH_ON (NONE | TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING)]
| RESUME [memory memsize]
| ADD STOPWORD word [language language]
| ADD ZONE SECTION section_name tag tag
| ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
| ADD ATTR SECTION section_name tag tag@attr
| ADD STOP SECTION tag'

REPLACE [optional_preference_list]
Rebuilds an index. You can optionally specify your own preferences or system-defined
preferences.
You can replace only the preferences that are supported for that index type. For instance, you
cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the CTXCAT index type,
you can replace lexer, wordlist, storage index set, and memory preferences.
The POPULATE parameter is the default and need not be specified. If you want to empty the
index of its contents, then specify NOPOPULATE. Clear an index of its contents when you must
rebuild your index incrementally. The NOPOPULATE choice is available for a specific partition of
the index, and not just for the entire index.
Note that ALTER INDEX REBUILD creates a populated index by default, unless you explicitly
specify the NOPOPULATE keyword. The outputs of CTX_REPORT.CREATE_INDEX_SCRIPT and
CTX_REPORT.DESCRIBE_INDEX include the NOPOPULATE keyword for such indexes.
If you are rebuilding a partitioned index using the REPLACE parameter, then you can specify
only STORAGE, MEMORY, and NOPOPULATE.
A new wordlist preference SEPARATE_OFFSETS specifies that the token_info in the index is
stored as docids only in one place, and offsets is stored only in another place. Refer to
Oracle Text Application Developer's Guide for information on improved response time using
the SEPARATE_OFFSETS option of CONTEXT index.
If this procedure modifies the existing index tables for only the following storage attributes of
the BASIC_STORAGE type (any one of them), then it will not result in re-indexing of data:

• BIG_IO

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 122

• I_INDEX_CLAUSE

• I_TABLE_CLAUSE

• SEPARATE_OFFSETS

Note

• The BIG_IO attribute of the CONTEXT indextype is deprecated with Oracle AI
Database 26ai, and can be disabled or removed in a future release.

• Oracle recommends that you allow this value to be set to its default value of N.
BIG_IO was introduced to reduce the cost of seeks when index postings
exceeded 4KB in length. However, the internal code is relatively inefficient, and
the attribute cannot be combined with newer index options. Seek cost is much
less relevant for solid state disks or non-volatile memory devices (NVMe), and
seek cost is irrelevant when postings are cached. This setting is therefore of little
benefit for most indexes.

REPLACE METADATA preference new_preference
Replaces the existing preference class settings, including SYNC parameters, of the index with
the settings from new_preference. Only index preferences and attributes are replaced. The
index is not rebuilt.
This statement is useful when you want to replace a preference and its attribute settings after
the index is built, without re-indexing all data. re-indexing data can require significant time and
computing resources.
This statement is also useful for changing the SYNC parameter type, which can be automatic,
manual, or on-commit.
The ALTER INDEX REBUILD PARAMETER ('REPLACE METADATA') statement does not work for a
local partitioned index at the global level for the index. You cannot, for example, use this
syntax to change a global preference, such as filter or lexer type, without rebuilding the index.
Use ALTER INDEX PARAMETERS instead to change the metadata of an index at the global level,
including all partitions. See ALTER INDEX PARAMETERS Syntax.

Note

The ALTER INDEX REPLACE METADATA option is essentially a DDL operation (and not
an ONLINE operation), so it may fail if there are any concurrent DML operations
requesting locks on the underlying table, including queries. You must perform ALTER
INDEX REPLACE METADATA operations during a quiet time on the system when other
user operations are not ongoing on the table or index.

When should I use the METADATA keyword? REPLACE METADATA should be used only when
the change in index metadata will not lead to an inconsistent index, which can lead to incorrect
query results.
For example, use this statement in the following instances:

• To go from a single-language lexer to a multilexer in anticipation of multilingual data. For
an example, see Replacing Index Metadata: Changing Single-Lexer to Multilexer.

• To change the WILDCARD_MAXTERMS setting in BASIC_WORDLIST.

• To change the SYNC parameter type, which can be automatic, manual, or on-commit.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 122

These changes are safe and will not lead to an inconsistent index that might adversely affect
your query results.

Warning

The REPLACE METADATA statement can result in inconsistent index data, which can lead
to incorrect query results. As such, Oracle does not recommend using this statement,
unless you carefully consider the effect it will have on the consistency of your index
data and subsequent queries.

There can be many instances when changing metadata can result in inconsistent index data.
For example, Oracle recommends against using the METADATA keyword after performing the
following procedures:

• Changing the USER_DATASTORE procedure to a new PL/SQL stored procedure that has
different output.

• Changing the BASIC_WORDLIST attribute PREFIX_INDEX from NO to YES because no
prefixes have been generated for existing documents. Changing it from YES to NO is safe.

• Adding or changing BASIC_LEXER printjoin and skipjoin characters, because new queries
with these characters would be lexed differently from how these characters were lexed at
index time.

• Do not use REPLACE METADATA with FORWARD_INDEX. Instead use REPLACE STORAGE.

In these unsafe cases, Oracle recommends rebuilding the index.

REPLACE [METADATA] MAINTENANCE AUTO | MAINTENANCE MANUAL
Specifies the maintenance type for synchronization of the CONTEXT and search indexes when
there are inserts, updates, or deletes to the base table. The maintenance type specified for an
index applies to all index partitions.
You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC.INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions to follow in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 122

For guidelines and examples on switching between the MAINTENANCE AUTO and MAINTENANCE
MANUAL methods, see Oracle Text Application Developer's Guide.

REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies the SYNC type for synchronization of the CONTEXT and search indexes when there are
inserts, updates, or deletes to the base table.
These SYNC settings are applicable only to the indexes that are set to manual maintenance.

Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the following SYNC methods:

SYNC Type Description

MANUAL This is the default synchronization method for CONTEXT
index. In this method, automatic synchronization is not
provided. You must manually synchronize the index using
CTX_DDL.SYNC_INDEX.
Use MANUAL to disable ON COMMIT and EVERY
synchronization.

EVERY interval-string The default synchronization interval is set to 30 seconds.
Automatically synchronize the index at a regular interval
specified by the value of interval-string, which takes the
same syntax as that for scheduler jobs. Automatic
synchronization using EVERY requires that the index creator
have CREATE JOB privileges.
Ensure that interval-string is set to a considerable time
period so that any previous synchronization jobs will have
completed. Otherwise, the synchronization job may stop
responding. The interval-string argument must be enclosed
in double quotation marks ('' '').
See Enabling Automatic Index Synchronization at Regular
Intervals for an example of automatic synchronization
syntax.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 122

SYNC Type Description

ON COMMIT Synchronize the index immediately after a commit. The
commit does not return until the sync is complete. Before
Oracle Database Release 18c, the synchronization was
performed as a separate transaction. There was a time
period, usually small, when the data was committed but
index changes were not. Starting with Oracle Database
Release 18c, the synchronization is performed as part of
the same transaction.
The operation uses the memory specified with the memory
parameter.
Before Oracle Database Release 18c, the sync operation
had its own transaction context. If the operation failed, the
data transaction still committed. Starting with Oracle
Database Release 18c, if there is an irrecoverable index
synchronization error, the entire data transaction is rolled
back. Recoverable (individual row) synchronization errors
are logged in the CTX_USER_INDEX_ERRORS view but the
transaction still completes. See Viewing Index Errors under
CREATE INDEX.
ON COMMIT sync works best when the STAGE_ITAB index
option is enabled, otherwise it causes significant
fragmentation of the main index, requiring frequent
OPTIMIZE calls.
ON COMMIT sync is the default synchronization method for
SEARCH INDEX and JSON search index.
See Enabling Automatic Index Synchronization at Regular
Intervals for an example of ON COMMIT syntax.
See Oracle Text Application Developer's Guide for more
information about the STAGE_ITAB option of the CONTEXT
index.

Each partition of a locally partitioned index can have its own type of sync: (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions unless a partition specifies its own type.
With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. The syntax is:

... EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

ON COMMIT synchronizations can only be executed serially and at the same memory size as
what was specified at index creation.

Note

This command rebuilds the index. When you want to change the SYNC setting without
rebuilding the index, use the REBUILD REPLACE METADATA SYNC (MANUAL | ON
COMMIT) operation.

REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL
This parameter enables you to turn the TRANSACTIONAL property on or off. For more
information, see TRANSACTIONAL.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 122

Using this parameter only succeeds if there are no rows in the DML pending queue.
Therefore, you may need to sync the index before issuing this command.
To turn on the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS('replace metadata transactional');

or

ALTER INDEX myidx REBUILD PARAMETERS('replace transactional');

To turn off the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS('replace metadata nontransactional');

or

ALTER INDEX myidx REBUILD PARAMETERS('replace nontransactional');

REPLACE [METADATA] [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
When you update the column in a document on which an Oracle Text index is based, that
document is marked as invalid for search operations until index synchronization is performed.
Enabling asynchronous update for an index enables a document to be searchable even
though its index has not yet been synchronized after the index column was updated. Until the
index is synchronized, Oracle Text uses the contents of the old document to answer user
queries.

Note

Synchronous update is not supported with the TRANSACTIONAL option and for updates
that cause row movement.

To enable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ('REPLACE METADATA asynchronous_update');

To disable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ('REPLACE METADATA synchronous_update');

Note

The ASYNCHRONOUS_UPDATE setting of the CONTEXT indextype is deprecated in Oracle
AI Database 26ai, and can be ignored or removed in a future release.
Oracle can ignore or remove this attribute in a future release. Oracle recommends
that you allow this value to be set to its default value, SYNCHRONOUS_UPDATE. To avoid
unexpected loss of results during updates, use SYNC (ON COMMIT) or SYNC(EVERY
[time-period]) with a short time period.
The ASYNCHRONOUS_UPDATE setting was introduced as a workaround for the fact that
updates are implemented as "delete followed by insert," and that deletes are
immediate (on commit), while inserts are only performed during an index sync.
However, this setting is incompatible with several other index options. Oracle
recommends that you discontinue its use.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 122

REPLACE [[METADATA] OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the create
index parameter list, a repeatedly running optimize token
job and a repeatedly running optimize full job are scheduled
for each index and partition:
• The Optimize token job is scheduled to run weekly

from 12 A.M. every Saturday night to optimize $S*
tables.
This job runs on tables with non-JSON data type
(VARCHAR2, CLOB, or BLOB) to optimize the top 10 most
fragmented tokens (determined automatically).

• The Optimize full job is scheduled to run every
midnight from 12 A.M. to 3 A.M. except on Saturday
night. Jobs that are not started before 3 A.M. are
skipped. These skipped jobs are started before the
other jobs that are scheduled to run at 12 A.M. the next
day.
This job runs on tables with JSON data type or the IS
JSON check constraint.

Existing indexes do not have OPTIMIZE (AUTO_DAILY) by
default. You must use ALTER INDEX to enable automatic
background index optimization.

EVERY "interval-string" Automatically runs at a regular interval specified by the
value interval-string, which takes the same syntax as
scheduler jobs.
• The Optimize token job is scheduled for tables with

non-JSON data type.
This job runs optimize token for the top 10 most
fragmented tokens at an interval specified by the user.

• The Optimize full job is scheduled for tables with JSON
data type or the IS JSON check constraint.
This job runs optimize full weekly at 12 A.M. every
Saturday night for $S* tables.

Ensure that interval-string is set to a considerable time
period so that any previous optimize jobs are complete. The
interval-string value must be enclosed in double quotes,
and any single quote within interval-string must be
preceded by the escape character with another single
quote.
If multiple indexes use the OPTIMIZE EVERY "interval-
string" option, then different jobs are created for each
index. These jobs are run concurrently.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 122

With AUTO_DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

RESUME [MEMORY memsize]
Resumes a failed index operation. You can optionally specify the amount of memory to use
with memsize.

Note

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not
apply to CTXCAT indexes.

ADD STOPWORD word [language language]
Dynamically adds a stopword word to the index.
Index entries for word that existed before this operation are not deleted. However, subsequent
queries on word are treated as though it has always been a stopword.
When your stoplist is a multilanguage stoplist, you must specify language.
The index is not rebuilt by this statement.

ADD ZONE SECTION section_name tag tag
Dynamically adds the zone section section_name identified by tag to the existing index.
The added section section_name applies only to documents indexed after this operation. For
the change to take effect, you must manually re-index any existing documents that contain the
tag.
The index is not rebuilt by this statement.

Note

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not
apply to CTXCAT indexes.

See Also

Notes

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
Dynamically adds the field section section_name identified by tag to the existing index. There
is no limit to the number of field sections that can be added.
Optionally specify VISIBLE to make the field sections visible. The default is INVISIBLE.

See Also

CTX_DDL.ADD_FIELD_SECTION for more information on visible and invisible field
sections

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 122

The added section section_name applies only to documents indexed after this operation. For
the change to affect previously indexed documents, you must explicitly re-index the
documents that contain the tag.
This statement does not rebuild the index.

Note

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not
apply to CTXCAT indexes.

See Also

Notes

ADD ATTR SECTION section_name tag tag@attr
Dynamically adds an attribute section section_name to the existing index. You must specify
the XML tag and attribute in the form tag@attr. You can add attribute sections only to XML
section groups.
The added attribute section section_name applies only to documents indexed after this
operation. For the change to take effect, you must manually re-index any existing documents
that contain the tag.
The index is not rebuilt by this statement.

Note

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not
apply to CTXCAT indexes.

See Also

Notes

ADD STOP SECTION tag
Dynamically adds the stop section identified by tag to the existing index. As stop sections
apply only to automatic sectioning of XML documents, the index must use the
AUTO_SECTION_GROUP section group. The tag you specify must be case sensitive and unique
within the automatic section group or else ALTER INDEX raises an error.
The added stop section tag applies only to documents indexed after this operation. For the
change to affect previously indexed documents, you must explicitly re-index the documents
that contain the tag.
The text within a stop section can always be searched.
The number of stop sections you can add is unlimited.
The index is not rebuilt by this statement.

See Also

Notes

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 122

Note

This ALTER INDEX operation applies only to CONTEXT indexes. It does not apply to
CTXCAT indexes.

PARALLEL n
Using n, you can optionally specify the parallel degree for parallel indexing. This parameter is
supported only when you use SYNC, REPLACE, and RESUME in paramstring. The actual degree
of parallelism might be smaller depending on your resources.
Parallel indexing can speed up indexing when you have large amounts of data to index and
when your operating system supports multiple CPUs.

ALTER INDEX Syntax for JSON Search Index

ALTER INDEX [schema.]index REBUILD
PARAMETERS(
 [DATAGUIDE ON [CHANGE (ADD_VC | function_name)] | OFF]
 [SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING)]
 [REMOVE SEARCH_ON VALUE(VARCHAR2)]
);

Note

• The REPLACE keyword is not required with the ALTER INDEX REBUILD PARAMETERS
statement for changing the JSON search index preferences.

• You cannot change both the JSON and Oracle Text search index preferences in a
single ALTER INDEX statement.

• If you specify the JSON search index preferences (such as DATAGUIDE and
SEARCH_ON), other preferences in the PARAMETERS clause are not updated. Similarly,
if you specify the Oracle Text search index preferences (such as STORAGE and
LEXER), the JSON preferences are not updated.

[schema.]index
Specifies the name of JSON search index that you want to modify.

DATAGUIDE ON | OFF
Modifies data guide support for an existing JSON search index. By default, a JSON search
index is created without data guide support. If you enable the JSON data guide support, then
you can also define change-trigger procedures.

Note

You use the DATAGUIDE clause only for JSON search indexes.

Specify one of the following options:

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 122

• ON: Enables data guide support. If you set the value of DATAGUIDE to ON, then you can also
define your own PL/SQL procedure or use the predefined change-trigger procedure
ADD_VC.

ADD_VC indicates if virtual columns are created based on the data guide.

function_name specifies the function to be executed when the data guide changes.

• OFF: Disables both the data guide support and change-trigger procedures. Provides only
general search-index functionality.

Note

You cannot turn off the DATAGUIDE clause if the SEARCH_ON clause value is set to
NONE.

See Change Triggers For Data Guide-Enabled Search Index in Oracle AI Database JSON
Developer’s Guide.

SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING)
Modifies search preferences specified for an existing JSON search index.

Note

You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Option Description

TEXT Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.
The index is used for JSON_TEXTCONTAINS predicates and
for JSON_VALUE or JSON_EXISTS predicates that manipulate
strings when using JSON search index.
If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.
Example:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON TEXT);

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 122

Option Description

VALUE[(data_types)] Enables range-search component for the specified data
types. This allows the index to be picked up for predicates
using relational operators (>, <, ==, >=, <=, !=). A JSON
search index that is created with only SEARCH_ON VALUE
cannot answer full-text queries by using the
JSON_TEXTCONTAINS operator.
Supported data types:
• NUMBER for indexing numeric values.

• TIMESTAMP for indexing date-time values.

• VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables
range-search indexing on all supported data types.

Note

The BINARY_DOUBLE data type
is allowed only for XML search
indexes.

Examples:
• This example specifies the default behavior:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON VALUE');

• These examples explicitly specify data types using the
VALUE(data_types) syntax:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON VALUE(NUMBER)');

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON VALUE(NUMBER,
TIMESTAMP, VARCHAR2)');

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 122

Option Description

TEXT_VALUE[(data_ty
pes)]

Enables both the full-text and range-search components for
the specified data types.
Supported data types:
• NUMBER for indexing numeric values.

• TIMESTAMP for indexing date-time values.

• VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables
full-text search and range-search indexing on the NUMBER
and TIMESTAMP data types.
Examples:
• This example specifies the default behavior:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS('SEARCH_ON TEXT_VALUE');

• These examples explicitly specify data types using the
TEXT_VALUE(data_types) syntax:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS('SEARCH_ON
TEXT_VALUE(NUMBER)');

ALTER INDEX [schema.]index REBUILD
 PARAMETERS('SEARCH_ON
TEXT_VALUE(NUMBER, TIMESTAMP)');

TEXT_VALUE_STRING Indicates that text and range-based indexes are created for
numeric, date-time, and complete string values. This enables
both the full-text and range-search components on the
NUMBER, TIMESTAMP, and VARCHAR2 data types.
String values are indexed as is without tokenization or other
transformations. All the strings that are smaller than or equal
to 237 bytes are indexed.
Example:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON TEXT_VALUE_STRING');

Guidelines for specifying SEARCH_ON transitions:
When you specify the SEARCH_ON clause in the ALTER INDEX REBUILD statement, the system
determines both your current configuration and the set of components that you want to enable.
The statement then enables any new components and rebuilds the index. If all requested
components have already been enabled, this action is the same as an index rebuild.
Rebuilding allows the JSON search index to be regenerated with newly enabled indexing and
query components.
Note that range-search components of different data types are considered as independent
components.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 122

You can disable only the VARCHAR2 range-search component. To disable other components,
you must first drop the index using the DROP INDEX statement and then re-create the index
with the required components enabled.

Removing indexing components:
You can remove the VARCHAR2 data type from any range-search components (VALUE,
TEXT_VALUE, or TEXT_VALUE_STRING). Removing the VARCHAR2 data type can save you index
maintenance time and disk space.
The syntax is:

REMOVE SEARCH_ON VALUE(VARCHAR2)

ALTER INDEX Syntax for XML Search Index

ALTER INDEX [schema.]index REBUILD
PARAMETERS(
 [SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE (data_types))]
 [REMOVE SEARCH_ON VALUE(VARCHAR2)]
);

[schema.]index
Specifies the name of the XML search index that you want to modify.

SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE(data_types))
Modifies search preferences specified for an existing XML search index.

Note

You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Option Description

TEXT Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.
The index is used for XMLEXISTS predicates that references
the XQuery Full Text operators and clauses.
If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.
For example:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON TEXT');

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 122

Option Description

VALUE(data_types) Enables range-search component for the specified data
types.
This allows the index to be picked up for predicates using
relational operators (>, <, ==, >=, <=, !=). An XML search
index that only has the SEARCH_ON VALUE component
enabled cannot answer full-text queries, if XQuery Full Text
operators are present in an XMLEXISTS predicate.
You must specify one or more data types:
• BINARY_DOUBLE and NUMBER for indexing numeric

values.

• TIMESTAMP for indexing date-time values.

• VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

For example:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON
VALUE(BINARY_DOUBLE)');

ALTER INDEX [schema.]index REBUILD
 PARAMETERS ('SEARCH_ON
VALUE(BINARY_DOUBLE, NUMBER, TIMESTAMP,
VARCHAR2)');

TEXT_VALUE(data_typ
es)

Enables both the full-text and range-search components for
the specified data types. For range-search queries, you must
specify one or more data types, such as NUMBER (for
indexing numeric values) and TIMESTAMP (for indexing date-
time values).
For example:

ALTER INDEX [schema.]index REBUILD
 PARAMETERS('SEARCH_ON TEXT_VALUE(NUMBER)');

ALTER INDEX [schema.]index REBUILD
 PARAMETERS('SEARCH_ON TEXT_VALUE(NUMBER,
TIMESTAMP)');

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 122

Note

You cannot use SEARCH_ON NONE and SEARCH_ON TEXT_VALUE_STRING for an XML
search index.
You must explicitly specify a data type with the TEXT_VALUE and VALUE options for an
XML search index, otherwise the statement will result in an error.

Guidelines for specifying SEARCH_ON transitions:
When you specify the SEARCH_ON clause in the ALTER INDEX REBUILD statement, the system
determines both your current configuration and the set of components that you want to enable.
The statement then enables any new components and rebuilds the index. If all requested
components have already been enabled, this action is the same as an index rebuild.
Rebuilding allows the XML search index to be regenerated with newly enabled indexing and
query components.
Note that range-search components of different data types are considered as independent
components.
You can disable only the VARCHAR2 range-search component. To disable other components,
you must first drop the index using the DROP INDEX statement and then re-create the index
with the required components enabled.

Removing indexing components:
You can remove the VARCHAR2 data type from any range-search components (VALUE or
TEXT_VALUE). Removing the VARCHAR2 data type can save you index maintenance time and
disk space.
The syntax is:

REMOVE SEARCH_ON VALUE(VARCHAR2)

ALTER INDEX Syntax for Hybrid Vector Index

ALTER INDEX [schema.]index_name REBUILD
 PARAMETERS(
 ['UPDATE VECTOR INDEX [VECTOR_IDXTYPE HNSW/IVF]']
 ['REPLACE vectorizer vectorizer_pref_name']
)
 [PARALLEL n];

Note

• If you do not specify the PARAMETERS clause, then all parts of the hybrid vector
index (both Oracle Text index and vector index) are recreated with existing
preference settings.

• Renaming hybrid vector indexes using the ALTER INDEX RENAME syntax is not
supported.

• The ALTER INDEX parameter UDPATE VECTOR INDEX is not supported for Local HVI
and HNSW vector indexes.

[schema.]index_name
Specifies name of the hybrid vector index that you want to modify.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 122

PARAMETERS(UPDATE VECTOR INDEX)
Rebuilds both text part and vector part of the hybrid vector index. For text part, the rebuild
uses the preferences which are specified during the index creation or the default preferences
if not specified. For the vector part (chunking, embedding and vector index creation), rebuild
uses the new vectorizer preference specified in the ALTER INDEX REBUILD syntax. See
CREATE HYBRID VECTOR INDEX for detailed information on the preferences set during the
index creation.

PARAMETERS(REPLACE vectorizer vectorizer_pref_name)
Recreates only the vector index part of a hybrid vector index with the specified vectorizer
preference settings.

Note

For non HVI index, replace operation would throw an error, as it cannot replace
something that was not present.

PARALLEL
Specifies parallel indexing, as described for the CREATE HYBRID VECTOR INDEX statement.
For detailed information on the PARALLEL clause, see CREATE HYBRID VECTOR INDEX.

Examples:

Here are some examples on how you can modify existing hybrid vector indexes:

• To rebuild all parts of a hybrid vector index:

Use the following syntax to rebuild all parts of a hybrid vector index (both Oracle Text index
and vector index) with the original preference settings:

Syntax:

ALTER INDEX index_name REBUILD [PARALLEL n];

Note that you do not need to specify any PARAMETERS clause when rebuilding both parts of
a hybrid vector index.

Example:

ALTER INDEX my_hybrid_idx REBUILD;

SELECT (select id from doc_table where rowid = jt.doc_rowid) as doc,
 jt.chunk
FROM JSON_TABLE(
 DBMS_HYBRID_VECTOR.SEARCH(
 json(
 '{ "hybrid_index_name" : "my_hybrid_idx",
 "vector" :
 { "search_text" : "vector based search capabilities",
 "search_mode" : "CHUNK"
 },
 "return" :
 { "topN" : 10 }
 }')
),

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 122

 '$[*]' COLUMNS doc_rowid PATH '$.rowid',
 chunk PATH '$.chunk_text') jt;

• To rebuild only the vector index part:

Use the following syntax to rebuild only the vector index part of a hybrid vector index with
the original preference settings:

Syntax:

ALTER INDEX index_name REBUILD
 PARAMETERS('UPDATE VECTOR INDEX') [PARALLEL n];

Example:

ALTER INDEX my_hybrid_idx REBUILD
 PARAMETERS('UPDATE VECTOR INDEX') PARALLEL 3;

SELECT (select id from doc_table where rowid = jt.doc_rowid) as doc,
 jt.chunk
FROM JSON_TABLE(
 DBMS_HYBRID_VECTOR.SEARCH(
 json(
 '{ "hybrid_index_name" : "my_hybrid_idx",
 "vector" :
 { "search_text" : "vector based search capabilities",
 "search_mode" : "CHUNK"
 },
 "return" :
 { "topN" : 10 }
 }')
),
 '$[*]' COLUMNS doc_rowid PATH '$.rowid',
 chunk PATH '$.chunk_text') jt;

• To recreate indexes with a vectorizer preference:

You can create a vectorizer preference using the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE
PL/SQL function. For detailed information on how to create a vectorizer preference, see
CREATE_PREFERENCE. After creating the preference, use the REPLACE vectorizer
parameter to pass the preference name here.

Syntax:

ALTER INDEX index_name REBUILD
 parameters('REPLACE vectorizer vectorizer_pref_name') [PARALLEL n];

Note

For non-HVI index, the REPLACE operation would throw an error.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 122

https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/CTX_DDL-package.html#GUID-56C4580F-6A43-43F4-BB83-DFAEB72A8DC3

Example:

ALTER INDEX my_hybrid_idx REBUILD
 parameters('REPLACE vectorizer my_vectorizer_pref') [PARALLEL n];

• To replace only the model and/or vector index type

For an existing HVI index, you can replace the model and/or the index type without
specifying the full vectorizer preference using the following syntax.

Syntax:

ALTER INDEX schema.index_name REBUILD[
parameters('REPLACE MODEL model_name VECTOR_IDXTYPE hnsw/ivf')];

Example:

ALTER INDEX schema.my_hybrid_idx REBUILD[
parameters('REPLACE MODEL my_model_name VECTOR_IDXTYPE ivf')];

Note

For non HVI indexes, this syntax would throw an error. If a vectorizer is also
specified alongside the model and/or vector_idxtype, it would lead to an error, as
only one of either vectorizer or model/vector_idxtype is allowed.

For detailed information on managing hybrid vector indexes, see Oracle AI Database AI Vector
Search User's Guide.

ALTER INDEX Sub_Lexer Syntax

New paramstring =
'REPLACE
 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [LEXER lexer_pref]
 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize
 [[POPULATE | NOPOPULATE]
 [INDEX SET index_set]
 [METADATA preference new_preference]
 [[METADATA] MAINTENANCE AUTO | MAINTENANCE MANUAL]
 [[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [[METADATA] TRANSACTIONAL|NONTRANSACTIONAL

| RESUME [memory memsize]
| OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]
| SYNC [memory memsize]
| ADD STOPWORD word [language language][LANGUAGE_DEPENDENT(TRUE|FALSE)]
| ADD ZONE SECTION section_name tag tag
| ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
| ADD ATTR SECTION section_name tag tag@attr
| ADD STOP SECTION tag
| ADD SUB_LEXER sub_lexer_name LANGUAGE language [ALT_VALUE

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 122

alternate_value_for_language] [LANGUAGE_DEPENDENT (TRUE|FALSE)]
| REMOVE SUB_LEXER LANGUAGE language
| REMOVE STOPWORD word [LANGUAGE language]
| REMOVE STOPWORDS FOR LANGUAGE language
| MIGRATE to MULTI_STOPLIST [LANGUAGE COLUMN lang]
| MIGRATE FIELD SECTION field_section_name to [READ ONLY] MDATA
| UPDATE SUB_LEXER LANGUAGE language TO sub_lexer_preference
| ADD MDATA SECTION secname TAG sectag READ ONLY

Sub_Lexer Example

ALTER INDEX myidx PARAMETERS('ADD SUB_LEXER mycompany_lexer LANGUAGE mycompany
LANGUAGE_DEPENDENT FALSE');

ALTER INDEX myidx PARAMETERS('REMOVE STOPWORDS FOR LANGUAGE mycompany');

Sub_Lexer Notes

The language can be Oracle predefined language symbols (globalization support name or
abbreviation of an Oracle Text-supported language), or user-defined symbols for language
independent sub_lexer or stopword.

ADD SUB_LEXER
The following conditions apply:

• If LANGUAGE_DEPENDENT clause is not provided, it will default TRUE.

• Sync will be blocked (or it will be blocked by sync).

• If adding first language independent sub_lexer, then base table will also be locked.

• Adding first language independent sub_lexer or stopword will take longer to complete.
Otherwise, it should take fraction of a second to complete unless it's being blocked by
ongoing sync process on the same index.

REMOVE SUB_LEXER
Will succeed only if there are no documents with language column set to the symbol for the
sub_lexer being removed.

REMOVE STOPWORD
The following conditions apply:

• If LANGUAGE clause is not specified, it is assumed that the index is using basic_stoplist.
If the index is not using basic_stoplist, an error will be raised.

• If the index is using basic_stoplist (instead of multi_stoplist), then it will succeed only
if the base table is empty.

• If the index is using multi_stoplist, and user specifies "ALL" for LANGUAGE clause, then it
will succeed only if the base table is empty.

• If the index is using multi_stoplist, and user specifies a symbol for LANGUAGE clause,
then it will succeed only if there are no documents with language column set to the symbol
for the stopword being removed.

See Also

ALTER INDEX REBUILD Syntax

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 122

MIGRATE TO MULTI_STOPLIST [LANGUAGE COLUMN lang]
The following conditions apply:

• Migrate the stoplist of an existing Text index to multi_stoplist. The language of the
existing stopwords will have the value of ALL.

• If LANGUAGE column has already been defined for the index:

– LANGUAGE COLUMN can be skipped (old language column is retained for the index).

– If LANGUAGE COLUMN is specified and there is a mismatch between index language
column and the one specified, an error will be raised.

• LANGUAGE COLUMN must be specified for the index; otherwise, an error is raised.

MIGRATE FIELD SECTION TO MDATA SECTION
The following conditions apply:

• Allow user to convert a field section to MDATA section. Specify READ ONLY if the MDATA
section is meant to be a READ_ONLY MDATA section (ADD and REMOVE not allowed).

• Limitation: Tokens in migrated MDATA sections will not have typical MDATA
characteristics - case information, tokens being stored as it is in the document, etc. To
retain these, those documents need to be reindexed.

UPDATE SUB_LEXER LANGUAGE SUB_LEXER_SYMBOL TO
SUB_LEXER_PREFERENCE
The following conditions apply:

• Allows user to update sublexer dynamically.

• Language, alt_value, language dependency should remain same for the old and new
sublexer preference.

• For updating the default sublexer, the syntax is:

UPDATE SUB_LEXER DEFAULT TO SUB_LEXER_PREFERENCE

ADD MDATA SECTION secname TAG sectag READ ONLY
The following conditions apply:

• Allows users to add MDATA section to the index.

• Cannot be used with NULL/AUTO/PATH section groups.

ALTER INDEX Examples

Resuming Failed Index

The following statement resumes the indexing operation on newsindex with 2 megabytes of
memory:

ALTER INDEX newsindex REBUILD PARAMETERS('resume memory 2M');

Rebuilding an Index

The following statement rebuilds the index, replacing the stoplist preference with new_stop.

ALTER INDEX newsindex REBUILD PARAMETERS('replace stoplist new_stop');

Rebuilding a Partitioned Index

The following example creates a partitioned text table, populates it, and creates a partitioned
index. It then adds a new partition to the table and rebuilds the index with ALTER INDEX as
follows:

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 122

PROMPT create partitioned table and populate it

create table part_tab (a int, b varchar2(40)) partition by range(a)
(partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

insert into part_tab values (1,'Actinidia deliciosa');
insert into part_tab values (8,'Distictis buccinatoria');
insert into part_tab values (12,'Actinidia quinata');
insert into part_tab values (18,'Distictis Rivers');
insert into part_tab values (21,'pandorea jasminoides');
insert into part_tab values (28,'pandorea rosea');

commit;

PROMPT create partitioned index
create index part_idx on part_tab(b) indextype is ctxsys.context
local (partition p_idx1, partition p_idx2, partition p_idx3);

PROMPT add a partition and populate it
alter table part_tab add partition p_tab4 values less than (40);
insert into part_tab values (32, 'passiflora citrina');
insert into part_tab values (33, 'passiflora alatocaerulea');
commit;

The following statement rebuilds the index in the newly populated partition. In general, the
index partition name for a newly added partition is the same as the table partition name, unless
the name has already been used. In this case, Oracle Text generates a new name.

alter index part_idx rebuild partition p_tab4;

The following statement queries the table for the two hits in the newly added partition:

select * from part_tab where contains(b,'passiflora') >0;

The following statement queries the newly added partition directly:

select * from part_tab partition (p_tab4) where contains(b,'passiflora') >;

Replacing Index Metadata: Changing Single-Lexer to Multilexer

The following example demonstrates how an application can migrate from single-language
documents (English) to multilanguage documents (English and Spanish) by replacing the index
metadata for the lexer.

REM creates a simple table, which stores only English (American) text

create table simple (text varchar2(80));
insert into simple values ('the quick brown fox');
commit;

REM create a simple lexer to lex this English text

begin
 ctx_ddl.create_preference('us_lexer','basic_lexer');
end;
/

REM create a text index on the simple table
create index simple_idx on simple(text)
indextype is ctxsys.context parameters ('lexer us_lexer');

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 122

REM we can query easily
select * from simple where contains(text, 'fox')>0;

REM now suppose we want to start accepting Spanish documents.
REM first we have to extend the table with a language column
alter table simple add (lang varchar2(10) default 'us');

REM now let's create a Spanish lexer,
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
end;
/
REM Then create a multilexer incorporating our English and Spanish lexers.
REM Note that the DEFAULT lexer is the exact same lexer, with which we have
REM have already indexed all the documents.
begin
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','spanish','e_lexer');
end;
/
REM next replace our metadata
alter index simple_idx rebuild
parameters ('replace metadata language column lang lexer m_lexer');

REM We are ready for some Spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we did not SYNC.
insert into simple values ('el zorro marrón rápido', 'e');
commit;
exec ctx_ddl.sync_index('simple_idx');
REM now query the Spanish data with base lettering:
select * from simple where contains(text, 'rapido')>0;

Optimizing the Index

To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Synchronizing the Index

To synchronize your index, use CTX_DDL.SYNC_INDEX.

Adding a Zone Section

To add to the index the zone section author identified by the tag <author>, enter the following
statement:

ALTER INDEX myindex REBUILD PARAMETERS('add zone section author tag author');

Adding a Stop Section

To add a stop section identified by tag <fluff> to the index that uses the AUTO_SECTION_GROUP,
enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add stop section fluff');

Adding an Attribute Section

Assume that the following text appears in an XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 122

Assume also that you want to create a separate section for the title attribute and you want to
name the new attribute section booktitle. To do so, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add attr section booktitle tag
title@book');

Adding an SDATA Section

To add an SDATA section S1 of NUMBER data type and identified by tag T1, to the index, enter
the following statement:

ALTER INDEX myindex PARAMETERS('add sdata section S1 tag T1 datatype NUMBER);

Disabling Automatic Background Index Optimization

The following example disables optimize token and optimize full jobs which are automatically
running in the background:

ALTER INDEX myindex PARAMETERS ('REPLACE METADATA OPTIMIZE (MANUAL)');

Using Flashback Queries

If a Text query is flashed back to a point before an ALTER INDEX statement was issued on the
Text index for which the query is being run, then:

• The query optimizer will not choose the index access path for that given index because the
index is treated according to its creation time with ALTER INDEX. Therefore, to the query
optimizer, the index is perceived not to exist.

• The functional processing of the Text operator will fail with ORA-01466 or ORA-08176
errors if the ALTER INDEX statement involves re-creation of DR$ index tables.

To work around this issue, use the DBMS_FLASHBACK package. For example:

EXEC dbms_flashback.enable_at_system_change_number(:scn);
SELECT id from documents WHERE CONTAINS(text, 'oracle')>0;
EXEC dbms_flashback.disable;

See Also

Using DBMS_FLASHBACK Package in Oracle Database Development Guide

Notes

Add Section Constraints

Before altering the index section information, Oracle Text checks the new section against the
existing sections to ensure that all validity constraints are met. These constraints are the same
for adding a section to a section group with the CTX_DDL PL/SQL package and are as follows:

• You cannot add zone, field, or stop sections to a NULL_SECTION_GROUP.

• You cannot add zone, field, or attribute sections to an automatic section group.

• You cannot add attribute sections to anything other than XML section groups.

• You cannot have the same tag for two different sections.

• Section names for zone, field, and attribute sections cannot intersect.

• You cannot exceed 64 fields per section.

Chapter 1
ALTER INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 122

• You cannot add stop sections to basic, HTML, XML, or news section groups.

• SENTENCE and PARAGRAPH are reserved section names.

• You cannot have embedded blanks in section and field names.

Related Topics

• Oracle Text Indexing Elements

• CREATE INDEX
Use the CREATE INDEX statement to create an Oracle Text index.

• ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

• OPTIMIZE_INDEX
Use this procedure to optimize the index. Optimizing an index removes old data and
minimizes index fragmentation, which can improve query response time.

1.2 ALTER TABLE: Supported Partitioning Statements

Note

This section describes the ALTER TABLE statement as it pertains to adding and
modifying a partitioned text table with a context domain index.

For a complete description of the ALTER TABLE statement, see Oracle Database SQL
Language Reference.

Purpose

Use the ALTER TABLE statement to add, modify, split, merge, exchange, or drop a partitioned
text table with a context domain index. The following sections describe some of the ALTER
TABLE operations.

Modify Partition Syntax

Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition UNUSABLE LOCAL INDEXES

Marks the index partition corresponding to the given table partition UNUSABLE. You might mark
an index partition unusable before you rebuild the index partition as described in "Rebuild
Unusable Local Indexes".

If the index partition is not marked unusable, then the statement returns without actually
rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition REBUILD UNUSABLE LOCAL
INDEXES

Rebuilds the index partition corresponding to the specified table partition that has an UNUSABLE
status.

Chapter 1
ALTER TABLE: Supported Partitioning Statements

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 122

Note

If the index partition status is already VALID before you enter this statement, then this
statement does not rebuild the index partition. Do not depend on this statement to
rebuild the index partition unless the index partition status is UNUSABLE.

Add Partition Syntax

ALTER TABLE [schema.]table ADD PARTITION [partition]
VALUES LESS THAN (value_list) [partition_description]

Adds a new partition to the high end of a range-partitioned table.

To add a partition to the beginning or to the middle of the table, use the ALTER TABLE SPLIT
PARTITION statement.

The newly added table partition is always empty, and the context domain index (if any) status
for this partition is always VALID. After issuing DML, if you want to synchronize or optimize this
newly added index partition, then you must look up the index partition name and enter the
ALTER INDEX REBUILD PARTITION statement. For this newly added partition, the index partition
name is usually the same as the table partition name, but if the table partition name is already
used by another index partition, the system assigns a name in the form of SYS_Pn.

By querying the USER_IND_PARTITIONS view and comparing the HIGH_VALUE field, you can
determine the index partition name for the newly added partition.

Merge Partition Syntax

ALTER TABLE [schema.]table
MERGE PARTITIONS partition1, partition2
[INTO PARTITION [new_partition] [partition_description]]
[UPDATE GLOBAL INDEXES]

Applies only to a range partition. This statement merges the contents of two adjacent partitions
into a new partition and then drops the original two partitions. If the resulting partition is non-
empty, then the corresponding local domain index partition is marked UNUSABLE. You can use
ALTER TABLE MODIFY PARTITION to rebuild the partition index.

Note

For a global, nonpartitioned index, if you perform the merge operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the resulting index partition is the same as in the ALTER TABLE ADD
PARTITION statement.

Split Partition Syntax

ALTER TABLE [schema.]table
SPLIT PARTITION partition_name_old
AT (value_list)

Chapter 1
ALTER TABLE: Supported Partitioning Statements

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 122

[into (partition_description, partition_description)]
[parallel_clause]
[UPDATE GLOBAL INDEXES]

Applies only to range partitions. This statement divides a table partition into two partitions, thus
adding a new partition to the table. The local corresponding index partitions will be marked
UNUSABLE if the corresponding table partitions are non-empty. Use the ALTER TABLE MODIFY
PARTITION statement to rebuild the partition indexes.

Note

For a global, nonpartitioned index, if you perform the split operation without an UPDATE
GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must
be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the operation and
the SYNC type is MANUAL, then the index will be valid, but you still must synchronize the
index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the two resulting index partition is the same as in the ALTER TABLE
ADD PARTITION statement.

Exchange Partition Syntax

ALTER TABLE [schema.]table EXCHANGE PARTITION partition WITH TABLE table
[INCLUDING|EXCLUDING INDEXES}
[WITH|WITHOUT VALIDATION]
[EXCEPTIONS INTO [schema.]table]
[UPDATE GLOBAL INDEXES]

Converts a partition to a nonpartitioned table, and converts a table to a partition of a partitioned
table by exchanging their data segments. Rowids are preserved.

If EXCLUDING INDEXES is specified, all the context indexes corresponding to the partition and all
the indexes on the exchanged table are marked as UNUSABLE. To rebuild the new index partition
in this case, issue an ALTER TABLE MODIFY PARTITION statement.

If INCLUDING INDEXES is specified, then for every local domain index on the partitioned table,
there must be a nonpartitioned domain index on the nonpartitioned table. The local index
partitions are exchanged with the corresponding regular indexes.

Note

For a global, nonpartitioned index, if you perform the exchange operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

Field Sections

Field section queries might not work the same way if the nonpartitioned index and local index
use different section IDs for the same field section.

Storage

Chapter 1
ALTER TABLE: Supported Partitioning Statements

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 122

Storage is not changed. So if the index on the nonpartitioned table $I table was in tablespace
XYZ, then after the exchange partition, it will still be in tablespace XYZ, but now it is the $I
table for an index partition.

Storage preferences are not switched, so if you switch and then rebuild the index, then the
table may be created in a different location.

Restrictions

Both indexes must be equivalent. They must use the same objects and the same settings for
each object. Note that Oracle Text checks only that the indexes are using the same object. But
they should use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object to
partition the $I, $N tables.

If either index or index partition does not meet all these restrictions an error is raised and both
the index and index partition will be INVALID. You must manually rebuild both index and index
partition using the ALTER INDEX REBUILD statement.

Truncate Partition Syntax

ALTER TABLE [schema.]table TRUNCATE PARTITION [DROP|REUSE STORAGE] [UPDATE GLOBAL
INDEXES]

Removes all rows from a partition in a table. Corresponding CONTEXT index partitions are also
removed.

Note

For a global, nonpartitioned index, if you perform the truncate operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation, the index will be valid.

ALTER TABLE Examples

Global Index on Partitioned Table Examples

The following example creates a range-partitioned table with three partitions. Each partition is
populated with two rows. A global, nonpartitioned CONTEXT index is then created. To
demonstrate the UPDATE GLOBAL INDEXES clause, the partitions are split and merged with an
index synchronization.

create table tdrexglb_part(a int, b varchar2(40)) partition by range(a)
(partition p1 values less than (10),
 partition p2 values less than (20),
 partition p3 values less than (30));

insert into tdrexglb_part values (1,'row1');
insert into tdrexglb_part values (8,'row2');
insert into tdrexglb_part values (11,'row11');
insert into tdrexglb_part values (18,'row18');
insert into tdrexglb_part values (21,'row21');
insert into tdrexglb_part values (28,'row28');

commit;
create index tdrexglb_parti on tdrexglb_part(b) indextype is ctxsys.context;

Chapter 1
ALTER TABLE: Supported Partitioning Statements

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 122

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values(20,'newrow20');
commit;

PROMPT make sure query works
select * from tdrexglb_part where contains(b,'row18') >0;

PROMPT split partition
alter table tdrexglb_part split partition p2 at (15) into
(partition p21, partition p22) update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row11') >0;
select * from tdrexglb_part where contains(b,'row18') >0;

exec ctx_ddl.sync_index('tdrexglb_parti')

PROMPT after sync
select * from tdrexglb_part where contains(b,'row11') >0;
select * from tdrexglb_part where contains(b,'row18') >0;

PROMPT merge partition
alter table tdrexglb_part merge partitions p22, p3
into partition pnew3 update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row18') >0;
select * from tdrexglb_part where contains(b,'row28') >0;
exec ctx_ddl.sync_index('tdrexglb_parti');

PROMPT after sync
select * from tdrexglb_part where contains(b,'row18') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

PROMPT drop partition
alter table tdrexglb_part drop partition p1 update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row1') >0;
exec ctx_ddl.sync_index('tdrexglb_parti');

PROMPT after sync
select * from tdrexglb_part where contains(b,'row1') >0;

PROMPT exchange partition
alter table tdrexglb_part exchange partition pnew3 with table
tdrexglb update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'newrow20') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');
PROMPT after sync
select * from tdrexglb_part where contains(b,'newrow20') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

PROMPT move table partition
alter table tdrexglb_part move partition p21 update global indexes;

Chapter 1
ALTER TABLE: Supported Partitioning Statements

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 122

PROMPT before sync
select * from tdrexglb_part where contains(b,'row11') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');
PROMPT after sync
select * from tdrexglb_part where contains(b,'row11') >0;

PROMPT truncate table partition
alter table tdrexglb_part truncate partition p21 update global indexes;

update global indexes;

1.3 CATSEARCH
Use the CATSEARCH operator to search CTXCAT indexes. Use this operator in the WHERE clause of
a SELECT statement.

The CATSEARCH operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Indexing of remote views is not supported.)

The grammar of this operator is called CTXCAT. You can also use the CONTEXT grammar if your
search criteria require special functionality, such as thesaurus, fuzzy matching, proximity
searching, or stemming. To utilize the CONTEXT grammar, use the "Query Template
Specification" in the text_query parameter as described in this section.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [time-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

About Performance

Use the CATSEARCH operator with a CTXCAT index mainly to improve mixed-query
performance. Specify your text query condition with text_query and your structured condition
with the structured_query argument.

Internally, Oracle Text uses a combined B-tree index on text and structured columns to quickly
produce results satisfying the query.

Chapter 1
CATSEARCH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 122

Limitations

If the optimizer chooses to use the functional query invocation, then your query will fail. The
optimizer might choose functional invocation when your structured clause is highly selective.

You can use the INDEX hint to specify the optimizer to use the index and avoid functional
evaluation of CATSEARCH.

The structured_query argument of the CATSEARCH operator must reference columns used
during CREATE INDEX sets; otherwise, error DRG-10845 will be raised. For example, the error
will be raised if you issue a CATSEARCH query on a view created on top of a table with the
CTXCAT index on it, and the name of the logical column on the view is different from the actual
column name on the physical table. The columns referenced by the structured_query
argument of the CATSEARCH operator must be the physical column name used during CREATE
INDEX sets, not the logical column on the view.

Syntax

CATSEARCH(

[schema.]column,
text_query [VARCHAR2|CLOB],
structured_query VARCHAR2,

RETURN NUMBER;

[schema.]column
Specifies the text column to be searched on. This column must have a CTXCAT index
associated with it.

text_query
Specify one of the following to define your search in column:

• CATSEARCH Query Operations

• Query Template Specification (for using CONTEXT grammar)

CATSEARCH Query Operations

The CATSEARCH operator supports only the following query operations:

• Logical AND

• Logical OR (|)

• Logical NOT (-)

• " " (quoted phrases)

• Wildcarding

CATSEARCH Query Operations provides the syntax for these operators.

Table 1-6 CATSEARCH Query Operators

Operation Syntax Description of Operation

Logical AND a b c Returns rows that contain a, b, and c.

Logical OR a | b | c Returns rows that contain a, b, or c.

Logical NOT a - b Returns rows that contain a and not b.

Chapter 1
CATSEARCH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 122

Table 1-6 (Cont.) CATSEARCH Query Operators

Operation Syntax Description of Operation

Hyphen with no
space

a-b Hyphen treated as a regular character.

For example, if the hyphen is defined as skipjoin, words such
as web-site are treated as the single query term website.

Likewise, if the hyphen is defined as a printjoin, words such
as web-site are treated as web-site in the CTXCAT query
language.

" " "a b c" Returns rows that contain the phrase "a b c".

For example, entering "Sony CD Player" means return all
rows that contain this sequence of words.

() (A B) | C Parentheses group operations. This query is equivalent to
the CONTAINS query (A &B) | C.

Wildcard

(right and double
truncated)

term*

a*b

The wildcard character matches zero or more characters.

For example, do* matches dog, and gl*s matches glass.

Left truncation not supported.

Note: Oracle recommends that you create a prefix index if
your application uses wildcard searching. Set prefix indexing
with the BASIC_WORDLIST preference.

The following limitations apply to these operators:

• The left-hand side (the column name) must be a column named in at least one of the
indexes of the index set.

• The left-hand side must be a plain column name. Functions and expressions are not
allowed.

• The right-hand side must be composed of literal values. Functions, expressions, other
columns, and subselects are not allowed.

• Multiple criteria can be combined with AND. Note that OR is not supported.

• When querying a remote table through a database link, the database link must be specified
for CATSEARCH as well as for the table being queried.

For example, these expressions are supported:

catsearch(text, 'dog', 'foo > 15')
catsearch(text, 'dog', 'bar = ''SMITH''')
catsearch(text, 'dog', 'foo between 1 and 15')
catsearch(text, 'dog', 'foo = 1 and abc = 123')
catsearch@remote(text, 'dog', 'foo = 1 and abc = 123')

These expressions are not supported:

catsearch(text, 'dog', 'upper(bar) = ''A''')
catsearch(text, 'dog', 'bar LIKE ''A%''')
catsearch(text, 'dog', 'foo = abc')
catsearch(text, 'dog', 'foo = 1 or abc = 3')

Query Template Specification

Specifies a marked-up string that specifies a query template. Specify one of the following
templates:

• Query rewrite, used to expand a query string into different versions

Chapter 1
CATSEARCH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 122

• Progressive relaxation, used to progressively enter less restrictive versions of a query to
increase recall

• Alternate grammar, used to specify CONTAINS operators (See "CONTEXT Query Grammar
Examples")

• Alternate language, used to specify alternate query language

• Alternate scoring, used to specify alternate scoring algorithms

See Also

The text_query parameter description for CONTAINS for more information about the
syntax for these query templates

structured_query
Specifies the structured conditions and the ORDER BY clause. There must exist an index for any
column you specify. For example, if you specify 'category_id=1 order by bid_close', you
must have an index for 'category_id, bid_close' as specified with the CTX_DDL.ADD_INDEX
package.
With structured_query, you can use standard SQL syntax only with the following operators:

• =

• <=

• >=

• >

• <

• IN

• BETWEEN

• AND (to combine two or more clauses)

Note

You cannot use parentheses () in the structured_query parameter.

Examples

1. Create the table.

The following statement creates the table to be indexed:

CREATE TABLE auction (category_id number primary key, title varchar2(20),
bid_close date);

The following statements insert the values into the table:

INSERT INTO auction values(1, 'Sony DVD Player', '20-FEB-2012');
INSERT INTO auction values(2, 'Sony DVD Player', '24-FEB-2012');
INSERT INTO auction values(3, 'Pioneer DVD Player', '25-FEB-2012');
INSERT INTO auction values(4, 'Sony DVD Player', '25-FEB-2012');
INSERT INTO auction values(5, 'Bose Speaker', '22-FEB-2012');
INSERT INTO auction values(6, 'Tascam CD Burner', '25-FEB-2012');

Chapter 1
CATSEARCH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 122

INSERT INTO auction values(7, 'Nikon digital camera', '22-FEB-2012');
INSERT INTO auction values(8, 'Canon digital camera', '26-FEB-2012');

2. Create the CTXCAT index.

The following statements create the CTXCAT index:

begin

ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','bid_close');

end;
/
CREATE INDEX auction_titlex ON auction(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction_iset');

3. Query the table.

A typical query with CATSEARCH might include a structured clause as follows to find all rows
that contain the word camera ordered by bid_close:

SELECT * FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')>
0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 8 Canon digital camera 26-FEB-12
 7 Nikon digital camera 22-FEB-12

The following query finds all rows that contain the phrase Sony DVD Player and that have
a bid close date of February 20, 2012:

SELECT * FROM auction WHERE CATSEARCH(title, '"Sony DVD Player"',
'bid_close=''20-FEB-00''')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 1 Sony DVD Player 20-FEB-12

The following query finds all rows with the terms Sony and DVD and Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'Sony DVD Player',
'order by bid_close
desc')> 0;
CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 4 Sony DVD Player 25-FEB-12
 2 Sony DVD Player 24-FEB-12
 1 Sony DVD Player 20-FEB-12

The following query finds all rows with the term DVD and not Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'DVD - Player', 'order by bid_close
desc')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 6 Tascam CD Burner 25-FEB-12

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH(title, 'CD | DVD | Speaker', 'order by
bid_close desc')> 0;

Chapter 1
CATSEARCH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 122

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 3 Pioneer DVD Player 25-FEB-12
 4 Sony DVD Player 25-FEB-12
 6 Tascam CD Burner 25-FEB-12
 2 Sony DVD Player 24-FEB-12
 5 Bose Speaker 22-FEB-12
 1 Sony DVD Player 20-FEB-12

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH(title, 'ABOUT(audio equipment)',
NULL)> 0;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in CATSEARCH queries using
the template feature:

PROMPT
PROMPT fuzzy: query = ?test
PROMPT should match all fuzzy variations of test (for example, text)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 ?test
 </textquery>
</query>','')>0
order by pk;

PROMPT
PROMPT fuzzy: query = !sail
PROMPT should match all soundex variations of bot (for example, sell)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 !sail
 </textquery>
</query>','')>0
order by pk;

PROMPT
PROMPT theme (ABOUT) query
PROMPT query: about(California)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 about(California)
 </textquery>
</query>','')>0
order by pk;

The following example shows a field section search against a CTXCAT index using CONTEXT
grammar by means of a query template in a CATSEARCH query:

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(1, '<author>NOAM CHOMSKY</author><subject>CIVIL
 RIGHTS</subject><language>ENGLISH</language><publisher>MIT

Chapter 1
CATSEARCH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 122

 PRESS</publisher>', '01-NOV-2003');

insert into BOOKS values(2, '<author>NICANOR PARRA</author><subject>POEMS
 AND ANTIPOEMS</subject><language>SPANISH</language>
 <publisher>VASQUEZ</publisher>', '01-JAN-2001');

insert into BOOKS values(1, '<author>LUC SANTE</author><subject>XML
 DATABASE</subject><language>FRENCH</language><publisher>FREE
 PRESS</publisher>', '15-MAY-2002');

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set('BOOK_INDEX_SET');
exec ctx_ddl.add_index('BOOKSET','PUBDATE');

exec ctx_ddl.create_section_group('BOOK_SECTION_GROUP',
 'BASIC_SECTION_GROUP');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','AUTHOR','AUTHOR');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','SUBJECT','SUBJECT');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','LANGUAGE','LANGUAGE');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','PUBLISHER','PUBLISHER');

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
 parameters('index set book_index_set section group book_section_group');

-- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
-- We need to use query template with CONTEXT grammar to access field
-- sections with CATSEARCH.

select id, info from books
where catsearch(info,
'<query>
 <textquery grammar="context">
 NOAM within author and english within language
 </textquery>
 </query>',
'order by pubdate')>0;

Related Topics

"Syntax for CTXCAT Index Type"

Oracle Text Application Developer's Guide

1.4 CONTAINS
Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the query
expression for a Text query.

The CONTAINS operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view (querying of remote views is not supported).

CONTAINS returns a relevance score for every row selected. Obtain this score with the SCORE
operator.

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 122

The grammar for this operator is called the CONTEXT grammar. You can also use CTXCAT
grammar if your application works better with simpler syntax. To do so, use the Query Template
Specification in the text_query parameter as described in this section.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [time-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

See Also

• Query Rewrite Template

• Query Result Set Descriptor Template

• Query Relaxation Template

• Alternate Grammar Template

• Language Independent Template

• Alternate Language Template

• Alternative Scoring Template

• The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide

Syntax

CONTAINS(
 [schema.]column,
 text_query [VARCHAR2|CLOB]
 [,label NUMBER])
RETURN NUMBER;

[schema.]column
Specify the text column to be searched on. This column must have a Text index associated
with it.

text_query
Specify one of the following (limited to 4000 bytes for a VARCHAR2 or 64000 bytes for a CLOB):

• The query expression that defines your search in column.

• A marked-up document that specifies a query template.

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 122

Use one of the following query templates:

– Query Rewrite Template

– Query Result Set Descriptor Template

– Query Relaxation Template

– Alternate Grammar Template

– Language Independent Template

– Alternate Language Template

– Alternative Scoring Template

Query Rewrite Template

Use this template to automatically write different versions of a query before you submit the
query to Oracle Text. This is useful when you need to maximize the recall of a user query. For
example, you can program your application to expand a single phrase query of 'cat dog' into
the following queries:

{cat} {dog}
{cat} ; {dog}
{cat} AND {dog}
{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no duplication. In this
example, the query returns documents that contain the phrase cat dog as well as documents in
which cat is near dog, and documents that have cat and dog.

This is done with the following template:

 <query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> cat dog
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " AND "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ACCUM "))</rewrite></seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

The operator TRANSFORM is used to specify the rewrite rules and has the following syntax (note
that it uses double parentheses). The parameters are described in the following table.

TRANSFORM((terms, prefix, suffix, connector))

Table 1-7 TRANSFORM Parameters

Parameter Description

term Specifies the type of terms to be produced from the original query. Specify either
TOKENS or THEMES.

prefix Specifies the literal string to be prepended to all terms.

suffix Specifies the literal string to be appended to all terms.

connector Specifies the literal string to connect all terms after applying the prefix and suffix.

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 122

Note

An error will be raised if the input Text query string specified in the Query Rewrite
Template with TRANSFORM rules contains any Oracle Text query operators (such as AND,
OR, or SOUNDEX). Also, any special characters (such as % or $) in the input Text query
string must be preceded by an escape character, or an error is raised.

Query Result Set Descriptor Template

Use this template to take in a Result Set Descriptor. The element ctx_result_set_descriptor is
added to the query template. This enables the CONTAINS query cursor to take in a group
count query.

The Result Set Interface document is placed in a public variable in the ctx_query package.
(ctx_query.result_set_document.)

The CONTAINS query cursor behavior remains unchanged and the Result Set Document is
available right after closing the cursor

For example, the following query of kukui nut returns a result set with the following template.

<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " AND "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ACCUM "))</rewrite></seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
<ctx_result_set_descriptor>
 <group>
 <group_values>
 <value id="2"/>
 <value id="3"/>
 <value id="4"/>
 </group_values>
 <count/>
 </group>
</ctx_result_set_descriptor>
</query>

Query Relaxation Template

Use this template to progressively relax your query. Progressive relaxation is when you
increase recall by progressively issuing less restrictive versions of a query, so that your
application can return an appropriate number of hits to the user.

For example, the query of blue pen can be progressively relaxed to:

blue pen
blue NEAR pen
blue AND pen
blue ACCUM pen

This is done with the following template

<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 122

 <progression>
 <seq>blue pen</seq>
 <seq>blue NEAR pen</seq>
 <seq>blue AND pen</seq>
 <seq>blue ACCUM pen</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH. Specifying
an alternate grammar enables you to enter queries using different syntax and operators.

For example, with CATSEARCH, enter ABOUT queries using the CONTEXT grammar. Likewise with
CONTAINS, enter logical queries using the simplified CATSEARCH syntax.

The phrase 'dog cat mouse' is interpreted as a phrase in CONTAINS. However, with CATSEARCH,
this is equivalent to an AND query of 'dog AND cat AND mouse'. Specify that CONTAINS use the
alternate grammar with the following template:

<query>
 <textquery grammar="CTXCAT">dog cat mouse</textquery>
 <score datatype="integer"/>
</query>

Language Independent Template

Use this template to specify a lexer that uses user-defined symbols (or abbreviations) and
does not depend on any language.

The following example specifies that the query take a list of language-independent sublexers.

<query>
 <textquery grammar="CONTEXT" lang="ENGLISH">
 Oracle
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 <sublexers>
 <sublexer_label> SESSION_LANG </sublexer_label>
 <sublexer_label> MAIL </sublexer_label>
 <sublexer_label> CALENDER </sublexer_label>
 </sublexers>
</query>

The following conditions apply:

• The sublexers element consists of one or more sublexer_label elements.

• Each sublexer_label element contains the symbol for the language independent
sub_lexer.

• When the sublexers element is specified, the query will be processed with the stopwords
and sub_lexers for each of the symbols specified in the sublexers element, and query will
return only the documents indexed by the specified sub_lexers.

• A special reserved symbol called SESSION_LANG can be used for the system to pick a
language-dependent sub_lexer based on the language specified in lang attribute of the
textquery element in the query template. If lang attribute is not specified, then the lang
attribute will be based on session language. Query parsed by the chosen sub_lexer will

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 122

only return documents indexed by that language-dependent sub_lexer. If both
SESSION_LANG and lang attribute are specified, the lang attribute will take priority.

• If sublexers element is specified without SESSION_LANG, then lang attribute of textquery
element will be ignored.

• Default Behavior:

If sublexers element is not present in the query template, then query will be parsed with
one language-dependent sub-lexer (if any), which is chosen based on the specified lang
attribute value or the session language AND all language independent sub-lexers.

Alternate Language Template

Use this template to specify an alternate language:

<query><textquery lang="french">bon soir</textquery></query>

Alternative Scoring Template

Use this template to specify an alternative scoring algorithm.

The following example specifies that the query use the CONTEXT grammar and return integer
scores using the COUNT algorithm. This algorithm returns a score as the number of query
occurrences in the document.

<query>
 <textquery grammar="CONTEXT" lang="english"> mustang
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

The following example uses the normalization_expr attribute to add SDATA(price) into the
score returned by the query, and uses it as the final score:

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score algorithm="COUNT" normalization_expr ="doc_score+ SDATA(price)"/>
</query>

The normalization_expr attribute is used only with the alternate scoring template, and is an
arithmetic expression that consists of:

• Arithmetic operators: + - * /. The operator precedence is the same as that for SQL operator
precedence.

• Grouping operators: (). Parentheses can be used to alter the precedence of the arithmetic
operators.

• Absolute function: ABS(n) returns the absolute value of n; where n is any expression that
returns a number.

• Logarithmic function: LOG(n): returns the base-10 logarithmic value of n; where n is any
expression that returns a number.

• Predefined components: The doc_score predefined component can be used to return the
initial query score of a particular document.

• SDATA component: SDATA(name) returns the value of the SDATA with the specified name as
the score.

– Only SDATA with a NUMBER or DATE data type is allowed. An error is raised otherwise.

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 122

– The sdata string and the SDATA name are case-insensitive.

– Because an SDATA section value can be NULL, any expression with NULL SDATA section
value is evaluated as 0. For example: the normalization_expr "doc_score +
SDATA(price)" will be evaluated to 0 if SDATA(price) for a given document has a NULL
value.

• Numeric literals: There are any number literal that conforms to the SQL pattern of NUMBER
literal and is within the range of the double-precision floating-point (-3.4e38 to 3.4e38).

• Date literals: Date literals must be enclosed with DATE (). Only the following format is
allowed: YYYY-MM-DD or YYYY-MM-DD HH24:MI:SS. For example: DATE(2005-11-08).

Consistent with SQL, if no time is specified, then 00:00:00 is assumed.

The normalization_expr attribute overrides the algorithm attribute. That is, if algorithm is set
to COUNT, and the user also specifies normalization_expr, then the score will not be count, but
the calculated score based on the normalization_expr.

If the score (either from algorithm = COUNT or normalization_expr = ...) is internally
calculated to be greater than 100, then it will be set to 100.

If the query relaxation template is used, the score will be further normalized in such a way that
documents returned from higher sequences will always have higher scores than documents
returned from sequence(s) below.

DATE Literal Restrictions
Only the minus (-) operator is allowed between date-type data (DATE literals and date-type
SDATA). Using other operators will result in an error. Subtracting two date-type data will
produce a number (float) that represents the difference in number of days between the two
dates. For example, the following expression is allowed:

SDATA(dob) – DATE(2005-11-08)

The following expression is not allowed:

SDATA(dob) + DATE(2005-11-08)

The plus (+) and minus (-) operators are allowed between numeric data and date type of data.
The number operand is interpreted as the number or fraction of days. For example, the
following expression is allowed:

DATE(2005-11-08) + 1 = 9 NOV 2005

The following expression is not allowed:

DATE(2005-11-08)* 3 = ERROR

Template Attribute Values

Table 1-8 gives the possible values for template attributes.

Table 1-8 Template Attribute Values

Tag Attribute Description Possible Values Meaning

grammar= Specifies the grammar
of the query.

CONTEXT

CTXCAT

The grammar of the query.

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 122

Table 1-8 (Cont.) Template Attribute Values

Tag Attribute Description Possible Values Meaning

datatype= Specifies the type of
number returned as
score.

INTEGER

FLOAT

Returns score as integer
between 0 and 100.

Returns score as its high-
precision floating-point number
between 0 and 100.

algorithm= Specifies the scoring
algorithm to use.

DEFAULT

COUNT

Returns the default.

Returns scores as the number
of occurrences in the
document.

lang= Specifies the language
name.

Any language supported
by Oracle Database. See
Oracle Database
Globalization Support
Guide.

The language name.

Template Grammar Definition

The query template interface is an XML document. Its grammar is defined with the following
XML DTD:

<!DOCTYPE query [
<!ELEMENT query (textquery, score?, order?)>
<!ELEMENT textquery (#PCDATA|progression)*>
<!ELEMENT progression (seq)+>
<!ELEMENT seq (#PCDATA|rewrite)*>
<!ELEMENT rewrite (#PCDATA)>
<!ELEMENT score EMPTY>
<!ELEMENT order (orderkey+)>
<!ELEMENT orderkey (#PCDATA)>
<!ATTLIST textquery grammar (CONTEXT | CTXCAT | CTXRULE) #REQUIRED>
<!ATTLIST textquery lang CDATA #IMPLIED>
<!ATTLIST score datatype (integer | float) "integer">
<!ATTLIST score algorithm (default | count) "default">
<!ATTLIST score normalization_expr CDATA >

Values are case insensitive: integer | float, default | count, context |ctxcat .

See Also

Oracle Text CONTAINS Query Operators for more information about the operators in
query expressions

label
Optionally, specifies the label that identifies the score generated by the CONTAINS operator.

Returns

For each row selected, the CONTAINS operator returns a number between 0 and 100 that
indicates how relevant the document row is to the query. The number 0 means that Oracle Text
found no matches in the row.

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 122

Note

You must use the SCORE operator with a label to obtain this number.

Example

The following example searches for all documents in the text column that contain the word
oracle. The score for each row is selected with the SCORE operator using a label of 1:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0;

The CONTAINS operator must be followed by an expression such as > 0, which specifies that
the score value calculated must be greater than zero for the row to be selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause must
reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

The following example specifies that the query be parsed using the CATSEARCH grammar:

SELECT id FROM test WHERE CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CATSEARCH">
 cheap pokemon
 </textquery>
 <score datatype="INTEGER"/>
 </query>') > 0;

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS query. The
example creates a CTXCAT and a CONTEXT index on the same table, and compares the query
results.

PROMPT create context and ctxcat indexes, both using theme indexing
PROMPT
create index tdrbqcq101x on test(text) indextype is ctxsys.context
parameters ('lexer theme_lexer');

create index tdrbqcq101cx on test(text) indextype is ctxsys.ctxcat
parameters ('lexer theme_lexer');

PROMPT ***** San Diego ***********
PROMPT ***** CONTEXT grammar ***********
PROMPT ** should be interpreted as phrase query **
select pk||' ==> '||text from test
where contains(text,'San Diego')>0
order by pk;

PROMPT ***** San Diego ***********
PROMPT ***** CTXCAT grammar ***********
PROMPT ** should be interpreted as AND query ***
select pk||' ==> '||text from test
where contains(text,
'<query>
 <textquery grammar="CTXCAT">San Diego</textquery>
 <score datatype="integer"/>

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 122

</query>')>0
order by pk;

PROMPT ***** Hitlist from CTXCAT index ***********
select pk||' ==> '||text from test
where catsearch(text,'San Diego','')>0
order by pk;

Alternate Scoring Query Template Example

The following query template adds price SDATA section (or SDATA filter-by column) value into the
score returned by the query and uses it as the final score:

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score algorithm="COUNT" normalization_expr ="doc_score+SDATA(price)"/>
</query>

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of blue pen is
entered in sequence as blue pen, then blue NEAR pen, then blue AND pen, and then blue
ACCUM pen. Query hits are returned in this sequence with no duplication as long as the
application requires results.

select id from docs where CONTAINS (text, '
<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>blue pen</seq>
 <seq>blue NEAR pen</seq>
 <seq>blue AND pen</seq>
 <seq>blue ACCUM pen</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query relaxation is most effective when your application requires the top n hits to a query,
which you can obtain with the DOMAIN_INDEX_SORT or FIRST_ROWS hint, which is being
deprecated, in a PL/SQL cursor.

Query Rewrite Template Example

The following template defines a query rewrite sequence. The query of kukui nut is rewritten as
follows:

{kukui} {nut}

{kukui} ; {nut}

{kukui} AND {nut}

{kukui} ACCUM {nut}

select id from docs where CONTAINS (text, '
 <query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite>/seq>

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 122

 <seq><rewrite>transform((TOKENS, "{", "}", " AND "))</rewrite><seq/>
 <seq><rewrite>transform((TOKENS, "{", "}", " ACCUM "))</rewrite><seq/>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Order By SDATA Sections Template Example

The following query template defines a query sequence for ordering by SDATA section values
using the <order> and <orderkey> elements. The first level of ordering is done on the SDATA
section price, which is sorted in the ascending order. The second and third level of ordering is
done by the SDATA section pub_date and score, both of which are sorted in the descending
order.

select id from docs where CONTAINS (text, '
<query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> Oracle </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 <order>
 <orderkey> SDATA(price) ASC </orderkey>
 <orderkey> SDATA(pub_date) DESC </orderKey>
 <orderkey> Score DESC </orderkey>
 </order>
</query>', 1)>0;

The <orderkey> element value must have the following format:

<orderkey> SDATA(sdata_section_name) | score [DESC|ASC] </orderkey>

The sort order is ascending by default, if not specified as either DESC or ASC.

The <orderkey> element will be ignored in the following cases:

• when the Oracle Cost-Based Optimizer (CBO) pushes the SQL query level ordering into
the Text index

• when the CONTAINS() predicate is processed functionally

• when the ordering is already specified by the ORDER BY clause in the SQL query
statement

Notes

Querying Multilanguage Tables

With the multilexer preference, you can create indexes from multilanguage tables. At query
time, the multilexer examines the session's language setting and uses the sublexer preference
for that language to parse the query. If the language setting is not mapped, then the default
lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The index
contains tokens from multiple languages, so such a query can return documents in several
languages.

To limit your query to returning documents of a given language, use a structured clause on the
language column.

Query Performance Limitation with a Partitioned Index

Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

Chapter 1
CONTAINS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 122

However, for optimal performance when querying a partitioned table with an ORDER BY SCORE
clause, query the partition. If you query the entire table and use an ORDER BY SCORE clause, the
query might not perform optimally unless you include a range predicate that can limit the query
to a single partition.

For example, the following statement queries the partition p_tab4 partition directly:

select * from part_tab partition (p_tab4) where contains(b,'oracle') > 0 ORDER BY
SCORE DESC;

Limitation with Remote Execution of CONTAINS Query

Oracle Text supports the remote execution of the CONTAINS operator, but with some limitations.
You can invoke the CONTAINS operator in a remote query only if the query is executed
completely in the remote database. You cannot use the CONTAINS operator in a subquery of a
query, which causes the query to run partly on the remote database and partly on the local
database. Doing so will raise the error "ORA-00949: illegal reference to remote database."
However, CONTAINS, when invoked remotely from an inner query might run successfully
sometimes if view merging is enabled and possible on this query, as in this case the query will
be transformed into a single query and, hence, no error will occur.

For example, the following query is correct:

select id from remtab@rdb
where contains@rdb(text,'hello') > 0;

Related Topics

"Syntax for CONTEXT Index Type"

Oracle Text CONTAINS Query Operators

"The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide

"SCORE"

1.5 CREATE INDEX
Use the CREATE INDEX statement to create an Oracle Text index.

This section describes the CREATE INDEX statement as it pertains to creating an Oracle Text
domain index and composite domain index. See Oracle Database SQL Language Reference
for a complete description of the CREATE INDEX statement.

Purpose

To create an Oracle Text index. An Oracle Text index is an Oracle AI Databasedomain index or
composite domain index of type CONTEXT, CTXCAT, or CTXRULE. A domain index is an
application-specific index. A composite domain index (CDI) is an Oracle Text index that not
only indexes and processes a specified text column, but also indexes and processes FILTER BY
and ORDER BY structured columns, which are specified during index creation.

Example

create table mytab
(item_id number,
 item_info varchar2(4000),
 item_supplier varchar2(250),
 item_distributor varchar2(500));

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 122

create index idx on mytab(item_info) indextype is ctxsys.context
filter by item_supplier order by item_distributor;

You must create an appropriate Oracle Text index to enter CONTAINS, CATSEARCH, or MATCHES
queries.

You cannot create an Oracle Text index on an index-organized table.

You can create the following types of Oracle Text indexes.

CONTEXT

A CONTEXT index is the basic type of Oracle Text index. This is an index on a text column. A
CONTEXT index is useful when your source text consists of many large, coherent documents.
Query this index with the CONTAINS operator in the WHERE clause of a SELECT statement. This
index requires manual synchronization after DML. See Syntax for CONTEXT Index Type.

CTXCAT

The CTXCAT index is a combined index on a text column and one or more other columns. The
CTXCAT type is typically used to index small documents or text fragments, such as item names,
prices, and descriptions found in catalogs. Query this index with the CATSEARCH operator in the
WHERE clause of a SELECT statement. This type of index is optimized for mixed queries. This
index is transactional, automatically updating itself with DML to the base table. CTXCAT indexes
are generally larger and slower to create and update than CONTEXT indexes, and have a
narrower range of indexing options available. See Syntax for CTXCAT Index Type.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [time-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

CTXRULE

A CTXRULE index is used to build a document classification application. The CTXRULE index is an
index created on a table of queries or a column containing a set of queries, where the queries
serve as rules to define the classification criteria. Query this index with the MATCHES operator in
the WHERE clause of a SELECT statement. See Syntax for CTXRULE Index Type.

Required Privileges

You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle AI
Database privileges to create an index on the text column, you have sufficient privilege to

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 122

create a text index. The issuing owner, table owner, and index owner can all be different users,
which is consistent with Oracle standards for creating regular indexes.

Note

Whenever you create an Oracle Text index, a number of additional internal objects are
created which have names prefixed with DR$. These internal object names usually
contain the index name. In some cases, the index name is shortened to fit in the object
name. In such cases, the index ID is present in the object name to avoid naming
conflicts with objects of other indexes.

Syntax for CONTEXT Index Type

Use a CONTEXT index to create an index on a text column. Query this index with the CONTAINS
operator in the WHERE clause of a SELECT statement. This index requires manual
synchronization after DML.

CREATE INDEX [schema.]index ON [schema.]table(txt_column)
 INDEXTYPE IS CTXSYS.CONTEXT [ONLINE]
 [FILTER BY filter_column[, filter_column]...]
 [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]
 [LOCAL [PARTITION [partition] [PARAMETERS('paramstring')]]
 [, PARTITION [partition] [PARAMETERS('paramstring')]])]
 [PARAMETERS(paramstring)] [PARALLEL n] [UNUSABLE]];

[schema.]index
Specifies the name of the Text index to create.

[schema.]table(txt_column)
Specifies the name of the table and column to index. txt_column is the name of the domain
index column on which the CONTAINS() operator will be invoked.
Your table can optionally contain a primary key if you prefer to identify your rows as such
when you use procedures in CTX_DOC. When your table has no primary key, document
services identifies your documents by ROWID.

Note

Primary keys of the following type are supported: NUMBER, VARCHAR2, DATE, CHAR,
VARCHAR, and RAW.

The column that you specify must be one of the following types: CHAR, VARCHAR, VARCHAR2,
BLOB, CLOB (limited to 4294967295 bytes), BFILE, XMLType, or URIType.

Note

Starting with Oracle Database 12c Release 2 (12.2), an Oracle Text index cannot be
created on a column with a declared collation other than BINARY, USING_NLS_COMP,
USING_NLS_SORT or USING_NLS_SORT_CS. For all the supported collations, the Oracle
Text behavior is the same.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 122

The table that you specify can be a partitioned table. If you do not specify the LOCAL clause,
then a global, nonpartitioned index is created.
The DATE, NUMBER, and nested table columns cannot be indexed. Object columns also cannot
be indexed, but their attributes can be indexed, provided that they are atomic data types.
Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following criteria is true:

• The VPD policy is created such that it does not apply to the INDEX statement type.

• The policy function returns a NULL predicate for the current user.

• The user (or index owner) is SYS.

• The user has the EXEMPT ACCESS POLICY privilege.

Note

If you create a Virtual Private Database (VPD) policy using DBMS_RLS or a Data
Redaction policy using DBMS_REDACT on a base table after you have created a index on
that same base table, the DR$ index tables like $I will still contain tokens derived from
the data in the indexed column. While these tokens typically do not represent a
complete copy of the data in the indexed column, they can still expose sensitive data.
This occurs despite creating the security policy intended to protect the sensitive data
in that column. The CONTAINS queries also return results accordingly. To prevent
indexing of sensitive data, either create the Data Redaction and VPD policies before
creating a CONTEXT index or rebuild the CONTEXT index whenever security policies are
added.

Indexes on multiple columns are not supported with CONTEXT index type. You must specify only
one column in the column list.

Note

With the CTXCAT index type, you can create indexes on text and structured columns.
See "Syntax for CTXCAT Index Type"

Note

Because a Transparent Data Encryption-enabled column does not support domain
indexes, it cannot be used with Oracle Text. However, you can create an Oracle Text
index on a column in a table stored in a Transparent Data Encryption-enabled
tablespace.

ONLINE
Creates the index while enabling DML insertions/updates/deletions on the base table.
During indexing, Oracle Text enqueues DML requests in a pending queue. At the end of the
index creation, Oracle Text locks the base table. During this time, DML is blocked. You must
synchronize the index in order for DML changes to be available.

Limitations

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 122

The following limitations apply to using ONLINE:

• At the very beginning or very end of the ONLINE process, DML might fail.

• ONLINE is supported for CONTEXT index only.

FILTER BY filter_column
This is the structured indexed column on which a range or equality predicate in the WHERE
clause of a mixed query will operate. You can specify one or more structured columns for
filter_column, on which the relational predicates are expected to be specified along with the
CONTAINS() predicate in a query.
The Cost-based Optimizer (CBO) will consider pushing down the structured predicates on
these FILTER BY columns with the following relational operators: <, <=, =, >=, >, between, and
LIKE (for VARCHAR2).
These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally, CHAR,
VARCHAR2 and VARCHAR2 types are supported only if the maximum length is specified and does
not exceed 249 bytes. If the maximum length of a CHAR or VARCHAR2 column is specified in
characters, for example, VARCHAR2 (50 CHAR), then it cannot exceed FLOOR (249/
max_char_width), where max_char_width is the maximum width of any character in the
database character set. For example, the maximum specified column length cannot exceed 62
characters, if the database character set is AL32UTF8. The ADT attributes of supported types
(CHAR, NUMBER, DATE, VARCHAR2, or RAW) are also allowed. An error is raised for all other data
types. Expressions, for example, func(cola), and virtual columns are not allowed.
txt_column is allowed in the FILTER BY column list.
DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column
This is the structured indexed column on which a structured ORDER BY mixed query will be
based. A list of structured oby_columns can be specified in the ORDER BY clause of a
CONTAINS() query.
These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. VARCHAR2 and RAW
columns longer than 249 bytes are truncated to the first 249 bytes. Expressions, for example,
func(cola), and virtual columns are not allowed.
The order of the specified columns matters. The Cost-based Optimizer (CBO) will consider
pushing the sort into the composite domain index only if the ORDER BY clause in the text query
contains:

• Entire ordered ORDER BY columns declared by the ORDER BY clause during the CREATE
INDEX statement

• Only the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during
the CREATE INDEX statement

• The score followed by the prefix of the ordered ORDER BY columns declared by the ORDER
BY clause during the CREATE INDEX statement

• The score following the prefix of the ordered ORDER BY columns declared by the ORDER BY
clause during the CREATE INDEX statement

The following example illustrates Cost-based Optimizer (CBO) behavior with regard to ORDER
BY columns:

CREATE INDEX foox ON foo(D) INDEXTYPE IS CTXSYS.CONTEXT
FILTER BY B, C
ORDER BY A, B desc;

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 122

Consider the following query:

SELECT A, SCORE(1) FROM foo WHERE CONTAINS(D, 'oracle',1)>0
AND C>100 ORDER BY col_list;

Note

If you set NLS_SORT or NLS_COMP parameters (that is, alter session set NLS_SORT =
<some lang>;), then CBO will not push the sort or related structured predicate into
the CDI. This behavior is consistent with regular optimized for search SDATA indexes.

The Cost-based Optimizer (CBO) will consider pushing the sort into the composite domain
index (CDI) if col_list has the following values:

 A
 A,B
 SCORE(1), A
 SCORE(1), A, B
 A, SCORE(1)
 A, B, SCORE(1)

The CBO will not consider to push the sort into the CDI if col_list has the following values:

 B
 B,A
 SCORE(1), B
 B, SCORE(1)
 A, B, C
 A, B asc

(or simply A, B)
Expressions, for example, func(cola), are not allowed.
txt_column appearing in the ORDER BY column list is allowed.
DML operations on ORDER BY columns are always transactional.

Limitations

The following limitations apply to FILTER BY and ORDER BY:

• A structured column is allowed in FILTER BY and ORDER BY clauses. However, a column that
is mapped to MDATA in a FILTER BY clause cannot also appear in the ORDER BY clause. An
error will be raised in this case.

• The maximum length for CHAR, VARCHAR2, and RAW columns cannot be greater than 249 for
FILTER BY columns. For ORDER BY columns, the data is truncated at 249 characters.

• The total number of CDI (FILTER BY and ORDER BY) is 32.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 122

Note

In a CDI, if the indexed column is also a FILTER BY or ORDER BY column, then when
you update the main indexed column, the updates to the FILTER BY or ORDER BY
columns are not transactional.

Note

• As with concatenated optimized for search SDATA indexes or bitmap indexes,
performance degradation may occur in DML as the number of FILTER BY and
ORDER BY columns increases.

• Mapping a FILTER BY column to MDATA is not recommended if the FILTER BY
column contains sequential values or has very high cardinality. Doing so can result
in a very long and narrow $I table and reduced $X performance. An example is a
column of type DATE. For columns of this type, mapping to SDATA is recommended.

Note

An index table with the name DR$indextable$S is created to store FILTER BY and ORDER
BY columns that are mapped to SDATA sections. If nothing is mapped to an SDATA
section, then the $S table will not be created.

$S table contains the following columns:

• SDATA_ID number is the internal SDATA section ID.

• SDATA_LAST number, the last document ID, which is analogous to token_last.

• SDATA_DATA RAW(2000), the compressed SDATA values. Note that if $S is created on
a tablespace with 4K database block size, then it will be defined as RAW(1500).

Restriction: For performance reasons, $S table must be created on a tablespace with
db block size >= 4K without overflow segment and without PCTTHRESHOLD clause. If $S
is created on a tablespace with db block size < 4K, or is created with an overflow
segment or with a PCTTHRESHOLD clause, then appropriate errors will be raised during
the CREATE INDEX statement.

Restrictions on exporting and importing text tables with composite domain index created with
FILTER BY and/or ORDER BY clauses are as follows:

• Oracle recommends that you use Oracle Data Pump Import (impdp) and Oracle Data
Pump Export (expdp) utilities for importing and exporting Oracle Text indexes.

• To export a text table with composite domain index, you must use Data Pump Export and
Import utilities (invoked with the expdp and impdp commands, respectively) or
DBMS_DATAPUMP PL/SQL package.

• The original Oracle Database Export (exp) utility is desupported in Oracle AI Database
26ai.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 122

See Also

ADD_SDATA_COLUMN in CTX_DDL Package

Limitations of using ALTER INDEX and ALTER TABLE with FILTER BY and ORDER BY columns of the
composite domain index, which are imposed by Extensible Indexing Framework in Oracle
Database:

(These limitations are imposed by Extensible Indexing Framework in Oracle AI Database.)

• Using ALTER INDEX to add or drop FILTER BY and ORDER BY columns is currently not
supported. You must re-create the index to add or drop FILTER BY or ORDER BY columns.

• To use ALTER TABLE MODIFY COLUMN to modify the datatype of a column that has the
composite domain index built on it, you must first drop the composite domain index before
modifying the column.

• To use ALTER TABLE DROP COLUMN to drop a column that is part of the composite domain
index, you must first drop the composite domain index before dropping the index column.

The following limitations apply to FILTER BY and ORDER BY when used with PL/SQL packages:

• Mapping FILTER BY columns to sections is optional. If section mapping does not exist for a
FILTER BY column, then it is mapped to an SDATA section by default. The section name
assumes the name of the FILTER BY column.

• If a section group is not specified during the CREATE INDEX clause of a composite domain
index, then system default section group settings are used. An SDATA section is created for
each of the FILTER BY and ORDER BY columns.

Note

Because a section name does not allow certain special characters and is case-
insensitive, if the column name is case-sensitive or contains special characters,
then an error will be raised. To work around this problem, you must map the
column to an MDATA or SDATA section before creating the index. See
CTX_DDL.ADD_MDATA_COLUMN or CTX_DDL.ADD_SDATA_COLUMN.

• An error is raised if a column that is mapped to an MDATA section also appears in the ORDER
BY column clause.

• Column section names are unique to their section group. That is, you cannot have an
MDATA column section named FOO if you already have an MDATA column section named FOO.
Nor can you have a field section named FOO if you already have an SDATA column section
named FOO. This is true whether it is implicitly created (by CREATE INDEX for FILTER BY or
ORDER BY clauses) or explicitly created (by CTX_DDL.ADD_SDATA_COLUMN).

• One section name can be mapped to only one FILTER BY column, and vice versa. Mapping
a section to more than one column, or mapping a column to more than one section is not
allowed.

• Column sections can be added to any type of section group, including the NULL section
group.

• If a section group with sections added by the CTX_DDL.ADD_MDATA_COLUMN or
CTX_DDL.ADD_SDATA_COLUMN packages is specified for a CREATE INDEX statement without a
FILTER BY clause, then the mapped column sections will be ignored. However, the index

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 122

will still get created without those column sections. The same is true for a FILTER BY clause
that does not contain mapped columns in the specified section group.

See Also

CTX_DDL.ADD_SDATA_COLUMN

LOCAL [PARTITION [partition] [PARAMETERS('paramstring')]
Specifies a local partitioned context index on a partitioned table. The partitioned table must be
partitioned by range. Hash, composite, and list partitions are not supported.
You can specify the list of index partition names with partition_name. If you do not specify a
partition name, then the system assigns one. The order of the index partition list must
correspond to the table partition order.
The PARAMETERS clause associated with each partition specifies the parameters string specific
to that partition. You can only specify sync (manual|every |on commit), memory and storage
for each index partition.
The PARAMETERS clause also supports the POPULATE and NOPOPULATE arguments. See
POPULATE | NOPOPULATE.
Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_PARTITIONS to find out
index partition information, such as index partition name, and index partition status.

See Also

Creating a Local Partitioned Index

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE clause,
query the partition. If you query the entire table and use an ORDER BY SCORE clause, the query
might not perform optimally unless you include a range predicate that can limit the query to the
fewest number of partitions, which is optimally a single partition.

See Also

Query Performance Limitation with a Partitioned Index

PARALLEL n
Optionally specifies the parallel degree for parallel indexing. The actual degree of parallelism
might be smaller depending on your resources. You can use this parameter on nonpartitioned
tables. However, creating a nonpartitioned index in parallel does not turn on parallel query
processing. Parallel indexing is supported for creating a local partitioned index.
The indexing memory size specified in the parameter clause applies to each parallel worker.
For example, if indexing memory size is specified in the parameter clause as 500M and
parallel degree is specified as 2, then you must ensure that there is at least 1GB of memory
available for indexing.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 122

See Also

• Parallel Indexing

• Creating a Local Partitioned Index in Parallel

• The "Performance Tuning" chapter in Oracle Text Application Developer's Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to index and
when your operating system supports multiple CPUs.

Note

Using PARALLEL to create a local partitioned index that enables parallel queries.
(Creating a nonpartitioned index in parallel does not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily loaded systems.
Because of this, Oracle recommends that you disable parallel querying after creating a
local index. To do so, use the ALTER INDEX NOPARALLEL statement.

For more information on parallel querying, see the "Performance Tuning" chapter in
Oracle Text Application Developer's Guide.

Limitations

Parallel indexing is supported only for the CONTEXT index type.

UNUSABLE
Creates an unusable index. This creates index metadata only and exits immediately.
You might create an unusable index when you need to create a local partitioned index in
parallel.

See Also

"Creating a Local Partitioned Index in Parallel"

PARAMETERS(paramstring)
Optionally specify indexing parameters in paramstring. You can specify preferences owned
by another user using the user.preference notation.
The syntax for paramstring is as follows:

paramstring =
'[ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [CHARSET COLUMN charset_column_name]
 [FORMAT COLUMN format_column_name]
 [SAVE_COPY COLUMN save_copy_column_name]
 [LEXER lexer_pref]

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 122

 [LANGUAGE COLUMN language_column_name]
 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize]
 [POPULATE | NOPOPULATE]
 [MAINTENANCE AUTO | MAINTENANCE MANUAL]
 [SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [TRANSACTIONAL]
 [OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]'

Create datastore, filter, lexer, wordlist, and storage preferences with
CTX_DDL.CREATE_PREFERENCE and then specify them in the paramstring.

Note

The combination of ASYNCHRONOUS_UPDATE and TRANSACTIONAL parameters is not
supported for context indexes.

Note

When you specify no paramstring, Oracle Text uses the system defaults. For more
information about these defaults, see "Default Index Parameters".

ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE
Specifies whether Oracle Text must retain old index entries for documents in which the
indexed column was updated. The default is SYNCHRONOUS_UPDATE which indicates that index
updates are synchronous and that old index entries are unavailable for search operations until
the index is synchronized.
ASYNCHRONOUS_UPDATE indicates that until the index is synchronized, search queries will use
the old index entries to return the old document content. After index synchronization, the
rebuilt index is used to return the updated document content.
Asynchronous updates are not supported for DML operations that cause row movement.
This option cannot be set at the partition level.
The following example creates a CONTEXT index idx for which asynchronous update is
enabled.

CREATE INDEX myidx ON mytab1(item_info) INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS('asynchronous_update');

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 122

Note

The ASYNCHRONOUS_UPDATE setting of the CONTEXT indextype is deprecated in Oracle
AI Database 26ai, and can be ignored or removed in a future release.
Oracle can ignore or remove this attribute in a future release. Oracle recommends
that you allow this value to be set to its default value, SYNCHRONOUS_UPDATE. To avoid
unexpected loss of results during updates, use SYNC (ON COMMIT) or SYNC(EVERY
[time-period]) with a short time period.
The ASYNCHRONOUS_UPDATE setting was introduced as a workaround for the fact that
updates are implemented as "delete followed by insert," and that deletes are
immediate (on commit), while inserts are only performed during an index sync.
However, this setting is incompatible with several other index options. Oracle
recommends that you discontinue its use.

DATASTORE datastore_pref
Specifies the name of your datastore preference. Use the datastore preference to specify
where your text is stored.See "Datastore Types ".

FILTER filter_pref
Specifies the name of your filter preference. Use the filter preference to specify how to filter
formatted documents to plain text or HTML. See "Filter Types".

CHARSET COLUMN charset_column_name
Specifies the name of the character set column. This column must be in the same table as the
text column, and it must be of type CHAR, VARCHAR, or VARCHAR2. Use this column to specify the
document character set for conversion to the database character set. The value is case-
insensitive. You must specify a globalization support character set string, such as JA16EUC.
When the document is plain text or HTML, the AUTO_FILTER and CHARSET filters use this
column to convert the document character set to the database character set for indexing.
Use this column when you have plain text or HTML documents with different character sets or
in a character set different from the database character set.
Setting NLS_LENGTH_SEMANTICS parameter to CHAR is not supported at the database level. This
parameter is supported for the following columns:

• The CHARSET COLUMN, for example:

VARCHAR2 <size> CHAR
CHAR <size> CHAR

• An index created on a VARCHAR2 and CHAR column

• VARCHAR2 and CHAR columns for FILTER BY and ORDER BY clauses of CREATE INDEX

• FORMAT COLUMN

Note

• Documents are not marked for re-indexing when only the character set column
changes. The indexed column must be updated to flag the re-index.

• The NLS_LENGTH_SEMANTICS = CHAR parameter is supported at the column level
only, and is not supported at the database level, as described in this section.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 122

FORMAT COLUMN format_column_name
Specifies the name of the format column. The format column must be in the same table as the
text column and it must be CHAR, VARCHAR, or VARCHAR2 type.
FORMAT COLUMN determines how a document is filtered, or, in the case of the IGNORE value, if it
is to be indexed.
AUTO_FILTER uses the format column when filtering documents. Use this column with
heterogeneous document sets to optionally bypass filtering for plain text or HTML documents.
In the format column, you can specify one of the following options:

• TEXT

• BINARY

• IGNORE

The TEXT option indicates that the document is either plain text or HTML. When TEXT is
specified, the document is not filtered, but may have the character set converted.
The BINARY option indicates that the document is a format supported by the AUTO_FILTER
object other than plain text or HTML, for example PDF. BINARY is the default, if the format
column entry cannot be mapped.
The IGNORE option indicates that the row is to be ignored during indexing. Use this value when
you need to bypass rows that contain data incompatible with text indexing such as image
data, or rows in languages that you do not want to process. The difference between
documents with TEXT and IGNORE format column types is that the former are indexed but
ignored by the filter, while the latter are not indexed at all. Thus, IGNORE can be used with any
filter type.

Note

Documents are not marked for re-indexing when only the format column changes.
The indexed column must be updated to flag the re-index.

SAVE_COPY COLUMN save_copy_column_name
Specifies the name of the column that contains the preference of whether to save a copy of a
document into the $D index table during a search operation.
You can specify one of the following three options in the SAVE_COPY column: PLAINTEXT,
FILTERED, or NONE.
The PLAINTEXT option indicates that the document should be stored as a plain text in the $D
index table. Specify this value when using the SNIPPET procedure.
The FILTERED option indicates that a filter preference should be applied on the text present in
the document before storing it into the $D index table. Specify this value when using the
MARKUP procedure or the HIGHLIGHT procedure.
The NONE option indicates that a copy of the document should not be saved in the $D index
table. Specify this value for any of the following scenarios:

• when SNIPPET, MARKUP, or HIGHLIGHT procedure is not used.

• when the indexed column is either VARCHAR2 or CLOB.

LEXER lexer_pref
Specifies the name of your lexer or multilexer preference. Use the lexer preference to identify
the language of your text and how text is tokenized for indexing. See "Lexer Types".

LANGUAGE COLUMN language_column_name
Specifies the name of the language column when using a multi-lexer preference. See
"MULTI_LEXER".

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 122

This column must exist in the base table. It cannot be the same column as the indexed
column. Only the first 30 bytes of the language column are examined for language
identification.

Note

Documents are not marked for re-indexing when only the language column changes.
The indexed column must be updated to flag the re-index.

WORDLIST wordlist_pref
Specifies the name of your wordlist preference. Use the wordlist preference to enable features
such as fuzzy, stemming, and prefix indexing for better wildcard searching. See "Wordlist
Type".

STORAGE storage_pref
Specifies the name of your storage preference for the Text index. Use the storage preference
to specify how the index tables are stored. See "Storage Types".

STOPLIST stoplist
Specifies the name of your stoplist. Use stoplist to identify words that are not to be indexed.
See CTX_DDL.CREATE_STOPLIST .

SECTION GROUP section_group
Specifies the name of your section group. Use section groups to create searchable sections in
structured documents. See CTX_DDL.CREATE_SECTION_GROUP .

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = number[K|M|G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.
The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.
The default is the value specified for DEFAULT_INDEX_MEMORY in CTX_PARAMETERS.
The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.
Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

POPULATE | NOPOPULATE
Specifies whether an index should be empty or populated. The default is POPULATE.
The POPULATE and NOPOPULATE parameters are applicable to CONTEXT, CTXRULE, and
SEARCH_INDEX types.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 122

Note

POPULATE | NOPOPULATE is the only option whose default value cannot be set with
CTX_ADM.SET_PARAMETER.

Empty indexes are populated by updates or inserts to the base table. You might create an
empty index when you need to create your index incrementally or to selectively index
documents in the base table. You might also create an empty index when you require only
theme and Gist output from a document set.
Note that a populated index is created by default, unless you explicitly specify the NOPOPULATE
keyword. The outputs of CTX_REPORT.CREATE_INDEX_SCRIPT and CTX_REPORT.DESCRIBE_INDEX
include the NOPOPULATE keyword for such indexes.

MAINTENANCE AUTO | MAINTENANCE MANUAL
Specifies the maintenance type for synchronization of the CONTEXT index when there are
inserts, updates, or deletes to the base table. The maintenance type specified for an index
applies to all index partitions.
You can set one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC.INDEX operations by tracking
the DML queue.
Note: Review a list of requirements and restrictions for
indexes in an automatic maintenance mode, as listed in
Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies the SYNC type for synchronization of the CONTEXT index when there are inserts,
updates, or deletes to the base table.
These SYNC settings are applicable only to the indexes that are set to manual maintenance.

Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 122

You can specify one of the following SYNC methods:

SYNC Type Description

MANUAL This is the default synchronization method for CONTEXT
index. In this method, automatic synchronization is not
provided. You must manually synchronize the index with
CTX_DDL.SYNC_INDEX.

EVERY "interval-string" The default synchronization interval is set to 30 seconds.
Automatically synchronizes the index at a regular interval
specified by the value of interval-string, which takes the
same syntax as that for scheduler jobs. Automatic
synchronization using EVERY requires that the index creator
have CREATE JOB privileges.
Ensure that interval-string is set to a considerable time
period that any previous sync jobs will have completed;
otherwise, the sync job might stop responding. interval-
string must be enclosed in double quotes, and any single
quote within interval-string must be preceded by the escape
character with another single quote.
See Enabling Automatic Index Synchronization at Regular
Intervals for an example of automatic sync syntax.

ON COMMIT Synchronizes the index immediately after a commit
transaction. The commit transaction does not return until
the sync is complete. Before Oracle Database Release 18c,
the synchronization was performed as a separate
transaction. There was a time period, usually small, when
the data was committed but index changes were not.
Starting with Oracle Database Release 18c, the
synchronization is performed as part of the same
transaction.
The operation uses the memory specified with the memory
parameter.
Before Oracle Database Release 18c, the sync operation
had its own transaction context. If the operation failed, the
data transaction still committed. Starting with Oracle
Database Release 18c, if there is an irrecoverable index
synchronization error, the entire data transaction is rolled
back. Recoverable (individual row) synchronization errors
are logged in the CTX_USER_INDEX_ERRORS view but the
transaction still completes. See Viewing Index Errors.
See Enabling Automatic Index Synchronization at Regular
Intervals for an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions unless a partition specifies its own type.
With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

... EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same memory size
that was specified at index creation.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 122

See Also

• Oracle Database Administrator's Guide for information about job scheduling

• Oracle AI Database PL/SQL Packages and Types Reference for information
about DBMS_SCHEDULER

TRANSACTIONAL
Specifies that documents can be searched immediately after they are inserted or updated. If a
text index is created with TRANSACTIONAL enabled, then, in addition to processing the
synchronized rowids already in the index, the CONTAINS operator will process unsynchronized
rowids as well. Oracle Text does in-memory indexing of unsynchronized rowids and processes
the query against the in-memory index.
TRANSACTIONAL is an index-level parameter and does not apply at the partition level.
You must still synchronize your text indexes from time to time (with CTX_DDL.SYNC_INDEX) to
bring pending rowids into the index. Query performance degrades as the number of
unsynchronized rowids increases. For that reason, Oracle recommends setting up your index
to use automatic synchronization with the EVERY or ON COMMIT parameter. (See "SYNC
(MANUAL | EVERY "interval-string" | ON COMMIT)".)
Transactional querying for indexes that have been created with the TRANSACTIONAL parameter
can be turned on and off (for the duration of a user session) with the PL/SQL variable
CTX_QUERY.disable_transactional_query. This is useful, for example, if you find that
querying is slow due to the presence of too many pending rowids. Here is an example of
setting this session variable:

exec ctx_query.disable_transactional_query := TRUE;

If the index uses AUTO_FILTER, queries involving unsynchronized rowids will require filtering of
unsynchronized documents.

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 122

OPTIMIZE Type Description

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the create
index parameter list, a repeatedly running optimize token
job and a repeatedly running optimize full job are scheduled
for each index and partition:
• The Optimize token job is scheduled to run weekly

from 12 A.M. every Saturday night to optimize $S*
tables.
This job runs on tables with non-JSON data type
(VARCHAR2, CLOB, or BLOB) to optimize the top 10 most
fragmented tokens (determined automatically).

• The Optimize full job is scheduled to run every
midnight from 12 A.M. to 3 A.M. except on Saturday
night. Jobs that are not started before 3 A.M. are
skipped. These skipped jobs are started before the
other jobs that are scheduled to run at 12 A.M. the next
day.
This job runs on tables with JSON data type or the IS
JSON check constraint.

Existing indexes do not have OPTIMIZE (AUTO_DAILY) by
default. You must use ALTER INDEX to enable automatic
background index optimization.

EVERY "interval-string" Automatically runs at a regular interval specified by the
value interval-string, which takes the same syntax as
scheduler jobs.
• The Optimize token job is scheduled for tables with

non-JSON data type.
This job runs optimize token for the top 10 most
fragmented tokens at an interval specified by the user.

• The Optimize full job is scheduled for tables with JSON
data type or the IS JSON check constraint.
This job runs optimize full weekly at 12 A.M. every
Saturday night for $S* tables.

Ensure that interval-string is set to a considerable time
period so that any previous optimize jobs are complete. The
interval-string value must be enclosed in double quotes,
and any single quote within interval-string must be
preceded by the escape character with another single
quote.
If multiple indexes use the OPTIMIZE EVERY "interval-
string" option, then different jobs are created for each
index. These jobs are run concurrently.

With AUTO_DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

CREATE INDEX: CONTEXT Index Examples

The following sections give examples of creating a CONTEXT index.

Creating CONTEXT Index Using Default Preferences

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 122

The following example creates a CONTEXT index called myindex on the docs column in mytable.
Default preferences are used.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context;

See Also

• Oracle Text Application Developer's Guide

• For more information about default settings, see "Default Index Parameters"

Creating CONTEXT Index with Custom Preferences

The following example creates a CONTEXT index called myindex on the docs column in mytable.
The index is created with a custom lexer preference called my_lexer and a custom stoplist
called my_stop.

This example also assumes that the preference and stoplist were previously created with
CTX_DDL.CREATE_PREFERENCE for my_lexer, and CTX_DDL.CREATE_STOPLIST for
my_stop. Default preferences are used for the unspecified preferences.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
 PARAMETERS('LEXER my_lexer STOPLIST my_stop');

Any user can use any preference. To specify preferences that exist in another user's schema,
add the user name to the preference name. The following example assumes that the
preferences my_lexer and my_stop exist in the schema that belongs to user kenny:

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
 PARAMETERS('LEXER kenny.my_lexer STOPLIST kenny.my_stop');

Enabling Automatic Index Synchronization at Regular Intervals

You can create your index and specify that the index be synchronized at regular intervals for
insertions, updates and deletions to the base table. To do so, create the index with the SYNC
(EVERY "interval-string") parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then grant
CREATE JOB privileges.

The following example creates an index and schedules three synchronization jobs for three
index partitions. The first partition uses ON COMMIT synchronization. The other two partitions are
synchronized by jobs that are scheduled to be executed every Monday at 3 P.M.

CONNECT system/password
GRANT CREATE JOB TO dr_test

CREATE INDEX tdrmauto02x ON tdrmauto02(text)
 INDEXTYPE IS CTXSYS.CONTEXT local
 (PARTITION tdrm02x_i1 PARAMETERS('
 MEMORY 20m SYNC(ON COMMIT)'),
 PARTITION tdrm02x_i2,
 PARTITION tdrm02x_i3) PARAMETERS('

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 122

 SYNC (EVERY "NEXT_DAY(TRUNC(SYSDATE), ''MONDAY'') + 15/24")
 ');

See Oracle Database Administrator's Guide for information about job scheduling syntax.

Enabling Automatic Background Index Optimization

The following example creates an index and schedules a repeatedly running optimize token job
at 12 A.M. every midnight and a repeatedly running optimize full job running at 12 A.M. every
Saturday night.

CREATE TABLE mytable (
 text VARCHAR2(30)
);

CREATE INDEX myindex ON mytable(text)
 INDEXTYPE IS CTXSYS.CONTEXT
 PARAMETERS('OPTIMIZE (EVERY "FREQ=DAILY; BYHOUR=0")');

Creating CONTEXT Index with Multilexer Preference

The multilexer preference decides which lexer to use for each row based on a language
column. This is a character column in the table that stores the language of the document in the
text column. For example, create the table globaldoc to hold documents of different
languages:

CREATE TABLE globaldoc (
 doc_id NUMBER PRIMARY KEY,
 lang VARCHAR2(10),
 text CLOB
);

Assume that global_lexer is a multilexer preference you created. To index the global_doc
table, specify the multilexer preference and the name of the language column as follows:

CREATE INDEX globalx ON globaldoc(text) INDEXTYPE IS ctxsys.context PARAMETERS
('LEXER global_lexer LANGUAGE COLUMN lang');

See Also

"MULTI_LEXER" for more information about creating multilexer preferences

Creating a Local Partitioned Index

The following example creates a text table that is partitioned into three, populates it, and then
creates a partitioned index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)
(partition p_tab1 values less than (10),

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 122

 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

PROMPT create partitioned index
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT
 LOCAL (partition p_idx1, partition p_idx2, partition p_idx3);
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT LOCAL;

Perform either of the following actions if there is going to be more than 10000 partitions:

• If you need to create a CONTEXT index with more than 10000 partitions, then you must
use event 30579, level 2147483648 during index creation.

• If an index is already created and it has more than 10000 partitions, then you must
recreate the index after running the following command:

alter SYSTEM set events '30579 trace name context forever, level
2147483648';

See Also

MOS note 2671924.1

Note

The limit for the number of partitions in Oracle Text is the same as the maximum
number of partitions per table in Oracle AI Database.

Using FILTER BY and ORDER BY Clauses

The following example creates an index on table docs and orders the documents by author's
publishing date.

First, create the table:

CREATE TABLE docs (
 docid NUMBER,
 pub_date DATE,
 author VARCHAR2(30),
 category VARCHAR2(30),
 document CLOB
);

Create the index with FILTER BY and ORDER BY clauses:

CREATE INDEX doc_idx on docs(document) indextype is ctxsys.context
 FILTER BY category, author
 ORDER BY pub_date desc, docid
 PARAMETERS ('memory 500M');

Parallel Indexing

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 122

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2671924.1

Parallel indexing can improve index performance when you have multiple CPUs.

To create an index in parallel, use the PARALLEL clause with a parallel degree. This example
uses a parallel degree of 3:

CREATE INDEX myindex ON mytab(pk) INDEXTYPE IS ctxsys.context PARALLEL 3;

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have multiple
CPUs. With partitioned tables, you can divide the work. You can create a local partitioned index
in parallel in two ways:

• Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In this
case, the maximum parallel degree is limited to the number of partitions you have. See
"Parallelism with CREATE INDEX".

• Create an unusable index first, then run the DBMS_PCLXUTIL.BUILD_PART_INDEX utility. This
method can result in a higher degree of parallelism, especially if you have more CPUs than
partitions. See "Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX".

If you attempt to create a local partitioned index in parallel, and the attempt fails, you may see
the following error message:

ORA-29953: error in the execution of the ODCIIndexCreate routine for one or
more
of the index partitions

To determine the specific reason why the index creation failed, query the
CTX_USER_INDEX_ERRORS view.

Parallelism with CREATE INDEX

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in the CREATE
INDEX statement. In this case, the maximum parallel degree is limited to the number of
partitions that you have.

The following example creates a table with three partitions, populates them, and then creates
the local indexes in parallel with a degree of 2:

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)
(partition p1 values less than (1000),
 partition p2 values less than (2000),
 partition p3 values less than (3000));

begin
 for i in 0..2999
 loop
 insert into part_tab3 values (i,'oracle');
 end loop;
end;
/

create index part_tab3x on part_tab3(text)
indextype is ctxsys.context local (partition part_tabx1,
 partition part_tabx2,

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 122

 partition part_tabx3)
parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index, and then
running the DBMS_PCLUTIL.BUILD_PART_INDEX utility. This method can result in a higher degree
of parallelism, especially when you have more CPUs than partitions.

In this example, the base table has three partitions. We create a local partitioned unusable
index first, then run DBMS_PCLUTIL.BUILD_PART_INDEX, which builds the 3 partitions in parallel
(referred to as inter-partition parallelism). Also, inside each partition, index creation proceeds in
parallel (called intra-partition parallelism) with a parallel degree of 2. Therefore, the total
parallel degree is 6 (3 times 2).

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)
(partition p1 values less than (1000),
 partition p2 values less than (2000),
 partition p3 values less than (3000));

begin
 for i in 0..2999
 loop
 insert into part_tab3 values (i,'oracle');
 end loop;
end;
/

create index part_tab3x on part_tab3(text)
indextype is ctxsys.context local (partition part_tabx1,
 partition part_tabx2,
 partition part_tabx3)
unusable;

exec dbms_pclxutil.build_part_index(jobs_per_batch=>3,
 procs_per_job=>2,
 tab_name=>'PART_TAB3',
 idx_name=>'PART_TAB3X',
 force_opt=>TRUE);

Viewing Index Errors

After a CREATE INDEX or ALTER INDEX operation, you can view index errors with Oracle Text
views. To view errors on your indexes, query the CTX_USER_INDEX_ERRORS view. To view
errors on all indexes as CTXSYS, query the CTX_INDEX_ERRORS view.

For example, to view the most recent errors on your indexes, enter the following statement:

SELECT err_timestamp, err_text FROM ctx_user_index_errors
ORDER BY err_timestamp DESC;

Deleting Index Errors

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 75 of 122

To clear the index error view, enter the following statement:

DELETE FROM ctx_user_index_errors;

Syntax for CTXCAT Index Type

Combines an index on a text column and one or more other columns. Query this index with the
CATSEARCH operator in the WHERE clause of a SELECT statement. This type of index is optimized
for mixed queries. This index is transactional, automatically updating itself with DML to the
base table.

CREATE INDEX [schema.]index on [schema.]table(column) INDEXTYPE IS
ctxsys.ctxcat
[PARAMETERS('[index set index_set]
[lexer lexer_pref]
[storage storage_pref]
[stoplist stoplist]
[section group sectiongroup_pref]
[wordlist wordlist_pref]
[memory memsize]');

[schema.]table(column)
Specifies the name of the table and column to index.
The column that you specify when you create a CTXCAT index must be of type CHAR or
VARCHAR2. No other types are supported for CTXCAT.
Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following options is true:

• The VPD policy is created such that it does not apply to INDEX statement type, which is the
default

• The policy function returns a null predicate for the current user.

• The user (index owner) is SYS.

• The user has the EXEMPT ACCESS POLICY privilege.

Supported CTXCAT Preferences

index set index_set
Specifies the index set preference to create the CTXCAT index. Index set preferences name the
columns that make up your subindexes. Any column that is named in an index set column list
cannot have a NULL value in any row of the base table, or else you get an error.
Always ensure that your columns have non-null values before and after indexing.
See "Creating a CTXCAT Index".

Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating this type of index has its
costs. The time that it takes Oracle Text to create a CTXCAT index depends on the total size of
the index.

The total size of a CTXCAT index is directly related to:

• Total text to be indexed

• Number of component indexes in the index set

• Number of columns in the base table that make up the component indexes

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 76 of 122

Having many component indexes in your index set also degrades DML performance because
more indexes must be updated.

Because of these added costs in creating a CTXCAT index, you should carefully consider the
query performance benefit that each component index gives your application before adding it
to your index set.

See Also

Oracle Text Application Developer's Guide for more information about creating CTXCAT
indexes and the benefits

Other CTXCAT Preferences
When you create an index of type CTXCAT, you can use the supported index preferences listed
in Table 1-12 in the parameters string.

Table 1-12 Supported CTXCAT Index Preferences

Preference Class Supported Types

Datastore This preference class is not supported for CTXCAT.

Filter This preference class is not supported for CTXCAT.

Lexer BASIC_LEXER (index_themes attribute not supported)

CHINESE_LEXER

CHINESE_VGRAM_LEXER

JAPANESE_LEXER

JAPANESE_VGRAM_LEXER

KOREAN_MORPH_LEXER

Wordlist BASIC_WORDLIST

Storage BASIC_STORAGE

Stoplist Supports single language stoplists only (BASIC_STOPLIST type).

Section Group Only Field Section is supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore and filter preferences. For
section group preferences, only the field section preference is supported. You also cannot
specify language, format, or charset columns as with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete example,
see Oracle Text Application Developer's Guide.

Consider a table called AUCTION with the following schema:

create table auction(item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 77 of 122

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on price. Results must be sorted based on bid_close. This means that
an index to support good response time for the structured and sorting criteria is required.

You can create a catalog index to support the different types of structured queries a user might
enter. For structured queries, a CTXCAT index improves query performance over a context
index.

To create the indexes, first, create the index set preference, next, optionally, add the storage
preference, and, finally, add the required indexes to it:

begin
ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','bid_close');
ctx_ddl.add_index('auction_iset','price, bid_close');
end;

Optionally, create the storage preference:

begin
 ctx_ddl.create_preference('auction_st_pref', 'BASIC_STORAGE');
 ctx_ddl.set_attribute('auction_st_pref', 'I_TABLE_CLAUSE',
 'tablespace TEXT storage (initial 5M)');
 ctx_ddl.set_attribute('auction_st_pref', 'I_ROWID_INDEX_CLAUSE',
 'tablespace TEXT storage (initial 5M)');
 ctx_ddl.set_attribute('auction_st_pref', 'I_INDEX_CLAUSE',
 'tablespace TEXT storage (initial 5M) compress 2');
end;
/

Then, create the CTXCAT index with the CREATE INDEX statement as follows:

create index auction_titlex on AUCTION(title) indextype is CTXSYS.CTXCAT
parameters ('index set auction_iset storage auction_st_pref');

Querying a CTXCAT Index

To query the title column for the word pokemon, enter regular and mixed queries as follows:

select * from AUCTION where CATSEARCH(title, 'pokemon',NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'price < 50 order by
bid_close desc')> 0;

See Also

Oracle Text Application Developer's Guide for a complete CTXCAT example

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 78 of 122

Syntax for CTXRULE Index Type

The CTXRULE type is an index on a column containing a set of queries. Query this index with the
MATCHES operator in the WHERE clause of a SELECT statement.

CREATE INDEX [schema.]index on [schema.]table(rule_col) INDEXTYPE IS
ctxsys.ctxrule
[PARAMETERS ('[lexer lexer_pref] [storage storage_pref]
[section group section_pref] [wordlist wordlist_pref]
[classifier classifier_pref]');

[PARALLEL n];

[schema.]table(column)
Specifies the name of the table and rule column to index. The rules can be query compatible
strings, query template strings, or binary Support Vector Machine rules.
The column you specify when you create a CTXRULE index must be VARCHAR2, CLOB or BLOB.
No other types are supported for the CTXRULE type.
Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following is true:

• The VPD policy does not have the INDEX statement type turned on (which is the default).

• The policy function returns a null predicate for the current user.

• The user (index owner) is SYS.

• The user has the EXEMPT ACCESS POLICY privilege.

lexer_pref
Specifies the lexer preference to be used for processing queries and later for the documents
to be classified with the MATCHES function.
With both classifiers SVN_CLASSFIER and RULE_CLASSIFIER, you can use the BASIC_LEXER,
CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexer. (See "Classifier Types" and
"Lexer Types".)
For processing queries, these lexers support the following operators: ABOUT, STEM, AND, NEAR,
NOT, OR, and WITHIN.
The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are supported.
However, these operators are expanded using a snapshot of the thesaurus at index time, not
when the MATCHES function is entered. This means that if you change your thesaurus after you
index, you must re-index your query set.

storage_pref
Specify the storage preference for the index on the queries. Use the storage preference to
specify how the index tables are stored. See "Storage Types".

section group
Specify the section group. This parameter does not affect the queries. It applies to sections in
the documents to be classified. The following section groups are supported for the CTXRULE
index type:

• BASIC_SECTION_GROUP

• HTML_SECTION_GROUP

• XML_SECTION_GROUP

• AUTO_SECTION_GROUP

Chapter 1
CREATE INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 79 of 122

See "Section Group Types".

CTXRULE does not support special sections. It also does not support NDATA sections.

wordlist_pref
Specifies the wordlist preferences. This is used to enable stemming operations on query
terms. See Wordlist Type.

classifier_pref
Specifies the classifier preference. See "Classifier Types". You must use the same preference
name you specify with CTX_CLS.TRAIN.

Example for Creating a CTXRULE Index

See Oracle Text Application Developer's Guide for a complete example of using the CTXRULE
index type in a document routing application.

Related Topics

CTX_DDL.CREATE_PREFERENCE

CTX_DDL.CREATE_STOPLIST

CTX_DDL.CREATE_SECTION_GROUP

"ALTER INDEX "

"CATSEARCH "

1.6 CREATE SEARCH INDEX
Use the CREATE SEARCH INDEX statement to create a search index for indexing and querying
structured, unstructured, or semi-structured data, such as textual, JSON, and XML documents.

Purpose

The SEARCH INDEX is an index type that supports the CONTEXT index functionality along with
sharded databases and system-managed partitioning for index storage. Using the CREATE
SEARCH INDEX syntax, you can create search indexes on textual, JSON, and XML columns.

Note

Shadow index is not supported for search indexes.

Overview

The CREATE SEARCH INDEX syntax automatically determines the type of search index to create
based on the data type of the column, as follows:

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 80 of 122

Column Data Type FOR Clause Syntax Description

Text FOR TEXT The CREATE SEARCH INDEX statement on a
textual column creates an Oracle Text search
index.

If required, you can explicitly specify the FOR TEXT
clause in the CREATE SEARCH INDEX statement to
create an Oracle Text search index. If you omit the
FOR TEXT clause on a textual column, then the
FOR TEXT settings are automatically picked up.

If a column has the JSON data type, an IS JSON
check constraint, or an XMLType data type using
TBX, then you can override the settings and create
a full-text search index by specifying the FOR TEXT
clause.

JSON data type

or

Column with an IS
JSON check constraint

FOR JSON The CREATE SEARCH INDEX statement on a
column with the JSON data type or an IS JSON
check constraint creates a JSON search index.

If required, you can explicitly specify the FOR JSON
clause in the CREATE SEARCH INDEX statement to
create a JSON search index. If you omit the FOR
JSON clause and the column has the JSON data
type or an IS JSON check constraint, then the FOR
JSON settings are automatically picked up.

XMLType data type of
TRANSPORTABLE
BINARY XML

FOR XML The CREATE SEARCH INDEX statement on an
XMLType column of TRANSPORTABLE BINARY XML
(TBX) creates an XML search index.

If required, you can explicitly specify the FOR XML
clause in the CREATE SEARCH INDEX statement to
create an XML search index. If you omit the FOR
XML clause on an XMLTYPE column that uses the
TBX storage option, then the FOR XML settings are
automatically picked up. If you omit the FOR XML
clause on an XMLTYPE column but the storage
option is not TBX, then it creates an Oracle Text
index. To create an XML search index, you must
ensure that the document is stored as TBX.

XML search indexes also support XQuery Full Text
search features. You can index XML data that is not
stored using the TBX option by creating an XQuery
Full Text CONTEXT index. See Oracle XML DB
Developer’s Guide.

Here is the detailed syntax for each type of search index:

• Syntax for Oracle Text Search Index

• Syntax for JSON Search Index

• Syntax for XML Search Index

Syntax for Oracle Text Search Index

CREATE SEARCH INDEX [schema.]index ON [schema.]table(txt_column)
 [ONLINE]
 [FILTER BY filter_column[, filter_column]...]
 [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 122

 [LOCAL [PARTITION [partition]]
 [, PARTITION [partition]])]
 [PARAMETERS(paramstring)] [PARALLEL n] [UNUSABLE]];

ONLINE, FILTER BY, ORDER BY, PARTITION, PARALLEL, and UNUSABLE are described in "Syntax for
CONTEXT Index Type".

[schema.]index
Specifies the name of the Oracle Text search index to create.

[schema.]table(index_column)
Specifies the names of table and column to index. index_column is the name of the column on
which the index is created.

LOCAL
Creates a local partitioned search index on a partitioned table. The index is partitioned using
the partitioning scheme of the base table.
You can partition a table using range, list, hash, interval, range-composite (range, list, and
hash), list-composite (range, list, and hash), hash-composite (range, list, and hash), and
automatic-list partitioning schemes. You can create a local search index using reference
partitioning if the base table of the reference partitioned table is partitioned using any of the
supported schemes.

Note

You cannot create a local search index on an interval-composite partitioned table.

Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_PARTITIONS to find out
index partition information, such as index partition name and index partition status.
The following example shows how to create a text table that is partitioned into three, populate
it, and then create a partitioned search index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)
(partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

PROMPT create partitioned search index
CREATE SEARCH INDEX part_idx ON part_tab (b) LOCAL;

See Also

• Creating a Local Partitioned Index

• System Managed Domain Index - Supported Schemes in Oracle AI Database
Data Cartridge Developer's Guide

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 82 of 122

PARAMETERS(paramstring)
Optionally specify indexing parameters in paramstring. You can specify preferences owned
by another user using the user.preference notation.
The syntax for paramstring is as follows:

paramstring =
'[DATASTORE datastore_pref]
 [STORAGE storage_pref]
 [MEMORY memsize]
 [MAINTENANCE AUTO | MAINTENANCE MANUAL]
 [SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]
 [STOPLIST stoplist]
 [LEXER lexer_pref]
 [FILTER filter_pref]
 [WORDLIST wordlist_pref]
 [SECTION GROUP section_group]'

Note

TRANSACTIONAL and ASYNCHRONOUS_UPDATE parameters are not supported for the
Oracle Text search index type.

DATASTORE datastore_pref
Specifies the name of your data store preference. Use the data store preference to specify
where your text is stored. See Datastore Types .
The default is DIRECT_DATASTORE type.

STORAGE storage_pref
Specifies the name of your storage preference for the Oracle Text search index. Use the
storage preference to specify how the index tables are stored. See Storage Types.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is:

memsize = number[K|M|G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.
The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.
The default for Oracle Text search index is 500MB.
The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.
Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 83 of 122

MAINTENANCE AUTO | MAINTENANCE MANUAL
Specifies the maintenance type for synchronization of the Oracle Text search index when
there are inserts, updates, or deletes to the base table. The maintenance type specified for an
index applies to all index partitions.
You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC.INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions for indexes in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies the SYNC method for synchronization of the Oracle Text search index when there are
inserts, updates, or deletes to the base table.
These SYNC settings are applicable only to the indexes that are set to manual maintenance.

Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the SYNC methods as described in Table 1-10.
Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions. MANUAL sync is the default synchronization method for Oracle Text search indexes.
The ON COMMIT sync can be run only serially and must use the same memory size that was
specified at index creation.
With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument using
calendaring syntax values. These values are described in Oracle AI Database PL/SQL
Packages and Types Reference.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 84 of 122

Syntax:

SYNC [EVERY "interval-string"] MEMORY mem_size PARALLEL paradegree

Example:

SYNC [EVERY "freq=secondly;interval=20"] MEMORY 500M PARALLEL 2

The following examples create an Oracle Text search index with automatic (EVERY)
synchronization:

• Starting every night at 1:00 A.M.:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(text_document)
 PARAMETERS('SYNC (EVERY "freq=daily; byhour=1")');

• Starting every 5 minutes:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(text_document)
 PARAMETERS('SYNC (EVERY "freq=minutely; interval=5")');

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string)
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY This is the default value.
When you specify OPTIMIZE (AUTO_DAILY) in the
CREATE INDEX PARAMETERS string, the continuously
running optimize token and optimize full jobs are
scheduled.
• The optimize token job is scheduled to run every

midnight from 12 A.M. to 3 A.M. except on Saturday
night, in order to optimize the top 10 most fragmented
tokens. Jobs that are not started before 3 A.M. are
suspended until 12 A.M. the next day. These
suspended jobs are started before the other jobs that
are scheduled to run at 12 A.M. the next day.

• The optimize full job is scheduled to run weekly from
12 A.M. every Saturday night in order to optimize index
tables and clean up $N.

Existing indexes do not have OPTIMIZE (AUTO_DAILY) by
default. You need to use ALTER INDEX to enable automatic
background index optimization.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 85 of 122

OPTIMIZE Type Description

EVERY "interval-
string"

Automatically runs optimize token at a regular interval
specified by the value interval-string, which takes the same
syntax as the scheduler jobs.
Ensure that interval-string is set to a considerable time
period so that the previous optimize jobs are complete;
otherwise, the optimize job might stop responding. interval-
string must be enclosed in double quotes, and any single
quote within interval-string must be preceded by the escape
character with another single quote.

With AUTO_DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

STOPLIST stoplist
Specifies the name of your stoplist. Use stoplist to identify words that are not to be indexed.
See CTX_DDL.CREATE_STOPLIST .
The default for Oracle Text search index is CTXSYS.DEFAULT_STOPLIST.

LEXER lexer_pref
Specifies the name of your lexer or multilexer preference. Use the lexer preference to identify
the language of your text and how text is tokenized for indexing. See "Lexer Types".
The default is CTXSYS.DEFAULT_LEXER.

FILTER filter_pref
Specifies the name of your filter preference. Use the filter preference to specify how to filter
formatted documents to plain text or HTML. See "Filter Types".
The default for binary text columns is NULL_FILTER. The default for other text columns is
AUTO_FILTER.

WORDLIST wordlist_pref
Specifies the name of your word list preference. Use the word list preference to enable
features such as fuzzy, stemming, and prefix indexing for better wild card searching. See
"Wordlist Type".

SECTION GROUP section_group
Specifies the name of your section group. Use section groups to create sections in structured
documents. See "CREATE_SECTION_GROUP" in CTX_DDL Package.
The default value for Oracle Text search index is NULL_SECTION_GROUP.

Syntax for JSON Search Index

CREATE SEARCH INDEX [schema.]index ON [schema.]table(json_column) FOR JSON
[LOCAL ([PARTITION [partition]][, PARTITION [partition]])]
PARAMETERS(
 [DATAGUIDE ON [CHANGE (ADD_VC | function_name)] | OFF]
 [STORAGE storage_pref]
 [SEARCH_ON NONE]
 [SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING)
 [(path_subsetting_clause)]
 [MEMORY memsize]
 [MAINTENANCE AUTO | MAINTENANCE MANUAL]

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 86 of 122

 [SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [OPTIMIZE (MANUAL | EVERY "interval-string" | AUTO_DAILY)]
 [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
 [POPULATE | NOPOPULATE]
 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [LEXER lexer_pref]
 [WORDLIST wordlist_pref]
)
[PARALLEL N]
[UNUSABLE];

If you omit the PARAMETERS clause, then the default values for DATAGUIDE and SEARCH_ON are
OFF and TEXT_VALUE respectively. The default synchronization method is MAINTENANCE AUTO.
Thus, the index is automatically synchronized in the background, and both text and numeric or
date-time ranges are indexed.

Note

• The SECTION GROUP clause is not required for a JSON search index. You use
section groups to define sections in a text column.

• The MULTI_COLUMN_DATASTORE, TRANSACTIONAL, and STOPLIST clauses are not
supported for a JSON search index.

• The ASYNCHRONOUS_UPDATE, SYNCHRONOUS_UPDATE, POPULATE, NOPOPULATE,
DATASTORE, FILTER, LEXER, WORDLIST, PARALLEL, and UNUSABLE parameters are
described in Syntax for CONTEXT Index Type.

[schema.]index
Specifies the name of the JSON search index to create.

[schema.]table(index_column)
Specifies the names of table and column to index. index_column is the name of the column on
which the index is created.
The column must have the JSON data type or an IS JSON check constraint.

LOCAL
Creates a local partitioned JSON search index on a partitioned table. The index is partitioned
using the partitioning scheme of the base table.
You can partition a table using range, list, hash, interval, range-composite (range, list, and
hash), list-composite (range, list, and hash), hash-composite (range, list, and hash), and
automatic-list partitioning schemes. You can create a local JSON search index using
reference partitioning if the base table of the reference partitioned table is partitioned using
any of the supported schemes.

Note

You cannot create a local JSON search index on an interval-composite partitioned
table.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 87 of 122

The following example shows how to create a table that is partitioned into three, populate it,
and then create a partitioned JSON search index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b JSON) PARTITION BY RANGE (a)
(partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

PROMPT create partitioned JSON search index
CREATE SEARCH INDEX part_idx ON part_tab (b)
 FOR JSON LOCAL;

See Also

• Creating a Local Partitioned Index

• System Managed Domain Index - Supported Schemes in Oracle AI Database
Data Cartridge Developer's Guide

DATAGUIDE ON | OFF
Specifies data guide support for a JSON search index. The default behavior is to create a
JSON search index without data guide support. If you enable data guide support, then you can
also define change-trigger procedures.

Note

You use the DATAGUIDE parameter only for JSON search indexes.

Specify one of the following options:

• ON: Enables data guide support. If you set the value of DATAGUIDE to ON, then you can also
define your own PL/SQL procedure or use the predefined change-trigger procedure
ADD_VC.

ADD_VC indicates if virtual columns are created based on the data guide.

function_name specifies the function to be executed when the data guide changes.

• OFF: Disables both the data guide support and change-trigger procedures. Provides only
general search-index functionality.

Note

You cannot create an index with the SEARCH_ON clause set to NONE when the
DATAGUIDE feature is disabled.

See Change Triggers For Data Guide-Enabled Search Index in Oracle Database JSON
Developer's Guide.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 88 of 122

STORAGE storage_pref
Specifies the name of your storage preference for JSON search index. Use the storage
preference to specify how index tables are stored. See Storage Types.

SEARCH_ON NONE
Does not enable any indexing features, which indicates that the tables used for full-text and
range searches are not populated. Only the index data guide is maintained. The index will not
be used by any JSON query operators, including JSON_TEXTCONTAINS.
For example:

CREATE SEARCH INDEX json_idx ON json_tab (jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON NONE DATAGUIDE ON');

SEARCH_ON (TEXT | TEXT_VALUE[(data_types)] | VALUE[(data_types)] |
TEXT_VALUE_STRING) [(path_subsetting_clause)]
Specifies the type of data or attributes to be indexed for efficient searching. You can also
specify a path subsetting clause, as explained in the section that follows.

Note

You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Option Description

TEXT Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.
The index is used for JSON_TEXTCONTAINS predicates and
for JSON_VALUE or JSON_EXISTS predicates that manipulate
strings when using JSON search index.
If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.
Example:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON TEXT');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 89 of 122

Option Description

VALUE[(data_types)] Enables range-search component for the specified data
types.
This allows the index to be picked up for predicates using
relational operators (>, <, ==, >=, <=, !=). A JSON search
index that is created with only SEARCH_ON VALUE cannot
answer full-text queries by using the JSON_TEXTCONTAINS
operator.
Supported data types:
• NUMBER for indexing numeric values.

• TIMESTAMP for indexing date-time values.

• VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables
range-search indexing on all supported data types.

Note

The BINARY_DOUBLE data type
is allowed only for XML search
indexes.

Examples:
• This example specifies the default behavior:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
VALUE');

• These examples explicitly specify data types using the
VALUE(data_types) syntax:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
VALUE(TIMESTAMP)');

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
VALUE(NUMBER,

TIMESTAMP,

VARCHAR2)');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 90 of 122

Option Description

TEXT_VALUE[(data_ty
pes)]

Enables both the full-text and range-search components for
the specified data types.
Supported data types:
• NUMBER for indexing numeric values.

• TIMESTAMP for indexing date-time values.

• VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

If you do not specify any data type, then the index enables
full-text search and range-search indexing on NUMBER and
TIMESTAMP data types.
Examples:
• This example specifies the default behavior:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS('SEARCH_ON
TEXT_VALUE');

• These examples explicitly specify data types using the
TEXT_VALUE(data_types) syntax:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS('SEARCH_ON
TEXT_VALUE(NUMBER)');

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS('SEARCH_ON
TEXT_VALUE(NUMBER,

 TIMESTAMP)');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 122

Option Description

TEXT_VALUE_STRING Indicates that text and range-based indexes are created for
numeric, date-time, and complete string values.
This enables both the full-text and range-search components
on the NUMBER, TIMESTAMP, and VARCHAR2 data types.
String values are indexed as is without tokenization or other
transformations. All the strings that are smaller than or equal
to 237 bytes are indexed.
Example:

CREATE SEARCH INDEX json_idx ON json_tab
(jsondoc)
 FOR JSON PARAMETERS('SEARCH_ON
TEXT_VALUE_STRING');

Note: For range-search queries, instead of
TEXT_VALUE_STRING, Oracle recommends that you use
either the VALUE[(data_types)] or
TEXT_VALUE[(data_types)] option.
Creating an index with TEXT_VALUE(NUMBER, TIMESTAMP,
VARCHAR2) is equivalent to TEXT_VALUE_STRING.

path_subsetting_clause
You can use path subsetting with SEARCH_ON to identify the fields in a document that you
want to include or exclude from indexing. The excluded fields are not indexed, and the JSON
search index is not used for them when querying. Filtering out irrelevant paths from
documents can reduce the amount of data indexed, thereby minimizing disk space and the
index creation or rebuild time.
Syntax for SEARCH_ON with path_subsetting_clause:

SEARCH_ON (
 TEXT | TEXT_VALUE [(data_types)] | VALUE [(data_types)])
 [(INCLUDE | EXCLUDE) '(' paths ')']

Note the following:

• You cannot specify both the INCLUDE and EXCLUDE clauses for a single index.

• You can specify a path subsetting clause with SEARCH_ON TEXT, TEXT_VALUE,
TEXT_VALUE_STRING, and VALUE (not with NONE).

• As an alternative to specifying the INCLUDE or EXCLUDE clause, you can use the PATHLIST
parameter to specify a list of the paths to be included or excluded. You use PL/SQL
subprograms CTX_DDL.CREATE_PATH_LIST and CTX_DDL.ADD_PATH to specify the list of the
paths. See CREATE_PATH_LIST.

Specifying any SEARCH_ON clause while there is also a PATHLIST parameter results in an
error. Similarly, you cannot specify a PATHLIST parameter for an index that has the
Dataguide feature enabled.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 92 of 122

Option Path Subsetting Example

TEXT • This example creates a JSON search index with path
subsetting for full-text and string-equality searches. It
indexes only the fields located at
paths $.SpecialInstructions
and $.LineItems.Part.Description of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
 TEXT INCLUDE ($.SpecialInstructions,
 $.LineItems.Part.Descri
ption)');

• This example creates a JSON search index with path
subsetting for full-text and string-equality searches. It
excludes the field located at path $.User of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
 TEXT EXCLUDE ($.User');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 93 of 122

Option Path Subsetting Example

VALUE[(data_types)] • This example creates a JSON search index with path
subsetting for full-text and string-equality searches of
fields $.SpecialInstructions
and $.LineItems.Part.Description of a purchase
order document. But it also indexes fields $.PONumber
and $.LineItems.Part.UnitPrice for numeric-value
ranges, and
fields $.Reference, $.User, $.ShippingInstructi
ons.name,
and $.ShippingInstructions.Address.zipCode
for string-value ranges.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
 TEXT INCLUDE
($.SpecialInstructions, $.LineItems.Part.
Description)
 VALUE(NUMBER) INCLUDE
($.PONumber, $.LineItems.Part.UnitPrice)
 VALUE(VARCHAR2) INCLUDE
($.Reference,
 $.User,
 $.ShippingIn
structions.name,
 $.ShippingIn
structions.Address.zipCode)');

Alternatively, you can create the same index using the
PATHLIST parameter, whose value is a named list of the
paths to be included, created using PL/SQL
subprograms CTX_DDL.create_path_list and
CTX_DDL.add_path, as follows:

BEGIN
 CTX_DDL.create_path_list('json_pl',
CTX_DDL.PATHLIST_JSON,
CTX_DDL.PATHLIST_INCLUDE);
 CTX_DDL.add_path('json_pl',
'TEXT', '$.SpecialInstructions');
 CTX_DDL.add_path('json_pl',
'TEXT',
'$.LineItems.Part.Description');
 CTX_DDL.add_path('json_pl',
'NUMBER', '$.PONumber');
 CTX_DDL.add_path('json_pl',
'NUMBER',
'$.LineItems.Part.UnitPrice');
 CTX_DDL.add_path('json_pl',
'VARCHAR2', '$.Reference');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 94 of 122

Option Path Subsetting Example

 CTX_DDL.add_path('json_pl',
'VARCHAR2', '$.User');
 CTX_DDL.add_path('json_pl',
'VARCHAR2',
'$.ShippingInstructions.name');
 CTX_DDL.add_path('json_pl',
'VARCHAR2',
'$.ShippingInstructions.Address.zipCode')
;
END;
/
CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('PATHLIST
json_pl');

• This example creates a JSON search index with path
subsetting for numeric-value ranges, where it excludes
the field located at path $.PONumber of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
 VALUE(NUMBER) EXCLUDE ($.PONumber)');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 95 of 122

Option Path Subsetting Example

TEXT_VALUE[(data_ty
pes)]

• This example creates a JSON search index with path
subsetting for full-text and string-equality searches of
fields $."FieldWithNoQuote"
and $."FieldWith\"Quote\"" of a purchase order
document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH ON
 TEXT_VALUE INCLUDE
($."FieldWithNoQuote", $."FieldWith\"Quot
e\"")');

Alternatively, you can create the same index using the
PATHLIST parameter, whose value is a named list of the
paths to be included, created using PL/SQL
subprograms CTX_DDL.create_path_list and
CTX_DDL.add_path, as follows:

BEGIN
 CTX_DDL.create_path_list('json_pl',
CTX_DDL.PATHLIST_JSON,
CTX_DDL.PATHLIST_INCLUDE);
 CTX_DDL.add_path('json_pl',
'TEXT', '$.SpecialInstructions');
 CTX_DDL.add_path('json_pl',
'TEXT',
'$.LineItems.Part.Description');
 CTX_DDL.add_path('json_pl',
'NUMBER', '$.PONumber');
 CTX_DDL.add_path('json_pl',
'NUMBER',
'$.LineItems.Part.UnitPrice');
 CTX_DDL.add_path('json_pl',
'VARCHAR2', '$.Reference');
 CTX_DDL.add_path('json_pl',
'VARCHAR2', '$.User');
 CTX_DDL.add_path('json_pl',
'VARCHAR2',
'$.ShippingInstructions.name');
 CTX_DDL.add_path('json_pl',
'VARCHAR2',
'$.ShippingInstructions.Address.zipCode')
;
END;
/
CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('PATHLIST
json_pl');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 96 of 122

Option Path Subsetting Example

• This example creates a JSON search index with path
subsetting for numeric-value ranges, where it excludes
the field located at path $.PONumber of a purchase
order document.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
 TEXT_VALUE(NUMBER) EXCLUDE
($.PONumber)');

TEXT_VALUE_STRING This example creates a JSON search index with path
subsetting, where the paths are indexed according to the
available data types. For example, if the contents of the
field $.PONumber is 145980, then 145980 is indexed as a
token for full-text search, as a numeric value (145980) for
numeric range search, and as a string ("145980") for string
range search.

CREATE SEARCH INDEX json_idx ON json_tab
(purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
 TEXT_VALUE_STRING INCLUDE
($.SpecialInstructions,
 $.LineItems.Pa
rt.Description,
 $.PONumber, $.
LineItems.Part.UnitPrice,
 $.Reference,
 $.User,
 $.ShippingInst
ructions.name,
 $.ShippingInst
ructions.Address.zipCode)');

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = number[K|M|G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.
The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.
The default for JSON search index is the value specified for DEFAULT_INDEX_MEMORY in
CTX_PARAMETERS.
The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 97 of 122

because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.
Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

MAINTENANCE AUTO | MAINTENANCE MANUAL
Specifies the maintenance type for synchronization of the JSON search index when there are
inserts, updates, or deletes to the base table. The maintenance type specified for an index
applies to all index partitions.
You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC.INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions to follow in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies the SYNC type for synchronization of the JSON search index when there are inserts,
updates, or deletes to the base table.
These SYNC settings are applicable only to the indexes that are set to manual maintenance.

Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the SYNC methods as described in Table 1-10.
Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions. ON COMMIT sync is the default synchronization method for JSON search indexes.
The ON COMMIT sync can be run only serially and must use the same memory size that was
specified at index creation.
With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument using

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 98 of 122

calendaring syntax values. These values are described in Oracle AI Database PL/SQL
Packages and Types Reference.
Syntax:

SYNC [EVERY "interval-string"] MEMORY mem_size PARALLEL paradegree

Example:

SYNC [EVERY "freq=secondly;interval=20"] MEMORY 500M PARALLEL 2

The following examples create a JSON search index with automatic (EVERY) synchronization:

• Starting every night at 1:00 A.M.:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(json_document)
 FOR JSON PARAMETERS('SYNC (EVERY "freq=daily; byhour=1")');

• Starting every 5 minutes:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(json_document)
 FOR JSON PARAMETERS('SYNC (EVERY "freq=minutely; interval=5")');

OPTIMIZE
Specify OPTIMIZE to enable automatic background index optimization. You can specify any of
the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL This is the default value.
Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the
CREATE INDEX PARAMETERS string, the continuously
running optimize TOKEN_TYPE and optimize full jobs are
scheduled as follows:
• The optimize TOKEN_TYPE job is scheduled to run

every midnight from 12 A.M. to 3 A.M., except on
Saturday nights, to optimize SDATA sections in the
index. Jobs that are not started before 3 A.M. are
suspended until 12 A.M. the next day. These
suspended jobs are started before the other jobs that
are scheduled to run at 12 A.M. the next day.

• The optimize full job is scheduled to run weekly from
12 A.M. every Saturday night to optimize index tables
and clean up $N.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 99 of 122

OPTIMIZE Type Description

EVERY "interval-
string"

Automatically runs the optimize TOKEN_TYPE job at a
regular interval specified by the value interval-string, which
takes the same syntax as scheduler jobs.
Ensure that interval-string is set to a considerable time
period so that the previous optimize jobs are complete;
otherwise, the optimize job might stop responding. interval-
string must be enclosed in double quotes, and any single
quote within interval-string must be preceded by the escape
character with another single quote.

With AUTO_DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

Syntax for XML Search Index

Starting with Oracle AI Database 26ai, the XML search index provides a simplified syntax for
creating XML-enabled indexes. You can create indexes on XML documents that are stored
inside an XMLType column or table. This enables you to run textual, path-aware, and range-
search queries over XML documents.

CREATE SEARCH INDEX [schema.]index ON [schema.]table(xml_column)
FOR XML
[LOCAL]
PARAMETERS(
 [SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE(data_types))]
 [STORAGE storage_pref]
 [PREFIX_NS (prefix_ns_mapping)]
 [MEMORY memsize]
 [MAINTENANCE AUTO | MAINTENANCE MANUAL]
 [SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [OPTIMIZE (MANUAL | EVERY "interval-string" | AUTO_DAILY)]
)
[PARALLEL N]
[UNUSABLE];

[schema.]index
Specifies the name of the XML search index to create.

[schema.]table(index_column)
Specifies the names of table and column to index. index_column is the name of the column on
which the index is created.
You can create the index only on an XMLType column that stores documents using the
TRANSPORTABLE BINARY XML (TBX) storage option.

LOCAL
Creates a local partitioned XML search index on a partitioned table. The index is partitioned
using the partitioning scheme of the base table.
You can partition a table using range, list, hash, interval, range-composite (range, list, and
hash), list-composite (range, list, and hash), hash-composite (range, list, and hash), and
automatic-list partitioning schemes. You can create a local XML search index using reference

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 100 of 122

partitioning if the base table of the reference partitioned table is partitioned using any of the
supported schemes.

Note

You cannot create a local XML search index on an interval-composite partitioned
table.

The following example shows how to create a table that is partitioned into three, populate it,
and then create a partitioned XML search index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b SYS.XMLType) XMLTYPE b STORE AS
 TRANSPORTABLE BINARY XML PARTITION BY RANGE (a)
 (partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

PROMPT create partitioned XML search index
CREATE SEARCH INDEX part_idx ON part_tab (b)
 FOR XML PARAMETERS ('SEARCH_ON TEXT') LOCAL;

STORAGE storage_pref
Specifies the name of your storage preference for XML search index. Use the storage
preference to specify how index tables are stored. See "Storage Types".
If you do not specify a storage preference, then the default storage preference
(CTXSYS.XQFT_MEDIUM) is used.

SEARCH_ON (TEXT | TEXT_VALUE(data_types) | VALUE(data_types))
Specifies the type of data or attributes to be indexed for efficient searching.

Note

You can use the SEARCH_ON clause only for JSON and XML search indexes.

You can specify one of the following SEARCH_ON options:

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 101 of 122

Option Description

TEXT Enables full-text search component, which indicates that
only textual data is indexed for full-text search queries. This
also includes queries that rely on path information.
The index is used for XMLEXISTS predicates that references
the XQuery Full Text operators and clauses.
If your queries involve only full-text search and not string-
range search or numeric search, then you can save some
index maintenance time and disk space by specifying this
option.
For example:

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)
 FOR XML PARAMETERS ('SEARCH_ON TEXT');

VALUE(data_types) Enables range-search component for the specified data
types.
This allows the index to be picked up for predicates using
relational operators (>, <, ==, >=, <=, !=). An XML search
index that only has the SEARCH_ON VALUE component
enabled cannot answer full-text queries, if XQuery Full Text
operators are present in an XMLEXISTS predicate.
You must specify one or more data types:
• BINARY_DOUBLE and NUMBER for indexing numeric

values.

• TIMESTAMP for indexing date-time values.

• VARCHAR2 for indexing complete string values. The
string values are indexed as is without tokenization or
other transformations. All the strings that are smaller
than or equal to 237 bytes are indexed.

For example:

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)
 FOR XML PARAMETERS ('SEARCH_ON
VALUE(NUMBER)');

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)
 FOR XML PARAMETERS ('SEARCH_ON
VALUE(BINARY_DOUBLE,

NUMBER,

TIMESTAMP,

VARCHAR2)');

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 102 of 122

Option Description

TEXT_VALUE(data_typ
es)

Enables both the full-text and range-search components for
the specified data types. For range-search queries, you must
specify one or more data types, such as NUMBER (for
indexing numeric values) and TIMESTAMP (for indexing date-
time values).
For example:

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)
 FOR XML PARAMETERS('SEARCH_ON
TEXT_VALUE(TIMESTAMP)');

CREATE SEARCH INDEX ex_xml_idx ON ex_tab
(xmldoc)
 FOR XML PARAMETERS('SEARCH_ON
TEXT_VALUE(NUMBER,

TIMESTAMP)');

Note

You cannot use SEARCH_ON NONE and SEARCH_ON TEXT_VALUE_STRING for an XML
search index.
You must explicitly specify a data type with the TEXT_VALUE and VALUE options for an
XML search index, otherwise the statement will result in an error.

PREFIX_NS (prefix_ns_mapping)
Specifies prefix-namespace mapping for an XML search index.
An XMLExists query can include XML namespace declarations. While creating the search
index, you can separately store qualified names belonging to different XML namespaces.
A prefix-namespace mapping uses this syntax:

xmlns:local_name="URI_string"

xmlns is the default XML namespace declaration attribute. The URI_string value is not
mandatory. You can provide an empty string enclosed in double quotation marks. You can also
specify a qualified-name with the xmlns prefix. If you do not specify a prefix-namespace
mapping, then xmlns is used.
For example:

PREFIX_NS (xmlns="example.com" xmlns:pfx="www.example1.com"
xmlns:pfx2="example2.com"));

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 103 of 122

Note

You use the PREFIX_NS clause only for XML search indexes.
You cannot use ALTER INDEX to modify a prefix-namespace mapping specification.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = number[K|M|G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.
The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.
The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.
Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

MAINTENANCE AUTO | MAINTENANCE MANUAL
Specifies the maintenance type for synchronization of the XML search index when there are
inserts, updates, or deletes to the base table. The maintenance type specified for an index
applies to all index partitions.
You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This is the default method for synchronizing Oracle Text
CONTEXT and search indexes.
This method sets your index to automatic maintenance, that
is, the index is automatically synchronized in the
background at optimal intervals.
You do not need to manually configure a SYNC type or set
any synchronization interval. The background mechanism
automatically determines the synchronization interval and
schedules background SYNC.INDEX operations by tracking
the DML queue.
Note: Shadow indexes do not support automatic
maintenance. For a complete list of requirements and
restrictions to follow in an automatic maintenance mode,
see Oracle Text Application Developer's Guide.

MAINTENANCE MANUAL This method sets your index to manual maintenance. This
is a non-automatic maintenance (synchronization) mode in
which you can specify SYNC types, such as MANUAL, EVERY,
or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies the SYNC method for synchronization of the XML search index when there are
inserts, updates, or deletes to the base table.
These SYNC settings are applicable only to the indexes that are set to manual maintenance.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 104 of 122

Note

By default, the CONTEXT and search indexes run in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically synchronized
into the index in the background at optimal intervals. Therefore, you do not need to
manually configure a SYNC method. However, if required, you can do so if you want to
modify the default settings for an index.

You can specify one of the SYNC methods as described in Table 1-10.
Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions. ON COMMIT is the default synchronization method for XML search indexes. The ON
COMMIT sync can be run only serially and must use the same memory size that was specified
at index creation.
With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument using
calendaring syntax values. These values are described in Oracle AI Database PL/SQL
Packages and Types Reference.
Syntax:

SYNC [EVERY "interval-string"] MEMORY mem_size PARALLEL paradegree

Example:

SYNC [EVERY "freq=secondly;interval=20"] MEMORY 500M PARALLEL 2

The following examples create an XML search index with automatic (EVERY) synchronization:

• Starting every night at 1:00 A.M.:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(xml_document)
 FOR XML PARAMETERS('SYNC (EVERY "freq=daily; byhour=1")');

• Starting every 5 minutes:

CREATE SEARCH INDEX nightly_refreshed ON purchase_orders(xml_document)
 FOR XML PARAMETERS('SYNC (EVERY "freq=minutely; interval=5")');

OPTIMIZE
Specify OPTIMIZE to enable automatic background index optimization. You can specify one of
the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL This is the default value.
Provides no automatic optimization. You must manually
optimize the index with CTX_DDL.OPTIMIZE_INDEX.

Chapter 1
CREATE SEARCH INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 105 of 122

OPTIMIZE Type Description

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the
CREATE INDEX PARAMETERS string, the continuously
running optimize TOKEN_TYPE and optimize full jobs are
scheduled as follows:
• The optimize TOKEN_TYPE job is scheduled to run

every midnight from 12 A.M. to 3 A.M., except on
Saturday nights, to optimize SDATA sections in the
index. Jobs that are not started before 3 A.M. are
suspended until 12 A.M. the next day. These
suspended jobs are started before the other jobs that
are scheduled to run at 12 A.M. the next day.

• The optimize full job is scheduled to run weekly from
12 A.M. every Saturday night to optimize index tables
and clean up $N.

EVERY "interval-
string"

Automatically runs the optimize TOKEN_TYPE job at a
regular interval specified by the value interval-string, which
takes the same syntax as scheduler jobs.
Ensure that interval-string is set to a considerable time
period so that the previous optimize jobs are complete;
otherwise, the optimize job might stop responding. interval-
string must be enclosed in double quotes, and any single
quote within interval-string must be preceded by the escape
character with another single quote.

With AUTO_DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

... [AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

Related Topics

• Oracle AI Database Administrator’s Guide

• Oracle AI Database JSON Developer’s Guide

1.7 CREATE HYBRID VECTOR INDEX
Use the CREATE HYBRID VECTOR INDEX SQL statement to create a hybrid vector index, which
allows you to index and query documents using a combination of full-text search and vector
similarity search.

Purpose

To create a class of specialized Domain Index called a hybrid vector index.

A hybrid vector index is an Oracle Text SEARCH INDEX type that combines the existing Oracle
Text indexing data structures and vector indexing data structures into one unified structure. It is
a single domain index that stores both text fields and vector fields for a document. Both text
search and similarity search are performed on tokenized terms and vectors respectively. The
two search results are combined and scored to return a unified result set.

The purpose of a hybrid vector index is to enhance search relevance of an Oracle Text index
by allowing users to search by both vectors and keywords. By integrating traditional keyword-

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 106 of 122

based text search with vector-based similarity search, you can improve the overall search
experience and provide users with more accurate information.

Usage Notes

To create a hybrid vector index, you can provide minimal information such as:

• table or column on which you want to create the index

• in-database ONNX embedding model for generating embeddings

For cases where multiple columns or tables need to be indexed together, you can specify the
MULTI_COLUMN_DATASTORE or USER_DATASTORE preference.

All other indexing parameters are predefined to facilitate the indexing of documents without
requiring you to be an expert in any text processing, chunking, or embedding strategies. If
required, you can modify the predefined parameters using:

• Vector search preferences for the vector index part of the index

• Text search preferences for the text index part of the index

• Index maintenance preferences for DML operations on the combined index

For detailed information on the creation process of a hybrid vector index or in general about
what hybrid vector indexes are, see Understand Hybrid Vector Indexes.

Note

There are some key points to note when creating and using hybrid vector indexes.
See Guidelines and Restrictions for Hybrid Vector Indexes.

Syntax

CREATE HYBRID VECTOR INDEX [schema.]index_name ON
 [schema.]table_name(column_name)
 [FILTER BY filter_column[, filter_column]...]
 [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]
 PARAMETERS ('paramstring')
 [LOCAL [PARTITION [partition]][, PARTITION [partition]]]
 [PARALLEL n];

Here is an example DDL specified with only the minimum required parameters.

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 PARAMETERS('MODEL my_embed_model');

Setting an explicit memory and parallel degree is highly recommended as the default memory
is low and the index will take longer to create.

Here is an example DDL which specifies the memory and the parallel degree.

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 PARAMETERS('MODEL my_embed_model MEMORY 1G') PARALLEL 4;

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 107 of 122

Note

The total PGA memory used will be the value of the MEMORY parameter multiplied by
the PARALLEL degree. In this example, the total PGA memory used would be 1G * 4 =
4GB. This means that up to 4GB of PGA memory can be used by the hybrid vector
index.

More comprehensive examples are given at the end of this section.

Let us explore all the required and optional indexing parameters:

[schema.]index_name
Specify the name of the hybrid vector index to create.

[schema.]table_name(column_name)
Specify the name of the table and column on which you want to create the hybrid vector index.
You can create a hybrid vector index on one or more text columns with VARCHAR2, CLOB, and
BLOB data types.

Note

You cannot create hybrid vector indexes on a text column that uses the IS JSON
check constraint.

Because the system can index most document formats, including HTML, PDF, Microsoft
Word, and plain text, you can load a supported type into the text column. For a complete list,
see Supported Document Formats.
For cases where multiple columns or tables need to be indexed together, specify a datastore
preference (described later in Text search preferences).

PARAMETERS (paramstring)
Specify preferences in paramstring:

• Vector Search Preferences:

Configures the "vector index" part of a hybrid vector index, pertaining to processing input
for vector search.

Note

You can either pass a minimal set of parameters (the required MODEL and the
optional VECTOR_IDXTYPE parameters) directly in the PARAMETERS clause or use a
vectorizer preference to specify a complete set of vector search parameters. You
cannot use both (directly set parameters along with vectorizer) in the PARAMETERS
clause.

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 108 of 122

– With MODEL and VECTOR_IDXTYPE directly specified:

CREATE HYBRID VECTOR INDEX [schema.]index_name ON
 [schema.]table_name(column_name)
 PARAMETERS ('MODEL <model_name>
 [VECTOR_IDXTYPE <vector_index_type>]')
 [FILTER BY filter_column[, filter_column]...]
 [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]
 [PARALLEL n];

Here, MODEL specifies the vector embedding model that you import into the database
for generating vector embeddings on your input data.

Note

Currently, only ONNX in-database embedding models are supported.

VECTOR_IDXTYPE specifies the type of vector index to create, such as IVF (default) for
the Inverted File Flat (IVF) vector index and HNSW for the Hierarchical Navigable Small
World (HNSW) vector index. If you omit this parameter, then the IVF vector index is
created by default.

Creating a LOCAL index on an Hybrid Vector Index is supported when the underlying
index_type is IVF. An example is shown below:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
doc_table(text_column)
parameters('MODEL my_doc_model
 VECTOR_IDXTYPE IVF')
LOCAL PARALLEL;

Caution

Creating a LOCAL index on Hybrid Vector Index when the underlying
index_type is HNSW, would throw an error before starting any document
processing (early failure).

– With the vectorizer preference:

A vectorizer preference is a JSON object that collectively holds all indexing
parameters related to chunking (UTL_TO_CHUNKS or VECTOR_CHUNKS), embedding
(UTL_TO_EMBEDDING, UTL_TO_EMBEDDINGS, or VECTOR_EMBEDDING), and vector index
(distance, accuracy, or vector_idxtype).

You use the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE PL/SQL function to create a
vectorizer preference. To create a vectorizer preference, see
DBMS_VECTOR_CHAIN.CREATE_PREFERENCE.

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 109 of 122

After creating a vectorizer preference, you can use the VECTORIZER parameter to pass
the preference name here. For example:

begin
 DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
 'my_vectorizer_pref',
 dbms_vector_chain.vectorizer,
 json('{
 "vector_idxtype": "hnsw",
 "model" : "my_doc_model",
 "by" : "words",
 "max" : 100,
 "overlap" : 10,
 "split" : "recursively"
 }'
));
end;
/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 parameters('VECTORIZER my_vectorizer_pref');

A vectorizer preference with externally hosted vector embedding models:

DBMS_VECTOR_CHAIN.CREATE_PREFERENCE also lets you use vector embedding models
hosted externally in Oracle Private AI containers, third-party services like Open AI and
Google, or other external services, rather than importing them into the database.
Currently, it lacks support for secure (HTTPS) connections to the Oracle Private AI
container. Only unencrypted HTTP connections to the Oracle Private AI container are
supported at this time.

After creating a vectorizer preference with externally hosted vector embedding model ,
you can use the VECTORIZER parameter to pass the preference name here. For
example:

begin
 dbms_vector_chain.create_preference('hvi_pref_restapi',
 DBMS_VECTOR_CHAIN.VECTORIZER,
 json('{
 "embedder_spec":
 {
 "provider": "oracleai",
 "url": "http://myhost.us.example.com:9091/omlmodels/
all_mini_l12/score",
 "host": "local",
 "model": "all_minilm_l12"
 }
 }'));
end;
/

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 110 of 122

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 parameters('VECTORIZER hvi_pref_restapi');

• Text Search Preferences:

Configures the "Oracle Text index" part of a hybrid vector index, pertaining to processing
input for keyword search.

These parameters define the text processing and tokenization stages of a hybrid vector
indexing pipeline. All these are the same set of parameters that you provide when working
with Oracle Text indexes alone.

[DATASTORE datastore_pref]
[STORAGE storage_pref]
[MEMORY memsize]
[STOPLIST stoplist]
[LEXER lexer_pref]
[FILTER filter_pref]
[WORDLIST wordlist_pref]
[SECTION GROUP section_group]

DATASTORE datastore_pref
Specify the name of your datastore preference. Use the datastore preference to
specify the local or remote location where your source files are stored.

If you want to index multiple columns or tables together, see
MULTI_COLUMN_DATASTORE and USER_DATASTORE.

For a complete list of all datastore preferences, see Datastore Types.

Default: DIRECT_DATASTORE

STORAGE storage_pref
Specify the name of your storage preference for an Oracle Text search index. Use the
storage preference to specify how the index tables are stored. See Storage Types.

MEMORY memsize
Specify the amount of run-time memory to use for indexing.

memsize = number[K|M|G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.

The value you specify for memsize must be between 1M and the value of
MAX_INDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger than
the MAX_INDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_PARAMETER to
be larger than or equal to memsize. See CTX_ADM.SET_PARAMETER.

The default for Oracle Text search index is 500 MB.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing
before flushing the index to disk. Specifying a large amount memory improves

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 111 of 122

indexing performance because there are fewer I/O operations and improves query
performance and maintenance, because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

STOPLIST stoplist
Specify the name of your stoplist. Use stoplist to identify words that are not to be
indexed. See CTX_DDL.CREATE_STOPLIST.

Default: CTXSYS.DEFAULT_STOPLIST

LEXER lexer_pref
Specify the name of your lexer or multilexer preference. Use the lexer preference to
identify the language of your text and how text is tokenized for indexing. See Lexer
Types.

Default: CTXSYS.DEFAULT_LEXER

FILTER filter_pref
Specify the name of your filter preference. Use the filter preference to specify how to
filter formatted documents to plain text. See Filter Types.

The default for binary text columns is NULL_FILTER. The default for other text columns
is AUTO_FILTER.

WORDLIST wordlist_pref
Specify the name of your wordlist preference. Use the wordlist preference to enable
features such as fuzzy, stemming, and prefix indexing for better wildcard searching.
See Wordlist Type.

SECTION GROUP section_group
Specify the name of your section group. Use section groups to create sections in
structured documents. See CTX_DDL.CREATE_SECTION_GROUP.

Default: NULL_SECTION_GROUP

• Index Maintenance Preferences:

Configures the DML operations on the entire hybrid vector index, that is, how to
synchronize and optimize the index.

Because a hybrid vector index is basically an Oracle Text search index type, so all
maintenance-specific capabilities of an Oracle Text index are applicable.

[MAINTENANCE AUTO | MAINTENANCE MANUAL]
[SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]

MAINTENANCE AUTO | MAINTENANCE MANUAL
Specify the maintenance type for synchronization of a hybrid vector index when there
are inserts, updates, or deletes to the base table. The maintenance type specified for
an index applies to all index partitions.

You can specify one of the following maintenance types:

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 112 of 122

Maintenance Type Description

MAINTENANCE AUTO This method sets your index to automatic
maintenance, that is, the index is automatically
synchronized in the background at optimal intervals.
You do not need to manually configure a SYNC type
or set any synchronization interval. The background
mechanism automatically determines the
synchronization interval and schedules background
SYNC.INDEX operations by tracking the DML queue.

MAINTENANCE
MANUAL

This method sets your index to manual maintenance.
This is a non-automatic maintenance
(synchronization) mode in which you can specify
SYNC types, such as MANUAL, EVERY, or ON COMMIT.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specify the SYNC type for synchronization of a hybrid vector index when there are
inserts, updates, or deletes to the base table. These SYNC settings are applicable only
to the indexes that are set to manual maintenance.

Note

By default, a hybrid vector index runs in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically
synchronized into the index in the background at optimal intervals. Therefore,
you do not need to manually configure a SYNC type for maintaining a hybrid
vector index. However, if required, you can do so if you want to modify the
default settings for an index.

You can specify one of the SYNC methods:

SYNC Type Description

MANUAL With this method, automatic synchronization is not
provided. You must manually synchronize the index
using CTX_DDL.SYNC_INDEX.

EVERY interval-string Automatically synchronize the index at a regular
interval specified by the value of interval-string, which
takes the same syntax as that for scheduler jobs.
Automatic synchronization using EVERY requires that
the index creator have CREATE JOB privileges.
Ensure that interval-string is set to a considerable
time period so that any previous synchronization jobs
will have completed. Otherwise, the synchronization
job may stop responding. The interval-string
argument must be enclosed in double quotation
marks ('' '').

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 113 of 122

SYNC Type Description

ON COMMIT Synchronize the index immediately after a commit.
The commit does not return until the sync is
complete.
The operation uses the memory specified with the
memory parameter.
This sync type works best when the STAGE_ITAB
index option is enabled, otherwise it causes
significant fragmentation of the main index, requiring
frequent OPTIMIZE calls.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument
using calendaring syntax values. These values are described in Oracle AI Database
PL/SQL Packages and Types Reference.

Syntax:

SYNC [EVERY "interval-string"] MEMORY mem_size PARALLEL paradegree

For example, to sync the index at an interval of 20 seconds:

SYNC [EVERY "freq=secondly;interval=20"] MEMORY 500M PARALLEL 2

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string)
Specify OPTIMIZE to enable automatic background index optimization of a hybrid
vector index. You can specify any one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must
manually optimize the index with
CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY This is the default setting. With OPTIMIZE
(AUTO_DAILY), the optimize FULL job is scheduled
to run midnight from 12 A.M. local time everyday.

EVERY "interval-
string"

Automatically runs optimize token at a regular
interval specified by the value interval-string, which
takes the same syntax as the scheduler jobs.
Ensure that interval-string is set to a considerable
time period so that the previous optimize jobs are
complete; otherwise, the optimize job might stop
responding. interval-string must be enclosed in
double quotes, and any single quote within interval-
string must be preceded by the escape character
with another single quote.

With AUTO_DAILY | EVERY "interval-string" setting, you can specify parallel
optimization.

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 114 of 122

Syntax:

OPTIMIZE [AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

For example, to optimize the index at an interval of 20 minutes:

OPTIMIZE [EVERY "freq=minutely;interval=20"] PARALLEL 2

FILTER BY filter_column
Specify the structured indexed column on which a range or equality predicate in the WHERE
clause of a mixed query will operate. You can specify one or more structured columns for
filter_column, on which the relational predicates are expected to be specified along with the
CONTAINS() predicate in a query.

• You can use these relational operators:

<, <=, =, >=, >, between, and LIKE (for VARCHAR2)

• These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally,
CHAR, VARCHAR2 and VARCHAR2 types are supported only if the maximum length is specified
and does not exceed 249 bytes.

If the maximum length of a CHAR or VARCHAR2 column is specified in characters, for
example, VARCHAR2 (50 CHAR), then it cannot exceed FLOOR (249/max_char_width), where
max_char_width is the maximum width of any character in the database character set.

For example, the maximum specified column length cannot exceed 62 characters, if the
database character set is AL32UTF8. The ADT attributes of supported types (CHAR, NUMBER,
DATE, VARCHAR2, or RAW) are also allowed.

An error is raised for all other data types. Expressions, for example, func(cola), and
virtual columns are not allowed.

• txt_column is allowed in the FILTER BY column list.

• DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column[desc|asc]
Specify one or more structured indexed columns by which you want to sort query results.
You can specify a list of structured oby_columns. These columns can only be of CHAR, NUMBER,
DATE, VARCHAR2, or RAW type. VARCHAR2 and RAW columns longer than 249 bytes are truncated to
the first 249 bytes. Expressions, for example func(cola), and virtual columns are not allowed.
The order of the specified columns matters. The ORDER BY clause in a query can contain:

• The entire ordered ORDER BY columns

• Only the prefix of the ordered ORDER BY columns

• The score followed by the prefix of the ordered ORDER BY columns

DESC sorts the results in a descending order (from highest to lowest), while ASC (default) sorts
the results in an ascending order (from lowest to highest).

[PARALLEL n]
Parallel indexing can improve index performance when you have multiple CPUs. To create an
index in parallel, use the PARALLEL clause with a parallel degree.
Optionally specifies the parallel degree for parallel indexing. The actual degree of parallelism
might be smaller depending on your resources. You can use this parameter on nonpartitioned
tables. However, creating a nonpartitioned index in parallel does not turn on parallel query
processing. Parallel indexing is supported for creating a local partitioned index.

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 115 of 122

The indexing memory size specified in the parameter clause applies to each parallel worker.
For example, if indexing memory size is specified in the parameter clause as 500M and
parallel degree is specified as 2, then you must ensure that there is at least 1GB of memory
available for indexing.

Examples

• With vector search preferences directly specified:

In this example, only the required parameter model is specified in the PARAMETERS clause:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 parameters('MODEL my_doc_model');

In this example, both the parameters model and vector_idxtype are specified:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 parameters('MODEL my_doc_model
 VECTOR_IDXTYPE HNSW');

• With vector search preferences specified using VECTORIZER:

In this example, the vectorizer parameter is used in the PARAMETERS clause to specify the
my_vectorizer_spec preference:

begin
 DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
 'my_vectorizer_spec',
 dbms_vector_chain.vectorizer,
 json('{"vector_idxtype" : "hnsw",
 "model" : "my_doc_model",
 "by" : "words",
 "max" : 100,
 "overlap" : 10,
 "split" : "recursively"}'));
end;
/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 parameters('VECTORIZER my_vectorizer_spec');

• With text search and vector search preferences directly specified:

In this example, only the required Vector Search parameter MODEL is specified in the
PARAMETERS clause. Text Search parameters are also specified:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 parameters('MODEL my_doc_model
 DATASTORE my_datastore
 STORAGE my_storage
 STOPLIST my_stoplist

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 116 of 122

 LEXER my_lexer')
 ORDER BY docid asc;

• With text search and index maintenance preferences directly specified and vector
search preferences specified using VECTORIZER:

In this example, the VECTORIZER parameter is used to specify the my_vectorizer_spec
preference that holds vector search parameters. All the Text Search and Index
Maintenance preferences are directly specified.

begin
 DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
 'my_vectorizer_spec',
 dbms_vector_chain.vectorizer,
 json('{
 "vector_idxtype" : "hnsw",
 "model" : "my_doc_model",
 "by" : "words",
 "max" : 100,
 "overlap" : 10,
 "split" : "recursively"
 }'
));
end;
/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
 doc_table(text_column)
 parameters('VECTORIZER my_vectorizer_spec
 DATASTORE my_datastore
 STORAGE my_storage
 MEMORY 128M
 MAINTENANCE AUTO
 OPTIMIZE AUTO_DAILY
 STOPLIST my_stoplist
 LEXER my_lexer
 FILTER my_filter
 WORDLIST my_wordlist
 SECTION GROUP my_section_group')
 FILTER BY category, author
 ORDER BY score(10), score(20) desc
 PARALLEL 3;

Related Topics

• Perform Hybrid Search

• Query Hybrid Vector Indexes End-to-End Example

Chapter 1
CREATE HYBRID VECTOR INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 117 of 122

1.8 DROP INDEX

Note

This section describes the DROP INDEX statement as it pertains to dropping a Text
domain index.

For a complete description of the DROP INDEX statement, see Oracle Database SQL
Language Reference.

Purpose

Use DROP INDEX to drop a specified Text index.

Syntax

DROP INDEX [schema.]index [force];

[force]
Optionally forces the index to be dropped. Use the force option when Oracle Text cannot
determine the state of the index, such as when an indexing operation fails.
Oracle recommends against using this option by default. Use it only when a regular call to
DROP INDEX fails.

Example

The following example drops an index named doc_index in the current user's database
schema:

DROP INDEX doc_index;

Related Topics

"ALTER INDEX "

"CREATE INDEX"

1.9 MATCHES
Use the MATCHES operator to find all rows in a query table that match a given document. The
document must be a plain text, HTML, or XML document.

The MATCHES operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER classifier type is used, MATCHES returns a score in the range 0 to
100; a higher number indicates a greater confidence in the match. Use the label parameter
and MATCH_SCORE to obtain this number. Then use the matching score to apply a category-
specific threshold to a particular category.

Chapter 1
DROP INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 118 of 122

If the SVM_CLASSIFIER type is not used, then this operator returns either 100 (the document
matches the criteria) or 0 (the document does not match).

Limitation

If the optimizer chooses to use the functional query invocation with a MATCHES query, your
query will fail.

Syntax

MATCHES(

[schema.]column,
document VARCHAR2 or CLOB
[,label INTEGER])

RETURN NUMBER;

column
Specifies the column containing the indexed query set.

document
Specifies the document to be classified. The document can be plain text, HTML, or XML.
Binary formats are not supported.

label
Optionally specifies the label that identifies the score generated by the MATCHES operator. Use
this label with MATCH_SCORE.

Matches Example

The following example creates a table querytable, and populates it with classification names
and associated rules. It then creates a CTXRULE index.

The example enters the MATCHES query with a document string to be classified. The SELECT
statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));
insert into querytable values ('common names', 'smith OR jones OR brown');
insert into querytable values ('countries', 'United States OR Great Britain OR
France');
insert into querytable values ('Oracle DB', 'oracle NEAR database');

create index query_rule on querytable(text) indextype is ctxsys.ctxrule;

SELECT classification FROM querytable WHERE MATCHES(text, 'Smith is a common name
in the United States') > 0;

CLASSIFICATION
--
common names
countries

Related Topics

"MATCH_SCORE"

"Syntax for CTXRULE Index Type"

CTX_CLS.TRAIN

Chapter 1
MATCHES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 119 of 122

Oracle Text Application Developer's Guide contains extended examples of simple and
supervised classification, which make use of the MATCHES operator.

1.10 MATCH_SCORE
Use the MATCH_SCORE operator in a statement to return scores produced by a MATCHES query.

The MATCH_SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

When the SVM_CLASSIFIER classifier type is used, this operator returns a score in the range 0
to 100. Use the matching score to apply a category-specific threshold to a particular category.

If the SVM_CLASSIFIER classifier is not used, then this operator returns either 100 (the
document matches the criteria) or 0 (the document does not match).

Syntax

MATCH_SCORE(label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to identify the
MATCHES clause that returns this score.

Example

To get the matching score, use:

select cat_id, match_score(1) from training_result where matches(profile,
text,1)>0;

Related Topics

"MATCHES "

1.11 SCORE
Use the SCORE operator in SELECT statements to return the score values produced by CONTAINS
and JSON_TEXTCONTAINS queries.

The SCORE operator can be used in a SELECT, ORDER BY, or GROUP BY clause.

The SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

Syntax

SCORE(label NUMBER)

Here, label specifies a number to identify the score produced by the query. Use this number to
identify the CONTAINS clause that returns this score.

Chapter 1
MATCH_SCORE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 120 of 122

Notes

For nested queries, you must specify an alias to avoid errors. For example, here an alias "s" is
used in the inner SELECT query to identify the outer SELECT query:

SELECT s FROM (
 SELECT SCORE(1) AS s FROM mytable
 WHERE CONTAINS(text, 'oracle', 1) > 0
);

Examples

• With a single CONTAINS clause:

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause
must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0
 ORDER BY SCORE(1) DESC;

• With multiple CONTAINS clauses:

Assume that a news database stores and indexes the title and body of news articles
separately. The following query returns all the documents that include the words Oracle in
their title and java in their body. The articles are sorted by the scores for the first CONTAINS
(Oracle) and then by the scores for the second CONTAINS (java).

SELECT title, body, SCORE(10), SCORE(20)
 FROM news
 WHERE CONTAINS (news.title, 'Oracle', 10) > 0 OR
 CONTAINS (news.body, 'java', 20) > 0
 ORDER BY SCORE(10), SCORE(20);

• With a single JSON_TEXTCONTAINS clause:

This query selects the PO numbers of purchase orders whose descriptions contain the text
run. It orders the results by relevance using an optional scoring-label argument. The query
returns also the relevance score for each purchase order.

The scoring label passed to json_textcontains must be the same as the label used with
SCORE. In this case the label is 1.

SELECT po.po_document.PONumber, SCORE(1)
 FROM j_purchaseorder po
 WHERE json_textcontains (po.po_document,
 '$.LineItems.Part.Description',
 'run',
 1)
 ORDER BY SCORE(1) DESC;

Results (some elided):

The first 17 purchase orders listed have score 18; the remaining 85 purchase orders have
score 9. The former group match pattern run better than the latter (they match it twice per
purchase order instead of once):

PONUMBER SCORE(1)
-------- --------

Chapter 1
SCORE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 121 of 122

1 18
9958 18
...
1388 18
36 9
22 9
...
8637 9
102 rows selected.

Related Topics

• CONTAINS
Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the query
expression for a Text query.

• JSON_TEXTCONTAINS

• The Oracle Text Scoring Algorithm

Chapter 1
SCORE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 122 of 122

2
Oracle Text Indexing Elements

Oracle provides indexing types for storage, filtering, and lexers, and preferences and stoplists
that you can use to create an Oracle Text index.

The chapter includes the following topics:

• Overview

• Creating Preferences

• Datastore Types

• Filter Types

• Lexer Types

• Wordlist Type

• Storage Types

• Section Group Types

• Classifier Types

• Cluster Types

• Stoplists

• System-Defined Preferences

• System Parameters

• Token Limitations for Oracle Text Indexes

• Auditing Oracle Text DR$ Index Tables

2.1 Overview
When you use the CREATE INDEX statement to create an index or the ALTER INDEX
statement to manage an index, you can optionally specify indexing preferences, stoplists, and
section groups in the parameter string. Specifying a preference, stoplist, or section group
answers one of the following questions about the way Oracle Text indexes text:

Preference Class Answers the Question

Datastore How are your documents stored?

Filter How can the documents be converted to plain text?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index tables be stored?

Stop List What words or themes are not to be indexed?

Section Group Is querying within sections enabled, and how are the document sections
defined?

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 123

This chapter describes how to set each preference. Enable an option by creating a preference
with one of the types described in this chapter.

2.2 Creating Preferences
To create a datastore, lexer, filter, classifier, wordlist, or storage preference, use the
CTX_DDL.CREATE_PREFERENCE procedure and specify one of the types described in this
chapter. For some types, you can also set attributes with the CTX_DDL.SET_ATTRIBUTE
procedure.

An indexing type names a class of indexing objects that you can use to create an index
preference. A type, therefore, is an abstract ID, while a preference is an entity that corresponds
to a type. Many system-defined preferences have the same name as types (for example,
BASIC_LEXER), but exact correspondence is not guaranteed. Be careful in assuming the
existence or nature of either indexing types or system preferences.

You specify indexing preferences with the CREATE INDEX and ALTER INDEX statements. Indexing
preferences determine how your index is created. For example, lexer preferences indicate the
language of the text to be indexed. You can create and specify your own user-defined
preferences, or you can use system-defined preferences.

To create a stoplist, use the CTX_DDL.CREATE_STOPLIST procedure. Add stopwords to a
stoplist with CTX_DDL.ADD_STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a section
group type. Add sections to section groups with the CTX_DDL.ADD_ZONE_SECTION or
CTX_DDL.ADD_FIELD_SECTION procedures.

2.3 Datastore Types
Use the datastore types to create a datastore preference. This helps you specify how your text
is stored.

Table 2-1 Datastore Types

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in the text column. Each row is
indexed as a single document.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one column.
Columns are concatenated to create a virtual document,
one for each row.

DETAIL_DATASTORE Data is stored internally in the text column. Document
consists of one or more rows stored in a text column in a
detail table, with header information stored in the primary
table.

Chapter 2
Creating Preferences

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 123

Table 2-1 (Cont.) Datastore Types

Datastore Type Use When

FILE_DATASTORE Data is stored externally in operating system files. File
names are stored in the text column, one for each row.

Note

Starting with Oracle
Database 19c, the Oracle
Text type FILE_DATASTORE
is deprecated. Use
DIRECTORY_DATASTORE
instead.

DIRECTORY_DATASTORE Data is stored in Oracle directory objects. File names are
stored in the text column, one for each row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet or
the Internet. Uniform Resource Locators (URLs) are
stored in the text column.

Note

Starting with Oracle
Database 19c, the Oracle
Text type URL_DATASTORE is
deprecated. Use
NETWORK_DATASTORE
instead.

NETWORK_DATASTORE Data is stored externally in files located on an intranet or
the Internet. Uniform Resource Locators (URLs) are
stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a user-
defined stored procedure.

2.3.1 DIRECT_DATASTORE
Use the DIRECT_DATASTORE type for text stored directly in the text column, one document for
each row. The DIRECT_DATASTORE type has no attributes.

The following column types are supported: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB, BFILE,
XMLType, and URIType.

Note

If your column is a BFILE, then the index owner must have read permission on all
directories used by the BFILEs.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 123

The following example creates a table with a CLOB column to store text data. It then populates
two rows with text data and indexes the table using the system-defined preference
CTXSYS.DEFAULT_DATASTORE.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,'this text will be indexed');
insert into mytable values(111556,'this is a direct_datastore example');
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE');

2.3.2 MULTI_COLUMN_DATASTORE
Use the MULTI_COLUMN_DATASTORE datastore when your text is stored in more than one column.
During indexing, the system concatenates the text columns, tags the column text, and indexes
the text as a single document. The XML-like tagging is optional. You can also set the system to
filter and concatenate binary columns.

• MULTI_COLUMN_DATASTORE Attributes

• Indexing and DML

• MULTI_COLUMN_DATASTORE Restriction

• MULTI_COLUMN_DATASTORE Example

• MULTI_COLUMN_DATASTORE Filter Example

• Tagging Behavior

• Indexing Columns as Sections

2.3.2.1 MULTI_COLUMN_DATASTORE Attributes
The data store MULTI_COLUMN_DATASTORE has the attributes shown in Table 2-2.

Table 2-2 MULTI_COLUMN_DATASTORE Attributes

Attribute Attribute Value

columns Specify a comma-delimited list of columns to be concatenated during indexing.
You can also specify any allowed expression for the SELECT statement column
list for the base table. This includes expressions, PL/SQL functions, column
aliases, and so on.

The NUMBER and DATE column types are supported. They are converted to text
before indexing using the default format mask. The TO_CHAR function can be
used in the column list for formatting.

The RAW and BLOB columns are directly concatenated as binary data.

The LONG, LONG RAW, NCHAR, and NCLOB data types, nested table columns, and
collections are not supported.

The column list is limited to 500 bytes.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 123

Table 2-2 (Cont.) MULTI_COLUMN_DATASTORE Attributes

Attribute Attribute Value

filter Specify a comma-delimited list of Y/N flags. Each flag corresponds to a column
in the COLUMNS list and denotes whether to filter the column using the
AUTO_FILTER.

Specify one of the following allowed values:

Y: Column is to be filtered with AUTO_FILTER

N or no value: Column is not to be filtered (default)

delimiter Specify the delimiter that separates column text as follows:

COLUMN_NAME_TAG: Column text is set off by XML-like open and close tags
(default).

NEWLINE: Column text is separated with a newline.

2.3.2.2 Indexing and DML
To index, you must create a dummy column to specify in the CREATE INDEX statement. This
column's contents are not made part of the virtual document, unless its name is specified in the
columns attribute.

The index is synchronized only when the dummy column is updated. You can create triggers to
propagate changes if needed.

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction
You cannot create a multicolumn datastore with XMLType columns. MULTI_COLUMN_DATA_STORE
does not support XMLType. You can create a CONTEXT index with an XMLType column, as
described in Oracle Text SQL Statements and Operators .

2.3.2.4 MULTI_COLUMN_DATASTORE Example
The following example creates a multicolumn datastore preference called my_multi with three
text columns:

begin

ctx_ddl.create_preference('my_multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'column1, column2, column3');

end;

2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example
The following example creates a multicolumn datastore preference and denotes that the bar
column is to be filtered with the AUTO_FILTER.

ctx_ddl.create_preference('MY_MULTI','MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS','foo,bar');
ctx_ddl.set_attribute('MY_MULTI','FILTER','N,Y');

The multicolumn datastore fetches the content of the foo and bar columns, filters bar, then
composes the compound document as:

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 123

<FOO>
foo contents
</FOO>
<BAR>
bar filtered contents (probably originally HTML)
</BAR>

The N flags do not need not be specified, and there does not need to be a flag for every
column. Only the Y flags must be specified, with commas to denote which column they apply
to. For example:

ctx_ddl.create_preference('MY_MULTI','MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS','foo,bar,zoo,jar');
ctx_ddl.set_attribute('MY_MULTI','FILTER',',,Y');

This example filters only the column zoo.

2.3.2.6 Tagging Behavior
During indexing, the system creates a virtual document for each row. The virtual document is
composed of the contents of the columns concatenated in the listing order with column name
tags automatically added.

For example:

create table mc(id number primary key, name varchar2(10), address varchar2(80));
insert into mc values(1, 'John Smith', '123 Main Street');

exec ctx_ddl.create_preference('mymds', 'MULTI_COLUMN_DATASTORE');
exec ctx_ddl.set_attibute('mymds', 'columns', 'name, address');

This produces the following virtual text for indexing:

<NAME>
John Smith
</NAME>
<ADDRESS>
123 Main Street
</ADDRESS>

2.3.2.7 Indexing Columns as Sections
To index tags as sections, you can optionally create field sections with BASIC_SECTION_GROUP.

Note

No section group is created when you use the MULTI_COLUMN_DATASTORE. To create
sections for these tags, you must create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters of the
expression unless a column alias is used.

For example, if your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17');

then it produces the following virtual text:

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 123

<4 + 17>
21
</4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17 col1');

then it produces the following virtual text:

<col1>
21
<col1>

The tags are in uppercase unless the column name or column alias is in lowercase and
surrounded by double quotation marks. For example:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo');

This produces the following virtual text:

<FOO>
content of foo
</FOO>

For lowercase tags, use the following:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo "foo"');

This expression produces:

<foo>
content of foo
</foo>

2.3.3 DETAIL_DATASTORE
Use the DETAIL_DATASTORE type for text stored directly in the database in detail tables, with the
indexed text column located in the primary table.

• DETAIL_DATASTORE Attributes

• Synchronizing Primary/Detail Indexes

• Example Primary/Detail Tables

2.3.3.1 DETAIL_DATASTORE Attributes
The DETAIL_DATASTORE type has the attributes described in Table 2-3.

Table 2-3 DETAIL_DATASTORE Attributes

Attribute Attribute Value

binary Specify TRUE for Oracle Text to add no newline character after each detail
row.

Specify FALSE for Oracle Text to add a newline character (\n) after each detail
row automatically.

detail_table Specify the name of the detail table (OWNER.TABLE if necessary).

detail_key Specify the name of the detail table foreign key column.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 123

Table 2-3 (Cont.) DETAIL_DATASTORE Attributes

Attribute Attribute Value

detail_lineno Specify the name of the detail table sequence column.

detail_text Specify the name of the detail table text column.

2.3.3.2 Synchronizing Primary/Detail Indexes
Changes to the detail table do not trigger re-indexing when you synchronize the index. Only
changes to the indexed column in the primary table triggers a re-index when you synchronize
the index.

You can create triggers on the detail table to propagate changes to the indexed column in the
primary table row.

2.3.3.3 Example Primary/Detail Tables
This example illustrates how primary and detail tables are related to each other.

• Primary Table Example

• Detail Table Example

• Detail Table Example Attributes

• Primary/Detail Index Example

2.3.3.3.1 Primary Table Example
Primary tables define the documents in a primary/detail relationship. Assign an identifying
number to each document. The following table is an example primary table, called my_primary:

Column Name Column Type Description

article_id NUMBER Document ID, unique for each document (primary
key)

author VARCHAR2(30) Author of document

title VARCHAR2(50) Title of document

body CHAR(1) Dummy column to specify in CREATE INDEX

Note

Your primary table must include a primary key column when you use the
DETAIL_DATASTORE type.

2.3.3.3.2 Detail Table Example
Detail tables contain the text for a document, whose content is usually stored across a number
of rows.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 123

The following detail table my_detail is related to the primary table my_primary with the
article_id column. This column identifies the primary document to which each detail row
(sub-document) belongs.

Column Name Column Type Description

article_id NUMBER Document ID that relates to primary table

seq NUMBER Sequence of document in the primary document
defined by article_id

text VARCHAR2 Document text

2.3.3.3.3 Detail Table Example Attributes
In this example, the DETAIL_DATASTORE attributes have the following values:

Attribute Attribute Value

binary TRUE

detail_table my_detail

detail_key article_id

detail_lineno seq

detail_text text

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE. Use
CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference as described earlier. The
following example shows how this is done:

begin

ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail_pref', 'detail_key', 'article_id');
ctx_ddl.set_attribute('my_detail_pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text', 'text');

end;

2.3.3.3.4 Primary/Detail Index Example
To index the document defined in this primary/detail relationship, specify a column in the
primary table using the CREATE INDEX statement.

The column you specify must be one of the allowed types.

This example uses the body column, whose function is to enable the creation of the primary/
detail index and to improve readability of the code. The my_detail_pref preference is set to
DETAIL_DATASTORE with the required attributes:

CREATE INDEX myindex on my_primary(body) indextype is ctxsys.context
parameters('datastore my_detail_pref');

In this example, you can also specify the title or author column to create the index.
However, if you do so, changes to these columns will trigger a re-index operation.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 123

2.3.4 FILE_DATASTORE
The FILE_DATASTORE type is used for text stored in files accessed through the local file system.

Note

Starting with Oracle Database 19c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

Oracle recommends that you replace FILE_DATASTORE text indexes with the
DIRECTORY_DATASTORE index type, which is available starting with Oracle Database
19c. DIRECTORY_DATASTORE provides greater security because it enables file access to
be based on directory objects.

Note

• The FILE_DATASTORE type may not work with certain types of remote-mounted file
systems.

• The character set of the file datastore is assumed to be the character set of the
database.

• FILE_DATASTORE Attributes

• FILE_DATASTORE and Security

• FILE_DATASTORE Example

2.3.4.1 FILE_DATASTORE Attributes
The FILE_DATASTORE type has the attributes described Table 2-4.

Table 2-4 FILE_DATASTORE Attributes

Attribute Attribute Value

path path1:path2:pathn

filename_charset name

path
Specifies the full directory path name of the files stored externally in a file system. When you
specify the full directory path as such, you need to include only file names in your text column.
You can specify multiple paths for the path attribute, with each path separated by a colon (:)
on UNIX and semicolon(;) on Windows. File names are stored in the text column in the text
table.
If you do not specify a path for external files with this attribute, then Oracle Text requires that
the path be included in the file names stored in the text column.
The PATH attribute has the following limitations:

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 123

• If you specify a PATH attribute, then you can only use a simple file name in the indexed
column. You cannot combine the PATH attribute with a path as part of the file name. If the
files exist in multiple folders or directories, you must leave the PATH attribute unset, and
include the full file name, with PATH, in the indexed column.

• On Windows systems, the files must be located on a local drive. They cannot be on a
remote drive, whether the remote drive is mapped to a local drive letter.

filename_charset
Specifies a valid Oracle character set name (maximum length 30 characters) to be used by
the file datastore for converting file names. In general, the Oracle AI Database can use a
different character set than the operating system. This can lead to problems in finding files
(which may raise DRG-11513 errors) when the indexed column contains characters that are
not convertible to the operating system character set. By default, the file datastore will convert
the file name to WE8ISO8859p1 for ASCII platforms or WE8EBCDIC1047 for EBCDIC
platforms.
However, this may not be sufficient for applications with multibyte character sets for both the
database and the operating system, because neither WE8ISO8859p1 nor WE8EBCDIC1047
supports multibyte characters. The attribute filename_charset rectifies this problem. If
specified, then the datastore will convert from the database character set to the specified
character set rather than to ISO8859 or EBCDIC.
If the filename_charset attribute is the same as the database character set, then the file
name is used as is. If filename_charset is not a valid character set, then the error
"DRG-10763: value %s is not a valid character set" is raised.

2.3.4.2 FILE_DATASTORE and Security
File and URL datastores enable access to files on the actual database disk. This may be
undesirable when security is an issue since any user can browse the file system that is
accessible to the Oracle user. Any user attempting to create an index using FILE or URL
datastores must have the TEXT DATASTORE ACCESS system privilege granted to the user
directly, or the index creation will fail. Granting the user TEXT DATASTORE ACCESS privilege
indirectly by granting it to the user’s role does not work and the index creation will still fail.
Thus, by default, users are not able to create indexes that use the FILE or URL datastores.
Granting TEXT DATASTORE ACCESS to PUBLIC gives any user the privilege to index either an
arbitrary file in the file system in the case of FILE datastore and an arbitrary URL in the case of
URL datastore and is not recommended.

For example, the following statement grants TEXT DATASTORE ACCESS to the user SCOTT:

grant TEXT DATASTORE ACCESS to SCOTT;

The CREATE INDEX operation will fail when a user that does not have TEXT DATASTORE
ACCESS privilege tries to create an index on a FILE or URL datastore. For example:

CREATE INDEX myindex ON mydocument(TEXT) INDEXTYPE IS ctxsys.context
PARAMETERS('DATASTORE ctxsys.file_datastore')

In this case, if the user does not have the TEXT DATASTORE ACCESS privilege granted directly to
it, then index creation will fail and returns an error. For users who have the TEXT DATASTORE
ACCESS privilege, the index creation will proceed normally.

The user’s privilege is checked any time the datastore is accessed. This includes index
creation, index sync, and calls to document services, such as CTX_DOC.HIGHLIGHT.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 123

2.3.4.3 FILE_DATASTORE Example
This example creates a file datastore preference called COMMON_DIR that has a path of /mydocs:

begin
 ctx_ddl.create_preference('COMMON_DIR','FILE_DATASTORE');
 ctx_ddl.set_attribute('COMMON_DIR','PATH','/mydocs');
end;

When you populate the table mytable, you need only insert file names. The path attribute tells
the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555,'first.txt');
insert into mytable values(111556,'second.txt');
commit;

Create the index as follows:

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('datastore COMMON_DIR');

2.3.5 DIRECTORY_DATASTORE
Use the DIRECTORY_DATASTORE type during indexing to access the text stored in files which can
be accessed through Oracle directory objects.

Starting with Oracle Database 19c, the Oracle Text type FILE_DATASTORE is deprecated. Use
DIRECTORY_DATASTORE instead.

Oracle recommends that you replace FILE_DATASTORE text indexes with the
DIRECTORY_DATASTORE index type, which is available starting with Oracle Database 19c.
DIRECTORY_DATASTORE provides greater security because it enables file access to be based on
directory objects.

A directory object specifies an alias for a directory on the server file system where external
binary file LOBs (BFILEs) and external table data are located. When you use
DIRECTORY_DATASTORE type, another PDB user can not access directory objects in your PDB
without read access to the directory objects.

Use the DIRECTORY_DATASTORE type to use an Oracle directory object as an attribute for the
CTX_DDL.SET_ATTRIBUTE procedure. You must have read access to the Oracle directory object
to access the files stored within the directory. If you have access, then during index creation,
you can use the path stored in the Oracle directory object to access the files stored in the file
system.

• DIRECTORY_DATASTORE Attributes

• DIRECTORY_DATASTORE Example

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 123

Note

• To create an Oracle directory object, you must have the CREATE ANY DIRECTORY
privilege. Typically, a system administrator user creates the directory and provides
read access to the directory for an Oracle Text user.

• DIRECTORY_DATASTORE can be used with a context index on CHAR datatype column
only if the file name fills the column.

2.3.5.1 DIRECTORY_DATASTORE Attributes
DIRECTORY_DATASTORE has the following attributes:

Table 2-5 DIRECTORY_DATASTORE Attributes

Attribute Attribute Values

directory Specify the name of the directory object where the data to be indexed
is stored. The default is NULL.

If you have access to the Oracle directory object, then you can also
access the files in its sub-directories.

filename_charset Specify a valid Oracle character set name (maximum length 30
characters) to be used by the directory datastore for converting file
names.

In general, the Oracle AI Database can use a different character set
than the operating system. This can lead to problems in finding files
(which may raise DRG-11513 errors) when the indexed column
contains characters that are not convertible to the operating system
character set. By default, the directory datastore will convert the file
name to WE8ISO8859p1 for ASCII platforms or WE8EBCDIC1047 for
EBCDIC platforms.

However, this may not be sufficient for applications with multibyte
character sets for both the database and the operating system,
because neither WE8ISO8859p1 nor WE8EBCDIC1047 supports
multibyte characters. The attribute filename_charset rectifies this
problem. If specified, then the datastore will convert from the database
character set to the specified character set rather than to ISO8859 or
EBCDIC.

If the filename_charset attribute is the same as the database
character set, then the file name is used as is. If filename_charset
is not a valid character set, then the error "DRG-10763: value %s is not
a valid character set" is raised.

2.3.5.2 DIRECTORY_DATASTORE Example
This example shows you how to create an index with DIRECTORY_DATASTORE type by securely
accessing files under an Oracle directory object.

Create an Oracle directory object to store the path of the files. You must have the CREATE ANY
DIRECTORY privilege to create an Oracle directory object.

create directory myhome as 'directory_path';

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 123

Create a directory datastore preference called MYDS and set the directory attribute with myhome,
which is the Oracle directory object:

exec ctx_ddl.create_preference('MYDS','DIRECTORY_DATASTORE')
exec ctx_ddl.set_attribute('MYDS','DIRECTORY','myhome')

Create a table named mytable and populate it with file names only. The directory attribute
tells the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555,'first.txt');
insert into mytable values(111556,'second.txt');

Create the index as follows:

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('datastore MYDS');

2.3.6 URL_DATASTORE
Use the URL_DATASTORE type for text stored in files on the World Wide Web (accessed through
HTTP or FTP) and local file system (accessed through the file protocol).

Store each URL in a single text field.

Note

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated.
Use NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed
through HTTP or FTP), and for text stored in local file system files (accessed through
the file protocol). It is replaced with NETWORK_DATASTORE, which uses ACLs to allow
access to specific servers. This change aligns Oracle Text more closely with the
standard operating and security model for accessing URLs from the database.

• URL_DATASTORE URL Syntax

• URL_DATASTORE Attributes

• URL_DATASTORE and Security

• URL_DATASTORE Example

2.3.6.1 URL_DATASTORE URL Syntax
The syntax of a URL you store in a text field is as follows (with brackets indicating optional
parameters):

[URL:]<access_scheme>://<host_name>[:<port_number>]/[<url_path>]

The access_scheme string can be either ftp, http, or file. For example:

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 123

http://mycomputer.us.example.com/home.html

Note

The login:password@ syntax within the URL is supported only for the ftp access
scheme.

Because this syntax is partially compliant with the RFC 1738 specification, the following
restriction holds for the URL syntax: The URL must contain only printable ASCII characters.
Non-printable ASCII characters and multibyte characters must be escaped with the %xx
notation, where xx is the hexadecimal representation of the special character.

2.3.6.2 URL_DATASTORE Attributes
URL_DATASTORE has the following attributes:

Table 2-6 URL_DATASTORE Attributes

Attribute Attribute Value

timeout The value of this attribute is ignored. This is provided for backward
compatibility.

maxthreads The value of this attribute is ignored. URL_DATASTORE is single-threaded.
This is provided for backward compatibility.

urlsize The value of this attribute is ignored. This is provided for backward
compatibility.

maxurls The value of this attribute is ignored. This is provided for backward
compatibility.

maxdocsize The value of this attribute is ignored. This is provided for backward
compatibility.

http_proxy Specify the host name of http proxy server. Optionally specify port number
with a colon in the form hostname:port.

ftp_proxy Specify the host name of ftp proxy server. Optionally specify port number
with a colon in the form hostname:port.

no_proxy Specify the domain for no proxy server. Use a comma-delimited string of up
to 16 domain names.

timeout
The value of this attribute is ignored. This is provided for backward compatibility.

maxthreads
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is provided for
backward compatibility.

urlsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxdocsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxurls
The value of this attribute is ignored. This is provided for backward compatibility.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 123

http_proxy
Specify the fully qualified name of the host computer that serves as the HTTP proxy (gateway)
for the computer on which Oracle Text is installed. You can optionally specify port number with
a colon in the form hostname:port.
You must set this attribute if the computer is in an intranet that requires authentication through
a proxy server to access Web files located outside the firewall.

ftp_proxy
Specify the fully qualified name of the host computer that serves as the FTP proxy (gateway)
for the server on which Oracle Text is installed. You can optionally specify a port number with
a colon in the form hostname:port.
This attribute must be set if the computer is in an intranet that requires authentication through
a proxy server to access Web files located outside the firewall.

no_proxy
Specify a string of domains (up to sixteen, separated by commas) that are found in most, if not
all, of the computers in your intranet. When one of the domains is encountered in a host
name, no request is sent to the server(s) specified for ftp_proxy and http_proxy. Instead, the
request is processed directly by the host computer identified in the URL.
For example, if the string us.example.com, uk.example.com is entered for no_proxy, any URL
requests to computers that contain either of these domains in their host names are not
processed by your proxy server(s).

2.3.6.3 URL_DATASTORE and Security
For a discussion of how to control file access security for file and URL datastores, refer to
"FILE_DATASTORE and Security".

2.3.6.4 URL_DATASTORE Example
This example creates a URL_DATASTORE preference called URL_PREF for which the http_proxy,
no_proxy, and timeout attributes are set. The defaults are used for the attributes that are not
set.

begin
 ctx_ddl.create_preference('URL_PREF','URL_DATASTORE');
 ctx_ddl.set_attribute('URL_PREF','HTTP_PROXY','www-proxy.us.example.com');
 ctx_ddl.set_attribute('URL_PREF','NO_PROXY','us.example.com');
 ctx_ddl.set_attribute('URL_PREF','Timeout','300');
end;

Create the table and insert values into it:

create table urls(id number primary key, docs varchar2(2000));
insert into urls values(111555,'http://context.us.example.com');
insert into urls values(111556,'http://www.sun.com');
commit;

To create the index, specify URL_PREF as the datastore:

create index datastores_text on urls (docs)
 indextype is ctxsys.context
 parameters ('Datastore URL_PREF');

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 123

2.3.7 NETWORK_DATASTORE
Use the NETWORK_DATASTORE type during indexing to access the files stored on the World Wide
Web through HTTP and HTTPS.

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated. Use
NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed through HTTP
or FTP), and for text stored in local file system files (accessed through the file protocol). It is
replaced with NETWORK_DATASTORE, which uses ACLs to allow access to specific servers. This
change aligns Oracle Text more closely with the standard operating and security model for
accessing URLs from the database.

When you use NETWORK_DATASTORE type, you can access a URL after the website certificate is
verified in Oracle wallet and ACL package.

FTP and file protocol are not supported in NETWORK_DATASTORE type. To access the files stored
in the local file system, use the DIRECTORY_DATASTORE type.

During index creation, the URL stored in the datastore is used to access the files stored in the
World Wide Web. The access is granted after verifying the website certificate in Oracle wallet.

• NETWORK_DATASTORE URL Syntax

• NETWORK_DATASTORE Attributes

• NETWORK_DATASTORE Example

Note

NETWORK_DATASTORE can be used with a context index on CHAR datatype column only if
the file name fills the column.

2.3.7.1 NETWORK_DATASTORE URL Syntax
The syntax of a URL you store in a datastore is as follows (with brackets indicating optional
parameters):

[URL:]<access_scheme>://<host_name>[:<port_number>]/[<url_path>]

The access_scheme string can be either http or https. For example:

https://mycomputer.us.example.com/home.html

Because this syntax is partially compliant with the RFC 1738 specification, the following
restriction holds for the URL syntax: The URL must contain only printable ASCII characters.
Non-printable ASCII characters and multibyte characters must be escaped with the %xx
notation, where xx is the hexadecimal representation of the special character.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 123

2.3.7.2 NETWORK_DATASTORE Attributes
Use these attributes with the NETWORK_DATASTORE type during indexing, for text stored in files
on the internet or in local file system files.

Table 2-7 NETWORK_DATASTORE Attributes

Attribute Attribute Value

timeout Specify the time out value for all future HTTP requests that use the
UTL_HTTP package to read the HTTP response from a web or proxy server.
This attribute can be used to avoid being blocked by busy web servers or
heavy network traffic when retrieving web pages.

The default value is 30 seconds. The minimum value is 1 second and the
maximum value is 3600 seconds.

http_proxy Specify the fully qualified name of the host computer that serves as the
HTTP proxy (gateway) for the computer on which Oracle Text is installed.
You can optionally specify port number with a colon in the form
hostname:port.

You must set this attribute if the computer is in an intranet that requires
authentication through a proxy server to access Web files located outside
the firewall.

For HTTP network connection, an ACL package is required so that the
UTL_HTTP package can interact with the external host. You must have
EXECUTE privilege for the DBMS_NETWORK_ACL_ADMIN package to grant the
CONNECT privilege on the ACL to a user.

https_proxy Specify the fully qualified name of the host computer that serves as the
HTTPS proxy (gateway) for the computer on which Oracle Text is installed.
You can optionally specify port number with a colon in the form
hostname:port.

You must set this attribute if the computer is in an intranet that requires
authentication through a proxy server to access Web files located outside
the firewall.

For HTTPS network connection, in addition to the ACL package, an Oracle
wallet is also required. You can create an Oracle wallet using the orapki
command-line utility.

To create an Oracle wallet using the orapki command-line utility, use the
orapki wallet create command:

orapki wallet create -wallet wallet_location -pwd
password -auto_login

To add a trusted certificate to an Oracle wallet, use the orapki wallet
add command:

orapki wallet add -wallet wallet_location -trusted_cert
-cert certificate_location -pwd password

Use the UTL_HTTP.SET_WALLET procedure to configure the request to hold
the wallet:

EXEC UTL_HTTP.SET_WALLET(wallet_location, password);

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 123

Table 2-7 (Cont.) NETWORK_DATASTORE Attributes

Attribute Attribute Value

no_proxy Specify a string of domains (up to sixteen, separated by commas) that are
found in most, if not all, of the computers in your intranet. When one of the
domains is encountered in a host name, no request is sent to the server(s)
specified for http_proxy and https_proxy. Instead, the request is
processed directly by the host computer identified in the URL.

For example, if the string us.example.com, uk.example.com is entered for
no_proxy, any URL requests to computers that contain either of these
domains in their host names are not processed by your proxy server(s).

Related Topics

• DBMS_NETWORK_ACL_ADMIN

• UTL_HTTP

2.3.7.3 NETWORK_DATASTORE Example
This example shows you how to configure HTTP and HTTPS network connections and create
an index based on the NETWORK_DATASTORE type to access the files stored on the World Wide
Web.

Create a user and grant the necessary privileges:

CREATE USER myuser IDENTIFIED by password;
GRANT connect, resource, unlimited tablespace, ctxapp to myuser;

Append an access control entry (ACE) to the ACL of a network host. The ACL controls access
to the given host from the database and the ACE specifies the privileges granted to or denied
from the specified principal. When host is specified as '*', you can access any host through
the network datastore which uses UTL_HTTP package internally to access data from websites
through HTTP.

begin
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => '*',
 ace => xs$ace_type(privilege_list => xs$name_list('connect', 'resolve'),
 principal_name => 'MYUSER',
 principal_type => xs_acl.ptype_db));
end;
/

Create a network datastore preference called NETWORK_PREF:

begin
 ctx_ddl.create_preference('NETWORK_PREF','NETWORK_DATASTORE');
 ctx_ddl.set_attribute('NETWORK_PREF','HTTP_PROXY','www-
proxy.us.example.com');
 ctx_ddl.set_attribute('NETWORK_PREF','NO_PROXY','us.example.com');
 ctx_ddl.set_attribute('NETWORK_PREF','TIMEOUT','300');

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 123

end;
/

Create a table named mytable and populate it with URLs:

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555,'http://context.example.com');
insert into mytable values(111556,'http://www.johndoe.com');

Create the index as follows:

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('datastore NETWORK_PREF');

See Also

• Oracle AI Database PL/SQL Packages and Types Reference for more information
about DBMS_NETWORK_ACL_ADMIN package

• Oracle AI Database PL/SQL Packages and Types Reference for more information
about UTL_HTTP package

2.3.8 USER_DATASTORE
Use the USER_DATASTORE type to define stored procedures that synthesize documents during
indexing. For example, a user procedure might synthesize author, date, and text columns into
one document to have the author and date information be part of the indexed text.

• USER_DATASTORE Attributes

• USER_DATASTORE Constraints

• USER_DATASTORE Editing Procedure after Indexing

• USER_DATASTORE with CLOB Example

• USER_DATASTORE with BLOB_LOC Example

2.3.8.1 USER_DATASTORE Attributes
USER_DATASTORE has the following attributes:

Table 2-8 USER_DATASTORE Attributes

Attribute Attribute Value

procedure Specify the procedure that synthesizes the document to be indexed.

This procedure can be owned by any user and must be executable by the index
owner.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 123

Table 2-8 (Cont.) USER_DATASTORE Attributes

Attribute Attribute Value

output_type Specify the data type of the second argument to procedure. Valid values are
CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2. The default is CLOB.

When you specify CLOB_LOC, BLOB_LOC, you indicate that no temporary CLOB or
BLOB is needed, because your procedure copies a locator to the IN/OUT second
parameter.

procedure
Specify the name of the procedure that synthesizes the document to be indexed. This
specification must be in the form PROCEDURENAME or PACKAGENAME.PROCEDURENAME. You can
also specify the schema owner name.
The procedure you specify must have two arguments defined as follows:

procedure (r IN ROWID, c IN OUT NOCOPY output_type)

The first argument r must be of type ROWID. The second argument c must be of the type
specified in the output_type attribute. NOCOPY is a compiler hint that instructs Oracle Text to
pass parameter c by reference if possible.

Note

Procedure names should not include the semicolon character.

The stored procedure is called once for each row indexed. Given the rowid of the current row,
procedure must write the text of the document into its second argument, whose type you
specify with output_type.

2.3.8.2 USER_DATASTORE Constraints
The following constraints apply to procedure:

• It can be owned by any user, but the user must have database permissions to execute
procedure correctly

• It must be executable by the index owner

• It must not enter DDL or transaction control statements, like COMMIT

2.3.8.3 USER_DATASTORE Editing Procedure after Indexing
When you change or edit the stored procedure, indexes based on it will not be notified, so you
must manually re-create such indexes. So if the stored procedure makes use of other columns,
and those column values change, the row will not be re-indexed. The row is re-indexed only
when the indexed column changes.

output_type
Specify the datatype of the second argument to procedure. You can use either CLOB, BLOB,
CLOB_LOC, BLOB_LOC, or VARCHAR2.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 123

2.3.8.4 USER_DATASTORE with CLOB Example
Consider a table in which the author, title, and text fields are separate, as in the articles table
defined as follows:

create table articles(
 id number,
 author varchar2(80),
 title varchar2(120),
 text clob);

The author and title fields are to be part of the indexed document text. Assume user appowner
writes a stored procedure with the user datastore interface that synthesizes a document from
the text, author, and title fields:

create procedure myproc(rid in rowid, tlob in out clob nocopy) is
 begin
 for c1 in (select author, title, text from articles
 where rowid = rid)
 loop

 dbms_lob.writeappend(tlob, length(c1.title), c1.title);
 dbms_lob.writeappend(tlob, length(c1.author), c1.author);
 dbms_lob.writeappend(tlob, length(c1.text), c1.text);

 end loop;
 end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all the article's
columns into the temporary CLOB. The for loop executes only once.

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore');
ctx_ddl.set_attribute('myud', 'procedure', 'myproc');
ctx_ddl.set_attribute('myud', 'output_type', 'CLOB');

end;

When appowner creates the index on articles(text) using this preference, the indexing
operation sees author and title in the document text.

2.3.8.5 USER_DATASTORE with BLOB_LOC Example
The following procedure might be used with OUTPUT_TYPE BLOB_LOC:

procedure myds(rid in rowid, dataout in out nocopy blob)
is
 l_dtype varchar2(10);
 l_pk number;
begin
 select dtype, pk into l_dtype, l_pk from mytable where rowid = rid;
 if (l_dtype = 'MOVIE') then
 select movie_data into dataout from movietab where fk = l_pk;
 elsif (l_dtype = 'SOUND') then
 select sound_data into dataout from soundtab where fk = l_pk;

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 123

 end if;
end;

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore');
ctx_ddl.set_attribute('myud', 'procedure', 'myproc');
ctx_ddl.set_attribute('myud', 'output_type', 'blob_loc');

end;

2.3.9 NESTED_DATASTORE
Use the nested datastore type to index documents stored as rows in a nested table.

• NESTED_DATASTORE Attributes

• NESTED_DATASTORE Example

2.3.9.1 NESTED_DATASTORE Attributes
NESTED_DATASTORE has the following attributes:

Table 2-9 NESTED_DATASTORE Attributes

Attribute Attribute Value

nested_column Specify the name of the nested table column. This attribute is required. Specify
only the column name. Do not specify schema owner or containing table name.

nested_type Specify the type of nested table. This attribute is required. You must provide
owner name and type.

nested_lineno Specify the name of the attribute in the nested table that orders the lines. This
is like DETAIL_LINENO in detail datastore. This attribute is required.

nested_text Specify the name of the column in the nested table type that contains the text
of the line. This is like DETAIL_TEXT in detail datastore. This attribute is
required. LONG column types are not supported as nested table text columns.

binary Specify FALSE for Oracle Text to automatically insert a newline character when
synthesizing the document text. If you specify TRUE, Oracle Text does not do
this. This attribute is not required. The default is FALSE.

When using the nested table datastore, you must index a dummy column, because the
extensible indexing framework disallows indexing the nested table column. See
"NESTED_DATASTORE Example".

DML on the nested table is not automatically propagated to the dummy column used for
indexing. For DML on the nested table to be propagated to the dummy column, your
application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nested_text column.

During validation, Oracle Text checks that the type exists and that the attributes you specify for
nested_lineno and nested_text exist in the nested table type. Oracle Text does not check
that the named nested table column exists in the indexed table.

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 123

2.3.9.2 NESTED_DATASTORE Example
This section shows an example of using the NESTED_DATASTORE type to index documents stored
as rows in a nested table.

• Create the Nested Table

• Insert Values into Nested Table

• Create Nested Table Preferences

• Create Index on Nested Table

• Query Nested Datastore

2.3.9.2.1 Create the Nested Table
The following code creates a nested table and a storage table mytab for the nested table:

create type nt_rec as object (
 lno number, -- line number
 ltxt varchar2(80) -- text of line
);

create type nt_tab as table of nt_rec;
create table mytab (
 id number primary key, -- primary key
 dummy char(1), -- dummy column for indexing
 doc nt_tab -- nested table
)
nested table doc store as myntab;

2.3.9.2.2 Insert Values into Nested Table
The following code inserts values into the nested table for the parent row with ID equal to 1.

insert into mytab values (1, null, nt_tab());
insert into table(select doc from mytab where id=1) values (1, 'the dog');
insert into table(select doc from mytab where id=1) values (2, 'sat on mat ');
commit;

2.3.9.2.3 Create Nested Table Preferences
The following code sets the preferences and attributes for the NESTED_DATASTORE according to
the definitions of the nested table type nt_tab and the parent table mytab:

begin
-- create nested datastore pref
ctx_ddl.create_preference('ntds','nested_datastore');

-- nest tab column in main table
ctx_ddl.set_attribute('ntds','nested_column', 'doc');

-- nested table type
ctx_ddl.set_attribute('ntds','nested_type', 'scott.nt_tab');

-- lineno column in nested table
ctx_ddl.set_attribute('ntds','nested_lineno','lno');

--text column in nested table

Chapter 2
Datastore Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 123

ctx_ddl.set_attribute('ntds','nested_text', 'ltxt');
end;

2.3.9.2.4 Create Index on Nested Table
The following code creates the index using the nested table datastore:

create index myidx on mytab(dummy) -- index dummy column, not nest table
indextype is ctxsys.context parameters ('datastore ntds');

2.3.9.2.5 Query Nested Datastore
The following select statement queries the index built from a nested table:

select * from mytab where contains(dummy, 'dog and mat')>0;
-- returns document 1, because it has dog in line 1 and mat in line 2.

2.4 Filter Types
Use the filter types to create preferences that determine how text is filtered for indexing. Filters
enable word processor documents, formatted documents, plain text, HTML, and XML
documents to be indexed.

For formatted documents, Oracle Text stores documents in their native format and uses filters
to build interim plain text or HTML versions of the documents. Oracle Text indexes the words
derived from the plain text or HTML version of the formatted document.

To create a filter preference, you must use one of the filter types shown in Table 2-10.

Table 2-10 Filter Types

Filter When Used

AUTO_FILTER Auto filter for filtering formatted documents.

NULL_FILTER No filtering required. Use for indexing plain text, HTML, or XML
documents.

MAIL_FILTER Use the MAIL_FILTER to transform RFC-822, RFC-2045 messages in to
text that can be indexed.

USER_FILTER User-defined external filter to be used for custom filtering.

PROCEDURE_FILTER User-defined stored procedure filter to be used for custom filtering.

2.4.1 AUTO_FILTER
The AUTO_FILTER is a universal filter that filters most document formats, including PDF and
Microsoft Word documents. Use it for indexing both single-format and mixed-format columns.
This filter automatically bypasses plain text, HTML, XHTML, SGML, and XML documents.

• AUTO_FILTER Attributes

• AUTO_FILTER and Indexing Formatted Documents

• AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns

• AUTO_FILTER and Character Set Conversion With AUTO_FILTER

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 123

See Also

Oracle Text Supported Document Formats, for a list of the formats supported by
AUTO_FILTER, and to learn more about how to set up your environment

Note

The AUTO_FILTER replaces the INSO_FILTER, which has been deprecated. While every
effort has been made to ensure maximal backward compatibility between the two
filters, so that applications using INSO_FILTER will continue to work without
modification, some differences may arise. Users should therefore use AUTO_FILTER in
their new programs and, when possible, replace instances of INSO_FILTER, and any
system preferences or constants that make use of it, in older applications.

2.4.1.1 AUTO_FILTER Attributes
The AUTO_FILTER preference has the attributes shown in Table 2-11.

Table 2-11 AUTO_FILTER Attributes

Attribute Attribute Value

timeout Specify the AUTO_FILTER timeout in seconds. Use a number between 0
and 42,949,672. Default is 120. Setting this value to 0 disables the feature.

How this wait period is used depends on how you set timeout_type.

This feature is disabled for rows for which the corresponding charset and
format column cause the AUTO_FILTER to bypass the row, such as when
format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation from waiting
indefinitely on a hanging filter operation.

timeout_type Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT seconds if
output from Outside In HTML Export has increased. The operation
terminates for the document if output has not increased. An error is
recorded in the CTX_USER_INDEX_ERRORS view and Oracle Text moves to
the next document row to be indexed.

Specify FIXED to terminate the Outside In HTML Export processing after
TIMEOUT seconds regardless of whether filtering was progressing normally
or just hanging. This value is useful when indexing throughput is more
important than taking the time to successfully filter large documents.

output_formatting Setting this attribute has no effect on filter performance or filter output. It is
maintained for backward compatibility.

2.4.1.2 AUTO_FILTER and Indexing Formatted Documents
Use AUTO_FILTER to index a text column containing formatted documents, such as Microsoft
Word. This filter automatically detects the document format.

Use the CTXSYS.AUTO_FILTER system-defined preference in the parameter clause as follows:

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 123

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.directory_datastore
 filter ctxsys.auto_filter');

Note

The CTXSYS.AUTO_FILTER replaces CTXSYS.INSO_FILTER, which has been deprecated.
Programs making use of CTXSYS.INSO_FILTER should still work. New programs should
use CTXSYS.AUTO_FILTER.

2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns

The AUTO_FILTER can index mixed-format columns, automatically bypassing plain text, HTML,
and XML documents. However, if you prefer not to depend on the built-in bypass mechanism,
you can explicitly tag your rows as text and cause the AUTO_FILTER to ignore the row and not
process the document in any way.

A mixed-format column is a text column containing more than one document format, such as a
column that contains Microsoft Word, PDF, plain text, and HTML documents.

The format column in the base table enables you to specify the type of document contained in
the text column. You can specify the following document types: TEXT, BINARY, and IGNORE.
During indexing, the AUTO_FILTER ignores any document typed TEXT, assuming the charset
column is not specified. The difference between a document with a TEXT format column type
and one with an IGNORE type is that the TEXT document is indexed, but ignored by the filter,
while the IGNORE document is not indexed at all. Use IGNORE to overlook documents such as
image files, or documents in a language that you do not want to index. IGNORE can be used
with any filter type.

To set up the AUTO_FILTER bypass mechanism, you must create a format column in your base
table.

For example:

create table hdocs (
 id number primary key,
 fmt varchar2(10),
 text varchar2(80)
);

Assuming you are indexing mostly Word documents, you specify BINARY in the format column
to filter the Word documents. Alternatively, to have the AUTO_FILTER ignore an HTML
document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one
format as BINARY and the other TEXT:

insert into hdocs values(1, 'binary', '/docs/myword.doc');
insert in hdocs values (2, 'text', '/docs/index.html');
commit;

To create the index, use CREATE INDEX and specify the format column name in the parameter
string:

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 123

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.directory_datastore
 filter ctxsys.auto_filter
 format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

Note

You need not specify the format column in CREATE INDEX when using the AUTO_FILTER.

2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER
The AUTO_FILTER converts documents to the database character set when the document
format column is set to TEXT. In this case, the AUTO_FILTER looks at the charset column to
determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed
through without any character set conversion.

Note

You need not specify the charset column when using the AUTO_FILTER.

2.4.2 NULL_FILTER
Use the NULL_FILTER type when plain text or HTML is to be indexed and no filtering needs to
be performed. NULL_FILTER has no attributes.

NULL_FILTER and Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the NULL_FILTER in
your filter preference.

For example, to index an HTML document set, specify the system-defined preferences for
NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters('filter ctxsys.null_filter
 section group ctxsys.html_section_group');

See Also

For more information on section groups and indexing HTML documents, see "Section
Group Types".

2.4.3 MAIL_FILTER
Use MAIL_FILTER to transform RFC-822, RFC-2045 messages into indexable text.

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 123

The following limitations apply to the input:

• Documents must be US-ASCII

• Lines must not be longer than 1024 bytes

• Documents must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by the filter
without error. Others may result in a fetch-time or filter-time error.

• MAIL_FILTER Attributes

• MAIL_FILTER Behavior

• About the Mail Filter Configuration File

• Mail_Filter Example

Note

Starting with Oracle Database 18c, the use of MAIL_FILTER in Oracle Text is
deprecated. Before adding email to the database, filter e-mails to indexable plain text,
or to HTML.MAIL_FILTER is based on an obsolete email protocol, RFC-822. Modern
email systems do not support RFC-822. There is no replacement.

2.4.3.1 MAIL_FILTER Attributes
The MAIL_FILTER has the attributes shown in Table 2-12.

Table 2-12 MAIL_FILTER Attributes

Attribute Attribute Value

INDEX_FIELDS Specify a colon-separated list of fields to preserve in the output.
These fields are transformed to tag markup. For example, if
INDEX_FIELDS is set to "FROM":

From: Scott Tiger

becomes:

<FROM>Scott Tiger</FROM>

Only top-level fields are transformed in this way.

AUTO_FILTER_TIMEOUT Specify a timeout value for the AUTO_FILTER filtering invoked by
the mail filter. Default is 60. (Replaces the INSO_TIMEOUT attribute
and is backward compatible with INSO_TIMEOUT.)

AUTO_FILTER_OUTPUT_FORMATTING Specify either TRUE or FALSE. Default is TRUE.

This attribute replaces the previous INSO_OUTPUT_FORMATTING
attribute. However, it has no effect in the current release.

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 123

Table 2-12 (Cont.) MAIL_FILTER Attributes

Attribute Attribute Value

PART_FIELD_STYLE Specify how fields occurring in lower-level parts and identified by
the INDEX_FIELDS attribute should be transformed. The fields of
the top-level message part identified by INDEX_FIELDS are always
transformed to tag markup (see the previous description of
INDEX_FIELDS); PART_FIELD_STYLE controls the transformation
of subsequent parts; for example, attached e-mails.

Possible values include IGNORE (the default), in which the part
fields are not included for indexing; TAG, in which the part field
names are transformed to tags, as occurs with top-level part fields;
FIELD, in which the part field names are preserved as fields, not as
tags; and TEXT, in which the part field names are eliminated and
only the field content is preserved for indexing. See "Mail_Filter
Example" for an example of how PART_FIELD_STYLE works.

2.4.3.2 MAIL_FILTER Behavior
This filter behaves in the following way for each document:

• Read and remove header fields

• Decode message body if needed, depending on Content-transfer-encoding field

• Take action depending on the Content-Type field value and the user-specified behavior
specified in a mail filter configuration file. (See "About the Mail Filter Configuration File".)
The possible actions are:

– produce the body in the output text (INCLUDE). If no character set is encountered in the
INCLUDE parts in the Content-Type header field, then Oracle defaults to the value
specified in the character set column in the base table. Name your populated character
set column in the parameter string of the CREATE INDEX command.

– AUTO_FILTER the body contents (AUTO_FILTER directive).

– remove the body contents from the output text (IGNORE)

• If no behavior is specified for the type in the configuration file, then the defaults are as
follows:

– text/*: produce body in the output text

– application/*: AUTO_FILTER the body contents

– image/*, audio/*, video/*, model/*: ignore

• Multipart messages are parsed, and the mail filter applied recursively to each part. Each
part is appended to the output.

• All text produced will be charset-converted to the database character set, if needed.

2.4.3.3 About the Mail Filter Configuration File
The MAIL_FILTER filter makes use of a mail filter configuration file, which contains directives
specifying how a mail document should be filtered.

The mail filter configuration file is a editable text file. Here you can override default behavior for
each Content-Type. The configuration file also contains IANA-to-Oracle Globalization Support
character set name mappings.

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 123

The location of the file must be in ORACLE_HOME/ctx/config. The name of the file to use is stored
in the new system parameter MAIL_FILTER_CONFIG_FILE. On install, this is set to drmailfl.txt,
which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid overwrite by
the installation of a new version or patch set. The mail filter configuration file should be in the
database character set.

Mail File Configuration File Structure

The file has two sections, BEHAVIOR and CHARSETS. Indicate the start of the behavior section as
follows:

[behavior]

Each line following starts with a mime type, then whitespace, then behavior specification. The
MIME type can be a full TYPE/SUBTYPE or just TYPE, which will apply to all subtypes of that type.
TYPE/SUBTYPE specification overrides TYPE specification, which overrides default behavior.
Behavior can be INCLUDE, AUTO_FILTER, or IGNORE (see "MAIL_FILTER Behavior" for
definitions). For instance:

application/zip IGNORE
application/msword AUTO_FILTER
model IGNORE

You cannot specify behavior for "multipart" or "message" types. If you do, such lines are
ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the # symbol.

The charset mapping section begins with

[charsets]

Lines consist of an IANA name, then whitespace, then an Oracle Globalization Support charset
name, like:

US-ASCII US7ASCI
ISO-8859-1 WE8ISO8859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents indexed after
that point. You must flush the shared pool after changing the file.

2.4.3.4 Mail_Filter Example
Suppose there is an e-mail with the following form, in which other e-mails with different subject
lines are attached to this e-mail:

To: somebody@someplace
Subject: mainheader
Content-Type: multipart/mixed
. . .
Content-Type: text/plain
X-Ref: some_value
Subject: subheader 1
. . .
Content-Type: text/plain
X-Control: blah blah blah

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 123

Subject: subheader 2
. . .

Set INDEX_FIELDS to be "Subject" and, initially, PART_FIELD_STYLE to IGNORE.

CTX_DDL.CREATE_PREFERENCE('my_mail_filt', 'mail_filter');
CTX_DDL_SET_ATTRIBUTE(my_mail_filt', 'INDEX_FILES', 'subject');
CTX_DDL.SET ATTRIBUTE ('my_mail_filt', 'PART_FIELD_STYLE', 'ignore');

Now when the index is created, the file will be indexed as follows:

<SUBJECT>mainheader</SUBJECT>

If PART_FIELD_STYLE is instead set to TAG, this becomes:

<SUBJECT>mainheader</SUBJECT>
<SUBJECT>subheader1</SUBJECT>
<SUBJECT>subheader2</SUBJECT>

If PART_FIELD_STYLE is set to FIELD instead, this is the result:

<SUBJECT>mainheader<SUBJECT>
SUBJECT:subheader1
SUBJECT:subheader2

Finally, if PART_FIELD_STYLE is instead set to TEXT, then the result is:

<SUBJECT>mainheader</SUBJECT>
subheader1
subheader2

2.4.4 USER_FILTER
Use the USER_FILTER type to specify an external filter for filtering documents in a column.

This section contains the following topics.

• USER_FILTER Attributes

• Using USER_FILTER with Charset and Format Columns

• USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns

• Character Set Conversion with USER_FILTER

• User Filter Example

2.4.4.1 USER_FILTER Attributes
USER_FILTER has the following attribute:

Table 2-13 USER_FILTER Attribute

Attribute Attribute Value

command Specify the name of the filter executable.

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 123

Warning

The USER_FILTER type introduces the potential for security threats. A database user
granted the CTXAPP role could potentially use USER_FILTER to load a malicious
application. Therefore, the DBA must safeguard against any combination of input and
output file parameters that would enable the named filter executable to compromise
system security.

command
Specify the executable for the single external filter that is used to filter all text stored in a
column. If more than one document format is stored in the column, then the external filter
specified for command must recognize and handle all such formats.
The executable that you specify must exist in the $ORACLE_HOME/ctx/bin directory on UNIX,
and in the %ORACLE_HOME%/ctx/bin directory on Windows.
You must create your user-filter command with two parameters:

• The first parameter is the name of the input file to be read.

• The second parameter is the name of the output file to be written to.

If all the document formats are supported by AUTO_FILTER, then use AUTO_FILTER instead of
USER_FILTER, unless additional tasks besides filtering are required for the documents.

2.4.4.2 Using USER_FILTER with Charset and Format Columns
USER_FILTER bypasses documents that do not need to be filtered. Its behavior is sensitive to
the values of the format and charset columns. In addition, USER_FILTER performs character set
conversion according to the charset column values.

2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns

A mixed-format column is a text column containing more than one document format, such as a
column that contains Microsoft Word, PDF, plain text, and HTML documents.

The USER_FILTER executable can index mixed-format columns, automatically bypassing textual
documents. However, if you prefer not to depend on the built-in bypass mechanism, you can
explicitly tag your rows as text and cause the USER_FILTER executable to ignore the row and
not process the document in any way.

The format column in the base table enables you to specify the type of document contained in
the text column. You can specify the following document types: TEXT, BINARY, and IGNORE.
During indexing, the USER_FILTER executable ignores any document typed TEXT, assuming the
charset column is not specified. (The difference between a document with a TEXT format
column type and one with an IGNORE type is that the TEXT document is indexed, but ignored by
the filter, while the IGNORE document is not indexed at all. Use IGNORE to overlook documents
such as image files, or documents in a language that you do not want to index. IGNORE can be
used with any filter type.

To set up the USER_FILTER bypass mechanism, you must create a format column in your base
table. For example:

create table hdocs (
 id number primary key,
 fmt varchar2(10),

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 123

 text varchar2(80)
);

Assuming you are indexing mostly Word documents, you specify BINARY in the format column
to filter the Word documents. Alternatively, to have the USER_FILTER executable ignore an
HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one
format as BINARY and the other TEXT:

insert into hdocs values(1, 'binary', '/docs/myword.doc');
insert into hdocs values(2, 'text', '/docs/index.html');
commit;

Assuming that this file is named upcase.pl, create the filter preference as follows:

ctx_ddl.create_preference
 (
 preference_name => 'USER_FILTER_PREF',
 object_name => 'USER_FILTER'
);

ctx_ddl.set_attribute ('USER_FILTER_PREF', 'COMMAND', 'upcase.pl');

To create the index, use CREATE INDEX and specify the format column name in the parameter
string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.directory_datastore
 filter 'USER_FILTER_PREF'
 format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

2.4.4.4 Character Set Conversion with USER_FILTER
The USER_FILTER executable converts documents to the database character set when the
document format column is set to TEXT. In this case, the USER_FILTER executable looks at the
charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed
through without any character set conversion.

2.4.4.5 User Filter Example
The following example shows a Perl script to be used as the user filter. This script converts the
input text file specified in the first argument to uppercase and writes the output to the location
specified in the second argument.

#!/usr/local/bin/perl

open(IN, $ARGV[0]);
open(OUT, ">".$ARGV[1]);

while (<IN>)
{
 tr/a-z/A-Z/;
 print OUT;
}

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 123

close (IN);
close (OUT);

Assuming that this file is named upcase.pl, create the filter preference as follows:

begin
 ctx_ddl.create_preference
 (
 preference_name => 'USER_FILTER_PREF',
 object_name => 'USER_FILTER'
);
 ctx_ddl.set_attribute
 ('USER_FILTER_PREF','COMMAND','upcase.pl');
end;

Create the index in SQL*Plus as follows:

create index user_filter_idx on user_filter (docs)
 indextype is ctxsys.context
 parameters ('FILTER USER_FILTER_PREF');

2.4.5 PROCEDURE_FILTER
Use the PROCEDURE_FILTER type to filter your documents with a stored procedure. The stored
procedure is called each time a document needs to be filtered.

This section contains the following topics.

• PROCEDURE_FILTER Attributes

• PROCEDURE_FILTER Parameter Order

• PROCEDURE_FILTER Execute Requirements

• PROCEDURE_FILTER Error Handling

• PROCEDURE_FILTER Preference Example

2.4.5.1 PROCEDURE_FILTER Attributes
Table 2-14 lists the attributes for PROCEDURE_FILTER.

Table 2-14 PROCEDURE_FILTER Attributes

Attribute Purpose Allowable Values

procedure Name of the filter stored
procedure.

Any procedure. The procedure can be a PL/SQL
stored procedure.

input_type Type of input argument
for stored procedure.

VARCHAR2, BLOB, CLOB, FILE

output_type Type of output argument
for stored procedure.

VARCHAR2, CLOB, FILE

rowid_parameter Include rowid parameter? TRUE/FALSE

format_parameter Include format
parameter?

TRUE/FALSE

charset_parameter Include charset
parameter?

TRUE/FALSE

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 123

procedure
Specify the name of the stored procedure to use for filtering. The procedure can be a PL/SQL
stored procedure. The procedure can be a safe callout, or call a safe callout.
With the rowid_parameter, format_parameter, and charset_parameter set to FALSE, the
procedure can have one of the following signatures:

PROCEDURE(IN BLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN CLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN VARCHAR, IN OUT NOCOPY CLOB)
PROCEDURE(IN BLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN CLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN VARCHAR2, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN BLOB, IN VARCHAR2)
PROCEDURE(IN CLOB, IN VARCHAR2)
PROCEDURE(IN VARCHAR2, IN VARCHAR2)

The first argument is the content of the unfiltered row, output by the datastore. The second
argument is for the procedure to pass back the filtered document text.
The procedure attribute is mandatory and has no default.

input_type
Specify the type of the input argument of the filter procedure. You can specify one of the
following types:

Type Description

procedure Name of the filter stored procedure.

input_type Type of input argument for stored procedure.

output_type Type of output argument for stored procedure.

rowid_parameter Include rowid parameter?

The input_type attribute is not mandatory. If not specified, then BLOB is the default.

output_type
Specify the type of output argument of the filter procedure. You can specify one of the
following types:

Type Description

CLOB The output argument is IN OUT NOCOPY CLOB. Your procedure
must write the filtered content to the CLOB passed in.

VARCHAR2 The output argument is IN OUT NOCOPY VARCHAR2. Your
procedure must write the filtered content to the VARCHAR2
variable passed in.

FILE The output argument must be IN VARCHAR2. On entering the filter
procedure, the output argument is the name of a temporary file.
The filter procedure must write the filtered contents to this named
file.
Using a FILE output type is useful only when the procedure is a
safe callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, then CLOB is the default.

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 123

rowid_ parameter
When you specify TRUE, the rowid of the document to be filtered is passed as the first
parameter, before the input and output parameters.
For example, with INPUT_TYPE BLOB, OUTPUT_TYPE CLOB, and ROWID_PARAMETER TRUE, the filter
procedure must have the signature as follows:

procedure(in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or tables.
This attribute is not mandatory. The default is FALSE.

format_parameter
When you specify TRUE, the value of the format column of the document being filtered is
passed to the filter procedure before input and output parameters, but after the rowid
parameter, if enabled.
Specify the name of the format column at index time in the parameters string, using the
keyword 'format column <columnname>'. The parameter type must be IN VARCHAR2.
The format column value can be read by means of the rowid parameter, but this attribute
enables a single filter to work on multiple table structures, because the format attribute is
abstracted and does not require the knowledge of the name of the table or format column.
FORMAT_PARAMETERis not mandatory. The default is FALSE.

charset_parameter
When you specify TRUE, the value of the charset column of the document being filtered is
passed to the filter procedure before input and output parameters, but after the rowid and
format parameter, if enabled.
Specify the name of the charset column at index time in the parameters string, using the
keyword 'charset column <columnname>'. The parameter type must be IN VARCHAR2.
The CHARSET_PARAMETER attribute is not mandatory. The default is FALSE.

2.4.5.2 PROCEDURE_FILTER Parameter Order
ROWID_PARAMETER, FORMAT_PARAMETER, and CHARSET_PARAMETER are all independent. The order
is rowid, the format, then charset. However, the filter procedure is passed only the minimum
parameters required.

For example, assume that INPUT_TYPE is BLOB and OUTPUT_TYPE is CLOB. If your filter procedure
requires all parameters, then the procedure signature must be:

(id IN ROWID, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
OUT NOCOPY CLOB)

If your procedure requires only the ROWID, then the procedure signature must be:

(id IN ROWID,input IN BLOB, output IN OUT NOCOPY CLOB)

2.4.5.3 PROCEDURE_FILTER Execute Requirements
To create an index using a PROCEDURE_FILTER preference, the index owner must have execute
permission on the procedure.

2.4.5.4 PROCEDURE_FILTER Error Handling
The filter procedure can raise any errors needed through the normal PL/SQL
raise_application_error facility. These errors are propagated to the
CTX_USER_INDEX_ERRORS view or reported to the user, depending on how the filter is
invoked.

Chapter 2
Filter Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 123

2.4.5.5 PROCEDURE_FILTER Preference Example
Consider a filter procedure CTXSYS.NORMALIZE that you define with the following signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, set up your filter preference as follows:

begin
ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter', 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');
end;

2.5 Lexer Types
Use the lexer preference to specify the language of the text to be indexed. To create a lexer
preference, you must use one of these lexer types.

• AUTO_LEXER

• BASIC_LEXER

• MULTI_LEXER

• CHINESE_VGRAM_LEXER

• CHINESE_LEXER

• JAPANESE_VGRAM_LEXER

• JAPANESE_LEXER

• KOREAN_MORPH_LEXER

• USER_LEXER

• WORLD_LEXER

2.5.1 AUTO_LEXER
Identifies the language being indexed by examining the content, and applies suitable options
(including stemming) for that language. Works best where each document contains a single-
language, and has at least a couple of paragraphs of text to aid identification.

Use the AUTO_LEXER type to index columns that contain documents of different languages. It
performs language identification, word segmentation, document analysis, and stemming. The
AUTO_LEXER also enables customization of these components. Although parts-of-speech
information that is generated by the AUTO_LEXER is not exposed for your use, AUTO_LEXER uses
it for context-sensitive or tagged stemming.

• AUTO_LEXER Language Support

• AUTO_LEXER Attributes Inherited from BASIC_LEXER

• AUTO_LEXER Language-Independent Attributes

• AUTO_LEXER Language-Dependent Attributes

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 123

• AUTO_LEXER Dictionary Attribute

2.5.1.1 AUTO_LEXER Language Support
At index time, AUTO_LEXER automatically detects the language of the document, and tokenizes
and stems the document appropriately.

AUTO_LEXER Dictionary

To specify an AUTO_LEXER dictionary, use the name of the dictionary you created instead of the
file name for the dictionary.

At query time, the language of the query is inherited from the query template. If the query
template is not used, or if no language is specified in the query template, then the language of
the query is inherited from the session language.

Note

The dictionary data is not processed until the index or policy creation time or until the
ALTER INDEX time. Errors in dictionary data format are caught at the index or policy
creation time or at the ALTER INDEX time, and are reported as the "DRG-13710: Syntax
Error in Dictionary" error.

AUTO_LEXER Component Versions

Starting with Oracle AI Database 26ai, the AUTO_LEXER component supports version ANL6,
which is shipped with the Oracle AI Database installation by default.

The earlier version (ANL1) of the AUTO_LEXER component is available as an optional download
patch. If you want to use version ANL1 to retain the prior language behavior for backward
compatibility, then you can download ANL1 from My Oracle Support. After downloading the
component, you must set Event 30579 Level 1048576 at the SYSTEM level.

Languages Distribution Model

• By default, Oracle Text ships language data files for only some of the languages supported
for the AUTO_LEXER component. You can download data files for all other languages on
demand from My Oracle Support using optional download patches. This language patch
mechanism helps you control the installed languages and thus reduce the size of the
database distribution for on-premises deployments.

• These language data files are included with the Oracle Database installation by default:

Arabic Korean

Bokmal (Norwegian) Nynorsk (Norwegian)

Catalan Persian

Croatian Polish

Czech Portuguese

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 123

Danish Romanian

Dutch Russian

English Serbian

Finnish Simplified Chinese (see Note)

French Slovak

German Slovenian

Greek Spanish

Hebrew Swedish

Hungarian Thai

Italian Traditional Chinese (see Note)

Japanese Turkish

Note

Due to the limitation of 30 characters for the string, Traditional Chinese must be
specified as trad_chinese. Simplified Chinese must be specified as
simp_chinese.

• You can download these language data files from My Oracle Support using optional
download patches:

Afrikaans Indonesian

Basque Latvian

Belarusian Lithuanian

Bulgarian Macedonian

Estonian Malay

Galician Ukrainian

Hindi Urdu

Icelandic -

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 123

2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER
The following attributes are used in the same way and have the same effect on the AUTO_LEXER
as their corresponding attributes in BASIC_LEXER:

• printjoins

• skipjoins

• base_letter

• base_letter_type

• override_base_letter

• mixed_case

• alternate_spelling

See Also

"BASIC_LEXER" and Table 2-19

2.5.1.3 AUTO_LEXER Language-Independent Attributes
These are the language-independent attributes that are supported for the AUTO_LEXER
component.

Table 2-15 AUTO_LEXER Language-Independent Attributes

Attribute Attribute Value Description

language characters (space-delimited
string)

Specifies the possible languages of the input documents.

If no language is specified, then AUTO_LEXER performs auto
detection.

If one language is specified, then the language is set
manually and AUTO_LEXER does not perform auto detection.

If more than one language is specified, then AUTO_LEXER
performs auto detection but limits the detected language to
be among the language set.

Note: The automatic detection of language is statistically
based and, thus, inherently imperfect.

deriv_stems YES (default)

NO (disabled)

Specifies whether the derivational stemming should be used
or not. Currently, derivational stemming is only available for
English. Hence, the DERIV_STEMS has no effect in other
languages.

Also, when derivational stemming is performed, tagging and
tag stemming is not used. As a result, the tagging and
tagged stemming client dictionary has no effect on the
stemming result.

german_decompound YES (default, enabled for
German only)

NO (disabled)

Specifies whether German de-compounding should be
performed in the stemmer or not.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 123

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes

Attribute Attribute Value Description

index_stems YES (default)

NO (disabled)

Specifies whether an index stemmer should be used.

When set to YES, compound word stemming is automatically
performed and compounds are always separated into their
component stems. The stemmer that corresponds to the
document language is used and the stemmer is always
configured to maximize document recall. Note that this
means that the stemmer attribute of BASIC_WORDLIST is
ignored, and the stemmer used by the AUTO_LEXER is used
during query to determine the stem of the given query term.

When set to NO, queries with stem operators use the word
list stemming to stem the tokens. If word list stemming is not
available, then the stem operator is ignored.

base_letter YES (enabled)

NO (disabled)

Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are converted
to their base form before being stored in the Text index.

base_letter_type SPECIFIC

GENERIC (default)

The GENERIC value is the default and means that base letter
transformation uses one transformation table that applies to
all languages.

override_base_letter TRUE

FALSE (default)

When base_letter is enabled at the same time as
alternate_spelling, it is sometimes necessary to
override base_letter to prevent unexpected results from
serial transformations.

mixed_case YES (enabled)

NO (disabled)

Specify whether the lexer leaves the tokens exactly as they
appear in the text or converts the tokens to all uppercase.
The default is NO (tokens are converted to all uppercase).

alternate_spelling GERMAN (German alternate
spelling)

SWEDISH (Swedish alternate
spelling)

NONE (No alternate spelling,
default)

Specifies whether alternate spelling should be used or not.

The default is NONE. No alternate spelling is specified.

printjoins characters Specify the non alphanumeric characters that, when they
appear anywhere in a word (beginning, middle, or end), are
processed as alphanumeric and included with the token in
the Text index. This includes printjoins that occur
consecutively. See Basic Lexer "printjoins".

skipjoins characters Specify the non-alphanumeric characters that, when they
appear within a word, identify the word as a single token;
however, the characters are not stored with the token in the
Text index. See Basic Lexer "skipjoins".

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 123

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes

Attribute Attribute Value Description

composite YES (default)

NO

Specify whether compound word stemming is enabled or
disabled for the supported languages text. The default value
is YES (compound word stemming enabled). You can use
this feature for all languages that are supported for
AUTO_LEXER.

When set to NO, words that are usually one entry in a
dictionary are not split into composite stems, while words
that are not dictionary entries are split into composite stems.

To retrieve the indexed composite stems, you must enter a
stem query. For example, $bahnhof in German. The
language of the wordlist stemmer must match the language
of the composite stems.

timeout number Specify the timeout value in seconds for auto_lexer
tokenization.

Use a number between 0 and 600. The default value is 300.

Related Topics

• AUTO_LEXER Language Support
At index time, AUTO_LEXER automatically detects the language of the document, and
tokenizes and stems the document appropriately.

2.5.1.4 AUTO_LEXER Language-Dependent Attributes
These are the language-dependent attributes available in the AUTO_LEXER. The <language>
variable in the attribute name refers to any of the supported language names.

Note

Attribute names must not exceed 30 characters. Therefore, where the <language>
variable is specified, the language name may need to be abbreviated in certain
instances. For example, traditional_chinese should be abbreviated to
trad_chinese and simplified_chinese should be abbreviated to simp_chinese.

Table 2-16 AUTO_LEXER Language-Dependent Attributes

Attribute Attribute Value Description

<language>_prefix_mor
phemes

characters (space-delimited
string)

Specifies the list of inflectional prefixes that, when enclosed
by parentheses, are kept together with the base word. For
example, (re) analyze.

<language>_suffix_mor
phemes

characters (space-delimited
string)

Specifies the list of inflectional suffixes that, when enclosed
by parentheses are kept together with the base word. For
example, file(s).

<language>_punctuatio
ns

characters (space-delimited
string)

Specifies punctuation that breaks sentences.

<language>_non_sent_e
nd_abbr

characters (space-delimited
string)

Specifies abbreviations that do not end sentences.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 123

Table 2-17 Default Values for AUTO_LEXER Language-Dependent Attributes

Attribute Language Default Value

<language>_prefix_morphemes All languages None

<language>_suffix_morphemes English s es er

<language>_suffix_morphemes Spanish ba n s es

<language>_suffix_morphemes Portuguese s es

<language>_suffix_morphemes German in innen

<language>_suffix_morphemes French ne e

<language>_suffix_morphemes All other languages None

<language>_punctuations English . ? !

<language>_punctuations Catalan, Czech, Dutch, Greek,
Hungarian, Polish, Romanian,
Russian, Turkish

. ? ! - --

<language>_punctuations French, German, Italian,
Korean, Portuguese, Spanish,
Swedish

, ? !

<language>_punctuations Japanese

<language>_punctuations Simplified Chinese

Abbreviate to: simp_chinese

<language>_punctuations Traditional Chinese

Abbreviate to: trad_chinese

<language>_non_sent_end_abbr Polish, Romanian, Russian,
Turkish

e.g. i.e. viz. a.k.a.

<language>_non_sent_end_abbr Catalan R.D. pp.

<language>_non_sent_end_abbr Czech, Greek, Hungarian e.g. i.e. viz. a.k.a.

<language>_non_sent_end_abbr Dutch f.eks. f. eks. inkl. sr. skuesp. sekr. prof. mus. lrs.
logr. kgl. insp. hr. hrs. gdr. frk. fr. forst. forf. fm.
fmd. esq. d.æ d.æ. d.y. dr. dir. dept.chef
civiling. bibl. ass. admn. adj. Skt. H.K.H.

<language>_non_sent_end_abbr English, Japanese, Simplified
Chinese (abbreviate to
simp_chinese), Traditional
Chinese (abbreviate to
trad_chinese)

e.g. i.e. viz. a.k.a. Adm. Br. Capt. Cdr. Cmdr.
Col. Comdr. Comdt. Dr. Drs. Fr. Gen. Gov. Hon.
Ins. Lieut. Lt. Maj. Messrs. Mdm. Mlle. Mlles.
Mme. Mmes. Mr. Mrs. Ms. Pres. Prof. Profs.
Pvt. Rep. Rev. Revd. Secy. Sen. Sgt. Sra. Srta.
St. Ste.

<language>_non_sent_end_abbr French c.-à-d. cf. e.g. ex. i.e. Pr. Prof. M. Mr. Mrs. Mme
Mmes Mlle Mlles Mgr. MM. Lieut. Gén. Dr. Col.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 123

Table 2-17 (Cont.) Default Values for AUTO_LEXER Language-Dependent Attributes

Attribute Language Default Value

<language>_non_sent_end_abbr German ca. bzw. e.g. i.e. inkl. Fr. Frl. Mme. Mile. Mag.
Stud. Tel. Hr. Hrn. apl.Prof. Prof.

<language>_non_sent_end_abbr Italian e.g. i.e. pag. pagg. tel. T.V. N.H. N.D. comm.
col. cav. cap. geom. gen. ing. jr. mr. mons. mar.
magg. prof. prof.ssa prof.sse proff. pres. perito
ind. p. p.i. sr. s.ten. sottoten. sig. serg. sen.
segr. sac. ten. uff. vicepres. vesc. S.S. S.E. avv.
app. amm. arch. on. dir. dott. dott.ssa dr. rag.

<language>_non_sent_end_abbr Korean e.g. i.e. a.k.a. Dr. Mr. Mrs. Ms. Prof.

<language>_non_sent_end_abbr Portuguese cf. Cf. e.g. E.g. i.é. I.é. p.ex. P.ex. pág. pag.
Pág. Pag. tel. telef. Tel. Telef. sr. srs. sra. mr.
eng. dr. dra. Dr. Dra. V.Ex. V.Exa. S. N. S. Mrs.
Eng. Ex. Exa.

<language>_non_sent_end_abbr Spanish e.g. i.e. ej. p.ej. pág. págs. tel. tfno. Fr. Ldo.
Lda. Lic. Pbro. D. Dña. Dr. Dres. Dra. Dras. Dn.
Mons. Rvdo. Sto. Sta. Sr. Srs. Srta. Srtas.
Sres. Sra. Sras. Excmo. Excma. Ilmo. Ilma. Sto.
Sta.

<language>_non_sent_end_abbr Swedish inkl. prof. hrr. hr. Hrr. Hr. dr. Dr.

Examples for AUTO_LEXER Language-Dependent Attributes

Example 2-1 ctx_ddl.create_preference to associate a dictionary with an index

exec CTX_DDL.CREATE_PREFERENCE('A_LEX', 'AUTO_LEXER');
exec CTX_ANL. ADD_DICTIONARY('MY_ENGLISH', 'ENGLISH', lobloc);
select * from CTX_USR_ANL_DICTS;
exec CTX_DDL.SET_ATTRIBUTE('A_LEX', 'english_dictionary', 'MY_ENGLISH'
);

Example 2-2 <language>_prefix_morphemes

ctx_ddl.set_attribute(
 'a_lex', 'english_prefix_morphemes', 're'
);

Example 2-3 <language>_suffix_morphemes

ctx_ddl.set_attribute(
 'a_lex', 'english_suffix_morphemes', 's es'
);

Example 2-4 <language>_punctuations

ctx_ddl.set_attribute(
 'a_lex', 'english_punctuations', '. ? !'
);

Example 2-5 <language>_non_sentence_ending_abbrev

ctx_ddl.set_attribute(
 'a_lex', 'english_non_sentence_ending_abbrev', 'e.g. a.k.a. Dr.'
);

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 123

2.5.1.5 AUTO_LEXER Dictionary Attribute
The dictionary attribute is language-specific and is used to set the name of the language
dictionary. The <language>_dictionary attribute specifies one language dictionary for the
supported languages as listed in Table 2-18.

The <language>_dictionary attribute has the following behavior:

• The <language> value of the attribute specifies only the dictionary name, not the location.
For example, dutch_dictionary specifies that the Dutch dictionary is to be used.

• The set_attribute method does not load the dictionary; it only records the dictionary
name. Therefore, the dictionary must be at the specified location when the dictionary is
needed. Otherwise, an error will be raised.

Table 2-18 Supported Languages for AUTO_LEXER Dictionary Attribute

Language Attribute Language Attribute

Catalan Korean

Czech Polish

Dutch Portuguese

English Romanian

French Russian

German Simplified Chinese

Greek Spanish

Hungarian Swedish

Italian Traditional Chinese

Japanese Turkish

2.5.2 BASIC_LEXER
Extracts tokens from text in languages, such as English and most of the western European
languages that use whitespace-delimited words.

Use the BASIC_LEXER type to identify tokens for creating Text indexes for English and all other
supported whitespace-delimited languages. The BASIC_LEXER also enables base-letter
conversion, composite word indexing, case-sensitive indexing and alternate spelling for
whitespace-delimited languages that have extended character sets.

In English and French, you can use the BASIC_LEXER to enable theme indexing.

Note

Any processing that the lexer does to tokens before indexing (for example, removal of
characters, and base-letter conversion) are also performed on query terms at query
time. This ensures that the query terms match the form of the tokens in the Text index.

BASIC_LEXER supports any database character set.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 123

This section contains the following topics.

• BASIC_LEXER Language Support

• BASIC_LEXER Attributes

• Stemming User-Dictionaries

• BASIC_LEXER Example

2.5.2.1 BASIC_LEXER Language Support
Oracle Text installs language data files for English by default. You can download data files for
all other supported languages on demand from My Oracle Support.

Languages Distribution Model

Oracle Text utilizes installed data files for each supported language. Through cloud services,
Oracle Text provides access to full versions of all supported languages. To reduce the
installation footprint on disk for on-premises deployments, Oracle Text provides the following
mechanism to control the number of downloaded languages:

• By default, full version of the English language data file is included with the Oracle AI
Database installation. All other supported languages (apart from English) are distributed as
optional download patches.

• Sample versions of some of the language data files are also included with the installation.
You can utilize full versions of all these sample languages by downloading the required
patches from My Oracle Support.

These languages are provided as both sample versions and download patches:

Catalan Polish

Czech Portuguese

Dutch Romanian

French Russian

German Spanish

Greek Swedish

Hungarian Turkish

Italian -

• Some of the supported languages are distributed only as download patches with no
sample included. You can utilize full versions of all these languages by downloading the
required patches from My Oracle Support.

These languages are provided only as download patches:

Afrikaans Icelandic

Arabic Indonesian

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 123

Basque Latvian

Belarusian Lithuanian

Bokmal (Norwegian) Macedonian

Bulgarian Malay

Croatian Nynorsk (Norwegian)

Danish Persian (Farsi)

Estonian Serbian

Finnish Slovak

Galician Slovenian

Hebrew Ukrainian

Hindi Urdu

2.5.2.2 BASIC_LEXER Attributes
These are the attributes supported for the BASIC_LEXER component.

Table 2-19 BASIC_LEXER Attributes

Attribute Attribute Value

continuation characters

numgroup characters

numjoin characters

printjoins characters

punctuations characters

skipjoins characters

startjoins non alphanumeric characters that occur at the beginning of a token
(string)

endjoins non alphanumeric characters that occur at the end of a token (string)

whitespace characters (string)

newline NEWLINE (\n)

CARRIAGE_RETURN (\r)

base_letter NO (disabled)

YES (enabled)

base_letter_type GENERIC (default)

SPECIFIC

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 123

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

override_base_letter TRUE

FALSE (default)

mixed_case NO (disabled)

YES (enabled)

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 123

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

composite YES (default; composite word indexing enabled)

Afrikaans

Arabic

Basque

Belarusian

Bokmal (Norwegian)

Bulgarian

Catalan

Croatian

Czech

Danish

Dutch

English

Estonian

Finnish

French

Galician

German

Greek

Hebrew

Hindi

Hungarian

Icelandic

Indonesian

Italian

Latvian

Lithuanian

Macedonian

Malay

Nynorsk (Norwegian)

Persian (Farsi)

Polish

Portuguese

Romanian

Russian

Serbian

Slovak

Slovenian

Spanish

Swedish

Turkish

Ukrainian

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 123

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

Urdu

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 123

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

index_stems

Use the numeric value in a
string or the string value.

NONE

Afrikaans

Arabic

Basque

Belarusian

Bokmal (Norwegian)

Bulgarian

Catalan

Croatian

Czech

Danish

Derivational

Dutch

English

Estonian

Finnish

French

Galician

German

Greek

Hebrew

Hindi

Hungarian

Icelandic

Indonesian

Italian

Latvian

Lithuanian

Macedonian

Malay

Nynorsk (Norwegian)

Persian (Farsi)

Polish

Portuguese

Romanian

Russian

Serbian

Slovak

Slovenian

Spanish

Swedish

Turkish

Ukrainian

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 123

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

Urdu

Note

• Apart from English, all other
languages are either provided in
sample sizes (with full data files
available for download) or as optional
download patches.

• De-compounding word stemming is
automatically performed when
index_stems is set to Swedish or
Dutch values.

• In previous releases, index_stems
attributes with the _New suffix used to
enable a new stemmer for maintaining
backward compatibility with the old
stemmer. Starting with Oracle AI
Database 26ai, the old stemmer has
been removed, making the _New suffix
redundant. For example,
English_New is equivalent to
English.

index_themes YES (enabled)

NO (disabled, default)

index_text YES (enabled, default)

NO (disabled)

prove_themes YES (enabled, default)

NO (disabled)

theme_language AUTO (default)

(any Globalization Support language)

alternate_spelling German (German alternate spelling)

Danish (Danish alternate spelling)

Swedish (Swedish alternate spelling)

NONE (No alternate spelling, default)

new_german_spelling YES

NO (default)

continuation
Specify the characters that indicate a word continues on the next line and should be indexed
as a single token. The most common continuation characters are hyphen '-' and backslash '\'.

numgroup
Specify a single character that, when it appears in a string of digits, indicates that the digits
are groupings within a larger single unit.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 123

For example, comma ',' might be defined as a numgroup character because it often indicates a
grouping of thousands when it appears in a string of digits.

numjoin
Specify the characters that, when they appear in a string of digits, cause Oracle Text to index
the string of digits as a single unit or word.
For example, period '.' can be defined as a numjoin character because it often serves as a
decimal point when it appears in a string of digits.

Note

The default values for numjoin and numgroup are determined by the globalization
support initialization parameters that are specified for the database.
In general, a value need not be specified for either numjoin or numgroup when
creating a lexer preference for BASIC_LEXER.

printjoins
Specify the non alphanumeric characters that, when they appear anywhere in a word
(beginning, middle, or end), are processed as alphanumeric and included with the token in the
Text index. This includes printjoins that occur consecutively.
For example, if the hyphen '-' and underscore '_' characters are defined as printjoins, terms
such as pseudo-intellectual and _file_ are stored in the Text index as pseudo-intellectual and
file.

Note

If a printjoins character is also defined as a punctuations character, the character
is only processed as an alphanumeric character if the character immediately following
it is a standard alphanumeric character or has been defined as a printjoins or
skipjoins character.

punctuations
Specify a list of non-alphanumeric characters that, when they appear at the end of a word,
indicate the end of a sentence. The defaults are period '.', question mark '?', and exclamation
point '!'.
Characters that are defined as punctuations are removed from a token before text indexing.
However, if a punctuations character is also defined as a printjoins character, then the
character is removed only when it is the last character in the token.
For example, if the period (.) is defined as both a printjoins and a punctuations character,
then the following transformations take place during indexing and querying as well:

Token Indexed Token

.doc .doc

dog.doc dog.doc

dog..doc dog..doc

dog. dog

dog... dog..

In addition, BASIC_LEXER use punctuations characters in conjunction with newline and
whitespace characters to determine sentence and paragraph delimiters for sentence/
paragraph searching.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 123

skipjoins
Specify the non-alphanumeric characters that, when they appear within a word, identify the
word as a single token; however, the characters are not stored with the token in the Text
index.
For example, if the hyphen character '-' is defined as a skipjoins, then the word pseudo-
intellectual is stored in the Text index as pseudointellectual.

Note

Printjoins and skipjoins are mutually exclusive. The same characters cannot be
specified for both attributes.

startjoins/endjoins
For startjoins, specify the characters that when encountered as the first character in a token
explicitly identify the start of the token. The character, as well as any other startjoins
characters that immediately follow it, is included in the Text index entry for the token. In
addition, the first startjoins character in a string of startjoins characters implicitly ends the
previous token.
For endjoins, specify the characters that when encountered as the last character in a token
explicitly identify the end of the token. The character, as well as any other startjoins
characters that immediately follow it, is included in the Text index entry for the token.
The following rules apply to both startjoins and endjoins:

• The characters specified for startjoins/endjoins cannot occur in any of the other
attributes for BASIC_LEXER.

• startjoins/endjoins characters can occur only at the beginning or end of tokens

Printjoins differ from endjoins and startjoins in that position does not matter. For example, $35
will be indexed as one token if $ is a startjoin or a printjoin, but as two tokens if it is
defined as an endjoin.

whitespace
Specify the characters that are treated as blank spaces between tokens. BASIC_LEXER uses
whitespace characters in conjunction with punctuations and newline characters to identify
character strings that serve as sentence delimiters for sentence and paragraph searching.
The predefined default values for whitespace are space and tab. These values cannot be
changed. Specifying characters as whitespace characters adds to these defaults.

newline
Specify the characters that indicate the end of a line of text. BASIC_LEXER uses newline
characters in conjunction with punctuations and whitespace characters to identify character
strings that serve as paragraph delimiters for sentence and paragraph searching.
The only valid values for newline are NEWLINE and CARRIAGE_RETURN (for carriage returns).
The default is NEWLINE.

base_letter
Specify whether characters that have diacritical marks (umlauts, cedillas, acute accents, and
so on) are converted to their base form before being stored in the Text index. The default is
NO (base-letter conversion disabled). For more information on base-letter conversions and
base_letter_type, see Base-Letter Conversion.

base_letter_type
Specify GENERIC or SPECIFIC.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 123

The GENERIC value is the default and means that base letter transformation uses one
transformation table that applies to all languages. For more information on base-letter
conversions and base_letter_type, see "Base-Letter Conversion".

override_base_letter
When base_letter is enabled at the same time as alternate_spelling, it is sometimes
necessary to override base_letter to prevent unexpected results from serial transformations.
See "Overriding Alternative Spelling Features". Default is FALSE.

mixed_case
Specify whether the lexer leaves the tokens exactly as they appear in the text or converts the
tokens to all uppercase. The default is NO (tokens are converted to all uppercase).

Note

Oracle Text ensures that word queries match the case sensitivity of the index being
queried. As a result, if you enable case sensitivity for your Text index, queries against
the index are always case sensitive.

composite
Specify whether composite word indexing is disabled or enabled for the supported languages
text. The default value is YES (composite word indexing enabled). You can use this feature for
all languages that are supported for BASIC_LEXER.
Words that are usually one entry in a dictionary are not split into composite stems, while words
that are not dictionary entries are split into composite stems.
To retrieve the indexed composite stems, you must enter a stem query. For
example, $bahnhof in German. The language of the wordlist stemmer must match the
language of the composite stems.

Related Topics

• BASIC_LEXER Language Support
Oracle Text installs language data files for English by default. You can download data files
for all other supported languages on demand from My Oracle Support.

2.5.2.3 Stemming User-Dictionaries
You can create a user-dictionary for your own language to customize how words are
decomposed.

Table 2-20 Stemming User-Dictionaries

Dictionary Stemmer

$ORACLE_HOME/ctx/data/frlx/drfr.dct French

$ORACLE_HOME/ctx/data/delx/drde.dct German

$ORACLE_HOME/ctx/data/nllx/drnl.dct Dutch

$ORACLE_HOME/ctx/data/itlx/drit.dct Italian

$ORACLE_HOME/ctx/data/eslx/dres.dct Spanish

$ORACLE_HOME/ctx/data/enlx/dren.dct English and Derivational

Stemming user-dictionaries are not supported for languages other than those listed in
Table 2-20.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 123

The format for the user dictionary is as follows:

output term <tab> input term

The individual parts of the decomposed word must be separated by the # character. The
following example entries are for the German word Hauptbahnhof:

Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhofes<tab>Haupt#Bahnhof
Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhoefe<tab>Haupt#Bahnhof

index_themes
Specify YES to index theme information in English or French. This makes ABOUT queries more
precise. The index_themes and index_text attributes cannot both be NO. The default is NO.
You can set this parameter to TRUE for any index type. To enter an ABOUT query with
CATSEARCH, use the query template with CONTEXT grammar.

prove_themes
Specify YES to prove themes. Theme proving attempts to find related themes in a document.
When no related themes are found, parent themes are eliminated from the document.
While theme proving is acceptable for large documents, short text descriptions with a few
words rarely prove parent themes, resulting in poor recall performance with ABOUT queries.
Theme proving results in higher precision and less recall (less rows returned) for ABOUT
queries. For higher recall in ABOUT queries and possibly less precision, you can disable theme
proving. Default is YES.
The prove_themes attribute is supported for CONTEXT and CTXRULE indexes.

theme_language
Specify which knowledge base to use for theme generation when index_themes is set to YES.
When index_themes is NO, setting this parameter has no effect on anything.
Specify any globalization support language or AUTO. You must have a knowledge base for the
language you specify. This release provides a knowledge base in only English and French. In
other languages, you can create your own knowledge base.

See Also

"Adding a Language-Specific Knowledge Base" in Oracle Text Utilities .

The default is AUTO, which instructs the system to set this parameter according to the language
of the environment.

index_stems
Specify the stemmer to use for stem indexing. Choose one of the following stemmers:
NONE, Arabic, Bokmal (Norwegian), Catalan, Croatian, Czech, Danish, Derivational, Dutch,
English, Finnish, French, German, Hebrew, Hungarian, Italian, Nynorsk (Norwegian),
Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, and Swedish

Tokens are stemmed to a single base form at index time in addition to the normal forms.
Indexing stems enables better query performance for stem ($) queries, such as $computed.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 123

Note

If the index_stems attribute is set to one of the languages with ID 8 to 33, which are
listed Table 2-19, then the stemmer attribute of BASIC_WORDLIST will be ignored and the
stemmer used by the BASIC_LEXER will be used during query to determine the stem of
the given query term.

index_text
Specify YES to index word information. The index_themes and index_text attributes
cannot both be NO.
The default is YES.

alternate_spelling
Specify either German, Danish, or Swedish to enable the alternate spelling in one of these
languages. Enabling alternate spelling enables you to query a word in any of its alternate
forms.
Alternate spelling is off by default; however, in the language-specific scripts that Oracle
provides in admin/defaults (drdefd.sql for German, drdefdk.sql for Danish, and
drdefs.sql for Swedish), alternate spelling is turned on. If your installation uses these scripts,
then alternate spelling is on. However, you can specify NONE for no alternate spelling. For more
information about the alternate spelling conventions Oracle Text uses, see Alternate Spelling.

new_german_spelling
Specify whether the queries using the BASIC_LEXER return both traditional and reformed (new)
spellings of German words. If new_german_spelling is set to YES, then both traditional and
new forms of words are indexed. If it is set to NO, then the word will be indexed only as it as
provided in the query. The default is NO.

See Also

"New German Spelling"

2.5.2.4 BASIC_LEXER Example
The following example sets printjoin characters and disables theme indexing with the
BASIC_LEXER:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
ctx_ddl.set_attribute ('mylex', 'index_themes', 'NO');
ctx_ddl.set_attribute ('mylex', 'index_text', 'YES');
end;

To create the index with no theme indexing and with printjoin characters set as described,
enter the following statement:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters ('LEXER mylex');

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 123

2.5.3 MULTI_LEXER
Requires a LANGUAGE column in the table that identifies the language for each document. Each
language has an associated sub-lexer, defined by the user. This lexer has no attributes.

Use MULTI_LEXER to index text columns that contain documents of different languages. For
example, use this lexer to index a text column that stores English, German, and Japanese
documents.

You must have a LANGUAGE column in your base table. To index multi-language tables, specify
the LANGUAGE column when you create the index. You must also specify the language at query
time (through Session settings or a Language settings in a query template), and the queries
only look for documents that are indexed using the current language.

Create a multi-lexer preference with CTX_DDL.CREATE_PREFERENCE. Add language-specific
lexers to the multi-lexer preference with the CTX_DDL.ADD_SUB_LEXER procedure.

During indexing, the MULTI_LEXER examines each row's language column value and switches
in the language-specific lexer to process the document.

Note

If you drop the language column from a multi-lexer indexed table, you must also drop
the index and rebuild it.

The WORLD_LEXER lexer also performs multi-language indexing, but without the need for
separate LANGUAGE columns (that is, it has automatic language detection). For more on
WORLD_LEXER, see "WORLD_LEXER".

This section contains the following topics.

• MULTI_LEXER Restriction

• MULTI_LEXER Multi-language Stoplists

• MULTI_LEXER Example

• MULTI_LEXER and Querying Multi-Language Tables

2.5.3.1 MULTI_LEXER Restriction
MULTI_LEXER must have a sublexer specified for different languages. If you already know the
language, you can use BASIC_LEXER as the sublexer. If the language is not known, then you
use AUTO_LEXER instead of MULTI_LEXER. Hence, using AUTO_LEXER as a sublexer of
MULTI_LEXER is not useful and it is disabled.

Thus, the following statements will not work and throw error DRG-13003.

exec ctx_ddl.create_preference ('multilexer', 'MULTI_LEXER');
exec ctx_ddl..create_preference('autolexer', AUTO_LEXER);
exec ctx_ddl.add_sub_lexer('multilexer', 'GERMAN', 'autolexer');

2.5.3.2 MULTI_LEXER Multi-language Stoplists
When you use the MULTI_LEXER, you can also use a multi-language stoplist for indexing.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 123

See Also

"Multi-Language Stoplists".

2.5.3.3 MULTI_LEXER Example
Create the multi-language table with a primary key, a text column, and a language column as
follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers, one for
English, one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribute('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default using
CTX_DDL.ADD_SUB_LEXER :

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Now add the German and Japanese lexers in their respective languages with
CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed
in the standard ISO 639-2 language codes, so add those as alternative values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Now create the index globalx, specifying the multi-lexer preference and the language column
in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables
At query time, the multi-lexer examines the language setting and uses the sub-lexer preference
for that language to parse the query.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 123

If the language is not set, then the default lexer is used. Otherwise, the query is parsed and run
as usual. The index contains tokens from multiple languages, so such a query can return
documents in several languages. To limit your query to a given language, use a structured
clause on the language column.

If the language column is set to AUTO, then the multi-lexer detects the language of the
document for the supported languages shown in Table 2-21.

Table 2-21 Languages Supported for MULTI_LEXER Auto-detection

Language Language

Arabic Japanese

Bokmal (Norwegian) Korean

Catalan Latin Serbian

Croatian Nynorsk (Norwegian)

Czech Polish

Danish Portuguese

Dutch Romanian

English Russian

German Slovak

Greek Swedish

Hebrew Thai

Hungarian Traditional Chinese

Italian Turkish

2.5.4 CHINESE_VGRAM_LEXER
Extracts tokens in Chinese text for creating Oracle Text indexes.

Table 2-22 CHINESE_VGRAM_LEXER Attributes

Attribute Attribute Value

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for
example, cat and Cat). Allowable values are YES and NO (default).

You can use this lexer if your database uses one of the following character sets:

• AL32UTF8

• ZHS16CGB231280

• ZHS16GBK

• ZHS32GB18030

• ZHT32EUC

• ZHT16BIG5

• ZHT32TRIS

• ZHT16HKSCS

• ZHT16MSWIN950

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 123

• UTF8

2.5.5 CHINESE_LEXER
Identifies tokens in traditional and simplified Chinese text for creating Oracle Text indexes.

The CHINESE_LEXER type offers the following benefits over the CHINESE_VGRAM_LEXER:

• generates a smaller index

• better query response time

• generates real word tokens resulting in better query precision

• supports stop words

Because the CHINESE_LEXER uses a different algorithm to generate tokens, indexing time is
longer than with CHINESE_VGRAM_LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode character
sets supported by Oracle.

The CHINESE_LEXER has the following attribute:

Table 2-23 CHINESE_LEXER Attributes

Attribute Attribute Value

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create your own
Chinese lexicon, with the ctxlc command.

See Also

"Lexical Compiler (ctxlc)" in Oracle Text Utilities

2.5.6 JAPANESE_VGRAM_LEXER
Identifies tokens in Japanese for creating Oracle Text indexes. This lexer supports the stem ($)
operator.

Table 2-24 JAPANESE_VGRAM_LEXER Attributes

Attribute Attribute Value

delimiter Specify whether to consider certain Japanese blank characters, such
as a full-width forward slash or a full-width middle dot, as part of the
indexed token. ALL considers these characters as part of the token
while NONE ignores them. The default is NONE.

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 123

Table 2-24 (Cont.) JAPANESE_VGRAM_LEXER Attributes

Attribute Attribute Value

bigram Specify TRUE to enable the bigram mode for the Japanese VGRAM
lexer. In the bigram mode, the Japanese queries run faster because
only 2-gram tokens are generated, thus avoiding the internal wildcard
search. But, in the bigram mode, the index size needs to be increased
to accommodate the large number of tokens. Enable the bigram mode,
if the performance of queries is of higher importance to you than the
disk space. Default is FALSE.

printjoins Specify the non alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed as
alphanumeric and included with the token in the Text index. This
includes printjoins that occur consecutively. See Basic Lexer
"printjoins".

skipjoins Specify the non-alphanumeric characters that, when they appear within
a word, identify the word as a single token; however, the characters are
not stored with the token in the Text index. See Basic Lexer "skipjoins".

You can use this lexer if your database uses one of the following character sets:

• JA16SJIS

• JA16EUC

• UTF8

• AL32UTF8

• JA16EUCTILDE

• JA16EUCYEN

• JA16SJISTILDE

• JA16SJISYEN

Rules for PRINTJOIN and SKIPJOIN Characters

• Only non-alphanumeric ASCII characters that do not include any Chinese, Japanese, or
Korean characters or any full-width non-alphanumeric characters are accepted.

• You can specify a single non-alphanumeric character or multiple non-alphanumeric
characters at a time.

• The printjoin/skipjoin will be ignored if you enter any characters that are not allowed. This
includes alphanumeric characters, CJK – Chinese, Japanese, Korean – characters or full-
width non-alphanumeric characters.

• In case of duplicate non-alphanumeric characters, duplicate entries will be ignored.

Examples

Example 2-6 Using Printjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as printjoins thereby indicating
that these characters must be included with the token in the Text index. Therefore, words such

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 123

as web-site or web_site as indexed as web-site and web_site. Queries that search for website
will not return documents containing web-site or web_site.

ctx_ddl.create_preference('mylex', 'JAPANESE_VGRAM_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');

Example 2-7 Using Skipjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as skipjoins thereby indicating
that these characters must not be included with the token in the Text index. Therefore, words
such as web-site or web_site as indexed as website. Queries that search for website will return
documents containing web-site or web_site.

ctx_ddl.create_preference('mylex', 'JAPANESE_VGRAM_LEXER');
ctx_ddl.set_attribute('mylex', 'skipjoins', '_-');

2.5.7 JAPANESE_LEXER
Identifies tokens in Japanese for creating Oracle Text indexes. Offers advantages over
JAPANESE_VGRAM_LEXER, such as generates a smaller index, has a better query response time,
and generates real word tokens resulting in better query precision.

The JAPANESE_LEXER type supports the stem ($) operator. Because the JAPANESE_LEXER uses a
new algorithm to generate tokens, indexing time is longer than with JAPANESE_VGRAM_LEXER.

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create your own
Japanese lexicon, with the ctxlc command.

See Also

"Lexical Compiler (ctxlc)" in Oracle Text Utilities

This lexer has the following attributes:

Table 2-25 JAPANESE_LEXER Attributes

Attribute Attribute Value

delimiter Specify NONE or ALL to ignore certain Japanese blank characters, such
as a full-width forward slash or a full-width middle dot. Default is NONE.

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

The JAPANESE_LEXER supports the following character sets:

• JA16SJIS

• JA16EUC

• UTF8

• AL32UTF8

• JA16EUCTILDE

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 123

• JA16EUCYEN

• JA16SJISTILDE

• JA16SJISYEN

When you specify JAPANESE_LEXER for creating text index, the JAPANESE_LEXER resolves a
sentence into words.

For example, the following compound word (natural language institute)

is indexed as three tokens:

To resolve a sentence into words, the internal dictionary is referenced. When a word cannot be
found in the internal dictionary, Oracle Text uses the JAPANESE_VGRAM_LEXER to resolve it.

2.5.8 KOREAN_MORPH_LEXER
Identifies tokens in Korean text for creating Oracle Text indexes.

This section contains the following topics.

• KOREAN_MORPH_ LEXER Dictionaries

• KOREAN_MORPH_ LEXER Unicode Support

• KOREAN_MORPH_LEXER Attributes

• KOREAN_MORPH_ LEXER Limitations

• KOREAN_MORPH_LEXER Example: Setting Composite Attribute

2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries
The KOREAN_MORPH_LEXER uses four dictionaries:

Table 2-26 KOREAN_MORPH_LEXER Dictionaries

Dictionary File

System $ORACLE_HOME/ctx/data/kolx/drk2sdic.dat

Grammar $ORACLE_HOME/ctx/data/kolx/drk2gram.dat

Stopword $ORACLE_HOME/ctx/data/kolx/drk2xdic.dat

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 123

Table 2-26 (Cont.) KOREAN_MORPH_LEXER Dictionaries

Dictionary File

User-defined $ORACLE_HOME/ctx/data/kolx/drk2udic.dat

The grammar, user-defined, and stopword dictionaries should be written using the KSC 5601
or MSWIN949 character sets. You can modify these dictionaries using the defined rules. The
system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for specifying new
words are in the file.

You can use KOREAN_MORPH_LEXER if your database uses one of the following character sets:

• KO16KSC5601

• KO16MSWIN949

• UTF8

• AL32UTF8

The KOREAN_MORPH_LEXER enables mixed-case searches.

2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support
The KOREAN_MORPH_LEXER has the following Unicode support:

• Words in non-KSC5601 Korean characters defined in Unicode

• Supplementary characters

See Also

For information on supplementary characters, see the Oracle Database Globalization
Support Guide

Some Korean documents may have non-KSC5601 characters in them. As the
KOREAN_MORPH_LEXER can recognize all possible 11,172 Korean (Hangul) characters, such
documents can also be interpreted by using the UTF8 or AL32UTF8 character sets.

Use the AL32UTF8 character set for your database to extract surrogate characters. By default,
the KOREAN_MORPH_LEXER extracts all series of surrogate characters in a document as one
token for each series.

Limitations on Korean Unicode Support

For conversion from Hanja to Hangul (Korean), the KOREAN_MORPH_LEXER supports only the
4,888 Hanja characters defined in KSC5601.

2.5.8.3 KOREAN_MORPH_LEXER Attributes
When you use the KOREAN_MORPH_LEXER, you can specify the following attributes:

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 123

Table 2-27 KOREAN_MORPH_LEXER Attributes

Attribute Attribute Value

verb_adjective Specify TRUE or FALSE to index verbs, adjectives, and adverbs. Default is
FALSE.

one_char_word Specify TRUE or FALSE to index one syllable. Default is FALSE.

number Specify TRUE or FALSE to index number. Default is FALSE.

user_dic Specify TRUE or FALSE to index user dictionary. Default is TRUE.

stop_dic Specify TRUE of FALSE to use stop-word dictionary. Default is TRUE. The
stop-word dictionary belongs to KOREAN_MORPH_LEXER.

composite Specify indexing style of composite noun.

Specify COMPOSITE_ONLY to index only composite nouns.

Specify NGRAM to index all noun components of a composite noun.

Specify COMPONENT_WORD to index single noun components of composite
nouns as well as the composite noun itself. Default is COMPONENT_WORD.

"KOREAN_MORPH_LEXER Example: Setting Composite Attribute"
describes the difference between NGRAM and COMPONENT_WORD.

morpheme Specify TRUE or FALSE for morphological analysis. If set to FALSE, tokens
are created from the words that are divided by delimiters such as white
space in the document. Default is TRUE.

to_upper Specify TRUE or FALSE to convert English to uppercase. Default is TRUE.

hanja Specify TRUE to index hanja characters. If set to FALSE, hanja characters
are converted to hangul characters. Default is FALSE.

long_word Specify TRUE to index long words that have more than 16 syllables in
Korean. Default is FALSE.

japanese Specify TRUE to index Japanese characters in Unicode (only in the 2-byte
area). Default is FALSE.

english Specify TRUE to index alphanumeric strings. Default is TRUE.

2.5.8.4 KOREAN_MORPH_ LEXER Limitations
Sentence and paragraph sections are not supported with the KOREAN_MORPH_LEXER.

2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute
Use the composite attribute to control how composite nouns are indexed.

NGRAM Example

When you specify NGRAM for the composite attribute, composite nouns are indexed with all
possible component tokens. For example, the following composite noun (information
processing institute)

is indexed as six tokens:

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 123

Specify NGRAM indexing as follows:

begin
ctx_ddl.create_preference('my_lexer','KOREAN_MORPH_LEXER');
ctx_ddl.set_attribute('my_lexer','COMPOSITE','NGRAM');
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my_lexer');

COMPONENT_WORD Example

When you specify COMPONENT_WORD for the composite attribute, composite nouns and their
components are indexed. For example, the following composite noun (information processing
institute)

is indexed as four tokens:

Specify COMPONENT_WORD indexing as follows:

begin
ctx_ddl.create_preference('my_lexer','KOREAN_MORPH_LEXER');
ctx_ddl.set_attribute('my_lexer','COMPOSITE','COMPONENT_WORD');
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my_lexer');

2.5.9 USER_LEXER
Lexer you create to index a particular user-defined language.

Use USER_LEXER to plug in your own language-specific lexing solution. This enables you to
define lexers for languages that are not supported by Oracle Text. It also enables you to define
a new lexer for a language that is supported but whose lexer is inappropriate for your
application.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 123

This section contains the following topics.

• USER_LEXER Routines

• USER_LEXER Limitations

• USER_LEXER Attributes

• INDEX_PROCEDURE

• INPUT_TYPE

• QUERY_PROCEDURE

• Encoding Tokens as XML

• XML Schema for No-Location_ User-defined Indexing Procedure

• XML Schema for User-defined Indexing Procedure with Location

• XML Schema for User-defined Lexer Query Procedure

2.5.9.1 USER_LEXER Routines
The user-defined lexer you register with Oracle Text is composed of two routines that you must
supply:

Table 2-28 User-Defined Routines for USER_LEXER

User-Defined Routine Description

Indexing Procedure Stored procedure (PL/SQL) which implements the tokenization of
documents and stop words. Output must be an XML document as
specified in this section.

Query Procedure Stored procedure (PL/SQL) which implements the tokenization of
query words. Output must be an XML document as specified in this
section.

2.5.9.2 USER_LEXER Limitations
The following features are not supported with the USER_LEXER:

• CTX_DOC.GIST and CTX_DOC.THEMES

• CTX_QUERY.HFEEDBACK

• ABOUT query operator

• CTXRULE index type

• VGRAM indexing algorithm

2.5.9.3 USER_LEXER Attributes
USER_LEXER has the following attributes:

Table 2-29 USER_LEXER Attributes

Attribute Attribute Value

INDEX_PROCEDURE Name of a stored procedure. No default provided.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 123

Table 2-29 (Cont.) USER_LEXER Attributes

Attribute Attribute Value

INPUT_TYPE VARCHAR2, CLOB. Default is CLOB.

QUERY_PROCEDURE Name of a stored procedure. No default provided.

2.5.9.4 INDEX_PROCEDURE
This callback stored procedure is called by Oracle Text as needed to tokenize a document or a
stop word found in the stoplist object.

Requirements

This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or dropped after the index is created. You can
replace or drop this stored procedure after the index is dropped.

Parameters

Two different interfaces are supported for the user-defined lexer indexing procedure:

• VARCHAR2 Interface

• CLOB Interface

Restrictions

This procedure must not perform any of the following operations:

• Rollback

• Explicitly or implicitly commit the current transaction

• Enter any other transaction control statement

• Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be in the
same order as the tokens occur in the document or stop word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all parameters.

2.5.9.5 INPUT_TYPE
Two different interfaces are supported for the User-defined lexer indexing procedure. One
interface enables the document or stop word and the corresponding tokens encoded as XML
to be passed as VARCHAR2 datatype whereas the other interface uses the CLOB datatype. This
attribute indicates the interface implemented by the stored procedure specified by the
INDEX_PROCEDURE attribute.

• VARCHAR2 Interface

• CLOB Interface

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 123

2.5.9.5.1 VARCHAR2 Interface
Table 2-30 describes the interface that enables the document or stop word from stoplist object
to be tokenized to be passed as VARCHAR2 from Oracle Text to the stored procedure and for the
tokens to be passed as VARCHAR2 as well from the stored procedure back to Oracle Text.

Your user-defined lexer indexing procedure should use this interface when all documents in the
column to be indexed are smaller than or equal to 32512 bytes and the tokens can be
represented by less than or equal to 32512 bytes. In this case the CLOB interface given in
Table 2-31 can also be used, although the VARCHAR2 interface will generally perform faster than
the CLOB interface.

This procedure must be defined with the following parameters:

Table 2-30 VARCHAR2 Interface for INDEX_PROCEDURES

Parameter
Position

Parameter
Mode

Parameter
Datatype

Description

1 IN VARCHAR2 Document or stop word from stoplist object to be tokenized.

If the document is larger than 32512 bytes then Oracle Text will
report a document level indexing error.

2 IN OUT VARCHAR2 Tokens encoded as XML.

If the document contains no tokens, then either NULL must be
returned or the tokens element in the XML document returned
must contain no child elements.

Byte length of the data must be less than or equal to 32512.

To improve performance, use the NOCOPY hint when declaring this
parameter. This passes the data by reference, rather than passing
data by value.

The XML document returned by this procedure should not include
unnecessary whitespace characters (typically used to improve
readability). This reduces the size of the XML document which in
turn minimizes the transfer time.

To improve performance, index_procedure should not validate the
XML document with the corresponding XML schema at run-time.

Note that this parameter is IN OUT for performance purposes. The
stored procedure has no need to use the IN value.

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text needs
the character offset and character length of the tokens as found in
the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of the tokens
as found in the document being tokenized. This implies that the
XML attributes off and len must not be used.

2.5.9.5.2 CLOB Interface
Table 2-31 describes the CLOB interface that enables the document or stop word from stoplist
object to be tokenized to be passed as CLOB from Oracle Text to the stored procedure and for
the tokens to be passed as CLOB as well from the stored procedure back to Oracle Text.

The user-defined lexer indexing procedure should use this interface when at least one of the
documents in the column to be indexed is larger than 32512 bytes or the corresponding tokens
are represented by more than 32512 bytes.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 123

Table 2-31 CLOB Interface for INDEX_PROCEDURE

Parameter
Position

Parameter
Mode

Parameter Datatype Description

1 IN CLOB Document or stop word from stoplist object to be
tokenized.

2 IN OUT CLOB Tokens encoded as XML.

If the document contains no tokens, then either NULL
must be returned or the tokens element in the XML
document returned must contain no child elements.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by
reference, rather than passing data by value.

The XML document returned by this procedure should not
include unnecessary whitespace characters (typically
used to improve readability). This reduces the size of the
XML document which in turn minimizes the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding XML
schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use the
IN value. The IN value will always be a truncated CLOB.

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text
needs the character offset and character length of the
tokens as found in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of
the tokens as found in the document being tokenized. This
implies that the XML attributes off and len must not be
used.

The first and second parameters are temporary CLOBS. Avoid assigning these CLOB locators to
other locator variables. Assigning the formal parameter CLOB locator to another locator variable
causes a new copy of the temporary CLOB to be created resulting in a performance hit.

2.5.9.6 QUERY_PROCEDURE
This callback stored procedure is called by Oracle Text as needed to tokenize words in the
query. A space-delimited group of characters (excluding the query operators) in the query will
be identified by Oracle Text as a word.

Requirements

This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or be dropped after the index is created. You can
replace or drop this stored procedure after the index is dropped.

Restrictions

This procedure must not perform any of the following operations:

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 123

• Rollback

• Explicitly or implicitly commit the current transaction

• Enter any other transaction control statement

• Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be in the
same order as the tokens occur in the query word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all parameters.

Parameters

Table 2-32 describes the interface for the user-defined lexer query procedure:

Table 2-32 User-defined Lexer Query Procedure XML Schema Attributes

Parameter
Position

Parameter
Mode

Parameter Datatype Description

1 IN VARCHAR2 Query word to be tokenized.

2 IN CTX_ULEXER.WILDCARD_TAB Character offsets of wildcard characters (% and _)
in the query word. If the query word passed in by
Oracle Text does not contain any wildcard
characters then this index-by table will be empty.

The wildcard characters in the query word must be
preserved in the tokens returned in order for the
wildcard query feature to work properly.

The character offset is 0 (zero) based. Offset
information follows USC-2 codepoint semantics.

3 IN OUT VARCHAR2 Tokens encoded as XML.

If the query word contains no tokens then either
NULL must be returned or the tokens element in
the XML document returned must contain no child
elements.

The length of the data must be less-than or equal
to 32512 bytes.

2.5.9.7 Encoding Tokens as XML
The sequence of tokens returned by your stored procedure must be represented as an XML
1.0 document. The XML document must be valid with respect to the XML Schemas given in
the following sections.

• XML Schema for No-Location_ User-defined Indexing Procedure

• XML Schema for User-defined Indexing Procedure with Location

• XML Schema for User-defined Lexer Query Procedure

Limitations

To boost performance of this feature, the XML parser in Oracle Text will not perform validation
and will not be a full-featured XML compliant parser. This implies that only minimal XML
features will be supported. The following XML features are not supported:

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 123

• Document Type Declaration (for example, <!DOCTYPE [...]>) and therefore entity
declarations. Only the following built-in entities can be referenced: lt, gt, amp, quot, and
apos.

• CDATA sections.

• Comments.

• Processing Instructions.

• XML declaration (for example, <?xml version="1.0" ...?>).

• Namespaces.

• Use of elements and attributes other than those defined by the corresponding XML
Schema.

• Character references (for example ট).

• xml:space attribute.

• xml:lang attribute

2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure
This section describes additional constraints imposed on the XML document returned by the
user-defined lexer indexing procedure when the third parameter is FALSE. The XML document
returned must be valid with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="tokens">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="eos" type="EmptyTokenType"/>
 <xsd:element name="eop" type="EmptyTokenType"/>
 <xsd:element name="num" type="xsd:token"/>
 <xsd:group ref="IndexCompositeGroup"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 Enforce constraint that compMem element must be preceded by word element
 or compMem element for indexing
 -->
 <xsd:group name="IndexCompositeGroup">
 <xsd:sequence>
 <xsd:element name="word" type="xsd:token"/>
 <xsd:element name="compMem" type="xsd:token" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:group>

 <!-- EmptyTokenType defines an empty element without attributes -->
 <xsd:complexType name="EmptyTokenType"/>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

• The root element is tokens. This is mandatory. It has no attributes.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 123

• The root element can have zero or more child elements. The child elements can be one of
the following elements: eos, eop, num, word, and compMem. Each of these represent a
specific type of token.

• The compMem element must be preceded by a word element or a compMem element.

• The eos and eop elements have no attributes and must be empty elements.

• The num, word, and compMem elements have no attributes. Oracle Text will normalize the
content of these elements as follows: convert whitespace characters to space characters,
collapse adjacent space characters to a single space character, remove leading and
trailing spaces, perform entity reference replacement, and truncate to 255 bytes.

Table 2-33 describes the element names defined in the preceding XML Schema.

Table 2-33 User-defined Lexer Indexing Procedure XML Schema Element Names

Element Description

word This element represents a simple word token. The content of the element is the word
itself. Oracle Text does the work of identifying this token as being a stop word or non-
stop word and processing it appropriately.

num This element represents an arithmetic number token. The content of the element is
the arithmetic number itself. Oracle Text treats this token as a stop word if the stoplist
preference has NUMBERS added as the stopclass. Otherwise this token is treated the
same way as the word token.

Supporting this token type is optional. Without support for this token type, adding the
NUMERBS stopclass will have no effect.

eos This element represents end-of-sentence token. Oracle Text uses this information so
that it can support WITHIN SENTENCE queries.

Supporting this token type is optional. Without support for this token type, queries
against the SENTENCE section will not work as expected.

eop This element represents end-of-paragraph token. Oracle Text uses this information so
that it can support WITHIN PARAGRAPH queries.

Supporting this token type is optional. Without support for this token type, queries
against the PARAGRAPH section will not work as expected.

compMem Same as the word element, except that the implicit word offset is the same as the
previous word token.

Support for this token type is optional.

Examples

Document: Vom Nordhauptbahnhof und aus der Innenstadt zum Messegelände.

Tokens:

<tokens>
 <word> VOM </word>
 <word> NORDHAUPTBAHNHOF </word>
 <compMem>NORD</compMem>
 <compMem>HAUPT </compMem>
 <compMem>BAHNHOF </compMem>
 <compMem>HAUPTBAHNHOF </compMem>
 <word> UND </word>
 <word> AUS </word>
 <word> DER </word>
 <word> INNENSTADT </word>
 <word> ZUM </word>
 <word> MESSEGELÄNDE </word>

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 75 of 123

 <eos/>
</tokens>

Document: Oracle Database 11g Release 1

Tokens:

<tokens>
 <word> ORACLE11G</word>
 <word> RELEASE </word>
 <num> 1 </num>
</tokens>

Document: WHERE salary<25000.00 AND job = 'F&B Manager'

Tokens:

<tokens>
 <word> WHERE </word>
 <word> salary<2500.00 </word>
 <word> AND </word>
 <word> job </word>
 <word> F&B </word>
 <word> Manager </word>
</tokens>

2.5.9.9 XML Schema for User-defined Indexing Procedure with Location
This section describes additional constraints imposed on the XML document returned by the
user-defined lexer indexing procedure when the third parameter is TRUE. The XML document
returned must be valid according to the following XML schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="tokens">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="eos" type="EmptyTokenType"/>
 <xsd:element name="eop" type="EmptyTokenType"/>
 <xsd:element name="num" type="DocServiceTokenType"/>
 <xsd:group ref="DocServiceCompositeGroup"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 Enforce constraint that compMem element must be preceeded by word element
 or compMem element for document service
 -->
 <xsd:group name="DocServiceCompositeGroup">
 <xsd:sequence>
 <xsd:element name="word" type="DocServiceTokenType"/>
 <xsd:element name="compMem" type="DocServiceTokenType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:group>

 <!-- EmptyTokenType defines an empty element without attributes -->
 <xsd:complexType name="EmptyTokenType"/>

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 76 of 123

 <!--
 DocServiceTokenType defines an element with content and mandatory attributes
 -->
 <xsd:complexType name="DocServiceTokenType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:token">
 <xsd:attribute name="off" type="OffsetType" use="required"/>
 <xsd:attribute name="len" type="xsd:unsignedShort" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="OffsetType">
 <xsd:restriction base="xsd:unsignedInt">
 <xsd:maxInclusive value="2147483647"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

Some of the constraints imposed by this XML Schema are as follows:

• The root element is tokens. This is mandatory. It has no attributes.

• The root element can have zero or more child elements. The child elements can be one of
the following elements: eos, eop, num, word, and compMem. Each of these represent a
specific type of token.

• The compMem element must be preceded by a word element or a compMem element.

• The eos and eop elements have no attributes and must be empty elements.

• The num, word, and compMem elements have two mandatory attributes: off and len. Oracle
Text will normalize the content of these elements as follows: convert whitespace characters
to space characters, collapse adjacent space characters to a single space character,
remove leading and trailing spaces, perform entity reference replacement, and truncate to
255 bytes.

• The off attribute value must be an integer between 0 and 2147483647 inclusive.

• The len attribute value must be an integer between 0 and 65535 inclusive.

Table 2-33 describes the element types defined in the preceding XML Schema.

Table 2-34 describes the attributes defined in the preceding XML Schema.

Table 2-34 User-defined Lexer Indexing Procedure XML Schema Attributes

Attribute Description

off This attribute represents the character offset of the token as it appears in the
document being tokenized.

The offset is with respect to the character document passed to the user-defined
lexer indexing procedure, not the document fetched by the datastore. The
document fetched by the datastore may be pre-processed by the filter object or
the section group object, or both, before being passed to the user-defined lexer
indexing procedure.

The offset of the first character in the document being tokenized is 0 (zero).
Offset information follows USC-2 codepoint semantics.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 77 of 123

Table 2-34 (Cont.) User-defined Lexer Indexing Procedure XML Schema Attributes

Attribute Description

len This attribute represents the character length (same semantics as SQL function
LENGTH) of the token as it appears in the document being tokenized.

The length is with respect to the character document passed to the user-defined
lexer indexing procedure, not the document fetched by the datastore. The
document fetched by the datastore may be pre-processed by the filter object or
the section group object before being passed to the user-defined lexer indexing
procedure.

Length information follows USC-2 codepoint semantics.

Sum of off attribute value and len attribute value must be less than or equal to the total
number of characters in the document being tokenized. This is to ensure that the document
offset and characters being referenced are within the document boundary.

Example

Document: User-defined Lexer.

Tokens:

<tokens>
 <word off="0" len="4"> USE </word>
 <word off="5" len="7"> DEF </word>
 <word off="13" len="5"> LEX </word>
 <eos/>
</tokens>

2.5.9.10 XML Schema for User-defined Lexer Query Procedure
This section describes additional constraints imposed on the XML document returned by the
user-defined lexer query procedure. The XML document returned must be valid with respect to
the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="tokens">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="num" type="QueryTokenType"/>
 <xsd:group ref="QueryCompositeGroup"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<!--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for query
-->
 <xsd:group name="QueryCompositeGroup">
 <xsd:sequence>
 <xsd:element name="word" type="QueryTokenType"/>
 <xsd:element name="compMem" type="QueryTokenType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 78 of 123

 </xsd:group>

 <!--
 QueryTokenType defines an element with content and with an optional attribute
 -->
 <xsd:complexType name="QueryTokenType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:token">
 <xsd:attribute name="wildcard" type="WildcardType" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="WildcardType">
 <xsd:restriction base="WildcardBaseType">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="64"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="WildcardBaseType">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="378"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
 </xsd:simpleType>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

• The root element is tokens. This is mandatory. It has no attributes.

• The root element can have zero or more child elements. The child elements can be one of
the following elements: num and word. Each of these represent a specific type of token.

• The compMem element must be preceded by a word element or a compMem element.

The purpose of compMem is to enable USER_LEXER queries to return multiple forms for a
single query. For example, if a user-defined lexer indexes the word bank as
BANK(FINANCIAL) and BANK(RIVER), the query procedure can return the first term as a
word and the second as a compMem element:

<tokens>
 <word>BANK(RIVER)</word>
 <compMem>BANK(FINANCIAL)</compMem>
</tokens>

See Table 2-35, "Table 2-35" for more on the compMem element.

• The num and word elements have a single optional attribute: wildcard. Oracle Text will
normalize the content of these elements as follows: convert whitespace characters to
space characters, collapse adjacent space characters to a single space character, remove
leading and trailing spaces, perform entity reference replacement, and truncate to 255
bytes.

• The wildcard attribute value is a white-space separated list of integers. The minimum
number of integers is 1 and the maximum number of integers is 64. The value of the
integers must be between 0 and 378 inclusive. The intriguers in the list can be in any order.

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 79 of 123

Table 2-33 describes the element types defined in the preceding XML Schema.

Table 2-35 describes the attribute defined in the preceding XML Schema.

Table 2-35 User-defined Lexer Query Procedure XML Schema Attributes

Attribute Description

compMem Same as the word element, but its implicit word offset is the same as the previous
word token. Oracle Text will equate this token with the previous word token and with
subsequent compMem tokens using the query EQUIV operator.

wildcard Any % or _ characters in the query which are not escaped by the user are considered
wildcard characters because they are replaced by other characters. These wildcard
characters in the query must be preserved during tokenization in order for the wildcard
query feature to work properly. This attribute represents the character offsets (same
semantics as SQL function LENGTH) of wildcard characters in the content of the
element. Oracle Text will adjust these offsets for any normalization performed on the
content of the element. The characters pointed to by the offsets must either be % or _
characters.

The offset of the first character in the content of the element is 0. Offset information
follows USC-2 codepoint semantics.

If the token does not contain any wildcard characters then this attribute must not be
specified.

Examples

Query word: pseudo-%morph%

Tokens:

<tokens>
 <word> PSEUDO </word>
 <word wildcard="1 7"> %MORPH% </word>
</tokens>

Query word: <%>

Tokens:

<tokens>
 <word wildcard="5"> <%> </word>
</tokens>

2.5.10 WORLD_LEXER
A simple lexer that can index documents in any language or mixed languages. Works with
short strings and long documents. Does not support stemming or other lexer-related attributes.

Use the WORLD_LEXER to index text columns that contain documents of different languages. For
example, use this lexer to index a text column that stores English, Japanese, and German
documents.

WORLD_LEXER differs from MULTI_LEXER in that WORLD_LEXER automatically detects the
language(s) of a document. Unlike MULTI_LEXER, WORLD_LEXER does not require you to have a
language column in your base table nor to specify the language column when you create the
index. Moreover, it is not necessary to use sub-lexers, as with MULTI_LEXER. (See
"MULTI_LEXER".)

Chapter 2
Lexer Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 80 of 123

WORLD_LEXER supports all database character sets, and for languages whose character sets are
Unicode-based, it supports the Unicode 5.0 standard. For a list of languages that WORLD_LEXER
can work with, see "World Lexer Features".

The WORLD_LEXER has the following attributes:

Table 2-36 WORLD_LEXER Attributes

Attribute Attribute Value

mixed_case Enables mixed-case (upper- and lower-case) searches of text (for
example, cat and Cat). Allowable values are YES and NO (default).

printjoins Specify the non alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed as
alphanumeric and included with the token in the Text index. This
includes printjoins that occur consecutively. See Basic Lexer
"printjoins".

skipjoins Specify the non-alphanumeric characters that, when they appear within
a word, identify the word as a single token; however, the characters are
not stored with the token in the Text index. See Basic Lexer "skipjoins".

Rules for PRINTJOIN and SKIPJOIN Characters

Refer to ”Rules for PRINTJOIN and SKIPJOIN Characters” in JAPANESE_VGRAM_LEXER.

WORLD_LEXER Example

The following is an example of creating an index using WORLD_LEXER.

exec ctx_ddl.create_preference('MYLEXER', 'world_lexer');
create index doc_idx on doc(data)
 indextype is CONTEXT
 parameters ('lexer MYLEXER
 stoplist CTXSYS.EMPTY_STOPLIST');

2.6 Wordlist Type
Use the wordlist preference to enable the query options such as stemming, fuzzy matching for
your language. You can also use the wordlist preference to enable substring and prefix
indexing, which improves performance for wildcard queries with CONTAINS and CATSEARCH.

To create a wordlist preference, you must use BASIC_WORDLIST, which is the only type
available.

• BASIC_WORDLIST

• BASIC_WORDLIST Example

2.6.1 BASIC_WORDLIST
Use BASIC_WORDLIST to enable stemming and fuzzy matching or to create prefix indexes with
Text indexes.

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 123

Table 2-37 BASIC_WORDLIST Attributes

Attribute Attribute Values

stemmer Specify which language stemmer to use. You can specify one of the
following stemmers:

• NULL (no stemming)
• AUTO (Automatic language-detection for stemming, derived from the

database session language. For example, if the database session
language is American or English, then the English stemmer is used.
Note that the STEMMER=AUTO attribute value resolves the environment
language (NLS_LANG) to the supported languages. Does not auto-
detect Japanese.)

• Afrikaans
• Arabic
• Basque
• Belarusian
• Bokmal (Norwegian)
• Bulgarian
• Catalan
• Croatian
• Czech
• Danish
• Derivational (English derivational)
• Dutch
• English (English inflectional)
• Estonian
• Finnish
• French
• Galician
• German
• Greek
• Hebrew
• Hindi
• Hungarian
• Icelandic
• Indonesian
• Italian
• Japanese
• Latvian
• Lithuanian
• Macedonian
• Malay
• Nynorsk (Norwegian)
• Persian (Farsi)
• Polish
• Portuguese
• Romanian
• Russian
• Serbian
• Slovak
• Slovenian

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 82 of 123

Table 2-37 (Cont.) BASIC_WORDLIST Attributes

Attribute Attribute Values

• Spanish
• Swedish
• Turkish
• Ukrainian
• Urdu

fuzzy_match Specify which fuzzy matching cluster to use. You can specify one of the
following types:

AUTO (Automatic language detection for stemming)

CHINESE_VGRAM

Dutch

English

French

GENERIC

German

Italian

JAPANESE_VGRAM

Korean

OCR

Spanish

fuzzy_score Specify a default lower limit of fuzzy score. Specify a number between 1
and 80. Text with scores below this number is not returned. Default is 60.

fuzzy_numresults Specify the maximum number of fuzzy expansions. Use a number between
0 and 5,000. Default is 100.

substring_index Specify TRUE for Oracle Text to create a substring index. A substring index
improves left-truncated and double-truncated wildcard queries such as
%ing or %benz%. Default is FALSE.

prefix_index Specify TRUE to enable prefix indexing. Prefix indexing improves
performance for right truncated wildcard searches such as TO%. Default is
FALSE.

prefix_min_length Specify the minimum length of indexed prefixes. Default is 1. Length
information must follow USC-2 codepoint semantics.

prefix_max_length Specify the maximum length of indexed prefixes. Default is 64. Length
information must follow USC-2 codepoint semantics.

wildcard_maxterms Specify the maximum number of terms in a wildcard expansion. The
maximum value is 50000 and the default value is 20000. If you specify a
value of 0, then the number of wildcard expansions will be unbounded. Note
that when set to 0, the system may run out of memory due to the high
number of wildcard expansions.

ndata_base_letter Specify whether characters that have diacritical marks are converted to
their base form before being stored in the Text index or queried by the
NDATA operator.

FALSE (default) or TRUE

When set to FALSE, no base lettering is used.

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 83 of 123

Table 2-37 (Cont.) BASIC_WORDLIST Attributes

Attribute Attribute Values

ndata_alternate_spelling Specify whether to enable alternate spelling for German, Danish, and
Swedish. Enabling alternate spelling allows you to index NDATA section data
and query using the NDATA operator in alternate form.

FALSE (default) or TRUE

When set to FALSE, no alternate spelling is used.

ndata_thesaurus Name of the thesaurus used for alternate name expansion.

ndata_join_particles A list of colon-separated name particles that can be joined with a name that
follows them.

reverse_index Specify whether to enable the creation of another index on $I to provide
better performance for left truncated queries. These are queries where one
or more tokens have a leading wildcard and no trailing wildcard, for
example, the %racle %atabase.

When set to TRUE, it creates a new index $V on $I on reverse
(token_text). Default is FALSE.

wildcard_index Specify TRUE to enable wildcard indexing. Wildcard indexing supports fast
and efficient wildcard search for all wildcard expressions. The default value
is FALSE.

wildcard_index_k Specify the size of grams for the K-gram index. The value can range
between 2 and 5 and the default value is 3.

stemmer
Specify the stemmer used for word stemming in Text queries. When you do not specify a
value for STEMMER, the default is ENGLISH.
Specify AUTO for the system to automatically set the stemming language according to the
language setting of the database session. If the database language is American or English,
then the ENGLISH stemmer is automatically used. Otherwise, the stemmer that maps to the
database session language is used.
When there is no stemmer for a language, the default is NULL. With the NULL stemmer, the
stem operator is ignored in queries.
You can create your own stemming user-dictionary.

Note

The STEMMER attribute of BASIC_WORDLIST preference is ignored if the INDEX_STEMS
attribute of the AUTO_LEXER preference is set to YES. In this case, the same stemmer
that is used by AUTO_LEXER during indexing is used to determine the stem of the query
term during query.

fuzzy_match
Sspecify which fuzzy matching routines are used for the column. Fuzzy matching is currently
supported for English, Japanese, and, to a lesser extent, the Western European languages.

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 84 of 123

Note

The fuzzy_match attributes value for Chinese and Korean are dummy attribute values
that prevent the English and Japanese fuzzy matching routines from being used on
Chinese and Korean text.

The default for fuzzy_match is GENERIC.
Specify AUTO for the system to automatically set the fuzzy matching language according to
language setting of the session.

fuzzy_score
Specify a default lower limit of fuzzy score. Specify a number between 1 and 80. Text with
scores below this number are not returned. The default is 60.
Fuzzy score is a measure of how close the expanded word is to the query word. The higher
the score the better the match. Use this parameter to limit fuzzy expansions to the best
matches.

fuzzy_numresults
Specify the maximum number of fuzzy expansions. Use a number between 0 and 5000. The
default is 100.
Setting a fuzzy expansion limits the expansion to a specified number of the best matching
words.

substring_index
Specify TRUE for Oracle Text to create a substring index. A substring index improves
performance for left-truncated or double-truncated wildcard queries such as %ing or %benz%.
The default is false.
Limitations of substring_index:
Oracle recommends using the wildcard_index attribute over substring_index. See
wildcard_index. Substring indexing has the following impact on indexing and disk resources:

• Index creation and DML processing is up to 4 times slower.

• Index creation with substring_index enabled requires more rollback segments during
index flushes than with substring_index off. Do either of the following when creating a
substring index:

– Make available double the usual rollback.

– Decrease the index memory to reduce the size of the index flushes to disk.

prefix_index
Specify yes to enable prefix indexing. Prefix indexing improves performance for right truncated
wildcard searches such as TO%. Default is NO.

Note

Enabling prefix indexing increases index size.

Prefix indexing chops up tokens into multiple prefixes to store in the $I table. For example,
words TOKEN and TOY are normally indexed as follows in the $I table:

Token Type Information

TOKEN 0 DOCID 1 POS 1

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 85 of 123

Token Type Information

TOY 0 DOCID 1 POS 3

With prefix indexing, Oracle Text indexes the prefix substrings of these tokens as follows with
a new token type of 6:

Token Type Information

TOKEN 0 DOCID 1 POS 1

TOY 0 DOCID 1 POS 3

T 6 DOCID 1 POS 1 POS 3

TO 6 DOCID 1 POS 1 POS 3

TOK 6 DOCID 1 POS 1

TOKE 6 DOCID 1 POS 1

TOKEN 6 DOCID 1 POS 1

TOY 6 DOCID 1 POS 3

Wildcard searches such as TO% are now faster because Oracle Text does no expansion of
terms and merging of result sets. To obtain the result, Oracle Text need only examine the
(TO,6) row.

prefix_min_length
Specify the minimum length of indexed prefixes. Default is 1.
For example, setting prefix_min_length to 3 and prefix_max_length to 5 indexes all prefixes
between 3 and 5 characters long.

Note

A wildcard search whose pattern is below the minimum length or above the maximum
length is searched using the slower method of equivalence expansion and merging.

prefix_max_length
Specify the maximum length of indexed prefixes. Default is 64.
For example, setting prefix_min_length to 3 and prefix_max_length to 5 indexes all prefixes
between 3 and 5 characters long.

Note

A wildcard search whose pattern is below the minimum length or above the maximum
length is searched using the slower method of equivalence expansion and merging.

wildcard_maxterms
Specify the maximum number of terms in a wildcard (%) expansion. Use this parameter to
keep wildcard query performance within an acceptable limit. When the wildcard query
expansion exceeds this number, Oracle Text returns the following error:

ORA-29902: error in executing ODCIIndexStart() routine
ORA-20000: Oracle Text error:
DRG-51030: wildcard query expansion resulted in too many terms

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 86 of 123

In such cases, use a more restrictive query so that it results in fewer matches or increase the
value of wildcard_maxterms. You can also set wildcard_maxterms to 0 to ignore the limit.

Note

If the value of wildcard_maxterms is set as 0, the query might fail and returns the
above error again if too many terms are matched by the wildcard search term.

You can also capture the above error and display your own less terse message.

Note

Search terms with wildcard queries having only the wildcard character, for example: %,
%_%, and %_, are threaded as stopwords.

Note

wildcard_maxterms is independent of the new WILDCARD_INDEX option.
wildcard_maxterms can be set even if WILDCARD_INDEX is not used.

ndata_base_letter
Specify whether characters that have diacritical marks (umlauts, cedillas, acute accents, and
so on) are converted to their base form before being stored in the Text index or queried by the
NDATA operator. The default is FALSE (base-letter conversion disabled).

ndata_alternate_spelling
Specify whether to enable alternate spelling for German, Danish, and Swedish. Enabling
alternate spelling allows you to index NDATA section data and query using the NDATA operator
in alternate form.
When ndata_base_letter is enabled at the same time as ndata_alternate_spelling, NDATA
section data is serially transformed first by alternate spelling and then by base lettering.

ndata_thesaurus
Specify a name of the thesaurus used for alternate name expansion. The indexing engine
expands names in documents using synonym rings in the thesaurus. A user should make use
of homographic disambiguating feature of the thesaurus to distinguish common nicknames.
An example is:

Albert
 SYN Al
 SYN Bert
Alfred
 SYN Al
 SYN Fred

A simple definition such as the above will put Albert, Alfred, Al, Bert, and Fred into the same
synonym ring. This will cause an unexpected expansion such that the expansion of Bert
includes Fred. To prevent this, you can use homographic disambiguation as in:

Albert
 SYN Al (Albert)
 SYN Bert (Albert)

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 87 of 123

Alfred
 SYN Al (Alfred)
 SYN Fred (Alfred)

This forms two synonym rings, Albert-Al-Bert and Alfred-Al-Fred. Thus, the expansion of Bert
no longer includes Fred. A more detailed example is:

begin
 ctx_ddl.create_preference('NDAT_PREF', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_BASE_LETTER', 'TRUE');
 ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_THESAURUS', 'NICKNAMES');
end;

Note

A sample thesaurus for names can be found in the $ORACLE_HOME/ctx/sample/thes
directory. This file is dr0thsnames.txt.

ndata_join_particles
Specify a list of colon-separated name particles that can be joined with a name that follows
them. A name particle, such as da, is written separately from or joined with its following name
like da Vinci or daVinci. The indexing engine generates index data for both separated and join
versions of a name when it finds a name particle specified in this preference. The same
happens in the query processing for better recall.

reverse_index
Reverse index allows for fast searches on left-truncated search terms.
Indexed words are stored in the token table ($I) which has an index ($X) on it. Normally, if a
search term such as “%xxx” is used in a query, the $X index cannot be used. So, a full table
scan of the $I table is necessary, which can lead to poor search performance.
Setting REVERSE_INDEX to TRUE creates an extra index ($V) on a reverse form of the tokens.
This allows for indexed lookups for left-truncated terms, leading to much better query
performance for such terms.
REVERSE_INDEX speeds up searching of tokens with leading wildcards such as the second
word in the search "oracle %base". If the token has both leading and trailing wildcards such as
"oracle %bas%" this attribute will not help and the SUBSTRING_INDEX option should be used
instead.
Specify the attribute as a part of the wordlist preference and set it to TRUE or FALSE. Default is
FALSE. Set this attribute using CTX_DDL.SET_ATTRIBUTE procedure or using ALTER INDEX
REBUILD statement as used in any wordlist preference.
Syntax

ctx_ddl.set_attribute(worlist_pref_name, 'REVERSE_INDEX', BOOLEAN);

worlist_pref_name
Specify the first argument as the wordlist preference name.

REVERSE_INDEX
Specify the wordlist preference name as REVERSE_INDEX.

BOOLEAN
The attribute can be set to TRUE or FALSE. By default, the value is FALSE.

The following example creates a wordlist preference and sets REVERSE_INDEX to TRUE :

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 88 of 123

exec ctx_ddl.create_preference(‘wrdlst’, ‘BASIC_WORDLIST’);
exec ctx_ddl.set_attribute(‘wrdlst’, ‘REVERSE_INDEX’, ‘TRUE’);

The following traces are added for the Reverse Index $V which can be used to track timing
and usage of this index at query time.

Trace ID Trace Name Description

37 TRACE_QRY_VV_TIME Time spent in executing
the $V cursor

38 TRACE_QRY_VF_TIME Time spent in fetching rows
from $V

39 TRACE_QRY_V_ROWS Number of rows with $V
fetched metadata

wildcard_index
Wildcard indexing supports fast and efficient wildcard search for all wildcard expressions. It is
set using CTX_DDL.SET_ATTRIBUTE procedure.
Setting the WILDCARD_INDEX to TRUE enables wildcard indexing.
Syntax

ctx_ddl.set_attribute(<wordlist_pref_name>, 'WILDCARD_INDEX', BOOLEAN);

wordlist_pref_name
Specify the first argument as the wordlist preference name.

WILDCARD_INDEX
Specify the wordlist preference name as WILDCARD_INDEX.

BOOLEAN
The attribute can be set to TRUE or FALSE.

The following example creates a wordlist preference and sets WILDCARD_INDEX to TRUE:

begin
 ctx_ddl.create_preference('mywordlist','BASIC_WORDLIST');
 ctx_ddl.set_attribute('mywordlist','WILDCARD_INDEX','TRUE');
end;

Optimization of Wildcard Index
WILDCARD_INDEX can be optimized either as part of full optimize or as part of section type
optimize.
The following two examples are ways of optimizing a wildcard index:

begin
 ctx_ddl.optimize_index('idx','FULL');
end;

begin

ctx_ddl.optimize_index('idx','TOKEN_TYPE',section_type=>CTX_DDL.SECTION_WILDCARD_INDEX);
end;

Note

Wildcard indexing is supported for languages which only use single-byte characters.

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 89 of 123

wildcard_index_k
The WILDCARD_INDEX uses a technology known as K-grams (fixed-length substring particles).
WILDCARD_INDEX_K defines the size of these grams (K). The value can range between 2 and 5.
The default value is 3. Set this attribute using CTX_DDL.SET_ATTRIBUTE procedure or using
ALTER INDEX REBUILD statement as used in any wordlist preference.

Note

WILDCARD_INDEX must be set to TRUE before setting WILDCARD_INDEX_K.

The following are some considerations before changing the value of K from the default value
of 3:

• Query terms that are shorter than the value of K cannot be retrieved using K-gram
indexing.

• Decreasing the value of K increases the storage requirements and increasing the value of
K decreases the storage requirements.

• Wildcard query terms must have at least K consecutive non-wildcard characters to use K-
gram indexing. For example, if K value is 3, queries like “%abc%” or “%abcd%” can use K-
gram indexing. For the same K value, queries like “%ab%” cannot use K-gram indexing.

• Wildcard query terms having at least K-1 consecutive non-wildcard characters at the
beginning or end of the query term, can use K-gram indexing. For example, if K value is 3,
queries like “ab%” and “%ab” can use k-gram indexing.

The following example creates a wordlist preference and enables K-gram indexing with a K
value of 4:

begin
 ctx_ddl.create_preference('mywordlist','BASIC_WORDLIST');
 ctx_ddl.set_attribute('mywordlist','WILDCARD_INDEX','TRUE');
 ctx_ddl.set_attribute('mywordlist','WILDCARD_INDEX_K',4);
end;

Related Topics

• Oracle Text CONTAINS Query Operators

• Alternate Spelling

• Stemming User-Dictionaries
You can create a user-dictionary for your own language to customize how words are
decomposed.

• Base-Letter Conversion

2.6.2 BASIC_WORDLIST Example
The following example shows the use of the BASIC_WORDLIST type.

• Enabling Fuzzy Matching and Stemming

• Enabling Sub-string and Prefix Indexing

• Setting Wildcard Expansion Limit

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 90 of 123

2.6.2.1 Enabling Fuzzy Matching and Stemming
The following example enables stemming and fuzzy matching for English. The preference
STEM_FUZZY_PREF sets the number of expansions to the maximum allowed. This preference
also instructs the system to create a substring index to improve the performance of double-
truncated searches.

begin
 ctx_ddl.create_preference('STEM_FUZZY_PREF', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','FUZZY_MATCH','ENGLISH');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','FUZZY_SCORE','1');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','FUZZY_NUMRESULTS','5000');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','SUBSTRING_INDEX','TRUE');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','STEMMER','ENGLISH');
end;

To create the index in SQL, enter the following statement:

create index fuzzy_stem_subst_idx on mytable (docs)
 indextype is ctxsys.context parameters ('Wordlist STEM_FUZZY_PREF');

2.6.2.2 Enabling Sub-string and Prefix Indexing
The following example sets the wordlist preference for prefix and sub-string indexing. For prefix
indexing, it specifies that Oracle Text create token prefixes between 3 and 4 characters long:

begin

ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH',3);
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', 4);
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');

end;

2.6.2.3 Setting Wildcard Expansion Limit
Use the wildcard_maxterms attribute to set the maximum allowed terms in a wildcard
expansion.

--- create a sample table
drop table quick ;
create table quick
 (
 quick_id number primary key,
 text varchar(80)
);

--- insert a row with 10 expansions for 'tire%'
insert into quick (quick_id, text)
 values (1, 'tire tirea tireb tirec tired tiree tiref tireg tireh tirei tirej');
commit;

--- create an index using wildcard_maxterms=100
begin
 Ctx_Ddl.Create_Preference('wildcard_pref', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('wildcard_pref', 'wildcard_maxterms', 100) ;
end;
/

Chapter 2
Wordlist Type

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 123

create index wildcard_idx on quick(text)
 indextype is ctxsys.context
 parameters ('Wordlist wildcard_pref') ;

--- query on 'tire%' - should work fine
select quick_id from quick
 where contains (text, 'tire%') > 0;

--- now re-create the index with wildcard_maxterms=5

drop index wildcard_idx ;

begin
 Ctx_Ddl.Drop_Preference('wildcard_pref');
 Ctx_Ddl.Create_Preference('wildcard_pref', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('wildcard_pref', 'wildcard_maxterms', 5) ;
end;
/

create index wildcard_idx on quick(text)
 indextype is ctxsys.context
 parameters ('Wordlist wildcard_pref') ;

--- query on 'tire%' gives "wildcard query expansion resulted in too many terms"
select quick_id from quick
 where contains (text, 'tire%') > 0;

2.7 Storage Types
Use the storage preference to specify tablespace and creation parameters for tables
associated with a Text index. The system provides a single storage type called BASIC_STORAGE:

Table 2-38 Storage Types

Type Description

BASIC_STORAGE Indexing type used to specify the tablespace and creation parameters
for the database tables and indexes that constitute a Text index.

2.7.1 BASIC_STORAGE
The BASIC_STORAGE indexing type specifies the tablespace and creation parameters for the
database tables and indexes that constitute a Text index.

The clause you specify is added to the internal CREATE TABLE (CREATE INDEX for the
i_index_clause) statement at index creation. You can specify most allowable clauses, such as
storage, LOB storage, or partitioning. However, you cannot specify an index organized table
clause.

You can store Text index tables in the In-Memory Column Store (IM column store) by
specifying inmemory in the storage clause for that table. IM column store is supported for the
types of tables represented by the following storage attributes: I_TABLE_CLAUSE,
R_TABLE_CLAUSE, G_TABLE_CLAUSE, O_TABLE_CLAUSE, D_TABLE_CLAUSE, SN_TABLE_CLAUSE, and
E_TABLE_CLAUSE.

This section contains the following topics.

• BASIC_STORAGE Attributes

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 92 of 123

• BASIC_STORAGE Default Behavior

• BASIC_STORAGE Examples

See Also

• Oracle Database SQL Language Reference for more information about how to
specify CREATE INDEX statement

• Oracle Database SQL Language Reference for more information about how to
specify CREATE TABLE statement

2.7.1.1 BASIC_STORAGE Attributes
The BASIC_STORAGE indexing type supports these attributes for database tables and indexes.

Table 2-39 BASIC_STORAGE Attributes

Attribute Attribute Value

big_io Parameter clause to improve the query performance for the CONTEXT index that is
extensively used for IO operations. It uses SECUREFILES, and hence the
tablespace must use automatic segment space management (ASSM). This clause
mainly improves the query performance for rotational disks, where seeks are
expensive compared to serial reads. Creating an index with the BIG_IO index
option requires the CREATE TRIGGER privilege, as a temporary trigger is created
during the indexing process.

There is not much of a query performance improvement when the data storage is
on solid state disks.

Set it to YES to enable the BIG_IO index option for the CONTEXT index. The default
is NO.

Note: BIG_IO index option is not supported for local Oracle Text search index.

The BIG_IO attribute of the CONTEXT indextype is deprecated with Oracle AI
Database 26ai, and can be disabled or removed in a future release.

Oracle recommends that you allow this value to be set to its default value of N.
BIG_IO was introduced to reduce the cost of seeks when index postings
exceeded 4KB in length. However, the internal code is relatively inefficient, and
the attribute cannot be combined with newer index options. Seek cost is much
less relevant for solid state disks or non-volatile memory devices (NVMe), and
seek cost is irrelevant when postings are cached. This setting is therefore of little
benefit for most indexes.

c_table_clause Parameter clause to specify the storage clause for the DR$INDEX_NAME$C table.
Specify the storage and tablespace clauses to add to the end of the internal
CREATE INDEX statements.

To understand the purpose of DR$INDEX_NAME$C, see Oracle Text Application
Developer's Guide.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 93 of 123

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

d_table_clause Parameter clause to specify the storage clause for the $D table.

This clause may be specified if the forward index feature is being used. The
forward index feature is used to increase the query performance while calculating
snippets.

If the d_table_clause is manually set, then it is recommended that you choose
SecureFiles with high compression for the document blob column doc of the $D
table. If the d_table_clause is not set, then the document blob uses
SecureFiles by default, if the index owner's default tablespace is ASSM and the
database compatible parameter is 11.0 or higher.

The $D table is created to save a copy of a document into the index by either
specifying a save_copy column or by specifying the save_copy storage attribute.

forward_index Parameter clause to improve the performance of the following CTX_DOC package
procedures:

• ctx_doc.snippet
• ctx_doc.highlight
• ctx_doc.markup
Set it to TRUE to enable the forward index feature. This creates the $O table.
The $O table stores the mapping information from the token offsets in the $I table
to character offsets in the indexed documents.

The default is FALSE.

g_index_clause Parameter clause for the $H btree index on the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE INDEX statement.

When a CONTEXT index is created with the STAGE_ITAB index option, an
empty $G table is created with the $H btree index on it. Use the g_index_clause
clause in conjunction with the STAGE_ITAB index option for improving the query
performance for the CONTEXT index that is extensively used for DML operations.

g_table_clause Parameter clause for the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

When a CONTEXT index is created with the STAGE_ITAB index option, an
empty $G table is created with the $H btree index on it. Use the g_table_clause
clause in conjunction with the STAGE_ITAB index option for improving the query
performance for the CONTEXT index that is extensively used for DML operations.

i_index_clause Parameter clause for dr$indexname$X index creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE INDEX statement.
The default clause is: 'COMPRESS 2', which instructs Oracle Text to compress
this index table.

If you choose to override the default, Oracle recommends including COMPRESS 2
in your parameter clause to compress this table, because such compression
saves disk space and helps query performance.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 94 of 123

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

i_rowid_index_clause Parameter clause to specify the storage clause for the $R index on dr$rowid
column of the $I table. Specify storage and tablespace clauses to add to the end
of the internal CREATE INDEX statement.

This clause is only used by the CTXCAT index type.

Note: The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database
26ai. The indextype itself, and it's operator CTXCAT, can be removed in a future
release.

CTXCAT was introduced when indexes were typically a few megabytes in size.
Modern, large indexes, can be difficult to manage with CTXCAT. The addition of
index sets to CTXCAT can be achieved more effectively by the use of FILTER BY
and ORDER BY columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is
therefore rarely an appropriate choice. Oracle recommends that you choose the
more efficient CONTEXT indextype.

i_table_clause Parameter clause for dr$indexname$I table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.

The $I table is the index data table.

Note: Oracle strongly recommends that you do not specify "disable storage in
row" for $I LOBs, as this greatly degrades the query performance.

k_table_clause Parameter clause for dr$indexname$K table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.

The K table is the keymap table.

kd_index_clause Parameter clause for $KD table creation. Specify storage and tablespace clauses
to add to the end of the internal CREATE TABLE statement.

The $KD table is a btree index on top of the $K table. It facilitates a quick docid-to-
rowid (KD) mapping. Docids are used internally by Oracle Text, and ROWIDs are
used by the database.

kr_index_clause Parameter clause for $KR table creation. Specify storage and tablespace clauses
to add to the end of the internal CREATE TABLE statement.

Similar to the $KD table, the $KR table is a btree index on top of the $K table. It
facilitates a quick rowid-to-docid mapping (KR) mapping. Docids are used
internally by Oracle Text and ROWIDs are used by the database.

kg_table_clause Parameter clause for $KG table creation. Specify storage and tablespace clauses
to add to the end of the internal CREATE TABLE statement.

The $KG table stores the k-gram index to facilitate efficient wildcard search.

kg_index_clause Parameter clause for $KGI index creation. Specify storage and tablespace
clauses to add to the end of the internal CREATE INDEX statement.

n_table_clause Parameter clause for dr$indexname$N table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.

The $N table is the negative list table which keeps track of deleted document IDs.
These document IDs must be cleaned up by index optimization.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 95 of 123

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

o_table_clause Parameter clause to specify the storage clause for the $O table.

This clause may be specified if the forward index feature is being used. The
forward index feature is used to increase the query performance while calculating
snippets.

If the o_table_clause is manually set, then it is recommended that you choose
SecureFiles with high compression for the document blob column mapping of
the $O table. If the o_table_clause is not set, then the document blob uses
SecureFiles by default, if the index owner's default tablespace is ASSM and the
database compatible parameter is 11.0 or higher.

The $O table is created when the forward index feature is enabled by specifying
the forward_index storage attribute. The $O table stores the mapping
information from the token offsets in the $I table to character offsets in the indexed
documents.

p_table_clause Parameter clause for the substring index if you have enabled SUBSTRING_INDEX
in the BASIC_WORDLIST.

Specify storage and tablespace clauses to add to the end of the internal CREATE
INDEX statement. The $P table is an index-organized table so the storage clause
you specify must be appropriate to this type of table.

q_table_clause Parameter clause to specify the storage clause for the DR$INDEX_NAME$Q table.
Specify the storage and tablespace clauses to add to the end of the internal
CREATE INDEX statements.

query_filter_cache_size Parameter clause to specify the maximum size of the query filter cache in bytes.
The query filter cache is allocated out of the shared pool, so its maximum size
must be smaller than the shared pool size. When this storage preference is set at
the partition level, it is implicitly set at the index level.

The default is 0.

Note: Starting in Oracle Database Release 21c, CTXFILTERCACHE is deprecated,
and also CTX_FILTER_CACHE_STATISTICS and QUERY_FILTER_CACHE_SIZE.

r_table_clause Parameter clause for dr$indexname$R table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.

The $R table is the ROWID table.

The default clause is: 'LOB(DATA) STORE AS (CACHE)'

If you modify this attribute, always include this clause for good performance.

Note: When you set the COMPATIBLE database parameter to 18.1 or higher, all
Oracle Text indexes are created using the default FAST_DML option, that is, the
indexes will not have the $R mapping table.

s_table_clause Parameter clause for dr$indexname$S table creation*. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.
The default clause is nocompress.

* For performance reasons, $S table must be created on a tablespace with db
block size >= 4K without overflow segment and without a PCTTHRESHOLD clause.
If $S is created on a tablespace with db block size < 4K, or is created with an
overflow segment or with PCTTHRESHOLD clause, then appropriate errors will be
raised during CREATE INDEX.

The S table is the table that stores SDATA section values.

If this clause is specified for a storage preference in an index without SDATA, then
it will have no effect on the index, and index creation will still succeed.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 96 of 123

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

save_copy Parameter clause to specify saving the document to the $D index table.

Specify this clause to use the forward index feature for increasing the query
performance while calculating snippets.

Set it to PLAINTEXT to save the copy of a document in the $D table in the plaintext
format. This improves the performance of snippet generation, since it does not
invoke the datastore or filter to fetch the text. This also improves the performance
of highlight.

Set it to FILTERED to save the copy of a document in the $D table in the filtered
(HTML) format. This improves the performance of highlight and markup, but
requires more disk space than plaintext format. It is less efficient for snippets
generation, since the HTML markup must be removed during the creation of
snippets.

The default is NONE, and the copy of a document is not saved in the $D table.

save_copy_max_size Parameter clause to specify the maximum size of a document to save in the $D
table using a basic_storage attribute.

If the document size is greater than the size specified in this attribute, the
truncated version of the document having the size specified in this attribute is
saved in the $D table.

If the $D table is using SecureFiles with compression for the document blob, then
the save_copy_max_size restriction is applied on the document size before
compression.

The default is 0, and the whole document is saved in the $D table irrespective of
its size.

Note: The save_copy_max_size parameter clause is effective only when the
save_copy parameter clause is specified.

separate_offsets Parameter clause to improve the query performance for the CONTEXT index that is
extensively used for IO operations, and whose queries are mainly single-word or
boolean queries. Creating an index with the SEPARATE_OFFSETS index option
requires the CREATE TRIGGER privilege, as a temporary trigger is created during
the indexing process.

Set it to T to enable the SEPARATE_OFFSETS index option for the CONTEXT index.
The default is F.

Note: The SEPARATE_OFFSETS index option is not supported for local Oracle Text
search index.

single_byte Storage option for better performance if all the indexed data that is known in
advance is single-byte.

When set to TRUE, all the data is treated as a single-byte (8-bit) data and the
character set is irrelevant during indexing and querying. Ensure that no character
in the data set crosses the single-byte (8-bit) limit. The default is FALSE.

small_r_row Storage attribute to reduce the size of $R row. It improves DML and query
performance during parallel DML and query workload. It reduces lock contention
during DMLs, thus improving the DML performance.

sn_table_clause Parameter clause for dr$indexname$SN table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sn_index_clause Parameter clause for dr$indexname$SNI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 97 of 123

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

sd_table_clause Parameter clause for dr$indexname$SD table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sd_index_clause Parameter clause for dr$indexname$SDI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

sv_table_clause Parameter clause for dr$indexname$SV table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sv_index_clause Parameter clause for dr$indexname$SVI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

sr_table_clause Parameter clause for dr$indexname$SR table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sr_index_clause Parameter clause for dr$indexname$SRI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

sbd_table_clause Parameter clause for dr$indexname$SBD table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sbd_index_clause Parameter clause for dr$indexname$SBDI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

sbf_table_clause Parameter clause for dr$indexname$SBF table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sbf_index_clause Parameter clause for dr$indexname$SBFI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

st_table_clause Parameter clause for dr$indexname$ST table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

st_index_clause Parameter clause for dr$indexname$STI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

stz_table_clause Parameter clause for dr$indexname$STZ table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

stz_index_clause Parameter clause for dr$indexname$STZI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

sids_table_clause Parameter clause for dr$indexname$SIDS table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sids_index_clause Parameter clause for dr$indexname$SIDSI table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

siym_table_clause Parameter clause for dr$indexname$SIYM table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 98 of 123

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

siym_index_clause Parameter clause for dr$indexname$SIYMI table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

stage_itab Switch to improve the query performance for the CONTEXT index that is extensively
used for DML operations.

When the STAGE_ITAB index option is disabled, then when a new document is
added to the index, SYNC_INDEX is called to make the documents searchable.
This creates new rows in the $I table, thus increasing the fragmentation in the $I
table. This leads to the deterioration of the query performance.

When the STAGE_ITAB index option is enabled, the information about the new
documents is stored in the $G staging table, and not in the $I table. This ensures
that the $I table does not get fragmented, and thus does not deteriorate the query
performance.

When the STAGE_ITAB index option is enabled, the $H btree index is also created
on the $G table. The $G table and $H btree index are equivalent to the $I table
and $X btree index.

Set stage_itab to YES to enable the STAGE_ITAB index option for the CONTEXT
index. The default is NO.

stage_itab_auto_opt New storage option to enable automatic background optimize merge.
stage_itab and stage_itab_auto_opt must be set to TRUE to enable
automatic background optimize merge.

Setting stage_itab_auto_opt to TRUE is not supported when
stage_itab_max_rows is set to 0 as the zero value disables row movement from
the $G table to the $I table.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 99 of 123

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

stage_itab_max_rows Storage option to ensure that the $G (stage_itab) table fits into the KEEP pool
and also that the $G table does not get filled up too frequently. This option is also
required to ensure that $G does not grow too big and start slowing down the
query and the index synchronization performance.

When the number of rows in the $G table exceeds this setting, a process is
started to move all data from the $G table to the $I table, optimizing the data as it
is moved. Note that this may cause certain SYNC operations or commits if
SYNC(ON COMMIT) is used to take an unexpectedly long time because they may
be moving many $G rows which have been inserted by other processes. If this is
unacceptable, set stage_itab_max_rows to 0 and use an auto optimization job
instead.

When scheduling an auto optimization job, set stage_itab_max_rows to 0 to
disable the automatic merging that now happens through sync index.

If stage_itab_max_rows is not set to 0 and an attempt is made to schedule an
auto optimization job, then an error occurs.

You can set stage_itab_max_rows to either 0 or any value greater than or equal
to 1000. The default value is 10K. A system with a very heavy DML load (inserts,
deletes, and updates) but a low query load might benefit from a larger value as
this reduces the number of merge operations which are necessary. For such
indexes, Oracle recommends a value of 100K to 1 million.

If you set the value to 0 the automatic background merge is turned off. In this
case, you must manually run CTX_DDL.OPTIMIZE_INDEX in MERGE mode to move
rows from the $G staging table to the $I permanent index table.

With stage_itab, when queries are run during heavy DML operations, Oracle AI
Database can issue the following error: ORA-08176 consistent read
failure; rollback data not available. In such cases, increase the size
of the UNDO tablespace and the UNDO_RETENTION initialization parameter.

stage_itab_parallel New storage option controls the degree of parallelism used to merge rows from
the stage_itab ($G table) back to the $I table when the
stage_itab_max_rows limit is hit.

The default value is 16 for the degree of parallelism.

u_table_clause Specify the storage and tablespace clauses to add at the end of the internal
CREATE TABLE statement. The $U table keeps track of concurrent updates.

Related Topics

• SYNC_INDEX
Synchronizes the index to process inserts, updates, and deletes to the base table.

2.7.1.2 BASIC_STORAGE Default Behavior
By default, BASIC_STORAGE attributes are not set. In such cases, the Text index tables are
created in the index owner's default tablespace. Consider the following statement, entered by
user IUSER, with no BASIC_STORAGE attributes set:

create index IOWNER.idx on TOWNER.tab(b) indextype is ctxsys.context;

In this example, the text index is created in IOWNER's default tablespace.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 100 of 123

2.7.1.3 BASIC_STORAGE Examples
The following examples specify that the index tables are to be created in the foo tablespace
with an initial extent of 1K:

begin
ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
ctx_ddl.set_attribute('mystore', 'I_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'K_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'R_TABLE_CLAUSE',
 'tablespace users storage (initial 1K) lob
 (data) store as (disable storage in row cache)');
ctx_ddl.set_attribute('mystore', 'N_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'I_INDEX_CLAUSE',
 'tablespace foo storage (initial 1K) compress 2');
ctx_ddl.set_attribute('mystore', 'P_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'S_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'U_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');end;

The following example adds to the end of the internal table that is created.

exec ctx_ddl.create_preference('sto', 'basic_storage');
exec ctx_ddl.set_attribute('sto', 'e_table_clause', 'tablespace foo');

The following example uses query_filter_cache_size storage parameter for a partitioned
index:

exec ctx_ddl.create_preference('fcs', 'basic_storage');
exec ctx_ddl.set_attribute('fcs', 'query_filter_cache_size', '100000000');

create table fc(id number primary key, txt varchar2(255))
partition by range (id)
(
 partition p1 values less than (25),
 partition p2 values less than (50),
 partition p3 values less than (75)
);

create index fci on fc(txt) indextype is ctxsys.context
 local (
 partition p1,
 partition p2,
 partition p3) parameters('storage fcs memory 49M sync (on commit)');

The query filter cache is an index level storage preference. The storage preference for the
query filter cache can be set at partition level only if this is also set at the index level.

select count(*) from fc partition (p1) where contains(txt,'ctxfiltercache((hello))')>0;

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 101 of 123

Note

Starting in Oracle Database Release 21c, CTXFILTERCACHE is deprecated, and also
CTX_FILTER_CACHE_STATISTICS and QUERY_FILTER_CACHE_SIZE.

SINGLE_BYTE Data Indexing Storage Attribute

Syntax

ctx_ddl.set_attribute(storage_pref_name, 'SINGLE_BYTE', BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SINGLE_BYTE
Specify the storage attribute name as SINGLE_BYTE or single_byte.

BOOLEAN
Indicate whether the attribute is set. By default, the value is FALSE. It implies that the database
character set identifies whether the documents are stored as single-byte or multi-byte.

The following example sets the storage preference and enables the single_byte storage
attribute:

exec ctx_ddl.create_preference('mysto', 'basic_storage');
ctx_ddl.set_attribute('mysto', 'single_byte', 'TRUE');

SMALL_R_ROW Storage Attribute

Syntax

ctx_ddl.set_attribute(storage_pref_name, 'SMALL_R_ROW', BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SMALL_R_ROW
Specify the storage attribute name as SMALL_R_ROW or small_r_row..

BOOLEAN
Indicate whether the attribute is set. By default, the value is TRUE.

The following example sets the storage preference and enables the small_r_row storage
attribute:

begin
ctx_ddl.create_preference('sto', 'basic_storage');
ctx_ddl.set_attribute('sto', 'small_r_row', 'T',
end;

To enable or disablesmall_r_row feature on an existing index:

ALTER INDEX index_name rebuild PARAMETERS('replace storage sto');

By default, small_r_row=TRUE , however, for earlier releases, small_r_row=FALSE.

Chapter 2
Storage Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 102 of 123

2.8 Section Group Types
To enter WITHIN queries on document sections, you must create a section group before you
define your sections. Specify your section group in the parameter clause of CREATE INDEX.

This section contains the following topics.

• Section Group Types for Creating a Section Group

• Section Group Examples for HTML, XML, and JSON Enabled Documents

2.8.1 Section Group Types for Creating a Section Group
To create a section group, you can specify one of the following group types with the
CTX_DDL.CREATE_SECTION_GROUP procedure.

Table 2-40 Section Group Types

Type Description

NULL_SECTION_GROUP Use this group type when you define no sections or when you define
only SENTENCE or PARAGRAPH sections. This is the default.

BASIC_SECTION_GROUP Use this group type for defining sections where the start and end tags
are of the form <A> and .

Note: This group type does not support input such as unbalanced
parentheses, comments tags, and attributes. Use
HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type for indexing HTML documents and for defining
sections in HTML documents.

JSON_SECTION_GROUP Use this group to create a JSON enabled context index. The JSON
ENABLE attribute cannot be used with XML ENABLE. A section group
can only be marked as JSON ENABLE. If it is already marked with XML
ENABLE, then the path section group cannot be used for JSON ENABLE
and vice versa.

XML_SECTION_GROUP Use this group type for indexing XML documents and for defining
sections in XML documents. All sections to be indexed must be
manually defined for this group.

Chapter 2
Section Group Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 103 of 123

Table 2-40 (Cont.) Section Group Types

Type Description

AUTO_SECTION_GROUP Use this group type to automatically create a zone section for each
start-tag/end-tag pair in an XML document. The section names derived
from XML tags are case sensitive as in XML.

Attribute sections are created automatically for XML tags that have
attributes. Attribute sections are named in the form tag@attribute.

Special sections can be added to AUTO_SECTION_GROUP for WITHIN
SENTENCE and WITHIN PARAGRAPH searches. Once a sentence or
paragraph section is added to the AUTO_SECTION_GROUP, sections
with corresponding tag names 'sentence' or 'paragraph' (case
insensitive) are treated as stop sections.

Stop sections, empty tags, processing instructions, and comments are
not indexed.

The following limitations apply to automatic section groups:

• You cannot add zone, field, sdata, or special sections to an
automatic section group.

• You can define a stop section that applies only to one particular
type; that is, if you have two different XML DTDs, both of which
use a tag called FOO, you can define (TYPE1)FOO to be stopped,
but(TYPE2)FOO to not be stopped.

• The length of the indexed tags, including prefix and namespace,
cannot exceed 64 bytes. Tags longer than this are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. Behaves like the
AUTO_SECTION_GROUP.

The difference is that with this section group you can do path searching
with the INPATH and HASPATH operators. Queries are also case-
sensitive for tag and attribute names. Stop sections are not allowed.

NEWS_SECTION_GROUP Use this group for defining sections in newsgroup formatted documents
according to RFC 1036.

Note

Starting with Oracle Database 18c, use of NEWS_SECTION_GROUP is deprecated in
Oracle Text. Use external processing instead.
If you want to index USENET posts, then preprocess the posts to use
BASIC_SECTION_GROUP or HTML_SECTION_GROUP within Oracle Text. USENET is rarely
used commercially.

2.8.2 Section Group Examples for HTML, XML, and JSON Enabled
Documents

The examples show the use of section groups in HTML and XML documents, and in JSON
enabled documents. See Table 2-40 for a summary.

This section contains the following examples:

• Creating Section Groups in HTML Documents

• Creating Sections Groups in XML Documents

Chapter 2
Section Group Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 104 of 123

• Automatic Sectioning in XML Documents

• Creating JSON Section Groups for JSON Search Index

• Using JSON Search Index with JSON_TEXTCONTAINS

• Using JSON Search Index with JSON_EXISTS

2.8.2.1 Creating Section Groups in HTML Documents
The following statement creates a section group called htmgroup with the HTML group type.

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX_DDL package,
such as CTX_DDL.ADD_SPECIAL_SECTION or CTX_DDL.ADD_ZONE_SECTION. To index your
documents, enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

See Also

For more information on section groups, see CTX_DDL Package

2.8.2.2 Creating Sections Groups in XML Documents
The following statement creates a section group called xmlgroup with the XML_SECTION_GROUP
group type.

begin
ctx_ddl.create_section_group('xmlgroup', 'XML_SECTION_GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX_DDL package,
such as CTX_DDL.ADD_ATTR_SECTION or CTX_DDL.ADD_STOP_SECTION. To index your documents,
enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group xmlgroup');

See Also

For more information on section groups, see CTX_DDL Package

2.8.2.3 Automatic Sectioning in XML Documents
The following statement creates a section group called auto with the AUTO_SECTION_GROUP
group type. This section group automatically creates sections from tags in XML documents.

begin

ctx_ddl.create_section_group('auto', 'AUTO_SECTION_GROUP');

Chapter 2
Section Group Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 105 of 123

end;

CREATE INDEX myindex on docs(htmlfile) INDEXTYPE IS ctxsys.context
PARAMETERS('filter ctxsys.null_filter section group auto');

2.8.2.4 Creating JSON Section Groups for JSON Search Index
The following example creates a JSON enabled text index.

create index json_ctx_idx on customers (customer
_info)
indextype is ctxsys.context
parameters ('section group CTXSYS.JSON_SECTION_GROUP');

2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS
The following example searches for customers having keyword "gold" in the description.

select customer_info
from customers
where JSON_TEXTCONTAINS(customer_info, '$.description', 'gold');

2.8.2.6 Using JSON Search Index with JSON_EXISTS
Find JSON enabled data.

select customer_info from customers
where JSON_EXISTS(customer_info, '$.dataplan');

2.9 Classifier Types
The following classifier types are used to create preferences for CTS_CLS.TRAIN and CTXRULE
index creation:

• RULE_CLASSIFIER

• SVM_CLASSIFIER

• SENTIMENT_CLASSIFIER

Note

In Oracle Database Express Edition (Oracle Database XE), RULE_CLASSIFIER,
SVM_CLASSIFIER, and SENTIMENT_CLASSIFIER are not supported because the Data
Mining option is not available. This is also true for KMEAN_CLUSTERING.

2.9.1 RULE_CLASSIFIER
Use the RULE_CLASSIFIER type for creating preferences for the query rule generating
procedure, CTX_CLS.TRAIN and for CTXRULE creation. The rules generated with this type are
essentially query strings and can be easily examined. The queries generated by this classifier
can use the AND, NOT, or ABOUT operators. The WITHIN operator is supported for queries on field
sections only.

Table 2-41 lists the attributes for the RULE_CLASSIFIER type.

Chapter 2
Classifier Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 106 of 123

Table 2-41 RULE_CLASSIFIER Attributes

Attribute Data
Type

Default Min
Value

Max
Value

Description

THRESHOLD I 50 1 99 Specify threshold (in percentage) for rule
generation. One rule is output only when its
confidence level is larger than threshold.

MAX_TERMS I 100 20 2000 For each class, a list of relevant terms is
selected to form rules. Specify the maximum
number of terms that can be selected for each
class.

MEMORY_SIZE I 500 10 4000 Specify memory usage for training in MB. Larger
values improve performance.

NT_THRESHOLD F 0.001 0 0.90 Specify a threshold for term selection. There are
two thresholds guiding two steps in selecting
relevant terms. This threshold controls the
behavior of the first step. At this step, terms are
selected as candidate terms for the further
consideration in the second step. The term is
chosen when the ratio of the occurrence
frequency over the number of documents in the
training set is larger than this threshold.

TERM_THRESHOLD I 10 0 100 Specify a threshold as a percentage for term
selection. This threshold controls the second
step term selection. Each candidate term has a
numerical quantity calculated to imply its
correlation with a given class. The candidate
term will be selected for this class only when the
ratio of its quantity value over the maximum
value for all candidate terms in the class is
larger than this threshold.

PRUNE_LEVEL I 75 0 100 Specify how much to prune a built decision tree
for better coverage. Higher values mean more
aggressive pruning and the generated rules will
have larger coverage but less accuracy.

2.9.2 SVM_CLASSIFIER
Use the SVM_CLASSIFIER type for creating preferences for the rule generating procedure,
CTX_CLS.TRAIN, and for CTXRULE creation. This classifier type represents the Support Vector
Machine method of classification and generates rules in binary format. Use this classifier type
when you need high classification accuracy.

This type has the following attributes:

Table 2-42 SVM_CLASSIFIER Attributes

Attribute Name Data
Type

Default Min
Value

Max
Value

Description

MAX_DOCTERMS I 50 10 8192 Specify the maximum number of
terms representing one
document.

Chapter 2
Classifier Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 107 of 123

Table 2-42 (Cont.) SVM_CLASSIFIER Attributes

Attribute Name Data
Type

Default Min
Value

Max
Value

Description

MAX_FEATURES I 3,000 1 100,000 Specify the maximum number of
distinct features.

THEME_ON B FALSE NULL NULL Specify TRUE to use themes as
features.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM_ON B FALSE NULL NULL Specify TRUE to use stemmed
tokens as features. This only
works when turning INDEX_STEM
on for the lexer.

MEMORY_SIZE I 500 10 4000 Specify approximate memory size
in MB.

SECTION_WEIGHT 1 2 0 100 Specify the occurrence multiplier
for adding a term in a field section
as a normal term. For example,
by default, the term cat in
"<A>cat" is a field section
term and is treated as a normal
term with occurrence equal to 2,
but you can specify that it be
treated as a normal term with a
weight up to 100.
SECTION_WEIGHT is only
meaningful when the index policy
specifies a field section.

2.9.3 SENTIMENT_CLASSIFIER
Use the SENTIMENT_CLASSIFIER type to create a preference for sentiment analysis queries.
This classifier specifies preferences associated with a user-defined sentiment classifier
preference. You must define a preference of this type before you use the
CTX_CLS.SA_TRAIN_MODEL procedure to train the user-defined sentiment classifier.

Table 2-43 lists the attributes for the SENTIMENT_CLASSIFIER type.

Table 2-43 SENTIMENT_CLASSIFIER Attributes

Attribute Data
Type

Default Minimum
Value

Maximum
Value

Description

MAX_DOCTERMS I 50 10 8192 Specify the maximum number of distinct terms
representing one document

MAX_FEATURES I 3000 1 100000 Specify the maximum number of distinct features
used to build a sentiment classifier

THEME_ON B False Specify if themes must be extracted as features

TOKEN_ON B True Specify if tokens must be extracted as features

STEM_ON B True Specify if stemmed tokens must be extracted as
features

Chapter 2
Classifier Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 108 of 123

Table 2-43 (Cont.) SENTIMENT_CLASSIFIER Attributes

Attribute Data
Type

Default Minimum
Value

Maximum
Value

Description

MEMORY_SIZE I 500 10 4000 Specify the typical memory size, in MB, used to
build the sentiment classifier.

SECTION_WEIGHT I 2 0 100 Specify the integer multiplier for term occurrence
within a field section

NUM_ITERATIONS I 600 Specify the maximum number of iterations for
which the sentiment classifier is run before it
converges

See Also

Oracle Text Application Developer's Guide for an example of using the
SENTIMENT_CLASSIFIER type

2.10 Cluster Types
This section describes the cluster types used for creating preferences for the
CTX_CLS.CLUSTERING procedure.

• KMEAN_CLUSTERING

Note

In Oracle Database Express Edition (Oracle Database XE), KMEAN_CLUSTERING is not
supported because the Data Mining option is not available. This is also true for
RULE_CLASSIFIER and SVM_CLASSIFIER.

See Also

For more information about clustering, see "CLUSTERING" in CTX_CLS Package as
well as the Oracle Text Application Developer's Guide

2.10.1 KMEAN_CLUSTERING
The KMEAN_CLUSTERING clustering type has the attributes listed in Table 2-44.

Chapter 2
Cluster Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 109 of 123

Table 2-44 KMEAN_CLUSTERING Attributes

Attribute Name Data
Type

Default Min
Value

Max
Value

Description

MAX_DOCTERMS I 50 10 8192 Specify the maximum number of
distinct terms representing one
document.

MAX_FEATURES I 3,000 1 500,000 Specify the maximum number of
distinct features.

THEME_ON B FALSE NULL NULL Specify TRUE to use themes as
features.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM_ON B FALSE NULL NULL Specify TRUE to use stemmed
tokens as features. This only
works when turning INDEX_STEM
on for the lexer.

MEMORY_SIZE I 500 10 4000 Specify approximate memory
size in MB.

SECTION_WEIGHT 1 2 0 100 Specify the occurrence multiplier
for adding a term in a field
section as a normal term. For
example, by default, the term cat
in "<A>cat" is a field section
term and is treated as a normal
term with occurrence equal to 2,
but you can specify that it be
treated as a normal term with a
weight up to 100.
SECTION_WEIGHT is only
meaningful when the index policy
specifies a field section.

CLUSTER_NUM I 200 2 20000 Specify the total number of leaf
clusters to be generated.

2.11 Stoplists
Stoplists identify the words in your language that are not to be indexed. In English, you can
also identify stopthemes that are not to be indexed.

• Multi-Language Stoplists

• Creating Stoplists

• Supplied Stoplists

• Modifying the Default Stoplist

2.11.1 Multi-Language Stoplists
You can create multi-language stoplists to hold language-specific stopwords. A multi-language
stoplist is useful when you use the MULTI_LEXER to index a table that contains documents in
different languages, such as English, German.

Chapter 2
Stoplists

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 110 of 123

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST procedure and
specify a stoplist type of MULTI_STOPLIST. Add language specific stopwords with
CTX_DDL.ADD_STOPWORD .

At indexing time, the language column of each document is examined, and only the stopwords
for that language are eliminated. At query time, the session language setting determines the
active stopwords, like it determines the active lexer when using the multi-lexer.

2.11.2 Creating Stoplists
Create your own stoplists using the CTX_DLL.CREATE_STOPLIST procedure. With this
procedure you can create a BASIC_STOPLIST for single language stoplist, or you can create a
MULTI_STOPLIST for a multi-language stoplist.

When you create your own stoplist, you must specify it in the parameter clause of CREATE
INDEX.

To create stoplists for Chinese or Japanese languages, use the CHINESE_LEXER or
JAPANESE_LEXER respectively, and update the appropriate lexicon to be
@contained_such_stopwords.

2.11.3 Supplied Stoplists
By default, the system indexes text using the Oracle Text supplied stoplists that correspond to
your database language.

A stoplist is a list of stopwords that do not get indexed. These are usually common words in a
language, such as this, that, and can in English. By default, all such words are defined in the
Oracle Text supplied stoplists. You can customize these stoplists or update the stopwords
based on your requirements.

Supported Languages and Stoplists Location

The Oracle Text supplied stoplists contain a list of stopwords, which are provided as defaults
for all BASIC_LEXER and AUTO_LEXER supported languages. These stopwords are automatically
loaded during installation or upgrade for the chosen database language.

The default stoplists (along with other default preferences) are defined in the administration
(SQL) files, which are located in the $ORACLE_HOME/ctx/admin directory. These SQL files
are named drdefLANG.sql, where LANG specifies the language code. For example, the default
stoplist for French (language code: f) is defined in the $ORACLE_HOME/ctx/admin/drdeff.sql
file.

The source files for these default stoplists contain a list of stopwords, and are located in
the $ORACLE_HOME/ctx/data/stoplist directory. These source files are named
drstopLANG.txt, where LANG specifies the language code. The contents of the source files are
the extracted terms from the drdefLANG.sql files.

For a list of all languages (and their language codes) in which default stoplists are supplied,
see Multilingual Features Matrix.

How to Load Your Own Stoplists

By default, only one drdefLANG.sql file is loaded during installation or upgrade based on the
database language that you choose. You can call the CTX_DDL.LOAD_STOPLIST procedure to
customize your stoplist or modify the default list of stopwords.

Chapter 2
Stoplists

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 111 of 123

Unlike CTX_DDL.ADD_STOPWORD (which adds a single stopword per call),
CTX_DDL.LOAD_STOPLIST takes a source file of stopwords for your specified language
(from $ORACLE_HOME/ctx/data/stoplist/drstopLANG.txt) and loads to your stoplist.

Related Topics

• LOAD_STOPLIST
Use this procedure to load a source file of stopwords to your stoplist for the required
language.

• Multilingual Features Matrix
These are the multilingual features for all supported languages.

2.11.4 Modifying the Default Stoplist
The default stoplist is always named CTXSYS.DEFAULT_STOPLIST. Use this procedure to modify
this stoplist.

• CTX_DDL.ADD_STOPWORD

• CTX_DDL.ADD_STOPTHEME

• CTX_DDL.ADD_STOPCLASS

• CTX_DDL.LOAD_STOPLIST

• CTX_DDL.REMOVE_STOPWORD

When you modify CTXSYS.DEFAULT_STOPLIST with the CTX_DDL package, you must re-create
your index for the changes to take effect.

Dynamic Addition of Stopwords

You can add stopwords dynamically to a default or custom stoplist with ALTER INDEX . When
you add a stopword dynamically, you need not re-index, because the word immediately
becomes a stopword and is removed from the index.

Note

Even though you can dynamically add stopwords to an index, you cannot dynamically
remove stopwords. To remove a stopword, you must use
CTX_DDL.REMOVE_STOPWORD , drop your index and re-create it.

Related Topics

• ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

2.12 System-Defined Preferences
When you install Oracle Text, some indexing preferences are created. You can use these
preferences in the parameter clause of CREATE INDEX or define your own.

The default index parameters are mapped to some of the system-defined preferences
described in this section.

Chapter 2
System-Defined Preferences

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 112 of 123

See Also

For more information about default index parameters, see "Default Index Parameters"

System-defined preferences are divided into the following categories:

• Data Storage Preferences

• Filter Preferences

• Lexer Preferences

• Section Group Preferences

• Stoplist Preferences

• Storage Preferences

• Wordlist Preferences

2.12.1 Data Storage Preferences
This section discusses the types associated with data storage preferences.

• The CTXSYS.DEFAULT_DATASTORE preference uses the DIRECT_DATASTORE type. Use
this preference to create indexes for text columns in which the text is stored directly in the
column.

• The CTXSYS.FILE_DATASTORE preference uses the FILE_DATASTORE type.

• The CTXSYS.URL_DATASTORE preference uses the URL_DATASTORE type.

2.12.2 Filter Preferences
This section discusses the types associated with filtering preferences.

• The CTXSYS.NULL_FILTER preference uses the NULL_FILTER type.

• The CTXSYS.AUTO_FILTER preference uses the AUTO_FILTER type.

2.12.3 Lexer Preferences
This section discusses the types associated with lexer preferences.

• CTXSYS.DEFAULT_LEXER

• CTXSYS.DEFAULT_EXTRACT_LEXER

• CTXSYS.BASIC_LEXER

2.12.3.1 CTXSYS.DEFAULT_LEXER
The CTXSYS.DEFAULT_LEXER default lexer depends on the language used at install time.

The following sections describe the default settings for CTXSYS.DEFAULT_LEXER for each
language.

• American and English Language Settings

Chapter 2
System-Defined Preferences

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 113 of 123

If your language is English, this preference uses the BASIC_LEXER with the
index_themes attribute disabled.

• Danish Language Settings

If your language is Danish, this preference uses the BASIC_LEXER with the following
option enabled:

– Alternate spelling (alternate_spelling attribute set to DANISH)

• Dutch Language Settings

If your language is Dutch, this preference uses the BASIC_LEXER with the following
options enabled:

– composite indexing (composite attribute set to DUTCH)

• German and German DIN Language Settings

If your language is German, then this preference uses the BASIC_LEXER with the
following options enabled:

– Case-sensitive indexing (mixed_case attribute enabled)

– Composite indexing (composite attribute set to GERMAN)

– Alternate spelling (alternate_spelling attribute set to GERMAN)

• Bokmal (Norwegian), Finnish, Nynorsk (Norwegian), and Swedish Language Settings

If your language is Bokmal (Norwegian), Finnish, Nynorsk (Norwegian), or Swedish, this
preference uses the BASIC_LEXER with the following option enabled:

– Alternate spelling (alternate_spelling attribute set to SWEDISH)

• Japanese Language Settings

If your language is Japanese, this preference uses the JAPANESE_VGRAM_LEXER.

• Korean Language Settings

If your language is Korean, this preference uses the KOREAN_MORPH_LEXER . All
attributes for the KOREAN_MORPH_LEXER are enabled.

• Chinese Language Settings

If your language is Simplified or Traditional Chinese, this preference uses the
CHINESE_VGRAM_LEXER.

• Other Languages

For all other languages not listed in this section, this preference uses the BASIC_LEXER
with no attributes set.

See Also

To learn more about these options, see "BASIC_LEXER"

2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER
The CTXSYS.DEFAULT_EXTRACT_LEXER preference uses AUTO_LEXER and includes all Oracle-
supplied features (rules, dictionary, etc.). CTXSYS.DEFAULT_EXTRACT_LEXER uses AUTO_LEXER
with the following options:

• alternate_spelling is NONE

Chapter 2
System-Defined Preferences

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 114 of 123

• base_letter is NO

• mixed_case is YES

• <> printjoin is '-*' <>

2.12.3.3 CTXSYS.BASIC_LEXER
The CTXSYS.BASIC_LEXER preference uses the BASIC_LEXER.

2.12.4 Section Group Preferences
This section discusses the types associated with section group preferences.

• The CTXSYS.NULL_SECTION_GROUP preference uses the NULL_SECTION_GROUP type.

• The CTXSYS.HTML_SECTION_GROUP preference uses the HTML_SECTION_GROUP type.

• The CTXSYS.JSON_SECTION_GROUP preference uses the PATH_SECTION_GROUP type.

• The CTXSYS.AUTO_SECTION_GROUP preference uses the AUTO_SECTION_GROUP type.

• The CTXSYS.PATH_SECTION_GROUP preference uses the PATH_SECTION_GROUP type.

Here is the list of default section groups that are created:

• The CTXSYS.XQUERY_SEC_GROUP preference evaluates not only xquery full text expressions
but also the xquery range expressions.

• The CTXSYS.XQFT_SEC_GROUP preference evaluates only xquery full text expressions.

2.12.5 Stoplist Preferences
This section discusses the types associated with stoplist preferences.

• The CTXSYS.DEFAULT_STOPLIST stoplist preference defaults to the stoplist of your database
language.

• The CTXSYS.EMPTY_STOPLIST stoplist has no words.

See Also

For a complete list of the stop words in the supplied stoplists, see Supplied Stoplists.

2.12.6 Storage Preferences
This section discusses the types associated with storage preferences.

The CTXSYS.DEFAULT_STORAGE storage preference uses the BASIC_STORAGE type.

Here are the storage preferences:

• The CTXSYS.XQFT_LOW preference disables the persistence of secondary XML
representation into $D table to save index storage space.

– xml_save_copy = FALSE

– xml_forward_enable = FALSE

Chapter 2
System-Defined Preferences

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 115 of 123

• The CTXSYS.XQFT_MEDIUM preference enables the persistence of secondary XML
representation into $D table to reduce the time spent on post index xquery evaluation, if
needed.

– xml_save_copy = TRUE

– xml_forward_enable = FALSE

• The CTXSYS.XQFT_HIGH preference enables the persistence of secondary XML
representation into $D table and forwards the index into $O to reduce the time spent on post
index xquery and xquery full text expression evaluation, if needed.

– xml_save_copy = TRUE

– xml_forward_enable = TRUE

2.12.7 Wordlist Preferences
This section discusses the types associated with wordlist preferences.

The CTXSYS.DEFAULT_WORDLIST preference uses the language stemmer for your database
language. If your language is not listed in Table 2-37, then this preference defaults to the NULL
stemmer and the GENERIC fuzzy matching attribute.

2.13 System Parameters
This section describes the Oracle Text system parameters, which are divided into the following
categories:

• General System Parameters

• Default Index Parameters

• Default Policy Parameters

See Also

"System-Defined Preferences"

2.13.1 General System Parameters
When you install Oracle Text, in addition to the system-defined preferences, the following
system parameters are set:

Table 2-45 General System Parameters

System Parameter Description

MAX_INDEX_MEMORY This is the maximum indexing memory that can be specified in the
parameter clause of CREATE INDEX and ALTER INDEX. The maximum
value for this parameter is 256 GB.

Chapter 2
System Parameters

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 116 of 123

Table 2-45 (Cont.) General System Parameters

System Parameter Description

DEFAULT_INDEX_MEMORY This is the default indexing memory used with CREATE INDEX and
ALTER INDEX. The default value for this parameter is 64 MB.

Note

Starting with 23.9 release, the default
value for this parameter has been
increased to 256 MB.

LOG_DIRECTORY This is the directory for CTX_OUTPUT log files.

CTX_DOC_KEY_TYPE This is the default input key type, either ROWID or PRIMARY_KEY, for the
CTX_DOC procedures. Set to ROWID at install time.

See Also: CTX_DOC.SET_KEY_TYPE.

View system defaults by querying the CTX_PARAMETERS view. Change defaults using the
CTX_ADM.SET_PARAMETER procedure.

2.13.2 Default Index Parameters
This section describes the index parameters that you can use when you create CONTEXT and
CTXCAT indexes.

This section contains the following topics:

• CONTEXT Index Parameters

• CTXCAT Index Parameters

• CTXRULE Index Parameters

Viewing Default Values

View system defaults by querying the CTX_PARAMETERS view. For example, to see all
parameters and values, enter the following statement:

SQL> SELECT par_name, par_value from ctx_parameters;

Changing Default Values

Change a default value using the CTX_ADM.SET_PARAMETER procedure to name another
custom or system-defined preference to use as default.

2.13.2.1 CONTEXT Index Parameters
The following default parameters are used when you create a CONTEXT index and do not
specify preferences in the parameter clause of CREATE INDEX. Each default parameter
names a system-defined preference to use for data storage, filtering, lexing, and so on.

Chapter 2
System Parameters

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 117 of 123

Table 2-46 Default CONTEXT Index Parameters

Parameter Used When Default Value

DEFAULT_DATASTORE No datastore preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_DATASTORE

DEFAULT_FILTER_FILE No filter preference specified in
parameter clause of CREATE INDEX,
and either of the following conditions is
true:

• Your files are stored in external files
(BFILES) or

• Specify a datastore preference that
uses FILE_DATASTORE

CTXSYS.AUTO_FILTER

DEFAULT_FILTER_BINARY No filter preference specified in
parameter clause of CREATE INDEX,
and Oracle Text detects that the text
column datatype is RAW, LONG RAW, or
BLOB.

CTXSYS.AUTO_FILTER

DEFAULT_FILTER_TEXT No filter preference specified in
parameter clause of CREATE INDEX,
and Oracle Text detects that the text
column datatype is either LONG,
VARCHAR2, VARCHAR, CHAR, or CLOB.

CTXSYS.NULL_FILTER

DEFAULT_SECTION_HTML No section group specified in parameter
clause of CREATE INDEX, and when
either of the following conditions is true:

• Your datastore preference uses
URL_DATASTORE or

• Your filter preference uses
AUTO_FILTER.

CTXSYS.HTML_SECTION_GROUP

DEFAULT_SECTION_TEXT No section group specified in parameter
clause of CREATE INDEX, and when you
do not use either URL_DATASTORE or
AUTO_FILTER.

CTXSYS.NULL_SECTION_GROUP

DEFAULT_STORAGE No storage preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_STORAGE

DEFAULT_LEXER No lexer preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DERAULT_LEXER

DEFAULT_STOPLIST No stoplist specified in parameter
clause of CREATE INDEX.

CTXSYS.DEFAULT_STOPLIST

DEFAULT_WORDLIST No wordlist preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_WORDLIST

See Also

"System-Defined Preferences"

Chapter 2
System Parameters

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 118 of 123

2.13.2.2 CTXCAT Index Parameters
These default parameters are used when you create a CTXCAT index with CREATE INDEX and do
not specify any parameters in the parameter string.

The CTXCAT index supports only the index set, lexer, storage, stoplist, and wordlist parameters.
Each default parameter names a system-defined preference.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [time-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

Table 2-47 Default CTXCAT Index Parameters

Parameter Used When Default Value

DEFAULT_CTXCAT_INDEX_SET No index set specified in parameter
clause of CREATE INDEX.

n/a

DEFAULT_CTXCAT_STORAGE No storage preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_STORAGE

DEFAULT_CTXCAT_LEXER No lexer preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DERAULT_LEXER

DEFAULT_CTXCAT_STOPLIST No stoplist specified in parameter
clause of CREATE INDEX.

CTXSYS.DEFAULT_STOPLIST

DEFAULT_CTXCAT_WORDLIST No wordlist preference specified in
parameter clause of CREATE INDEX.

Note that while you can specify a
wordlist preference for CTXCAT indexes,
most of the attributes do not apply,
because the catsearch query language
does not support wildcarding, fuzzy, and
stemming. The only attribute that is
useful is PREFIX_INDEX for Japanese
data.

CTXSYS.DEFAULT_WORDLIST

Related Topics

• System-Defined Preferences

Chapter 2
System Parameters

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 119 of 123

2.13.2.3 CTXRULE Index Parameters
Table 2-48 lists the default parameters that are used when you create a CTXRULE index with
CREATE INDEX and do not specify any parameters in the parameter string. The CTXRULE index
supports only the lexer, storage, stoplist, and wordlist parameters. Each default parameter
names a system-defined preference.

Table 2-48 Default CTXRULE Index Parameters

Parameter Used When Default Value

DEFAULT_CTXRULE_LEXER No lexer preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DERAULT_LEXER

DEFAULT_CTXRULE_STORAGE No storage preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_STORAGE

DEFAULT_CTXRULE_STOPLIST No stoplist specified in parameter
clause of CREATE INDEX.

CTXSYS.DEFAULT_STOPLIST

DEFAULT_CTXRULE_WORDLIST No wordlist preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_WORDLIST

DEFAULT_CLASSIFIER No classifier preference is specified in
parameter clause.

RULE_CLASSIFIER

See Also

"System-Defined Preferences"

CTXRULE Index Limitations

The CTXRULE index does not support the following query operators:

• Fuzzy

• Soundex

It also does not support the following BASIC_WORDLIST attributes:

• SUBSTRING_INDEX

• PREFIX_INDEX

2.13.3 Default Policy Parameters
Policies in Oracle Text enable you to use document services without creating an index. For
example, the document services might be filtering to generate a plain text or HTML version of a
document, generating theme summaries or lists of themes, and highlighting.

Table 2-49 lists the default parameters when you create a policy and do not specify
preferences when using CTX_DDL.CREATE_POLICY. Each default parameter names a
system-defined preference to use for filtering, lexing, and so on.

Chapter 2
System Parameters

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 120 of 123

Table 2-49 Default Policy Parameters for CTX_DDL.CREATE_POLICY

Parameter Used When Default Value

DEFAULT_FILTER_BINARY No filter preference specified for
CREATE_POLICY, and the document
parameter of the document service is
VARCHAR2 or CLOB datatype; BLOB or
BFILE datatype.

CTXSYS.AUTO_FILTER

DEFAULT_FILTER_TEXT No filter preference specified for
CREATE_POLICY, and the document
parameter of the document service is
VARCHAR2 or CLOB datatype; BLOB or
BFILE datatype.

CTXSYS.NULL_FILTER

DEFAULT_SECTION_HTML No section group specified for
CREATE_POLICY, and when your filter
preference uses AUTO_FILTER.

CTXSYS.HTML_SECTION_GROUP

DEFAULT_SECTION_TEXT No section_group specified for
CREATE_POLICY, and when you do not
use AUTO_FILTER.

CTXSYS.NULL_SECTION_GROUP

DEFAULT_LEXER No lexer preference specified for
CREATE_POLICY.

CTXSYS.DERAULT_LEXER

DEFAULT_STOPLIST No stoplist specified for
CREATE_POLICY.

CTXSYS.DEFAULT_STOPLIST

DEFAULT_WORDLIST No wordlist preference specified for
CREATE_POLICY.

CTXSYS.DEFAULT_WORDLIST

See Also

• "System-Defined Preferences"

• "CREATE_POLICY" for complete information

2.14 Token Limitations for Oracle Text Indexes
Starting with Oracle Database Release 18c, the indexed token maximum size is increased to
255 characters for single-byte character sets.

Before Oracle Database Release 18c, all Oracle Text index types except SDATA sections stored
tokens in a table column of type VARCHAR2 (64 BYTE). Starting with Oracle Database Release
18c, all Oracle Text index types except CTXCAT and CTXRULE indexes store tokens in VARCHAR2
(255 BYTE) table column types. This change is an increase for the maximum size of an
indexed token to 255 characters for single-byte character sets. The size increase is less with
multibyte or variable-length character sets. Tokens longer than 255 bytes are truncated.
Truncated tokens do not prevent searches on the whole token string. However, the system
cannot distinguish between two tokens that have the same first 255 bytes.

Chapter 2
Token Limitations for Oracle Text Indexes

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 121 of 123

Note

Before Oracle Database Release 18c, tokens that were greater than 64 bytes were
truncated to 64 bytes. After upgrading to Oracle Database Release 18c, the token
tables are increased to 255 bytes from 64 bytes. Searches with more than 64 bytes in
the search token (that is, any single word in search string) cannot find any tokens
which were truncated to 64 bytes. To avoid this problem, rebuild the index. If you never
use search tokens longer than 64 bytes, it is not necessary to rebuild the index.

SDATA sections store tokens in a table column of type VARCHAR2 (249 BYTE). CTXCAT and
CTXRULE indexes store tokens in a table column of type VARCHAR2 (64 BYTE).

2.15 Auditing Oracle Text DR$ Index Tables
You should consider creating audit policies for Oracle Text DR$ index tables, especially if the
base index table has sensitive information.

• About Auditing Oracle Text DR$ Index Tables

• Configuring an Oracle Text DR$ Index Tables Audit Policy

• Example: Auditing Update Actions on an Oracle Text DR$ Index Table

• How Oracle Text DR$ Index Table Entries Appear in the Audit Trail

2.15.1 About Auditing Oracle Text DR$ Index Tables
You can audit actions on Oracle Text index tables (DR$index), which can contain sensitive data.

The audit can capture actions that a user will perform on the index table. You should create a
unified audit policy for the table that contains the sensitive data, as well as the Oracle Text
index table for the column containing the sensitive data. Oracle Text index table names start
with a prefix of DR$.

Index tables that do not contain customer data do not need audit policies. Tables that you
should consider creating audit policies for include the following:

• DR$index_name$I (the main table that all users should protect)

• DR$index_name$G (if present, stage_itab preference)

• DR$index_name$P (if present, prefix index preference)

• DR$index_name$O (if present, forward index preference)

• DR$index_name$D (if present, save copy preference)

• DR$index_name$KG (if present, wildcard index preference)

• DR$index_name$SN, $ST, $SD, $SV, $STZ (if present, optimize_for_search SDATA
preference)

• DR$index_name$S (if present, optimize_for_sort SDATA preference)

You can find associated indexes with a particular table by querying the OBJECT_TYPE column of
the ALL_OBJECTS data dictionary view. To find a list of internal Oracle Text tables, query the
USER_TABLES table, in the schema where index was created. For example, for an index named
my_index:

Chapter 2
Auditing Oracle Text DR$ Index Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 122 of 123

SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME LIKE 'DR$my_index%';

2.15.2 Configuring an Oracle Text DR$ Index Tables Audit Policy
You can use the ACTIONS clause in the CREATE AUDIT POLICY statement to create a unified
audit policy on Oracle Text DR$ index tables.

• Use the following syntax to create a unified audit policy for a table that has an Oracle Text
DR$ index table:

CREATE AUDIT POLICY policy_name
ACTIONS action ON schema.table, action ON schema.DR$index_table;

For example, to audit the main index table (using the $I keyword) for a table (sales) that
has an index named sales_idx:

CREATE AUDIT POLICY sales_pol
ACTIONS ALL ON sales, ALL ON DR$sales_idx$I;

2.15.3 Example: Auditing Update Actions on an Oracle Text DR$ Index
Table

The CREATE AUDIT POLICY statement can audit all or specific actions on an Oracle Text DR$
index table.

Example 2-8 shows how to create and enable a unified audit policy for the emp_data table that
captures user update attempts on this table's Oracle Text index table, DRemp_data_idxI.

Example 2-8 Auditing Update Actions on an Oracle Text DR$ Index Table

CREATE AUDIT POLICY emp_data_pol ACTIONS UPDATE ON emp_data,
UPDATE ON DRemp_data_idxI;

AUDIT POLICY emp_data_pol;

2.15.4 How Oracle Text DR$ Index Table Entries Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists actions on audited Oracle Text DR$ index
tables.

For example:

SELECT ACTION_NAME, OBJECT_SCHEMA, DBUSERNAME FROM UNIFIED_AUDIT_TRAIL
WHERE OBJECT_NAME = 'DREMP_DATA_IDXI';

ACTION_NAME OBJECT_SCHEMA DBUSERNAME
----------- ------------- ----------
UPDATE PRESTON FUSFERATU

Chapter 2
Auditing Oracle Text DR$ Index Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 123 of 123

3
Oracle Text CONTAINS Query Operators

This chapter describes operator precedence and provides descriptions, syntax, and examples
for every CONTAINS operator.

This chapter contains the following topics:

• Operator Precedence

• ABOUT

• ACCUMulate (_)

• AND (&)

• Broader Term (BT_ BTG_ BTP_ BTI)

• CTXFILTERCACHE

• DEFINEMERGE

• DEFINESCORE

• EQUIValence (=)

• Fuzzy

• HASPATH

• INPATH

• MDATA

• MINUS (-)

• MNOT

• Narrower Term (NT_ NTG_ NTP_ NTI)

• NDATA

• NEAR (;)

• NEAR2

• NOT (~)

• OR (|)

• Preferred Term (PT)

• Related Term (RT)

• SDATA

• soundex (!)

• stem ($)

• Stored Query Expression (SQE)

• SYNonym (SYN)

• threshold (>)

• Translation Term (TR)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 59

• Translation Term Synonym (TRSYN)

• Top Term (TT)

• weight (*)

• wildcards (% _)

• WITHIN

• Supported Oracle Text CONTAINS Query Operators for In-Memory Full Text Search

3.1 Operator Precedence
Operator precedence determines the order in which the components of a query expression are
evaluated. Text query operators can be divided into two sets of operators that have their own
order of evaluation. These two groups are described later as Group 1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to the
precedence of their operators. Operators with higher precedence are applied first. Operators of
equal precedence are applied in order of their appearance in the expression from left to right.

• Group 1 Operators

• Group 2 Operators and Characters

• Procedural Operators

• Precedence Examples

• Altering Precedence

3.1.1 Group 1 Operators
Within query expressions, the Group 1 operators have the following order of evaluation from
highest precedence to lowest:

1. EQUIValence (=)

2. NEAR (;)

3. weight (*), threshold (>)

4. MINUS (-)

5. NOT (~)

6. MNOT

7. WITHIN

8. AND (&)

9. OR (|)

10. ACCUMulate (_)

3.1.2 Group 2 Operators and Characters
Within query expressions, the Group 2 operators have the following order of evaluation from
highest to lowest:

1. Wildcard Characters

2. stem ($)

Chapter 3
Operator Precedence

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 59

3. Fuzzy

4. soundex (!)

3.1.3 Procedural Operators
Other operators not listed under Group 1 or Group 2 are procedural. These operators have no
sense of precedence attached to them. They include the SQE and thesaurus operators.

3.1.4 Precedence Examples

Table 3-1 Query Expression Precedence Examples

Query Expression Order of Evaluation

w1 | w2 & w3 (w1) | (w2 & w3)

w1 & w2 | w3 (w1 & w2) | w3

?w1, w2 | w3 & w4 (?w1), (w2 | (w3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)

dog and cat WITHIN body dog and (cat WITHIN body)

In the first example, because AND has a higher precedence than OR, the query returns all
documents that contain w1 and all documents that contain both w2 and w3.

In the second example, the query returns all documents that contain both w1 and w2 and all
documents that contain w3.

In the third example, the fuzzy operator is first applied to w1, then the AND operator is applied to
arguments w3 and w4, then the OR operator is applied to term w2 and the results of the AND
operation, and finally, the score from the fuzzy operation on w1 is added to the score from the
OR operation.

The fourth example shows that the equivalence operator has higher precedence than the AND
operator.

The fifth example shows that the AND operator has lower precedence than the WITHIN operator.

3.1.5 Altering Precedence
Precedence is altered by grouping characters as follows:

• Within parentheses, expansion or execution of operations is resolved before other
expansions regardless of operator precedence.

• Within parentheses, precedence of operators is maintained during evaluation of
expressions.

• Within parentheses, expansion operators are not applied to expressions unless the
operators are also within the parentheses.

See Also

"Grouping Characters" in Special Characters in Oracle Text Queries

Chapter 3
Operator Precedence

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 59

3.2 ABOUT
Use the ABOUT operator to return documents that are related to a query term or phrase.

General Behavior

In English and French, ABOUT enables you to query on concepts, even if a concept is not
actually part of a query. For example, an ABOUT query on heat might return documents related
to temperature, even though the term temperature is not part of the query.

In other languages, using ABOUT will often increase the number of returned documents and may
improve the sorting order of results. For all languages, Oracle Text scores results for an ABOUT
query with the most relevant document receiving the highest score.

English and French Behavior

In English and French, use the ABOUT operator to query on concepts. The system looks up
concept information in the theme component of the index. Create a theme component to your
index by setting the INDEX_THEMES BASIC_LEXER attribute to YES.

Note

You need not have a theme component in the index to enter ABOUT queries in English
and French. However, having a theme component in the index yields the best results
for ABOUT queries.

Oracle Text retrieves documents that contain concepts that are related to your query word or
phrase. For example, if you enter an ABOUT query on California, the system might return
documents that contain the terms Los Angeles and San Francisco, which are cities in
California.The document need not contain the term California to be returned in this ABOUT
query.

The word or phrase specified in your ABOUT query need not exactly match the themes stored in
the index. Oracle Text normalizes the word or phrase before performing lookup in the index.

You can use the ABOUT operator with the CONTAINS and CATSEARCH SQL operators. In the case
of CATSEARCH, you must use query templating with the CONTEXT grammar to query on the
indexed themes. See ABOUT Query with CATSEARCH in the Examples section.

Chapter 3
ABOUT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 59

Syntax

Syntax Description

about(phrase) In all languages, increases the number of relevant documents returned for the
same query without the ABOUT operator. The phrase parameter can be a
single word or a phrase, or a string of words in free text format.

In English and French, returns documents that contain concepts related to
phrase, provided the BASIC_LEXER INDEX_THEMES attribute is set to YES at
index time.

The score returned is a relevance score.

Oracle Text ignores any query operators that are included in phrase.

If your index contains only theme information, an ABOUT operator and operand
must be included in your query on the text column or else Oracle Text returns
an error.

The phrase you specify cannot be more than 4000 characters.

Case-Sensitivity

ABOUT queries give the best results when your query is formulated with proper case. This is
because the normalization of your query is based on the knowledge catalog which is case-
sensitive.

However, you need not type your query in exact case to obtain results from an ABOUT query.
The system does its best to interpret your query. For example, if you enter a query of CISCO
and the system does not find this in the knowledge catalog, the system might use Cisco as a
related concept for look-up.

Improving ABOUT Results

The ABOUT operator uses the supplied knowledge base in English and French to interpret the
phrase you enter. Your ABOUT query therefore is limited to knowing and interpreting the
concepts in the knowledge base.

Improve the results of your ABOUT queries by adding your application-specific terminology to the
knowledge base.

See Also

"Extending the Knowledge Base" in Oracle Text Utilities

Limitations

• The phrase you specify in an ABOUT query cannot be more than 4000 characters.

• The ABOUT query operator is not supported within sections.

• The JSON_TEXTCONTAINS query does not support the ABOUT operator.

Examples for ABOUT Operator

Single Words

To search for documents that are about soccer, use the following syntax:

'about(soccer)'

Chapter 3
ABOUT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 59

Phrases

Further refine the query to include documents about soccer rules in international competition
by entering the phrase as the query term:

'about(soccer rules in international competition)'

In this English example, Oracle Text returns all documents that have themes of soccer, rules,
or international competition.

In terms of scoring, documents which have all three themes will generally score higher than
documents that have only one or two of the themes.

Unstructured Phrases

You can also query on unstructured phrases, such as the following:

'about(japanese banking investments in indonesia)'

Combined Queries

Use other operators, such as AND or NOT, to combine ABOUT queries with word queries. For
example, enter the following combined ABOUT and word query:

'about(dogs) and cat'

Combine an ABOUT query with another ABOUT query as follows:

'about(dogs) not about(labradors)'

Note

You cannot combine ABOUT with the WITHIN operator, as for example 'ABOUT (xyz)
WITHIN abc'.

ABOUT Query with CATSEARCH

Enter ABOUT queries with CATSEARCH using the query template method with grammar set to
CONTEXT as follows:

select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 about(California)
 </textquery>
 <score datatype="integer"/>
</query>','')>0
order by pk;

3.3 ACCUMulate (,)
Use the ACCUM operator to search for documents that contain at least one occurrence of any
query terms, with the returned documents ranked by a cumulative score based on how many
query terms are found (and how frequently).

Chapter 3
ACCUMulate (,)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 59

Syntax

Syntax Description

term1,term2

term1 ACCUM term2

Returns documents that contain term1 or term2. Ranks documents according
to document term weight, with the highest scores assigned to documents that
have the highest total term weight.

ACCUMulate Scoring

ACCUMulate first scores documents on how many query terms a document matches. A
document that matches more terms will always score higher than a document that matches
fewer terms, even if the terms appear more frequently in the latter. In other words, if you
search for dog ACCUM cat, you'll find that

the dog played with the cat

scores higher than

the big dog played with the little dog while a third dog ate the dog food

Scores are divided into ranges. In a two-term ACCUM, hits that match both terms will always
score between 51 and 100, whereas hits matching only one of the terms will score between 1
and 50. Likewise, for a three-term ACCUM, a hit matching one term will score between 1 and 33;
a hit matching two terms will score between 34 and 66, and a hit matching all three terms will
score between 67 and 100. Within these ranges, normal scoring algorithms apply.

See Also

The Oracle Text Scoring Algorithm for more information on how scores are calculated

You can assign different weights to different terms. For example, in a query of the form

soccer, Brazil*3

the term Brazil is weighted three times as heavily as soccer. Therefore, the document

people play soccer because soccer is challenging and fun

will score lower than

Brazil is the largest nation in South America

but both documents will rank below

soccer is the national sport of Brazil

Note that a query of soccer ACCUM Brazil*3 is equivalent to soccer ACCUM Brazil ACCUM
Brazil ACCUM Brazil. Because each query term Brazil is considered independent, the entire
query is scored as though it has four terms, not two, and thus has four scoring ranges. The first
Brazil-and-soccer example document shown above scores in the first range (1-25), the second
scores in the third range (51-75), and the third scores in the fourth range (76-100). (No
document scores in the second range, because any document with Brazil in it will be
considered to match at least three query terms.)

Chapter 3
ACCUMulate (,)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 59

Example for ACCUM Operator

set serveroutput on;
DROP TABLE accumtbl;
CREATE TABLE accumtbl (id NUMBER, text VARCHAR2(4000));

INSERT INTO accumtbl VALUES (1, 'the little dog played with the big dog
 while the other dog ate the dog food');
INSERT INTO accumtbl values (2, 'the cat played with the dog');

CREATE INDEX accumtbl_idx ON accumtbl (text) indextype is ctxsys.context;

PROMPT dog ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, 'dog ACCUM cat', 10)
 > 0;

PROMPT dog*3 ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, 'dog*3 ACCUM cat', 10)
 > 0;

This produces the following output. Note that the document with both dog and cat scores
highest.

dog ACCUM cat
 ID SCORE(10)
----- ----------
 1 6
 2 52

dog*3 ACCUM cat
 ID SCORE(10)
----- ----------
 1 53
 2 76

Related Topics

weight (*)

3.4 AND (&)
Use the AND operator to search for documents that contain at least one occurrence of each of
the query terms.

The AND operator returns documents that contain all of the query terms, while OR operator
returns documents that contain any of the query terms.

Syntax

Syntax Description

term1&term2

term1 and term2

Returns documents that contain term1 and term2. Returns the minimum score of
its operands. All query terms must occur; lower score taken.

Example for AND Operator

To obtain all the documents that contain the terms blue and green and red, enter the following
query:

Chapter 3
AND (&)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 59

'blue & green & red'

In an AND query, the score returned is the score of the lowest query term. In this example, if the
three individual scores for the terms blue, green, and red is 10, 20 and 30 within a document,
the document scores 10.

Related Topics

OR (|)

3.5 Broader Term (BT, BTG, BTP, BTI)
Use the broader term operators (BT, BTG, BTP, BTI) to expand a query to include the term that
has been defined in a thesaurus as the broader or higher level term for a specified term. They
can also expand the query to include the broader term for the broader term and the broader
term for that broader term, and so on up through the thesaurus hierarchy.

Syntax

Syntax Description

BT(term[(qualifier)][,level][,thes]) Expands a query to include the term defined in the thesaurus
as a broader term for term.

BTG(term[(qualifier)][,level][,thes]) Expands a query to include all terms defined in the thesaurus
as broader generic terms for term.

BTP(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader partitive terms for term.

BTI(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader instance terms for term.

term
Specify the operand for the broader term operator. Oracle Text expands term to include the
broader term entries defined for the term in the thesaurus specified by thes. For example, if
you specify BTG(dog), the expansion includes only those terms that are defined as broader
term generic for dog. You cannot specify expansion operators in the term argument.
The number of broader terms included in the expansion is determined by the value for level.

qualifier
Specify a qualifier for term, if term is a homograph (word or phrase with multiple meanings,
but the same spelling) that appears in two or more nodes in the same hierarchy branch of
thes.
If a qualifier is not specified for a homograph in a broader term query, the query expands to
include the broader terms of all the homographic terms.

level
Specify the number of levels traversed in the thesaurus hierarchy to return the broader terms
for the specified term. For example, a level of 1 in a BT query returns the broader term entry, if
one exists, for the specified term. A level of 2 returns the broader term entry for the specified
term, as well as the broader term entry, if one exists, for the broader term.
The level argument is optional and has a default value of one (1). Zero or negative values for
the level argument return only the original query term.

Chapter 3
Broader Term (BT, BTG, BTP, BTI)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 59

thes
Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. A thesaurus named DEFAULT
must exist in the thesaurus tables if you use this default value.

Note

If you specify thes, then you must also specify level.

Examples for Broader Term Operators

The following query returns all documents that contain the term tutorial or the BT term defined
for tutorial in the DEFAULT thesaurus:

'BT(tutorial)'

When you specify a thesaurus name, you must also specify level as in:

'BT(tutorial, 2, mythes)'

Broader Term Operator on Homographs

If machine is a broader term for crane (building equipment) and bird is a broader term for crane
(waterfowl) and no qualifier is specified for a broader term query, the query

BT(crane)

expands to:

'{crane} or {machine} or {bird}'

If waterfowl is specified as a qualifier for crane in a broader term query, the query

BT(crane{(waterfowl)})

expands to the query:

'{crane} or {bird}'

Note

When specifying a qualifier in a broader or narrower term query, the qualifier and its
notation (parentheses) must be escaped, as is shown in this example.

Related Topics

CTX_THES.BT in CTX_THES Package for more information on browsing the broader terms in
your thesaurus

3.6 CTXFILTERCACHE
Oracle Text provides a cache layer called query filter cache that can be used to cache the
query results. Query filter cache is sharable across queries. Thus, the cached query results
can be reused by multiple queries, improving the query response time. The CTXFILTERCACHE

Chapter 3
CTXFILTERCACHE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 59

operator is used to specify which query results or part of query results to cache in the query
filter cache.

CTXFILTERCACHE only supports CONTEXT grammar queries. CONTAINER queries like
template queries are not supported. If you execute it with a template query, then errors are
raised.

Note

The CTXFILTERCACHE query operator was designed to speed up commonly-used
expressions in queries. In Oracle Database Release 21c, this function is replaced by
other internal improvements. The CTXFILTERCACHE operator is deprecated (and will
pass through its operands to be run as a normal query). Because they no longer have
a function, the view CTX_FILTER_CACHE_STATISTICS is also deprecated, and also the
storage attribute QUERY_FILTER_CACHE_SIZE.

Caution

Before using CTXFILTERCACHE, you must run PURGE recyclebin as follows:

SQL> PURGE recylebin;

See Oracle Database Administrator's Guide for complete information about purging
objects in the recycle bin.

Syntax

ctxfiltercache((query_text) [, save_score] [, topN])

query_text
Specify the query whose results need to be stored in the cache.

save_score
Specify TRUE if you want to cache all the query results along with their scores in the cache.
The default is FALSE. In this case, a score of 100 is returned for each query result, and these
scores are not stored in the cache. Only the query results are stored in the cache.
Specify FALSE when you want to reuse the query results and not their scores in other queries.
This is particularly useful when you use the query text as a filter, such as a security filter,
where the relevance of the cached part of the query does not affect the relevance of the query
as a whole. Thus, when used with the AND operator (which returns a lower score of its
operands), a score of 100 does not affect the score of a query as a whole.

topN
Specify TRUE if you want only the highest scoring query results to be stored in the cache.
Oracle Text internally determines how many highest scoring query results to store in the
cache. This helps in reducing the memory consumption of the cache.

Chapter 3
CTXFILTERCACHE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 59

Note

If you specify TRUE for topN, then save_score should also be TRUE.

Examples for CTXFILTERCACHE

Stored Query Results and TopN Examples

The following example stores the query results of the common_predicate query in the cache:

select * from docs where contains(txt, 'ctxfiltercache((common_predicate), FALSE)')>0;

Here, save_score is FALSE, and hence the score of 100 is returned for each query result, and
the scores are not stored in the cache.

In the following example, the cached results of the common_predicate query are reused by the
new_query query.

select * from docs where contains(txt, 'new_query & ctxfiltercache((common_predicate),
FALSE)')>0;

Set save_score to TRUE as shown in the following example to store all the query results of the
common_predicate query, along with the actual scores, in the cache.

select * from docs where contains(txt, 'ctxfiltercache((common_predicate), TRUE)')>0;

Set topN to TRUE if you want to store only the highest scoring query results of the
common_predicate query in the cache as described in the following example.

select id, score(1) from docs where contains(txt, 'ctxfiltercache((common_predicate),
TRUE, TRUE)', 1)>0 order by score(1) desc;

Set topN to TRUE for the main part of the query and FALSE for the filter part, when the score is
relevant only for the main part of the query. The following example shows a query with two
ctxfiltercache clauses. It performs a free-text search for "cat AND dog" and then applies a
security filter to the search operation. Results of both the parts of this query are separately
cached so that they can be reused, but the score is relevant only for the first part of the query.

select id, score(1) from docs where contains(txt, 'ctxfiltercache((cat AND dog), TRUE,
TRUE) AND ctxfiltercache((john WITHIN allowedUsers), FALSE, FALSE)', 1) > 0;

Cached Score Example

CTXFILTERCACHE stores one query result for score at a time in the cache. Hence, two similar
queries executed serially are considered the same query, and there is only one such query
stored in the cache.

The following examples, query A and query B, show two similar queries. The hit score for A is
100, and the hit score for B is 5. Assume the cache is empty and you execute query A first. The
computed score 100 is stored in the cache for this query. When you execute query B
subsequently now, the cache contains the stored score of 100, and therefore, query B returns
the cached score of 100. Conversely, if you execute query B before query A, then the cached
computed score that gets returned is 5.

Query A:

select /*+ DOMAIN_INDEX_SORT */ id, score(1) as ORADD from mydocs where contains
(txt ,'ctxfiltercache((DEFINEMERGE
 (((definescore(Oracle,relevance)),(definescore(Java,discrete)))

Chapter 3
CTXFILTERCACHE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 59

 ,OR,ADD
)),T,T)',1)>0 order by score(1) desc;

Query B:

select /*+ DOMAIN_INDEX_SORT */ id, score(1) as ORAVG from docs where contains
(txt ,'ctxfiltercache((DEFINEMERGE
 (((definescore(Oracle,relevance)),(definescore(Java,discrete)))
 ,OR,AVG
)),T,T)',1)>0 order by score(1) desc;

Notes

The query filter cache is an index level storage preference.

The storage preference for the query filter cache can be set at partition level only if this is also
set at index level. If a filter cache preference is set at partition level without any filter cache
preference being set at index level, then an error is thrown as follows: "Illegal syntax for index,
preference, source or section name."

Note that CTXFILTERCACHE is not utilized with:

• INPATH/HASPATH queries

• First query after syncindex for NDATA and SDATA

When topN is FALSE, the CTXFILTERCACHE operator can be either a top-level operator or a child
of the following operators:

• AND

• ACCUM

• NOT

• OR

• THRESHOLD (left side operand only)

• WEIGHT (left side operand only)

When topN is TRUE:

• The ctxfiltercache operator can be either a top-level operator or a child of the following
operators:

– AND

– THRESHOLD (left side operand only)

– WEIGHT (left side operand only)

• TopN is enabled only when the ctxfiltercache operator is used with the order key
ORDER BY SCORE(n) DESC and Oracle hint DOMAIN_INDEX_SORT for global index.
Additionally, for a partitioned index, be sure to have partition pruning in your query.
Otherwise, although topN is set to TRUE, normal mode will be used instead of topN mode.

Chapter 3
CTXFILTERCACHE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 59

Note

The ctxfiltercache operator only supports a CONTEXT grammar query. This means
that container queries like template queries are not supported.

If ctxfiltercache is used with a query template, then the following type of error will
occur:

ERROR at line 1:
ORA-29902: error in executing ODCIIndexStart() routine
ORA-20000: Oracle Text error:
DRG-50900: text query parser error on line 1, column 8
DRG-50905: invalid score threshold <textquery

An example of a query that results in this error is as follows:

select score(1), id, txt from tdrbqfc45 where contains(txt,
'ctxfiltercache((<query><textquery>near2((a,b,c,d))
</textquery><score datatype="FLOAT"/>
</query>),true)', 1)>0 order by id;

To use ctxfiltercache you must specify a size for the query filter cache using the basic
storage attribute query_filter_cache_size. The default size is 0, which means that
ctxfiltercache is disabled by default.

The view ctx_filter_cache_statistics provides various statistics about the query filter
cache.

The query filter cache does not differentiate queries that only vary in how the score is
computed. Score is never computed on the fly within the query filter cache. See "Cached Score
Example" for an illustration of how this works.

Note

Direct functional evaluation for CTXCAT index is not supported. To achieve functional
evaluation, you must add a hint in the query as follows :

select /*+ index(tkctobcr11_12_2 tkctobcr11_12_2x_title) */ * from
tkctobcr11_12_2
where CATSEARCH(title,'pokemon','category_id=9')>0 and
contains(clb,'SQL,sdata(id between 1 and 1000)')>0
order by id;

Related Topics

"CTX_FILTER_CACHE_STATISTICS" for more information about the
ctx_filter_cache_statistics view

"BASIC_STORAGE" for more information about the query_filter_cache_size basic storage
attribute

Chapter 3
CTXFILTERCACHE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 59

3.7 DEFINEMERGE
Use the DEFINEMERGE operator to define how the score of child nodes of the AND and OR should
be merged.

The DEFINEMERGE operator can be used as operand(s) of any operators that allow AND or OR as
operands. The score can be merged in three ways: picking the minimum value, picking the
maximum value, or calculating the average score of all child nodes.

Use DEFINESCORE before using DEFINEMERGE.

Syntax

DEFINEMERGE (((text_query1), (text_query2), …) , operator, merge_method)

Syntax Description

text_query1,2 ... Defines the search criteria. These parameters can have any value that is valid for
the AND/OR operator.

operator Defines the relationship between the two text_query parameters.

merge_method Defines how the score of the text_query should be merged. Possible values: MIN,
MAX, AVG, ADD

Example for DEFINEMERGE Operator

'DEFINEMERGE (((dog , cat) , (blue or green)), AND, MIN)'

Queries for the expression "dog ACCUM cat" and "blue OR green," using the default scoring
schemes and then using the minimum score of the two as the merged-score.

'DEFINEMERGE(((DEFINESCORE(dog, DISCRETE)) , (cat)), AND, MAX)'

Queries for the term "dog" using the DISCRETE scoring, and for the term "cat" using the default
relevant scoring, and then using the maximum score of the two as the merged-score.

Example 3-1 DEFINEMERGE and text_query

The following examples show only the text_query part of a CONTAINS query:

'DEFINEMERGE (((dog), (cat)), OR, AVG)'

Queries for the term "dog" or "cat," using the average relevance score of both terms as the
merged score.

Related Topic

DEFINESCORE.

3.8 DEFINESCORE
Use the DEFINESCORE operator to define how a term or phrase, or a set of term equivalences
will be scored. The definition of a scoring expression can consist of an arithmetic expression of
predefined scoring components and numeric literals.

DEFINEMERGE can be used after DEFINESCORE.

Chapter 3
DEFINEMERGE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 59

Syntax

DEFINESCORE (query_term, scoring_expression)

query_term
The query term or phrase. Expressions containing the following operators are also allowed:

Operators Operators

- -

ABOUT EQUIV(=)

Fuzzy Soundex (!)

Stem ($) Wildcards (% _)

SDATA MDATA

scoring_expression
An arithmetic expression that describes how the query_term should be scored. This operand
is a string that contains the following components:

• Arithmetic operators: + - * /. The precedence is multiplication and division (*, /) first
before addition and subtraction (+, -).

• Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

• Absolute function: ABS(n) returns the absolute value of n; where n is any expression that
returns a number.

• Logarithmic function: LOG(n) returns the base-10 logarithmic value of n ; where n is any
expression that returns a number.

• Predefined scoring components: Each of the following scoring components returns a
value of 0 - 100, depending on different criteria:

Name Description

DISCRETE If the term exists in the document, score = 100.
Otherwise, score = 0.

OCCURRENCE Score based on the number of occurrences.

RELEVANCE Score based on the document's relevance.

COMPLETION Score based on coverage. Documents will score
higher if the ratio between the number of the
matching terms and the number of all terms in the
section (counting stop words) is higher. The
COMPLETION scoring is only applicable when used
with the WITHIN operator to search in zone
sections.

IGNORE Ignore the scoring of this term. This component
should be used alone. Otherwise, the query will
return a syntax error. If the scoring of the only
term in the query is set to IGNORE, then all the
matching documents should be returned with the
same score of 100.

Chapter 3
DEFINESCORE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 59

Note

For numeric literals, any number literal can be used that conforms to the SQL pattern
of number literal, and is within the range of the double precision floating point (-3.4e38
to 3.4e38).

scoring_expression Syntax

<Exp> := <Exp> + <Term> | <Exp> - <Term> | <Term>

<Term> := <Term> * <Factor> | <Term> / <Factor> | <Factor>

<Factor> := <<NumericLiterals >>| DISCRETE | OCCURRENCE | RELEVANCE |
 COMPLETION | IGNORE | (<Exp>) | -<Factor> | Abs(<Exp>) | Log(<Exp>)

Examples for DEFINESCORE Operator

'DEFINESCORE (dog, OCCURRENCE)'

Queries for the word dog, and scores each document using the occurrence score. Returns the
score as integer.

'DEFINESCORE (Labradors are big dog, RELEVANCE)'

Queries for the phrase Labradors are big dogs, and scores each document using the relevance
score.

'cat and DEFINESCORE (dog, IGNORE)'

Queries for the words dog and cat, using only the default relevance score of cat as the overall
score of the document. Returns the score as integer.

'DEFINESCORE (dog, IGNORE)'

Queries for the word dog, and returns all documents with the word dog. The result is the same
as if all documents get a score of 100. Returns the score as integer.

'DEFINESCORE (dog, ABS (100-RELEVANCE))'

Queries for the word dog, and scores each document using the absolute value of 100 minus
the relevance score. Returns the score as integer.

'cat and DEFINESCORE (dog, RELEVANCE*5 - OCCURRENCE)'

Returns a syntax error: Two predefined components are used.

When DEFINESCORE is used with query templates, the scoring_expression overrides the
values specified by the template. The following example queries for "dog" and "cat," scores
"cat" using OCCURRENCE(COUNT) and scores "dog" based on RELEVANCE.

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

Chapter 3
DEFINESCORE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 59

Limitations

• If the ABOUT operator is used in query_term, the OCCURRENCE and COMPLETION scoring will
not be applicable. If used, the query will return a syntax error.

• The IGNORE score cannot be used as right hand of the minus operator. If used, then a
syntax error will occur.

• The COMPLETION score is only applicable if the DEFINESCORE is used with a WITHIN operator
to search in zone sections, for example:

'DEFINESCORE (dog, COMPLETION) within zonesection'

otherwise, the query will return a syntax error.

• For the left hand operand of WITHIN:

– All nodes must use the same predefined-scoring component. (If not specified, then the
predefined scoring is RELEVANCE.)

– If the nodes use DISCRETE or COMPLETION, then only the AND and OR operator is allowed
as the left hand children of WITHIN.

– If the nodes use DISCRETE or COMPLETION, then WITHIN will use the max score of all
section instances as the score.

– If the nodes use RELEVANCE or OCCURRENCE, then WITHIN will use the summation of the
score of all section instances as the score.

• Only one predefined scoring component can be used in the scoring_expression at one
time. If more than one predefined scoring component is used, then a syntax error will
occur.

See Also

Oracle Database SQL Language Reference

Notes

• The DEFINESCORE operator, the absolute function, the logarithmic function, and the
predefined scoring components are case-insensitive.

• The query_term and the scoring_expression parameters are mandatory.

• The final score of the DEFINESCORE operator will be truncated to be in the 0 – 100 range. If
the data type is INTEGER, then the score is rounded up.

• The intermediate data type of the scoring value is a double precision float. As a result, the
value is limited to be in the -3.4e38 to 3.4e38 range. If the intermediate scoring of any
document exceeds the value, then the score will be truncated. If an integer scoring is
required, then the score will always be rounded up after the score is calculated.

• The DEFINESCORE operator can be used as an operand of the following operators:

– AND

– NOT

– INPATH

– THRESHOLD

Chapter 3
DEFINESCORE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 59

– WITHIN

– SQE

– OR

– DEFINEMERGE

– MINUS

– WEIGHT

– ACCUM

For example, the following statement is valid:

DEFINESCORE('dog', OCCURRENCE) AND DEFINESCORE('cat', RELEVANCE)

Queries for the term "dog" using occurrence scoring, and the term "cat" using relevance
scoring.

• If DEFINESCORE is used as a parameter of other operators, then an error will be returned.
For example, the following example returns an error:

SYN(DEFINESCORE('cat', OCCURRENCE))

• When used with query templates, the scoring_expression overrides the values specified
by the template. For example,

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

Queries for "dog" and "cat", scores "cat" using OCCURRENCE(COUNT), and scores "dog"
based on RELEVANCE.

Related Topic

DEFINEMERGE.

3.9 EQUIValence (=)
Use the EQUIV operator to specify an acceptable substitution for a word in a query.

Syntax

Syntax Description

term1=term2

term1 equiv term2

Specifies that term2 is an acceptable substitution for term1. Score calculated
as the sum of all occurrences of both terms.

Example for EQUIV Operator

The following example returns all documents that contain either the phrase alsatians are big
dogs or labradors are big dogs:

'labradors=alsatians are big dogs'

Chapter 3
EQUIValence (=)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 59

Operator Precedence

The EQUIV operator has higher precedence than all other operators except the expansion
operators (fuzzy, soundex, stem).

3.10 Fuzzy
Use the fuzzy operator to expand queries to include words that are spelled similarly to the
specified term. This type of expansion is helpful for finding more accurate results when there
are frequent misspellings in your document set.

The fuzzy syntax enables you to rank the result set so that documents that contain words with
high similarity to the query word are scored higher than documents with lower similarity. You
can also limit the number of expanded terms.

Unlike stem expansion, the number of words generated by a fuzzy expansion depends on
what is in the index. Results can vary significantly according to the contents of the index.

Supported Languages

Oracle Text supports fuzzy definitions for English, French, German, Italian, Dutch, Spanish,
Portuguese, Japanese, OCR, and auto-language detection.

Stopwords

If the fuzzy expansion returns a stopword, the stopword is not included in the query or
highlighted by CTX_DOC.HIGHLIGHT or CTX_DOC.MARKUP.

Base-Letter Conversion

If base-letter conversion is enabled for a text column and the query expression contains a
fuzzy operator, Oracle Text operates on the base-letter form of the query.

Syntax

fuzzy(term, score, numresults, weight)

Parameter Description

term Specify the word on which to perform the fuzzy expansion. Oracle Text
expands term to include words only in the index. The word needs to be at
least 3 characters for the fuzzy operator to process it.

score Specify a similarity score. Terms in the expansion that score below this number
are discarded. Use a number between 1 and 80. The default is 60.

numresults Specify the maximum number of terms to use in the expansion of term. Use a
number between 1 and 5000. The default is 100.

weight Specify WEIGHT or W for the results to be weighted according to their similarity
scores.

Specify NOWEIGHT or N for no weighting of results.

Examples for Fuzzy Operator

Consider the CONTAINS query:

...CONTAINS(TEXT, 'fuzzy(government, 70, 6, weight)', 1) > 0;

Chapter 3
Fuzzy

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 59

This query expands to the first six fuzzy variations of government in the index that have a
similarity score over 70.

In addition, documents in the result set are weighted according to their similarity to
government. Documents containing words most similar to government receive the highest
score.

Skip unnecessary parameters using the appropriate number of commas. For example:

'fuzzy(government,,,weight)'

Backward Compatibility Syntax

The old fuzzy syntax from previous releases is still supported. This syntax is as follows:

Parameter Description

?term Expands term to include all terms with similar spellings as the specified term.
Term needs to be at least 3 characters for the fuzzy operator to process it.

3.11 HASPATH
Use the HASPATH operator to find all XML documents that contain a specified section path. You
can also use this operator to do section equality testing.

Your index must be created with the PATH_SECTION_GROUP for this operator to work.

Syntax

Syntax Description

HASPATH(path) Searches an XML document set and returns a score of
100 for all documents where path exists. Separate parent
and child paths with the / character. For example, you can
specify A/B/C.

See example.

HASPATH(A="value") Searches an XML document set and returns a score of
100 for all documents that have the element A with
content value and only value.

See example.

Using Special Characters with HASPATH and INPATH

The following rules govern the use of special characters with regard to both the HASPATH and
INPATH operators:

• Left-brace ({) and right-brace (}) characters are not allowed inside HASPATH or INPATH
expressions unless they are inside the equality operand enclosed by double quotes. So
both 'HASPATH({/A/B})' and 'HASPATH(/A/{B})' will return errors. However, 'HASPATH(/
A[B="{author}"])' will be parsed correctly.

• With exception of the backslash (\), special characters, such as dollar sign ($), percent sign
(%), underscore (_), left brace ({), and right brace (}), when inside the equality operand
enclosed by double or single quotes, have no special meaning. (That is, no stemming,
wildcard expansion, or similar processing will be performed on them.) However, they are
still subject to regular text lexing and will be translated to whitespace, with the exception of

Chapter 3
HASPATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 59

characters declared as printjoins. A backslash will still escape any character that
immediately follows it.

For example, if the hyphen (-) and the double quote character (") are defined as printjoins
in a lexer preference, then:

– The string B_TEXT inside HASPATH(/A[B="B_TEXT") will be lexed as the phrase B
TEXT.

– The string B-TEXT inside HASPATH(/A[B="B-TEXT") will be lexed as the word B-TEXT.

– The string B'TEXT inside HASPATH(/A[B="B'TEXT") will be lexed as the word B"TEXT.
You must use a backslash to escape the double quote between B and TEXT, or you
will get a parsing error.

– The string {B_TEXT} inside HASPATH(/A[B="{B_TEXT}") will be lexed as a phrase B
TEXT.

Examples for HASPATH Operator

Path Testing

The query

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Section Equality Testing

The query

dog INPATH A

finds

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test with the
HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, and not the second.

Limitations

Because of how XML section data is recorded, false matches might occur with XML sections
that are completely empty as follows:

<A><C></C><D><E></E></D>

A query of HASPATH(A/B/E) or HASPATH(A/D/C) falsely matches this document. This type of
false matching can be avoided by inserting text between empty tags.

Chapter 3
HASPATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 59

False matches might also occur when the document has empty elements but has values in
attributes, as in the following example document:

<Test>
<Client id="1">
 <Info infoid="1"/>
</Client>
<Client id="2">
 <Info infoid="2"/>
</Client>
</Test>

When searching with the following query, the query returns the document shown in the
example, which is a false match.

The following query was used to return the example document, which is a false match:

SELECT main_detail_logging_id, t.xml_data.getstringval() xml_data FROM
TEST_XMLTYPE t
WHERE CONTAINS(t.xml_data,
'HASPATH(/Test/Client[@id="1"]/Info[@infoid="2"])') > 0;

3.12 INPATH
Use the INPATH operator to do path searching in XML documents. This operator is like the
WITHIN operator except that the right-hand side is a parentheses enclosed path, rather than a
single section name.

Your index must be created with the PATH_SECTION_GROUP for the INPATH operator to work.

Syntax

The INPATH operator has the following syntax:

Top-Level Tag Searching

Syntax Description

term INPATH (/A)

term INPATH (A)

Returns documents that have term within the <A> and
 tags.

Any-Level Tag Searching

Syntax Description

term INPATH (//A) Returns documents that have term in the <A> tag at any
level. This query is the same as 'term WITHIN A'

Direct Parentage Path Searching

Syntax Description

term INPATH (A/B) Returns documents where term appears in a B element
which is a direct child of a top-level A element.

For example, a document containing

<A>term

is returned.

Chapter 3
INPATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 59

Single-Level Wildcard Searching

Syntax Description

term INPATH (A/*/B) Returns documents where term appears in a B element
which is a grandchild (two levels down) of a top-level A
element.

For example a document containing

<A><D>term</D>

is returned.

Multi-level Wildcard Searching

Syntax Description

term INPATH (A/*/B/*/*/C) Returns documents where term appears in a C element
which is 3 levels down from a B element which is two
levels down (grandchild) of a top-level A element.

Any-Level Descendant Searching

Syntax Description

term INPATH(A//B) Returns documents where term appears in a B element
which is some descendant (any level) of a top-level A
element.

Attribute Searching

Syntax Description

term INPATH (//A/@B) Returns documents where term appears in the B attribute
of an A element at any level. Attributes must be bound to
a direct parent.

Descendant/Attribute Existence Testing

Syntax Description

term INPATH (A[B]) Returns documents where term appears in a top-level A
element which has a B element as a direct child.

term INPATH (A[.//B]) Returns documents where term appears in a top-level A
element which has a B element as a descendant at any
level.

term INPATH (//A[@B]) Finds documents where term appears in an A element at
any level which has a B attribute. Attributes must be tied
to a direct parent.

Attribute Value Testing

Syntax Description

term INPATH (A[@B = "value"]) Finds all documents where term appears in a top-level A
element which has a B attribute whose value is value.

term INPATH (A[@B != "value"]) Finds all documents where term appears in a top-level A
element which has a B attribute whose value is not value.

Chapter 3
INPATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 59

Tag Value Testing

Syntax Description

term INPATH (A[B = "value"])) Returns documents where term appears in an A tag which
has a B tag whose value is value.

NOT Testing

Syntax Description

term INPATH (A[NOT(B)]) Finds documents where term appears in a top-level A
element which does not have a B element as an
immediate child.

AND and OR Testing

Syntax Description

term INPATH (A[B and C]) Finds documents where term appears in a top-level A
element which has a B and a C element as an immediate
child.

term INPATH (A[B and @C="value"]]) Finds documents where term appears in a top-level A
element which has a B element and a C attribute whose
value is value.

term INPATH (A [B OR C]) Finds documents where term appears in a top-level A
element which has a B element or a C element.

Combining Path and Node Tests

Syntax Description

term INPATH (A[@B = "value"]/C/D) Returns documents where term appears in aD element
which is the child of a C element, which is the child of a
top-level A element with a B attribute whose value is
value.

Nested INPATH

Nest the entire INPATH expression in another INPATH expression as follows:

(dog INPATH (//A/B/C)) INPATH (D)

When you do so, the two INPATH paths are completely independent. The outer INPATH path
does not change the context node of the inner INPATH path. For example:

(dog INPATH (A)) INPATH (D)

never finds any documents, because the inner INPATH is looking for dog within the top-level tag
A, and the outer INPATH constrains that to document with top-level tag D. A document can
have only one top-level tag, so this expression never finds any documents.

Case-Sensitivity

Tags and attribute names in path searching are case-sensitive. That is,

dog INPATH (A)

Chapter 3
INPATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 59

finds <A>dog but does not find <a>dog. Instead use

dog INPATH (a)

Using Special Characters with INPATH

See "Using Special Characters with HASPATH and INPATH" for information on using special
characters, such as the percent sign (%) or the backslash (\), with INPATH.

Examples for INPATH Operator

Top-Level Tag Searching

To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH(A)

Any-Level Tag Searching

To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a top-
level A element:

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.<A>

but does not find:

<C>My dog is friendly.</C>

Tag Value Testing

You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

Chapter 3
INPATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 59

Attribute Searching

You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document

<C> </C>

Attribute Value Testing

You can test the value of attributes. For example, the query

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But does not find:

San Francisco, California, USA

Path Testing

You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Limitations

Testing for Equality

The following is an example of an INPATH equality test.

dog INPATH (A[@B = "foo"])

The following limitations apply for these expressions:

• Only equality and inequality are supported. Range operators and functions are not
supported.

• The left hand side of the equality must be an attribute. Tags and literals here are not
enabled.

• The right hand side of the equality must be a literal. Tags and attributes here are not
allowed.

• The test for equality depends on your lexer settings. With the default settings, the query

dog INPATH (A[@B= "pot of gold"])

matches the following sections:

dog

and

Chapter 3
INPATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 59

dog

because lexer is case-insensitive by default.

dog

because of and is are default stopwords in English, and a stopword matches any stopword
word.

dog

because the underscore character is not a join character by default.

3.13 MDATA
Use the MDATA operator to query documents that contain MDATA sections. MDATA sections are
metadata that have been added to documents to speed up mixed querying.

MDATA queries are treated exactly as literals. For example, with the query:

MDATA(price, $1.24)

the $ is not interpreted as a stem operator, nor is the . (period) transformed into whitespace. A
right (close) parenthesis terminates the MDATA operator, so that MDATA values that have close
parentheses cannot be searched.

Syntax

MDATA(sectionname, value)

sectionname
The name of the MDATA section(s) to search. MDATA will also search DATE or numerical equality
if the sectionname parameter is mapped to a FILTER BY column of DATE or some numerical
type.

value
The value of the MDATA section. For example, if an MDATA section called Booktype has been
created, it might have a value of paperback.
For MDATA operator on MDATA sections that are mapped to a DATE FILTER BY column, the MDATA
value must follow the Date format: YYYY-MM-DD HH24:MI:SS. Otherwise, the expected rows will
not be returned. If the time component is omitted, it will default to 00:00:00, according to SQL
semantics.

Example for MDATA Operator

Suppose you want to query for books written by the writer Nigella Lawson that contain the
word summer. Assuming that an MDATA section called AUTHOR has been declared, you can
query as follows:

SELECT id FROM idx_docs
 WHERE CONTAINS(text, 'summer AND MDATA(author, Nigella Lawson)')>0

This query will only be successful if an AUTHOR tag has the exact value Nigella Lawson (after
simplified tokenization). Nigella or Ms. Nigella Lawson will not work.

Notes

MDATA query values ignore stopwords.

Chapter 3
MDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 59

The MDATA operator returns an unlimited number of results or 0, depending on whether the
document is a match. You can set the maximum.

The MDATA operator is not supported for CTXCAT and CTXRULE indexes.

Table 3-2 shows how MDATA interacts with some other query operators:

Table 3-2 MDATA and Other Query Operators

Operator Example Allowed?

AND dog & MDATA(a, b) yes

OR dog | MDATA(a, b) yes

NOT dog ~ MDATA(a, b) yes

MINUS dog - MDATA(a, b) yes

ACCUM dog , MDATA(a, b) yes

PHRASE MDATA(a, b) dog no

NEAR MDATA(a, b) ; dog no

WITHIN, HASPATH, INPATH MDATA(a, b) WITHIN c no

Thesaurus MDATA(a, SYN(b)) no

expansion MDATA(a, $b)

MDATA(a, b%)

MDATA(a, !b)

MDATA(a, ?b)

no (syntactically allowed, but the
inner operator is treated as literal
text)

ABOUT ABOUT(MDATA(a,b))

MDATA(ABOUT(a))

no (syntactically allowed, but the
inner operator is treated as literal
text)

When MDATA sections repeat, each instance is a separate and independent value. For instance,
the document

<AUTHOR>Terry Pratchett</AUTHOR><AUTHOR>Douglas Adams</AUTHOR>

can be found with any of the following queries:

MDATA(author, Terry Pratchett)
MDATA(author, Douglas Adams)
MDATA(author, Terry Pratchett) and MDATA(author, Douglas Adams)

but not any of the following:

MDATA(author, Terry Pratchett Douglas Adams)
MDATA(author, Terry Pratchett & Douglas Adams)
MDATA(author, Pratchett Douglas)

Related Topics

"ADD_MDATA"

"ADD_MDATA_SECTION"

Chapter 3
MDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 59

See Also

Oracle Text Application Developer's Guide for information about section searching

3.14 MINUS (-)
Use the MINUS operator to lower the score of documents that contain unwanted noise terms.
MINUS is useful when you want to search for documents that contain one query term but want
the presence of a second term to cause a document to be ranked lower.

Syntax

Syntax Description

term1-term2

term1 minus term2

Returns documents that contain term1. Calculates score by subtracting the
score of term2 from the score of term1. Only documents with positive score
are returned.

Example for MINUS Operator

Suppose a query on the term cars always returned high scoring documents about Ford cars.
You can lower the scoring of the Ford documents by using the expression:

'cars - Ford'

In essence, this expression returns documents that contain the term cars and possibly Ford.
However, the score for a returned document is the score of cars minus the score of Ford.

Related Topics

"NOT (~)"

3.15 MNOT
The Mild Not (MNOT) operator is similar to the NOT and MINUS operators. The Mild Not operator
returns hits where the the left child is not contained by the right child. Both children can only be
TERM or PHRASE nodes.

The semantics can be illustrated with a query of "term1 mnot term1 term2", where the hits for
"term1 term2" will be filtered out. For example:

• A document with only term1 will be returned, with score unchanged.

• A document with only term1 term2 will not be returned.

• A document with term1 term1 term2 will be returned, but the score will be calculated using
just the first term1 hit.

The behavior described in the third bullet is different from the behavior of NOT, which does not
return this type of document.

The MNOT operator is more specific than the MINUS operator, in that the left child must be
contained by the right child. If it is not, the Mild Not operator ignores the right child. Also, for
Mild Not, the right child is a true filter, that is, it does not simply subtract the scores of left child
and right child.

Chapter 3
MINUS (-)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 59

The MNOT operator has precedence lower than NOT and higher than WITHIN.

Syntax

Syntax Description

term1 mnot term1 term2 Returns docs that contain term1 unless it is part of
the phrase term1 term2.

term1 mnot term2 Returns all documents that contain term1. It will be
the same query as just term1.

Example for MNOT Operator

The children of the MNOT operator must be a TERM or PHRASE.

SELECT * FROM docs
WHERE CONTAINS(txt, 'term1 mnot term1 term2') >0

Related Topic

"NOT (~)"

3.16 Narrower Term (NT, NTG, NTP, NTI)
Use the narrower term operators (NT, NTG, NTP, NTI) to expand a query to include all the terms
that have been defined in a thesaurus as the narrower or lower level terms for a specified term.

They can also expand the query to include all of the narrower terms for each narrower term,
and so on down through the thesaurus hierarchy.

Syntax

Syntax Description

NT(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower terms for term.

NTG(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower generic terms for term.

NTP(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower partitive terms for term.

NTI(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower instance terms for term.

term
Specify the operand for the narrower term operator. term is expanded to include the narrower
term entries defined for the term in the thesaurus specified by thes. The number of narrower
terms included in the expansion is determined by the value for level. You cannot specify
expansion operators in the term argument.

qualifier
Specify a qualifier for term, if term is a homograph (word or phrase with multiple meanings,
but the same spelling) that appears in two or more nodes in the same hierarchy branch of
thes.
If a qualifier is not specified for a homograph in a narrower term query, the query expands to
include all of the narrower terms of all homographic terms.

Chapter 3
Narrower Term (NT, NTG, NTP, NTI)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 59

level
Specify the number of levels traversed in the thesaurus hierarchy to return the narrower terms
for the specified term. For example, a level of 1 in an NT query returns all the narrower term
entries, if any exist, for the specified term. A level of 2 returns all the narrower term entries for
the specified term, as well as all the narrower term entries, if any exist, for each narrower
term.
The level argument is optional and has a default value of one (1). Zero or negative values for
the level argument return only the original query term.

thes
Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. A thesaurus named DEFAULT
must exist in the thesaurus tables if you use this default value.

Note

If you specify thes, then you must also specify level.

Examples for Narrower Term Operators

The following query returns all documents that contain either the term cat or any of the NT
terms defined for cat in the DEFAULT thesaurus:

'NT(cat)'

If you specify a thesaurus name, then you must also specify level as in:

'NT(cat, 2, mythes)'

The following query returns all documents that contain either fairy tale or any of the narrower
instance terms for fairy tale as defined in the DEFAULT thesaurus:

'NTI(fairy tale)'

That is, if the terms cinderella and little mermaid are defined as narrower term instances for
fairy tale, Oracle Text returns documents that contain fairy tale, cinderella, or little mermaid.

Notes

Each hierarchy in a thesaurus represents a distinct, separate branch, corresponding to the four
narrower term operators. In a narrower term query, Oracle Text only expands the query using
the branch corresponding to the specified narrower term operator.

Related Topic

CTX_THES.NT in CTX_THES Package for more information on browsing the narrower terms
in your thesaurus

3.17 NDATA
Use the NDATA operator to find matches that are spelled in a similar way or where rearranging
the terms of the specified phrase is useful.

It is helpful for finding more accurate results when there are frequent misspellings (or
inaccurate orderings) of name data in the document set. This operator can be used only on
defined NDATA sections. The NDATA syntax enables you to rank the result set so that documents

Chapter 3
NDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 59

that contain words with high orthographic similarity are scored higher than documents with
lower similarity.

Normalization

A lexer does not process NDATA query phrases. Users can, however, set base letter and
alternate spelling attributes for a particular section group containing NDATA sections. Query
case is normalized and non-character data (except for white space) is removed (for example,
numerical or punctuation).

Syntax

ndata(sectionname, phrase [,order][,proximity][,threshold])

Parameter
Name

Default Value Parameter Description

sectionname Specify the name of a defined NDATA sections to query (that is,
section_name)

phrase Specify the phrase for the name data query.

The phrase parameter can be a single word or a phrase, or a
string of words in free text format.

The score returned is a relevant score.

Oracle Text ignores any query operators that are included in
phrase.

The phrase should be a minimum of two characters in length and
should not exceed 4000 characters in length.

order NOORDER Specify whether individual tokens (terms) in a query should be
matched in-order or in any order. The order parameter provides a
primary filter for matching candidate documents.

ORDER or O - The query terms are matched in-order.

NOORDER o N [DEFAULT] - The query terms are matched in any
order.

proximity NOPROXIMITY Specify whether the proximity of terms should influence the
similarity score of candidate matches. That is, if the proximity
parameter is enabled, non-matching additional terms between
matching terms reduces the similarity score of candidate matches.

PROXIMITY or P - The similarity score influenced by the proximity
of query terms in candidate matches.

NOPROXIMITY or N [DEFAULT] - The similarity score is not
influenced by the proximity of query terms in candidate matches.

threshold 20 Starting with Oracle Database 12c Release 2 (12.2), you can
provide a threshold value as part of the NDATA operator. Specify a
threshold value for percentage of matching grams. The section
values containing low percentage of matching grams are ignored.
If the threshold value is 20, sections with less than 20% of
matching grams are ignored. If this value is lowered, fewer
sections are ignored and this leads to a better recall. This
threshold value promotes recall over precision as the value is
lowered. For example:

NDATA(author, LAST First, x, proximity, 10)

Chapter 3
NDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 59

Examples for NDATA Operator

An NDATA query on an indexed surname section name that matches terms in the query phrase
in any order without influencing the similarity score by the proximity of the jones and smith
terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, jones smith)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query phrase
in any order and in which similarity scores are influenced by the proximity of the jones and
smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, jones smith,,proximity)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query phrase
in-order without influencing the similarity score by the proximity of the jones and smith terms
has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, jones smith, order)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query phrase
in-order and in which similarity scores are influenced by the proximity of the jones and smith
terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, jones smith, order, proximity)',1)>0;

Notes

The NDATA query operator does not provide offset information. As such, it cannot be used as a
child of WITHIN, NEAR(;), or EQUIV(=), and NDATA sections are ignored by CTX_DOC.HIGHLIGHT,
CTX_DOC.SNIPPET, and CTX_DOC.MARKUP.

The NDATA operator is not supported in the CTXCAT grammar. You can use it with other
operators, including OR and query templates. You cannot use other query operators inside the
NDATA operator.

A use case of the NDATA operator may involve finding a particular entry based on an
approximate spelling of a person's full-name and an estimated date-of-birth. Supposing the
entries' date-of-births are stored as an SDATA section, user-defined scoring's alternate scoring
template can be used to combine the scores of the full-name's NDATA section data and the
date-of-birth's SDATA section data.

The name john smith is queried for the section specified by the fullname section_name.
Altering the NDATA operator's score based on the closeness of the SDATA section's date-of-birth
to the date 08-NOV-2012 modifies the ranking of matching documents as follows:

<query>
 <textquery grammar="CONTEXT" lang="english">
 NDATA(fullname, john smith)
 </textquery>
 <score algorithm="COUNT" normalization_expr =
 "doc_score-(DATE(8-NOV-2012)-sdata:dob)"/>
</query>

Chapter 3
NDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 59

Restrictions

The NDATA query operator does not work with CTX_DOC Package procedures. Attempting to
use NDATA with CTX_DOC procedures will return an error stating that this is not supported.

3.18 NEAR (;)
Use the NEAR operator to return a score based on the proximity of two or more query terms.

Oracle Text returns higher scores for terms closer together and lower scores for terms farther
apart in a document. If a word or term appears more than once in a NEAR query, then the word
must appear more than once in the document in order to match.

Note

The NEAR operator works with only word queries. You cannot use NEAR in ABOUT
queries.

Syntax

NEAR((word1,word2,...,wordn) [, max_span [, order [, minreqd]]])

Backward compatibility syntax:

word1;word2

word1-n
Specify the terms in the query separated by commas. The query terms can be single words or
phrases and may make use of other query operators (see "NEAR with Other Operators").

max_span
Optionally specify the number of words separating the start and end words of a clump. The
default is 100. Oracle Text returns an error if you specify a number greater than 100.
A clump is the smallest group of words in which all query terms occur. All clumps begin and
end with a query term.
For near queries with two terms, max_span is the maximum distance allowed between the two
terms. For example, if the document contains “The cat sat on the dog” then you can find cat
within 3 words of dog by using the following query:

'near((dog, cat, 3)'

If the document contains “The cat and the rabbit sat on the dog” then you can find cat, dog,
and rabbit within 6 words by using the following query:

'near((cat, dog, rabbit), 6)'

Chapter 3
NEAR (;)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 59

Note

The search term rabbit is still included in the max_span calculation. If you specify a
max_span of 5 then you cannot find rabbit. Stopwords are also included in the span
calculation.

order
Specify TRUE for Oracle Text to search for terms in the order you specify. The default is FALSE.
For example, to search for the words monday, tuesday, and wednesday in that order with a
maximum clump size of 20, enter the following query:

'near((monday, tuesday, wednesday), 20, TRUE)'

Note

To specify order, then you must always specify a number for max_span.

Oracle Text might return different scores for the same document when you use identical query
expressions that have the order flag set differently. For example, Oracle Text might return
different scores for the same document when you enter the following queries:

'near((dog, cat), 50, FALSE)'
'near((dog, cat), 50, TRUE)'

minreqd
Specify the minimum number of query terms that must be present near each other within a
given span, for a document to qualify as a match. You must specify a number greater than 1. If
the number of terms that must be near each other for a match is not specified, all terms must
match. For example, the following query matches documents that contain clusters of words
pertaining to fish:
'near((fish, shark, ocean, scales, fishing), 10, FALSE, 3)'
Here, only three of the query terms must be within a distance of 10 from each other for a
match.

NEAR Scoring

The scoring for the NEAR operator combines frequency of the terms with proximity of terms. For
each document that satisfies the query, Oracle Text returns a score between 1 and 100 that is
proportional to the number of clumps in the document and inversely proportional to the
average size of the clumps. This means many small clumps in a document result in higher
scores, because small clumps imply closeness of terms.

The number of terms in a query also affects score. Queries with many terms, such as seven,
generally need fewer clumps in a document to score 100 than do queries with few terms, such
as two.

A clump is the smallest group of words in which all query terms occur. All clumps begin and
end with a query term. Define clump size with the max_span parameter, as described in this
section.

The size of a clump does not include the query terms themselves. So for the query NEAR((DOG,
CAT), 1), dog cat will be a match, and dog ate cat will be a match, but dog sat on cat will not
be a match.

Chapter 3
NEAR (;)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 59

NEAR with Other Operators

You can use the NEAR operator with other operators such as AND and OR. Scores are calculated
in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah where the
terms lion and tiger are within 10 words of each other, enter the following query:

'near((lion, tiger), 10) AND cheetah'

The score returned for each document is the lower score of the near operator and the term
cheetah.

You can also use the equivalence operator to substitute a single term in a near query:

'near((stock crash, Japan=Korea), 20)'

This query asks for all documents that contain the phrase stock crash within twenty words of
Japan or Korea.

The following NEAR syntax is now valid:

SELECT * FROM docs WHERE CONTAINS(txt, 'near((aterm1 aterm2 ... atermI
OR bterm1 bterm2 ... btermJ
OR cterm1 cterm2 ... ctermK, dterm))') >0

There can be any number of ORs in a given NEAR child, and the OR can appear in any of the
NEAR children.

The NEAR within NEAR feature allows users to use nested proximity queries. Starting with Oracle
Database 12c Release 2 (12.2), the distance between phrases is measured from the closest
words in the phrases. For example, if the document contains the phrases ` Lorem ipsum dolor
sit amet’ and ` Sed ut perspiciatis unde omnis’, rather than measuring the distance of these
two phrases as the distance between `Lorem’ and `Sed’, the first two words in the phrases, the
distance is measured from `amet’ and ‘Sed’. The distance between phrases is the so-called
Hausdorff measure.

SELECT * FROM docs
WHERE CONTAINS(txt, 'near((near((term1, term2),5), term3), 100)')>0

This query returns documents where term1 and term2 are near within a 5 token window, and
the phrase containing term1 and term2 is within a 100 token window from term3. The distance
between term3 and the phrase containing term1 and term2 is computed based on the
Hausdorff measure.

Mixing the semicolon and NEAR syntax is not supported and throws an error. That is, the
queries "near((a;b,c),3)" or "near((a,b));c" will be disallowed.

The following operators also work with NEAR and ; :

• EQUIV

• All expansion operators that produce words, phrases, or EQUIV. These include:

– soundex

– fuzzy

– wildcards

– stem

Chapter 3
NEAR (;)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 59

Backward Compatibility NEAR Syntax

You can write near queries using the syntax of previous Oracle Text releases. However, in a
nested NEAR query, the semicolon operator cannot be used as the inner NEAR. That is, the
query 'near(((a;d),f),3)' produces a syntax error. The semicolon operator can be used as
the outermost NEAR in a nested NEAR query.

For example, to find all documents where lion occurs near tiger, write:

'lion near tiger'

or with the semi-colon as follows:

'lion;tiger'

This query is equivalent to the following query:

'near((lion, tiger), 100, FALSE)'

Note

Only the syntax of the NEAR operator is backward compatible. In the example, the
score returned is calculated using the clump method as described in this section.

Highlighting with the NEAR Operator

When you use highlighting and your query contains the near operator, all occurrences of all
terms in the query that satisfy the proximity requirements are highlighted. Highlighted terms
can be single words or phrases.

For example, assume a document contains the following text:

Chocolate and vanilla are my favorite ice cream flavors. I like chocolate served
in a waffle cone, and vanilla served in a cup with caramel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
<<chocolate>> served in a waffle cone, and <<vanilla>> served in a cup with
caramel syrup.

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
chocolate served in a waffle cone, and vanilla served in a cup with caramel syrup.

See Also

CTX_DOC Package for more information about the procedures for highlighting

Section Searching and NEAR

Use the NEAR operator with the WITHIN operator for section searching as follows:

'near((dog, cat), 10) WITHIN Headings'

Chapter 3
NEAR (;)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 59

When evaluating expressions such as these, Oracle Text looks for clumps that lie entirely
within the given section.

In this example, only those clumps that contain dog and cat that lie entirely within the section
Headings are counted. That is, if the term dog lies within Headings and the term cat lies five
words from dog, but outside of Headings, this pair of words does not satisfy the expression and
is not counted.

3.19 NEAR2
Use the NEAR2 operator to perform position–based scoring and length normalization to help
improve relevancy.

The NEAR2 operator divides a document into segments based on the given query. Then, it
classifies each segment based on the primary features and scores them based on the
secondary features. The primary features that are used are as follows:

• Phrase Hits

• Partial Phrase Hits

• Ordered Near Hits

• Unordered Near Hits

• AND Hits

The secondary features are as follows:

• Excess Span

• Start Position

• Longest Partial Phrase

Syntax

NEAR2((word1, word2,...,wordn),max_span, phrase_weight,
partial_phrase_weight, ordered_near_weight, unordered_near_weight, and_weight)

All or none of the weights must be provided. When the weights are provided, the NEAR2
operator works in the weighted-average mode. The weights are integers between 0 and 10.

word1-n
Specify the terms in the query separated by commas. The query terms can be single words or
phrases and can use other query operators (see "NEAR with Other Operators"). Only the word
list is mandatory.

max_span
Optionally, specify the size of the biggest clump. The default is 50. Oracle Text returns an error
if you specify a number greater than 50.
A clump is the smallest group of words in which all query terms occur. All clumps begin and
end with a query term.
For near queries with two terms, max_span is the maximum distance allowed between the two
terms. For example, to query on dog and cat where dog is within 6 words of cat, enter the
following query:

'near((dog, cat), 6)'

Chapter 3
NEAR2

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 59

phrase_weight
Determine the weight of the phrase primary feature when in weighted-average mode. This is a
qualitative weight, which is mapped to an internal weight.

partial_phrase_weight
Determine the weight of the partial phrase primary feature when in weighted-average mode.
This is a qualitative weight.

ordered_near_weight
Determine the weight of the ordered near primary feature when in weighted-average mode.
This is a qualitative weight.

unordered_near_weight
Determine the weight of the unordered near primary feature when in weighted-average mode.
This is a qualitative weight.

and_weight
Determine the weight of the AND primary feature when in weighted average mode. This is a
qualitative weight.

Related Topics

• Oracle Text Application Developer's Guide

3.20 NOT (~)
Use the NOT operator to search for documents that contain one query term and not another.

Syntax

Syntax Description

term1~term2

term1 not term2

Returns documents that contain term1 and not term2.

Examples for NOT Operator

To obtain the documents that contain the term animals but not dogs, use the following
expression:

'animals ~ dogs'

Similarly, to obtain the documents that contain the term transportation but not automobiles or
trains, use the following expression:

'transportation not (automobiles or trains)'

Note

The NOT operator does not affect the scoring produced by the other logical operators.

Related Topics

"MINUS (-)"

Chapter 3
NOT (~)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 59

3.21 OR (|)
Use the OR operator to search for documents that contain at least one occurrence of any of the
query terms. The OR operator returns documents that contain any of the query terms, while the
AND operator returns documents that contain all query terms.

Syntax

Syntax Description

term1|term2

term1 or term2

Returns documents that contain term1 or term2. Returns the
maximum score of its operands. At least one term must exist; higher
score taken.

Examples for OR Operator

To obtain the documents that contain the term cats or the term dogs, use either of the following
expressions:

'cats | dogs'
'cats OR dogs'

Scoring

In an OR query, the score returned is the score for the highest query term. In the example, if the
scores for cats and dogs is 30 and 40 within a document, the document scores 40.

Related Topics

"AND (&)"

3.22 Preferred Term (PT)
Use the preferred term operator (PT) to replace a term in a query with the preferred term that
has been defined in a thesaurus for the term.

Syntax

Syntax Description

PT(term[,thes]) Replaces the specified word in a query with the preferred term for term.

term
Specify the operand for the preferred term operator. term is replaced by the preferred term
defined for the term in the specified thesaurus. However, if no PT entries are defined for the
term, term is not replaced in the query expression and term is the result of the expansion.
You cannot specify expansion operators in the term argument.

thes
Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. As a result, a thesaurus named
DEFAULT must exist in the thesaurus tables before using any of the thesaurus operators.

Chapter 3
OR (|)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 59

Example for PT Operator

The term automobile has a preferred term of car in a thesaurus. A PT query for automobile
returns all documents that contain the word car. Documents that contain the word automobile
are not returned.

Related Topics

CTX_THES.PT in CTX_THES Package form more information on browsing the preferred terms
in your thesaurus

3.23 Related Term (RT)
Use the related term operator (RT) to expand a query to include all related terms that have
been defined in a thesaurus for the term.

Syntax

Syntax Description

RT(term[,thes]) Expands a query to include all the terms defined in the thesaurus as a
related term for term.

term
Specify the operand for the related term operator. term is expanded to include term and all the
related entries defined for term in thes.
You cannot specify expansion operators in the term argument.

thes
Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. As a result, a thesaurus named
DEFAULT must exist in the thesaurus tables before using any of the thesaurus operators.

Example for RT Operator

The term dog has a related term of wolf. An RT query for dog returns all documents that
contain the word dog and wolf.

Related Topics

CTX_THES.RT in CTX_THES Package for more information on browsing the related terms in
your thesaurus

3.24 SDATA
Use the SDATA operator to perform tests on SDATA sections and columns, which contain
structured data values.

SDATA sections speed up mixed querying and ordering. This operator provides structured
predicate support for CONTAINS, which extends non-SQL interfaces such as count_hits or the
result set interface.

SDATA operators should only be used as descendants of AND operators that also have non-
SDATA children.

Chapter 3
Related Term (RT)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 59

SDATA queries perform on string or numeric literals, and on date strings. The string literal and
date string are enclosed within single or double quote characters. The numeric value is not
enclosed in quote characters, and must conform to the SQL format of NUMBER. For example:

CONTAINS(text, "dog and SDATA(category = ''news'')")>0 ...

SDATA(rating between 1.2 and 3.4) ...

SDATA(author LIKE 'FFORDE%') ...

SDATA(date >='2005-09-18') ...

Closed parentheses are permitted, as long as they are enclosed in single or double quotes.

The SDATA operator can be used in query templates.

Syntax

Syntax Operators

SData := "SDATA" "(" SDataPredicate ")"

SDataPredicate := section_name SDataTest

SDataTest := <SDataSingleOp SDataLiteral> | SDataBetweenOp | <"is" ("not")? "null">

SDataSingleOp := ("<" | "<=" | "=" | ">=" | ">" | "!=" | "<>" | "like") SDataLiteral

SDataBetweenOp := "between" SDataLiteral "and" SDataLiteral

SDataLiteral := numeric_literal | "'" string_literal "'" | "'" date_string "'"

section_name
The name of the SDATA section(s) on which to search and perform the test, or check.

SDataLiteral
The value of the SDATA section. This must be either a string literal, numeric literal, or a date
string.
The SDATA operator returns a score of 100 if the enclosed predicate returns TRUE, and returns
0 otherwise. In the case of a NULL value, the SDATA operator returns a score of 0 (since in SQL
it would not return TRUE).
Multi-valued semantics are not defined, as multi-valued SDATA sections are not supported.
Comparison of strings is case sensitive. The BINARY collation is always used.

Note

For the SDATA operator on SDATA sections that are mapped to a DATE FILTER BY
column, the SDATA value must follow the Date format: YYYY-MM-DD or YYYY-MM-DD
HH24:MI:SS. Otherwise, the expected rows will not be returned. If the time component
is omitted, it will default to 00:00:00, according to SQL semantics. This Date format is
always used, regardless of the setting of the NLS_DATE_FORMAT environment variable.

Example for SDATA Operator

Suppose that you want to query for books in the fiction category that contain the word summer.
Assuming that an SDATA section called CATEGORY has been declared, you can query as follows:

SELECT id FROM idx_docs
 WHERE CONTAINS(text, 'summer AND SDATA(category = "fiction")')>0

Chapter 3
SDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 59

Restrictions

• An error is raised if the section name is not a defined SDATA section. The source of the
section (for example, tag versus column) is not important.

• The syntax precludes RHS SDATA and expressions.

• SDATA operators cannot be children of WITHIN, INPATH, HASPATH, or NEAR.

• The data type of the named SDATA section must be compatible with the literal provided
(and the operator, for example, LIKE) or an error is raised.

• SDATA operators are not supported in CTXRULE query documents.

• SDATA operators have no effect on highlighting.

Notes

Stoplists do not affect string-value SDATA sections, that is, if a stopword is present within an
SDATA section, then the token will still be indexed and can be queried using the SDATA operator.

Oracle recommends using SDATA operators only as descendants of AND operators that also
have non-SDATA children. Essentially, use SDATA operators as secondary (that is, checking or
non-driving) criteria. For instance, "find documents with DOG that also have price > 5", rather
than "find documents with rating > 4". Other usage may operate properly, but may not have
optimal performance.

The following examples are consistent with recommended use:

dog & SDATA(foo = 5)

The SDATA is a child of an AND operator that also has non-SDATA children.

dog & (SDATA(foo = 5) | SDATA(x = 1))

Although the SDATA operators here are children of OR, they are still descendants of an AND
operator with non-SDATA children.

The following examples show use that is not recommended:

SDATA(foo = 5)

Here, SDATA is the only criteria and, therefore, the driving criteria.

dog | SDATA(bar = 9)

The SDATA in this example is a child of an OR operator rather than an AND.

SDATA(foo = 5) & SDATA(bar = 7)

While both SDATA operators in this example are descendants of AND, this AND operator does not
have non-SDATA children.

Related Topics

• ADD_SDATA_COLUMN
Use this procedure to map the FILTER BY or ORDER BY column (named in column_name) to
the SDATA section (named in section_name). By default, all FILTER BY columns are
mapped as SDATA.

• ADD_SDATA_SECTION
This procedure adds an SDATA section to a section group. By default, all FILTER BY
columns are mapped as SDATA.

Chapter 3
SDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 59

• UPDATE_SDATA
UPDATE_SDATA is an index API that modifies the specified SDATA values in the index. This
API does not store or modify column values in a base table, where the base table column
may have been used as an SDATA section.

• CTX_SECTIONS

• Oracle Text Views
This is a list of all the views provided by Oracle Text.

• Oracle Text Application Developer's Guide

3.25 soundex (!)
Use the soundex (!) operator to expand queries to include words that have similar sounds; that
is, words that sound like other words.

This function enables comparison of words that are spelled differently, but sound alike in
English. The SOUNDEX operator algorithm uses heuristic methods, so results may vary based on
your query words.

Syntax

Syntax Description

!term Expands a query to include all terms that sound the same as the
specified term (English-language text only).

Example for Soundex (!) Operator

SELECT ID, COMMENT FROM EMP_RESUME
WHERE CONTAINS (COMMENT, '!SMYTHE') > 0 ;

ID COMMENT
-- ------------
23 Smith is a hard worker who..

Language

Soundex works best for languages that use a 7-bit character set, such as English. It can be
used, with lesser effectiveness, for languages that use an 8-bit character set, such as many
Western European languages.

If you have base-letter conversion specified for a text column and the query expression
contains a soundex operator, then Oracle Text operates on the base-letter form of the query.

3.26 stem ($)
Use the stem ($) operator to search for terms that have the same linguistic root as the query
term.

If you use BASIC_LEXER to index your language, then you can improve stemming performance
by using the index_stems attribute of BASIC_LEXER.

Japanese stemming is supported with JAPANESE_LEXER.

Specify your stemming language with the BASIC_WORDLIST wordlist preference.

Chapter 3
soundex (!)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 59

Syntax

Syntax Description

$term Expands a query to include all terms having the same stem or
root word as the specified term.

Examples for Stem ($) Operator

Input Expands To

$scream scream screaming screamed

$distinguish distinguish distinguished distinguishes

$guitars guitars guitar

$commit commit committed

$cat cat cats

$sing sang sung sing

Behavior with Stopwords

If stem returns a word designated as a stopword, the stopword is not included in the query or
highlighted by CTX_QUERY.HIGHLIGHT or CTX_QUERY.MARKUP.

Related Topics

• BASIC_LEXER Attributes
These are the attributes supported for the BASIC_LEXER component.

• BASIC_WORDLIST
Use BASIC_WORDLIST to enable stemming and fuzzy matching or to create prefix indexes
with Text indexes.

• JAPANESE_LEXER
Identifies tokens in Japanese for creating Oracle Text indexes. Offers advantages over
JAPANESE_VGRAM_LEXER, such as generates a smaller index, has a better query response
time, and generates real word tokens resulting in better query precision.

• Oracle Text Indexing Elements

3.27 Stored Query Expression (SQE)
Use the SQE operator to call a stored query expression created with the
CTX_QUERY.STORE_SQE procedure.

Stored query expressions can be used for creating predefined bins for organizing and
categorizing documents or to perform iterative queries, in which an initial query is refined using
one or more additional queries.

Syntax

Syntax Description

SQE(SQE_name) Returns the results for the stored query expression
SQE_name.

Chapter 3
Stored Query Expression (SQE)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 59

Examples for SQE Operator

To create an SQE named disasters, use CTX_QUERY.STORE_SQE as follows:

begin
ctx_query.store_sqe('disasters', 'hurricane or earthquake or blizzard');
end;

This stored query expression returns all documents that contain either hurricane, earthquake
or blizzard.

This SQE can then be called within a query expression as follows:

SELECT SCORE(1), docid FROM news
WHERE CONTAINS(resume, 'sqe(disasters)', 1)> 0
ORDER BY SCORE(1);

Limitations

Up to 100 stored query expressions (SQEs) can be stored in a single Text query. If a Text
query has more than 100 SQEs, including nested SQEs, then the query fails and error
DRG-50949 is raised.

Related Topic

"STORE_SQE"

3.28 SYNonym (SYN)
Use the synonym operator (SYN) to expand a query to include all the terms that have been
defined in a thesaurus as synonyms for the specified term.

Syntax

Syntax Description

SYN(term[,thes]) Expands a query to include all the terms defined in the thesaurus as
synonyms for term.

term
Specify the operand for the synonym operator. term is expanded to include term and all the
synonyms defined for term in thes.
You cannot specify expansion operators in the term argument.

thes
Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. A thesaurus named DEFAULT
must exist in the thesaurus tables if you use this default value.

Examples for SYN Operator

The following query expression returns all documents that contain the term dog or any of the
synonyms defined for dog in the DEFAULT thesaurus:

'SYN(dog)'

Compound Phrases in Synonym Operator

Chapter 3
SYNonym (SYN)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 59

Expansion of compound phrases for a term in a synonym query are returned as AND
conjunctives.

For example, the compound phrase temperature + measurement + instruments is defined in a
thesaurus as a synonym for the term thermometer. In a synonym query for thermometer, the
query is expanded to:

{thermometer} OR ({temperature}&{measurement}&{instruments})

Related Topics

CTX_THES.SYN in CTX_THES Package for more information on browsing the synonym terms
in your thesaurus

3.29 threshold (>)
Use the threshold operator (>) in two ways:

• at the expression level

• at the query term level

The threshold operator at the expression level eliminates documents in the result set that score
below a threshold number.

The threshold operator at the query term level selects a document based on how a term scores
in the document.

Syntax

Syntax Description

expression>n

term>n

Returns only those documents in the result set that score
above the threshold n.

Within an expression, returns documents that contain the query
term with score of at least n.

Examples for Threshold (>) Operator

At the expression level, to search for documents that contain relational databases and to return
only documents that score greater than 75, use the following expression:

'relational databases > 75'

At the query term level, to select documents that have at least a score of 30 for lion and
contain tiger, use the following expression:

'(lion > 30) and tiger'

3.30 Translation Term (TR)
Use the translation term operator (TR) to expand a query to include all defined foreign language
equivalent terms.

Chapter 3
threshold (>)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 59

Syntax

Syntax Description

TR(term[, lang, [thes]]) Expands term to include all the foreign equivalents that are defined for
term.

term
Specify the operand for the translation term operator. term is expanded to include all the
foreign language entries defined for term in thes. You cannot specify expansion operators in
the term argument.

lang
Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. (You may specify only one
language at a time.) If you omit this parameter or specify it as ALL, the system expands to use
all defined foreign language terms.

thes
Optionally, specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument has a default value of DEFAULT. As a result, a thesaurus named
DEFAULT must exist in the thesaurus tables before you can use any of the thesaurus operators.

Note

If you specify thes, then you must also specify lang.

Examples for TR Operator

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat

To search for all documents that contain cat and the spanish translation of cat, enter the
following query:

'tr(cat, spanish, my_thes)'

This query expands to:

'{cat}|{gato}'

Related Topics

CTX_THES.TR in CTX_THES Package for more information on browsing the related terms in
your thesaurus

3.31 Translation Term Synonym (TRSYN)
Use the translation term synonym operator (TRSYN) to expand a query to include all the defined
foreign equivalents of the query term, the synonyms of query term, and the foreign equivalents
of the synonyms.

Chapter 3
Translation Term Synonym (TRSYN)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 59

Syntax

Syntax Description

TRSYN(term[, lang, [thes]]) Expands term to include foreign equivalents of term, the synonyms of
term, and the foreign equivalents of the synonyms.

term
Specify the operand for this operator. term is expanded to include all the foreign language
entries and synonyms defined for term in thes. You cannot specify expansion operators in the
term argument.

lang
Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. If you omit this parameter,
the system expands to use all defined foreign language terms.

thes
Optionally, specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument has a default value of DEFAULT. As a result, a thesaurus named
DEFAULT must exist in the thesaurus tables before you can use any of the thesaurus operators.

Note

If you specify thes, then you must also specify lang.

Examples for TRSYN Operator

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat
 SYN lion
 SPANISH: leon

To search for all documents that contain cat, the spanish equivalent of cat, the synonym of cat,
and the spanish equivalent of lion, enter the following query:

'trsyn(cat, spanish, my_thes)'

This query expands to:

'{cat}|{gato}|{lion}|{leon}'

Related Topics

CTX_THES.TRSYN in CTX_THES Package for more information on browsing the translation
and synonym terms in your thesaurus

3.32 Top Term (TT)
Use the top term operator (TT) to replace a term in a query with the top term that has been
defined for the term in the standard hierarchy (Broader Term [BT], Narrower Term [NT]) in a

Chapter 3
Top Term (TT)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 59

thesaurus. A top term is the broadest conceptual term related to a given query term. For
example, a thesaurus might define the following hierarchy:

DOG
 BT1 CANINE
 BT2 MAMMAL
 BT3 VERTEBRATE
 BT4 ANIMAL

The top term for dog in this thesaurus is animal.

Top terms in the generic (BTG, NTG), partitive (BTP, NTP), and instance (BTI, NTI) hierarchies are
not returned.

Syntax

Syntax Description

TT(term[,thes]) Replaces the specified word in a query with the top term in the standard
hierarchy (BT, NT) for term.

term
Specify the operand for the top term operator. term is replaced by the top term defined for the
term in the specified thesaurus. However, if no TT entries are defined for term, term is not
replaced in the query expression and term is the result of the expansion.
You cannot specify expansion operators in the term argument.

thes
Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. A thesaurus named DEFAULT
must exist in the thesaurus tables if you use this default value.

Example for TT Operator

The term dog has a top term of animal in the standard hierarchy of a thesaurus. A TT query for
dog returns all documents that contain the phrase animal. Documents that contain the word
dog are not returned.

Related Topics

CTX_THES.TT for more information on browsing the top terms in your thesaurus

3.33 weight (*)
The weight operator multiplies the score by the given factor, topping out at 100 when the score
exceeds 100. For example, the query cat, dog*2 sums the score of cat with twice the score of
dog, topping out at 100 when the score is greater than 100.

In expressions that contain more than one query term, use the weight operator to adjust the
relative scoring of the query terms. Reduce the score of a query term by using the weight
operator with a number less than 1; increase the score of a query term by using the weight
operator with a number greater than 1 and less than 10.

The weight operator is useful in ACCUMulate (_), AND (&), or OR (|) queries when the
expression has more than one query term. With no weighting on individual terms, the score
cannot tell which of the query terms occurs the most. With term weighting, you can alter the
scores of individual terms and hence make the overall document ranking reflect the terms you
are interested in.

Chapter 3
weight (*)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 59

Syntax

Syntax Description

term*n Returns documents that contain term. Calculates score by multiplying the raw
score of term by n, where n is a number from 0.1 to 10.

Examples for Weight (*) Operator

Suppose you have a collection of sports articles. You are interested in the articles about
Brazilian soccer. It turns out that a regular query on soccer or Brazil returns many high ranking
articles on US soccer. To raise the ranking of the articles on Brazilian soccer, enter the
following query:

'soccer or Brazil*3'

Table 3-3 illustrates how the weight operator can change the ranking of three hypothetical
documents A, B, and C, which all contain information about soccer. The columns in the table
show the total score of four different query expressions on the three documents.

Table 3-3 Score Samples

Document soccer Brazil soccer or Brazil soccer or Brazil*3

A 20 10 20 30

B 10 30 30 90

C 50 20 50 60

The score in the third column containing the query soccer or Brazil is the score of the highest
scoring term. The score in the fourth column containing the query soccer or Brazil*3 is the
larger of the score of the first column soccer and of the score Brazil multiplied by three,
Brazil*3.

With the initial query of soccer or Brazil, the documents are ranked in the order C B A. With the
query of soccer or Brazil*3, the documents are ranked B C A, which is the preferred ranking.

Weights can be added to multiple terms. The query Brazil OR (soccer AND Brazil)*3 will
increase the relative scores for documents that contain both soccer and Brazil.

3.34 wildcards (% _)
Wildcard characters can be used in query expressions to expand word searches into pattern
searches. When a wildcard is used on its own, for example, "DOG %" or ".%" or "%" by itself, it
is treated as a stopword.

The wildcard characters are as follows:

Wildcard Character Description

% The percent wildcard can appear any number of times at any part of the
search term. The search term will be expanded into an equivalence list of
terms. The list consists of all terms in the index that match the wildcarded
term, with zero or more characters in place of the percent character.

_ The underscore wildcard specifies a single position in which any character can
occur.

Chapter 3
wildcards (% _)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 59

The total number of wildcard expansions from all words in a query containing unescaped
wildcard characters cannot exceed the maximum number of expansions specified by the
BASIC_WORDLIST attribute WILDCARD_MAXTERMS. For more information, see
"BASIC_WORDLIST".

Note

• When a wildcard is used on its own, it is treated as a stopword.

• When a wildcard expression translates to a stopword, the stopword is not included
in the query and not highlighted by CTX_DOC.HIGHLIGHT or
CTX_DOC.MARKUP .

Right-Truncated Queries

Right truncation involves placing the wildcard on the right-hand-side of the search string.

For example, the following query expression finds all terms beginning with the pattern scal:

'scal%'

Left- and Double-Truncated Queries

Left truncation involves placing the wildcard on the left-hand-side of the search string.

To find words such as king, wing or sing, write the query as follows:

'_ing'

For all words that end with ing, enter:

'%ing'

Combine left-truncated and right-truncated searches to create double-truncated searches. The
following query finds all documents that contain words that contain the substring %benz%

'%benz%'

Improving Wildcard Query Performance

Improve wildcard query performance by adding a substring or prefix index.

When your wildcard queries are left- and double-truncated, you can improve query
performance by creating a substring index. Substring indexes improve query performance for
all types of left-truncated wildcard searches such as %ed, _ing, or %benz%.

When your wildcard queries are right-truncated, you can improve performance by creating a
prefix index. A prefix index improves query performance for wildcard searches such as to%.

See Also

"BASIC_WORDLIST" in Oracle Text Indexing Elements for more information about
creating substring and prefix indexes

Chapter 3
wildcards (% _)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 59

3.35 WITHIN
Use the WITHIN operator to narrow a query down into document sections. Document sections
can be one of the following:

• Zone sections

• Field sections

• Attribute sections

• Special sections (sentence or paragraph)

Syntax

Syntax Description

expression WITHIN section Searches for expression within the predefined zone, field,
or attribute section.

If section is a zone, expression can contain one or more
WITHIN operators (nested WITHIN) whose section is a zone
or special section.

If section is a field or attribute section, expression cannot
contain another WITHIN operator.

expression WITHIN SENTENCE Searches for documents that contain expression within a
sentence. Specify an AND or NOT query for expression.

The expression can contain one or more WITHIN
operators (nested WITHIN) whose section is a zone or special
section.

expression WITHIN PARAGRAPH Searches for documents that contain expression within a
paragraph. Specify an AND or NOT query for expression.

The expression can contain one or more WITHIN
operators (nested WITHIN) whose section is a zone or special
section.

WITHIN Limitations

The WITHIN operator has the following limitations:

• You cannot embed the WITHIN clause in a phrase. For example, you cannot write: term1
WITHIN section term2

• Because WITHIN is a reserved word, you must escape the word with braces to search on it.

WITHIN Operator Examples

Querying Within Zone Sections

To find all the documents that contain the term San Francisco within the section Headings,
write the query as follows:

'San Francisco WITHIN Headings'

To find all the documents that contain the term sailing and contain the term San Francisco
within the section Headings, write the query in one of two ways:

Chapter 3
WITHIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 59

'(San Francisco WITHIN Headings) and sailing'

'sailing and San Francisco WITHIN Headings'

Compound Expressions with WITHIN

To find all documents that contain the terms dog and cat within the same section Headings,
write the query as follows:

'(dog and cat) WITHIN Headings'

This query is logically different from:

'dog WITHIN Headings and cat WITHIN Headings'

This query finds all documents that contain dog and cat where the terms dog and cat are in
Headings sections, regardless of whether they occur in the same Headings section or different
sections.

Near with WITHIN

To find all documents in which dog is near cat within the section Headings, write the query as
follows:

'dog near cat WITHIN Headings'

Note

The near operator has higher precedence than the WITHIN operator so braces are not
necessary in this example. This query is equivalent to (dog near cat) WITHIN
Headings.

Nested WITHIN Queries

You can nest the within operator to search zone sections within zone sections.

For example, assume that a document set had the zone section AUTHOR nested within the zone
BOOK section. Write a nested WITHIN query to find all occurrences of scott within the AUTHOR
section of the BOOK section as follows:

'(scott WITHIN AUTHOR) WITHIN BOOK'

Querying Within Field Sections

The syntax for querying within a field section is the same as querying within a zone section.
The syntax for most of the examples given in the previous section, "Querying Within Zone
Sections", apply to field sections.

However, field sections behave differently from zone sections in terms of

• Visibility: Make text within a field section invisible.

• Repeatability: WITHIN queries cannot distinguish repeated field sections.

• Nestability: You cannot enter a nested WITHIN query with a field section.

The following sections describe these differences.

Chapter 3
WITHIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 59

Visible Flag in Field Sections

When a field section is created with the visible flag set to FALSE in
CTX_DDL.ADD_FIELD_SECTION, the text within a field section can only be queried using the
WITHIN operator.

For example, assume that TITLE is a field section defined with visible flag set to FALSE. Then
the query dog without the WITHIN operator will not find a document containing:

<TITLE>The dog</TITLE> I like my pet.

To find such a document, use the WITHIN operator as follows:

'dog WITHIN TITLE'

Alternatively, set the visible flag to TRUE when you define TITLE as a field section with
CTX_DDL.ADD_FIELD_SECTION.

See Also

"ADD_FIELD_SECTION" in CTX_DDL Package for more information about creating
field sections

Repeated Field Sections

WITHIN queries cannot distinguish repeated field sections in a document. For example,
consider the document with the repeated section <author>:

<author> Charles Dickens </author>
<author> Martin Luther King </author>

Assuming that <author> is defined as a field section, a query such as (charles and martin)
within author returns the document, even though these words occur in separate tags.

To have WITHIN queries distinguish repeated sections, define the sections as zone sections.

Nested Field Sections

You cannot enter a nested WITHIN query with field sections. Doing so raises an error.

Querying Within Sentence or Paragraphs

Querying within sentence or paragraph boundaries is useful to find combinations of words that
occur in the same sentence or paragraph. To query sentence or paragraphs, you must first add
the special section to your section group before you index. Do so with
CTX_DDL.ADD_SPECIAL_SECTION.

To find documents that contain dog and cat within the same sentence:

'(dog and cat) WITHIN SENTENCE'

To find documents that contain dog and cat within the same paragraph:

'(dog and cat) WITHIN PARAGRAPH'

To find documents that contain sentences with the word dog but not cat:

'(dog not cat) WITHIN SENTENCE'

Chapter 3
WITHIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 59

Querying Within Attribute Sections

Query within attribute sections when you index with either XML_SECTION_GROUP or
AUTO_SECTION_GROUP as your section group type.

Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>

Define the section title@book to be the attribute section title. Do so with the
CTX_DLL.ADD_ATTR_SECTION procedure or dynamically after indexing with ALTER INDEX.

Note

When you use the AUTO_SECTION_GROUP to index XML documents, the system
automatically creates attribute sections and names them in the form attribute@tag.

If you use the XML_SECTION_GROUP, you can name attribute sections anything with
CTX_DDL.ADD_ATTR_SECTION.

To search on Tale within the attribute section title, enter the following query:

'Tale WITHIN title'

Constraints for Querying Attribute Sections

The following constraints apply to querying within attribute sections:

• Regular queries on attribute text do not hit the document unless qualified in a within
clause. Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>

A query on Tale by itself does not produce a hit on the document unless qualified with WITHIN
title@book. (This behavior is like field sections when you set the visible flag set to false.)

• You cannot use attribute sections in a nested WITHIN query.

• Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun"> men </word> to come to the aid.

Then this document would hit on the regular query good men, ignoring the intervening attribute
text.

• WITHIN queries can distinguish repeated attribute sections. This behavior is like zone
sections but unlike field sections. For example, you have a document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>
<book title="Of Human Bondage">The sky broke dull and gray.</book>

Assume that book is a zone section and book@author is an attribute section. Consider the
query:

'(Tale and Bondage) WITHIN book@author'

This query does not hit the document, because tale and bondage are in different occurrences
of the attribute section book@author.

Chapter 3
WITHIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 59

Notes

Section Names

The WITHIN operator requires you to know the name of the section you search. A list of defined
sections can be obtained using the CTX_SECTIONS or CTX_USER_SECTIONS views.

Section Boundaries

For special and zone sections, the terms of the query must be fully enclosed in a particular
occurrence of the section for the document to satisfy the query. This is not a requirement for
field sections.

For example, consider the query where bold is a zone section:

'(dog and cat) WITHIN bold'

This query finds:

dog cat

but it does not find:

dogcat

This is because dog and cat must be in the same bold section.

This behavior is especially useful for special sections, where

'(dog and cat) WITHIN sentence'

means find dog and cat within the same sentence.

Field sections on the other hand are meant for non-repeating, embedded metadata such as a
title section. Queries within field sections cannot distinguish between occurrences. All
occurrences of a field section are considered to be parts of a single section. For example, the
query:

(dog and cat) WITHIN title

can find a document like this:

<TITLE>dog</TITLE><TITLE>cat</TITLE>

In return for this field section limitation and for the overlap and nesting limitations, field section
queries are generally faster than zone section queries, especially if the section occurs in every
document, or if the search term is common.

3.36 Supported Oracle Text CONTAINS Query Operators for In-
Memory Full Text Search

You can query for simple words and phrases using the CONTAINS operator when In-Memory full
text search is enabled.

For querying a text column, only the following Oracle Text query operators are supported:

• AND

• OR

• NOT

Chapter 3
Supported Oracle Text CONTAINS Query Operators for In-Memory Full Text Search

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 59

• NEAR

For querying a JSON column, the following Oracle Text query operators are also supported:

• HASPATH

• INPATH

See Also

Oracle Text Application Developer's Guide for more information about In-Memory full
text search and JSON full text search

Chapter 3
Supported Oracle Text CONTAINS Query Operators for In-Memory Full Text Search

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 59

4
Special Characters in Oracle Text Queries

This chapter describes the special characters that can be used in Text queries. In addition, it
provides a list of the words and characters that Oracle Text treats as reserved words and
characters.

The following topics are covered in this chapter:

• Grouping Characters

• Escape Characters

• Reserved Words and Characters

4.1 Grouping Characters
The grouping characters control operator precedence by grouping query terms and operators
in a query expression. The grouping characters are described in Table 4-1.

Table 4-1 Characters for Grouping Query Terms

Grouping Character Description

() The parentheses characters serve to group terms and operators found
between the characters

[] The bracket characters serve to group terms and operators found
between the characters; however, they prevent penetrations for the
expansion operators (fuzzy, soundex, stem).

The beginning of a group of terms and operators is indicated by an open character from one of
the sets of grouping characters. The ending of a group is indicated by the occurrence of the
appropriate close character for the open character that started the group. Between the two
characters, other groups may occur.

For example, the open parenthesis indicates the beginning of a group. The first close
parenthesis encountered is the end of the group. Any open parentheses encountered before
the close parenthesis indicate nested groups.

4.2 Escape Characters
To query on words or symbols that have special meaning in query expressions such as and &
or| accum, you must escape them. There are two ways to escape characters in a query
expression, as described in Table 4-2.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 3

Table 4-2 Characters for Escaping Query Terms

Escape Character Description

{} Use braces to escape a string of characters or symbols. Everything
within a set of braces in considered part of the escape sequence.

When you use braces to escape a single character, the escaped
character becomes a separate token in the query.

\ Use the backslash character to escape a single character or symbol.
Only the character immediately following the backslash is escaped. For
example, a query of blue\-green matches blue-green and blue green.

In the following examples, an escape sequence is necessary because each expression
contains a Text operator or reserved symbol:

'high\-voltage'
'{high-voltage}'

'XY\&Z'
'{XY&Z}'

In the first example, the query matches high-voltage or high voltage.

Note that in the second example, a query on XY&Z will return 'XY Z', 'XY-Z', 'XY*Z', and so
forth, as well as 'XY&Z'. This is because non-alphabetic characters are treated as whitespace
(so XY&Z is treated as 'XY Z'). To match only XY&Z, you must declare & as a printjoin. (If you
do, however, XY&Z will not match 'XY & Z'.) For more on printjoins, see BASIC_LEXER.

Note

If you use braces to escape an individual character within a word, the character is
escaped, but the word is broken into three tokens. For example, a query written as
high{-}voltage searches for high - voltage, with the space on either side of the hyphen.

Querying Escape Characters

The open brace { signals the beginning of the escape sequence, and the closed brace }
indicates the end of the sequence. Everything between the opening brace and the closing
brace is part of the escaped query expression (including any open brace characters). To
include the close brace character in an escaped query expression, use }}. To escape the
backslash escape character, use \\.

4.3 Reserved Words and Characters
Table 4-3 lists the Oracle Text reserved words and characters that must be escaped when you
want to search them in CONTAINS queries. Refer to Table 4-2 for the rule for when to use braces
{} or the backslash \ for the escape sequence.

Table 4-3 Reserved Words and Characters

Reserved Words Reserved Characters Operator

ABOUT (none) ABOUT

Chapter 4
Reserved Words and Characters

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 3

Table 4-3 (Cont.) Reserved Words and Characters

Reserved Words Reserved Characters Operator

ACCUM , Accumulate

AND & And

BT (none) Broader Term

BTG (none) Broader Term Generic

BTI (none) Broader Term Instance

BTP (none) Broader Term Partitive

EQUIV = Equivalence

FUZZY ? fuzzy

(none) { } escape characters (multiple)

(none) \ escape character (single)

(none) () grouping characters

(none) [] grouping characters

HASPATH (none) HASPATH

INPATH (none) INPATH

MDATA (none) MDATA

MINUS - MINUS

NEAR ; NEAR

NOT ~ NOT

NT (none) Narrower Term

NTG (none) Narrower Term Generic

NTI (none) Narrower Term Instance

NTP (none) Narrower Term Partitive

OR | OR

PATTERN (none) PATTERN

PT (none) Preferred Term

RT (none) Related Term

(none) $ stem

(none) ! soundex

SQE (none) Stored Query Expression

SYN (none) Synonym

(none) > threshold

TR (none) Translation Term

TRSYN (none) Translation Term Synonym

TT (none) Top Term

(none) * weight

(none) % wildcard character (multiple)

(none) _ wildcard character (single)

WITHIN (none) WITHIN

Chapter 4
Reserved Words and Characters

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 3

5
CTX_ADM Package

This chapter contains the following topics.

• About CTX_ADM Package Procedures

• MARK_FAILED

• RECOVER

• RESET_AUTO_OPTIMIZE_STATUS

• SET_PARAMETER

5.1 About CTX_ADM Package Procedures
The CTX_ADM PL/SQL package provides administrative procedures for managing index
preferences.

The CTX_ADM package contains the following stored procedures.

Name Description

MARK_FAILED Changes an index's status from LOADING to FAILED.

RECOVER Cleans up database objects for deleted Text tables.

RESET_AUTO_OPTIMIZE_STATUS Resets the CTX_AUTO_OPTIMIZE_STATUS view.

SET_PARAMETER Sets system-level defaults for index creation.

Note

Only the CTXSYS user can use the procedures in the CTX_ADM package.

The APIs in the CTX_ADM package do not support identifiers that are prefixed with the
schema or the owner name.

5.2 MARK_FAILED
Use the MARK_FAILED procedure to change the status of an index from LOADING to FAILED.

Under rare circumstances, if CREATE INDEX or ALTER INDEX fails, an index may be left with the
status LOADING. When an index is in LOADING status, any attempt to recover using RESUME
INDEX is blocked. For this situation, use CTX_ADM.MARK_FAILED to forcibly change the status
from LOADING to FAILED so that you can recover the index with RESUME INDEX.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 5

Note

CTX_ADM.MARK_FAILED will mark the index or index partition as FAILED, even if they are
not marked as LOADING.

You must log on as CTXSYS to run CTX_ADM.MARK_FAILED.

Warning

Use CTX_ADM.MARK_FAILED with caution. It should only be used as a last resort and
only when no other session is touching the index. Normally, CTX_ADM.MARK_FAILED
does not succeed if another session is actively building the index with CREATE or ALTER
INDEX. However, index creation or alteration may include windows of time during which
CTX_ADM.MARK_FAILED can succeed, marking the index as failed even as it is being
built by another session.

Note

The background processses used to sync the index for automatic-sync indexes are
considered as different sessions and CTX_ADMIN.MARK_FAILED will not succeed in such
scenarios. Run CTX_ADM.MARK_FAILED only when there are no active background
processes.

CTX_ADM.MARK_FAILED works with local partitioned indexes. However, it changes the status of
all partitions to FAILED. Therefore, you should rebuild all index partitions with ALTER INDEX
REBUILD PARTITION PARAMETERS ('RESUME') after using CTX_ADM.MARK_FAILED. If you run
ALTER INDEX PARAMETER ('RESUME') after this operation, then Oracle resets the index partition
status to valid. Oracle does not rebuild the index partitions that were successfully built before
the MARK_FAILED operation.

Syntax

CTX_ADM.MARK_FAILED(
 owner_name in VARCHAR2,
 index_name in VARCHAR2);

owner_name
The name of the owner of the index whose status is to be changed.

index_name
The name of the index whose status is to be changed.

Note

The index_name must not be prefixed by the schema or the owner name.

Chapter 5
MARK_FAILED

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 5

Example

begin
 CTX_ADM.MARK_FAILED('owner_1', 'index_1');
end;

5.3 RECOVER
The RECOVER procedure cleans up the Text data dictionary, deleting objects such as leftover
preferences.

Syntax

CTX_ADM.RECOVER;

Example

begin
 ctx_adm.recover;
end;

5.4 RESET_AUTO_OPTIMIZE_STATUS
Use the RESET_AUTO_OPTIMIZE_STATUS procedure to reset (or delete the contents of) the
CTX_AUTO_OPTIMIZE_STATUS view.

You must log on as CTXSYS to run CTX_ADM.RESET_AUTO_OPTIMIZE_STATUS.

Syntax

CTX_ADM.RESET_AUTO_OPTIMIZE_STATUS;

Example

begin
 ctx_adm.reset_auto_optimize_status;
end;

5.5 SET_PARAMETER
The SET_PARAMETER procedure sets system-level parameters for index creation and for near
real-time indexes.

Syntax

CTX_ADM.SET_PARAMETER(param_name IN VARCHAR2,
 param_value IN VARCHAR2);

param_name
Specify the name of the parameter to set, which can be one of the following parameters:

• max_index_memory (maximum memory allowed for indexing)

• default_index_memory (default memory allocated for indexing)

• ctx_doc_key_type (default input key type for CTX_DOC procedures)

• auto_optimize (ENABLE or DISABLE for auto optimization)

Chapter 5
RECOVER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 5

• default_datastore (default datastore preference)

• default_filter_file (default filter preference for data stored in files)

• default_filter_text (default text filter preference)

• default_filter_binary (default binary filter preference)

• default_section_html (default html section group preference)

• default_section_xml (default xml section group preference)

• default_section_text (default text section group preference)

• default_lexer (default lexer preference)

• default_wordlist (default wordlist preference)

• default_stoplist (default stoplist preference)

• default_storage (default storage preference)

• default_ctxcat_lexer (default lexer preference for CTXCAT index)

• default_ctxcat_stoplist (default stoplist preference for CTXCAT index)

• default_ctxcat_storage (default CTXCAT index storage

• default_ctxcat_wordlist (default wordlist preference for CTXCAT index)

• default_ctxrule_lexer (default lexer for CTXRULE index)

• default_ctxrule_stoplist (default stoplist for CTXRULE index)

• default_ctxrule_storage (default storage for CTXRULE index)

• default_ctxrule_wordlist (default wordlist for CTXRULE index)

See Also

To learn more about the default values for these parameters, see "System
Parameters" in Oracle Text Indexing Elements

Note

log_directory (directory for CTX_OUTPUT files) and auto_optimize_logfile (the base
file name for the auto optimization log file) can no longer be modified. Any call to the
API is ignored for these parameters.

param_value
Specify the value to assign to the parameter. For max_index_memory and
default_index_memory, the value you specify must have the following syntax:

number[K|M|G]

where K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.
For each of the other parameters, specify the name of a preference to use as the default for
indexing.
For auto_optimize, the value you specify must be either ENABLE or DISABLE. When you set
this parameter to ENABLE, auto optimization jobs can be started. When you set this parameter

Chapter 5
SET_PARAMETER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 5

to DISABLE, no auto optimization jobs can be started and all the currently-running optimization
jobs are terminated.

Example

To modify the MAX_INDEX_MEMORY value:

exec ctx_adm.set_parameter(‘MAX_INDEX_MEMORY’, 100G);
The memory parameter in the indexing statements can be as high as 256 GB (if the
MAX_INDEX_MEMORY parameter is not explicitly specified to a lower value).

create index myindex1 on mytab(textcol) indextype is ctxsys.context
parameters ('memory 256G');
exec ctx_ddl.sync_index(' myindex2', memory=> '256G');

Example

begin
 ctx_adm.set_parameter('default_lexer', 'my_lexer');
end;

Chapter 5
SET_PARAMETER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 5

6
CTX_ANL Package

This chapter contains the following topics.

• About CTX_ANL Package Procedures

• ADD_DICTIONARY

• DROP_DICTIONARY

6.1 About CTX_ANL Package Procedures
The CTX_ANL PL/SQL package is used with AUTO_LEXER and provides procedures for adding
and dropping a custom dictionary from the lexer. A custom dictionary might be one that you
develop for a special field of study or for your industry. In most cases, the dictionaries supplied
with Oracle Text are more than sufficient to handle your requirements.

See Also

"AUTO_LEXER" for a discussion of AUTO_LEXER and supported languages

The CTX_ANL package contains the following stored procedures.

Name Description

ADD_DICTIONARY Adds a custom dictionary to the lexer.

DROP_DICTIONARY Drops a custom dictionary from the lexer.

Note

Only the CTXSYS user can use the procedures in CTX_ANL.

The APIs in the CTX_ANL package do not support identifiers that are prefixed with the
schema or the owner name.

6.2 ADD_DICTIONARY
Use the CTX_ANL.ADD_DICTIONARY procedure to add a custom dictionary to be used by
"AUTO_LEXER".

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 5

Note

The dictionary data is not processed until index/policy creation time or ALTER INDEX
time. Errors in dictionary data format are detected at index/policy creation time or
ALTER INDEX time and result in error: DRG-13710: Syntax Error in Dictionary.

Syntax

CTX_ANL.ADD_DICTIONARY(
 name in VARCHAR2,
 language in VARCHAR2,
 dictionary in CLOB
);

name
The unique name for the user-created custom dictionary.

Note

The unique name may not be prefixed by the schema or the owner name as this
syntax is not supported.

language
The language used by the custom dictionary.

dictionary
The CLOB containing the custom dictionary. The custom dictionary comprises a list of
definitions, which are declared separated by a tab or one per line as described in "Custom
Dictionary Format and Syntax".

Custom Dictionary Format and Syntax

The custom dictionary enables you to define a new stem or redefine an existing stem to add
words to AUTO_LEXER for your language.

Define a new stem or redefine an existing one using the following syntax:

COMPOUND<tab>word|word<tab>STEM<tab>word<tab>parts-of-speech<tab>features

COMPOUND
Use COMPOUND to create a compound word by joining two whole words with a pipe (|). The word
is a simple text string that you want to join to another word to create one compound word to
add to the language you specify in AUTO_LEXER.
Note that COMPOUND supports a maximum of 8 component words for a compound word.

STEM
Use STEM to add the root for a new word.

word
For COMPOUND and STEM, the word value is a simple text string respresenting a word that you
want to join with another word to create a new word; or a word root or stem that you want to
add to the language dictionary in AUTO_LEXER.

Chapter 6
ADD_DICTIONARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 5

parts-of-speech
The parts-of-speech value is a list of valid parts of speech, separated by a comma. Table 6-1
lists the names for parts-of-speech value. At least one parts-of-speech value is required.

features
The features represent a list of valid linguistic features, as shown in Table 6-2. Multiple
features are separated by a comma. Features are optional. If the word is already defined in
the supplied language dictionary, then this definition overrides it. It is an error to have an
invalid value for parts-of-speech or features.

Table 6-1 Custom Dictionary Valid Parts-of-Speech (case sensitive)

Part-of-Speech Description

noun A simple noun, like table, book, or procedure.

nounProper A proper name, for person, place, etc., typically capitalized, like
Zachary, Supidito, Susquehanna

adjective Modifiers of nouns, which typically can be compared (green, greener,
greenest), like fast, trenchant, pendulous.

adverb Any general modifier of a sentence that may modify an adjective or
verb or may stand alone, like slowly, yet, perhaps.

preposition A word that forms a prepositional phrase with a noun, like off, beside,
from. Used for postpositions too, in languages that have postpositions
of similar function.

Table 6-2 lists the features and their usage. The specified language determines whether these
are relevant and necessary. Note that declension refers to the inflection some languages use
to determine number (singular or plural), case, and gender. The features are relevant
depending on the language for the custom dictionary.

Table 6-2 Custom Dictionary Valid Features

Feature (case sensitive) Description

genderMasculine masculine

genderFeminine feminine

genderNeuter neuter

declensionHard hard declension

declensionSoft soft declension

Examples

exec CTX_DDL.CREATE_PREFERENCE('A_LEX', 'AUTO_LEXER');
exec CTX_ANL. ADD_DICTIONARY('my_dict1', 'ENGLISH', lobloc);
select * from CTX_USR_ANL_DICTS;
exec CTX_DDL.SET_ATTRIBUTE('A_LEX', 'english_dictionary', 'MY_ENGLISH');

The following example creates a custom dictionary named d1 to be added to AUTO_LEXER for
the English language.

declare
 dict clob;
begin
 dict := '# compounds
COMPOUND help|desk

Chapter 6
ADD_DICTIONARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 5

COMPOUND help|desks
COMPOUND book|shelf
COMPOUND book|shelves
COMPOUND back|woods|man
'||
'# define company abbreviations
STEM comp. noun
STEM ltd. noun
STEM co. noun
STEM oracle nounProper
STEM make verb
STEM unkword noun
STEM unkword verb
';
 ctx_anl.add_dictionary('d1','ENGLISH',dict);
end;
/

Related Topics

"AUTO_LEXER"

"CREATE_PREFERENCE "

"SET_ATTRIBUTE "

"DROP_DICTIONARY"

6.3 DROP_DICTIONARY
Use this procedure to drop a custom dictionary from AUTO_LEXER.

Syntax

CTX_ANL.DROP_DICTIONARY(
 name in VARCHAR2,
 language in VARCHAR2,
 dictionary in CLOB
);

name
The unique name for the user-created custom dictionary.

Note

The unique name may not be prefixed by the schema or the owner name as this
syntax is not supported.

language
The language for the custom dictionary.

dictionary
The CLOB representing the custom dictionary.

Example

begin
 CTX_ANL.DROP_DICTIONARY('dict1', 'english', 'dictionary');
end;

Chapter 6
DROP_DICTIONARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 5

Related Topic

"AUTO_LEXER"

"ADD_DICTIONARY"

Chapter 6
DROP_DICTIONARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 5

7
CTX_CLS Package

This chapter contains the following topics.

• About CTX_CLS Package Procedures

• TRAIN

• CLUSTERING

7.1 About CTX_CLS Package Procedures
The CTX_CLS PL/SQL package provides procedures for generating rules that define document
categories, and enables you to perform document classification.

The following procedures are in the CTX_CLS PL/SQL package.

Name Description

TRAIN Generates rules that define document categories. Output based on input
training document set.

CLUSTERING Generates clusters for a document collection.

SA_TRAIN_MODEL Trains a sentiment classifier.

SA_DROP_MODEL Drops an existing sentiment classifier.

Note

The APIs in the CTX_CLS package do not support identifiers that are prefixed with the
schema or the owner name.

See Also

Oracle Text Application Developer's Guide for more information on document
classification

7.2 TRAIN
Use this procedure to generate query rules that select document categories. You must supply a
training set consisting of categorized documents. Documents can be in any format supported
by Oracle Text and must belong to one or more categories. This procedure generates the
queries that define the categories and then writes the results to a table.

You must also have a document table and a category table. The category table must contain at
least two categories.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 9

For example, your document and category tables can be defined as:

create table trainingdoc(

docid number primary key,
text varchar2(4000));

create table category (

docid trainingdoc(docid),
categoryid number);

You can use one of two syntaxes depending on the classification algorithm you need. The
query compatible syntax uses the RULE_CLASSIFIER preference and generates rules as query
strings. The Support Vector Machine syntax uses the SVM_CLASSIFER preference and
generates rules in binary format. The SVM_CLASSIFIER is good for high classification accuracy,
but because its rules are generated in binary format, they cannot be examined like the query
strings generated with the RULE_CLASSIFIER. Note that only those document ids that appear in
both the document table and the category table will impact RULE_CLASSIFIER and
SVM_CLASSIFIER learning.

The CTX_CLS.TRAIN procedure requires that your document table have an associated context
index. For best results, the index should be synchronized before running this procedure.
SVM_CLASSIFIER syntax enables the use of an unpopulated context index, while query-
compatible syntax requires that the context index be populated.

Note

When downgrading the database, you must drop any models that were created in
Oracle Database 12c Release 2 (12.2) using TRAIN. These models are not compatible
with earlier releases. The following error occurs if the models are not dropped before
the downgrade: ORA-40350: One or more models exist that cannot be downgraded.

See Also

Oracle Text Application Developer's Guide for more on document classification

Query Compatible Syntax

The following syntax generates query-compatible rules and is used with the
RULE_CLASSIFIER preference. Use this syntax and preference when different categories are
separated from others by several key words. An advantage of generating your rules as query
strings is that you can easily examine the generated rules. This is different from generating
SVM rules, which are in binary format.

CTX_CLS.TRAIN(

index_name in varchar2,
docid in varchar2,
cattab in varchar2,
catdocid in varchar2,
catid in varchar2,
restab in varchar2,
rescatid in varchar2,
resquery in varchar2,

Chapter 7
TRAIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 9

resconfid in varchar2,
preference in varchar2 DEFAULT NULL

);

index_name
Specify the name of the context index associated with your document training set.

docid
Specify the name of the document ID column in the document table. The document IDs in this
column must be unique, and this column must be of datatype NUMBER. The values for this
column must be stored in an unsigned 32-bit integer and must be in the range 0-4294967295.

cattab
Specify the name of the category table. You must have the READ or SELECT privilege on this
table. (See Oracle Database Security Guide for information about the READ privilege.)

catdocid
Specify the name of the document ID column in the category table. The document IDs in this
table must also exist in the document table. This column must be a NUMBER. The values for this
column must be stored in an unsigned 32-bit integer and must be in the range 0-4294967295.

catid
Specify the name of the category ID column in the category table. This column must be a
NUMBER. The values for this column must be stored in an unsigned 32-bit integer and must be
in the range 0-4294967295.

restab
Specify the name of the result table. You must have INSERT privilege on this table.

rescatid
Specify the name of the category ID column in the result table. This column must be a NUMBER.
The values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0-4294967295.

resquery
Specify the name of the query column in the result table. This column must be VARACHAR2,
CHAR, CLOB, NVARCHAR2, or NCHAR.
The queries generated in this column connects terms with AND or NOT operators, such as:

'T1 & T2 ~ T3'

Terms can also be theme tokens and be connected with the ABOUT operator, such as:

'about(T1) & about(T2) ~ about(T3)'

Generated rules also support WITHIN queries on field sections.

resconfid
Specify the name of the confidence column in result table. This column contains the estimated
probability from training data that a document is relevant if that document satisfies the query.

preference
Specify the name of the preference. For classifier types and attributes, see "Classifier Types"
in Oracle Text Indexing Elements.

Chapter 7
TRAIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 9

Syntax for Support Vector Machine (SVM) Rules

The Support Vector Machine, or SVM, rules preference generates rules in binary format. Use
this syntax when your application requires high classification accuracy.

The following syntax generates Support Vector Machine (SVM) rules with the
SVM_CLASSIFIER preference.

CTX_CLS.TRAIN(
 index_name in varchar2,
 docid in varchar2,
 cattab in varchar2,
 catdocid in varchar2,
 catid in varchar2,
 restab in varchar2,
 preference in varchar2);

index_name
Specify the name of the text index.

docid
Specify the name of docid column in document table.

cattab
Specify the name of category table.

catdocid
Specify the name of docid column in category table.

catid
Specify the name of category ID column in category table.

restab
Specify the name of result table.
The result table has the following format:

Column Name Datatype Description

CAT_ID NUMBER The ID of the category.

TYPE NUMBER(3) NOT NULL 0 for the actual rule or catid; 1
for other.

RULE BLOB The returned rule.

preference
Specify the name of user preference. For classifier types and attributes, see "Classifier Types"
in Oracle Text Indexing Elements.

Note

Column names must not be prefixed by the owner, schema or table name.

Example

The CTX_CLS.TRAIN procedure is used in supervised classification. For an extended example,
see Oracle Text Application Developer's Guide.

Chapter 7
TRAIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 9

7.3 CLUSTERING
Use this procedure to cluster a collection of documents. A cluster is a group of documents
similar to each other in content.

A clustering result set is composed of document assignments and cluster descriptions:

• A document assignment result set shows how relevant each document is to all generated
leaf clusters.

• A cluster description result set contains information about what topic a cluster is about.
This result set identifies the cluster and contains cluster description text, a suggested
cluster label, and a quality score for the cluster.

Cluster output is hierarchical. Only leaf clusters are scored for relevance to documents.
Producing more clusters requires more computing time. Indicate the upper limit for generated
clusters with the CLUSTER_NUM attribute of the KMEAN_CLUSTERING cluster type (see "Cluster
Types" in this chapter).

There are two versions of this procedure: one with a table result set, and one with an in-
memory result set.

Clustering is also known as unsupervised classification.

See Also

For more information about clustering and relevant preferences, see Cluster Types in
Oracle Text Indexing Elements, as well as the Oracle Text Application Developer's
Guide

Syntax: Table Result Set

ctx_cls.clustering (
 index_name IN VARCHAR2,
 docid IN VARCHAR2,
 doctab_name IN VARCHAR2,
 clstab_name IN VARCHAR2,
 pref_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of the context index on collection table.

docid
Specify the name of document ID column of the collection table.

doctab_name
Specify the name of document assignment table. This procedure creates the table with the
following structure:

doc_assign(
 docid number,
 clusterid number,
 score number
);

Chapter 7
CLUSTERING

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 9

Column Description

DOCID Document ID to identify document.

CLUSTERID ID of a leaf cluster associated with this document. If
CLUSTERID is -1, then the cluster contains "miscellaneous"
documents; for example, documents that cannot be assigned
to any other cluster category.

SCORE The associated score between the document and the cluster.

If you require more columns, then create the table before you call this procedure.

clstab_name
Specify the name of the cluster description table. This procedure creates the table with the
following structure:

cluster_desc(
 clusterid NUMBER,
 descript VARCHAR2(4000),
 label VARCHAR2(200),
 sze NUMBER,
 quality_score NUMBER,
 parent NUMBER
);

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then the
cluster contains "miscellaneous" documents; for example,
documents that cannot be assigned to any other cluster
category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number indicates
greater coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

If you require more columns, then create the table before you call this procedure.

pref_name
Specify the name of the preference.

Syntax: In-Memory Result Set

Put the result set into in-memory structures for better performance. Two in-memory tables are
defined in CTX_CLS package for document assignment and cluster description respectively.

CTX_CLS.CLUSTERING(
 index_name IN VARCHAR2,
 docid IN VARCHAR2,
 dids IN DOCID_TAB,
 doctab_name IN OUT NOCOPY DOC_TAB,
 clstab_name IN OUT NOCOPY CLUSTER_TAB,
 pref_name IN VARCHAR2 DEFAULT NULL
);

Chapter 7
CLUSTERING

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 9

index_name
Specify the name of context index on the collection table.

docid
Specify the document ID column of the collection table.

dids
Specify the name of the in-memory docid_tab.

TYPE docid_tab IS TABLE OF number INDEX BY BINARY_INTEGER;

doctab_name
Specify name of the document assignment in-memory table. This table is defined as follows:

TYPE doc_rec IS RECORD (
 docid NUMBER,
 clusterid NUMBER,
 score NUMBER
)
TYPE doc_tab IS TABLE OF doc_rec INDEX BY BINARY_INTEGER;

Column Description

DOCID Document ID to identify document.

CLUSTERID ID of a leaf cluster associated with this document. If
CLUSTERID is -1, then the cluster contains "miscellaneous"
documents; for example, documents that cannot be assigned
to any other cluster category.

SCORE The associated score between the document and the cluster.

cls_tab
Specify the name of cluster description in-memory table.

TYPE cluster_rec IS RECORD(
 clusterid NUMBER,
 descript VARCHAR2(4000),
 label VARCHAR2(200),
 sze NUMBER,
 quality_score NUMBER,
 parent NUMBER
);
TYPE cluster_tab IS TABLE OF cluster_rec INDEX BY BINARY_INTEGER;

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then the
cluster contains "miscellaneous" documents; for example,
documents that cannot be assigned to any other cluster
category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number indicates
greater coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

Chapter 7
CLUSTERING

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 9

pref_name
Specify the name of the preference. For cluster types and attributes, see Cluster Types in
Oracle Text Indexing Elements.

Example

See Also

The Oracle Text Application Developer's Guide for an example of using clustering

7.4 SA_TRAIN_MODEL
Use this procedure to train a sentiment classifier. You must provide a training set consisting of
categorized documents to train the sentiment classifier.

Documents can be in any format supported by Oracle Text and must belong to one or more
categories.

Oracle Text first validates the training set table and the categories that are provided. Features
extracted from the training set documents are used to train the sentiment classifier. A rule table
is created and populated with rules that are generated after the sentiment classifier is trained.
The sentiment classifier uses these rules to perform sentiment analysis. The CTXRULE index on
the rule table is also built.

Note

When downgrading the database, you must drop any models that were created in
Oracle Database 12c Release 2 (12.2) using SA_TRAIN_MODEL. These models are not
compatible with earlier releases. The following error occurs if the models are not
dropped before the downgrade: ORA-40350: One or more models exist that cannot be
downgraded.

Syntax

SA_TRAIN_MODEL(
 clsfier_name IN VARCHAR2,
 index_name IN VARCHAR2,
 docid IN VARCHAR2,
 cattab IN VARCHAR2,
 catdocid IN VARCHAR2,
 catid IN VARCHAR2,
 pref_name IN VARCHAR2
);

clsfier_name
Specify the name of the sentiment classifier that must be trained. The maximum length of the
sentiment classifier name is 24 bytes.

Chapter 7
SA_TRAIN_MODEL

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 9

index_name
Specify the name of text index associated with the document training set. This is a CONTEXT
index that must be created on the training data before the sentiment classifier is trained.

docid
Specify the name of the document ID column in the document training set. The document IDs
in this column must be unique, and this column must be of data type NUMBER. The values for
this column must be stored in an unsigned 32-bit integer and must be in the range 0 to
4294967295.

cattab
Specify the name of the category table that contains the true labels for the training set
documents. This table should contain the docid to catid mappings for training the sentiment
classifier.

catdocid
Specify the name of document ID column in the category table. The document IDs in this table
must also exist in the document table. This column must be a NUMBER. The values for this
column must be stored in an unsigned 32-bit integer and must be in the range 0 to
4294967295.

catid
Specify the name of the category ID column in the category table. This column must be a
NUMBER. The values for this column can be either 0, 1, or 2. 0 stands for neutral, 1 stands for
positive, and 2 stands for negative.

pref_name
Specify the name of sentiment classifier preference, of type SENTIMENT_CLASSIFIER, which is
used to train the sentiment classifier. If no name is provided, then the default sentiment
classifier, CTXSYS.DEFAULT_SENT_CLASSIFIER, is used.

Related Topics

• Oracle Text Application Developer's Guide

7.5 SA_DROP_MODEL
Use this procedure to drop an existing sentiment classifier.

Syntax

SA_DROP_MODEL(
 clsfier_name IN VARCHAR2
);

clsfier_name
Specify the name of the sentiment classifier that must be dropped.

Chapter 7
SA_DROP_MODEL

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 9

8
CTX_DDL Package

The CTX_DDL PL/SQL package provides stored procedures and functions to create and
manage the preferences, section groups, and stoplists required for Text indexes.

Name Description

ADD_ATTR_SECTION Adds an attribute section to an XML section group.

ADD_AUTO_OPTIMIZE Adds an index or partition to the list of indexes subject to auto
optimization.

ADD_FIELD_SECTION Creates a field section and assigns it to the specified section
group.

ADD_INDEX Adds an index to a catalog index preference.

ADD_MDATA Changes the MDATA value of a document.

ADD_MDATA_COLUMN Maps a FILTER BY column to the specified MDATA section.

ADD_MDATA_SECTION Adds an MDATA metadata section to a document.

ADD_NDATA_SECTION Adds an NDATA section to a document.

ADD_SDATA_COLUMN Maps a FILTER BY column to the specified SDATA section.

ADD_SDATA_SECTION Adds an SDATA structured data section to a document.

ADD_SEC_GRP_ATTR_VAL Adds a section group attribute value to the list of values of an
already existing section group attribute.

ADD_SPECIAL_SECTION Adds a special section to a section group.

ADD_STOPCLASS Adds a stopclass to a stoplist.

ADD_STOP_SECTION Adds a stop section to an automatic section group.

ADD_STOPTHEME Adds a stoptheme to a stoplist.

ADD_STOPWORD Adds a stopword to a stoplist.

ADD_SUB_LEXER Adds a sub-lexer to a multi-lexer preference.

ADD_ZONE_SECTION Creates a zone section and adds it to the specified section
group.

COPY_POLICY Creates a copy of a policy.

CREATE_INDEX_SET Creates an index set for CTXCAT index types.

CREATE_POLICY Creates a policy to use with ORA:CONTAINS().

CREATE_PREFERENCE Creates a preference in the Text data dictionary.

CREATE_SECTION_GROUP Creates a section group in the Text data dictionary.

CREATE_SHADOW_INDEX Creates a policy for the passed-in index. For nonpartitioned
index, also creates an index table.

CREATE_STOPLIST Creates a stoplist.

DROP_INDEX_SET Drops an index set.

DROP_POLICY Drops a policy.

DROP_PREFERENCE Deletes a preference from the Text data dictionary.

DROP_SECTION_GROUP Deletes a section group from the Text data dictionary.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 87

Name Description

DROP_SHADOW_INDEX Drops a shadow index.

DROP_STOPLIST Drops a stoplist.

EXCHANGE_SHADOW_INDEX Swaps the shadow index metadata and data.

LOAD_STOPLIST

OPTIMIZE_INDEX Optimizes the index.

POPULATE_PENDING Populates the pending queue with every rowid in the base table
or table partition.

PREFERENCE_IMPLICIT_COMMIT Specifies whether procedures related to CTX_DDL preferences
issue an implicit commit.

RECREATE_INDEX_ONLINE Recreates the passed-in index.

REM_SEC_GRP_ATTR_VAL Removes a specific section group attribute value from the list of
values of an existing section group attribute.

REMOVE_AUTO_OPTIMIZE Removes an index or partition from the list of indexes subject to
auto optimization

REMOVE_INDEX Removes an index from a CTXCAT index preference.

REMOVE_MDATA Removes MDATA values from a document.

REMOVE_SECTION Deletes a section from a section group.

REMOVE_STOPCLASS Deletes a stopclass from a stoplist.

REMOVE_STOPTHEME Deletes a stoptheme from a stoplist.

REMOVE_STOPWORD Deletes a stopword from a stoplist.

REMOVE_SUB_LEXER Deletes a sub-lexer from a multi-lexer preference.

REPLACE_INDEX_METADATA Replaces metadata for local domain indexes.

SET_ATTRIBUTE Sets a preference attribute.

SET_SEC_GRP_ATTR Adds a section group-specific attribute to a section group
identified by name.

SET_SECTION_ATTRIBUTE Sets a section attribute.

SYNC_INDEX Synchronizes the index.

UNSET_ATTRIBUTE Removes a set attribute from a preference.

UPDATE_SUB_LEXER Updates a sub-lexer.

UNSET_SEC_GRP_ATTR Removes a section group specific attribute.

UPDATE_POLICY Updates a policy.

UPDATE_SDATA Updates an SDATA section.

Note

Except CREATE_PREFERENCE and CREATE_SECTION_GROUP, the APIs in the CTX_DDL
package do not support identifiers that are prefixed with the schema or owner name.

8.1 ADD_ATTR_SECTION
Adds an attribute section to an XML section group. This procedure is useful for defining
attributes in XML documents as sections. This enables you to search XML attribute text with
the WITHIN operator.

Chapter 8
ADD_ATTR_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 87

Note

When you use AUTO_SECTION_GROUP, attribute sections are created automatically.
Attribute sections created automatically are named in the form tag@attribute.

Syntax

CTX_DDL.ADD_ATTR_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2);

group_name
Specify the name of the XML section group. You can add attribute sections only to XML
section groups.

section_name
Specify the name of the attribute section. This is the name used for WITHIN queries on the
attribute text.
The section name you specify cannot contain the colon (:), comma (,), or dot (.) characters.
The section name must also be unique within group_name. Section names are case-
insensitive.
Attribute section names can be no more than 64 bytes long.

tag
Specify the name of the attribute in tag@attr form. This parameter is case-sensitive.

Examples

Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP and define the
attribute section as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'BOOK@TITLE');
end;

When you define the TITLE attribute section as such and index the document set, you can
query the XML attribute text as follows:

'Cities within booktitle'

Related Topic

"PREFERENCE_IMPLICIT_COMMIT"

8.2 ADD_AUTO_OPTIMIZE
Adds an index or partition to the list of indexes subject to auto optimization. For partitioned
indexes, the name of the partition must be specified, or else an error occurs. For global
indexes, STAGE_ITAB must be enabled, or else an error occurs.

Chapter 8
ADD_AUTO_OPTIMIZE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 87

Note

In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE and
REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are deprecated.

The AUTO_OPTIMIZE feature improves the manageability of indexes that use the STAGE_ITAB
feature. The STAGE_ITAB feature introduces a staging $G table to collect postings from newly
synced documents.

The AUTO_OPTIMIZE feature has the following goals:

• Enables you to register indexes and partitions to a background AUTO_OPTIMIZE process.

• Automatically moves rows from the $G table to $I at appropriate times.

• Movement of rows from $G to $I is done in a way to maximize query performance.

This procedure starts the background process if it has not already been started. The progress
of the auto optimization is tracked by CTX logging.

The changes made by this procedure take effect immediately.

Note

The init.ora parameter JOB_QUEUE_PROCESSES must be set to one or higher. See Oracle
Database Reference for more information about JOB_QUEUE_PROCESSES.

Syntax

CTX_DDL.ADD_AUTO_OPTIMIZE(

 idx_name IN VARCHAR2,
 part_name IN VARCHAR2 default NULL,
 optlevel IN VARCHAR2 default CTX_DDL.OPTLEVEL_MERGE
);

idx_name
Specify the name of the index to add.

part_name
Specify the name of the partition to add.

optlevel
Specifies the optlevel of the CTX_DDL.OPTIMIZE_INDEX procedure. The only valid value for
this parameter is merge.

Notes

The recommended sequence of steps for using auto optimization is:

1. Create the required indexes.

2. Add these indexes to the auto optimization list by using the CTX_DDL.ADD_AUTO_OPTIMIZE
procedure.

Chapter 8
ADD_AUTO_OPTIMIZE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 87

The synchronize index operation automatically begins executing an auto optimization job
(unless it is already running). This job continues until it runs out of work. Future synchronize
index operations will automatically start executing the auto optimization job, if it is not already
running.

Related Topics

"REMOVE_AUTO_OPTIMIZE"

Oracle Text Application Developer's Guide for information about using STAGE_ITAB with
CONTEXT indexes

SYNC_INDEX

8.3 ADD_FIELD_SECTION
Creates a field section and adds the section to an existing section group. This enables field
section searching with the WITHIN operator. You can add an unlimited number of field
sections.

Field sections are delimited by start and end tags. By default, the text within field sections are
indexed as a sub-document separate from the rest of the document.

Unlike zone sections, field sections cannot nest or overlap. As such, field sections are best
suited for non-repeating, non-overlapping sections such as TITLE and AUTHOR markup in e-
mail- or news-type documents.

Because of how field sections are indexed, WITHIN queries on field sections are usually faster
than WITHIN queries on zone sections.

Syntax

CTX_DDL.ADD_FIELD_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
 visible IN BOOLEAN default FALSE
);

group_name
Specify the name of the section group to which section_name is added. You can add an
unlimited number of field sections to a single section group. Within the same group, section
zone names and section field names cannot be the same.

section_name
Specify the name of the section to add to the group_name. Use this name to identify the
section in queries. Avoid using names that contain non-alphanumeric characters such as _,
because these characters must be escaped in queries. Section names are case-insensitive.

Note

The section_name may not be prefixed by the schema or the owner name as this
syntax is not supported.

Within the same group, zone section names and field section names cannot be the same. The
terms Paragraph and Sentence are reserved for special sections.

Chapter 8
ADD_FIELD_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 87

Section names need not be unique across tags. You can assign the same section name to
more than one tag, which makes details transparent to searches.

tag
Specify the tag that marks the start of a section. For example, if the tag is <H1>, then specify
H1. The start tag you specify must be unique within a section group.

Note

The tag may not be prefixed by the schema or the owner name as this syntax is not
supported.

If group_name is an HTML_SECTION_GROUP, then you can create field sections for the META
tag's NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue where namevalue
is the value of the NAME attribute whose CONTENT attribute is to be indexed as a section. Refer
to the example "Creating Sections for <META> Tags".
Oracle Text knows what the end tags look like from the group_type parameter you specify
when you create the section group.

visible
Specify TRUE to make the text visible within the rest of the document.
By default the visible flag is FALSE. This means that Oracle Text indexes the text within field
sections as a sub-document separate from the rest of the document. However, you can set the
visible flag to TRUE if you want text within the field section to be indexed as part of the
enclosing document.

Examples

Visible and Invisible Field Sections

The following example defines a section group basicgroup of the BASIC_SECTION_GROUP type.
(See "Section Group Types" for information about the BASIC_SECTION_GROUP type.) The
example then creates a field section in basicgroup called Author for the <A> tag.

The example also sets the visible flag to FALSE:

begin

ctx_ddl.create_section_group('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', FALSE);

end;

Because the Author field section is not visible, to find text within the Author section, you must
use the WITHIN operator as follows:

'(Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances of this
term in field sections. To query text within field sections without specifying WITHIN, you must set
the visible flag to TRUE when you create the section as follows:

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

Creating Sections for <META> Tags

Chapter 8
ADD_FIELD_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 87

When you use the HTML_SECTION_GROUP, you can create sections for META tags.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a field section that indexes the CONTENT attribute for the <META NAME="author"> tag:

begin
ctx_ddl.create_section_group('myhtmlgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_field_section('myhtmlgroup', 'author', 'META@AUTHOR');
end

After indexing with section group mygroup, query the document as follows:

'ken WITHIN author'

Limitations

Nested Sections

Field sections cannot be nested. For example, if you define a field section to start with <TITLE>
and define another field section to start with <FOO>, the two sections cannot be nested as
follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested section define them as zone sections.

Repeated Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section. The
following is an example of repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query (dog and cat) within title returns the document, even though these words occur in
different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP "

"ADD_ZONE_SECTION "

"ADD_SPECIAL_SECTION "

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

Chapter 8
ADD_FIELD_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 87

8.4 ADD_INDEX
Use this procedure to add a subindex to a catalog index preference. Create this preference by
naming one or more columns in the base table.

Because you create subindexes to improve the response time of structured queries, the
column you add should be used in the structured_query clause of the CATSEARCH operator at
query time.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [time-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

Syntax

CTX_DDL.ADD_INDEX(
 set_name IN VARCHAR2,
 column_list IN VARCHAR2,
 storage_clause IN VARCHAR2
);

set_name
Specify the name of the index set.

column_list
Specify a comma-delimited list of columns to index. At index time, any column listed here
cannot have a NULL value in any row in the base table. If any row is NULL during indexing,
then an error is raised.
Always ensure that your columns have non-NULL values before and after indexing.

Note

A column name in column_list must not be prefixed by the owner, schema or table
name.

storage_clause
Specify a storage clause.

Chapter 8
ADD_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 87

Example

Consider a table called AUCTION with the following schema:

create table auction(
 item_id number,
 title varchar2(100),
 category_id number,
 price number,
 bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on category_id. Results must be sorted based on bid_close.

You can create a catalog index to support the different types of structured queries a user might
enter.

To create the indexes, first create the index set preference then add the required indexes to it:

begin
 ctx_ddl.create_index_set('auction_iset');
 ctx_ddl.add_index('auction_iset','bid_close');
 ctx_ddl.add_index('auction_iset','category_id, bid_close');
end;

Create the combined catalog index with CREATE INDEX as follows:

create index auction_titlex on AUCTION(title) indextype is CTXCAT parameters
('index set auction_iset');

Querying

To query the title column for the word pokemon, enter regular and mixed queries as follows:

select * from AUCTION where CATSEARCH(title, 'pokemon',NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'category_id=99 order by
bid_close desc')> 0;

Notes

VARCHAR2 columns in the column list of a CTXCAT index of an index set cannot exceed 30 bytes.

Related Topics

• REMOVE_INDEX
Removes the index with the specified column list from a CTXCAT index set preference.

8.5 ADD_MDATA
Use this procedure to change the metadata of a document that has been specified as an MDATA
section.

After this call, MDATA queries involving the named MDATA value will find documents with the
given MDATA value.

There are two versions of CTX_DDL.ADD_MDATA: one for adding a single metadata value to a
single rowid, and another for handing multiple values, multiple rowids, or both.

CTX_DDL.ADD_MDATA is transactional; it takes effect immediately in the calling session, can be
seen only in the calling session, can be reversed with a ROLLBACK command, and must be
committed to take permanent effect.

Chapter 8
ADD_MDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 87

Syntax

This is the syntax for adding a single value to a single rowid:

CTX_DDL.ADD_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 mdata_value IN VARCHAR2,
 mdata_rowid IN VARCHAR2,
 [part_name] IN VARCHAR2]
);

idx_name
Name of the text index that contains the named rowid.

section_name
Name of the MDATA section.

mdata_value
The metadata value to add to the document.

mdata_rowid
The rowid to which to add the metadata value.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and must be
NULL for global, nonpartitioned indexes.

This is the syntax for handling multiple values, multiple rowids, or both. This version is more
efficient for large numbers of new values or rowids.

CTX_DDL.ADD_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 mdata_values SYS.ODCIVARCHAR2LIST,
 mdata_rowids SYS.ODCIRIDLIST,
 [part_name] IN VARCHAR2]
);

idx_name
Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

mdata_values
List of metadata values. If a metadata value contains a comma, the comma must be escaped
with a backslash.

mdata_rowids
The rowids to which to add the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and must be
NULL for global, nonpartitioned indexes.

Chapter 8
ADD_MDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 87

Restrictions and Limitations

• Use CTX_DDL.REMOVE_MDATA to remove metadata values from already-indexed documents.
Only the owner of the index is allowed to call ADD_MDATA and REMOVE_MDATA.

• The CTX_DDL.ADD_MDATA queries can be slower when using a PDB lockdown profile.

• If a rowid is not yet indexed, CTX_DDL.ADD_MDATA completes without error, but an error is
logged in CTX_USER_INDEX_ERRORS.

• These updates are updates directly on the index itself, not on the actual contents stored in
the base table. Therefore, they will not exist when the Text index is rebuilt.

• CTX_DDL.ADD_MDATA is not supported for documents with Oracle Text search index as
stage_itab is ON by default for Oracle Text search index.

Examples

This example updates a single value:

select rowid from mytab where contains(text, 'MDATA(sec, value')>0;
No rows returned
exec ctx_ddl.add_mdata('my_index', 'sec', 'value', 'ABC');
select rowid from mytab where contains(text, 'MDATA(sec, value')>0;
ROWID

ABC

This example updates multiple values:

begin
ctx_ddl.add_mdata('my_index', 'sec',
 sys.odcivarchar2list('value1','value2','value3'),
 sys.odciridlist('ABC','DEF'));
end;

This is equivalent to:

begin
ctx_ddl.add_mdata('my_index', 'sec', 'value1', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value1', 'DEF');
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'DEF');
ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'DEF');
end;

Related Topics

• MDATA

• ADD_MDATA_SECTION

• REMOVE_MDATA
Use this procedure to remove metadata values, which are associated with an MDATA
section, from a document.

• Oracle Text Application Developer's Guide

Chapter 8
ADD_MDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 87

8.6 ADD_MDATA_COLUMN
Use this procedure to map the FILTER BY column named in column_name to the MDATA section
named in section_name.

Syntax

The syntax is as follows:

CTX_DDL.ADD_MDATA_COLUMN(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 column_name IN VARCHAR2,
);

group_name
Name of the group that contains the section.

section_name
Name of the MDATA section.

column_name
Name of the FILTER BY column to add to the MDATA section.

Note

The column_name must not be prefixed by the owner, schema or table name.

Restrictions

MDATA sections that are created with CTX_DDL.ADD_MDATA_COLUMN cannot have their values
changed using CTX_DDL.ADD_MDATA or CTX_DDL.REMOVE_MDATA. Doing so will result in errors
being returned. The section values must be updated using SQL.

Notes

• The stored datatype for MDATA sections is text. Therefore, the value of the FILTER BY
column is converted to text during indexing. For non-text datatypes, the FILTER BY
columns are normalized to an internal format during indexing. If the section is queried with
an MDATA operator, then the MDATA query string will also be normalized to the internal format
before processing.

• When a FILTER BY column is mapped as MDATA, the cost-based optimizer in Oracle Text
tries to avoid using the Oracle Text composite domain index to process range predicate(s)
on that FILTER BY column. This is because range predicates on MDATA FILTER BY columns
are processed less efficiently than if they were declared as SDATA. For this reason, you
should not add a FILTER BY column as MDATA if you plan to do range searches on the
column.

Related Topics

"MDATA"

"ADD_MDATA_SECTION"

"REMOVE_MDATA"

Chapter 8
ADD_MDATA_COLUMN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 87

"ADD_SDATA_COLUMN"

See Also

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text Application
Developer's Guide

8.7 ADD_MDATA_SECTION
Use this procedure to add an MDATA section, with an accompanying value, to an existing
section group. MDATA sections cannot be added to Null Section groups, Path Section groups, or
Auto Section groups.

Section values undergo a simplified normalization:

• Leading and trailing whitespace on the value is removed.

• The value is truncated to 255 bytes.

• The value is indexed as a single value; if the value consists of multiple words, it is not
broken up.

• Case is preserved. If the document is dynamically generated, then implement case-
insensitivity by uppercasing MDATA values and making sure to search only in uppercase.

Use CTX_DDL.REMOVE_SECTION to remove sections.

Syntax

CTX_DDL.ADD_MDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
 read_only IN BOOLEAN default FALSE);

group_name
Name of the section group that will contain the MDATA section.

section_name
Name of the MDATA section.

tag
The value of the MDATA section. For example, if the section is <AUTHOR>, the value could be
Cynthia Kadohata (author of the novel The Floating World). More than one tag can be
assigned to a given MDATA section.

read_only
FALSE (default) if you want to allow calling CTX_DDL.ADD_MDATA() and
CTX_DDL.REMOVE_MDATA() for this MDATA section, and TRUE otherwise. When set to FALSE, the
queries on the MDATA section run less efficiently because a cursor needs to be opened on the
index table to track the deleted values for that MDATA section.

Example

This example creates an MDATA section called auth.

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'auth', 'author', READ_ONLY);

Chapter 8
ADD_MDATA_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 87

Related Topics

"ADD_MDATA"

"REMOVE_MDATA"

"MDATA"

"CREATE_SECTION_GROUP "

See Also

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text Application
Developer's Guide

8.8 ADD_NDATA_SECTION
Use this procedure to find matches that are spelled in a similar way. The value of an NDATA
section is extracted from the document text like other sections, but is indexed as name data.
NDATA sections are stored in the CTX_USER_SECTIONS view.

Syntax

CTX_DDL.ADD_NDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2
);

group_name
Name of the group that contains the section.

section_name
Name of the NDATA section.

tag
Name of the tag that marks the start of a section. For example, if the tag is <H1>, specify H1.
The start tag you specify must be unique within a section group.

Notes

NDATA sections support both single and multi-byte data, however, there are character- and
term-based limitations. NDATA section data that is indexed is constrained as follows:

• number of characters in a single, white space delimited term

511

• number of white space delimited terms

255

• total number of characters, including white spaces

511

NDATA section data that exceeds these constraints are truncated.

Chapter 8
ADD_NDATA_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 87

Example

The following example defines a section group namegroup of the BASIC_SECTION_GROUP type. It
then creates an NDATA section in namegroup called firstname.

begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'firstname', 'fname1');
end;

8.9 ADD_PATH
Adds a path to a path-list preference for use with the PATHLIST parameter, when creating a
path-subsetting JSON search index.

You use this parameter with the PL/SQL subprogram CTX_DDL.CREATE_PATH_LIST to specify a
subset of paths to include or exclude from indexing. In this way, you can choose to index only
relevant paths for efficient search. The excluded fields are not indexed, and the JSON search
index is not used for them when querying. Filtering out irrelevant paths from documents can
reduce the amount of data indexed, thereby minimizing disk space, indexing costs, and the
index creation or rebuild time.

Syntax

begin
 CTX_DDL.ADD_PATH(
 pref_name IN VARCHAR2,
 path_type IN VARCHAR2,
 path_string IN VARCHAR2
);
end;

pref_name
Specify the name of the pathlist preference to which you want to add a subset of paths.

path_type
Specify the type of search to target for your JSON search index:

• NUMBER: For numeric-value range search

• TIMESTAMP: For date and time value range-search

• VARCHAR2: For string-value range search

• TEXT: For full-text and string-equality search

path_string
Specify a path to add to the specified pathlist preference.

Note

Currently, you cannot add multiple paths in a single path string. To add multiple paths,
you must use the ADD_PATH parameter to specify each path.

Chapter 8
ADD_PATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 87

For example:

BEGIN
 CTX_DDL.create_path_list('json_pl_incl', CTX_DDL.PATHLIST_JSON,
CTX_DDL.PATHLIST_INCLUDE);
 CTX_DDL.add_path('json_pl_incl', 'TEXT', '<path1>');
 CTX_DDL.add_path('json_pl_incl', 'TEXT', '<path2>');
 CTX_DDL.add_path('json_pl_incl', 'NUMBER', '<path3>');
END;
/

Examples

• To create an INCLUDE pathlist:

Here, you first create a list of paths (json_pl_incl) to be included for indexing using the
CTX_DDL.CREATE_PATH_LIST and CTX_DDL.ADD_PATH APIs. You then create an index using
the PATHLIST parameter, whose value is a named list of the paths to be included.

This example creates a JSON search index for full-text and string-equality searches of
fields $.SpecialInstructions and $.LineItems.Part.Description of a purchase order
document. But it also indexes fields $.PONumber and $.LineItems.Part.UnitPrice for
numeric-value ranges, and fields $.Reference, $.User, $.ShippingInstructions.name,
and $.ShippingInstructions.Address.zipCode for string-value ranges.

-- create a pathlist preference and add paths

BEGIN
 CTX_DDL.create_path_list('json_pl_incl', CTX_DDL.PATHLIST_JSON,
CTX_DDL.PATHLIST_INCLUDE);
 CTX_DDL.add_path('json_pl_incl', 'TEXT', '$.SpecialInstructions');
 CTX_DDL.add_path('json_pl_incl', 'TEXT',
'$.LineItems.Part.Description');
 CTX_DDL.add_path('json_pl_incl', 'NUMBER', '$.PONumber');
 CTX_DDL.add_path('json_pl_incl', 'NUMBER',
'$.LineItems.Part.UnitPrice');
 CTX_DDL.add_path('json_pl_incl', 'VARCHAR2', '$.Reference');
 CTX_DDL.add_path('json_pl_incl', 'VARCHAR2', '$.User');
 CTX_DDL.add_path('json_pl_incl', 'VARCHAR2',
'$.ShippingInstructions.name');
 CTX_DDL.add_path('json_pl_incl', 'VARCHAR2',
'$.ShippingInstructions.Address.zipCode');
END;
/

-- declare the pathlist preference name

CREATE SEARCH INDEX json_idx ON json_tab (purchase_order_jsondoc)
 FOR JSON PARAMETERS ('PATHLIST json_pl_incl');

• To create an EXCLUDE pathlist:

Chapter 8
ADD_PATH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 87

Here, you first create a list of paths (json_pl_excl) to be excluded from indexing using the
CTX_DDL.CREATE_PATH_LIST and CTX_DDL.ADD_PATH APIs. You then create an index using
the PATHLIST parameter, whose value is a named list of the paths to be excluded.

-- create a pathlist preference and add paths

BEGIN
 CTX_DDL.create_path_list('json_pl_excl', CTX_DDL.PATHLIST_JSON,
CTX_DDL.PATHLIST_EXCLUDE);
 CTX_DDL.add_path('json_pl_excl', 'TEXT', '$.SpecialInstructions');
 CTX_DDL.add_path('json_pl_excl', 'TEXT',
'$.LineItems.Part.Description');
 CTX_DDL.add_path('json_pl_excl', 'NUMBER', '$.PONumber');
 CTX_DDL.add_path('json_pl_excl', 'NUMBER',
'$.LineItems.Part.UnitPrice');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2', '$.Reference');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2', '$.User');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2',
'$.ShippingInstructions.name');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2',
'$.ShippingInstructions.Address.zipCode');
END;
/

-- declare the pathlist preference name

CREATE SEARCH INDEX json_idx ON json_tab (purchase_order_jsondoc)
 FOR JSON PARAMETERS ('PATHLIST json_pl_excl');

Related Topics

• CREATE_PATH_LIST
Creates a path-list preference to use with the PATHLIST parameter, when creating a path-
subsetting JSON search index.

• DROP_PATH_LIST
Removes an existing pathlist preference.

8.10 ADD_SDATA_COLUMN
Use this procedure to map the FILTER BY or ORDER BY column (named in column_name) to the
SDATA section (named in section_name). By default, all FILTER BY columns are mapped as
SDATA.

Syntax

The syntax is as follows:

CTX_DDL.ADD_SDATA_COLUMN(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 column_name IN VARCHAR2,
);

group_name
Name of the group that contains the section.

Chapter 8
ADD_SDATA_COLUMN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 87

section_name
Name of the SDATA section.

column_name
Name of the FILTER BY column to add to the SDATA section.

Usage Notes

• Mapping FILTER BY columns to sections is optional. If no section mapping exists for a
FILTER BY column, then it is mapped to an SDATA section, and the section name will be the
name of the FILTER BY column.

• If a section group is not specified during CREATE INDEX of a composite domain index, then
system default section group settings is used, and a SDATA section is created for each of
the FILTER BY and ORDER BY columns.

Note

Because section name does not allow certain special characters and is case
insensitive, if the column name is case sensitive or contains special characters,
then an error is raised. To work around this problem, you need to map the column
to an MDATA or SDATA section before creating the index.

• An error will be raised if a column mapped to MDATA also appears in the ORDER BY column
clause.

• Column section names are unique to their section group. That is, you cannot have an
MDATA column section named FOO if you already have an MDATA column section named FOO.
Furthermore, you cannot have a field section named FOO if you already have an SDATA
column section named FOO. This is true whether it is implicitly created (by CREATE INDEX for
FILTER BY or ORDER BY clauses) or explicitly created (by CTX_DDL.ADD_SDATA_COLUMN).

• One section name can only be mapped to one FILTER BY column, and vice versa. For
example, mapping a section to more than one column or mapping a column to more than
one section is not allowed.

• Column sections can be added to any type of section group, including the NULL section
group.

• 99 is the maximum number for SDATA sections and columns.

• If the datatype of a FILTER BY or ORDER BY column is DATE, then the DATE datatype values
must conform to the YYYY-MM-DD or YYYY-MM-DD HH24:MI:SS format. For example, to store
a DATE value of "Nov. 24, 2006 10:32 PM 36 sec", the document appears as
<TAG>2006-11-24 22:32:36</TAG>.

Related Topics

• SDATA
Use the SDATA operator to perform tests on SDATA sections and columns, which contain
structured data values.

• ADD_SDATA_SECTION
This procedure adds an SDATA section to a section group. By default, all FILTER BY
columns are mapped as SDATA.

• UPDATE_SDATA
UPDATE_SDATA is an index API that modifies the specified SDATA values in the index. This
API does not store or modify column values in a base table, where the base table column
may have been used as an SDATA section.

Chapter 8
ADD_SDATA_COLUMN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 87

• ADD_MDATA_COLUMN

• Oracle Text Application Developer's Guide

8.11 ADD_SDATA_SECTION
This procedure adds an SDATA section to a section group. By default, all FILTER BY columns
are mapped as SDATA.

Starting with Oracle Database 12c Release 2 (12.2), searchable multi-valued SDATA sections
are supported. There is no restriction on the number of SDATA sections that can be created for
an index. That is, the sum total of SDATA sections for an index, created implicitly with FILTER BY
and ORDER BY, and explicitly with the CTX_DDL.ADD_SDATA_SECTION() procedure is not restricted
anymore. The total number of CDI, including FILTER BY and ORDER BY is 32, but the number of
SDATA sections supported is unlimited.

There are two types of SDATA sections:

• Searchable: Creates optimized for search SDATA sections which support multiple values
per document for the section and efficient range search capability.

• Sortable: Creates optimized for sort SDATA sections which support a single value per
document for the section. If the optimized_for attribute is not set, then the default type of
section is Sortable. The Composite Domain Index uses Sortable SDATA internally for
efficient FILTER BY or ORDER BY evaluation.

Starting with Oracle Database Release 18c, group counts or facets are supported for SDATA
sections that are created with the optimized_for attribute set to sort, search, or
sort_and_search. The optimized_for attribute can be set by using the
CTX_DDL.SET_SECTION_ATTRIBUTE procedure.

Syntax

CTX_DDL.ADD_SDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
 datatype IN VARCHAR2 default NULL,
);

group_name
Name of the group that contains the section.

section_name
Name of the SDATA section.

tag
Name of the tag to add to the SDATA section.

datatype
Specifies the stored format for the data, as well as the semantics of comparison in later use in
SDATA operators.
The supported datatypes for searchable SDATA sections are:

• VARCHAR2: Stores up to 249 bytes of character data in the database character set. Values
larger than this result in a per-document indexing error.

Chapter 8
ADD_SDATA_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 87

Note that leading and trailing whitespace are always trimmed from SDATA section values
when extracted by the sectioner. This is different than SDATA columns. Column values are
never trimmed. No lexing is performed on the value from either kind of SDATA.

• NUMBER: Stores numeric literals.

• DATE: The DATE datatype values must conform to the YYYY-MM-DD or YYYY-MM-DD
HH24:MI:SS format. For example, to store a DATE value of Nov. 24, 2006 10:32 pm 36
sec, the document appears as:

<TAG>2006-11-24 22:32:36</TAG>

• BINARY_FLOAT: Stores 32-bit floating point number.

• BINARY_DOUBLE: Stores 64-bit floating point number.

• TIMESTAMP: The TIMESTAMP datatype is an extension of the DATE datatype.

It stores year, month, and day values of date, as well as hour, minute, and second values
of time. It also stores fractional seconds, which are not stored by the DATE datatype. The
fractional seconds precision cannot be more than 9.

The TIMESTAMP values must follow the ISO format. You can specify the TIMESTAMP literal in
the YYYY-MM-DDTHH:MI:SS format. For example:

<TAG>1997-11-05T19:20:00</TAG>

• TIMESTAMP_WITH_TIMEZONE: The TIMESTAMP_WITH_TIMEZONE datatype is a variant of
TIMESTAMP datatype that includes a time zone offset or a time zone region name in its
value.

The fractional seconds precision cannot be more than 9. The TIMESTAMP_WITH_TIMEZONE
values must follow the ISO format. For example:

<TAG>1997-12-31T19:20:00-05:00</TAG>

Note

The Searchable SDATA sections do not support the CHAR and RAW datatypes.

The supported datatypes for sortable SDATA sections are:

• VARCHAR2: Stores up to 249 bytes of character data in the database character set. Values
larger than this result in a per-document indexing error.

Note that leading and trailing whitespace are always trimmed from SDATA section values
when extracted by the sectioner. This is different than SDATA columns. Column values are
never trimmed. No lexing is performed on the value from either kind of SDATA.

• CHAR: Stores up to 249 bytes of character data in the database character set. Values larger
than this result in a per-document indexing error.

Note that leading and trailing whitespace are always trimmed from SDATA section values
when extracted by the sectioner. This is different than SDATA columns. Column values are
never trimmed. No lexing is performed on the value from either kind of SDATA. To be
consistent with SQL, the comparisons of CHAR datatype SDATA values are blank-padded
comparisons.

• RAW: Stores up to 249 bytes of binary data. Values larger than this result in a per-document
indexing error.

Chapter 8
ADD_SDATA_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 87

The value is converted from hexadecimal string representation. That is, to store a value of
65, the document appears as <TAG>40</TAG>, and not <TAG>65</TAG> or <TAG>A</TAG>.

• NUMBER: Stores numeric literals.

• DATE: The DATE datatype values must conform to the YYYY-MM-DD or YYYY-MM-DD
HH24:MI:SS format. For example, to store a DATE value of Nov. 24, 2006 10:32 pm 36
sec, the document appears as:

<TAG>2006-11-24 22:32:36</TAG>

Note

The Sortable SDATA sections support the TIMESTAMP datatype when specified using
the sdata name in hitlist. In this case, you must explicitly specify the TIMESTAMP
datatype using the optimized_for attribute for search or sort_and_search attribute
values. A detailed example on this is given at the end of this section.

Limitations

• If no SDATA tag occurs in a given document, then this is treated as an SDATA value of NULL.

• Empty SDATA tags are treated as NULL values.

• SDATA sections cannot be nested. Sections that are nested inside are ignored.

• SDATA sections do not support skipjoins and printjoins characters.

Examples

• To create and query a Searchable SDATA section:

The following statements create a table named tab with two rows of data:

create table tab(id number, info varchar2(100));

insert into tab values(1,'Hello World<fruit>apple</fruit><price>3</
price>');
insert into tab values(2,'Hello World<fruit>orange</fruit><price>5</
price>');

The following statements create a basic section group named sg, add SDATA sections to it
and mark the SDATA to be searchable:

exec ctx_ddl.create_section_group('sg', 'basic_section_group');
exec ctx_ddl.add_sdata_section('sg','fruit','fruit','varchar2');
exec ctx_ddl.set_section_attribute('sg','fruit','optimized_for','search');
exec ctx_ddl.add_sdata_section('sg','price','price','number');
exec ctx_ddl.set_section_attribute('sg','price','optimized_for','search');

The following statement creates an index on sg:

create index idx on tab(info) indextype is ctxsys.context parameters
('section group sg');

The following statements query tab to demonstrate searchable SDATA:

Chapter 8
ADD_SDATA_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 87

Query 1:

select id from tab where CONTAINS(info, 'SDATA(fruit = "apple")'); return
id 1

Query 2:

select id from tab where CONTAINS(info, 'Hello and SDATA(price > 4)');
return id 2

• To create and query a Sortable SDATA section:

Here, you can see how to use the timestamp data type with sdata name in hitlist for
Sortable SDATA sections.

The following statements create a table named t1:

create table t1(text varchar2(100));
insert into t1 values('Oracle1 <TAG1>1997-01-31T09:26:50.12</TAG1>');

The following statements create a basic section group named sg, add an SDATA section
(sec01) to it, and mark the SDATA section to be sortable with the timestamp data type and
the optimized for attribute:

exec ctx_ddl.create_section_group('sg','basic_section_group');
exec ctx_ddl.add_sdata_section('sg','sec01','tag1','timestamp');
exec ctx_ddl.set_section_attribute('sg','sec01','optimized_for','sort');

The following statement creates an index idx1 on sg:

create index idx1 on t1(text)
 indextype is ctxsys.context parameters('section group sg');

The following statement queries t1 to demonstrate sortable SDATA. Here, you specify the
SDATA section (sec01) in hitlist using sdata name:

select * from ctx_user_index_errors;

set long 32000
set pagesize 0
variable displayrs clob;

declare
 rs clob;
begin
 ctx_query.result_set('idx1','Oracle1',
'<ctx_result_set_descriptor>
 <count/>
 <hitlist start_hit_num="1" end_hit_num="10">
 <score/>
 <sdata name="sec01"/>
 </hitlist>
 </ctx_result_set_descriptor>',rs);
 select rs into :displayrs from dual;

Chapter 8
ADD_SDATA_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 87

 dbms_lob.freetemporary(rs);
end;
/
select :displayrs from dual;

The output returns a document that matches the keyword Oracle1, with the SDATA
attribute for the document as w?3 and the relevance score of 3:

<ctx_result_set><hitlist><hit><score>3</score>
<sdata name="SEC01">w?3'</sdata></hit></hitlist>
<count>1</count></ctx_result_set>

Related Topics

• SET_SECTION_ATTRIBUTE

• SDATA
Use the SDATA operator to perform tests on SDATA sections and columns, which contain
structured data values.

• UPDATE_SDATA
UPDATE_SDATA is an index API that modifies the specified SDATA values in the index. This
API does not store or modify column values in a base table, where the base table column
may have been used as an SDATA section.

• ADD_SDATA_SECTION
This procedure adds an SDATA section to a section group. By default, all FILTER BY
columns are mapped as SDATA.

• Oracle Text Application Developer's Guide

8.12 ADD_SEC_GRP_ATTR_VAL
Adds a section group attribute value to the list of values of an already existing section group
attribute.

Syntax

CTX_DDL.ADD_SEC_GRP_ATTR_VAL(
 group_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2
);

group_name
Specify the section group name.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value.

8.13 ADD_SPECIAL_SECTION
Adds a special section, either SENTENCE or PARAGRAPH, to a section group. This enables
searching within sentences or paragraphs in documents with the WITHIN operator.

Chapter 8
ADD_SEC_GRP_ATTR_VAL

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 87

A special section in a document is a section which is not explicitly tagged like zone and field
sections. The start and end of special sections are detected when the index is created. Oracle
Text supports two such sections: paragraph and sentence.

The sentence and paragraph boundaries are determined by the lexer. For example, the lexer
recognizes sentence and paragraph section boundaries as follows:

Table 8-1 Paragraph and Sentence Section Boundaries

Special Section Boundary

SENTENCE WORD/PUNCT/WHITESPACE

SENTENCE WORD/PUNCT/NEWLINE

PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE (indented paragraph)

PARAGRAPH WORD/PUNCT/NEWLINE/NEWLINE (block paragraph)

The punctuation, whitespace, and newline characters are determined by your lexer settings
and can be changed.

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are indexed.

Syntax

CTX_DDL.ADD_SPECIAL_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2
);

group_name
Specify the name of the section group.

section_name
Specify SENTENCE or PARAGRAPH.

Example

The following example enables searching within sentences within HTML documents:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
end;

Add zone sections to the group to enable zone searching in addition to sentence searching.
The following example adds the zone section Headline to the section group htmgroup:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');
end;

If you are only interested in sentence or paragraph searching within documents and not
interested in defining zone or field sections, then use the NULL_SECTION_GROUP as follows:

begin
ctx_ddl.create_section_group('nullgroup', 'NULL_SECTION_GROUP');
ctx_ddl.add_special_section('nullgroup', 'SENTENCE');
end;

Chapter 8
ADD_SPECIAL_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 87

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP "

"ADD_ZONE_SECTION "

"ADD_FIELD_SECTION"

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

8.14 ADD_STOPCLASS
Adds a stopclass to a stoplist. A stopclass is a class of tokens that is not to be indexed. A
stoplist cannot have more than 250 stopclasses with stoppatterns. This does not include the
NUMBERS stopclass. When indexing with Stop Patterns, the recommended memory setting is at
least 500 MB to 1 GB to optimize the performance of indexing.

English is the only language supported for stopclasses.

Syntax

CTX_DDL.ADD_STOPCLASS(
 stoplist_name IN VARCHAR2,
 stopclass IN VARCHAR2,
 stoppattern IN VARCHAR2 default NULL
);

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the stopclass to be added to stoplist_name. It can be either the NUMBERS stopclass or
else it is considered as the pattern stopclass.
NUMBERS includes tokens that follow the number pattern: digits, numgroup, and numjoin only.
Therefore, 123ABC is not a number, nor is A123. These are labeled as MIXED. $123 is not a
number (this token is not common in a text index because non-alphanumerics become
whitespace by default). In the United States, 123.45 is a number, but 123.456.789 is not; in
Europe, where numgroup may be '.', the reverse is true.
If NUMBERS is not specified for the stopclass parameter, then it is treated as a pattern
stopclass, and you can provide any name to the stopclass parameter. If you specify stopclass
as a pattern class, then you need to specify the pattern in the stoppattern parameter. The
pattern includes any string pattern that may contain numbers and dates as well.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is
4095.

stoppattern
Specify the stop pattern to add to the stoplist. If the stopclass is specified as a pattern class,
then the stop pattern must be specified. You can use the Oracle Regular Expression to specify
the stop pattern.
Call the ADD_STOPCLASS procedure multiple times to add multiple stop patterns to a stoplist.
You must specify different stopclass names for adding multiple stop patterns to a stoplist.

Chapter 8
ADD_STOPCLASS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 87

A stop pattern is not case-sensitive by default, but acts as case-sensitive when the
MIXED_CASE lexer preference is enabled. The stop pattern can have the maximum length of
512 characters. When indexing with Stop Patterns, the recommended memory setting is at
least 500 MB to 1 GB to optimize the performance of indexing.

See Also

Oracle Database Development Guide for more information about the syntax of the
Oracle Regular Expression.

Example

The following example adds a stopclass of NUMBERS to the stoplist mystoplist:

begin
ctx_ddl.add_stopclass('mystoplist', 'NUMBERS');
end;

The following example adds the pattern stopclass of SSN to the stoplist mystoplist:

begin
ctx_ddl.add_stopclass('mystoplist', 'SSN', '\d{3}-\d{2}-\d{4}');
end;

In this example, the stopclass SSN matches all the tokens of the form <3 digit number>-<2 digit
number>-<4 digit number>, example, 234-11-8902.

Related Topics

"CREATE_STOPLIST "

"REMOVE_STOPCLASS "

"DROP_STOPLIST "

8.15 ADD_STOP_SECTION
Adds a stop section to an automatic section group. Adding a stop section causes the automatic
section indexing operation to ignore the specified section in XML documents.

Note

Adding a stop section causes no section information to be created in the index.
However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low information tags.
Adding stop sections also improves indexing performance with the automatic section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section views.

Chapter 8
ADD_STOP_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 87

Syntax

CTX_DDL.ADD_STOP_SECTION(
 section_group IN VARCHAR2,
 tag IN VARCHAR2
);

section_group
Specify the name of the automatic section group. If you do not specify an automatic section
group, then this procedure returns an error.

tag
Specify the tag to ignore during indexing. This parameter is case-sensitive. Defining a stop tag
as such also stops the tag's attribute sections, if any.
Qualify the tag with document type in the form (doctype)tag. For example, if you wanted to
make the <fluff> tag a stop section only within the mydoc document type, specify
(mydoc)fluff for tag.

Example

Defining Stop Sections

The following example adds a stop section identified by the tag <fluff> to the automatic
section group myauto:

begin
ctx_ddl.add_stop_section('myauto', 'fluff');
end;

This example also stops any attribute sections contained within <fluff>. For example, if a
document contained:

<fluff type="computer">

Then the preceding example also stops the attribute section fluff@type.

Doctype Sensitive Stop Sections

The following example creates a stop section for the tag <fluff> only in documents that have
a root element of mydoc:

begin
ctx_ddl.add_stop_section('myauto', '(mydoc)fluff');
end;

Related Topics

"ALTER INDEX "

"CREATE_SECTION_GROUP "

8.16 ADD_STOPTHEME
Adds a single stoptheme to a stoplist. A stoptheme is a theme that is not to be indexed.

In English, query on indexed themes using the ABOUT operator.

Chapter 8
ADD_STOPTHEME

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 87

Syntax

CTX_DDL.ADD_STOPTHEME(
 stoplist_name IN VARCHAR2,
 stoptheme IN VARCHAR2
);

stoplist_name
Specify the name of the stoplist.

stoptheme
Specify the stoptheme to be added to stoplist_name. The system normalizes the stoptheme
you enter using the knowledge base. If the normalized theme is more than one theme, then
the system does not process your stoptheme. For this reason, Oracle recommends that you
submit single stopthemes.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is
4095.

Example

The following example adds the stoptheme banking to the stoplist mystop:

begin
ctx_ddl.add_stoptheme('mystop', 'banking');
end;

Related Topics

"CREATE_STOPLIST "

"REMOVE_STOPTHEME "

"DROP_STOPLIST "

"ABOUT"

8.17 ADD_STOPWORD
Use this procedure to add a single stopword to a stoplist.

To create a list of stopwords, you must call this procedure once for each word.

Syntax

CTX_DDL.ADD_STOPWORD(

 stoplist_name IN VARCHAR2,
 stopword IN VARCHAR2,
 language IN VARCHAR2 default NULL,
 language_dependent IN BOOLEAN default TRUE

);

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be added.

Chapter 8
ADD_STOPWORD

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 87

Language-specific stopwords must be unique across the other stopwords specific to the
language. For example, it is valid to have a German die and an English die in the same
stoplist.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is
4095.

language
Specify the language of stopword when the stoplist you specify with stoplist_name is of type
MULTI_STOPLIST. You must specify the globalization support name or abbreviation of an
Oracle Text-supported language.
To make a stopword active in multiple languages, specify ALL for this parameter. For example,
defining ALL stopwords is useful when you have international documents that contain English
fragments that need to be stopped in any language.
An ALL stopword is active in all languages. If you use the multi-lexer, the language-specific
lexing of the stopword occurs, just as if it had been added multiple times in multiple specific
languages.
Otherwise, specify NULL.

language_dependent
Set this parameter to FALSE to indicate that any user-defined string can be specified for the
language parameter.

Example

Single Language Stoplist

The following example adds the stopwords because, notwithstanding, nonetheless, and
therefore to the stoplist mystop:

begin

ctx_ddl.add_stopword('mystop', 'because');
ctx_ddl.add_stopword('mystop', 'notwithstanding');
ctx_ddl.add_stopword('mystop', 'nonetheless');
ctx_ddl.add_stopword('mystop', 'therefore');

end;

Multi-Language Stoplist

The following example adds the German word die to a multi-language stoplist:

begin

ctx_ddl.add_stopword('mystop', 'Die','german');

end;

Adding An ALL Stopword

The following adds the word the as an ALL stopword to the multi-language stoplist globallist:

begin

ctx_ddl.add_stopword('globallist','the','ALL');

end;

Notes

• Add stopwords after you create the index with ALTER INDEX.

Chapter 8
ADD_STOPWORD

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 87

• Stoplists do not affect string-value SDATA sections, that is, if a stopword is present within an
SDATA section, then the token will still be indexed and can be queried using the SDATA
operator.

Related Topics

• CREATE_STOPLIST

• REMOVE_STOPWORD

• DROP_STOPLIST

• ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

• Supplied Stoplists
By default, the system indexes text using the Oracle Text supplied stoplists that correspond
to your database language.

8.18 ADD_SUB_LEXER
Adds a sub-lexer to a multi-lexer preference. A sub-lexer identifies a language in a multi-lexer
(multi-language) preference. Use a multi-lexer preference when you want to index more than
one language.

Syntax

CTX_DDL.ADD_SUB_LEXER(
 lexer_name IN VARCHAR2,
 language IN VARCHAR2,
 sub_lexer IN VARCHAR2,
 alt_value IN VARCHAR2 default NULL,
 language_dependent IN BOOLEAN default TRUE
);

lexer_name
Specify the name of the multi-lexer preference.

language
Specify the globalization support language name or abbreviation of the sub-lexer. For
example, specify JAPANESE or JA for Japanese.
The sub-lexer you specify with sub_lexer is used when the language column has a value
case-insensitive equal to the globalization support name of abbreviation of language.
Specify DEFAULT to assign a default sub-lexer to use when the value of the language column in
the base table is null, invalid, or unmapped to a sub-lexer. The DEFAULT lexer is also used to
parse stopwords.
If a sub-lexer definition for language already exists, then it is replaced by this call.

sub_lexer
Specify the name of the sub-lexer to use for this language.

alt_value
Optionally specify an alternate value for language.
If you specify DEFAULT for language, then you cannot specify an alt_value.
The alt_value is limited to 30 bytes and cannot be a globalization support language name,
abbreviation, or DEFAULT.

Chapter 8
ADD_SUB_LEXER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 87

language_dependent
Set this parameter to FALSE to indicate that any user-defined string can be specified for the
language parameter. If set to FALSE, then the lexing applied to the search expression will not
be dependent on the query language. The FALSE option can only be used when a
BASIC_SECTION_GROUP is in use for the index.

Example

This example shows how to create a multi-language text table and how to set up the multi-
lexer to index the table.

Create the multi-language table with a primary key, a text column, and a language column as
follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with an occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers: one for
English, one for German, and one for Japanese as follows:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribtue('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default:

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Add the German and Japanese lexers in their respective languages. Also assume that the
language column is expressed in ISO 639-2, so add those as alternative values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Create the index globalx, specifying the multi-lexer preference and the language column in
the parameters string as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

You can specify a user-defined string for the language paramater as follows:

ctx_ddl.add_sub_lexer('global_lexer','mysymbol','german_lexer','my_alt_symbol',
language_dependent => FALSE);

Chapter 8
ADD_SUB_LEXER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 87

Restrictions

The following restrictions apply to using CTX_DDL.ADD_SUB_LEXER:

• The invoking user must be the owner of the multi-lexer or CTXSYS.

• The lexer_name parameter must name a preference which is a multi-lexer lexer.

• A lexer for default must be defined before the multi-lexer can be used in an index.

• The sub-lexer preference owner must be the same as multi-lexer preference owner.

• The sub-lexer preference must not be a multi-lexer lexer.

• A sub-lexer preference cannot be dropped while it is being used in a multi-lexer
preference.

• CTX_DDL.ADD_SUB_LEXER records only a reference. The sub-lexer values are copied at
create index time to index value storage.

8.19 ADD_ZONE_SECTION
Creates a zone section and adds the section to an existing section group. This enables zone
section searching with the WITHIN operator.

Zone sections are sections delimited by start and end tags. The and tags in HTML,
for instance, marks a range of words which are to be rendered in boldface.

Zone sections can be nested within one another, can overlap, and can occur more than once in
a document.

Syntax

CTX_DDL.ADD_ZONE_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2
);

group_name
Specify the name of the section group to which section_name is added.

section_name
Specify the name of the section to add to the group_name. Use this name to identify the
section in WITHIN queries. Avoid using names that contain non-alphanumeric characters such
as _, because most of these characters are special must be escaped in queries. Section
names are case-insensitive.
Within the same group, zone section names and field section names cannot be the same. The
terms Paragraph and Sentence are reserved for special sections.
Section names need not be unique across tags. You can assign the same section name to
more than one tag, making details transparent to searches.

tag
Specify the pattern which marks the start of a section. For example, if <H1> is the HTML tag,
specify H1 for tag. The start tag you specify must be unique within a section group.
Oracle Text knows what the end tags look like from the group_type parameter you specify
when you create the section group.
If group_name is an HTML_SECTION_GROUP, you can create zone sections for the META tag's
NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue where namevalue is

Chapter 8
ADD_ZONE_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 87

the value of the NAME attribute whose CONTENT attributes are to be indexed as a section. Refer
to the example.
If group_name is an XML_SECTION_GROUP, you can optionally qualify tag with a document type
(root element) in the form (doctype)tag. Doing so makes section_name sensitive to the XML
document type declaration. Refer to the example.

Examples

Creating HTML Sections

The following example defines a section group called htmgroup of type HTML_SECTION_GROUP. It
then creates a zone section in htmgroup called headline identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

After indexing with section group htmgroup, query within the heading section by issuing a query
as follows:

'Oracle WITHIN heading'

Creating Sections for <META NAME> Tags

You can create zone sections for HTML META tags when you use the HTML_SECTION_GROUP.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag whose NAME value
is author:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with section group htmgroup, query the document as follows:

'ken WITHIN author'

Creating Document Type Sensitive Sections (XML Documents Only)

You have an XML document set that contains the <book> tag declared for different document
types (DTDs). You want to create a distinct book section for each document type.

Assume that myDTDname is declared as an XML document type as follows:

<!DOCTYPE myDTDname>
<myDTDname>
 ...

(Note: the DOCTYPE must match the top-level tag.)

Within myDTDname, the element <book> is declared. For this tag, create a section named
mybooksec that is sensitive to the tag's document type as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec', '(myDTDname)book');
end;

Chapter 8
ADD_ZONE_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 87

Notes

Repeated Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example, if
<H1> denotes a heading section, they can repeat in the same documents as follows:

<H1> The Brown Fox </H1>

<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, the query Brown WITHIN Heading
returns this document. However, a query of (Brown and Gray) WITHIN Heading does not.

Overlapping Sections

Zone sections can overlap each other. For example, if and <I> denote two different zone
sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Sections

Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within sections.
For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as follows in
documents doc1 and doc2:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

'(Scott within author) within book1'

This query returns only doc1.

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP "

"ADD_FIELD_SECTION"

"ADD_SPECIAL_SECTION "

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

Chapter 8
ADD_ZONE_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 87

8.20 COPY_POLICY
Creates a new policy from an existing policy or index.

Syntax

ctx_ddl.copy_policy(
 source_policy VARCHAR2,
 policy_name VARCHAR2);

source_policy
The name of the policy or index being copied.

policy_name
The name of the new policy copy.

The preference values are copied from the source_policy. Both the source policy or index and
the new policy must be owned by the same database user.

8.21 CREATE_INDEX_SET
Creates an index set for CTXCAT index types.

Name this index set in the parameter clause of CREATE INDEX when you create a CTXCAT index.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

Syntax

CTX_DDL.CREATE_INDEX_SET(set_name in varchar2);

set_name
Specify the name of the index set. Name this index set in the parameter clause of CREATE
INDEX when you create a CTXCAT index.

Chapter 8
COPY_POLICY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 87

8.22 CREATE_PATH_LIST
Creates a path-list preference to use with the PATHLIST parameter, when creating a path-
subsetting JSON search index.

Understand Path Subsetting

You can use path subsetting to identify the fields in a document that you want to include or
exclude from indexing. The excluded fields are not indexed, and the JSON search index is not
used for them when querying. Filtering out irrelevant paths from documents can reduce the
amount of data indexed, thereby minimizing disk space, indexing costs, and the index creation
or rebuild time. As a result, the index maintenance operations improve in performance by
skipping irrelevant data and saving further processing.

Consider using path subsetting if your documents include:

• A subset of paths that is frequently queried or is relevant for indexing

• Infrequently queried data or an irrelevant set of paths that can be ignored during indexing

As an alternative to specifying the INCLUDE or EXCLUDE clauses (as explained in CREATE
SEARCH INDEX for JSON search index SEARCH_ON options), you can also use the PL/SQL
subprograms CTX_DDL.CREATE_PATH_LIST and CTX_DDL.ADD_PATH to specify a subset of paths
to include or exclude from indexing. You can then use the CTX_DDL.ADD_PATH API to add paths
to this pathlist.

Syntax

begin
 CTX_DDL.CREATE_PATH_LIST(
 pref_name IN VARCHAR2,
 format IN NUMBER,
 behavior IN VARCHAR2
);
end;

pref_name
Specify the name of the pathlist preference, which is a list of paths to include or exclude from
indexing.

format
Specify the type of document that this pathlist should support. Currently, the only supported
value is CTX_DDL.PATHLIST_JSON.

Note

You can enable path-subsetting for JSON search indexes only if the indexed column's
data-type is JSON type.

behavior
Specify the behavior of the pathlist. The values can be:

• CTX_DDL.PATHLIST_INCLUDE to create a list of path to be included for indexing

Chapter 8
CREATE_PATH_LIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 87

• CTX_DDL.PATHLIST_EXCLUDE to create a list of path to be excluded from indexing

This argument is optional. When omitted, the behavior value defaults to
CTX_DDL.PATHLIST_INCLUDE.

Restrictions

• Specifying any SEARCH_ON clause while there is also a PATHLIST parameter results in an
error. Similarly, you cannot specify a PATHLIST parameter for an index that has the
Dataguide feature enabled.

• You can specify a path subsetting clause with SEARCH_ON TEXT, TEXT_VALUE, and VALUE (not
with NONE and TEXT_VALUE_STRING).

• You cannot specify both the INCLUDE and EXCLUDE clauses for a single index.

Examples

• To create an INCLUDE pathlist:

The following statement creates a JSON search index with path subsetting for full-text and
string-equality searches of fields $.SpecialInstructions
and $.LineItems.Part.Description of a purchase order document. But it also indexes
fields $.PONumber and $.LineItems.Part.UnitPrice for numeric-value ranges, and
fields $.Reference, $.User, $.ShippingInstructions.name,
and $.ShippingInstructions.Address.zipCode for string-value ranges.

CREATE SEARCH INDEX json_idx ON json_tab (purchase_order_jsondoc)
 FOR JSON PARAMETERS ('SEARCH_ON
 TEXT INCLUDE ($.SpecialInstructions, $.LineItems.Part.Description)
 VALUE(NUMBER) INCLUDE ($.PONumber, $.LineItems.Part.UnitPrice)
 VALUE(VARCHAR2) INCLUDE ($.Reference,
 $.User,
 $.ShippingInstructions.name,
 $.ShippingInstructions.Address.zipCode)');

Alternatively, you can create the same index using these pathlist APIs.

Here, you first create a list of paths (json_pl_incl) to be included for indexing using the
CTX_DDL.CREATE_PATH_LIST and CTX_DDL.ADD_PATH APIs. You then create an index using
the PATHLIST parameter, whose value is a named list of the paths to be included.

-- create a pathlist preference and add paths

BEGIN
 CTX_DDL.create_path_list('json_pl_incl', CTX_DDL.PATHLIST_JSON,
CTX_DDL.PATHLIST_INCLUDE);
 CTX_DDL.add_path('json_pl', 'TEXT', '$.SpecialInstructions');
 CTX_DDL.add_path('json_pl', 'TEXT', '$.LineItems.Part.Description');
 CTX_DDL.add_path('json_pl', 'NUMBER', '$.PONumber');
 CTX_DDL.add_path('json_pl', 'NUMBER', '$.LineItems.Part.UnitPrice');
 CTX_DDL.add_path('json_pl', 'VARCHAR2', '$.Reference');
 CTX_DDL.add_path('json_pl', 'VARCHAR2', '$.User');
 CTX_DDL.add_path('json_pl', 'VARCHAR2', '$.ShippingInstructions.name');
 CTX_DDL.add_path('json_pl', 'VARCHAR2',
'$.ShippingInstructions.Address.zipCode');
END;
/

Chapter 8
CREATE_PATH_LIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 87

-- declare the pathlist preference name

CREATE SEARCH INDEX json_idx ON json_tab (purchase_order_jsondoc)
 FOR JSON PARAMETERS ('PATHLIST json_pl_incl');

• To create an EXCLUDE pathlist:

Here, you first create a list of paths (json_pl_excl) to be excluded from indexing using the
CTX_DDL.CREATE_PATH_LIST and CTX_DDL.ADD_PATH APIs. You then create an index using
the PATHLIST parameter, whose value is a named list of the paths to be excluded.

-- create a pathlist preference and add paths

BEGIN
 CTX_DDL.create_path_list('json_pl_excl', CTX_DDL.PATHLIST_JSON,
CTX_DDL.PATHLIST_EXCLUDE);
 CTX_DDL.add_path('json_pl_excl', 'TEXT', '$.SpecialInstructions');
 CTX_DDL.add_path('json_pl_excl', 'TEXT',
'$.LineItems.Part.Description');
 CTX_DDL.add_path('json_pl_excl', 'NUMBER', '$.PONumber');
 CTX_DDL.add_path('json_pl_excl', 'NUMBER',
'$.LineItems.Part.UnitPrice');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2', '$.Reference');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2', '$.User');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2',
'$.ShippingInstructions.name');
 CTX_DDL.add_path('json_pl_excl', 'VARCHAR2',
'$.ShippingInstructions.Address.zipCode');
END;
/

-- declare the pathlist preference name

CREATE SEARCH INDEX json_idx ON json_tab (purchase_order_jsondoc)
 FOR JSON PARAMETERS ('PATHLIST json_pl_excl');

Related Topics

• CREATE SEARCH INDEX
Use the CREATE SEARCH INDEX statement to create a search index for indexing and
querying structured, unstructured, or semi-structured data, such as textual, JSON, and
XML documents.

• ADD_PATH
Adds a path to a path-list preference for use with the PATHLIST parameter, when creating a
path-subsetting JSON search index.

• DROP_PATH_LIST
Removes an existing pathlist preference.

Chapter 8
CREATE_PATH_LIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 87

8.23 CREATE_POLICY
Creates a policy to use with the CTX_DOC.POLICY_* procedures, certain Oracle Data Mining
procedures, and the in-memory Text index.

Syntax

PROCEDURE CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL,
 datastore IN VARCHAR2 DEFAULT NULL
);

policy_name
Specify the name for the new policy. Policy names and Text indexes share the same
namespace.

filter
Specify the filter preference to use.

section_group
Specify the section group to use. You can specify any section group that is supported by
CONTEXT index.

lexer
Specify the lexer preference to use. Your INDEX_THEMES attribute must be disabled.

stoplist
Specify the stoplist preference to use.

wordlist
Specify the wordlist preference to use.

datastore
Specify the datastore preference to use for the in-memory Text index.

Note

The datastore parameter is only supported for the in-memory Text index.

Examples

Create a lexer preference named mylex.

begin
 ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
 ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
end;

Create a stoplist preference named mystop.

begin
 ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');

Chapter 8
CREATE_POLICY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 87

 ctx_ddl.add_stopword('mystop', 'because');
 ctx_ddl.add_stopword('mystop', 'nonetheless');
 ctx_ddl.add_stopword('mystop', 'therefore');
end;

Create a wordlist preference named mywordlist.

begin
 ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
end;

Create a datastore preference named my_file_datastore.

begin
 create or replace directory wdirectory as '/path1/path2';
 GRANT read ON DIRECTORY WDIRECTORY TO user;
 EXEC ctx_ddl.create_preference('my_file_datastore', 'DIRECTORY_DATASTORE');
 EXEC ctx_ddl.set_attribute('my_file_datastore', 'DIRECTORY', 'WDIRECTORY');
end;

Create a policy named mypolicy.

exec ctx_ddl.create_policy(
 'mypolicy',
 NULL,
 NULL,
 'mylex',
 'mystop',
 'mywordlist',
 'my_file_datastore'
);

or

exec ctx_ddl.create_policy(
 policy_name => 'mypolicy',
 lexer => 'mylex',
 stoplist => 'mystop',
 wordlist => 'mywordlist',
 datastore => 'my_file_datastore'
);

Use ALTER TABLE to apply your defined policy to a column for in-memory search. Then enter
your query statement, using the CONTAINS operator in the WHERE clause:

ALTER TABLE my_tab INMEMORY TEXT(my_txt_col using 'mypolicy');

SELECT id from my_tab WHERE CONTAINS(my_txt_col, 'Washington')>0;

Update the policy with the following:

exec ctx_ddl.update_policy(
 policy_name => 'mypolicy',
 lexer => 'my_new_lex'
);

Drop the policy with the following:

exec ctx_ddl.drop_policy(policy_name => 'mypolicy');

Related Topics

• Oracle Text Application Developer's Guide

Chapter 8
CREATE_POLICY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 87

8.24 CREATE_PREFERENCE
Creates a preference in the Text data dictionary.

Specify preferences in the parameter string of CREATE INDEX or ALTER INDEX .

Caution

CTX_DDL.CREATE_PREFERENCE does not respect the current schema as set by ALTER
SESSION SET current_schema. Therefore, if you need to create or delete a preference
owned by another user, then you must explicitly state this, and you must have the
CREATE ANY TABLE system privilege.

Syntax

CTX_DDL.CREATE_PREFERENCE(preference_name in varchar2,
 object_name in varchar2);

preference_name
Specify the name of the preference to be created.

object_name
Specify the name of the preference type.

See Also

For a complete list of preference types and their associated attributes, see Oracle
Text Indexing Elements

Examples

Creating Text-only Index

The following example creates a lexer preference that specifies a text-only index. It does so by
creating a BASIC_LEXER preference called my_lexer with CTX_DDL.CREATE_PREFERENCE. It then
calls CTX_DDL.SET_ATTRIBUTE twice, first specifying YES for the INDEX_TEXT attribute, then
specifying NO for the INDEX_THEMES attribute.

begin
ctx_ddl.create_preference('my_lexer', 'BASIC_LEXER');
ctx_ddl.set_attribute('my_lexer', 'INDEX_TEXT', 'YES');
ctx_ddl.set_attribute('my_lexer', 'INDEX_THEMES', 'NO');
end;

Specifying File Data Storage

The following example creates a data storage preference called mypref that tells the system
that the files to be indexed are stored in an Oracle directory object. The example then uses
CTX_DDL.SET_ATTRIBUTE to set the DIRECTORY attribute to the directory /docs.

begin
ctx_ddl.create_preference('mypref', 'DIRECTORY_DATASTORE');
ctx_ddl.set_attribute('mypref', 'DIRECTORY', '/docs');
end;

Chapter 8
CREATE_PREFERENCE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 87

See Also

For more information about data storage, see "Datastore Types "

Creating Primary/Detail Relationship

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE. Use
CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference. The following example
shows how this is done:

begin
ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail_pref', 'detail_key', 'article_id');
ctx_ddl.set_attribute('my_detail_pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text', 'text');
end;

See Also

For more information about primary/detail, see "DETAIL_DATASTORE "

Specifying Storage Attributes

The following examples specify that the index tables are to be created in the foo tablespace
with an initial extent of 1K:

begin
ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
ctx_ddl.set_attribute('mystore', 'I_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'K_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'R_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'S_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'N_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'I_INDEX_CLAUSE',
 'tablespace foo storage (initial 1K)');
end;

Note

If S_TABLE_CLAUSE is specified for a storage preference in an index without SDATA, then
it has no effect on the index, and the index creation will still succeed.

Chapter 8
CREATE_PREFERENCE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 87

See Also

Storage Types

Creating Preferences with No Attributes

When you create preferences with types that have no attributes, you need only create the
preference, as in the following example which sets the filter to the NULL_FILTER:

begin
ctx_ddl.create_preference('my_null_filter', 'NULL_FILTER');
end;

Specifying BIGRAM Mode for Japanese VGRAM Lexer

The following example creates a Japanese VGRAM lexer preference that specifies the
BIGRAM mode of operation for the Japanese queries:

begin
ctx_ddl.create_preference('jp_lexer','JAPANESE_VGRAM_LEXER');
ctx_ddl.set_attribute('jp_lexer','BIGRAM','TRUE');
end;

/* create the index */
create index jp_idx on jp_doc(text) indextype is ctxsys.context
 parameters('lexer jp_lexer');

Related Topics

SET_ATTRIBUTE

DROP_PREFERENCE

CREATE INDEX

ALTER INDEX

Oracle Text Indexing Elements

8.25 CREATE_SECTION_GROUP
Creates a section group for defining sections in a text column.

When you create a section group, you can add to it zone, field, or special sections with
ADD_ZONE_SECTION , ADD_FIELD_SECTION, ADD_MDATA_SECTION, or
ADD_SPECIAL_SECTION .

You also use CREATE_SECTION_GROUP with CTX_DDL.SET_SEC_GRP_ATTR to set xml_enable
to create an Oracle XML Search Index.

When you index, name the section group in the parameter string of CREATE INDEX or ALTER
INDEX .

After indexing, query within your defined sections with the WITHIN operator.

Syntax

CTX_DDL.CREATE_SECTION_GROUP(
 group_name in varchar2,

Chapter 8
CREATE_SECTION_GROUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 87

 group_type in varchar2
);

group_name
Specify the section group name to create as section_group_name. This parameter must be
unique within an owner.

group_type
Specify section group type. The group_type parameter can be one of the following:

Section Group Preference Description

NULL_SECTION_GROUP Use this group type when you define no sections or
when you define only SENTENCE or PARAGRAPH
sections. This is the default.

BASIC_SECTION_GROUP Use this group type for defining sections where the
start and end tags are of the form <A> and .
Note: This group type does not support input such as
unbalanced parentheses, comments tags, and
attributes. Use HTML_SECTION_GROUP for this type of
input.

HTML_SECTION_GROUP Use this group type for indexing HTML documents
and for defining sections in HTML documents.

JSON_SECTION_GROUP Use this group to create a JSON enabled context
index. The JSON ENABLE attribute cannot be used
with XML ENABLE. A section group can only be
marked as JSON ENABLE. If it is already marked with
XML ENABLE, then the path section group cannot be
used for JSON ENABLE and vice versa.

XML_SECTION_GROUP Use this group type for indexing XML documents and
for defining sections in XML documents.

AUTO_SECTION_GROUP Use this group type to automatically create a zone
section for each start-tag/end-tag pair in an XML
document. The section names derived from XML tags
are case sensitive as in XML.
Attribute sections are created automatically for XML
tags that have attributes. Attribute sections are named
in the form attribute@tag.
Stop sections, empty tags, processing instructions,
and comments are not indexed.
The following limitations apply to automatic section
groups:
• You cannot add zone, field, or special sections to

an automatic section group.

• Automatic sectioning does not index XML
document types (root elements.) However, you
can define stop sections with document type.

• The length of the indexed tags, including prefix
and namespace, cannot exceed 64 bytes. Tags
longer than this are not indexed.

Chapter 8
CREATE_SECTION_GROUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 87

Section Group Preference Description

PATH_SECTION_GROUP Use this group type to index XML documents.
Behaves like the AUTO_SECTION_GROUP.
The difference is that with this section group you can
do path searching with the INPATH and HASPATH
operators. Queries are also case-sensitive for tag and
attribute names.

NEWS_SECTION_GROUP Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

Note

Starting with Oracle Database 18c, use of NEWS_SECTION_GROUP is deprecated in
Oracle Text. Use external processing instead.
If you want to index USENET posts, then preprocess the posts to use
BASIC_SECTION_GROUP or HTML_SECTION_GROUP within Oracle Text. USENET is rarely
used commercially.

Examples

The following command creates a section group called htmgroup with the HTML group type.

begin

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');

end;

The following command creates a section group called auto with the AUTO_SECTION_GROUP
group type to be used to automatically index tags in XML documents.

begin

ctx_ddl.create_section_group('auto', 'AUTO_SECTION_GROUP');

end;

The following example creates an Oracle XML Search index:

exec CTX_DDL.CREATE_SECTION_GROUP('secgroup','PATH_SECTION_GROUP');
exec CTX_DDL.SET_SEC_GRP_ATTR('secgroup','xml_enable','t');
CREATE INDEX po_ctx_idx on T(X) indextype is ctxsys.context
parameters ('section group SECGROUP');

Related Topics

"WITHIN"

"Section Group Types"

"ADD_ZONE_SECTION "

"ADD_FIELD_SECTION"

"ADD_MDATA_SECTION"

"ADD_SPECIAL_SECTION "

Chapter 8
CREATE_SECTION_GROUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 87

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

8.26 CREATE_SHADOW_INDEX
Creates index metadata (or policy) for the specified index. If the index is not partitioned, then it
also creates the index tables. This procedure is only supported in Enterprise Edition of Oracle
AI Database.

The following changes are not supported:

• Transition from non-composite domain index to composite, or changing the composite
domain index columns.

• Rebuild indexes that have partitioned index tables, for example, $I, $P, $K.

Note

• For a partitioned index, you must first call this procedure to create the shadow
index metadata. This procedure will not create index tables. It has no effect on
query, DML, sync, or optimize operations.

• The CREATE_SHADOW_INDEX and RECREATE_INDEX_ONLINE procedures do not
support section group with the XML_ENABLE attribute on CONTEXT indexes. Doing so
results in the "DRG-10521: Operation not supported with XML_ENABLE on a
CONTEXT Index" error.

Syntax

CTX_DDL.CREATE_SHADOW_INDEX(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2 DEFAULT NULL,
 parallel_degree IN NUMBER DEFAULT 1
);

idx_name
The name of a valid CONTEXT indextype.

parameter_string
For nonpartitioned index, the same string as in ALTER INDEX. For partitioned index, the same
string as in ALTER INDEX PARAMETER.

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not currently
supported.

Example

Example 8-1 Scheduled Global Index RECREATE (Incremental Rebuild)

In this example, you have the finest control over each stage of RECREATE_INDEX_ONLINE.
Since SYNC_INDEX can take a time limit, you can limit SYNC_INDEX during non-business hours
and incrementally recreate the index.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context

Chapter 8
CREATE_SHADOW_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 87

 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* create shadow index */
exec ctx_ddl.create_shadow_index('idx',
 'replace lexer m_lexer language column lang NOPOPULATE');

declare
 idxid integer;
begin
 /* figure out shadow index name */
 select idx_id into idxid from ctx_user_indexes
 where idx_name ='IDX';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid);
 /* time limited sync */
 ctx_ddl.sync_index(idx_name =>'RIO$'||idxid,
 maxtime =>480);
 /* more sync until no pending rows for the shadow index */
end;
/* swap in the shadow index */
exec ctx_ddl.exchange_shadow_index('idx');

Notes

• The index name for the shadow index is RIO$index_id. By default, it also populates index
tables for nonpartitioned indexes, unless NOPOPULATE is specified in CREATE INDEX or in
ALTER INDEX. For a local partitioned index, it only creates index metadata without creating
the index tables for each partition. Each index can have only one shadow index.

• When building a nonpartitioned index online, you can first call this procedure to create
index metadata and index tables. If you specify POPULATE, then this procedure populates
the index, but does not do swapping. You can schedule the swapping at a later, preferred
time.

If you specify NOPOPULATE, it only creates metadata for the index tables, but does not
populate them. You must perform POPULATE_PENDING (CTX_DDL.POPULATE_PENDING)
to populate the pending queues after running this procedure, and then sync the indexes.
This is referred to as incremental re-create.

Queries are all processed normally when this procedure is running.

• If POPULATE is specified, then DML is blocked for a very short time at the beginning of
populate, after which all further DML is logged into an online pending queue and
processed later.

• In case of NOPOPULATE shadow indexes, ensure that you execute the POPULATE_PENDING
procedure before calling a DML operation. If you call a DML operation before executing the
POPULATE_PENDING procedure, then the same tokens appear twice in the $I index table.

Chapter 8
CREATE_SHADOW_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 87

• Sync with CTX_DDL.SYNC_INDEX runs normally on the index. OPTIMIZE_INDEX runs
without doing anything, but does not return an error.

• When you change the SYNC type for a shadow index, the EXCHANGE_SHADOW_INDEX
procedure swaps the main index with the new SYNC type. However, the shadow index
continues to use MANUAL synchronization as the SYNC type. This feature enables you to
control when you want to populate or exchange the shadow index.

Related Topics

• ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

• CREATE INDEX
Use the CREATE INDEX statement to create an Oracle Text index.

• Oracle Text SQL Statements and Operators
These are the SQL statements and Oracle Text operators for creating and managing
Oracle Text indexes and performing Oracle Text queries.

• DROP_SHADOW_INDEX

• EXCHANGE_SHADOW_INDEX
This procedure swaps the index (or index partition) metadata and index (or index partition)
data.

• SYNC_INDEX
Synchronizes the index to process inserts, updates, and deletes to the base table.

• POPULATE_PENDING
This procedure populates the pending queue with every ROWID in the base table or table
partition. This procedure is only supported for CONTEXT indexes.

8.27 CREATE_STOPLIST
Use this procedure to create a new, empty stoplist. Stoplists can contain words or themes that
are not to be indexed.

You can also create multi-language stoplists to hold language-specific stopwords. A multi-
language stoplist is useful when you index a table that contains documents in different
languages, such as English, German, and Japanese. When you do so, the text table must
contain a language column.

Add either stopwords, stopclasses, or stopthemes to a stoplist using ADD_STOPWORD,
ADD_STOPCLASS, or ADD_STOPTHEME. Specify a stoplist in the parameter string of
CREATE INDEX or ALTER INDEX to override the default stoplist CTXSYS.DEFAULT_STOPLIST.

Syntax

CTX_DDL.CREATE_STOPLIST(

stoplist_name IN VARCHAR2,
stoplist_type IN VARCHAR2 DEFAULT 'BASIC_STOPLIST');

stoplist_name
Specify the name of the stoplist to be created.

Chapter 8
CREATE_STOPLIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 87

stoplist_type
Specify BASIC_STOPLIST to create a stoplist for a single language. This is the default.
Specify MULTI_STOPLIST to create a stoplist with language-specific stopwords.
At indexing time, the language column of each document is examined, and only the stopwords
for that language are eliminated. At query time, the session language setting determines the
active stopwords, like it determines the active lexer when using the multi-lexer.

Note

When indexing a multi-language table with a multi-language stoplist, the table must
have a language column.

Examples

Example 8-2 Single Language Stoplist

The following example creates a stoplist called mystop:

begin
ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');
end;

Example 8-3 Multi-Language Stoplist

The following example creates a multi-language stoplist called multistop and then adds tow
language-specific stopwords:

begin
ctx_ddl.create_stoplist('multistop', 'MULTI_STOPLIST');
ctx_ddl.add_stopword('mystop', 'Die','german');
ctx_ddl.add_stopword('mystop', 'Or','english');
end;

Related Topics

"ADD_STOPWORD "

"ADD_STOPCLASS "

"ADD_STOPTHEME "

"DROP_STOPLIST "

"CREATE INDEX"

"ALTER INDEX "

Supplied Stoplists

Chapter 8
CREATE_STOPLIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 87

8.28 DROP_INDEX_SET
Drops a CTXCAT index set created with CTX_DDL.CREATE_INDEX_SET.

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

Syntax

CTX_DDL.DROP_INDEX_SET(
 set_name IN VARCHAR2
);

set_name
Specify the name of the index set to drop.
Dropping an index set drops all of the sub-indexes it contains.

Related Topics

• CREATE_INDEX_SET
Creates an index set for CTXCAT index types.

8.29 DROP_PATH_LIST
Removes an existing pathlist preference.

Syntax

begin
 CTX_DDL.DROP_PATH_LIST(
 pref_name IN VARCHAR2
);
end;

pref_name
Specify the name of the pathlist preference to drop.

Example

begin
 CTX_DDL.DROP_PATH_LIST(
 'json_pl',

Chapter 8
DROP_INDEX_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 87

);
end;

Related Topics

• CREATE_PATH_LIST
Creates a path-list preference to use with the PATHLIST parameter, when creating a path-
subsetting JSON search index.

8.30 DROP_POLICY
Drops a policy created with CTX_DDL.CREATE_POLICY.

Syntax

CTX_DDL.DROP_POLICY(
 policy_name IN VARCHAR2
);

policy_name
Specify the name of the policy to drop.

8.31 DROP_PREFERENCE
The DROP_PREFERENCE procedure deletes the specified preference from the Text data dictionary.
Dropping a preference does not affect indexes that have already been created using that
preference.

Syntax

CTX_DDL.DROP_PREFERENCE(
 preference_name IN VARCHAR2
);

preference_name
Specify the name of the preference to be dropped.

Example

The following example drops the preference my_lexer.

begin
ctx_ddl.drop_preference('my_lexer');
end;

Related Topics

CTX_DDL.CREATE_PREFERENCE

8.32 DROP_SECTION_GROUP
The DROP_SECTION_GROUP procedure deletes the specified section group, as well as all the
sections in the group, from the Text data dictionary.

Chapter 8
DROP_POLICY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 87

Syntax

CTX_DDL.DROP_SECTION_GROUP(
 group_name IN VARCHAR2
);

group_name
Specify the name of the section group to delete.

Example

The following example drops the section group htmgroup and all its sections:

begin
ctx_ddl.drop_section_group('htmgroup');
end;

Related Topics

"CREATE_SECTION_GROUP "

"PREFERENCE_IMPLICIT_COMMIT"

8.33 DROP_SHADOW_INDEX
Drops a shadow index for the specified index. When you drop a shadow index, if it is
partitioned, then its metadata and the metadata of all this shadow index's partitions are
dropped. This procedure also drops all the shadow index tables and cleans up any online
pending queue.

Syntax

CTX_DDL.DROP_SHADOW_INDEX(
 idx_name in VARCHAR2
);

idx_name
The name of a valid CONTEXT indextype.

Example

The following example drops the shadow index myshadowidx:

begin
ctx_ddl.drop_shadow_index('myshadowidx');
end;

Related Topics

CTX_DDL.CREATE_SHADOW_INDEX

8.34 DROP_STOPLIST
Drops a stoplist from the Text data dictionary. When you drop a stoplist, you must re-create or
rebuild the index for the change to take effect.

Syntax

CTX_DDL.DROP_STOPLIST(stoplist_name in varchar2);

Chapter 8
DROP_SHADOW_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 87

stoplist_name
Specify the name of the stoplist.

Example

The following example drops the stoplist mystop:

begin
ctx_ddl.drop_stoplist('mystop');
end;

Related Topics

CTX_DDL.CREATE_STOPLIST

8.35 EXCHANGE_SHADOW_INDEX
This procedure swaps the index (or index partition) metadata and index (or index partition)
data.

For nonpartitioned indexes, this procedure swaps both the metadata and the index data, and
processes the online pending queue.

Syntax

CTX_DDL.EXCHANGE_SHADOW_INDEX(
 idx_name IN VARCHAR2
 partition_name IN VARCHAR2 default NULL
);

idx_name
Specify the name of the CONTEXT indextype.

partition_name
Specify the name of the shadow index partition. May also be NULL.

Example

Example 8-4 Global Index RECREATE with Scheduled Swap

This example demonstrates running CTX_DDL.EXCHANGE_SHADOW_INDEX during non-business
hours when query failures and DML blocking can be tolerated.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

Chapter 8
EXCHANGE_SHADOW_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 87

/* recreate index online with the new multip-lexer */
exec ctx_ddl.create_shadow_index('idx',
 'replace lexer m_lexer language column lang');
exec ctx_ddl.exchange_shadow_index('idx');

Notes

• Using EXCHANGE_SHADOW_INDEX with Nonpartitioned Indexes:

For nonpartitioned indexes, this procedure will swap both metadata and index data, and
will process the online pending queue.

Queries will return column not indexed errors when swapping metadata and index data,
but queries are processed normally when processing online pending queue. The period of
errors being raised should be short.

If you specify POPULATE when you create the shadow index, and if many DML operations
have been issued since the creation of the shadow index, then there could be a large
pending queue. However, if you use incremental recreate, that is, specify NOPOPULATE
when you create the shadow index, and you then populate the pending queue and sync,
then the online pending queue is always empty no matter how many DML operations have
occurred since CREATE_SHADOW_INDEX was issued.

When this procedure is running, DML will first fail with an error about index being in in-
progress status. After that DML could be blocked if there are rows in online pending queue
that need to be reapplied.

Note

When this procedure is running, DML statements will fail with an error that the
index is in "in-progress status." If, when this error occurs, there are rows in the
online pending queue that need to be reapplied, then the DML could be blocked
and stop responding.

• Using EXCHANGE_SHADOW_INDEX with Partitioned Indexes:

For partitions that are recreated with NOSWAP: when the index is partitioned, and if
partition_name is a valid index partition, then this procedure will swap the index partition
data and the index partition metadata, and will process the online pending queue for this
partition.

This procedure swaps only one partition at a time. When you run this procedure on
partitions that are recreated with NOSWAP:

– Queries that span multiple partitions will not return consistent results across all
partitions.

– Queries on the partition that is being swapped will return errors.

– Queries on partitions that are already swapped will be based on the new index.

– Queries on the partitions that haven't been swapped will be based on the old index.

If the partition_name is NULL, then this procedure will swap the index metadata. Run this
procedure as the last step when recreating a local partitioned index online.

• Sync Behavior:

After running EXCHANGE_SHADOW_INDEX, you must call the SYNC_INDEX operation to
synchronize any DML that occurs during the build of the shadow index. If you have
specified SYNC(ON COMMIT) or SYNC(EVERY), then the sync occurs automatically. However,
if you have specified SYNC(MANUAL), then you must manually invoke SYNC_INDEX.

Chapter 8
EXCHANGE_SHADOW_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 87

Related Topics

CTX_DDL."RECREATE_INDEX_ONLINE"

CTX_DDL."CREATE_SHADOW_INDEX"

CTX_DDL."DROP_SHADOW_INDEX"

8.36 LOAD_STOPLIST
Use this procedure to load a source file of stopwords to your stoplist for the required language.

A default stoplist is automatically loaded during installation or upgrade based on the database
language that you choose. By default, only one SQL file is loaded for the chosen language.
You can call the CTX_DDL.LOAD_STOPLIST procedure to customize your stoplist or modify the
default list of stopwords. This procedure takes a source file of stopwords for the specified
language and adds each word to your stoplist from the stoplist_dir/stoplist_file.

The Oracle Text supplied stoplists contain default stopwords for all BASIC_LEXER and
AUTO_LEXER supported languages.

You can also load multi-language stoplists to hold language-specific stopwords. A multi-
language stoplist is useful when you index a table that contains documents in different
languages, such as English, German, and Japanese. When indexing a multi-language table
with a multi-language stoplist, the table must have a language column.

Specify a stoplist in the parameter string of CREATE INDEX or ALTER INDEX to override the
default stoplist CTXSYS.DEFAULT_STOPLIST. Add either stopwords, stopclasses, or stopthemes
to a stoplist using ADD_STOPWORD, ADD_STOPCLASS, or ADD_STOPTHEME.

Syntax

PROCEDURE LOAD_STOPLIST(
 stoplist_name IN VARCHAR2,
 stoplist_dir IN VARCHAR2,
 stoplist_file IN VARCHAR2,
 language IN VARCHAR2 default NULL,
 language_dependent IN BOOLEAN default TRUE
)

stoplist_name
Specify the name of the stoplist to be loaded.

stoplist_dir
Specify the directory location of the source file that you want to load. The source files for
default stoplists are located in the $ORACLE_HOME/ctx/data/stoplist directory.

stoplist_file
Specify the name of the source file located in the $ORACLE_HOME/ctx/data/stoplist directory.
These source files are named drstopLANG.txt, where LANG specifies the language code. The
contents of the source files are the extracted terms from the drdefLANG.sql files (located in
the $ORACLE_HOME/ctx/admin directory).

Chapter 8
LOAD_STOPLIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 87

language
Specify the language of a stopword when loading multi-language stoplists. You must specify
the globalization support name or abbreviation of an Oracle Text-supported language.
To make a stopword active in multiple languages, specify ALL for this parameter. For example,
defining ALL stopwords is useful when you have international documents that contain English
fragments to be stopped in any language. An ALL stopword is active in all languages. If you
use multi-lexer, the language-specific lexing of a stopword occurs just as if it has been added
multiple times in multiple specific languages.
Otherwise, specify NULL.

language_dependent
Set this parameter to FALSE to indicate that any user-defined string can be specified for the
language parameter.

Examples

• Single-language stoplist:

The following example loads a stoplist named mystop for French (language code: f):

begin
ctx_ddl.load_stoplist('mystop', 'ORACLE_HOME/ctx/data/stoplist',
'drstopf.txt');
end;

• Multi-language stoplist:

The following example loads a multi-language stoplist named multistop for Arabic
(language code: ar) and Dutch (language code: nl):

begin
ctx_ddl.load_stoplist('multistop', 'ORACLE_HOME/ctx/data/stoplist',
'drstopar.txt', 'arabic');
ctx_ddl.load_stoplist('multistop', 'ORACLE_HOME/ctx/data/stoplist',
'drstopnl.txt', 'dutch');
end;

Related Topics

• Supplied Stoplists
By default, the system indexes text using the Oracle Text supplied stoplists that correspond
to your database language.

• CREATE INDEX
Use the CREATE INDEX statement to create an Oracle Text index.

• ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

8.37 OPTIMIZE_INDEX
Use this procedure to optimize the index. Optimizing an index removes old data and minimizes
index fragmentation, which can improve query response time.

Optimize your index after you synchronize it. Querying and DML may proceed while
optimization takes place.

Chapter 8
OPTIMIZE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 87

You can optimize in fast, full, rebuild, token, token-type, or merge mode.

• Fast mode compacts data but does not remove rows.

• Full mode compacts data and removes rows.

• Optimize in rebuild mode rebuilds the $I table (the inverted list table) in its entirety.
Rebuilding an index is often significantly faster than performing a full optimization, and is
more likely to result in smaller indexes, especially if the index is heavily fragmented.

Rebuild optimization creates a more compact copy of the $I table, and then switches the
original $I table and the copy. The rebuild operation will therefore require enough space to
store the copy as well as the original. (If redo logging is enabled, then additional space is
required in the redo log as well.) At the end of the rebuild operation, the original $I table is
dropped, and the space can be reused. A temporary "change capture trigger" is used to
ensure that updates to the $I table during the optimization are not lost. For this reason, the
user calling OPTIMIZE_INDEX in REBUILD mode must have the CREATE TRIGGER privilege.

Optimize in rebuild mode supports partitioning on the $I table via the i_table_clause
attribute of the basic_storage preference with the following limitations:

– The i_index_clause must specify using a local btree index if the $I table is
partitioned.

– Partitioning schemes on the token_first, token_last, or token_count columns are
not allowed.

• In token mode, specify a specific token to be optimized (for example, all rows with
documents containing the word elections). Use this mode to optimize index tokens that are
frequently searched, without spending time on optimizing tokens that are rarely referenced.
An optimized token can improve query response time (but only for queries on that token).

Starting with Oracle Database Release 21c, the topN fragmented tokens in the $I table are
optimized. The $SN and $ST tables are also optimized.

• Token-type optimization is similar to token mode, except that the optimization is performed
on field, MDATA, or SDATA sections (for example, sections with an <A> tag). This is useful in
keeping critical field or MDATA sections optimal.

• Use the merge mode to optimize the $I table for the CONTEXT indexes that are frequently
used for DML operations. The merge operation compacts the existing data in the $G table,
and then copies that data to the $I table. The compacted rows are then deleted from
the $G table.

A common strategy for optimizing indexes is to perform regular token optimizations on
frequently referenced terms, and to perform rebuild optimizations less frequently. (Use
CTX_REPORT.QUERY_LOG_SUMMARY to find out which queries are made most frequently.)
You can perform full, fast, or token-type optimizations instead of token optimizations.

Some users choose to perform frequent time-limited full optimizations along with occasional
rebuild optimizations.

Chapter 8
OPTIMIZE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 87

Note

• Optimizing an index can result in better response time only if you insert, delete, or
update documents in the base table after your initial indexing operation.

• When you run index optimization, any work in the session is committed effectively
and that work cannot be rolled back.

• You cannot run DDL ALTER TABLE .. MODIFY concurrently with an index
synchronization or index maintenance operation, such as SYNC_INDEX.

Using this procedure to optimize the index is recommended over using the ALTER INDEX
statement.

Optimization of a large index may take a long time. To monitor the progress of a lengthy
optimization, log the optimization with CTX_OUTPUT.START_LOG and check the resultant
logfile from time to time.

Note that, unlike serial optimize full, CTX_DDL.OPTIMIZE_INDEX() run with optlevel of FULL and
parallel_degree > 1 is not resumable. That is, it will not resume from where it left after a time-
out or failure.

Note

There is a very small window of time when a query might fail in
CTX_DDL.OPTIMIZE_INDEX REBUILD mode when the $I table is being swapped with the
optimized shadow $I table.

Syntax

CTX_DDL.OPTIMIZE_INDEX(

idx_name IN VARCHAR2,
optlevel IN VARCHAR2,
maxtime IN NUMBER DEFAULT NULL,
token IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
token_type IN NUMBER DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1,
maxtokens IN NUMBER DEFAULT NULL,
section_type IN NUMBER DEFAULT NULL

);

idx_name
Specify the name of the index. If you do not specify an index name, then Oracle Text chooses
a single index to optimize.

optlevel
Specify optimization level as a string. You can specify one of the following methods for
optimization:

Chapter 8
OPTIMIZE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 87

optlevel value Description

FAST or CTX_DDL.OPTLEVEL_FAST This method compacts fragmented rows. However, old data is not
removed.
FAST optimization is not supported for CTXCAT indexes. FAST
optimization will not optimize $S index table.
Fast optimization is not supported for local Oracle Text search
indexes.

FULL or CTX_DDL.OPTLEVEL_FULL In this mode you can optimize the entire index or a portion of the
index. This method compacts rows and removes old data (deleted
rows). Optimizing in full mode runs even when there are no deleted
rows.
Full optimization is not supported for CTXCAT indexes.

REBUILD or CTX_DDL.OPTLEVEL_REBUILD This optlevel rebuilds the $I table (the inverted list table) to
produce more compact token info rows. Like FULL optimize, this mode
also deletes information pertaining to deleted rows of the base table.
REBUILD is not supported for CTCAT, CTXRULE, and local Oracle Text
search indexes.

TOKEN or CTX_DDL.OPTLEVEL_TOKEN This method lets you specify a specific token to be optimized. Oracle
Text does a full optimization on the token you specify with token. If
no token type is provided, 0 (zero) will be used as the default.
Use this method to optimize those tokens that are searched
frequently.
Token optimization is not supported for CTCAT and CTXRULE indexes.

TOKEN_TYPE or CTX_DDL.OPTLEVEL_TOKEN_TYPE This optlevel optimizes on demand all tokens in the index matching
either the input token type or the input section type.
When optlevel is TOKEN_TYPE, either token_type or section_type
must be provided. TOKEN_TYPE performs FULL optimize on any token
of the input token_type or section_type, whichever is provided. Like a
TOKEN optimize, TOKEN_TYPE optimize does not change the FULL
optimize state, and runs to completion on each invocation.
Token_type optimization is not supported for CTCAT and CTXRULE
indexes.

MERGE or CTX_DDL.OPTLEVEL_MERGE This optlevel compacts the rows in the staging $G table and merges
them into the $I table.
This option is not supported at the token level. Specifying the TOKEN
attribute with this option results in an error.
Merge optimization should be used for CONTEXT indexes with the
STAGE_ITAB index option enabled.

The behavior of CTX_DDL.OPTIMIZE_INDEX with respect to the $S index table is as follows:

optlevel value Will
Optimize $S
Index Table
Yes/No

Notes

FAST or CTX_DDL.OPTLEVEL_FAST No

Chapter 8
OPTIMIZE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 87

optlevel value Will
Optimize $S
Index Table
Yes/No

Notes

FULL or CTX_DDL.OPTLEVEL_FULL Yes • The optimize process will optimize $I table first.
Once $I table optimize is finished,
CTX_DDL.OPTIMIZE_INDEX will continue on to
optimize $S index table.

• MAXTIME will also be honored. Once
CTX_DDL.OPTIMIZE_INDEX completes
optimizing $S rows for a given SDATA_ID, it will
check MAXTIME and exit if total elapsed time
(including time taken to optimize $I) exceeds
specified MAXTIME. The next
CTX_DDL.OPTIMIZE_INDEX with
optlevel=>'FULL' will pick up where it left off.

• $S table optimize will be done in serial.

REBUILD or CTX_DDL.OPTLEVEL_REBUILD Yes • $S optimize will start after $I rebuild finishes.

• $S optimize in this case will be processed the
same way as $S optimize in FULL mode. $S table
is optimized in place, not rebuilt.
Note: If for some reason $S optimize exits
unusually, then it is recommended that you use
optlevel=>TOKEN_TYPE to optimize $S to avoid
rebuilding the $I table again.

• $S table optimize will be done in serial.

TOKEN or CTX_DDL.OPTLEVEL_TOKEN No

TOKEN_TYPE or
CTX_DDL.OPTLEVEL_TOKEN_TYPE

Yes You can optimize $S rows for a given SDATA_ID by
setting optlevel => TOKEN_TYPE and the
TOKEN_TYPE parameter to the target SDATA_ID.

maxtime
Specify maximum optimization time, in minutes, for FULL optimize.
When you specify the symbol CTX_DDL.MAXTIME_UNLIMITED (or pass in NULL), the entire index
is optimized. This is the default.

token
Specify the token to be optimized.

part_name
If your index is a local index, then you must specify the name of the index partition to
synchronize otherwise an error is returned.
If your index is a local Hybrid Vector Index (HVI), then specify the name of the index partition.
If your index is a global, nonpartitioned index, then specify NULL, which is the default.

token_type
Specify the token_type to be optimized.
You can find the token_type by using the CTX_REPORT.TOKEN_TYPE method or the
CTX_USER_SECTIONS view.

parallel_degree
Specify the parallel degree as a number for parallel optimization. The actual parallel degree
depends on your resources.

Chapter 8
OPTIMIZE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 87

Because the optlevel values are executed serially, this setting throws the error DRG-10598
for the following values:

• TOKEN or CTX_DDL.OPTLEVEL_TOKEN

• FAST or CTX_DDL.OPTLEVEL_FAST

maxtokens
Specify the maxtokens to be optimized.
maxtokens attribute can be specified only when optlevel value is set to TOKEN or
CTX_DDL.OPTLEVEL_TOKEN and when the token parameter is NULL.

Note

• If the number of fragmented tokens exceeds 50% of total number of tokens in $I
and maxtokens is not specified, then “index too fragmented” error is returned.

• If maxtokens specified is negative or greater than 50% of total number of tokens
in $I, then “invalid value for maxtokens” error is returned.

section_type
Specify the section_type to optimize all sections of a certain type. This parameter can have
one of the following values:

section_type value Description

CTX_DDL.SECTION_FIELD The optimization is run for all field sections in the index.

CTX_DDL.SECTION_SORT_SDATA The optimization is run for all optimized_for sort SDATA
sections in the index.

CTX_DDL.SECTION_MDATA The optimization is run for all MDATA sections in the index.

CTX_DDL.SECTION_SEARCH_SDATA The optimization is run for all optimized_for search SDATA
sections in the index.

CTX_DDL.SECTION_WILDCARD_INDEX The optimization is run for the $KG table (that is, the wildcard
search index).

CTX_DDL.SECTION_SEMANTIC_INDEX The optimization is run for the $VR table (semantic search).

Note

• You can specify section_type only when the optlevel value is set to TOKEN_TYPE
or CTX_DDL.OPTLEVEL_TOKEN_TYPE.

• In the absence of sections of the specified type, index optimization for
section_type is a no-op (no operations). Similarly, in the absence of the $KG
table, index optimization for the CTX_DDL.SECTION_WILDCARD_INDEX section_type
value is a no-op.

Examples

The following two examples are equivalent ways of optimizing an index using fast optimization:

begin
 ctx_ddl.optimize_index('myidx','FAST');
end;

Chapter 8
OPTIMIZE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 87

begin
 ctx_ddl.optimize_index('myidx',CTX_DDL.OPTLEVEL_FAST);
end;

The following example optimizes the index token Oracle:

begin
 ctx_ddl.optimize_index('myidx','token', TOKEN=>'Oracle');
end;

To optimize all tokens of field section MYSEC in index MYINDEX:

begin
 ctx_ddl.optimize_index('myindex', ctx_ddl.optlevel_token_type,
 token_type=> ctx_report.token_type('myindex','field mysec text'));end;

The following two examples are equivalent ways of optimizing an index using merge
optimization:

begin
 ctx_ddl.optimize_index('idx','MERGE');
end;

begin
 ctx_ddl.optimize_index('idx',CTX_DDL.OPTLEVEL_MERGE);
end;

The following example optimizes the top 10 fragmented tokens in $I:

begin
 ctx_ddl.optimize_index('idx','TOKEN',maxtokens=>10);
end;

Notes

• You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time. You can
also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism at the same
time. However, you should not:

– Run CTX_DDL.SYNC_INDEX with parallelism at the same time as
CTX_DDL.OPTIMIZE_INDEX

– Run CTX_DDL.SYNC_INDEX with parallelism at the same time as
CTX_DDL.OPTIMIZE_INDEX with parallelism.

If you should run one of these combinations, no error is generated; however, one operation
will wait until the other is done.

• You cannot sync or optimize an index that is owned by a different schema. Doing so results
in the "DRG-10016: You must be the owner to modify this object" error.

Related Topics

• SYNC_INDEX
Synchronizes the index to process inserts, updates, and deletes to the base table.

• ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

Chapter 8
OPTIMIZE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 87

8.38 POPULATE_PENDING
This procedure populates the pending queue with every ROWID in the base table or table
partition. This procedure is only supported for CONTEXT indexes.

This procedure is valuable for large installations that cannot afford to have the indexing
process run continuously, and, therefore, need finer control over creating text indexes. The
preferred method is to create an empty index, place all the ROWIDs into the pending queue,
and build the index through CTX_DDL.SYNC_INDEX.

Syntax

ctx_ddl.populate_pending(
 idx_name IN VARCHAR2,
 part_name IN VARCHAR2 DEFAULT NULL
);

idx_name
Name of the CONTEXT indextype.

part_name
Name of the index partition, if any. Must be provided for local partitioned indexes and must be
NULL for global, nonpartitioned indexes.

Notes

The SYNC_INDEX is blocked for the duration of the processing. The index unit must be totally
empty (idx_docid_count = 0, idx_nextid = 1).

The ROWIDs of rows that are waiting for synchronization into the index are inserted into the
DR$INDEX_NAME$C table. You should ensure that there is sufficient space in these tables to hold
the ROWIDs of the base table.

Related Topics

• Oracle Text Application Developer's Guide

• SYNC_INDEX
Synchronizes the index to process inserts, updates, and deletes to the base table.

8.39 PREFERENCE_IMPLICIT_COMMIT
This variable, set at the package level for CTX_DDL, determines whether procedures related
to CTX_DDL preferences issue an implicit commit and is session duration.

You can set the PREFERENCE_IMPLICIT_COMMIT variable for the procedures listed in the
following table.

Procedure Name Procedure Name

ADD_ATTR_SECTION CREATE_INDEX_SET

ADD_FIELD_SECTION CREATE_PREFERENCE

ADD_INDEX CREATE_SECTION_GROUP

ADD_MDATA_COLUMN CREATE_STOPLIST

ADD_MDATA_SECTION DROP_PREFERENCE

Chapter 8
POPULATE_PENDING

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 87

Procedure Name Procedure Name

ADD_SDATA_COLUMN DROP_SECTION_GROUP

ADD_SDATA_SECTION DROP_STOPLIST

ADD_SPECIAL_SECTION REMOVE_INDEX

ADD_STOPCLASS REMOVE_SECTION

ADD_STOP_SECTION REMOVE_SUB_LEXER

ADD_STOPTHEME SET_ATTRIBUTE

ADD_STOPWORD UNSET_ATTRIBUTE

ADD_SUB_LEXER UPDATE_SUB_LEXER

ADD_ZONE_SECTION

Note

The REMOVE_STOPCLASS, REMOVE_STOPTHEME, and REMOVE_STOPWORD procedures do not
issue an implicit commit, and, therefore, do not use the PREFERENCE_IMPLICIT_COMMIT
flag.

Syntax

exec CTX_DDL.PREFERENCE_IMPLICIT_COMMIT := TRUE|FALSE ;

The default value of the PREFERENCE_IMPLICIT_COMMIT variable is TRUE. When this variable is
set to FALSE, procedures related to CTX_DDL preferences will not issue an implicit commit. This
enables you to easily rollback multiple preference changes. This variable is session duration.

Example

The following example turns off implicit commit.

exec CTX_DDL.PREFERENCE_IMPLICIT_COMMIT : update_sub_lexer = FALSE;

8.40 RECREATE_INDEX_ONLINE
Recreates the specified index, or recreates the passed-in index partition if the index is local
partitioned.

For global nonpartitioned indexes, this is a one-step procedure. For local partitioned indexes,
this procedure must be run separately on every partition after first using
CREATE_SHADOW_INDEX to create a shadow policy (or metadata). This procedure is only
supported in Enterprise Edition of Oracle AI Database.

The following changes are not supported:

• Transitioning from non-composite domain index to composite, or changing the composite
domain index columns.

• Rebuilding indexes that have partitioned index tables, for example, $I, $P, $K.

Chapter 8
RECREATE_INDEX_ONLINE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 87

Syntax

CTX_DDL.RECREATE_INDEX_ONLINE(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2 default NULL,
 parallel_degree IN NUMBER default 1,
 partition_name IN VARCHAR2 default NULL
);

idx_name
The name of a valid CONTEXT indextype.

parameter_string
If the index is a global nonpartitioned index, specify the same index-level parameter string as
in ALTER INDEX. Must start with REPLACE, if it is not NULL. Optionally specify SWAP or NOSWAP.
The default is SWAP.

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not supported
in the current release.

partition_name
Specify the name of a valid index partition for a local partitioned index. Otherwise, the default
is NULL. If the index is partitioned, then first pass a partition name, and then specify the
partition-level parameter string for ALTER INDEX REBUILD PARTITION.

Examples

Example 8-5 Recreate Simple Global Index

The following example creates an index idx with a BASIC_LEXER-based preference us_lexer. It
then recreates the index with a new MULTI_LEXER based preference m_lexer in one step. You
can use this one step approach when you do not mind that a query might fail for a small
window of time at the end of the operation, and DML might get blocked at the beginning for a
short time and again at the end.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* recreate index online with the new multip-lexer */
exec ctx_ddl.recreate_index_online('idx',
 'replace lexer m_lexer language column lang');

Chapter 8
RECREATE_INDEX_ONLINE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 87

Example 8-6 Local Index Recreate with All-At-Once Swap

The following example creates a local partitioned index idxp with a basic lexer us_lexer. It has
two index partitions idx_p1 and idx_p2. It then recreates a local partitioned index idxp online
with partition idx_p1, which will have a new storage preference new_store. The swapping of
the partition metadata and index partition data occur at the end. In this example, queries
spanning multiple partitions return consistent results across partitions when recreate is in
process, except at the end when EXCHANGE_SHADOW_INDEX is running. The extra space
required is the combined index size of partition idx_p1 and idx_p2.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer */
exec ctx_ddl.create_shadow_index('idxp', null,
 'replace lexer m_lexer language column lang');

/* recreate every index partition online without swapping */
exec ctx_ddl.recreate_index_online('idxp',
 'replace storage my_store NOSWAP', 1, 'idx_p1');
exec ctx_ddl.recreate_index_online('idxp','replace NOSWAP',1,'idx_p2');

/* exchange in shadow index partition all at once */
exec ctx_ddl.exchange_shadow_index('idxp',
 'idx_p1') /* exchange index partition data*/
exec ctx_ddl.exchange_shadow_index('idxp',
 'idx_p2') /* exchange index partition data*/

/* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp')

Example 8-7 Local Index Recreate with Per-Partition Swap

This example performs the same tasks as Example 8-6, except that each index partition is
swapped in as it is completed. Queries across all partitions may return inconsistent results in
this example.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local

Chapter 8
RECREATE_INDEX_ONLINE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 87

 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp',
 'replace lexer m_lexer language column lang');

/* recreate every index partition online and swap (default) */
exec ctx_ddl.recreate_index_online('idxp',
 'replace storage my_store', 1, 'idx_p1');
exec ctx_ddl.recreate_index_online('idxp', 'replace SWAP', 1, 'idx_p2',

 /* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp')

Example 8-8 Scheduled Local Index Recreate with All-At-Once Swap

This example shows the incremental recreation of a local partitioned index, where partitions
are all swapped at the end.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

Chapter 8
RECREATE_INDEX_ONLINE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 87

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp',
 'replace lexer m_lexer language column lang');
/* create shadow partition with new storage preference */
exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage
nopopulate',1,'idx_p1');
exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage
nopopulate',1,'idx_p2');

declare
 idxid integer;
 ixpid integer;
begin
 select idx_id into idxid from ctx_user_indexes
 where idx_name = 'IDXP';
 select ixp_id into ixpid from ctx_user_index_partitions
 where ixp_index_name = 'IDXP'
 and ixp_index_partition_name = 'IDX_P1';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid, 'RIO$'||idxid||'#'||ixpid);
 /* incremental sync
 ctx_ddl.sync_index('RIO$'||idxid, null, 'RIO$'||idxid||'#'||ixpid,
 maxtime=>400);
 /* more incremental sync until no more pending rows */

 select ixp_id into ixpid from ctx_user_index_partitions
 where ixp_index_name = 'IDXP'
 and ixp_index_partition_name = 'IDX_P2';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid, 'RIO$'||idxid||'#'||ixpid);
 /* incremental sync
 ctx_ddl.sync_index('RIO$'||idxid, null, 'RIO$'||idxid||'#'||ixpid,
 maxtime=>400);
 /* more incremental sync until no more pending rows */
end;
/

exec ctx_ddl.exchange_shadow_index('idxp','idx_p1');
exec ctx_ddl.exchange_shadow_index('idxp','idx_p2');
exec ctx_ddl.exchange_shadow_index('idxp');

Example 8-9 Schedule Local Index Recreate with Per-Partition Swap

For incremental recreate where partitions are swapped as they becomes available, follow the
steps in example Example 8-8, except instead of waiting until all syncs are finished before
starting exchange shadow index, EXCHANGE_SHADOW_INDEX is done for each partition
right after sync is finished.

Notes

• Using RECREATE_INDEX_ONLINE with Global Nonpartitioned Indexes:

For global indexes, this procedure provides a one-step process to recreate an index online.
It recreates an index, with new preference values, while preserving base table DML and
query capability during the recreate process.

Because the new index is created alongside the existing index, this operation requires
additional storage roughly equal to the size of the existing index.

• DML Behavior:

Chapter 8
RECREATE_INDEX_ONLINE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 87

Because this procedure is performed online, DML on the base table are permitted during
this operation, and are processed as normal. All DML statements that occur during
RECREATE_INDEX_ONLINE are logged into an online pending queue.

Towards the end of the recreate operation, there will be a short duration when DML will fail
with an error being raised stating that the index is in an in-progress status. DML may stop
responding again during the process, and the duration will depend on how many DML are
logged in the online pending queue since the start of the recreate process.

Note that after the recreate index operation is complete, new information, from all the DML
that becomes pending since RECREATE_INDEX_ONLINE started, may not be immediately
reflected. As with creating an index with INDEXTYPE IS ctxsys.context ONLINE, the index
should be synchronized after the recreate index operation is complete, to bring it fully up-
to-date.

• Sync and Optimize Behavior:

Syncs issued against the index during the recreate operation are processed against the
old, existing data. Syncs are also blocked during the same window when queries return
errors.

After running RECREATE_INDEX_ONLINE, you must call the SYNC_INDEX operation to
synchronize any DML that occurs during the build of the shadow index. If you have
specified SYNC(ON COMMIT) or SYNC(EVERY), then the sync occurs automatically. However,
if you have specified SYNC(MANUAL), then you must manually invoke SYNC_INDEX.

Optimize commands issued against the index during the recreate operation return
immediately without error and without processing.

• Query Behavior:

During the recreate operation, the index can be queried normally most of the time. Queries
return results based on the existing index and policy (or metadata) until after the final
swap.

There is a short interval towards the end of RECREATE_INDEX_ONLINE when queries will
return an error indicating that the column is not indexed. This duration should be short for
regular queries. It is mainly the time taken for swapping data segments of the shadow
index tables and the index tables, plus the time to delete all the rows in the pending queue.
This is the same window of time when DML will fail.

During RECREATE_INDEX_ONLINE, if you issue DML statements and synchronize them, then
you will be able to see the new rows when you query on the existing index. However, after
RECREATE_INDEX_ONLINE finishes (swapping completes and query is on the new index) and
before sync is performed, it is possible that you will not be able to query on the new rows,
which once could be queried on the old index.

Transactional queries are not supported.

• Using RECREATE_INDEX_ONLINE with Local Partitioned Indexes:

If the index is local partitioned, you cannot recreate index in one step. You must first create
a shadow policy, and then run this procedure for every partition. You can specify SWAP or
NOSWAP to indicate whether RECREATE_INDEX_ONLINE partition will swap the index partition
data and index partition metadata or not. If the partition was built with NOSWAP, then another
call to EXCHANGE_SHADOW_INDEX must be invoked later against this partition.

This procedure can also be used to update the metadata (for example, storage preference)
of each partition when you specify NOPOPULATE in the parameter string. This is useful for
incremental building of a shadow index through time-limited sync.

If NOPOPULATE is specified, then NOSWAP is silently enforced.

• NOSWAP Behavior:

Chapter 8
RECREATE_INDEX_ONLINE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 87

During the recreate of the index partition, since no swapping is performed, queries on the
partition are processed regularly. Until the swapping stage is reached, queries spanning
multiple partitions return consistent results across partitions.

DML and sync are processed normally. Running optimize on partitions that are being
recreated, or that have been built (but not swapped), simply returns without doing anything.
Running optimize on a partition that has not been rebuilt processes normally.

As with a global index, when all of the partitions use NOSWAP, the additional storage
requirement is roughly equal to the size of the existing index.

• SWAP Behavior:

Because index partition data and metadata are swapped after index recreate, queries that
span multiple partitions will not return consistent results from partition to partition, but will
always be correct with respect to each index partition. There is also a short interval
towards the end of partition recreate, when the index partition is swapped, during which a
query will return a "column not indexed" error.

When partitions are recreated with SWAP, the additional storage requirement for the
operation is equal to the size of the existing index partition.

DML on the partition is blocked. Sync is also blocked during swapping.

• Restrictions:

The RECREATE_INDEX_ONLINE and CREATE_SHADOW_INDEX procedures do not support
section group with the XML_ENABLE attribute on CONTEXT indexes. Doing so results in the
"DRG-10521: Operation not supported with XML_ENABLE on a CONTEXT Index" error.

The RECREATE_INDEX_ONLINE and CREATE_SHADOW_INDEX procedures are not supported for
search indexes.

Related Topics

• CREATE INDEX
Use the CREATE INDEX statement to create an Oracle Text index.

• CREATE_SHADOW_INDEX
Creates index metadata (or policy) for the specified index. If the index is not partitioned,
then it also creates the index tables. This procedure is only supported in Enterprise Edition
of Oracle AI Database.

• EXCHANGE_SHADOW_INDEX
This procedure swaps the index (or index partition) metadata and index (or index partition)
data.

• DROP_SHADOW_INDEX

• Oracle Text Application Developer's Guide

8.41 REM_SEC_GRP_ATTR_VAL
Removes a specific section group attribute value from the list of values of an existing section
group attribute.

Syntax

CTX_DDL.REM_SEC_GRP_ATTR_VAL(group_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2);

Chapter 8
REM_SEC_GRP_ATTR_VAL

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 87

group_name
Specify the section group name.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value.

8.42 REMOVE_AUTO_OPTIMIZE
Removes an index or partition from the list of indexes subject to auto optimization. No new
auto optimization calls are made to this index. The removal takes effect immediately.

If the specified index is not in the existing list of indexes, then an error occurs. For partitioned
indexes, an error occurs when the partition name is not specified.

Note

In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE and
REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are deprecated.

Syntax

CTX_DDL.REMOVE_AUTO_OPTIMIZE(

 idx_name IN VARCHAR2,
 part_name IN VARCHAR2 default NULL
);

idx_name
Specify the name of the index to remove.

part_name
Specify the name of the partition to remove.

Related Topic

"ADD_AUTO_OPTIMIZE"

8.43 REMOVE_INDEX
Removes the index with the specified column list from a CTXCAT index set preference.

This procedure does not remove a CTXCAT sub-index from the existing index. To do so, you
must drop your index and re-index with the modified index set preference.

Chapter 8
REMOVE_AUTO_OPTIMIZE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 87

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

Syntax

CTX_DDL.REMOVE_INDEX(

 set_name IN VARCHAR2,
 column_list IN VARCHAR2
 language IN VARCHAR2 default NULL
);

set_name
Specify the name of the index set.

column_list
Specify the name of the column list to remove.

8.44 REMOVE_MDATA
Use this procedure to remove metadata values, which are associated with an MDATA section,
from a document.

Only the owner of the index is allowed to call ADD_MDATA and REMOVE_MDATA.

CTX_DDL.REMOVE_MDATA is transactional and takes effect immediately in the calling session.
This procedure can be seen only in the calling session and must be committed to take
permanent effect. You can reverse this procedure with a ROLLBACK command.

Syntax

CTX_DDL.REMOVE_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 values SYS.ODCIVARCHAR2LIST,
 rowids SYS.ODCIRIDLIST,
 [part_name] IN VARCHAR2
);

idx_name
Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

Chapter 8
REMOVE_MDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 87

values
List of metadata values. If a metadata value contains a comma, the comma must be escaped
with a backslash.

rowids
Rowids from which to remove the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and must be
NULL for global, nonpartitioned indexes.

Example

This example removes the MDATA value blue from the MDATA section BGCOLOR.

ctx_ddl.remove_mdata('idx_docs', 'bgcolor', 'blue', 'rows');

Note

• These updates are updates directly on the index itself, not on the actual contents
stored in the base table. Therefore, they will not exist when the Text index is
rebuilt.

• CTX_DDL.REMOVE_MDATA is not supported for documents with Oracle Text search
index as stage_itab is ON by default for Oracle Text search index.

Related Topics

"ADD_MDATA"

"ADD_MDATA_SECTION"

"MDATA"

The Section Searching chapter of Oracle Text Application Developer's Guide

8.45 REMOVE_SECTION
The REMOVE_SECTION procedure removes the specified section from the specified section
group. You can specify the section by name or ID. View section ID with the CTX_USER_SECTIONS
view.

Syntax 1

Use the following syntax to remove a section by section name:

CTX_DDL.REMOVE_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2
);

group_name
Specify the name of the section group from which to delete section_name.

section_name
Specify the name of the section to delete from group_name.

Chapter 8
REMOVE_SECTION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 87

Syntax 2

Use the following syntax to remove a section by section ID:

CTX_DDL.REMOVE_SECTION(
 group_name IN VARCHAR2,
 section_id IN NUMBER
);

group_name
Specify the name of the section group from which to delete section_id.

section_id
Specify the section ID of the section to delete from group_name.

Example

The following example drops a section called Title from the htmgroup:

begin
ctx_ddl.remove_section('htmgroup', 'Title');
end;

Related Topics

"ADD_FIELD_SECTION"

"ADD_SPECIAL_SECTION "

"ADD_ZONE_SECTION "

8.46 REMOVE_STOPCLASS
Removes a stopclass from a stoplist.

Syntax

CTX_DDL.REMOVE_STOPCLASS(
 stoplist_name IN VARCHAR2,
 stopclass IN VARCHAR2
);

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the name of the stopclass to be removed.

Example

The following example removes the stopclass NUMBERS from the stoplist mystop.

begin
ctx_ddl.remove_stopclass('mystop', 'NUMBERS');
end;

Related Topic

"ADD_STOPCLASS "

Chapter 8
REMOVE_STOPCLASS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 87

8.47 REMOVE_STOPTHEME
Removes a stoptheme from a stoplist.

Syntax

CTX_DDL.REMOVE_STOPTHEME(
 stoplist_name IN VARCHAR2,
 stoptheme IN VARCHAR2
);

stoplist_name
Specify the name of the stoplist.

stoptheme
Specify the stoptheme to be removed from stoplist_name.

Example

The following example removes the stoptheme banking from the stoplist mystop:

begin
ctx_ddl.remove_stoptheme('mystop', 'banking');
end;

Related Topic

"ADD_STOPTHEME "

8.48 REMOVE_STOPWORD
Removes a stopword from a stoplist. To have the removal of a stopword be reflected in the
index, you must rebuild your index. You can also remove a language-independent stopword.

Syntax

CTX_DDL.REMOVE_STOPWORD(

stoplist_name IN VARCHAR2,
stopword IN VARCHAR2,
language IN VARCHAR2 default NULL

);

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be removed from stoplist_name.

language
Specify the language of stopword to remove when the stoplist you specify with stoplist_name
is of type MULTI_STOPLIST. You must specify the globalization support name or abbreviation of
an Oracle Text-supported language. You can also remove ALL stopwords.

Example

The following example removes a stopword because from the stoplist mystop:

Chapter 8
REMOVE_STOPTHEME

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 75 of 87

begin

ctx_ddl.remove_stopword('mystop','because');

end;

Related Topic

"ADD_STOPWORD "

8.49 REMOVE_SUB_LEXER
Removes a sub-lexer from a multi-lexer preference. You cannot remove the lexer for DEFAULT.
You can also remove a language-independent sub-lexer.

Syntax

CTX_DDL.REMOVE_SUB_LEXER(

lexer_name IN VARCHAR2,
language IN VARCHAR2 default NULL

);

lexer_name
Specify the name of the multi-lexer preference or language-independent sub-lexer.

language
Specify the language of the sub-lexer to remove. You must specify the globalization support
name or abbreviation of an Oracle Text-supported language.

Example

The following example removes a sub-lexer german_lexer of language german:

begin

ctx_ddl.remove_sub_lexer('german_lexer','german');

end;

Related Topic

"ADD_SUB_LEXER "

8.50 REPLACE_INDEX_METADATA
Use this procedure to replace metadata in local domain indexes at the global (index) level.

Chapter 8
REMOVE_SUB_LEXER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 76 of 87

Note

The ALTER INDEX PARAMETERS command performs the same function as this
procedure and can replace more than just metadata. For that reason, using ALTER
INDEX PARAMETERS is the preferred method of replacing metadata at the global (index)
level and should be used in place of this procedure when possible. For more
information, see "ALTER INDEX PARAMETERS Syntax".

CTX_REPLACE_INDEX_METADATA may be deprecated in a future release of Oracle Text.

Syntax

CTX_DDL.REPLACE_INDEX_METADATA(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2
);

idx_name
Specify the name of the index whose metadata you want to replace.

parameter_string
Specify the parameter string to be passed to ALTER INDEX. This must begin with 'REPLACE
METADATA'.

Notes

ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA') does not work for a local
partitioned index at the index (global) level. You cannot, for example, use that ALTER INDEX
syntax to change a global preference, such as filter or lexer type, without rebuilding the index.
Therefore, CTX_DDL.REPLACE_INDEX_METADATA is provided as a method of overcoming this
limitation of ALTER INDEX. Also, ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA')
does not work with forward_index; instead use 'REPLACE STORAGE'.

Though it is meant as a way to replace metadata for a local partitioned index,
CTX_DDL.REPLACE_INDEX_METADATA can be used on a global, nonpartitioned index, as well.

REPLACE_INDEX_METADATA cannot be used to change the sync type at the partition level; that is,
parameter_string cannot be 'REPLACE METADATA SYNC'. For that purpose, use ALTER INDEX
REBUILD PARTITION to change the sync type at the partition level.

Related Topics

"ALTER INDEX PARAMETERS Syntax"

"ALTER INDEX REBUILD Syntax"

8.51 SET_ATTRIBUTE
Sets a preference attribute. Use this procedure after you have created a preference with
CTX_DDL.CREATE_PREFERENCE.

Syntax

CTX_DDL.SET_ATTRIBUTE(
 preference_name IN VARCHAR2,
 attribute_name IN VARCHAR2,

Chapter 8
SET_ATTRIBUTE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 77 of 87

 attribute_value IN VARCHAR2
);

preference_name
Specify the name of the preference.

Note

Procedure names should not include the semicolon character.

attribute_name
Specify the name of the attribute.

attribute_value
Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or NO, Y or N,
ON or OFF, or 1 or 0.

Examples

Example 8-10 Specifying File Data Storage

The following example creates a data storage preference called filepref that tells the system
that the files to be indexed are stored in an Oracle directory object. The example then uses
CTX_DDL.SET_ATTRIBUTE to set the DIRECTORY attribute to the directory /docs.

begin
ctx_ddl.create_preference('filepref', 'DIRECTORY_DATASTORE');
ctx_ddl.set_attribute('filepref', 'DIRECTORY', '/docs');
end;

Example 8-11 Storing Text Index Tables in the In-Memory Column Store

This example creates a storage preference called mysto of type BASIC_STORAGE that specifies
that the $I index table must be stored in the In-Memory Column Store (IM column store).

exec ctx_ddl.create_preference('mysto', 'basic_storage');
exec ctx_ddl.set_attribute('mysto', 'I_TABLE_CLAUSE', 'inmemory’);

Related Topics

• CREATE_PREFERENCE
Creates a preference in the Text data dictionary.

• Datastore Types
Use the datastore types to create a datastore preference. This helps you specify how your
text is stored.

• BASIC_STORAGE

8.52 SET_SEC_GRP_ATTR
Adds a section group-specific attribute to a section group identified by name.

Also used to set xml_enable to support XML awareness.

Chapter 8
SET_SEC_GRP_ATTR

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 78 of 87

Syntax

CTX_DDL.SET_SEC_GRP_ATTR(
 group_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2
);

group_name
Specify the name of the section group.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value. The following are the attributes with their supported
values:

• xml_enable: Specify boolean values as TRUE or FALSE, T or F, YES or NO, Y or N, ON or OFF,
or 1 or 0.

Related Topics

"CREATE_SECTION_GROUP "

8.53 SET_SECTION_ATTRIBUTE
Use SET_SECTION_ATTRIBUTE to specify attributes or properties for a given section.

The attribute names listed under "Syntax" are supported. Note that some attributes only apply
to sections that are tokenized. The following section types are tokenized:

• Field sections

• Zone sections

• SDATA sections

Syntax

CTX_DDL.SET_SECTION_ATTRIBUTE(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN VARCHAR2
);

group_name
Specify the name of the section group.

section_name
Specify the name of the section.

attribute
Specify this attribute for SDATA sections:

Chapter 8
SET_SECTION_ATTRIBUTE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 79 of 87

• Visible section attribute

This attribute works with FIELD sections only. For FIELD sections:

Specify TRUE to make the text visible within the rest of the document. By default, the
visible flag is FALSE. This means that Oracle Text indexes the text within field sections as
a sub-document separate from the rest of the document. However, you can set the visible
flag to TRUE if you want text within the field section to be indexed as part of the enclosing
document.

For field sections, attribute will override the value specified in
CTX_DDL.ADD_FIELD_SECTION.

An error is thrown if you try to set the visible attribute for a zone section.

An error is thrown if the visible attribute is set on a non-tokenized section.

• save_copy. Set to True or False. The save_copy option is valid for all types of sections, but
only SDATA attributes are fetched from $D table. The rest of the sections are stored for
display purposes only (depending on value of save_copy). SDATA sections are never
stored for display purposes, but are stored independently (in a separate column of $D
table) for efficient fetching (depending on value of save_copy). For all sections (except for
SDATA sections): A section is either displayed or discarded during document service
procedures (snippet, markup, highlight) depending on the value of save_copy.

• optimized_for section attribute

This attribute makes an SDATA section optimal for search, optimal for sort, or optimal for
both search and sort. These are achieved by setting the attribute value to search, sort, or
sort_and_search.

– search provides efficient searching on SDATA sections.

– sort provides efficient sorting on SDATA sections. This is the default value.

– sort_and_search provides efficient searching and sorting on SDATA sections.

value
Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or NO, Y or N,
ON or OFF, or 1 or 0.

Example

The following example creates a basic section group called sg, adds a SDATA section to it and
marks that SDATA section to be searchable by using the ctx_ddl.set_section_attribute:

begin
 exec ctx_ddl.create_section_group('sg', 'basic_section_group');
 exec ctx_ddl.add_sdata_section('sg', 'sec1', 'sec1', 'varchar2');
 exec ctx_ddl.set_section_attribute('sg', 'sec1', 'optimized_for', 'search');
end;

Notes

Like CTX_DDL.SET_ATTRIBUTE, this procedure issues a commit.

Related Topic

See also the "Searching Document Sections in Oracle Text" chapter of Oracle Text Application
Developer's Guide.

Chapter 8
SET_SECTION_ATTRIBUTE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 80 of 87

8.54 SYNC_INDEX
Synchronizes the index to process inserts, updates, and deletes to the base table.

Note

Because CTX_DDL.SYNC_INDEX issues implicit commits, calling CTX_DDL.SYNC_INDEX in
a trigger is strongly discouraged. Doing so can result in errors being raised, as both
SYNC_INDEX and post-commit $R LOB maintenance try to update the same $R LOB.

Syntax

CTX_DDL.SYNC_INDEX(
 idx_name IN VARCHAR2 DEFAULT NULL
 memory IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL,
 parallel_degree IN NUMBER DEFAULT 1
 maxtime IN NUMBER DEFAULT NULL,
 locking IN NUMBER DEFAULT LOCK_WAIT
);

idx_name
Specify the name of the index to synchronize.

Note

When idx_name is null, all CONTEXT and CTXRULE indexes that have pending changes
are synchronized. You must be connected as ctxsys to perform this operation. Each
index or index partition is synchronized in sequence, one after the other. Because of
this, the individual syncs are performed with locking set to NOWAIT and maxtime set to
0. Any values that you specify for locking or maxtime on the SYNC_INDEX call are
ignored. However, the memory and parallel_degree parameters are passed on to the
individual synchronizations.

memory
Specify the runtime memory to use for synchronization. This value overrides the
DEFAULT_INDEX_MEMORY system parameter.
The memory parameter specifies the amount of memory Oracle Text uses for the
synchronization operation before flushing the index to disk. Specifying a large amount of
memory:

• Improves indexing performance because there is less I/O

• Improves query performance and maintenance because there is less fragmentation

• The indexing memory size specified in the second argument applies to each parallel
worker. For example, if the memory argument is set to 500M and parallel_degree is set to
2, then ensure that there is at least 1GB of memory available on the system used for the
parallel SYNC_INDEX.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when runtime memory is scarce.

Chapter 8
SYNC_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 87

part_name
If your index is a local index, then the part_name parameter is not mandatory. You may set
part_name to specify the name of the index partition to synchronize, otherwise all index
partitions are synchronized.
If your index is a global, nonpartitioned index, then specify NULL, which is the default.

parallel_degree
Specify the degree to run parallel synchronize. A number greater than 1 turns on parallel
synchronize. The actual degree of parallelism might be smaller depending on your resources.

maxtime
Indicate a suggested time limit on the operation, in minutes. SYNC_INDEX will process as many
documents in the queue as possible within the time limit. The maxtime value of NULL is
equivalent to CTX_DDL.MAXTIME_UNLIMITED. This parameter is ignored when SYNC_INDEX is
invoked without an index name, in which case maxtime value of 0 is used instead. The
locking parameter is ignored for automatic syncs (that is, SYNC ON COMMIT or SYNC EVERY).
The time limit specified is treated as approximate. The actual time taken may be somewhat
less than or greater than what you specify. The "time clock" for maxtime does not start until the
SYNC lock is acquired.

locking
Configure how SYNC_INDEX deals with the situation where another sync is already running on
the same index or index partition. When locking is ignored because SYNC_INDEX is invoked
without an index name, then locking value of LOCK_NOWAIT is used instead. The locking
parameter is ignored for automatic syncs (that is, SYNC ON COMMIT or SYNC EVERY).
The options for locking are:

Locking Parameter Description

CTX_DDL.LOCK_WAIT If another sync is running, wait until the running sync is
complete, then begin sync. (In the event of not being able to
get a lock, it will wait forever and ignore the maxtime
setting.)

CTX_DDL.LOCK_NOWAIT If another sync is running, immediately returns without
error.

CTX_DDL.LOCK_NOWAIT_ERROR If another sync is running, error "DRG-51313: timeout while
waiting for DML or optimize lock" is raised.

Example

The following example synchronizes the index myindex with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M');

end;

The following example synchronizes the part1 index partition with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M', 'part1');

end;

Chapter 8
SYNC_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 82 of 87

Notes

• For indexes with manual maintenance, this API launches sync in the foreground and
returns after the running sync is complete.

For indexes with automatic maintenance, instead of running sync in the foreground, this
API waits for any background sync event to finish and returns after the sync is complete.
The background CTX_DDL.SYNC_INDEX operation performs the following steps in an order:

1. Resets all events (waiting for retry) for an index or index partition.

2. Waits for the background maintenance to finish, and performs SYNC-Mapping (Sync-M)
in the foreground.

3. Posts the Scheduler process to start processing pending events in the background.

4. Waits for any background process to complete if the locking parameter is set to
CTX_DDL.LOCK_WAIT. For all other locking parameter values, returns after completing
Sync-M.

The values of the memory, parallel_degree, maxtime, and direct_path parameters
are ignored.

If some background events are delayed or cannot complete, CTX_DDL.SYNC_INDEX
returns ORA-30608 and logs an error message in the CTX_USER_BACKGROUND_EVENTS,
CTX_BACKGROUND_EVENTS, and V$TEXT_WAITING_EVENTS views.

For detailed information about these steps, see Oracle Text Application Developer's Guide.

• You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time. You can
also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism at the same
time. However, you should not run CTX_DDL.SYNC_INDEX with parallelism at the same time
as CTX_DDL.OPTIMIZE_INDEX, nor CTX_DDL.SYNC_INDEX with parallelism at the same time
as CTX_DDL.OPTIMIZE_INDEX with parallelism. If you should run one of these combinations,
no error is generated; however, one operation will wait until the other is done.

• For indexes with a staging table ($G), SYNC_INDEX automatically merges data back from the
staging table to the permanent index table ($I) when the threshold of rows inserted into the
staging table exceeds the value of the STAGE_ITAB_MAX_ROWS setting and the
STAGE_ITAB_MAX_ROWS is set to a value different than zero. The merge process uses a
degree of parallelism of 4. Therefore, there is no need to explicitly run
CTX_DDL.OPTIMIZE_INDEX in MERGE mode or to manually schedule a background job doing
the same.

If you want to submit a user-owned DBMS_SCHEDULER background job to run
CTX_DDL.OPTIMIZE_INDEX in MERGE mode, then you must explicitly set the
STAGE_ITAB_MAX_ROWS attribute to 0. This turns off the automatic merge process that occurs
during SYNC_INDEX. The user-submitted background job then periodically merges rows
from $G to $I.

• You can set STAGE_ITAB_AUTO_OPT to enable automatic optimize merge. This setting
automatically merges rows from $G to $I in the background.

When STAGE_ITAB_MAX_ROWS is set to a value greater than 0 and the automatic optimize
merge is not enabled using STAGE_ITAB_AUTO_OPT, some SYNC operations may take an
unexpectedly long time to complete due to the merging of rows from $G to $I.

• You cannot run DDL ALTER TABLE .. MODIFY concurrently with an index synchronization or
index maintenance operation, such as SYNC_INDEX.

• You cannot sync or optimize an index that is owned by a different schema. Doing so results
in the "DRG-10016: You must be the owner to modify this object" error.

Chapter 8
SYNC_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 83 of 87

Related Topics

• ALTER INDEX
Use the ALTER INDEX statement to change or rebuild an existing index, such as Oracle Text
index, Oracle Text search index, JSON search index, XML search index, or hybrid vector
index.

8.55 UNSET_ATTRIBUTE
Removes a set attribute from a preference.

Syntax

CTX_DDL.UNSET_ATTRIBUTE(preference_name varchar2,
 attribute_name varchar2);

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

Example

Enabling/Disabling Alternate Spelling

The following example shows how you can enable alternate spelling for German and disable
alternate spelling with CTX_DDL.UNSET_ATTRIBUTE:

begin
ctx_ddl.create_preference('GERMAN_LEX', 'BASIC_LEXER');
ctx_ddl.set_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING', 'GERMAN');
end;

To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE procedure as follows:

begin
ctx_ddl.unset_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING');
end;

Related Topics

"SET_ATTRIBUTE "

8.56 UNSET_SEC_GRP_ATTR
Removes a section group-specific attribute.

Syntax

CTX_DDL.UNSET_SEC_GRP_ATTR(group_name varchar2,
 attribute_name varchar2);

group_name
Specify the name of the section group.

attribute_name
Specify the name of the attribute.

Chapter 8
UNSET_ATTRIBUTE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 84 of 87

Related Topics

"UNSET_ATTRIBUTE "

8.57 UPDATE_SUB_LEXER
Updates a sub-lexer and modifies its multi-lexer preference, language, or sub-lexer. You can
also update default sub-lexers using this procedure. This procedure can be used in conjunction
with the CTX_DDL.PREFERENCE_IMPLICIT_COMMIT variable.

See Also

"PREFERENCE_IMPLICIT_COMMIT" for information about setting this variable

Syntax

UPDATE_SUB_LEXER (
 lexer_name IN VARCHAR2,
 language IN VARCHAR2,
 sub_lexer IN VARCHAR2
);

lexer_name
Specify the name of the multi-lexer preference that needs to be updated.

language
Specify the language name of the sub-lexer. Use DEFAULT for the default sub-lexers.
See "language" for information on how to specify the globalization support language name or
abbreviation of the sub-lexer.

sub_lexer
Specify the name of the sub-lexer to use for this language.

Related Topics

"ADD_SUB_LEXER "

"REMOVE_SUB_LEXER"

8.58 UPDATE_POLICY
Updates a policy created with CREATE_POLICY. Replaces the preferences of the policy. Null
arguments are not replaced.

Syntax

CTX_DDL.UPDATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

Chapter 8
UPDATE_SUB_LEXER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 85 of 87

policy_name
Specify the name of the policy to update.

filter
Specify the filter preference to use.

section_group
Specify the section group to use.

lexer
Specify the lexer preference to use.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

8.59 UPDATE_SDATA
UPDATE_SDATA is an index API that modifies the specified SDATA values in the index. This API
does not store or modify column values in a base table, where the base table column may
have been used as an SDATA section.

Note

The UPDATE_SDATA API in Oracle Text is deprecated in Oracle AI Database 26ai.
Instead of modifying the index, Oracle recommends that you update the underlying
data.

Export/import operations rebuild the index from the base table using the specified preferences.
Since modifications made using the UPDATE_SDATA API are not present in the base table, the
export/import operation does not preserve these changes.

UPDATE_SDATA modifies temporary metadata it adds in the index table, not the base table. It
cannot be used to directly add metadata. For export/import of metadata that is persistent,
create a base table column that contains the metadata values. You can then update the
metadata through the column in the base table.

UPDATE_SDATA truncates data which is larger than 249 bytes.

Syntax

CTX_DDL.UPDATE_SDATA(
 idx_name IN VARCHAR2 DEFAULT NULL,
 section_name IN VARCHAR2 DEFAULT NULL,
 sdata_value IN sys.anydata,
 sdata_rowid IN rowid,
 part_name IN VARCHAR2 DEFAULT NULL);

idx_name
Specify the name of the index.

section_name
Specify the name of the SDATA section.

Chapter 8
UPDATE_SDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 86 of 87

sdata_value
Specify the new SDATA value.

sdata_rowid
Specify the rowid for which the SDATA value needs to be updated.

part_name
Specify the name of the locally partitioned index, if applicable. Specify NULL for the global
index.

Related Topics

"SDATA"

"ADD_SDATA_COLUMN"

"ADD_SDATA_SECTION"

See Also

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text Application
Developer's Guide

Chapter 8
UPDATE_SDATA

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 87 of 87

9
CTX_DOC Package

The CTX_DOC PL/SQL package provides procedures and functions for requesting document
services, such as highlighting extracted text or generating a list of themes for a document.

• About CTX_DOC Package Procedures

The CTX_DOC package includes the following procedures and functions:

Name Description

FILTER Generates a plain text or HTML version of a document.

GIST Generates a Gist or theme summaries for a document.

HIGHLIGHT Generates plain text or HTML highlighting offset information for
a document.

IFILTER Generates a plain text version of binary data. Can be called
from a USER_DATASTORE procedure.

MARKUP Generates a plain text or HTML version of a document with
query terms highlighted.

PKENCODE Encodes a composite textkey string (value) for use in other
CTX_DOC procedures.

POLICY_FILTER Generates a plain text or HTML version of a document, without
requiring an index.

POLICY_GIST Generates a Gist or theme summaries for a document, without
requiring an index.

POLICY_HIGHLIGHT Generates plain text or HTML highlighting offset information for
a document, without requiring an index.

POLICY_LANGUAGES Provides the ability to fetch the language for a section of text.

POLICY_MARKUP Generates a plain text or HTML version of a document with
query terms highlighted, without requiring an index.

POLICY_NOUN_PHRASES Extracts noun phrases for a document.

POLICY_PART_OF_SPEECH Extracts the part of speech for each word in a document.

POLICY_SNIPPET Generates a concordance for a document, based on query
terms, without requiring an index.

POLICY_STEMS Extracts stems for each word in a body of text.

POLICY_THEMES Generates a list of themes for a document, without requiring an
index.

POLICY_TOKENS Generates all index tokens for a document, without requiring an
index.

SENTIMENT Performs sentiment analysis for a single document and
provides a separate sentiment score for each segment within
the document.

SENTIMENT_AGGREGATE Performs sentiment analysis for a single document and
provides an aggregate sentiment score for the entire document.

SET_KEY_TYPE Sets CTX_DOC procedures to accept rowid or primary key
document identifiers.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 49

Name Description

SNIPPET Generates a concordance for a document, based on query
terms.

THEMES Generates a list of themes for a document.

TOKENS Generates all index tokens for a document.

The performance of the procedures SNIPPET, HIGHLIGHT, and MARKUP can be improved by
using the forward index feature, and the performance of the procedures FILTER, GIST,
THEMES. TOKENS can be improved by using the save copy feature of Oracle Text.

See Also

Oracle Text Application Developer's Guide for more information about forward index
and save copy features

9.1 About CTX_DOC Package Procedures
Many of the CTX_DOC PL/SQL package procedures exist in two versions: those that make use
of indexes, and those that do not. Those that do not make use of indexes are called "policy-
based" procedures. They are offered because there are times when you may want to use
document services on a single document without creating a CONTEXT index in advance.
Policy-based procedures enable you to do this.

The policy_* procedures mirror the conventional in-memory document services and are used
with policy_name replacing index_ name, and document of type VARCHAR2, CLOB, BLOB, or
BFILE replacing textkey. Thus, you need not create an index to obtain document services
output with these procedures.

For the procedures that generate character offsets and lengths, such as HIGHLIGHT and
TOKENS, Oracle Text follows USC-2 codepoint semantics.

Note

The APIs in the CTX_DOC package do not support identifiers that are prefixed with the
schema or the owner name.

9.2 FILTER
Use the CTX_DOC.FILTER procedure to generate either a plain text or HTML version of a
document.

You can store the rendered document in either a result table or in memory. This procedure is
generally called after a query, from which you identify the document to be filtered.

Chapter 9
About CTX_DOC Package Procedures

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 49

Note

The resultant HTML document does not include graphics.

Syntax 1: In-memory Result Storage

exec CTX_DOC.FILTER(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN OUT NOCOPY CLOB,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.FILTER(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN VARCHAR2,
 query_id IN NUMBER DEFAULT 0,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the document
identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• a single column primary key value

• encoded specification for a composite (multiple column) primary key. Use
CTX_DOC.PKENCODE

• the rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

restab
You can specify that this procedure store the marked-up text to either a table or to an in-
memory CLOB.
To store results to a table, specify the name of the table. The table to which you want to store
results must exist before you make this call.

See Also

"Filter Table" in Oracle Text Result Tables for more information about the structure of
the filter result table

To store results in memory, specify the name of the CLOB locator. If restab is NULL, then a
temporary CLOB is allocated and returned. You must de-allocate the locator after using it with
DBMS_LOB.FREETEMPORARY().

If restab is not NULL, then the CLOB is truncated before the operation.

Chapter 9
FILTER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 49

query_id
Specify an identifier to use to identify the row inserted into restab.
When query_id is not specified or set to NULL, it defaults to 0. You must manually truncate
the table specified in restab.

plaintext
Specify TRUE to generate a plaintext version of the document. Specify FALSE to generate an
HTML version of the document if you are using the AUTO_FILTER filter or indexing HTML
documents.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what action to
take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table. If the
copy of the document is not present in the $D table, then fetch the document from the
datastore.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If the
SAVE_COPY option of the index is set to none and the document is not present in the $D
table, then show the CTX_DOC.SAVE_COPY_ERROR error. If the SAVE_COPY option of the index
is set to plaintext or filtered and the document is not present in the $D table, then
show the nodoc_err error. If the document is present in the $D table, then retrieve the
document from the datastore.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the datastore.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Example

In-Memory Filter

The following code shows how to filter a document to HTML in memory.

declare
mklob clob;
amt number := 40;
line varchar2(80);

begin
 ctx_doc.filter('myindex','1', mklob, FALSE);
 -- mklob is NULL when passed-in, so ctx-doc.filter will allocate a temporary
 -- CLOB for us and place the results there.
 dbms_lob.read(mklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(mklob);
 end;

Create the filter result table to store the filtered document as follows:

create table filtertab (query_id number,
 document clob);

To obtain a plaintext version of document with textkey 20, enter the following statement:

begin
ctx_doc.filter('newsindex', '20', 'filtertab', '0', TRUE);
end;

Chapter 9
FILTER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 49

9.3 GIST
Use the CTX_DOC.GIST procedure to generate gist and theme summaries for a document. You
can generate paragraph-level or sentence-level gists or theme summaries.

Syntax 1: In-Memory Storage

CTX_DOC.GIST(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN OUT CLOB,
glevel IN VARCHAR2 DEFAULT 'P',
pov IN VARCHAR2 DEFAULT 'GENERIC',
numParagraphs IN NUMBER DEFAULT 16,
maxPercent IN NUMBER DEFAULT 10,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

CTX_DOC.GIST(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
glevel IN VARCHAR2 DEFAULT 'P',
pov IN VARCHAR2 DEFAULT NULL,
numParagraphs IN NUMBER DEFAULT 16,
maxPercent IN NUMBER DEFAULT 10,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the document
identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• a single column primary key value

• an encoded specification for a composite (multiple column) primary key. To encode a
composite textkey, use the CTX_DOC.PKENCODE procedure

• the rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

restab
Specify that this procedure store the gist and theme summaries to either a table or to an in-
memory CLOB.
To store results to a table specify the name of an existing table.

Chapter 9
GIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 49

See Also

"Gist Table" in Oracle Text Result Tables

To store results in memory, specify the name of the CLOB locator. If restab is NULL, then a
temporary CLOB is allocated and returned. You must de-allocate the locator after using it.

If restab is not NULL, then the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row(s) inserted into restab.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

• P for paragraph

• S for sentence

The default is P.

pov
Specify whether a gist or a single theme summary is generated. The type of gist or theme
summary generated (sentence-level or paragraph-level) depends on the value specified for
glevel.
To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To generate a
theme summary for a single theme in a document, specify the theme as the value for pov.
When using result table storage, if you do not specify a value for pov, then this procedure
returns the generic gist plus up to 50 theme summaries for the document.
When using in-memory result storage to a CLOB, you must specify a pov. However, if you do
not specify a pov, then this procedure generates only a generic gist for the document.

Note

The pov parameter is case sensitive. To return a gist for a document, specify 'GENERIC'
in all uppercase. To return a theme summary, specify the theme exactly as it is
generated for the document.
Only the themes generated by THEMES for a document can be used as input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries. The default is 16.

Note

The numParagraphs parameter is used only when this parameter yields a smaller gist
or theme summary size than the gist or theme summary size yielded by the
maxPercent parameter.
This means that the system always returns the smallest size gist or theme summary.

Chapter 9
GIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 49

maxPercent
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries as a percentage of the total paragraphs (or sentences) in
the document. The default is 10.

Note

The maxPercent parameter is used only when this parameter yields a smaller gist or
theme summary size than the gist or theme summary size yielded by the
numParagraphs parameter.
This means that the system always returns the smallest size gist or theme summary.

num_themes
Specify the number of theme summaries to produce when you do not specify a value for pov.
For example, if you specify 10, this procedure returns the top 10 theme summaries. The
default is 50.
If you specify 0 or NULL, then this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual hierarchy.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what action to
take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table. If the
copy of the document is not present in the $D table, then fetch the document from the data
store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If the copy
of the document is not present in the $D table, then show an error message. Specify this
value when you want to implement a specific fallback logic when the copy of the document
is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples

In-Memory Gist

The following example generates a non-default size generic gist of at most 10 paragraphs. The
result is stored in memory in a CLOB locator. The code then de-allocates the returned CLOB
locator after using it.

set serveroutput on;
declare
 gklob clob;
 amt number := 40;
 line varchar2(80);

begin
 ctx_doc.gist('newsindex','34',gklob, pov => 'GENERIC',numParagraphs => 10);
 -- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
 -- CLOB for us and place the results there.

 dbms_lob.read(gklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);

Chapter 9
GIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 49

 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(gklob);
 end;

Result Table Gists

The following example creates a gist table called CTX_GIST:

create table CTX_GIST (query_id number,
 pov varchar2(80),
 gist CLOB);

Gists and Theme Summaries

The following example returns a default sized paragraph-level gist for document 34 as well as
the top 10 theme summaries in the document:

begin
 ctx_doc.gist('newsindex','34','CTX_GIST', 1, num_themes=>10);
end;

The following example generates a non-default size gist of at most 10 paragraphs:

begin
 ctx_doc.gist('newsindex','34','CTX_GIST',1,pov =>'GENERIC',numParagraphs=>10);
end;

The following example generates a gist whose number of paragraphs is at most 10 percent of
the total paragraphs in document:

begin
 ctx_doc.gist('newsindex','34','CTX_GIST',1,pov => 'GENERIC', maxPercent => 10);
end;

Theme Summary

The following example returns a paragraph-level theme summary for insects for document 34.
The default theme summary size is returned.

begin
 ctx_doc.gist('newsindex','34','CTX_GIST',1, pov => 'insects');
end;

9.4 HIGHLIGHT
Use the CTX_DOC.HIGHLIGHT procedure to generate highlight offsets for a document. The offset
information is generated for the terms in the document that satisfy the query you specify. These
highlighted terms are either the words that satisfy a word query or the themes that satisfy an
ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the document. The
table returned by CTX_DOC.HIGHLIGHT does not include any graphics found in the original
document. Apply the offset information to the same documents filtered with
CTX_DOC.FILTER .

You usually call this procedure after a query, from which you identify the document to be
processed. You can store the highlight offsets to either an in-memory PL/SQL table or a result
table.

Note that for queries that have predicates used mainly for filtering documents at query time,
the predicates are ignored during highlighting. This applies to SNIPPET, MARKUP and HIGHLIGHT

Chapter 9
HIGHLIGHT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 49

procedures. The following predicates are treated as filter predicates for this purpose: SDATA,
HASPATH, and WITHIN/INPATH searching inside XML attributes.

See CTX_DOC.POLICY_HIGHLIGHT for a version of this procedure that does not require an
index.

The performance of the procedures SNIPPET, HIGHLIGHT, and MARKUP can be improved by
using the forward index feature of Oracle Text.

See Also

Oracle Text Application Developer's Guide for more information about forward index

Syntax 1: In-Memory Result Storage

exec CTX_DOC.HIGHLIGHT(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN VARCHAR2,
 restab IN OUT NOCOPY HIGHLIGHT_TAB,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN CLOB,
 restab IN OUT NOCOPY HIGHLIGHT_TAB,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.HIGHLIGHT(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN VARCHAR2,
 restab IN VARCHAR2,
 query_id IN NUMBER DEFAULT 0,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN CLOB,
 restab IN VARCHAR2,
 query_id IN NUMBER DEFAULT 0,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the document
identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

Chapter 9
HIGHLIGHT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 49

• a single column primary key value

• encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE procedure.

• the rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

text_query
Specify the original query expression used to retrieve the document. If NULL, no highlights are
generated.
If text_query includes wildcards, stemming, fuzzy matching which result in stopwords being
returned, HIGHLIGHT does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. The HIGHLIGHT
procedure always returns highlight information for the entire result set.

restab
You can specify that this procedure store highlight offsets to either a table or to an in-memory
PL/SQL table.
To store results to a table specify the name of the table. The table must exist before you call
this procedure.

See Also

"Highlight Table" in Oracle Text Result Tables for more information about the structure
of the highlight result table.

To store results to an in-memory table, specify the name of the in-memory table of type
CTX_DOC.HIGHLIGHT_TAB. The HIGHLIGHT_TAB datatype is defined as follows:

type highlight_rec is record (
 offset number,
 length number
);
type highlight_tab is table of highlight_rec index by binary_integer;

CTX_DOC.HIGHLIGHT clears HIGHLIGHT_TAB before the operation.

query_id
Specify the identifier used to identify the row inserted into restab. When query_id is not
specified or set to NULL, it defaults to 0. You must manually truncate the table specified in
restab.

plaintext
Specify TRUE to generate a plaintext offsets of the document. Specify FALSE to generate HTML
offsets of the document if you are using the AUTO_FILTER filter or indexing HTML documents.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what action to
take when the copy of the document is not available in the $D table. The default value is
CTX_DOC.SAVE_COPY_FALLBACK.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table. If the
copy of the document is not present in the $D table, then fetch the document from the data
store.

Chapter 9
HIGHLIGHT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 49

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If the copy
of the document is not present in the $D table, then show an error message. Specify this
value when you want to implement a specific fallback logic when the copy of the document
is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

Examples

Create Highlight Table

Create the highlight table to store the highlight offset information:

create table hightab(query_id number,
 offset number,
 length number);

Word Highlighting in the Presence of Filters

When performing highlight on queries such as the following, only the keyword ("dog" in these
examples) will be highlighted. The filtering predicates after the AND operator will be ignored.

begin
ctx_doc.highlight('newsindex', '20', 'dog AND cat WITHIN titlesection@name', 'hightab',
0, FALSE);
end;
begin
ctx_doc.highlight('newsindex', '20', 'dog AND SDATA(price > 100)', 'hightab', 0, FALSE);
end;

Word Highlight Offsets

To obtain HTML highlight offset information for document 20 for the word dog:

begin
ctx_doc.highlight('newsindex', '20', 'dog', 'hightab', 0, FALSE);
end;

begin
ctx_doc.highlight('newsindex', '20', 'dog AND cat WITHIN titlesection', 'hightab', 0,
FALSE);
end;

Theme Highlight Offsets

Assuming the index newsindex has a theme component, obtain HTML highlight offset
information for the theme query of politics by issuing the following query:

begin
ctx_doc.highlight('newsindex', '20', 'about(politics)', 'hightab', 0, FALSE);
end;

The output for this statement are the offsets to highlighted words and phrases that represent
the theme of politics in the document.

Restrictions

CTX_DOC.HIGHLIGHT does not support the use of query templates or highlighting XML attribute
values.

Related Topics

"POLICY_HIGHLIGHT"

Chapter 9
HIGHLIGHT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 49

"MARKUP "

"SNIPPET"

9.5 IFILTER
Use this procedure to filter binary data to text.

This procedure takes binary data (BLOB IN), filters the data with the AUTO_FILTER filter, and
writes the text version to a CLOB. (Any graphics in the original document are ignored.)
CTX_DOC.IFILTER employs the safe callout, and it does not require an index, as
CTX_DOC.FILTER does.

Note

This procedure will not be supported in future releases. Applications should use
CTX_DOC.POLICY_FILTER instead.

Requirements

Because CTX_DOC.IFILTER employs the safe callout mechanism, the SQL*Net listener must be
running and configured for extproc agent startup.

Syntax

CTX_DOC.IFILTER(data IN BLOB, text IN OUT NOCOPY CLOB);

data
Specify the binary data to be filtered.

text
Specify the destination CLOB. The filtered data is placed in here. This parameter must be a
valid CLOB locator that is writable. Passing NULL or a non-writable CLOB will result in an error.
Filtered text will be appended to the end of existing content, if any.

Example

The document text used in a MATCHES query can be VARCHAR2 or CLOB. It does not accept BLOB
input, so you cannot match filtered documents directly. Instead, you must filter the binary
content to CLOB using the AUTO_FILTER filter. Assuming the document data is in bind
variable :doc_blob:

 declare
 doc_text clob;
 begin
 -- create a temporary CLOB to hold the document text
 dbms_lob.createtemporary(doc_text, TRUE, DBMS_LOB.SESSION);

 -- call ctx_doc.ifilter to filter the BLOB to CLOB data
 ctx_doc.ifilter(:doc_blob, doc_text);

 -- now do the matches query using the CLOB version
 for c1 in (select * from queries where matches(query_string, doc_text)>0)
 loop
 -- do what you need to do here
 end loop;

Chapter 9
IFILTER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 49

 dbms_lob.freetemporary(doc_text);
 end;

9.6 MARKUP
The CTX_DOC.MARKUP procedure takes a query specification and a document textkey and
returns a version of the document in which the query terms are marked up. These marked-up
terms are either the words that satisfy a word query or the themes that satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML. The marked-up document
returned by CTX_DOC.MARKUP does not include any graphics found in the original document.

You can use one of the predefined tag sets for marking highlighted terms, including a tag
sequence that enables HTML navigation.

You usually call CTX_DOC.MARKUP after a query, from which you identify the document to be
processed.

You can store the marked-up document either in memory or in a result table.

Note that for queries that have predicates used mainly for filtering documents at query time,
the predicates are ignored during MARKUP. The following predicates are treated as filter
predicates for this purpose: SDATA, HASPATH, and WITHIN/INPATH searching inside XML
attributes.

See CTX_DOC.POLICY_MARKUP for a version of this procedure that does not require an
index.

The performance of the procedures SNIPPET, HIGHLIGHT, and MARKUP can be improved by
using the forward index feature of Oracle Text.

See Also

Oracle Text Application Developer's Guide for more information about forward index

Note

Oracle Text does not guarantee well-formed output from CTX.DOC.MARKUP, especially
for terms that are already marked up with HTML or XML. In particular, unexpected
nesting of markup tags may occasionally result.

Syntax 1: In-Memory Result Storage

exec CTX_DOC.MARKUP(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN VARCHAR2,
restab IN OUT NOCOPY CLOB,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,

Chapter 9
MARKUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 49

use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.MARKUP_CLOB_QUERY(
index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN CLOB,
restab IN OUT NOCOPY CLOB,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.MARKUP(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.MARKUP_CLOB_QUERY(
index_name IN VARCHAR2,
textkey IN CLOB,
text_query IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the document
identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• Encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE procedure.

• The rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

Chapter 9
MARKUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 49

text_query
Specify the original query expression used to retrieve the document.
If text_query includes wildcards, stemming, fuzzy matching which result in stopwords being
returned, MARKUP does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. The MARKUP
procedure always returns highlight information for the entire result set.

restab
You can specify that this procedure store the marked-up text to either a table or to an in-
memory CLOB.
To store results to a table specify the name of the table. The result table must exist before you
call this procedure.

See Also

For more information about the structure of the markup result table, see "Markup
Table" in Oracle Text Result Tables.

To store results in memory, specify the name of the CLOB locator. If restab is NULL, a
temporary CLOB is allocated and returned. You must de-allocate the locator after using it.

If restab is not NULL, the CLOB is truncated before the operation.

query_id
Specify the identifier used to identify the row inserted into restab.
When query_id is not specified or set to NULL, it defaults to 0. You must manually truncate
the table specified in restab.

plaintext
Specify TRUE to generate plaintext marked-up document. Specify FALSE to generate a marked-
up HTML version of document if you are using the AUTO_FILTER filter or indexing HTML
documents.

tagset
Specify one of the following predefined tag sets. The second and third columns show how the
different tags are defined for each tagset:

Tagset Tag Tag Value

TEXT_DEFAULT starttag <<<

TEXT_DEFAULT endtag >>>

HTML_DEFAULT starttag

HTML_DEFAULT endtag

HTML_NAVIGATE starttag

HTML_NAVIGATE endtag

HTML_NAVIGATE prevtag <

HTML_NAVIGATE nexttag >

starttag
Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.
The sequence of starttag, endtag, prevtag and nexttag with respect to the
highlighted word is as follows:

Chapter 9
MARKUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 49

... prevtag starttag word endtag nexttag...

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag
Specify the markup sequence that defines the tag that navigates the user to the previous
highlight.
In the markup sequences prevtag and nexttag, you can specify the following offset
variables which are set dynamically:

Offset Variable Value

%CURNUM the current offset number

%PREVNUM the previous offset number

%NEXTNUM the next offset number

See the description of the HTML_NAVIGATE "tagset" for an example.

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next highlight
tag.
Within the markup sequence, you can use the same offset variables you use for prevtag.
See the explanation for "prevtag" and the HTML_NAVIGATE "tagset" for an example.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what action to
take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table. If the
copy of the document is not present in the $D table, then fetch the document from the data
store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If the copy
of the document is not present in the $D table, then show an error message. Specify this
value when you want to implement a specific fallback logic when the copy of the document
is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples

In-Memory Markup

The following code takes document (the dog chases the cat), performs the assigned markup
on it, and stores the result in memory.

set serveroutput on

drop table mark_tab;
create table mark_tab (id number primary key, text varchar2(80));
insert into mark_tab values ('1', 'The dog chases the cat.');

create index mark_tab_idx on mark_tab(text)
 indextype is ctxsys.context parameters
 ('filter ctxsys.null_filter');

Chapter 9
MARKUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 49

declare
mklob clob;
amt number := 40;
line varchar2(80);

begin
 ctx_doc.markup('mark_tab_idx','1','dog AND cat', mklob);
 -- mklob is NULL when passed-in, so ctx_doc.markup will
 -- allocate a temporary CLOB for us and place the results there.
 dbms_lob.read(mklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(mklob);
 end;
/

The output from this example shows what the marked-up document looks like:

FIRST 40 CHARS ARE: The <<<dog>>> chases the <<<cat>>>.

Markup Table

Create the highlight markup table to store the marked-up document as follows:

create table markuptab (query_id number,
 document clob);

Word Highlighting in HTML

You can also store your MARKUP results in a table. To create HTML highlight markup for the
words dog or cat for document 23, enter the following examples:

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog|cat',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog AND cat WITHIN titlesection@name',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

Word Highlighting in the Presence of Filters

When performing markup on queries such as the following, only the keyword ("dog" in these
examples) will be marked up. The filtering predicates after the AND operator will be ignored.

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog AND cat WITHIN titlesection@name',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

Chapter 9
MARKUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 49

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog AND SDATA(price > 100)',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

Theme Highlighting in HTML

To create HTML highlight markup for the theme of politics for document 23, enter the following
statement:

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'about(politics)',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

Restrictions

CTX_DOC.MARKUP does not support the use of query templates.

Related Topics

"POLICY_MARKUP"

"SNIPPET"

9.7 PKENCODE
The CTX_DOC.PKENCODE function converts a composite textkey list into a single string and
returns the string.

The string created by PKENCODE can be used as the primary key parameter textkey in other
CTX_DOC procedures, such as CTX_DOC.THEMES and CTX_DOC.GIST.

Syntax

CTX_DOC.PKENCODE(
 pk1 IN VARCHAR2,
 pk2 IN VARCHAR2 DEFAULT NULL,
 pk4 IN VARCHAR2 DEFAULT NULL,
 pk5 IN VARCHAR2 DEFAULT NULL,
 pk6 IN VARCHAR2 DEFAULT NULL,
 pk7 IN VARCHAR2 DEFAULT NULL,
 pk8 IN VARCHAR2 DEFAULT NULL,
 pk9 IN VARCHAR2 DEFAULT NULL,
 pk10 IN VARCHAR2 DEFAULT NULL,
 pk11 IN VARCHAR2 DEFAULT NULL,
 pk12 IN VARCHAR2 DEFAULT NULL,
 pk13 IN VARCHAR2 DEFAULT NULL,
 pk14 IN VARCHAR2 DEFAULT NULL,
 pk15 IN VARCHAR2 DEFAULT NULL,
 pk16 IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2;

Chapter 9
PKENCODE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 49

pk1-pk16
Each PK argument specifies a column element in the composite textkey list. You can encode
at most 16 column elements.

Returns

String that represents the encoded value of the composite textkey.

Example

begin
ctx_doc.gist('newsindex',CTX_DOC.PKENCODE('smith', 14), 'CTX_GIST');
end;

In this example, smith and 14 constitute the composite textkey value for the document.

9.8 POLICY_FILTER
Generates a plain text or an HTML version of a document. With this procedure, no CONTEXT
index is required.

This procedure uses a trusted callout.

Syntax

ctx_doc.policy_filter(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy CLOB,
 plaintext in BOOLEAN default FALSE,
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document to filter.

restab
Specify the name of the CLOB locator.

plaintext
Specify TRUE to generate a plaintext version of the document. Specify FALSE to generate an
HTML version of the document if you are using the AUTO_FILTER filter or indexing HTML
documents.

language
Specify the language of the document. Use an Oracle Text supported language value as you
would in the language column of the base table. See BASIC_LEXER in Oracle Text Indexing
Elements.

format
Specify the format of the document. Use an Oracle Text supported format value, either TEXT,
BINARY or IGNORE as you would specify in the format column of the base table. For more
information, see the format column description in CREATE INDEX in Oracle Text SQL
Statements and Operators .

Chapter 9
POLICY_FILTER

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 49

charset
Specify the character set of the document. Use an Oracle Text supported value as you would
specify in the charset column of the base table. See "Filter Types".

9.9 POLICY_GIST
Generates a gist or theme summary for document. You can generate paragraph-level or
sentence-level gists or theme summaries. With this procedure, no CONTEXT index is required.

Syntax

ctx_doc.policy_gist(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy CLOB,
 glevel in VARCHAR2 default 'P',
 pov in VARCHAR2 default 'GENERIC',
 numParagraphs in NUMBER default NULL,
 maxPercent in NUMBER default NULL,
 num_themes in NUMBER default 50
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document for which to generate the Gist or theme summary.

restab
Specify the name of the CLOB locator.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

• P for paragraph

• S for sentence

The default is P.

pov
Specify whether a gist or a single theme summary is generated. The type of gist or theme
summary generated (sentence-level or paragraph-level) depends on the value specified for
glevel.
To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To generate a
theme summary for a single theme in a document, specify the theme as the value for pov.
When using result table storage and you do not specify a value for pov, this procedure returns
the generic gist plus up to 50 theme summaries for the document.

Chapter 9
POLICY_GIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 49

Note

The pov parameter is case sensitive. To return a gist for a document, specify 'GENERIC'
in all uppercase. To return a theme summary, specify the theme exactly as it is
generated for the document.
Only the themes generated by THEMES for a document can be used as input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries. The default is 16.

Note

The numParagraphs parameter is used only when this parameter yields a smaller gist
or theme summary size than the gist or theme summary size yielded by the
maxPercent parameter.
This means that the system always returns the smallest size gist or theme summary.

maxPercent
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries as a percentage of the total paragraphs (or sentences) in
the document. The default is 10.

Note

The maxPercent parameter is used only when this parameter yields a smaller gist or
theme summary size than the gist or theme summary size yielded by the
numParagraphs parameter.
This means that the system always returns the smallest size gist or theme summary.

num_themes
Specify the number of theme summaries to produce when you do not specify a value for pov.
For example, if you specify 10, this procedure returns the top 10 theme summaries. The
default is 50.
If you specify 0 or NULL, this procedure returns all themes in a document. If the document
contains more than 50 themes, only the top 50 themes show conceptual hierarchy.

language
Specify the language of the document. Use an Oracle Text supported language value as you
would in the language column of the base table. See "MULTI_LEXER".

format
Specify the format of the document. Use an Oracle Text supported format value, either TEXT,
BINARY or IGNORE as you would specify in the format column of the base table. For more
information, see the format column description in "CREATE INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as you would
specify in the charset column of the base table.

Chapter 9
POLICY_GIST

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 49

9.10 POLICY_HIGHLIGHT
Generates plain text or HTML highlighting offset information for a document. With this
procedure, no CONTEXT index is required.

The offset information is generated for the terms in the document that satisfy the query you
specify. These highlighted terms are either the words that satisfy a word query or the themes
that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the document. You
can apply the offset information to the same documents filtered with CTX_DOC.FILTER .

Syntax

exec ctx_doc.policy_highlight(
 policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in VARCHAR2,
 restab in out nocopy highlight_tab,
 plaintext in boolean FALSE
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

exec ctx_doc.policy_highlight_clob_query(
 policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in CLOB,
 restab in out nocopy highlight_tab,
 plaintext in boolean FALSE
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document. If NULL, no highlights are
generated.
If text_query includes wildcards, stemming, or fuzzy matching which result in stopwords
being returned, this procedure does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. This procedure always
returns highlight information for the entire result set.

restab
Specify the name of the highlight_tab PL/SQL index-by-table type.

Chapter 9
POLICY_HIGHLIGHT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 49

See Also

"HIGHLIGHT " for more information about the structure of the highlight_tab table
type

plaintext
Specify TRUE to generate a plaintext offsets of the document.
Specify FALSE to generate HTML offsets of the document if you are using the AUTO_FILTER
filter or indexing HTML documents.

language
Specify the language of the document. Use an Oracle Text supported language value as you
would in the language column of the base table. See "MULTI_LEXER" in Oracle Text Indexing
Elements.

format
Specify the format of the document. Use an Oracle Text supported format value, either TEXT,
BINARY or IGNORE as you would specify in the format column of the base table. For more
information, see the format column description under "CREATE INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as you would
specify in the charset column of the base table.

Restrictions

CTX_DOC.POLICY_HIGHLIGHT does not support the use of query templates.

9.11 POLICY_LANGUAGES
Provides the ability to fetch the language for a section of text.

Returns a table of language descriptors and scores, where the score is the confidence level
with which the system can assert that the supplied text is in the specific language.

Syntax

CTX_DOC.POLICY_LANGUAGES (
 policy_name IN VARCHAR2 | CLOB,
 document IN VARCHAR2,
 restab IN OUT NOCOPY CTX_DOC.LANGUAGE_TAB
);

policy_name
A policy that was previously created using the CTX_DDL.CREATE_POLICY method. If the
specified policy includes a sectioning preference, the API will honor the sectioning preference.
For instance, if HTML sectioning is specified, then HTML tags will be removed before
processing the input document.

document
A body of text for which the languages are to be extracted. The text is assumed to be plain
text with UTF-8 character encoding.

Chapter 9
POLICY_LANGUAGES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 49

restab
The result of the language extraction process. The result is a table of records. Each record
has two attributes: the language string, and the score for each language string. The score can
range from 0 to 100 and represents the confidence with which the system can assert that the
supplied text is in the specified language. The resulting languages are returned in sorted order
with the language with the most confidence appearing first.
The table layout for restab is similar to that for HIGHLIGHT.

Supported Languages for CTX_DOC.POLICY_LANGUAGES and POLICY_STEMS

You can use language extraction for text in all languages that are supported for AUTO_LEXER.

Related Topics

• AUTO_LEXER Language Support
At index time, AUTO_LEXER automatically detects the language of the document, and
tokenizes and stems the document appropriately.

• HIGHLIGHT

• CREATE_POLICY
Creates a policy to use with the CTX_DOC.POLICY_* procedures, certain Oracle Data Mining
procedures, and the in-memory Text index.

• POLICY_STEMS

9.12 POLICY_MARKUP
Generates plain text or HTML version of a document with query terms highlighted. With this
procedure, no CONTEXT index is required.

The CTX_DOC.POLICY_MARKUP procedure takes a query specification and a document and
returns a version of the document in which the query terms are marked up. These marked-up
terms are either the words that satisfy a word query or the themes that satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML.

You can use one of the predefined tag sets for marking highlighted terms, including a tag
sequence that enables HTML navigation.

Syntax

ctx_doc.policy_markup(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in VARCHAR2,
 restab in out nocopy CLOB,
 plaintext in BOOLEAN default FALSE,
 tagset in VARCHAR2 default 'TEXT_DEFAULT',
 starttag in VARCHAR2 default NULL,
 endtag in VARCHAR2 default NULL,
 prevtag in VARCHAR2 default NULL,
 nexttag in VARCHAR2 default NULL
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

ctx_doc.policy_markup_clob_query(
 policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in CLOB,

Chapter 9
POLICY_MARKUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 49

 restab in out nocopy CLOB,
 plaintext in BOOLEAN default FALSE,
 tagset in VARCHAR2 default 'TEXT_DEFAULT',
 starttag in VARCHAR2 default NULL,
 endtag in VARCHAR2 default NULL,
 prevtag in VARCHAR2 default NULL,
 nexttag in VARCHAR2 default NULL
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document.
If text_query includes a NULL, then this procedure will fail and generate errors.
If text_query includes wildcards, stemming, or fuzzy matching which result in stopwords
being returned, then this procedure does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. This procedure always
returns highlight information for the entire result set.

restab
Specify the name of the CLOB locator.

plaintext
Specify TRUE to generate a plaintext marked-up document. Specify FALSE to generate a
marked-up HTML version of the document if you are using the AUTO_FILTER filter or indexing
HTML documents.

tagset
Specify one of the following predefined tag sets. The second and third columns show how the
different tags are defined for each tagset:

Tagset Tag Tag Value

TEXT_DEFAULT starttag <<<

TEXT_DEFAULT endtag >>>

HTML_DEFAULT starttag

HTML_DEFAULT endtag

HTML_NAVIGATE starttag

HTML_NAVIGATE endtag

HTML_NAVIGATE prevtag <

HTML_NAVIGATE nexttag >

starttag
Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.
The sequence of starttag, endtag, prevtag and nexttag with regard to the
highlighted word is as follows:

... prevtag starttag word endtag nexttag...

Chapter 9
POLICY_MARKUP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 49

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag
Specify the markup sequence that defines the tag that navigates the user to the previous
highlight.
In the markup sequences prevtag and nexttag, you can specify the following offset
variables which are set dynamically:

Offset Variable Value

%CURNUM the current offset number

%PREVNUM the previous offset number

%NEXTNUM the next offset number

See the description of the HTML_NAVIGATE tagset for an example "tagset".

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next highlight
tag.
Within the markup sequence, you can use the same offset variables you use for prevtag.
See the explanation for prevtag and the HTML_NAVIGATE "tagset" for an example.

language
Specify the language of the document. Use an Oracle Text supported language value as you
would in the language column of the base table. See "MULTI_LEXER" in Oracle Text Indexing
Elements.

format
Specify the format of the document. Use an Oracle Text supported format value, either TEXT,
BINARY or IGNORE as you would specify in the format column of the base table. For more
information, see the format column description in "CREATE INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as you would
specify in the charset column of the base table. See "Filter Types".

Restrictions

CTX_DOC.POLICY_MARKUP does not support the use of query templates.

9.13 POLICY_NOUN_PHRASES
Provides the ability to extract the noun phrases along with part-of-speech information for each
word in each noun phrase from a given document.

For example, consider the following sentence:

"The mayor of Chicago is giving a brief press conference."

The noun phrases for this input are "mayor of Chicago" and "brief press conference." The
subgroups in the input text are not returned. For instance, in the above example, subgroups
such as "mayor, Chicago, brief press, press conference, press, conference" are not returned.

All AUTO_LEXER languages are supported for POLICY_NOUN_PHRASES and
POLICY_PART_OF_SPEECHPOLICY_NOUN_PHRASES.

Chapter 9
POLICY_NOUN_PHRASES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 49

Syntax

ctx_doc.policy_noun_phrases (
 policy_name in varchar2,
 document in varchar2 | CLOB,
 restab in out nocopy noun_phrase_tab,
 language in varchar2 default NULL,
 format in varchar2 default NULL,
 charset in varchar2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
A body of text for which the languages are to be extracted. The text is assumed to be plain
text with UTF-8 character encoding.

restab
Specify the name of the CLOB locator.

language
Specify the language. See the list of supported languages in this section. If this parameter is
null, the language will be automatically detected. There is a cost associated with language
detection.

format
The format of the input text.

charset
The character set of the input text.

Abbreviations for Use with POLICY_NOUN_PHRASES and POLICY_PART_OF_SPEECH

This is a list of abbreviations that you can use in queries for POLICY_NOUN_PHRASES and
POLICY_PART_OF_SPEECH. The examples use these abbreviations.

Table 9-1 Part of Speech Abbreviations

Abbreviation Part of Speech

N noun

propN nounProper

V verb

Adj adjective

Adv adverb

Prep preposition

Part particle

Punct punct

Pro pronoun

Wh interrog

Det determiner

Conj conjunction

Chapter 9
POLICY_NOUN_PHRASES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 49

Table 9-1 (Cont.) Part of Speech Abbreviations

Abbreviation Part of Speech

Card numCardinal

Ord numOrdinal

Suf suffix

Pre prefix

Acr nounAcronym

Poss poss

Unk unknown

Example for POLICY__NOUN_PHRASES

The example in this section uses the abbreviations shown in the preceding table.

set serverout on
create or replace function toString(b boolean) return varchar2 is
 begin
 if (b) then
 return 'TRUE';
 end if;
 return 'FALSE';
 end;
 /

declare
 the_nps ctx_doc.noun_phrase_tab;
begin
 ctx_ddl.create_preference('rvlex', 'AUTO_LEXER');
 ctx_ddl.set_attribute('rvlex','mixed_case','YES');
 ctx_ddl.set_attribute('rvlex','timeout',0);

 ctx_ddl.create_policy(policy_name => 'rv_policy_21',lexer => 'rvlex');

 ctx_doc.policy_noun_phrases('rv_policy_21','The mayor of Chicago is giving a
 brief press conference',the_nps);
 dbms_output.put_line(the_nps.count);

 for i in 1..the_nps.count loop
 if (the_nps(i).is_phrase_start) then
 if (i>1) then
 dbms_output.put(']');
 dbms_output.new_line;
 end if;
 dbms_output.put('Phrase{term,POS,is_in_lex,offset,len,is_phrase_
 start}:[');
 else
 dbms_output.put(',');
 end if;
 dbms_output.put('{' || the_nps(i).term || ',' || the_nps(i).pos_tag || ','
 || toString(the_nps(i).is_in_lexicon) || ',' || the_nps(i).offset
 || ',' || the_nps(i).length || ',' || toString(the_nps(i).is_phrase_start)
 || '}');
 end loop;
 dbms_output.put(']');
 dbms_output.new_line;

Chapter 9
POLICY_NOUN_PHRASES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 49

end;
/

Output for this example:

Phrase{term,POS,is_in_lex,offset,len,is_phrase_start}:
[{The,Det,TRUE,1,3,TRUE},{mayor,N,TRUE,5,5,FALSE},
{of,Prep,TRUE,11,2,FALSE},{Chicago,propN,TRUE,14,7,FALSE}

Phrase{term,POS,is_in_lex,offset,len,is_phrase_start}:
[{a,Det,TRUE,32,1,TRUE},{brief,N,TRUE,34,5,FALSE},
{press,N,TRUE,40,5,FALSE},{conference,N,TRUE,46,10,FALSE}]

Related Topics

• AUTO_LEXER Language Support
At index time, AUTO_LEXER automatically detects the language of the document, and
tokenizes and stems the document appropriately.

• CREATE_POLICY
Creates a policy to use with the CTX_DOC.POLICY_* procedures, certain Oracle Data Mining
procedures, and the in-memory Text index.

• POLICY_PART_OF_SPEECH

9.14 POLICY_PART_OF_SPEECH
Extracts part of speech information for each word in a body of text.

POLICY_NOUN_PHRASES has the list of supported languages.

Syntax

ctx_doc.policy_part_of_speech (
 policy_name in varchar2,
 document in varchar2 | CLOB,
 restab in out nocopy noun_phrase_tab,
 language in varchar2 default NULL,
 format in varchar2 default NULL,
 charset in varchar2 default NULL
 disambiguate_tags in boolean default TRUE
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY. If the specified policy
includes a sectioning preference, the API will honor the sectioning preference. For instance, if
HTML sectioning is specified, HTML tags will be removed before processing the input
document.

document
A body of text for which the languages are to be extracted. The text is assumed to be plain
text with UTF-8 character encoding.

restab
Specify the name of the CLOB locator. The query returns a table with the result of the noun
phrase extraction. For each word, the following attributes are also returned:

• pos_tags: the part of speech tags for this word. There can be multiple part of speech tags
with the most likely tag listed first.

Chapter 9
POLICY_PART_OF_SPEECH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 49

• offset: offset of the word in the input string

• length: length of the word in the input string.

• is_in_lexicon: Indicates whether the word is in the lexicon.

language
Specify the language. See the list of supported languages in this section. If this parameter is
null, the language will be automatically detected. There is a cost associated with language
detection.

format
The format of the input text.

charset
The character set of the input text.

Example for POLICY_PART_OF_SPEECH

The example in this section uses the abbreviations shown in Table 9-1.

set serveroutput on;
declare
 the_nps ctx_doc.part_of_speech_tab;
begin
 ctx_doc.policy_part_of_speech(policy_name => 'rv_policy_21',
 document => 'The mayor of Chicago is giving
 a brief press conference',
 restab => the_nps,
 disambiguate_tags => false,
 language => 'english');
 for i in 1..the_nps.count loop
 dbms_output.put('word:' || the_nps(i).word || ',pos:[');
 for j in 1..the_nps(i).pos_tags.count loop
 dbms_output.put(the_nps(i).pos_tags(j) || ',');
 end loop;
 dbms_output.put_line(']');
 end loop;
end;
/

Output for this example:

word:The,pos:[Det,]
word:mayor,pos:[N,]
word:of,pos:[Prep,]
word:Chicago,pos:[propN,]
word:is,pos:[V,]
word:giving,pos:[N,V,Adj,]
word:a,pos:[Det,]
word:brief,pos:[N,V,Adj,]
word:press,pos:[N,V,]
word:conference,pos:[N,V,]

Related Topics

"POLICY_NOUN_PHRASES"

"Custom Dictionary Valid Parts-of-Speech (case sensitive)"

Chapter 9
POLICY_PART_OF_SPEECH

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 49

9.15 POLICY_SNIPPET
Displays marked-up keywords in context. The returned text contains either the words that
satisfy a word query or the themes that satisfy an ABOUT query. This version of the
CTX_DOC.SNIPPET procedure does not require an index.

Syntax

Syntax 1

exec CTX_DOC.POLICY_SNIPPET(

policy_name IN VARCHAR2,
document IN [VARCHAR2|CLOB|BLOB|BFILE],
text_query IN VARCHAR2,
language IN VARCHAR2 default NULL,
format IN VARCHAR2 default NULL,
charset IN VARCHAR2 default NULL,
starttag IN VARCHAR2 DEFAULT '',
endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...'
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
)
return varchar2;

Syntax 2

exec CTX_DOC.POLICY_SNIPPET_CLOB_QUERY(
policy_name IN VARCHAR2,
document IN [VARCHAR2|CLOB|BLOB|BFILE],
text_query IN CLOB,
language IN VARCHAR2 default NULL,
format IN VARCHAR2 default NULL,
charset IN VARCHAR2 default NULL,
starttag IN VARCHAR2 DEFAULT '',
endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...'
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
)
return varchar2;

policy_name
Specify the name of a policy created with CTX_DDL.CREATE_POLICY.

document
Specify the document in which to search for keywords.

text_query
Specify the original query expression used to retrieve the document. If NULL, no highlights are
generated.
If text_query includes wildcards, stemming, fuzzy matching which result in stopwords being
returned, POLICY_SNIPPET does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored.

Chapter 9
POLICY_SNIPPET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 49

language
Specify the language of the document. Use an Oracle Text supported language value as you
would in the language column of the base table. See MULTI_LEXER in Oracle Text Indexing
Elements.

format
Specify the format of the document. Use an Oracle Text supported format value, either TEXT,
BINARY or IGNORE as you would specify in the format column of the base table. For more
information, see the format column description in "CREATE INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as you would
specify in the charset column of the base table. See "Filter Types".

starttag
Specify the start tag for marking up the query keywords. Default is ''.

endtag
Specify the end tag for marking up the query keywords. Default is ''.

entity_translation
Specify if you want HTML entities to be translated. The default is TRUE, which means the
special entities (<, >, and &) are translated into their alternate forms ('<', '>', and '&')
when output by the procedure. However, special characters in the markup tags generated by
CTX_DOC.POLICY_SNIPPET will not be translated.

separator
Specify the string separating different returned fragments. Default is '...'.

radius
Specify the number of characters to be shown on either side of the hit query in a segment.
The character count before the hit query begins on the first character of the first hit query
displayed in a segment. Accordingly, the character count after the hit query begins on the last
character of the last hit query displayed on a specific segment. Two segments are merged into
one if their radii overlap. The displayed number of characters on each side may be modified
by +/-10 chars to best match the beginning or ending of a sentence or word.
Special attention is required for the value 0. When specified, the radius is set to automatic and
varies between sentences. A best guess of the results is displayed, which attempts to match a
full sentence. Note that the length of the radius on each side of the hit query will most likely
significantly differ.
The default value is 25.

max_length
Specify the maximum length of the snippet output in characters. This value is currently upper-
bounded by the current return type of CTX_DOC.SNIPPET and
CTX_DOC.POLICY_SNIPPET (VARCHAR2). Should the output be longer than the return type
VARCHAR2, the result will be truncated.
The default value for max_length is 250.

Note

If you set max_length value to a very low value, no snippet may be generated. For
example, if max_length is set to 0 or if max_length is lower than the length of query
tokens themselves, no snippet may be generated at all.

Chapter 9
POLICY_SNIPPET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 49

Limitations

CTX_DOC.POLICY_SNIPPET does not support the use of query templates.

CTX_DOC.POLICY_SNIPPET displays marked-up keywords in context when used with
NULL_SECTION_GROUP. However, there are limitations when using this procedure with XML
documents. When used with XML_SECTION_GROUP or AUTO_SECTION_GROUP, the XML structure is
ignored and user-specified tags are stripped out, which results in parts of surrounding text to
be included in the returned snippet.

Related Topics

"SNIPPET"

"MARKUP "

9.16 POLICY_STEMS
Extracts stems for each word in a body of text. This procedure is for use with AUTO_LEXER.
This procedure can only use the languages supported by AUTO_LEXER, which are listed
under "POLICY_LANGUAGES".

Syntax

exec CTX_DOC.POLICY_STEMS (
 policy_name in varchar2,
 document in varchar2 | CLOB,
 restab in out nocopy ctx_doc.stem_group_tab,
 language in varchar2 default NULL,
 format in varchar2 default NULL,
 charset in varchar2 default NULL
);

policy_name
A policy that was previously created using the CTX_DDL.CREATE_POLICY method. If the
specified policy includes a HTML_SECTION_GROUP sectioning preference, the API will honor the
sectioning preference. For instance, if HTML sectioning is specified, HTML tags will be
removed before processing the input document.
Note that the policy must use AUTO_LEXER only.

document
A body of text for which the languages are to be extracted. The text is assumed to be plain
text with UTF-8 character encoding.

restab
The result of the stem extraction process. The returned values in the PL/SQL table will have
one cell for each word in the input string document. Each word can be a multi-word as
determined by the lexer. For each word, all the stems (including all alternate stems) are
returned. For each stem, the offset and the length (in the input string) of the word for which
this is a stem is returned. Additionally, for each stem, a Boolean value is returned that
indicates if the stem was found in the lexicon.
stem_group_tab is a table of stem_group_records.

language
The language of the input text. The language string can be one of the values specified in the
previous section on language extraction. If this parameter is null, the language will be

Chapter 9
POLICY_STEMS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 49

automatically detected. There is a cost associated with language detection. So, if the
language is known, it is best to supply the language value. See "POLICY_LANGUAGES" for
the list of languages.

format
The format of the input text.

charset
The character set of the input text.

Restrictions and Notes

The stem extraction process supports certain nonstandard word forms—e.g. capitalization
errors—as well as standard forms, and thus can be used to process informal or imperfect text
(such as email, online documents, or queries). It also handles some variations in the text
including case variation, hyphenation and unaccented characters among others.

The stem extraction process does not break compound words, but instead separates
compound words with a # character. Such compound words are common in German. For
instance, the German compound word Bildungsroman (from Bildung "education" and Roman
"novel") yields a single stem Bildungs#roman instead of two stems Bildungs and roman.

Related Topics

"POLICY_LANGUAGES"

"AUTO_LEXER"

"CREATE_POLICY"

9.17 POLICY_THEMES
Generates a list of themes for a document. With this procedure, no CONTEXT index is required.

Syntax

ctx_doc.policy_themes(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy theme_tab,
 full_themes in BOOLEAN default FALSE,
 num_themes in number default 50
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy you create with CTX_DDL.CREATE_POLICY.

document
Specify the document for which to generate a list of themes.

restab
Specify the name of the theme_tab PL/SQL index-by-table type.

Chapter 9
POLICY_THEMES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 49

See Also

"THEMES" for more information about the structure of the theme_tab type.

full_themes
Specify whether this procedure generates a single theme or a hierarchical list of parent
themes (full themes) for each document theme.
Specify TRUE for this procedure to write full themes to the THEME column of the result table.
Specify FALSE for this procedure to write single theme information to the THEME column of the
result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10, up to first
10 themes are returned for the document. The default is 50.
If you specify 0 or NULL, this procedure returns all themes in a document. If the document
contains more than 50 themes, only the first 50 themes show conceptual hierarchy.

language
Specify the language of the document. Use an Oracle Text supported language value as you
would in the language column of the base table. See "MULTI_LEXER" in Oracle Text Indexing
Elements.

format
Specify the format of the document. Use an Oracle Text supported format value, either TEXT,
BINARY or IGNORE as you would specify in the format column of the base table. For more
information, see the format column description in "CREATE INDEX" in Oracle Text SQL
Statements and Operators .

charset
Specify the character set of the document. Use an Oracle Text supported value as you would
specify in the charset column of the base table. See "Filter Types".

Example

Create a policy:

exec ctx_ddl.create_policy('mypolicy');

Run themes:

declare
 la varchar2(200);
 rtab ctx_doc.theme_tab;
begin
 ctx_doc.policy_themes('mypolicy',
 'To define true madness, What is''t but to be nothing but mad?', rtab);
 for i in 1..rtab.count loop
 dbms_output.put_line(rtab(i).theme||':'||rtab(i).weight);
 end loop;
end;

9.18 POLICY_TOKENS

Generate all index tokens for document. With this procedure, no CONTEXT index is required.

Chapter 9
POLICY_TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 49

Syntax

ctx_doc.policy_tokens(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy token_tab,
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL,
 thes_name in VARCHAR2 default NULL,
 thes_toktype in VARCHAR2 default 'SYN');

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document for which to generate tokens.

restab
Specify the name of the token_tab PL/SQL index-by-table type.
The tokens returned are those tokens which are inserted into the index for the document. Stop
words are not returned. Section tags are not returned because they are not text tokens.

See Also

"TOKENS" of this chapter for more information about the structure of the token_tab
type

language
Specify the language of the document. Use an Oracle Text supported language value as you
would in the language column of the base table. See "MULTI_LEXER" in Oracle Text Indexing
Elements.

format
Specify the format of the document. Use an Oracle Text supported format value, either TEXT,
BINARY or IGNORE as you would specify in the format column of the base table. For more
information, see the format column description in "CREATE INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as you would
specify in the charset column of the base table. See "Filter Types".

thes_name
Specify the thesaurus name. If you do not specify a name, no synonyms or broader terms for
index tokens will be generated.
To use the system default thesaurus, specify DEFAULT.

thes_toktype
Specify SYN to generate synonyms. Alternatively, specify BT to generate broader terms of index
tokens. By default, only synonyms are generated. To use this parameter, you must first specify
the thesaurus name using the thes_name parameter.

Example 1

Get tokens:

declare
 la varchar2(200);

Chapter 9
POLICY_TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 49

 rtab ctx_doc.token_tab;
begin
 ctx_doc.policy_tokens('mypolicy',
 'To define true madness, What is''t but to be nothing but mad?',rtab);
 for i in 1..rtab.count loop
 dbms_output.put_line(rtab(i).offset||':'||rtab(i).token);
 end loop;
end;

Example 2

This example uses thesaurus support to generate synonyms for tokens:

declare
 rtab ctx_doc.token_tab;
begin
 ctx_doc.policy_tokens('mypolicy','the lazy dog',rtab,thes_name =>'animals');
 for i in 1..rtab.count loop
 dbms_output.put_line(rtab(i).token||'a'||rtab(i).thes_tokens);
 end loop;
end;

9.19 SENTIMENT
Use this procedure to perform sentiment analysis for a document, determine a sentiment score
for each topic within the document, and populate the results into a result table.

The mandatory inputs to this procedure include the name of a text index associated with the
document set and the text key, which is a unique identifier that identifies each document. After
sentiment classification is performed, the text segments from the document and their
associated sentiment scores are populated into the result table. The sentiment score is a value
between -100 and 100.

The result table must exist before you run this procedure. An error is returned if the result table
does not exist or if the specified topic is null.

If the specified topic is not present in the document, then a default snippet and sentiment score
of zero are written into the result table. If no sentiment classifier is specified, then the default
sentiment classifier is used. The default classifier is only available when using AUTO_LEXER.

Syntax

SENTIMENT(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 topic IN VARCHAR2,
 restab IN VARCHAR2,
 clsfier_name IN VARCHAR2 default NULL,
 ttype IN VARCHAR2 default 'EXACT',
 radius IN NUMBER default 50,
 max_inst IN NUMBER default 5,
 starttag IN VARCHAR2 default '',
 endtag IN VARCHAR2 default '',
 use_saved_copy IN NUMBER default 0
);

Chapter 9
SENTIMENT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 49

Most parameters in SENTIMENT are also used in SENTIMENT_AGGREGATE. For a description of
parameters common to SENTIMENT and SENTIMENT_AGGREGATE, refer to
SENTIMENT_AGGREGATE.

restab
Specify the name of the result table that will be populated with generated results. The table
must exist and you must have INSERT permissions on the table. The table must have two
columns, snippet of data type CLOB and score of data type NUMBER.

starttag
Specify the character(s) to be inserted to indicate the start of a highlighted term.

endtag
Specify the character(s) to be inserted to indicate the end of a highlighted term.

See Also

Oracle Text Application Developer's Guide for an example of using the SENTIMENT
procedure

9.20 SENTIMENT_AGGREGATE
Use this procedure to perform sentiment analysis and return a single aggregate sentiment
score per document. The aggregate sentiment score is a value between -100 and 100.

You specify search keywords as part of a text query and then identify a sentiment associated
with the topics in the document.

The mandatory inputs for this procedure include the name of a text index associated with the
document set and the text key, which is a unique identifier that identifies each document. If no
sentiment classifier is specified, then the default sentiment classifier is used. The default
classifier is only available when using AUTO_LEXER.

If the specified topic keyword is not found within the document, then a sentiment score of zero
is returned. If no topic is specified, then the aggregate sentiment score for the entire document
is returned.

Note

Avoid using AUTO_LEXER with user-defined classifiers as this may provide inconsistent
sentiment scores.

Syntax

SENTIMENT_AGGREGATE(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 topic IN VARCHAR2 default NULL,
 clsfier_name IN VARCHAR2 default NULL,
 ttype IN VARCHAR2 default 'EXACT',
 radius IN NUMBER default 50,

Chapter 9
SENTIMENT_AGGREGATE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 49

 max_inst IN NUMBER default 5,
 use_saved_copy IN NUMBER default 0
) return NUMBER;

index_name
Specify the name of the CONTEXT index for the text column. This parameter is mandatory.

textkey
Specify the unique identifier (usually the primary key) for the document. The textkey is
mandatory and is a single column primary key value.

clsfier_name
Specify the name of the sentiment classifier used to perform sentiment analysis. The
maximum length supported for a classifier name is 24 bytes. If you do not specify a classifier
name, then the default classifier is used.

topic
Specify the topic for which a sentiment score must be generated for this document. If the topic
is not specified, then the sentiment score for the entire document is generated.

ttype
Specify the type of search to be performed for this document:

• EXACT: Indicates that the specified search keyword must be searched in the document.
This is the default setting.

• ABOUT: Indicates that the thesaurus must be used to find words that are related to the
search keywords.

radius
Specifies the radius of the surrounding text to be analyzed during sentiment classification. The
default value is 50.
The exact amount of text used for analysis varies from case to case because Oracle Text
attempts to find the best match text segment with respect to nearby topic keywords, word
boundaries, and sentence boundaries.

max_inst
Specify the maximum number of instances/occurrences of the topic that must be analyzed.
The default value for this parameter is 5.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document and what action to
take when the copy of the document is not available in the $D table. The default value of this
parameter is zero.

See Also

Oracle Text Application Developer's Guide for an example of using the
SENTIMENT_AGGREGATE procedure

9.21 SET_KEY_TYPE
Use this procedure to set the CTX_DOC procedures to accept either the ROWID or the
PRIMARY_KEY document identifiers. This setting affects the invoking session only.

Chapter 9
SET_KEY_TYPE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 49

Syntax

ctx_doc.set_key_type(key_type in varchar2);

key_type
Specify either ROWID or PRIMARY_KEY as the input key type (document identifier) for CTX_DOC
procedures.
This parameter defaults to the value of the CTX_DOC_KEY_TYPE system parameter.

Note

• When your base table has no primary key, setting key_type to PRIMARY_KEY is
ignored. The textkey parameter that you specify for any CTX_DOC procedure is
interpreted as a ROWID.

• CTX_DOC.SET_KEY_TYPE fails to set PRIMARY_KEY as the input key type for CTX_DOC
procedures, if it’s PRIMARY_KEY is added to the table post index creation.
ORA-20000 error is displayed. The workaround is to drop the index and recreate
the index.

Example

The following example sets CTX_DOC procedures to accept primary key document identifiers.

begin
ctx_doc.set_key_type('PRIMARY_KEY');
end

9.22 SNIPPET
Use the CTX_DOC.SNIPPET procedure to produce a concordance for a document. The output of
a snippet is a collection of segments. A concordance is a text fragment that contains a query
term with some of its surrounding text. This is also sometimes known as Key Word in Context
or KWIC, because it returns query keywords marked up in their surrounding text, which
enables the user to evaluate them in context. The returned text can also contain themes that
satisfy an ABOUT query.

For example, a search on brillig and slithey might return one relevant fragment of a document
as follows:

'Twas brillig, and the slithey toves did gyre and

CTX_DOC.SNIPPET returns one or more most relevant fragments for a document that contains
the query term. Because CTX_DOC.SNIPPET returns surrounding text, you can immediately
evaluate how useful the returned term is. CTX_DOC.SNIPPET returns the entire document if no
words in the returned text are marked up.

Note that for queries that have predicates used mainly for filtering documents at query time,
the predicates are ignored during SNIPPET generation. The following predicates are treated as
filter predicates for this purpose: SDATA, HASPATH, and WITHIN/INPATH searching inside xml
attributes.

Chapter 9
SNIPPET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 49

See Also

CTX_DOC.POLICY_SNIPPET for a policy-based version of this procedure

Syntax

Syntax 1

exec CTX_DOC.SNIPPET(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN VARCHAR2,
starttag IN VARCHAR2 DEFAULT '',
endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...',
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK
return varchar2
);

Syntax 2

exec CTX_DOC.SNIPPET_CLOB_QUERY(
index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN CLOB,
starttag IN VARCHAR2 DEFAULT '',
endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...',
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK
return varchar2
);

index_name
Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• An encoded specification for a composite (multiple column) primary key. When textkey is a
composite key, you must encode the composite textkey string using the CTX_DOC.PKENCODE
procedure.

• The rowid of the row containing the document

Use CTX_DOC.SET_KEY_TYPE to toggle between primary key and rowid identification.

text_query
Specify the original query expression used to retrieve the document. If NULL, no highlights are
generated.

Chapter 9
SNIPPET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 49

If text_query includes wildcards, stemming, fuzzy matching which result in stopwords being
returned, SNIPPET does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored.

starttag
Specify the start tag for marking up the query keywords. Default is ''.

endtag
Specify the end tag for marking up the query keywords. Default is ''.

entity_translation
Specify if you want HTML entities to be translated. The default is TRUE, which means that the
special entities (<, >, and &) are translated into their alternative forms ('<', '>', and
'&') when output by the procedure. However, special characters in the markup tags that
are generated by CTX_DOC.SNIPPET will not be translated.

separator
Specify the string separating different returned fragments. Default is '...'.

radius
Specify the number of characters to be shown on either side of the hit query in a segment.
The character count before the hit query begins on the first character of the first hit query
displayed in a segment. Accordingly, the character count after the hit query begins on the last
character of the last hit query displayed on a specific segment. Two segments are merged into
one if their radii overlap. The displayed number of characters on each side may be modified
by +/-10 chars to best match the beginning or ending of a sentence or word.
Special attention is required for the value 0. When specified, the radius is set to automatic and
varies between sentences. A best guess of the results is displayed, which attempts to match a
full sentence. Note that the length of the radius on each side of the hit query will most likely
significantly differ.
The default value is 25.

max_length
Specify the maximum length of the snippet output in characters. This value is currently upper-
bounded by the current return type of CTX_DOC.SNIPPET and
CTX_DOC.POLICY_SNIPPET (VARCHAR2). Should the output be longer than the return type
VARCHAR2, the result will be truncated. The default value for max_length is 250.
If you set max_length value to a very low value, no snippet may be generated. For example, if
max_length is set to 0 or if max_length is lower than the length of query tokens themselves, no
snippet may be generated at all.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what action to
take when the copy of the document is not available in the $D table. The default value is
CTX_DOC.SAVE_COPY_FALLBACK.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table. If the
copy of the document is not present in the $D table, then fetch the document from the
data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If the copy
of the document is not present in the $D table, then show an error message. Specify this
value when you want to implement a specific fallback logic when the copy of the
document is not available in the $D table.

Chapter 9
SNIPPET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 49

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

Example

create table tdrbhk01 (id number primary key, text varchar2(4000));

insert into tdrbhk01 values (1, 'Oracle Text adds powerful search
 and intelligent text management to the Oracle
database. Complete. You can search and manage documents, web pages,
catalog entries in more than 150 formats in any language. Provides a
complete text query language and complete character support. Simple. You
can index and search text using SQL. Oracle Text Management can be done
using Oracle Enterprise Manager - a GUI tool. Fast. You can search
millions of documents, document,web pages, catalog entries using the
power and scalability of the database. Intelligent. Oracle Text''s
unique knowledge-base enables you to search, classify, manage
documents, clusters and summarize text based on its meaning as well as
its content. ');

create index tdrbhk01x on tdrbhk01(text) indextype is ctxsys.context;

create or replace function my_snippet_wrapper(
 key in varchar2,
 query in varchar2,
 radius in number,
 max_length in number) return varchar2 is
 buff varchar2(4000);
 begin
 buff := ctx_doc.snippet('tdrbhk01x', key, query, '', '', true, '..',
radius, max_length);
 return buff;
 end;
/
show errors;

select my_snippet_wrapper('1','Oracle', 10, 100) from dual;

The result looks something like this:

CTX_DOC.SNIPPET('TDRBHK01X','1','SEARCH|CLASSIFY')
--

Text's unique knowledge-base enables you to search,
classify, manage documents, clusters and summarize

Limitations

CTX_DOC.SNIPPET does not support the use of query templates.

CTX_DOC.SNIPPET displays marked-up keywords in context when used with
NULL_SECTION_GROUP. However, there are limitations when using this procedure with XML
documents. When used with XML_SECTION_GROUP or AUTO_SECTION_GROUP, the XML structure is
ignored and user-specified tags are stripped out, which results in parts of surrounding text to
be included in the returned snippet.

Related Topics

"POLICY_SNIPPET"

"HIGHLIGHT "

"MARKUP "

Chapter 9
SNIPPET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 49

9.23 THEMES
Use the CTX_DOC.THEMES procedure to generate a list of themes for a document. You can store
each theme as a row in either a result table or an in-memory PL/SQL table that you specify.

Syntax 1: In-Memory Table Storage

CTX_DOC.THEMES(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN OUT NOCOPY THEME_TAB,
full_themes IN BOOLEAN DEFAULT FALSE,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

CTX_DOC.THEMES(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
full_themes IN BOOLEAN DEFAULT FALSE,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• An encoded specification for a composite (multiple column) primary key. When textkey is a
composite key, you must encode the composite textkey string using the
CTX_DOC.PKENCODE procedure.

• The rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

restab
You can specify this procedure to store results to either a table or to an in-memory PL/SQL
table.
To store results in a table, specify the name of the table.

See Also

"Theme Table" in Oracle Text Result Tables

To store results in an in-memory table, specify the name of the in-memory table of type
THEME_TAB. The THEME_TAB datatype is defined as follows:

Chapter 9
THEMES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 49

type theme_rec is record (
 theme varchar2(2000),
 weight number
);

type theme_tab is table of theme_rec index by binary_integer;

CTX_DOC.THEMES clears the THEME_TAB you specify before the operation.

query_id
Specify the identifier used to identify the row(s) inserted into restab.

full_themes
Specify whether this procedure generates a single theme or a hierarchical list of parent
themes (full themes) for each document theme.
Specify TRUE for this procedure to write full themes to the THEME column of the result table.
Specify FALSE for this procedure to write single theme information to the THEME column of the
result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10, then up to
the first 10 themes are returned for the document. The default is 50.
If you specify 0 or NULL, then this procedure returns all themes in a document. If the document
contains more than 50 themes, then only the first 50 themes show conceptual hierarchy.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what action to
take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table. If the
copy of the document is not present in the $D table, then fetch the document from the data
store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If the copy
of the document is not present in the $D table, then show an error message. Specify this
value when you want to implement a specific fallback logic when the copy of the document
is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples

In-Memory Themes

The following example generates the first 10 themes for document 1 and stores them in an in-
memory table called the_themes. The example then loops through the table to display the
document themes.

declare
 the_themes ctx_doc.theme_tab;

begin
 ctx_doc.themes('myindex','1',the_themes, num_themes=>10);
 for i in 1..the_themes.count loop
 dbms_output.put_line(the_themes(i).theme||':'||the_themes(i).weight);
 end loop;
end;

Chapter 9
THEMES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 49

Theme Table

The following example creates a theme table called CTX_THEMES:

create table CTX_THEMES (query_id number,
 theme varchar2(2000),
 weight number);

Single Themes

To obtain a list of up to the first 20 themes, where each element in the list is a single theme,
enter a statement like the following example:

begin

 ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => FALSE,
 num_themes=> 20);

end;

Full Themes

To obtain a list of the top 20 themes, where each element in the list is a hierarchical list of
parent themes, enter a statement like the following example:

begin

ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => TRUE, num_
themes=>20);

end;

9.24 TOKENS
Use this procedure to identify all text tokens in a document. The tokens returned are those
tokens that are inserted into the index.

Thesaurus support also enables you to generate synonyms or broader terms of the queried
index tokens. This feature is useful for implementing document classification, routing, or
clustering.

Stopwords are not returned. Section tags are not returned because they are not text tokens.

Syntax 1: In-Memory Table Storage

CTX_DOC.TOKENS(index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN OUT NOCOPY TOKEN_TAB,
 thes_name IN VARCHAR2 DEFAULT NULL,
 thes_toktype IN VARCHAR2 DEFAULT 'SYN',
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

CTX_DOC.TOKENS(index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN VARCHAR2,
 thes_name IN VARCHAR2 DEFAULT NULL,
 thes_toktype IN VARCHAR2 DEFAULT 'SYN',
 query_id IN NUMBER DEFAULT 0,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Chapter 9
TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 49

index_name
Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• Encoded specification for a composite (multiple column) primary key. To encode a
composite textkey, use the CTX_DOC.PKENCODE procedure.

• The rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

restab
You can specify that this procedure store results to either a table or to an in-memory PL/SQL
table.
The tokens returned are those tokens that are inserted into the index for the document (or
row) named with textkey. Stop words are not returned. Section tags are not returned
because they are not text tokens.

thes_name
Specify the thesaurus name. If you do not specify a thesaurus name, then no synonyms or
broader terms will be generated. To use the system default thesaurus, specify DEFAULT.
If you specify thes_name, then the token table must include the THES_TOKENS column,
otherwise the CTX_DOC.TOKENS procedure fails with an "ORA-00904: THES_TOKENS: Invalid
identifier when thes_name parameter is used" error.

thes_toktype
Specify SYN to generate synonyms of index tokens. Alternatively, specify BT to generate
broader terms of index tokens. By default, synonyms are generated. To use this parameter,
you must first specify a thesaurus name using the thes_name parameter.

Specifying a Token Table

To store results to a table, specify the name of the table. Token tables can be named anything,
but must include the columns shown in the following table, with names and datatypes as
specified.

Table 9-2 Required Columns for Token Tables

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call to
CTX_DOC.TOKENS (only populated when table is used to store
results from multiple TOKEN calls)

TOKEN VARCHAR2(255) The token string in the text.

Chapter 9
TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 49

Table 9-2 (Cont.) Required Columns for Token Tables

Column Name Type Description

THES_TOKENS VARCHAR2(4000) Synonyms or broader terms generated using a thesaurus for the
token in the TOKEN column. These values must be colon-
separated.

Note

The THES_TOKENS column is
required only if you specify the
thes_name argument with the
CTX_DOC.TOKENS API.

OFFSET NUMBER The position of the token in the document, relative to the start of
document which has a position of 1.

LENGTH NUMBER The character length of the token.

Specifying an In-Memory Table

To store results to an in-memory table, specify the name of the in-memory table of type
TOKEN_TAB. The TOKEN_TAB datatype is defined as follows:

type token_rec is record (

token varchar2(255),
offset number,
length number

);

type token_tab is table of token_rec index by binary_integer;

CTX_DOC.TOKENS clears the TOKEN_TAB you specify before the operation.

query_id
Specify the identifier used to identify the row(s) inserted into restab.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what action to
take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table. If the
copy of the document is not present in the $D table, then fetch the document from the data
store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If the copy
of the document is not present in the $D table, then show an error message. Specify this
value when you want to implement a specific fallback logic when the copy of the document
is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Chapter 9
TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 49

Example

In-Memory Tokens

The following example generates the tokens for document 1 and stores them in an in-memory
table, declared as the_tokens. The example then loops through the table to display the
document tokens.

declare
 the_tokens ctx_doc.token_tab;

begin
 ctx_doc.tokens('myindex','1',the_tokens);
 for i in 1..the_tokens.count loop
 dbms_output.put_line(the_tokens(i).token);
 end loop;
end;

Chapter 9
TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 49

10
CTX_ENTITY Package

The CTX_ENTITY PL/SQL package is used to locate and classify words and phrases into
categories, such as persons or companies.

CTX_ENTITY contains the following stored procedures and functions.

Name Description

ADD_EXTRACT_RULE Adds a single extraction rule to an extraction policy.

ADD_STOP_ENTITY Marks certain entity mentions or entity types as not to be extracted.

COMPILE Compiles added extraction rules into an extraction policy.

CREATE_EXTRACT_POLICY Creates an extraction policy to use.

DROP_EXTRACT_POLICY Drops an extraction policy.

EXTRACT Generates an XML document describing the entities found in an input
document.

IMPORT_DICTIONARY Imports an entity extraction user dictionary into Oracle Text tables.

REMOVE_EXTRACT_RULE Removes a single extraction rule from an extraction policy.

REMOVE_STOP_ENTITY Removes a stop entity from an extraction policy.

Note

The APIs in the CTX_ENTITY package do not support identifiers that are prefixed with
the schema or the owner name.

10.1 ADD_EXTRACT_RULE
The ADD_EXTRACT_RULE procedure adds a single extraction rule to extract policy. Invokers add
rules into their own extraction policy.

Extraction rules have sentence-wide scopes. Extraction rules have to be case-sensitive except
for entity types and rule operators in the rule expression. Order of rule addition is not important.
Addition of a rule will not be effective until CTX_ENTITY.COMPILE is executed. This procedure
issues a commit.

Syntax

CTX_ENTITY.ADD_EXTRACT_RULE(
 policy_name IN VARCHAR2,
 rule_id IN INTEGER,
 extraction_rule IN VARCHAR2);

policy_name
Specify the policy name.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 13

rule_id
Specify a unique rule ID within an extraction policy. The rule ID must be greater than 0.

extraction_rule
The rule text in XML format specifies the language, expression, and entities to be extracted.
The rule text follows the XML schema as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="rule">
 <xsd:sequence>
 <xsd:element name="expression" type="xsd:string"/>
 <xsd:complexType>
 </xsd:complexType>
 <xsd:element name="comments type="xsd:string" default="\0"/>
 </xsd:sequence>
 </xsd:attribute name="language" type="xsd:string" default="ALL"/>
</xsd:element>
</xsd:schema>

Where:

• The language attribute of the rule tag specifies the applied language for the rule. The rule
will only be applied to documents that are of the specified languages. The language
attribute can be left out, or set to "ALL" if the rule is to match on all documents.

• The expression tag contains the posix regular expression that will be used in the
matching.

• The comments tag allows users to associate any comments with this user rule.

• The type tag assigns the extracted entity text to a given entity type. The entity type can be
one of the Oracle supplied rule types, listed in Table 10-1, or it can be a user-defined type.

Note

Starting with Oracle Database Release 21c, the extraction rule's XML format has the
following changes:

• The refid attribute of the type tag is not supported.

• User-defined types do not need to be prefixed with the letter "x".

• '\c(<type>)' must be used for using user-defined type and Oracle supplied
types in the rules.

Supplied Entity
Type

Type Explanation Examples

building Oracle supplied
dictionary

Name of a building Gallery House

city Oracle supplied
dictionary

Name of a city New York

company Oracle supplied
dictionary

Name of a company Oracle Corporation

country Oracle supplied
dictionary

Name of a country United States

currency Oracle supplied rule Currency Dollar

Chapter 10
ADD_EXTRACT_RULE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 13

Supplied Entity
Type

Type Explanation Examples

date Oracle supplied rule Date July 4

day Oracle supplied
dictionary

Day Monday, Tuesday

email_address Oracle supplied rule Email address person@example.c
om

geo_political Oracle supplied
dictionary

A political or
strategic
organization

United Nations

holiday Oracle supplied
dictionary

Name of a country
holiday

Labor Day

location_other Oracle supplied
dictionary

Other types of
locations

Atlantic Ocean

month Oracle supplied rule Month June, July

non_profit Oracle supplied
dictionary

Non-profit
organization

Red Cross

organization_ot
her

Oracle supplied
dictionary

Other types of
organizations

Supreme Court

percent Oracle supplied rule Expressed as
number and %

10%

person_jobtitle Oracle supplied
dictionary

Person referred to
by title

President, Professor

person_name Oracle supplied rule Person referred to
by name

John Doe

person_other Oracle supplied
dictionary

Other types of
persons

Other types of
persons (for
example, criminal)

phone_number Oracle supplied rule Phone number (123)-456-7890

postal_address Oracle supplied rule Postal address Redwood Shores,
CA

product Oracle supplied
dictionary

Name of a product Oracle Text

region Oracle supplied
dictionary

Name of a region North America

ssn Oracle supplied rule Social Security
Number

123-45-6789

state Oracle supplied
dictionary

A state or province California

time_duration Oracle supplied rule A length of time 10 seconds

tod Oracle supplied rule Time of day 8:00 AM

url Oracle supplied rule Web address www.example.com

zip_code Oracle supplied rule Zip Code CA 94065

Chapter 10
ADD_EXTRACT_RULE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 13

Example 10-1 Defining an extraction rule to find email addresses in documents

The following example shows how to define an extraction rule and associate it with an entity
extraction policy. The following rule defines a simple extraction rule for finding email addresses
in documents.

begin
 ctx_entity.add_extract_rule('pol1', 1,
 '<rule>
 <expression>email is (\w+@\w+\.\w+)</expression>
 <type>email_address</type>
 </rule>');
end;
/

Where:

• Given the sentence: "My email address is jdoe@example.com", this extraction rule will
extract "jdoe@example.com" as an entity of type email_address.

• The rule is added to the extraction policy called pol1.

• The rule is added with rule ID of 1.

• This XML description of the rule is as follows:

– The language attribute of the rule tag is left empty, so the rule will apply to all
languages.

– The expression tag contains the regular expression to use in the extraction.

Example 10-2 Defining an extraction rule to find phone numbers in documents

The following rule defines a simple extraction rule for finding phone numbers in documents:

begin
 ctx_entity.add_extract_rule('pol1', 2,
 '<rule language="english">
 <expression>(\(d{3}\) \d{3}-\d{3}-\d{4})</expression>
 <comments>Rule for phone numbers</comments>
 <type>email_address</type>
 </rule>');
end;
/

Where:

• Given the sentence: "I can be contacted at (123) 456-7890", this extraction rule will extract
"(123) 456-7890" as an entity of type phone_number.

• The rule is added to the extraction policy called pol1.

• The rule is added with rule ID of 2.

• The XML description of the rule is as follows:

– The language attribute of the rule tag is set to english, so the rule will only apply to
English documents.

– The expression tag contains the regular expression to use in the extraction.

– Explanatory comments are associated with this rule.

Chapter 10
ADD_EXTRACT_RULE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 13

Example 10-3 Defining an extraction rule using user-defined type

The following example shows how to define an extraction rule using an user-defined type to
search for entities in a document:

begin
 ctx_entity.add_extract_rule('pol1', 1,
 '<rule>
 <expression>([a-z]+)</expression>
 <type>my_type</type>
 </rule>');
end;
/

begin
 ctx_entity.add_extract_rule('pol1', 2,
 '<rule>
 <expression>(\d\c(my_type)?\s^\c(my_type))</expression>
 <type>type_comp</type>
 <comments>Rule with nested type</comments>
 </rule>');
end;
/

10.2 ADD_STOP_ENTITY
This procedure is used to mark certain entity mentions or entity types as not to be extracted.
Invokers add stop entities to their own extraction policy. It does not take effect until after
CTX_ENTITY.COMPILE is run. Either entity_name or entity_type can be NULL, but not both. If
one stop entity is a subset of another, it will be marked as a subset after CTX_ENTITY.COMPILE,
and not used in extraction. This procedure issues a commit.

Syntax

CTX_ENTITY.ADD_STOP_ENTITY(
 policy_name IN VARCHAR2,
 entity_name IN INTEGER,
 entity_type IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the policy name of the stop entity that is to be added.

entity_name
Specify the entity name to be listed as a stop entity. If entity_type is NULL, all mentions with
this entity_name will be listed as stop entities. It is case-sensitive.

entity_type
If entity_name is NULL, this will specify an entire entity type to be listed as stop entity. If
entity_name is not NULL, this will specify only the mention <entity_type, entity_name> as a
stop entity. It is case-insensitive. The maximum byte length is 4000 bytes.

comments
The maximum byte length is 4000 bytes.

Chapter 10
ADD_STOP_ENTITY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 13

Example

The following example adds a stop entity corresponding to all persons. After compilation,
extraction will not report any mentions of entity type person.

exec ctx_entity.add_stop_entity('pol1', NULL, 'person');

The following example adds a stop entity corresponding to <'person', 'john doe'>. After
compilation, extraction will not report any mentions of the pair <'person', 'john doe'>. This
stop entity is actually a subset of the first stop entity added. It will be marked subset in the
CTX_USER_EXTRACT_STOP_ENTITIES view, and will not be used in extraction.

exec ctx_entity.add_stop_entity('pol1', 'john doe', 'person');

The following example adds a stop entity corresponding to all mentions of ford. After
compilation, extraction will not report any mentions of the entity ford, irrespective of the entity
type of the mention. For example, if a rule matches ford to a person, the extraction will not
report this match. If a rule matches ford to a company, the extraction will again not report this
match.

exec ctx_entity.add_stop_entity('pol1', 'ford', NULL);

Related Topics

"COMPILE"

"CTX_USER_EXTRACT_STOP_ENTITIES"

10.3 COMPILE
This procedure compiles added extraction rules into an extraction policy. It can also be used to
compile added stop entities into an extraction policy. Users have to invoke this procedure if
they have added any rules or stop entities to their policy.

Invokers compile rules and stop entities into their own extraction policy. Users can choose to
compile added rules, added stop entities, or both.

After compilation, the CTX_USER_EXTRACT_RULES, CTX_USER_EXTRACT_STOP_ENTITIES, and
CTX_USER_EXTRACT_TYPE views will show which rules, stop entities, and types are being used
in the entity extraction.

Syntax

CTX_ENTITY.COMPILE(
 policy_name IN VARCHAR2,
 compile_choice IN NUMBER DEFAULT COMPILE_ALL,
 locking IN NUMBER DEFAULT LOCK_NOWAIT_ERROR,
 storing IN BOOLEAN DEFAULT TRUE);

policy_name
Specify the policy name that is to be compiled.

compile_choice
Specify the entity name to be listed as a stop entity. If entity_type is NULL, all mentions with
this entity_name will be listed as stop entities. It is case-sensitive.

Chapter 10
COMPILE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 13

The options are COMPILE_ALL, COMPILE_RULES, and COMPILE_STOP_ENTITIES. COMPILE_ALL
compiles both rules and stop entities. COMPILE_RULES compiles only rules.
COMPILE_STOP_ENTITIES compiles only stop entities.

locking
The maximum byte length is 4000 bytes. Configure how COMPILE deals with the situation
where another COMPILE is already running on the same policy.
The options for locking are:

• CTX_ENTITY.LOCK_WAIT

If another compile is running, wait until the running compile is complete, then begin
compile. (In the event of not being able to get a lock, it will wait forever and ignore the
maxtime setting.).

• CTX_ENTITY.LOCK_NOWAIT

If another compile is running, immediately returns without error.

• CTX_ENTITY.LOCK_NOWAIT_ERROR

If another sync is running, error "DRG-51313: timeout while waiting for DML or optimize
lock" is raised.

storing
The default value is TRUE. The data used in entity extraction is stored to improve the entity
extraction's performance. Specify FALSE to stop storing the data used in entity extraction.

Example

The following example compiles the policy using the default setting:

exec ctx_entity.compile('pol1');

The following example compiles only the stop entities for the policy:

exec ctx_entity.compile('pol1', CTX_ENTITY.COMPILE_STOP_ENTITIES);

The following example compiles both rules and stop entities. If a lock exists, the function
returns immediately, but does not raise an error.

exec ctx_entity.compile('pol1', CTX_ENTITY.COMPILE_ALL,
 CTX_ENTITY.LOCK_NOWAIT);

Related Topics

"CTX_USER_EXTRACT_RULES"

"CTX_USER_EXTRACT_STOP_ENTITIES"

"CTX_USER_EXTRACT_TYPE"

10.4 CREATE_EXTRACT_POLICY
The CREATE_EXTRACT_POLICY procedure creates an extraction policy to use. This policy can
only be used by the policy owner.

Syntax

CTX_ENTITY.CREATE_EXTRACT_POLICY(
 policy_name IN VARCHAR2,
 lexer IN VARCHAR2 DEFAULT NULL,

Chapter 10
CREATE_EXTRACT_POLICY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 13

 include_supplied_rules IN BOOLEAN DEFAULT TRUE,
 include_supplied_dictionary IN BOOLEAN DEFAULT TRUE
);

policy_name
Specify the name of the new extraction policy.

lexer
Specify the name of the lexer preference. Only AUTO_LEXER is supported. If not specified,
CTXSYS.DEFAULT_EXTRACT_LEXER will be used. The attributes index_stems and deriv_stems
are not allowed.

include_supplied_rules
Specify whether Oracle-supplied rules are included in entity extraction. If false, automatic
acronym resolution will be turned off. The default is true.

include_supplied_dictionary
Specify whether the Oracle-supplied dictionary is included in entity extraction. The default is
true.

Examples

The following example creates an extraction policy using the default settings. By default, the
Oracle-supplied features, such as rules and dictionary, are enabled.

exec CTX_ENTITY.CREATE_EXTRACT_POLICY('pol1');

The following example creates an extraction policy that explicitly specifies certain parameters.
It specifies the lexer to be used as mylex, which must be an AUTO_LEXER preference. It also
includes the Oracle-supplied rules, but disables the Oracle-supplied dictionary.

exec CTX_ENTITY.CREATE_EXTRACT_POLICY('pol2', 'mylex', TRUE, FALSE);

Related Topics

"AUTO_LEXER"

"CTXSYS.DEFAULT_EXTRACT_LEXER"

10.5 DROP_EXTRACT_POLICY
The DROP_EXTRACT_POLICY procedure drops an extraction policy. These policies can only be
dropped by the policy owner. This procedure issues a commit.

Syntax

CTX_ENTITY.DROP_EXTRACT_POLICY(
 policy_name IN VARCHAR2
);

policy_name
Specify the name of the extraction policy to be dropped.

Example

The following example drops the extraction policy pol2:

exec ctx_entity.drop_extract_policy('pol2');

Chapter 10
DROP_EXTRACT_POLICY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 13

10.6 EXTRACT
The EXTRACT procedure runs entity extraction on a given document and generates an XML
document describing the entities found in the document.

The XML document will give the entity text, type, and location of the entity in the document.
The extraction will use the settings (rules, stop entities, and dictionary) defined in the given
extraction policy.

Entity type names in the result will be uppercased. Invokers can run extraction using their own
extraction policy.

Before execution, you have to issue CTX_ENTITY.COMPILE.

Syntax

CTX_ENTITY.EXTRACT(
 policy_name IN VARCHAR2,
 document IN CLOB,
 language IN VARCHAR2,
 result IN OUT NOCOPY CLOB,
 entity_type_list IN CLOB DEFAULT NULL
);

policy_name
Run extraction using the given policy.

document
The input document to run extraction on.
If entity_type is NULL, all mentions with this entity_name will be listed as stop entities. It is
case-sensitive.

language
Only English is supported.

result
A CLOB containing the XML description of the entities extracted from the document.
If entity_type is NULL, all mentions with this entity_name will be listed as stop entities. It is
case-sensitive.

entity_type_list
Specify that extraction will only consider a subset of entity types. The entity_type_list is a
comma-delimited list. If the entity_type_list is not specified, the entity extraction will
consider all entity types.

Example

The following example shows the results of entity extraction on an example document.
Suppose that we have created an extraction policy called pol1, and we are given the input
document:

Sam A. Schwartz retired as executive vice president of Org Inc. in New York.

We then call the ctx_entity.extract procedure to generate an XML document containing the
entities in this document. We insert the results CLOB into a table called entities for future
viewing.

Chapter 10
EXTRACT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 13

declare
 myresults clob;
begin
 select txt into mydoc from docs where id=1;
 ctx_entity.extract('p1', mydoc, null, myresults);
 insert into entities values(1, myresults);
 commit;
 end;
/

Then we can examine the extracted entities from the entities table. Note that each entity is
tagged with its location in the input document, as well as the source used to classify the entity.

<entities>
<entity id="0" offset="75" length="8" source="SuppliedDictionary">
<text>New York</text>
<type>city</type>
</entity>
<entity id="1" offset="55" length="16" source="SuppliedRule">
<text>Org Inc.</text>
<type>company</type>
</entity>
<entity id="2" offset="27" length="24" source="SuppliedDictionary">
<text>Sam A. Schwartz</text>
<type>person_name</type>
</entity>
<entity id="4" offset="75" length="8" source="SuppliedDictionary">
<text>New York</text>
<type>state</type>
</entity>
</entities>

10.7 IMPORT_DICTIONARY
Use the CTX_ENTITY.IMPORT_DICTIONARY procedure to import an entity extraction user
dictionary into Oracle Text tables.

An import dictionary is an XML containing entries for entities, with their associated types and
alternate forms. The XML schema is the same XML schema used by Entity Extraction User
Dictionary Loader (ctxload). You can load only one user dictionary per policy.

Syntax

CTX_ENTITY.IMPORT_DICTIONARY(
 policy_name IN VARCHAR2,
 data IN CLOB,
 isdrop IN BOOLEAN DEFAULT FALSE);

policy_name
Specify the policy name.

data
Specify the XML dictionary.

Chapter 10
IMPORT_DICTIONARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 13

The XML schema is as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="dictionary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="entities" type="entityType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:complexType>
</xsd:element>

<xsd:complexType name="entityType">
 <xsd:sequence>
 <xsd:element name="entity" type="entType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:attribute name="language" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="entType">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string" minOccurs="1"
maxOccurs="unbounded"/>
 <xsd:element name="alternate" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

isdrop
Specify whether the current user dictionary must be dropped. The default value is FALSE.

Example 10-4 Importing an Entity Extraction User Dictionary into an Oracle Text Table

This example shows how to import an entity extraction user dictionary into an Oracle Text table
using CTX_ENTITY.IMPORT_DICTIONARY procedure.

Create an extraction policy using the default settings. By default, the Oracle-supplied features,
such as rules and dictionary, are enabled.

exec ctx_entity.create_extract_policy('mypol')

Import an entity extraction user dictionary and compile the extraction policy. Then, run entity
extraction on the input document. You can also specify if the current user dictionary must be
dropped.

declare
 datadic clob;
 doc clob;
 res clob;
 begin
 datadic := '<dictionary>
 <entities language="english">
 <entity>

Chapter 10
IMPORT_DICTIONARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 13

 <value>NewEntry</value>
 <type>MyType</type>
 </entity>
 </entities>
 </dictionary>';

 ctx_entity.import_dictionary('mypol', datadic);
 ctx_entity.compile('mypol');

 doc := 'NEWENTRY';
 ctx_entity.extract('mypol', doc, 'english', res);

 dbms_output.put_line(res);

 -- Dropping dictionary
 ctx_entity.import_dictionary('mypol', null, isdrop=>true);
 ctx_entity.compile('mypol');

 ctx_entity.extract('mypol', doc, 'english', res);
 dbms_output.put_line(res);
 end;
 /

Related Topics

"Entity Extraction User Dictionary Loader (ctxload)"

"COMPILE"

"CREATE_EXTRACT_POLICY"

"EXTRACT"

10.8 REMOVE_EXTRACT_RULE
The REMOVE_EXTRACT_RULE procedure removes an extraction rule from the specified policy
given a rule_id. Only the owner of the specified policy can remove an extraction rule from the
policy. Removal of the extraction rule will be in effect after running CTX_ENTITY.COMPILE.

Syntax

CTX_ENTITY.REMOVE_EXTRACT_RULE(
 policy_name IN VARCHAR2,
 rule_id IN INTEGER
);

policy_name
Remove the extraction rule from the specified policy.

rule_id
Specify the rule ID of the extraction rule to be removed.

Example

The following example removes the extraction rule with ID 1 from the policy pol1:

exec ctx_entity.remove_extract_rule('pol1', 1);

Chapter 10
REMOVE_EXTRACT_RULE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 13

10.9 REMOVE_STOP_ENTITY
The REMOVE_STOP_ENTITY procedure removes a stop entity from an extraction policy. Only the
owner of the specified policy can remove a stop entity from the policy. Removal of the stop
entity will be in effect after running CTX_ENTITY.COMPILE. Either the entity_name or
entity_type can be null, but not both.

Syntax

CTX_ENTITY.REMOVE_STOP_ENTITY(
 policy_name IN VARCHAR2,
 entity_name IN INTEGER DEFAULT NULL,
 entity_type IN VARCHAR2 DEFAULT NULL
);

policy_name
Remove the stop_entity from the specified policy.

entity_name
Specify the name to be removed from the stop entity list. The stop_entity must have already
been added to the stop_entity list using CTX_ENTITY.ADD_STOP_ENTITY.

entity_type
Specify the type of entity to be removed from the stop entity list. The stop_entity must have
already been added to the stop entity list using CTX_ENTITY.ADD_STOP_ENTITY.

Example

exec ctx_entity.remove_stop_entity('pol1', NULL, 'person_name');

The example statement removes the stop entity corresponding to all mentions of the
entity_type person_name from the policy pol1. After execution, this stop entity will be marked
as "to be deleted" in the CTX_USER_EXTRACT_STOP_ENTITIES view. The removal of the stop
entity will take effect once the user runs CTX_ENTITY.COMPILE.

Related Topics

"COMPILE"

"ADD_STOP_ENTITY"

"CTX_USER_EXTRACT_STOP_ENTITIES"

Chapter 10
REMOVE_STOP_ENTITY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 13

11
CTX_OUTPUT Package

This chapter provides reference information for using the CTX_OUTPUT PL/SQL package.

CTX_OUTPUT contains the following stored procedures:

Name Description

ADD_EVENT Adds an event to the index log.

ADD_TRACE Enables tracing.

DISABLE_QUERY_STATS Turns off the gathering of query stats for the index.

ENABLE_QUERY_STATS Enables gathering of query stats for the index.

END_LOG Halts logging of index and document services requests.

END_QUERY_LOG Stops logging queries into a logfile.

GET_TRACE_VALUE Returns the value of a trace.

LOG_TRACES Prints traces to logfile.

LOGFILENAME Returns the name of the current log file.

REMOVE_EVENT Removes an event from the index log.

REMOVE_TRACE Disables tracing.

RESET_TRACE Clears a trace.

START_LOG Starts logging index and document service requests.

START_QUERY_LOG Creates a log file of queries.

Note

The APIs in the CTX_OUTPUT package do not support identifiers that are prefixed with
the schema or the owner name.

11.1 ADD_EVENT
Use this procedure to add an event to the index log for a more detailed log output or to enable
error tracing for Oracle Text errors. Index logs are now appended to the database trace files.

Syntax

CTX_OUTPUT.ADD_EVENT(event in NUMBER, errnum in NUMBER := null);

event
Specify the type of index event to log. You can add the following events:

• CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID, which logs the rowid of each row as it is indexed.
This is useful for debugging a failed index operation.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 10

• CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints the each token as it is being
indexed.

• CTX_OUTPUT.EVENT_DRG_DUMP_ERRORSTACK, which prints the stack trace for the specified
DRG error in the log. An error will be raised if errnum is not specified.

Note

CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN, which prints each token as it is being
optimized, and CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints each token as it
is being indexed, are disabled when using PDB lockdown profile CTX_PROTOCOLS.

errnum
Specify the DRG error number for a CTX_OUTPUT.EVENT_DRG_DUMP_ERRRORSTACK event.

Example

begin
CTX_OUTPUT.ADD_EVENT(CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID);
end;

Related Topics

"REMOVE_EVENT"

11.2 ADD_TRACE
Use this procedure to enable a trace. If the trace has not been enabled, this call adds the trace
to the list of active traces and resets its value to 0. If the trace has already been enabled, an
error is raised.

Syntax

CTX_OUTPUT.ADD_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to enable. See Table 11-1 for possible trace values.

Notes

Table 11-1 shows the available traces:

Table 11-1 Available Traces

Symbol ID Metric

TRACE_IDX_USER_DATASTORE 1 Time spent executing user datastore

TRACE_IDX_AUTO_FILTER 2 Time spent invoking the AUTO_FILTER filter. (Replaces
the deprecated TRACE_IDX_INSO_FILTER trace)

TRACE_QRY_XX_TIME 3 Time spent executing the $X cursor

TRACE_QRY_XF_TIME 4 Time spent fetching from $X

TRACE_QRY_X_ROWS 5 Total number of rows whose token metadata was
fetched from $X

TRACE_QRY_IF_TIME 6 Time spent fetching the LOB locator from $I

Chapter 11
ADD_TRACE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 10

Table 11-1 (Cont.) Available Traces

Symbol ID Metric

TRACE_QRY_IR_TIME 7 Time spent reading $I LOB information

TRACE_QRY_I_ROWS 8 Number of rows whose $I token_info was actually
read

TRACE_QRY_I_SIZE 9 Number of bytes read from $I LOBs

TRACE_QRY_R_TIME 10 Time spent fetching and reading $R information

TRACE_QRY_CON_TIME 11 Time spent in CONTAINS processing
(drexrcontains/drexrstart/drexrfetch)

TRACE_QRY_S_TIME 15 Time spent fetching and reading $S information

TRACE_QRY_O_TIME 19 Time spent reading $O information

TRACE_QRY_D_TIME 23 Time spent reading $D information

TRACE_QRY_SNIPPET_TIME 25 Time spent extracting a snippet from a document

TRACE_HIL_DOCSERV_TIME 26 Time spent by document service procedures (snippet,
highlight, and markup)

Tracing is independent of logging. Logging does not have to be on to start tracing, and vice-
versa.

Traces are associated with a session—they can measure operations that take place within a
single session, and conversely, cannot make measurements across sessions.

During parallel sync or optimize, the trace profile will be copied to the worker sessions only if
tracing is currently enabled. Each worker will accumulate its own traces and implicitly write all
trace values to the worker logfile before termination.

Related Topics

REMOVE_TRACE

GET_TRACE_VALUE

LOG_TRACES

RESET_TRACE

Oracle Text Application Developer's Guide

11.3 DISABLE_QUERY_STATS
Disables gathering of query stats for the index.

Syntax

ctx_output.disable_query_stats(
index_name IN VARCHAR2
);

index_name
The name of the index on which query stats collection is to be disabled.

Chapter 11
DISABLE_QUERY_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 10

Example

Turn off gathering of query stats for the index myindex.

CTX_OUTPUT.DISABLE_QUERY_STATS(myindex);

Notes

Once the query stats is disabled for an index, gathering and storing query-related metadata is
stopped for that index. All the entries corresponding to that index are cleared from the
dictionary tables. An error is returned if you call this procedure on an index where query stats
is not enabled.

Related Topics

CTX_OUTPUT."ENABLE_QUERY_STATS"

CTX_REPORT."INDEX_STATS"

11.4 ENABLE_QUERY_STATS
Enables gathering of query stats for the index. To have query-related metadata stored for the
index, use this procedure to enable collection of statistics on that index. You can only access
the gathered metadata when ctx_output.enable_query_stats is turned on for the index.

Note

Accessing the query stats metadata only works when
ctx_output.enable_query_stats is turned on for the index. Please see
CTX_REPORT."INDEX_STATS" for the list of gathered query stats metadata.

Syntax

ctx_output.enable_query_stats(
index_name IN VARCHAR2
);

index_name
The name of the index on which query stats collection is to be enabled.

Example

Turn on gathering of query stats for the index myindex.

CTX_OUTPUT.ENABLE_QUERY_STATS(myindex);

Notes

The information that shows whether query stats is enabled on an index is available in the
views: CTX_INDEXES and CTX_USER_INDEXES under the column idx_query_stats_enabled,
which is in both of these views. If query_stats is enabled for an index, then the column
displays YES; if not, then the column displays NO.

The data corresponding to the query statistics will be stored in persistent dictionary tables.
Once statistics has been enabled for a particular index, query statistics will be collected for
that index from all sessions.

Chapter 11
ENABLE_QUERY_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 10

If you call this procedure for an index where query stats is already enabled, then an error is
thrown.

Statistics collection has a minimal effect on query performance.

Related Topics

CTX_OUTPUT."DISABLE_QUERY_STATS"

CTX_REPORT."INDEX_STATS".

11.5 END_LOG
This procedure halts logging index and document service requests.

Syntax

ctx_output.end_log;

Example

begin
CTX_OUTPUT.END_LOG;
end;

11.6 END_QUERY_LOG
Use this procedure to stop logging queries into the database trace files.

Syntax

ctx_output.end_query_log;

Example

begin

CTX_OUTPUT.START_QUERY_LOG('mylog1');
 < get queries >
CTX_OUTPUT.END_QUERY_LOG;

end;

11.7 GET_TRACE_VALUE
Use this procedure to programmatically retrieve the current value of a trace.

Syntax

CTX_OUTPUT.GET_TRACE_VALUE(trace_id BINARY_INTEGER);

trace_id
Specify the trace ID whose value you want. See Table 11-1 for possible values.

Example

This sets the value of the variable value:

value := ctx_output.get_trace_value(trace_id);

Chapter 11
END_LOG

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 10

Notes

You can also retrieve trace values through SQL:

select * from ctx_trace_values;

See "CTX_TRACE_VALUES" for the entries in the CTX_TRACE_VALUES view.

If the trace has not been enabled, an error is raised.

Traces are not reset to 0 by this call.

Traces are associated with a session—they can measure operations that take place within a
single session, and conversely, cannot make measurements across sessions.

Related Topics

"REMOVE_TRACE"

"ADD_TRACE"

"LOG_TRACES"

"RESET_TRACE"

Oracle Text Application Developer's Guide

11.8 LOG_TRACES
Use this procedure to print all active traces to the RDBMS trace files.

Syntax

CTX_OUTPUT.LOG_TRACES;

Notes

Traces are not reset to 0 by this call.

The traces now go to the database trace files.

Related Topics

"REMOVE_TRACE"

"GET_TRACE_VALUE"

"ADD_TRACE"

"RESET_TRACE"

Oracle Text Application Developer's Guide

11.9 LOGFILENAME
Returns the current session's trace file name. An error occurs if logging is not started.

Syntax

CTX_OUTPUT.LOGFILENAME RETURN VARCHAR2;

Chapter 11
LOG_TRACES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 10

Returns

Log file name

Example

declare
 logname varchar2(100);
begin
 logname := CTX_OUTPUT.LOGFILENAME;
 dbms_output.put_line('The current log file is: '||logname);
end;

11.10 REMOVE_EVENT
Use this procedure to remove an event added through ctx_output.add_event.

Syntax

CTX_OUTPUT.REMOVE_EVENT(event in NUMBER);

event
Specify the type of index event to remove from the log. You can remove the following events:

• CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID, which logs the rowid of each row after it is
indexed. This is useful for debugging a failed index operation.

• CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN, which prints each token as it is being optimized.

• CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints the each token as it is being
indexed.

Example

begin

CTX_OUTPUT.REMOVE_EVENT(CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID);

end;

Related Topics

"ADD_EVENT "

11.11 REMOVE_TRACE
Use this procedure to disable a trace.

Syntax

CTX_OUTPUT.REMOVE_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to disable. See Table 11-1 for possible values.

Notes

If the trace has not been enabled, an error is raised.

Chapter 11
REMOVE_EVENT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 10

Related Topics

"GET_TRACE_VALUE"

"ADD_TRACE"

"LOG_TRACES"

"RESET_TRACE"

Oracle Text Application Developer's Guide

11.12 RESET_TRACE
Use this procedure to clear a trace (that is, reset it to 0).

Syntax

CTX_OUTPUT.RESET_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to reset. See Table 11-1 for possible values.

Notes

If the trace has not been enabled, an error is raised.

Related Topics

"REMOVE_TRACE"

"GET_TRACE_VALUE"

"ADD_TRACE"

"LOG_TRACES"

Oracle Text Application Developer's Guide

11.13 START_LOG
Begin logging index and document service requests. The index logs are written to the
database trace files.

Syntax

CTX_OUTPUT.START_LOG(logfile in varchar2, overwrite in default true);

logfile
Specify the name of the log file. Starting with Oracle Database 12c Release 2 (12.2), the
logfile parameter is ignored. The logs are now appended to the database trace files. Use the
dictionary views such as V$DIAG_INFO and V$PROCESS to find the path to your current session's
trace file or to the trace file for each Oracle Database process.
The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility can also be used
to access the trace files.

Chapter 11
RESET_TRACE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 10

overwrite
Specify whether you want to overwrite or append to the original query log file specified by
logfile, if it already exists. Starting with Oracle Database 12c Release 2 (12.2), this parameter
is ignored. By default, all logs are appended to the database trace file.

Examples

begin
CTX_OUTPUT.START_LOG('mylog1');
end;

To view the indexing logs, search for COMPONENT_NAME=’CONTEXT_INDEX’ in view
V$DIAG_TRACE_FILE_CONTENTS:

select PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where
COMPONENT_NAME='CONTEXT_INDEX' and TRACE_FILENAME = trc_name;

To view the query logs, search for COMPONENT_NAME=’CONTEXT_QUERY’ in view
V$DIAG_TRACE_FILE_CONTENTS:

select PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where
COMPONENT_NAME='CONTEXT_QUERY' and TRACE_FILENAME = trc_name;

Parallel Query (PQ) workers have trace filenames of the type: SID_pxxx_PID.trc. To see the
traces in the parallel workers:

select TRACE_FILENAME, PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where
COMPONENT_NAME='CONTEXT_INDEX' and TRACE_FILENAME LIKE '%p00%';

Notes

No logs are written if the PDB lockdown profile CTX_LOGGING is enabled.

Logging does not have to be on to start tracing, and vice-versa.

Logging is associated with a session-it can log operations that take place within a single
session, and, conversely, cannot make measurements across sessions.

Filenames used in CTX_OUTPUT.START_LOG are restricted to the following characters:
alphanumeric, minus, period, space, hash, underscore, single and double quotes. Any other
character in the filename will raise an error.

11.14 START_QUERY_LOG
Begin logging query requests. Starting with Oracle Database 12c Release 2 (12.2), the query
logs are written to the database trace files.

Use CTX_OUTPUT.END_QUERY_LOG to stop logging queries. Use CTX_REPORT.QUERY_LOG_SUMMARY
to obtain reports on logged queries, such as which queries returned successfully the most
times.

The query log includes the query string, the index name, and the timestamp of the query, as
well as whether or not the query successfully returned a hit. A successful query for the phrase
Blues Guitarists made at 6:46 (local time) on November 11th, 2003, would be entered into the
query log in this form:

Chapter 11
START_QUERY_LOG

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 10

<QuerySet><TimeStamp>18:46:51 02/04/03</TimeStamp><IndexName>
IDX_SEARCH_TABLE</IndexName><Query>Blues
Guitarists</Query><ReturnHit>Yes</ReturnHit></QuerySet>

Syntax

CTX_OUTPUT.START_QUERY_LOG(logfile in varchar2, overwrite in default true);

logfile
Specify the name of the query log file. Starting with Oracle Database 12c Release 2 (12.2),
the logfile parameter is ignored. The logs are appended to the database trace files instead.
Use the dictionary views such as V$DIAG_INFO and V$PROCESS to find the path to your current
session's trace file or to the trace file for each Oracle AI Database process.
The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility can also be used
to access the trace files.

overwrite
Specify whether you want to overwrite or append to the original query log file specified by
logfile, if it already exists. Starting with Oracle Database 12c Release 2 (12.2), this
parameter is ignored. By default, all logs are appended to the database trace file.

Example

begin

CTX_OUTPUT.START_QUERY_LOG('mylog1');
 < get queries >
CTX_OUTPUT.END_QUERY_LOG;

end;

Notes

No logs are written if the PDB lockdown profile CTX_LOGGING is enabled.

Filenames used in CTX_OUTPUT.START_QUERY_LOG are restricted to the following characters:
alphanumeric, minus, period, space, hash, underscore, single and double quotes. Any other
character in the filename will raise an error.

Logging is associated with a session-it can log operations that take place within a single
session, and, conversely, cannot make measurements across sessions.

Chapter 11
START_QUERY_LOG

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 10

12
CTX_QUERY Package

This chapter describes the CTX_QUERY PL/SQL package you can use for generating query
feedback, counting hits, and creating stored query expressions.

The CTX_QUERY package includes the following procedures and functions:

Name Description

BROWSE_WORDS Returns the words around a seed word in the index.

COUNT_HITS Returns the number hits to a query.

EXPLAIN Generates query expression parse and expansion information.

HFEEDBACK Generates hierarchical query feedback information (broader term,
narrower term, and related term).

REMOVE_SQE Removes a specified stored query expression from the SQL tables.

RESULT_SET Executes a query and generates a result set.

RESULT_SET_CLOB_QUERY Executes a query and generates a result set based on a CLOB
query parameter.

RESULT_SET_DOCUMENT Holds the result set document after the CONTAINS query cursor is
explicitly closed and if the query template has the
<ctx_result_set_descriptor> element.

STORE_SQE Executes a query and stores the results in stored query expression
tables.

WARM_CACHE Improves query performance by limiting disk reads from Oracle
Text secondary tables.

Note

You can use this package only when your index type is CONTEXT. This package does
not support the CTXCAT index type.

The APIs in the CTX_QUERY package do not support identifiers that are prefixed with the
schema or the owner name.

12.1 BROWSE_WORDS
This procedure enables you to browse words in an Oracle Text index. Specify a seed word and
BROWSE_WORDS returns the words around it in the index, and an approximate count of the
number of documents that contain each word.

This feature is useful for refining queries. You can identify the following words:

• Unselective words (words that have low document count)

• Misspelled words in the document set

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 37

Syntax 1: To Store Results in Table

ctx_query.browse_words(

index_name IN VARCHAR2,
seed IN VARCHAR2,
restab IN VARCHAR2,
browse_id IN NUMBER DEFAULT 0,
numwords IN NUMBER DEFAULT 10,
direction IN VARCHAR2 DEFAULT BROWSE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

);

Syntax 2: To Store Results in Memory

ctx_query.browse_words(

index_name IN VARCHAR2,
seed IN VARCHAR2,
resarr IN OUT BROWSE_TAB,
numwords IN NUMBER DEFAULT 10,
direction IN VARCHAR2 DEFAULT BROWSE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

);

index
Specify the name of the index. You can specify schema.name. Must be a local index.

seed
Specify the seed word. This word is lexed before browse expansion. The word need not exist
in the token table. seed must be a single word. Using multiple words as the seed will result in
an error.

restab
Specify the name of the result table. You can enter restab as schema.name. The table must
exist before you call this procedure, and you must have INSERT permissions on the table. This
table must have the following schema.

Column Datatype

browse_id number

word varchar2(64)

doc_count number

Existing rows in restab are not deleted before BROWSE_WORDS is called.

resarr
Specify the name of the result array. resarr is of type ctx_query.browse_tab.

type browse_rec is record (
 word varchar2(64),
 doc_count number
);
type browse_tab is table of browse_rec index by binary_integer;

Chapter 12
BROWSE_WORDS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 37

browse_id
Specify a numeric identifier between 0 and 232. The rows produced for this browse have a
value of in the browse_id column in restab. When you do not specify browse_id, the default is
0.

numwords
Specify the number of words returned.

direction
Specify the direction for the browse. You can specify one of:

value behavior

BEFORE Browse seed word and words alphabetically before the seed.

AROUND Browse seed word and words alphabetically before and after the
seed.

AFTER Browse seed word and words alphabetically after the seed.

Symbols CTX_QUERY.BROWSE_BEFORE, CTX_QUERY.BROWSE_AROUND, and
CTX_QUERY.BROWSE_AFTER are defined for these literal values as well.

part_name
Specify the name of the index partition to browse.

Example

Browsing Words with Result Table

begin
ctx_query.browse_words('myindex','dog','myres',numwords=>5,direction=>'AROUND');
end;

select word, doc_count from myres order by word;

WORD DOC_COUNT
-------- ----------
CZAR 15
DARLING 5
DOC 73
DUNK 100
EAR 3

Browsing Words with Result Array

set serveroutput on;
declare
 resarr ctx_query.browse_tab;
begin
ctx_query.browse_words('myindex','dog',resarr,5,CTX_QUERY.BROWSE_AROUND);
for i in 1..resarr.count loop
 dbms_output.put_line(resarr(i).word || ':' || resarr(i).doc_count);
end loop;
end;

12.2 COUNT_HITS
Returns the number of hits for the specified query. You can call COUNT_HITS in exact or
estimate mode. Exact mode returns the exact number of hits for the query. Estimate mode
returns an upper-bound estimate but runs faster than exact mode.

Chapter 12
COUNT_HITS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 37

Syntax

Syntax 1

exec CTX_QUERY.COUNT_HITS(
 index_name IN VARCHAR2,
 text_query IN VARCHAR2,
 exact IN BOOLEAN DEFAULT TRUE,
 part_name IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Syntax 2

exec CTX_QUERY.COUNT_HITS_CLOB_QUERY(
 index_name IN VARCHAR2,
 text_query IN CLOB,
 exact IN BOOLEAN DEFAULT TRUE,
 part_name IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

index_name
Specify the index name.

text_query
Specify the query.

exact
Specify TRUE for an exact count. Specify FALSE for an upper-bound estimate.
Specifying FALSE returns a less accurate number but runs faster. Specifying FALSE might
return a number which is too high if rows have been updated or deleted since the last FULL
index optimize. Optimizing in full mode removes these false hits, and then EXACT set to FALSE
will return the same number as EXACT set to TRUE.

part_name
Specify the name of the index partition to query.

Notes

If the query contains structured criteria, then you should use SELECT COUNT(*).

If the index was created with the TRANSACTIONAL parameter, then COUNT_HITS will include
pending rowids as well as those that have been synchronized.

12.3 EXPLAIN
Use CTX_QUERY.EXPLAIN to generate explain plan information for a query expression. The
EXPLAIN plan provides a graphical representation of the parse tree for a Text query expression.
This information is stored in a result table.

This procedure does not execute the query. Instead, this procedure can tell you how a query is
expanded and parsed before you enter the query. This is especially useful for stem, wildcard,
thesaurus, fuzzy, soundex, or about queries. Parse trees also show the following information:

• Order of execution (precedence of operators)

• ABOUT query normalization

• Query expression optimization

• Stop-word transformations

Chapter 12
EXPLAIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 37

• Breakdown of composite-word tokens

Knowing how Oracle Text evaluates a query is useful for refining and debugging queries. You
can also design your application so that it uses the explain plan information to help users write
better queries.

Syntax

Syntax 1

exec CTX_QUERY.EXPLAIN(

 index_name IN VARCHAR2,
 text_query IN VARCHAR2,
 explain_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 explain_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL

);

Syntax 2

exec CTX_QUERY.EXPLAIN_CLOB_QUERY(
 index_name IN VARCHAR2,
 text_query IN CLOB,
 explain_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 explain_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of the index to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.
When you include a wildcard, fuzzy, or soundex operator in text_query, this procedure looks
at the index tables to determine the expansion.
Wildcard, fuzzy (?), and soundex (!) expression feedback does not account for lazy deletes as
in regular queries.

explain_table
Specify the name of the table used to store representation of the parse tree for text_query.
You must have at least INSERT and DELETE privileges on the table used to store the results
from EXPLAIN.

See Also

"EXPLAIN Table" in Oracle Text Result Tables for more information about the
structure of the explain table.

sharelevel
Specify whether explain_table is shared by multiple EXPLAIN calls. Specify 0 for exclusive
use and 1 for shared use. Default is 0 (single-use).
When you specify 0, the system automatically truncates the result table before the next call to
EXPLAIN.

Chapter 12
EXPLAIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 37

When you specify 1 for shared use, this procedure does not truncate the result table. Only
results with the same explain_id are updated. When no results with the same explain_id
exist, new results are added to the EXPLAIN table.

explain_id
Specify a name that identifies the explain results returned by an EXPLAIN procedure when
more than one EXPLAIN call uses the same shared EXPLAIN table. Default is NULL.

part_name
Specify the name of the index partition to query.

Example

Creating the Explain Table

To create an explain table called test_explain for example, use the following SQL statement:

create table test_explain(
 explain_id varchar2(30),
 id number,
 parent_id number,
 operation varchar2(30),
 options varchar2(30),
 object_name varchar2(255),
 position number,
 cardinality number);

Running CTX_QUERY.EXPLAIN

To obtain the expansion of a query expression such as comp% OR ?smith, use
CTX_QUERY.EXPLAIN as follows:

ctx_query.explain(
 index_name => 'newindex',
 text_query => 'comp% OR ?smith',
 explain_table => 'test_explain',
 sharelevel => 0,
 explain_id => 'Test');

Retrieving Data from Explain Table

To read the explain table, you can select the columns as follows:

select explain_id, id, parent_id, operation, options, object_name, position
from test_explain order by id;

The output is ordered by ID to simulate a hierarchical query:

EXPLAIN_ID ID PARENT_ID OPERATION OPTIONS OBJECT_NAME POSITION
----------- ---- --------- ------------ ------- ----------- --------
Test 1 0 OR NULL NULL 1
Test 2 1 EQUIVALENCE NULL COMP% 1
Test 3 2 WORD NULL COMPTROLLER 1
Test 4 2 WORD NULL COMPUTER 2
Test 5 1 EQUIVALENCE (?) SMITH 2
Test 6 5 WORD NULL SMITH 1
Test 7 5 WORD NULL SMYTHE 2

Restrictions

CTX_QUERY.EXPLAIN does not support the use of query templates.

Chapter 12
EXPLAIN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 37

You cannot use CTX_QUERY.EXPLAIN with remote queries.

Related Topics

Oracle Text CONTAINS Query Operators

Stopword Transformations in Oracle Text

12.4 HFEEDBACK
In English or French, this procedure generates hierarchical query feedback information
(broader term, narrower term, and related term) for the specified query.

Broader term, narrower term, and related term information is obtained from the knowledge
base. However, only knowledge base terms that are also in the index are returned as query
feedback information. This increases the chances that terms returned from HFEEDBACK produce
hits over the currently indexed document set.

Hierarchical query feedback information is useful for suggesting other query terms to the user.

Syntax

Syntax 1

exec CTX_QUERY.HFEEDBACK(
 index_name IN VARCHAR2,
 text_query IN VARCHAR2,
 feedback_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 feedback_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL
);

Syntax 2

exec CTX_QUERY.HFEEDBACK_CLOB_QUERY(
 index_name IN VARCHAR2,
 text_query IN CLOB,
 feedback_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 feedback_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of the index for the text column to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

feedback_table
Specify the name of the table used to store the feedback terms.

Chapter 12
HFEEDBACK

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 37

See Also

"HFEEDBACK Table" in Oracle Text Result Tables for more information about the
structure of the explain table.

sharelevel
Specify whether feedback_table is shared by multiple HFEEDBACK calls. Specify 0 for exclusive
use and 1 for shared use. Default is 0 (single-use).
When you specify 0, the system automatically truncates the feedback table before the next
call to HFEEDBACK.
When you specify 1 for shared use, this procedure does not truncate the feedback table. Only
results with the same feedback_id are updated. When no results with the same
feedback_id exist, new results are added to the feedback table.

feedback_id
Specify a value that identifies the feedback results returned by a call to HFEEDBACK when more
than one HFEEDBACK call uses the same shared feedback table. Default is NULL.

part_name
Specify the name of the index partition to query.

Example

Create HFEEDBACK Result Table

Create a result table to use with CTX_QUERY.HFEEDBACK as follows:

 CREATE TABLE restab (
 feedback_id VARCHAR2(30),
 id NUMBER,
 parent_id NUMBER,
 operation VARCHAR2(30),
 options VARCHAR2(30),
 object_name VARCHAR2(80),
 position NUMBER,
 bt_feedback ctxsys.ctx_feedback_type,
 rt_feedback ctxsys.ctx_feedback_type,
 nt_feedback ctxsys.ctx_feedback_type,
 NESTED TABLE bt_feedback STORE AS res_bt,
 NESTED TABLE rt_feedback STORE AS res_rt,
 NESTED TABLE nt_feedback STORE AS res_nt
 ;

CTX_FEEDBACK_TYPE is a system-defined type in the CTXSYS schema.

See Also

"HFEEDBACK Table" in Oracle Text Result Tables for more information about the
structure of the HFEEDBACK table.

Call CTX_QUERY.HFEEDBACK

The following code calls the HFEEDBACK procedure with the query computer industry.

Chapter 12
HFEEDBACK

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 37

BEGIN
ctx_query.hfeedback (index_name => 'my_index',
 text_query => 'computer industry',
 feedback_table => 'restab',
 sharelevel => 0,
 feedback_id => 'query10'
);
END;

Select From the Result Table

The following code extracts the feedback data from the result table. It extracts broader term,
narrower term, and related term feedback separately from the nested tables.

DECLARE
 i NUMBER;
BEGIN
 FOR frec IN (
 SELECT object_name, bt_feedback, rt_feedback, nt_feedback
 FROM restab
 WHERE feedback_id = 'query10' AND object_name IS NOT NULL
) LOOP

 dbms_output.put_line('Broader term feedback for ' || frec.object_name ||
':');
 i := frec.bt_feedback.FIRST;
 WHILE i IS NOT NULL LOOP
 dbms_output.put_line(frec.bt_feedback(i).text);
 i := frec.bt_feedback.NEXT(i);
 END LOOP;

 dbms_output.put_line('Related term feedback for ' || frec.object_name ||
':');
 i := frec.rt_feedback.FIRST;
 WHILE i IS NOT NULL LOOP
 dbms_output.put_line(frec.rt_feedback(i).text);
 i := frec.rt_feedback.NEXT(i);
 END LOOP;

 dbms_output.put_line('Narrower term feedback for ' || frec.object_name ||
':');
 i := frec.nt_feedback.FIRST;
 WHILE i IS NOT NULL LOOP
 dbms_output.put_line(frec.nt_feedback(i).text);
 i := frec.nt_feedback.NEXT(i);
 END LOOP;

 END LOOP;
END;

Sample Output

The following output is for the preceding example, which queries on computer industry:

Broader term feedback for computer industry:
hard sciences
Related term feedback for computer industry:
computer networking
electronics
knowledge
library science
mathematics
optical technology

Chapter 12
HFEEDBACK

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 37

robotics
satellite technology
semiconductors and superconductors
symbolic logic
telecommunications industry
Narrower term feedback for computer industry:
AT&T Starlans
ATI Technologies, Incorporated
ActivCard
Actrade International Ltd.
Alta Technology
Amiga Format
Amiga Library Services
Amiga Shopper
Amstrat Action
Apple Computer, Incorporated
..

Note

The HFEEDBACK information you obtain depends on the contents of your index and
knowledge base and as such might differ from the sample shown.

Restrictions

CTX_QUERY.HFEEDBACK does not support the use of query templates and rolling upgrades.

12.5 REMOVE_SQE
The CTX_QUERY.REMOVE_SQE procedure removes the specified stored query expression.

CTX_QUERY.REMOVE_SQE can be used to remove both session-duration and persistent SQEs.
See "STORE_SQE".

Since the query_name namespace is shared between the persistent and session-duration
SQEs, it is unnecessary to specify the duration of the SQE to be removed.

Syntax

CTX_QUERY.REMOVE_SQE(
 query_name IN VARCHAR2
);

query_name
Specify the name of the stored or session-duration query expression to be removed.

Example

begin
 ctx_query.remove_sqe('dis1');
 ctx_query.remove_sqe('dis2');
end;
/

Chapter 12
REMOVE_SQE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 37

12.6 RESULT_SET
This procedure executes an XML or JSON query and generates a result set in XML or JSON.

The Result Set Interface can return data views that are difficult to express in SQL.

See Also

Oracle Text Application Developer's Guide for details on how to use the Result Set
Interface

Syntax

CTX_QUERY.RESULT_SET (
 index_name IN VARCHAR2,
 query IN VARCHAR2,
 result_set_descriptor IN CLOB,
 result_set IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL,
 format IN NUMBER DEFAULT CTX_QUERY.XML_FORMAT
);

index_name
Specify the index against which to execute the query.

query
Specify the query string.

result_set_descriptor
Specify the result set descriptor in XML or JSON. It describes what the result set should
contain.

result_set
Specify the output result set. If this variable is NULL on input, a session-duration temporary lob
will be allocated and returned to the user. The user is responsible for deallocating this
temporary lob.

part_name
Specify the index partition name. If the index is global, part_name must be NULL. If the index is
partitioned and part_name is not NULL, then the query will only be evaluated for the given
partition. If the index is partitioned and part_name is NULL, then the query will be evaluated for
all partitions.

format
Specify the format for the result set descriptor. Use CTX_QUERY.XML_FORMAT for XML format
and CTX_QUERY.JSON_FORMAT for JSON format. The default is CTX_QUERY.XML_FORMAT.

The Input Result Set Descriptor

The result set descriptor is an XML message or JSON object which describes what to calculate
for the result set. The elements present in the result set descriptor and the order in which they
occur serve as a simple template, specifying what to include in the output result set. That is,
there should be the list of hit rowids, then a count, then a token count, and so on. The

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 37

attributes of the elements specify the parameters and options to the specific operations, such
as number of hits in the list of rowids, estimate versus exact count, and so on.

The XML Format Input Result Set Descriptor

The result set descriptor itself is XML conforming to the following DTD:

<!DOCTYPE ctx_result_set_descriptor [
<!ELEMENT ctx_result_set_descriptor (hitlist?, group*, count?, collocates?)>
<!ELEMENT hitlist (rowid?, score?, sdata*, snippet*, sentiment?)>
<!ELEMENT group (count?, group_values?)>
<!ELEMENT count EMPTY>
<!ELEMENT rowid EMPTY>
<!ELEMENT score EMPTY>
<!ELEMENT sdata EMPTY>
<!ELEMENT group_values (value*)>
<!ELEMENT value EMPTY>
<!ELEMENT sentiment (item*)>
<!ELEMENT item EMPTY>
<!ELEMENT collocates EMPTY>
<!ATTLIST sentiment classifier CDATA "DEFAULT_CLASSIFIER">
<!ATTLIST item topic CDATA #REQUIRED>
<!ATTLIST item type (about|exact) "exact">
<!ATTLIST item agg (TRUE|FALSE) "FALSE">
<!ATTLIST item radius CDATA "50">
<!ATTLIST item max_inst CDATA "5">
<!ATTLIST item starttag CDATA #IMPLIED>
<!ATTLIST item endtag CDATA #IMPLIED>
<!ATTLIST collocates radius CDATA "20">
<!ATTLIST collocates max_words CDATA "10">
<!ATTLIST collocates use_tscore (TRUE|FALSE) "TRUE">
<!ATTLIST collocates use_hits CDATA "10">
<!ATTLIST group sdata CDATA #REQUIRED>

<!ATTLIST group topn CDATA #IMPLIED>
<!ATTLIST group bucketby CDATA #IMPLIED>
<!ATTLIST group sortby CDATA #IMPLIED>
<!ATTLIST group order CDATA #IMPLIED>
<!ATTLIST value id CDATA #IMPLIED>
<!ATTLIST hitlist start_hit_num CDATA #REQUIRED>
<!ATTLIST hitlist end_hit_num CDATA #REQUIRED>
<!ATTLIST hitlist order CDATA #IMPLIED>
<!ATTLIST count exact (TRUE|FALSE) "FALSE">

<!ATTLIST sdata name CDATA #REQUIRED>
<!ATTLIST snippet radius CDATA #IMPLIED>
<!ATTLIST snippet max_length CDATA #IMPLIED>
<!ATTLIST snippet starttag CDATA #IMPLIED>
<!ATTLIST snippet endtag CDATA #IMPLIED>
]>

The following is a description of the possible XML elements for the result set descriptor:

• ctx_result_set_descriptor

This is the root element for the result set descriptor. The parent element is none, as are the
available attributes.

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 37

The possible child elements are:

– Zero or more hitlist elements.

– Zero or more group elements.

– At most one count element.

• group

The group element causes the generated result set to include a group breakdown. In other
words, a breakdown of the results by SDATA section values. The group element is also
used to obtain facet counts for faceted navigation support. The parent element is
ctx_result_set_descriptor, and the available attributes are:

– sdata

Specifies the name of the SDATA section to use for grouping. It is required.

– bucketby

Determines how group values are bucketed for counting. The single attribute displays
each unique facet value along with its count. Starting with Oracle Database Release
21c, the custom attribute value is also supported which displays a range of numeric
facets along with their count.

– topn

Restricts the maximum number of facet values that are returned. It sorts by
descending group count by default. Valid attribute values are positive integers larger
than zero.

– sortby

Valid attribute values are value and count. Value sorts using the value themselves, as
appropriate for each data type. Count (default) sorts using the counts for each group.

– order

Order can be ascending or descending.

Possible child elements of group are:

– count

– range

• hitlist

The hitlist element controls inclusion of a list of hit documents. The parent element is
ctx_result_set_descriptor, and the available attributes are:

The possible attribute elements for hitlist are:

– start_hit_num

This specifies the starting document hit to be included in the generated result set. This
can be set to any positive integer less than or equal to 16000. For example, if
start_hit_num is 21, then the result set will include document hits starting from the
21st document hit. This element is required.

– end_hit_num

This specifies the last document hit to be included in the generated result set. This can
be set to any positive integer less than or equal to 48000. For example, if end_hit_num
is 40, then the result set will include document hits up to the 40th document hit. This
element is required.

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 37

– order

This is an optional attribute that specifies the order for the documents in the generated
result set. The value is a list similar to a SQL ORDER BY statement, except that, instead
of column names, they can either be SCORE or SDATA section names. In the following
example, MYDATE and MYPRICE are the SDATA section names:

(order = "SCORE DESC, MYDATE, MYPRICE DESC")

The possible child elements for hitlist are:

– At most one rowid element.

– At most one score element.

– One or more sdata element.

– At most one snippet element.

• count

This element causes the generated result set to include a count of the number of hit
documents. The parent elements are:

– ctx_result_set_descriptor

– group

The available attributes for count are:

– exact

This is to estimate mode. Set to true or false. It is required, and the default is false.

The possible child elements for count are none.

• rowid

This child element causes the generated result set to include rowid information for each hit.
The parent element is hitlist. There are no attributes and no possible child elements.

• score

This child element causes the generated result set to include score information for each
hit.

– The parent element is hitlist.

– There are no available attributes, and no possible child elements.

• sdata

This child element causes the generated result set to include sdata values for each hit.

– The parent element is hitlist.

– The available attribute is name. This specifies the name of the sdata section. It is
required.

– There are no child elements.

• sentiment

This element controls the inclusion of sentiment classification results for each document
returned as a part of the hitlist. There can be only one sentiment element in the hitlist
element.

The parent element is hitlist.

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 37

The attribute available for this element is classifier, which specifies the sentiment
classifier that is used to perform sentiment analysis. If no classifier is specified, then the
CTXSYS.DEFAULT_SENTIMENT_CLASSIFIER is used. If a specified classifier is not available,
then an error is displayed.

• item

This element specifies keywords or concepts for which sentiment information must be
fetched for the returned set of documents. Each sentiment element must contain at least
one child item element. The maximum is 10 child item elements. If you specify an empty
item element (without any attributes), it indicates that sentiment score for entire document
must be returned.

The parent element is sentiment.

The available attributes for item are:

– topic

This specifies the topic for which sentiment analysis must be performed.

– type

If this attribute value is set to ABOUT, then the classifier treats the specified topic as a
concept rather than a keyword. The default is EXACT.

– agg

Determines whether the sentiment score must be aggregated and presented as a
single score for the entire document. The possible values are TRUE or FALSE. TRUE
indicates that the per text segment scores will be aggregated and text segments will
not be returned in the output resultset, only the aggregated score will be returned. The
default value is FALSE.

– radius

This specifies the radius of the surrounding text to be identified during sentiment
classification for that keyword. The default value is 50.

– max_inst

This specifies how many instances of text excerpts related to the specified topic must
be analyzed for sentiment classification. The default value is 5.

– starttag

This specifies the starting tag for topic highlighting.

– endtag

This specifies the ending tag for topic highlighting.

• collocates

This element controls the generation of related keywords or concepts associated with the
collection of documents retrieved by the query.

The parent element is ctx_result_set_descriptor.

The available attributes for collocates are:

– radius

This specifies the radius of the surrounding text to be identified for collocates. The
default value is 20.

– max_words

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 37

This specifies the maximum number of collocates to return for the given query. The
default value is 10.

– use_tscore

This specifies whether to use T-score for scoring the collocates. The possible values
are TRUE or FALSE, with the default being TRUE.

Set this attribute to TRUE to identify collocates that are common tokens. Set this
attribute to FALSE to identify collocates that emphasize unique words.

The Output Result Set XML

The output result set XML is XML conforming to the following DTD:

<!DOCTYPE ctx_result_set [
<!ELEMENT ctx_result_set (hitlist?, groups*, count? , collocates?)>
<!ELEMENT hitlist (hit*)>
<!ELEMENT hit (rowid?, score?, snippet*, sdata*, sentiment?)>
<!ELEMENT groups (group*)>
<!ELEMENT group (count?)>
<!ELEMENT count (#PCDATA)>
<!ELEMENT rowid (#PCDATA)>
<!ELEMENT score (#PCDATA)>
<!ELEMENT snippet (segment*)>
<!ELEMENT sdata (#PCDATA)>
<!ELEMENT sentiment (item*)>
<!ELEMENT item (segment*, score*, doc?)>
<!ELEMENT segment (segment_text?, segment_score?)>
<!ELEMENT segment_text (#PCDATA)>
<!ELEMENT segment_score (#PCDATA)>
<!ELEMENT doc (score?)>
<!ELEMENT collocates (collocation*)>
<!ELEMENT collocation (word?, score?)>
<!ELEMENT word (#PCDATA)>
<!ATTLIST item topic CDATA #REQUIRED>
<!ATTLIST groups sdata CDATA #REQUIRED>
<!ATTLIST group value CDATA #REQUIRED>

<!ATTLIST group range CDATA #IMPLIED>
<!ATTLIST group single CDATA #IMPLIED>
<!ATTLIST sdata name CDATA #REQUIRED>

The following is a description of the list of possible XML elements for the output result set:

• ctx_result_set

This is the root element for the generated result set. There are no attributes. The parent is
none. The possible child elements are:

– At most one hitlist element.

– Zero or more groups elements.

• groups

This delimits the start of a group breakdown section. The parent element is
ctx_result_set. The available attributes are:

– sdata

This is the name of the sdata section used for grouping.

The possible child elements are:

– Zero or more group elements.

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 37

• group

This delimits the start of a GROUP BY value. The parent element is the groups element. The
available attributes are:

– value

This is the value of the sdata section.

The possible child elements are at most one count element.

• hitlist

This delimits the start of hitlist information. The parent element is ctx_result_set, while
the children are zero or more hit elements. There are no attributes.

• hit

This delimits the start of the information for a particular document within a hitlist. The
parent element is hitlist, and there are no available attributes. The possible child
elements are:

– Zero or one rowid elements.

– Zero or one score element.

– Zero or one sdata element.

– Zero or one snippet element.

• rowid

This is the rowid of the document, so the content is the rowid of the document. The parent
element is the hit element. There are no child elements, and no available attributes.

• score

This is the score of the document. The parent element is the hit element. The content is
the numeric score. There are no available attributes, and no possible child elements.

• sdata

This is the SDATA value or values for the document. The parent element is the hit element,
and the available attribute is name, which is the name of the sdata section. There are no
possible child elements available. The content is the SDATA section value, which, for DATE
values, is in the format "YYYY-MM-DD HH24:MI:SS", depending upon the actual values
being stored.

• count

This is the document hit count. The parent element is the ctx_result_set element or the
group element. It contains the numeric hit count, has no attributes, and no possible child
elements.

• sentiment

This delimits the sentiment element for the hitlist document. Its child element is item
and parent is hitlist. It contains no attributes in the output result set.

• item

This delimits the item element for the hitlist document. Parent element is sentiment
and child elements are segment, score, and doc. It has one attribute called topic.

• segment

This delimits an instance of segment element in a hit. Parent element is item. Child
elements are segment_text and segment_score. It contains no attributes.

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 37

• segment_text

This specifies the text segment for the given item topic. Parent element is segment. It has
no child elements or attributes.

• segment_score

This specifies the sentiment score for the segment. Parent element is segment. It has no
child elements or attributes.

• score

This specifies the sentiment score for the document or for the parent item topic. When
present within collocation it specifies the collocation score for the particular collocation
keyword. Parent element is doc or collocation. It has no child elements or attributes

• doc

This denotes the sentiment score is for the entire document. Its parent element is item and
child element is score. It has no attributes.

• collocates

This delimits the collocates element for the result set output. Parent element is
ctx_result_set and child element is collocation. It has no attributes.

• collocation

This denotes a single collocation. Parent element is collocates and child elements are
word and score. It has no attributes.

• word

This specifies the collocates token. Its parent element is collocation. It has no child
elements or attributes.

Example

This call to CTX_QUERY.RESULT_SET with the specified XML result_set_descriptor will
generate the following information in the form of XML:

• top 5 hits displaying, score, rowid, author SDATA section value, and pubDate SDATA section
value, order by pubDate SDATA section value DESC and score DESC

• total doc hit count for the text query

• counts group by pubDate SDATA section values

• counts group by author SDATA section values

declare
 rs clob;
begin
 dbms_lob.createtemporary(rs, true, dbms_lob.session);
 ctx_query.result_set('docidx', 'oracle', '
 <ctx_result_set_descriptor>
 <count/>
 <hitlist start_hit_num="1" end_hit_num="5" order="pubDate desc, score desc">
 <score/>
 <rowid/>
 <sdata name="author"/>
 <sdata name="pubDate"/>
 </hitlist>
 <group sdata="pubDate">
 <count/>
 </group>

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 37

 <group sdata="author">
 <count/>
 </group>
 </ctx_result_set_descriptor>
', rs);
 dbms_lob.freetemporary(rs);
exception
 when others then
 dbms_lob.freetemporary(rs);
 raise;
end;
/

The XML output store in the result set output clob will resemble the following:

<ctx_result_set>
 <hitlist>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAC</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAG</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAK</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAO</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAS</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 </hitlist>

 <count>100</count>

 <groups sdata="PUBDATE">
 <group value="2001-01-01 00:00:00"><count>25</count></group>
 <group value="2001-01-02 00:00:00"><count>50</count></group>
 <group value="2001-01-03 00:00:00"><count>25</count></group>
 </groups>

 <groups sdata="AUTHOR">
 <group value="John"><count>50</count></group>
 <group value="Mike"><count>25</count></group>
 <group value="Steve"><count>25</count></group>
 </groups>

</ctx_result_set>

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 37

The JSON Format Input Result Set Descriptor

The JSON format result set descriptor consists of $query, $search, and $facet parts. You can
use the JSON format result set descriptor to query context indexes and JSON search index. It
is of the following format:

{
 "$query": <text query and filter conditions>,
 "$search": <search result specifications>,
 "$facet": <faceted result specifications>
}

• $query

Use $query to specify a search query, the path constraints, and additional path based filter
conditions. When $query is specified, the query parameter of CTX_QUERY.RESULT_SET
procedure is ignored.

Note

The $query part is supported only when a JSON search index exists on the
column. You can not specify the $query part when there is an Oracle Text index.

$query is a subset of Simple Oracle Document Access (SODA) filter specification, also
known as a query-by-example (QBE) or simply a filter. The following clauses are only
supported:

– Contains Clause - A contains clause is a field followed by an object with
one $contains operator, whose value is a string. It matches a document only if a string
or number in the field value matches the string operand somewhere, including in array
elements. Matching is Oracle Text full-text. You can use a contains clause only in the
outermost condition of a QBE. You can also have multiple contains clauses only at the
top level within a $and operator.

For example, this QBE checks for a "name" field that contains the word "doe" and an
"address" field that contains the number 10 or the string "10" as a word:

{
 "$and" : [
 {"name": { "$contains" : "doe" } },
 { "address" : { "$contains" : "10" } }
]
}

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 37

Note

* Use wildcard field steps (*) in the contains clause to include other path
steps between the paths. For example:

address.*.name

* Use descendent notation (..) in the contains clause to include descendant
path steps between the paths. For example:

address..name2

In this query, name2 is considered as a descendent of address and
matches the address record of the table.

* You can use a $contains field condition only as a part of a
simple $contains query or as a part of the outermost $and condition. You
cannot use it as a part of a $or condition or an inner $and condition. Doing
so results in an error.

– Field-Condition Clause - A field-condition clause is JSON-object member whose field
is not an operator and whose value is an object with one or more members, each of
which is a condition-operator clause:

field : { condition-operator-clause ... }

The following condition operators are only supported:

* $eq - Matches document if field value equals operand value and the operand is a
JSON scalar value. Also, matches document if field value is an array object and
the operand value is an element of that array.

* $gt - Matches document only if field value is greater than operand value. The
operand must be a JSON number or string.

* $gte - Matches document only if field value is greater than or equal to operand
value. The operand must be a JSON number or string.

* $lt - Matches document only if field value is less than operand value. The operand
must be a JSON number or string.

* $lte - Matches document only if field value is less than or equal to operand value.
The operand must be a JSON number or string.

Note

* Wildcard field steps (*) and array steps ([and]) are not supported.

* To support field conditions on string values, a JSON search index with
search_on text_value_string is required.

– Logical Combining Clause - A logical combining clause combines the effects of
multiple non-empty filter conditions. A logical combining clause is a logical combining
operator — $and or $or — followed by a non-empty array of one or more non-empty
filter conditions. The values of the operator clauses can only be numbers or string
values.

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 37

The following is an example of a $query part with the supported clauses:

"$query" :
{
 "$and" : [
 { "book.*.summary" : { "$contains" : "(Music or Song) and Dance" } },
 { "book.*.review" : { "$contains" : "(Good or excellent) and
interesting" } },
 { "$or" : [
 { "book.rating" : { "$gte" : 4.5 } },
 { "$and" : [{ "book.price" : { "$lte" : 100 } },
{ "book.author" : { "$eq" : "Doe" } }] }
]
]
}

• $search

Use $search to display the score ranked search results and their count. For a non-JSON
Oracle Text full-text index, you can also specify the SDATA sections to project for the search
results.

You can use the following attributes:

– start and end - Specify the range of the search result. For example, for start = 1 and
end = 10, the first 10 documents are returned.

– project - Specify the list of SDATA sections to project for the search results. This
attribute is supported only for a non-JSON Oracle Text full-text index.

• $facet

Use $facet to specify the facets for various paths of a JSON document or SDATA sections
of a context indexed document. Facets bucketed by a single unique value and facets per
user specified range buckets are supported. The facets can also be one of the
aggregations like COUNT, MIN, etc.

You can specify a facet object in the following ways:

– A field as a string or numeric value for which the output has facet group counts for
each single unique value of the specified field:

{ "$uniqueCount": { "path/sdata" : field, "type" (Optional) : "string/
number" } }

where:

* field refers to a SODA path for querying using a JSON search index when you
use path and SDATA section name for querying using a context index when you
use sdata.

* type is either string (default) or number. When you are using sdata, the type
parameter is not allowed as each sdata already has a predefined type.

– A field only for string values when using a JSON search index where field refers to a
SODA path for querying using a JSON search index:

{ "$uniqueCount": field }

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 37

– A field for computing aggregations on facet groups using bucket ranges:

{
 "$op : {
 "path/sdata" : field ,
 "bucket <Optional>" : [{ "$gt/$gte (Optional)" : <lower bound 1>,
 "$lt/$lte (Optional)" : <upper bound
1>}, ...],
 "type" <Optional> : "string/number"
 }
}

where:

* $op is one of $sum, $min, $max, $avg, or $count.

* field refers to a SODA path for querying using a JSON search index when you
use path and SDATA section name for querying using a context index when you
use sdata.

* Each range bucket must have at-most one lower bound ($gt or $gte) and upper
bound ($lt or $lte).

* type is either number (default) or string. When you are using sdata, the type
parameter is not allowed as each sdata already has a predefined type.

Note

$sum and $avg aggregations are only supported when the value of type
parameter is number or sdata is of number type. You can only
use $count, $min, and $max for string type.

– A field only for computing aggregations on numeric facets without using bucket ranges:

{ "$op" : <field> }

$op is one of $sum, $min, $max, $avg, or $count.

The following is an example for $facet part:

"$facet": [
 {
 "$sum" : {
 "path" : "book.price",
 "bucket" : [{ "$lt" : 100 }, { "$gte" : 100, "$lt" :
150 }, { "$gte" : 150 }]
 }
 },
 {
 "$count" : {
 "path" : "book.author",
 "bucket" : [{"$lt" : "G"}, {"$gte" : "G", "$lt" :
"S"}, {"$gte" : "S"}],
 "type" : "string"
 }

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 37

 },
 { "$uniqueCount" : "book.author" },
 { "$uniqueCount " : { "path" : "book.rating", "type" :
"number" } },
 { "$avg" : "book.sales" }
 { "$min" : "book.name", "type" : "string" }
]

This example generates the following:

– Sum of prices for each bucket range of the specified book.price

– Total number of authors in the given specified ranges

– A group count of every unique value of book.author

– A group count of every book.rating treating the rating as a number

– Average of the book sales for all the books that satisfied the query

– The author's name that is lexicographically smallest

Note

To support facets on string values, a JSON search index with search_on
text_value_string is required.

The JSON Format Result Set Output

The JSON format result set output is a JSON object that consists of the following parts:

"$count" : number
"$hit" : [<hit_object_1>, ..., <hit_object_i> , ...]
"$facet": [<facet_object_1>, ..., <facet_object_i>, ...]

The following is a description of the list of possible JSON objects for the output result set:

• $count

The $count JSON object shows the total number of hits for the query.

• $hit

The $hit JSON object shows an array of search hit objects sorted in descending order of
search score depending on how many hits were specified using start and end in
the $search part of the input query. It has the following attributes:

– score

The score attribute shows the score information for each hit.

– rowid

The rowid attribute shows the rowid information for each hit.

– project

The project attribute shows the sdata values that were specified in the $search part
of the input query. The project attribute is supported only for a non-JSON Oracle Text
full-text index.

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 37

• $facet

The $facet JSON object shows an array of facet responses for every facet specified in
the $facet part of the input query.

For enumerating counts for each unique input string or numeric value, the output is of the
following format:

{ "<field>" : [..., { "value" : <value_i>, "$uniqueCount" :
<group_count_i>}, ...]}

For enumerating counts for the buckets specified in input to compute aggregations for
facet groups, the output is of the following format:

{ "<field>" : [..., { "bucket" : <bucket_object_i>, "<op>" :
<group_count_i>}, ...]}

Note

For bucket outputs, if either lower bound ($gt or $gte) or upper bound ($lt
or $lte) are not specified in the input, then the minimum or maximum value is
discovered and displayed in the output.

For enumerating counts for computing aggregations on numeric facets without using
buckets, the output is of the following format:

{ "<field>" : { "<op>" : <actual_value of the aggregation> } }

Example 12-1 Using the JSON format Result Set Interface with CONTEXT Index

This example shows you how to use the JSON format result set interface with CONTEXT index.

Create a table and populate it with values:

drop table zebra_table;
create table zebra_table(id number, details clob);

INSERT INTO zebra_table
VALUES (1,' Zebra details : <price>2000</price><price>1000</price>
 <name>Storm</name>
 <stripes>Dark</stripes><stripes>Light</stripes>
 <handler>Bob</handler>
 <sold>true</sold>');

INSERT INTO zebra_table
VALUES (2,' Zebra details : <rating>5</rating> <price>1000</price>
 <name>Snowy</name>
 <stripes>Light</stripes><stripes>Grey</stripes>
 <handler>Jane Doe</handler>
 <sold>true</sold>');

INSERT INTO zebra_table
VALUES (3,' Zebra details : <rating>4.5</rating> <price>3000</price>
 <name>Zigs</name>

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 37

 <stripes>Grey</stripes><stripes>Dark</stripes>
 <handler>Jane Doe</handler>
 <sold>false</sold>');

INSERT INTO zebra_table
VALUES (4,' Zebra details : <rating>4.5</rating> <price>3000</price>
 <name>Zigs</name>
 <stripes>Grey</stripes><stripes>Dark</stripes>
 <handler>Jane Doe</handler> <sold></sold>');

Create a section group named mysecgrp and enable the optimized_for search attribute for
each column to be treated as a facet:

exec ctx_ddl.drop_section_group ('mysecgrp')
exec ctx_ddl.create_section_group ('mysecgrp', 'BASIC_SECTION_GROUP')

exec ctx_ddl.add_sdata_section ('mysecgrp', 'rating', 'rating', 'NUMBER')
exec ctx_ddl.set_section_attribute('mysecgrp', 'rating', 'optimized_for',
'search')

exec ctx_ddl.add_sdata_section ('mysecgrp', 'price', 'price', 'NUMBER')
exec ctx_ddl.set_section_attribute('mysecgrp', 'price', 'optimized_for',
'search')

exec ctx_ddl.add_sdata_section ('mysecgrp', 'name', 'name', 'VARCHAR2')
exec ctx_ddl.set_section_attribute('mysecgrp', 'name', 'optimized_for',
'search')

exec ctx_ddl.add_sdata_section ('mysecgrp', 'stripes', 'stripes',
'VARCHAR2')
exec ctx_ddl.set_section_attribute('mysecgrp', 'stripes', 'optimized_for',
'search')

exec ctx_ddl.add_sdata_section ('mysecgrp', 'handler', 'handler',
'VARCHAR2')
exec ctx_ddl.set_section_attribute('mysecgrp', 'handler', 'optimized_for',
'search')

exec ctx_ddl.add_sdata_section ('mysecgrp', 'sold', 'sold', 'VARCHAR2')
exec ctx_ddl.set_section_attribute('mysecgrp', 'sold', 'optimized_for',
'search')

Create a CONTEXT index on details and specify the preferences by using the parameters
clause:

create index zebra_idx on zebra_table(details)
indextype is ctxsys.context
parameters('section group mysecgrp');

A call to CTX_QUERY.RESULT_SET with the specified JSON result_set_descriptor generates
the following information in the form of JSON:

• Rowids, names, and handlers for the first two hits

• Total number of unique zebra names

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 37

• Total number of sold and unsold zebras

• Total number of zebras according to their prices

• Sum of prices and average rating between a price range for the total hits and unique
counts based on the sum of prices and average rating

• Total number of zebras grouped by their handler name within certain ranges

variable rs_output clob;

declare
 qry varchar2(4000);
 rs_descriptor clob;
begin
 qry := 'zebra details';
 rs_descriptor := '
{
 "$search" : { "start" : 1, "end" : 2, "project" : ["name", "handler"] },
 "$facet" : [
 { "$uniqueCount" : "name" },
 { "$uniqueCount" : "sold" },
 { "$uniqueCount" : { "sdata" : "price" } },
 { "$sum" : { "sdata" : "price",
 "bucket" :
 [{ "$lt" : 3000 }, { "$gte" : 3000 }]
 }
 },
 { "$avg" : "rating" },
 {
 "$count" : { "sdata" : "handler",
 "bucket" :
 [{ "$lte" : "C" }, { "$gt" : "C" }]
 }
 }
]
}
';
 dbms_lob.createtemporary(:rs_output, true);
 ctx_query.result_set('zebra_idx', qry, rs_descriptor, :rs_output,
 format => CTX_QUERY.JSON_FORMAT);
end;
/

select json_query(:rs_output, '$' pretty) from dual;

The following is output:

{
 "$count" : 4,
 "$hit" :
 [
 {
 "score" : 3,
 "rowid" : "AAASxXAABAAAY95AAA",
 "project" :
 {

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 37

 "NAME" : "Storm",
 "HANDLER" : "Bob"
 }
 },
 {
 "score" : 3,
 "rowid" : "AAASxXAABAAAY95AAB",
 "project" :
 {
 "NAME" : "Snowy",
 "HANDLER" : "Jane Doe"
 }
 }
],
 "$facet" :
 [
 {
 "NAME" :
 [
 {
 "value" : "Zigs",
 "$uniqueCount" : 2
 },
 {
 "value" : "Snowy",
 "$uniqueCount" : 1
 },
 {
 "value" : "Storm",
 "$uniqueCount" : 1
 }
]
 },
 {
 "SOLD" :
 [
 {
 "value" : "true",
 "$uniqueCount" : 2
 },
 {
 "value" : "false",
 "$uniqueCount" : 1
 }
]
 },
 {
 "PRICE" :
 [
 {
 "value" : 1000,
 "$uniqueCount" : 2
 },
 {
 "value" : 3000,
 "$uniqueCount" : 2

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 37

 },
 {
 "value" : 2000,
 "$uniqueCount" : 1
 }
]
 },
 {
 "PRICE" :
 [
 {
 "bucket" :
 {
 "$gte" : 1000,
 "$lt" : 3000
 },
 "$sum" : 4000
 },
 {
 "bucket" :
 {
 "$gte" : 3000,
 "$lte" : 3000
 },
 "$sum" : 6000
 }
]
 },
 {
 "RATING" :
 {
 "$avg" : 4.66666666666666666667
 }
 },
 {
 "HANDLER" :
 [
 {
 "bucket" :
 {
 "$gte" : "Bob",
 "$lte" : "C"
 },
 "$count" : 1
 },
 {
 "bucket" :
 {
 "$gt" : "C",
 "$lte" : "Jane Doe"
 },
 "$count" : 3
 }
]
 }

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 37

]
}

Example 12-2 Using the JSON format Result Set Interface with JSON Search Index

This example shows you how to use the JSON format result set interface with JSON search
index.

Create a table and populate it with values:

drop table zebra_table;
create table zebra_table(id number, details clob check(details is json));

INSERT INTO zebra_table
VALUES (1,'{ "zebra" : { "price" : [2000,1000],
 "name" : "Storm",
 "stripes" : ["Dark","Light"],
 "handler" : "Bob", "sold" : true }}');

INSERT INTO zebra_table
VALUES (2,'{ "zebra" : { "rating": 5, "price" : 1000,
 "name" : "Zigzag",
 "stripes" : ["Light","Grey"],
 "handler" : "Jane Doe", "sold" : "true" }}');

INSERT INTO zebra_table
VALUES (3,'{ "zebra" : { "rating": 4.5, "price" : 3000,
 "name" : "Zigs",
 "stripes" : ["Grey","Dark"],
 "handler" : "Jane Doe", "sold" : false }}');

INSERT INTO zebra_table
VALUES (4,'{ "zebra" : { "rating": "4.5", "price" : "3000",
 "name" : "Zigs",
 "stripes" : ["Grey","Dark"],
 "handler" : "Jane Doe", "sold" : null }}');

Create a JSON search index on details and specify the preferences by using the parameters
clause:

create search index zebra_idx on zebra_table(details) for json
parameters('search_on text_value_string');

A call to CTX_QUERY.RESULT_SET with the specified JSON result_set_descriptor generates
the following information in the form of JSON:

• Total number of zebras that have names which satisfy the given condition

• Rowids for the first two hits that have names which satisfy the given condition

• Total number of unique zebra names

• Total number of sold and unsold zebras

• Total number of zebras according to their prices

• Sum of prices and average rating between a price range for the total hits and unique
counts based on the sum of prices and average rating

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 37

• Total number of zebras grouped by their handler name within certain ranges

variable rs_output clob;

declare
 rs_descriptor clob;
begin
 rs_descriptor := '
{
 "$query" : { "zebra.*.name" : { "$contains" : "sto% or zig%" } },
 "$search" : { "start" : 1, "end" : 2 },
 "$facet" : [
 { "$uniqueCount" : "zebra.name" },
 { "$uniqueCount" : "zebra.sold" },
 { "$uniqueCount" :
 { "path" : "zebra.price", "type" : "number" }
 },
 { "$sum" : { "path" : "zebra.price",
 "bucket" :
 [{ "$lt" : 3000 }, { "$gte" : 3000 }]
 }
 },
 { "$avg" : "zebra.rating" },
 {
 "$count" : { "path" : "zebra.handler",
 "type" : "string",
 "bucket" :
 [{ "$lte" : "C" }, { "$gt" : "C" }]
 }
 }
]
}
';
 dbms_lob.createtemporary(:rs_output, true);
 ctx_query.result_set('zebra_idx', null, rs_descriptor, :rs_output,
 format => CTX_QUERY.JSON_FORMAT);
end;
/

select json_query(:rs_output, '$' pretty) from dual;

The following is output:

{
 "$count" : 4,
 "$hit" :
 [
 {
 "score" : 4,
 "rowid" : "AAASwtAABAAAY95AAB"
 },
 {
 "score" : 4,
 "rowid" : "AAASwtAABAAAY95AAC"

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 37

 }
],
 "$facet" :
 [
 {
 "zebra.name" :
 [
 {
 "value" : "Zigs",
 "$uniqueCount" : 2
 },

 {
 "value" : "Zigzag",
 "$uniqueCount" : 1
 },
 {
 "value" : "Storm",
 "$uniqueCount" : 1
 }
]
 },
 {

 "zebra.sold" :
 [
 {
 "value" : "true",
 "$uniqueCount" : 2
 },
 {
 "value" : "null",
 "$uniqueCount" : 1
 },
 {
 "value" : "false",
 "$uniqueCount" : 1
 }
]
 },
 {
 "zebra.price" :
 [
 {
 "value" : 1000,
 "$uniqueCount" : 2

 },
 {
 "value" : 3000,
 "$uniqueCount" : 2
 },
 {
 "value" : 2000,
 "$uniqueCount" : 1
 }

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 37

]
 },

 {
 "zebra.price" :
 [
 {
 "bucket" :
 {
 "$gte" : 1000,
 "$lt" : 3000
 },
 "$sum" : 4000
 },

 {
 "bucket" :
 {
 "$gte" : 3000,
 "$lte" : 3000
 },
 "$sum" : 6000
 }
]
 },
 {
 "zebra.rating" :
 {
 "$avg" : 4.66666666666666666667
 }
 },
 {
 "zebra.handler" :
 [
 {
 "bucket" :
 {

 "$gte" : "Bob",
 "$lte" : "C"
 },
 "$count" : 1
 },
 {
 "bucket" :
 {
 "$gt" : "C",
 "$lte" : "Jane Doe"
 },
 "$count" : 3
 }
]
 }
]
}

Chapter 12
RESULT_SET

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 37

Limitations and Restrictions

The following limitations and restrictions apply for RESULT_SET.

• The Result Set Interface (RSI) is not supported with Virtual Private Database. (VPD is
supported with the regular CONTAINS query, but not with RSI.)

• In order to execute the function, you must be able to query the base table.

• If a VPD policy is active on the base table, the documents portion of the result set will not
show any documents to which you are not entitled.

• When a VPD policy is being used, aggregate measures such as count may not be
accurate.

See Also

• Oracle Text Application Developer's Guide for information on the XML and JSON
Result Set Interfaces

• Oracle Text Application Developer's Guide for more information on faceted
navigation

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
more information on SODA filter specifications

12.7 RESULT_SET_CLOB_QUERY
This procedure executes an XML or JSON query and generates a result set based on a CLOB
query parameter in XML or JSON.

The RESULT_SET_CLOB_QUERY procedure is identical to the RESULT_SET procedure except that
the datatype of its query parameter is CLOB instead of VARCHAR2 to handle longer queries.

Syntax

CTX_QUERY.RESULT_SET_CLOB_QUERY (
 index_name IN VARCHAR2,
 query IN CLOB,
 result_set_descriptor IN CLOB,
 result_set IN OUT CLOB,
 part_name IN VARCHAR2 DEFAULT
);

See Also

RESULT_SET for the description of these parameters

12.8 RESULT_SET_DOCUMENT
RESULT_SET_DOCUMENT holds the result set document after the CONTAINS query cursor is
explicitly closed and if the query template has the <ctx_result_set_descriptor> element.

Chapter 12
RESULT_SET_CLOB_QUERY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 37

Syntax

CTX_QUERY.RESULT_SET_DOCUMENT(
 index_name IN VARCHAR2,
 query IN VARCHAR2,
 result_set_descriptor IN CLOB,
 result_set IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the index against which to execute the query.

query
Specify the query string.

result_set_descriptor
Specify the result set descriptor in XML or JSON. It describes what the result set should
contain.

result_set
Specify the output result set. If this variable is NULL on input, a session-duration temporary lob
will be allocated and returned to the user. The user is responsible for deallocating this
temporary lob.

part_name
Specify the index partition name. If the index is global, part_name must be NULL. If the index is
partitioned and part_name is not NULL, then the query will only be evaluated for the given
partition. If the index is partitioned and part_name is NULL, then the query will be evaluated for
all partitions.

Related Topics

"RESULT_SET"

12.9 STORE_SQE
This procedure creates either a stored or session-duration query expression (SQE). Only the
query definition is stored.

SQEs are used to store the definition of a query without storing any results. Referencing the
query with the CONTAINS SQL operator references the definition of the query. In this way, SQEs
make it easy for defining long or frequently used query expressions. Creating a session-
duration SQE is useful for when you do not want the maintenance overhead of deleting unused
or no longer needed SQEs.

Supported Operators

Stored query expressions support all of the CONTAINS query operators. Stored query
expressions also support all of the special characters and other components that can be used
in a query expression, including other stored query expressions.

Privileges

Users are permitted to create and remove stored query expressions owned by them. Users are
permitted to use stored query expressions owned by anyone. The CTXSYS user can create or
remove stored query expressions for any user.

Chapter 12
STORE_SQE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 37

Syntax

Syntax 1

CTX_QUERY.STORE_SQE(
 query_name IN VARCHAR2,
 text_query IN VARCHAR2,
 duration IN NUMBER default CTX_QUERY.DURATION_PERSISTENT
);

Syntax 2

CTX_QUERY.STORE_SQE_CLOB_SYNTAX(
 query_name IN VARCHAR2,
 text_query IN CLOB,
 duration IN NUMBER default CTX_QUERY.DURATION_PERSISTENT
);

query_name
Specify the name of the stored query expression to be created.

text_query
Specify the query expression to be associated with query_name.

duration
The possible values are DURATION_SESSION and DURATION_PERSISTENT.

• When duration is to set to DURATION_SESSION, the stored query expression is stored in a
PL/SQL package variable and is available for the session.

• When duration is to set to DURATION_PERSISTENT, the stored query expression is stored in
a database table, and can be referenced by other database sessions.

• SQEs with the DURATION_SESSION option are not supported when issued from the catalog
of a sharded database. Use the DURATION_PERSISTENT option instead.

• The query_name namespace is shared between the persistent and session-duration
SQEs. If you try to add a persistent or session-duration SQE with a name that is already
used by another persistent or session-duration SQE, then an error will be raised.

duration_persistent
When there is a CLOB query, specify that the duration is stored in a database table. This SQE
must be deleted when it is no longer needed.

• The query_name namespace is shared between the persistent and session-duration
SQEs. If you try to add a persistent or session-duration SQE with a name that is already
used by another persistent or session-duration SQE, then an error will be raised.

Example

begin
 ctx_query.store_sqe('dis1', 'flood', CTX_QUERY.DURATION_SESSION);
 ctx_query.store_sqe('dis2', 'tornado', CTX_QUERY.DURATION_PERSISTENT);
 ctx_query.store_sqe('dis3', 'fire')
end;
/

Restriction

SQEs are supported in logical standby only starting with Oracle AI Database release 26ai and
not in previous releases of Oracle AI Database.

Chapter 12
STORE_SQE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 37

12.10 WARM_CACHE
The CTX_QUERY.WARM_CACHE PL/SQL procedure improves query performance by limiting disk
reads from Oracle Text secondary tables.

The first execution of an Oracle Text query can be slower in comparison with repeat
invocations. This is primarily due to the requirement to load relevant $I and $G TOKEN_INFO
data into the database buffer cache. You can use this API to read Oracle Text secondary tables
(such as $I, $KG, $G, $P, $S, $SN, $ST, $SV, $SD, $D, or $O) and load them into the Shared Global
Area (SGA) buffer cache.

To run this operation, ensure that you specify a large buffer cache by using the buffer cache
initialization parameters.

Syntax

CTX_QUERY.WARM_CACHE(

 owner_name IN VARCHAR2,
 index_name IN
VARCHAR2,
 table_identifier IN VARCHAR2 default
'I',
 part_name IN VARCHAR2 default null
);

owner_name
The name of the owner of the index for which you want to improve the query performance.

index_name
The name of the index.

table_identifier
The name of the Oracle Text secondary table that you want to load.

part_name
If your index is a local index, then you must specify the name of the index partition to
synchronize otherwise an error is returned. If your index is a global, nonpartitioned index, then
specify NULL, which is the default.

Example

CTX_QUERY.WARM_CACHE('owner_1', 'IDX', 'I', 'p1');

Related Topics

• Oracle AI Database Administrator’s Guide

Chapter 12
WARM_CACHE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 37

13
CTX_REPORT Package

You can use the CTX_REPORT package to create reports on indexing and querying. These
reports can help you troubleshoot problems or fine-tune your applications.

• Description of Procedures in CTX_REPORT

• Using the Function Versions

• DESCRIBE_INDEX

• DESCRIBE_POLICY

• CREATE_INDEX_SCRIPT

• CREATE_POLICY_SCRIPT

• INDEX_SIZE

• INDEX_STATS

• QUERY_LOG_SUMMARY

• SHOW_TOKENS

• TOKEN_INFO

• TOKEN_TYPE

• VALIDATE_INDEX

Note

The APIs in the CTX_REPORT package do not support identifiers that are prefixed with
the schema or the owner name.

See Also

Oracle Text Application Developer's Guide for an overview of the CTX_REPORT package
and how you can use the various procedures described in this chapter

13.1 Description of Procedures in CTX_REPORT
The CTX_REPORT package contains the following procedures:

Name Description

DESCRIBE_INDEX Creates a report describing the index.

DESCRIBE_POLICY Creates a report describing a policy.

CREATE_INDEX_SCRIPT Creates a SQL*Plus script to duplicate the named index.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 23

Name Description

CREATE_POLICY_SCRIPT Creates a SQL*Plus script to duplicate the named policy.

INDEX_SIZE Creates a report to show the internal objects of an index, their
tablespaces and used sizes.

INDEX_STATS Creates a report to show the various statistics of an index.

QUERY_LOG_SUMMARY Creates a report showing query statistics

TOKEN_INFO Creates a report showing the information for a token, decoded.

TOKEN_TYPE Translates a name and returns a numeric token type.

VALIDATE_INDEX Checks for index corruption and reports on problems found. Mainly
used with Oracle Support.

13.2 Using the Function Versions
Some of the procedures in the CTX_REPORT package have function versions. You can call these
functions as follows:

select ctx_report.describe_index('MYINDEX') from dual;

In SQL*Plus, to generate an output file to send to support, you can do:

set long 64000
set pages 0
set heading off
set feedback off
spool outputfile
select ctx_report.describe_index('MYINDEX') from dual;
spool off

13.3 DESCRIBE_INDEX
Creates a report describing the index. This includes the settings of the index metadata, the
indexing objects used, the settings of the attributes of the objects, and index partition
descriptions, if any.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that
returns the report as a CLOB.

Syntax

procedure CTX_REPORT.DESCRIBE_INDEX(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.DESCRIBE_INDEX(
 index_name IN VARCHAR2,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return CLOB;

index_name
Specify the name of the index to describe.

Chapter 13
Using the Function Versions

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 23

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is the
caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents will be
overwritten by this call.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default.
You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.

Notes

CTX_REPORT.DESCRIBE_INDEX outputs FILTER BY and ORDER BY column information if the index
is created with FILTER BY and/or ORDER BY clauses.

Related Topics

"CREATE INDEX"

"ADD_SDATA_COLUMN"

13.4 DESCRIBE_POLICY
Creates a report describing the policy. This includes the settings of the policy metadata, the
indexing objects used, and the settings of the attributes of the objects.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that
returns the report as a CLOB.

Syntax

procedure CTX_REPORT.DESCRIBE_POLICY(
 policy_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.DESCRIBE_POLICY(
 policy_name IN VARCHAR2,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return CLOB;

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is the
caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents will be
overwritten by this call.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default.
You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.

policy_name
Specify the name of the policy to describe.

Chapter 13
DESCRIBE_POLICY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 23

13.5 CREATE_INDEX_SCRIPT
Creates a SQL*Plus script which will create a text index that duplicates the named text index.

The created script will include creation of preferences identical to those used in the named text
index. However, the names of the preferences will be different.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that
returns the report as a CLOB.

Syntax

procedure CTX_REPORT.CREATE_INDEX_SCRIPT(
 index_name in varchar2,
 report in out nocopy clob,
 prefname_prefix in varchar2 default null
);

function CTX_REPORT.CREATE_INDEX_SCRIPT(
 index_name in varchar2,
 prefname_prefix in varchar2 default null
) return clob;

index_name
Specify the name of the index.

report
Specify the CLOB locator to which to write the script.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is the
caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents will be
overwritten by this call.

prefname_prefix
Specify optional prefix to use for preference names.
If prefname_prefix is omitted or NULL, index name will be used. The prefname_prefix
follows index length restrictions.

Notes

CTX_REPORT.CREATE_INDEX_SCRIPT will also generate necessary FILTER BY and ORDER BY
clauses for CREATE INDEX statements.

Related Topics

"CREATE INDEX"

13.6 CREATE_POLICY_SCRIPT
Creates a SQL*Plus script which will create a text policy that duplicates the named text policy.

The created script will include creation of preferences identical to those used in the named text
policy.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that
returns the report as a CLOB.

Chapter 13
CREATE_INDEX_SCRIPT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 23

Syntax

procedure CTX_REPORT.CREATE_POLICY_SCRIPT(
 policy_name in varchar2,
 report in out nocopy clob,
 prefname_prefix in varchar2 default null
);

function CTX_REPORT.CREATE_POLICY_SCRIPT(
 policy_name in varchar2,
 prefname_prefix in varchar2 default null
) return clob;

policy_name
Specify the name of the policy.

report
Specify the locator to which to write the script.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is the
caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents will be
overwritten by this call.

prefname_prefix
Specify the optional prefix to use for preference names. If prefname_prefix is omitted or
NULL, policy name will be used. prefname_prefix follows policy length restrictions.

13.7 INDEX_SIZE
Creates a report showing the internal objects of the text index or text index partition, and their
tablespaces, allocated, and used sizes.

You can call this operation as a procedure with an IN OUT CLOB parameter, or as a function that
returns the report as a CLOB.

Syntax

procedure CTX_REPORT.INDEX_SIZE(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.INDEX_SIZE(
 index_name IN VARCHAR2,
 part_name IN VARCHAR2 DEFAULT NULL,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return clob;

index_name
Specify the name of the index to describe.

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is the
caller's responsibility to free this temporary CLOB as needed.

Chapter 13
INDEX_SIZE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 23

The report CLOB will be truncated before report is generated, so any existing contents will be
overwritten by this call

part_name
Specify the name of the index partition (optional). If part_name is NULL, and the index is a
local partitioned text index, then all objects of all partitions will be displayed. If part_name is
provided, then only the objects of a particular partition will be displayed.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default.
You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.

Notes

CTX_REPORT.INDEX_SIZE will also output information on dr$indexname$S table.

Related Topics

"CREATE INDEX"

Table 2-39

13.8 INDEX_STATS
Creates a report showing various calculated statistics about the text index.

This procedure fully scans the text index tables, so it may take a long time to run for large
indexes.

Syntax

procedure ctx_report.index_stats(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL,
 frag_stats IN BOOLEAN DEFAULT TRUE,
 list_size IN NUMBER DEFAULT 100,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT,
 stat_type IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of the index to describe. This must be a CONTEXT index.

report
Specify the CLOB locator to which to write the report. If report is NULL, a session-duration
temporary CLOB will be created and returned. It is the caller's responsibility to free this
temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents will be
overwritten by this call.

part_name
Specify the name of the index partition. If the index is a local partitioned index, then part_name
must be provided. INDEX_STATS will calculate the statistics for that index partition.

Chapter 13
INDEX_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 23

frag_stats
Specify TRUE to calculate fragmentation statistics. If frag_stats is FALSE, the report will not
show any statistics relating to size of index data. However, the operation should take less time
and resources to calculate the token statistics.

list_size
Specify the number of elements in each compiled list. list_size has a maximum value of
1000.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default.
You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.

stat_type
Specify the estimated statistics to output. If this parameter is set, then frag_stats is ignored.
The possible values are:

Statistics Type Description

EST_FRAG_STATS Get the estimated fragmentation stats for the index.
When this type is given, list_size is ignored.

EST_FREQUENT_TOKENS Get the estimated frequently queried tokens for the
index. You can give a value of up to 100 for
list_size.

EST_TOKENS_TO_OPTIMIZE Show best tokens to optimize, based on frequency of
querying and fragmentation. You can give a value of
up to 100 for list_size.

EST_SLOWEST_QUERIES Show slowest running queries for the index. You can
give a value of up to 100 for list_size.

Note

The estimated statistics for stat_type is only available if query_stats is enabled and
the following privileges must be granted to the user running the report:

grant select, insert, delete, update on ctxsys.dr$slowqrys to <user>;

grant select, insert, delete, update on ctxsys.dr$freqtoks to <user>;

Example for CTX_REPORT.INDEX_STATS

create table output (result CLOB);

 declare
 x clob := null;
 begin
 ctx_report.index_stats('tdrbprx21',x);
 insert into output values (x);
 commit;
 dbms_lob.freetemporary(x);
 end;
 /

set long 32000
set head off

Chapter 13
INDEX_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 23

set pagesize 10000
select * from output;

The following sample output is for INDEX_STATS on a context index. This report has been
truncated for clarity. It shows some of the token statistics and all of the fragmentation statistics.

The fragmentation statistics are at the end of the report. It tells you optimal row fragmentation,
an estimated amount of garbage data in the index, and a list of the most fragmented tokens.
Running CTX_DDL.OPTIMIZE_INDEX cleans up the index.

===
 STATISTICS FOR "DR_TEST"."TDRBPRX21"
===

indexed documents: 53
allocated docids: 68
$I rows: 16,259

 TOKEN STATISTICS

unique tokens: 13,445
average $I rows for each token: 1.21
tokens with most $I rows:
 telecommunications industry (THEME) 6
 science and technology (THEME) 6
 EMAIL (FIELD SECTION "SOURCE") 6
 DEC (FIELD SECTION "TIMESTAMP") 6
 electronic mail (THEME) 6
 computer networking (THEME) 6
 communications (THEME) 6
 95 (FIELD SECTION "TIMESTAMP") 6
 15 (FIELD SECTION "TIMESTAMP") 6
 HEADLINE (ZONE SECTION) 6

average size for each token: 8
tokens with largest size:
 T (NORMAL) 405
 SAID (NORMAL) 313
 HEADLINE (ZONE SECTION) 272
 NEW (NORMAL) 267
 I (NORMAL) 230
 MILLION (PREFIX) 222
 D (NORMAL) 219
 MILLION (NORMAL) 215
 U (NORMAL) 192
 DEC (FIELD SECTION "TIMESTAMP") 186

average frequency for each token: 2.00
most frequent tokens:
 HEADLINE (ZONE SECTION) 68
 DEC (FIELD SECTION "TIMESTAMP") 62
 95 (FIELD SECTION "TIMESTAMP") 62
 15 (FIELD SECTION "TIMESTAMP") 62
 T (NORMAL) 61
 D (NORMAL) 59
 881115 (THEME) 58
 881115 (NORMAL) 58
 I (NORMAL) 55
 geography (THEME) 52

Chapter 13
INDEX_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 23

token statistics by type:
 token type: NORMAL
 unique tokens: 6,344
 total rows: 7,631
 average rows: 1.20
 total size: 67,445 (65.86 KB)
 average size: 11
 average frequency: 2.33
 most frequent tokens:
 T 61
 D 59
 881115 58
 I 55
 SAID 45
 C 43
 NEW 36
 MILLION 32
 FIRST 28
 COMPANY 27

 token type: THEME
 unique tokens: 4,563
 total rows: 5,523
 average rows: 1.21
 total size: 21,930 (21.42 KB)
 average size: 5
 average frequency: 2.40
 most frequent tokens:
 881115 58
 political geography 52
 geography 52
 United States 51
 business and economics 50
 abstract ideas and concepts 48
 North America 48
 science and technology 46
 NKS 34
 nulls 34

The fragmentation portion of this report is as follows:

 FRAGMENTATION STATISTICS

total size of $I data: 116,772 (114.04 KB)

$I rows: 16,259
estimated $I rows if optimal: 13,445
estimated row fragmentation: 17 %

garbage docids: 15
estimated garbage size: 21,379 (20.88 KB)

most fragmented tokens:
 telecommunications industry (THEME) 83 %
 science and technology (THEME) 83 %
 EMAIL (FIELD SECTION "SOURCE") 83 %
 DEC (FIELD SECTION "TIMESTAMP") 83 %
 electronic mail (THEME) 83 %
 computer networking (THEME) 83 %
 communications (THEME) 83 %

Chapter 13
INDEX_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 23

 95 (FIELD SECTION "TIMESTAMP") 83 %
 HEADLINE (ZONE SECTION) 83 %
 15 (FIELD SECTION "TIMESTAMP") 83 %

Examples for CTX_REPORT.INDEX_STATS with STAT_TYPE

The following sample output is for EST_FRAG_STATS statistics type:

var report clob;

 begin
 dbms_lob.createtemporary(:report, true);
 ctx_report.index_stats(
 index_name => 'tdrbps.idx',
 report => :report,
 report_format => 'XML',
 stat_type => 'EST_FRAG_STATS'
);
 end;
 /

select :report from dual;

:REPORT
--

<CTXREPORT>
<INDEX_STATS>
<STAT_INDEX_NAME>"TDRBPS"."IDX"</STAT_INDEX_NAME>

<STAT_INDEX_STATS>
<STAT_STATISTIC NAME="Estimated Fragmentation Stats">50</STAT_STATISTIC>
</STAT_INDEX_STATS>
</INDEX_STATS>
</CTXREPORT>

The following sample output is for EST_FREQUENT_TOKENS statistics type:

 begin
 dbms_lob.createtemporary(:report, true);
 ctx_report.index_stats(
 index_name => 'tdrbps.idx',
 report => :report,
 report_format => 'XML',
 stat_type => 'EST_FREQUENT_TOKENS'
);
 end;
 /

select :report from dual;

:REPORT
--

<CTXREPORT>
<INDEX_STATS>

Chapter 13
INDEX_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 23

<STAT_INDEX_NAME>"TDRBPS"."IDX"</STAT_INDEX_NAME>

<STAT_INDEX_STATS>
<STAT_TOKEN_LIST NAME="Most Frequently Queried Tokens">
<STAT_TOKEN>
<STAT_TOKEN_TEXT>ORACLE</STAT_TOKEN_TEXT>
<STAT_TOKEN_TYPE>0:TEXT</STAT_TOKEN_TYPE>
<STAT_TOKEN_STATISTIC>2</STAT_TOKEN_STATISTIC>
</STAT_TOKEN>
<STAT_TOKEN>
<STAT_TOKEN_TEXT>DATABASE</STAT_TOKEN_TEXT>
<STAT_TOKEN_TYPE>0:TEXT</STAT_TOKEN_TYPE>
<STAT_TOKEN_STATISTIC>1</STAT_TOKEN_STATISTIC>
</STAT_TOKEN>
</STAT_TOKEN_LIST>
</STAT_INDEX_STATS>
</INDEX_STATS>
</CTXREPORT>

Note

<STAT_TOKEN_STATISTIC> shows the number of times a particular token was queried.

The following sample output is for EST_SLOWEST_QUERIES statistics type:

 begin
 dbms_lob.createtemporary(:report, true);
 ctx_report.index_stats(
 index_name => 'tdrbps.idx',
 report => :report,
 report_format => 'XML',
 stat_type => 'EST_SLOWEST_QUERIES'
);
 end;
 /

select :report from dual;

:REPORT
--

<CTXREPORT>
<INDEX_STATS>
<STAT_INDEX_NAME>"TDRBPS"."IDX"</STAT_INDEX_NAME>

<STAT_INDEX_STATS>
<STAT_QUERY_LIST NAME="Slowest Queries">
<STAT_QUERY>
<STAT_QUERY_FULL>select count(*) from tbl where
contains(txt,'Oracle')>0</STAT_QUERY_FULL>
<STAT_QUERY_TEXT_PART>Oracle</STAT_QUERY_TEXT_PART>
<STAT_QUERY_TIME>114</STAT_QUERY_TIME>
<STAT_QUERY_HASH>2992140927</STAT_QUERY_HASH>

Chapter 13
INDEX_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 23

</STAT_QUERY>
<STAT_QUERY>
<STAT_QUERY_FULL>select count(*) from tbl where
contains(txt,'ora%')>0</STAT_QUERY_FULL>
<STAT_QUERY_TEXT_PART>ora%</STAT_QUERY_TEXT_PART>
<STAT_QUERY_TIME>4</STAT_QUERY_TIME>
<STAT_QUERY_HASH>2229259029</STAT_QUERY_HASH>
</STAT_QUERY>
<STAT_QUERY>
<STAT_QUERY_FULL>select count(*) from tbl where
contains(txt,'Database')>0</STAT_QUERY_FULL>
<STAT_QUERY_TEXT_PART>Database</STAT_QUERY_TEXT_PART>
<STAT_QUERY_TIME>2</STAT_QUERY_TIME>
<STAT_QUERY_HASH>1111113040</STAT_QUERY_HASH>
</STAT_QUERY>
</STAT_QUERY_LIST>
</STAT_INDEX_STATS>
</INDEX_STATS>
</CTXREPORT>

Note

• <STAT_QUERY_FULL> contains the full query and <STAT_QUERY_TEXT_PART> contains
the Oracle Text CONTAINS clause of the query.

• <STAT_QUERY_TIME> contains query response times and <STAT_QUERY_HASH>
contains the hash values of the queries.

The following sample output is for EST_TOKENS_TO_OPTIMIZE statistics type:

 begin
 dbms_lob.createtemporary(:report, true);
 ctx_report.index_stats(
 index_name => 'tdrbps.idx',
 report => :report,
 report_format => 'XML',
 stat_type => 'EST_TOKENS_TO_OPTIMIZE'
);
 end;
 /

select :report from dual;

:REPORT
--

<CTXREPORT>
<INDEX_STATS>
<STAT_INDEX_NAME>"TDRBPS"."IDX"</STAT_INDEX_NAME><STAT_INDEX_STATS>

<STAT_TOKEN_LIST NAME="Best Tokens To Optimize">
<STAT_TOKEN>
<STAT_TOKEN_TEXT>ORACLE</STAT_TOKEN_TEXT>
<STAT_TOKEN_TYPE>0:TEXT</STAT_TOKEN_TYPE>

Chapter 13
INDEX_STATS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 23

<STAT_TOKEN_STATISTIC>100</STAT_TOKEN_STATISTIC>
</STAT_TOKEN>
<STAT_TOKEN>
<STAT_TOKEN_TEXT>DATABASE</STAT_TOKEN_TEXT>
<STAT_TOKEN_TYPE>0:TEXT</STAT_TOKEN_TYPE>
<STAT_TOKEN_STATISTIC>50</STAT_TOKEN_STATISTIC>
</STAT_TOKEN>
</STAT_TOKEN_LIST>
</STAT_INDEX_STATS>
</INDEX_STATS>
</CTXREPORT>

Note

<STAT_TOKEN_STATISTIC> indicates the fragmentation of a particular token.

Notes

These metadata are available only when QUERY_STATS is turned on for the index: estimated
fragmentation stats, estimated frequently queried tokens, estimated most fragmented
frequently queried token, and estimated slowest running queries for the specified index.

CTX_REPORT.INDEX_STATS will also output information on dr$indexname$S table, which is the
section data, or SDATA, table.

Related Topics

• ENABLE_QUERY_STATS

• DISABLE_QUERY_STATS

• CREATE INDEX
Use the CREATE INDEX statement to create an Oracle Text index.

• BASIC_STORAGE Attributes
The BASIC_STORAGE indexing type supports these attributes for database tables and
indexes.

13.9 QUERY_LOG_SUMMARY
Obtain a report of logged queries.

QUERY_LOG_SUMMARY enables you to analyze queries you have logged. For example, suppose
you have an application that searches a database of large animals, and your analysis of
queries against it shows that users are continually searching for the word mouse; this analysis
might induce you to rewrite your application so that a search for mouse redirects the user to a
database for small animals instead of simply returning an unsuccessful search.

With query analysis, you can find out the following:

• Which queries were made

• Which queries were successful

• Which queries were unsuccessful

• How many times each query was made

Chapter 13
QUERY_LOG_SUMMARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 23

You can combine these factors in various ways, such as determining the 50 most frequent
unsuccessful queries made by your application.

Query logging is begun with CTX_OUTPUT.START_QUERY_LOG and terminated with
CTX_OUTPUT.END_QUERY_LOG.

Note

You must connect as CTXSYS to use CTX_REPORT.QUERY_LOG_SUMMARY.

See Also

"START_QUERY_LOG" and "END_QUERY_LOG"

Syntax

procedure CTX_REPORT.QUERY_LOG_SUMMARY(
 logfile IN VARCHAR2,
 indexname IN VARCHAR2 DEFAULT NULL,
 result_table IN OUT NOCOPY QUERY_TABLE,
 row_num IN NUMBER,
 most_freq IN BOOLEAN DEFAULT TRUE,
 has_hit IN BOOLEAN DEFAULT TRUE
);

logfile
Specify the name of the logfile that contains the queries. Starting with Oracle Database 12c
release 2 (12.2), this parameter is ignored as all the query logs are written to database trace
files.

indexname
Specify the name of the context index for which you want the summary report. If you specify
NULL, the procedure provides a summary report for all context indexes.

result_table
Specify the name of the in-memory table of type TABLE OF RECORD where the results of the
QUERY_LOG_SUMMARY are to go. The default is the location specified by the system parameter
LOG_DIRECTORY.

row_num
The number of rows of results from QUERY_LOG_SUMMARY to be reported into the table named by
restab. For example, if this is number is 10, most_freq is TRUE, and has_hit is TRUE, then the
procedure returns the 10 most frequent queries that were successful (that is, returned hits).

most_freq
Specify whether QUERY_LOG_SUMMARY should return the most frequent or least frequent queries.
The default is most frequent queries. If most_freq is set to FALSE, the procedure returns the
least successful queries.

has_hit
Specify whether QUERY_LOG_SUMMARY should return queries that are successful (that is, that
generate hits) or unsuccessful queries. The default is to count successful queries; set has_hit
to FALSE to return unsuccessful queries.

Chapter 13
QUERY_LOG_SUMMARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 23

Example

The following example shows how a query log can be used.

First connect as CTXSYS. Then create and populate two tables, and then create an index for
each:

create table qlogtab1 (tk number primary key, text varchar2(2000));
insert into qlogtab1 values(1, 'The Roman name for France was Gaul.');
insert into qlogtab1 values(2, 'The Tour de France is held each summer.');
insert into qlogtab1 values(3, 'Jacques Anatole Thibault took the pen name Anatole France.');
create index idx_qlog1 on qlogtab1(text) indextype is ctxsys.context;
create table qlogtab2 (tk number primary key, text varchar2(2000));
insert into qlogtab2 values(1, 'The Great Wall of China is about 2400 kilometers long');
insert into qlogtab2 values(2, 'Soccer dates back at least to 217 C.E.');
insert into qlogtab2 values(3, 'The Corn Palace is a tourist attraction in South Dakota.');
create index idx_qlog2 on qlogtab2(text) indextype is ctxsys.context;

Turn on query logging, creating a log called query_log:

exec ctx_output.start_query_log('query.log');

Now make some queries (some of which will be unsuccessful):

select text from qlogtab1 where contains(text, 'France',1)>0;
select text from qlogtab1 where contains(text, 'cheese',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab2 where contains(text, 'Corn Palace',1)>0;
select text from qlogtab2 where contains(text, 'China',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizards',1)>0;
select text from qlogtab2 where contains(text, 'South Dakota',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab2 where contains(text, 'China',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab2 where contains(text, 'company',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab1 where contains(text, 'France',1)>0;
select text from qlogtab1 where contains(text, 'database',1)>0;
select text from qlogtab2 where contains(text, 'high-tech',1)>0;
select text from qlogtab1 where contains(text, 'database',1)>0;
select text from qlogtab1 where contains(text, 'France',1)>0;
select text from qlogtab1 where contains(text, 'Japan',1)>0;
select text from qlogtab1 where contains(text, 'Egypt',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;
select text from qlogtab1 where contains(text, 'Japan',1)>0;
select text from qlogtab1 where contains(text, 'Egypt',1)>0;
select text from qlogtab1 where contains(text, 'Air Shuttle',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;

With the querying over, turn query logging off:

exec ctx_output.end_query_log;

Use QUERY_LOG_SUMMARY to get query reports. In the first instance, you ask to see the three
most frequent queries that return successfully. First declare the results table (the_queries).

set serveroutput on;
declare

Chapter 13
QUERY_LOG_SUMMARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 23

 the_queries ctx_report.query_table;
begin
 ctx_report.query_log_summary('query.log', null, the_queries,
 row_num=>3, most_freq=>TRUE, has_hit=>TRUE);
 dbms_output.put_line('The 3 most frequent queries returning hits');
 dbms_output.put_line('number of times query string');
 for i in 1..the_queries.count loop
 dbms_output.put_line(the_queries(i).times||' '||the_queries(i).query);
 end loop;
end;
/

This returns the following:

The 3 most frequent queries returning hits
number of times query string
3 France
2 China
1 Corn Palace

Next, look for the three most frequent queries on idx_qlog1 that were successful.

declare
 the_queries ctx_report.query_table;
begin
 ctx_report.query_log_summary('query.log', 'idx_qlog1', the_queries,
 row_num=>3, most_freq=>TRUE, has_hit=>TRUE);
 dbms_output.put_line('The 3 most frequent queries returning hits for index idx_qlog1');
 dbms_output.put_line('number of times query string');
 for i in 1..the_queries.count loop
 dbms_output.put_line(the_queries(i).times||' '||the_queries(i).query);
 end loop;
end;
/

Because only the queries for France were successful, ctx_report.query_log_summary returns
the following:

The 3 most frequent queries returning hits for index idx_qlog1
number of times query string
3 France

Lastly, ask to see the three least frequent queries that returned no hits (that is, queries that
were unsuccessful and called infrequently). In this case, you are interested in queries on both
context indexes, so you set the indexname parameter to NULL.

declare
 the_queries ctx_report.query_table;
begin
 ctx_report.query_log_summary('query.log', null, the_queries, row_num=>3,
 most_freq=>FALSE, has_hit=>FALSE);
 dbms_output.put_line('The 3 least frequent queries returning no hit');
 dbms_output.put_line('number of times query string');
 for i in 1..the_queries.count loop
 dbms_output.put_line(the_queries(i).times||' '||the_queries(i).query);
 end loop;
end;
/

This returns the following results:

Chapter 13
QUERY_LOG_SUMMARY

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 23

The 3 least frequent queries returning no hit
number of times query string
1 high-tech
1 company
1 cheese

Argentina and Japan do not make this list, because they are queried more than once, while
Corn Palace does not make this list because it is successfully queried.

13.10 SHOW_TOKENS
The CTX_REPORT.SHOW_TOKENS function creates a report showing all the tokens (that is, words)
in the main index ($I and $G index tables).

You can call this operation as a function that returns the report as a CLOB. This API displays all
the tokens in the index, ordered by token and token type. By default, all the tokens are sorted
alphabetically, without any header and with each token appearing on a new line.

For example:

CAT
DOG
FROG
HORSE

Syntax

function CTX_REPORT.SHOW_TOKENS (
 index_name IN VARCHAR2,
 part_name IN VARCHAR2 DEFAULT NULL,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT,
 types IN BOOLEAN DEFAULT FALSE,
 docid_counts IN BOOLEAN DEFAULT FALSE,
 docid_ranges IN BOOLEAN DEFAULT FALSE,
 frag_counts IN BOOLEAN DEFAULT FALSE)
return clob;

index_name
Specify the name of the index.

part_name
Specify the name of the index partition.
If the index is a local partitioned index, then part_name must be provided. SHOW_TOKENS will
apply to that index partition.

report_format
Specify whether the report should be generated in a plain text or JSON format:

• FMT_TXT to print the report as plain text. This is the default format.

• FMT_JSON to print the report in a JSON format.

types
Specify TRUE to print the token_type number and the corresponding type_name of section:

• 0: TEXT

• 9: STEM

Chapter 13
SHOW_TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 23

• 101: SORTABLE SDATA

• 400: MDATA

For example:

CAT 0 TEXT

DOG 101 SORTABLE SDATA

FROG 101 SORTABLE SDATA

HORSE 400 MDATA

JSON Format:
[
 {
 "token":"CAT",
 "token_type":0,
 "type_name":"TEXT"
 },
 {
 "token":"DOG",
 "token_type":101,
 "type_name":"TEXT"
 },
 {
 "token":"FROG",
 "token_type":101,
 "type_name":"SORTABLE_SDATA"
 },
 {
 "token":"HORSE",
 "token_type":400,
 "type_name":"MDATA"
 }
]

docid_counts
Specify TRUE to include the docid (document ID) count, that is, the total number of documents
associated with the token.
For example:

JSON Format:
[
 {
 "token":"CAT",
 "docid_count":2
 },
 {
 "token":"DOG",
 "docid_count":3
 },
 {

Chapter 13
SHOW_TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 23

 "token":"FROG",
 "docid_count":10
 },
 {
 "token":"HORSE",
 "docid_count":4
 }
]

docid_ranges
Specify TRUE to include the docid_first and docid_last details, that is, the number of tokens
in the first and last document (within a range of documents associated with the token).
For example:

JSON Format:
[
 {
 "token":"CAT",
 "docid_first":2,
 "docid_last":3
 },
 {
 "token":"DOG",
 "docid_first":4,
 "docid_last":7
 },
 {
 "token":"FROG",
 "docid_first":10,
 "docid_last":25
 },
 {
 "token":"HORSE",
 "docid_first":1,
 "docid_last":25
 }
]

frag_counts
Specify TRUE to include the token_count and fragment_count. Here, fragment_count refers to
the number of rows in the index tables ($I table, or $G table, or both) used to store the
specified token. Note that the fragment_count is not a direct fragmentation measure, but can
be used indirectly to assess a "low" or "high" fragmentation for the token.
For example, when the token_count is 3 and the fragment_count is 3, this implies that each
instance of the token got stored as a separate row (instead of one compacted row). This
indicates fragmentation, which can be resolved by running index optimization.
For example:

JSON Format:
[
 {
 "token":"CAT",
 "token_type":101,

Chapter 13
SHOW_TOKENS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 23

 "token_count":3,
 "fragment_count":1,
 "docid_first":2,
 "docid_last":3,
 "docid_count":2
 },
 {
 "token":"DOG",
 "token_type":101,
 "token_count":5,
 "fragment_count":2,
 "docid_first":4,
 "docid_last":7,
 "docid_count":2
 },
 {
 "token":"FROG",
 "token_type":201,
 "token_count":12,
 "fragment_count":2,
 "docid_first":10,
 "docid_last":25,
 "docid_count":12
 },
 {
 "token":"HORSE",
 "token_type":400,
 "token_count":10,
 "fragment_count":2,
 "docid_first":1,
 "docid_last":25,
 "docid_count":8
 }
]

Related Topics

• TOKEN_TYPE
This is a helper function which translates an English name into a numeric token type.

13.11 TOKEN_INFO
Creates a report showing the information for a token, decoded. This procedure will fully scan
the info for a token, so it may take a long time to run for really large tokens.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that
returns the report as a CLOB.

Syntax

procedure CTX_REPORT.TOKEN_INFO(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 token IN VARCHAR2,
 token_type IN NUMBER,
 part_name IN VARCHAR2 DEFAULT NULL,
 raw_info IN BOOLEAN DEFAULT FALSE,

Chapter 13
TOKEN_INFO

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 23

 decoded_info IN BOOLEAN DEFAULT TRUE,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.TOKEN_INFO(
 index_name IN VARCHAR2,
 token IN VARCHAR2,
 token_type IN NUMBER,
 part_name IN VARCHAR2 DEFAULT NULL,
 raw_info IN VARCHAR2 DEFAULT 'N',
 decoded_info IN VARCHAR2 DEFAULT 'Y',
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return clob;

index_name
Specify the name of the index.

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is the
caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents will be
overwritten by this call token may be case-sensitive, depending on the passed-in token type.

token
Specify the token text.

token_type
Specify the token type. You can use a number returned by the TOKEN_TYPE function. THEME,
ZONE, ATTR, PATH, and PATH ATTR tokens are case-sensitive.
Everything else gets passed through the lexer, so if the index's lexer is case-sensitive, the
token input is case-sensitive.

part_name
Specify the name of the index partition.
If the index is a local partitioned index, then part_name must be provided. TOKEN_INFO will
apply to just that index partition.

raw_info
Specify TRUE to include a hex dump of the index data. If raw_info is TRUE, the report will
include a hex dump of the raw data in the token_info column.

decoded_info
Specify decode and include docid and offset data. If decoded_info is FALSE, CTX_REPORT will
not attempt to decode the token information. This is useful when you just want a dump of data.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default.
You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.

13.12 TOKEN_TYPE
This is a helper function which translates an English name into a numeric token type.

This is suitable for use with token_info, or any other CTX API which takes in a token_type.

function token_type(
 index_name in varchar2,
 type_name in varchar2

Chapter 13
TOKEN_TYPE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 23

) return number;

TOKEN_TYPE_TEXT constant number := 0;
TOKEN_TYPE_THEME constant number := 1;
TOKEN_TYPE_ZONE_SEC constant number := 2;
TOKEN_TYPE_ORIG constant number := 3,
TOKEN_TYPE_ATTR_TEXT constant number := 4;
TOKEN_TYPE_ATTR_SEC constant number := 5;
TOKEN_TYPE_PREFIX constant number := 6;
TOKEN_TYPE_PATH_SEC constant number := 7;
TOKEN_TYPE_PATH_ATTR constant number := 8;
TOKEN_TYPE_STEM constant number := 9;

index_name
Specify the name of the index.

type_name
Specify an English name for token_type. The following strings are legal input. All input is
case-insensitive.

Input Meaning Type Returned

TEXT Normal text token 0

THEME Theme token 1

ZONE SEC Zone token 2

ATTR TEXT Text that occurs in attribute 4

ATTR SEC Attribute section 5

PREFIX Prefix token 6

PATH SEC Path section 7

PATH ATTR Path attribute section 8

STEM Stem form token 9

FIELD <name> TEXT Text token in field section
<name>

16-79

SORTABLE SDATA Sortable SDATA section 101

MDATA MDATA section 400

FIELD <name> PREFIX Prefix token in field section
<name>

616-916

FIELD <name> STEM Stem token in field section
<name>

916-979

NDATA <name> NDATA-type token 200-299

TOKEN_TYPE_ATTR_TXT_PFIX Attribute text prefix 604

TOKEN_TYPE_ATTR_TXT_STEM Attribute text stem 904

For FIELD types, the index metadata needs to be read, so if you are going to be calling this a
lot for such things, you might want to consider caching the values in local variables rather than
calling token_type over and over again.
The constant types (0 - 9) also have constants in this package defined.

Notes

To get token types for MDATA tokens, do not use CTX_REPORT.TOKEN_TYPE; use the MDATA
operator instead. (See "MDATA".) The syntax to use is 'MDATA secname'.

Chapter 13
TOKEN_TYPE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 23

Example

typenum := ctx_report.token_type('myindex', 'field author text');

13.13 VALIDATE_INDEX
Provides diagnostics if index corruption is believed to have occurred.
CTX_REPORT.VALIDATE_INDEX checks an index (or a partition for a locally partitioned index) and
reports whether or not any corruption has been detected. VALIDATE_INDEX only checks $I rows
that have token_type 0 and does not check other rows that contain information about sections,
such as the NDATA section.

This procedure is primarily intended as a diagnostic tool to be used under the direction of
Oracle Support.

Chapter 13
VALIDATE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 23

14
CTX_THES Package

This chapter provides reference information for using the CTX_THES package to manage and
browse thesauri. These thesaurus functions are based on the ISO-2788 and ANSI Z39.19
standards except where noted.

Knowing how information is stored in your thesaurus helps in writing queries with thesaurus
operators. You can also use a thesaurus to extend the knowledge base, which is used for
ABOUT queries in English and French and for generating document themes.

CTX_THES contains the following stored procedures and functions:

Name Description

ALTER_PHRASE Alters thesaurus phrase.

ALTER_THESAURUS Renames or truncates a thesaurus.

BT Returns all broader terms of a phrase.

BTG Returns all broader terms generic of a phrase.

BTI Returns all broader terms instance of a phrase.

BTP Returns all broader terms partitive of a phrase.

CREATE_PHRASE Adds a phrase to the specified thesaurus.

CREATE_RELATION Creates a relation between two phrases.

CREATE_THESAURUS Creates the specified thesaurus.

CREATE_TRANSLATION Creates a new translation for a phrase.

DROP_PHRASE Removes a phrase from thesaurus.

DROP_RELATION Removes a relation between two phrases.

DROP_THESAURUS Drops the specified thesaurus from the thesaurus tables.

DROP_TRANSLATION Drops a translation for a phrase.

EXPORT_THESAURUS Exports a thesaurus from the thesaurus tables.

HAS_RELATION Tests for the existence of a thesaurus relation.

IMPORT_THESAURUS Imports a thesaurus into the thesaurus tables.

NT Returns all narrower terms of a phrase.

NTG Returns all narrower terms generic of a phrase.

NTI Returns all narrower terms instance of a phrase.

NTP Returns all narrower terms partitive of a phrase.

OUTPUT_STYLE Sets the output style for the expansion functions.

PT Returns the preferred term of a phrase.

RT Returns the related terms of a phrase

SN Returns scope note for phrase.

SYN Returns the synonym terms of a phrase

THES_TT Returns all top terms for phrase.

TR Returns the foreign equivalent of a phrase.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 35

Name Description

TRSYN Returns the foreign equivalent of a phrase, synonyms of the
phrase, and foreign equivalent of the synonyms.

TT Returns the top term of a phrase.

UPDATE_TRANSLATION Updates an existing translation.

Note

The APIs in the CTX_THES package do not support identifiers that are prefixed with the
schema or the owner name.

See Also

Oracle Text CONTAINS Query Operators for more information about the thesaurus
operators.

14.1 ALTER_PHRASE
Alters an existing phrase in the thesaurus. Only CTXSYS or thesaurus owner can alter a phrase.

Syntax

CTX_THES.ALTER_PHRASE(tname in varchar2,
 phrase in varchar2,
 op in varchar2,
 operand in varchar2 default null);

tname
Specify the thesaurus name.

phrase
Specify a phrase to alter.

op (alter operation)
Specify the alter operation as a string or symbol. You can specify one of the following
operations with the op and operand pair:

op (or alter operation) meaning operand

RENAME
or
CTX_THES.OP_RENAME

Rename phrase. If the new
phrase already exists in the
thesaurus, this procedure
raises an exception.

Specify a new phrase. You
can include qualifiers to
change, add, or remove
qualifiers from phrases.

PT
or
CTX_THES.OP_PT

Make phrase the preferred
term. Existing preferred
terms in the synonym ring
becomes non-preferred
synonym.

(none)

Chapter 14
ALTER_PHRASE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 35

op (or alter operation) meaning operand

SN
or
CTX_THES.OP_SN

Change the scope note on
the phrase.

Specify a new scope note.

operand
Specify an argument to the alter operation. See table for "op (alter operation)".

Examples

Correct misspelled word in thesaurus:

ctx_thes.alter_phrase('thes1', 'tee', 'rename', 'tea');

Remove qualifier from mercury (metal):

ctx_thes.alter_phrase('thes1', 'mercury (metal)', 'rename', 'mercury');

Add qualifier to mercury:

ctx_thes.alter_phrase('thes1', 'mercury', 'rename', 'mercury (planet)');

Make Kowalski the preferred term in its synonym ring:

ctx_thes.alter_phrase('thes1', 'Kowalski', 'pt');

Change scope note for view cameras:

ctx_thes.alter_phrase('thes1', 'view cameras', 'sn', 'Cameras with lens focusing');

14.2 ALTER_THESAURUS
Use this procedure to rename or truncate an existing thesaurus. Only the thesaurus owner or
CTXSYS can invoke this function on a given thesaurus.

Syntax

CTX_THES.ALTER_THESAURUS(tname in varchar2,
 op in varchar2,
 operand in varchar2 default null);

tname
Specify the thesaurus name.

op
Specify the alter operation as a string or symbol. You can specify one of two operations:

op Meaning operand

RENAME
or
CTX_THES.OP_RENAME

Rename thesaurus.
Returns an error if the new
name already exists.

Specify a new
thesaurus name.

TRUNCATE
or
CTX_THES.OP_TRUNCATE

Truncate thesaurus. None.

operand
Specify the argument to the alter operation. See table for op.

Chapter 14
ALTER_THESAURUS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 35

Examples

Rename thesaurus THES1 to MEDICAL:

ctx_thes.alter_thesaurus('thes1', 'rename', 'medical');

or

ctx_thes.alter_thesaurus('thes1', ctx_thes.op_rename, 'medical');

You can use symbols for any op argument, but all further examples will use strings.

Remove all phrases and relations from thesaurus THES1:

ctx_thes.alter_thesaurus('thes1', 'truncate');

14.3 BT
This function returns all broader terms of a phrase as recorded in the specified thesaurus.

Syntax 1: Table Result

CTX_THES.BT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.BT(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of broader terms to return. For example 2 means get the broader
terms of the broader terms of the phrase.

Chapter 14
BT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 35

tname
Specify a thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms in the form:

 {bt1}|{bt2}|{bt3} ...

Example

String Result

Consider a thesaurus named MY_THES that has an entry for cat as follows:

cat
 BT1 feline
 BT2 mammal
 BT3 vertebrate
 BT4 animal

To look up the broader terms for cat up to two levels, enter the following statements:

set serveroutput on

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.bt('CAT', 2, 'MY_THES');
 dbms_output.put_line('The broader expansion for CAT is: '||terms);
end;

This code produces the following output:

The broader expansion for CAT is: {cat}|{feline}|{mammal}

Table Result

The following example performs a broader term lookup for brown wolf using the table result:

set serveroutput on

declare
 xtab ctx_thes.exp_tab;
begin
 ctx_thes.bt(xtab, 'brown wolf', 2, 'my_thesaurus');
 for i in 1..xtab.count loop
 dbms_output.put_line(xtab(i).rel||' '||xtab(i).phrase);
 end loop;
end;

This code produces the following output:

PHRASE BROWN WOLF
BT WOLF
BT CANINE
BT ANIMAL

Related Topics

OUTPUT_STYLE

Broader Term (BT_ BTG_ BTP_ BTI)

Chapter 14
BT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 35

14.4 BTG
This function returns all broader terms generic of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.BTG(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.BTG(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of broader terms to return. For example 2 means get the broader
terms of the broader terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms generic in the form:

 {bt1}|{bt2}|{bt3} ...

Example

To look up the broader terms generic for cat up to two levels, enter the following statements:

set serveroutput on
declare
 terms varchar2(2000);

Chapter 14
BTG

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 35

begin
 terms := ctx_thes.btg('CAT', 2, 'MY_THES');
 dbms_output.put_line('the broader expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Broader Term (BT_ BTG_ BTP_ BTI)"

14.5 BTI
This function returns all broader terms instance of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.BTI(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.BTI(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of broader terms to return. For example 2 means get the broader
terms of the broader terms of the phrase.

tname
Specify a thesaurus name. If not specified, system default thesaurus is used.

Chapter 14
BTI

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 35

Returns

This function returns a string of broader terms instance in the form:

 {bt1}|{bt2}|{bt3} ...

Example

To look up the broader terms instance for cat up to two levels, enter the following statements:

set serveroutput on
declare
 terms varchar2(2000);
begin
 terms := ctx_thes.bti('CAT', 2, 'MY_THES');
 dbms_output.put_line('the broader expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Broader Term (BT_ BTG_ BTP_ BTI)"

14.6 BTP
This function returns all broader terms partitive of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.BTP(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.BTP(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

Chapter 14
BTP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 35

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of broader terms to return. For example 2 means get the broader
terms of the broader terms of the phrase.

tname
Specify a thesaurus name. If not specified, the system default thesaurus is used.

Returns

This function returns a string of broader terms in the form:

 {bt1}|{bt2}|{bt3} ...

Example

To look up the two broader terms partitive for cat, enter the following statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.btp('CAT', 2, 'MY_THES');
 dbms_output.put_line('the broader expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Broader Term (BT_ BTG_ BTP_ BTI)"

14.7 CREATE_PHRASE
The CREATE_PHRASE procedure adds a new phrase to the specified thesaurus.

Note

Even though you can create thesaurus relations with this procedure, Oracle
recommends that you use CTX_THES.CREATE_RELATION rather than
CTX_THES.CREATE_PHRASE to create relations in a thesaurus.

Syntax

CTX_THES.CREATE_PHRASE(tname IN VARCHAR2,
 phrase IN VARCHAR2,
 rel IN VARCHAR2 DEFAULT NULL,
 relname IN VARCHAR2 DEFAULT NULL);

Chapter 14
CREATE_PHRASE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 35

tname
Specify the name of the thesaurus in which the new phrase is added or the existing phrase is
located.

phrase
Specify the phrase to be added to a thesaurus or the phrase for which a new relationship is
created.

rel
Specify the new relationship between phrase and relname. This parameter is supported only
for backward compatibility. Use CTX_THES.CREATE_RELATION to create new relations in a
thesaurus.

relname
Specify the existing phrase that is related to phrase. This parameter is supported only for
backward compatibility. Use CTX_THES.CREATE_RELATION to create new relations in a
thesaurus.

Returns

The ID for the entry.

Example

In this example, two new phrases (os and operating system) are created in a thesaurus named
tech_thes.

begin
 ctx_thes.create_phrase('tech_thes','os');
 ctx_thes.create_phrase('tech_thes','operating system');
end;

14.8 CREATE_RELATION
Creates a relation between two phrases in the thesaurus. The synonym ring is limited in length
to about 4000 synonyms, depending on word length.

Note

Oracle recommends that you use CTX_THES.CREATE_RELATION rather than
CTX_THES.CREATE_PHRASE to create relations in a thesaurus.

Only thesaurus owner and CTXSYS can invoke this procedure on a given thesaurus.

Syntax

CTX_THES.CREATE_RELATION(tname in varchar2,
 phrase in varchar2,
 rel in varchar2,
 relphrase in varchar2);

tname
Specify the thesaurus name

Chapter 14
CREATE_RELATION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 35

phrase
Specify the phrase to alter or create. If phrase is a disambiguated homograph, you must
specify the qualifier. If phrase does not exist in the thesaurus, it is created.

rel
Specify the relation to create. The relation is from phrase to relphrase. You can specify one
of the following relations:

relation meaning relphrase

BT*/NT* Add hierarchical relation. Specify the related phrase. The
relationship is interpreted from phrase to
relphrase.

RT Add associative relation. Specify the phrase to associate.

SYN Add phrase to a synonym
ring.

Specify an existing phrase in the
synonym ring.

Specify
language

Add translation for a
phrase.

Specify a new translation phrase.

relphrase
Specify the related phrase. If relphrase does not exist in tname, relphrase is created. See
table for rel.

Notes

The relation you specify for rel is interpreted as from phrase to relphrase. For example,
consider dog with broader term animal:

dog
 BT animal

To add this relation, specify the arguments as follows:

begin
CTX_THES.CREATE_RELATION('thes','dog','BT','animal');
end;

Note

The order in which you specify arguments for CTX_THES.CREATE_RELATION is different
from the order you specify them with CTX_THES.CREATE_PHRASE.

Examples

Create relation VEHICLE NT CAR:

ctx_thes.create_relation('thes1', 'vehicle', 'NT', 'car');

Create Japanese translation for you:

ctx_thes.create_relation('thes1', 'you', 'JAPANESE:', 'kimi');

14.9 CREATE_THESAURUS
The CREATE_THESAURUS procedure creates an empty thesaurus with the specified name in the
thesaurus tables.

Chapter 14
CREATE_THESAURUS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 35

Syntax

CTX_THES.CREATE_THESAURUS(name IN VARCHAR2,
 casesens IN BOOLEAN DEFAULT FALSE);

name
Specify the name of the thesaurus to be created. The name of the thesaurus must be unique.
If a thesaurus with the specified name already exists, CREATE_THESAURUS returns an error and
does not create the thesaurus.

casesens
Specify whether the thesaurus to be created is case-sensitive. If casesens is true, Oracle
Text retains the cases of all terms entered in the specified thesaurus. As a result, queries that
use the thesaurus are case-sensitive.

Example

begin
 ctx_thes.create_thesaurus('tech_thes', FALSE);
end;

14.10 CREATE_TRANSLATION
Use this procedure to create a new translation for a phrase in a specified language.

Syntax

CTX_THES.CREATE_TRANSLATION(tname in varchar2,
 phrase in varchar2,
 language in varchar2,
 translation in varchar2);

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to add a translation. Phrase must already exist in
the thesaurus, or an error is raised.

language
Specify the language of the translation, using no more than 10 characters.

translation
Specify the translated term, using no more than 256 characters.
If a translation for this phrase already exists, this new translation is added without removing
that original translation, so long as that original translation is not the same. Adding the same
translation twice results in an error.

Example

The following code adds the Spanish translation for dog to my_thes:

begin
 ctx_thes.create_translation('my_thes', 'dog', 'SPANISH', 'PERRO');
end;

Chapter 14
CREATE_TRANSLATION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 35

14.11 DROP_PHRASE
Removes a phrase from the thesaurus. Only thesaurus owner and CTXSYS can invoke this
procedure on a given thesaurus.

Syntax

CTX_THES.DROP_PHRASE(tname in varchar2,
 phrase in varchar2);

tname
Specify thesaurus name.

phrase
Specify a phrase to drop. If the phrase is a disambiguated homograph, then you must include
the qualifier. If the phrase does not exist in tname, then this procedure raises an exception.
BT* / NT* relations are patched around the dropped phrase. For example, if A has a BT B, and
B has BT C, after B is dropped, A has BT C.
When a word has multiple broader terms, then a relationship is established for each narrower
term to each broader term.
Note that BT, BTG, BTP, and BTI are separate hierarchies, so if A has BTG B, and B has BTI
C, when B is dropped, there is no relation implicitly created between A and C.
RT relations are not patched. For example, if A has RT B, and B has RT C, then if B is
dropped, there is no associative relation created between A and C.

Example

Assume you have the following relations defined in mythes:

wolf
 BT canine
canine
 BT animal

You drop phrase canine:

begin
ctx_thes.drop_phrase('mythes', 'canine');
end;

The resulting thesaurus is patched and looks like:

wolf
 BT animal

14.12 DROP_RELATION
Removes a relation between two phrases from the thesaurus.

Note

CTX_THES.DROP_RELATION removes only the relation between two phrases. Phrases
are never removed by this call.

Chapter 14
DROP_PHRASE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 35

Only thesaurus owner and CTXSYS can invoke this procedure on a given thesaurus.

Syntax

CTX_THES.DROP_RELATION(tname in varchar2,
 phrase in varchar2,
 rel in varchar2,
 relphrase in varchar2 default null);

tname
Specify the thesaurus name.

phrase
Specify the filing phrase.

rel
Specify the relation to drop. The relation is from phrase to relphrase. You can specify one
of the following relations:

relation meaning relphrase

BT*/NT* Remove hierarchical
relation.

Optional specify relphrase. If not
provided, all relations of that type for the
phrase are removed.

RT Remove associative
relation.

Optionally specify relphrase. If not
provided, all RT relations for the phrase
are removed.

SYN Remove phrase from its
synonym ring.

(none)

PT Remove preferred term
designation from the
phrase. The phrase
remains in the synonym
ring.

(none)

language Remove a translation from
a phrase.

Optionally specify relphrase. You can
specify relphrase when there are multiple
translations for a phrase for the
language, and you want to remove just
one translation.
If relphrase is NULL, all translations for
the phrase for the language are removed.

relphrase
Specify the related phrase.

Notes

The relation you specify for rel is interpreted as from phrase to relphrase. For example,
consider dog with broader term animal:

dog
 BT animal

To remove this relation, specify the arguments as follows:

begin
CTX_THES.DROP_RELATION('thes','dog','BT','animal');
end;

Chapter 14
DROP_RELATION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 35

You can also remove this relation using NT as follows:

begin
CTX_THES.DROP_RELATION('thes','animal','NT','dog');
end;

Example

Remove relation VEHICLE NT CAR:

ctx_thes.drop_relation('thes1', 'vehicle', 'NT', 'car');

Remove all narrower term relations for vehicle:

ctx_thes.drop_relation('thes1', 'vehicle', 'NT');

Remove Japanese translations for me:

ctx_thes.drop_relation('thes1', 'me', 'JAPANESE:');

Remove a specific Japanese translation for me:

ctx_thes.drop_relation('thes1', 'me', 'JAPANESE:', 'boku')

14.13 DROP_THESAURUS
The DROP_THESAURUS procedure deletes the specified thesaurus and all of its entries from the
thesaurus tables.

Syntax

CTX_THES.DROP_THESAURUS(name IN VARCHAR2);

name
Specify the name of the thesaurus to be dropped.

Example

begin
ctx_thes.drop_thesaurus('tech_thes');
end;

14.14 DROP_TRANSLATION
Use this procedure to remove one or more translations for a phrase.

Syntax

CTX_THES.DROP_TRANSLATION (tname in varchar2,
 phrase in varchar2,
 language in varchar2 default null,
 translation in varchar2 default null);

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to remove a translation. The phrase must already
exist in the thesaurus or an error is raised.

Chapter 14
DROP_THESAURUS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 35

language
Optionally, specify the language of the translation, using no more than 10 characters. If not
specified, the translation must also not be specified and all translations in all languages for the
phrase are removed. An error is raised if the phrase has no translations.

translation
Optionally, specify the translated term to remove, using no more than 256 characters. If no
such translation exists, an error is raised.

Example

The following code removes the Spanish translation for dog:

begin
 ctx_thes.drop_translation('my_thes', 'dog', 'SPANISH', 'PERRO');
end;

To remove all translations for dog in all languages:

begin
 ctx_thes.drop_translation('my_thes', 'dog');
end;

14.15 EXPORT_THESAURUS
Use this procedure to export a thesaurus as a clob from the Oracle Text thesaurus tables. The
format of the exported thesaurus is same as that of the format of the thesaurus file that is used
by the ctxload utility to import thesaurus into the Oracle Text thesaurus tables.

See Also

"Thesaurus Loader (ctxload)" in Oracle Text Utilities for more information about the
ctxload utility.

Only the owner of the thesaurus, or the sys user, or the ctxsys user can export a thesaurus
from the Oracle Text thesaurus tables using export_thesaurus.

You should call ctx_output.start_log before calling export_thesaurus to log the operations
done by export_thesaurus.

Syntax

CTX_THES.EXPORT_THESAURUS(name in varchar2,
 thesdump in out nocopy CLOB);

name
Specify the name of the thesaurus in the Oracle Text thesaurus tables that you want to export.
If the specified thesaurus does not exists in the Oracle Text thesaurus tables, then this
procedure raises an exception.

thedump
Specify the name of the clob where you want to store the thesaurus that is exported from the
Oracle Text thesaurus tables.

Chapter 14
EXPORT_THESAURUS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 35

Example

The following example copies the thesaurus named mythesaurus from the Oracle Text
thesaurus tables into the clob mythesdump:

declare
 mythesdump clob;
begin
 ctx_thes.export_thesaurus('mythesaurus', mythesdump);
end;

14.16 HAS_RELATION
HAS_RELATION tests that a thesaurus relation exists without actually performing the expansion.
The function returns TRUE if the phrase has any of the relations in the specified list.

Syntax

CTX_THES.HAS_RELATION(phrase in varchar2,
 rel in varchar2,
 tname in varchar2 default 'DEFAULT')
 returns boolean;

phrase
Specify the phrase.

rel
Specify a single thesaural relation or a comma-delimited list of relations, except PT. Specify
'ANY' for any relation.

tname
Specify the thesaurus name.

Example

The following example returns TRUE if the phrase cat in the DEFAULT thesaurus has any broader
terms or broader generic terms:

set serveroutput on
result boolean;

begin
 result := ctx_thes.has_relation('cat','BT,BTG');
 if (result) then dbms_output.put_line('TRUE');
 else dbms_output.put_line('FALSE');
 end if;
end;

14.17 IMPORT_THESAURUS
Use this procedure to import a thesaurus into the Oracle Text thesaurus tables. You should call
ctx_output.start_log before calling import_thesaurus to log the operations done by
import_thesaurus.

Chapter 14
HAS_RELATION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 35

Syntax

CTX_THES.IMPORT_THESAURUS(name in varchar2,
 content in CLOB,
 thescase in varchar2 default 'N');

name
Specify the name of the thesaurus to be created. If the name of the thesaurus specified in the
name parameter already exists in the Oracle Text thesaurus tables, then this procedure raises
an exception.

content
Specify the thesaurus content to be imported in the Oracle Text thesaurus tables. The format
of the thesaurus to be imported should be the same as used by the ctxload utility. If the
format of the thesaurus to be imported is not correct, then this procedure raises an exception.

See Also

"Thesaurus Loader (ctxload)" in Oracle Text Utilities for more information about the
ctxload utility.

thecase
Specify 'Y' to create a case-sensitive thesaurus and 'N' to create a case-insensitive
thesaurus. The default is 'N'.

Example

The following example creates a case-sensitive thesaurus named mythesaurus and imports
the thesaurus content present in myclob into the Oracle Text thesaurus tables:

declare
 myclob clob;
begin
 myclob := to_clob('peking SYN beijing BT capital country NT beijing tokyo');
 ctx_thes.import_thesaurus('mythesaurus', myclob, 'Y');
end;

14.18 NT
This function returns all narrower terms of a phrase as recorded in the specified thesaurus.

Syntax 1: Table Result

CTX_THES.NT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.NT(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

Chapter 14
NT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 35

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the narrower
terms of the narrower terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms in the form:

 {nt1}|{nt2}|{nt3} ...

Example

String Result

Consider a thesaurus named MY_THES that has an entry for cat as follows:

cat
 NT domestic cat
 NT wild cat
 BT mammal
mammal
 BT animal
domestic cat
 NT Persian cat
 NT Siamese cat

To look up the narrower terms for cat down to two levels, enter the following statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.nt('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

This code produces the following output:

Chapter 14
NT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 35

the narrower expansion for CAT is: {cat}|{domestic cat}|{Persian cat}|{Siamese cat}|
{wild cat}

Table Result

The following code does an narrower term lookup for canine using the table result:

declare
 xtab ctx_thes.exp_tab;
begin
 ctx_thes.nt(xtab, 'canine', 2, 'my_thesaurus');
 for i in 1..xtab.count loop
 dbms_output.put_line(lpad(' ', 2*xtab(i).xlevel) ||
 xtab(i).xrel || ' ' || xtab(i).xphrase);
 end loop;
end;

This code produces the following output:

PHRASE CANINE
 NT WOLF (Canis lupus)
 NT BROWN WOLF
 NT GREY WOLF
 NT DOG (Canis familiaris)
 NT PIT BULL
 NT DASCHUND
 NT CHIHUAHUA
NT HYENA (Canis mesomelas)
NT COYOTE (Canis latrans)

Related Topics

OUTPUT_STYLE

Narrower Term (NT_ NTG_ NTP_ NTI)

14.19 NTG
This function returns all narrower terms generic of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.NTG(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.NTG(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

Chapter 14
NTG

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 35

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the narrower
terms of the narrower terms of the phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms generic in the form:

 {nt1}|{nt2}|{nt3} ...

Example

To look up the narrower terms generic for cat down to two levels, enter the following
statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.ntg('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Narrower Term (NT_ NTG_ NTP_ NTI)"

14.20 NTI
This function returns all narrower terms instance of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.NTI(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Chapter 14
NTI

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 35

Syntax 2: String Result

CTX_THES.NTI(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the narrower
terms of the narrower terms of the phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms instance in the form:

 {nt1}|{nt2}|{nt3} ...

Example

To look up the narrower terms instance for cat down to two levels, enter the following
statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.nti('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Narrower Term (NT_ NTG_ NTP_ NTI)"

Chapter 14
NTI

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 35

14.21 NTP
This function returns all narrower terms partitive of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.NTP(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.NTP(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the narrower
terms of the narrower terms of the phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms partitive in the form:

 {nt1}|{nt2}|{nt3} ...

Example

To look up the narrower terms partitive for cat down to two levels, enter the following
statements:

Chapter 14
NTP

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 35

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.ntp('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Narrower Term (NT_ NTG_ NTP_ NTI)"

14.22 OUTPUT_STYLE
Sets the output style for the return string of the CTX_THES expansion functions. This procedure
has no effect on the table results to the CTX_THES expansion functions.

Syntax

CTX_THES.OUTPUT_STYLE (
 showlevel IN BOOLEAN DEFAULT FALSE,
 showqualify IN BOOLEAN DEFAULT FALSE,
 showpt IN BOOLEAN DEFAULT FALSE,
 showid IN BOOLEAN DEFAULT FALSE
);

showlevel
Specify TRUE to show level in BT/NT expansions.

showqualify
Specify TRUE to show phrase qualifiers.

showpt
Specify TRUE to show preferred terms with an asterisk *.

showid
Specify TRUE to show phrase ids.

Notes

The general syntax of the return string for CTX_THES expansion functions is:

{pt indicator:phrase (qualifier):level:phraseid}

Preferred term indicator is an asterisk then a colon at the start of the phrase. The qualifier is in
parentheses after a space at the end of the phrase. Level is a number.

The following is an example return string for turkey the bird:

*:TURKEY (BIRD):1:1234

14.23 PT
This function returns the preferred term of a phrase as recorded in the specified thesaurus.

Chapter 14
OUTPUT_STYLE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 35

Syntax 1: Table Result

CTX_THES.PT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

Syntax 2: String Result

CTX_THES.PT(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns the preferred term as a string in the form:

{pt}

Example

Consider a thesaurus MY_THES with the following preferred term definition for automobile:

AUTOMOBILE
 PT CAR

To look up the preferred term for automobile, execute the following code:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.pt('AUTOMOBILE','MY_THES');
 dbms_output.put_line('The preferred term for automobile is: '||terms);
end;

Chapter 14
PT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 35

Related Topics

"OUTPUT_STYLE "

"Preferred Term (PT)"

14.24 RT
This function returns the related terms of a term in the specified thesaurus.

Syntax 1: Table Result

CTX_THES.RT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.RT(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of related terms in the form:

{rt1}|{rt2}|{rt3}| ...

Example

Consider a thesaurus MY_THES with the following related term definition for dog:

DOG
 RT WOLF
 RT HYENA

Chapter 14
RT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 35

To look up the related terms for dog, execute the following code:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.rt('DOG','MY_THES');
 dbms_output.put_line('The related terms for dog are: '||terms);
end;

This codes produces the following output:

The related terms for dog are: {dog}|{wolf}|{hyena}

Related Topics

"OUTPUT_STYLE "

"Related Term (RT)"

14.25 SN
This function returns the scope note of the given phrase.

Syntax

CTX_THES.SN(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns the scope note as a string.

Example

declare
 note varchar2(80);
begin
 note := ctx_thes.sn('camera','mythes');
 dbms_output.put_line('CAMERA');
 dbms_output.put_line(' SN ' || note);
end;

sample output:

CAMERA
 SN Optical cameras

14.26 SYN
This function returns all synonyms of a phrase as recorded in the specified thesaurus.

Chapter 14
SN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 35

Syntax 1: Table Result

CTX_THES.SYN(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.SYN(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of the form:

 {syn1}|{syn2}|{syn3} ...

Example

String Result

Consider a thesaurus named ANIMALS that has an entry for cat as follows:

CAT
 SYN KITTY
 SYN FELINE

To look-up the synonym for cat and obtain the result as a string, enter the following statements:

declare
 synonyms varchar2(2000);
begin
 synonyms := ctx_thes.syn('CAT','ANIMALS');
 dbms_output.put_line('the synonym expansion for CAT is: '||synonyms);
end;

Chapter 14
SYN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 35

This code produces the following output:

the synonym expansion for CAT is: {CAT}|{KITTY}|{FELINE}

Table Result

The following code looks up the synonyms for canine and obtains the results in a table. The
contents of the table are printed to the standard output.

declare
 xtab ctx_thes.exp_tab;
begin
 ctx_thes.syn(xtab, 'canine', 'my_thesaurus');
 for i in 1..xtab.count loop
 dbms_output.put_line(lpad(' ', 2*xtab(i).xlevel) ||
 xtab(i).xrel || ' ' || xtab(i).xphrase);
 end loop;
end;

This code produces the following output:

PHRASE CANINE
 PT DOG
SYN PUPPY
SYN MUTT
SYN MONGREL

Related Topics

"OUTPUT_STYLE "

"SYNonym (SYN)"

14.27 THES_TT
This procedure finds and returns all top terms of a thesaurus. A top term is defined as any term
which has a narrower term but has no broader terms.

This procedure differs from TT in that TT takes in a phrase and finds the top term for that
phrase, but THES_TT searches the whole thesaurus and finds all top terms.

Large Thesauri

Because this procedure searches the whole thesaurus, it can take some time on large
thesauri. Oracle recommends that you not call this often for such thesauri. Instead, your
application should call this once, store the results in a separate table, and use those stored
results.

Syntax

CTX_THES.THES_TT(restab IN OUT NOCOPY EXP_TAB,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

restab
Specify the name of the expansion table to store the results. This table must be of type
EXP_TAB which the system defines as follows:

Chapter 14
THES_TT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 35

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This procedure returns all top terms and stores them in restab.

14.28 TR
For a given mono-lingual thesaurus, this function returns the foreign language equivalent of a
phrase as recorded in the thesaurus.

Note

Foreign language translation is not part of the ISO-2788 or ANSI Z39.19 thesaural
standards. The behavior of TR is specific to Oracle Text.

Syntax 1: Table Result

CTX_THES.TR(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')

Syntax 2: String Result

CTX_THES.TR(phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

Chapter 14
TR

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 35

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lang
Specify the foreign language. Specify 'ALL' for all translations of phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of foreign terms in the form:

 {ft1}|{ft2}|{ft3} ...

Example

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat
 SYN lion
 SPANISH: leon

To look up the translation for cat, enter the following statements:

declare
 trans varchar2(2000);
 span_trans varchar2(2000);
begin
 trans := ctx_thes.tr('CAT','ALL','MY_THES');
 span_trans := ctx_thes.tr('CAT','SPANISH','MY_THES')
 dbms_output.put_line('the translations for CAT are: '||trans);
 dbms_output.put_line('the Spanish translations for CAT are: '||span_trans);
end;

This codes produces the following output:

the translations for CAT are: {CAT}|{CHAT}|{GATO}
the Spanish translations for CAT are: {CAT}|{GATO}

Related Topics

"OUTPUT_STYLE "

"Translation Term (TR)"

14.29 TRSYN
For a given mono-lingual thesaurus, this function returns the foreign equivalent of a phrase,
synonyms of the phrase, and foreign equivalent of the synonyms as recorded in the specified
thesaurus.

Chapter 14
TRSYN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 35

Note

Foreign language translation is not part of the ISO-2788 or ANSI Z39.19 thesaural
standards. The behavior of TRSYN is specific to Oracle Text.

Syntax 1: Table Result

CTX_THES.TRSYN(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.TRSYN(phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lang
Specify the foreign language. Specify 'ALL' for all translations of phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of foreign terms in the form:

 {ft1}|{ft2}|{ft3} ...

Example

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat

Chapter 14
TRSYN

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 35

 SYN lion
 SPANISH: leon

To look up the translation and synonyms for cat, enter the following statements:

declare
 synonyms varchar2(2000);
 span_syn varchar2(2000);
begin
 synonyms := ctx_thes.trsyn('CAT','ALL','MY_THES');
 span_syn := ctx_thes.trsyn('CAT','SPANISH','MY_THES')
 dbms_output.put_line('all synonyms for CAT are: '||synonyms);
 dbms_output.put_line('the Spanish synonyms for CAT are: '||span_syn);
end;

This codes produces the following output:

all synonyms for CAT are: {CAT}|{CHAT}|{GATO}|{LION}|{LEON}
the Spanish synonyms for CAT are: {CAT}|{GATO}|{LION}|{LEON}

Related Topics

"OUTPUT_STYLE "

"Translation Term Synonym (TRSYN)"

14.30 TT
This function returns the top term of a phrase as recorded in the specified thesaurus.

Syntax 1: Table Result

CTX_THES.TT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.TT(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

restab
Optionally, specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

Chapter 14
TT

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 35

See Also

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables for more
information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns the top term string in the form:

{tt}

Example

Consider a thesaurus MY_THES with the following broader term entries for dog:

DOG
 BT1 CANINE
 BT2 MAMMAL
 BT3 VERTEBRATE
 BT4 ANIMAL

To look up the top term for DOG, execute the following code:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.tt('DOG','MY_THES');
 dbms_output.put_line('The top term for DOG is: '||terms);
end;

This code produces the following output:

The top term for dog is: {ANIMAL}

Related Topics

"OUTPUT_STYLE "

"Top Term (TT)"

14.31 UPDATE_TRANSLATION
Use this procedure to update an existing translation.

Syntax

CTX_THES.UPDATE_TRANSLATION(tname in varchar2,
 phrase in varchar2,
 language in varchar2,
 translation in varchar2,
 new_translation in varchar2);

Chapter 14
UPDATE_TRANSLATION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 35

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to update a translation. The phrase must already
exist in the thesaurus or an error is raised.

language
Specify the language of the translation, using no more than 10 characters.

translation
Specify the translated term to update. If no such translation exists, an error is raised.
You can specify NULL if there is only one translation for the phrase. An error is raised if there is
more than one translation for the term in the specified language.

new_translation
Optionally, specify the new form of the translated term.

Example

The following code updates the Spanish translation for dog:

begin
 ctx_thes.update_translation('my_thes', 'dog', 'SPANISH:', 'PERRO', 'CAN');
end;

Chapter 14
UPDATE_TRANSLATION

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 35

15
CTX_ULEXER Package

This chapter provides reference information on how to use the CTX_ULEXER PL/SQL package
with the user-defined lexer.

CTX_ULEXER declares the following type:

Name Description

WILDCARD_TAB Index-by table type that you use to specify the offset of characters
to be treated as wildcard characters by the user-defined lexer
query procedure.

Note

The APIs in the CTX_ULEXER package do not support identifiers that are prefixed with
the schema or the owner name.

15.1 WILDCARD_TAB
TYPE WILDCARD_TAB IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

Use this index-by table type to specify the offset of those characters in the query word to be
treated as wildcard characters by the user-defined lexer query procedure.

Character offset information follows USC-2 codepoint semantics.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 1

16
DBMS_SEARCH Package

The DBMS_SEARCH PL/SQL package provides procedures and functions to create, manage, and
query a ubiquitous search index.

Instead of creating various individual indexes or manually defining the USER_DATASTORE or
MULTI_COLUMN_DATASTORE procedures along with materialized views, you can create a
ubiquitous search index to automatically synthesize multiple tables or views into a single index.
This index lets you perform full-text, vector-based semantic search, hybrid text-vector search
and range-based searches across multiple objects within an entire schema.

The DBMS_SEARCH index is a local index, meaning it's partitions are aligned with the partitions of
the underlying table which is partitioned by schema and source. Partition names for the index
are assigned internally by the database and are not user-defined. Query the
CTX_USER_INDEX_PARTITIONS view, to retrieve the internally assigned partition names for the
DBMS_SEARCH index. This view provides the partition names for index operations, such as
CTX_DDL.OPTIMIZE_INDEX, which requires specifying the partition names.

Starting Oracle AI Database 26ai (23.26.0) release, DBMS_SEARCH package users require the
following privileges to be granted to ensure proper functionality:

• CREATE SEQUENCE

• CREATE TRIGGER

• CREATE JOB

Failure to do so may result in errors or incomplete functionality when creating, managing, or
querying the search index. It is advised to review the existing user roles before granting these
privileges, as those roles may already have these privileges. For example, the CTXAPP role
automatically has the CREATE SEQUENCE privilege, and the RESOURCE role has the CREATE
TRIGGER privilege.

Note

In addition to the examples provided for each of these APIs, you can run various end-
to-end example scenarios, as demonstrated in Oracle Text Application Developer's
Guide.

Name Description

CREATE_INDEX Creates a ubiquitous search index.

ADD_SOURCE Adds a table, view, or Duality view to the index as data source.

REMOVE_SOURCE Removes a data source and all its associated data from the index.

DROP_INDEX Removes the index and all its associated data from the database.

GET_DOCUMENT Returns a virtual indexed JSON document for the specified source
metadata.

FIND Retrieves a hitlist, and facets an aggregations of JSON documents
based on the specified filter conditions.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 11

Maintain data consistency and prevent stale entries in the DBMS_SEARCH index by ensuring
proper management of index sources following schema changes, such as dropping or
renaming a table or view.

When you drop a table or view using the DROP TABLE or DROP VIEW commands, it does not
remove that object from the index. All previously indexed data for that source persists in the
index tables. You need to remove the source from the index using
DBMS_SEARCH.REMOVE_SOURCE procedure.

When you rename a table or view using the RENAME TABLE or RENAME VIEW commands, the
newly named object is not automatically included as a source in the index. To include the
renamed object in the index, you need to manually add it using the DBMS_SEARCH.ADD_SOURCE
procedure. All the data associated with the original (before the rename) table or view remains
in the index. You need to manually remove the data using the DBMS_SEARCH.REMOVE_SOURCE
procedure with the old source name.

16.1 CREATE_INDEX
The DBMS_SEARCH.CREATE_INDEX procedure creates a ubiquitous search index (or DBMS_SEARCH
index) to perform full-text and range-based searches across multiple schema objects.

The index type is a JSON search index enabled with a predefined set of preferences and
settings to perform full text searches on tables, views, and Duality views.

Syntax

DBMS_SEARCH.CREATE_INDEX(
 index_name VARCHAR2,
 tablespace VARCHAR2 DEFAULT NULL,
 datatype VARCHAR2 DEFAULT NULL,
 lexer VARCHAR2 DEFAULT NULL,
 stoplist VARCHAR2 DEFAULT NULL,
 wordlist VARCHAR2 DEFAULT NULL,
 vectorizer VARCHAR2 DEFAULT NULL
);

Note

The DBMS_SEARCH.CREATE_INDEX procedure has been upgraded in version 23.9 to
support lexer, stoplist, wordlist, and vectorizer parameters. These parameters
are not available for use in earlier release versions. Additionally, starting from version
23.9 DBMS_SEARCH index will not get created with default indexing preference,
WILDCARD_INDEX.

index_name
Specify the name of the DBMS_SEARCH index to create. You can also specify the schema owner
name along with the index name as:
[schema].index_name

tablespace
Specify the name of the tablespace to contain the index or index partitions.

datatype
Specify the datatype of the DATA column on which to create the index. The allowed values are
JSON and OSON.

Chapter 16
CREATE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 11

The default value is set to JSON, so you need to specify the datatype argument only if you
want to override this default.

lexer
Specify the name of your lexer or multilexer preference. Use the lexer preference to identify
the language of your text and how text is tokenized for indexing. See Lexer Types

wordlist
Specify the name of your wordlist preference. Use the wordlist preference to enable features
such as fuzzy, stemming, and prefix indexing for better wildcard searching. See Wordlist Type

stoplist
Specify the name of your stoplist. Use stoplist to identify words that are not to be indexed. See
Stoplists

vectorizer
Specify the name of your vectorizer preference. Use the vectorizer preference to customize
vector search parameters of a hybrid vector indexing pipeline. The goal of a vectorizer
preference is to provide you with a straightforward way to configure how to chunk and embed
your documents and create a vector index, without requiring a deep understanding of various
chunking or embedding strategies.
A vectorizer preference is a JSON object that collectively holds all indexing parameters related
to chunking (UTL_TO_CHUNKS or VECTOR_CHUNKS), embedding (UTL_TO_EMBEDDING,
UTL_TO_EMBEDDINGS, or VECTOR_EMBEDDING), and vector index (distance, accuracy, or
vector_idxtype). You use the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE PL/SQL function to
create a vectorizer preference. To create a vectorizer preference, see
DBMS_VECTOR_CHAIN.CREATE_PREFERENCE. After creating a vectorizer preference,
you can use the vectorizer parameter to pass the preference name.

Notes

• You can define which tables or views should be indexed by adding them as data sources
into your index. All the columns of those tables or views are indexed. Use the
DBMS_SEARCH.ADD_SOURCE and DBMS_SEARCH.REMOVE_SOURCE procedures to manage data
sources.

• If a column of the data source table is dropped using ALTER TABLE table_name DROP
COLUMN column_name then the data source table needs to be removed from the
DBMS_SEARCH index using DBMS_SEARCH.REMOVE_SOURCE procedure and added back using
DBMS_SEARCH.ADD_SOURCE procedure.

• To use a view as a data source for the DBMS_SEARCH index, the view must be defined
directly on tables, not on other views. If the view's definition references another view, then
it cannot be used as a data source for the DBMS_SEARCH index.

• The DBMS_SEARCH index is created with the following default indexing preferences:

Preference Description

WILDCARD_INDEX Enables wildcard indexing for a fast wildcard search.

BASIC_WORDLIST Enables stemming and fuzzy matching.

SEARCH_ON Allows both full-text and range-search queries for a specific
data type. The supported data types are NUMBER (for
indexing numeric values) and TIMESTAMP (for indexing date-
time values).

Chapter 16
CREATE_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 11

Preference Description

SYNC and OPTIMIZE Creates background jobs at predefined intervals to
automatically synchronize the DML changes and optimize
the index using the AUTO_DAILY mode on all data sources.

You do not need to explicitly run any SYNC_INDEX and
OPTIMIZE_INDEX operations on this index.

• You can query this index using the CONTAINS(), JSON_TEXTCONTAINS(), and JSON_EXISTS
operators on the INDEX_NAME table.

• You can use the following DBMS_SEARCH dictionary views to examine these indexes:

– USER_DBMS_SEARCH_INDEXES: To query information about the DBMS_SEARCH indexes that
are created in a user's schema.

– ALL_DBMS_SEARCH_INDEXES: To query information about all existing DBMS_SEARCH
indexes, corresponding to each index owner.

– USER_DBMS_SEARCH_INDEX_SOURCES: To query information about the data sources that
are added to the DBMS_SEARCH indexes, created in a user's schema.

– ALL_DBMS_SEARCH_INDEX_SOURCES: To query information about all existing data sources
added to the DBMS_SEARCH indexes, corresponding to each index owner.

Example

This example specifies the index_name, tablespace, and datatype arguments. Here, the
schema owner name is specified along with the index name as SCOTT.MYINDEX.

CREATE TABLESPACE tbs_02 DATAFILE 'dt.dbf' size 100MB segment space management auto;

exec DBMS_SEARCH.CREATE_INDEX('SCOTT.MYINDEX','tbs_02','JSON');

Related Topics

• Oracle Text Application Developer's Guide

• Oracle AI Database SQL Language Reference

• Oracle Text Views
This is a list of all the views provided by Oracle Text.

16.2 ADD_SOURCE
The DBMS_SEARCH.ADD_SOURCE procedure adds one or more data sources (tables or views)
from different schemas to the DBMS_SEARCH index.

Syntax

DBMS_SEARCH.ADD_SOURCE (
index_name VARCHAR2,
source_name VARCHAR2,
memory VARCHAR2 DEFAULT NULL,
parallel_degree NUMBER DEFAULT NULL);

Chapter 16
ADD_SOURCE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 11

Note

The DBMS_SEARCH.ADD_SOURCE procedure has been upgraded in version 23.9 to
support memory and parallel_degree parameters. These parameters are not available
for use in earlier release versions.

index_name
Specify name of the index to which you want to add the table or view. You can also specify
[schema].index_name.

source_name
Specify name of the table, view, or Duality view to add to the index. You can also specify
[schema].table_or_view_name.

memory
Specify the amount of memory allocated for indexing of the added data source.

Note

Total memory usage is determined by multiplying the memory parameter by the
parallel_degree.

parallel_degree
Specify the degree of parallelism used for indexing the added data source.

Notes

• To add a data source, the index owner must have SELECT and DML access to the source.
The user also must have the CTXAPP privilege.

• All the data sources (such as table, view, or each table in the view definition) that are
added to the DBMS_SEARCH index must include at least one Primary Key column. Each table
that is part of a view source having a foreign key must also have the Foreign Key
constraint, referencing the relevant primary keys defined on the table.

If the source table does not have a primary key, then a ROWID is used instead. However,
Oracle strongly recommends defining a primary key.

• The DBMS_SEARCH index stores all supported SQL data types (including Object Type
columns) in JSON objects, except for the XMLTYPE and LONG data types. This means that
you cannot add a table or view as a data source to the index if it has a column with the
XMLTYPE or LONG data type. The maximum allowed length of a JSON data type is 32
megabytes.

• You can use the USER_DBMS_SEARCH_INDEX_SOURCES and ALL_DBMS_SEARCH_INDEX_SOURCES
dictionary views to query information about the data sources that are added to your
DBMS_SEARCH indexes.

Chapter 16
ADD_SOURCE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 11

Examples

exec DBMS_SEARCH.ADD_SOURCE('MYINDEX','MYTABLE');

exec DBMS_SEARCH.ADD_SOURCE('MYINDEX','MYVIEW');

exec DBMS_SEARCH.ADD_SOURCE('DOCUSER.MYINDEX','DOCUSER.MYTABLE');

Related Topics

• Oracle Text Application Developer's Guide

• Oracle Text Views
This is a list of all the views provided by Oracle Text.

16.3 REMOVE_SOURCE
The DBMS_SEARCH.REMOVE_SOURCE procedure removes one or more data sources (tables or
views) from the DBMS_SEARCH index.

When run, this procedure deletes all indexed data and stops further indexing or maintenance
operations on the associated data sources (tables or views).

Syntax

DBMS_SEARCH.REMOVE_SOURCE(
 index_name VARCHAR2,
 source_name VARCHAR2);

index_name
Specify name of the index from which you want to remove the table or view.

source_name
Specify name of the table or view that you want to remove.

Example

exec DBMS_SEARCH.REMOVE_SOURCE('MYINDEX','MYTABLE');

Related Topics

• Oracle Text Application Developer's Guide

Chapter 16
REMOVE_SOURCE

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 11

16.4 DROP_INDEX
The DBMS_SEARCH.DROP_INDEX procedure removes a DBMS_SEARCH index and all its associated
data from the database.

Syntax

DBMS_SEARCH.DROP_INDEX(
 INDEX_NAME VARCHAR2);

index_name
Specify name of the index that you want to drop.

Example

exec DBMS_SEARCH.DROP_INDEX('MYINDEX');

Related Topics

• Oracle Text Application Developer's Guide

16.5 GET_DOCUMENT
The DBMS_SEARCH.GET_DOCUMENT procedure returns a virtual indexed JSON document as is
indexed in the JSON search index for a particular row of an indexed data source (table or
view).

The DBMS_SEARCH index references associated data source tables to dynamically create a
virtual indexed document. This document contains a JSON representation for each indexed
row of a table or view that is added as a data source to this index. In this way, you can view all
the contents extracted from the original base tables.

Syntax

DBMS_SEARCH.GET_DOCUMENT(
 index_name VARCHAR2,
 metadata JSON
);

index_name
Specify name of the index for which you want to retrieve the data.

metadata
Specify the JSON metadata values, such as OWNER, SOURCE, or KEY. You must specify the
metadata format based on the METADATA column of the INDEX_NAME table.

Example

SELECT DBMS_SEARCH.GET_DOCUMENT('MYINDEX',METADATA) from MYINDEX;

Related Topics

• Oracle Text Application Developer's Guide

Chapter 16
DROP_INDEX

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 11

16.6 FIND
The DBMS_SEARCH.FIND procedure retrieves a hitlist, and facets an aggregations of JSON
documents based on the specified query-by-example (QBE) filter conditions.

You can compute aggregations on different fields of the JSON data. The query lists search
results in the JSON Results Set Interface, which supports faceted navigation and
aggregations.

Syntax

DBMS_SEARCH.FIND(
 index_name VARCHAR2,
 search_QBE JSON);

index_name
Specify name of the index on which you want to perform the query.

search_QBE
Specify the result_set_descriptor parameter value in JSON. It describes what the result set
should contain.
The JSON format input result set descriptor consists of the $query, $search, and $facet
parts:

{
 "$query":text query and filter conditions,
 "$search":search result specifications,
 "$facet":faceted result specifications
}

For details on each of these JSON objects, see The JSON Format Input Result Set
Descriptor.
The JSON format output result set descriptor consists of the following parts:

"$count":number
"$hit":[hit_object_1, ..., hit_object_i , ...]
"$facet":[facet_object_1, ..., facet_object_i, ...]

For details on each of these JSON objects, see The JSON Format Result Set Output.

Example

Create a table and populate it with values:

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
connect sys/knl_example as sysdba;
Connected.

Chapter 16
FIND

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 11

grant connect,resource, unlimited tablespace, ctxapp
 to u1 identified by u1;
Grant succeeded.

connect u1/u1;
Connected.

create table tbl(id number primary key, jsn_col clob check(jsn_col is json));
Table created.

INSERT INTO tbl
 VALUES (1,'{ "zebra" : { "price" : [2000,1000],
 "name" : "Marty",
 "stripes" : ["Dark","Light"],
 "handler" : "Bob", "sold" : true }}');
1 row created.

INSERT INTO tbl
 VALUES (2,'{ "zebra" : { "rating": 5, "price" : 1000,
 "name" : "Zigby",
 "stripes" : ["Light","Grey"],
 "handler" : "Handy Marty", "sold" : "true" }}');
1 row created.

 INSERT INTO tbl
 VALUES (3,'{ "zebra" : { "rating": 4.5, "price" : 3000,
 "name" : "Zigs",
 "stripes" : ["Grey","Dark"],
 "handler" : "Handy Marty", "sold" : false }}');
1 row created.

 INSERT INTO tbl
 VALUES (4,'{ "zebra" : { "rating": "4.5", "price" : "3000",
 "name" : "Zigs",
 "stripes" : ["Grey","Dark"],
 "handler" : "Handy Marty", "sold" : null }}');
1 row created.

 commit;
Commit complete.

Create a DBMS_SEARCH index using the DBMS_SEARCH.CREATE_INDEX procedure, and add a
source table to the index:

SQL> exec DBMS_SEARCH.CREATE_INDEX('JIDX');
PL/SQL procedure successfully completed.
SQL> exec DBMS_SEARCH.ADD_SOURCE('JIDX','TBL');
PL/SQL procedure successfully completed.
SQL>

Run the DBMS_SEARCH.FIND procedure:

Query: All zebras having name starting with Zig or having name Marty and
having a price greater than equal to 2000
Facets: For all zebras that satisfy the query, do the following

Chapter 16
FIND

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 11

-- 1. Get the count of zebras per zebra handler
-- 2. Get the minimum zebra rating
-- 3. Get the count of zebras for each unique stripe color
select DBMS_SEARCH.FIND('JIDX',JSON('
 {
 "$query": { "$and" : [
 { "U1.TBL.JSN_COL.zebra.name" : { "$contains" : "Zig% or
Marty" } },
 { "U1.TBL.JSN_COL.zebra.price" : { "$gte" : 2000 } }
]
 },
 "$facet" : [
 { "$uniqueCount" : "U1.TBL.JSN_COL.zebra.handler" },
 { "$min" : "U1.TBL.JSN_COL.zebra.rating" },
 { "$uniqueCount" : "U1.TBL.JSN_COL.zebra.stripes" }
]
 }'));

The output is as follows:

FIND_RESULT
--
--
{
 "$count" : 3,
 "$facet" :
 [
 {
 "U1.TBL.JSN_COL.zebra.handler" :
 [
 {
 "value" : "Handy Marty",
 "$uniqueCount" : 2
 },
 {
 "value" : "Bob",
 "$uniqueCount" : 1
 }
]
 },
 {
 "U1.TBL.JSN_COL.zebra.rating" :
 {
 "$min" : 4.5
 }
 },
 {
 "U1.TBL.JSN_COL.zebra.stripes" :
 [
 {
 "value" : "Dark",
 "$uniqueCount" : 3
 },
 {

Chapter 16
FIND

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 11

 "value" : "Grey",
 "$uniqueCount" : 2
 },
 {
 "value" : "Light",
 "$uniqueCount" : 1
 }
]
 }
]
}
1 row selected.
connect sys/knl_example as sysdba;
Connected.
drop user u1 cascade;
User dropped.

Related Topics

• RESULT_SET
This procedure executes an XML or JSON query and generates a result set in XML or
JSON.

• Oracle AI Database Introduction to Simple Oracle Document Access (SODA)

Chapter 16
FIND

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 11

17
Oracle Text Utilities

Oracle Text provides utilities for managing and operating on Text indexes. For example, you
can load a specific thesaurus into the index, and you can create your own knowledge base to
be associated with the index, among other things. This chapter discusses the utilities shipped
with Oracle Text.

The following topics are included:

• Thesaurus Loader (ctxload)

• Entity Extraction User Dictionary Loader (ctxload)

• Knowledge Base Extension Compiler (ctxkbtc)

• Lexical Compiler (ctxlc)

Note

The APIs in the utilities shipped with Oracle Text do not support identifiers that are
prefixed with the schema or the owner name.

17.1 Thesaurus Loader (ctxload)
Use ctxload to import a thesaurus file into the Oracle Text thesaurus tables.

An import file is an ASCII flat file that contains entries for synonyms, broader terms, narrower
terms, or related terms, which can be used to expand queries.

This section contains the following topics.

• ctxload Text Loading

• ctxload Syntax

• ctxload Examples

See Also

For examples of import files for thesaurus importing, see "Structure of ctxload
Thesaurus Import File" in Text Loading Examples for Oracle Text

17.1.1 ctxload Text Loading
The ctxload program no longer supports the loading of text columns. To load files to a text
column in batch mode, Oracle recommends that you use SQL*Loader.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 13

See Also

"SQL*Loader Example" in Text Loading Examples for Oracle Text

17.1.2 ctxload Syntax
ctxload -user username[/password][@sqlnet_address]
 -name object_name
 -file file_name

 [-thes]
 [-thescase y|n]
 [-thesdump]
 [-log file_name]
 [-trace]
 [-drop]

ctxload Mandatory Arguments

-user
Specify the user name and password of the user running ctxload.
The user name and password can be followed immediately by @sqlnet_address to permit
logging on to remote databases. The value for sqlnet_address is a database connect string. If
the TWO_TASK environment variable is set to a remote database, then you do not need to
specify a value for sqlnet_address to connect to the database.

-name object_name
When you use ctxload to import a thesaurus, use object_name to specify the name of the
thesaurus to be imported.
Use object_name to identify the thesaurus in queries that use thesaurus operators.

Note

Thesaurus name must be unique. If the name specified for the thesaurus is identical
to an existing thesaurus, then ctxload returns an error and does not overwrite the
existing thesaurus.

-file file_name
When ctxload is used to import a thesaurus, use file_name to specify the name of the import
file that contains the thesaurus entries.
When ctxload is used to export a thesaurus, use file_name to specify the name of the export
file created by ctxload.

Note

If the name specified for the thesaurus dump file is identical to an existing file, then
ctxload overwrites the existing file.

Chapter 17
Thesaurus Loader (ctxload)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 13

ctxload Optional Arguments

-thes
Import a thesaurus. Specify the source file with the -file argument. Specify the name of the
thesaurus to be imported with -name.

-thescase y | n
Specify y to create a case-sensitive thesaurus with the name specified by -name and populate
the thesaurus with entries from the thesaurus import file specified by -file. If -thescase is y
(the thesaurus is case-sensitive), ctxload enters the terms in the thesaurus exactly as they
appear in the import file.
The default for -thescase is n (case-insensitive thesaurus).

Note

-thescase is valid for use only with the -thes argument.

-thesdump
Export a thesaurus. Specify the name of the thesaurus to be exported with the -name
argument. Specify the destination file with the -file argument.

-log
Specify the name of the log file to which ctxload writes any national-language supported
(Globalization Support) messages generated during processing. If you do not specify a log file
name, the messages appear on the standard output. The logs generated by ctxload will be
present in $ORACLE_HOME/ctx/log directory.

-trace
Enables SQL statement tracing using ALTER SESSION SET SQL_TRACE TRUE. This command
captures all processed SQL statements in a trace file, which can be used for debugging. The
location of the trace file is operating-system dependent and can be modified using the
DIAGNOSTIC_DEST initialization parameter.

See Also

For more information about SQL trace and the DIAGNOSTIC_DEST initialization
parameter, see Oracle Database Administrator's Guide

17.1.3 ctxload Examples
This section provides examples for some of the operations that ctxload can perform.

See Also

For more document loading examples, see Text Loading Examples for Oracle Text

The following example imports a thesaurus named tech_doc from an import file named
tech_thesaurus.txt:

ctxload -user jsmith/password -thes -name tech_doc -file tech_thesaurus.txt

Chapter 17
Thesaurus Loader (ctxload)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 13

The following example exports the contents of a thesaurus named tech_doc into a file named
tech_thesaurus.out:

ctxload -user jsmith/password -thesdump -name tech_doc -file tech_thesaurus.out

17.2 Entity Extraction User Dictionary Loader (ctxload)
Use ctxload to import an entity extraction user dictionary into Oracle Text tables.

An import file is an XML flat file containing entries for entities, with their associated types and
alternate forms.

This section contains the following topics.

• ctxload Syntax

• Considerations When Creating a User Dictionary

• XML Schema

• ctxload Example

17.2.1 ctxload Syntax
ctxload -user username[/password][@sqlnet_address]
 -extract
 -name entity extraction policy name
 -file user-dictionary file name
 [-drop] to drop a user-dictionary from a policy

ctxload Mandatory Arguments

-user
Specify the user name and password of the user running ctxload.
The user name and password can be followed immediately by @sqlnet_address to permit
logging on to remote databases. The value for sqlnet_address is a database connect string. If
the TWO_TASK environment variable is set to a remote database, then you do not need to
specify a value for sqlnet_address to connect to the database.

-name entity extraction policy name
When you use ctxload to import an entity extraction dictionary, use object_name to specify
the entity extraction policy to associate the dictionary with. An entity extraction policy can have
only one user dictionary.

-file user-dictionary file name
Use file to specify the name of the XML file containing the user dictionary.

-drop
Drop the user dictionary currently associated with an entity extraction policy.

17.2.2 Considerations When Creating a User Dictionary
The following are some considerations for when creating a user dictionary:

• Entity mentions are case-sensitive. They cannot contain any null characters.

• Entity type names are case-insensitive. They cannot contain any null or comma
characters.

Chapter 17
Entity Extraction User Dictionary Loader (ctxload)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 13

• Customers will be able to assign two or more entity types to a single entity mention. For
example, the entity "Washington" could be assigned the type "CITY" and also the type
"STATE".

• The content of a user's dictionary is invisible to other users.

• The maximum byte length of an entity mention is 512 bytes by the server-side database
character set.

• The maximum byte length of an entity type name is 30 bytes by the server-side database
character set.

17.2.3 XML Schema
The entity extraction dictionary follows this XML schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="dictionary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="entities" type="entityType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:complexType>
</xsd:element>

<xsd:complexType name="entityType">
 <xsd:sequence>
 <xsd:element name="entity" type="entType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:attribute name="language" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="entType">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string" minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="alternate" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The following tables illustrate some aspects of the XML schema for the entity extraction
dictionary.

Element Name Description

dictionary Collection of entities

entities Collection of entities per language

entity Each entity

value Entity mention

type Entity type

alternate Alternate form of entity

Attribute Name Element Name Description

language Entities Language name of each entity in entities

Chapter 17
Entity Extraction User Dictionary Loader (ctxload)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 13

17.2.4 ctxload Example
The following is an example of an entity extraction user dictionary file that can be loaded using
ctxload:

<?xml version="1.0" encoding="utf-8"?>
<dictionary>
 <entities>
 <entity>
 <value>New York</value>
 <type>city</type>
 </entity>
 </entities>
 <entities language="german">
 <entity>
 <value>Deutschland</value>
 <type>country</type>
 <entity>
 </entities>
 <entities language="english">
 <entity>
 <value>Astra</value>
 <type>person</type>
 <type>organization</type>
 </entity>
 <entity>
 <value>George W. Bush<value>
 <type>person</type>
 <alternate>G. W. Bush<alternate>
 <alternate>G. Bush<alternate>
 </entity>
 </entities>
</dictionary>

17.3 Knowledge Base Extension Compiler (ctxkbtc)
The knowledge base is the information source that Oracle Text uses to perform theme
analysis, such as theme indexing, processing ABOUT queries, and to document theme
extraction with the CTX_DOC package. A knowledge base is supplied for English and French and
is installed by default.

With the ctxkbtc compiler, you can:

• Extend your knowledge base by compiling one or more thesauri with the Oracle Text
knowledge base. The extended information can be application-specific terms and
relationships. During theme analysis, the extended portion of the knowledge base
overrides any terms and relationships in the knowledge base where there is overlap.

• Create a new user-defined knowledge base by compiling one or more thesauri. In
languages other than English and French, this feature can be used to create a language-
specific knowledge base.

Note

Only CTXSYS can extend the knowledge base.

Chapter 17
Knowledge Base Extension Compiler (ctxkbtc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 13

This section contains the following topics.

– Knowledge Base Character Set

– ctxkbtc Syntax

– ctxkbtc Usage Notes

– ctxkbtc Limitations

– ctxkbtc Constraints on Thesaurus Terms

– ctxkbtc Constraints on Thesaurus Relations

– Extending the Knowledge Base

Example for Extending the Knowledge Base

– Adding a Language-Specific Knowledge Base

Limitations for Adding a Knowledge Base

– Order of Precedence for Multiple Thesauri

– Size Limits for Extended Knowledge Base

See Also

For more information about the ABOUT operator, see ABOUT operator in Oracle
Text CONTAINS Query Operators

For more information about document services, see CTX_DOC Package

17.3.1 Knowledge Base Character Set
Knowledge bases can be in any single-byte character set. Supplied knowledge bases are in
WE8ISO8859P1. You can store an extended knowledge base in another character set such as
US7ASCII.

17.3.2 ctxkbtc Syntax
ctxkbtc -user uname/passwd

[-name thesname1 [thesname2 ... thesname16]]
[-revert]
[-stoplist stoplistname]
[-verbose]
[-log filename]

-user
Specify the user name and password for the administrator creating an extended knowledge
base. This user must have write permission to the ORACLE_HOME directory.

-name thesname1 [thesname2 ... thesname16]
Specify the names of the thesauri (up to 16) to be compiled with the knowledge base to create
the extended knowledge base. The thesauri you specify must already be loaded with ctxload
with the "-thescase Y" option.

-revert
Reverts the extended knowledge base to the default knowledge base provided by Oracle Text.

Chapter 17
Knowledge Base Extension Compiler (ctxkbtc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 13

-stoplist stoplistname
Specify the name of the stoplist. Stopwords in the stoplist are added to the knowledge base as
useless words that are prevented from becoming themes or contributing to themes. Add
stopthemes after running this command using CTX_DLL.ADD_STOPTHEME.

-verbose
Displays all warnings and messages, including non-Globalization Support messages, to the
standard output.

-log
Specify the log file for storing all messages. When you specify a log file, no messages are
reported to standard out. The logs generated by ctxkbtc will be present
in $ORACLE_HOME/ctx/log directory.

17.3.3 ctxkbtc Usage Notes
• Before running ctxkbtc, you must set the NLS_LANG environment variable to match the

database character set.

• The user issuing ctxkbtc must have write permission to the ORACLE_HOME, because the
program writes files to this directory.

• Before being compiled, each thesaurus must be loaded into Oracle Text case sensitive
with the "-thescase Y" option in ctxload.

• Running ctxkbtc twice removes the previous extension.

17.3.4 ctxkbtc Limitations
The ctxkbtc program has the following limitations:

• When upgrading or downgrading your database to a different release, for theme indexing
and related features to work correctly, Oracle recommends that you recompile your
extended knowledge base in the new environment.

• Before extending the knowledge base, you must terminate all server processes that have
invoked any knowledge base-related Text functions during their lifetime.

• There can be only one user extension for each language for each installation. Because a
user extension affects all users at the installation, only the CTXSYS user can extend the
knowledge base.

• In an Oracle RAC environment, the ORACLE_HOME can either be shared between multiple
nodes, or each node can have its own ORACLE_HOME. The following requirements apply:

– Before using any knowledge base-dependent functionality in any of the Oracle RAC
nodes, ctxkbtc must be run in every ORACLE_HOME in the Oracle RAC environment.

– When using ctxkbtc, the exact same input thesaurus content must be used in every
ORACLE_HOME in the Oracle RAC environment.

17.3.5 ctxkbtc Constraints on Thesaurus Terms
Terms are case sensitive. If a thesaurus has a term in uppercase, for example, the same term
present in lowercase form in a document will not be recognized.

The maximum length of a term is 80 characters.

Disambiguated homographs are not supported.

Chapter 17
Knowledge Base Extension Compiler (ctxkbtc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 13

17.3.6 ctxkbtc Constraints on Thesaurus Relations
The following constraints apply to thesaurus relations:

• BTG and BTP are the same as BT. NTG and NTP are the same as NT.

• Only preferred terms can have a BT, NTs or RTs.

• If a term has no USE relation, it will be treated as its own preferred term.

• If a set of terms are related by SYN relations, only one of them may be a preferred term.

• An existing category cannot be made a top term.

• There can be no cycles in BT and NT relations.

• A term can have at most one preferred term and at most one BT. A term may have any
number of NTs.

• An RT of a term cannot be an ancestor or descendent of the term. A preferred term may
have any number of RTs up to a maximum of 32.

• The maximum height of a tree is 16 including the top term level.

• When multiple thesauri are being compiled, a top term in one thesaurus should not have a
broader term in another thesaurus.

Note

The thesaurus compiler tolerates some violations of the preceding rules. For
example, if a term has multiple BTs, then the compiler ignores all but the last one it
encounters.

Similarly, BTs between existing knowledge base categories result only in a
warning message.

Oracle recommends that you do not set up extended storage bases with
violations. Using extended storage bases containing violations can produce
undesired results.

17.3.7 Extending the Knowledge Base
Extend the supplied knowledge base by compiling one or more thesauri with the Oracle Text
knowledge base. The extended information can be application-specific terms and relationships.
During theme analysis, the extended portion of the knowledge base overrides any terms and
relationships in the knowledge base where there is overlap.

When extending the knowledge base, Oracle recommends that new terms be linked to one of
the categories in the knowledge base for best results in theme proving when appropriate.

If new terms are kept completely disjoint from existing categories, fewer themes from new
terms will be proven. The result of this is poorer precision and recall with ABOUT queries as well
poor quality of gists and theme highlighting.

Link new terms to existing terms by making an existing term the broader term for the new
terms.

Chapter 17
Knowledge Base Extension Compiler (ctxkbtc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 13

17.3.8 Example for Extending the Knowledge Base
You purchase a medical thesaurus medthes containing a hierarchy of medical terms. The four
top terms in the thesaurus are the following:

• Anesthesia and Analgesia

• Anti-Allergic and Respiratory System Agents

• Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators

• Antineoplastic and Immunosuppressive Agents

To link these terms to the existing knowledge base, add the following entries to the medical
thesaurus to map the new terms to the existing health and medicine branch:

health and medicine
 NT Anesthesia and Analgesia
 NT Anti-Allergic and Respiratory System Agents
 NT Anti-Inflamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
 NT Antineoplastic and Immunosuppressive Agents

Set your globalization support language environment variable to match the database character
set. For example, if your database character set is WE8ISO8859P1 and you are using
American English, set your NLS_LANG as follows:

setenv NLS_LANG AMERICAN_AMERICA.WE8ISO8859P1

Assuming the medical thesaurus is in a file called med.thes, load the thesaurus as medthes
with ctxload as follows:

ctxload -thes -thescase y -name medthes -file med.thes -user ctxsys/ctxsys

To link the loaded thesaurus medthes to the knowledge base, use ctxkbtc as follows:

ctxkbtc -user ctxsys/ctxsys -name medthes

17.3.9 Adding a Language-Specific Knowledge Base
Extend theme functionality to languages other than English or French by loading your own
knowledge base for any single-byte whitespace delimited language, including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and the
generation of themes, gists, and theme summaries with the CTX_DOC PL/SQL package.

Extend theme functionality by adding a user-defined knowledge base. For example, you can
create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base, follow these steps:

1. Load your custom thesaurus using ctxload.

2. Set NLS_LANG so that the language portion is the target language. The charset portion
must be a single-byte character set.

3. Compile the loaded thesaurus using ctxkbtc:

ctxkbtc -user ctxsys/ctxsys -name my_lang_thes

This command compiles your language-specific knowledge base from the loaded thesaurus.
To use this knowledge base for theme analysis during indexing and ABOUT queries, specify the
NLS_LANG language as the THEME_LANGUAGE attribute value for the BASIC_LEXER preference.

Chapter 17
Knowledge Base Extension Compiler (ctxkbtc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 13

17.3.10 Limitations for Adding a Knowledge Base
The following limitations hold for adding knowledge bases:

• Oracle Text supplies knowledge bases in English and French only. You must provide your
own thesaurus for any other language.

• You can only add knowledge bases for languages with single-byte character sets. You
cannot create a knowledge base for languages which can be expressed only in multibyte
character sets. If the database is a multibyte universal character set, such as UTF-8, the
NLS_LANG parameter must still be set to a compatible single-byte character set when
compiling the thesaurus.

• Adding a knowledge base works best for whitespace delimited languages.

• You can have at most one knowledge base for each globalization support language.

• Obtaining hierarchical query feedback information such as broader terms, narrower terms
and related terms does not work in languages other than English and French. In other
languages, the knowledge bases are derived entirely from your thesauri. In such cases,
Oracle recommends that you obtain hierarchical information directly from your thesauri.

17.3.11 Order of Precedence for Multiple Thesauri
When multiple thesauri are to be compiled, precedence is determined by the order in which
thesauri are listed in the arguments to the compiler, assumed to be most preferred first. A user-
defined thesaurus always has precedence over the built-in knowledge base.

17.3.12 Size Limits for Extended Knowledge Base
The following table lists the size limits associated with creating and compiling an extended
knowledge base.

Table 17-1 Size Limit for the Extended Knowledge Base

Description of Parameter Limit

Number of RTs (from + to) for each term 32

Number of terms for each single hierarchy (for example, all narrower terms for a
given top term)

64000

Number of new terms in an extended knowledge base 1 million

Number of separate thesauri that can be compiled into a user extension to the KB 16

17.4 Lexical Compiler (ctxlc)
The Lexical Compiler (ctxlc) is a command-line utility that enables you to create your own
Chinese and Japanese lexicons (dictionaries). Such a lexicon may either be generated from a
user-supplied word list or from the merging of a word list with the system lexicon for that
language.

ctxlc creates the new lexicon in your current directory. The new lexicon consists of three files,
drold.dat, drolk.dat, and droli.dat. To change your system lexicon for Japanese or
Chinese, overwrite the system lexicon with these files.

Chapter 17
Lexical Compiler (ctxlc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 13

The Lexical Compiler can also generate wordlists from the system lexicons for Japanese and
Chinese, enabling you to see their contents. These word lists go to the standard output and
thus can be redirected into a file of your choice.

After overwriting the system lexicon, you need to re-create your indexes before querying them.

This section contains the following topics.

• Syntax of ctxlc

• ctxlc Performance Considerations

• ctxlc Usage Notes

• ctxlc Example

17.4.1 Syntax of ctxlc
ctxlc has the following syntax:

ctxlc -ja | -zht [-n] -ics character_set -i input_file

ctxlc -ja | -zht -ocs character_set [> output_file]

ctxload Mandatory Arguments

-ja | -zht
Specify the language of the lexicon to modify or create. -ja indicates the Japanese lexicon; -
zht indicates the Chinese lexicon, the same for either traditional or simplified Chinese.

-ics character_set
Specify the character set of the input file denoted by -i input_file. input_file is the list of words,
one word to a line, to use in creating the new lexicon.

-i input_file
Specify the file containing words to use in creating a new lexicon.

-ocs character_set
Specify the character set of the text file to be output.

ctxload Optional Arguments

-n
Specify -n to create a new lexicon that consists only of user-supplied words taken from
input_file. If -n is not specified, then the new lexicon consists of a merge of the system lexicon
with input_file. Also, when -n is not selected, a text file called drolt.dat, is created in the
current directory to enable you to inspect the contents of the merged lexicon without having to
enter another ctxlc command.

17.4.2 ctxlc Performance Considerations
You can add up to 1,000,000 new words to a lexicon. However, creating a very large lexicon
can reduce performance in indexing and querying. Performance is best when the lexicon
character set is UTF-8. There is no performance impact on the Chinese or Japanese V-gram
lexers, as they do not use lexicons.

Chapter 17
Lexical Compiler (ctxlc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 13

17.4.3 ctxlc Usage Notes
Oracle recommends the following practices with regard to ctxlc:

• Save your plain text dictionary file in your environment for emergency use.

• When upgrading or downgrading your database to a different release, recompile your plain
text dictionary file in the new environment so that the user lexicon will work correctly.

17.4.4 ctxlc Example
In this example, you create a new Japanese lexicon from the file jadict.txt, a word list that
uses the JA16EUC character set. Because you are not specifying -n, the new lexicon is the
result of merging jadict.txt with the system Japanese lexicon. Then replace the existing
Japanese lexicon with the new, merged one.

% ctxlc -ja -ics JA16EUC -i jadict.txt

This creates new files in the current directory:

% ls
drold.dat
drolk.dat
droli.dat
drolt.dat

The system lexicon files for Japanese and Chinese are named droldxx.dat drolkxx.dat, and
drolixx.dat, where xx is either JA (for Japanese) or ZH (for Chinese). Rename the three new
files and copy them to the directory containing the system Japanese lexicon.

% mv drold.dat droldJA.dat
% mv drolk.dat drolkJA.dat
% mv droli.dat droliJA.dat
% cp *dat $ORACLE_HOME/ctx/data/jalx

This replaces the system Japanese lexicon with one that is a merge of the old system lexicon
and your wordlist from jadict.txt.

You can also use ctxlc to get a dump of a system lexicon. This example dumps the Chinese
lexicon to a file called new_chinese_dict.txt in the current directory:

% ctxlc -zh -ocs UTF8 > new_chinese_dict.txt

This creates a file, new_japanese.dict.txt, using the UTF8 character set, in the current
directory.

Chapter 17
Lexical Compiler (ctxlc)

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 13

18
Oracle Text Alternative Spelling

This chapter describes various ways that Oracle Text handles alternative spelling of words. It
also documents the alternative spelling conventions that Oracle Text uses in the German,
Danish, and Swedish languages.

The following topics are covered:

• Overview of Alternative Spelling Features

• Overriding Alternative Spelling Features

• Alternative Spelling Conventions

18.1 Overview of Alternative Spelling Features
Some languages have alternative spelling forms for certain words. For example, the German
word Schoen can also be spelled as Schön.

The form of a word is either original or normalized. The original form of the word is how it
appears in the source document. The normalized form is how it is transformed, if it is
transformed at all. Depending on the word being indexed and which system preferences are in
effect (these are discussed in this chapter), the normalized form of a word may be the same as
the original form. Also, the normalized form may comprise more than one spelling. For
example, the normalized form of Schoen is both Schoen and Schön.

Oracle Text handles indexing of alternative word forms in the following ways:

• Alternate Spelling—indexing of alternative forms is enabled

• Base-Letter Conversion—accented letters are transformed into non-accented
representations

• New German Spelling—reformed German spelling is accepted

Enable these features by specifying the appropriate attribute to the BASIC_LEXER. For instance,
enable alternate spelling by specifying either GERMAN, DANISH, or SWEDISH for the
ALTERNATE_SPELLING attribute. As an example, here is how to enable alternate spelling in
German:

begin
ctx_ddl.create_preference('GERMAN_LEX', 'BASIC_LEXER');
ctx_ddl.set_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING', 'GERMAN');
end;

To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE procedure as follows:

begin
ctx_ddl.unset_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING');
end;

Oracle Text converts query terms to their normalized forms before lookup. As a result, users
can query words with either spelling. If Schoen has been indexed as both Schoen and Schön,
a query with Schön returns documents containing either form.

This section contains the following topics.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 5

• Alternate Spelling

• Base-Letter Conversion

• New German Spelling

18.1.1 Alternate Spelling
When Swedish, German, or Danish has more than one way of spelling a word, Oracle Text
normally indexes the word in its original form; that is, as it appears in the source document.

When Alternate Spelling is enabled, Oracle Text indexes words in their normalized form. So,
for example, Schoen is indexed both as Schoen and as Schön, and a query on Schoen will
return documents containing either spelling. (The same is true of a query on Schön.)

To enable Alternate Spelling, set the BASIC_LEXER attribute ALTERNATE_SPELLING to GERMAN,
DANISH, or SWEDISH. See "BASIC_LEXER" for more information.

18.1.2 Base-Letter Conversion
Besides alternative spelling, Oracle Text also handles base-letter conversions. With base-letter
conversions enabled, letters with umlauts, acute accents, cedillas, and the like are converted
to their basic forms for indexing, so fiancé is indexed both as fiancé and as fiance, and a query
of fiancé returns documents containing either form.

To enable base-letter conversions, set the BASIC_LEXER attribute BASE_LETTER to YES. See
"BASIC_LEXER" for more information.

When Alternate Spelling is also enabled, Base-Letter Conversion may need to be overridden to
prevent unexpected results. See "Overriding Alternative Spelling Features" for more
information.

Generic Versus Language-Specific Base-Letter Conversions

The BASE_LETTER_TYPE attribute affects the way base-letter conversions take place. It has two
possible values: GENERIC or SPECIFIC.

The GENERIC value is the default and specifies that base letter transformation uses one
transformation table that applies to all languages.

The SPECIFIC value means that a base-letter transformation that has been specifically defined
for your language will be used. This enables you to use accent-sensitive searches for words in
your own language, while ignoring accents that are from other languages.

For example, both the GENERIC and the Spanish SPECIFIC tables will transform é into e.
However, they treat the letter ñ distinctly. The GENERIC table treats ñ as an n with an accent
(actually, a tilde), and so transforms ñ to n. The Spanish SPECIFIC table treats ñ as a separate
letter of the alphabet, and thus does not transform it.

18.1.3 New German Spelling
In 1996, new spelling rules for German were approved by representatives from all German-
speaking countries. For example, under the spelling reforms, Potential becomes Potenzial,
Schiffahrt becomes Schifffahrt, and schneuzen becomes schnäuzen.

When the BASIC_LEXER attribute NEW_GERMAN_SPELLING is set to YES, then a CONTAINS query on
a German word that has both new and traditional forms will return documents matching both

Chapter 18
Overview of Alternative Spelling Features

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 5

forms. For example, a query on Potential returns documents containing both Potential and
Potenzial. The default setting is NO.

Note

Under reformed German spelling, many words traditionally spelled as one word, such
as soviel, are now spelled as two (so viel). Currently, Oracle Text does not make these
conversions, nor conversions from two words to one (for example, weh tun to wehtun).

The case of the transformed word is determined from the first two characters of the word in the
source document; that is, schiffahrt becomes schifffahrt, Schiffahrt becomes Schifffahrt, and
SCHIFFAHRT becomes SCHIFFFAHRT.

As many new German spellings include hyphens, it is recommended that users choosing
NEW_GERMAN_SPELLING define hyphens as printjoins.

See "BASIC_LEXER" for more information on setting this attribute.

18.2 Overriding Alternative Spelling Features
Even when alternative spelling features have been specified by lexer preference, it is possible
to override them.

You can override base-letter conversion when Alternate Spelling is used, to prevent characters
with alternate spelling forms, such as ü, ö, and ä, from also being transformed to the base
letter forms.

Overriding Base-Letter Transformations with Alternate Spelling

Transformations caused by turning on alternate_spelling are performed before those of
base_letter, which can sometimes cause unexpected results when both are enabled.

When Alternate Spelling is enabled, Oracle Text converts two-letter forms to single-letter forms
(for example, ue to ü), so that words can be searched in both their base and alternate forms.
Therefore, with Alternate Spelling enabled, a search for Schoen will return documents with
both Schoen and Schön.

However, when Base-letter Transformation is also enabled, the ü in Schlüssel is transformed
into a u, producing the non-existent word (in German, anyway) Schlussel, and the word is
indexed in all three forms.

To prevent this secondary conversion, set the OVERRIDE_BASE_LETTER attribute to TRUE.

OVERRIDE_BASE_LETTER only affects letters with umlauts; accented letters, for example, are still
transformed into their base forms.

For more on BASE_LETTER, see "Base-Letter Conversion".

18.3 Alternative Spelling Conventions
The following sections show the alternative spelling substitutions used by Oracle Text.

• German Alternate Spelling Conventions

• Danish Alternate Spelling Conventions

Chapter 18
Overriding Alternative Spelling Features

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 5

• Swedish Alternate Spelling Conventions

18.3.1 German Alternate Spelling Conventions
The German alphabet is the English alphabet plus the additional characters: ä ö ü ß.
Table 18-1 lists the alternate spelling conventions Oracle Text uses for these characters.

Table 18-1 German Alternate Spelling Conventions

Character Alternate Spelling Substitution

ä ae

ü ue

ö oe

Ä AE

Ü UE

Ö OE

ß ss

18.3.2 Danish Alternate Spelling Conventions
The Danish alphabet is the Latin alphabet without the w, plus the special characters: ø æ å.
Table 18-2 lists the alternate spelling conventions Oracle Text uses for these characters.

Table 18-2 Danish Alternate Spelling Conventions

Character Alternate Spelling Substitution

æ ae

ø oe

å aa

Æ AE

Ø OE

Å AA

18.3.3 Swedish Alternate Spelling Conventions
The Swedish alphabet is the English alphabet without the w, plus the additional characters: å ä
ö. Table 18-3 lists the alternate spelling conventions Oracle Text uses for these characters.

Table 18-3 Swedish Alternate Spelling Conventions

Character Alternate Spelling Convention

ä ae

å aa

ö oe

Ä AE

Å AA

Chapter 18
Alternative Spelling Conventions

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 5

Table 18-3 (Cont.) Swedish Alternate Spelling Conventions

Character Alternate Spelling Convention

Ö OE

Chapter 18
Alternative Spelling Conventions

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 5

A
Oracle Text Result Tables

This appendix describes the structure of the result tables used to store the output generated by
the procedures in the CTX_QUERY, CTX_DOC, and CTX_THES packages.

The following topics are discussed in this appendix:

• CTX_QUERY Result Tables

• CTX_DOC Result Tables

• CTX_THES Result Tables and Data Types

A.1 CTX_QUERY Result Tables
For the CTX_QUERY procedures that return results, tables for storing the results must be created
before the procedure is called. The tables can be named anything, but must include columns
with specific names and data types.

This section describes the following types of result tables, and their required columns:

• EXPLAIN Table

• HFEEDBACK Table

A.1.1 EXPLAIN Table
This section describes the EXPLAIN table.

• EXPLAIN Table Structure

• EXPLAIN Table Operation Column Values

• EXPLAIN Table OPTIONS Column Values

A.1.1.1 EXPLAIN Table Structure
Table A-1 describes the structure of the table to which CTX_QUERY.EXPLAIN writes its
results.

Table A-1 EXPLAIN Result Table

Column Name Datatype Description

EXPLAIN_ID VARCHAR2(30) The value of the explain_id argument specified
in the FEEDBACK call.

ID NUMBER A number assigned to each node in the query
execution tree. The root operation node has ID =1.
The nodes are numbered in a top-down, left-first
manner as they appear in the parse tree.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-1 of A-9

Table A-1 (Cont.) EXPLAIN Result Table

Column Name Datatype Description

PARENT_ID NUMBER The ID of the execution step that operates on the
output of the ID step. Graphically, this is the parent
node in the query execution tree. The root
operation node (ID =1) has PARENT_ID = 0.

OPERATION VARCHAR2(30) Name of the internal operation performed. Refer to
Table A-2 for possible values.

OPTIONS VARCHAR2(30) Characters that describe a variation on the
operation described in the OPERATION column.
When an OPERATION has more than one OPTIONS
associated with it, OPTIONS values are
concatenated in the order of processing. See
Table A-3 for possible values.

OBJECT_NAME VARCHAR2(80) Section name, wildcard term, weight, or threshold
value or term to lookup in the index.

POSITION NUMBER The order of processing for nodes that all have the
same PARENT_ID. The positions are numbered in
ascending order starting at 1.

CARDINALITY NUMBER Reserved for future use. You should create this
column for forward compatibility.

A.1.1.2 EXPLAIN Table Operation Column Values
Table A-2 shows the possible values for the OPERATION column of the EXPLAIN table.

Table A-2 EXPLAIN Table OPERATION Column

Operation Value Query Operator Equivalent Symbol

ABOUT ABOUT n/a

ACCUMULATE ACCUM ,

AND AND &

COMPOSITE (none) n/a

EQUIVALENCE EQUIV =

MINUS MINUS -

NEAR NEAR ;

NOT NOT ~

NO_HITS (no hits will result from this query) n/a

OR OR |

PHRASE (a phrase term) n/a

SECTION (section) n/a

THRESHOLD > >

WEIGHT * *

WITHIN within n/a

WORD (a single term) n/a

Appendix A
CTX_QUERY Result Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-2 of A-9

A.1.1.3 EXPLAIN Table OPTIONS Column Values
Table A-3 lists the possible values for the OPTIONS column of the EXPLAIN table.

Table A-3 EXPLAIN Table OPTIONS Column

Options Value Description

($) Stem

(?) Fuzzy

(!) Soundex

(T) Order for ordered Near.

(F) Order for unordered Near.

(n) A number associated with the max_span parameter for the Near
operator.

[9] Indicates that index_stems is set and query is using token_type 9.

A.1.2 HFEEDBACK Table
This section describes the HFEEDBACK table.

• HFEEDBACK Table Structure

• HFEEDBACK Table Operation Column Values

• HFEEDBACK Table OPTIONS Column Values

• CTX_FEEDBACK_TYPE

A.1.2.1 HFEEDBACK Table Structure
Table A-4 describes the table to which CTX_QUERY.HFEEDBACK writes its results.

Table A-4 HFEEDBACK Results Table

Column Name Datatype Description

FEEDBACK_ID VARCHAR2(30) The value of the feedback_id argument specified
in the HFEEDBACK call.

ID NUMBER A number assigned to each node in the query
execution tree. The root operation node has ID =1.
The nodes are numbered in a top-down, left-first
manner as they appear in the parse tree.

PARENT_ID NUMBER The ID of the execution step that operates on the
output of the ID step. Graphically, this is the parent
node in the query execution tree. The root
operation node (ID =1) has PARENT_ID = 0.

OPERATION VARCHAR2(30) Name of the internal operation performed. Refer to
Table A-5 for possible values.

Appendix A
CTX_QUERY Result Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-3 of A-9

Table A-4 (Cont.) HFEEDBACK Results Table

Column Name Datatype Description

OPTIONS VARCHAR2(30) Characters that describe a variation on the
operation described in the OPERATION column.
When an OPERATION has more than one OPTIONS
associated with it, OPTIONS values are
concatenated in the order of processing. See
Table A-6 for possible values.

OBJECT_NAME VARCHAR2(80) Section name, wildcard term, weight, threshold
value or term to lookup in the index.

POSITION NUMBER The order of processing for nodes that all have the
same PARENT_ID. The positions are numbered in
ascending order starting at 1.

BT_FEEDBACK CTX_FEEDBACK_TYPE Stores broader feedback terms. See Table A-7.

PT_FEEDBACK CTX_FEEDBACK_TYPE Stores related feedback terms. See Table A-7.

NT_FEEDBACK CTX_FEEDBACK_TYPE Stores narrower feedback terms. See Table A-7.

A.1.2.2 HFEEDBACK Table Operation Column Values
Table A-5 shows the possible values for the OPERATION column of the HFEEDBACK table.

Table A-5 HFEEDBACK Results Table OPERATION Column

Operation Value Query Operator Equivalent Symbol

ABOUT ABOUT (none)

ACCUMULATE ACCUM ,

AND AND &

EQUIVALENCE EQUIV =

MINUS MINUS -

NEAR NEAR ;

NOT NOT ~

OR OR |

SECTION (section)

TEXT word or phrase of a text query

THEME word or phrase of an ABOUT query

THRESHOLD > >

WEIGHT * *

WITHIN within (none)

A.1.2.3 HFEEDBACK Table OPTIONS Column Values
Table A-6 lists the values for the OPTIONS column of the HFEEDBACK table.

Appendix A
CTX_QUERY Result Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-4 of A-9

Table A-6 HFEEDBACK Results Table OPTIONS Column

Options Value Description

(T) Order for ordered Near.

(F) Order for unordered Near.

(n) A number associated with the max_span parameter for the Near
operator.

A.1.2.4 CTX_FEEDBACK_TYPE
The CTX_FEEDBACK_TYPE is a nested table of objects. This datatype is predefined in the CTXSYS
schema. Use this type to define the columns BT_FEEDBACK, RT_FEEDBACK, and NT_FEEDBACK.

The nested table CTX_FEEDBACK_TYPE holds objects of type CTX_FEEDBACK_ITEM_TYPE, which is
also predefined in the CTXSYS schema. This object is defined with three members and one
method as follows:

Table A-7 CTX_FEEDBACK_ITEM_TYPE

CTX_FEEDBACK_ITEM_TYPE Members
and Methods

Type Description

text NUMBER Feedback term.

cardinality NUMBER (reserved for future use.)

score NUMBER (reserved for future use.)

The SQL code that defines these objects is as follows:

CREATE OR REPLACE TYPE ctx_feedback_type AS TABLE OF ctx_feedback_item_type;

CREATE OR REPLACE TYPE ctx_feedback_item_type AS OBJECT
(text VARCHAR2(80),
 cardinality NUMBER,
 score NUMBER,
 MAP MEMBER FUNCTION rank RETURN REAL,
 PRAGMA RESTRICT_REFERENCES (rank, RNDS, WNDS, RNPS, WNPS)
);

CREATE OR REPLACE TYPE BODY ctx_feedback_item_type AS
 MAP MEMBER FUNCTION rank RETURN REAL IS
 BEGIN
 RETURN score;
 END rank;
END;

See Also

For an example of how to select from the HFEEDBACK table and its nested tables, refer
to CTX_QUERY.HFEEDBACK in CTX_QUERY Package

Appendix A
CTX_QUERY Result Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-5 of A-9

A.2 CTX_DOC Result Tables
The CTX_DOC procedures return results stored in a table. Before calling a procedure, you must
create the table. The tables can be named anything, but must include columns with specific
names and data types.

This section describes the following result tables and their required columns:

• Filter Table

• Gist Table

• Highlight Table

• Markup Table

• Theme Table

• Token Table

A.2.1 Filter Table
A filter table stores one row for each filtered document returned by CTX_DOC.FILTER .
Filtered documents can be plain text or HTML.

When you call CTX_DOC.FILTER for a document, the document is processed through the filter
defined for the text column and the results are stored in the filter table you specify.

Filter tables can be named anything, but must include the following columns, with names and
datatypes as specified:

Table A-8 FILTER Result Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call to
CTX_DOC.FILTER (only populated when table is used to store
results from multiple FILTER calls)

DOCUMENT CLOB Text of the document, stored in plain text or HTML.

A.2.2 Gist Table
A Gist table stores one row for each Gist/theme summary generated by CTX_DOC.GIST.

Gist tables can be named anything, but must include the following columns, with names and
data types as specified:

Table A-9 Gist Table

Column Name Type Description

QUERY_ID NUMBER Query ID.

POV VARCHAR2(80) Document theme. Case depends of how themes were used
in document or represented in the knowledge base.

POV has the value of GENERIC for the document GIST.

GIST CLOB Text of Gist or theme summary, stored as plain text

Appendix A
CTX_DOC Result Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-6 of A-9

A.2.3 Highlight Table
A highlight table stores offset and length information for highlighted terms in a document. This
information is generated by CTX_DOC.HIGHLIGHT . Highlighted terms can be the words or
phrases that satisfy a word or an ABOUT query.

If a document is formatted, the text is filtered into either plain text or HTML and the offset
information is generated for the filtered text. The offset information can be used to highlight
query terms for the same document filtered with CTX_DOC.FILTER .

Highlight tables can be named anything, but must include the following columns, with names
and datatypes as specified:

Table A-10 Highlight Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call to
CTX_DOC.HIGHLIGHT (only populated when table is used to
store results from multiple HIGHLIGHT calls)

OFFSET NUMBER The position of the highlight in the document, relative to the start
of document which has a position of 1.

LENGTH NUMBER The length of the highlight.

A.2.4 Markup Table
A markup table stores documents in plain text or HTML format with the query terms in the
documents highlighted by markup tags. This information is generated when you call
CTX_DOC.MARKUP .

Markup tables can be named anything, but must include the following columns, with names
and datatypes as specified:

Table A-11 Markup Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call to
CTX_DOC.MARKUP (only populated when table is used to store
results from multiple MARKUP calls)

DOCUMENT CLOB Marked-up text of the document, stored in plain text or HTML
format

A.2.5 Theme Table
A theme table stores one row for each theme generated by CTX_DOC.THEMES. The value
stored in the THEME column is either a single theme phrase or a string of parent themes,
separated by colons.

Theme tables can be named anything, but must include the following columns, with names and
data types as specified:

Appendix A
CTX_DOC Result Tables

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-7 of A-9

Table A-12 Theme Table

Column Name Type Description

QUERY_ID NUMBER Query ID

THEME VARCHAR2(2000) Theme phrase or string of parent themes separated by colons
(:).

WEIGHT NUMBER Weight of theme phrase relative to other theme phrases for the
document.

A.2.6 Token Table

A token table stores the text tokens for a document as output by the CTX_DOC.TOKENS
procedure. Token tables can be named anything, but must include the following columns, with
names and data types as specified.

Table A-13 Token Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular
call to CTX_DOC.HIGHLIGHT (only populated when
table is used to store results from multiple HIGHLIGHT
calls)

TOKEN VARCHAR2(255) The token string in the text.

OFFSET NUMBER The position of the token in the document, relative to the
start of document which has a position of 1.

LENGTH NUMBER The character length of the token.

THES_TOKENS VARCHAR2(4000) Synonyms or broader terms generated using the
thesaurus for the token in TOKEN column. These are
separated using colons.

A.3 CTX_THES Result Tables and Data Types
The CTX_THES expansion functions such as BT, NT, and SYN can return the expansions in a table
of type EXP_TAB. Specify the name of your table with the restab argument.

• EXP_TAB Table Type

A.3.1 EXP_TAB Table Type
The EXP_TAB table type is a table of rows of type EXP_REC.

The EXP_REC and EXP_TAB types are defined as follows in the CTXSYS schema:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);

type exp_tab is table of exp_rec index by binary_integer;

Appendix A
CTX_THES Result Tables and Data Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-8 of A-9

When you call a thesaurus expansion function and specify restab, the system returns the
expansion as an EXP_TAB table. Each row in this table is of type EXP_REC and represents a
word or phrase in the expansion. Table A-14 describes the fields in EXP_REC:

Table A-14 EXP_TAB Table Type (EXP_REC)

EXP_REC Field Description

xrel The xrel field contains the relation of the term to the input term (for
example, 'SYN', 'PT', 'RT', and so on). The xrel value is PHRASE
when the input term appears in the expansion. For translations, the
xrel value is the language.

xlevel The xlevel field is the level of the relation. This is used mainly when
xrel is a hierarchical relation (BT*/NT*).

The xlevel field is 0 when xrel is PHRASE.

The xlevel field is 2 for translations of synonyms under TRSYN.

The xlevel field is 1 for operators that are not hierarchical, such as
PT and RT.

xphrase The xphrase is the related term. This includes a qualifier in
parentheses, if one exists for the related term. Compound terms are
not de-compounded.

Appendix A
CTX_THES Result Tables and Data Types

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-9 of A-9

B
Oracle Text Supported Document Formats

Oracle Text uses the HTML export technology of Oracle Outside In for automatic filtering. This
appendix provides tables with the document and graphic file formats supported by the
automatic AUTO_FILTER filtering technology for this release.

This appendix contains the following topics:

• About Document Filtering Technology

• Supported Document Formats

See Also

"AUTO_FILTER" for information on using AUTO_FILTER

B.1 About Document Filtering Technology
The automatic filtering technology in Oracle Text enables you to convert documents to HTML
for document presentation with the CTX_DOC package.

To use automatic filtering for indexing and DML processing, you must specify the AUTO_FILTER
object in your filter preference.

To use automatic filtering technology for converting documents to HTML with the CTX_DOC
package, you need not use the AUTO_FILTER indexing preference.

This section contains these topics:

• Latest Updates for Patch Releases

• Restrictions on Format Support

• Supported Platforms for AUTO_FILTER Document Filtering Technology

• Filtering on PDF Documents and Security Settings

• PDF Filtering Limitations

• Environment Variables

• General Limitations

B.1.1 Latest Updates for Patch Releases
The supported platforms and formats listed in this appendix apply for this release. These
supported formats are updated for patch releases.

B.1.2 Restrictions on Format Support
The formats listed in this appendix are those formats recognized by AUTO_FILTER. Recognizing
a format does not necessarily mean that text can be extracted from it. For example, a scanned

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-1 of B-16

document is usually an image and AUTO_FILTER does not perform optical character recognition.
Similarly, text cannot be extracted for indexing from multimedia file types.

Password-protected documents and documents with password-protected content are not
supported by the AUTO_FILTER filter.

For other limitations, see "Supported Document Formats" concerning specific document types.

B.1.3 Supported Platforms for AUTO_FILTER Technology
These are the supported platforms for automatic filtering technology that enables you to
convert documents to HTML with the CTX_DOC package.

Supported Platform Details

Windows Server (x86 64-bit) • Windows Server 2008 x64 Standard, Enterprise, and
Datacenter Editions (64-bit Extended Systems)

• Windows Server 2013 x64 Standard, Datacenter, and
Essentials editions

• Windows Server 2016 x64 Standard, Datacenter, and
Essentials editions

• Windows Server 2019 x64 Standard, Datacenter, and
Essentials editions

HP-UX • HP-UX (PA-RISC 64-bit) 11.i
• HP-UX (Itanium 64) 11i

IBM AIX • IBM AIX on POWER Systems (64-bit) 7.1
• IBM AIX on POWER Systems (64-bit) 7.x

Red Hat Linux • Red Hat Linux (x86-64) Red Hat Enterprise Linux (RHEL)
6, 7, 8

• Red Hat Linux (z-series, s390-64) Red Hat Enterprise
Linux (RHEL) 6, 7, 8

• Red Hat Linux (PPC-64) Red Hat Enterprise Linux
(RHEL) 6, 7, 8

• Red Hat Linux (Arm-64) Red Hat Enterprise Linux
(RHEL), 6, 7, 8

SuSE Linux • SuSE Linux (X86-64) 12, 15
• SuSE Linux (z-series, s390-64) 12, 15
• SuSE Linux (PPC-64) 12, 15
• SuSE Linux (Arm-64) 12, 15

Sun Solaris • Sun Solaris (SPARC 64 bit) 11.x
• Sun Solaris (X86-64) 11.x

Note

Some of these platforms may not be supported by the Oracle AI Database.

B.1.4 Filtering on PDF Documents and Security Settings
A PDF document can have different levels of security settings as follows:

Appendix B
About Document Filtering Technology

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-2 of B-16

Table B-1 AUTO_FILTER Behavior with PDF Security Settings

Security
Level

Description PDF
Version

Encryption AUTO_FILTER Support Level

Level 1 Requires a password for opening the
document.

1.2+ 40 bit RC4 Not supported.

Level 1 Requires a password for opening the
document.

1.4+ 128 bit RC4 Not supported.

Level 1 Requires a password for opening the
document.

1.5+ 128 bit RC4 Not supported.

Level 1 Requires a password for opening the
document.

1.6+ 128 bit AES Not supported.

Level 1 Requires a password for opening the
document.

1.7+ 256 bit AES Not supported.

Level 2 Disallows user printing of the document. 1.2+ 40 bit RC4 Supported.

Level 2 Disallows user printing of the document. 1.4+ 128 bit RC4 Supported.

Level 2 Disallows user printing of the document. 1.5+ 128 bit RC4 Supported.

Level 2 Disallows user printing of the document. 1.6+ 128 bit AES Not supported.

Level 2 Disallows user printing of the document. 1.7+ 256 bit AES Not supported.

Level 3 Disallows user modification or change of
the document.

1.2+ 40 bit RC4 Supported.

Level 3 Disallows user modification or change of
the document.

1.4+ 128 bit RC4 Supported.

Level 3 Disallows user modification or change of
the document.

1.5+ 128 bit RC4 Supported.

Level 3 Disallows user modification or change of
the document.

1.6+ 128 bit RC4 Not supported.

Level 3 Disallows user modification or change of
the document.

1.7+ 256 bit AES Not supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.2+ 40 bit RC4 Supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.4+ 128 bit RC4 Supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.5+ 128 bit RC4 Supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.6+ 128 bit AES Not supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.7+ 256 bit AES Not supported.

Appendix B
About Document Filtering Technology

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-3 of B-16

Note

Starting with Oracle Database 21c, older encryption and hashing algorithms are
deprecated.
The deprecated algorithms for DBMS_CRYPTO and native network encryption include
MD4, MD5, DES, 3DES, and RC4-related algorithms as well as 3DES for Transparent
Data Encryption (TDE). Removing older, less secure cryptography algorithms prevents
accidental use of these algorithms. To meet your security requirements, Oracle
recommends that you use more modern cryptography algorithms, such as the
Advanced Encryption Standard (AES).

B.1.5 PDF Filtering Limitations
The following limitations apply when filtering PDF files:

• Multi-byte PDFs are supported, provided the PDF document is created using Character ID-
keyed (CID) fonts, predefined CJK CMap files, or ToUnicode font encodings, and the
document does not contain embedded fonts.

• Embedded fonts in a PDF document are not filtered correctly. They are usually displayed
using the question mark (?) replacement character.

• Hyperlinks in a PDF are not active when displayed in a browser or a viewing window.

• Annotations, such as notes, sound, or movies, are not supported.

B.1.6 Environment Variables
No environment variables need to be set by the user.

B.1.7 General Limitations
AUTO_FILTER filter technology has the following limitations:

• Any ASCII characters less then 0x20 (decimal 32) are converted to hexadecimal numbers.

• Files larger than 2GB are not handled.

B.2 Supported Document Formats
Document filtering is used for indexing, processing data manipulation language (DML), and
converting documents into HTML with the CTX_DOC package. These are the document formats
that Oracle Text supports for filtering.

• Archive File Format

• Database Formats

• E-Book Formats

• Email Formats

• Graphic Formats (Raster and Vector Image)

• Multimedia Formats

• Other Formats

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-4 of B-16

• Presentation Formats

• Spreadsheet Formats

• Text and Markup Formats

• Word Processing and Desktop Publishing Formats

Note

These lists do not represent the complete list of formats that Oracle Text is able to
process. The USER_FILTER and PROCEDURE_FILTER enable Oracle Text to process any
document format, provided an external filter exists that can filter to some textual format
like plain-text, HTML, XML, and so forth.

B.2.1 Archive File Format
These are the archive formats that Oracle Text supports. When filtering an archive file, all the
contents of the files inside the archive are exported to a single output file. This also includes
the contents of all subfolders and files inside the archive file.

Table B-2 Supported Archive File Formats

Archive Format Version

7z (BZIP2 and split archives not supported) -

7z Self Extracting .exe (BZIP2 and split
archives not supported)

-

LZA Self Extracting Compress -

LZH Compress -

Microsoft Office Binder -

Microsoft Cabinet (CAB) 95 – 97

RAR 1.5, 2.0, 2.9, 5.x, 6.x

Self-extracting .exe -

UNIX Compress -

UNIX GZip -

UNIX Tar -

Uuencode -

Zip PKZip

Zip WinZip

Zip Zip64

B.2.2 Database Formats
These are the database formats that Oracle Text supports for filtering.

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-5 of B-16

Format Version

DataEase 4.x

DBase III, IV, V, X, X1

First Choice DB Through 3.0

Framework DB 3.0

Microsoft Access (text only) 1.0, 2.0, 95–2019

Microsoft Access Report Snapshot (File ID only) 2000 – 2003

Microsoft Works DB for DOS 2.0

Microsoft Works DB for Macintosh 2.0

Microsoft Works DB for Windows 3.0, 4.0

Paradox for DOS 2.0 – 4.0

Paradox for Windows 1.0

Q&A Database Through 2.0

R:BASE R:BASE 5000

R:BASE R:BASE System V

Reflex 2.0

SmartWare II DB 1.02

B.2.3 E-Book Formats
These are the supported e-book file formats that are viewable on e-book readers.

Format Version

EPUB (File ID only) -

MOBI (File ID only) -

B.2.4 Email Formats
These are the formats that Oracle Text supports for email messages, encodings, attachments,
Multipurpose Internet Mail Extensions (MIME) formats, and so on.

Format Version

Apple Mail Message (EMLX) 2.0

Encoded mail messages MHT

Encoded mail messages Multi Part Alternative

Encoded mail messages Multi Part Digest

Encoded mail messages Multi Part Mixed

Encoded mail messages Multi Part News Group

Encoded mail messages Multi Part Signed

Encoded mail messages TNEF

EML with Digital Signature SMIME

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-6 of B-16

Format Version

IBM Lotus Notes Domino XML Language DXL 8.5

IBM Lotus Notes NSF (File ID) 7.x, 8.x

IBM Lotus Notes NSF (Win32, Win64, Linux x86-32
and Oracle Solaris 32-bit only with Notes Client or
Domino Server)

8.x

MBOX Mailbox RFC 822

Microsoft Outlook Message (MSG) 97 – 2013

Microsoft Outlook Express (EML) -

Microsoft Outlook Forms Template (OFT) 97 – 2013

Microsoft Outlook OLM 2011 for Mac

Microsoft Outlook OST 97 – 2013

Microsoft Outlook PST 97 – 2013

Microsoft Outlook PST (Mac) 2001

MSG with Digital Signature SMIME

MIME Support Notes

The following formats are supported:

• MIME formats

– EML

– MHT (Web Archive)

– NWS (Newsgroup single-part and multi-part)

– Simple Text Mail (defined in RFC 2822)

• TNEF format

• MIME encodings, including

– base64 (defined in RFC 1521)

– binary (defined in RFC 1521)

– binhex (defined in RFC 1741)

– btoa

– quoted-printable (defined in RFC 1521)

– utf-7 (defined in RFC 2152)

– uue

– xxe

– yenc

In addition, the body of a message can be encoded in several ways. The following encodings
are supported:

• HTML

• RTF

• TNEF

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-7 of B-16

• Text/enriched (defined in RFC 1523)

• Text/richtext (defined in RFC1341)

• Embedded mail message (defined in RFC 822) - this is handled as a link to a new
message

The attachments of a MIME message can be stored in many formats. Oracle Corporation
processes all attachment types that its technology supports.

B.2.5 Graphic Formats (Raster and Vector Image)
The graphic formats that the AUTO_FILTER filter recognizes ensure that indexing a text column
containing any of these formats produces no error. Formats are categorized as either
embedded graphics or standalone graphics.

Embedded graphics are inserted or referenced within a document.

• Table B-3

• Table B-4

Note

The AUTO_FILTER filter cannot extract textual information from graphics.

Table B-3 Supported Raster Image Formats for AUTO_FILTER Filter

Format Version

Adobe Photoshop 4.0

Adobe Photoshop PSD (File ID only) -

Adobe Photoshop CS1 – 6, CC 2014 - 2018

CALS Raster (GP4) Type I

CALS Raster (GP4) Type II

Computer Graphics Metafile ANSI

Computer Graphics Metafile CALS

Computer Graphics Metafile NIST

Encapsulated PostScript (EPS) TIFF header Only

GEM Image (Bitmap) -

Graphics Interchange Format (GIF) -

IBM Graphics Data Format (GDF) 1.0

IBM Picture Interchange Format 1.0

JBIG2 Graphic Embeddings in PDF

JFIF (JPEG not in TIFF format) -

JPEG -

JPEG 2000 JP2

Kodak Flash Pix -

Kodak Photo CD 1.0

Lotus PIC -

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-8 of B-16

Table B-3 (Cont.) Supported Raster Image Formats for AUTO_FILTER Filter

Format Version

Lotus Snapshot -

Macintosh PICT BMP only

Macintosh PICT2 BMP only

MacPaint -

Microsoft Windows Bitmap -

Microsoft Windows Cursor -

Microsoft Windows Icon -

OS/2 Bitmap -

OS/2 Warp Bitmap -

Paint Shop Pro (Win32 only) 5.0, 6.0

PC Paintbrush (PCX) -

PC Paintbrush DCX (multi-page PCX) -

Portable Bitmap (PBM) -

Portable Graymap PGM -

Portable Network Graphics (PNG) -

Portable Pixmap (PPM) -

Portable Arbitrary Map (PAM) (File ID only) -

Progressive JPEG -

StarOffice Draw 6.x – 9.0

Sun Raster -

TIFF Group 5 & 6

TIFF CCITT Group 3 & 4

TruVision TGA (Targa) 2.0

WebP (File ID only) -

Word Perfect Graphics 1.0

JT Image (File ID only) 8.0, 9.0, 10.0

WBMP wireless graphics format -

X-Windows Bitmap x10 compatible

X-Windows Dump x10 compatible

X-Windows Pixmap x10 compatible

WordPerfect Graphics 2.0 – 10.0

Table B-4 Supported Vector Image Formats for AUTO_FILTER Filter

Graphics Format Version

Adobe FrameMaker (MIF only) 3.0 - 6.0

Adobe Illustrator Postscript Level 2

Adobe Illustrator 4.0 – 7.0

Adobe Illustrator (PDF Preview only) 9.0, CS1 - 6

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-9 of B-16

Table B-4 (Cont.) Supported Vector Image Formats for AUTO_FILTER Filter

Graphics Format Version

Adobe Illustrator XMP CS1 – 6

Adobe InDesign XMP CS1 - 6

Adobe InDesign Interchange (XMP only) -

Adobe PDF 1.0 – 1.7 (Acrobat 1 – 10)

Adobe PDF Package 1.7 (Acrobat 8 – 10)

Adobe PDF Portfolio 1.7 (Acrobat 8 – 10)

Ami Draw SDW

AutoCAD Drawing 2.5, 2.6

AutoCAD Drawing 9.0 – 14.0

AutoCAD Drawing 2000i – 2015, 2016 – 2021

AutoShade Rendering 2

Corel Draw 2.0 – 9.0 and X7

Corel Draw Clipart 5.0, 7.0

Enhanced Metafile (EMF) -

Escher graphics -

FrameMaker Graphics (FMV) 3.0 – 5.0

Gem File (Vector) -

Harvard Graphics Chart DOS 2.0 – 3.0

Harvard Graphics for Windows -

Hewlett Packard Graphics Language (HPGL) 2.0

IGES Drawing 5.1 – 5.3

Micrografx Designer (DRW) Through 3.1

Micrografx Designer (DFS) 6.0

Micrografx Draw (DRW) Through 4.0

Microsoft XPS (Text only) -

Novell PerfectWorks Draw 2

OpenOffice Draw 1.1 – 3.0

Oracle Open Office Draw 3.x

SVG (processed as XML, not rendered) -

Visio (Page Preview mode WMF/EMF) 4.0

Visio 5.0 - 2010

Visio (text only) 2013

Visio XML VSX (File ID only) 2007

Windows Metafile (WMF) -

B.2.6 Multimedia Formats
This table lists the multimedia formats that are recognized by AUTO_FILTER.

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-10 of B-16

Recognizing a format does not necessarily mean that text can be extracted from it. Also, the
file name and file header information are not indexed. A scanned document is usually an
image, and AUTO_FILTER does not perform optical character recognition. Similarly, text cannot
be extracted for indexing from multimedia file types.

Format Version

AVI (Metadata only) -

DICOM (File ID only) -

Flash (text extraction only) 6.x, 7.x, Lite

Flash (File ID only) 9, 10

Real Media (File ID only) -

MP3 (ID3 metadata only) -

MPEG-1 Audio layer 3 V ID3 v1 (Metadata only) -

MPEG-1 Audio layer 3 V ID3 v2 (Metadata only) -

MPEG-1 Video V 2 (File ID only) -

MPEG-1 Video V 3 (File ID only) -

MPEG-2 Audio (File ID only) -

MPEG-4 (Metadata only) -

MPEG-7 (Metadata only) -

QuickTime (Metadata only) -

Windows Media ASF (Metadata only) -

Windows Media DVR-MS (Metadata only) -

Windows Media Audio WMA (Metadata only) -

Windows Media Playlist (File ID only) -

Windows Media Video WMV (Metadata only) -

WAV (Metadata only) -

Apple HEIF (File ID only) -

WebM (File ID only) -

B.2.7 Other Formats

Format Version

AOL Messenger (File ID only) 7.3

Microsoft InfoPath (File ID only) 2007

Microsoft Live Messenger (via XML filter) 10.0

Microsoft Office Theme files (File ID only 2007 - 2019

Microsoft OneNote (text only) 2007 - 2019

Microsoft Project (table view only) 98 – 2010

Microsoft Windows Compiled Help (File ID only) .chm

Microsoft Windows DLL (File ID only) .dll

Microsoft Windows Executable (File ID only) .exe.com

Microsoft Windows Explorer Command (File ID only) .scf

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-11 of B-16

Format Version

Microsoft Windows Help (File ID only) .hlp

Microsoft Windows Shortcut (File ID only) .lnk

Trillian Text Log File (via text filter) 4.2

Trillian XML Log File (File ID only) 4.2

TrueType Font (File ID only) Ttf, ttc

vCalendar 2.1

vCard 2.1

Yahoo Messenger 6.x – 8

B.2.8 Presentation Formats
These are the presentation file formats that Oracle Text supports for filtering.

Format Version

Apple iWork Keynote (text and PDF preview) 09, 2014, 2020

Harvard Graphics Presentation DOS 3.0

IBM Lotus Symphony Presentations 1.x

Kingsoft WPS Presentation 2010

LibreOffice Impress 4.x, 5.x, 6.x

Lotus Freelance 1.0 – Millennium 9.8

Lotus Freelance for OS/3 2

Lotus Freelance for Windows 95, 97, SmartSuite 9.8

Microsoft PowerPoint for Macintosh 4.0 – 2016, 2019

Microsoft PowerPoint for Windows 3.0 – 2016, 2019

Microsoft PowerPoint for Windows Slideshow 2007 – 2019

Microsoft PowerPoint for Windows Template 2007 – 2019

Novell Presentations 3.0, 7.0

OpenOffice Impress 1.1, 3.0, 4.x

Oracle Open Office Impress 3.x

StarOffice Impress 5.2 – 9.0

Strict Open XML –Presentation (File ID only) 2013, 2019

WordPerfect Presentations 5.1 – X7

Advanced Function Presentation (AFP) (File ID only) -

B.2.9 Spreadsheet Formats
These are the spreadsheet file formats that Oracle Text supports for filtering.

Format Version

Apple iWork Numbers (text and PDF preview) 09

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-12 of B-16

Format Version

Apple iWork Numbers (File ID only) 2014, 2020

Enable Spreadsheet 3.0 – 4.5

First Choice SS Through 3.0

Framework SS 3.0

IBM Lotus Symphony Spreadsheets 1.x

Kingsoft WPS Spreadsheets 2010

LibreOffice Calc 4.x

Lotus 1-2-3 Through Millennium 9.8

Lotus 1-2-3 Charts for DOS and Windows Through 5.0

Lotus 1-2-3 for OS/2 2.0

Microsoft Excel Charts 2.x – 2007

Microsoft Excel for Macintosh 98 – 2011

Microsoft Excel for Windows 3.0 – 2019

Microsoft Excel for Windows (text only) 2003 XML

Microsoft Excel for Windows (.xlsb) 2007 – 2019 (Binary)

Microsoft Works SS for DOS 2.0

Microsoft Works SS for Macintosh 2.0

Microsoft Works SS for Windows 3.0, 4.0

Multiplan 4.0

Novell PerfectWorks Spreadsheet 2.0

OpenOffice Calc 1.1 – 3.0

Oracle Open Office Calc 3.x

PFS: Plan 1.0

Quattro Pro for DOS Through 5.0

Quattro Pro for Windows Through X7

SmartWare Spreadsheet -

SmartWare II SS 1.02

StarOffice Calc 5.2 – 9.0

SuperCalc 5.0

Symphony Through 2.0

VP-Planner 1.0

B.2.10 Text and Markup Formats
These are the formats for text and markup versions of documents that Oracle Text supports.

Format Version

ANSI Text 7 and 8 bit

ASCII Text 7 and 8 bit

Ami Pro for OS2 -

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-13 of B-16

Format Version

Ami Pro for Windows 2.0, 3.0

Apple iWork Pages (text and PDF preview) 09

Apple iWork Pages (File ID only) 2014, 2020

DEC DX Through 4.0

DEC DX Plus 4.0, 4.1

Enable Word Processor 3.0 – 4.5

First Choice WP 1.0, 3.0

Framework WP 3.0

Hangul 97 – 2010

IBM DCA/FFT -

IBM DisplayWrite 2.0 – 5.0

IBM Writing Assistant 1.01

Ichitaro 5.0, 6.0, 8.0 – 13.0, 2004, 2010, 2013

JustWrite Through 3.0

Kingsoft WPS Writer 2010

Legacy 1.1

LibreOffice Writer 4.x

Lotus Manuscript Through 2.0

Lotus WordPro (text only) 9.7, 96 – Millennium 9.8

MacWrite II 1.1

Mass 11 Through 8.0

Microsoft Publisher (File ID only) 2003 - 2016

Microsoft Word for DOS 4.0 – 6.0

Microsoft Word for Macintosh 4.0 – 6.0, 98 – 2011

Microsoft Word for Windows 1.0 – 2016, 2019

Microsoft Word for Windows (text only) 2003 XML

DOS character set -

EBCDIC -

HTML (HTML5 advanced elements are limited to those typically
found in HTML based emails.)

1.0 – 5.0

IBM DCA/RFT -

Macintosh character set -

Rich Text Format (RTF) -

Unicode Text 3.0, 4.0

UTF-8 -

Wireless Markup Language -

XML (Text only) -

XHTML (File ID only) 1.0

XML Localization Interchange File Format (File ID only) -

XML Forms Data Format (File ID only) -

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-14 of B-16

B.2.11 Word Processing and Desktop Publishing Formats
These are the formats for word processing and desktop publishing handled by Oracle Text
filters.

Format Version

Adobe FrameMaker (MIF only) 3.0 – 6.0

Adobe Illustrator Postscript Level 2

Ami -

Ami Pro for OS2 -

Ami Pro for Windows 2.0, 3.0

Apple iWork Pages (Text and PDF preview) 09

Apple iWork Pages (File ID only) 2014, 2020

DEC DX Through 4.0

DEC DX Plus 4.0, 4.1

Enable Word Processor 3.0 – 4.5

First Choice WP 1.0, 3.0

Framework WP 3.0

Hangul 97 – 2010

IBM DCA/FFT -

IBM DisplayWrite 2.0 – 5.0

IBM Writing Assistant 1.01

Ichitaro 5.0, 6.0, 8.0 – 13.0, 2004, 2013

JustWrite Through 3.0

Kingsoft WPS Writer 2010

Legacy 1.1

LibreOffice Writer 4.x

Lotus Manuscript Through 2.0

Lotus WordPro (text only) 9.7, 96 – Millennium 9.8

MacWrite II 1.1

Mass 11 Through 8.0

Microsoft Word for DOS 4.0 – 6.0

Microsoft Word for Macintosh 4.0 – 6.0, 98 – 2011

Microsoft Word for Windows 1.0 – 2016, 2019

Microsoft Word for Windows (text only via XML filter) 2003 XML

Microsoft Word for Windows 98-J

Microsoft WordPad -

Microsoft Works WP for DOS 2.0

Microsoft Works WP for Macintosh 2.0

Microsoft Works WP for Windows 3.0, 4.0

Microsoft Write for Windows 1.0 – 3.0

MultiMate Through 4.0

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-15 of B-16

Format Version

MultiMate Advantage 2.0

Navy DIF -

Nota Bene 3.0

Novell PerfectWorks Word Processor 2.0

OfficeWriter 4.0 – 6.0

OpenOffice Writer 1.1 – 3.0

Oracle Open Office Writer 3.x

PC File Doc 5.0

PFS: Write A, B

Professional Write for DOS 1.0, 2.0

Professional Write Plus for Windows 1.0

Q&A Write 2.0, 3.0

Samna Word IV 1.0 – 3.0

Samna Word IV+ -

Signature 1.0

SmartWare II WP 1.02

Sprint 1.0

StarOffice Writer 5.2 – 9.0

Strict Open XML –Document (file ID only) 2013, 2016, 2019

Total Word 1.2

Wang IWP Through 2.6

WordMarc Composer -

WordMarc Composer+ -

WordMarc Word Processor -

WordPerfect for DOS 4.2

WordPerfect for Macintosh 1.02 – 3.1

WordPerfect for Windows 5.1 – X7

WordStar 2000 for DOS 1.0 – 3.0

Wordstar for DOS 3.0 – 7.0

Wordstar for Windows 1.0

XyWrite Through III+

Appendix B
Supported Document Formats

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-16 of B-16

C
Text Loading Examples for Oracle Text

This appendix provides examples of how to load text into a text column, and the structure of
ctxload import files. This appendix contains these topics:

• SQL INSERT Example

• SQL*Loader Example

• Structure of ctxload Thesaurus Import File

C.1 SQL INSERT Example
A simple way to populate a text table is to create a table with two columns, id and text, using
CREATE TABLE and then use the INSERT statement to load the data. This example makes the id
column the primary key, which is optional. The text column is VARCHAR2:

create table docs (id number primary key, text varchar2(80));

To populate the text column, use the INSERT statement as follows:

insert into docs values(1, 'this is the text of the first document');
insert into docs values(12, 'this is the text of the second document');

C.2 SQL*Loader Example
The following example shows how to use SQL*Loader to load mixed format documents from
the operating system to a BLOB column. The example has two steps:

• Creating the Table

• Issuing the SQL*Loader Command

The SQL*Loader command reads the control file and loads data into table

See Also

For a complete discussion on using SQL*Loader, see Oracle Database Utilities

C.2.1 Creating the Table
This example loads a table articles_formatted created as follows:

CREATE TABLE articles_formatted (
 ARTICLE_ID NUMBER PRIMARY KEY ,
 AUTHOR VARCHAR2(30),
 FORMAT VARCHAR2(30),
 PUB_DATE DATE,
 TITLE VARCHAR2(256),
 TEXT BLOB
);

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-1 of C-8

The article_id column is the primary key. Documents are loaded in the text column, which is
of type BLOB.

C.2.2 Issuing the SQL*Loader Command
The following command starts the loader, which reads the control file LOADER1.DAT:

sqlldr userid=demo/password control=loader1.dat log=loader.log

• Example Control File: loader1.dat

• Example Data File: loader2.dat

C.2.2.1 Example Control File: loader1.dat
This SQL*Loader control file defines the columns to be loaded and instructs the loader to load
the data line by line from loader2.dat into the articles_formatted table. Each line in
loader2.dat holds a comma-delimited list of fields to be loaded.

-- load file example
load data
INFILE 'loader2.dat'
INTO TABLE articles_formatted
APPEND
FIELDS TERMINATED BY ','
(article_id SEQUENCE (MAX,1),
 author CHAR(30),
 format,
 pub_date SYSDATE,
 title,
 ext_fname FILLER CHAR(80),
 text LOBFILE(ext_fname) TERMINATED BY EOF)

This control file instructs the loader to load data from loader2.dat to the articles_formatted
table in the following way:

1. The ordinal position of the line describing the document fields in loader2.dat is written to
the article_id column.

2. The first field on the line is written to author column.

3. The second field on the line is written to the format column.

4. The current date given by SYSDATE is written to the pub_date column.

5. The title of the document, which is the third field on the line, is written to the title column.

6. The name of each document to be loaded is read into the ext_fname temporary variable,
and the actual document is loaded in the text BLOB column:

C.2.2.2 Example Data File: loader2.dat
This file contains the data to be loaded into each row of the table, articles_formatted.

Each line contains a comma-delimited list of the fields to be loaded in articles_formatted.
The last field of every line names the file to be loaded in to the text column:

Ben Kanobi, plaintext,Kawasaki news article,../sample_docs/kawasaki.txt,
Joe Bloggs, plaintext,Java plug-in,../sample_docs/javaplugin.txt,
John Hancock, plaintext,Declaration of Independence,../sample_docs/indep.txt,
M. S. Developer, Word7,Newsletter example,../sample_docs/newsletter.doc,

Appendix C
SQL*Loader Example

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-2 of C-8

M. S. Developer, Word7,Resume example,../sample_docs/resume.doc,
X. L. Developer, Excel7,Common example,../sample_docs/common.xls,
X. L. Developer, Excel7,Complex example,../sample_docs/solvsamp.xls,
Pow R. Point, Powerpoint7,Generic presentation,../sample_docs/generic.ppt,
Pow R. Point, Powerpoint7,Meeting presentation,../sample_docs/meeting.ppt,
Java Man, PDF,Java Beans paper,../sample_docs/j_bean.pdf,
Java Man, PDF,Java on the server paper,../sample_docs/j_svr.pdf,
Ora Webmaster, HTML,Oracle home page,../sample_docs/oramnu97.html,
Ora Webmaster, HTML,Oracle Company Overview,../sample_docs/oraoverview.html,
John Constable, GIF,Laurence J. Ellison : portrait,../sample_docs/larry.gif,
Alan Greenspan, GIF,Oracle revenues : Graph,../sample_docs/oragraph97.gif,
Giorgio Armani, GIF,Oracle Revenues : Trend,../sample_docs/oratrend.gif,

C.3 Structure of ctxload Thesaurus Import File
This section discusses the structure of the ctxload thesaurus import file in the following topics.

• Import File Format

• Alternate Hierarchy Structure

• Usage Notes for Terms in Import Files

• Usage Notes for Relationships in Import Files

• Examples of Import Files

C.3.1 Import File Format
The import file must use the following format for entries in the thesaurus:

phrase
 BT broader_term
 NT narrower_term1
 NT narrower_term2
. . .
 NT narrower_termN

 BTG broader_term
 NTG narrower_term1
 NTG narrower_term2
. . .
 NTG narrower_termN

 BTP broader_term
 NTP narrower_term1
 NTP narrower_term2
. . .
 NTP narrower_termN

 BTI broader_term
 NTI narrower_term1
 NTI narrower_term2
. . .
 NTI narrower_termN

 SYN synonym1
 SYN synonym2
. . .
 SYN synonymN

 USE synonym1 or SEE synonym1 or PT synonym1

Appendix C
Structure of ctxload Thesaurus Import File

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-3 of C-8

 RT related_term1
 RT related_term2
. . .
 RT related_termN

 SN text

 language_key: term

phrase
is a word or phrase that is defined as having synonyms, broader terms, narrower terms, or
related terms.
In compliance with ISO-2788 standards, a TT marker can be placed before a phrase to
indicate that the phrase is the top term in a hierarchy; however, the TT marker is not required.
In fact, ctxload ignores TT markers during import.
A top term is identified as any phrase that does not have a broader term (BT, BTG, BTP, or
BTI).

Note

The thesaurus query operators (SYN, PT, BT, BTG, BTP, BTI, NT, NTG, NTP, NTI, and RT)
are reserved words and, thus, cannot be used as phrases in thesaurus entries.

BT, BTG, BTP, BTI broader_termN
are the markers that indicate broader_termN is a broader (generic|partitive|instance) term
for phrase.
broader_termN is a word or phrase that conceptually provides a more general description or
category for phrase. For example, the word elephant could have a broader term of land
mammal.

NT, NTG, NTP, NTI narrower_termN
are the markers that indicate narrower_termN is a narrower (generic|partitive|instance) term
for phrase.
If phrase does not have a broader (generic|partitive|instance) term, but has one or more
narrower (generic|partitive|instance) terms, phrase is created as a top term in the respective
hierarchy (in an Oracle Text thesaurus, the BT/NT, BTG/NTG, BTP/NTP, and BTI/NTI
hierarchies are separate structures).
narrower_termN is a word or phrase that conceptually provides a more specific description
for phrase. For example, the word elephant could have a narrower terms of indian elephant
and african elephant.

SYN synonymN
is a marker that indicates phrase and synonymN are synonyms within a synonym ring.
synonymN is a word or phrase that has the same meaning for phrase. For example, the word
dog could have a synonym of canine.

Note

Synonym rings are not defined explicitly in Oracle Text thesauri. They are created by
the transitive nature of synonyms.

Appendix C
Structure of ctxload Thesaurus Import File

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-4 of C-8

USE SEE PT synonym1
are markers that indicate phrase and synonym1 are synonyms within a synonym ring
(similar to SYN).
The markers USE, SEE or PT also indicate synonym1 is the preferred term for the synonym
ring. Any of these markers can be used to define the preferred term for a synonym ring.

Note

If the user-defined thesaurus is to be used for compiling the knowledge base, then
you must specify the preferred term when a synonym ring is declared. Use one of the
keywords USE, SEE, or PT to specify which synonym to use when reporting query
matches. Only one term can be a preferred term.
Not using one of these keywords may result in the failure to return results defined by
a word's synonym. When compiling two or more thesauri that declare elements of the
same synonym ring, the preferred term must be the same in both files, which ensures
that only one word is defined as the preferred word in a synonym ring.

RT related_termN
is the marker that indicates related_termN is a related term for phrase.
related_termN is a word or phrase that has a meaning related to, but not necessarily
synonymous with phrase. For example, the word dog could have a related term of wolf.

Note

Related terms are not transitive. If a phrase has two or more related terms, the terms
are related only to the parent phrase and not to each other.

SN text
is the marker that indicates the following text is a scope note (for example, comment) for the
preceding entry.

language_key term
term is the translation of phrase into the language specified by language_key.

C.3.2 Alternate Hierarchy Structure
In compliance with thesauri standards, the load file supports formatting hierarchies (BT/NT,
BTG/NTG, BTP, NTP, BTI/NTI) by indenting the terms under the top term and using NT (or
NTG, NTP, NTI) markers that include the level for the term:

phrase
 NT1 narrower_term1
 NT2 narrower_term1.1
 NT2 narrower_term1.2
 NT3 narrower_term1.2.1
 NT3 narrower_term1.2.2
 NT1 narrower_term2
 . . .
 NT1 narrower_termN

Using this method, the entire branch for a top term can be represented hierarchically in the
load file.

Appendix C
Structure of ctxload Thesaurus Import File

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-5 of C-8

C.3.3 Usage Notes for Terms in Import Files
The following conditions apply to the structure of the entries in the import file:

• Each entry (phrase, BT, NT, or SYN) must be on a single line followed by a newline
character.

• Entries can consist of a single word or phrases.

• The maximum length of an entry (phrase, BT, NT, or SYN) is 255 bytes, not including
the BT, NT, and SYN markers or the newline characters.

• Entries cannot contain parentheses or plus signs.

• Each line of the file that starts with a relationship (BT, NT, and so on) must begin with at
least one space.

• A phrase can occur more than once in the file.

• Each phrase can have one or more narrower term entries (NT, NTG, NTP), broader
term entries (BT, BTG, BTP), synonym entries, and related term entries.

• Each broader term, narrower term, synonym, and preferred term entry must start with the
appropriate marker and the markers must be in capital letters.

• The broader terms, narrower terms, and synonyms for a phrase can be in any order.

• Homographs must be followed by parenthetical disambiguators everywhere they are used.

For example: cranes (birds), cranes (lifting equipment)

• Compound terms are signified by a plus sign between each factor (for example, buildings +
construction).

• Compound terms are allowed only as synonyms or preferred terms for other terms, never
as terms by themselves, or in hierarchical relations.

• Terms can be followed by a scope note (SN), total maximum length of 2000 bytes, on
subsequent lines.

• Multi-line scope notes are allowed, but require an SN marker on each line of the note.

Example of Incorrect SN usage:

VIEW CAMERAS
 SN Cameras with through-the lens focusing and a
range of movements of the lens plane relative to
the film plane

Example of Correct SN usage:

VIEW CAMERAS
 SN Cameras with through-the lens focusing and a
 SN range of movements of the lens plane relative
 SN to the film plane

• Multi-word terms cannot start with reserved words (for example, use is a reserved word, so
use other door is not an allowed term; however, use is an allowed term).

C.3.4 Usage Notes for Relationships in Import Files
The following conditions apply to the relationships defined for the entries in the import file:

• related term entries must follow a phrase or another related term entry

Appendix C
Structure of ctxload Thesaurus Import File

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-6 of C-8

• related term entries start with one or more spaces, the RT marker, followed by white space,
then the related term on the same line

• multiple related terms require multiple RT markers

Example of incorrect RT usage:

MOVING PICTURE CAMERAS
 RT CINE CAMERAS
TELEVISION CAMERAS

Example of correct RT usage:

MOVING PICTURE CAMERAS
 RT CINE CAMERAS
 RT TELEVISION CAMERAS

• Terms are allowed to have multiple broader terms, narrower terms, and related terms

C.3.5 Examples of Import Files
This section provides three examples of correctly formatted thesaurus import files.

• Example 1 (Flat Structure)

• Example 2 (Hierarchical)

• Example 3

C.3.5.1 Example 1 (Flat Structure)
cat
 SYN feline
 NT domestic cat
 NT wild cat
 BT mammal
mammal
 BT animal
domestic cat
 NT Persian cat
 NT Siamese cat
wild cat
 NT tiger
tiger
 NT Bengal tiger
dog
 BT mammal
 NT domestic dog
 NT wild dog
 SYN canine
domestic dog
 NT German Shepard
wild dog
 NT Dingo

C.3.5.2 Example 2 (Hierarchical)
animal
 NT1 mammal
 NT2 cat
 NT3 domestic cat
 NT4 Persian cat

Appendix C
Structure of ctxload Thesaurus Import File

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-7 of C-8

 NT4 Siamese cat
 NT3 wild cat
 NT4 tiger
 NT5 Bengal tiger
 NT2 dog
 NT3 domestic dog
 NT4 German Shepard
 NT3 wild dog
 NT4 Dingo
cat
 SYN feline
dog
 SYN canine

C.3.5.3 Example 3
35MM CAMERAS
 BT MINIATURE CAMERAS
CAMERAS
 BT OPTICAL EQUIPMENT
 NT MOVING PICTURE CAMERAS
 NT STEREO CAMERAS
LAND CAMERAS
 USE VIEW CAMERAS
VIEW CAMERAS
 SN Cameras with through-the lens focusing and a range of
 SN movements of the lens plane relative to the film plane
 UF LAND CAMERAS
 BT STILL CAMERAS

Appendix C
Structure of ctxload Thesaurus Import File

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-8 of C-8

D
Oracle Text Multilingual Features

This Appendix describes the multilingual features of Oracle Text. The following topics are
discussed:

• Introduction

• Indexing

• Querying

• Supplied Stop Lists

• Knowledge Base

• Multilingual Features Matrix

D.1 Introduction
This appendix summarizes the main multilingual features for Oracle Text.

For a complete list of Oracle Globalization Support languages and character set support, refer
to the Oracle Database Globalization Support Guide.

Note

Oracle Text does not support the NLS_COMP and NLS_SORT parameters. Search results
generated from Oracle Text are independent from values of those parameters.

In Oracle Database 12c Release 2 (12.2), an Oracle Text index cannot be created on
a column with a declared collation other than BINARY, USING_NLS_COMP,
USING_NLS_SORT or USING_NLS_SORT_CS. For all the supported collations, the Oracle
Text behavior is the same.

D.2 Indexing
The following sections describe the multilingual indexing features:

• Multilingual Features for Text Index Types

• Lexer Types

• Basic Lexer Features

• Multi Lexer Features

• World Lexer Features

D.2.1 Multilingual Features for Text Index Types
The following sections describes the supported multilingual features for the Oracle Text index
types.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-1 of D-10

• CONTEXT Index Type

• CTXCAT Index Type

• CTXRULE Index Type

See Also

"Lexer Types" for a description of available lexers

D.2.1.1 CONTEXT Index Type
The CONTEXT index type fully supports multilingual features, including use of the language and
character set columns.

The following lexers are supported:

• AUTO_LEXER

• BASIC_LEXER

• MULTI_LEXER

• USER_LEXER

• WORLD_LEXER

• CHINESE_LEXER

• CHINESE_VGRAM_LEXER

• JAPANESE_LEXER

• JAPANESE_VGRAM_LEXER

• KOREAN_MORPH_LEXER

D.2.1.2 CTXCAT Index Type
CTXCAT supports the multilingual features of the BASIC_LEXER with the exception of indexing
themes, and supports the following additional lexers:

• USER_LEXER

• WORLD_LEXER

CTXCAT also supports the following lexers:

• CHINESE_LEXER

• CHINESE_VGRAM_LEXER

• JAPANESE_LEXER

• JAPANESE_VGRAM_LEXER

• KOREAN_MORPH_LEXER

Appendix D
Indexing

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-2 of D-10

Note

The Oracle Text indextype CTXCAT is deprecated with Oracle AI Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.
Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMMIT) or, preferably, SYNC(EVERY [time-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FILTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

D.2.1.3 CTXRULE Index Type
The CTXRULE index type supports the multilingual features of the BASIC_LEXER including ABOUT
and STEM operators. It also supports Japanese, Chinese, and Korean (when used with the
SVM_CLASSIFIER).

D.2.2 Lexer Types
Oracle Text supports the indexing of different languages by enabling you to choose a lexer in
the indexing process. The specified lexer determines the languages you can index.

Table D-1 Oracle Text Lexer Types

Lexer Supported Languages

AUTO_LEXER Automatically identifies the language being indexed by examining the
content, and applies suitable options (including stemming) for that
language. Works best where each document contains a single-
language, and has at least a couple of paragraphs of text to aid
identification.

BASIC_LEXER Extracts tokens from text in languages, such as English and most of the
western European languages that use space-delimited words.

MULTI_LEXER Indexes tables containing documents of different languages such as
English, German, and Japanese.

CHINESE_VGRAM Extracts tokens from Chinese text.

CHINESE_LEXER Extracts tokens from Chinese text. This lexer offers the following
benefits over the CHINESE_VGRAM lexer:

• Generates a smaller index
• Better query response time
• Generates real world tokens resulting in better query precision
• Supports stop words

JAPANESE_VGRAM Extracts tokens from Japanese text.

Appendix D
Indexing

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-3 of D-10

Table D-1 (Cont.) Oracle Text Lexer Types

Lexer Supported Languages

JAPANESE_LEXER Extracts tokens from Japanese text. This lexer offers the following
advantages over the JAPANESE_VGRAM lexer:

• Generates smaller index
• Better query response time
• Generates real world tokens resulting in better precision

KOREAN_MORPH_LEXER Extracts tokens from Korean text.

USER_LEXER Indexes a particular language.

WORLD_LEXER Indexes tables containing documents of different languages;
autodetects languages in a document

D.2.3 Basic Lexer Features
The following features are supported with the BASIC_LEXER preference. Enable these features
with attributes of the BASIC_LEXER. Features such as alternate spelling, composite, and base
letter can be enabled together for better search results.

• Theme Indexing

• Alternate Spelling

• Base Letter Conversion

• Composite

• Index stems

D.2.3.1 Theme Indexing
Enables the indexing and subsequent querying of document concepts with the ABOUT operator
with CONTEXT index types. These concepts are derived from the Oracle Text knowledge base.
This feature is supported for English and French.

This feature is not supported with CTXCAT index types.

D.2.3.2 Alternate Spelling
This feature enables you to search on alternate spellings of words. For example, with alternate
spelling enabled in German, a query on gross returns documents that contain groß and gross.

This feature is supported in German, Danish, and Swedish.

Additionally, German can be indexed according to both traditional and reformed spelling
conventions.

See Also

"Alternate Spelling" and "New German Spelling".

Appendix D
Indexing

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-4 of D-10

D.2.3.3 Base Letter Conversion
This feature enables you to query words with or without diacritical marks such as tildes,
accents, and umlauts. For example, with a Spanish base-letter index, a query of energia
matches documents containing both energía and energia.

This feature is supported for English and all other supported whitespace delimited languages.
In English and French, you can use the basic lexer to enable theme indexing.

See Also

"Base-Letter Conversion"

D.2.3.4 Composite
This feature enables you to search for words that contain the specified term as a sub-
composite. You must use the stem ($) operator.

For example, in German, a query of $register finds documents that contain Bruttoregistertonne
and Registertonne.

You can use this feature for all languages that are supported for the INDEX_STEMS attribute of
BASIC_LEXER.

Related Topics

• BASIC_LEXER Attributes
These are the attributes supported for the BASIC_LEXER component.

• BASIC_LEXER Language Support
Oracle Text installs language data files for English by default. You can download data files
for all other supported languages on demand from My Oracle Support.

D.2.3.5 Index Stems
This feature enables you to specify a stemmer for stem indexing.

Tokens are stemmed to a single base form at index time in addition to the normal forms.
Specifying index stems enables better query performance for stem queries, for
example $computed.

You can use this feature for all languages that are supported for the INDEX_STEMS attribute of
BASIC_LEXER.

Related Topics

• BASIC_LEXER Attributes
These are the attributes supported for the BASIC_LEXER component.

• BASIC_LEXER Language Support
Oracle Text installs language data files for English by default. You can download data files
for all other supported languages on demand from My Oracle Support.

Appendix D
Indexing

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-5 of D-10

D.2.4 Multi Lexer Features
The MULTI_LEXER lexer enables you to index a column that contains documents of different
languages. During indexing Oracle Text examines the language column and switches in the
language-specific lexer to process the document. Define the lexer preferences for each
language before indexing.

The multi lexer enables you to set different preferences for languages. For example, you can
have composite set to TRUE for German documents and composite set to FALSE for Dutch
documents.

D.2.5 World Lexer Features
Like MULTI_LEXER, the WORLD_LEXER lexer enables you to index documents that contain
different languages. It automatically detects the languages of a document and, therefore, does
not require you to create a language column in the base table.

WORLD_LEXER processes all database character sets and supports the Unicode 5.0 standard.
For WORLD_LEXER to be effective with documents that use multiple languages, AL32UTF-8 or
UTF8 Oracle character set encoding must be specified. This includes supplementary, or
"surrogate-pair," characters.

Table D-2 and Table D-3 show the languages supported by WORLD_LEXER. This list may change
as the Unicode standard changes, and in any case should not be considered exhaustive.
(Languages are grouped by Unicode writing system, not by natural language groupings.)

Table D-2 Languages Supported by the World Lexer (Space-separated)

Language Group Languages Include

Arabic Arabic, Farsi, Kurdish, Pashto, Sindhi, Urdu

Armenian Armenian

Bengali Assamese, Bengali

Bopomofo Hakka Chinese, Minnan Chinese

Cyrillic Over 50 languages, including Belorussian, Bulgarian, Macedonian,
Moldavian, Russian, Serbian, Serbo-Croatian, Ukrainian

Devenagari Bhojpuri, Bihari, Hindi, Kashmiri, Marathi, Nepali, Pali, Sanskrit

Ethiopic Amharic, Ge'ez, Tigrinya, Tigre

Georgian Georgian

Greek Greek

Gujarati Gujarati, Kacchi

Gurmukhi Punjabi

Hebrew Hebrew, Ladino, Yiddish

Kaganga Redjang

Kannada Kanarese, Kannada

Korean Korean, Hanja Hangul

Appendix D
Indexing

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-6 of D-10

Table D-2 (Cont.) Languages Supported by the World Lexer (Space-separated)

Language Group Languages Include

Latin Afrikaans, Albanian, Basque, Breton, Catalan, Croatian, Czech, Danish,
Dutch, English, Esperanto, Estonian, Faeroese, Fijian, Finnish, Flemish,
French, Frisian, German, Hawaiian, Hungarian, Icelandic, Indonesian,
Irish, Italian, Lappish, Classic Latin, Latvian, Lithuanian, Malay, Maltese,
Pinyin Mandarin, Maori, Norwegian, Polish, Portuguese, Provencal,
Romanian, Rumanian, Samoan, Scottish Gaelic, Slovak, Slovene,
Slovenian, Sorbian, Spanish, Swahili, Swedish, Tagalog, Turkish,
Vietnamese, Welsh

Malayalam Malayalam

Mongolian Mongolian

Oriya Oriya

Sinhalese, Sinhala Pali, Sinhalese

Syriac Aramaic, Syriac

Tamil Tamil

Telugu Telugu

Thaana Dhiveli, Divehi, Maldivian

Table D-3 Languages Supported by the World Lexer (Non-space-separated)

Language Group Languages Include

Chinese Cantonese, Mandarin, Pinyin phonograms

Japanese Japanese (Hiragana, Kanji, Katakana)

Khmer Cambodian, Khmer

Lao Lao

Myanmar Burmese

Thai Thai

Tibetan Dzongkha, Tibetan

Table D-4 shows languages not supported by the World Lexer.

Table D-4 Languages Not Supported by the World Lexer

Language Group Languages Include

Buhid Buhid

Canadian Syllabics Blackfoot, Carrier, Cree, Dakhelh, Inuit, Inuktitut, Naskapi, Nunavik,
Nunavut, Ojibwe, Sayisi, Slavey

Cherokee Cherokee

Cypriot Cypriot

Limbu Limbu

Ogham Ogham

Runic Runic

Tai Le (Tai Lu, Lue, Dai Le) Tai Le

Appendix D
Indexing

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-7 of D-10

Table D-4 (Cont.) Languages Not Supported by the World Lexer

Language Group Languages Include

Ugaritic Ugaritic

Yi Yi

Yi Jang Hexagram Yi Jang

D.3 Querying
Oracle Text supports the use of different query operators. Some operators can be set to
behave in accordance with your language. This section summarizes the multilingual query
features for these operators.

• Use the ABOUT operator to query on concepts. The system looks up concept information in
the theme component of the index. This feature is supported for English and French with
CONTEXT indexes only.

• The fuzzy operator enables you to search for words that have similar spelling to specified
word. Oracle Text supports fuzzy for English, French, German, Italian, Dutch, Spanish,
Portuguese, Japanese, Optical Character recognition (OCR), and automatic language
detection.

• The stem operator enables you to search for words that have the same root as the
specified term. For example, a stem of $sing expands into a query on the words sang,
sung, sing. The Oracle Text stemmer supports the following languages: English, French,
Spanish, Italian, German, Japanese and Dutch.

D.4 Supplied Stoplists
By default, the system indexes text using the Oracle Text supplied stoplists that correspond to
your database language.

A stoplist is a list of stopwords that do not get indexed. These are usually common words in a
language, such as this, that, and can in English. By default, all such words are defined in the
Oracle Text supplied stoplists. You can customize these stoplists or update the stopwords
based on your requirements.

Supported Languages and Stoplists Location

The Oracle Text supplied stoplists contain a list of stopwords, which are provided as defaults
for all BASIC_LEXER and AUTO_LEXER supported languages. These stopwords are automatically
loaded during installation or upgrade for the chosen database language.

The default stoplists (along with other default preferences) are defined in the administration
(SQL) files, which are located in the $ORACLE_HOME/ctx/admin directory. These SQL files
are named drdefLANG.sql, where LANG specifies the language code. For example, the default
stoplist for French (language code: f) is defined in the $ORACLE_HOME/ctx/admin/drdeff.sql
file.

The source files for these default stoplists contain a list of stopwords, and are located in
the $ORACLE_HOME/ctx/data/stoplist directory. These source files are named
drstopLANG.txt, where LANG specifies the language code. The contents of the source files are
the extracted terms from the drdefLANG.sql files.

Appendix D
Querying

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-8 of D-10

For a list of all languages (and their language codes) in which default stoplists are supplied,
see Multilingual Features Matrix.

How to Load Your Own Stoplists

By default, only one drdefLANG.sql file is loaded during installation or upgrade based on the
database language that you choose. You can call the CTX_DDL.LOAD_STOPLIST procedure to
customize your stoplist or modify the default list of stopwords.

Unlike CTX_DDL.ADD_STOPWORD (which adds a single stopword per call),
CTX_DDL.LOAD_STOPLIST takes a source file of stopwords for your specified language
(from $ORACLE_HOME/ctx/data/stoplist/drstopLANG.txt) and loads to your stoplist.

Related Topics

• LOAD_STOPLIST
Use this procedure to load a source file of stopwords to your stoplist for the required
language.

• Multilingual Features Matrix
These are the multilingual features for all supported languages.

D.5 Knowledge Base
An Oracle Text knowledge base is a hierarchical tree of concepts used for theme indexing,
ABOUT queries, and deriving themes for document services.

Oracle Text supplies knowledge bases in English and French only. These knowledge bases are
installed by default.

You can extend theme functionality to languages other than English or French by loading your
own knowledge base for any single byte white space delimited language, including Spanish.

D.6 Multilingual Features Matrix
These are the multilingual features for all supported languages.

Table D-5 Multilingual Features for Supported Languages

Language Name Language
Code

Alternate
Spelling

Fuzzy
Matching

Language-
Specific
Lexer

Default
Stoplist

Stemming

Afrikaans af N/A No Yes Yes Yes

Arabic ar N/A No Yes Yes Yes

Basque eu N/A No Yes Yes Yes

Belarusian be N/A No Yes Yes Yes

Bokmal (Norwegian) n N/A No Yes Yes Yes

Bulgarian bg N/A No Yes Yes Yes

Catalan ca N/A No Yes Yes Yes

Simplified Chinese zh-cn N/A No Yes Yes Yes

Croatian hr N/A No Yes Yes Yes

Czech cs N/A No Yes Yes Yes

Danish dk Yes No Yes Yes Yes

Appendix D
Knowledge Base

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-9 of D-10

Table D-5 (Cont.) Multilingual Features for Supported Languages

Language Name Language
Code

Alternate
Spelling

Fuzzy
Matching

Language-
Specific
Lexer

Default
Stoplist

Stemming

Dutch nl N/A Yes Yes Yes Yes

English us N/A Yes Yes Yes Yes

Estonian et N/A No Yes Yes Yes

Finnish sf N/A No Yes Yes Yes

French f N/A Yes Yes Yes Yes

Galician gl N/A No Yes Yes Yes

German d Yes Yes Yes Yes Yes

Greek el N/A No Yes Yes Yes

Hebrew iw N/A No Yes Yes Yes

Hindi hi N/A No Yes Yes Yes

Hungarian hu N/A No Yes Yes Yes

Icelandic is N/A No Yes Yes Yes

Indonesian in N/A No Yes Yes Yes

Italian i N/A Yes Yes Yes Yes

Japanese ja N/A Yes Yes Yes Yes

Korean ko N/A No Yes Yes Yes

Latvian lv N/A No Yes Yes Yes

Lithuanian lt N/A No Yes Yes Yes

Macedonian mk N/A No Yes Yes Yes

Malay ms N/A No Yes Yes Yes

Nynorsk (Norwegian) nn N/A No Yes Yes Yes

Persian (Farsi) fa N/A No Yes Yes Yes

Polish pl N/A No Yes Yes Yes

Portuguese pt N/A Yes Yes Yes Yes

Romanian ro N/A No Yes Yes Yes

Russian ru N/A No Yes Yes Yes

Slovak sk N/A No Yes Yes Yes

Slovenian sl N/A No Yes Yes Yes

Serbian sr N/A No Yes Yes Yes

Spanish es N/A Yes Yes Yes Yes

Swedish sv Yes No Yes Yes Yes

Thai th N/A No Yes Yes Yes

Traditional Chinese zh-tw N/A No Yes Yes Yes

Turkish tr N/A No Yes Yes Yes

Ukrainian uk N/A No Yes Yes Yes

Urdu ur N/A No Yes Yes Yes

Appendix D
Multilingual Features Matrix

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-10 of D-10

E
The Oracle Text Scoring Algorithm

This appendix describes how Oracle Text calculates scoring for word queries, which is different
from the way it calculates scores for ABOUT queries in English. Scoring is obtained using the
SCORE operator.

This appendix contains these topics:

• Scoring Algorithm for Word Queries

• Word Scoring Example

• DML and Scoring Algorithm

See Also

"DEFINESCORE" and "DEFINEMERGE" for information about user-defined scoring

E.1 Scoring Algorithm for Word Queries
To calculate a relevance score for a returned document in a word query, Oracle Text uses an
inverse frequency algorithm based on Salton's formula.

Inverse frequency scoring assumes that frequently occurring terms in a document set are
noise terms, and so these terms are scored lower. For a document to score high, the query
term must occur frequently in the document but infrequently in the document set as a whole.

The following table illustrates Oracle Text's inverse frequency scoring. The first column shows
the number of documents in the document set, and the second column shows the number of
terms in the document necessary to score 100.

This table assumes that only one document in the set contains the query term.

Number of Documents in
Document Set

Occurrences of Term in Document Needed to Score 100

1 34

5 20

10 17

50 13

100 12

500 10

1,000 9

10,000 7

100,000 6

1,000,000 5

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-1 of E-2

Note that the score varies, depending on the set size. For example, if only one document in the
set contains the query term, and there are five documents in the set, then the term must occur
20 times in the document to score 100. If 1,000,000 documents are in the set, then the term
can occur only 5 times in the document to score 100.

E.2 Word Scoring Example
You have 5000 documents dealing with chemistry in which the term chemical occurs at least
once in every document. The term chemical thus occurs frequently in the document set.

You have a document that contains 5 occurrences of chemical and 5 occurrences of the term
hydrogen. No other document contains the term hydrogen. The term hydrogen thus occurs
infrequently in the document set.

Because chemical occurs so frequently in the document set, its score for the document is
lower with respect to hydrogen, which is infrequent is the document set as a whole. The score
for hydrogen is therefore higher than that of chemical. This is so even though both terms occur
5 times in the document.

Note

Even if the relatively infrequent term hydrogen occurred 4 times in the document, and
chemical occurred 5 times in the document, the score for hydrogen might still be
higher, because chemical occurs so frequently in the document set (at least 5000
times).

Inverse frequency scoring also means that adding documents that contain hydrogen lowers the
score for that term in the document, and adding more documents that do not contain hydrogen
raises the score.

E.3 DML and Scoring Algorithm
Because the scoring algorithm is based on the number of documents in the document set,
inserting, updating or deleting documents in the document set is likely to change the score for
any given term before and after DML.

If DML is heavy, you must optimize the index. Perfect relevance ranking is obtained by running
a query right after optimizing the index.

If DML is light, Oracle AI Database still gives fairly accurate relevance ranking.

In either case, you must synchronize the index with CTX_DDL.SYNC_INDEX.

See Also

"SYNC_INDEX"

Appendix E
Word Scoring Example

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix E-2 of E-2

F
Oracle Text Views

This is a list of all the views provided by Oracle Text.

• CTX_ALEXER_DICTS

• CTX_AUTO_OPTIMIZE_INDEXES

• CTX_AUTO_OPTIMIZE_STATUS

• CTX_AUTOSYNC_JOBS

• CTX_AUTOSYNC_STATUS

• CTX_BACKGROUND_EVENTS

• CTX_USER_BACKGROUND_EVENTS

• CTX_CLASSES

• CTX_FILTER_BY_COLUMNS

• CTX_FILTER_CACHE_STATISTICS

• CTX_INDEXES

• CTX_INDEX_ERRORS

• CTX_INDEX_OBJECTS

• CTX_INDEX_PARTITIONS

• CTX_INDEX_SETS

• CTX_INDEX_SET_INDEXES

• CTX_INDEX_SUB_LEXERS

• CTX_INDEX_SUB_LEXER_VALUES

• CTX_INDEX_VALUES

• CTX_OBJECTS

• CTX_OBJECT_ATTRIBUTES

• CTX_OBJECT_ATTRIBUTE_LOV

• CTX_ORDER_BY_COLUMNS

• CTX_PARAMETERS

• CTX_PREFERENCES

• CTX_PREFERENCE_VALUES

• CTX_SECTIONS

• CTX_SECTION_GROUPS

• CTX_SQES

• CTX_STOPLISTS

• CTX_STOPWORDS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-1 of F-31

• CTX_SUB_LEXERS

• CTX_THESAURI

• CTX_THES_PHRASES

• CTX_TRACE_VALUES

• CTX_USER_ALEXER_DICTS

• CTX_USER_AUTO_OPTIMIZE_INDEXES

• CTX_USER_AUTOSYNC_JOBS

• CTX_USER_AUTOSYNC_STATUS

• CTX_USER_EXTRACT_POLICIES

• CTX_USER_EXTRACT_POLICY_VALUES

• CTX_USER_EXTRACT_RULES

• CTX_USER_EXTRACT_STOP_ENTITIES

• CTX_USER_EXTRACT_TYPE

• CTX_USER_ FILTER_BY_COLUMNS

• CTX_USER_INDEXES

• CTX_USER_INDEX_ERRORS

• CTX_USER_INDEX_OBJECTS

• CTX_USER_INDEX_PARTITIONS

• CTX_USER_INDEX_SETS

• CTX_USER_INDEX_SET_INDEXES

• CTX_USER_INDEX_SUB_LEXERS

• CTX_USER_INDEX_SUB_LEXER_VALS

• CTX_USER_INDEX_VALUES

• CTX_USER_ORDER_BY_COLUMNS

• CTX_USER_PREFERENCES

• CTX_USER_PREFERENCE_VALUES

• CTX_USER_SECTIONS

• CTX_USER_SECTION_GROUPS

• CTX_USER_SQES

• CTX_USER_STOPLISTS

• CTX_USER_STOPWORDS

• CTX_USER_SUB_LEXERS

• CTX_USER_THESAURI

• CTX_USER_THES_PHRASES

• CTX_VERSION

• ALL_DBMS_SEARCH_INDEXES

• ALL_DBMS_SEARCH_INDEX_SOURCES

• USER_DBMS_SEARCH_INDEXES

Appendix F

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-2 of F-31

• USER_DBMS_SEARCH_INDEX_SOURCES

F.1 CTX_ALEXER_DICTS
This view displays all dictionaries created by any user. This view can be queried by CTXSYS.

Column Name Type Description

ALD_OWNER VARCHAR2(30) Name of the dictionary owner

ALD_NAME VARCHAR2(30) Name of the dictionary

ALD_LANG VARCHAR2(30) Language of the dictionary

F.2 CTX_AUTO_OPTIMIZE_INDEXES
This view displays all the indexes that are registered for auto optimization. It can be queried by
CTXSYS.

Column Name Type Description

AOI_INDEX_OWNER VARCHAR2(30) Index owner

AOI_INDEX_NAME VARCHAR2(30) Index name

AOI_PARTITION_NAME VARCHAR2(30) Partition name

Note

In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE and
REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are deprecated.

F.3 CTX_AUTO_OPTIMIZE_STATUS
This view displays the status of auto optimization jobs. It can be queried by CTXSYS.

Column Name Type Description

AOS_TIMESTAMP TIMESTAMP(6) WITH
TIMEZONE

Time at which the auto optimization job
started

AOS_STATUS VARCHAR2(30) Status of the auto optimization job

AOS_ERROR VARCHAR2(4000) Errors raised by the auto optimization job

Note

In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE and
REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are deprecated.

Appendix F
CTX_ALEXER_DICTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-3 of F-31

F.4 CTX_AUTOSYNC_JOBS
The CTX_AUTOSYNC_JOBS view lists all background synchronization jobs that are owned by the
CTXSYS user.

Column Name Type Description

ASJ_JOB_NAME VARCHAR2(128) Name of the synchronization job

ASJ_INDEX_NAME VARCHAR2(128) Name of the Oracle Text index

ASJ_INDEX_ID NUMBER(38) Index ID

ASJ_INDEX_OWNER VARCHAR2(128) Index owner

ASJ_PARTITION_NAME VARCHAR2(128) Partition name

ASJ_PARTITION_ID NUMBER Partition ID

ASJ_START_DATE TIMESTAMP(6) WITH TIME
ZONE

Original start date of the
synchronization job

ASJ_REPEAT_INTERVAL VARCHAR2(4000) Repeat interval

ASJ_STATE VARCHAR2(15) Current state of the job

ASJ_RUN_COUNT NUMBER Number of times the
synchronization job has run

Note

Synchronization jobs are now owned by the CTXSYS user. You can not use the
USER_SCHEDULER_JOBS view to view the background synchronization jobs for indexes.

F.5 CTX_AUTOSYNC_STATUS
The CTX_AUTOSYNC_STATUS view lists the status of each run of a background synchronization
job that is owned by the CTXSYS user.

Column Name Type Description

ASJ_JOB_NAME VARCHAR2(1044) Name of the synchronization job

ASJ_TIMESTAMP IMESTAMP(6) WITH TIME ZONE Date of the log entry

ASJ_STATUS VARCHAR2(30) Status of the synchronization job

ASJ_ERROR VARCHAR2(4000) Errors generated by the
synchronization job

Note

Synchronization jobs are now owned by the CTXSYS user. You can not use the
USER_SCHEDULER_JOBS view to view the background synchronization jobs for indexes.

Appendix F
CTX_AUTOSYNC_JOBS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-4 of F-31

F.6 CTX_BACKGROUND_EVENTS
The CTX_BACKGROUND_EVENTS view displays historical information about the execution of
background events for indexes with automatic maintenance. This view filters events for the SYS
or CTXSYS user.

A similar view CTX_USER_BACKGROUND_EVENTS displays events for the current user based on the
index owner.

The objects are represented by both their numbers and names. However, because the data is
historical, it is possible that those objects may no longer exist. Thus, the object names may be
NULL, however the object numbers are never NULL.

Column Name Type Description

BGE_OWNER# NUMBER Index owner number

BGE_OWNER_NAME VARCHAR2(128) Index owner name

BGE_TABLE# NUMBER Base table object number

BGE_TABLE_NAME VARCHAR2(128) Base table name

BGE_INDEX# NUMBER Index object number

BGE_INDEX_NAME VARCHAR2(128) Index name

BGE_TABLE_PARTITION
#

NUMBER Base table partition object number

BGE_TABLE_PARTITION
_NAME

VARCHAR2(128) Base table partition name

BGE_INDEX_PARTITION
#

NUMBER Index partition object number

BGE_INDEX_PARTITION
_NAME

VARCHAR2(128) Index partition name

BGE_EVENT_TYPE VARCHAR2(30) Event type:
• NONE
• SYNC-Mapping Timeout (Sync-MT)
• SYNC-Mapping (Sync-M)
• SYNC-Ranges (Sync-R)
• SYNC-Scheduler (Sync-S)
• SYNC-Postings Serial (Sync-PS)
• SYNC-Postings Concurrent (Sync-PC)
• SYNC-Writer (Sync-W)
• SYNC-Cleanup batches (Sync-C)
• SYNC-Inspect (Sync-I)
• MONITOR
• EVENT Stats (EStat)
• EVENT Stats Clean up (EClean)
• OPTIMIZE-Scheduler Timeout (Opti-ST)
• OPTIMIZE-Scheduler (Opti-S)
• OPTIMIZE-Merge (Opti-M)

Appendix F
CTX_BACKGROUND_EVENTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-5 of F-31

Column Name Type Description

BGE_EVENT_ITERATION NUMBER Event retries happen with an increased delay up to
a maximum of 10 hr.

Depending on the event type, the retries could go
through a single event loop or through a longer
loop. For example, if Sync-W fails, then it needs to
go through Sync-C, Sync-S, SYNC-Postings
(Sync-P) before it can reach Sync-W again.

Event iterations track the number of times a longer
loop has been retried, and event waits track single
event delays.

BGE_EVENT_WAIT NUMBER Time in minutes for which the event waited to retry
before it was scheduled. The delays increase each
time the event fails and max out at 10 hr.

The delays are 3 sec, 10 sec, 30 sec, 1 min, 3 min,
10 min, 30 min, 1 hr, 3 hr, and 10 hr.

BGE_WORKER_NUMBER NUMBER Internal worker number

BGE_BATCH_NUMBER NUMBER Internal SGA batch number

BGE_STATUS VARCHAR2(30) Event status:
• EMPTY: No status information
• RUNNING: Event is running
• DONE: Successful completion
• BUSY: Index or index partition is busy
• INTERRUPTED: Event is interrupted by DDL
• CLOSED: PDB is closed
• DROPPED: Index or index partition is dropped or

altered
• FAILED: Event failed with an error
• FATAL: Worker process is terminated

BGE_START_TIME TIMESTAMP(6) WITH
TIMEZONE

Event processing start time

BGE_END_TIME TIMESTAMP(6) WITH
TIMEZONE

Event processing end time

BGE_DURATION NUMBER Event processing duration in seconds

BGE_ERROR_NUMBER NUMBER Top error number

BGE_ERROR_MESSAGE VARCHAR2(4000) Complete stack of error messages

BGE_NUM_ROWS NUMBER • Sync-M: Number of processed DMLs
• Sync-R: number of selected NEW ranges
• Sync-S: Number of READY ranges
• Sync-P: Number of processed documents

(document count)
• Sync-W: Number of documents written
• Sync-C: Number of ranges deleted
• Sync-I: Number of events enqueued
• Monitor: Number of objects processed

Appendix F
CTX_BACKGROUND_EVENTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-6 of F-31

Column Name Type Description

BGE_FIRST_DOCID NUMBER • Sync-M: NEW range first DocID
• Sync-R: First DocID of the first READY range
• Sync-S: First DocID of the first READY range
• Sync-P: First DocID of the selected READY

range
• Sync-W: First DocID of the WRITE range
• Opti-S: First DocID of the aggregated MERGE

range

BGE_CURRENT_DOCID NUMBER Sync-P: Current DocID of the selected READY
range (last processed)

BGE_LAST_DOCID NUMBER • Sync-M: NEW range last DocID
• Sync-R: Last DocID of the last READY range
• Sync-S: Last DocID of the last READY range
• Sync-P: Last DocID of the selected READY

range
• Sync-W: Last DocID of the WRITE range
• Opti-S: Last DocID of the aggregated MERGE

range

BGE_BATCH_WAIT NUMBER Sync-P: Time waited for batch in minutes

BGE_BATCH_SIZE NUMBER • Sync-P: Batch memory size in bytes
• Sync-W: Batch memory size in bytes

BGE_DOCUMENT_SIZE NUMBER • Sync-R: Estimated per-document memory size
• Sync-R: Average per-document memory size

BGE_TOKEN_COUNT NUMBER • Sync-P: Token count
• Sync-W: Token count
• Opti-S: Token count

BGE_RANGE_COUNT NUMBER • Sync-M: Number of deleted DocIDs
• Sync-R: Number of generated READY ranges
• Sync-P: Generated READY range count

BGE_RANGE_TYPE NUMBER • Sync-R: READY range type
• Sync-P: READY range type
Ready range type:
• NA
• INITIAL
• RETRY

Related Topics

• Oracle Text Application Developer's Guide

F.7 CTX_CLASSES
This view displays all the preference categories registered in the Text data dictionary. It can be
queried by any user.

Column Name Type Description

CLA_NAME VARCHAR2(30) Class name

CLA_DESCRIPTION VARCHAR2(80) Class description

Appendix F
CTX_CLASSES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-7 of F-31

F.8 CTX_FILTER_BY_COLUMNS
This view displays all FILTER BY columns registered in the Text data dictionary. It can be
queried by any user.

Column Name Type Description

FBC_INDEX_OWNER VARCHAR2(30) Index owner name

FBC_INDEX_NAME VARCHAR2(30) Index name

FBC_TABLE_OWNER VARCHAR2(30) Table owner name

FBC_TABLE_NAME VARCHAR2(30) Table name

FBC_COLUMN_NAME VARCHAR2(256) Column name

FBC_COLUMN_TYPE VARCHAR2(30) Column type

FBC_SECTION_TYPE VARCHAR2(30) Section type

FBC_SECTION_NAME VARCHAR2(30) Section name

FBC_SECTION_ID NUMBER Section ID

F.9 CTX_FILTER_CACHE_STATISTICS
This view displays various statistics related to the query filter cache. This view can be queried
by all users and it displays the statistics for all indexes.

Column Name Type Description

FCS_INDEX_OWNER VARCHAR2(30) Index owner name

FCS_INDEX_NAME VARCHAR2(30) Index name

FCS_PARTITION_NAME VARCHAR2(30) Index partition name

FCS_SIZE NUMBER Current size of the filter cache in bytes

FCS_ENTRIES NUMBER Number of queries for which the query
results are cached in the filter cache

FCS_REQUESTS NUMBER Number of query requests to the filter
cache

FCS_HITS NUMBER Number of query requests for which
matches were found in the filter cache

Note

Starting in Oracle Database Release 21c, CTXFILTERCACHE is deprecated, and also
CTX_FILTER_CACHE_STATISTICS and QUERY_FILTER_CACHE_SIZE.

F.10 CTX_INDEXES
This view displays all indexes that are registered in the Text data dictionary for the current user.
It can be queried by CTXSYS.

Appendix F
CTX_FILTER_BY_COLUMNS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-8 of F-31

Column Name Type Description

IDX_CHARSET_COLUMN VARCHAR2(256) Name of the charset column in base table

IDX_DOCID_COUNT NUMBER Number of documents indexed

IDX_FORMAT_COLUMNS VARCHAR2(256) Name of the format column in base table

IDX_ID NUMBER Internal index ID

IDX_KEY_NAME VARCHAR2(256) Primary key column(s)

IDX_LANGUAGE_COLUMN VARCHAR2(256) Name of the language column in base table

IDX_NAME VARCHAR2(30) Name of index

IDX_OWNER VARCHAR2(30) Owner of index

IDX_STATUS VARCHAR2(12) Status

IDX_SYNC_INTERVAL VARCHAR2(2000) Interval string required by scheduler job. Only
meaningful for AUTOMATIC sync. Always null
for MANUAL and ON COMMIT sync.

IDX_SYNC_JOBNAME VARCHAR2(50) Scheduler job name for automatic sync. Only
meaningful for AUTOMATIC sync and always
null for other types of sync.

IDX_SYNC_MEMORY VARCHAR2(100) Sync memory size. Only meaningful for ON
COMMIT and AUTOMATIC types of sync. For
MANUAL sync, this is always null.

IDX_SYNC_PARA_DEGREE NUMBER Degree of parallelism for sync. Only
meaningful for the AUTOMATIC type of sync;
always null for MANUAL and ON COMMIT syncs.

IDX_SYNC_TYPE VARCHAR2(20) Type of synching: MANUAL, AUTOMATIC, or ON
COMMIT

IDX_TABLE VARCHAR2(30) Table name

IDX_TABLE_OWNER VARCHAR2(30) Owner of table

IDX_TEXT_NAME VARCHAR2(30) Text column name

IDX_TYPE VARCHAR2(7) Type of index: CONTEXT, CTXCAT, or CTXRULE

F.11 CTX_INDEX_ERRORS
This view displays the DML errors and is queryable by CTXSYS.

Column Name Type Description

ERR_INDEX_OWNER VARCHAR2(30) Index owner

ERR_INDEX_NAME VARCHAR2(30) Name of index

ERR_TIMESTAMP DATE Time of error

ERR_TEXTKEY VARCHAR2(18) ROWID of errored document or name of errored
operation (for example, ALTER INDEX)

ERR_TEXT VARCHAR2(4000) Error text

Appendix F
CTX_INDEX_ERRORS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-9 of F-31

F.12 CTX_INDEX_OBJECTS
This view displays the objects that are used for each class in the index. It can be queried by
CTXSYS.

Column Name Type Description

IXO_INDEX_OWNER VARCHAR2(30) Index owner

IXO_INDEX_NAME VARCHAR2(30) Index name

IXO_CLASS VARCHAR2(30) Class name

IXO_OBJECT VARCHAR2(30) Object name

F.13 CTX_INDEX_PARTITIONS
This view displays all index partitions. It can be queried by CTXSYS.

Column Name Type Description

IXP_ID NUMBER(38) Index partition ID

IXP_INDEX_OWNER VARCHAR2(30) Index owner

IXP_INDEX_NAME VARCHAR2(30) Index name

IXP_INDEX_PARTITION_NAME VARCHAR2(30) Index partition name

IXP_SYNC_TYPE VARCHAR2(20) Type of synching: MANUAL, AUTOMATIC, or
ON COMMIT

IXP_TABLE_OWNER VARCHAR2(30) Table owner

IXP_TABLE_NAME VARCHAR2(30) Table name

IXP_TABLE_PARTITION_NAME VARCHAR2(30) Table partition name

IXP_DOCID_COUNT NUMBER(38) Number of documents associated with the
partition

IXP_STATUS VARCHAR2(12) Partition status

F.14 CTX_INDEX_SETS
This view displays all index set names. It can be queried by any user.

Column Name Type Description

IXS_OWNER VARCHAR2(30) Index set owner

IXS_NAME VARCHAR2(30) Index set name

F.15 CTX_INDEX_SET_INDEXES
This view displays all the sub-indexes in an index set. It can be queried by any user.

Appendix F
CTX_INDEX_OBJECTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-10 of F-31

Column Name Type Description

IXX_INDEX_SET_OWNER VARCHAR2(30) Index set owner

IXX_INDEX_SET_NAME VARCHAR2(30) Index set name

IXX_COLLIST VARCHAR2(500) Column list of the sub-index

IXX_STORAGE VARCHAR2(500) Storage clause of the sub-index

F.16 CTX_INDEX_SUB_LEXERS
This view shows the sub-lexers for each language for each index. It can be queried by CTXSYS.

Column Name Type Description

ISL_INDEX_OWNER VARCHAR2(30) Index owner

ISL_INDEX_NAME VARCHAR2(30) Index name

ISL_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISL_ALT_VALUE VARCHAR2(30) Alternate value of language

ISL_OBJECT VARCHAR2(30) Name of lexer object used for this
language

F.17 CTX_INDEX_SUB_LEXER_VALUES
Shows the sub-lexer attributes and their values. Accessible by CTXSYS.

Column Name Type Description

ISV_INDEX_OWNER VARCHAR2(30) Index owner

ISV_INDEX_NAME VARCHAR2(30) Index name

ISV_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISV_OBJECT VARCHAR2(30) Name of lexer object used for this
language

ISV_ATTRIBUTE VARCHAR2(30) Name of sub-lexer attribute

ISV_VALUE VARCHAR2(500) Value of attribute of sub-lexer

F.18 CTX_INDEX_VALUES
This view displays attribute values for each object used in indexes. This view is queryable by
CTXSYS.

Column Name Type Description

IXV_INDEX_OWNER VARCHAR2(30) Index owner

IXV_INDEX_NAME VARCHAR2(30) Index name

IXV_CLASS VARCHAR2(30) Class name

IXV_OBJECT VARCHAR2(30) Object name

IXV_ATTRIBUTE VARCHAR2(30) Attribute name

Appendix F
CTX_INDEX_SUB_LEXERS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-11 of F-31

Column Name Type Description

IXV_VALUE VARCHAR2(500) Attribute value

F.19 CTX_OBJECTS
This view displays all of the Text objects registered in the Text data dictionary. This view can be
queried by any user.

Column Name Type Description

OBJ_CLASS VARCHAR2(30) Object class (Datastore, Filter, Lexer, and so on)

OBJ_NAME VARCHAR2(30) Object name

OBJ_DESCRIPTION VARCHAR2(80) Object description

F.20 CTX_OBJECT_ATTRIBUTES
This view displays the attributes that can be assigned to preferences of each object. It can be
queried by all users.

Column Name Type Description

OAT_CLASS VARCHAR2(30) Object class (Data Store, Filter, Lexer, and so on)

OAT_OBJECT VARCHAR2(30) Object name

OAT_ATTRIBUTE VARCHAR2(64) Attribute name

OAT_DESCRIPTION VARCHAR2(80) Description of attribute

OAT_REQUIRED VARCHAR2(1) Required attribute, either Y or N

OAT_STATIC VARCHAR2(1) Not currently used

OAT_DATATYPE VARCHAR2(64) Attribute datatype. The value PROCEDURE
indicates that the attribute of the object should be
a stored procedure name.

OAT_DEFAULT VARCHAR2(500) Default value for attribute

OAT_MIN NUMBER Minimum value

OAT_MAX NUMBER Maximum value

OAT_MAX_LENGTH NUMBER Maximum length

F.21 CTX_OBJECT_ATTRIBUTE_LOV
This view displays the allowed values for certain object attributes provided by Oracle Text. It
can be queried by all users.

Column Name Type Description

OAL_CLASS NUMBER(38) Class of object

OAL_OBJECT VARCHAR2(30) Object name

OAL_ATTRIBUTE VARCHAR2(32) Attribute name

OAl_LABEL VARCHAR2(30) Attribute value label

Appendix F
CTX_OBJECTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-12 of F-31

Column Name Type Description

OAL_VALUE VARCHAR2(64) Attribute value

OAL_DESCRIPTION VARCHAR2(80) Attribute value description

F.22 CTX_ORDER_BY_COLUMNS
This view displays the ORDER BY columns registered in the Text data dictionary. It can be
queried by any user.

Column Name Type Description

OBC_INDEX_OWNER VARCHAR2(30) Index owner

OBC_INDEX_NAME VARCHAR2(30) Index name

OBC_TABLE_OWNER VARCHAR2(30) Table owner

OBC_TABLE_NAME VARCHAR2(30) Table name

OBC_COLUMN_NAME VARCHAR2(236) Column name

OBC_COLUMN_POSITION VARCHAR2(30) Column position

OBC_COLUMN_TYPE VARCHAR2(30) Column type

OBC_SECTION_NAME VARCHAR2(30) Section name

OBC_SECTION_TYPE VARCHAR2(30) Section type

OBC_SECTION_ID NUMBER Section ID

OBC_SORT_ORDER VARCHAR2(8) Sort order

F.23 CTX_PARAMETERS
This view displays all system-defined parameters as defined by CTXSYS. It can be queried by
any user.

Appendix F
CTX_ORDER_BY_COLUMNS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-13 of F-31

Column Name Type Description

PAR_NAME VARCHAR2(30) Parameter name:

auto_optimize

auto_optimize_logfile

max_index_memory

ctx_doc_key_type

default_index_memory

default_datastore

default_filter_binary

default_filter_text

default_filter_file

default_section_html

default_section_xml

default_section_text

default_lexer

default_stoplist

default_storage

default_wordlist

default_ctxcat_lexer

default_ctxcat_index_set

default_ctxcat_stoplist

default_ctxcat_storage

default_ctxcat_wordlist

default_ctxrule_lexer

default_ctxrule_stoplist

default_ctxrule_storage

default_ctxrule_wordlist

log_directory

PAR_VALUE VARCHAR2(500) Parameter value. For max_index_memory and
default_index_memory, PAR_VALUE stores a string
consisting of the memory amount. For the other
parameter names, PAR_VALUE stores the names of the
preferences used as defaults for index creation.

F.24 CTX_PREFERENCES
This view displays preferences created by Oracle Text users, as well as all the system-defined
preferences included with Oracle Text. The view contains one row for each preference. It can
be queried by all users.

Column Name Type Description

PRE_OWNER VARCHAR2(30) Username of preference owner

PRE_NAME VARCHAR2(30) Preference name

PRE_CLASS VARCHAR2(30) Preference class

PRE_OBJECT VARCHAR2(30) Object used

Appendix F
CTX_PREFERENCES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-14 of F-31

F.25 CTX_PREFERENCE_VALUES
This view displays the values assigned to all the preferences in the Text data dictionary. The
view contains one row for each value. It can be queried by all users.

Column Name Type Description

PRV_OWNER VARCHAR2(30) Username of preference owner

PRV_PREFERENCE VARCHAR2(30) Preference name

PRV_ATTRIBUTE VARCHAR2(64) Attribute name

PRV_VALUE VARCHAR2(500) Attribute value

F.26 CTX_SECTIONS
This view displays information about all the sections, including SDATA and MDATA sections,
that have been created in the Text data dictionary. It can be queried by any user.

Column Name Type Description

SEC_OWNER VARCHAR2(30) Owner of the section group

SEC_SECTION_GROUP VARCHAR2(30) Name of the section group

SEC_TYPE VARCHAR2(30) Type of section, either ZONE, FIELD, SPECIAL,
ATTR, STOP

SEC_ID NUMBER Section ID

SEC_NAME VARCHAR2(30) Name of section

SEC_TAG VARCHAR2(64) Section tag

SEC_VISIBLE VARCHAR2(1) Y or N visible indicator for field sections only.

Y indicator for READ ONLY MDATA sections.

SEC_DATATYPE VARCHAR2(30) Shows the datatype name (NUMBER,
VARCHAR2, DATE or RAW) if the section is an
SDATA section. Otherwise, it is NULL.

F.27 CTX_SECTION_GROUPS
This view displays information about all the section groups that have been created in the Text
data dictionary. It can be queried by any user.

Column Name Type Description

SGP_OWNER VARCHAR2(30) Owner of section group

SGP_NAME VARCHAR2(30) Name of section group

SGP_TYPE VARCHAR2(30) Type of section group

F.28 CTX_SQES
This view displays the definitions for all SQEs that have been created by users. It can be
queried by all users.

Appendix F
CTX_PREFERENCE_VALUES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-15 of F-31

Column Name Type Description

SQE_OWNER VARCHAR2(30) Owner of SQE

SQE_NAME VARCHAR2(30) Name of SQE

SQE_QUERY CLOB Query Text

F.29 CTX_STOPLISTS
This view displays stoplists. Queryable by all users.

Column Name Type Description

SPL_OWNER VARCHAR2(30) Owner of stoplist

SPL_NAME VARCHAR2(30) Name of stoplist

SPL_COUNT NUMBER Number of stopwords

SPL_TYPE VARCHAR2(30) Type of stoplist, MULTI or BASIC

F.30 CTX_STOPWORDS
This view displays the stopwords in each stoplist. Queryable by all users.

Column Name Type Description

SPW_OWNER VARCHAR2(30) Stoplist owner

SPW_STOPLIST VARCHAR2(30) Stoplist name

SPW_TYPE VARCHAR2(10) Stop type, either STOP_WORD, STOP_CLASS,
STOP_THEME

SPW_WORD VARCHAR2(80) Stopword

SPW_LANGUAGE VARCHAR2(30) Stopword language

SPW_PATTERN VARCHAR2(512) Stop pattern

F.31 CTX_SUB_LEXERS
This view contains information on multi-lexers and the sub-lexer preferences they contain. It
can be queried by any user.

Column Name Type Description

SLX_OWNER VARCHAR2(30) Owner of the multi-lexer preference

SLX_NAME VARCHAR2(30) Name of the multi-lexer preference

SLX_LANGUAGE VARCHAR2(30) Language of the referenced lexer (full name, not
abbreviation)

SLX_ALT_VALUE VARCHAR2(30) An alternate value for the language

SLX_SUB_OWNER VARCHAR2(30) Owner of the sub-lexer

SLX_SUB_NAME VARCHAR2(30) Name of the sub-lexer

Appendix F
CTX_STOPLISTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-16 of F-31

F.32 CTX_THESAURI
This view displays information about all the thesauri that have been created in the Text data
dictionary. It can be queried by any user.

Column Name Type Description

THS_OWNER VARCHAR2(30) Thesaurus owner

THS_NAME VARCHAR2(30) Thesaurus name

F.33 CTX_THES_PHRASES
This view displays phrase information for all thesauri in the Text data dictionary. It can be
queried by any user.

Column Name Type Description

THP_THESAURUS VARCHAR2(30) Thesaurus name

THP_PHRASE VARCHAR2(256) Thesaurus phrase

THP_QUALIFIER VARCHAR2(256) Thesaurus qualifier

THP_SCOPE_NOTE VARCHAR2(2000) Thesaurus scope notes

F.34 CTX_TRACE_VALUES
This view contains one row for each active trace, and shows the current value of each trace.

Column Name Type Description

TRC_ID BINARY_INTEGER Trace ID

TRC_VALUE NUMBER Current trace value

Note

The error "ORA-00955: name is already used by an existing object" can safely be
ignored if this error is raised in the postinstall steps for patch releases. This may occur
when this view is present in the database being patched.

F.35 CTX_USER_ALEXER_DICTS
This view displays all dictionaries created by the current user.

Column Name Type Description

ALD_NAME VARCHAR2(30) Name of the dictionary

ALD_LANG VARCHAR2(30) Language of the dictionary

Appendix F
CTX_THESAURI

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-17 of F-31

F.36 CTX_USER_AUTO_OPTIMIZE_INDEXES
This view displays the user indexes that are registered for auto optimization. It can be queried
by all users.

Column Name Type Description

AOI_INDEX_NAME VARCHAR2(30) Index name

AOI_PARTITION_NAME VARCHAR2(30) Partition name

Note

In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE and
REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are deprecated.

F.37 CTX_USER_AUTOSYNC_JOBS
The CTX_USER_AUTOSYNC_JOBS view lists all background synchronization jobs that belong to the
indexes in an Oracle Text user's schema.

Column Name Type Description

ASJ_JOB_NAME VARCHAR2(128) Name of the synchronization job

ASJ_INDEX_NAME VARCHAR2(128) Name of the Oracle Text index

ASJ_INDEX_ID NUMBER(38) Index ID

ASJ_PARTITION_NAME VARCHAR2(128) Partition name

ASJ_PARTITION_ID NUMBER Partition ID

ASJ_START_DATE TIMESTAMP(6) WITH TIME
ZONE

Original start date of the
synchronization job

ASJ_REPEAT_INTERVAL VARCHAR2(4000) Repeat interval

ASJ_STATE VARCHAR2(15) Current state of the job

ASJ_RUN_COUNT NUMBER Number of times the
synchronization job has run

Note

Synchronization jobs are now owned by the CTXSYS user. You can not use the
USER_SCHEDULER_JOBS view to view the background synchronization jobs for indexes.

Appendix F
CTX_USER_AUTO_OPTIMIZE_INDEXES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-18 of F-31

F.38 CTX_USER_AUTOSYNC_STATUS
The CTX_USER_AUTOSYNC_STATUS view lists the status of each run of a background
synchronization job for indexes in an Oracle Text user's schema.

Column Name Type Description

ASJ_JOB_NAME VARCHAR2(1044) Name of the synchronization job

ASJ_INDEX_NAME VARCHAR2(128) Name of the Oracle Text index

ASJ_PARTITION_NAME VARCHAR2(128) Partition name

ASJ_PARTITION_NAME VARCHAR2(128) Oracle Text partition name

ASJ_TIMESTAMP TIMESTAMP(6) WITH TIME
ZONE

Date of the log entry

ASJ_STATUS VARCHAR2(30) Status of the synchronization job

ASJ_ERROR VARCHAR2(4000) Errors generated by the
synchronization job

Note

Synchronization jobs are now owned by the CTXSYS user. You can not use the
USER_SCHEDULER_JOBS view to view the background synchronization jobs for indexes.

F.39 CTX_USER_BACKGROUND_EVENTS
The CTX_USER_BACKGROUND_EVENTS view displays historical information about the execution of
background events for indexes with automatic maintenance. This view filters events for the
current user based on the index owner.

A similar view CTX_BACKGROUND_EVENTS displays events for the SYS or CTXSYS user.

The objects are represented by both their numbers and names. However, because the data is
historical, it is possible that those objects may no longer exist. Thus, the object names may be
NULL, however the object numbers are never NULL.

Column Name Type Description

BGE_OWNER# NUMBER Index owner number

BGE_OWNER_NAME VARCHAR2(128) Index owner name

BGE_TABLE# NUMBER Base table object number

BGE_TABLE_NAME VARCHAR2(128) Base table name

BGE_INDEX# NUMBER Index object number

BGE_INDEX_NAME VARCHAR2(128) Index name

BGE_TABLE_PARTITION
#

NUMBER Base table partition object number

BGE_TABLE_PARTITION
_NAME

VARCHAR2(128) Base table partition name

Appendix F
CTX_USER_AUTOSYNC_STATUS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-19 of F-31

Column Name Type Description

BGE_INDEX_PARTITION
#

NUMBER Index partition object number

BGE_INDEX_PARTITION
_NAME

VARCHAR2(128) Index partition name

BGE_EVENT_TYPE VARCHAR2(30) Event type:
• NONE
• SYNC-Mapping Timeout (Sync-MT)
• SYNC-Mapping (Sync-M)
• SYNC-Ranges (Sync-R)
• SYNC-Scheduler (Sync-S)
• SYNC-Postings Serial (Sync-PS)
• SYNC-Postings Concurrent (Sync-PC)
• SYNC-Writer (Sync-W)
• SYNC-Cleanup batches (Sync-C)
• SYNC-Inspect (Sync-I)
• MONITOR
• EVENT Stats (EStat)
• EVENT Stats Clean up (EClean)
• OPTIMIZE-Scheduler Timeout (Opti-ST)
• OPTIMIZE-Scheduler (Opti-S)
• OPTIMIZE-Merge (Opti-M)

BGE_EVENT_ITERATION NUMBER Event retries happen with an increased delay up to
a maximum of 10 hr.

Depending on the event type, the retries could go
through a single event loop or through a longer
loop. For example, if Sync-W fails, then it needs to
go through Sync-C, Sync-S, SYNC-Postings
(Sync-P) before it can reach Sync-W again.

Event iterations track the number of times a longer
loop has been retried, and event waits track single
event delays.

BGE_EVENT_WAIT NUMBER Time in minutes for which the event waited to retry
before it was scheduled. The delays increase each
time the event fails and max out at 10 hr.

The delays are 3 sec, 10 sec, 30 sec, 1 min, 3 min,
10 min, 30 min, 1 hr, 3 hr, and 10 hr.

BGE_WORKER_NUMBER NUMBER Internal worker number

BGE_BATCH_NUMBER NUMBER Internal SGA batch number

BGE_STATUS VARCHAR2(30) Event status:
• EMPTY: No status information
• RUNNING: Event is running
• DONE: Successful completion
• BUSY: Index or index partition is busy
• INTERRUPTED: Event is interrupted by DDL
• CLOSED: PDB is closed
• DROPPED: Index or index partition is dropped or

altered
• FAILED: Event failed with an error
• FATAL: Worker process is terminated

Appendix F
CTX_USER_BACKGROUND_EVENTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-20 of F-31

Column Name Type Description

BGE_START_TIME TIMESTAMP(6) WITH
TIMEZONE

Event processing start time

BGE_END_TIME TIMESTAMP(6) WITH
TIMEZONE

Event processing end time

BGE_DURATION NUMBER Event processing duration in seconds

BGE_ERROR_NUMBER NUMBER Top error number

BGE_ERROR_MESSAGE VARCHAR2(4000) Complete stack of error messages

BGE_NUM_ROWS NUMBER • Sync-M: Number of processed DMLs
• Sync-R: number of selected NEW ranges
• Sync-S: Number of READY ranges
• Sync-P: Number of processed documents

(document count)
• Sync-W: Number of documents written
• Sync-C: Number of ranges deleted
• Sync-I: Number of events enqueued
• Monitor: Number of objects processed

BGE_FIRST_DOCID NUMBER • Sync-M: NEW range first DocID
• Sync-R: First DocID of the first READY range
• Sync-S: First DocID of the first READY range
• Sync-P: First DocID of the selected READY

range
• Sync-W: First DocID of the WRITE range
• Opti-S: First DocID of the aggregated MERGE

range

BGE_CURRENT_DOCID NUMBER Sync-P: Current DocID of the selected READY
range (last processed)

BGE_LAST_DOCID NUMBER • Sync-M: NEW range last DocID
• Sync-R: Last DocID of the last READY range
• Sync-S: Last DocID of the last READY range
• Sync-P: Last DocID of the selected READY

range
• Sync-W: Last DocID of the WRITE range
• Opti-S: Last DocID of the aggregated MERGE

range

BGE_BATCH_WAIT NUMBER Sync-P: Time waited for batch in minutes

BGE_BATCH_SIZE NUMBER • Sync-P: Batch memory size in bytes
• Sync-W: Batch memory size in bytes

BGE_DOCUMENT_SIZE NUMBER • Sync-R: Estimated per-document memory size
• Sync-R: Average per-document memory size

BGE_TOKEN_COUNT NUMBER • Sync-P: Token count
• Sync-W: Token count
• Opti-S: Token count

BGE_RANGE_COUNT NUMBER • Sync-M: Number of deleted DocIDs
• Sync-R: Number of generated READY ranges
• Sync-P: Generated READY range count

Appendix F
CTX_USER_BACKGROUND_EVENTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-21 of F-31

Column Name Type Description

BGE_RANGE_TYPE NUMBER • Sync-R: READY range type
• Sync-P: READY range type
Ready range type:
• NA
• INITIAL
• RETRY

Related Topics

• Oracle Text Application Developer's Guide

F.40 CTX_USER_EXTRACT_POLICIES
This view displays all of the entity extraction policies owned by the current user. All users can
query this view.

Column Name Type Description

EPL_NAME VARCHAR2(30) Entity extraction policy name

F.41 CTX_USER_EXTRACT_POLICY_VALUES
This view displays all of the values for the entity extraction policies owned by the current user.
All users can query this view.

Column Name Type Description

EPV_POLICY_NAME VARCHAR2(30) Entity extraction policy name

EPV_CLASS VARCHAR2(30) Object class

EPV_OBJECT VARCHAR2(30) Object name

EPV_ATTRIBUTE VARCHAR2(30) Object attribute name

EPV_VALUE VARCHAR2(500) Object attribute value

F.42 CTX_USER_EXTRACT_RULES
This view displays the entity extraction rules for the policies owned by the current user. All
users can query this view.

Column Name Type Description

ERL_POLICY_NAME VARCHAR2(30) Entity extraction policy name

ERL_RULE_ID INTEGER Entity extraction rule ID

ERL_LANGUAGE VARCHAR2(30) Entity extraction rule language

ERL_RULE VARCHAR2(512) Entity extraction rule contents

ERL_TYPE VARCHAR2(4000) String mapping backreferences to entity types

ERL_STATUS VARCHAR2(30) Entity extraction rule status: compiled, not compiled, to
be deleted

Appendix F
CTX_USER_EXTRACT_POLICIES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-22 of F-31

Column Name Type Description

ERL_COMMENTS VARCHAR2(4000) Comments

F.43 CTX_USER_EXTRACT_STOP_ENTITIES
This view displays the stop entities owned by the current user. All users can query this view.

Column Name Type Description

ESE_POLICY_NAME VARCHAR2(30) Entity extraction policy name

ESE_NAME VARCHAR2(512) Stop entity name

ESE_TYPE VARCHAR2(30) Stop entity type

ESE_STATUS VARCHAR2(30) Entity extraction rule status: compiled, not compiled,
to be deleted, subset

ESE_COMMENTS VARCHAR2(4000) Comments

F.44 CTX_USER_EXTRACT_TYPE
The CTX_USER_EXTRACT_TYPE view displays the entity extraction types for the policies owned by
the current user. All users can query this view.

Column Name Type Description

ERT_POL_ID INTEGER Entity extraction policy ID

ERT_RULE_ID INTEGER Entity extraction rule ID

ERT_TYPE_ID INTEGER Entity extraction rule type ID

ERT_TYPE VARCHAR2(512) Entity extraction type

F.45 CTX_USER_ FILTER_BY_COLUMNS
This view displays all FILTER BY columns registered in the Text data dictionary for the current
user. It can be queried by any user.

Column Name Type Description

FBC_INDEX_NAME VARCHAR2(30) Index name

FBC_TABLE_OWNER VARCHAR2(30) Table owner name

FBC_TABLE_NAME VARCHAR2(30) Table name

FBC_COLUMN_NAME VARCHAR2(256) Column name

FBC_COLUMN_TYPE VARCHAR2(30) Column type

FBC_SECTION_TYPE VARCHAR2(30) Section type

FBC_SECTION_NAME VARCHAR2(30) Section name

FBC_SECTION_ID NUMBER Section ID

Appendix F
CTX_USER_EXTRACT_STOP_ENTITIES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-23 of F-31

F.46 CTX_USER_INDEXES
This view displays all indexes that are registered in the Text data dictionary for the current user.
It can be queried by all users.

Column Name Type Description

IDX_CHARSET_COLUMN VARCHAR2(256) Name of the charset column of base
table

IDX_DOCID_COUNT NUMBER Number of documents indexed

IDX_FORMAT_COLUMN VARCHAR2(256) Name of the format column of base
table

IDX_ID NUMBER Internal index ID

IDX_KEY_NAME VARCHAR(256) Primary key column(s)

IDX_LANGUAGE_COLUMN VARCHAR2(256) Name of the language column of base
table

IDX_NAME VARCHAR2(30) Name of index

IDX_STATUS VARCHAR2(12) Status, either INDEXED or INDEXING

IDX_SYNC_INTERVAL VARCHAR2(2000) This is the interval string required by
scheduler job. Only meaningful for
AUTOMATIC sync. Always null for
MANUAL and ON COMMIT sync.

IDX_SYNC_JOBNAME VARCHAR2(50) This is the scheduler job name for
automatic sync. Only meaningful for
AUTOMATIC sync and always null for
other types of sync.

IDX_SYNC_MEMORY VARCHAR2(100) The sync memory size. Only
meaningful for ON COMMIT and
AUTOMATIC types of sync. For MANUAL
sync, this is always null.

IDX_SYNC_PARA_DEGREE NUMBER Degree of parallelism for sync. Only
meaningful for the AUTOMATIC type of
sync; always null for MANUAL and ON
COMMIT syncs.

IDX_SYNC_TYPE VARCHAR2(20) Type of synching: AUTOMATIC, MANUAL
or ON COMMIT

IDX_TABLE VARCHAR2(30) Table name

IDX_TABLE_OWNER VARCHAR2(30) Owner of table

IDX_TEXT_NAME VARCHAR2(30) Text column name

IDX_TYPE VARCHAR2(30) Type of index: CONTEXT, CTXCAT, or
CTXRULE

F.47 CTX_USER_INDEX_ERRORS
This view displays the indexing errors for the current user and is queryable by all users.

Column Name Type Description

ERR_INDEX_NAME VARCHAR2(30) Name of index

Appendix F
CTX_USER_INDEXES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-24 of F-31

Column Name Type Description

ERR_TIMESTAMP DATE Time of error

ERR_TEXTKEY VARCHAR2(18) ROWID of errored document or name of
errored operation (for example, ALTER
INDEX)

ERR_TEXT VARCHAR2(4000) Error text

F.48 CTX_USER_INDEX_OBJECTS
This view displays the preferences that are attached to the indexes defined for the current
user. It can be queried by all users.

Column Name Type Description

IXO_INDEX_NAME VARCHAR2(30) Name of index

IXO_CLASS VARCHAR2(30) Object name

IXO_OBJECT VARCHAR2(80) Object description

F.49 CTX_USER_INDEX_PARTITIONS
This view displays all index partitions for the current user. It is queryable by all users.

Column Name Type Description

IXP_DOCID_COUNT NUMBER(38) Number of documents associated with the
index partition

IXP_ID NUMBER(38) Index partition ID

IXP_INDEX_NAME VARCHAR2(30) Index name

IXP_INDEX_PARTITION_NAME VARCHAR2(30) Index partition name

IDX_SYNC_INTERVAL VARCHAR2(2000) This is the interval string required by scheduler
job. Only meaningful for AUTOMATIC sync.
Always null for MANUAL and ON COMMIT sync.

IDX_SYNC_JOBNAME VARCHAR2(50) This is the scheduler job name for automatic
sync. It is only meaningful for AUTOMATIC sync
and always null for other types of sync.

IDX_SYNC_MEMORY VARCHAR2(100) The sync memory size. Only meaningful for ON
COMMIT and AUTOMATIC types of sync. For
MANUAL sync, this is always null.

IDX_SYNC_PARA_DEGREE NUMBER Degree of parallelism for sync. Only
meaningful for the AUTOMATIC type of sync;
always null for MANUAL and ON COMMIT syncs.

IDX_SYNC_TYPE VARCHAR2(20) Type of synching: AUTOMATIC, MANUAL or ON
COMMIT

IXP_STATUS VARCHAR2(12) Partition status

IXP_TABLE_OWNER VARCHAR2(30) Table owner

IXP_TABLE_NAME VARCHAR2(30) Table name

IXP_TABLE_PARTITION_NAME VARCHAR2(30) Table partition name

Appendix F
CTX_USER_INDEX_OBJECTS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-25 of F-31

F.50 CTX_USER_INDEX_SETS
This view displays all index set names that belong to the current user. It is queryable by all
users.

Column Name Type Description

IXS_NAME VARCHAR2(30) Index set name

F.51 CTX_USER_INDEX_SET_INDEXES
This view displays all the indexes in an index set that belong to the current user. It is queryable
by all users.

Column Name Type Description

IXX_INDEX_SET_NAME VARCHAR2(30) Index set name

IXX_COLLIST VARCHAR2(500) Column list of the index

IXX_STORAGE VARCHAR2(500) Storage clause of the index

F.52 CTX_USER_INDEX_SUB_LEXERS
This view shows the sub-lexers for each language for each index for the querying user. This
view can be queried by all users.

Column Name Type Description

ISL_INDEX_NAME VARCHAR2(30) Index name

ISL_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISL_ALT_VALUE VARCHAR2(30) Alternate value of language

ISL_OBJECT VARCHAR2(30) Name of lexer object used for this
language

F.53 CTX_USER_INDEX_SUB_LEXER_VALS
Shows the sub-lexer attributes and their values for the querying user. This view can be queried
by all users.

Column Name Type Description

ISV_INDEX_NAME VARCHAR2(30) Index name

ISV_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISV_OBJECT VARCHAR2(30) Name of lexer object used for this language

ISV_ATTRIBUTE VARCHAR2(30) Name of sub-lexer attribute

ISV_VALUE VARCHAR2(500) Value of sub-lexer attribute

Appendix F
CTX_USER_INDEX_SETS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-26 of F-31

F.54 CTX_USER_INDEX_VALUES
This view displays attribute values for each object used in indexes for the current user. This
view is queryable by all users.

Column Name Type Description

IXV_INDEX_NAME VARCHAR2(30) Index name

IXV_CLASS VARCHAR2(30) Class name

IXV_OBJECT VARCHAR2(30) Object name

IXV_ATTRIBUTE VARCHAR2(30) Attribute name

IXV_VALUE VARCHAR2(500) Attribute value

F.55 CTX_USER_ORDER_BY_COLUMNS
This view displays all ORDER BY columns registered in the Text data dictionary for the current
user. It can be queried by any user.

Column Name Type Description

OBC_INDEX_NAME VARCHAR2(30) Index name

OBC_TABLE_OWNER VARCHAR2(30) Table owner

OBC_TABLE_NAME VARCHAR2(30) Table name

OBC_COLUMN_NAME VARCHAR2(236) Column name

OBC_COLUMN_POSITION VARCHAR2(30) Column position

OBC_COLUMN_TYPE VARCHAR2(30) Column type

OBC_SECTION_NAME VARCHAR2(30) Section name

OBC_SECTION_TYPE VARCHAR2(30) Section type

OBC_SECTION_ID NUMBER Section ID

OBC_SORT_ORDER VARCHAR2(8) Sort order

F.56 CTX_USER_PREFERENCES
This view displays all preferences defined by the current user. It can be queried by all users.

Column Name Type Description

PRE_NAME VARCHAR2(30) Preference name

PRE_CLASS VARCHAR2(30) Preference class

PRE_OBJECT VARCHAR2(30) Object used

F.57 CTX_USER_PREFERENCE_VALUES
This view displays all the values for preferences defined by the current user. It can be queried
by all users.

Appendix F
CTX_USER_INDEX_VALUES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-27 of F-31

Column Name Type Description

PRV_PREFERENCE VARCHAR2(30) Preference name

PRV_ATTRIBUTE VARCHAR2(64) Attribute name

PRV_VALUE VARCHAR2(500) Attribute value

F.58 CTX_USER_SECTIONS
This view displays information about the sections that have been created in the Text data
dictionary for the current user. It can be queried by all users.

Column Name Type Description

SEC_DATATYPE VARCHAR2(30) Shows the datatype name (NUMBER, VARCHAR2,
DATE or RAW) if the section is an SDATA section.
Otherwise, it is NULL.

SEC__SECTION_GROUP VARCHAR2(30) Name of the section group

SEC_TYPE VARCHAR2(30) Type of section, either ZONE, FIELD, SPECIAL,
STOP, or ATTR

SEC_ID NUMBER Section ID

SEC_NAME VARCHAR2(30) Name of section

SEC_TAG VARCHAR2(64) Section tag

SEC_VISIBLE VARCHAR2(1) Y or N visible indicator for field sections

F.59 CTX_USER_SECTION_GROUPS
This view displays information about the section groups that have been created in the Text
data dictionary for the current user. It can be queried by all users.

Column Name Type Description

SGP_NAME VARCHAR2(30) Name of section group

SGP_TYPE VARCHAR2(30) Type of section group

F.60 CTX_USER_SESSION_SQES
This view displays the definitions of all session-duration SQEs that have been created by the
current user.

Column Name Type Description

SQE_OWNER VARCHAR2(30) Name of owner of SQE

SQE_NAME VARCHAR2(30) Name of SQE (shared namespace between
persistent and session-duration)

SQE_QUERY CLOB Query text (max size of 32k)

Appendix F
CTX_USER_SECTIONS

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-28 of F-31

F.61 CTX_USER_SQES
This view displays the definitions of all persistent duration SQEs that have been created by the
current user. In other words, it does not display session duration SQEs.

Column Name Type Description

SQE_OWNER VARCHAR2(30) Owner of SQE

SQE_NAME VARCHAR2(30) Name of SQE

SQE_QUERY CLOB Query text

F.62 CTX_USER_STOPLISTS
This view displays stoplists for current user. It is queryable by all users.

Column Name Type Description

SPL_NAME VARCHAR2(30) Name of stoplist

SPL_COUNT NUMBER Number of stopwords

SPL_TYPE VARCHAR2(30) Type of stoplist, MULTI or BASIC

F.63 CTX_USER_STOPWORDS
This view displays stopwords in each stoplist for current user. Queryable by all users.

Column Name Type Description

SPW_STOPLIST VARCHAR2(30) Stoplist name

SPW_TYPE VARCHAR2(10) Stop type, either STOP_WORD, STOP_CLASS,
STOP_THEME

SPW_WORD VARCHAR2(80) Stopword

SPW_LANGUAGE VARCHAR2(30) Stopword language

SPW_PATTERN VARCHAR2(512) Stop pattern

F.64 CTX_USER_SUB_LEXERS
For the current user, this view contains information on multi-lexers and the sub-lexer
preferences they contain. It can be queried by any user.

Column Name Type Description

SLX_NAME VARCHAR2(30) Name of the multi-lexer preference

SLX_LANGUAGE VARCHAR2(30) Language of the referenced lexer (full name, not
abbreviation)

SLX_ALT_VALUE VARCHAR2(30) An alternate value for the language

SLX_SUB_OWNER VARCHAR2(30) Owner of the sub-lexer

SLX_SUB_NAME VARCHAR2(30) Name of the sub-lexer

Appendix F
CTX_USER_SQES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-29 of F-31

F.65 CTX_USER_THESAURI
This view displays the information about all of the thesauri that have been created in the
system by the current user. It can be viewed by all users.

Column Name Type Description

THS_NAME VARCHAR2(30) Thesaurus name

F.66 CTX_USER_THES_PHRASES
This view displays the phrase information of all thesauri owned by the current user. It can be
queried by all users.

Column Name Type Description

THP_THESAURUS VARCHAR2(30) Thesaurus name

THP_PHRASE VARCHAR2(256) Thesaurus phrase

THP_QUALIFIER VARCHAR2(256) Phrase qualifier

THP_SCOPE_NOTE VARCHAR2(2000) Scope note of the phrase

F.67 CTX_VERSION
This view displays the CTXSYS data dictionary and code version number information.

Column Name Type Description

VER_DICT CHAR(9) The CTXSYS data dictionary version number

VER_CODE VARCHAR2(9) The version number of the code linked in to the
Oracle AI Database shadow process

This column fetches the version number for linked-in
code. Thus, use this column to detect and verify
patch releases.

F.68 ALL_DBMS_SEARCH_INDEXES
The ALL_DBMS_SEARCH_INDEXES view displays information about all existing DBMS_SEARCH
indexes, corresponding to each index owner.

Column Name Type Description

IDX_OWNER VARCHAR2(128) Schema owner name associated with the
ubiquitous search index

IDX_NAME VARCHAR2(128) Ubiquitous search index name

Appendix F
CTX_USER_THESAURI

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-30 of F-31

F.69 ALL_DBMS_SEARCH_INDEX_SOURCES
The ALL_DBMS_SEARCH_INDEX_SOURCES view displays information about all existing data
sources added to various DBMS_SEARCH indexes, corresponding to each index owner.

Column Name Type Description

IDX_OWNER VARCHAR2(128) Schema owner name associated with the
ubiquitous search index

IDX_NAME VARCHAR2(128) Ubiquitous search index name

SRC_OWNER VARCHAR2(128) Data source owner name

SRC_NAME VARCHAR2(128) Data source name

SRC_TYPE VARCHAR2(1) Data source type, such as:

• T: Table source
• V: View source
• J: JSON duality view source

SRC_ID NUMBER Source object ID

F.70 USER_DBMS_SEARCH_INDEXES
The USER_DBMS_SEARCH_INDEXES view displays information about the DBMS_SEARCH indexes that
are created in a user's schema.

Column Name Type Description

IDX_NAME VARCHAR2(128) Ubiquitous search index name

F.71 USER_DBMS_SEARCH_INDEX_SOURCES
The USER_DBMS_SEARCH_INDEX_SOURCES view displays information about the data sources that
are added to the DBMS_SEARCH indexes, created in a user's schema.

Column Name Type Description

IDX_NAME VARCHAR2(128) Ubiquitous search index name

SRC_OWNER VARCHAR2(128) Data source owner name

SRC_NAME VARCHAR2(128) Data source name

SRC_TYPE VARCHAR2(1) Data source type, such as:

• T: Table source
• V: View source
• J: JSON duality view source

SRC_ID NUMBER Source object ID

Appendix F
ALL_DBMS_SEARCH_INDEX_SOURCES

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix F-31 of F-31

G
Stopword Transformations in Oracle Text

This appendix describes the stopword rewrites or transformations for each operator. In all
tables, the Stopword Expression column describes the query expression or component of a
query expression, while the right-hand column describes the way Oracle Text rewrites the
query.

This appendix contains the following topics:

• Understanding Stopword Transformations

• About Stopwords in Phrase Queries

• Word Transformations

• AND Transformations

• OR Transformations

• ACCUMulate Transformations

• MINUS Transformations

• MNOT Transformations

• NOT Transformations

• EQUIValence Transformations

• NEAR Transformations

• Weight Transformations

• Threshold Transformations

• WITHIN Transformations

G.1 Understanding Stopword Transformations
When you use a stopword or stopword-only phrase as an operand for a query operator, Oracle
Text rewrites the expression to eliminate the stopword or stopword-only phrase and then
executes the query.

The token stopword stands for a single stopword or a stopword-only phrase.

The token non_stopword stands for either a single non-stopword, a phrase of all non-
stopwords, or a phrase of non-stopwords and stopwords.

The token no_lex stands for a single character or a string of characters that is neither a
stopword nor a word that is indexed. For example, the + character by itself is an example of a
no_lex token.

When the Stopword Expression column completely describes the query expression, a rewritten
expression of no_token means that no hits are returned when you enter such a query.

When the Stopword Expression column describes a component of a query expression with
more than one operator, a rewritten expression of no_token means that a no_token value is
passed to the next step of the rewrite.

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix G-1 of G-5

Transformations that contain a no_token as an operand in the Stopword Expression column
describe intermediate transformations in which the no_token is a result of a previous
transformation. These intermediate transformations apply when the original query expression
has at least one stopword and more than one operator.

For example, consider the following compound query expression:

'(this NOT dog) AND cat'

Assuming that this is the only stopword in this expression, Oracle Text applies the following
transformations in the following order:

stopword NOT non-stopword => no_token

no_token AND non_stopword => non_stopword

The resulting expression is:

'cat'

G.2 About Stopwords in Phrase Queries
If used in a phrase query, a stopword will match any single word, whether that word is a
stopword or not. For example, if "in" and "to" are stopwords, but "throughout" is not, then the
query "hiking in California" will match any of these phrases:

• hiking in California

• hiking to California

• hiking throughout California

G.3 Word Transformations

Stopword Expression Rewritten Expression

stopword no_token

no_lex no_token

The first transformation means that a stopword or stopword-only phrase by itself in a query
expression results in no hits.

The second transformation says that a term that is not lexed, such as the + character, results in
no hits.

G.4 AND Transformations

Stopword Expression Rewritten Expression

non_stopword AND stopword non_stopword

non_stopword AND no_token non_stopword

stopword AND non_stopword non_stopword

no_token AND non_stopword non_stopword

stopword AND stopword no_token

no_token AND stopword no_token

Appendix G
About Stopwords in Phrase Queries

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix G-2 of G-5

Stopword Expression Rewritten Expression

stopword AND no_token no_token

no_token AND no_token no_token

G.5 OR Transformations

Stopword Expression Rewritten Expression

non_stopword OR stopword non_stopword

non_stopword OR no_token non_stopword

stopword OR non_stopword non_stopword

no_token OR non_stopword non_stopword

stopword OR stopword no_token

no_token OR stopword no_token

stopword OR no_token no_token

no_token OR no_token no_token

G.6 ACCUMulate Transformations

Stopword Expression Rewritten Expression

non_stopword ACCUM stopword non_stopword

non_stopword ACCUM no_token non_stopword

stopword ACCUM non_stopword non_stopword

no_token ACCUM non_stopword non_stopword

stopword ACCUM stopword no_token

no_token ACCUM stopword no_token

stopword ACCUM no_token no_token

no_token ACCUM no_token no_token

G.7 MINUS Transformations

Stopword Expression Rewritten Expression

non_stopword MINUS stopword non_stopword

non_stopword MINUS no_token non_stopword

stopword MINUS non_stopword no_token

no_token MINUS non_stopword no_token

stopword MINUS stopword no_token

no_token MINUS stopword no_token

stopword MINUS no_token no_token

no_token MINUS no_token no_token

Appendix G
OR Transformations

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix G-3 of G-5

G.8 MNOT Transformations

Stopword Expression Rewritten Expression

non_stopword MNOT stopword non_stopword

non_stopword MNOT no_token non_stopword

stopword MNOT non_stopword no_token

no_token MNOT non_stopword no_token

stopword MNOT stopword no_token

no_token MNOT stopword no_token

stopword MNOT no_token no_token

no_token MNOT no_token no_token

G.9 NOT Transformations

Stopword Expression Rewritten Expression

non_stopword NOT stopword non_stopword

non_stopword NOT no_token non_stopword

stopword NOT non_stopword no_token

no_token NOT non_stopword no_token

stopword NOT stopword no_token

no_token NOT stopword no_token

stopword NOT no_token no_token

no_token NOT no_token no_token

G.10 EQUIValence Transformations

Stopword Expression Rewritten Expression

non_stopword EQUIV stopword non_stopword

non_stopword EQUIV no_token non_stopword

stopword EQUIV non_stopword non_stopword

no_token EQUIV non_stopword non_stopword

stopword EQUIV stopword no_token

no_token EQUIV stopword no_token

stopword EQUIV no_token no_token

no_token EQUIV no_token no_token

Appendix G
MNOT Transformations

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix G-4 of G-5

Note

When you use query explain plan, not all of the equivalence transformations are
represented in the EXPLAIN table.

G.11 NEAR Transformations

Stopword Expression Rewritten Expression

non_stopword NEAR stopword non_stopword

non_stopword NEAR no_token non_stopword

stopword NEAR non_stopword non_stopword

no_token NEAR non_stopword non_stopword

stopword NEAR stopword no_token

no_token NEAR stopword no_token

stopword NEAR no_token no_token

no_token NEAR no_token no_token

G.12 Weight Transformations

Stopword Expression Rewritten Expression

stopword * n no_token

no_token * n no_token

G.13 Threshold Transformations

Stopword Expression Rewritten Expression

stopword > n no_token

no_token > n no_token

G.14 WITHIN Transformations

Stopword Expression Rewritten Expression

stopword WITHIN section no_token

no_token WITHIN section no_token

Appendix G
NEAR Transformations

Oracle Text Reference
G43188-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix G-5 of G-5

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	1 Oracle Text SQL Statements and Operators
	1.1 ALTER INDEX
	1.2 ALTER TABLE: Supported Partitioning Statements
	1.3 CATSEARCH
	1.4 CONTAINS
	1.5 CREATE INDEX
	1.6 CREATE SEARCH INDEX
	1.7 CREATE HYBRID VECTOR INDEX
	1.8 DROP INDEX
	1.9 MATCHES
	1.10 MATCH_SCORE
	1.11 SCORE

	2 Oracle Text Indexing Elements
	2.1 Overview
	2.2 Creating Preferences
	2.3 Datastore Types
	2.3.1 DIRECT_DATASTORE
	2.3.2 MULTI_COLUMN_DATASTORE
	2.3.2.1 MULTI_COLUMN_DATASTORE Attributes
	2.3.2.2 Indexing and DML
	2.3.2.3 MULTI_COLUMN_DATASTORE Restriction
	2.3.2.4 MULTI_COLUMN_DATASTORE Example
	2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example
	2.3.2.6 Tagging Behavior
	2.3.2.7 Indexing Columns as Sections

	2.3.3 DETAIL_DATASTORE
	2.3.3.1 DETAIL_DATASTORE Attributes
	2.3.3.2 Synchronizing Primary/Detail Indexes
	2.3.3.3 Example Primary/Detail Tables
	2.3.3.3.1 Primary Table Example
	2.3.3.3.2 Detail Table Example
	2.3.3.3.3 Detail Table Example Attributes
	2.3.3.3.4 Primary/Detail Index Example

	2.3.4 FILE_DATASTORE
	2.3.4.1 FILE_DATASTORE Attributes
	2.3.4.2 FILE_DATASTORE and Security
	2.3.4.3 FILE_DATASTORE Example

	2.3.5 DIRECTORY_DATASTORE
	2.3.5.1 DIRECTORY_DATASTORE Attributes
	2.3.5.2 DIRECTORY_DATASTORE Example

	2.3.6 URL_DATASTORE
	2.3.6.1 URL_DATASTORE URL Syntax
	2.3.6.2 URL_DATASTORE Attributes
	2.3.6.3 URL_DATASTORE and Security
	2.3.6.4 URL_DATASTORE Example

	2.3.7 NETWORK_DATASTORE
	2.3.7.1 NETWORK_DATASTORE URL Syntax
	2.3.7.2 NETWORK_DATASTORE Attributes
	2.3.7.3 NETWORK_DATASTORE Example

	2.3.8 USER_DATASTORE
	2.3.8.1 USER_DATASTORE Attributes
	2.3.8.2 USER_DATASTORE Constraints
	2.3.8.3 USER_DATASTORE Editing Procedure after Indexing
	2.3.8.4 USER_DATASTORE with CLOB Example
	2.3.8.5 USER_DATASTORE with BLOB_LOC Example

	2.3.9 NESTED_DATASTORE
	2.3.9.1 NESTED_DATASTORE Attributes
	2.3.9.2 NESTED_DATASTORE Example
	2.3.9.2.1 Create the Nested Table
	2.3.9.2.2 Insert Values into Nested Table
	2.3.9.2.3 Create Nested Table Preferences
	2.3.9.2.4 Create Index on Nested Table
	2.3.9.2.5 Query Nested Datastore

	2.4 Filter Types
	2.4.1 AUTO_FILTER
	2.4.1.1 AUTO_FILTER Attributes
	2.4.1.2 AUTO_FILTER and Indexing Formatted Documents
	2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
	2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER

	2.4.2 NULL_FILTER
	2.4.3 MAIL_FILTER
	2.4.3.1 MAIL_FILTER Attributes
	2.4.3.2 MAIL_FILTER Behavior
	2.4.3.3 About the Mail Filter Configuration File
	2.4.3.4 Mail_Filter Example

	2.4.4 USER_FILTER
	2.4.4.1 USER_FILTER Attributes
	2.4.4.2 Using USER_FILTER with Charset and Format Columns
	2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
	2.4.4.4 Character Set Conversion with USER_FILTER
	2.4.4.5 User Filter Example

	2.4.5 PROCEDURE_FILTER
	2.4.5.1 PROCEDURE_FILTER Attributes
	2.4.5.2 PROCEDURE_FILTER Parameter Order
	2.4.5.3 PROCEDURE_FILTER Execute Requirements
	2.4.5.4 PROCEDURE_FILTER Error Handling
	2.4.5.5 PROCEDURE_FILTER Preference Example

	2.5 Lexer Types
	2.5.1 AUTO_LEXER
	2.5.1.1 AUTO_LEXER Language Support
	2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER
	2.5.1.3 AUTO_LEXER Language-Independent Attributes
	2.5.1.4 AUTO_LEXER Language-Dependent Attributes
	2.5.1.5 AUTO_LEXER Dictionary Attribute

	2.5.2 BASIC_LEXER
	2.5.2.1 BASIC_LEXER Language Support
	2.5.2.2 BASIC_LEXER Attributes
	2.5.2.3 Stemming User-Dictionaries
	2.5.2.4 BASIC_LEXER Example

	2.5.3 MULTI_LEXER
	2.5.3.1 MULTI_LEXER Restriction
	2.5.3.2 MULTI_LEXER Multi-language Stoplists
	2.5.3.3 MULTI_LEXER Example
	2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables

	2.5.4 CHINESE_VGRAM_LEXER
	2.5.5 CHINESE_LEXER
	2.5.6 JAPANESE_VGRAM_LEXER
	2.5.7 JAPANESE_LEXER
	2.5.8 KOREAN_MORPH_LEXER
	2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries
	2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support
	2.5.8.3 KOREAN_MORPH_LEXER Attributes
	2.5.8.4 KOREAN_MORPH_ LEXER Limitations
	2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute

	2.5.9 USER_LEXER
	2.5.9.1 USER_LEXER Routines
	2.5.9.2 USER_LEXER Limitations
	2.5.9.3 USER_LEXER Attributes
	2.5.9.4 INDEX_PROCEDURE
	2.5.9.5 INPUT_TYPE
	2.5.9.5.1 VARCHAR2 Interface
	2.5.9.5.2 CLOB Interface

	2.5.9.6 QUERY_PROCEDURE
	2.5.9.7 Encoding Tokens as XML
	2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure
	2.5.9.9 XML Schema for User-defined Indexing Procedure with Location
	2.5.9.10 XML Schema for User-defined Lexer Query Procedure

	2.5.10 WORLD_LEXER

	2.6 Wordlist Type
	2.6.1 BASIC_WORDLIST
	2.6.2 BASIC_WORDLIST Example
	2.6.2.1 Enabling Fuzzy Matching and Stemming
	2.6.2.2 Enabling Sub-string and Prefix Indexing
	2.6.2.3 Setting Wildcard Expansion Limit

	2.7 Storage Types
	2.7.1 BASIC_STORAGE
	2.7.1.1 BASIC_STORAGE Attributes
	2.7.1.2 BASIC_STORAGE Default Behavior
	2.7.1.3 BASIC_STORAGE Examples

	2.8 Section Group Types
	2.8.1 Section Group Types for Creating a Section Group
	2.8.2 Section Group Examples for HTML, XML, and JSON Enabled Documents
	2.8.2.1 Creating Section Groups in HTML Documents
	2.8.2.2 Creating Sections Groups in XML Documents
	2.8.2.3 Automatic Sectioning in XML Documents
	2.8.2.4 Creating JSON Section Groups for JSON Search Index
	2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS
	2.8.2.6 Using JSON Search Index with JSON_EXISTS

	2.9 Classifier Types
	2.9.1 RULE_CLASSIFIER
	2.9.2 SVM_CLASSIFIER
	2.9.3 SENTIMENT_CLASSIFIER

	2.10 Cluster Types
	2.10.1 KMEAN_CLUSTERING

	2.11 Stoplists
	2.11.1 Multi-Language Stoplists
	2.11.2 Creating Stoplists
	2.11.3 Supplied Stoplists
	2.11.4 Modifying the Default Stoplist

	2.12 System-Defined Preferences
	2.12.1 Data Storage Preferences
	2.12.2 Filter Preferences
	2.12.3 Lexer Preferences
	2.12.3.1 CTXSYS.DEFAULT_LEXER
	2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER
	2.12.3.3 CTXSYS.BASIC_LEXER

	2.12.4 Section Group Preferences
	2.12.5 Stoplist Preferences
	2.12.6 Storage Preferences
	2.12.7 Wordlist Preferences

	2.13 System Parameters
	2.13.1 General System Parameters
	2.13.2 Default Index Parameters
	2.13.2.1 CONTEXT Index Parameters
	2.13.2.2 CTXCAT Index Parameters
	2.13.2.3 CTXRULE Index Parameters

	2.13.3 Default Policy Parameters

	2.14 Token Limitations for Oracle Text Indexes
	2.15 Auditing Oracle Text DR⁠$ Index Tables
	2.15.1 About Auditing Oracle Text DR⁠$ Index Tables
	2.15.2 Configuring an Oracle Text DR⁠$ Index Tables Audit Policy
	2.15.3 Example: Auditing Update Actions on an Oracle Text DR⁠$ Index Table
	2.15.4 How Oracle Text DR⁠$ Index Table Entries Appear in the Audit Trail

	3 Oracle Text CONTAINS Query Operators
	3.1 Operator Precedence
	3.1.1 Group 1 Operators
	3.1.2 Group 2 Operators and Characters
	3.1.3 Procedural Operators
	3.1.4 Precedence Examples
	3.1.5 Altering Precedence

	3.2 ABOUT
	3.3 ACCUMulate (,)
	3.4 AND (&)
	3.5 Broader Term (BT, BTG, BTP, BTI)
	3.6 CTXFILTERCACHE
	3.7 DEFINEMERGE
	3.8 DEFINESCORE
	3.9 EQUIValence (=)
	3.10 Fuzzy
	3.11 HASPATH
	3.12 INPATH
	3.13 MDATA
	3.14 MINUS (-)
	3.15 MNOT
	3.16 Narrower Term (NT, NTG, NTP, NTI)
	3.17 NDATA
	3.18 NEAR (;)
	3.19 NEAR2
	3.20 NOT (~)
	3.21 OR (|)
	3.22 Preferred Term (PT)
	3.23 Related Term (RT)
	3.24 SDATA
	3.25 soundex (!)
	3.26 stem (⁠$)
	3.27 Stored Query Expression (SQE)
	3.28 SYNonym (SYN)
	3.29 threshold (>)
	3.30 Translation Term (TR)
	3.31 Translation Term Synonym (TRSYN)
	3.32 Top Term (TT)
	3.33 weight (*)
	3.34 wildcards (% _)
	3.35 WITHIN
	3.36 Supported Oracle Text CONTAINS Query Operators for In-Memory Full Text Search

	4 Special Characters in Oracle Text Queries
	4.1 Grouping Characters
	4.2 Escape Characters
	4.3 Reserved Words and Characters

	5 CTX_ADM Package
	5.1 About CTX_ADM Package Procedures
	5.2 MARK_FAILED
	5.3 RECOVER
	5.4 RESET_AUTO_OPTIMIZE_STATUS
	5.5 SET_PARAMETER

	6 CTX_ANL Package
	6.1 About CTX_ANL Package Procedures
	6.2 ADD_DICTIONARY
	6.3 DROP_DICTIONARY

	7 CTX_CLS Package
	7.1 About CTX_CLS Package Procedures
	7.2 TRAIN
	7.3 CLUSTERING
	7.4 SA_TRAIN_MODEL
	7.5 SA_DROP_MODEL

	8 CTX_DDL Package
	8.1 ADD_ATTR_SECTION
	8.2 ADD_AUTO_OPTIMIZE
	8.3 ADD_FIELD_SECTION
	8.4 ADD_INDEX
	8.5 ADD_MDATA
	8.6 ADD_MDATA_COLUMN
	8.7 ADD_MDATA_SECTION
	8.8 ADD_NDATA_SECTION
	8.9 ADD_PATH
	8.10 ADD_SDATA_COLUMN
	8.11 ADD_SDATA_SECTION
	8.12 ADD_SEC_GRP_ATTR_VAL
	8.13 ADD_SPECIAL_SECTION
	8.14 ADD_STOPCLASS
	8.15 ADD_STOP_SECTION
	8.16 ADD_STOPTHEME
	8.17 ADD_STOPWORD
	8.18 ADD_SUB_LEXER
	8.19 ADD_ZONE_SECTION
	8.20 COPY_POLICY
	8.21 CREATE_INDEX_SET
	8.22 CREATE_PATH_LIST
	8.23 CREATE_POLICY
	8.24 CREATE_PREFERENCE
	8.25 CREATE_SECTION_GROUP
	8.26 CREATE_SHADOW_INDEX
	8.27 CREATE_STOPLIST
	8.28 DROP_INDEX_SET
	8.29 DROP_PATH_LIST
	8.30 DROP_POLICY
	8.31 DROP_PREFERENCE
	8.32 DROP_SECTION_GROUP
	8.33 DROP_SHADOW_INDEX
	8.34 DROP_STOPLIST
	8.35 EXCHANGE_SHADOW_INDEX
	8.36 LOAD_STOPLIST
	8.37 OPTIMIZE_INDEX
	8.38 POPULATE_PENDING
	8.39 PREFERENCE_IMPLICIT_COMMIT
	8.40 RECREATE_INDEX_ONLINE
	8.41 REM_SEC_GRP_ATTR_VAL
	8.42 REMOVE_AUTO_OPTIMIZE
	8.43 REMOVE_INDEX
	8.44 REMOVE_MDATA
	8.45 REMOVE_SECTION
	8.46 REMOVE_STOPCLASS
	8.47 REMOVE_STOPTHEME
	8.48 REMOVE_STOPWORD
	8.49 REMOVE_SUB_LEXER
	8.50 REPLACE_INDEX_METADATA
	8.51 SET_ATTRIBUTE
	8.52 SET_SEC_GRP_ATTR
	8.53 SET_SECTION_ATTRIBUTE
	8.54 SYNC_INDEX
	8.55 UNSET_ATTRIBUTE
	8.56 UNSET_SEC_GRP_ATTR
	8.57 UPDATE_SUB_LEXER
	8.58 UPDATE_POLICY
	8.59 UPDATE_SDATA

	9 CTX_DOC Package
	9.1 About CTX_DOC Package Procedures
	9.2 FILTER
	9.3 GIST
	9.4 HIGHLIGHT
	9.5 IFILTER
	9.6 MARKUP
	9.7 PKENCODE
	9.8 POLICY_FILTER
	9.9 POLICY_GIST
	9.10 POLICY_HIGHLIGHT
	9.11 POLICY_LANGUAGES
	9.12 POLICY_MARKUP
	9.13 POLICY_NOUN_PHRASES
	9.14 POLICY_PART_OF_SPEECH
	9.15 POLICY_SNIPPET
	9.16 POLICY_STEMS
	9.17 POLICY_THEMES
	9.18 POLICY_TOKENS
	9.19 SENTIMENT
	9.20 SENTIMENT_AGGREGATE
	9.21 SET_KEY_TYPE
	9.22 SNIPPET
	9.23 THEMES
	9.24 TOKENS

	10 CTX_ENTITY Package
	10.1 ADD_EXTRACT_RULE
	10.2 ADD_STOP_ENTITY
	10.3 COMPILE
	10.4 CREATE_EXTRACT_POLICY
	10.5 DROP_EXTRACT_POLICY
	10.6 EXTRACT
	10.7 IMPORT_DICTIONARY
	10.8 REMOVE_EXTRACT_RULE
	10.9 REMOVE_STOP_ENTITY

	11 CTX_OUTPUT Package
	11.1 ADD_EVENT
	11.2 ADD_TRACE
	11.3 DISABLE_QUERY_STATS
	11.4 ENABLE_QUERY_STATS
	11.5 END_LOG
	11.6 END_QUERY_LOG
	11.7 GET_TRACE_VALUE
	11.8 LOG_TRACES
	11.9 LOGFILENAME
	11.10 REMOVE_EVENT
	11.11 REMOVE_TRACE
	11.12 RESET_TRACE
	11.13 START_LOG
	11.14 START_QUERY_LOG

	12 CTX_QUERY Package
	12.1 BROWSE_WORDS
	12.2 COUNT_HITS
	12.3 EXPLAIN
	12.4 HFEEDBACK
	12.5 REMOVE_SQE
	12.6 RESULT_SET
	12.7 RESULT_SET_CLOB_QUERY
	12.8 RESULT_SET_DOCUMENT
	12.9 STORE_SQE
	12.10 WARM_CACHE

	13 CTX_REPORT Package
	13.1 Description of Procedures in CTX_REPORT
	13.2 Using the Function Versions
	13.3 DESCRIBE_INDEX
	13.4 DESCRIBE_POLICY
	13.5 CREATE_INDEX_SCRIPT
	13.6 CREATE_POLICY_SCRIPT
	13.7 INDEX_SIZE
	13.8 INDEX_STATS
	13.9 QUERY_LOG_SUMMARY
	13.10 SHOW_TOKENS
	13.11 TOKEN_INFO
	13.12 TOKEN_TYPE
	13.13 VALIDATE_INDEX

	14 CTX_THES Package
	14.1 ALTER_PHRASE
	14.2 ALTER_THESAURUS
	14.3 BT
	14.4 BTG
	14.5 BTI
	14.6 BTP
	14.7 CREATE_PHRASE
	14.8 CREATE_RELATION
	14.9 CREATE_THESAURUS
	14.10 CREATE_TRANSLATION
	14.11 DROP_PHRASE
	14.12 DROP_RELATION
	14.13 DROP_THESAURUS
	14.14 DROP_TRANSLATION
	14.15 EXPORT_THESAURUS
	14.16 HAS_RELATION
	14.17 IMPORT_THESAURUS
	14.18 NT
	14.19 NTG
	14.20 NTI
	14.21 NTP
	14.22 OUTPUT_STYLE
	14.23 PT
	14.24 RT
	14.25 SN
	14.26 SYN
	14.27 THES_TT
	14.28 TR
	14.29 TRSYN
	14.30 TT
	14.31 UPDATE_TRANSLATION

	15 CTX_ULEXER Package
	15.1 WILDCARD_TAB

	16 DBMS_SEARCH Package
	16.1 CREATE_INDEX
	16.2 ADD_SOURCE
	16.3 REMOVE_SOURCE
	16.4 DROP_INDEX
	16.5 GET_DOCUMENT
	16.6 FIND

	17 Oracle Text Utilities
	17.1 Thesaurus Loader (ctxload)
	17.1.1 ctxload Text Loading
	17.1.2 ctxload Syntax
	17.1.3 ctxload Examples

	17.2 Entity Extraction User Dictionary Loader (ctxload)
	17.2.1 ctxload Syntax
	17.2.2 Considerations When Creating a User Dictionary
	17.2.3 XML Schema
	17.2.4 ctxload Example

	17.3 Knowledge Base Extension Compiler (ctxkbtc)
	17.3.1 Knowledge Base Character Set
	17.3.2 ctxkbtc Syntax
	17.3.3 ctxkbtc Usage Notes
	17.3.4 ctxkbtc Limitations
	17.3.5 ctxkbtc Constraints on Thesaurus Terms
	17.3.6 ctxkbtc Constraints on Thesaurus Relations
	17.3.7 Extending the Knowledge Base
	17.3.8 Example for Extending the Knowledge Base
	17.3.9 Adding a Language-Specific Knowledge Base
	17.3.10 Limitations for Adding a Knowledge Base
	17.3.11 Order of Precedence for Multiple Thesauri
	17.3.12 Size Limits for Extended Knowledge Base

	17.4 Lexical Compiler (ctxlc)
	17.4.1 Syntax of ctxlc
	17.4.2 ctxlc Performance Considerations
	17.4.3 ctxlc Usage Notes
	17.4.4 ctxlc Example

	18 Oracle Text Alternative Spelling
	18.1 Overview of Alternative Spelling Features
	18.1.1 Alternate Spelling
	18.1.2 Base-Letter Conversion
	18.1.3 New German Spelling

	18.2 Overriding Alternative Spelling Features
	18.3 Alternative Spelling Conventions
	18.3.1 German Alternate Spelling Conventions
	18.3.2 Danish Alternate Spelling Conventions
	18.3.3 Swedish Alternate Spelling Conventions

	A Oracle Text Result Tables
	A.1 CTX_QUERY Result Tables
	A.1.1 EXPLAIN Table
	A.1.1.1 EXPLAIN Table Structure
	A.1.1.2 EXPLAIN Table Operation Column Values
	A.1.1.3 EXPLAIN Table OPTIONS Column Values

	A.1.2 HFEEDBACK Table
	A.1.2.1 HFEEDBACK Table Structure
	A.1.2.2 HFEEDBACK Table Operation Column Values
	A.1.2.3 HFEEDBACK Table OPTIONS Column Values
	A.1.2.4 CTX_FEEDBACK_TYPE

	A.2 CTX_DOC Result Tables
	A.2.1 Filter Table
	A.2.2 Gist Table
	A.2.3 Highlight Table
	A.2.4 Markup Table
	A.2.5 Theme Table
	A.2.6 Token Table

	A.3 CTX_THES Result Tables and Data Types
	A.3.1 EXP_TAB Table Type

	B Oracle Text Supported Document Formats
	B.1 About Document Filtering Technology
	B.1.1 Latest Updates for Patch Releases
	B.1.2 Restrictions on Format Support
	B.1.3 Supported Platforms for AUTO_FILTER Technology
	B.1.4 Filtering on PDF Documents and Security Settings
	B.1.5 PDF Filtering Limitations
	B.1.6 Environment Variables
	B.1.7 General Limitations

	B.2 Supported Document Formats
	B.2.1 Archive File Format
	B.2.2 Database Formats
	B.2.3 E-Book Formats
	B.2.4 Email Formats
	B.2.5 Graphic Formats (Raster and Vector Image)
	B.2.6 Multimedia Formats
	B.2.7 Other Formats
	B.2.8 Presentation Formats
	B.2.9 Spreadsheet Formats
	B.2.10 Text and Markup Formats
	B.2.11 Word Processing and Desktop Publishing Formats

	C Text Loading Examples for Oracle Text
	C.1 SQL INSERT Example
	C.2 SQL*Loader Example
	C.2.1 Creating the Table
	C.2.2 Issuing the SQL*Loader Command
	C.2.2.1 Example Control File: loader1.dat
	C.2.2.2 Example Data File: loader2.dat

	C.3 Structure of ctxload Thesaurus Import File
	C.3.1 Import File Format
	C.3.2 Alternate Hierarchy Structure
	C.3.3 Usage Notes for Terms in Import Files
	C.3.4 Usage Notes for Relationships in Import Files
	C.3.5 Examples of Import Files
	C.3.5.1 Example 1 (Flat Structure)
	C.3.5.2 Example 2 (Hierarchical)
	C.3.5.3 Example 3

	D Oracle Text Multilingual Features
	D.1 Introduction
	D.2 Indexing
	D.2.1 Multilingual Features for Text Index Types
	D.2.1.1 CONTEXT Index Type
	D.2.1.2 CTXCAT Index Type
	D.2.1.3 CTXRULE Index Type

	D.2.2 Lexer Types
	D.2.3 Basic Lexer Features
	D.2.3.1 Theme Indexing
	D.2.3.2 Alternate Spelling
	D.2.3.3 Base Letter Conversion
	D.2.3.4 Composite
	D.2.3.5 Index Stems

	D.2.4 Multi Lexer Features
	D.2.5 World Lexer Features

	D.3 Querying
	D.4 Supplied Stoplists
	D.5 Knowledge Base
	D.6 Multilingual Features Matrix

	E The Oracle Text Scoring Algorithm
	E.1 Scoring Algorithm for Word Queries
	E.2 Word Scoring Example
	E.3 DML and Scoring Algorithm

	F Oracle Text Views
	F.1 CTX_ALEXER_DICTS
	F.2 CTX_AUTO_OPTIMIZE_INDEXES
	F.3 CTX_AUTO_OPTIMIZE_STATUS
	F.4 CTX_AUTOSYNC_JOBS
	F.5 CTX_AUTOSYNC_STATUS
	F.6 CTX_BACKGROUND_EVENTS
	F.7 CTX_CLASSES
	F.8 CTX_FILTER_BY_COLUMNS
	F.9 CTX_FILTER_CACHE_STATISTICS
	F.10 CTX_INDEXES
	F.11 CTX_INDEX_ERRORS
	F.12 CTX_INDEX_OBJECTS
	F.13 CTX_INDEX_PARTITIONS
	F.14 CTX_INDEX_SETS
	F.15 CTX_INDEX_SET_INDEXES
	F.16 CTX_INDEX_SUB_LEXERS
	F.17 CTX_INDEX_SUB_LEXER_VALUES
	F.18 CTX_INDEX_VALUES
	F.19 CTX_OBJECTS
	F.20 CTX_OBJECT_ATTRIBUTES
	F.21 CTX_OBJECT_ATTRIBUTE_LOV
	F.22 CTX_ORDER_BY_COLUMNS
	F.23 CTX_PARAMETERS
	F.24 CTX_PREFERENCES
	F.25 CTX_PREFERENCE_VALUES
	F.26 CTX_SECTIONS
	F.27 CTX_SECTION_GROUPS
	F.28 CTX_SQES
	F.29 CTX_STOPLISTS
	F.30 CTX_STOPWORDS
	F.31 CTX_SUB_LEXERS
	F.32 CTX_THESAURI
	F.33 CTX_THES_PHRASES
	F.34 CTX_TRACE_VALUES
	F.35 CTX_USER_ALEXER_DICTS
	F.36 CTX_USER_AUTO_OPTIMIZE_INDEXES
	F.37 CTX_USER_AUTOSYNC_JOBS
	F.38 CTX_USER_AUTOSYNC_STATUS
	F.39 CTX_USER_BACKGROUND_EVENTS
	F.40 CTX_USER_EXTRACT_POLICIES
	F.41 CTX_USER_EXTRACT_POLICY_VALUES
	F.42 CTX_USER_EXTRACT_RULES
	F.43 CTX_USER_EXTRACT_STOP_ENTITIES
	F.44 CTX_USER_EXTRACT_TYPE
	F.45 CTX_USER_ FILTER_BY_COLUMNS
	F.46 CTX_USER_INDEXES
	F.47 CTX_USER_INDEX_ERRORS
	F.48 CTX_USER_INDEX_OBJECTS
	F.49 CTX_USER_INDEX_PARTITIONS
	F.50 CTX_USER_INDEX_SETS
	F.51 CTX_USER_INDEX_SET_INDEXES
	F.52 CTX_USER_INDEX_SUB_LEXERS
	F.53 CTX_USER_INDEX_SUB_LEXER_VALS
	F.54 CTX_USER_INDEX_VALUES
	F.55 CTX_USER_ORDER_BY_COLUMNS
	F.56 CTX_USER_PREFERENCES
	F.57 CTX_USER_PREFERENCE_VALUES
	F.58 CTX_USER_SECTIONS
	F.59 CTX_USER_SECTION_GROUPS
	F.60 CTX_USER_SESSION_SQES
	F.61 CTX_USER_SQES
	F.62 CTX_USER_STOPLISTS
	F.63 CTX_USER_STOPWORDS
	F.64 CTX_USER_SUB_LEXERS
	F.65 CTX_USER_THESAURI
	F.66 CTX_USER_THES_PHRASES
	F.67 CTX_VERSION
	F.68 ALL_DBMS_SEARCH_INDEXES
	F.69 ALL_DBMS_SEARCH_INDEX_SOURCES
	F.70 USER_DBMS_SEARCH_INDEXES
	F.71 USER_DBMS_SEARCH_INDEX_SOURCES

	G Stopword Transformations in Oracle Text
	G.1 Understanding Stopword Transformations
	G.2 About Stopwords in Phrase Queries
	G.3 Word Transformations
	G.4 AND Transformations
	G.5 OR Transformations
	G.6 ACCUMulate Transformations
	G.7 MINUS Transformations
	G.8 MNOT Transformations
	G.9 NOT Transformations
	G.10 EQUIValence Transformations
	G.11 NEAR Transformations
	G.12 Weight Transformations
	G.13 Threshold Transformations
	G.14 WITHIN Transformations

